
Efficient Robust Design with Stochastic
Expansions

Yi Zhang and Serhat Hosder

Abstract This chapter describes the application of a computationally efficient un-
certainty quantification approach, non-intrusive polynomial chaos (NIPC)-based
stochastic expansions, for robust design under mixed (aleatory and epistemic) uncer-
tainties and demonstrates this technique on robust design of a beam and on robust
aerodynamic optimization. The approach utilizes stochastic response surfaces ob-
tained with NIPC methods to approximate the objective function and the constraints
in the optimization formulation. The objective function includes the stochastic mea-
sures, which are minimized simultaneously to ensure the robustness of the final
design to both aleatory and epistemic uncertainties. The results of the optimization
case studies show the computational efficiency and accuracy of the robust design
with stochastic expansions, which may be applied to any stochastic optimization
problem in science and engineering.
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design · Stochastic expansions · Computational fluid dynamics

1 Introduction

Uncertainties are generally ubiquitous in the analysis and design of highly complex
engineering systems, such as aerospace systems. Uncertainties can arise due to ig-
norance, lack of knowledge, and incomplete information in physical modeling (e.g.,
epistemic uncertainty in turbulence models) and from inherent variations in the sys-
tems (e.g., aleatory uncertainty in operating conditions). It is important to consider
these uncertainties in engineering design. Robust design [1, 2] is a methodology for
improving the quality of a product by minimizing the impact of uncertainties on the
product performance. The objective is to optimize the mean performance while min-
imizing the variation of performance caused by various uncertainties. Many studies
of robust design have been investigated in the past [3–12]. A comprehensive survey
of robust optimization approaches is given by Beyer and Sendhoff [13].
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One very important component of robust design is the uncertainty quantifica-
tion (UQ), which may increase the computational expense of the design process
significantly compared to the computational work of deterministic optimization, es-
pecially when high-fidelity analysis tools are used to improve accuracy. Therefore,
it is important to develop and implement computationally efficient robust design
methodologies while keeping the desired accuracy level in the optimization process.

The goal of UQ is to determine how random variation (aleatory) and lack of
knowledge (epistemic) affect the sensitivity, performance, or reliability of the sys-
tem that is being modeled. Various studies have been made on the topic of propagat-
ing aleatory uncertainty through Monte Carlo sampling (MCS) [14–18], expansion-
based methods (e.g., Taylor series [19–22] and perturbation methods [23–25]) and
non-intrusive polynomial chaos (NIPC) expansions [26–28], and propagating epis-
temic uncertainty through interval analysis and evidence theory [29–34].

MCS is the most comprehensive (but expensive) UQ approach for evaluating sta-
tistical moments and the reliability and quality of the system response. It is a method
for iteratively evaluating a deterministic model using sets of random numbers as in-
puts. This method is often used when the model is complex or nonlinear, or when
it involves a large number of uncertain parameters. M.G. Cox et al. [16] worked on
using MCS to determine the probability density function (PDF) of the output quan-
tities. L.Y. Zhao et al. investigated UQ of a flapping airfoil with stochastic velocity
deviations by using a classic Monte Carlo method to numerically investigate the
responses of the time-averaged thrust coefficient and the propulsive efficiency with
respect to a stochastic flight velocity deviation under Gaussian distributions [17, 18].
Y.P. Ju et al. conducted studies on multi-point robust design optimization of wind
turbine airfoils under geometric uncertainty where the MCS technique was used for
simulating the geometric uncertainty in the robust optimization [35]. Although MCS
is the most popular sampling-based method, it requires thousands of computational
simulations (e.g., computational fluid dynamics (CFD) and finite element analysis
(FEA)) to obtain accurate results. It is extremely expensive and cannot be made af-
fordable for complex engineering simulations, so it is often used as a benchmark for
verification of UQ analysis when other methods are used.

Expansion-based UQ is used to estimate the statistical moments (e.g., mean, vari-
ance, etc.) of the system response with a small perturbation to simulate the effect
of the input uncertainty. The Taylor series and perturbation method are two main
expansion-based UQ approaches. The Taylor series is a series expansion of a func-
tion about a point that is used to approximate a function with a Taylor polynomial.
For example, the first-order reliability method (FORM) uses the first-order Taylor
expansion (linearization) to approximate the uncertainty in the output [19]. There
have also been some studies on Taylor series expansion techniques and applications
in physics [20–22]. The perturbation method is used to find an approximate solution
to a problem which cannot be solved by traditional analytical methods. It allows
the simplification of complex mathematical problems [23–25]. Both Taylor series
and perturbation methods have advantages when dealing with relatively small input
variability and outputs that do not express high nonlinearity. However, most real-
life problems require much more difficult mathematical models, such as nonlinear
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differential equations. Therefore, Taylor series and perturbation methods will not be
a good option for uncertainty propagation in these cases.

