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        Algebra plays a signifi cant role in a student’s academic pathway, from being a 
graduation requirement to acting as a gatekeeper to more advanced coursework 
required of science, technical, engineering, and mathematics majors and careers. 
Yet, the magnitude of students’ poor math preparation is staggering at every level of 
schooling. For example, in the Los Angeles Unifi ed School District, the second 
largest school district in the United States, the pass rate for the California High 
School Exit Exam (CAHSEE) in math was 47 % (CDE,  2011 ) and mirrors the weak 
performance of eighth graders on the 2009 National Assessment of Educational 
Progress (NCES,  2010 ). Poor math preparation has resulted in large numbers of 
students failing the California State University math entrance exam (16,900 or 35 % 
of the fall 2010 fi rst-time freshmen; CSU,  2011 ). The consequence of poor math 
preparation is of national importance, as failure to maintain a pipeline of prepared 
students is diminishing the nation’s competitive technology infrastructure and lead 
in the global economy (NAE & IOM,  2006 ; NAS,  2005 ; NSB,  2010 ). In our own 
studies with middle school students, we have found about 50 % of eighth-grade 
students did not recognize that  12 1 12× ( / )    equals 1, and about 34 % of these 
students could not provide a solution to the equation 3 x  + 1 = 13 (Chung et al.,  2007 ). 
Success in algebra is predicated on students developing foundational math concepts 
and skills. The National Mathematics Advisory Panel (NMAP,  2008 ) identifi ed 
 fl uency with whole numbers  as a critical skill underlying algebra. Fluency refers to 
the ease with which learners can manipulate whole numbers quickly and with 
automaticity. 

 O’Neil’s cognitive readiness learning model (O’Neil, Lang, Perez, Escalante, 
& Fox, this volume) comprises a domain-independent set of knowledge, skills, 
and attributes. The knowledge component is conceptualized as the prerequisite 
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knowledge and the domain-specifi c knowledge needed to develop cognitive 
 readiness in the domain. The skills component includes the adaptability, adaptive 
problem solving, communication, decision making, and situation awareness. The 
attributes/competencies component includes adaptive expertise, creative thinking, 
metacognition, and teamwork. 

 This chapter examines the prerequisites for cognitive readiness that underlie 
solving equations, a fundamental topic in algebra. The prerequisite for solving 
equations exists under the knowledge component in O’Neil et al.’s cognitive readi-
ness learning model. The prerequisites for solving equations require fl uency with 
the basic operations (addition, subtraction, multiplication, division), use of proper-
ties (e.g., commutative, associative, and distributive properties), and the knowledge 
of how to apply these operations to problem solving. In the remainder of this chap-
ter we fi rst illustrate the complexity of solving equations by enumerating the set of 
mathematical operations that are needed to solve an equation. We then report on an 
assessment technique we have been investigating to measure cognitive readiness for 
solving equations. 

7.1     What Knowledge Is Required to Solve an Equation? 

 In the context of school algebra, being cognitively ready to solve multistep equations 
suggests a learner possesses the knowledge of the properties of operations on num-
bers (often referred to as the properties of arithmetic or algebra), skill in applying a 
particular operation constrained by its properties, reasoning during the simplifi ca-
tion (or transformation) process, and monitoring of the solution   . Students need to be 
fl uent with a variety of fundamental concepts such as negative numbers and the use 
of letters as an unknown (Carraher & Schliemann,  2007 ; Chazan & Yerushalmy, 
 2003 ; Vlassis,  2002 ). 

 A cognitive task analysis conducted by Chung et al. ( 2007 ) identifi ed over 50 
concepts related to solving equations. Students need to be facile with a substantial 
body of knowledge, including the meaning of equality; unit/1; the properties of 
algebra; rational numbers and integers; theorems and conventions (e.g., −1 × −1 = 1; 
order of operations); the operations; and factorization. 

