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        Apolipoprotein B (apoB)-containing lipoproteins 
are believed to be atherogenic and include 
 chylomicrons, very low-density lipoproteins 
(VLDL), and low-density lipoproteins (LDL). 
   Chylomicrons, which transport lipids derived 
from diet, are produced by the intestine, while 
VLDL, which transport endogenous lipids, are 
produced by the liver. Both are produced at the 
surface of the endoplasmic reticulum (ER). After 
secretion of these lipoproteins, triglycerides are 
hydrolyzed by lipoprotein lipase, and fatty acids 
are taken up by the cells to provide energy (in the 
muscle) or to be stored (in adipose tissue). 
Remnant lipoproteins are enriched in cholesterol 
and can be taken up by cells, and VLDL can 
be converted to LDL. Plasma triglycerides are 
mainly produced in the liver and the intestine. 

    TG-Rich Lipoproteins Secretion 
by Liver and Intestine 

    TG-rich lipoproteins (TGRLs) comprise both 
hepatically derived apoB100-containing very 
low-density lipoprotein (VLDL) and intestinally 
derived apoB48-containing chylomicrons [ 1 ,  2 ]. 
TGRLs are assembled in the liver by hepatocytes 
and in the intestine by jejunal enterocytes. These 
lipoproteins are spherical particles, consisting of 
a neutral lipid core (mainly cholesteryl esters and 
TG) surrounded by a monolayer of lipids (phos-
pholipids and free cholesterol) and apolipopro-
teins. Apolipoprotein B (apoB) is the main 
protein in both VLDL and chylomicrons; each 
particle contains a single apoB molecule. Human 
apoB100 is secreted exclusively by the liver in 
VLDL, while apoB48 is secreted exclusively by 
the intestine in chylomicrons. ApoB is synthe-
sized in two isoforms: apoB100 in the liver and 
apoB48 (deriving from the same gene of 
apoB100) in the intestine [ 3 ,  4 ]. ApoB is synthe-
sized in coordination with MTP (microsomal tri-
glyceride transfer protein) expression and activity 
[ 5 ]. In the presence of lipids, nascent apoB is 
quickly lipidated by MTP; in the absence of lip-
ids, nascent apoB is ubiquitinylated and degraded. 
ApoB levels are in fact highly regulated by mul-
tiple distinct degradative pathways [ 6 ]. When 
lipid availability is low or MTP activity is 
reduced, apoB is cotranslationally targeted for 
ubiquitinylation and degradation by the protea-
some [ 7 – 9 ]. Alternatively, fully assembled apoB 
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particles can undergo reuptake by cells through 
interaction with the LDL receptor or with spe-
cifi c proteoglycans [ 10 ]. In addition, dietary 
polyunsaturated fatty acids (PUFAs) induce the 
degradation of newly synthesized apoB through a 
non-proteasome, post-ER pathway [ 6 ]; this pro-
cess occurs in the presence of normal triglyceride 
levels, resulting in reduced VLDL secretion. 

 Lipoprotein assembly starts with apoB tran-
scription and translocation into the lumen of the 
endoplasmic reticulum (ER). Here, lipid droplets 
are added to apoB, facilitated by the activity of 
MTP, thus resulting in a premature form of apoB- 
containing particle. Next, the addition of neutral 
lipids increases the size of the nascent particle 
that is then transported through the Golgi and 
secreted into the hepatic vein for the hepatic lipo-
proteins and in the lymphatic system for intesti-
nal lipoproteins.  

