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Abstract Problem of aircraft structural components (wing, fuselage, tail) optimiza-
tion is considered. Solution of this problem is very computationally intensive, since
it requires at each iteration a two-level process. First from previous iteration an up-
date step at full component level must be performed in order to take into account
internal loads and their sensitivities in the whole structure involved by changes in
local geometry. Second numerous local analyzes are run on isolated elements (for
example, super stiffeners) of structural components in order to calculate mechani-
cal strength criteria and their sensitivities depending on current internal loads. An
optimization step is then performed from combined global-local sensitivities. This
bi-level global-local optimization process is then repeated until convergence of load
distribution in the whole structure. Numerous calculations of mechanical strength
criteria are necessary for local analyzes and results in great increase of the time
between two iterations. In this work an effective method for speeding up the opti-
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mization process was elaborated. The method uses surrogate models of optimization
constraints (mechanical strength criteria) and provides reduction of the structure op-
timization computational time from several days to a few hours.

Keywords Buckling analysis · Approximation · Mixture of experts · HDA ·
Composite structure · Surrogate modeling · Optimization

1 Introduction

Aeronautical structures are mainly made of stiffened panels, i.e., thin shells (also
called skin) enforced with stiffeners (called frames and stringers) in both the orbital
and longitudinal directions. The whole structure is studied by dividing it into ele-
mentary parts called super stiffeners, consisting of the theoretical union of a stringer
and two half-panels. These basic structures are subject to highly nonlinear phenom-
ena such as buckling, collapse, and damage tolerance.

In order to determine the optimal size of these super stiffeners, static mechanical
criteria must be computed using dedicated software based on nonlinear calculations.
Thus, the analysis and the dimension estimation of the whole structure is currently
computed by running a two-level study: at a global level a finite element (FE) anal-
ysis run on the whole FE model provides internal loads applied to each super stiff-
ener; at a local level these loads are used to compute static mechanical criteria. Most
of these criteria are formulated using reserve factors (RF): a structure is validated
provided all its RFs are greater than one.

Therefore, a detailed design of an aircraft fuselage requires a two-level loop.
First, changes from the local geometry, defined at the previous iteration, involve a
new internal load distribution in the whole structure; an update step must then be
performed to take these changes into account and to compute sensitivities. Second,
numerous local analyses are run on isolated super stiffeners to compute mechani-
cal criteria and their sensitivities depending on current internal loads. This bi-level
global-local optimization process is then repeated until convergence of the load dis-
tribution in the whole structure is achieved.

Local mechanical criteria are computed by local methods, which are used be-
cause of the huge dimensionality of the problem (O(104) variables and O(105)

constraints). Local methods require gradients of the constraint functions, defined
by static mechanical criteria. These gradients can only be obtained by finite differ-
ences. Values of the mechanical strength constraints are computed using dedicated
software. A call to this software takes up to a second; as a consequence, the need
for finite difference calculations in each of numerous local optimizations greatly
increases the time between two update steps.

Therefore, the dimension estimation step in an aircraft development program is
a repetitive and time-consuming process. Much time could be saved by using surro-
gate modeling instead of performing straightforward computing [14, 23]. Thus, the
main motivation of this work is a surrogate modeling of buckling analysis in support
of composite structure optimization. We want to achieve two goals of great impor-
tance for engineers working in the Airbus structural analysis framework: saving
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time in the pre-sizing processes and having the advantage of response smoothing,
since surrogate models (SMs) provide a continuous and differentiable approxima-
tion of RFs that sometimes are not themselves continuous (as is often the case for
semi-empirical approaches).

For surrogate modeling of static instability phenomena (the buckling and the
collapse of a super stiffener) we used the MACROS software toolkit for surrogate
modeling and optimization, developed by DATADVANCE [12].

Finally, the constructed MACROS Surrogate Model (MSM) was embedded into
the pre-sizing optimization process of A350XWB composite boxes, realized in a
pre-sizing tool COMBOX, for checking the validity of the approximation and its
use instead of the corresponding constraint functions in the optimization process.
It turned out that MSM allows one to obtain smoother convergence to a reasonable
solution in fewer iterations with a smoother distribution of thickness/stringer dimen-
sions and reduces the structure optimization computational time from several days
to a few hours.

In the following sections we describe the pre-sizing tool COMBOX (Sect. 2),
the surrogate modeling and optimization software toolkit MACROS (Sect. 3), the
construction of the MSM for Airbus skill tool (Sects. 3 and 4), and the analysis of
the optimization results based on the skill tool and constructed SM (Sect. 5). We
end this article with some concluding remarks (Sect. 6).

2 COMBOX: A Pre-Sizing Tool Developed for A350XWB

The COMBOX tool (COMposite BOX pre-sizing) was developed in 2005 to sup-
port the pre-sizing of the A350XWB composite wing box (see Fig. 1). It has since
been continuously improved and is being applied to all A350XWB boxes: wing,
horizontal tail plane, and vertical tail plane.

2.1 COMBOX Sizing Process

The COMBOX sizing process encapsulates the full stress process for a wing box
(see Fig. 2):

• Mapping of sizing properties,
• Update of a global finite element model (FEM),
• Calculation of internal loads through a static linear analysis based on the global

FEM,
• Calculation of strength responses as reserve factors (RFs) through Airbus skill

tools.

These are the usual steps of an airframe structural analysis for pre-sizing.
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Fig. 1 COMBOX pre-sizing optimization tool is now applied to all A350XWB boxes

Fig. 2 COMBOX pre-sizing optimization tool is a global-local optimization capability encapsu-
lating the overall stress analysis process

Remarks

• An RF indicates whether the structure is feasible (i.e., has enough strength) with
respect to a given mechanical criterion or failure mode. If the RF is greater than
one, the structure is feasible. If the RF is less than one, it is not feasible. Therefore,
when modeling the dependency of some RF on a vector of design variables x,
the highest possible accuracy should be provided for what is called the accuracy
domain X̃ = {x : RF(x) ∈ (1 − ε,1 + ε)}, ε = 0.2.

• The simplest example of an RF is a ratio between an allowable stress (for exam-
ple, material strength) and the applied stress.
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Fig. 3 COMBOX optimization process

• Skill tools are usually analytical semi-empirical tools, which are rather quick and
are used for pre-sizing.

2.2 COMBOX Components

COMBOX is based on commercial off-the-shelf software and incorporates four
components:

• CAESAM: Software framework from SAMTECH [20] (provides GUI and stress
model),

• NASTRAN: Finite element software from MSC [19],
• Skill tools developed by Airbus,
• BOSS Quattro: Optimization software from SAMTECH [21] (provides process

manager and optimiser).

