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Abstract Circuit design centering is one of the most important problems concern-
ing the optimal design of circuits. Circuit design centering seeks nominal values of
designable circuit parameters that maximize the probability of satisfying the design
specifications (yield function). Design centering can be performed geometrically by
finding the center of the feasible region (region in the designable parameter space
where the design specifications are satisfied), or by maximizing the yield function
explicitly. For all cases, the high expense of circuit simulations required obstructs
the design centering process, especially for microwave circuits. To overcome this,
computationally cheap surrogate-based models (e.g., space mapping, response sur-
faces, kriging, and neural networks) can be used for approximating the response
functions or the yield function itself. In this chapter the design centering problem
is formulated as an optimization problem, and the estimation of the yield function
through several sampling techniques is explained. The difficulties facing the design
centering process, especially for microwave circuits, are discussed, and the role of
surrogate-based models in overcoming these difficulties is demonstrated. Special
interest is devoted to space mapping surrogates and microwave circuit design cen-
tering. Some of the important surrogate-based circuit design centering approaches
are reviewed with an overview of their theoretical bases. Tutorial and practical cir-
cuit examples are given to show the effectiveness of these approaches.
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1 Introduction

In circuit design, circuits are characterized by some designable parameters x ∈ R
n

and circuit performance measures fi(x), i = 1,2, . . . ,m. Designable circuit param-
eters may be passive elements or transistor geometries. The performance measures
may be power dissipation or the circuit S-parameters. Naturally, circuit performance
measures are functions of circuit responses which are evaluated through circuit sim-
ulations. The desired performance of a circuit (the design specifications) is described
by specifying bounds on the performance measures of the circuit which is set by the
designer. These design specifications constrain the designable parameters and de-
fine a region in the designable parameter space known as the feasible region (design
region), which can be defined as:

F = {
x ∈ R

n | fi

(
R(x)

) ≤ bi, i = 1,2, . . . ,m
}
, (1)

where x ∈ R
n is the vector of the designable parameters, R : Rn → R

m is the re-
sponse vector, n is the number of designable parameters, m is the number of con-
straints, fi is the i-th performance function, and bi is the corresponding specification
bound. Every x ∈ F is considered as an acceptable circuit.

In general, the traditional circuit design trend uses optimization techniques to
find a nominal design of the circuit, i.e., to determine the nominal values of circuit
parameters which satisfy the design specifications. It is a fact that circuit param-
eters are subject to known but unavoidable statistical fluctuations inherent to the
manufacturing process used, due to environmental effects during operations, or due
to model uncertainties. This may cause the circuit performance to violate the de-
sign specifications, especially when the location of the nominal design point in the
designable parameter space is closer to the boundaries of the feasible region. To
simulate the statistical fluctuations, circuit designable parameters are assumed to be
random variables with a joint probability density function (PDF) P(x,x0), where
x0 ∈ R

n is the vector of nominal parameter values. Therefore, the probability of
satisfying the design specifications (yield function) can be defined as:

Y(x0) =
∫

F

P (x,x0) dx. (2)

The design centering problem seeks nominal values of circuit parameters which
minimize the undesirable effects of the statistical fluctuations that affect the des-
ignable circuit parameters; namely, it seeks the nominal values of circuit parameters
which maximize the yield function. Hence, the design centering or yield maximiza-
tion problem is formulated as:

max
x0

Y(x0). (3)

2 Yield Function Estimation and Sampling Techniques

It is clear that the yield integral (2) cannot be evaluated analytically, since it requires
the evaluation of an n-dimensional integral over a “non-explicitly defined” region
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[31]. Instead, it can be estimated. One of the famous methods used for estimating
the yield integral is the Monte Carlo method [41]. To verify this, we define the
acceptance index function, Ia :Rn → R, as:

Ia
(
xj

) =
{

1 if xj ∈ F,

0 if xj /∈ F,
(4)

where F is the feasible region defined by (1). Then, the yield integral (2) can be
rewritten as:

Y(x0) =
∫

Rn

Ia(x)P (x,x0) dx = E
{
Ia(x)

}
, (5)

where E{·} denotes expectation.
Hence, the yield value at a nominal parameter vector x0 can be estimated by

generating a set of sample points xj , j = 1,2, . . . ,K in the designable parameter
space using the PDF of designable parameters. The circuit is simulated for each
sample point xj , and the acceptance index function is evaluated. Hence, the yield
function at the nominal parameter vector x0 can be estimated as:

Y(x0) ≈ 1

K

K∑

j=1

Ia
(
xj

) = k

K
, (6)

where k is the number of sample points satisfying the design specifications; i.e.,
the percentage of acceptable circuits gives an estimate of the yield value at x0. The
error in estimating a yield value (the estimation variance) is given by the following
formula [34]:

V
(
Y(x0)

) ≈ Y(x0)(1 − Y(x0))

K − 1
. (7)

It is obvious that the estimation variance is inversely proportional to the number
of samples considered. Hence, the most straightforward way of improving accu-
racy and obtaining a low variance estimator is to increase the number of circuit
simulations. This can result in prohibitively large requirements for computing time.
Furthermore, there is no assurance that all regions of the parameter space will be
explored equally well. Several techniques have been proposed for improving the ac-
curacy of a Monte Carlo yield estimate without increasing the number of samples.
These methods are called variance reduction techniques [25, 34].

2.1 Variance Reduction Techniques

The main objective of variance reduction techniques is to spread the sample data
points as evenly as possible around the interior design space. The benefit is a fewer
number of runs, to achieve the same level of confidence, than the number required
by the Monte Carlo approach, because it is guaranteed that the entire probability
range will be explored.