The NIPC expansion is a spectral-based technique for UQ that has been used
recently for numerous physical models, such as elasticity and fluid mechanics [36–
38]. Some studies conducted by Eldred et al. [27, 28] introduced efficient stochastic
expansions based on NIPC for UQ. In their study, they used Legendre and Her-
mite orthogonal polynomials to model the effect of uncertain variables described by
uniform and normal probability distributions, respectively, and used Legendre or-
thogonal polynomials to model the effect of epistemic uncertainties. The accuracy
and the computational efficiency of the NIPC method applied to stochastic problems
with multiple uncertain input variables were investigated by Hosder et al. [39–41].

The non-probabilistic approaches which are used for epistemic UQ include inter-
val analysis and evidence theory. Several studies have been conducted on epistemic
uncertainty propagation [29–31]. The simplest way to propagate epistemic uncer-
tainty is by interval analysis [32–34]. In interval analysis, it is assumed that noth-
ing is known about the uncertain input variables except that they lie within certain
intervals. L.P. Swiler and T.L. Paez [32, 33] examined three methods in propagat-
ing epistemic uncertainty: interval analysis, Dempster–Shafer evidence theory, and
second-order probability, and demonstrated examples of their use on a problem in
structural dynamics. They also examined the use of surrogate methods in epistemic
analysis, both surrogate-based optimization in interval analysis and the use of poly-
nomial chaos expansions to provide upper and lower bound approximations. From
their studies, it was proved that interval analysis can be effective in the quantification
of epistemic uncertainty.

Recently, there have been some studies investigating the topic of mixed (aleatory
and epistemic) uncertainty propagation. Eldred et al. [42] proposed using second-
order probability for estimating the effect of mixed uncertainties. This method was
used to separate the aleatory and epistemic uncertainties into inner and outer sam-
pling loops, respectively. Moreover, they applied this method to a cantilever beam
design problem which was represented by two simple analytical functions. They
utilized these analytical functions to represent ideal test cases, since they were inex-
pensive to evaluate. Therefore, this study provided an analytical reference for vali-
dating codes used for mixed aleatory and epistemic UQ. Bettis and Hosder applied
the NIPC approach to the propagation of mixed uncertainties in hypersonic reentry
problems [41, 43].

Most of the previous stochastic design studies focused on optimization under
aleatory uncertainties which utilized different approaches for uncertainty propa-
gation [3–12, 44]. Among these studies, Eldred [44] formulated and investigated
design under aleatory uncertainty with stochastic expansions. Dodson and Parks
utilized polynomial chaos expansions for robust airfoil design under aleatory input
uncertainties [45]. B.D. Youn et al. also developed a robust design optimization with
epistemic uncertainty. They proposed a new metric for product quality loss which
was defined for epistemic uncertainty using the analogy between the probability
and possibility theories. For the epistemic uncertainty, the maximum likely value
and equivalent variation were employed to define the new metric for the product
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quality loss in three different types of robust objectives [46]. A number of robust
design studies have considered both aleatory and epistemic uncertainties, such as
the work by Eldred [47], and Du et al. [48], who used a double-loop Monte Carlo
sampling approach to determine the statistics of the response given in their model
problems.

In this chapter, we describe a computationally efficient approach for robust aero-
dynamic optimization under aleatory (inherent) and epistemic (model-form) uncer-
tainties using stochastic expansions based on the NIPC method [49]. In the con-
text of aerodynamic shape optimization, robust design implies that the performance
(such as the lift-to-drag ratio) of the final configuration should be insensitive to
the uncertainties in the operating conditions (e.g., free-stream Mach number). Fur-
thermore, the final design should be relatively insensitive to the physical modeling
uncertainties in the computational tools used for aerodynamic analysis such as the
computational fluid dynamics (CFD) codes.

The chapter is organized as follows. Section 2 describes the details of the robust
design formulation with stochastic expansions. In Sect. 3, the methodology is ap-
plied to a model problem involving the design of a beam, and Sect. 4 describes an
application to airfoil design at transonic flow conditions. The chapter is summarized
in Sect. 5.

2 Robust Design with Stochastic Expansions

This section gives the details of different robustness measures for a system depend-
ing on the input uncertainty type, as well as the utilization of stochastic expansions
in robust optimization.