2.3 COMBOX Optimization Process

COMBOX is a pre-sizing tool based on numerical optimization (mathematical pro-
gramming). Therefore, besides sizing calculations (see Sect. 2.1) during optimiza-
tion process it is necessary to compute the sensitivities of internal loads and RFs
and combine them by chain ruling (see Fig. 3). Internal load sensitivities are semi-
analytically calculated via the NASTRAN SOL200 module (NASTRAN optimiza-
tion and sensitivity analysis module). The responses and sensitivities are then sent to
the optimization algorithm in BOSS Quattro. CAESAM is mainly used to manage
all data, and BOSS Quattro manages the work flow and the optimization process
including the sensitivity chain ruling.
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Fig. 4 Illustration of COMBOX design variables

2.4 COMBOX Optimization Problem Formulation

COMBOX is able to address all sizing variables of a composite cover with T-
stringers (other stringer sections are possible but not presented here; see also Fig. 4):

• Skin thickness,
• Percentages of standard draping angles: 0 %, 45 %, 90 %,
• T-stringer core and web percentages: 0 %, 45 %, 90 %,
• T-stringer web thickness, core thickness, height, and width.

Bounds are given to these variables to satisfy design rules. Some additional de-
sign rules are included like bounds on the As/bt ratio, which represents the ratio of
the stringer area to the skin area.

All usual criteria for a composite wing cover sizing are considered (see Fig. 5):

• Local skin buckling and general skin buckling,
• Post-buckling and post-buckling cut-off,
• Skin damage tolerance and stringer damage tolerance,
• Skin reparability and stringer reparability.

RFs are associated to each of these failure modes.
Damage tolerance criteria are there to ensure that the structure can resist small

damages. Reparability criteria anticipate some future repairs in the skin (filled hole
criteria).

Therefore, the optimization problem can be formulated as

M(z) → min
z∈Rn

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zlow ≤ z ≤ zup,

RFi,j,k(N(z), z) ≥ 1,

i = 1, . . . ,Ne, j = 1, . . . ,Nl, k = 1, . . . ,Nfm,

dl(z) ≥ 1,
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Fig. 5 Illustration of COMBOX strength criteria

where

• The objective function is the mass M(z) of the FEM, independent of percentages,
that is to be minimized,

• z is the vector of n optimization variables (skin, stringer thicknesses, dimensions,
and percentages),

• N(z) is the vector of internal loads.

The constraints are

• Variable bounds: zlow ≤ z ≤ zup,
• Strength constraints: RFi,j,k(N(z), z) ≥ 1, i = 1, . . . ,Ne, j = 1, . . . ,Nl, k =

1, . . . ,Nfm,
• Design constraints: dl(z) ≥ 1.

The indexes i, j, k for the strength constraints remind us that there are as many
strength constraints as structural elements Ne, external loads Nl , and failure modes
Nfm. The computational time of the process is mainly contained in the strength
analysis due to the high value of Ne · Nl · Nfm. On top of that, RF sensitivities
are obtained via finite differences; so the number of strength analyses is multiplied
by the number of local variables and internal load components (approximately a
factor 10).
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Fig. 6 Computational times in COMBOX

Therefore, even if strength analysis tools for pre-sizing are rather quick (1s per
element), the total number of calculations is huge and leads from one to five days per
iteration with an optimization process usually converging in 20 iterations (see Fig. 6
for details). To save time in the pre-sizing processes and particularly in the COM-
BOX tool, it is thus necessary to build numerical approximations of the strength
tools using surrogate modeling, which is the main goal of this paper. Besides the
time reduction, there is also the advantage of response smoothing. Indeed, SMs give
a continuous and differentiable approximation of RFs that sometimes are not them-
selves continuous (as is often the case for semi-empirical approaches). This is also
demonstrated in the current study.

3 MACROS: A Surrogate Modeling and Optimization Software
Toolkit

MACROS is a software toolkit for

• Intellectual data analysis, and
• Multidisciplinary optimization,

developed by DATADVANCE [12]. It provides proprietary and state-of-the-art data
analysis and optimization techniques.

The MACROS toolkit consists of Generic Tools (GTs) for Dimension Reduc-
tion, Important Variable Extraction, Design of Experiments, Approximation, Data
Fusion, and Optimization.

GT for Dimension Reduction includes unsupervised and supervised (feature ex-
traction) techniques for automatic reparameterization of an object’s description with
a smaller number of parameters.

GT for Important Variable Extraction includes techniques for sensitivity analysis
necessary for ranking the available parameters with respect to their influence on the
given response function and selecting the most important ones.
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GT for Design of Experiments enables systematic and efficient analysis of the
design space by using classical and advanced methods (full factorial, optimal Latin
hypercube, Halton and Sobol sequences, etc.) as well as specially designed adaptive
techniques.

GT for Approximation allows automatic construction of fast-running data-based
SMs using best-in-class predictive modeling techniques. The tool includes built-in
robustness and accuracy assessment, control of SM smoothness, etc., and is efficient
for small and huge data samples in low and high dimensions.

GT for Data Fusion allows approximating data of variable fidelities. The tool
operates like GT for Approximation, but assumes that the response function is rep-
resented by two types of data: scarce high-fidelity data and abundant low-fidelity
data. The tool then constructs an enhanced approximation of the high-fidelity model
taking into account the abundant low-fidelity data.

GT for Optimization includes efficient state-of-the-art optimization methods to
solve various problems (large-scale, linear/nonlinear, unconstrained/constrained,
single/multi-objective, and stochastic).

Adaptive and automatic selection of the best method for a given problem on the
basis of specially designed decision trees opens up elaborated methods for use by
people who interact with problems on the engineering rather than the mathematical
level.

4 Construction of MACROS Surrogate Model

Let us describe the following in this section:

• Proposed methodology for surrogate model (SM) construction, based on mixture
of experts framework and used for construction of MACROS Surrogate Model
(MSM),

• New High Dimensional Approximation (HDA) algorithm, implemented in GT
for Approximation (GT Approx) and used for construction of experts (approxi-
mations in local regions),

• Differences and similarities between the proposed and already existing ap-
proaches for SM construction including results of computational experiments.

Construction of the SM is necessary for obtaining a more computationally effi-
cient approximation of the original dependency. Therefore, let us formulate engi-
neering statement of the approximation problem and then formulate requirements,
which we impose on the SM.

4.1 Approximation Problem Statement

Let us denote by

Slearn = {
(xi , yi), i = 1, . . . ,Nlearn

}
(1)
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points generated independently randomly such that there is some unknown func-
tional dependency yi = f (xi ) between the output value (output) yi ∈ Y ⊂ R1 and
the input vector (input) xi ∈ X ⊂ Rp .

The SM construction problem statement is to construct an approximation (ap-
proximator, approximating model) f̂ (x) = f̂ (x|Slearn) for the given dependency
f (x) using learning sample Slearn such that for all x ∈ X (not only for x ∈ Slearn)
the following approximate equality holds:

f̂ (x) ≈ f (x), (2)

i.e., the approximator f̂ (x) has good generalization ability and recovers the given
dependency with good accuracy.