    VLDL Assembly and Secretion 

 ApoB100 is the major structural protein of 
VLDL, exhibits a highly lipophilic nature, and 
contains two domains able to interact irreversibly 
with the neutral lipids present in the lipoprotein 
core [ 11 ]. The intrahepatic assembly of apoB into 
VLDL can be divided into two steps (Fig.  6.1 ). 
Due to its lipophilic nature, apoB folding and 
stability depends upon the simultaneous addition 

of lipids; this process is related to the activity of 
MTP [ 12 ,  13 ]. MTP is an ER-resident protein 
that, following heterodimerization with the small 
subunit protein disulfi de isomerase (PDI), cata-
lyzes the transfer of polar (phospholipids) and 
neutral (triglycerides) lipids to nascent apoB dur-
ing its translocation through a protein channel in 
the membrane of the rough ER [ 14 ,  15 ]. MTP is 
also expressed in the intestine and plays a key 
role in the lipidation of apoB48 during chylomi-
cron assembly [ 16 ,  17 ]. This lipidation step 
results in the formation of a relatively small (max 
25 nm), dense particle. Maturation of these pre-
cursors to VLDL particles with 30–80 nm diam-
eter involves the post-translational acquisition of 
the bulk of triglycerides by fusion of the apoB- 
containing precursor with large triglyceride drop-
lets produced in the smooth endoplasmic 
reticulum [ 18 ], giving rise to TG-rich VLDL. 
The size of the VLDL particles secreted by the 
liver is determined by the size of the TG pool 
[ 19 ], which mainly derives from lipolytic mobili-
zation of the hepatic storage pool [ 20 ] rather than 
from newly formed TG [ 21 ].

   VLDL assembly and secretion is a process 
highly regulated by the availability of triglycer-
ides in the liver [ 22 ]; TG may derive from differ-
ent sources, including uptake of albumin-bound 
fatty acids, uptake of circulating remnants of 
VLDL and chylomicrons, and de novo hepatic 
synthesis. Beside apoB and MTP, TG availability 

  Fig. 6.1    Intrahepatic assembly of apoB into VLDL       
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determines the effi ciency of apoB-lipoprotein 
formation. In fact, reduced lipid availability 
results in targeting of apoB for degradation and 
decreased VLDL secretion [ 23 ]. Fatty acids 
derived from diet or released from adipose tissue 
enter the liver where they are re-esterifi ed, form-
ing triglyceride droplets [ 24 ]. Not all mobilized 
TGs enter into the secretory pool to contribute to 
VLDL formation; a relatively large proportion 
(determined by MTP and insulin activity) is 
returned back to the cytosolic pool. Newly syn-
thesized VLDL contain little apoC; after secre-
tion in the circulation, they acquire apoE and 
additional apoC from HDL (Fig.  6.2 ).

   Two major subfractions of VLDL exist, large 
VLDL1 and smaller VLDL2. VLDL1 secretion 
is dependent on fatty acid availability, and insulin 
inhibits VLDL1 secretion [ 25 ]; this does not 
seem to be true for VLDL2. After secretion, 
VLDL1 are delipidated, following hydrolysis of 
TG through lipoprotein lipase; the delipidation 
process of VLDL1 is not complete, and only a 
minor fraction is converted to LDL, most rem-
nants being directly removed from plasma [ 26 ]. 
On the contrary, most VLDL2 particles are delip-
idated and converted to LDL [ 27 ].  

    Chylomicron Assembly 
and Secretion 

 Three proteins play a key role in the process of 
chylomicron assembly: apoB48, MTP, and apoA-
 IV. ApoB48 is produced from the same gene of 
apoB100 in the small intestine and is formed by 
post-transcriptional mRNA editing in intestinal 
enterocytes; it lacks the LDLR-binding domain 
and is essential for the assembly of chylomicrons. 
MTP is a lipid-transfer protein that transports ER 
membrane-bound lipid (mainly TG) to newly 
synthesized apoB48, a step that prevents apopro-
tein degradation; moreover, MTP facilitates the 
successive lipidation of chylomicron precursors. 
ApoA-IV is a lipid-binding protein expressed 
mainly in the small intestine and incorporated 
early into nascent chylomicrons; after chylomi-
cron secretion, apoA-IV dissociates from the par-
ticles to circulate as lipid-free protein. 

