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Abstract The main challenges in full-scale aerospace systems development are re-
lated to the level of our understanding with respect to the systems behaviour. Com-
putational modelling, through high-fidelity simulations, provides a viable approach
towards efficient implementation of the design specifications and enhancing our un-
derstanding of the system’s response. Although high-fidelity modelling provides
valuable information the associated computational cost restricts its applicability to
full-scaled systems. This chapter presents a Computational Fluid Dynamics optimi-
sation strategy based on surrogate modelling for obtaining high-fidelity predictions
of aerodynamic forces and aerodynamic efficiency. An Aerodynamic Shape Opti-
misation problem is formulated and solved using Genetic Algorithm with surrogate
models in the place of actual computational fluid dynamics algorithms. Ordinary
Kriging approach and Hammersley Sequence Sampling plan are used to construct
the surrogate models.

Keywords Surrogate models · Surrogate-based optimisation · Aerodynamic shape
optimisation · Supervised machine learning

1 Introduction

The computational cost involved in performing numerical simulations for designing
and optimising various engineering systems, such as aircraft wings, has been con-
tinuously increasing. From an engineering perspective, the design process is crucial
for achieving maximum efficiency with the minimum possible cost and within the
manufacturing restrictions. In the context of aircraft wings, aerodynamic shape op-
timisation (ASO) techniques are of great importance for designing a lifting surface
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with maximum aerodynamic efficiency. In ASO, aerodynamic constraints such as
flow properties, Mach number (M), etc. alone are taken into account, in contrast
to multidisciplinary design optimisation (MDO) where constraints from various (fi-
nancial, structural, manufacturing, etc.) disciplines are considered. As the number
of influencing disciplines increases, the complexity of the optimisation problem in-
creases.

The constraints of the optimisation problem define the spectrum of the design
variables and strongly influence the search space where the optimal solution lies.
Parameterisation parameters, which will parameterise the geometry of the engineer-
ing system to be optimised, serve as a part of the design variables of the optimisation
problem. Since the number of design variables directly influences the complexity
of the problem, various parameterisation approaches such as the discrete point ap-
proach, partial differential equation approach and polynomial approach have been
developed with the intention of simplifying the parameter space without compro-
mising the accurate description of the geometry [1].

Once the geometry is generated, the flow-governing equations can be solved on a
suitable mesh using a high- (computationally very intensive) or low-fidelity (compu-
tationally less intensive) solver based on the availability of computational resources
and time. The solution algorithm is the most time-consuming part of an optimisa-
tion approach, since the entire simulation process must be repeated several times
within the optimiser until an optimum solution is obtained or the entire search space
is explored.

The optimisation schemes can be broadly classified into two different categories:
gradient-based optimisation schemes and evolutionary optimisation schemes. The
choice of the starting point becomes increasingly important in gradient-based opti-
misation schemes, as they are more likely to be converged or stuck into local optima
[2, 3]. The non-derivative methods are more powerful in finding the global opti-
mum within the given search space; however they are lacking in terms of finding
the exact global optimum [2, 3]. These characteristics are given by the concepts
of exploration (ability to find the location of the global optimum without getting
trapped in a local extremum) and exploitation (ability to exploit the exact optimum
solution).

The cost of the ASO process increases by several orders of magnitude when
the actual, computationally expensive solution algorithms are employed for resolv-
ing the fluid flow [4]. Consequently, the computational cost becomes prohibitively
expensive, and a need arises to use well-tuned optimisation methods in order to
efficiently identify the optimum configurations within the design space. The com-
putational limitations become more apparent when numerically demanding solution
methods, such as computational fluid dynamics (CFD), are coupled with the opti-
miser. As a consequence, the fidelity of the analysis at the early stages of the design
process is sacrificed with the aim of reducing the overall computational burden.
In order to circumvent this problem, the use of approximation models has become
more popular in recent years in imitating complex solution algorithms due to their
quick response and reduced computing requirements. Within this framework, ap-
proximation models are constructed for computationally demanding solution algo-
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Fig. 1 Work flow of the problem

rithms and, further, are used in the place of actual solution algorithms during the
optimisation [5, 6].