Equation (2) is considered to be fulfilled if on independent test set Stest =
{(xj , yj ), j = 1, . . . ,Ntest} the value of the error

êrStest(f, f̂ ) = 1

Ntest

Ntest∑

j=1

(
yj − f̂ (xj )

)2 (3)

is small (accuracy is high).
In order for the criterion (3) of approximation quality to make sense, the input

vectors from the samples Slearn and Stest should be generated by the same distribu-
tion and distributed in X sufficiently densely.

In practice, when constructing an SM f̂ (x), additional requirements and data
generation source properties often should be taken into account.

4.1.1 Specific Requirements on Accuracy

There can exist different requirements on the accuracy of the SM in different do-
mains of the design space X. For example, when constructing an MSM for the
considered stability constraints approximation problem, high accuracy of prediction
should be provided in the domain X̃ ⊂ X, where X̃ = {x : f (x) ∈ (1 − ε,1 + ε)},
ε = 0.2. Due to this requirement, it is necessary to construct approximation only
in the domain X̃ using the subsample S̃ = {(x, y) ∈ Slearn : x ∈ X̃} and then glue it
with approximation, constructed in the domain X\ X̃ using the subsample Slearn \ S̃.
Since the variation of the approximable function f (x) is smaller in the domain X̃,
than in the whole design space X, then this approach will allow to construct a more
accurate approximation for x ∈ X̃.

4.1.2 Spatial Inhomogeneity of the Sample

When decomposing the design space and selecting domains (see Sect. 4.1.1) corre-
sponding to different requirements on the accuracy of the SM, it can happen that the
majority of these domains can be represented as the unions of some disconnected
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sets. Subsamples, corresponding to the selected domains, will also be some unions
of clusters of points.

It is obvious that the global SM will have poor accuracy if it is to be constructed
using a sample that is some union of several clusters of points. Thus it is reasonable
to perform a preliminary decomposition of such a sample into several homogeneous
subsamples, each of which is located in the connected subdomain of the design
space. Then, using each subsample, a local approximation (expert) is constructed in
the corresponding subdomain.

4.1.3 Redundancy in Data

It can also happen that the set of input parameters is redundant in one of the two (or
even in both) senses:

• Input parameters can be dependent. In the simplest case it means that several
input parameters are correlated.

• It may be that a function does not depend on all input parameters. In this situation,
two main scenarios are worth considering:

– the function weakly depends on several inputs,
– the function depends not on initial inputs, but on their projection onto some

linear subspace of smaller dimension.

Detection and removal of such redundancies in general allows us to significantly
improve the quality of the constructed SM.

4.2 Methodology for Surrogate Model Construction

Let some sample Slearn (1) be given. Also, let us use GT Approx for construction of
an approximation model y = g(x, θ) based on the given sample Slearn. By construc-
tion of the approximation model we mean selecting some element g(·, θ) from the
predefined parametric family G by tuning parameters θ such that approximation is
optimal with respect to criterion (3).

An elaborated approach for construction of the SM can be described as follows:

1. Methods to remove redundancy. In order to remove redundancy from the in-
put parameters, methods for important variables extraction, dimension reduction,
and feature extraction are used. Application of these methods for preprocessing
the data will not be considered here further, since these methods are not used for
constructing an SM in the considered applied problem. The problem statement
and a detailed description of the method for effective dimension reduction are
given in [8].
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2. Decomposition of the design space into domains X = ⋃Ny−1
j=0 Xj , corresponding

to different ranges of the output. This decomposition is useful, since for differ-
ent ranges of the output we need to provide different approximation accuracies.
A detailed description of the procedure is given in Sect. 4.2.1.

3. Decomposition of the domains Xj into connected subdomains Xj,k , correspond-
ing to more regular behavior of the approximable dependency. A detailed de-
scription of the process is given in Sect. 4.2.2.

4. Construction of the approximators using the subsamples Sj,k = {(x, y) ∈ Slearn :
x ∈ Xj,k}.

5. Construction of the classifier that estimates the proximity from the given point x
to subdomains Xj . A detailed description of the process is given in Sect. 4.2.3.

6. Construction of the final SM by gluing obtained approximators. A detailed de-
scription of the process is given in Sect. 4.2.3.

4.2.1 Decomposition of the Design Space into Domains Based on Output
Values

Decomposition of the design space into domains based on output values can be
described as follows:

1. Let ymin and ymax be an upper and a lower bounds on the output value y = f (x).
The interval of output variation y ∈ [ymin, ymax] is partitioned into Ny subinter-

vals, i.e., [ymin, ymax] ∈ ⋃Ny−1
j=0 [y2j , y2j+1], where y0 = ymin, y2Ny−1 = ymax,

and y2j < y2j+1, y2j+2 < y2j+1, j = 0,1, . . . ,Ny − 1. Conditions on the ends
of the subintervals provide nonempty intersections of these subintervals. This
allows us to provide smooth gluing of the corresponding approximators (see
Sect. 4.2.3). Selection of the decomposition is done, for example, according to
accuracy requirements on the SM, imposed by the subject domain. The decompo-

sition X = ⋃Ny−1
j=0 Xj of the design space corresponds to such a partition, where

Xj = {x : f (x) ∈ [y2j , y2j+1]}.
2. The sample Slearn is partitioned into Ny subsamples Slearn = ⋃Ny−1

j=0 Sj such

that Sj = {(x, y) ∈ Slearn : y ∈ [y2j , y2j+1]}. An approximator f
j
approx(x) is con-

structed using each subsample Sj . This approximator can be some model from
G (e.g., it can be constructed using GT Approx), or it can have a more complex
structure; see Sect. 4.2.2.

We should note that the described decomposition of the design space into do-
mains based on output values is not only useful if there are different requirements
on the accuracy of the SM in different regions of the design space X. In fact, if
the function f (x) is significantly spatially inhomogeneous, then the variability of
the function f (x) in the domain Xj ⊂ X is significantly lower than in all the design
space X. Thus, if approximations are constructed for domains Xj ⊂ X and are glued,
then a more accurate SM can be obtained compared to the global SM, constructed
at once for all the design space X.
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4.2.2 Decomposition of the Design Space into Domains Based on Input Values

In this subsection it is described how to additionally decompose the input design
space into subdomains with more regular behavior of the approximable function.

An approximator f
j
approx(x) for x ∈ Xj (see Sect. 4.2.1) can be constructed using

the sample Sj as an approximation model from G (by applying GT Approx to the
sample Sj ). However, if the sample Sj is significantly spatially inhomogeneous or
even is represented by several separated clusters of points, then the approximator,
constructed on the basis of this inhomogeneous sample, will in general have lower
accuracy compared to an approximator constructed using a more uniform sample.
In order to increase the accuracy, it is proposed to

• Additionally decompose the domains Xj into connected subdomains Xj =
⋃Nx

k=1 Xj,k , such that

– subsamples of the sample Sj , belonging to these connected subdomains, are
more homogeneous,

– within the subdomains Xj,k approximable dependency f (x) has actually more
regular behavior.

