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Abstract Accurate responses of antennas, in many cases, can be obtained only with
discrete full-wave electromagnetic (EM) simulations. Therefore, contemporary an-
tenna design strongly relies on these EM simulations. On the other hand, direct use
of high-fidelity EM simulations in the design process, particularly for automated pa-
rameter optimization, often results in prohibitive computational costs. In this chap-
ter, we illustrate how the designs of various antennas can be obtained efficiently us-
ing an automated surrogate-based optimization (SBO) methodology. The SBO tech-
niques considered here include the adaptive design specification technique, variable-
fidelity simulation-driven optimization, and shape-preserving response prediction.
The essence of these techniques resides in shifting the optimization burden to a fast
surrogate of the antenna structure, and using coarse-discretization EM models to
configure the surrogate. A properly created and handled surrogate serves as a reli-
able prediction tool allowing satisfactory designs to be obtained at the cost of a few
simulations of the high-fidelity antenna model. We also demonstrate the effect of the
coarse-discretization model fidelity on the final design quality and the computational
cost of the design process. Finally, we give an example of automatic management of
the coarse model quality. Recommendations concerning the application of specific
SBO techniques to antenna design are also presented.

Keywords Antenna design · Antenna optimization · Simulation-driven
optimization · Electromagnetic (EM) simulation · Surrogate-based optimization
(SBO) · Computer-aided design (CAD) · High-fidelity model · Coarse model ·
Coarse-discretization model

1 Introduction

Contemporary antenna design strongly relies on electromagnetic (EM) simula-
tions [1]. For accurate evaluation of responses, antenna models should account
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for environmental features such as the installation fixture, connectors, and housing.
Contemporary computational techniques—implemented in commercial simulation
packages—are capable of obtaining quite accurate reflection and radiation antenna
responses. However, full-wave simulations of realistic models are computationally
expensive, and simulation even for a single combination of design parameters may
take up to several hours. This computational cost poses a significant problem for
antenna design.

A task of automated adjustment of antenna parameters can be formulated as an
optimization problem with the objective function supplied by an EM solver [2].
However, most conventional optimization techniques—both gradient-based [3],
e.g., conjugate-gradient, quasi-Newton, sequential quadratic programming, and
derivative-free [4], e.g., Nelder–Mead and pattern search techniques—require large
numbers of design simulations, each of which is already computationally expensive.
As a consequence, the direct use of the EM solver to evaluate the high-fidelity an-
tenna model in the optimization loop is often impractical due to the unacceptably
high computational cost. Other obstacles for successful application of conventional
optimization techniques to antenna design originate from the poor analytical prop-
erties of simulation-based objective functions (e.g., discontinuity, numerical noise).
As a result, the practice of simulation-driven antenna design relies on repetitive pa-
rameter sweep. While this approach can be more reliable than brute-force antenna
optimization, it is very laborious and time-consuming, and it does not guarantee op-
timal results. Also, only antenna designs with a limited number of parameters can
be handled this way.

Adjoint sensitivities can substantially speed up microwave design optimization
while using gradient-based algorithms [5] and [6]; however, adjoint sensitivities are
not yet widespread in commercial EM solvers. Only CST Microwave Studio [7] and
HFSS [8] have recently implemented this feature. Also, the use of adjoint sensitivi-
ties is limited by the numerical noise of the response.

Population-based techniques (metaheuristics) have recently become popular in
solving certain antenna-design-related tasks [9, 10]. Methods such as genetic algo-
rithms [11], particle swarm optimizers [12], or ant colony optimization [13] can
alleviate certain problems (e.g., getting stuck in the local optimum). However, these
methods are mainly applicable if objective function evaluation is very fast, for ex-
ample, for synthesis of antenna array patterns [14]. The use of such techniques for
simulation-based antenna design is questionable due to the large number of model
evaluations required by metaheuristics.

In recent years, there has been a growing interest in surrogate-based optimiza-
tion (SBO) methods [15–17], where direct optimization of the CPU-intensive full-
wave EM model is replaced by iterative updating and reoptimization of a cheap and
yet reasonably accurate representation of the antenna structure under consideration,
called the surrogate model. There are many techniques exploiting both approxima-
tion surrogates, e.g., neural networks [18, 19], support vector regression [20, 21],
radial basis functions [22], kriging [23, 24], fuzzy systems [25], and rational ap-
proximations [26], as well as physics-based surrogates (space mapping [15, 27–29],
simulation-based tuning [30–32], manifold mapping [33], and shape-preserving re-
sponse prediction [34]). Approximation models are fast and universal; however, they
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are associated with a high initial cost (due to sampling of the design space and ac-
quiring EM simulation data) and they are typically not suitable for ad hoc optimiza-
tion. Techniques exploiting physics-based surrogates are particularly attractive be-
cause they are capable of yielding a satisfactory design using a very limited number
of expensive high-fidelity EM simulations [15].

One of the most important assumptions to ensure efficiency of the SBO tech-
niques exploiting physics-based surrogates is that the underlying low-fidelity model
is computationally cheap. The most prominent technique of this kind is space map-
ping [34]. It originated in the area of microwave filter design, where this assump-
tion is naturally satisfied with circuit equivalents [15] serving as low-fidelity mod-
els for filters. In the case of antennas, physics-based surrogates can be obtained
from coarse-discretization EM simulations, as this is the only versatile way to cre-
ate lower-fidelity antenna models. Unfortunately, these models may be relatively
expensive. As a result, their evaluation cost cannot be neglected and may contribute
considerably to the overall design expenses.

Therefore, the proper choice of the surrogate model fidelity (controlled, among
other things, by the mesh density) is of great significance. On one hand, using a
coarser low-fidelity model allows us to reduce its evaluation time; on the other hand,
the coarser models are less accurate. As a result, a large number of iterations of the
SBO algorithm may be necessary to yield a satisfactory design so that the total
cost may be about the same or even higher than the total cost of an optimization
algorithm employing only the finer model. Also, the SBO process may simply fail
if the underlying low-fidelity model is not sufficiently accurate. For finer models,
the individual evaluation time may be higher, but this is not directly translated into
a higher total design cost because a smaller number of iterations may be sufficient
to find a good design. In general, finding a good trade-off between the low-fidelity
model speed and accuracy is not obvious.

