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Abstract Fast and accurate models are indispensable in contemporary microwave
engineering. Kernel-based machine learning methods applied to the modeling of
microwave structures have recently attracted substantial attention; these include
support vector regression and Gaussian process regression. Among them, Bayesian
support vector regression (BSVR) with automatic relevance determination (ARD)
proved to perform particularly well when modeling input characteristics of mi-
crowave devices. In this chapter, we apply BSVR to the modeling of microwave
antennas and filters. Moreover, we discuss a more efficient version of BSVR-based
modeling exploiting variable-fidelity electromagnetic (EM) simulations, where
coarse-discretization EM simulation data is used to find a reduced number of fine-
discretization training points for establishing a high-fidelity BSVR model of the
device of interest. We apply the BSVR models to design optimization. In particu-
lar, embedding the BSVR model obtained from coarse-discretization EM data into
a surrogate-based optimization framework exploiting space mapping allows us to
yield an optimized design at a low computational cost corresponding to a few eval-
uations of the high-fidelity EM model of the considered device. The presented tech-
niques are illustrated using several examples of antennas and microstrip filters.
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1 Introduction

Full-wave electromagnetic (EM) simulations based on the method of moments
and/or finite elements play a ubiquitous part in microwave engineering, as they per-
mit highly accurate evaluation of microwave structures such as planar antennas and
filters. Such simulations, however, are costly in computational terms, and their use
for tasks requiring numerous analyses (e.g., statistical analysis and parametric de-
sign optimization) might become infeasible under certain conditions (for instance, a
genetic algorithm optimization might necessitate thousands of full-wave analyses of
candidate geometries of the structure to be optimized). Hence, surrogate models are
used instead. Trained on a training set consisting of a limited number of input-output
pairs (such as adjustable antenna geometry parameters and frequency as input, and
the magnitude of the input reflection coefficient |S11| obtained from full-wave simu-
lations as output), these models, by virtue of their ability to generalize over the input
space, make it possible to quickly obtain the desired performance characteristics for
inputs not previously presented to the model.

The kernel-based machine learning method most widely used for microwave
modeling tasks has been support vector regression (SVR) utilizing an isotropic
Gaussian kernel [1]. It has recently been shown [2] that Bayesian support vector
regression (BSVR) [3] using a Gaussian kernel with automatic relevance determi-
nation (ARD) significantly outperforms the above standard SVR with an isotropic
kernel in modeling |S11| versus the frequency of CPW-fed slot antennas with mul-
tiple tunable geometry variables. BSVR is in essence a version of Gaussian process
regression (GPR) [4]; the Bayesian framework enables efficient training of the mul-
tiple hyperparameters of the ARD kernel by minimizing the negative log probability
of the data given the hyperparameters. Such training of multiple hyperparameters is
intractable under standard SVR, which employs a grid-search/cross-validation ap-
proach towards this end. In addition to its advantageous Bayesian-based features,
BSVR also exhibits certain desirable properties of standard SVR, such as quadratic
programming and sparseness of solutions, i.e., solutions that are fully characterized
by the set of SVs, which is a subset of the training set.

In this chapter, we explore BSVR within both global and local modeling con-
texts. Global, or “library-type,” surrogate models aim at giving accurate predictions
over the entire input space, and can be used for a variety of applications (e.g., op-
timization and statistical analysis). In contrast, local/trust region models only apply
to a subregion of input space specified by the optimization algorithm within which
the model usually is embedded.

Similar to many other global modeling methods, a drawback of BSVR is the high
starting cost of gathering the fine-discretization full-wave simulation data necessary
to train the model so that it has high predictive accuracy. We address this problem
by exploiting the sparseness property of BSVR to reduce the amount of expensive
high-fidelity data required for training (see Sects. 3–5). Earlier methods aimed at
optimal data selection for microwave modeling problems include various adaptive
sampling techniques that aim, within optimization contexts, to reduce the number of
samples necessary to ensure the desired modeling accuracy. This is done by iterative
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identification of the model and the addition of new training samples based on the
actual model error at selected locations (e.g., [5]) or expected error values (statistical
infill criteria, e.g., [6]); [5, 6] were local/trust region models.

Our approach entails first training an auxiliary BSVR model using fast, inexpen-
sive coarse-discretization data selected by means of traditional experimental design
procedures, and then taking the support vectors of this model simulated at a high
mesh density as training data for the actual (high-fidelity) BSVR model. (A similar
approach was adopted in [7], but only standard SVR with an isotropic kernel was
used to model comparatively uncomplicated underlying functions.) The role of the
auxiliary model can be viewed as locating regions of the design space where more
samples are needed compared to other regions—for example, because the response
is more variable with respect to the design and/or frequency variables. Our modeling
approach is demonstrated using both planar antenna and microstrip filter examples
(see Sects. 4 and 5, respectively). We also evaluate the accuracy of our reduced-
data BSVR surrogates by using them within a space mapping (SM) optimization
framework.

As to local BSVR modeling, we consider surrogates for variable-fidelity EM-
driven optimization (see Sect. 6). In this approach, the optimization is carried out
using SM, whereas the underlying coarse model is created by approximating coarse-
discretization EM simulation data using BSVR. The high-fidelity EM simulation is
only launched to verify the design produced by the space-mapped BSVR coarse
model and obtain the data for its further correction. This allows us to significantly
reduce the computational cost of the design optimization process as illustrated using
two antenna examples.

The above sections are preceded by a short overview in Sect. 2 of the BSVR
framework, and followed by some summary remarks (see Sect. 7).

2 Modeling Using Bayesian Support Vector Regression

In this section, we briefly give an overview of the formulation of Bayesian support
vector regression (BSVR).

