
Engineering Optimization and Industrial
Applications

Xin-She Yang

Abstract Design optimization is important in engineering and industrial appli-
cations. It is usually very challenging to find optimum designs, which require
both efficient optimization algorithms and high-quality simulators that are often
time-consuming. To some extent, an optimization process is equivalent to a self-
organizing system, and the organized states are the optima that are to be searched
for. In this chapter, we discuss both optimization and self-organization in a unified
framework, and we use three metaheuristic algorithms, the firefly algorithm, the bat
algorithm and cuckoo search, as examples to see how this self-organized process
works. We then present a set of nine design problems in engineering and industry.
We also discuss the challenging issues that need to be addressed in the near future.

Keywords Bat algorithm · Cuckoo search · Firefly algorithm · Optimization ·
Metaheuristic · Self-organizaion

1 Introduction

Optimization is ubiquitous in many applications in engineering and industry. In
essence, optimization is a process of searching for the optimal solutions to a par-
ticular problem of interest, and this search process can be carried out using multiple
agents which essentially form a system of evolving agents. This system can evolve
by iterations according to a set of rules or mathematical equations. Consequently,
such systems will show some emergent characteristics, leading to self-organizing
states which correspond to some optima in the search space. Once the self-organized
states are reached, we say the system has converged. Therefore, the design of an
efficient optimization algorithm is equivalent to mimicking the evolution of a self-
organizing system.

In almost all applications in engineering and industry, we are always trying to
optimize something—whether to minimize the cost and energy consumption, or to

X.-S. Yang (B)
School of Science and Technology, Middlesex University, London NW4 4BT, UK
e-mail: X.Yang@mdx.ac.uk

S. Koziel, L. Leifsson (eds.), Surrogate-Based Modeling and Optimization,
DOI 10.1007/978-1-4614-7551-4_16,
© Springer Science+Business Media New York 2013

393

mailto:X.Yang@mdx.ac.uk
http://dx.doi.org/10.1007/978-1-4614-7551-4_16

394 X.-S. Yang

maximize the profit, output, performance and efficiency. In reality, resources, time
and money are always limited; consequently, optimization is far more important in
practice [2, 13, 30, 32, 36, 39, 41].

It is worth pointing out that computational efforts are a main issue in many op-
timization problems in engineering and industry, because the most time-consuming
part of the optimization process is the evaluations of objective functions [17, 39].
The use of the most efficient algorithms is just one way of tackling the prob-
lem, while an alternative is to use surrogate-based models which can often be
more efficient if the number of evaluating high-fidelity models is significantly re-
duced [18–20]. Such surrogate-based optimization using a combination of low-
fidelity and high-fidelity models can be a powerful tool for many real-world ap-
plications. This book contains many examples of surrogate-based modelling and
optimization. In this chapter, our focus is mainly on the introduction of some widely
used new algorithms and a well-chosen set of design benchmarks.

2 Optimization Algorithms and Self-organization

2.1 Self-organizing Systems

Self-organization exists in many systems, from physical and chemical to biologi-
cal and artificial systems. Emergent phenomena such as Rayleigh–Bénard convec-
tion, Turing pattern formation [26] and organisms and thunderstorms [15] can all
be called self-organizing. Though there is no universal theory for self-organizing
processes, some aspects of self-organization can be partly understood using theo-
ries based on nonlinear dynamical systems, far-from-equilibrium [23] multiple in-
teracting agents, and closed systems under unchanging laws [3]. As pointed out by
cyberneticist and mathematician Ross Ashby, every isolated determinate dynamic
system, obeying unchanging laws, will ultimately develop some sort of ‘organisms’
that are adapted to their ‘environments’ [3].

For simple systems, going to equilibrium is trivial, but, for a complex system, if
its size is so large that its equilibrium states are just a fraction of the vast number
of possible states, and if the system is allowed to evolve long enough, some self-
organized structures may emerge. Changes in environment can apply pressure on
the system to re-organize and adapt to such changes. If the systems have sufficient
perturbations or noise, often working at the edge of the chaos, some spontaneous
formation of structures will emerge as the systems move, far from equilibrium, and
select some states, thus reducing the uncertainty or entropy.

The state set S of a complex system such as a machine may change from initial
states S(ψ) to other states S(φ), subject to the change of a parameter set α(t) which
can be time-dependent. That is,

S(ψ)
α(t)−→ S(φ), (1)

where α(t) must come from external conditions such as the heat flow in Rayleigh–
Bénard convection, not from the states S themselves. Obviously, S + α(t) can be

Engineering Optimization and Industrial Applications 395

considered as a larger, closed system [3]. In this sense, self-organization is equiva-
lent to a mapping from some high-entropy states to low-entropy states.

An optimization algorithm can be viewed as a complex, dynamical system. If
we can consider the convergence process as a self-organizing process, then there
are strong similarities and links between self-organizing systems and optimization
algorithms.

2.2 Algorithms for Self-organization

Mathematically speaking, an algorithm is a procedure to generate outputs for given
inputs. From the optimization point of view, an optimization algorithm generates
a new solution xt+1 to a given problem from a known solution xt at iteration or
time t . That is

xt+1 = A
(
xt ,p(t)

)
, (2)

where A is a nonlinear mapping from a given solution, or d-dimensional vector,
xt to a new solution vector x t+1. The algorithm A has k algorithm-dependent pa-
rameters p(t) = (p1, . . . , pk) which can be time-dependent and can thus be tuned if
necessary.