30 A.-K.S.O. Hassan and A.S.A. Mohamed

2.1.1 Importance Sampling

Importance sampling [34] uses another sampling density function in generating the
sample points. To compensate this, the values of the acceptance index for sample
points are multiplied by weighting factors equal to the ratio between the values of
the original PDF and the sampling density function at the sample points. The proper
choice of the sampling density function can lead to a variance smaller than that of
the standard Monte Carlo yield estimator for the same sample size.

2.1.2 Stratified Monte Carlo Method

The most powerful feature of the Monte Carlo method is the fact that it is the only
feasible and reliable method in large dimensions, since the number of required sam-
ples does not depend on the number of circuit parameters. The main drawback of
the basic Monte Carlo sampling design is that the generated samples may leave
large regions of the design region unexplored, as shown in Fig. 1(a) in a 2D case.
A modified method to solve this deficiency is the stratified Monte Carlo method, in
which stratified sampling is applied [34, 36]. In the stratified Monte Carlo method,
each design parameter range is divided into subintervals (bins) of equal probabil-
ity. A sampling site is then selected within each bin. Figure 1(b) shows an example
in the 2D case with a uniform distribution of design variables (four bins for each
design variable).

2.1.3 Latin Hypercube Sampling (LHS)

Latin hypercube sampling was developed in the work of McKay et al. [40]. It pro-
vides a more accurate estimate of the function value than the Monte Carlo method.
The LHS involves dividing the design space into equiprobable subregions. Then N

samples are selected such that all subregions are sampled.
One common way to generate N samples using the LHS design is to divide each

design variable range into N nonoverlapping equiprobable intervals, each with a
probability of 1/N . Then N different values are selected for each variable at random
(one for each interval). This process divides the n-dimensional design space into Nn

cells with a probability 1/Nn each. The final N samples are obtained by selecting
random combinations from the N values of all design variables. Figure 1(c) shows
an example of LHS sampling for n = 2 design variables and N = 4 samples.

3 Circuit Design Centering

Circuit design centering is one of the most important problems concerning the op-
timal design of circuits [10, 26]. The design centering problem seeks nominal val-
ues of circuit parameters which maximize the yield function. Design centering ap-
proaches can be classified as statistical approaches and geometrical approaches. Sta-
tistical approaches optimize the yield function explicitly using statistical analysis
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Fig. 1 (a) Basic Monte Carlo sampling. (b) Stratified Monte Carlo sampling. (c) Latin hypercube
sampling for two dimensions with N = 4

techniques in a straightforward way regardless of the size of the problem or its con-
vexity [23, 31, 32, 35, 36, 49, 53, 59, 60]. As previously stated, the accuracy of the
statistical estimation does not depend on the number of parameters and performance
features, but on the size of the sample [26]. An acceptable accuracy requires a large
number of circuit simulations, in the range of thousands. Hence, the large computa-
tional effort required in addition to the uncertainty involved in the estimation process
represent an obstacle against the statistical design centering approaches. Geometri-
cal approaches, on the other hand, optimize the yield function implicitly by finding
the center of the feasible region. This may be performed by approximating the fea-
sible region using a convex body, e.g., a hyperellipsoid. Then the center of this body
is considered as the design center [1–5, 7, 9, 22, 27–30, 33, 46, 48, 57, 58]. The
geometrical approaches have fast convergence for convex and small-dimensional
problems. Hybrid methods, which combine both approaches, may be used to over-
come such problems [33].

4 Surrogate-Based Circuit Design Centering

In general, treating the feasible region during implemention of the geometrical de-
sign centering approaches requires evaluating the performance functions and per-
haps also evaluating their gradients. Consequently, many circuit simulations will be
needed during the design centering process. On the other hand, the statistical design
centering process has some permanent special difficulties. For example, the cost of
finding a yield value for a given nominal design parameter represents an obstacle
for many optimization methods. Hence, robust optimization methods that utilize the
fewest possible number of yield evaluations are required. Another difficulty is the
absence of any gradient information, as the required simulations cost in evaluating
the gradient information is prohibitive in practice [26]. Attempting to approximate
the yield gradients using the finite difference approach requires many more yield
evaluations, which highly increase the computational cost. Another objection in es-
timating the gradients by finite differencing is that the estimated yield values are
usually contaminated by some numerical noise due to estimation uncertainty. In
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these cases, for any small perturbations around a given point, the corresponding
yield values do not reflect the local behavior of the yield function itself, but rather
that of the noise [31]. Hence, gradient-based optimization methods cannot be ap-
plied here.

For all cases of design centering, the high expense of the required circuit sim-
ulations may obstruct the design centering process. One of the intelligent methods
to overcome this obstacle is to use computationally cheap surrogate-based models.
The surrogate-based models may be, for example, space mapping, response sur-
faces, kriging models, or neural networks. These surrogate-based models can be
used for approximating the response functions and the yield function itself. The
surrogate-based models are initially constructed and iteratively updated during the
design centering process.

4.1 Surrogate-Based Statistical Design Centering Using Trust
Region Optimization and Variance Reduction

A surrogate-based statistical design centering algorithm was introduced by Hassan
et al. [31] to overcome the difficulties of statistical yield optimization. The algo-
rithm neither requires nor approximates the gradients of the yield and the perfor-
mance functions. It consists of two parts: a non-derivative unconstrained optimizer
and a variance reduction estimator. The first part of the algorithm implements a
non-derivative optimization method that combines a trust region framework with
quadratic interpolating surrogates for the yield function [18, 19, 43]. The principal
operation of the method relies on building, successively updating, and optimizing a
quadratic surrogate of the yield function over trust regions. The quadratic surrogate
of the yield function reasonably reflects the local behavior of the yield function in a
trust region around a current iterate. A new point is then found by maximizing the
surrogate model over the trust region. The second part of the algorithm utilizes the
stratified Monte Carlo sampling technique [34, 36] for yield estimation during the
optimization process. With this sampling technique, a lower variance yield estima-
tor can be obtained which decreases the number of circuit simulations required to
achieve a desired accuracy level.