In this chapter, we will review antenna design using physics-based surrogates
originating from the coarse-mesh models. We also study the importance of a proper
selection of the antenna model fidelity and its influence on performance of the
surrogate-based design process in terms of the computational cost and design qual-
ity. Furthermore, we investigate the potential benefits of using several models of
different fidelity in the same optimization run.

2 Surrogate-Based Design Optimization of Antennas

In this section, we consider a number of antenna design examples. In every example
we describe the antenna structure under design, formulate the design problem, and
outline the SBO technique that seems to be the most suitable to handle that particular
antenna of interest. Results as well as design computational costs are provided.
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Fig. 1 Microstrip antenna [35]: top and side views, substrates shown transparent

2.1 Optimization of a Microstrip Composite Antenna Using the
Multi-Fidelity Optimization Technique

Consider the composite microstrip antenna [35] shown in Fig. 1. The design vari-
ables are x = [l1 l2 l3 l4 w2 w3 d1 s]T . The multilayer substrate is ls × ls (ls =
30 mm). The antenna stack comprises a metal ground, RO4003 dielectric, signal
trace, RO3006 dielectric with a through via connecting the trace to the driven patch,
the driven patch, RO4003 dielectric, and four extra patches. The signal trace is ter-
minated with an open-end stub. Feeding is with a 50 ohm SMA connector. The stack
is fixed with four through bolts at the corners.

The final design is required to satisfy |S11| ≤ −10 dB for 3.1–4.8 GHz. The
IEEE gain is required to be not less than 5 dB for the zero zenith angle over the
whole frequency band of interest.

In this example, the antenna under design is of relatively complex composition;
therefore, the choice of the mesh density for the coarse discretization model as well
as other settings of the EM solver, here the CST MWS transient solver, strongly
affect the total design optimization time. On the other hand, the computational cost
of the model and its accuracy can be easily controlled by changing the discretization
density. This feature has been exploited in the multi-fidelity optimization algorithm
introduced in [36].

The multi-fidelity optimization is based on a family of coarse-discretization mod-
els {Rc.j }, j = 1, . . . ,K , all evaluated by the same EM solver. Discretization of the
model Rc.j+1 is finer than that of the model Rc.j , which results in better accuracy
but also a longer evaluation time. In practice, the number of coarse-discretization
models, K , is two or three.

When we have the optimized design x(K) of the finest coarse-discretization
model Rc.K , the model is evaluated at all perturbed designs around x(K), i.e., at
x

(K)
k = [x(K)

1 · · ·x(K)
k + sign(k) · dk · · ·x(K)

n ]T , k = −n,−n + 1, . . . , n − 1, n. This
data can be used to refine the final design without directly optimizing Rf . Instead,
an approximation model is set up and optimized in the neighborhood of x(K) defined
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Fig. 2 Operation of the multi-fidelity design optimization procedure for three coarse-discretiza-
tion models (K = 3). The design x(j) is the optimal solution of the model Rc.j , j = 1, 2, 3. A re-
duced second-order model q is set up in the neighborhood of x(K) (gray area). The final design
x∗ is obtained by optimizing the model q as in (2)

as [x(K) −d,x(K) +d], where d = [d1 d2 . . . dn]T , and R(k) stands for Rc.K(x
(K)
k ).

The size of the neighborhood can be selected based on a sensitivity analysis of Rc.1
(the cheapest of the coarse-discretization models); usually d equals 2 to 5 percent of
x(K). A reduced quadratic model q(x) = [q1 q2 . . . qm]T is used for approximation,
where

qj (x) = qj

([x1 . . . xn]T
)

= λj.0 + λj.1x1 + · · · + λj.nxn + λj.n+1x
2
1 + · · · + λj.2nx

2
n. (1)

Coefficients λj.r , j = 1, . . . ,m, r = 0,1, . . . ,2n, can be uniquely obtained by
solving the linear regression problem.

In order to account for unavoidable misalignment between Rc.K and Rf , it is
recommended to optimize a corrected model q(x) + [Rf (x(K)) − Rc.K(x(K))] that
ensures a zero-order consistency [37] between Rc.K and Rf . The refined design can
then be found as

x∗ = arg min
x(K)−d≤x≤x(K)+d

U
(
q(x) + [

Rf

(
x(K)

) − Rc.K

(
x(K)

)])
. (2)

This kind of correction is also known as output space mapping [15]. If necessary,
step (2) can be performed a few times starting from a refined design where each
iteration requires only one evaluation of Rf .

The multi-fidelity optimization procedure can be summarized as follows (the in-
put arguments are initial design x(0) and the number of coarse-discretization mod-
els K):

1. Set j = 1;
2. Optimize coarse-discretization model Rc.j to obtain a new design x(j) using

x(j−1) as a starting point;
3. Set j = j+ 1; if j < K go to 2;
4. Obtain a refined design x∗ as in (2);
5. END

Note that the original model Rf is only evaluated at the final stage (step 4). The
operation of the algorithm in illustrated in Fig. 2. Coarse-discretization models can
be optimized using any available algorithm.

Application of the multi-fidelity optimization methodology to this example can
be outlined as follows. The initial design is set to x(0) = [15 15 15 20 −4 2 2]T mm.
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Fig. 3 Microstrip antenna: (a) model Rc.1 at the initial design x(0) (- - -) and at the optimized
design x(1) (—); (b) model Rc.2 at x(1) (- - -) and at its optimized design x(2) (—); (c) model Rf

at x(0) (· · · ·), at x(2) (- - -), and at the refined final design x∗ (—) [38]

Two coarse-discretization models are used: Rc.1 (122,713 mesh cells at x(0)) and
Rc.2 (777,888 mesh cells). The evaluation times for Rc.1, Rc.2, and Rf (2,334,312
mesh cells) are 3 min, 18 min, and 160 min at x(0), respectively. |S11| is the objective
function with the goal of |S11| ≤ −10 dB for 3.1–4.8 GHz. An IEEE gain of not
less than 5 dB for the zero elevation angle over the band is implemented as an
optimization constraint.

Figure 3(a) shows the responses of Rc.1 at x(0) and at its optimal design x(1).
Figure 3(b) shows the responses of Rc.2 at x(1) and at its optimized design x(2).
Figure 3(c) shows the responses of Rf at x(0), at x(2), and at the refined design
x∗ = [14.87 13.95 15.4 13.13 20.87 − 5.90 2.88 0.68]T mm (|S11| ≤ −11.5 dB for
3.1 GHz to 4.8 GHz) obtained in two iterations of the refinement step (2).