 Table  7.1  lists the general types of knowledge identifi ed from the cognitive task 
analysis to underlie solving equations and Table  7.2  lists the properties of 

      Table 7.1    Sample of knowledge related to solving multistep equations at the middle school level   

 Numbers  Rational numbers (e.g., fractions, percentage, mixed, decimal, ratio) 
 Symbols  Operators (e.g., +, −, •, ×, /, ÷, fraction bar), grouping (e.g., parentheses, 

brackets, braces, absolute value, repeating decimals, square root), 
equality (=), sign (+, −), variables (e.g.,  a ,  b ,  x ) 

 Operations  Addition, subtraction, multiplication, division 
 Conventions  Order of operations, grouping, and simplifi cation (e.g., ( x ) =  x ) 
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operations on real numbers. Thus, depending on the knowledge of and fl uency with 
these concepts, solving equations can range from being automated and error-free to 
being deliberate and error-prone.

7.2         The Cognitive Demands of Solving Equations 

 To illustrate the cognitive complexity of solving an equation, we conducted a cogni-
tive task analysis on the equation  7 3 2 38x x− − =( )   . This equation is typical of what 
students would receive in an algebra class. While the solution is straightforward, we 
have observed a low percentage of students in algebra—particularly those strug-
gling in math—unable to solve this equation, with less than 15 % of our sample 
successfully solving this equation (Chung et al.,  2007 ). What is puzzling about this 
low performance is that the equation is simple and straightforward, and only requires 
knowledge of math concepts drawn from Tables  7.1  and  7.2  that presumably have 
been covered in the elementary math curriculum. 

 Our analysis focused on uncovering the underlying mathematical operations 
required to solve  7 3 2 38x x− − =( )   . Our analysis technique was to solve the equa-
tion step-by-step, such that each transition from one step to the next step used only 
 one  mathematical operation. Table  7.3  shows one solution path for the equation 
 7 3 2 38x x− − =( )   . The solution steps use a single operation from Table  7.1  or  7.2 . 
Overall, the steps in Table  7.3 , when categorized in terms of the categories listed in 
Table  7.1  or  7.2 , have nine properties of operations, one theorem, eight arithmetic 
operations, and two simplifi cations. Of particular interest are two critical transi-
tions: Step 11 → 12 and Step 15 → 16. These transitions are critical because they are 
the only ways to simplify the equation. Less obvious examples include Step 13 → 14 
and Step 17 → 18, of which the underlying mathematical reason (identity proper-
ties) for the 0 or 1 “vanishing” from the expression is often a mystery to students.

      Table 7.2    Properties of operations on real numbers   

 Property  Form 

 Identity properties of addition and multiplication   a  + 0 =  a a  • 1 =  a  
 Associative property of addition and multiplication   a  + ( b  +  c ) = ( a  +  b ) +  c a  • ( b  •  c ) = ( a  •  b ) •  c  
 Commutative property of addition and multiplication   a  +  b  =  b  +  a a  •  b  =  b  •  a  
 Additive and multiplicative inverse properties   a  + (− a ) = 0  a  • (1/ a ) = 1,  a  ≠ 0 
 Distributive property   a  • ( b  +  c ) =  a  •  b  +  a  •  c  
 Addition property of equality  if  a  =  b , then  a  +  c  =  b  +  c  
 Multiplication property of equality  if  a  =  b , then  a  •  c  =  b  •  c  
 Refl exive property of equality   a  =  a  
 Symmetric property of equality  if  a  =  b , then  b  =  a  
 Transitive property of equality  if  a  =  b  and  b  =  c , then  a  =  c  
 Theorems  (−1) • (−1) = +1 (−1) • (+1) =−1 
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            Table 7.3    Solution steps for a multistep equation      

        
   a Each equation in the “Equation” column represents a step in the solution path. When an equa-
tion is operated on as described in the “Type of operation ...” column, the resulting transformed 
equation appears immediately under the original equation as the “next step.” For example, 
given step 5, multiplying (–1) and (–2) in the step 5 equation results in the step 6 equation.  
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   One advantage of deriving solution steps using only one operation is that it 
reveals all the underlying knowledge that is often chunked when one actually carries 
out the procedure. For example, while  7 3 2 38x x− − =( )    might be solved in four 
steps ( 7 3 2 38x x− − =( )    →  7 3 2 38x x− + =    →  4 2 38x + =    →  4 36x =    →  x = 9   ), 
the solution expands to 20 steps as shown in Table  7.3 . The large number of steps 
suggests that solving equations can involve a high number of operations that is 
routine if the learner has the requisite knowledge. In addition, use of a single math-
ematical operation per step allowed us to standardize the analysis. 