 Chylomicrons are responsible for the trans-
port of dietary cholesterol and medium- and 
long-chain fatty acids from the intestinal lumen 
to the liver. The main lipids in chylomicrons are 
triacylglycerols. They are assembled mainly in 

  Fig. 6.2    Metabolism of VLDL ( a ) and chylomicrons ( b )       
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the ER and then transported to the Golgi via 
 specialized vesicles (PCTVs, prechylomicron 
transport vesicles). During the fi rst assembly 
step, apoB48, synthesized by the small intestine, 
is translated into the ER lumen and immediately 
   lipidated through the action of intestinal MTP 
(Fig.  6.1 ), resulting in the formation of a precur-
sor particle. The lipidation can occur both by 
transfer of lipid from the ER membrane to 
apoB48 or by binding of MTP to apoB48 to facil-
itate the protein folding and lipid acquisition. 
During the second step, MTP mediates further 
addition of lipids to the precursor. In this phase 
apoA-IV is added at the particle surface; apoA- IV 
increases MTP activity and increases chylomi-
cron lipidation [ 28 ].  

    Lipoprotein Lipase-Mediated 
Lipolysis 

 VLDL and chylomicrons leave the liver and intes-
tine and enter the circulation where they acquire 
apoC-II and apoE from plasma HDL. In the capil-
laries of adipose tissue and muscle, triacylglycer-
ols are hydrolyzed by endothelial lipoprotein 
lipase (LPL, activated by apoC-II) to produce free 
fatty acids which are then absorbed by the tissues. 
During the removal of fatty acids, a large percent-
age of the phospholipids and apoproteins are 
transferred to HDL, converting the lipoproteins to 
VLDL and chylomicron remnants (Fig.  6.2 ).  

    Hepatic Clearance of Remnants 

 The main organ involved in the clearance of rem-
nant lipoprotein is the liver, where hepatocytes 
express LDL receptor (LDLR), LDL receptor- 
related protein 1 (LRP1), and heparan sulfate 
proteoglycans (HSPGs) in high amounts. In con-
cert with LPL and hepatic lipase (HL), these sur-
face molecules facilitate the rapid hepatic 
clearance of remnant lipoproteins [ 29 – 32 ] that 
are extremely atherogenic [ 33 ] (Fig.  6.3 ). The 
most critical molecule in the remnant clearance is 
apoE, involved in the binding of lipoprotein to 
the LDLR family and HSPGs [ 31 ]. Multiple steps 
are involved in the uptake of remnants by 

 hepatocytes. HSPGs interact with apoE present 
on the  remnant surface and sequester them in the 
space of Disse [ 32 ]; moreover, HSPGs can bind 
LPL and HL that eventually may continue their 
lipolytic activity and prepare the particles for the 
successive internalization process [ 32 ,  34 ], which 
is mediated by LDLR, HSPGs, and the HSPGs/
LRP complex.

   Chylomicron remnants contain mainly choles-
teryl esters, apoE, and apoB48 and return to the 
liver where they are taken up by hepatocytes via 
interaction with the LDL receptor which requires 
apoE [ 35 ]. Moreover, chylomicron remnants can 
acquire additional apoE, allowing the remnants 
to be taken up via the chylomicron remnant 
receptor, a member of the LDL receptor-related 
protein (LRP) family [ 35 ]. Alternatively, chylo-
micron remnants can remain sequestered in the 
space of Disse by binding of apoE to heparan sul-
fate proteoglycans and/or binding of apoB48 to 
hepatic lipase [ 35 ]. During this phase, chylomi-
cron remnants may be further metabolized which 
increases apoE and lysophospholipid content, 
allowing for transfer to LDL receptors or LRP for 
hepatic uptake. VLDL remnant particles are 
immediately cleared by the liver or, alternatively, 
further modifi ed by HL and cholesteryl ester 
transfer protein (CETP) to generate LDL.  

    The Role of Insulin in TGRLs 
Metabolism 

 The VLDL assembly process in the liver is tightly 
regulated by insulin [ 36 ,  37 ]: under fasting condi-
tions, VLDL production in the liver is induced; on 
the contrary, in response to post-prandial insulin 
release, hepatic VLDL production is repressed 
[ 25 ,  38 ,  39 ]. This tight regulation allows the liver 
to rapidly adapt to metabolic shifts between fasting 
and feeding and to maintain plasma lipids within 
the physiological range [ 25 ,  39 ,  40 ] (Fig.  6.4 ).