The design cost, shown in Table 1, corresponds to about 12 runs of the high-
fidelity model Rf . The antenna gain at the final design is shown in Fig. 4.

2.2 Optimization of a Broadband Dielectric Resonator Antenna
Using the Adaptively Adjusted Design Specifications Technique

Consider the rotationally symmetric dielectric resonator antenna (DRA) [40] shown
in Fig. 5. It comprises two annular ring dielectric resonators (DRs) with a relative
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Table 1 Microstrip antenna: optimization cost [38]

Design step Model evaluations Computational cost

Absolute [hours] Relative to Rf

Optimization of Rc.1 125 × Rc.1 6.3 2.6

Optimization of Rc.2 48 × Rc.2 14.4 5.4

Setup of model q 17 × Rc.2 5.1 1.9

Evaluation of Rf 2 × Rf 5.3 2.0

Total design time N/A 31.1 11.9

aExcludes Rf evaluation at the initial design

Fig. 4 Microstrip antenna gain [dBi] of the final design at 3.5 GHz (· − ·), 4.0 GHz (– –), and
4.5 GHz (—): (a) co-pol. in the E-plane (XOZ), with connector at 90◦ on the right; (b) x-pol.,
primary (thick lines) and co-pol. (thin lines) in the H -plane [39]

Fig. 5 Annular ring dielectric resonator antenna [40]: side view

permittivity, εr1, of 36; two supporting Teflon rings; a probe; and a cylindrical Teflon
filling. The inner radius of the filling is the radius of the probe, 1.27 mm. The probe
is an extension (h0 above the ground) of the inner conductor of the input 50 ohm
coaxial cable. The radius of each supporting ring equals that of the DR above it.
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All metal parts are modeled as perfect electric conductors (PECs). The coax is also
filled by Teflon. The ground is of infinite extent.

The design variables are the inner and outer radii of the DRs, heights of the DRs
and the supporting rings, and the probe length, namely, x = [a1 a2 b1 b2 h1 h2 g1
g2 h0]T . The design objective is |S11| ≤ −20 dB for 4 GHz to 6 GHz. A broadside
gain of not less than 5 dBi is an optimization constraint.

Here, the overall shape of the low- and high-fidelity model responses is quite
similar; therefore we use the adaptively adjusted design specifications (AADS) tech-
nique [41] that allows us to account for the misalignment between the models with-
out actually adjusting the low-fidelity one. AADS consists of the following two steps
that can be iterated if necessary:

1. Modify the original design specifications to account for the difference between
the responses of the high-fidelity model Rf and the coarse-discretization model
Rcd at their characteristic points.

2. Obtain a new design by optimizing the low-fidelity model Rcd with respect to
the modified specifications.

As Rcd is much faster than Rf , the design process can be performed at low cost
compared to direct optimization of Rf . Figure 6 explains the idea of AADS using
a bandstop filter example [41]. The design specifications are adjusted using charac-
teristic points that should correspond to the design specification levels. They should
also include local maxima/minima of the responses at which the specifications may
not be satisfied.

It should be emphasized again that for the AADS technique there is no surrogate
model configured from Rcd—the discrepancy between Rcd and Rf is “absorbed”
by the modified design specifications.

Figure 6(b) shows the characteristic points of Rf and Rcd. The design specifi-
cations are modified (mapped) so that the level of satisfying/violating the modified
specifications by the Rcd response corresponds to the satisfaction/violation levels
of the original specifications by the Rf response (Figs. 6(b) and (c)). Rcd is subse-
quently optimized with respect to the modified specifications, and the new design
obtained this way is treated as an approximated solution to the original design prob-
lem. Typically, a substantial design improvement is observed after the first iteration.
Additional iterations can bring further improvement.

The initial design is xinit = [6.9 6.9 1.05 1.05 6.2 6.2 2.0 2.0 6.80]T . The high-
and low fidelity models are evaluated using CST Microwave Studio (Rf : 829,000
meshes at xinit, evaluation time 58 min, Rcd: 53,000 meshes at xinit, evaluation time
2 min).

The optimized design is found to be x∗ = [5.9 5.9 1.05 1.55 7.075 7.2 4.5
1.0 8.05]T . It is obtained with three iterations of the AADS procedure. Significant
improvement of the DRA’s bandwidth is observed; the 48 % fractional bandwidth
at −20 dB is shown in Fig. 7. The far-field response of the optimized DRA, shown
in Fig. 8 at selected frequencies, stays at TM01δ DRA mode behavior over the 60 %
bandwidth (on the −10 dB level). The total design cost is equivalent to about 11
evaluations of the high-fidelity DRA model. The design cost budget is listed in Ta-
ble 2.
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Fig. 6 AADS concept (responses of Rf (—) and Rcd (- - -)) [41]: (a) responses at the initial de-
sign and the original design specifications, (b) characteristic points of the responses corresponding
to the specification levels (here, −3 dB and −30 dB) and to the local maxima, (c) responses at
the initial design as well as the modified design specifications. The modification accounts for the
discrepancy between the models so that optimizing Rcd with respect to the modified specifications
approximately corresponds to optimizing Rf with respect to the original specifications

Fig. 7 DRA: fine model response at the initial (- - -) and the optimized design (—)

2.3 Design of UWB Antenna Using the Shape-Preserving
Response Prediction Technique

Consider the planar antenna shown in Fig. 9. It consists of a planar dipole as
the main radiator element and two additional strips. The design variables are
x = [l0 w0 a0 lp wp s0]T . Other dimensions are fixed as a1 = 0.5 mm, w1 = 0.5 mm,
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Fig. 8 DRA at the optimal design: gain in the elevation plane at 3.5 GHz (thick —), 4 GHz (thick
– –), 4.5 GHz (thick · − ·), 5 GHz (thin –), 5.5 GHz (thin – –), and 6 GHz (thin · − ·)

Table 2 DRA: design optimization costs

Design step Model evaluations Computational cost

Absolute [hours] Relative to Rf

Optimization of Rcd 235 × Rcd 7.8 8.1

Evaluation of Rf 3 × Rf 2.9 3.0

Total design time N/A 10.7 11.1

aExcludes Rf evaluation at the initial design

Fig. 9 UWB dipole antenna geometry: top and side views. The dash-dotted lines show the electric
(YOZ) and the magnetic (XOY) symmetry walls. The 50 ohm source impedance is not shown

ls = 50 mm, ws = 40 mm, and h = 1.58 mm. The substrate material is Rogers
RT5880.