 When the process of solving  7 3 2 38x x− − =( )    is examined using O’Neil et al.’s 
cognitive readiness framework, the complexity of equation solving becomes 
clearer. The cognitive processes of adaptability and metacognition are particularly 
relevant. 

  Adaptability  is defi ned as an effective change in response to an altered situation 
(O’Neil et al., this volume). A student competent in solving equations can respond 
effectively to different equation forms that involve multiple terms, grouping sym-
bols, number types, operations, and properties, as initially presented to the learner 
as well as during the solution process whereby the form of the equation changes as 
the equation goes through successive transformations (or simplifi cations). This 
competency captures the fl uency and automaticity identifi ed as critical to the prepa-
ration for algebra by the National Mathematics Advisory Panel (NMAP,  2008 ). 
As students attain fl uency with the symbols and operations required to transform 
equations, they may advance toward  adaptive expertise —the possession of a deep 
understanding of the conceptual structure of the problem and understanding when 
and why particular procedures are appropriate or not. Students who have attained 
this stage are capable of solving equations across various surface forms (e.g., with 
the variable on both sides of the equal sign), are facile at iteratively simplifying 
complex expressions (e.g., nested quantities), and are able to recognize the optimal 
point during a solution path to eliminate terms and factors. Finally, successful stu-
dents presumably engage in  metacognition —composed of planning and self- 
monitoring—whereby the correctness of each solution step is monitored and the 
“chunk” size of a step is adjusted to reduce cognitive load and decrease errors.  

7.3     Implications for an Assessment of Cognitive Readiness 

 An assessment of cognitive readiness for solving equations requires a way of mea-
suring the process of solving equations to determine whether the student can respond 
appropriately to various forms of an equation that result from successive transfor-
mations. A key innovation we developed was to use the steps in the solution path of 
a given equation as a source to sample items from. A step in the solution path is 
treated as a test item for the participant to solve. By sampling a range of steps from 
a given equation, the item set inherently captures the  process  of solving that equa-
tion. The complexity of the items systematically decreases because solving an equa-
tion results in successive transformations of that equation into simpler equations. 
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Further, because all the steps fl ow from the same equation, the steps are internally 
coherent. Knowing the transitions from one step to the next—the transformation of 
each step into a simpler equation—is the key competency in solving equations. 
Solving an equation requires the learner to iteratively identify and execute the 
appropriate operation given evolving constraints of the equation. By testing students 
on each step, the assessment can identify where in the solution path students may be 
having diffi culties. 

 The second innovation was inspired by Kalyuga and colleagues (Kalyuga,  2006 ; 
Kalyuga & Sweller,  2004 ). Their research has suggested that asking participants 
only for the next step (vs. a fully worked solution) is predictive of participants’ 
performance on a fully worked solution (Kalyuga,  2006 ; Kalyuga & Sweller,  2004 ). 
We adopted this procedure as it is highly effi cient. Thus, our research question was 
to what extent can steps in a solution (as in Table  7.3 ), when sampled as an assess-
ment, capture the cognitive complexity of solving the equation they were derived 
from?  

7.4     Method 

7.4.1     Participants 

 Data for 42 participants were analyzed. The sample was from a larger study (Chung 
et al.,  2007 ). Students were from an urban middle school in southern California. 
Students were tested at the end of the fi rst semester. Participants were drawn from 
two sixth-grade algebra readiness (pre-algebra topics) classes and three eighth- 
grade algebra 1A classes (pre-algebra and algebra topics). There were 23 males and 
17 females, and two participants did not report their sex. The students’ ethnicity was 
diverse, including 19 % Latino, 33 % Asian or Pacifi c Islander, 24 % White, and 
12 % African American, and 11 % unreported. About 80 % of students reported 
receiving A’s or B’s in math, and nearly all students agreed or strongly agreed that 
they were able to understand their teacher’s explanations in math class, and nearly 
all students agreed or strongly agreed that they were able to read and understand 
most of the problems and explanations in their math textbook.  