Consider a training data set of n observations, D = {(ui , yi) | i = 1, . . . , n}.
The BSVR formulation, which is explained at length in [3], follows the standard
Bayesian regression framework for GPR in which training targets yi corresponding
to input vectors ui are expressed as yi = f (ui )+δi , where δi are independent, iden-
tically distributed noise variables; and the underlying function f is a random field. If
f = [f (u1) f (u2) . . . f (un)], then Bayes’s theorem gives the posterior probability
of f given the training data D as

p(f|D) = p(D|f)p(f)
p(D)

, (1)
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with p(f) the prior probability of f, p(D|f) the likelihood, and p(D) the evidence.
The likelihood is given by

p(D|f) =
n∏

i=1

p(δi), (2)

where p(δi) ∝ exp(−ζL(δi))with L(δi) the loss function, and ζ a constant. In stan-
dard GPR [4] the loss function is quadratic; the crucial point in the BSVR formu-
lation is that a new loss function, the soft insensitive loss function, is used that
combines advantageous properties of both the ε-insensitive loss function (sparse-
ness of solutions) of standard SVR [8], and Huber’s loss function (differentiability).
It is defined as [3]:

Lε,β(δ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ − ε; δ ∈ (−∞,−(1 + β)ε),

(δ+(1−β)ε)2

4βε
; δ ∈ [−(1 + β)ε,−(1 − β)ε],

0; δ ∈ (−(1 − β)ε, (1 − β)ε),

(δ−(1−β)ε)2

4βε
; δ ∈ [(1 − β)ε, (1 + β)ε],

δ − ε; δ ∈ ((1 + β)ε,+∞),

(3)

where 0 < β ≤ 1, and ε > 0.
Solving for the maximum a posteriori (MAP) estimate of the function values

entails solving the primal problem [3, Eqs. (19)–(21)], with the corresponding dual
problem given by

min
α,α∗

1

2

(
α − α∗)�

Σ
(
α − α∗) −
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i=1

yi
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αi − α∗

i

)
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)
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(
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i
+ α∗2
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)
(4)

subject to 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , n. In the above, Σ is an n × n matrix with

Σij = k(ui ,uj ) and k(·) is the kernel function. In particular, the Gaussian kernel
with ARD (used throughout in this work) is given by

k(ui ,uj ) = σ 2
f exp

(
−1

2

D∑

k=1

(uik − ujk)
2

τ 2
k

)
+ κ, (5)

where uik and ujk are the kth elements of the ith and j th training input vectors. The
hyperparameter vector θ , which includes σ 2

f , τk , κ , C, and ε, can be determined by
minimizing the negative log probability of the data given the hyperparameters [3],

− lnp(D|θ) = 1

2

(
α − α∗)�

Σ
(
α − α∗)

+ C

n∑

i=1

Lε,β

(
yi − fMP(xi)

) + 1

2
ln

∣∣∣∣I + C

2βε
ΣM

∣∣∣∣ + n lnZS, (6)
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with ΣM an m×m submatrix of Σ corresponding to the off-bound support vectors,
I the m × m identity matrix, fMP = Σ(α − α∗), and Zs defined as [3, Eq. (15)].
The length scale τk associated with the kth input dimension can be considered the
distance that has to be traveled along that dimension before the output changes sig-
nificantly [4]. The regression estimate at a test input u∗ can be expressed as

f
(
u∗) =

n∑

i=1

k
(
ui ,u

∗)(αi − α∗
i

)
. (7)

Training points corresponding to |αi − α∗
i | > 0 are the support vectors (SVs); of

these, points corresponding to 0 < |αi −α∗
i | < C are termed off-bound SVs. Usually,

the lower the parameter β in the loss function, the smaller the number of SVs [3]; β

determines the density function of the additive noise associated with training targets.

3 BSVR Modeling with Reduced Data Sets

In this section, we discuss a method of exploiting EM simulations of variable fidelity
in order to reduce the computational cost of creating the BSVR model. The model
response of interest typically is |S11| or |S21| over a specified frequency range for
a particular antenna or filter geometry. A model input (column) vector u consists
of the set of adjustable geometry parameters u and a frequency value f ; thus we
have u = [xT f ]T . The (scalar) response of a model at a specific frequency, for ex-
ample, the model response Rf , which is the fine-discretization full-wave simulated
S-parameters, is denoted as Rf (u), or Rf (x, f ). Suppose now that a BSVR sur-
rogate Rs of the CPU-intensive high-fidelity model Rf has to be constructed. As
noted earlier, the computational cost of gathering sufficient data to train Rs typi-
cally is high. To address this, first, an auxiliary BSVR model Rs.aux of the antenna
(or filter) is set up with training data obtained from coarse-discretization full-wave
simulations (these simulations are referred to as the low-fidelity full-wave model
Rc). The training set for Rs.aux consists of n input vectors xi , i = 1, . . . , n, and
associated targets yi = Rc(ui ), where ui contains geometry parameters and a fre-
quency value as noted above, and yi is the corresponding simulated |S11| (or |S21|)
value. The SVs obtained from Rs.aux are then simulated at the (high) mesh density
of Rf , providing the reduced fine-discretization training set for Rs .

As experience has shown that the coarsely simulated targets Rc and finely simu-
lated targets Rf of microwave structures such as antennas or filters are usually rea-
sonably well correlated (in Sects. 4 and 5 we give coarse and fine meshing densities
for specific examples to indicate by how much they can differ), we assume that the
regions of the input space which support the crucial variations in the coarse response
surface will also support the crucial variations in the fine response surface. Hence,
the SVs of the coarse model should largely capture the crucial variations in the fine
data as well, and along with target values obtained through fine-discretization simu-
lations should make an adequate reduced-data training set for a high-fidelity BSVR
model, i.e., Rs .
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4 Modeling and Optimization of Antennas Using BSVR

In this section, we present examples illustrating how global BSVR models for the
reflection coefficients of planar slot antennas can be set up based on reduced finely
discretized data sets. We then use these models for design optimization. We con-
sider three examples of antennas with highly nonlinear |S11| responses as a function
of tunable geometry parameters and frequency: a narrowband coplanar waveguide
(CPW)-fed slot dipole antenna, an ultra-wideband (UWB) CPW-fed T-shaped slot
antenna, and a broadband probe-fed microstrip patch with two U-shaped parasitic
elements. We furthermore evaluate the accuracy of our reduced-data BSVR surro-
gates by using them within a space mapping (SM) optimization framework [9–14].