In the given algorithm, the computationally expensive yield function is lo-
cally approximated around a current design point xk by a computationally cheaper
quadratic surrogate model M(x), which can be placed in the form:

M(x) = c + gT (x − xk) + 1

2
(x − xk)

T B(x − xk), (8)

where c ∈ R, g ∈R
n, and the symmetric matrix B ∈ R

n×n are the unknown param-
eters of M(x). The total number of these unknowns is N = 1

2 (n + 1)(n + 2). These
parameters are determined by interpolating the yield function at N interpolation
points xi using the matching conditions:

M(xi ) = Y(xi ), i = 1,2, . . . ,N. (9)
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However, for n > 1, the existence and uniqueness of M(x) are not guaranteed
by the number of interpolation points only. Some geometric restrictions on their po-
sitions must be satisfied [20, 47]. In other words, if expression (9) is written as a
system of linear equations in the unknown parameters of M(x), then the N × N co-
efficient matrix of this system (Vandermonde matrix) should be nonsingular for the
quadratic interpolating model to be considered as a good approximation of the yield
function around xk . On the other hand, typical distances between the interpolation
points are taken to be of the magnitude of a positive scalar denoted ρ [43], which
helps to reduce the contribution from the noise to the computations.

Assume that the current design point xk in Eq. (8) is chosen to be the interpolation
point that provides the best yield value so far, i.e.,

Y(xk) ≥ Y(xi ), i = 1,2, . . . , N. (10)

The model M(s) is then maximized, in place of the yield function, over the current
trust region and a new point is produced by solving the trust region subproblem:

max
s∈Rn

M(s) s.t. ‖s‖ ≤ Δ, (11)

where s = x − xk , Δ ≥ ρ is the current trust region radius, and ‖ · ‖ throughout is
the l2-norm. This problem can be solved by the method of Moré and Sorensen [42].
Let s∗ denote the solution of (11), and then a new point xn = xk + s∗ is obtained.
The ratio between the actual yield increase and the model increase obtained at this
point is given by:

r = Y(xn) − Y(xk)

M(xn) − M(xk)
. (12)

This ratio reflects how much the surrogate model agrees with the yield function
within the trust region. If there is good agreement, i.e., r ≥ 0.7, the trust region
radius Δ is enlarged. However, if the agreement is poor, r < 0.1, then Δ is reduced.
For moderate r , i.e., 0.1 ≤ r < 0.7, Δ is considered suitable.

The newly obtained information represented in the pair (xn,Y (xn)) is exploited in
modifying and improving the quadratic model, if possible. For Y(xn) > Y(xk), one
of the current interpolation points will be dropped and xn will be included instead.
In this situation, xn enters the interpolation point set and a new iteration will then
begin by maximizing the improved model over the new trust region. When the point
xn fails to increase the yield or modify the model, a procedure aims at checking
and (possibly) improving the validity of the model around the current point xk . This
procedure eliminates the worst interpolation point, xj say, and searches for a new
replacing point x̂j in the neighborhood ‖x − xk‖ ≤ ρ [43]. The calculations will
continue with the current value of ρ if and only if ‖s∗‖ > ρ, where s∗ is the solution
of (11). Otherwise, no more iteration is required for the current value of ρ, since
the model is considered valid but it seems that steps of length ρ fail to increase the
yield. Hence, ρ is reduced, or termination occurs if either ρ reaches a final value or
a prescribed yield increase is achieved.



34 A.-K.S.O. Hassan and A.S.A. Mohamed

Fig. 2 A folded cascode operational amplifier [6]

Table 1 Performance specifications for the folded cascode operational amplifier [31]

Performance measure Specification Initial
value

Final value
(indep. par)

Final value
(correlated parameters)