The high-fidelity model Rf of the antenna structure (10,250,412 mesh cells at
the initial design, evaluation time of 44 min) is simulated using the CST MWS
transient solver. The design objective is to obtain |S11| ≤ −12 dB for 3.1 GHz to
10.6 GHz. The initial design is xinit = [20 10 1 10 82]T mm. The low-fidelity model
Rcd is also evaluated in CST but with coarser discretization (108,732 cells at xinit,
evaluated in 43 s).

For this example, the shapes of the low- and high-fidelity model response are
similar (cf. Fig. 11(a)), which allows us to use the shape-preserving response
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Fig. 10 SPRP concept. (a) Low-fidelity model response at the design x(i), Rc(x
(i)) (solid line),

the low-fidelity model response at x, Rc(x) (dotted line), characteristic points of Rc(x
(i)) (circles)

and Rc(x) (squares), and the translation vectors (short lines). (b) High-fidelity model response at
x(i), Rf (x(i)) (solid line) and the predicted high-fidelity model response at x (dotted line) obtained
using SPRP based on characteristic points of (a); characteristic points of Rf (x(i)) (circles) and
the translation vectors (short lines) were used to find the characteristic points (squares) of the
predicted high-fidelity model response. (c) Low-fidelity model responses Rc(x

(i)) and Rc(x) are
plotted using thin solid and dotted line, respectively

prediction (SPRP) technique [34] as the optimization engine. SPRP, unlike some
other SBO techniques including space mapping, does not use any extractable pa-
rameters. As a result SPRP is typically very efficient: in many cases only two
or three iterations are sufficient to yield a satisfactory design. SPRP assumes
that the change of the high-fidelity model response due to the adjustment of the
design variables can be predicted using the actual changes of the low-fidelity
model response. Here, this property is ensured by the low-fidelity model being
the coarse-mesh simulation of the same structure that represents the high-fidelity
model.

The change of the low-fidelity model response can be described by the translation
vectors corresponding to what are called the characteristic points of the model’s re-
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Fig. 11 UWB dipole antenna reflection response: (a) high-fidelity model response (dashed line)
at the initial design xinit, and high- (solid line) and low-fidelity (dotted line) model responses at the
approximate low-fidelity model optimum x(0); (b) high-fidelity model |S11| at the final design

sponse. These translation vectors are subsequently used to predict the change of the
high-fidelity model response with the actual response of Rf at the current iteration
point, Rf (x(i)), treated as a reference.

Figure 10(a) shows an example low-fidelity model response, |S11| versus fre-
quency, at the design x(i), as well as the coarse model response at some other de-
sign x. Circles denote characteristic points of Rc(x

(i)), selected here to represent
|S11| = −10 dB, |S11| = −15 dB, and the local |S11| minimum. Squares denote cor-
responding characteristic points for Rc(x), while line segments represent the trans-
lation vectors (“shift”) of the characteristic points of Rc when changing the design
variables from x(i) to x.

The high-fidelity model response at x can be predicted using the same translation
vectors applied to the corresponding characteristic points of the high-fidelity model
response at x(i), Rf (x(i)). This is illustrated in Fig. 10(b). Figure 10(c) shows the
predicted high-fidelity model response and the actual high-fidelity model response
at x. A rigorous and more detailed formulation of the SPRP technique can be found
in [42].

For this example, the approximate optimum of Rcd, x(0) = [18.66 12.98 0.526
13.717 8.00 1.094]T mm, is found as the first design step. The computational cost
is 127 evaluations of Rcd, which corresponds to about two evaluations of Rf . Fig-
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Table 3 UWB dipole antenna: optimization cost

Algorithm component Number of model
evaluations

Evaluation time

Absolute [min] Relative to Rf

Evaluation of Rcd
a 233 × Rcd 167 3.8

Evaluation of Rf
b 3 × Rf 132 3.0

Total optimization time N/A 299 6.8

aIncludes initial optimization of Rcd and optimization of SPRP surrogate
bExcludes evaluation of Rf at the initial design

Fig. 12 UWB dipole at the final design: IEEE gain pattern (×-pol.) in the XOY plane at 4 GHz
(thick solid line), 6 GHz (dash-dotted line), 8 GHz (dashed line), and 10 GHz (solid line)

ure 11(a) shows the reflection responses of Rf at both xinit and x(0), as well as the
response of Rcd at x(0).

The final design x(2) = [19.06 12.98 0.426 13.52 6.80 1.094]T mm (|S11| ≤
−13.5 dB for 3.1 GHz to 10.6 GHz) is obtained after two iterations of the SPRP-
based optimization with the total cost corresponding to about seven evaluations of
the high-fidelity model (see Table 3). Figure 11(b) shows the reflection response and
Fig. 12 shows the gain response of the final design x(2).

2.4 Design of a Planar Antenna Array Using a Combination of
Analytical and Coarse-Discretization Electromagnetic Models

The design of two-dimensional antenna arrays requires full-wave simulations, each
of which is time-consuming due to the complexity and size of the antenna array
under design as well as the electromagnetic (EM) interaction within the structure.
Typically many EM simulations are necessary in the design process of a realistic
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Fig. 13 Microstrip antenna array. (a) Front view of the EM models Rf and Rcd. The symmetry
(magnetic) plane is shown with the vertical dashed line. (b) Analytical model of the planar array
embedding the simulated radiation response of a single array element

array. Moreover, array design normally involves a large number of design variables,
such as dimensions of the array elements, element spacing, location of feeds, exci-
tation amplitudes and/or phases, and dimensions of the substrate and ground [1].

The array model based on the single element radiation response combined with
the analytical array factor [43] cannot account for interelement coupling. In addi-
tion, this model produces inaccurate radiation responses in the directions off the
main beam. Therefore, discrete EM simulations of the entire array are required;
however, these simulations are computationally expensive when accurate. Conse-
quently, using numerical optimization techniques to conduct the design process may
be prohibitively expensive in terms of the CPU time. The use of coarse discretiza-
tion for the whole array model can substantially relieve the computational load.
However, the responses of such coarse-mesh models are typically noisy and of-
ten discontinuous, so that the optimization algorithm needs more objective function
calls to find an improvement or it can even fail.