• Construct a separate local approximator gj,k ∈ G for each subdomain Xj,k ; then

the final approximating model f
j
approx(x) is represented as a continuous mixture

of these local models.

For constructing the decomposition Xj = ⋃Nx

k=1 Xj,k on the basis of the sample
Sj , j = 0, . . . ,Ny − 1, it is proposed to use a Gaussian mixture model (GMM, see
[15]). It is assumed that the points (x, y) ∈ Sj are generated according to the model

Law(x, y) =
Nx∑

k=1

α
j
kN

(
μ

j
k,Θ

j
k

)
,

Nx∑

k=1

α
j
k = 1, α

j
k > 0, (4)

where μ
j
k and Θ

j
k are the mean vector and the covariance matrix for the k-th normal

distribution of the GMM, generating j -th sample Sj . Also, the unconditional distri-

bution of the input vector x ∈ Xj has the form Law(x) = ∑Nx

k=1 α
j
kN (μ

j
k,x,Θ

j
k,x),

where μ
j
k,x and Θ

j
k,x are the subvector of the mean vector μ

j
k and the submatrix of

the covariance matrix Θ
j
k , respectively.

Parameters of the GMM are estimated using the sample Sj by the standard EM
algorithm [15], and in the framework of the GMM model additional clustering of
the sample Sj is done. Note that since for clustering we use not only input values
but also output values, then we take into account possible spatial inhomogeneity of
the function in the domain Xj . Then estimated parameters of the GMM in fact will

provide the decomposition Xj = ⋃Nx

j=1 Xj,k . Indeed, let us define the Mahalanobis
distance from the center of the k-th cluster to the point x according to the formula
dj,k(x) = (x − μ

j
k,x)

T (Θ
j
k,x)

−1(x − μ
j
k,x); then the set Xj,k = {x ∈ Xj : dj,k(x) ≤

χ2
97%(p)}, where χ2

97 %(p) is a 97 % quantile of the distribution χ2 with p degrees
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of freedom. Local approximators gj,k ∈ G for each subdomain Xj,k are constructed
using subsamples Sj,k = {(x, y) ∈ Slearn : x ∈ Xj,k}, k = 1, . . . ,Nx and GT Approx.

Let us estimate the weight characterizing to what extent the point x belongs to
the k-th cluster according to the formula

w(k|x, j) = 1

2

(

tanh

(

1 − 2
dj,k(x) − χ2

97%(p)

χ2
99%(p) − χ2

97%(p)

)

+ 1

)

, (5)

where χ2
99%(p) and χ2

97%(p) are 99 % and 97 % quantiles of the distribution χ2

with p degrees of freedom, respectively. In the framework of the model GMM (4),
the classifier, which estimates the extent to which the point x belongs to the k-th
cluster, can be constructed according to the formula

ŵ(k|x, j) = w(k|x, j)
∑

r w(r|x, j)
. (6)

The final prediction is obtained using smooth gluing of the local models gj,k for all
clusters to which the point belongs and is calculated according to the formula

f
j
approx(x) =

Nx∑

k=1

ŵ(k|x, j)gj,k(x), (7)

where gj,k(x) is a local approximator in the k-th cluster, constructed using the sub-
sample Sj,k .

In fact, when constructing MSM, we initially tried to use weights equal to
the posterior probabilities ŵ(k|x, j) = P(k|x, j) of the point x to belong to the
corresponding clusters. Of course, for any point x there exist such clusters that
are located far from it, but nonetheless the corresponding posterior probabilities
ŵ(k|x, j) = P(k|x, j) are not zero. This means that predictions from local approxi-
mators, constructed for these clusters, are taken into account in the mixture (7), thus
introducing the error into prediction.

Experiments showed that an additional significant increase in accuracy of MSM
can be obtained by cutting the weights according to the distance to the cluster; i.e.,
we define the weight according to the formula

w̃(k|x, j) =
{

ŵ(k|x, j) if dj,k(x) ≤ χ2
99%(p),

0 else.
(8)

However, it is obvious that such an approach introduces discontinuities into MSM,
due to which usage of MSM in the optimization process is impossible.

Thus, in order to smooth discontinuities and at the same time additionally pe-
nalize predictions (by decreasing the corresponding weights) which correspond to
clusters lying far away from the considered point x, we have introduced the ap-
proach based on the formula (5). Experiments showed that such an approach is more
robust/accurate compared to other possible approaches.
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4.2.3 Construction of the Classifier and Calculation of the Output Value of
the Surrogate Model

In order to select approximating models f
j
approx(x), j = 0, . . . ,Ny − 1 for calcula-

tion of the prediction f̂ (x), it is proposed to use the classifier fclass(x) ∈ G that is
a usual approximator, constructed on the basis of the whole sample Slearn by GT
Approx. In this case the prediction f̂ (x) for the given input vector x is calculated as
follows:

• Calculate the value fclass(x). Let us denote by #(A) the capacity of the set A,
J (x) = {j ∈ (0, . . . ,Ny − 1) : fclass(x) ∈ [y2j , y2j+1]}. According to the con-

ditions imposed on the decomposition [ymin, ymax] ∈ ⋃Ny−1
j=0 [y2j , y2j+1] of the

output range (see Sect. 4.2.1), it holds that #(J (x)) ∈ {1,2}.
• If #(J (x)) = 1, then calculate the prediction according to the formula f̂ (x) =

f
J(x)
approx(x).

• If #(J (x)) = 2, then, defining by j ∈ J (x) the smallest of the two index values
from the set J (x), calculate the prediction according to the formula

f̂ (x) = f
j
approx(x)

(

1 − v

(
f

j+1
approx(x) − y2j+2

y2j+1 − y2j+2

))

+ f
j+1
approx(x)v

(
f

j+1
approx(x) − y2j+2

y2j+1 − y2j+2

)

,

where v(x) = 3x2 − 2x3. This definition of the weight function v(x) ensures
smooth gluing of the models f

j
approx(x) and f

j+1
approx(x).

4.2.4 Positioning of the Proposed Methodology for Surrogate Model
Construction Among Other Similar Methodologies

As can be seen from reviews [14, 26], the construction of an SM is usually consid-
ered to be just a solution of an approximation problem using conventional approxi-
mation methods such as (see [5, 11, 15]):

• Kriging (Gaussian process regression),
• Artificial neural networks (ANNs),
• Radial basis functions (RBFs),
• Support vector regression (SVR),
• Multivariate nonparametric regression,
• Polynomial regression, etc.

However these standard methods cannot provide sufficient accuracy, especially
when approximating spatially inhomogeneous functions.

Therefore, in [4] a mixture of experts based methodology called IMAGE (Im-
proved Metamodeling Approximation through Gaussian mixture of Experts) for SM
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construction was described. However, we have the following significant differences
between the approach of [4] and the elaborated methodology.