Slew rate ≥10 V/μs 61 18.07 23.215

Power dissipation ≤10 mW 3.4 0.619 1.0125

Gain bandwidth product ≥10 MHz 49.3 25.6 26.7

Maximum output voltage ≥2 V 1.84 2.177 2.07

Minimum output voltage ≤ − 2 V −1.98 −2.216 −2.157

Maximum input CM voltage ≥2.5 V 2.87 3.028 2.98

Minimum input CM voltage ≤ − 1.3 V −1.28 −1.52 −1.4

Differential voltage gain ≥5,000 4,009 14,266 10,353

Area of designable transistors ≤300 (μm)2 176 245 260

Minimum channel length ≥0.8 μm 0.8 1.1 0.966

Minimum channel width ≥10 μm 30 21.3 15.05

4.2 Folded Cascode Operational Amplifier Design Centering

The optimal design of a folded cascode operational amplifier [6] is performed us-
ing the given algorithm. The amplifier is shown in Fig. 2. This is a 12D problem
in which the designable parameters are the widths and lengths of transistors M1,
M3, M4, M6, and M8 (in micrometers), together with the load capacitor CL (in
picofarads) and the biasing voltage Vbias (in volts). There are 11 performance mea-
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sures of interest given in Table 1. In this table, the area is defined as the sum of
the product of the widths and lengths of all the designable transistors. Table 1
also shows the specification bounds of the performance measures, and their val-
ues at the initial and final design parameters. The parameter variance vector is
assumed to be [0.125 0.125 0.125 0.125 0.125 0.5 0.5 0.5 0.5 0.5 0.15 0.125]T
and the maximum cross-correlation coefficient is 0.8. The algorithm starts from
a bad initial design [0.8 0.8 0.8 0.8 0.8 30.0 30.0 70.0 60.0 30.0 3.0 −1.5]T
at which the yield is 0.2 %. The algorithm reaches a final design for indepen-
dent parameters [1.23 1.19 1.09 1.25 1.14 29.22 25.59 69.12 59.75 5.47 1.83
−1.632]T at which the yield is 92.6 % by using 246 yield evaluations. For
the case of correlated parameters, the algorithm reaches the final design center
[1.19 1.57 1.16 1.04 1.2 30.59 23.77 70.37 65.85 30.19 2.33 −2.06]T at which
the yield is 93 % by using 259 yield evaluations. A comparison between the strati-
fied sampling and the Monte Carlo method showed that the standard deviation of the
stratified sampling yield estimator by using 1,000 samples is almost upper bounded
by that of the Monte Carlo estimator by using 1,800 samples, which saves about
44 % of the circuit simulations [31].

The effectiveness of the given algorithm is tested by applying another optimizer
for yield maximization. The optimizer uses the Nelder and Mead simplex method
with quadratic response surface [24]. After an upper bound of 1,000 yield evalua-
tions, yields of only 12.9 % for independent parameters and 23.5 % for the corre-
lated parameters are obtained.

5 Surrogate-Based Microwave Circuit Design Centering

Design centering of nonlinear microwave circuits is a great challenge [12]. The
computational overhead is one of the main difficulties in the design centering pro-
cess of these circuits, as many full-wave electromagnetic (EM) simulations would
be required. For both statistical and geometrical design centering approaches, the
high cost of expensive EM circuit simulations required obstructs the design center-
ing process. To overcome this, computationally cheap surrogate-based models can
be used for approximating the response functions and the yield function itself.

The problem of high computational cost required for microwave design center-
ing has been solved successfully by using space mapping interpolating surrogates
(SMISs) [5, 32]. Space mapping (SM) techniques employ computationally fast,
coarse models to greatly reduce the evaluation cost of the computationally expensive
full-wave EM fine models [8, 13–15, 17, 37]. The SMIS technique aims to calibrate
a space-mapped surrogate, via input and output mappings, to match the fine model
with high accuracy.

As previously given, the desired performance of a microwave circuit is described
by some performance specifications which define the feasible region in the des-
ignable parameter space:

F = {
x ∈R

n | fi

(
Rf (x)

) ≤ bi, i = 1,2, . . . ,m
}
, (13)
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where x ∈ R
n is the vector of the designable parameters, Rf : R

n → R
m is the

fine model response vector, n is the number of design parameters, m is the num-
ber of constraints, fi is the i-th performance function, and bi is the corresponding
specification bound. However, working with (13) involves a lot of computationally
expensive fine model evaluations. Instead, SMISs can be employed, and the feasible
region is approximated by:

Fs = {
x ∈ R

n | fi

(
Rs(x)

) ≤ bi, i = 1,2, . . . ,m
}
, (14)

where Fs is the SM feasible region approximation, and Rs : Rn → R
m is the SMIS

response vector. Two matching conditions have to be satisfied:

Rs(x) = Rf (x), (15)

Js(x) = Jf (x), (16)

where Js and Jf are the Jacobian matrices of the surrogate and fine model, re-
spectively. These matrices contain the first-order partial derivatives of the response
vector with respect to designable parameters.

5.1 Generalized Space Mapping (GSM) Surrogate Model

The GSM surrogate model is constructed, using a computationally fast coarse model
with input and output mappings, in the form [37]:

Ri
s(x) = Ai .Rc

(
Bi .x + ci

) + di + Ei
(
x − xi

0

)
, (17)

where xi
0 is the current nominal parameter vector, Ai ∈ Mm×m is a diagonal matrix,

Rc : Xc → R
m is the coarse model response vector, Bi ∈ Mn×n, ci ∈ Mn×1, and

di ∈ Mm×1 is given:

di = Rf

(
xi

0

) − Ai · Rc

(
Bi .xi

0 + ci
)
, (18)

where Rf : Xf →R
m is the fine model response vector, and Ei ∈ Mm×n is

Ei = Jf

(
xi

0

) − Ai · Jc

(
Bi .xi

0 + ci
)
.Bi , (19)

where Jf : Xf → R
m×n and Jc : Xc → R

m×n are the Jacobian matrices of the fine
and coarse model responses with respect to the corresponding points, respectively.
The mapping parameters Ai ,Bi , ci are obtained by the parameter extraction (PE)
optimization process given by:

(
Ai ,Bi , ci

) = arg min
A,B,c

ei (A,B, c), (20)

where ei represents the response deviation residual of the surrogate from the fine
model and is given by:
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ei (A,B, c) =
i∑

k=0

wk

∥∥Rf

(
xk

) − A · Rc

(
B.xk + c

)∥∥

+
i∑

k=0

vk

∥∥Jf

(
xk

) − A · Jc

(
B.xk + c

)
.B

∥∥, (21)

where the coefficients wk and vk are chosen according to the nature of the design
problem.

5.2 The Ellipsoidal Technique for Design Centering of Microwave
Circuits

In this work, a SM technique is integrated with an ellipsoidal technique to obtain a
surrogate-based geometrical design centering method of microwave circuits with a
small number of EM simulations [5]. The ellipsoidal technique [2, 3] approximates
the feasible region with a hyperellipsoid which is the final hyperellipsoid of a gen-
erated sequence of decreasing volume of different shape and center hyperellipsoids.
The center of this final hyperellipsoid is considered as a design center. The gen-
eration of the sequence of hyperellipsoids requires successive linearization of the
feasible region boundaries at selected boundary points. This requires evaluating the
performance functions and their gradients. Consequently, many expensive circuit
simulations will be needed, especially for microwave circuits.