   Several observations suggest that insulin inhib-
its apoB secretion by inducing its degradation 
[ 41 – 44 ]; alternatively, insulin reduced free fatty 
acid (FFA) availability by reducing FFA 
 mobilization from adipose tissue, resulting in apoB 
secretion inhibition [ 45 ]. The apoB gene is believed 
to be constitutively expressed as hepatic mRNA 
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levels in vivo tend to be stable in most animal sys-
tems. However, several studies suggest that apoB 
mRNA abundance can be infl uenced by insulin in 
vivo [ 46 ,  47 ]. Hepatic apoB production is mainly 
regulated at the post-translational level by lipid 
availability, a process that is inhibited by insulin, 
resulting in an acute inhibitory effect of insulin on 
hepatic VLDL-triglyceride secretion to limit post-
prandial plasma lipid excursion. Hepatic apoB 
mRNA is stimulated by forkhead box O1 (FoxO1) 
and inhibited by insulin in a cell system [ 48 ]; 
moreover, hepatic activity of FoxO1 is increased 
during fasting and inhibited in response to feeding 
[ 49 ]. These observations suggest an additional 
mechanism by which the liver controls hepatic 
apoB production at the transcriptional level. 

 In the liver, insulin acts on fatty acids simi-
larly to glucose: it promotes the storage of 

 glucose as glycogen, and fatty acids as triglycer-
ides during feeding. This will result in decreased 
hepatic VLDL secretion and decreased hepatic 
glucose release. Moreover, a decreased VLDL 
secretion during feeding limits the increase of 
plasma triglycerides during the prandial phase, 
when intestinal fats are absorbed to produce 
 chylomicrons, which in turn deliver fatty acids to 
adipose tissue. 

 FoxO1 (forkhead box O1) is a transcription 
factor that plays a role in regulating hepatic glu-
cose metabolism during fasting by inducing the 
expression of genes involved in gluconeogenesis 
[ 50 ]. In addition, FoxO1 may regulate lipid 
metabolism by inducing hepatic MTP expres-
sion, resulting in increased secretion of VLDL 
[ 48 ]. Under physiological conditions, this effect 
is reversed by insulin [ 48 ]. In the absence of 

  Fig. 6.3    Pathways of hepatic clearance of remnants       
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 insulin, FoxO1 is localized in the nucleus in a 
transcriptionally active form and induces the 
expression of MTP; after insulin release, FoxO1 
is phosphorylated and translocated out of the 
nucleus, resulting in inhibition of FoxO1 tran-
scriptional activity [ 51 ] (Fig.  6.4 ).  

    Insulin Resistance 

 Diabetes is characterized by hyperglycemia due to 
either defects in insulin secretion and/or insulin 
properties. Patients with insulin resistance are at 

  Fig. 6.4    Insulin regulation of FoxO1 activity       
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high risk of developing diabetes and cardiovascular 
(CV) disease [ 52 ]. Insulin resistance is a condi-
tion of reduced responsiveness of tissues (liver, 
muscle, and adipose tissue) to normal circulating 
levels of insulin [ 53 ,  54 ], a condition present in 
different diseases, including type 2 diabetes [ 55 ], 
obesity, hypertension, and dyslipidemia [ 56 ]. As 
a result, insulin production increases to maintain 
normal levels of blood glucose. Insulin is a hor-
mone essential for the maintenance of glucose 
homeostasis, secreted by the pancreatic β-cells 
mainly in response to increased circulating glu-
cose levels after a meal [ 57 ]. 

 When the concentration of blood glucose 
increases, the pancreas releases insulin into the 
circulation. In muscle and adipose tissues, insulin 
binds to cell surface receptors [ 58 ]. Following this 
binding, several biochemical signals are activated 
within the cells to take up glucose and convert it to 
energy [ 59 ]. If the pancreas fails to produce 
enough insulin or the insulin receptors do not 
function properly, the cells cannot uptake glucose 
and the level of glucose in the blood remains high. 