4.1 Slot Dipole Antenna (Antenna 1)

Figure 1 shows the geometry of a CPW-fed slot dipole antenna on a single-layer
dielectric substrate. The design variables were x = [W L]T mm, and the input
space was specified as 5 ≤ W ≤ 10 mm and 28 ≤ L ≤ 50 mm. Other dimen-
sions/parameters were w0 = 4.0 mm, s = 0.5 mm, h = 1.6 mm, and εr = 4.4. We
were concerned with |S11| over the frequency band 2.0–2.7 GHz (visual inspection
revealed that |S11|-versus-frequency responses over this band varied substantially
throughout the above geometry input space). Using CST Microwave Studio [15] on
a dual-core 2.33 GHz Intel CPU with 2 GB RAM, we considered a high-fidelity
model Rf (∼130,000 mesh cells, simulation time 12 min) and a low-fidelity model
Rc (∼5,000 mesh cells, simulation time 30 s).

For training input data, 99 geometries were selected at random from the in-
put space using Latin hypercube sampling (LHS), with three frequencies per ge-
ometry uniformly randomly sampled from the above frequency range such that,
in general, each geometry had a different set of frequencies. The total number
of training points was n = 99 × 3 = 297; training input vectors had the form
{ui = [xT

i fi]T = [Wi Li fi]T |i = 1, . . . , n}, with Wi and Li the design variables
corresponding to the ith input vector, and fi a frequency value within the range of
interest. Test data consisted of 100 new geometries, also obtained via LHS, with 71
equally spaced frequencies per geometry. The training data were simulated at the
Rc mesh density, and used to train the BSVR model Rs,aux for three different val-
ues of β at the low end of its possible range (β ∈ {0.05,0.15,0.25}; as noted earlier,
usually the smaller the value of β , the smaller the number of SVs). Each Rs,aux was
used to predict the test data (also simulated at the Rc mesh density). %RMSE (per-
centage root mean square error normalized to the target range) values were in the
vicinity of 1.1 %; this high predictive accuracy confirmed that the training set was
sufficiently large.

For each Rs,aux model, the SVs were identified and simulated at the Rf mesh
density. BSVR models fitted to these fine-discretization data gave the desired surro-
gate models Rs . For comparison, surrogate models Rs,full trained on the full fine-
discretization training data set (n = 297) were also set up. Table 1 gives, for each of
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Fig. 1 Geometry of a CPW-fed slot dipole antenna (Antenna 1). The ground plane (GND) has
infinite lateral extent

Table 1 Predictive errors of surrogate antenna models

Antenna β RMSE (%) nSV nSV/n

(%)
Model costa

Rs,aux Rs Rs,full Rs
b Rs,full

1 (n = 297) 0.05 1.14 1.77 1.68 168 56 168 297

0.15 1.13 1.71 1.72 176 59 176

0.25 1.15 1.68 1.68 206 69 206

2 (n = 3,528) 0.05 3.37 4.14 3.83 1,819 52 1,819 3528

0.15 3.14 4.11 3.52 2,010 57 2,010

0.25 3.13 3.89 3.50 2,225 63 2,225

3 (n = 6,400) 0.05 6.59 5.77 5.53 3,658 57 3,658 6,400

0.15 6.54 5.87 5.41 3,937 62 3,937

0.25 6.59 5.71 5.27 3,916 61 3,916

aCost is in terms of number of Rf evaluations, i.e., fine-discretization full-wave simulations, re-
quired to generate the training data
bThe actual cost of setting up Rs is slightly (by 1 to 4 percent depending on the particular antenna
example) higher due to the coarse-discretization EM simulations used in the model construction
process

the β values, the %RMSE values obtained with Rs,aux on the coarse-discretization
test data, and Rs and Rs,full on the fine-discretization test data.

Also given in the table is nSV, the number of SVs associated with Rs,aux (and
therefore the number of training points for Rs ), and nSV/n, the proportion of the
full training data that were SVs of Rs,aux. The %RMSE values obtained for Rs and
Rs,full were either the same, or only marginally higher in the case of Rs , indicating
that reducing the number of training points from n to nSV by using the SVs of
Rs,aux as training points for Rs incurred insignificant accuracy loss. In all cases, the
reduction in training data was considerable: for example, for β = 0.15 the number of
SVs was 176, which is 59 % of the original training data set. For ready comparison,
Table 1 also explicitly lists the computational cost of generating the training data
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for the models, expressed in terms of the number of fine-discretization simulations
Rf (for each model it simply equals the number of training points). In terms of total
CPU time (which was proportional to the costs in the table), these numbers translate
to about 12 h for Rs (β = 0.15), and 20 h for Rs,full.

4.2 UWB T-Shaped Slot Antenna (Antenna 2)

Figure 2 shows the antenna layout [16]. The design variables were x =
[ax ay a b]T mm, with design space 35 ≤ ax ≤ 45 mm, 20 ≤ ay ≤ 35 mm, 2 ≤
a ≤ 12 mm, and 10 ≤ b ≤ 30 mm (w0 = 4.0 mm, s0 = 0.3 mm, s1 = 1.7 mm; the
single-layer substrate had height h = 0.813 mm and dielectric constant εr = 3.38).
The frequency band of interest was 2–8 GHz (as before, visual inspection confirmed
that |S11|-versus-frequency responses varied substantially throughout the geome-
try input space). Using CST Microwave Studio [15], we considered a high-fidelity
model Rf (∼2,962,000 mesh cells, simulation time 21 min) and a low-fidelity
model Rc (∼44,500 mesh cells, simulation time 20 s).

The training data consisted of 294 geometries obtained by LHS, with 12 frequen-
cies per geometry, randomly selected as before (n = 3,528). The test data comprised
49 new LHS geometries, with 121 equally spaced frequencies per geometry (as be-
fore, the value of n was determined by the performance of Rs,aux on the test data
simulated at the coarse mesh density).

The surrogate models Rs,aux, Rs , and Rs,full were set up similarly to those for
Antenna 1. Table 1 gives, for three values of β , the %RMSEs obtained with Rs,aux
on the coarse test data and with Rs, and Rs,full on the fine test data; as well as counts
of SVs.