2.1 Formulation of Robust Optimization

Following Du et al. [48], we describe the following robust measures: (1) purely
aleatory (inherent) input uncertainty, (2) purely epistemic input uncertainty, and
(3) mixed (aleatory and epistemic) input uncertainty.

2.1.1 Aleatory Uncertainties Only

If there are only aleatory uncertainties as input variables, the response R can be
described as a function of Sa = (Sa1, Sa2 , . . . , SaNa

), which is the vector consisting
of Na aleatory uncertainties; this vector can include both aleatory design variables
(Xa) and aleatory parameters (Pa). In a design study, the aleatory uncertainty can
be imposed on the design variables through the statistical distribution parameters
that define them (e.g., mean and variance), which vary in the design space. Figure 1
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Fig. 1 Robustness estimation of response in the presence of aleatory uncertainties only

shows the propagation of input aleatory uncertainties through the simulation code
and the uncertainty of the response, R = f (Sa). For a probabilistic output uncer-
tainty, the mean and the variance of R can be calculated by

μR = E(R) =
∫

Ω

R(Sa)ρ(Sa) dSa, (1)

σ 2
R = E

[
(R − μR)2] =

∫
Ω

(
R(Sa) − μR

)2
ρ(Sa) dSa, (2)

where ρ(Sa) represents the joint PDF of Sa , and Ω stands for the support region of
Sa . For this case, the variance (or the standard deviation, σ ) of R is considered as
the robustness measure.

2.1.2 Epistemic Uncertainties Only

If there are only epistemic uncertainties as input, the response will be a function of
epistemic uncertainty vector Se = (Se1, Se2, . . . , SeNe

), which may include epistemic
design variables (Xe) and epistemic parameters (Pe) in general. In a design study, the
epistemic uncertainty can be imposed on the design variables through the parameters
that define them (e.g., average and the limits of the interval), which vary in the
design space. The relationship between input epistemic uncertainties and response
R = f (Se) is shown in Fig. 2. The midpoint (R) and width (δR) of interval R are
the most relevant statistics of response R for this case, and are given by

R = 1

2
(RL + RU), (3)

δR = RU − RL, (4)
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Fig. 2 Robustness estimation of response in the presence of epistemic uncertainties only

Fig. 3 Robustness estimation of response in the presence of mixed uncertainties

respectively, where RU and RL represent the upper bound and lower bound of R.
For this case, the robustness of the response is assessed by δR. For robust optimiza-
tion, δR should be as low as possible, while R is equal to the desired value.

2.1.3 Mixed Uncertainties (Both Aleatory and Epistemic Uncertainties)

When both aleatory uncertainties Sa = (Sa1 , . . . , SaNa
) and epistemic uncertainties

Se = (Se1, Se2, . . . , SeNe
) exist as input variables, the response R becomes a function

of both types of uncertainty, R = f (Sa,Se), as shown in Fig. 3.
For this case, the uncertainty of R will be in the form of a family of probability

distributions, each due to the aleatory input uncertainties at a fixed value of the
epistemic input uncertainty vector. The intervals at each probability level will reflect
the effect of epistemic uncertainties on R. The average mean value of R is calculated
by

μR = 1

2

(
μmax

R + μmin
R

)
, (5)

where μmax
R and μmin

R are the maximum and minimum means of response R, respec-
tively. The average value of the standard deviation of R (σR) is obtained by

σR = 1

2

(
σ max

R + σ min
R

)
, (6)
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Fig. 4 Robustness assessment of mixed uncertainty design

where σ max
R and σ min

R are the maximum and minimum standard deviations of re-
sponse R, respectively. The difference between σmax

R and σ min
R is computed by

δσR = σ max
R − σ min

R . (7)

In a design study, the average standard deviation σR can be used as a robustness
measure for aleatory input uncertainties (Sa), whereas the standard deviation differ-
ence δσR can be used as the robustness measure for epistemic uncertainties (Se).
Note that one may also consider alternative measures for robustness to aleatory in-
put uncertainties in the presence of mixed uncertainties. One approach will be to
consider the maximum value of the standard deviation as a conservative measure,
which in turn can be used in the robust optimization formulation described below.