 Several defects can determine insulin resis-
tance, including insulin receptor defects, insulin 
signaling defects [ 59 ,  60 ], mutations in insulin 
signaling molecules [ 61 ], and mitochondrial dys-
function [ 60 ]. In the early stages of insulin resis-
tance, the pancreas compensates by producing 
more insulin to control the increased levels of 
glucose in the blood. This results in high blood 
glucose levels and high blood insulin levels (a 
condition known as hyperinsulinemia) at the 
same time. If this condition is not treated, the 
islets of Langerhans (the insulin-secreting groups 
of cells) in the pancreas may eventually shut 
down and decrease in number. When an insulin-
resistant subject cannot maintain the degree of 
hyperinsulinemia required to bypass the defec-
tive action of insulin, type 2 diabetes develops.  

    The Role of Insulin Resistance 
in TGRLs Metabolism 

 In animal models of insulin resistance, hepatic 
MTP mRNA levels are signifi cantly higher with 
simultaneous increase in VLDL levels [ 62 – 64 ]; 

fi nally, treatments that ameliorate insulin resis-
tance and dyslipidemia determined reduced MTP 
expression and VLDL levels [ 49 ,  65 ,  66 ]. These 
observations suggest that in insulin-resistant sub-
jects, MTP expression is no longer regulated by 
insulin, resulting in VLDL overproduction. 

 Insulin resistance is considered mainly a car-
bohydrate metabolism disorder; however, lipid 
and lipoprotein abnormalities are observed in 
individuals with insulin resistance [ 67 ]. These 
abnormalities include (1) increased plasma levels 
of VLDL triglyceride and apoB100, (2) reduced 
plasma levels of HDL and apoA-I, and (3) rela-
tively normal LDL levels with increase of small 
dense LDL particles. 

 Acute insulin infusion reduces production of 
TG-rich VLDL in healthy non-obese humans 
[ 25 ,  40 ,  68 ,  69 ]; this effect can result from several 
mechanisms, including inhibition of hepatic 
MTP expression [ 70 ], increased apoB degrada-
tion [ 43 ], and inhibition of VLDL particle matu-
ration [ 71 ]. This suppressive effect of insulin is, 
however, attenuated or even reversed [ 41 ,  72 ] 
when exposure to insulin is prolonged (such as in 
conditions of insulin resistance [ 68 ,  69 ]), where 
an increase in VLDL (mainly in the VLDL1 frac-
tion) production is observed [ 73 – 75 ]. These 
observations suggest that chronic hyperinsu-
linemia plays a role in mediating the increased 
production of hepatic VLDL. In addition, insulin 
resistance of adipose tissue increases the levels of 
circulating free fatty acids that can enter into the 
liver, thus stimulating VLDL production [ 76 ]. 
Finally, loss of insulin inhibition of FoxO1 activ-
ity in insulin resistance increases the production 
of both glucose and VLDL-TG, contributing to 
the dual pathogenesis of hyperglycemia and 
hypertriglyceridemia in diabetes. 

    Hepatic TG in Insulin Resistance 

 Fatty acid fl ux to the liver is increased in insulin 
resistance [ 77 ,  78 ], due to a failure of insulin to 
inhibit TG lipolysis in adipose tissue [ 79 ]. 
Increased levels of fasting and post-prandial TG 
are features of insulin resistance [ 80 ]. The increase 
in post-prandial TG is due both to defective 
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 lipolysis of VLDL and chylomicrons, combined 
with increased VLDL secretion [ 80 ], and to 
increased production of chylomicrons [ 81 ]. In 
addition, insulin resistance also reduces lipopro-
tein lipase activity secondary to increased apoC- III 
(an inhibitor of LPL) secretion [ 82 ], resulting in 
reduced lipolysis of VLDL and chylomicron TG. 