To find the optimal solution x∗ to a given optimization problem S with an of-
ten infinite number of states is to select some desired states φ from all states ψ ,
according to some predefined criterion D. We have

S(ψ)
A(t)−→ S

(
φ(x∗)

)
, (3)

where the final converged state φ corresponds to an optimal solution x∗ to the prob-
lem of interest. The selection of the system states in the design space is carried out
by running the optimization algorithm A. The behaviour of the algorithm is con-
trolled by p, the initial solution x t=0 and the stopping criterion D. We can view the
combined S + A(t) as a complex system with a self-organizing capability.

The change of states or solutions of the problem of interest is controlled by the
algorithm A. In many classical algorithms such as hill-climbing, gradient informa-
tion is often used to select states, say, the minimum value of the landscape, and the
stopping criterion can be a given tolerance or accuracy, or zero gradient etc. Alter-
natively, an algorithm can act like a tool to tune a complex system. If an algorithm
does not use any state information of the problem, then it is more likely to be ver-
satile to deal with many types of problems. However, such black-box approaches
can also imply that the algorithm may not be as efficient as it could be for a given
type of problem. For example, if the optimization problem is convex, algorithms
that use such convexity information will be more efficient than those that do not use
such information. In order to select states/solutions efficiently, the information from
the search process should be used to enhance the search process. In many cases,
such information is often fed into the selection mechanism of an algorithm. By far

396 X.-S. Yang

the most widely used selection mechanism is to identify and keep the best solution
found so far. That is, some form of ‘survival of the fittest’ is used.

Optimization algorithms can be very diverse. There are dozens of widely used
algorithms. The main characteristics of different algorithms will only depend on the
actual, often highly nonlinear or implicit, forms of A(t) and their parameters p(t).

In many situations concerning optimization, the generation and verification of the
new solutions can often involve computationally expensive computer simulations or
even measurements of the physical system. In such cases, the expensive model of the
system under consideration is often replaced by its cheaper representation, called a
surrogate model, and the algorithm A uses that model to produce a new solution.
The parameters p(t) may then include variables that are used to align the surrogate
with the expensive model to make it a reliable representation of the latter.

3 Three New Algorithms

In this chapter, we illustrate the concept of a self-organizing optimization algorithm
using a specific class of algorithms called metaheuristics. Metaheuristics have some
important characteristics that uses stochastic components to enable an algorithm to
escape the possibility of being trapped in a local optimum. This often makes the
search process more ergodic, and thus such algorithms can generate high-quality
solutions over the search space during iterations, which may ultimately converge
towards the true optimality of the problem of interest.

There are well over two dozen metaheuristic algorithms now in use for opti-
mization [16, 30, 34]. All metaheuristic algorithms have to balance exploration and
exploitation during the search process by using some sort of algorithm-dependent
parameter setting. From the viewpoint of a self-organizing system, parameter set-
tings will affect the way and routes by which the optimization process converges to
an organized state. Here we analyse three relatively new nature-inspired algorithms
and see the ways in which they can quickly converge towards optimality.

3.1 Firefly Algorithm

The first algorithm to be discussed is the firefly algorithm, which is essentially a dy-
namical system. The firefly algorithm (FA), first developed by Xin-She Yang in 2008
[29, 30], was based on the flashing patterns and behaviour of fireflies. In essence,
FA uses the following three idealized rules:

• Fireflies are unisex, so one firefly can be attracted to any other one.
• The attractiveness is proportional to the brightness and they both decrease as their

distance increases. Thus for any two flashing fireflies, the less brighter one will
move towards the brighter one. If there is no brighter one than a particular firefly,
it will move randomly.

Engineering Optimization and Industrial Applications 397

• The brightness of a firefly is determined by the landscape of the objective func-
tion.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent
fireflies, we can now define the variation of attractiveness β with the distance r by

β = β0e
−γ r2

, (4)

where β0 is the attractiveness at r = 0.
The movement of a firefly i that is attracted to another more attractive (brighter)

firefly j is determined by

xt+1
i = xt

i + β0e
−γ r2

ij
(
xt

j − xt
i

) + αεt
i , (5)

where the second term is due to the attraction. The third term is randomization with
α being the randomization parameter, and εt

i is a vector of random numbers drawn
from a Gaussian distribution or uniform distribution at time t . If β0 = 0, it becomes
a simple random walk. Furthermore, the randomization εt

i can easily be extended to
other distributions such as Lévy flights. A Lévy flight essentially provides a random
walk whose random step length is drawn from a Lévy distribution

Lévy ∼ u = t−λ (1 < λ ≤ 3), (6)

which has an infinite variance with an infinite mean. Here the steps essentially form
a random walk process with a power-law step-length distribution with a heavy tail.
Some of the new solutions should be generated by the Lévy walk around the best
solution obtained so far, and this will speed up the local search. A demo version of
firefly algorithm implementation, without Lévy flights, can be found at the Math-
works file exchange web site.1 FA has attracted much attention recently [1, 11, 25].