In order to reduce the computational cost of the array optimization process and
make it robust, we apply surrogate-based optimization (SBO) [44] where we use
an analytical model of the planar array embedding the simulated radiation response
of a single array element, a coarse-discretization model of the entire array, and a
fine model of the entire array. The design optimization example presented below
describes and illustrates this approach.

Consider a planar microstrip array (Fig. 13) comprising 25 identical microstrip
patches. The array is to operate at 10 GHz and have a linear polarization. Each patch
is fed by a probe in the 50 ohm environment. The design tasks are as follows: to keep
the lobe level below −20 dB for zenith angles off the main beam with a null-to-null
width of 34◦, i.e., off the sector of [−17◦, 17◦]; to maintain the peak directivity of
the array at about 20 dBi; to have the direction of the maximum radiation perpen-
dicular to the plane of the array; to have returning signals lower than −10 dB, all at
10 GHz. The initial dimensions of the elements, the microstrip patches, are 11 mm
by 9 mm; a grounded layer of 1.58 mm thick RT/duroid 5880 is the substrate; the
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lateral extension of the substrate/metal ground is set to a half of the patch size in a
particular direction. The locations of the feeds at the initial design are at the center
of the patch in the horizontal direction and 2.9 mm up off the center in the vertical
direction, referring to Fig. 13(a). The symmetry of the array EM models is imposed
as shown in Fig. 13(a).

The use of discrete EM models of the entire array is unavoidable here for several
reasons, including the effect of element coupling on the reflection response and the
requirement of minor lobe suppression. In the same time the evaluation time of the
high-fidelity model of the array, Rf , is around 20 minutes using the CST MWS
transient solver, which makes its direct optimization impractical.

Even though we impose a symmetry on the array model and, therefore, re-
strict ourselves to adjusting distances between array components (xt1, xt2, yt1, yt2),
patch dimensions (x1, y1), and the amplitudes (a1, . . . a15) and/or phases (b1, . . . b15)
of the incident excitation signals, the number of design variables is still large
for simulation-based design optimization. Therefore, we consider two design op-
timization cases: a design with nonuniform amplitude (and uniform phase) ex-
citation where the design variables are x = [xt1 xt2 yt1 yt2 x1 y1 a1 . . . a15]T
and a design with nonuniform phase (uniform amplitude) excitation with x =
[xt1 xt2 yt1 yt2 x1 y1 b1 . . . b15]T .

To evaluate the response of the array under design we adopt the following three
EM models for it: a high-fidelity discrete EM model of the entire array, Rf ; a
coarse-discretization EM model of the entire array Rcd which is essentially a coarse-
mesh version of Rf (evaluation time of Rcd is about 1 min); and an analytical model
of the array radiation pattern, Ra outlined in Fig. 13(b), which embeds the simulated
radiation response of the single microstrip patch antenna. The use of these models
in a developed SBO procedure is described in the following section.

Due to the high computational cost of evaluating the array, the design process
exploits the SBO approach [45], where direct optimization of the array pattern is
replaced by iterative correction and adjustment of the auxiliary models Ra and Rcd,
described in the previous section.

The design procedure consists of the following two major stages:
Stage 1 (pattern optimization): In this stage, the design variables x are optimized

in order to reduce the side low level according to the specifications. Starting from
the initial design x(0), the first approximation x(1) of the optimum design is obtained
by optimizing the analytical model Ra . Further approximations x(i), i = 2,3, . . . ,
are obtained as x(i) = argmin{x : Ra(x) + [Rf (x(i−1)) − Ra(x

(i−1))]}, i.e., by op-
timizing the analytical model Ra corrected using output space mapping [46] so that
it matches the high-fidelity model exactly at the previous design x(i−1). In prac-
tice, only two iterations are usually necessary to yield a satisfactory design. Note
that each iteration of the above procedure requires only one evaluation of the high-
fidelity model Rf .

Stage 2 (reflection adjustment): In this stage, the coarse-discretization model Rcd
is used to correct the reflection of the array. Although we use the term “reflection
response” and |Sk| referring to returning signals at the feed points (ports), these
signals include the effect of coupling due to simultaneous excitation of the elements.
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In practice, after optimizing the pattern, the reflection responses are slightly
shifted in frequency so that the minima of |Sk| are not exactly at the required fre-
quency (here, 10 GHz). The reflection responses can be shifted in frequency by
adjusting the size of the patches, y1 here. In order to find the appropriate change of
y1 we use the coarse-discretization model Rcd. Because both Rf and Rcd are eval-
uated using the same EM solver, we assume that the frequency shift of reflection
responses is similar for both models under the same change of the variable y1, even
though the responses themselves are not identical for Rf and Rcd (in particular,
they are shifted in frequency and the minimum levels of |Sk| are typically different).
By performing perturbation of y1 using Rcd, one can estimate the change of y1 in
Rf , necessary to obtain the required frequency shift of its reflection responses. This
change would normally be very small so that it would not affect the array pattern in
a substantial way. The computational cost of reflection adjustment using the method
described here is only one evaluation of the high-fidelity model and one evaluation
of the coarse-discretization model Rcd.

In the case of severe mismatch, the feed offsets dn can also be used to adjust
reflection; however, it was not necessary in the design cases considered in this work.

A starting point for the optimization procedure is chosen to be a uniform ar-
ray, and the spacings xt1, xt2, yt1, and yt2 are easily found using model Ra as-
suming xt1 = xt2 = yt1 = yt2. The radiation response of the array at this design
x(0) is shown in Fig. 14. x(0) = [xt1 xt2 yt1 yt2 x1 y1 a1 . . . a15 b1 . . . b15]T =
[20 20 20 20 11 9 1 . . . 1 0 . . .0] where the dimensional parameters are in millime-
ters, the excitation amplitudes are normalized, and the phase shifts are in degrees.
The side lobe level of this design x(0) is about −13 dB and the peak directivity of
x(0) is 21.4 dBi. The feed offset, dn, shown in Fig. 13(a), is 2.9 mm for all patches.

Design optimization with nonuniform amplitude excitation. Following the two-
stage procedure described above, design optimization has been carried out with inci-
dent excitation amplitude as design variables. The cost of stage 1, directivity pattern
optimization, is only three evaluations of Rf (the cost of optimizing the analytical
Ra can be neglected). At stage 2, matching, we change the y-size of the patches,
global parameter y1 to 9.05 mm in order to move reflection responses to the left in
frequency y1. The cost of this step is 1 × Rcd + 1 × Rf .