In this design centering method, an SMIS [14] is initially constructed and then
updated through SM iterations. In each SM iteration, a current SMIS model and the
corresponding SM feasible region approximation (14) are available. The ellipsoidal
technique is implemented with the current feasible region approximation to obtain
a new design centering point. This new center is validated by the fine model and
is used to update the current SMIS model. Enhanced improvement is achieved by
satisfying (15) at all preceding design centering points (global matching). The ellip-
soidal technique is then restarted with the updated SMIS to get the next center. The
process is repeated until a final design center is obtained.

5.2.1 The Ellipsoidal Technique

Assume that xk
0 is the design center obtained in the (k − 1)-th SM iteration. In the

k-th iteration, the feasible region approximation is Fk
s = {x ∈ R

n | fi(Rk
s (x)) ≤

bi, i = 1,2, . . . ,m}. The ellipsoidal technique starts with a sufficiently large hyper-
ellipsoid containing the feasible region approximation with an initial center t0 = xk

0.
An iteration of the ellipsoidal technique assumes that the current hyperellipsoid is
Ej = {(x−tj )T Q−1

j
(x−tj ) ≤ 1} with center tj and hyperellipsoid matrix Qj which

is symmetric and positive definite. A hyperplane aT x = b is then constructed by lin-
earizing the feasible region boundary at a selected boundary point. This hyperplane
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divides the current hyperellipsoid into two parts. The first is completely infeasible,
while the second contains the feasible region approximation. The new generated
hyperellipsoid Ej+1(t j+1,Q j+1) is the minimum volume hyperellipsoid enclos-
ing the second part with center and matrix given by:

tj+1 = tj − η
(Qj a)

√
aT Qj a

, Qj+1 = β

(
Qj − γ

(Qj a)(Qj a)T

aT Qj a

)
, (22)

where

η = (1 + nδ)/(n + 1), β = n2
(
1 − δ2

)
/
(
n2 − 1

)
,

γ = 2η/(1 + δ) and δ = (
aT tj − b

)
/

√
aT Qj a.

(23)

The volumes of Ej+1 and Ej satisfy the ratio [2]:

ρ = ρ0
(
1 − δ2) (n−1)

2 (1 − δ), ρ0 = (nn)

((n + 1)
(n+1)

2 (n − 1)
(n−1)

2 )
. (24)

The hyperellipsoid volume ratio ρ is a monotonically decreasing function in δ.
Thus, different strategies are used to locate the best boundary points, which are ac-
companied by maximum values of δ. This results in the greatest reduction in the vol-
ume of the generated hyperellipsoids and consequently increases the convergence of
the ellipsoidal technique [3].

The iterations of the ellipsoidal technique continue until no significant reduction
in the hyperellipsoid volume can be achieved. The center of the final hyperellipsoid,
denoted by tfinal, considers the next design center xk+1

0 and is fed into the next SM
iteration [5].

Note that the Broyden formula [16] offers a fast way to approximate the gra-
dients required in linearization. However, for some models, exact gradients can be
evaluated by the adjoint sensitivity technique [11, 50].

5.2.2 Design Centering of Coupled-Line Bandpass Filter

The optimal design of a coupled-line bandpass filter [52], shown in Fig. 3, is deter-
mined. The design constraint functions are given by:

fi

(
Rf (x)

) =

⎧
⎪⎪⎨

⎪⎪⎩

Rf,i(x) + 20, 5 GHz < ωi < 7.25 GHz

−3 − Rf,i(x), 7.75 GHz < ωi < 8.25 GHz

Rf,i(x) + 20, 8.75 GHz < ωi < 11 GHz

where Rf,i(x) = |S21| (dB) at frequency ωi . The substrate thickness is taken as
1.272 mm and εr = 10. The design parameters are [x1 x2 x3 x4 x5 x6 ]T in millime-
ters, as shown in Fig. 3. The simulation of this example is performed using an in-
house planar solver based on the method of moments [51]. The fine model is meshed
with 3 width and 15 length segments of the microstrip lines, while the coarse model
is meshed with 1 width and 5 length segments.
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Fig. 3 Coupled-line bandpass filter [52]

Table 2 Yield results for the coupled line bandpass filter assuming independent parameters [5]

Parameter spreads σ Initial yield Yield at minimax solution Final yield

σi = 2 %a 2 % 5 % 14 %

σi = 1 %a 0 % 20 % 34 %

σi = 0.5 %a 0 % 37 % 55 %

σi = 0.1019b 0 % 6 % 17 %

σi = 0.034b 0 % 45 % 75 %

aParameter spreads are relative to the nominal values at the final solution
bAbsolute parameter spreads in millimeters

Table 3 Yield results for the
coupled-line bandpass filter
assuming correlated
parameters [5]

Covariance
matrix

Initial yield Yield at minimax
solution

Final yield

Cov1 0 % 10 % 27 %

Cov2 0 % 57 % 93 %

The constraint functions are evaluated at all frequency points ωi = 5, 5.75, 6.5,
7.25, 7.75, 8, 8.25, 8.75, 9.5, 10.25, 11 GHz. The initial surrogate is taken as the
coarse model giving [5.682 13.991 6.835 0.522 1.051 1.511]T as the initial fine
model design. The final design center [5.298 12.960 6.052 0.416 2.122 1.099]T is
reached after six SM iterations. The initial and the final yield values are evaluated
via the Monte Carlo method with 100 sample points assuming normally distributed
parameters. The results assuming independent parameters are shown in Table 2.