A discrete version of FA can efficiently solve NP-hard scheduling problems [25],
while a detailed analysis has demonstrated the efficiency of FA over a wide range
of test problems, including multiobjective load dispatch problems [1]. Highly non-
linear and non-convex global optimization problems can be solved efficiently using
FA [11, 42].

From the self-organization point of view, FA acts as a simple dynamic system
with diverse characteristics that can automatically subdivide the entire population
into subgroups, and each subgroup can swarm around a local mode. Among all the
local modes, there is always a global optimum, and thus FA can find the global
optimality and local optima simultaneously if the number of fireflies is sufficiently
higher than the number of modes.

1http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm.

http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm

398 X.-S. Yang

3.2 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang and Suash Deb [34]. CS is based on the brood
parasitism of some cuckoo species. In addition, this algorithm is enhanced by Lévy
flights, rather than by simple isotropic random walks. Recent studies show that CS
is potentially far more efficient than particle swarm optimization (PSO) and genetic
algorithms [35].

Cuckoos are fascinating birds, not only because of the beautiful sounds they can
make, but also because of their aggressive reproduction strategy. Some species such
as the Ani and Guira cuckoos lay their eggs in communal nests, though they may
remove others’ eggs to increase the hatching probability of their own eggs. Quite a
number of species engage the obligate brood parasitism by laying their eggs in the
nests of other host birds (often other species).

For simplicity in describing CS, we now use the following three idealized rules:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.
• The best nests with high-quality eggs will be carried over to the next generations.
• The number of available host nests is fixed, and the egg laid by a cuckoo is dis-

covered by the host bird with a probability pa ∈ [0,1]. In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by a fraction
pa of the n host nests that are replaced by new nests (with new random solutions).
For a maximization problem, the quality or fitness of a solution can simply be pro-
portional to the value of the objective function. Other forms of fitness can be defined
in a similar way to the fitness function in genetic algorithms.

This algorithm uses a balanced combination of a local random walk and a global
explorative random walk, controlled by a switching parameter pa . The local random
walk can be written as

xt+1
i = xt

i + αs ⊗ H(pa − ε) ⊗ (
xt

j − xt
k

)
, (7)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

xt+1
i = xt

i + αL(s,λ), (8)

where

L(s,λ) = λΓ (λ) sin(πλ/2)

π

1

s1+λ
(s � s0 > 0). (9)

Here α > 0 is the step size scaling factor, which should be related to the scales of
the problem of interest. In most cases, we can use α = O(L/10), where L is the

Engineering Optimization and Industrial Applications 399

characteristic scale of the problem of interest, while in some case α = O(L/100)

can be more effective and avoid flying too far.
The above equation is essentially the stochastic equation for a random walk. In

general, a random walk is a Markov chain whose next status/location only depends
on the current location (the first term in the above equation) and the transition proba-
bility (the second term). However, a substantial fraction of the new solutions should
be generated by far-field randomization, and their locations should be far enough
from the current best solution to make sure that the system will not be trapped in a
local optimum [34].

Though the pseudo-code given in many papers is sequential, vectors should be
used from the implementation point of view, as vectors are more efficient than loops.
A Matlab implementation is given by the author, and it can be downloaded.2

The literature on CS is expanding rapidly. Much attention and many recent stud-
ies have used CS with a diverse range of applications [7, 11, 27, 37]. Walton et al.
improved the algorithm by formulating a modified CS algorithm [27], while Yang
and Deb extended it to multiobjective optimization problems [37].

Looking at CS in terms of self-organization, we can see that this swarm-
intelligence-based algorithm uses multiple interacting Markov chains by switching
between two key branches of global search and local search using Lévy flights as
well as random walks so that a balance between global exploration and local ex-
ploitation can be achieved during the optimization process.

3.3 Bat Algorithm

A third way of looking at an algorithm, apart from dynamic systems and Markov
chains, is by using a varying parameter setting. This idea is used in the bat algorithm;
the parameter tuning is essentially achieved by frequency tuning and mimicking the
hunting strategy of microbats.

The bat algorithm (BA) is a relatively new metaheuristic, developed by Xin-She
Yang in 2010 [40], which was inspired by the echolocation behaviour of micro-
bats. Microbats use a type of sonar, called echolocation, to detect prey, avoid ob-
stacles and locate their roosting crevices in the dark. These bats emit a very loud
sound pulse and listen for the echo that bounces back from surrounding objects.
Their pulses have varying properties and can be correlated with their hunting strate-
gies, depending on the species. Most bats use short, frequency-modulated signals
to sweep through about an octave, while others more often use constant-frequency
signals for echolocation. The signal bandwidth varies depending on the species, and
is often increased by using more harmonics.

The bat algorithm has three idealized rules:

• All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers in some magical way.

2www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm.

http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm

400 X.-S. Yang

• Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automatically
adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of
pulse emission r ∈ [0,1], depending on the proximity of their target.

• Although the loudness can vary in many ways, we assume that it varies from a
large (positive) A0 to a minimum constant value Amin.