1. Before decomposing the input design space using the GMM and EM algorithm
(as in [4]), it is proposed to:

– perform decomposition of the design space into domains based on output val-
ues. Such an approach is allowed to ensure more accurate approximation in the
region X̃ = {x : f (x) ∈ (1 − ε,1 + ε)}, ε = 0.2.

– perform effective dimension reduction, for which an efficient algorithm based
on Gaussian processes was developed; see [8].

2. Instead of using posterior probabilities as weights in mixture (7) (as in [4]), we
use weights directly based on the Mahalanobis distance from the considered point
x to clusters combined with a sigmoid activation function. This definition allows
the additional penalization of terms in (7) that correspond to clusters located far
away from the considered point x.

3. Instead of using standard approximation techniques (RBF, SVR, etc.), as was
done in [4], the powerful High Dimensional Approximation (HDA) technique,
implemented in GT Approx, is applied. A short description of the HDA algo-
rithm and its comparison with conventional approximation methods are given in
Sect. 4.3.

The IMAGE surrogate modeling approach, based on a mixture of experts (stan-
dard approximation techniques are used as experts, such as RBF, ANN, SVR, etc.)
and described in [4], was extensively compared, using data from the considered
problem (see Sects. 1 and 2), with the global approximation algorithm HDA imple-
mented in GT Approx (see Sect. 4.3). It turned out that:

• HDA provides better accuracy of approximation than conventional methods (see
Sect. 4.3.4 for details),

• HDA global approximation provides better accuracy of approximation than the
IMAGE SM, composed of local experts which were trained using conventional
methods (see Sect. 4.3.5 for details).

Therefore it is reasonable to combine the mixture of experts approach for working
with spatially inhomogeneous functions with the good approximation properties of
HDA. This is done in the proposed framework for SM construction and allows us to
obtain an efficient and accurate solution for the considered problem. See Sect. 5 for
details.

4.3 High-Dimensional Approximation

As was mentioned in Sect. 4.2 (see also Sect. 4.2.2), MACROS GT Approx is
used to construct approximation model g(x) using the given sample Slearn and best-
in-class predictive modeling techniques. For the considered problem, described in
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Sects. 1 and 2, the decision tree built in GT Approx automatically selects the High
Dimensional Approximation (HDA) method, which is efficient in the case of huge
data samples and high input dimensions. The HDA method is briefly described as
follows.

HDA approximator g(x) (see also [9] for details) consists of several basic ap-
proximators gi(x), i = 1,2, . . . , which are iteratively constructed and integrated into
g(x) using a specially elaborated boosting algorithm, until the accuracy of approxi-
mator g(x) stops to increase. In fact,

g(x) = 1

B

B∑

k=1

gk(x), (9)

where the number B of basic approximators gk(x), k = 1,2 . . . ,B is also estimated
by the boosting algorithm. Each gk(x), k = 1,2, . . . is trained on the modified sam-
ple Sk = {(xi , ỹi,k), i = 1, . . . ,Nlearn}, where ỹi,k is some function of (xi , yi) ∈ Slearn
and {ŷi,j = gj (xi ), j = 1,2, . . . , k − 1}. See [7] for details.

In turn, basic approximators gk(x), k = 1,2, . . . ,B are represented as some av-
erages

gk(x) = 1

Mk

Mk∑

l=1

hk,l(x), k = 1,2, . . . ,B

of elementary approximators hk,l(x), l = 1, . . . ,Mk, k = 1,2, . . . ,B , obtained using
multistart on their parameters. The value of Mk is estimated by the HDA training
algorithm. An elementary approximator model is described in the next subsection.

4.3.1 Elementary Approximator Model

A linear expansion of parametric functions from the dictionary is used as an el-
ementary approximator model in HDA; i.e., the elementary approximator has the
form

h(x) =
q∑

j=1

αjψj (x), (10)

where ψj(x), j = 1, . . . , q are some parametric functions. Three main types of para-
metric functions are used (the justification for using these basis functions is given in
[15]), namely:

1. Sigmoid basis function ψj(x) = σ(
∑p

i=1 βj,ixi), where x = (x1, . . . , xp),

σ(z) = ez−1
ez+1 . In order to model sharp features a different parameterization can

be used, namely,

ψj (x) = σ

(∣
∣
∣
∣
∣

p∑

i=1

βj,ixi

∣
∣
∣
∣
∣

σ(αj )+1

sign

(
p∑

i=1

βj,ixi

))

,



376 S. Grihon et al.

where parameter αj is adjusted independently of parameters βj =
(βj,1, . . . , βj,p). The essence is that for big negative values of αj the function
ψj(x) behaves like a step function.

2. Gaussian functions ψj(x) = exp(−‖x − dj‖2
2/σ

2
j ).

3. Linear functions ψj(x) = xj , j = 1,2, . . . , p, x = (x1, . . . , xp).

Thus the index set J = {1, . . . , q} can be decomposed into three parts J = Jlin ∪
Jsigmoid ∪ JGF, where Jlin ⊆ {1, . . . , p} corresponds to the linear part (linear func-
tions), and Jsigmoid and JGF correspond to sigmoid and Gaussian functions, respec-
tively. Therefore, in order to fit the model (10) to the data, we should choose the
number and type of functions q , and estimate their parameters by minimizing the
mean-square error (performance function) on the learning set.

4.3.2 Training of Elementary Approximator Model

Training of the elementary approximator model (10) consists of the following steps:

1. The parameters of the functions from the dictionary are initialized (see descrip-
tion of the algorithm in [3]). An initial number of functions is selected with
redundancy.

2. The model selection is made, i.e., values of q , #(Jsigmoid), and #(JGF) are esti-
mated, and redundant functions are deleted (see the descriptions of algorithms in
[2, 7, 9]).

3. The parameters of the approximator are tuned using a hybrid algorithm based
on regression analysis and gradient optimization methods. At each step of this
algorithm:

• parameters of linear decomposition (10) are estimated using ridge regression
with adaptive selection of regularization parameter, while parameters of the
functions from the decomposition are kept fixed,

• parameters of the functions from the decomposition are tuned using a trust
region based gradient method, while parameters of linear decomposition (10)
are kept fixed.

Additional details of the algorithm can be found in [1, 9].

4.3.3 Positioning of HDA Among Other Approximation Methods

The approximation problem appears in many applications, each of which imposes
its specific requirements on the accuracy and properties of the approximator f̂ (x).
Also, depending on the nature of the data source, the corresponding learning sample
can have different characteristics (for example, the size of the learning sample Nlearn
and input dimension p). It is natural that the selection of the approximation method
should depend on both the requirements of the considered subject domain and the
specific properties of the data. For example, a distinctive feature of many problems
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in biology is a very high input dimensionality Nlearn � p, so application of nonlin-
ear approximation methods for such problems is senseless. In the current work we
consider an approximation problem in the framework of surrogate modeling, which
also imposes its own requirements on the approximation method. The main pecu-
liarity of data samples from this applied domain is a large sample size (Nlearn can be
up to several hundred thousand points), with input dimension p usually of size from
3 up to 50. Typically, the unknown function f has a complex nonlinear structure,
and the approximation quality should be rather high. Along with that, approxima-
tion f̂ should be smooth enough and have continuous derivatives, since very often
an obtained approximation is then used as a cost function (or as an objective) in
some optimization process.