The process of constructing an approximation model usually involves the fol-
lowing steps: (a) generation of computational data, (b) learning from the collected
computational data, and (c) constructing a surrogate model based on the learning.
Various approaches such as polynomial regression, response surfaces, neural net-
works and kriging are used to construct the approximation models [4, 7].

In this chapter, in order to show the advantage of surrogate-assisted optimisation,
an ASO problem is formulated to identify the best possible airfoil geometry which
will have an improved aerodynamic efficiency for the given flow, structural and
aerodynamic conditions. The aerodynamic efficiency (E) is defined as the ratio of
lift to drag. Lift and drag are the vertical and horizontal forces, respectively, which
act on an airfoil when it is introduced into the airflow. These forces are primarily
responsible for the aerodynamic efficiency of an airfoil. The example problem for-
mulated in this chapter considers the NACA 2411 airfoil geometry as the baseline
shape to be optimised. The airfoil is assumed to be introduced into a viscous, com-
pressible and low turbulence airflow with M varying between 0.1 and 0.6 at a fixed
angle of attack of 5.0◦. The formulated problem is solved to optimise the baseline
airfoil in the assumed airflow conditions. Figure 1 depicts the work flow involved in
solving the formulated optimisation problem.
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Fig. 2 PARSEC control parameters

2 Methodology

This section provides an overview of the methodology used in this chapter and
is structured as follows. Section 2.1 describes the parameterisation method em-
ployed, called PARSEC, Sect. 2.2 describes the sampling algorithm used, Sect. 2.3
describes the construction of approximation models using the OK approach, and
finally Sect. 2.4 provides the overall optimisation procedure.

2.1 Parameterisation

PARSEC is a parameterisation scheme which describes the lower and the upper sur-
face of an airfoil independently using a sixth order polynomial [8]. In this approach,
the shape of the airfoil is controlled by the following 11 parameters [9, 10]: leading
edge radius (Rle), upper crest point (yup), lower crest point (ylo), position of upper
crest (xup), position of lower crest (xlo), upper crest curvature (yxxup), lower crest
curvature (yxxlo), trailing edge thickness (Tte), trailing edge offset (Toff), trailing
edge wedge angle (βte), trailing edge direction angle (αte). These parameters are
shown in Fig. 2 [8].

Rle is divided into lower leading edge radius (Rleu) and upper leading edge radius
(Rlel) in order to increase the accuracy of the method near the leading edge. Hence,
12 design parameters are used instead of the typical 11 parameters [11].

The mathematical formulation of the approach is given by Eqs. (1) and (2) for
the upper and lower surfaces of the airfoil, respectively [1, 11, 12].

yu =
6∑

i=1

aix
i−(1/2), (1)

yl =
6∑

i=1

bix
i−(1/2), (2)

where, yu is the required y co-ordinate for the upper surface, yl is the required
y co-ordinate for the lower surface, x is the non-dimensional chord-wise location
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(chord (c) is assumed to be 1) and ai and bi are the coefficients to be solved. The
surface of the airfoil is obtained from the solution of the above two equations subject
to the following geometrical conditions: (1) at x = maximum, y = maximum, (2) at

x = maximum, dy
dx

= 0, (3) at x = maximum, d2y
dx2 = maximum, (4) at xup = 1, yup =

Toff + TTE
2 , (5) at xlo = 1, ylo = Toff − TTE

2 , (6) at xup = 1, dyup
dx

= tan(αTE − βTE
2 ),

(7) at xlo = 1, dylo
dx

= tan(αTE + βTE
2 ).

2.2 Sample Generation

The Hammersley sequence sampling (HSS) technique is a low-discrepancy sam-
pling approach that generates N sample points in a k-dimensional hypercube [13].
Each sample point that falls within the design space constitutes a design point by
defining the design variables. For measuring the deviation of the generated sam-
ple points from a uniform distribution a quantitative criterion is employed, called
the discrepancy [14]. It is always desired to have a more uniform distribution of
the sample points within the design space, since it increases the efficiency of the
learning from the collected data during the construction of surrogate models. An
extensive description regarding the HSS technique can be found in Kalagnanam and
Diwekar [15].