7.4.2     Measures 

  Pretest . A 27-item selected-response measure was used to measure students’ knowl-
edge and skills required to solve  7 3 2 38x x− − =( )   , as described in Table  7.3 . 
Detailed information on the measure is reported in Chung et al. ( 2007 ). Cronbach’s 
 α  for this measure was 0.75. 
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  Next step scale . An eight-item measure was developed to measure students’ skills 
related to solving  7 3 2 38x x− − =( )   . Each item was drawn from a step in the solu-
tion path shown in Table  7.3 . For the next step items, participants were instructed to 
write down just their next step and not work through the full solution. The items 
were scored as correct or incorrect. The presentation order of the items was ran-
domized on the form. The letters denoting variables were changed across the 
items and the values of terms and coeffi cients were changed so as to give the illu-
sion of different equations. However, the structure of the equation was preserved. 
Cronbach’s  α  for this scale was 0.69. Table  7.4  lists the items. Note that Table  7.4  also 
represents the form of the steps in a fully worked solution to  7 3 2 38x x− − =( )   . 
In addition, substituting the appropriate value for each of the coeffi cients, terms, 
and variable labels in each item in Table  7.4  would yield the exact solution to 
 7 3 2 38x x− − =( )   , which is the innovation of our general approach.

7.4.3        Task and Procedure 

 Participants were administered the measures as part of their normal math instruc-
tion. Participants completed the pretest, next step measure, and a background ques-
tionnaire. Participants were allowed the entire class period of 50 min to complete 
the tasks.   

7.5     Results 

 Our research question focused on the extent to which steps from the solution path of 
an equation capture the cognitive complexity of solving the equation they were 
derived from. To address this question, our analysis examined (a) the extent to 
which an item’s diffi culty corresponded to its relative position in the solution path; 
and (b) the extent to which performance on the next step format predicted perfor-
mance on a fully worked solution. 

    Table 7.4    Next step items   Item  Equation  Step from Table  7.3  

 1   7 3 2 38h h− − =( )    
 Given 

 2   7 1 3 2 38x x+ − − =( )( )     2 
 3   7 3 2 38a a+ − + =( )     6 
 4   2 4 42y + =     11 
 5   8 6 6 24 6x + − = −     12 
 6   9 0 42 6a + = −     13 
 7   4 38 2x = −     14 
 8   5 30z =     15 

  Each item was based on a step in Table  7.3   
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7.5.1     Descriptive Statistics 

 Means, standard deviations, and intercorrelations among knowledge of pre-algebra 
concepts, and self-reported math grades are shown in Table  7.5 . Performance on the 
next step assessment, pretest, and self-reported grades were signifi cantly correlated 
with each other. The mean performance on the next step assessment was 50 %, and 
76 % for the pretest.

7.5.2        To What Extent Does the Diffi culty of an Item 
Correspond to Its Relative Position in the Solution Path? 

 To answer this question, we examined the overall performance on each item relative 
to its position in the solution path to the equation  7 3 2 38x x− − =( )   . Because  solving 
an equation by defi nition results in a series of simpler and simpler equations, we 
expected an increase in performance across items that corresponded to simpler steps 
in the solution path. 

 The lowest item diffi culty (or  p  value) was 0.17 for the most complex equation, 
and generally increased as the items became simpler. The highest  p  values were in 
the 0.7 range and were for the three simplest equations. Figure  7.1  shows the  p  val-
ues of each item. Higher item numbers indicate simpler equations. As expected, 
overall performance generally increased across simpler equations. In addition, the 
items appeared to cluster into three performance levels. Cluster 1 was the hardest 
and composed of the fi rst two items in the solution path that were complex multistep 
equations where distribution was required to simplify the equations. Cluster 2 was 
composed of three items of multistep equations and did not require distribution. 
Cluster 3 was composed of items that were the last three steps in the solution path 
and were items that were generally single-step equations.