Obviously, we have to define the rules of how their positions xi and velocities vi

in a d-dimensional search space are updated. The new solutions xt
i and velocities vt

i

at time step t are given by

fi = fmin + (fmax − fmin)β, (10)

vt
i = vt−1

i + (
xt−1

i − x∗
)
fi, (11)

xt
i = xt−1

i + vt
i , (12)

where β ∈ [0,1] is a random vector drawn from a uniform distribution. Here x∗
is the current global best location (solution) which is located after comparing all
the solutions among all the n bats at each iteration t . As the product λifi is the
velocity increment, we can use fi (or λi) to adjust the velocity change while fixing
the other factor λi (or fi), depending on the type of problem of interest. In our
implementation, we will use fmin = 0 and fmax = O(1), depending on the domain
size of the problem of interest. Initially, each bat is randomly assigned a frequency
which is drawn uniformly from [fmin, fmax].

For the local search part, once a solution is selected among the current best solu-
tions, a new solution for each bat is generated locally using random walk

xnew = xold + εAt, (13)

where ε is a random number vector drawn from [−1,1], while At = 〈At
i〉 is the

average loudness of all the bats at this time step.
Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated

accordingly as the iterations proceed. As the loudness usually decreases once a bat
has found its prey, while the rate of pulse emission increases, the loudness can be
chosen as any value of convenience. For simplicity, we can also use A0 = 1 and
Amin = 0, assuming Amin = 0 means that a bat has just found the prey and will
temporarily stop emitting any sound. Now we have

At+1
i = αAt

i, (14)

rt+1
i = r0

i

[
1 − exp(−γ t)

]
, (15)

where α and γ are constants. In fact, α is similar to the cooling factor of a cooling
schedule in the simulated annealing. For any 0 < α < 1 and γ > 0, we have

At
i → 0, rt

i → r0
i , as t → ∞. (16)

Engineering Optimization and Industrial Applications 401

In the simplest case, we can use α = γ , and we have used α = γ = 0.95 to 0.97 in
our simulations.

BA has been extended to the multiobjective bat algorithm (MOBA) by Yang [31],
and preliminary results suggest that it is very efficient.

Again looking at BA from the self-organization point of view, the convergence
is controlled by loudness and pulse emission rate so that it can explore the vast
search space in the earlier stage and then focus on the local exploitation in the more
promising regions. Compared with FA and CS, where fixed parameters are used in
terms of balancing exploration and exploitation, BA uses a more dynamic approach
to balance exploration and exploitation.

4 Engineering Optimization and Applications

Engineering optimization is very diverse with vast collections of case studies, and
some case studies require lengthy descriptions to provide sufficient details [6, 10–
12, 24]. Here we provide nine case studies as a subset of design optimization bench-
marks in engineering and industrial applications.

4.1 Bending Beam Design

Probably the simplest design problem with engineering relevance is the design of
a cantilever beam with five different square cross sections with heights/widths of
x1, x2, . . . , x5, respectively. The thickness is fixed with t = 2/3, and the objective is
to minimize [5, 9]

f (x) = 0.0624(x1 + x2 + x3 + x3 + x4 + x5), (17)

subject to

g(x) = 61

x3
1

+ 37

x3
2

+ 19

x3
3

+ 7

x3
4

+ 1

x3
5

− 1 ≤ 0. (18)

It is straightforward to use all three algorithms discussed earlier to find the best
solution

x = (6.0089, 5.3049, 4.5023, 3.5077, 2.1504), (19)

which gives

fmin = 1.33999. (20)

402 X.-S. Yang

4.2 Spring Design

Tensional and/or compressional springs are used widely in engineering. A standard
spring design problem has three design variables: the wire diameter w, the mean
coil diameter d and the length (or number of coils) L.

The objective is to minimize the weight of the spring, subject to various con-
straints such as maximum shear stress, minimum deflection and geometrical limits.
For a detailed description, please refer to earlier studies [2, 4]. This problem can be
written compactly as

Minimize f (x) = (L + 2)w2d, (21)

subject to

g1(x) = 1 − d3L

71785w4
≤ 0,

g2(x) = 1 − 140.45w

d2L
≤ 0,

g3(x) = 2(w + d)

3
− 1 ≤ 0,

g4(x) = d(4d − w)

w3(12566d − w)
+ 1

5108w2
− 1 ≤ 0,

(22)

with the following limits:

0.05 ≤ w ≤ 2.0, 0.25 ≤ d ≤ 1.3, 2.0 ≤ L ≤ 15.0. (23)

Using any of the algorithms discussed earlier, we can easily obtain the same or
slightly better solutions than the best solution obtained by [4]:

f∗ = 0.012665 at (0.051690,0.356750,11.287126), (24)

but both CS and FA use significantly fewer evaluations.

4.3 Three-Bar Truss Design

The three-bar truss design is a simple but practical example first presented by
Nowcki [22], which requires one to find the optimal cross-sectional areas A1

and A2. The problem can be formulated as

Minimize f (A1,A2) = (
√

8A1 + A2)L, (25)

Engineering Optimization and Industrial Applications 403

subject to

g1 = (
√

2A1 + A2)P√
2A2

1 + 2A1A2
− σ ≤ 0, (26)

g2 = A2P√
2A2

1 + 2A1A2
− σ ≤ 0, (27)

g3 = P

A1 + √
2A2

− σ ≤ 0, (28)

where σ = 2,000 N/cm2 is the stress constraint, and P = 2,000 N/cm2 is the load.
The simple limits are

0 ≤ A1,A2 ≤ 1. (29)

Using CS and BA, it is easy to find the optimal solution

x∗ = (A1,A2) = (0.78867,0.40902), (30)

and

fmin = 263.97156. (31)