One of the most widespread approximation methods is regression on the basis
of Gaussian processes [25] (in engineering applications the name kriging is usually
used, see [14]). In the framework of this approach it is assumed that approximable
function f can be represented as a linear combination of some known functions (for
example, linear functions) and a realization of a Gaussian process with zero mean
and covariance function from some parametric family. Approximation construction
then reduces to estimation of covariance function parameters using a maximum like-
lihood method, and the coefficients of linear combination can be explicitly obtained
using a least-squares method. Regression based on Gaussian processes is a flexible
model with a rather small number of tunable parameters, and it provides accurate
recovery of nonlinear dependences even in the case of small sample size. More-
over, due to the probabilistic nature of the model, Gaussian process-based regres-
sion provides not only approximation f̂ (defined by the posterior mean), but also an
accuracy evaluation capability (defined by the posterior variance of the process).

However, this approach has shortcomings. When tuning parameters of the covari-
ance function using the maximum likelihood principle, it is necessary to invert the
covariance matrix of size Nlearn ×Nlearn during each iteration of the tuning process,
and the complexity of each inversion is O(N3

learn). Thus, this operation requires a
lot of computational resources (CPU time and memory) for big sample sizes. For
Nlearn � 1,000 such operations cannot be done within a reasonable time on a mod-
ern PC, which restricts the application of kriging if the sample size is big. There
is a solution for this problem, based on an approximation of the covariance matrix
[10, 25] with computational complexity O(Nlearnm

2), where m is the size of some
subsample. A sufficiently big part of the initial sample is taken as the subsample,
which allows us to widen the range of applicability of Gaussian process regression
up to sample sizes equal to 104. Also, the use of a covariance matrix approximation
instead of its true value decreases the approximation accuracy.

The method based on K nearest neighbors suffers from the curse of dimensional-
ity: in the high-dimensional case the notion of vicinity degrades, and the distance to
the nearest points becomes comparable to the distance to the faraway points, which
decreases the approximation quality.

Another very popular approximation method is based on artificial neural net-
works (ANNs) [15, 16], including their special subclass: radial basis functions
(RBFs). The use of ANNs is largely explained on the basis of theoretical results
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(see, for example, [24]), which state that the ANN can provide approximation of a
wide function class with any predefined accuracy. However, in practice this accu-
racy is not usually attained, since the theoretical results do not provide a practical
method on how to construct an ANN (select the structure of the ANN, tune its pa-
rameters) for the given data sample Slearn. Nevertheless, an ANN is a flexible model
which can be easily extended (by increasing the number of layers and/or their sizes)
if the sample size grows. This flexibility also has drawbacks: ANN-based models
have a lot of parameters (especially when there are many hidden layers), which pre-
vents us from constructing robust/accurate approximations when only samples with
small sizes are available. Moreover, model selection for an ANN is a very heuristic
process.

The standard approach for tuning ANN parameters is an error backpropagation
algorithm. Other methods exist for the tuning of parameters, which have faster con-
vergence, for example, second-order methods, methods with adaptive learning rate,
etc. However, these methods do not take into account the specific structure of the
ANN, and in fact can be considered as applications of standard numerical optimiza-
tion methods for tuning parameters in nonlinear regression. Also, the constructed
approximation significantly depends on the (random) initialization of ANN param-
eters and (random) split of the learning sample into training and validation subsam-
ples. So, ANN-based methods are rather flexible, but not very reliable for approxi-
mation construction.

For applications it is enough to consider only a two-layer perceptron as an ANN.
Usually the hidden layer is composed either from sigmoid-type or RBF-type func-
tions. However, in fact functions of different types can be mixed in one hidden
layer, including, e.g., sigmoids, RBFs, and wavelets. A generalization of the two-
layer perceptron can then be obtained with representation like that of Eq. (10). We
call this kind of generalization approximation by linear decomposition in nonlinear
functions from a parametric dictionary and we use the corresponding model as a
base model in the HDA algorithm.

A typical algorithm for ANN learning can be decomposed into the following
steps:

• Selection of the ANN structure,
• Random initialization of parameters,
• Random splitting of the learning sample into training and validation subsamples,
• Tuning of parameters using some gradient method for minimizing the mean-

square error on the training subsample until the error on the validation subsample
begins to increase.

However, such algorithms are mainly tailored for ANNs with general structure and
do not take into account any specific structure of the model like (10). Therefore,
in the HDA framework for all of these steps we have developed specific algo-
rithms, which provide better results compared to the typical algorithms realized in
commercial software. This allows us to obtain a good approximation accuracy; see
Sect. 4.3.4 for more details.
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4.3.4 Results of HDA Comparison with Conventional Approximation
Methods

There are two possible ways to estimate the quality of the proposed approximation
method. The first way is to check compliance with the requirements on accuracy,
which are necessary for successful SM application. These requirements can be ob-
tained only from the engineer and vary greatly for different problems. The second,
more universal, method is to compare the quality of the proposed approach with
conventional methods for approximation. We will consider realizations of such con-
ventional methods in the software toolkits MatLab [17], modeFrontier [18], which
are widely used in many industrial companies. In each of these software toolkits
there are several methods for approximation of multidimensional dependency, in-
cluding ANNs, regression based on Gaussian processes, etc.

A priori two main shortcomings of these toolkits can be pointed out. First, in
order to select a particular approximation method for solving a given problem, an
engineer must have either some knowledge of machine learning or must perform
numerical experiments using all available approximation methods. Otherwise, one
might select an approximation method which does not provide the best approxi-
mation quality. Moreover, many implemented approximation methods have strong
limitations on the input dimension p and sample size Nlearn, which in general de-
creases the approximation quality.

Let us consider the results on some indicative problems, covering a wide range
of sample sizes and input dimensions (these results were obtained in 2010 during
work on the PhD thesis):

• Airplane fuselage composite structure design (data from the Airbus in-house sta-
bility tools approximation problem considered here; see also [6] for details),

• Radiator characteristics modeling using dipoles,
• Fuel consumption of an airplane engine.

The accuracy of approximation is estimated using the square root of an error (3) on
the test set, divided by the range of the corresponding output.

Remark 1 For the data from the airplane fuselage composite structure design prob-
lem, all computational experiments were made on the so-called accuracy domain
X̃ = {x : RF(x) ∈ (1 − ε,1 + ε)}, ε = 0.2. This means that the training (1) and test
samples had the forms S̃learn = {(x, y) ∈ Slearn : x ∈ X̃} and S̃test = {(x, y) ∈ Stest :
x ∈ X̃}, respectively.