In general, %RMSE values of Rs were only somewhat higher than those of
Rs,full, suggesting as before that reducing the number of training points from n to
nSV by using the SVs of Rs,aux as fine-discretization training points for Rs has little
effect on prediction accuracy. The CPU time required to generate fine-discretization
training data for Rs in the case β = 0.05 (i.e., the model used in the optimization
below) was approximately 56 h; the CPU time for Rs,full was 103 h.

4.3 Microstrip Antenna with Parasitic Elements (Antenna 3)

Figure 3 shows the antenna geometry [17]. The design variables were x =
[a b c d e]T mm, with design space 14 ≤ a ≤ 22 mm, 0.4 ≤ b ≤ 2 mm, 0.4 ≤
c ≤ 2 mm, 0.4 ≤ d ≤ 2 mm, and 0.4 ≤ e ≤ 2 mm. The main patch had dimensions
a0 = 5.8 mm and b0 = 13.1 mm. The lateral dimensions of the dielectric material
and the metal ground were lx = 20 mm and ly = 25 mm. The dielectric substrate
height, h, was 0.4 mm, and its relative permittivity, εr , was 4.3. The feed pin offset
from the main patch center, l0, was 5.05 mm, and the pin was 0.5 mm in diameter.
The frequency band of interest was 4–7 GHz.



Bayesian Support Vector Regression Modeling of Microwave Structures 129

Fig. 2 Geometry of a UWB CPW-fed T-shaped slot antenna (Antenna 2, top view). The ground
plane (GND) has infinite lateral extent

Fig. 3 Geometry of a broadband probe-fed microstrip patch antenna with two U-shaped parasitic
elements (Antenna 3, top view). The dielectric substrate and ground plane both have lateral dimen-
sions lx and ly . The empty circle below the center of the patch indicates the position of the feed
pin

The training data were 400 geometries obtained by LHS, with 16 randomly se-
lected frequencies per geometry (n = 6,400). The test data comprised 50 new LHS
geometries with 121 equally spaced frequencies per geometry. We considered a
high-fidelity model Rf (∼440,500 mesh cells, simulation time 12 min) and a low-
fidelity model Rc (∼25,700 mesh cells, simulation time 15 s). It is instructive to
consider three randomly picked responses from the training data, shown in Fig. 4.
In spite of what appears to be a narrowly circumscribed input space (cf. the bound-
aries on the b, c, d , and e dimensions), the responses show considerable variety
from one training point to the next. Furthermore, while within-training point coarse
and fine responses agreed to some extent for some regions of the frequency band,
there were considerable differences for others.

Surrogate models were constructed as before. The %RMSE values obtained
with Rs,aux on the coarse test data, and Rs and Rs,full on the fine test data for
β ∈ {0.15,0.20,0.25} are shown in Table 1, as well as nSV. The greatest data re-
duction, by 43 %, occurred for β = 0.15, while the %RMSE only increased from
5.53 % (full model) to 5.77 % (reduced model). The CPU time necessary to simu-
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Fig. 4 Full-wave simulation responses Rc (- - -) and Rf (—) for the Antenna 3 train-
ing geometries x = [16.2267 0.7904 1.8943 0.4476 1.1148]T mm (top), [14.8396 0.6347
0.9242 0.9358 0.8196]T mm (center), and [15.2672 1.3194 1.2827 0.5165 1.0004]T mm (bot-
tom)

late fine-discretization training data for Rs for β = 0.05 (i.e., the model used for the
optimization) was approximately 49 h; for Rs,full it was 80 h.

To further explore the influence of mesh density on our method, a second coarse
model Rcc (∼8,000 mesh cells, simulation time 8 s), i.e., coarser than Rc, was
generated, and corresponding surrogate models constructed. The predictive results
for the new Rs were similar to previous results; e.g., for β = 0.2 the predictive
%RMSE was 5.82 %, although the number of SVs increased somewhat to 3,992
(see Table 1). In order to evaluate the general similarity between the coarsely and
finely simulated data, Pearson product-moment correlation coefficients were com-
puted for the respective |S11| values, i.e., for |S11| of Rc and Rf ; and also for Rcc

and Rf (using all training geometries with 121 equally spaced frequency points per
geometry). The correlation coefficients were 0.74 and 0.51, respectively, suggesting
some robustness to our procedure.

4.4 Application Examples: Antenna Optimization

The full and reduced BSVR models were used to perform design optimization of
the antenna structures considered in Sects. 4.1 through 4.3. We again note that our
models are intended as multipurpose global models that give accurate predictions
for the whole of the input space; multiple optimization runs corresponding to any
number of sets of design specifications constitute one kind of repeated-use appli-
cation. The initial design in each case is the center of the region of interest x(0).
The design process starts by directly optimizing the BSVR model. Because of some
limitations in the accuracy of the models given the design context (linear responses
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were modeled—the preferred choice given the Gaussian kernel—but logarithmic
responses (in decibels) are optimized), the design is further refined by means of the
SM iterative process [14]

x(i+1) = arg min
x

U
(
R(i)

su (x)
)
, (8)

where R
(i)
su is a surrogate model, enhanced by frequency and output SM [14]. The

surrogate model setup is performed using an evaluation of Rf at x(i). U implements
design specifications. For simplicity, we use the symbol Rco to denote either of
Rs.full or Rs , which can be considered the “coarse” models in the SM context. Let
Rco(x,F ) denote the explicit dependency of the model on the frequency (F is the
set of frequencies of interest at which the model is evaluated). The surrogate model
is defined as

R(i)
su (x) = Rco

(
x,α(i)F

) + d(i) (9)

with

d(i) = Rf

(
x(i)

) − Rco
(
x(i),α(i)F

)
(10)

and

α(i)F = α
(i)
0 + α

(i)
1 F (11)

the affine frequency scaling (shift and scaling). The frequency scaling parameters
are calculated as

[
α

(i)
0 α

(i)
1

] = arg min
x

∥∥Rf

(
x(i)

) − Rco
(
x(i), α

(i)
0 + α

(i)
1 F

)∥∥ (12)

i.e., to minimize the misalignment between the high-fidelity and the scaled low-
fidelity model responses at x(i). Although the models are evaluated at a discrete
set of frequencies, the information at other frequencies can be obtained through
interpolation. The misalignment is further reduced by the output SM (10); this en-
sures zero-order consistency (i.e., R

(i)
su (x(i)) = Rf (x(i))) between the surrogate and

Rf [18]. The algorithm (8) working with the SM surrogate model (9)–(12) typically
requires only three to four iterations to yield an optimized design, with the cost of
each iteration effectively equal to a single evaluation of the high-fidelity model.