4.4 Discrete Beam Design

Reinforced concrete beam designs are relevant in many applications in engineering
and construction. One class of beam designs is the discrete beam design, where the
dimensions and some design variables can only take discrete values [11, 21]. For
example, a very simple design benchmark of a reinforced concrete beam can be
written as

Minimize f (As, b,h) = 0.6bh + 2.9As, (32)

subject to

g1 = h

b
− 4 ≤ 0, (33)

g2 = 7.375A2
s

b
+ 180 − Ash ≤ 0. (34)

However, the area As only take values of {6.0,6.16, 6.32,6.6, 7.0,7.11,7.2,

7.8,7.9, 8.0,8.4} in2, and b only takes a value from {28,29,30, . . . ,39,40} and
5 ≤ h ≤ 10 in the continuous domain [21].

By using FA and CS, we have found the best solution

fmin = 359.2080, (35)

404 X.-S. Yang

with

(As, b,h) = (6.32,34,8.5), (36)

which is better than any solutions found so far in the literature [11].

4.5 Heat Exchanger Design

The heat exchanger design is a problem with six constraints [38], which can be
expressed in the simplest case as the following minimization problem with eight
design variables:

Minimize f (x) = x1 + x2 + x3, (37)

subject to

g1(x) = 0.0025(x4 + x6) − 1 ≤ 0, (38)

g2(x) = 0.0025(x5 + x7 − x5) − 1 ≤ 0, (39)

g3(x) = 0.01(x8 − x5) − 1 ≤ 0, (40)

g4(x) = 833.33252x4 + 100x1 − x1x6 − 83333.333 ≤ 0, (41)

g5(x) = 1250x5 + x2x4 − x2x7 − 125x4 ≤ 0, (42)

g6(x) = x3x5 − 2500x5 − x3x8 + 1250000 ≤ 0. (43)

For example, using CS with n = 20 cuckoos, we can easily find the optimal solution
for these eight design variables as

x∗ = (579.3068,1359.9708,5109.9705,182.0177,

295.6012,217.9823,286.4165,395.6012). (44)

4.6 Welded Beam Design

The welded beam design is another standard test problem for constrained design op-
timization [4, 38]. The problem has four design variables: the width w and length L

of the welded area, and the depth d and thickness h of the main beam. The objective
is to minimize the overall fabrication cost, under the appropriate constraints of shear
stress τ , bending stress σ , buckling load P and maximum end deflection δ.

The problem can be written as

minimize f (x) = 1.10471w2L + 0.04811dh(14.0 + L), (45)

Engineering Optimization and Industrial Applications 405

subject to

g1(x) = w − h ≤ 0,

g2(x) = δ(x) − 0.25 ≤ 0,

g3(x) = τ(x) − 13,600 ≤ 0,

g4(x) = σ(x) − 30,000 ≤ 0,

g5(x) = 0.10471w2 + 0.04811hd(14 + L) − 5.0 ≤ 0,

g6(x) = 0.125 − w ≤ 0,

g7(x) = 6000 − P(x) ≤ 0,

(46)

where

σ(x) = 504,000

hd2
, Q = 6000

(
14 + L

2

)
,

D = 1

2

√
L2 + (w + d)2, J = √

2wL

[
L2

6
+ (w + d)2

2

]
,

δ = 65,856

30,000hd3
, β = QD

J
,

α = 6000√
2wL

, τ(x) =
√

α2 + αβL

D
+ β2,

P = 0.61423 × 106 dh3

6

(
1 − d

√
30/48

28

)
.

(47)
The simple limits or bounds are 0.1 ≤ L, d ≤ 10 and 0.1 ≤ w, h ≤ 2.0. For example,
using both CS and FA, we have obtained the following optimal solution:

x∗ = (w,L,d,h)

= (0.20572963978,3.47048866563,9.03662391036,0.20572963979), (48)

with

f (x∗)min = 1.72485230859. (49)

This solution is exactly the same as those in the literature [4]

f∗ = 1.724852 at (0.205730,3.470489,9.036624,0.205729). (50)

We have also solved this problem using BA, and we got exactly the same solution.

406 X.-S. Yang

4.7 Pressure Vessel Design

Pressure vessels are literally everywhere; some examples are champagne bottles and
gas tanks. For a given volume and working pressure, the basic aim of designing a
cylindrical vessel is to minimize the total cost. Typically, the design variables are
the thickness d1 of the head, the thickness d2 of the body, the inner radius r and the
length L of the cylindrical section [4, 38]. This is a well-known test problem for
optimization and it can be written as

minimize f (x) = 0.6224d1rL + 1.7781d2r
2 + 3.1661d2

1L + 19.84d2
1 r, (51)

subject to the following constraints:

g1(x) = −d1 + 0.0193r ≤ 0,

g2(x) = −d2 + 0.00954r ≤ 0,

g3(x) = −πr2L − 4π

3
r3 + 1296000 ≤ 0,

g4(x) = L − 240 ≤ 0.

(52)

The simple bounds are

0.0625 ≤ d1, d2 ≤ 99 × 0.0625, (53)

and

10.0 ≤ r, L ≤ 200.0. (54)

We have used all three algorithms (FA, CS, BA) to solve this problem, and they
all found the same solution f∗ ≈ 6,059.714 at

x∗ ≈ (0.8125, 0.4375, 42.0984, 176.6366), (55)

which is the same as the one obtained by Cagnina et al. [4]. This means that the
lowest price is about $6,059.71.