2.1.4 Robust Optimization Formulation Under Mixed Uncertainties

To achieve a robust design in the presence of aleatory and epistemic uncertainties,
both a lower value of σR and a lower value of δσR are desired. To illustrate this,
let us consider two designs (A and B) with performances (i.e., responses) having
two different families of probability distributions represented by one blue and one
red curve in Fig. 4. From these distributions, it is obvious that σR of design A is
less than that of design B , which indicates that design A is more robust than de-
sign B when only randomness of the input is considered. Now comparing δσR for
the two designs, it can be seen that design A has a smaller difference between the
distribution variances, indicating that it is also more robust to epistemic uncertain-
ties. From the above discussion and following the formulation of Du et al. [48], a
composite (weighted sum) objective function for robust optimization under mixed
uncertainties can be written as

F(Xd,Sa,Se) = w1μR + w2σR + w3δσR, (8)

where Xd is the deterministic design variable vector, Sa = {Xa,Pa}, and Se =
{Xe,Pe}. The values of the weight factors w1, w2, and w3 should be chosen based on
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the emphasis on the contribution of each term to the objective function by also con-
sidering the order of magnitude of each term. While minimizing F , a feasible design
should also satisfy the inequality constraints gi(Xd ,Sa,Se) (i = 1,2, . . . ,Ng) and
the side constraints for aleatory design variables Xa (specified by the lower and the
upper limits of the mean of the each aleatory variable), epistemic design variables
Xe (specified by the lower and the upper limits of the epistemic variable), and the
deterministic design variables Xd . Under mixed uncertainties, a conservative form
of the satisfaction of the inequality constraints can be written as μmax

gi +βσ max
gi ≤ 0,

where μmax
gi

and σ max
gi

are the maximum of the mean and the maximum of the stan-
dard deviation of the constraint function gi , respectively. Here βi is a positive con-
stant which denotes the probability of constraint satisfaction.

In summary, the overall formulation for robust design optimization under
aleatory and epistemic uncertainties can be written as:

Minimize w1μR + w2σR + w3δσR

S.t. μmax
gi

+ βiσ
max
gi

≤ 0, i = 1,2, . . . ,Ng

XL
dj

≤ Xdj
≤ XU

dj
, j = 1,2, . . . ,Nd

XL
ek

≤ Xek
≤ XU

ek
, k = 1,2, . . . ,Ne

μL
Xam

≤ μXam
≤ μU

Xam
, m = 1,2, . . . ,Na.

(9)

2.2 Stochastic Expansions for Response Surface Modeling

For the robust optimization methodology described in this chapter, we adopt
stochastic expansions obtained with non-intrusive polynomial chaos (NIPC) due
to its computational efficiency and accuracy in aleatory and epistemic uncertainty
propagation, as shown in the previous studies [43, 50]. The stochastic expansions
are used as response surfaces (i.e., surrogates of the response) in the optimization
procedure and are used to approximate the stochastic objective function or the con-
straint functions. In the robust optimization problems, we use two different NIPC
approaches, point-collocation NIPC and quadrature-based NIPC. Below we give the
description of these NIPC methods.

2.2.1 Non-intrusive Polynomial Chaos

Non-intrusive polynomial chaos is derived from polynomial chaos theory, which
is based on the spectral representation of the uncertainty. An important aspect of
spectral representation of uncertainty is that one may decompose a random function
(or variable) into separable deterministic and stochastic components. For example,
for any response variable (i.e., R) in a stochastic optimization problem, one can
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write

R(ξ ) ≈
P∑

j=0

αjΨj (ξ), (10)

where αj is the coefficient of each term in the expansion, and Ψj (ξ) is the random
basis function corresponding to the j th mode and is a function of the n-dimensional
random variable vector ξ = (ξ1, . . . , ξn), which has a specific probability distribu-
tion. In theory, the polynomial chaos expansion given by Eq. (10) should include an
infinite number of terms; however, in practice a discrete sum is taken over a number
of output modes. For a total order expansion, the number of output modes is given
by

Nt = P + 1 = (n + p)!
n!p! , (11)

which is a function of the order of polynomial chaos (p) and the number of random
dimensions (n). The basis function ideally takes the form of a multidimensional
Hermite polynomial to span the n-dimensional random space when the input uncer-
tainty is Gaussian (unbounded), which was first used by Wiener [51] in his original
work of polynomial chaos. To extend the application of the polynomial chaos the-
ory to the propagation of continuous non-normal input uncertainty distributions, Xiu
and Karniadakis [52] used a set of polynomials known as the Askey scheme to ob-
tain the “Wiener–Askey generalized polynomial chaos.” The Legendre and Laguerre
polynomials, which are among the polynomials included in the Askey scheme, are
optimal basis functions for bounded (uniform) and semibounded (exponential) input
uncertainty distributions, respectively, in terms of the convergence of the statistics.
The multivariate basis functions can be obtained from the product of univariate or-
thogonal polynomials (see Eldred et al. [27]). If the probability distribution of each
random variable is different, then the optimal multivariate basis functions can again
be obtained by the product of univariate orthogonal polynomials employing the op-
timal univariate polynomial at each random dimension. This approach requires the
input uncertainties to be independent standard random variables, which also allows
the calculation of the multivariate weight functions by the product of univariate
weight functions associated with the probability distribution at each random dimen-
sion. Detailed information on polynomial chaos expansions can be found in Walters
and Huyse [53], Najm [54], and Hosder and Walters [55].