In this approach, an integer n is represented by the radix-R notation as shown
below [15]:

n ≡ nmnm−1 · · ·n2n1n0, (3)

n = n0 + n1R + n2R
2 + · · · + nmRm, (4)

where m = [logR n] = [ lnn
lnR

] is the integer portion of logR n. For example, the integer
1,256 has p0 = 6, p1 = 5, p2 = 2, p3 = 1, R = 10 and m = 3 in the radix-10
notation [14]. The inverse radix number, which is defined as a unique fractional
value located between 0 and 1, is obtained by reversing the order of the digits of the
integer around the decimal point [14]:

φR(n) = .n0n1n2 · · ·nm, (5)

φR(n) = n0R
−1 + n1R

−2 + · · · + nmR−m−1. (6)

The HSS algorithm generates N sample points in a k-dimensional hypercube
using the following relation [14]:

xk(n) =
(

n

N
,φR1(n),φR2(n), . . . , φRk−1(n)

)
,

n = 0,1,2, . . . ,N − 1, (7)

where R1,R2, . . . ,Rk−1 represent the first k−1 prime numbers. For the opted prob-
lem, ten PARSEC parameters (Tte and Toff are fixed due to structural and aerody-
namic constraints) together with M serve as the design variables.
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2.3 Surrogate Model Construction

Kriging techniques are employed for interpolations of random responses and are
based on stochastic processes. In the case of ordinary kriging (OK), the mathemati-
cal expression for the function is defined as

f̂ (xp) =
N∑

i=1

γi(xp)f (xi) ∀xp ∈ S, (8)

where f̂ is the linear estimator function for f , γi(xp) is the weighting function and
xp is a vector of sample points in the design space, which in our case is defined
through the range of values of ten PARSEC parameters along with M and is denoted
by S ⊂ R

11.
Since the OK model is an isotropic stationary model [16], it is implied that the

covariance of f between two sample points is described by a function which is
solely based on the distance between the two sample points rather than their exact
locations. It can be expressed as

C
[
f (xa), f (xb)

] = C
(|xa − xb|

)
. (9)

C[f (xa), f (xb)] is often expressed by the covariance matrix as [16]

C =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 2 = C(0) C(‖x1 − x2‖) . . . C(‖x1 − xN‖)
C(‖x2 − x1‖) σ 2 . . . C(‖x2 − xN‖)

...
...

. . .
...

C(‖xN − x1‖) C(‖xN − x2‖) . . . σ 2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (10)

where σ 2 is the variance of the sample points. For the unknown sample point xp ∈ S,
the covariance vector (−→c ) and the weighting functions vector can be expressed as
[16]

−→
c (xp) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C(‖xp − x1‖)
C(‖xp − x2‖)

...

C(‖xp − xN‖)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
; γi(xp) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ1(xp)

γ2(xp)
...

γN(xp)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (11)

Since it is an isotropic stationary model, the sum of all the weighting functions
should be equal to 1, as given in Eq. (12). Hence the covariance matrix and covari-
ance vector are then expressed as Eqs. (13) and (14), respectively.

N∑

i=1

γi(xp) = 1 ∀xp ∈ S, (12)
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C =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2 = C(0) C(‖x1 − x2‖) . . . C(‖x1 − xN‖) 1

C(‖x2 − x1‖) σ 2 . . . C(‖x2 − xN‖) 1

...
...

. . .
...

...

C(‖xN − x1‖) C(‖xN − x2‖) . . . σ 2 1

1 1 . . . 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (13)

c(xp) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C(‖xp − x1‖)
C(‖xp − x2‖)

...

C(‖xp − xn‖)
1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (14)

A Lagrange multiplier (λxp ) is introduced in the weighting functions vector in
order to enforce the unbiasedness constraint of the OK model. Hence the weighting
functions vector becomes:

γi(xp) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ1(xp)

γ2(xp)
...