   Because the items were dichotomous and dependent, a nonparametric procedure 
was performed to test whether there were differences in student performance on the 
eight items (Cochran’s  Q  test, Pett,  1997 ). Cochran’s  Q  test yielded a signifi cant 
omnibus effect ( Q  = 67.34, df = 1,  p  < 0.001), indicating a signifi cant difference 
between at least two items. Follow-up multiple comparisons using Cochran’s  Q  test 

   Table 7.5    Descriptive statistics and intercorrelations (Spearman) on background variables   

 Variable   M   SD  Min.  Max.  1  2 

 1. Next step assessment a    4.00  2.09   0   8  – 
 2. Pretest b   20.60  3.46  12  27   0.44**  – 
 3. Self-reported grades in math c    1.59  0.84   1   4  −0.34*  −0.64*** 

  * p  < 0.05; ** p  < 0.01; *** p  < 0.001 
  a Maximum score possible = 8 
  b Maximum score possible = 27 
  c 1 = mostly A’s, 2 = mostly B’s, 3 = mostly C’s, 4 = mostly D’s, 5 = mostly F’s  
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which were conducted between items that corresponded to adjacent steps in the 
solution (e.g., 1 vs. 2; 2 vs. 3) showed signifi cant differences between items 2 and 3 
( Q  = 10.29, df = 1,  n  = 42,  p  = 0.001) and items 5 and 6 ( Q  = 4.57, df = 1,  n  = 42, 
 p  = 0.03). No other differences were detected, suggesting that the diffi culty of the 
items within each item cluster was similar. 

 An inspection of the items suggested that items within each cluster refl ected 
similar cognitive demands. Cognitive demands refer to the type of cognitive pro-
cessing required of the student to be successful on an assessment task (Baker,  1997 ). 
In this case, the major next step for items 1 and 2 is distribution over subtraction. 
For items 3–5, the major next step is subtracting terms from both sides of the equa-
tion (addition property of equality), and for items 6–8 the major next step is dividing 
both sides of the equation (multiplication property of equality). 

 Items within each cluster were summed to form a scale as student performance 
on the items within a scale was similar and the math operations were mainly sim-
plifi cation. Interestingly, Cluster 1 (distribution) was related signifi cantly to 
Cluster 2 (addition property of equality),  r  s (41) = 0.39,  p  = 0.01, but not to Cluster 
3 (multiplication property of equality), while Cluster 2 was related signifi cantly to 
Cluster 3,  r  s (41) = 0.32,  p  = 0.04. These relationships are consistent with how the 
cognitive demands unfold during solving the equation. The major next step after 
Cluster 1 is Cluster 2, and the major next step from Cluster 2 is Cluster 3. In terms 
of cognitive readiness, the discontinuities after Cluster 1 suggest student diffi cul-
ties with distribution over subtraction. The discontinuity after Cluster 2 suggests 

  Fig. 7.1     p  value of items corresponding to steps in the solution. Error bars indicate standard errors 
around the mean       
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some students were having diffi culty with the transformation step—reasoning 
about when and how to “eliminate” terms and coeffi cients in an expression to sim-
plify the equation.  

7.5.3     To What Extent Does Asking for Just the “Next Step” 
Predict Performance on a Fully Worked Solution? 

 To answer this question, we examined the relation between participants’ perfor-
mance on three next step items and their performance on three similar items that 
required participants to solve the items completely. Our analysis approach fi rst 
examined format differences between the next step and fully worked items. Because 
we were examining whether the next step format could be used as a substitute for 
the typical approach of requiring students to solve each equation completely, we 
examined whether there existed format differences and whether the next step items 
predicted performance on the fully worked items. Both of these properties would be 
required if the next step item format were to be used to measure students’ skill at 
solving equations. 

 Table  7.6  shows the items and item statistics for the next step and fully worked 
item formats. The next step format appeared to underestimate students’ skill at actu-
ally solving the equation. Cochran’s test of whether there were differences in item 
types yielded a signifi cant difference for item pair 1 ( Q  = 11.0, df = 1,  p  = 0.001) and 
item pair 2 ( Q  = 9.0, df = 1,  p  = 0.003). There was no difference between the formats 
for item pair 3. These results point to a potential format effect. The task to write 
down just the next step and not provide the full solution may have been unusual. 
Another difference was that the values of the coeffi cients were different across 
formats, which may have contributed to differences in diffi culty.