4.8 Gearbox Design

Another important benchmark is the design of a speed reducer which is commonly
used in many mechanisms such as a gearbox [14]. This problem involves the op-
timization of seven variables, including the face width, the number of teeth, the
diameter of the shaft and others. All variables are continuous within some limits,
except x3 which only takes integer values. We have

f (x) = 0.7854x1x
2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1
(
x2

6 + x2
7

) + 7.4777
(
x3

6 + x3
7

) + 0.7854
(
x4x

2
6 + x5x

2
7

)
, (56)

Engineering Optimization and Industrial Applications 407

subject to

g1(x) = 27

x1x
2
2x3

− 1 ≤ 0, (57)

g2(x) = 397.5

x1x
2
2x2

3

− 1 ≤ 0, (58)

g3(x) = 1.93x3
4

x2x3x
4
6

− 1 ≤ 0, (59)

g4(x) = 1.93x3
5

x2x3x
4
7

− 1 ≤ 0, (60)

g5(x) = 1.0

110x3
6

√(
745.0x4

x2x3

)2

+ 16.9 × 106 − 1 ≤ 0, (61)

g6(x) = 1.0

85x3
7

√(
745.0x5

x2x3

)2

+ 157.5 × 106 − 1 ≤ 0, (62)

g7(x) = x2x3

40
− 1 ≤ 0, (63)

g8(x) = 5x2

x1
− 1 ≤ 0, (64)

g9(x) = x1

12x2
− 1 ≤ 0, (65)

g10(x) = 1.5x6 + 1.9

x4
− 1 ≤ 0, (66)

g11(x) = 1.1x7 + 1.9

x5
− 1 ≤ 0, (67)

where the simple bounds are 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤
x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.4, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

The best result in the literature [4] is

x∗ = (3.5,0.7,17,7.3,7.8,3.350214,5.286683), (68)

with fmin = 2996.348165.
By using FA and BA as well as CS, we have obtained a new best result:

x∗ = (3.5,0.7,17,7.3,7.8,3.34336449,5.285351) (69)

with the best objective fmin = 2993.7495888.

408 X.-S. Yang

Fig. 1 The topology optimization benchmark to maximize |TA − TB |

4.9 Simulation-Driven Shape Optimization

Heat management, thus heat transfer modelling, is very important for many elec-
tronic applications, especially those using large-scale integrated circuits. In fact,
nanoscale heat transfer is a challenging area, and topological optimization for de-
signing nanoscale device is even more challenging [8, 28, 43]. For example, Ev-
grafov et al. proposed a topology optimization benchmark for a nanoscale heat-
conducting system with a size of 150 nm by 150 nm [8]. Heat transfer can occur
at many different scales, though smaller scales may be more difficult to control.
Now we extend this to a unit of area of 1 mm by 1 mm, and the aim is to distribute
two different materials so as to maximize the temperature difference |TA − TB | at
these two points A and B under the boundary conditions given in Fig. 1 where the
top and bottom boundaries are symmetric. Obviously, if there is only one type of
material, then TA = TB can be expected at the steady state, due to symmetry in the
system configuration. However, two types of different materials will change this into
a tough shape optimization problem.

Two materials used in the design of the unit area have heat diffusivities of K1 and
K2, respectively. In addition, K1 � K2. For example, for Si and Mg2Si, K1/K2 ≈
10. The domain is continuous, and the objective is to distribute the two materials
such that the difference |TA − TB | is as large as possible.

By dividing the domain into 40 × 40 small grids and using CS to search for
possible design solutions, an optimal shape and distribution of materials is obtained,
as shown in Fig. 2, where Si is shown in light blue and Mg2Si is shown in red.

For each configuration generated during the search process, the temperature dis-
tribution is estimated using the finite difference method by solving the heat conduc-
tion equation with varied material conductivities so that the temperature difference
at the two fixed points is as large as possible.

Engineering Optimization and Industrial Applications 409

Fig. 2 Optimal topology and distribution of two different materials

5 Challenges and Further Research Topics

Despite the huge success of optimization and extensive applications, many chal-
lenging issues must be addressed in the near future. As an optimization process
typically involves an optimization algorithm and a simulator, two main issues nat-
urally arise: the efficiency of the algorithm and the efficiency and accuracy of the
numerical simulator. Obviously, we try to use the most efficient algorithms avail-
able, but the actual efficiency of an algorithm may depend on many factors such
as the inner working of the algorithm, the available information (such as objective
functions and their derivatives) and implementation details. The associated issue is
how to assign the right algorithms to a given problem, which is not easy to solve.
In fact, for some highly nonlinear problems, there may not be any efficient algo-
rithm at all. One well-known case is the travelling salesman problem, which is hard
in the non-deterministic polynomial-time (NP) sense, that is, NP-hard. There is no
efficient algorithm to deal with these types of problems.