γN(xp)

λxp

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (15)

The weighting functions are calculated using the covariance matrix and covari-
ance vector as given by the following relation:

γi(xp) = C−1c(xp). (16)

Since the predicted value of the response at an unknown sample point is always
different from the actual value at that sample point, an error measure is introduced to
measure the prediction capability of the OK model. This measure of error is known
as the estimation error (ep) and is defined as follows:

ep = f̂ (xp) − f (xp), (17)

where f (xp) is the actual value at an unknown point xp ∈ S. If the weighting func-
tions are obtained in such a way that they will reduce the variance of the estimation
error, then a function predictor with optimal prediction capability can be obtained.
The error variance can be computed using the following expression:

V (ep) =
N∑

i=1

(
c(xp)γi(xp)

)
. (18)

Since the covariogram function is arbitrarily computed from the observed data,
a suitable theoretical variogram model should be used to fit the experimental vari-
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ogram model, so that the kriging equations become solvable. Generally, the selec-
tion of a suitable theoretical variogram model is carried out using maximum likeli-
hood estimation (MLE) or cross-validation (CV) approaches. For the current prob-
lem, the following theoretical variogram models are employed and the most suitable
one is selected based on the MLE approach.

• Gaussian model with actual range:

C(h) = sill

(
1 − exp

( −h2

range2

))
(19)

• Gaussian model with practical range:

C(h) = sill

(
1 − exp

( −3h2

prange2

))
(20)

• Spherical model with actual range:

C(h) = sill

((
3.0

2.0

)(
h

range

)
− 0.5

(
h

range

)3)
(21)

• Exponential model with actual range:

C(h) = sill

(
1 − exp

( −h

range

))
(22)

• Exponential model with practical range:

C(h) = sill

(
1 − exp

( −3h

prange

))
, (23)

where h is the isotropic lag defined as the distance between two sample points in S.
In the semivariogram, the lag value at which the semivariance becomes constant is
called the range, and the corresponding semivariance value is called the sill. The
practical range is the value of the lag at which 0.94 % of the sill is achieved.

2.4 Aerodynamic Shape Optimisation

A genetic algorithm (GA), which is one of a class of evolutionary algorithms where
the evolution is based on the theory of the mechanics of natural selection and the
evolution process, is used to carry out the optimisation problem. Here the optimi-
sation parameters are described by a group of genes called chromosomes [17–20];
each chromosome is a binary string which describes an individual (i.e. a sample
point). In the current problem, the PARSEC parameters Tte and Toff are fixed during
the optimisation along with the flow parameter α. This is done to avoid the evolution
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Fig. 3 Genetic algorithm approach

of airfoils with trailing edge thickness and trailing edge offset during the optimisa-
tion. The parameter α is fixed because the optimisation procedure is carried out for
a fixed value of (α = 5.0◦) angle of attack. These two fixed parameters will also
ensure the satisfaction of the structural and aerodynamic constraints of the current
problem. Hence, the remaining ten PARSEC parameters along with the flow param-
eter, M , serve as the optimisation parameters in the current problem. The typical
work flow of the GA is depicted in Fig. 3 and is discussed further below.

2.4.1 Search Space

The search space for the current problem is defined by the range of values of the ten
PARSEC parameters and M and their required decimal accuracy. For each optimisa-
tion parameter, the required accuracy of the decimal place (d) can be specified.
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Once d is specified, the domain length for a particular optimisation parameter
can be expressed as follows [21]:

Domain length = 10d(Xu − Xl), (24)

where Xu and Xl are the upper and lower bound values of the optimisation parame-
ter, respectively. The binary string corresponding to the parameter X is expressed as
bm−1, bm−2, . . . , b1, b0, which will be equal to X′ = ∑m

i=1(bi2i ). The value of m,
which is defined to specify the number of possibilities for a given ‘d’, can be chosen
as [21]

2m−1 < 10d(Xu − Xl) < 2m. (25)

All the optimisation parameters are represented as binary strings of length (Li )
and combined as a single binary string. The length of the single binary string (Lk)
can be calculated as follows:

Lk =
k∑

i=1

Li, (26)

where k is the number of optimisation parameters, which is equal to n in the current
problem. The first L1 binary strings of the single binary string (Lk) correspond to the
first optimisation parameter, the second L2 binary strings correspond to the second
optimisation parameter and so on.

2.4.2 Initial Population

The random number approach is employed to generate the initial pool of optimisa-
tion parameters. In this approach, a random number is generated between 0 and 1.
If the random number is between 0 and 0.5, then the bit is considered as 0, whereas
if it lies between 0.5 and 1, then the bit is set to 1. The size of the initial population
can be controlled by a parameter called popsize.