Figure 5 shows the responses of the reduced BSVR and fine models at the ini-
tial designs as well as the responses of the fine models at the final designs obtained
for both antenna structures. The reduced BSVR models correspond to β values in
Table 1 of 0.15 (Antenna 1), 0.05 (Antenna 2), and 0.15 (Antenna 3). Table 2 sum-
marizes the results. One can see that the design quality and cost (expressed in terms
of number of Rf evaluations) are very similar for the BSVR models obtained us-
ing full and reduced data sets (the CPU times associated with three Rf evaluations
(Antennas 1 and 2) and four Rf evaluations (Antenna 3) were 36 min, 63 min, and
48 min, respectively).

For comparison, we also optimized the three antennas using a conventional (not
surrogate-based) method, namely a state-of-the-art pattern search algorithm [19, 20]
that directly relied on fine-discretization full-wave simulations (i.e., Rf ) for its ob-
jective function evaluations. While the maximum |S11| values at the final designs
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Fig. 5 Optimization results: responses of the BSVR model with reduced data set (· · ··), the fine
model at the initial design (- - -), and the fine model at the optimized design (—) for (a) Antenna 1,
(b) Antenna 2, and (c) Antenna 3. Design specifications are marked with horizontal solid line

Table 2 Results of antenna optimizations

Antenna Model max |S11| at final designa Optimization costb

1 Rs,full −18.3 dB 3

Rs −17.6 dB 3

2 Rs,full −11.0 dB 3

Rs −11.0 dB 3

3 Rs,full −10.2 dB 4

Rs −10.2 dB 4

amax |S11| at the frequency band of interest: 2.3 to 2.4 GHz (Antenna 1), 2.3 to 7.7 GHz (An-
tenna 2), and 5 to 6 GHz (Antenna 3)
bNumber of Rf evaluations including evaluation at the initial design

obtained for Antennas 1, 2, and 3 (−21.6 dB, −11.6 dB, and −10.7 dB, respec-
tively) were similar to those obtained using our BSVR models and the above SM
procedure, the computational expense for the conventional optimization was at least
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an order of magnitude larger (i.e., 40, 148, and 201 Rf evaluations for Antennas 1,
2, and 3, respectively, compared to the 3, 3, and 4 Rf evaluations reported in Ta-
ble 2). This accentuates how much faster optimization can be realized when accurate
models such as BSVR models are available: our approach reduces by up to 43 %
the high initial cost of setting up these multipurpose global models (in comparison
the cost of the optimization using SM is insignificant).

5 Modeling and Optimization of Filters Using BSVR

Here we discuss global BSVR models based on reduced finely discretized data sets
for the |S21| responses of two microstrip filters: a capacitively coupled dual-behavior
resonator microstrip bandpass filter, and an open-loop ring resonator (OLRR) band-
pass filter. As before, we use these models for design optimization.

5.1 Capacitively Coupled Dual-Behavior Resonator (CCDBR)
Microstrip Bandpass Filter

Consider the capacitively coupled dual-behavior resonator (CCDBR) bandpass fil-
ter [21] implemented in microstrip lines, shown in Fig. 6(a). The three design vari-
ables were x = [L1 L2 L3]T . The design variable space for the BSVR models was
defined by the center vector x0 = [3 5 1.5]T mm and size vector δ = [1 1 0.5]T mm
such that the variable ranges were x0 ± δ mm (x0 and δ were guesses, guided to
some extent by expert knowledge of the filters and a very rudimentary exploration
of the design space). The substrate height was h = 0.254 mm and the relative per-
mittivity was εr = 9.9; the value of S was 0.05 mm, while the microstrip line widths
w1 and w2 were 0.25 mm and 0.5 mm, respectively. We were interested in the fil-
ter response over the frequency range 2 to 6 GHz. The high-fidelity model Rf of
the filter was simulated using FEKO [22] (total mesh number 715, simulation time
about 15 s per frequency). The low-fidelity model Rc was also simulated in FEKO
(total mesh number 136, simulation time 0.6 s per frequency).

In order to set up the training data input vectors, 400 geometries were randomly
selected from the design space using Latin hypercube sampling (LHS) [23]. For each
geometry, 12 simulation frequencies were selected by uniform random sampling
from the above frequency range, yielding a total of n = 400 × 12 = 4,800 training
input vectors of the form {xi = [L1i L2i L3i fi]T |i = 1, . . . , n}, with L1i , L2i , and
L3i the design variables corresponding to the ith input vector, and fi a frequency
value within the range of interest. The corresponding output scalars, obtained from
FEKO simulations, were yi = |S21i |. The test data were likewise obtained from 50
new geometries, also obtained via LHS, with 41 equally spaced frequencies per
geometry. The training data were simulated at the Rc mesh density and used to train
the BSVR model Rs,aux for β = 0.1, 0.2, and 0.3 (β is the loss function parameter
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Fig. 6 Geometry of the (a) CCDBR bandpass filter [21] and (b) OLRR bandpass filter [24]

in Eq. (3) discussed above). Rs,aux was used to make predictions on the test data
(also simulated at the Rc mesh density).

The %RMSE (root mean square error normalized to the target range expressed
as a percentage) was around 4.13 % for the three β values, which was acceptable
for this highly nonlinear problem, and indicated that the training set was sufficiently
large. Next, for each value of β the nSV SVs of Rs,aux were simulated at the Rf

mesh density. BSVR models fitted to these reduced training sets gave the desired
surrogate models Rs .