The final design is found at x∗ = [23.56 24.56 23.65 24.42 11.00 9.05 0.952
0.476 0.0982 0.982 0.946 0.525 1.000 0.973 0.932 0.994 0.936 0.529 0.858 0.594
0.0275]T . All excitation amplitudes are normalized to the maximum which is the
amplitude of the seventh element located at the array center. The radiation response
(directivity pattern cuts) and reflection response of the final design are shown in
Fig. 15. The side lobe level of this design x∗ is under −20 dB and the peak direc-
tivity of x(0) is 21.8 dBi. The total cost of optimization is 1 × Rcd + 4 × Rf , that
is, about 4 × Rf .

Design optimization with nonuniform phase excitation. Another optimiza-
tion case has been considered with the excitation phase shifts as design vari-
ables. The cost of stage 1, directivity pattern optimization, is again 3 × Rf , and
the cost of stage 2 is 1 × Rc + 1 × Rf . The final design is found at x∗ =
[23.85 25.00 23.72 24.56 11.00 9.01 0.0 −21.96 123.01 7.09 −13.15 79.58 41.53
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Fig. 14 Microstrip antenna array of Fig. 13 at the initial (uniform) design x(0), directivity pattern
cuts at 10 GHz: (a) H -plane; (b) E-plane. EM model Rf (solid lines) and model Ra (dash-dotted
lines)

37.33 0.51 24.75 65.94 −15.19 59.16 69.38 −67.62]T where the phase shifts are in
degrees and given relative to the first excitation element, which is shown in Fig. 13
and corresponds to the 0.0 entry in the vector x∗. The radiation response (directivity
pattern cuts) and reflection response of the final design are shown in Fig. 16. The
side lobe level of this design x∗ is about −19 dB and the peak directivity of x(0) is
19.2 dBi. The total cost of optimization for this case is the same as in the previous
example, i.e., around four evaluations of the high-fidelity model.
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Fig. 15 Microstrip antenna array of Fig. 13 at the final design with nonuniform amplitude excita-
tion: (a) directivity pattern cuts in the E- and H -planes at 10 GHz; (b) reflection responses of the
array at the patch feeds

2.5 SBO Techniques for Antenna Design: Discussions and
Recommendations

The SBO techniques presented in this section have proven to be computationally
efficient for the design of different types of antennas. The typical computational cost
of the design process expressed in terms of the number of equivalent high-fidelity
model evaluations is comparable to the number of design variables, as demonstrated
through examples. Here, we attempt to qualitatively compare these methods and
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Fig. 16 Microstrip antenna array of Fig. 1 at the final design with nonuniform phase excitation:
(a) directivity pattern cuts in the E- and H -planes at 10 GHz; (b) reflection responses of the array
at the patch feeds

give some recommendations for the readers interested in using them in their research
and design work.

The multi-fidelity approach applied in Sect. 2.1 is one of the most robust tech-
niques, yet it is simple to implement. The only drawback is that it requires at least
two low-fidelity models of different discretization density and some initial study of
the model accuracy versus computational complexity. While the multi-fidelity tech-
nique will work with practically any setup, careful selection of the mesh density can
reduce the computational cost of the optimization process considerably. More im-
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plementation details and application examples of this technique can be found in [38]
and [47].

Among the considered methods, the AADS technique of Sect. 2.2 is definitely
the simplest for implementation, as it does not require any explicit correction of the
low-fidelity model. Therefore, AADS can even be executed within any EM solver
by modifying the design requirements and using its built-in optimization capabili-
ties. On the other hand, AADS only works with minimax-like design specifications.
Also, AADS requires the low-fidelity model to be relatively accurate so that the
possible discrepancies between the low- and high-fidelity models can be accounted
for by design specification adjustment. More implementation details and application
examples of this technique to antenna design can be found in [48] and [49].

The SPRP technique of Sect. 2.3 does not use any extractable parameters. It
assumes that the change of the high-fidelity model response due to the adjustment
of the design variables can be predicted using the actual changes of the low-fidelity
model response. SPRP is typically very efficient: in many cases only two or three
iterations are sufficient to yield a satisfactory design [42].

Space mapping, discussed in Sect. 2.1 (at the last step of the variable-fidelity
technique) and in Sect. 2.3, is a very generic method used to correct the low-
fidelity model. In particular, it is able to work even if the low-fidelity model is
rather inaccurate. On the other hand, space mapping requires some experience in
selecting the proper type of surrogate model. More implementation details and ap-
plication examples of this technique to antenna design can be found in [50] and [51]
as well as in chapter Space Mapping for Electromagnetic-Simulation-Driven Design
Optimization of this book.

As already mentioned, the low-fidelity model accuracy may be critical for the
performance of the SBO algorithms. Using finer, i.e., more expensive but also more
accurate, models generally reduces the number of SBO iterations necessary to find a
satisfactory design; however, each SBO iteration turns to be more time-consuming.
For coarser models, the cost of an SBO iteration is lower but the number of itera-
tions may be larger, and for models that are too coarse, the SBO process may simply
fail. The proper selection of the low-fidelity model “coarseness” may not be obvi-
ous beforehand. In most cases, it is recommended to use finer models rather than
coarser ones to ensure good algorithm performance, even at the cost of some extra
computational overhead.

The problem discussed in the previous paragraph can be considered in the wider
context of model management, thus it may be beneficial to change the low-fidelity
model coarseness during the SBO algorithm run. Typically, one starts from the
coarser model in order to find an approximate location of the optimum design and
switches to the finer model to increase the accuracy of the local search process with-
out compromising the computational efficiency, e.g., as with the multi-fidelity tech-
nique of Sect. 2.1. Proper management of the model fidelity may result in further
reduction of the design cost. The next section addresses this problem.
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3 Model Fidelity Management for Cost-Efficient
Surrogate-Based Design Optimization of Antennas

A proper choice of the surrogate model fidelity is a key factor that influences both
the performance of the design optimization process and its computational cost. Here,
we focus on a problem of proper surrogate model management. More specifically,
we present a numerical study that aims for a trade-off between the design cost and
reliability of the SBO algorithms. Our considerations are illustrated using several
antenna design cases. Furthermore, we demonstrate that the use of multiple models
of different fidelity may be beneficial for reducing the design cost while maintaining
the robustness of the optimization process. Recommendations regarding the selec-
tion of the surrogate model coarseness are also given.