The objective of the stochastic methods based on polynomial chaos is to deter-
mine the coefficient of each term (αj (x, t) (j = 0,1, . . . ,P )) in the polynomial ex-
pansion given by Eq. (10). The statistics of the response can then be calculated using
the coefficients and the orthogonality of basis functions. The mean of the random
solution is given by

μR = E
[
R(ξ )

] =
∫

Ω

R(ξ)ρ(ξ) dξ = α0, (12)

which indicates that the zeroth mode of the expansion corresponds to the expected
value or the mean of R(ξ). Similarly, the variance of the distribution can be obtained
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as

σ 2
R = Var

[
R(ξ)

] =
∫

Ω

(
R(ξ) − μR

)2
ρ(ξ) dξ (13)

or

σ 2
R =

P∑
j=1

[
α2

j

〈
Ψ 2

j

〉]
. (14)

In the above equations, we have used the fact that 〈Ψj 〉 = 0 for j > 0 and 〈ΨiΨj 〉 =
〈Ψ 2

j 〉δij , where the inner product expression 〈· · · 〉 represents

〈
f (ξ)g(ξ )

〉
ξ
=

∫
Ω

f (ξ)g(ξ )ρ(ξ) dξ (15)

written in terms of two generic functionsf (ξ) and g(ξ) in the support region Ω of
ξ with ρ(ξ) as the weight function.

To model the uncertainty propagation in computational simulations via polyno-
mial chaos with the intrusive approach, all dependent variables and random param-
eters in the governing equations are replaced with their polynomial chaos expan-
sions. Taking the inner product of the equations (or projecting each equation onto
the j th basis) yields P +1 times the number of deterministic equations which can be
solved by the same numerical methods applied to the original deterministic system.
Although straightforward in theory, an intrusive formulation for complex problems
can be relatively difficult, expensive, and time-consuming to implement. To over-
come these inconveniences associated with the intrusive approach, non-intrusive
polynomial chaos formulations have been considered for uncertainty propagation.

Point-Collocation NIPC The point-collocation NIPC method starts with replac-
ing the uncertain variables of interest with their polynomial expansions given by
Eq. (10). Then, Nt = P + 1 vectors (ξ j = {ξ1, ξ2, . . . , ξn}j , j = 0,1, . . . ,P ) are
chosen in random space for a given PC expansion with P + 1 modes, and the deter-
ministic code is evaluated at these points. With the left-hand side of Eq. (10) known
from the solutions of deterministic evaluations at the chosen random points, a linear
system of equations can be obtained:

⎛
⎜⎜⎜⎜⎝

R(
−→
ξ0 )

R(
−→
ξ1 )
...

R(
−→
ξP )

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

Ψ0(
−→
ξ0 ) Ψ1(

−→
ξ0 ) · · · ΨP (

−→
ξ0 )

Ψ0(
−→
ξ1 ) Ψ1(

−→
ξ1 ) · · · ΨP (

−→
ξ1 )

...
...

. . .
...

Ψ0(
−→
ξP ) Ψ1(

−→
ξP ) · · · ΨP (

−→
ξP )

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

α0
α1
...

α0

⎞
⎟⎟⎟⎠ . (16)

The coefficients (αj ) of the stochastic expansion are obtained by solving the lin-
ear system of equations given above. The solution of the linear problem given by
Eq. (16) requires Nt deterministic function evaluations. If more than Nt samples
are chosen, then the overdetermined system of equations can be solved using the
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least squares approach. Hosder et al. [56] investigated this option on model stochas-
tic problems by increasing the number of collocation points in a systematic way
through the introduction of an oversampling ratio (OSR) defined as the number of
samples divided by Nt . Based on a study of different model problems, they sug-
gested an effective OSR of 2.0. Point-collocation NIPC has the advantage of flexi-
bility on the selection of collocation points. With the proper selection of collocation
points, it has been shown that point-collocation NIPC can produce highly accu-
rate stochastic response surfaces with computational efficiency [56]. In the model
problems considered in this study, we use Latin hypercube sampling with an over-
sampling ratio of 1 or 2 to choose the collocation points. The number of response
evaluations will be OSR × Nt when point-collocation NIPC is used to construct the
stochastic response surface.