For comparison, surrogates Rs,full trained on the full fine-discretization training
data (n = 4,800) were also set up. Table 3 gives, for the three β values, the %RM-
SEs obtained with Rs,aux on the coarse test data, and with Rs and Rs,full on the
fine test data; as well as the number of SVs obtained in each instance. The highly
similar %RMSEs obtained with Rs and Rs,full indicate that reducing the number
of expensive fine-discretization training points from n to nSV incurred negligible
accuracy loss, even for a reduction in data as large as 48 % (β = 0.1). Figure 7(a)
shows typical predictive results for |S21| versus frequency obtained for the test ge-
ometry x = [2.794 4.407 1.491]T mm. Some discrepancy can be observed when
comparing the RMSE values for Rs.aux in Table 3 to those for Rs (and Rs.full). This
occurs because the coarse model responses are slightly smoother as functions of fre-
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Table 3 Predictive errors of surrogate filter models. Rs,aux are BSVR models trained on all n data
points obtained from coarsely discretized simulations, Rs,full are BSVR models trained on all n

data points obtained from finely discretized simulations, and Rs are BSVR models trained on the
nSV finely discretized data points corresponding to SVs of Rs,aux

Filter β RMSE (%) nSV nSV/n

(%)Rs,aux Rs Rs,full

CCDBR
(n = 4,800)

0.1 4.17 6.05 5.98 2,488 52

0.2 4.12 5.87 5.95 2,563 53

0.3 4.11 5.95 5.86 2,886 60

OLRR
(n = 4,800)

0.1 4.12 4.26 4.21 2,360 49

0.2 3.77 4.47 4.32 2,565 53

0.3 3.46 3.90 3.64 2,744 57

Fig. 7 Predictive response of BSVR models Rs (—) and Rs,full (- - -), and high-fidelity model Rf

(· · · ·) for (a) the CCDBR bandpass filter test geometry x = [2.794 4.407 1.491]T mm, and (b) the
OLRR bandpass filter test geometry x = [38.088 8.306 5.882 4.029 0.193 0.061 0.985]T mm

quency (i.e., they do not contain as much detail particularly in the passband) than the
fine model ones, which make them easier to model; this results in a lower value of
%RMSE. Using a finer mesh for the Rc model would reduce this discrepancy. The
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RMSE values for Rs and Rs.full nevertheless were good given the highly nonlinear
nature of the modeling problem, and of sufficient accuracy to yield good optimiza-
tion results, as we show in Sect. 4. The total computational time necessary to gather
the training data for setting up Rs.full was 20 h, whereas the corresponding time
for setting Rs (including both low- and high-fidelity model evaluations) was 11.2,
11.4, and 12.8 h (for β = 0.1, 0.2, and 0.3, respectively) on a quad core PC with a
2.66 GHz Intel processor and 4 GB RAM. Thus the computational savings due to
the proposed technique vary between 36 % (for β = 0.3) to 44 % (for β = 0.1).

5.2 Open-Loop Ring Resonator (OLRR) Bandpass Filter

The filter geometry [24] is shown in Fig. 6(b). The seven design variables
were x = [L1 L2 L3 L4 S1 S2 G]T . The design space was described by x0 =
[40 8 6 4 0.2 0.1 1]T mm and δ = [2 1 0.4 0.4 0.1 0.05 0.2]T mm. The substrate
parameters were h = 0.635 mm and εr = 10.2, while the microstrip line widths
were W1 = 0.4 mm and W = 0.6 mm. The frequency range of interest was 2 to
4 GHz. High- and low-fidelity models were simulated in FEKO [22] (total mesh
number 1,084 and simulation time 40 s per frequency for Rf ; total mesh number
148 and simulation time 0.8 s per frequency for Rc). The training data comprised
400 geometries obtained by LHS [23], with 12 randomly selected frequencies per
geometry (n = 4,800), while the test data were 50 new LHS geometries with 81
equally spaced frequencies per geometry. Setting up Rs,aux, Rs , and Rs,full pro-
ceeded in a manner similar to the earlier filter. Table 3 gives the %RMSE values
obtained with Rs,aux on the coarse test data and with Rs and Rs,full on the fine
test data; as well as the SV counts. In general, %RMSE values of Rs were only
marginally higher than those of Rs,full, suggesting as before that reducing the num-
ber of training points from n to nSV by using the SVs of Rs,aux as fine-discretization
training points for Rs has little effect on the prediction accuracy. The greatest re-
duction in data (51 %) was obtained for β = 0.1. Figure 7(b) shows representa-
tive predictive results for |S21| versus frequency, in particular for the test geometry
x = [38.088 8.306 5.882 4.029 0.193 0.061 0.985]T mm. The computational time
necessary to gather the training data for setting up Rs.full was 53.3 h. The cor-
responding time for setting up Rs (including both low- and high-fidelity model
evaluations) was 27.2, 29.3, and 31.4 h (β = 0.1, 0.2, and 0.3, respectively). The
computational savings due to the proposed technique range from 41 % (for β = 0.3)
to 49 % (for β = 0.1).

5.3 Filter Optimization Using BSVR Surrogates

The BSVR developed in Sects. 5.1 and 5.2 is used to perform design optimization
of the filters. The optimization methodology is essentially the same as described in
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Fig. 8 CCDBR filter: responses of the high-fidelity model (—) and BSVR models Rs.full (- - -)
and Rs (· · · ·) at the initial design x(0). Design specification as per horizontal solid (red) lines

Fig. 9 CCDBR filter: responses of the high-fidelity model at the optimized designs found using
Rs.full (—) and Rs (- - -). Design specification as per horizontal solid (red) lines

Sect. 4.4 and involves iterative correction and optimization of the surrogates in order
to (locally) improve their accuracy [25].

The design process starts by directly optimizing the BSVR model (for each fil-
ter, we used the BSVR surrogates corresponding to β = 0.1). Each iteration (see
Eq. (8)) requires only one evaluation of the high-fidelity model. The CCDBR band-
pass filter had design specifications |S21| ≥ −3 dB for 3.8 ≤ f ≤ 4.2 GHz; and
|S21| ≤ −20 dB for 2.0 ≤ f ≤ 3.2 GHz, and 4.8 ≤ f ≤ 6.0 GHz (f denotes
frequency). Figure 8 shows the responses of the high-fidelity model Rf as well
as the responses of Rs and Rs.full at the initial design x(0) = [3 6 1.5]T mm.
The high-fidelity model responses at the optimized designs found using both Rs

and Rs.full are shown in Fig. 9 (these designs were [3.47 4.79 1.01]T mm and
[3.21 4.87 1.22]T mm, respectively). In both cases, the design process is accom-
plished in three iterations, which correspond to a design cost of four high-fidelity
model evaluations.