 Another source of hepatic TG is de novo lipo-
genesis that contributes signifi cantly to VLDL 
lipidation and production in insulin-resistant sub-
jects. The main transcription factor of de novo 
lipogenesis is SREBP-1c (sterol response element- 
binding protein-1c) [ 83 ] that in turn is regulated 
by LXR (liver X receptor) [ 84 ]. Insulin plays a 
key role in the expression of hepatic SREBP-1c, 
in part by stimulating LXR expression [ 85 ,  86 ]; 
furthermore, insulin promotes the maturation of 
SREBP-1c independently of LXR [ 87 ]. 

 Intestinal lipoprotein production is increased 
in insulin resistance; chylomicron overproduc-
tion is in fact a consequence of impaired insulin 
regulation. Under physiological conditions, chy-
lomicron production is inhibited by insulin; this 
inhibitory process is lost or reduced in the pres-
ence of impaired insulin responsiveness. 
Increased postprandial TG was thought to be due 
to reduced chylomicron and VLDL lipolysis, 
combined with increased VLDL secretion [ 80 , 
 88 ]. However, increased assembly and secretion 
of apoB48-containing chylomicrons has been 
observed in hyperinsulinemic conditions [ 81 ]. 
The elevation of free fatty acids in plasma 
increases not only hepatic, but also intestinal, 
lipoprotein production [ 81 ,  89 ], suggesting that 
the intestine responds to insulin resistance simi-
larly to the liver [ 90 ].   

    Diabetes and Hepatic Uptake 
of Remnant Lipoproteins 

 Diabetes impairs hepatic uptake of remnant lipo-
proteins [ 29 ,  91 ,  92 ]. Under these pathological 
conditions, LDLR does not seem to signifi cantly 
contribute to the reduced uptake of remnant lipo-
protein [ 93 ,  94 ]. The major contribution to this 
effect appears to be related to HSPGs; as they are 
not proteins, a high number of genes involved in 

their assembly and disassembly must be regu-
lated, both at translational and at posttranslational 
levels [ 95 ,  96 ]. In type 1 diabetes, hepatic HSPGs 
exhibit sulfation defects [ 97 ,  98 ], due to the sup-
pression of a crucial enzyme in HSPG assembly 
[ 96 ]; moreover, the farnesoid X receptor, a known 
inducer of HSPG expression [ 99 ], is suppressed 
[ 100 ]. In type 2 diabetes and other diseases char-
acterized by insulin resistance, proteoglycans 
exhibit several defects, including decreased sulfa-
tion [ 101 ,  102 ]. Insulin resistance also induces 
the hepatic overexpression of the heparan sulfate 
glucosamine 6-O-endosulfatase-2 (SULF2), an 
enzyme that degrades cell surface and matrix 
HSPGs, thus reducing the catabolism of remnant 
lipoprotein and contributing to postprandial dys-
lipoproteinemia in type 2 diabetes [ 103 ].  

    Triglyceride-Rich Lipoproteins 
and Vascular Dysfunction 

 The elevation in circulating free fatty acids 
impairs endothelium-dependent vasodilatation 
[ 104 ], and the decreased endothelial function 
may be dependent on enhanced oxidative stress 
[ 105 ]. The changes induced by TGRLs in the 
post-prandial phase are even more deleterious in 
terms of endothelial dysfunction and infl amma-
tion; indeed, several in vivo studies have demon-
strated that post-prandial hypertriglyceridemia 
impairs endothelial function [ 106 ,  107 ]. Post-
prandial   hypertriglyceridemia is also associated 
with an infl ammatory state and enhanced levels 
of tumor necrosis factor (TNF)-α, interleukin 
(IL)-6, soluble intercellular adhesion molecule 
(sICAM)-1, and soluble vascular cell adhesion 
molecule (sVCAM)-1 [ 108 – 110 ]. 