Quadrature-Based NIPC With the quadrature-based NIPC method, stochastic
expansion coefficients αj (see Hosder and Walters [55] for details) can be obtained
by using the equation

αj = 〈R,Ψj (ξ)〉
〈Ψ 2

j (ξ)〉 = 1

〈Ψ 2
j (ξ)〉

∫
Ω

RΨj (ξ)ρ(
−→
ξ ) d

−→
ξ . (17)

Since the denominator 〈Ψ 2
j 〉 in Eq. (17) can be computed analytically for multi-

variate orthogonal polynomials, the main purpose is to compute the coefficients
by estimating the numerator 〈R,Ψj 〉 in Eq. (17). In the quadrature-based NIPC
method, the approximation of multidimensional integrals can be achieved by apply-
ing a tensor product of one-dimensional quadrature rules. The Gaussian quadrature
points are precisely the roots of the orthogonal polynomial on the same interval (the
support region of the uncertain variable ξ ), and a weighting function is associated
with the given uncertainty distribution (i.e., Gauss–Legendre and Gauss–Hermite
quadrature for expansions on uniform and normal random variables, respectively).
For one-dimensional integrals, if the polynomial chaos expansion degree is p, then
the minimum Gaussian points required for the exact estimation of the integral will
be p + 1 (with the assumption that the response R can be represented exactly with
a polynomial expansion of p), since the p-point Gaussian quadrature rule will yield
an exact result for polynomials of degree 2p − 1 or less, and the polynomial degree
of the product of function estimation and the basis polynomials in the numerator in
Eq. (17) will be 2p. Therefore, the number of response evaluations will be (p + 1)n

when quadrature-based NIPC is used to construct the response surface as a function
of n expansion variables. For multidimensional problems with a large number of
uncertain variables, the computational cost of this method will be significant due
to its exponential growth with the number of random dimensions. For these cases,
an alternative approach for more efficient evaluation of the multidimensional inte-
grals will be to use sparse tensor product spaces instead of full tensor products of
Gauss quadrature points to cover the multidimensional random space (see Eldred et
al. [27, 44] for details).
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2.3 Utilization of Stochastic Expansions for Robust Design

The methodology described in this chapter employs the stochastic response surfaces
obtained with NIPC methods described above. While constructing the stochastic
response surfaces, a combined expansion approach is utilized, which expands the
polynomials as a function of uncertain design variables and parameters (aleatory
and epistemic), as well as the deterministic design variables. We will describe this
approach and robust optimization with stochastic expansions in the following sec-
tions.

2.3.1 Formulation with Combined Expansions

With the introduction of deterministic design variables (Xd ), design variables with
epistemic uncertainty (Xe), parameters with epistemic uncertainty (Pe), design vari-
ables with aleatory uncertainty (Xa), and parameters with aleatory uncertainty (Pa),
a combined stochastic expansion of R is written as

R
(
Xa(ξxa),Pa(ξpa),Xe(ξxe),Pe(ξpe),Xd(ξd)

)

=
P∑

j=0

αjΨj (ξxa, ξpa, ξxe, ξpe, ξd). (18)

In this approach, multidimensional basis functions Ψj are derived from the tensor
product of one-dimensional optimum basis functions for the aleatory uncertain pa-
rameters and design variables (Pa and Xa) selected based on their input probability
distributions (e.g., Hermite polynomials for normal uncertain variables, the Legen-
dre polynomials for the epistemic uncertain parameters and design variables (Pe

and Xe), and the Legendre polynomials for the deterministic design variables (Xd )).
The selection of the Legendre polynomials as basis functions for the epistemic un-
certainties and the design variables is due to their bounded nature (PL

e ≤ Pe ≤ PU
e ,

XL
e ≤ Xe ≤ XU

e , and XL
d ≤ Xd ≤ XU

d ) and should not be interpreted as a probabil-
ity assignment to these variables. In Eq. (18), ξxa and ξpa correspond to standard
aleatory random variable vectors associated with Xa and Pa , whereas ξxe , ξpe, and
ξd are the standard variables in the interval [−1,1], which are mapped from the
associated intervals of Xe, Pe, and Xd via

ξxe =
(

Xe −
(

XL
e + XU

e

2

))/(
XU

e − XL
e

2

)
, (19)

ξpe =
(

Pe −
(

PL
e + PU

e

2

))/(
PU

e − PL
e

2

)
, (20)