The results for the correlated parameters are shown in Table 3. A much higher
yield is achieved with the obtained design center in comparison with the minimax
center [4.779 13.664 6.835 0.637 1.024 0.808]T . In Table 3, Cov1 and, Cov2 are fi-
nal hyperellipsoid matrices scaled to give hyperellipsoids of the same volume as the
hyperellipsoids with independent parameter spreads σi = 0.1019 and σi = 0.034.
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5.3 Design Centering of Microwave Circuits via Trust Region
Optimization and Space Mapping Surrogates

This approach of design centering is a statistical one and treats two types of surro-
gates [32]. It employs the GSM surrogate (17), to minimize the required expensive
EM simulations, in addition to the quadratic surrogate model (8) to approximate
the computationally expensive yield function. The approach integrates three strate-
gies to overcome the statistical microwave design centering difficulties. First, Latin
hypercube sampling (LHS) is used in the sampling process. Second, a derivative-
free trust region method is utilized in the yield optimization process. In the given
approach, the NEWUOA algorithm developed by Powell is used [44, 45, 61]. The
NEWUOA algorithm employs quadratic surrogate models to approximate the ex-
pensive yield function. Third, the GSM technique [37] is employed to reduce the
simulation computational effort. Thus, the NEWUOA algorithm is combined with
the GSM technique and the LHS technique to obtain a method for statistical mi-
crowave circuit design centering.

Starting from an initial point, the GSM surrogate model is initially constructed,
and then updated through SM iterations. In each SM iteration, a current SMIS
model and the corresponding SM feasible region approximation are available. The
NEWUOA algorithm is applied to optimize the yield function and get a better center
point. The yield values are estimated using the current feasible region approxima-
tion. The new center point is validated by the fine model and is used to update the
current SMIS using the matching conditions. Then, the NEWUOA algorithm starts
again with the updated surrogate to obtain the next center point.

5.3.1 NEWUOA Algorithm

In the NEWUOA algorithm, the computationally expensive yield function is locally
approximated around a current iterate utilizing the quadratic surrogate model M(x)

in (8) by interpolating the yield function at m = 2n + 1 points. The total number
of unknown parameters in the surrogate quadratic model is N = ½(n + 1)(n + 2).
The freedom in M(x) is taken up by minimizing the Frobenius norm of the change
in the Hessian matrix B during the optimization process, i.e., ‖Bnew − Bold‖F [44].
The estimated yield function values are submitted to the optimizer by a subroutine
that employs the LHS technique, and the generated samples are tested against the
current feasible region approximation.

The quadratic model in (8) is then maximized, instead of the yield function, over
a current trust region (TR) by solving the TR subproblem (11). The TR radius is re-
vised according to the agreement between the quadratic model and the yield function
at the new point. The TR radius Δ has a lower bound ρ in the interval [ρfin, ρini].
This parameter ρ is utilized to maintain enough distances between the interpolation
points where ρini and ρfin are user-defined initial and final radii, respectively. Let
Δold and Δnew be the old and new values of Δ. The choice of Δnew depends on
the ratio between the actual yield increase and the model increase as in (12), and
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Fig. 4 Seven-section capacitively loaded impedance transformer: (a) fine model, (b) coarse model

the Euclidean length of the step s obtained when solving (11). NEWUOA sets Δnew
to ρ or to Δint when Δint < 1.5ρ or Δint > 1.5ρ, respectively, where Δint is the
intermediate value [45]:

Δint =

⎧
⎪⎪⎨

⎪⎪⎩

‖s‖, r ≤ 0.1

max{‖s‖, 0.5 Δold}, 0.1 < r ≤ 0.7

max{‖s‖,Δold}, r > 0.7

(25)

The algorithm is terminated when the TR radius reaches the lower bound ρfin that
fixes the final accuracy required in the parameters [44, 45]. Numerically, NEWUOA
shows good results and acceptable accuracy in problems with dimensions up to 320
variables [45].

5.3.2 Design Centering of Seven-Section Transmission Line Capacitively
Loaded Impedance Transformer

The seven-section transmission line (TL) capacitively loaded impedance trans-
former is described in [8]. The coarse model is considered as an ideal seven-
section TL, where the “fine” model is a capacitively loaded TL with capaci-
tors C1 = · · · = C8 = 0.025 pF (see Fig. 4). The design parameters are x =
[L1 L2 L3 L4 L5 L6 L7]T , which are the normalized lengths with respect to the
quarter-wavelength Lq at the center frequency 4.35 GHz. The design specifications
are:

fi

(
Rf (x)

) = ∣∣S11(x,ωi)
∣∣ ≤ 0.07, 1 GHz ≤ ωi ≤ 7.7 GHz

with 68 points per frequency sweep.
An initial infeasible point [0.892 0.993 0.989 0.981 0.996 0.99 0.891]T is con-

sidered. The yield values are estimated via the LHS method with 200 sample
points assuming normally distributed parameters with covariance matrices G/49 and
G/441, where [0.193 0.194 0.145 0.046 0.155 0.239 0.38]T is a parameter variance
vector of the covariance matrix G with maximum cross-correlation coefficient 0.15.
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Table 4 Results of the
seven-section TL transformer
with normally distributed
correlated parameters

Covariance
matrix

Initial yield Final yield

Surrogate Fine Surrogate Fine

G/49 2.5 % 3.0 % 30.0 % 27.5 %

G/441 0.2 % 0.2 % 99.2 % 100 %

The technique needed three SM iterations to obtain the results shown in Table 4.
The yield results at the initial and final designs are shown in Fig. 5.