3.1 Coarse-Discretization Electromagnetic Simulations as
Low-Fidelity Antenna Models

The only universal way of creating physics-based low-fidelity antenna models is
through coarse-discretization EM simulations. This is particularly the case for wide-
band and ultra-wideband (UWB) antennas [52], as well as dielectric resonator an-
tennas (DRAs) [53], to name just a few. Here, we assume that the low-fidelity model
Rc is evaluated with the same EM solver as the high-fidelity model. The low-fidelity
model can be created by reducing the mesh density compared to the high-fidelity
one, as illustrated in Fig. 17. Other options of the low-fidelity model may include:

• Using a smaller computational domain with the finite-volume methods;
• Using low-order basis functions, e.g., with the moment method;
• Applying simple absorbing boundaries;
• Applying discrete sources rather than full-wave ports;
• Modeling metals with a perfect electric conductor;
• Neglecting the metallization thickness of traces, strips, and patches;
• Ignoring dielectric losses and dispersion.

Because of the possible simplifications, the low-fidelity model Rc is (typically
10 to 50 times) faster than Rf but not as accurate. Therefore, it cannot substitute for
the high-fidelity model in design optimization. Obviously, making the low-fidelity
model mesh coarser (and, perhaps, introducing other simplifications) results in a
loss of accuracy but also in a shorter computational time. Figure 18 shows the plots
illustrating the high- and low-fidelity model responses at a specific design for the
antenna structure in Fig. 17, as well as the relationship between the mesh coarseness
and the simulation time.

In Fig. 18, one can observe that the two “finest” coarse-discretization models
(with ∼400,000 and ∼740,000 cells) properly represent the high-fidelity model
response (shown as a thick solid line). The model with ∼270,000 cells can be con-
sidered as borderline. The two remaining models can be considered as too coarse,
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Fig. 17 A microstrip antenna [35]: (a) a high-fidelity EM model with a fine tetrahedral mesh, and
(b) a low-fidelity EM model with a coarse tetrahedral mesh

Fig. 18 An antenna of Fig. 17 evaluated with the CST MWS transient solver [7] at a selected de-
sign: (a) the reflection response with different discretization densities, 19,866 cells (� � �), 40,068
cells (· — ·), 266,396 cells (– –), 413,946 cells (· · ·), 740,740 cells (—), and 1,588,608 cells (—);
and (b) the antenna evaluation time versus the number of mesh cells
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Fig. 19 Coax-fed microstrip antenna [54]: (a) 3D view, (b) top view

particularly the one with ∼20,000 cells; its response substantially deviates from that
of the high-fidelity model.

We stress that, at the present stage of research, visual inspection of the model
responses and the relationship between the high- and low-fidelity models is an im-
portant step in the model selection process. In particular, it is essential that the low-
fidelity model capture all important features present in the high-fidelity one.

3.2 Selecting Model Fidelity: Design of Microstrip Antenna Using
Frequency Scaling

We consider an antenna design case with the optimized designs found using an
SBO algorithm of the following type. A generic SBO algorithm produced a series
of approximate solutions to (1), x(i), i = 0,1, . . . , as follows (x(0) is the initial
design) [15]:

x(i+1) = arg min
x

U
(
R(i)

s (x)
)
, (3)

where R
(i)
s is the surrogate model at iteration i. Typically, the surrogate model is

updated after each iteration using the high-fidelity model data accumulated during
the optimization process. Normally, the high-fidelity model is referred to rarely, in
many cases only once per iteration, at a newly found design vector x(i+1). This,
in conjunction with the assumption that the surrogate model is fast, allows us to
significantly reduce the computational cost of the design process when compared
with direct solving of the original optimization problem.

Here we use three low-fidelity EM models of different mesh densities. We inves-
tigate the performance of the SBO algorithm working with these models in terms of
the computational cost and the quality of the final design.

Consider the coax-fed microstrip antenna shown in Fig. 19 [54]. The design vari-
ables are x = [a b c d e l0 a0 b0]T . The antenna is on 3.81 mm thick Rogers TMM4
substrate (ε1 = 4.5 at 10 GHz); lx = ly = 6.75 mm. The ground plane is of infi-
nite extent. The feed probe diameter is 0.8 mm. The connector’s inner conductor is
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Fig. 20 Coax-fed microstrip antenna: (a) model responses at the initial design, Rc1 (· · ·), Rc2
(· − ·−), Rc3 (- - -), and Rf (—); (b) high-fidelity model response at the final design found using
the low-fidelity model Rc3

1.27 mm in diameter. The design specifications are |S11| ≤ −10 dB for 5 GHz to
6 GHz. The high-fidelity model Rf is evaluated with CST MWS transient solver [7]
(704,165 mesh cells, evaluation time 60 min). We consider three coarse models: Rc1
(41,496, 1 min), Rc2 (96,096, 3 min), and Rc3 (180,480, 6 min).

The initial design is x(0) = [6 12 15 1 1 1 1 −4]T mm. Figure 20(a) shows
the responses of all the models at the approximate optimum of Rc1. The major
misalignment between the responses is due to the frequency shift, so the surrogate is
created here using frequency scaling as well as output space mapping [15] and [16].
The results, summarized in Table 4, indicate that the model Rc1 is too inaccurate
and the SBO design process using it fails to find a satisfactory design. The designs
found with models Rc2 and Rc3 satisfy the specifications, and the cost of the SBO
process using Rc2 is slightly lower than that using Rc3.

3.3 Coarse Model Management: Design of a Hybrid DRA

In this section, we again consider the use of low-fidelity models of various mesh
densities for surrogate-based design optimization of the dielectric resonator antenna.
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Table 4 Coax-fed microstrip antenna: design results

Low-fidelity
model

Design cost: number
of model evaluationsa

Relative
design costb

Max |S11| for 5-to-6
GHz at final design

Rc Rf

Rc1 385 6 12.4 −8.0 dB

Rc2 185 3 12.3 −10.0 dB

Rc3 121 2 14.1 −10.7 dB

aNumber of Rf evaluations is equal to the number of SBO iterations in (2)
bEquivalent number of Rf evaluations

Fig. 21 Hybrid DRA: (a) 3D-cut view and (b) side view

We also investigate the potential benefits of using two models of different fidelity
within a single optimization run.