ξd =
(

Xd −
(

XL
d + XU

d

2

))/(
XU

d − XL
d

2

)
. (21)
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Using the combined expansion given in Eq. (18), the mean and the variance of the
response are obtained by evaluating the expectations over the aleatory uncertain
variables (ξxa and ξpa), which will be functions of standard epistemic design vari-
ables (ξxe), standard epistemic parameters (ξpe), and standard deterministic design
variables (ξd ):

μR(ξxe, ξpe, ξd) =
P∑

j=0

αj

〈
Ψj (ξxa, ξpa, ξxe, ξpe, ξd)

〉
ξxa,ξpa

, (22)

σ 2
R(ξxe, ξpe, ξd) =

(
P∑

j=0

P∑
k=0

ajak〈ΨjΨk〉ξxa,ξpa

)
− μ2

R. (23)

2.3.2 Robust Design Based on Stochastic Expansions

The flowchart of robust optimization under mixed uncertainties based on combined
stochastic expansions is shown in Fig. 5. From Eqs. (22) and (23) it can be clearly
seen that the mean and standard deviation of the response R (i.e., objective func-
tion F or constraint gi ) at a given design point are characterized by two bounds due
to epistemic uncertainties with specified interval bounds [XL

e ,XU
e ] and [PL

e ,PU
e ].

In other words, the mean and standard deviation of the output (response) will also
be bounded by its maximum and minimum values. In our approach, we calculate
μmax

R , μmin
R , σ max

R , and σ min
R at a given design point through optimization using the

analytical expressions of response statistics obtained with Eq. (22) and Eq. (23).
Then, these values are used in the robust optimization formulation given by Eq. (9),
which is performed with the sequential quadratic programing (SQP) method [57].
The whole procedure is repeated until the convergence is achieved. Note that when
at least one design variable is uncertain (aleatory or epistemic), the stochastic re-
sponse surfaces for the objective function and the constraints (if necessary) have to
be reconstructed at each optimization iteration, since the uncertain design variables
and the associated statistics are updated at each iteration, changing the bounds on
which the response surfaces are created. On the other hand, if all design variables
are deterministic and the uncertainties are associated with the problem parameters,
only a single stochastic response surface for the objective function and a single re-
sponse surface for each constraint function have to be constructed, since the bounds
on the statistics of uncertain parameters and the bounds on the design variables are
fixed and do not vary during the entire optimization process.

3 Model Problem: Robust Design of a Beam

In this model problem, which includes uncertainties in both design variables and
parameters, we consider the robust design of a cantilever beam shown in Fig. 6 with
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Fig. 5 Flowchart of the robust optimization process under mixed uncertainties with combined
stochastic expansions

Fig. 6 Schematic of the beam design problem

length l, width b, and height h. The beam is subjected to a torque T and an external
force F acting normal to the horizontal axis of the beam at its free end. The objective
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Table 1 Design variables
(DV) and parameters (P) with
epistemic uncertainty (beam
design model problem)

DV / P lower limit upper limit

l (DV) l − 0.1l l + 0.1l

F (P) 270 lb 330 lb

Table 2 Design variables
(DV) and parameters (P) with
aleatory uncertainty (beam
design model problem)

DV / P Mean Standard deviation Distribution

h (DV) μh 1 %μh Normal

b (DV) μb 1 %μb Normal

S (P) 100 kpsi 10 kpsi Normal

T (P) 450 lb-in 50 lb-in Normal

is to reduce the volume (V = lbh) of the beam while satisfying a stress constraint
given by

g =
√(

6FL

bh2

)2

+ 3

[
T

b2h

(
3 + 1.8b

h

)]2

− S � 0. (24)

This equation represents the difference between the maximum equivalent stress
of the beam and the yield strength S, which must be less than or equal to zero for a
safe design. In this design problem, the external force F is considered as a parame-
ter with epistemic uncertainty and the length of the beam l is treated as an epistemic
design variable (Table 1). The external torque T and yield strength S are treated as
parameters with aleatory uncertainty, whereas the width b and the height h of the
beam are modeled as aleatory design variables with statistics given in Table 2. To
ensure robustness of the design under epistemic and aleatory uncertainties, the ob-
jective function, which is the weighted sum of the average mean of the volume (μV ),
the average standard deviation of the volume (σV ), and the difference between the
maximum and minimum standard deviation of the volume (δσV ) should be mini-
mized. The inequality constraint given by Eq. (24) should be satisfied at the worst
case with a specified β value of 3. With the addition of the limits for the design
variables, the robust design formulation for this problem is given as:

mind w1μV + w2σV + w3δσV

s.t. μmax
g + βσ max

g ≤ 0

0.1 ≤ μh ≤ 0.8

0.1 ≤ μb ≤ 0.4

2 ≤ l ≤ 20.