The efficiency of a simulator or solver is even more complicated, depending on
the actual numerical methods used and the complexity of the problem of interest.
Straightforward optimization of a given objective function is not always practical. If
the objective function comes from a computer simulation, it may be computationally
expensive, noisy or non-differentiable. In such cases, a surrogate-based optimization
algorithm may be a very useful alternative [18]. The surrogate model can be typi-
cally constructed from the sampled data of the original objective function; however,
this surrogate model should reasonably be cheap, smooth and easy to optimize, and
yet accurate enough so that it can produce a good prediction of the function’s opti-
mum [17]. A challenging issue is how to construct good surrogate models that have
good fidelity and yet can save sufficient computational efforts.

On the other hand, it may be no exaggeration to say that metaheuristics have had
great success in solving various tough optimization problems. However, there are
many important questions which remain unanswered.

410 X.-S. Yang

First, an important issue to be addressed in any metaheuristic algorithm is how
to provide a good balance between local intensification and global diversifica-
tion [29, 30]. At present, different algorithms uses various techniques and mech-
anisms with various parameters to control this, which may be far from optimal. Is
there any optimal way to achieve this balance? If yes, how? If not, what is the best
we can achieve?

Second, it is still only partly understood why different components of heuristics
and metaheuristics interact in a coherent and balanced way so that they produce
efficient algorithms which converge under the given conditions. For example, why
does a balanced combination of randomization and a deterministic component lead
to a much more efficient algorithm (than a purely deterministic and/or a purely ran-
dom algorithm)? How can we measure or test if a balance is reached? How can we
prove that the use of memory can significantly increase the search efficiency of an
algorithm? Under what conditions?

Finally, most applications in the current literature have been tested against toy
problems or small-scale benchmarks with a few design variables or at most prob-
lems with several dozen variables. In real-world applications, many design problems
in engineering, business and industry may involve thousands or even millions of
variables. We have not seen case studies for such large-scale problems in the litera-
ture. A crucial issue is that there is no indication that the methodology that works for
such toy benchmarks will work equally well for large-scale problems. Apart from
the difference in the problem size, there may be other fundamental differences for
large-scale problems, and thus the methodology could be very different [33].

Such challenges still remain unresolved, both in theory and in practice. These
important issues also provide golden opportunities for researchers to rethink the
existing methodology and approaches, perhaps more fundamentally. We can expect
that some significant progress will be made in the next ten years.

References

1. Apostolopoulos, T., Vlachos, A.: Application of the firefly algorithm for solving
the economic emissions load dispatch problem. Int. J. Comb. 2011, 523806 (2011).
http://www.hindawi.com/journals/ijct/2011/523806.html

2. Arora, J.: Introduction to Optimum Design. McGraw-Hill, New York (1989)
3. Ashby, W.R.: Principles of the self-organizing system. In: Von Foerster, H., Zopf, G.W. Jr.

(eds.) Principles of Self-organization: Transactions of the University of Illinois Symposium,
pp. 255–278. Pergamon Press, London (1962)

4. Cagnina, L.C., Esquivel, S.C., Coello, C.A.: Solving engineering optimization problems with
the simple constrained particle swarm optimizer. Informatica 32, 319–326 (2008)

5. Chickermane, H., Gea, H.C.: Structural optimization using a new local approximation method.
Int. J. Numer. Methods Eng. 39, 829–846 (1996)

6. Deb, K.: Optimization for Engineering Design. Prentice-Hall, New Delhi (1995)
7. Durgun, I., Yildiz, A.R.: Structural design optimization of vehicle components using cuckoo

search algorithm. Mater. Test. 3, 185–188 (2012)
8. Evgrafov, A., Maute, K., Yang, R.G., Dunn, M.L.: Topology optimization for nano-scale heat

transfer. Int. J. Numer. Methods Eng. 77, 285–300 (2009)

http://www.hindawi.com/journals/ijct/2011/523806.html

Engineering Optimization and Industrial Applications 411

9. Fleury, C., Braibant, V.: Structural optimization: a new dual method using mixed variables.
Int. J. Numer. Methods Eng. 23, 409–428 (1986)

10. Gandomi, A.H., Yang, X.S.: Benchmark problems in structural optimization. In: Koziel, S.,
Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Study in Computa-
tional Intelligence, SCI, vol. 356, pp. 259–281. Springer, Berlin (2011)

11. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a meteheuristic approach
to solve structural optimization problems. Eng. Comput. doi:10.1007/s00366-011-0241-y
(2011). Online first 29 July 2011

12. Gandomi, A.H., Yang, X.S., Talatahari, S., Deb, S.: Coupled eagle strategy and differential
evolution for unconstrained and constrained global optimization. Comput. Math. Appl. 63(1),
191–200 (2012)

13. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press Inc., London
(1981)

14. Golinski, J.: An adaptive optimization system applied to machine synthesis. Mech. Mach.
Theory 8(4), 419–436 (1973)

15. Keller, E.F.: Organisms, machines, and thunderstorms: a history of self-organization, part two.
Complexity, emergence, and stable attractors. Hist. Stud. Nat. Sci. 39, 1–31 (2009)

16. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE International Con-
ference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

17. Koziel, S., Yang, X.S.: Computational Optimization and Applications in Engineering and In-
dustry. Springer, Berlin (2011)

18. Koziel, S., Bandler, J.W., Madsen, K.: Quality assessment of coarse models and surrogates for
space mapping optimization. Optim. Eng. 9(4), 375–391 (2008)

19. Koziel, S., Yang, X.S., Zhang, Q.J.: Simulation-Driven Design Optimization and Modeling
for Microwave Engineering. Imperial College Press, London (2013)