For the OLRR bandpass filter, the design specifications were |S21| ≥ −1 dB
for 2.85 ≤ f ≤ 3.15 GHz, and |S21| ≤ −20 dB for 2.0 ≤ f ≤ 2.5 GHz and
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Fig. 10 OLRR bandpass filter: responses of the high-fidelity model (—) and BSVR models Rs.full
(- - -) and Rs (· · · ·) at the initial design x(0). Design specification as per horizontal solid (red)
lines

Fig. 11 OLRR bandpass filter: responses of the high-fidelity model at the optimized designs found
using Rs.full (—) and Rs (- - -). Design specification as per horizontal solid (red) lines

3.5 ≤ f ≤ 4.0 GHz. Figure 10 shows the responses of Rf , Rs , and Rs.full at
the initial design x(0) = [40.0 8.0 6.0 4.0 0.1 0.1 1.0]T mm. The responses
at the optimized designs obtained using Rs and Rs.full are shown in Fig. 11
(these designs were [39.605 8.619 6.369 3.718 0.300 0.069 0.986]T mm and
[39.010 8.219 5.786 4.260 0.268 0.050 1.068]T mm, respectively). In both cases,
the design process is accomplished in two iterations, which correspond to the design
cost of three high-fidelity model evaluations.

6 Variable-Fidelity Optimization Using Local BSVR Surrogates

In this section, we discuss the application of BSVR surrogates defined locally (i.e.,
in a specific region of the input space) towards low-cost design optimization of
antennas [26].
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As we have shown, BSVR models can be accurate; however, similarly to other
approximation-based modeling methods, considerable computational overhead is
necessary to acquire the training data. This is not convenient when using approxi-
mation surrogates for ad hoc optimization of a specific structure.

Here, we describe a computationally efficient antenna design methodology that
combines space mapping (as the optimization engine), and coarse model response
surface approximation implemented through BSVR. BSVR serves to create a fast
coarse model of the antenna structure. In order to reduce the computational cost of
creating the latter, it is obtained from coarse discretization EM simulation data.

6.1 Optimization Algorithm

As mentioned before, the main optimization engine is space mapping (SM) [26].
The generic SM optimization algorithm produces a sequence of approximate solu-
tions to the problem (1), x(0),x(1), . . . , as follows:

x(i+1) = arg min
x

U
(
R(i)

s (x)
)
, (13)

where R
(i)
s is the SM surrogate model at iteration i. x(0) is the initial design. The

surrogate model is constructed using the underlying coarse model Rc and suitable
auxiliary transformations [27]. The elementary SM transformations include input
SM [28] with the surrogate defined as R

(i)
s (x) = Rc(x + c(i)), multiplicative output

SM [27], R
(i)
s (x) = A(i) · Rc(x), additive output SM [28], R

(i)
s (x) = Rc(x) + d(i),

and frequency scaling [27], R(i)
s (x) = Rc.f (x;F (i)). In frequency SM, it is assumed

that the coarse model is an evaluation of a given performance parameter over a cer-
tain frequency range, i.e., Rc(x) = [Rc(x;ω1) . . .Rc(x;ωm)]T , and the frequency-
scaled model is then given as Rc.f (x;F (i)) = [Rc(x; s(ω1)) . . .Rc(x; s(ωm))]T ,
where s is a scaling function dependent on the set of parameters F (i). Typically,
a linear scaling function s(ω) = f

(i)
0 + f

(i)
1 ω is used.

Parameters of SM transformations are obtained using the parameter extraction
(PE) process, which, in the case of input SM, takes the form

c(i) = arg min
c

i∑

k=0

∥∥Rf

(
x(k)

) − Rc

(
x(k) + c

)∥∥. (14)

Formulation of PE for the other transformations is similar [28].
Because PE and surrogate model optimization may require a large number of

coarse model evaluations, it is beneficial that Rc is fast, which is usually not possible
for antenna structures, where the only universally available (and yet accurate) type
of coarse model is the output of coarse-discretization EM simulations. To alleviate
this problem, we construct the coarse model by using a fixed number of such low-
fidelity simulations as training data for the coarse model, so that, once set up, the
coarse model can be used by the SM algorithm without further reference to the EM
solver.
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Fig. 12 CPW-fed slot dipole antenna: responses of the low- (· · · ·) and high- (—) fidelity models
at the initial design xinit, and the response of the low-fidelity model at its approximate optimum
x(0) (- - -)

In order to improve the convergence properties of the algorithm, it is embedded
in the trust region framework [29], so that the new design x(i+1) is found only in the
vicinity of the current one, x(i), as follows:

x(i+1) = arg min
x,‖x−x(i)‖≤δ(i)

U
(
R(i)

s (x)
)
, (15)

where δ(i) is the trust region radius updated in each iteration according to the stan-
dard rules [29]. Within this framework, the designs that do not improve the specifi-
cation error are rejected, and the search is repeated with the reduced value of δ(i).

The steps in the modeling procedure are as follows. First, we find an approx-
imate optimum of the coarse model Rcd (i.e., the low-fidelity full-wave EM sim-
ulations). Then we construct a BSVR surrogate Rc, only using relatively densely
spaced training data in the vicinity of this optimum, thus further enhancing the
computational efficiency. Once constructed, Rc is used as the basis for the itera-
tive optimization (13)–(15).

6.2 Antenna Optimization Examples

As examples, we consider again the CPW-fed slot dipole antenna of Sect. 4.1 (An-
tenna 1, Fig. 1) and the CPW-fed T-shaped slot antenna of Sect. 4.2 (Antenna 2,
Fig. 2).