Consider the hybrid DRA shown in Fig. 21. The DRA is fed by a 50 ohm
microstrip terminated with an open-ended section. The microstrip substrate is
0.787 mm thick Rogers RT5880. The design variables are x = [h0 r1 h1 u l1 r2]T .
Other dimensions are fixed: r0 = 0.635, h2 = 2, d = 1, r3 = 6, all in millimeters.
The permittivity of the DRA core is 36, and the loss tangent is 10−4, both at 10 GHz.
The DRA support material is Teflon (ε2 = 2.1), and the radome is of polycarbon-
ate (ε3 = 2.7 and tan δ = 0.01). The radius of the ground plane opening, shown in
Fig. 21(b), is 2 mm.

The high-fidelity antenna model Rf (x) is evaluated using the time-domain
solver of CST Microwave Studio [7] (∼1,400,000 meshes, evaluation time 60 min).
The goal is to adjust the geometry parameters so that the following specifica-
tions are met: |S11| ≤ −12 dB for 5.15 GHz to 5.8 GHz. The initial design is
x(0) = [7.0 7.0 5.0 2.0 2.0 2.0]T mm. We consider two auxiliary models of different
fidelity, Rc1 (∼45,000 meshes, evaluation time 1 min), and Rc2 (∼300,000 meshes,
evaluation time 3 min). We investigate the algorithm (2) using either one of these
models or both (Rc1 at the initial state and Rc2 in the later stages). The surrogate
model is constructed using both output space mapping and frequency scaling [15]
and [16]. Figure 22(a) justifies the use of frequency scaling, which, due to the shape
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Fig. 22 Hybrid DRA: (a) high- (—) and low-fidelity model Rc2 response at certain design before
(· · · ·) and after (- - -) applying the frequency scaling, (b) high-fidelity model response at the initial
design (- - -) and at the final design obtained using the SBO algorithm with the low-fidelity model
Rc2 (—)

similarity of the high- and low-fidelity model responses, allows substantial reduc-
tion of the misalignment between them.

The DRA design optimization has been performed three times: (i) with the sur-
rogate constructed using Rc1—cheaper but less accurate (case 1), (ii) with the sur-
rogate constructed using Rc2—more expensive but also more accurate (case 2), and
(iii) with the surrogate constructed with Rc1 at the first iteration and with Rc2 for
subsequent iterations (case 3). The last option allows us to more quickly locate the
approximate high-fidelity model optimum and then refine it using the more accu-
rate model. The number of surrogate model evaluations was limited to 100 (which
involves the largest design change) in the first iteration and to 50 in the subsequent
iterations (which require smaller design modifications).

Table 5 shows the optimization results for all three cases. Figure 22(b) shows the
high-fidelity model response at the final design obtained using the SBO algorithm
working with low-fidelity model Rc2. The quality of the final designs found in all
cases is the same. However, the SBO algorithm using the low-fidelity model Rc1
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Table 5 Hybrid DRA design results

Case Number of
iterations

Number of model
evaluationsa

Total
design
costb

Max |S11| for 5.15 GHz to
5.8 GHz at final design

Rc1 Rc2 Rf

1 4 250 0 4 8.2 −12.6 dB

2 2 0 150 2 9.5 −12.6 dB

3 2 100 50 2 6.2 −12.6 dB

aNumber of Rf evaluations is equal to the number of SBO iterations
bEquivalent number of Rf evaluations

(case 1) requires more iterations than the algorithm using the model Rc2 (case 3),
because the latter is more accurate. In this particular case, the overall computational
cost of the design process is still lower for Rc1 than for Rc2. On the other hand, the
cheapest approach is case 2 when the model Rc1 is utilized in the first iteration that
requires the largest number of EM analyses, whereas the algorithm switches to Rc2
in the second iteration, which allows us to both reduce the number of iterations and
number of evaluations of Rc2 at the same time. The total design cost is the lowest
overall.

3.4 Discussion and Recommendations

The considerations and numerical results presented above allow us to draw some
conclusions regarding the selection of model fidelity for surrogate-based antenna
optimization. Using the cheaper (and less accurate) model may translate into a lower
design cost; however, it also increases the risk of failure. Using the higher-fidelity
model may increase the cost, but it definitely improves the robustness of the SBO
design process and reduces the number of iterations necessary to find a satisfactory
design. Visual inspection of the low- and high-fidelity model responses remains—so
far—the most important way of accessing the model quality, which may also give
a hint as to which type of model correction should be applied while creating the
surrogate.

We can formulate the following rules of thumb and “heuristic” model selection
procedure:

(i) An initial parametric study of low-fidelity model fidelity should be performed
at the initial design in order to find the “coarsest” model that still adequately
represents all the important features of the high-fidelity model response. The
assessment should be done by visual inspection of the model responses, keep-
ing in mind that the critical factor is not the absolute model discrepancy but the
similarity of the response shape (e.g., even a relatively large frequency shift
can be easily reduced by a proper frequency scaling).
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(ii) When in doubt, it is safer to use a slightly finer low-fidelity model rather than
a coarser one so that the potential cost reduction is not lost due to a possible
algorithm failure to find a satisfactory design.

(iii) The type of misalignment between the low- and high-fidelity models should be
observed in order to properly select the type of low-fidelity model correction
while constructing the surrogate. The two methods considered here (additive
response correction and frequency scaling) can be viewed as safe choices for
most situations.

We emphasize that, for some antennas, such as some narrowband antennas or
wideband traveling wave antennas, it is possible to obtain quite a good ratio between
the simulation times of the high- and low-fidelity models (e.g., up to 50), because
even for relatively coarse mesh, the low-fidelity model may still be a good represen-
tation of the high-fidelity one. For some structures (e.g., multi-resonant antennas),
only much lower ratios (e.g., 5 to 10) may be possible, which would translate into
lower design cost savings while using the SBO techniques.

4 Conclusion

Surrogate-based techniques for simulation-driven antenna design have been dis-
cussed, and it was demonstrated that optimized designs can be found at a low com-
putational cost corresponding to a few high-fidelity EM simulations of the antenna
structure. We also discussed an important trade-off between the computational com-
plexity and accuracy of the low-fidelity EM antenna models and their effects on
the performance of the surrogate-based optimization process. Recommendations re-
garding low-fidelity model selection were also formulated. We have demonstrated
that by proper management of the models involved in the design process one can
lower the overall optimization cost without compromising the final design qual-
ity. Further progress of the considered SBO techniques can be expected with their
full automation, combination, and hybridization with adjoint sensitivities, as well as
with metaheuristic algorithms.
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