   The next analysis examined how well performance on the next step item pre-
dicted performance on the fully worked item. These analyses could not be per-
formed for item pair 1 because all participants answered the item correctly on the 
fully worked format. For item pair 2, the prediction of performance on the fully 
worked problem from the next step performance was marginally signifi cant (Somer’s 
 d  = 0.21,  p  = 0.09), and signifi cant for item pair 3 (Somer’s  d  = 0.51,  p  = 0.03). 
Somer’s  d  is a measure of concordance between two ordinal variables and ranges in 

   Table 7.6    Comparison between the next step only and fully worked solution items ( N  = 42)   

 Item 
pair 

 Next step response  Fully worked 

  p  value for test of 
item differences b   Equation 

 Item 
diffi culty a   Equation 

 Item 
diffi culty a  

 1   5 30z =    
 0.71   6 42m =    

 0.98  0.001 

 2   2 4 42y + =     0.52   3 1 13g + =     0.79  0.003 
 3   7 3 2 38h h− − =( )     0.17   7 3 2 38h h− − =( )     0.14  0.66 

   a Proportion of students who answered correctly 
  b Cochran’s    test  
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value from −1 to +1. Values close to −1 or +1 indicate a strong negative or positive 
relationship, respectively, and values close to 0 indicate little or no relationship 
between the variables (IBM SPSS,  2009 ). 

 We then summed items within each format to form scales and examined the 
correlation between the two scales. The purpose for forming a scale was to create a 
more general measure that spanned the full range of solving equation steps. The 
next step scale correlated signifi cantly with the fully worked scale,  r  s (40) = 0.39, 
 p  = 0.012, although the magnitude of the correlation was lower than that reported in 
other research ( r  s between 0.7 and 0.9, Kalyuga,  2006 ; Kalyuga & Sweller,  2004 ). 
The difference in magnitude may be due to the small number of items in each scale. 
These results, while based on a small sample, suggest that the next step item format 
can be predictive of whether participants will be successful at solving an equation.   

7.6     Discussion 

 In this study we tested a novel assessment technique to measure the cognitive readi-
ness for solving equations. Our technique, inspired from Kalyuga and colleagues 
(Kalyuga,  2006 ; Kalyuga & Sweller,  2004 ), sampled steps from the solution path of 
an equation and used those steps as assessment items. We also examined whether 
simply asking participants to specify their “next step” captured the complexity of 
solving the entire equation. 

 Our fi rst fi nding was that items drawn from steps from a solution path yielded 
item diffi culties consistent with the step’s relative position in the solution path. 
Items drawn from the beginning of the solution path were more diffi cult than items 
near the end of the solution path. However, item diffi culties were similar among 
items that differed only in the arithmetic complexity (e.g., simple subtraction or 
division). The major discontinuities in performance occurred in the steps that 
required operations related to distribution and equality (subtraction and division). 
This result is consistent with the fi nding that many students have neither the skills 
nor precise understanding of the body of basic mathematical knowledge to success-
fully transform equations (e.g., Demby,  1997 ; Herscovics & Linchevski,  1994 ; 
Kieran,  2007 ; MacGregor & Stacey,  1997 ; Pierce & Stacey,  2007 ). 

 Our second fi nding was that the next step item format was apparently more 
diffi cult than like items that required participants to work out the full solution, 
which was similar to a fi nding by Kalyuga ( 2006 ). Kalyuga found that students 
performed lower on the next step items than on items requiring fully worked solu-
tions. However, Kalyuga used word problems as the task and overall performance 
was low for both formats. Kalyuga speculated that students’ problem solving skills 
were impoverished which led to a lower success rate on the next step items because 
providing an accurate next step required an existing schema of the general approach, 
compared to solving the problem where the solution could be discovered through a 
variety of approaches. These results, however, were inconsistent with earlier work 
using a similar approach. In Study 1 that used an equation solving task, Kalyuga and 
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Sweller ( 2004 ) found that students solved a higher percentage of the next step items 
(72 %) than the fully worked items (58 %). While the general trend of format differ-
ences appears to exist among all the studies, which format is more diffi cult is unclear 
as all studies scored student responses differently. We think the most likely explanation 
for the differences observed in the current study is that the next step format is too 
novel, as asking students to write only their fi rst step is atypical. However, despite 
these format differences, performance on next step items predicted performance on 
items requiring a fully worked solution in the current study as well as Kalyuga 
( 2006 ) and Kalyuga and Sweller ( 2004 ). 