 The molecular mechanisms underlying these 
effects of TGRLs have only recently been studied 
in detail. There are a few key issues that should 
be taken into account when analyzing the vascu-
lar effects of TGRLs. TGRLs derive either from 
an exogenous pathway (chylomicrons and chylo-
micron remnants containing apolipoprotein 
apoB48) or from a liver-derived pathway (VLDL 
and VLDL remnants containing apoB100). 
Under fasting conditions, however, chylomicrons 
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are rapidly metabolized, thus the TGRL fraction 
is mainly composed of apoB100-rich particles, 
and the remnants derive mainly from the catabo-
lism of VLDL (small VLDL and intermediate- 
density lipoprotein). In several dyslipidemic 
conditions, chylomicrons are metabolized at a 
lower rate, resulting in the accumulation of chy-
lomicron remnants in the fasting state. In the 
post-prandial state, an enormous production of 
TGRLs containing both apoB48 and apoB100 
occurs, leading to an impaired endothelial func-
tion. This dysfunction rapidly fades away in 
 normotriglyceridemic subjects where the TGRLs 
are effi ciently metabolized, whereas the condi-
tion persists in hypertriglyceridemic patients 
where TGRLs accumulate in the circulation. 
TGRLs undergo lipolysis mediated by lipopro-
tein lipase (LPL), generating different biologi-
cally active products that may affect endothelial 
cell function [ 111 ]. 

 Early studies using HepG2 cells investigated 
the intracellular signaling pathway induced by 
VLDL exposure [ 112 ]. VLDL-induced protein 
kinase C activity results in the activation of 
mitogen- activated protein kinase (MAPK). 
Studies conducted in endothelial cells (ECs) indi-
cate that VLDL can also activate nuclear factor 
(NF)-κB [ 113 ], a transcription factor that plays 
an important role in the phenotypic modulation 
of ECs in a pro-infl ammatory condition. To date, 
plasminogen activator inhibitor-1 is the only 
gene that has been shown to be consistently 
induced in ECs to a larger extent when compar-
ing VLDL from patients with hypertriglyceride-
mic type IV and type II versus VLDL from 
normolipidemic subjects [ 114 ]. Both in human 
umbilical vein ECs and human aortic ECs, 
TGRLs from hypertriglyceridemic subjects 
induce an increased mRNA expression of adhe-
sion molecules, such as VCAM-1, platelet/endo-
thelial cell adhesion molecule (PECAM)-1, and 
endothelial/leukocyte adhesion molecule 
(ELAM)-1, while TGRLs from normolipidemics 
induced VCAM-1 expression in both the cell 
lines and ELAM-1 selectively in the aortic ECs, 
but to a lesser extent [ 115 ]. Specifi c inhibition of 
p38 mitogen- activated protein kinase and NF-κB 
suggests a major involvement of these factors in 

adhesion molecule expression induced by TGRLs 
in both NTG and HTG patients. Furthermore, 
TGRLs induced monocyte chemoattractant pro-
tein (MCP)-1 expression in ECs, suggesting that 
activation of the endothelium by TGRLs could 
support both adhesion and transmigration of leu-
kocytes. In addition, TGRLs from hypertriglyc-
eridemic patients induced IL-6 expression. 
Again, these effects are mainly dependent on 
NF-κΒ activation. 

 The composition of the TGRL particles plays 
a key role in determining the pro-infl ammatory 
response to TGRLs [ 116 ]. A different composi-
tion of VLDL (fatty acid, lipids, and apoproteins) 
may be responsible for the differences observed 
between normolipidemic and hypertriglyceridemic 
TGRLs. TGRLs isolated following a meal 
enriched in saturated fatty acids induced 
E-selectin and VCAM-1 expression to a higher 
extent than TGRLs isolated after a meal enriched 
in monounsaturated and polyunsaturated fatty 
acids [ 116 ]. Furthermore, lipolysis products from 
TGRLs increase endothelial permeability, per-
turb zonula occludens-1 and F-actin, and induce 
apoptosis [ 111 ]. One could speculate that, in the 
presence of hypertriglyceridemia, the reduced 
activity of LPL may promote the presence of pro- 
infl ammatory TGRLs. 