20. Leifsson, L., Koziel, S.: Multi-fidelity design optimization of transonic airfoils using physics-
based surrogate modeling and shape-preserving response prediction. J. Comput. Sci. 1(2),
98–106 (2010)

21. Liebman, J.S., Khachaturian, N., Chanaratna, V.: Discrete structural optimization. J. Struct.
Div. 107(ST11), 2177–2197 (1981)

22. Nowcki, H.: Optimization in pre-contract ship design. In: Fujita, Y., Lind, K., Williams, T.J.
(eds.) Computer Applications in the Automation of Shipyard Operation and Ship Design,
vol. 2, pp. 327–338. North-Holland, Elsevier, New York (1974)

23. Prigogine, I., Nicolois, G.: On symmetry-breaking instabilities in dissipative systems. J.
Chem. Phys. 46, 3542–3550 (1967)

24. Ravindran, A., Ragsdell, K.M., Reklaitis, G.V.: Engineering Optimization: Methods and Ap-
plications, 2nd edn. Wiley, Hoboken (2006)

25. Sayadi, M.K., Ramezanian, R., Ghaffari-Nasab, N.: A discrete firefly meta-heuristic with local
search for makespan minimization in permutation flow shop scheduling problems. Int. J. Ind.
Eng. Comput. 1, 1–10 (2010)

26. Turing, A.M.: The chemical basis of morphogenesis. Phys. Today 237, 37–72 (1952)
27. Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gradient

free optimization algorithm. Chaos Solitons Fractals 44(9), 710–718 (2011)
28. Yang, X.S.: Modelling heat transfer of carbon nanotubes. Model. Simul. Mater. Sci. Eng. 13,

893–902 (2005)
29. Yang, X.S.: Introduction to Computational Mathematics. World Scientific Publishing, Singa-

pore (2008)
30. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wi-

ley, New York (2010)
31. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspir. Comput. 3(5),

267–274 (2011)
32. Yang, X.S.: Review of meta-heuristics and generalised evolutionary walk algorithm. Int. J.

Bio-Inspir. Comput. 3(2), 77–84 (2011)

http://dx.doi.org/10.1007/s00366-011-0241-y

412 X.-S. Yang

33. Yang, X.S.: Nature-inspired metaheuristic algorithms: success and new challenges. J. Comput.
Eng. Inf. Technol. 1, 1–3 (2012). doi:10.4172/2324-9307.1000e101

34. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proc. of World Congress on Nature &
Biologically Inspired Computing (NaBic 2009), pp. 210–214. IEEE Publications, New York
(2009)

35. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer.
Optim. 1(4), 330–343 (2010)

36. Yang, X.S., Deb, S.: Eagle strategy using Lévy walk and firefly algorithms for stochastic
optimization. In: Cruz, C., González, R.J., Krasnogor, N., Terrazas, G. (eds.) Nature Inspired
Cooperative Strategies for Optimization (NICSO2010). Studies in Computational Intelligence
(SCI), vol. 284, pp. 101–111. Springer, New York (2010)

37. Yang, X.S., Deb, S.: Multiobjective cuckoo search for design optimization. Comput. Oper.
Res. 40(6), 1616–1624 (2013). doi:10.1016/j.cor.2011.09.026

38. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimiza-
tion. Eng. Comput. 29(5), 464–483 (2012)

39. Yang, X.S., Koziel, S.: Computational optimization, modelling and simulation—a paradigm
shift. Proc. Comput. Sci. 1(1), 1291–1294 (2010)

40. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez, J.R., et al. (eds.)
Nature-Inspired Cooperative Strategies for Optimization (NICSO 2010), vol. 284, pp. 65–74.
Springer, Berlin (2010)

41. Yang, X.S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector
machine for business optimization and applications. In: Networked Digital Technologies 2011.
Communications in Computer and Information Science, vol. 136, pp. 53–66 (2011)

42. Yang, X.S., Hossein, S.S., Gandomi, A.H.: Firefly algorithm for solving non-convex economic
dispatch problems with valve loading effect. Appl. Soft Comput. 12(3), 1180–1186 (2012)

43. Zhirnov, V.V., Cavin, R.K., Hutchby, J.A., Bourianoff, G.I.: Limits to binary logic switch
scaling—a gedanken model. Proc. IEEE 91, 1934–1939 (2003)

http://dx.doi.org/10.4172/2324-9307.1000e101
http://dx.doi.org/10.1016/j.cor.2011.09.026

	Engineering Optimization and Industrial Applications
	1 Introduction
	2 Optimization Algorithms and Self-organization
	2.1 Self-organizing Systems
	2.2 Algorithms for Self-organization

	3 Three New Algorithms
	3.1 Fireﬂy Algorithm
	3.2 Cuckoo Search
	3.3 Bat Algorithm

	4 Engineering Optimization and Applications
	4.1 Bending Beam Design
	4.2 Spring Design
	4.3 Three-Bar Truss Design
	4.4 Discrete Beam Design
	4.5 Heat Exchanger Design
	4.6 Welded Beam Design
	4.7 Pressure Vessel Design
	4.8 Gearbox Design
	4.9 Simulation-Driven Shape Optimization

	5 Challenges and Further Research Topics
	References