 Given the amount of knowledge and skills required of solving equations, an 
important assessment question is what should be measured and how should it be 
measured? The use of assessments as diagnostic tools is not new and has seen 
numerous forms, many of which are clinical and intensive in nature (Black & 
Wiliam,  2009 ; Heritage, Kim, Vendlinski, & Herman,  2009 ; Sadler,  1989 ; Shepard, 
 2001 ; Wiliam & Thompson,  2007 ). 

 The objective of an assessment is to understand what the student is doing and to 
elicit why he or she is doing it. The cognitive demands of solving equations include 
knowing which operation to apply (e.g., distribution over subtraction) and, just as 
importantly, knowing when to apply those operations (e.g., equality property of 
addition). In the context of cognitive readiness, the assessment presented in this 
chapter was designed to measure both the prerequisites for solving equations and 
the skill itself. In addition, the technique may provide a feasible way to capture the 
 process  of solving equations. Our results show that the prerequisites for solving 
equations can be measured feasibly. Our general approach of sampling from the 
solution path yields performance differences that suggest chokepoints that in the 
context of solving equations map to adaptive expertise and adaptability. That is, 
successful problem solvers appear to know the conditions under which to apply 
particular operations to solve the equation (e.g., using the additive identity to isolate 
terms; using the multiplicative identity to isolate variables). 

 Finally, the practical use for algebra instruction is straightforward: because the 
item set is sampled from the derivation of an equation (e.g.,  7 3 2 38x x− − =( )   , as 
shown in Table  7.3 ), the performance dropoff can be used to pinpoint where in the 
solution path students have diffi culty. Further, the set of steps in Table  7.3  tap all the 
properties of algebra and most of the operations. The item clusters shown in Fig.  7.1  
suggest that, in our sample, single-step problems requiring division of the coeffi cient 
to isolate the unknown were relatively easy compared to multistep equations that 
required the use of the additive inverse. The very low performance on the fi rst item 
cluster suggests that distribution over subtraction is posing a substantial barrier for 
students. The instructional implications of Fig.  7.1  are clear—students in our sample 
need support on (a) the use of the additive inverse to isolate the term with the unknown 
and (b) distribution over subtraction. These implications would not be as straightfor-
ward if the items were developed by other means. Our technique of sampling items 
from the set of steps in a solution path appears to be a promising approach, combin-
ing rapid testing time, breadth of coverage, and diagnostic potential.     

G.K.W.K. Chung and G.C. Delacruz



147

  Acknowledgments   The work reported herein was supported under the National Research and 
Development Centers Program, PR/Award Number R305C080015, as administered by the Institute 
of Education Sciences, U.S. Department of Education, and partially supported by a grant from the 
Offi ce of Naval Research, Award Number N000140810126. The fi ndings and opinions expressed 
in this chapter do not necessarily refl ect the positions or policies of the U.S. Department of 
Education or the Offi ce of Naval Research. We would also like to thank Joanne Michiuye of 
UCLA/CRESST for review and editorial help with this manuscript.  

   References 

    Baker, E. L. (1997). Model-based performance assessment.  Theory Into Practice, 36 , 247–254.  
    Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment.  Educational 

Assessment, Evaluation and Accountability, 21 , 5–31.  
    California Department of Education (CDE). (2011).  California High School Exit Exam (CAHSEE) 

result for Los Angeles Unifi ed School District, 2010–2011 school year . Sacramento, CA: 
Author.  

    California State University (CSU). (2011).  Fall 2010 fi nal regularly admitted fi rst-time freshman 
remediation systemwide . Long Beach, CA: Author.  

    Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. 
Lester Jr. (Ed.),  Second handbook of research on mathematics teaching and learning  (2nd ed., 
pp. 669–704). Charlotte, NC: Information Age Publishing.  

    Chazan, D., & Yerushalmy, M. (2003). On appreciating the cognitive complexity of school alge-
bra: Research on algebra learning and directions of curricular change. In J. Kilpatrick, W. G. 
Martin, & D. Schifter (Eds.),  A research companion to principles and standards for school 
mathematics  (pp. 123–135). Reston, VA: National Council of Teachers of Mathematics.  