2.4.3 Selection of Parents

Individuals (containing the optimisation parameters) are selected from the pool of
the initial population and placed into the mating pool. These individuals are fur-
ther used for mating and generating new offspring. Since the characters of these
individuals are passed to the next generation, only the individuals who have desir-
able properties are selected. This is accomplished by the tournament wheel selec-
tion technique. In this approach, a tournament is defined among the individuals by
specifying a selection pressure. The individuals with higher fitness are considered
as winners of the tournament and will be placed in the mating pool [22]. The fit-
ness function (P(i)) is evaluated by calculating the total objective function (F ) as
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follows:

f (i) = obj(Vi), i = 1,popsize, (27)

F =
popsize∑

i=1

(
f (i)

); P(i) = f (i)

F
, (28)

where f (i) (different from the f (x) defined in the OK section) is the objective
function to be optimised and V is the set of optimisation parameters. The process of
selection holds some important properties: (a) Best individuals are preferred but not
always selected. (b) Worst individuals are not always excluded in order to maintain
the variability in each generation.

2.4.4 Crossover

Crossover is performed to combine the desirable characters of two different parents
who are selected for mating. The method of crossover depends on the kind of prob-
lem to be solved and the method of encoding. For the current problem, the uniform
crossover approach is employed. In this approach, a crossover probability (pc) is
defined and a probability test is performed for each bit in the bit string. If passed,
then the bits are randomly exchanged between the two parents selected for mating
[23].

2.4.5 Mutation

Mutation is performed in order to refine the process of mating. Here a mutation
probability (pm) is defined and the probability test is performed on each bit in the
bit stream. If passed, the bit is flipped directly. If not passed, the bit is generated ran-
domly and compared with the current one. If the randomly generated bit is different
from the original bit, then the original bit is flipped [23].

2.4.6 Fitness Evaluation

Fitness evaluation is the process of evaluating the objective function for each set of
optimisation parameters. Based on the fitness of the new offspring, they are consid-
ered as new parents and selected for further mating. This process is repeated until
the convergence is achieved. The following fitness criterion is used in the current
problem to select the best possible airfoil geometries:

Fitness(f ) = obj(E) = obj

(
(Cl)High-fidelity

(Cd)High-fidelity

)
, (29)

where (Cl)High-fidelity and (Cd)High-fidelity are the high-fidelity coefficient of lift and
the high-fidelity coefficient of drag, respectively. The method of estimating their
values is described in the following section.
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Table 1 Design variables
and their ranges of values Var. No. Design variable Lower bound Upper bound

01 Rleu 0.020 0.023

02 Rlel 0.006 0.010

03 xup 0.300 0.380

04 yup 0.077 0.080

05 yxxup −0.630 −0.650

06 xlo 0.160 0.180

07 ylo −0.032 −0.034

08 yxxlo 0.660 0.680

09 αte −4.700 −4.800

10 βte 15.00 15.10

11 M 0.100 0.600

Fig. 4 Number of HS sample points: 20

3 Results and Analysis

Computer-based simulations must be performed at the optimal sample points gener-
ated by the HSS algorithm to obtain data. The collected data are used to initiate the
learning process during the construction of surrogate models. As discussed earlier,
the dimension (n) and the design space of the current problem are 11 and S ⊂ R

11,
respectively. Table 1 gives the design variables and their ranges of values for the
current problem.

A sample point has ten PARSEC parameters and M . 50 (N ) such sample points
are generated where the simulations need to be performed. The HSS technique gen-
erates uniform sample points in an unstructured way. Figures 4 and 5 show the
uniformity and space-filling properties of the Hammersley sequence (HS) sample
points. These sample points are generated for a two-dimensional problem defined
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Fig. 5 Number of HS sample points: 50

in the design space of [0,1]2. It can be seen from these figures that the HSS tech-
nique retains its uniformity and space-filling properties irrespective of the number
of sample points. Observe also that the sample points are spread over the interior of
the design space for the given number of “N” sample points in contrast to the classi-
cal design of experiments (DOE) techniques, where the sample points are generated
mainly near the boundaries of the design space [14].