The results of the approximation accuracy comparison are given in Table 1.
Further, let us consider a significantly bigger set of problems (including three

problems considered above), based on data from physical experiments or from sim-
ulation experiments with some physical model. The characteristics of the corre-
sponding learning samples are rather diverse:

• Input dimension p varies from 2 to 435; the output dimension varies from 1 to
100.
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Table 1 Relative approximation errors

Problem name Composite structure Dipole Fuel cons.

Dimension p 16 7 3

Sample size Nlearn 50,000 5,000 351

MACROS HDA 0.0120 0.0019 0.0044

MatLab Linear reg. 0.0806 0.1137 0.2075

Quadratic reg. 0.0525 0.0971 0.1180

RBF 0.0454 0.0246 0.0172

modeFrontier K-nearest 0.0753 0.0811 0.0777

Anisotropic kriging 0.0804 0.0071 0.0126

Kriging 0.0496 0.0359 0.1845

RBF 0.0496 0.0177 0.0375

ANN 0.0503 0.0037 0.0147

Evolutionary design 0.2242 0.1570 0.0266

Gaussian processes 0.0898 0.0612 0.0211

• The size of the learning sample is up to 65,000 points.
• The number of considered problems is 30.

For each of these problems we constructed approximations using all available meth-
ods. For convenient representation of the comparison results on the full set of prob-
lems we used the visualization method described in [13]. This approach provides
a graphical comparison of approximations accuracies for several considered meth-
ods and a large number of test problems. Let us briefly describe this visualization
method using the following notation:

• Mk,k = 1, . . . ,K are considered approximation methods,
• Pl, l = 1, . . . ,L are considered test problems,
• e(Mk,Pl) is a root mean square approximation error for the approximator, con-

structed using method Mk on the problem Pl ,
• ẽ(Pl) = mink e(Mk,Pl) is a minimal (among all available approximation meth-

ods) error for the problem Pl .

For any method Mk and scaling factor a ≥ 1 let us define the following quantity:

Pk(a) = #{l : e(Mk,Pl) ≤ a · ẽ(Pl)}
L

.

In fact, the quantity Pk(a) shows on which part of problems approximation errors
of the method Mk are not a times bigger than minimal (among methods) approx-
imation errors for the corresponding problems. In particular, Pk(1) is equal to the
fraction of problems for which the method Mk provides the smallest approximation
error.
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Fig. 7 Results of comparison

According to the obtained results (see Fig. 7), on 65 % of problems the HDA
algorithm has the smallest error of approximation. Moreover, profile P(a) of the
HDA algorithm converges to 1 rather fast, which also shows its robustness. There-
fore, this algorithm provides significantly better accuracy compared to conventional
methods, realized in commercial products. Similar results were obtained during the
internal comparison of GT Approx in Airbus with in-house software realizing dif-
ferent approximation methods.

4.3.5 Comparison of HDA with IMAGE

A comparison of IMAGE and HDA with conventional methods on the problem of
Airbus in-house stability tools approximation showed that these methods had a sig-
nificantly bigger accuracy than that of the conventional ones (for IMAGE see [4]
and for HDA see [6], Sect. 4.3.4). Therefore, the main goal of this section is to
compare the accuracies of IMAGE and HDA.

4.3.6 Setup of Experiments

The setup of the experiments can be described as follows:

• Input dimension p = 20, input vector defines geometries, material properties, etc.
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• Typical learning sample size, used for construction of an approximation, is
Nlearn ∼ 200 000.

• Output characteristics consist of various reserve factors (RF for stringer local
buckling, RF for skin local buckling, etc.) and strain values at different locations,
also considering bending. The number of output characteristics to approximate is
equal to 25.

An RF indicates whether the structure is feasible with respect to a given failure
mode. If the RF is greater than one, the structure is feasible. If the RF is less than
one it is not feasible. Therefore, when modeling the dependency of an RF on a
vector of design variables x, the highest possible accuracy should be provided for
values of RF close to one. Thus for each output characteristic two domains were
identified, X1 = {x ∈ X : f (x) ∈ [0.5,1.5]} and X2 = {x ∈ X : f (x) ∈ [0,3]}, and
for each of these domains an approximator was constructed using the corresponding
train sample. Let us denote these approximators as f̂1 and f̂2, respectively.

As accuracy indicators we used Emean (mean absolute error), Eq95 (95 %
quantile absolute error), and Eq99 (99 % quantile absolute error). Accuracy in-
dicators were estimated using separate test samples for sets X1,1 = {x ∈ X : f (x) ∈
[0.8,1.2]} and X1,2 = {x ∈ X : f (x) ∈ [1.2,1.5]} in the case of approximator f̂1 and
for sets X2,1 = {x ∈ X : f (x) ∈ [0,1.5]} and X2,2 = {x ∈ X : f (x) ∈ [1.5,3]} in the
case of approximator f̂2.

4.3.7 Obtained Results

Due to lack of space, detailed results are given only for two RFs: RF for stringer
local buckling (RF STR, see Table 2) and RF for first skin buckling mode (RF PND
GEN, see Table 3). We can see that HDA provides significantly higher accuracy.

Let us consider the fraction of cases (out of 50) for which the considered ap-
proximation method has the smallest error (of considered type); see the results in
Table 4. We can see that for most cases HDA achieves the smallest approximation
errors.

Let us quantify to what extent on average the accuracy of HDA is higher than the
accuracy of IMAGE. We denote by E(M) an approximation error of some particular
type, obtained by a method M on some test problem, 
(M1,M2) = (E(M1) −
E(M2))/E(M1) · 100 % for some two methods M1 and M2. Then the average gain
(AvgGain) of using M2 instead of M1 is equal to the average of positive values of

(M1,M2) over all considered problems. Analogously, the average loss (AvgLoss)
of using M2 instead of M1 is equal to the average of negative values of 
(M1,M2)

over all considered problems. The obtained results for IMAGE (M1) and HDA (M2)
are given in Table 5. We can see that HDA is significantly more accurate.
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Table 2 Accuracy Indicators for RF STR