       Chung, G. K. W. K., Delacruz, G. C., Dionne, G. B., Baker, E. L., Lee, J. J., & Osmundson, E. 
(2007). Towards individualized instruction with technology-enabled tools and methods. In R. 
Perez (Chair),  Rebooting the past: Leveraging advances in assessment, instruction, and tech-
nology to individualize instruction and learning.  Symposium presented at the annual meeting 
of the American Educational Research Association, Chicago, IL.  

    Demby, A. (1997). Algebraic procedures used by 13–15 year-olds.  Educational Studies in 
Mathematics, 33 , 45–70.  

    Heritage, M., Kim, J., Vendlinski, T., & Herman, J. (2009). From evidence to action: A seamless 
process in formative assessment?  Educational Measurement: Issues and Practice, 28 , 24–31.  

    Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. 
 Educational Studies in Mathematics, 27 , 59–78.  

    IBM SPSS. (2009).  PASW Statistics (version 18) [Computer software] . Armonk, NY: IBM.  
         Kalyuga, S. (2006). Rapid cognitive assessment of learners’ knowledge structures.  Learning and 

Instruction, 16 , 1–16.  
         Kalyuga, S., & Sweller, J. (2004). Measuring knowledge to optimize cognitive load factors during 

instruction.  Journal of Educational Psychology, 96 , 558–568.  
    Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. 

K. Lester Jr. (Ed.),  Second handbook of research on mathematics teaching and learning  (2nd 
ed., pp. 707–762). Charlotte, NC: Information Age Publishing.  

    MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation: 11–15. 
 Educational Studies in Mathematics, 33 , 1–19.  

    National Academy of Engineering (NAE), & Institute of Medicine (IOM), Committee on Science, 
Engineering, and Public Policy. (2006).  Rising above the gathering storm: Energizing and 
employing America for a brighter economic future . Washington, DC: National Academies Press.  

    National Academy of Sciences (NAS). (2005).  National science and technology strategies in a 
global context: Report of an international symposium . Washington, DC: National Academies 
Press.  

7 Cognitive Readiness for Solving Equations



148

    National Center for Education Statistics (NCES). (2010).  The nation’s report card: Grade 12 read-
ing and mathematics 2009 national and pilot state results . Washington, DC: U.S. Department 
of Education.  

     National Mathematics Advisory Panel (NMAP). (2008).  Foundations for success: The fi nal report 
of the National Mathematics Advisory Panel . Washington, DC: U.S. Department of Education.  

   National Science Board. (2010).  Science and engineering indicators, Volume 1  (Rep. No. NSB 
10-02). Arlington, VA: Author.  

    Pett, M. A. (1997).  Nonparametric statistics for health care research: Statistics for small samples 
and unusual distributions . Thousand Oaks, CA: Sage.  

    Pierce, R., & Stacey, K. (2007). Developing algebraic insight.  Mathematics Teaching, 203 , 12–16.  
    Sadler, D. R. (1989). Formative assessment and the design of instructional systems.  Instructional 

Science, 18 , 119–144.  
    Shepard, L. A. (2001). The role of classroom assessment in teaching and learning. In V. Richardson 

(Ed.),  The handbook of research on teaching  (4th ed.). Washington, DC: American Educational 
Research Association.  

    Vlassis, J. (2002). Making sense of the minus sign or becoming fl exible with “negativity”.  Learning 
and Instruction, 14 , 469–484.  

    Wiliam, D., & Thompson, M. (2007). Integrating assessment with instruction: What will it take to 
make it work? In C. A. Dwyer (Ed.),  The future of assessment: Shaping teaching and learning  
(pp. 53–82). Mahwah, NJ: Erlbaum.    

G.K.W.K. Chung and G.C. Delacruz


	Chapter 7: Cognitive Readiness for Solving Equations
	7.1 What Knowledge Is Required to Solve an Equation?
	7.2 The Cognitive Demands of Solving Equations
	7.3 Implications for an Assessment of Cognitive Readiness
	7.4 Method
	7.4.1 Participants
	7.4.2 Measures
	7.4.3 Task and Procedure

	7.5 Results
	7.5.1 Descriptive Statistics
	7.5.2 To What Extent Does the Difficulty of an Item Correspond to Its Relative Position in the Solution Path?
	7.5.3 To What Extent Does Asking for Just the “Next Step” Predict Performance on a Fully Worked Solution?

	7.6 Discussion
	References