For Antenna 1, we have two design variables, x = [W L]T mm. Using CST
Microwave Studio [15], we consider a high-fidelity model Rf (∼130,000 mesh
cells, simulation time 12 min), and a low-fidelity model Rcd (∼5,000 mesh cells,
simulation time 30 s). The initial design is xinit = [7.5 39.0]T mm. The starting
point of the SM optimization is the approximate optimum of the low-fidelity model,
x(0) = [5.0 43.36]T mm, found using a pattern search algorithm [19]. The computa-
tional cost of this step was 26 evaluations of Rcd. The BSVR coarse model has been
created using 100 low-fidelity model samples allocated using LHS [23] in the vicin-
ity of x(0) defined by deviation d = [1 3]T mm. The size of this vicinity must be
sufficiently large to allow the coarse model to “absorb” the misalignment between
the low- and high-fidelity models at x(0) through appropriate SM transformations.
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Fig. 13 CPW-fed slot dipole antenna: response of the high-fidelity model at the final design x(4)

Table 4 CPW-fed slot dipole antenna: design cost

Algorithm component Number of model
evaluations

Evaluation time

Absolute [min] Relative to Rf

Optimization of Rcd 26 × Rcd 13 1.1

Creating BSVR coarse model 100 × Rcd 50 4.2

Evaluation of Rf
a 5 × Rf 60 5.0

Total optimization time N/A 123 10.3

aIncludes evaluation of Rf at x(0)

The low-fidelity model at the initial design, as well as the low- and high-fidelity
model responses at x(0), are shown in Fig. 12. In this case, the major discrepancy
between the models is a frequency shift. Therefore, the primary SM transformation
used for this example is frequency scaling applied to all designs, x(0),x(1), . . . ,x(i),
considered during the optimization run. The SM surrogate is then enhanced using a
local additive output SM [27] so that the entire SM model has the form R

(i)
s (x) =

Rc.f (x;F (i)) + [Rf (x(i)) − Rc(x
(i))].

The final design, x(4) = [5.00 41.56]T mm, is obtained in four SM iterations.
The high-fidelity model response at x(4) is shown in Fig. 13. At this design, we
have |S11| ≤ −18.3 dB over the entire frequency band of interest. The design cost is
summarized in Table 4 and corresponds to about ten evaluations of the high-fidelity
model. Figure 14 shows the convergence plot and the evolution of the specification
error versus iteration index.

For Antenna 2, the design variables are x = [ax ay a b]T mm. The design spec-
ifications are |S11| ≤ −12 dB for 2.3 to 7.6 GHz. The high-fidelity model Rf is
evaluated with the CST MWS transient solver [15] (3,556,224 mesh cells, simu-
lated in 60 min). The low-fidelity model Rcd is also evaluated in CST MWS but
with a coarser mesh: 110,208 mesh cells, simulation time 1.5 min. The initial de-
sign is xinit = [40 30 10 20]T mm. The approximate low-fidelity model optimum,
x(0) = [40.33 25.6 8.4 20.8]T mm, has been found using a pattern search algorithm,
at the cost of 85 evaluations of Rcd. The BSVR coarse model has been created using
100 low-fidelity model samples allocated using LHS in the vicinity of x(0) defined
by deviation d = [2 2 1 1]T mm. The BSVR model Rc was subsequently used as a
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Fig. 14 CPW-fed slot dipole antenna: (a) convergence plot, (b) specification error versus iteration
index

Fig. 15 Broadband CPW-fed T-shaped slot antenna: responses of the low- (· · · ·) and high- (—) fi-
delity models at the initial design xinit and the response of the low-fidelity model at its approximate
optimum x(0) (- - -)

coarse model for the SM algorithm. Figure 15 shows the low-fidelity model at the
initial design, as well as the low- and high-fidelity model responses at x(0). Because
the major discrepancy between the models is a vertical shift, the primary SM trans-
formation used for this example is the multiplicative response correction applied
to all designs, x(0),x(1), . . . ,x(i), considered during the optimization run. The SM
surrogate is then enhanced using an additive output SM with the SM model having
the form R

(i)
s (x) = A(i) · Rc(x) + [Rf (x(i)) − Rc(x

(i))].
The final design, x(7) = [39.84 24.52 8.84 21.40]T mm, is obtained in seven

SM iterations. The high-fidelity model response at x(7) is shown in Fig. 16. At that
design, we have |S11| ≤ −10.9 dB for 2.3 GHz to 7.6 GHz. The overall design cost is
summarized in Table 5 and corresponds to about 15 evaluations of the high-fidelity
model. The convergence of the algorithm (Fig. 17) is consistent with that for the
previous example.
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Fig. 16 Broadband CPW-fed T-shaped slot antenna: response of the high-fidelity model at the
final design x(7)

Table 5 Broadband CPW-fed T-shaped slot antenna: design cost

Algorithm component Number of model
evaluations

Evaluation time

Absolute [min] Relative to Rf

Optimization of Rcd 85 × Rcd 128 2.1

Creating BSVR coarse model 100 × Rcd 150 2.5

Evaluation of Rf
a 10 × Rf 600 10.0

Total optimization time N/A 878 14.6

aIncludes evaluation of Rf at x(0)

Fig. 17 Broadband CPW-fed T-shaped slot antenna: (a) convergence plot, (b) specification error
versus iteration index

7 Conclusion

In this chapter, we presented a Bayesian support vector regression methodology for
accurate modeling of microwave components and structures. We demonstrated the
possibility of reduction of the number of fine-discretization training points by per-
forming BSVR modeling on coarse-discretization EM simulation data (selected by
standard experimental design) and then obtaining high-fidelity simulations only for
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the points that contribute to the initial BSVR model in a nontrivial way. The com-
putational savings thus obtained had little effect on the modeling accuracy. We have
also demonstrated that the reduced-training-set BSVR models perform as well as the
full-training-set models in parametric optimization of antenna structures. A notable
advantage of BSVR is that only a single parameter must be set by the user, namely β

(hyperparameters are initialized randomly during training). This is in contrast to, for
instance, neural network-based methodologies for regression, which might require
the tuning of a variety of architectural/performance parameters (e.g., number of hid-
den units, learning rate, momentum). We also discussed the use of BSVR surrogates
for variable-fidelity design optimization of antennas, where the main optimization
engine is space mapping, whereas the underlying coarse model is obtained by ap-
proximating low-fidelity EM simulation data. As a result, the optimization can be
accomplished at a low computational cost corresponding to a few evaluations of the
high-fidelity EM simulations of the structure under design.
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