5.4 Microwave Design Centering via Semidefinite Programming
and Space Mapping Surrogates

The method has a statistical-geometrical nature [33]. It exploits semidefinite pro-
gramming [21, 54–56] and GSM surrogates [37] to approximate the feasible region
with two bounding ellipsoids. The centers of these ellipsoids are used as design
centers. The bounding ellipsoids are obtained using a two-phase algorithm. In the
first phase, the minimum volume ellipsoid enclosing the feasible region is obtained,
while the largest ellipsoid that can be inscribed within the feasible region is obtained
in the second phase.

5.4.1 Phase (I): Minimum Volume Ellipsoid Enclosing the Feasible Region

The first phase of the method starts with an initial point and an initial GSM surro-
gate model. This surrogate model is iteratively updated through SM iterations. In
each SM iteration a current feasible region approximation is available and a conver-
gent sequence of increasing-volume Löwner–John ellipsoids is generated [21]. The

Fig. 5 Yield evaluated at the initial and final design parameter vectors with 100 sample points
with covariance matrix G/441 for the seven-section capacitively loaded impedance transformer
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generated ellipsoids enclose tightly selected sets of feasible points out of generated
sample points. The generated sequence of Löwner–John ellipsoids converges to the
minimum volume ellipsoid enclosing the current feasible region approximation, and
its center is considered as a design center point. This new point is used to update
the current GSM surrogate model using matching conditions. Consequently, a new
updated feasible region approximation is constructed, and the process is repeated
until the minimum volume ellipsoid is obtained.

Assume that xk
0 is the design center obtained in the (k − 1)-th SM iteration.

In the k-th iteration, the current feasible region approximation is Fk
s = {x ∈ R

n |
fi(Rk

s (x)) ≤ bi, i = 1,2, . . . ,m}. In the k-th SM iteration, the initial point qinit = xk
0

and an initial covariance matrix Binit are used to generate an LHS normally dis-
tributed sample set S(0). Circuit simulation is executed on the sample set S(0) in
order to determine the feasible points and find the feasible set S(0)

f = S(0) ∩ Fk
s .

Then, the minimum volume ellipsoid E (0)
Min(q

(0)
min,B(0)

min) enclosing the feasible set

S(0)
f (Löwner–John ellipsoid) is constructed as follows.

Let S(0)
f = {z1, z2, . . . , zp} ⊂ R

n. Define the ellipsoid,

E(q,B) = {
z ∈ R

n : (z − q)T B−1(z − q) ≤ 1
}
, (26)

where q ∈ R
n is the center of the ellipsoid, and B ∈ SRn,B � 0 (symmetric and

positive definite). Assume that B = QQT , where Q is nonsingular. Without loss of
generality, it can be assumed that Q ∈ SRn,Q � 0 [28].

Hence, the minimum volume ellipsoid E (0)
Min(q

(0)
min,B(0)

min) enclosing the set S
(0)
f

can be obtained by solving the following determinant maximization problem [54–
56]:

max log det A0

subject to

(
In A0zj + b0

(A0zj + b0)
T 1

)
� 0, j = 1,2, . . . , p,

A0 = AT
0 , A0 � 0,

(27)

where In is the n-dimensional identity matrix, A0 = Q(0)−1
min ,b0 = − Q(0)−1

min q(0)
min,

This problem can be solved using semidefinite programming techniques [21, 54].
Clearly, obtaining the optimization variables b0 and A0 characterizes the Löwner–
John ellipsoid E (0)

Min(q
(0)
min,B(0)

min). The most distant feasible samples of S
(0)
f , which

carry the dominant information about the ellipsoid E (0)
Min, are drawn into a new set

Sshell,

Sshell = {
z ∈ S

(0)
f : r2

shell ≤ (
z − q(0)

min

)T B(0)−1
min

(
z − q(0)

min

) ≤ 1
}
, (28)

where 0 ≤ rshell ≤ 0.98.
Using q(0)

min and B(0)
min, a generation of LHS normally distributed sample set S(1)

is performed. All the new samples of S(1) falling inside the current Löwner–John



44 A.-K.S.O. Hassan and A.S.A. Mohamed

Fig. 6 Block diagram for SM iteration of phase (I) [33]

ellipsoid E (0)
Min(q

(0)
min,B(0)

min), or a reduced version of it, are deleted, and a reduced
sample set Sreduced is constructed for 0.9 ≤ rdiscard ≤ 1 as:

Sreduced = {
z ∈ S(1) : (z − q(0)

min

)T B(0)−1
min

(
z − q(0)

min

) ≥ r2
discard

}
. (29)

Circuit simulation is performed on the reduced sample set Sreduced, giving a fea-
sible set Sf = Sreduced ∩ Fk

s . The stored feasible samples in the set Sshell (28) are
retrieved and added to the new feasible points of Sf , giving the first iteration’s fea-

sible set S
(1)
f = Sf ∪ Sshell. Then, a new Löwner–John ellipsoid E (1)

Min(q
(1)
min,B(1)

min)

can be constructed using the feasible set S
(1)
f . Since the feasible set S

(1)
f carries in-

formation about the last Löwner–John ellipsoid, an increased volume ellipsoid is
attained, and the convergence of the method is guaranteed. Note that the reduced
sample set Sreduced saves about 50–60 % of the required circuit simulations if the set
S(1) was considered completely [33].