 Although hypertriglyceridemia is an indepen-
dent risk factor for coronary artery disease [ 117 ], 
accumulating evidence suggests that post-prandial 
(hyper)lipidemia contributes to the development 
of atherosclerosis and coronary artery disease 
[ 118 ]. Several studies have demonstrated that post-
prandial hypertriglyceridemia impairs endothelial 
function, suggesting a role for triglycerides in the 
initiation and further progression of atherosclero-
sis [ 106 ,  107 ]. Post-prandial hypertriglyceridemia 
is associated with an infl ammatory state and 
enhanced levels of TNF-α, IL-6, sICAM- 1, and 
sVCAM-1 [ 108 – 110 ]. Although TGRLs isolated 
from fasting plasma samples of hypertriglyceride-
mic subjects induce an infl ammatory response in 
ECs [ 115 ], ECs incubated with post-prandial 
TGRL demonstrated an increased mRNA expres-
sion of VCAM-1, ELAM-1, P-selectin, PECAM-
1, and ICAM-1. Similarly, post-prandial TGRLs 
increased ICAM-1 and VCAM-1 protein 
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 expression [ 119 ]. Also fasting TGRLs increase 
adhesion molecule expression, however, the effect 
observed with post-prandial TGRL is much more 
pronounced. Furthermore, ICAM-1 expression 
was induced solely upon incubation with 
 post-prandial TGRLs. Likewise, MCP-1 and IL-6 
expression was induced upon incubation with 
post-prandial TGRLs; again, this effect is more 
pronounced than that observed with fasting 
TGRLs. As the induction of adhesion molecules 
and the increased release of cytokines and chemo-
kines have been associated with endothelial 
 dysfunction [ 120 ], our data suggest that endothe-
lial activation by TGRL occurs during the post-
prandial phase and may promote the endothelial 
dysfunction observed after a meal. Notably, a single 

high-fat meal led to a signifi cant elevation of endo-
thelial microparticles, known to be a sensitive 
indicator of endothelial disturbance, in healthy 
normolipidemic subjects [ 107 ]. This observation 
suggests that endothelial microparticles may be an 
indirect marker of endothelial dysfunction or 
injury induced by postprandial TGRL. 

 TGRLs and their remnants are present within 
human and experimental atherosclerotic lesions 
[ 121 – 123 ]: chylomicron remnants directly pene-
trate the endothelial cell layer and are entrapped 
within the subendothelial space, leading to focal 
accumulation [ 122 ] (Fig.  6.5 ). TGRLs may 
directly contribute to the atherosclerotic process 
by inducing endothelial dysfunction [ 124 ], by 
enhancing monocyte adhesion [ 125 ], and by trig-

  Fig. 6.5    Remnant contribution to the atherosclerotic lesion development       
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gering lipid accumulation within the artery wall 
[ 126 ]. Exposure to TGRLs, especially those iso-
lated from patients with type 2 diabetes [ 127 ], 
leads to the intracellular accumulation of triglyc-
eride and/or cholesteryl ester in human monocyte- 
[ 127 ] and murine-derived macrophages [ 126 , 
 128 ]. Abnormal reverse cholesterol transport and 
low levels of high-density lipoprotein associated 
with hypertriglyceridemia [ 129 ,  130 ] can acceler-
ate the lipid deposition process within arterial 
macrophages. The interaction of TGRLs with 
cholesterol-loaded human macrophages increases 
the cell lipid content while compromising the sub-
sequent effl ux of cholesterol to lipid- poor apoA-I 
[ 131 ]. These aspects may contribute signifi cantly 
to the generation of macrophage foam cells in 
vivo and might account for the accelerated athero-
genesis observed in patients with type 2 diabetes. 
Finally, remnant lipoproteins induce smooth mus-
cle cell activation and proliferation [ 132 ,  133 ].

   Most of the available evidence suggests that in 
normolipidemic subjects either in the fasting state 
or in the post-prandial phase, TGRL may affect 
endothelial function only when a pro- 
infl ammatory environment is already present and 
may perhaps contribute to accelerating the 
damage induced by other lipid and non-lipid fac-
tors. However, in hypertrygliceridemic patients, 
TGRLs from the fasting state and postprandial   
phase can both induce endothelial dysfunction 
by promoting a pro-infl ammatory activation 
of the endothelium. These fi ndings are in line with 
the idea that these lipoproteins may play a signifi -
cant role in the early stages of atherogenesis.     
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