Computer-based simulations, both panel (low-fidelity) and CFD (high-fidelity),
are performed at these 50 sample points. A Linear Vorticity Surface Panel method
code developed by Ilan Kroo [24] is used for the low-fidelity simulations. Panel
methods are more effective in giving reasonably accurate results without being com-
putationally expensive. The flow around the NACA 2411 airfoil is solved using the
panel code for different angles of attack with Np = 1,000 (number of panels). The
results (Cl) (which are theoretically valid at M = 0.0) are compared with the Xfoil
viscous simulation results obtained at M = 0.1, as shown in Fig. 6. The influence
of Np on the low-fidelity results is shown in Fig. 7. It can be seen that the panel
method slightly over-predicts the Cl , and the accuracy of the solution increases as
the number of panels increases.

High-fidelity, CFD simulations are performed by solving two-dimensional,
steady and compressible Navier–Stokes equations using the FLUENT software
[25]. The turbulence phenomena have been modelled using the Spalart–Allmaras
turbulence model, which is a one-equation model for solving the turbulent viscosity
transport equation [26, 27] and has been widely used for aerospace applications. The
computational grid is generated with the ICEM CFD package. The C-grid topology
is used since it is quite good at capturing the flow physics in the wake region of the
airfoil [28, 29]. Figure 8 shows the topology of the grid and the dimensions involved
with the grid generation. The grid extends to a dimension of 14c in the downstream
direction (L), 9c in the upstream direction (A) and 10c in the cross-stream direction
(H ). In order to capture the flow physics within the boundary layer region, y+ = 1
has been used [30].
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Fig. 6 Cl as a function of α

Fig. 7 Influence of number of panels on Cl

The density-based implicit solver in FLUENT is used to solve the flow around
the airfoil geometry with an ideal gas as a working fluid. The viscosity is calculated
from the three-coefficient Sutherland law, and the basic flow properties are given
in Table 2. Turbulence is specified in terms of turbulent intensity (I ) and turbulent
length scale (l), and a least squares cell-based discretisation scheme is used for the
gradient together with the Roe-FDS flux type. Third order Monotone Upstream-
centred Schemes for Conservation Laws (MUSCL), which can provide more ac-
curate numerical results even when the solutions exhibit shock, are employed for
the spatial discretisation of the flow [31, 32]. The solution converges down to an
accuracy of 10−5 and 10−6 in about 3,000 iterations.

In order to validate the mesh generation and solution techniques, the flow over
the NACA 2411 and NACA 0012 airfoils is solved using the above-described mesh
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Fig. 8 Grid topology

Table 2 Fluid flow
properties Property Value

Pressure (p) 101,325 N/m2

Density (ρ) 1.1766 Kg/m3

Temperature (T ) 300 K

AOA (α) 5.0 deg

Mach (M) From sample point

generation and solution methods. The flow properties for the current validation case
are the same as tabulated above except for α and M . The validation is carried out
for various α at M = 0.1. The fine grid, which is obtained after a grid convergence
study, has 1,000 points on the surface of the airfoil in the circumferential direction
and has about 80,000 cells in total. A two-stage boundary layer is used in the grid
generation to have more cells around the geometry of the airfoil (see Fig. 9). Fig-
ures 10 and 11 show the error (variation of CFD results from the actual results) of
Cl and Cd for the NACA 2411 and NACA 0012 airfoils, respectively. One can see that
the error increases when the number of cells (Nc) goes above 8,000. Figure 12 shows
the variation of Cl from the results published by Klimas and Sheldahl in Ref. [33]
for NACA 2411 with fine mesh (Nc = 8,000). Figure 13 shows the variation of Cd

from the Xfoil viscous simulation results for NACA 0012 with fine mesh.
The grid generation process for the remaining 50 sample points is automated, so

that the same grid generation technique can be applied for all the airfoil geometries.
It is also ensured that the applied grid generation technique results in a fine mesh

for all the airfoil geometries. The flow around the 50 airfoil geometries is solved
using both the low-fidelity panel simulations and high-fidelity CFD simulations.
Once the aerodynamic forces ((Cl)Low-fidelity, (Cl)High-fidelity and (Cd)High-fidelity)
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Fig. 9 Two-stage boundary layer

Fig. 10 Grid convergence [Cl ] error estimation

are obtained for the generated 50 airfoil geometries, they can then be used for the
learning process.