By repeating this process, a sequence of increasing-volume Löwner–John ellip-
soids is generated to enclose the current feasible region approximation Fk

s . A suit-
able stopping criterion is chosen such that the minimum volume ellipsoid EMinVE
enclosing Fk

s is reached. The center of this ellipsoid is used to update the current
GSM surrogate model using matching conditions. Consequently, a new updated fea-
sible region approximation is constructed, and the process is repeated until the min-
imum volume ellipsoid EMinVE enclosing the feasible region is obtained; its center
is considered as a design center. Figure 6 shows an SM iteration of phase (I).

5.4.2 Phase (II): Maximum Volume Inscribed Ellipsoid

The second phase of the method treats the final SM feasible region approximation
obtained in phase (I). It begins by constructing an initial polytope P0 containing
the minimum volume ellipsoid EMinVE. The initial polytope hyperplanes are cho-
sen perpendicular to the ellipsoid axes, and passing through their end points. The
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initial maximum volume ellipsoid E (0)
Max(q

(0)
max,B(0)

max) inscribed in the polytope P0 is
the minimum volume ellipsoid EMinVE containing the feasible region. An updated
polytope P1 is constructed by adding new hyperplanes obtained by linearizing the
feasible region boundaries at selected boundary points. These points are obtained
by searching along orthogonal directions, e.g., the parameter directions and/or the
current ellipsoid axes, starting from the current ellipsoid’s center.

An ellipsoid in R
n can be defined as [28]:

E(q,Q) = {
x ∈ R

n : x = q + Qs and ‖s‖ ≤ 1
}

(30)

where q ∈R
n is the center, Q ∈ SRn. Assume that the polytope P1 is given by:

P1 = {
x ∈ R

n : Ax ≤ b
}
, (31)

where A ∈ R
m×n, m > n, b ∈ R

m. Then, E (1)
Max(q

(1)
max,Q(1)

max) inscribed within this
polytope can be obtained by solving the following problem:

max log det Q(1)
max

S.t.

(
(bj − AT

j q(1)
max)In Q(1)

maxAj

AT
j Q(1)

max (bj − AT
j q(1)

max)

)

� 0, j = 1,2, . . . ,m,

Q(1)
max = Q(1)T

max , Q(1)
max � 0,

(32)

where AT
j is the j -th row of A, and bj is the j -th element of b.

Proceeding with the last problem similarly to problem (27), both the ellipsoid
center q(1)

max and the ellipsoid matrix B(1)
max = Q(1)

maxQ(1)T
max can be obtained; hence the

ellipsoid E (1)
Max(q

(1)
max,B(1)

max) is obtained.
The previously stated two steps: polytope updating and maximum volume in-

scribed ellipsoid forming, are repeated until a suitable stopping criterion occurs.
Hence, a polytope approximation for the feasible region, attached with the maxi-
mum volume ellipsoid EMaxVE inscribed within this polytope, is obtained. Conse-
quently, the maximum volume inscribed ellipsoid in the feasible region is obtained.

5.4.3 Design Centering of Six-Section H-Plane Waveguide Filter

The given method is applied for design centering of a six-section H-plane waveg-
uide filter [39]. A waveguide with a width of 3.485 cm is used. The propagation
mode is TE10 with a cutoff frequency of 4.3 GHz. The six-waveguide sections are
separated by seven H-plane septa (as shown in Fig. 7) which have a finite thickness
of 0.6223 mm. The design parameters x are the three waveguide section lengths L1,
L2, and L3 and the septa widths W1, W2, W3, and W4. The feasible region is con-
strained by the magnitude of the reflection coefficients |S11| at 44 frequency points
{5.2,5.3, . . . ,9.5 GHz} as:

fi

(
Rf (x)

) =

⎧
⎪⎪⎨

⎪⎪⎩

|S11(x,ωi)| ≥ 0.85, ωi ≤ 5.2 GHz

|S11(x,ωi)| ≤ 0.16, 5.4 GHz ≤ ωi ≤ 9.0 GHz

|S11(x,ωi)| ≥ 0.5, ωi ≥ 9.5 GHz
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Fig. 7 The six-section H-plane waveguide filter

Table 5 Yield results for correlated parameter case

Covariance
matrix

Initial
yield

Final yield

Actual region MinVE Approx. MaxVE Approx.

qMinVE qMaxVE qMinVE qMaxVE qMinVE qMaxVE

BMinVE/49 0 % 93 % 94 % 100 % 100 % 54 % 58 %

BMaxVE/16 0 % 100 % 100 % 100 % 100 % 92 % 96 %

Table 6 Yield results for independent parameter case

Parameter
spreads Initial

yield

Final yield

Actual region MinVE Approx. MaxVE Approx.

qMinVE qMaxVE qMinVE qMaxVE qMinVE qMaxVE

σ a 0 % 71 % 68 % 99 % 99 % 32 % 35 %

σ/2 0 % 99 % 97 % 100 % 100 % 87 % 93 %

aσ = 10−4[0.762889 0.766507 0.797684 0.632623 0.584962 0.558823 0.551575]T

An empirical coarse model due to Marcuvitz [38], with lumped inductances and
dispersive transmission line sections, is utilized. The simulation of the fine model
is performed using High Frequency Structure Simulator (HFSS), starting with the
point x0 = 10−4[160 160 165 135 120 115 115]T mm with Bini = 10−4 × I7. Two
SM iterations are needed to obtain the following two design centers:

qMinVE = 10−4[159.703 161.876 165.426 134.022 122.086 116.969 115.662]T ,

qMaxVE = 10−4[159.099 161.617 165.495 134.243 121.954 117.122 115.561]T
The yield values are evaluated at qinit, qMinVE and qMaxVE via the Monte Carlo

method using 100 normally distributed samples for each yield evaluation. Tables 5
and 6 show the results for the correlated and independent cases, respectively.
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