Error IMAGE HDA

30 experts 40 experts 45 experts 50 experts

f̂1 for RF STR

x ∈ X1,1 Emean 0.0579 0.0172 0.0279 0.0295 0.0046

Eq95 0.2403 0.1115 0.1528 0.1665 0.0145

Eq99 0.3435 0.1873 0.2453 0.2609 0.0362

x ∈ X1,2 Emean 0.0982 0.0323 0.0462 0.0492 0.0078

Eq95 0.3639 0.1427 0.1952 0.2122 0.0219

Eq99 0.5378 0.3024 0.3588 0.3782 0.0893

f̂2 for RF STR

x ∈ X2,1 Emean 0.1105 0.1039 0.0990 0.0961 0.0056

Eq95 0.3829 0.3636 0.3530 0.3451 0.0191

Eq99 0.5785 0.5526 0.5350 0.5479 0.0599

x ∈ X2,2 Emean 0.2395 0.2294 0.2254 0.2208 0.0186

Eq95 0.7099 0.7079 0.6857 0.6734 0.0525

Eq99 1.2116 1.2142 1.2116 1.1529 0.1807

Table 3 Accuracy indicators for RF PND GEN

Error IMAGE HDA

30 experts 40 experts 45 experts 50 experts

f̂1 for RF PND GEN

x ∈ X1,1 Emean 0.0526 0.0575 0.0577 0.0596 0.0399

Eq95 0.2092 0.2212 0.2134 0.2196 0.1136

Eq99 0.3060 0.3153 0.2931 0.2991 0.1784

x ∈ X1,2 Emean 0.0829 0.0849 0.0841 0.0854 0.0579

Eq95 0.2656 0.2652 0.2528 0.2650 0.1753

Eq99 0.4085 0.3960 0.3900 0.3981 0.2926

f̂2 for RF PND GEN

x ∈ X2,1 Emean 0.2679 0.2555 0.2500 0.2498 0.0530

Eq95 0.6374 0.5808 0.5983 0.6011 0.1623

Eq99 0.8298 0.7671 0.7793 0.7967 0.2655

x ∈ X2,2 Emean 0.2731 0.2597 0.2538 0.2470 0.1039

Eq95 0.7476 0.7033 0.6893 0.6745 0.3238

Eq99 1.0702 1.0016 0.9907 0.9784 0.5705
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Table 4 Fraction of cases
Error HDA IMAGE

Emean 0.853 0.147

Eq95 0.941 0.059

Eq99 1 0.000

Table 5 Average gain and
loss Error HDA vs IMAGE

Emean AvgGain (%) 56.20

AvgLoss (%) −8.02

Eq95 AvgGain (%) 54.27

AvgLoss (%) −1.65

Emean AvgGain (%) 48.56

AvgLoss (%) 0.00

5 Results of Optimization Based on Skill Tool and MSM

In this section some results of using SMs in the pre-sizing optimization tool COM-
BOX for composite structures are presented. The classical skill tool called PS3
(Plane Super-Stiffener Sizing) was replaced by the MACROS Surrogate Model
(MSM). The objective of this study was to check the impact of this replacement
on the accuracy, on the convergence of the optimization process, and on the run
time.

5.1 Optimization Runs

In this study the optimization was performed on the wing lower and upper covers,
as described in Fig. 8. Two test cases for the optimization study were considered
corresponding to two starting points:

• The first one is close to an optimal design, obtained by using only the PS3 skill
tool.

• The second one is a heavy one, where all design variables are set to their upper
bound. This last run illustrates the behavior using SMs for a complete optimiza-
tion run.

For each test case, the first run was done with MSM (until convergence), and then
update and restart with PS3 was performed. Due to limited space only some repre-
sentative results are shown.
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Fig. 8 A30X wing stress model

Fig. 9 Evolution of the objective function for initial starting point

5.1.1 Optimization Runs: Initial Starting Point

The comparison with the pure PS3 run is presented in Fig. 9 (solid black-gray curve
corresponds to MSM and subsequent update with PS3; dashed curve corresponds to
the run with only PS3).
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Fig. 10 Evolution of the objective function for heavy starting point

We can observe a more chaotic evolution with PS3 which is not only due to
proximity to the optimal solution, but is also linked to some discontinuities in the
RFs calculated with PS3.

5.1.2 Optimization Runs: Heavy Starting Point

The evolution of the objective value is given in Fig. 10 (black solid curve cor-
responds to MSM, gray solid curve corresponds to restart from MSM with PS3,
dashed curve corresponds to PS3 only). We observe a smooth evolution with both
MSM (SM is a continuous function) and PS3 (the behavior of PS3 is smoother than
in the previous run, since the starting point is not as close to the optimal design), but
the evolution is nevertheless smoother with MSM.

The evolution of the numbers of violated constraints is given in Fig. 11 and sat-
urated constraints is given in Fig. 12. The peak at the beginning of the left plot
appears due to the strategy of active constraints. We can observe an increase of the
number of violated constraints when updating the model (due to the switch of skill
tool) and after a quick decrease of it. A decrease of the number of saturated con-
straints at iteration six occurs due to the reactualization of the active constraints and
the identification of new violated constraints; a decrease of the number of saturated
constraints from MSM to restart with PS3 occurs due to the switch of the skill tool.
The restart with PS3 presents less saturated constraints than MSM. This proves a
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Fig. 11 Evolution of the number of violated constraints

Fig. 12 Evolution of the number of saturated constraints

better quality of the optimum found with MSM, which is linked to the smoothness
and mathematical differentiability of MSM, in contrast to PS3.
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Fig. 13 Run Time (hh/mm/ss) for MACROS 14.1/PS3 V4/MACROS 10 on iterations 1 and 2

5.2 Execution Time

The objective of this study was to compare the run time of the MSM and PS3 skill
tools for one iteration of the optimization process. The study was done on test case
1 (initial point), during the first two iterations. The sequence of computations for
one iteration is the following:

• NASTRAN SOL200: for internal load update and sensitivity analysis,
• Computation of the RFs corresponding to the current design with the PS3 stress

process or the MSM,
• Computation of the interregional constraints corresponding to the current design,
• Computation (by using PS3 or MSM) of the sensitivities for all the RFs,
• Computation of the sensitivities for the interregional constraints.

We observed an overall gain factor of at least 2.5 by using MSM instead of PS3
(because of the acceleration of the steps MACROS or PS3 Nominal and MACROS
or PS3 Sensitivities, see Fig. 13). Since MSM provides very fast analytical compu-
tation of sensitivities, further significant speedup can be obtained by using analyt-
ical sensitivity computations instead of numerical ones. The speedup factor is less
than expected, because much system time is spent in the management of jobs via
IBM Platform LSF (Load Sharing Facility, a workload management platform for
demanding, distributed HPC environments, see [22]).
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Fig. 14 Check with PS3 of optimum results found with MACROS SM
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5.3 Check of Reserve Factors

A check of RFs was performed with the optimum based on MSM. The results are
presented in Fig. 14. These results show a satisfactory accuracy for a pre-sizing
result, according to Airbus experts, considering that a pre-sizing is always to be re-
engineered including, e.g., manufacturing constraints. Work is ongoing to further
improve the accuracy.

6 Conclusion

A constructed MACROS Surrogate Model (MSM) was embedded into the pre-
sizing optimization process of A350XWB boxes realized in the pre-sizing tool
COMBOX for checking the validity of the approximation and its usage as a con-
straint in an optimization process. An analysis/comparison of optimization results
based on a skill tool and optimization results based on the constructed MSM was
performed and showed that MSM:

• gives a high accuracy of approximation (see also [6]),
• allows one to obtain smoother convergence in fewer iterations with a smoother

distribution of thickness/stringer dimensions and a small violation of constraints,
which could be easily repaired at the detailed design phase,

• provides a reduction of structure optimization computational time from several
days to a few hours.
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