Three surrogate models are constructed using the in-house OK code. The first
surrogate model is constructed using the low-fidelity panel data and can predict the
low-fidelity Cl for any airfoil geometry placed within the design space S. The sec-
ond surrogate model is constructed using the high-fidelity Cd data and can predict
the high-fidelity Cd for any airfoil geometry placed within S. The third one is con-
structed using the difference in Cl between the low- and high-fidelity data (ΔCl)
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Fig. 11 Grid convergence [Cd ] error estimation

Fig. 12 Cl as a function of α for NACA 2411

and can be used to estimate the difference in Cl between the low- and high-fidelity
analysis for any airfoil geometry placed within S.

Figures 14, 15 and 16 show the capability of different theoretical semivariogram
models in fitting the experimental semivariogram model for the first, second and
third black surrogate models respectively. It can be clearly observed that the Gaus-
sian model with practical range fits the experimental semivariogram model more
accurately than any other theoretical models for all the three surrogate models. The
second most accurate one is the spherical model with actual range. These con-
clusions are confirmed by carrying out the prediction at various unknown sample
points. Figures 17, 18 and 19 show the comparison at some of these unknown sam-
ple points for all three surrogate models with N = 50. For all the predictions, the ep

is on the order of 10−2 and 10−3.
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Fig. 13 Cd as a function of α for NACA 0012

Fig. 14 Theoretical semivariogram models [low-fidelity Cl ]

The number of sample points (N ) (and so the amount of data) which is used to
construct the surrogate models has a huge influence on the prediction capability of
the constructed surrogate models. As “N” increases, the capability of the surrogate
model to predict the right solution increases until a saturation level is reached for
“N”. This behaviour is further depicted in Figs. 20, 21 and 22 for the first, second
and third surrogate models, respectively. It can be observed that ep is reduced as
“N” increases for all three surrogate models.

The aerodynamic efficiency (E) of an airfoil geometry which is placed within ‘S’
can be calculated using the constructed surrogate models. Once an unknown sample
point (airfoil geometry and M) is generated, it can be supplied to the three surrogate
models. As discussed earlier, the first surrogate model can predict the low-fidelity
Cl , while the second one can predict the high-fidelity Cd . The ΔCl can be predicted
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Fig. 15 Theoretical semivariogram models [high-fidelity Cd ]

Fig. 16 Theoretical semivariogram models [ΔCl ]

by the third surrogate model. Now the E of the airfoil at α = 5.0◦ for the above
discussed flow conditions can be calculated from the following relations. Since the
airfoil is placed within ‘S’, the M will have a value between 0.1 and 0.6.

(Cl)High-fidelity = (Cl)Low-fidelity − ΔCl, (30)

E = L

D
= (Cl)High-fidelityq∞S

(Cd)High-fidelityq∞S
, (31)

where L is the lift force of the airfoil, D is the drag force of the airfoil, q = (
ρV 2

2 ) is
the dynamic pressure of the flow, ρ is the density of the flow, V is the velocity of the
flow and S is the surface area of the airfoil. Since S and q are constant for a given
airfoil and flow conditions (M , ρ, temperature) respectively, the above relation can
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Fig. 17 Estimation error of the predictions [low-fidelity Cl ]

Fig. 18 Estimation error of the predictions [high-fidelity Cd ]

be written as follows:

E = L

D
= (Cl)High-fidelity

(Cd)High-fidelity
. (32)

E is estimated at various sample points (i.e. airfoil geometries) placed within
the design space ‘S’ using the constructed surrogate models. The estimated values
are compared with the actual values of E which are calculated from separate CFD
simulations. The comparison is shown in Fig. 23.

Figure 23 shows that the prediction of the constructed surrogate models leads
to having E within low error bounds with the maximum % of error being smaller
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Fig. 19 Estimation error of the predictions [ΔCl ]

Fig. 20 Influence of “N” on the predictions [low-fidelity Cl ]

than 4.8 %. The deviation can be further reduced by increasing the accuracy of the
predictions by increasing the number of training sample points.

The constructed surrogate models have been coupled with the GA [34]. The pa-
rameters for controlling the ASO are summarised in Table 3. Each generation of the
GA has 5 different individuals (i.e. airfoil geometries) and the ASO process is car-
ried out in 500 generations. In total, 2,500 different airfoil geometries with different
M are obtained and tested for maximum E. An optimised solution, which has an
aerodynamic efficiency of E = 80.326, is obtained and converges around the 495th
generation of the GA. The flow around the optimised airfoil geometry is solved in
FLUENT using the corresponding flow properties as shown in Table 4. The CFD cal-
culations show that the optimised airfoil geometry has E = 77.106, corresponding
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Fig. 21 Influence of “N” on the predictions [high-fidelity Cd ]

Fig. 22 Influence of “N” on the predictions [ΔCl ]

to a 4.1 % error. As already discussed, this value is less than the maximum expected
error of 4.8 %. Despite the small prediction error, the obtained airfoil geometry is
still better than the baseline shape, which has 67.015 for the flow conditions tab-
ulated in Table 4, and other explored airfoil geometries. It can then be confirmed
that the optimised geometry has 15.04 % improvement in E over the actual NACA
2411 at the specified flow conditions. The variation in the geometry, pressure and
velocity distribution between the baseline airfoil and optimised airfoil are depicted
in Figs. 24–29. It can be observed from these figures that the higher airflow acceler-
ation at the suction side and higher positive Cp at the pressure side are the primary
reasons for the optimised airfoil to have more E than its counterpart.
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Fig. 23 % of error of E prediction

Table 3 GA parameters to
control the evolution (ASO) Parameters Values

Number of parameters 11

Population size (popsize) 5

Crossover probability (pc) 0.7

Mutation probability (pm) 0.02

Table 4 Flow properties to
solve the optimised geometry Property Value

Pressure (p) 101,325 N/m2

Density (ρ) 1.1766 Kg/m3

Temperature (T ) 300 K

Mach (M) 0.331351

Velocity (V ) 115.05

Re 7.337 × 106

I 0.022 %

μ 1.845 × 10−5 Kg/m s

The whole ASO problem is carried out in 0.341399E + 03 sec (5.6 min) with a
computer system which has 1.5 GB of DDR 2 RAM, 2.6 GHz of processor speed
and 2 MB of L2 cache memory. If the actual CFD algorithm were to be employed for
solving the flow during the optimisation, 156 days would have been required for the
same computer system to obtain the optimised solution. This is calculated based on
the time taken for a single CFD simulation (90 min approximately) during the data
mining process. Clearly, applying the surrogate models in the place of actual CFD
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Fig. 24 Optimised geometry

Fig. 25 Cp distribution

algorithms has drastically reduced the required computational time and resources to
carry out an ASO problem.

The method of the parameterisation scheme is crucial for both surrogate model
construction and optimiser, since its variables are used as the design and optimi-
sation variables. The PARSEC parameterisation scheme is effective, since it offers
flexibility in controlling the aerodynamic characteristics of the airfoil geometry with
a minimum number of parameters. The distribution of sample points within the de-
sign space strongly influences the performance of the surrogate models. Hence, it is
important to use a sampling plan that is able to explore the design space uniformly
rather than just distributing the sample points in an arbitrary fashion. The Hammers-
ley sequence sampling (HSS) technique has more uniformity and stratification prop-
erties for the given “N” irrespective of “n” of the problem. These properties make
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Fig. 26 Pressure distribution around the NACA 2411 airfoil

Fig. 27 Velocity distribution around the NACA 2411 airfoil

this algorithm suitable for problems where the evaluation of objective functions
at one sample point is computationally more expensive. The statistically unbiased
characteristics of the ordinary kriging (OK) approach enhance the ability and accu-
racy of the surrogate models in predicting response values at an unexplored space.
The GA is observed to be more effective in exploring the search space. Since vari-
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Fig. 28 Pressure distribution around the optimised airfoil

Fig. 29 Velocity distribution around the optimised airfoil

ability exists in all the generations of the GA, a huge number of desirable solutions
to the defined problem are generated. Hence, this process can also be considered as
a data mining process and can be further used for airfoil design and analysis.
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4 Conclusions

This chapter may be summarised as follows. The chapter begins with a review of
the basic activities involved in an aerodynamic shape optimisation problem. Next, it
gives more information about the construction of the surrogate models for various
aerodynamic functions and their application to the aerodynamic shape optimisation
problems. The chapter is concluded with a discussion on the practical challenges in-
volved in employing the surrogate models to aerodynamic shape optimisation prob-
lems.
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