(25)

Considering the magnitude of μV , σV , and δσV , the weights in the multi-objective
function are chosen as w1 = 1, w2 = 100, and w3 = 500 to ensure equal contribu-



262 Y. Zhang and S. Hosder

tions to the objective function from each term (i.e., scaling them to approximately
the same order of magnitude).

For this problem, besides the stochastic response surface-based approach, robust
optimization was also performed with double-loop Monte Carlo sampling (MCS),
which was the approach used by Du et al. [48] to propagate the mixed uncertain-
ties and obtain the maximum and minimum value of the response statistics used in
the robust optimization formulation. After performing a convergence study based
on the inner and outer loop samples, the desired accuracy with the double-loop
MCS approach for the robustness measures was obtained with 500 epistemic vari-
able samples in the outer loop and 105 aleatory variable samples in the inner loop.
The convergence of the performance and robustness measures used in the objective
function (μ̄V , σ̄V , and δσV ) obtained with quadrature-based and point-collocation
NIPC with OSR = 1 and OSR = 2 was studied for different polynomial expan-
sion orders at the optimum design point obtained with the Monte Carlo approach
(Fig. 7). For the same robustness measures, the error values relative to the Monte
Carlo results at each polynomial order are shown in Fig. 8. It is evident that the con-
vergence is rapid for μV and is achieved by the first-order expansion for all NIPC
methods. The convergences for σV and δσV are obtained at the second-order ex-
pansion. From Fig. 8, it can be seen that quadrature-based NIPC is more accurate
than the point-collocation-based approach in terms of the error levels (especially for
δσV ) observed at the second-order expansion.

Based on the convergence results, the robust optimization was performed with
stochastic response surfaces representing the objective function and the inequality
constraint obtained with the NIPC approach utilizing a second-order polynomial
expansion over aleatory and epistemic design variables and parameters. The two
NIPC methods, point-collocation and quadrature-based, were implemented to ob-
tain the stochastic response surfaces for comparison. The point-collocation method
was performed with an OSR of 1 and 2. The number of original function evalua-
tions required to construct a single response surface was 28 for the point-collocation
method with OSR = 1 and 56 with OSR = 2. The quadrature-based method required
729 function evaluations. For this case, two response surfaces were constructed at
each optimization iteration, one for the objective function and the other for the in-
equality constraint. The optimum design variable values obtained with the stochastic
response surface based optimization again compare well with the result of the ap-
proach utilizing the double-loop MCS (Table 3) at a significantly reduced cost in
terms of the total number of function evaluations, which include both the objective
and constraint functions. Point-collocation NIPC is more efficient than quadrature-
based NIPC for this problem, since the number of expansion variables (n = 6) is
greater than the number of variables in the previous model problem (n = 3) and
the computational cost of quadrature-based NIPC increases exponentially with the
number of expansion variables for a given polynomial degree. An alternative ap-
proach to reduce the computational expense of the quadrature-based approach will
be to implement sparse grid and cubature techniques, which may improve the com-
putational efficiency significantly while retaining the accuracy of the original tensor
product quadrature method. Table 4 presents the average mean, average standard
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Fig. 7 Convergence of NIPC results as a function of expansion order for beam design model
problem

deviation, and the standard deviation difference of the beam volume at the optimum
design point; these are approximately the same for all the methods. The convergence
histories of these terms are given in Fig. 9 for the optimization process with stochas-
tic expansions. As can be seen from this figure, all three quantities are minimized
simultaneously and converge to the same final values, which validates the described
stochastic response surface based robust optimization approach. Another important
observation made from this figure is that the quadrature-based approach seems to
converge to the optimum robust design in terms of all measures at a lower number
of iterations and in a more stable manner compared to the point-collocation-based
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Fig. 8 Error convergence of NIPC results as a function of expansion order for beam design model
problem

Table 3 Optimum design
results of the beam problem
(RS: response surface, Q-B:
quadrature-based, P-C:
point-collocation, MCS:
Monte Carlo sampling, FE:
function evaluations)

Method {μh,μb, l} (in) Total # of FE

MCS {0.548,0.327,2.0} 23.5 × 108

Q-B {0.542,0.323,2.0} 96,228

P-C,OSR = 1 {0.543,0.324,2.0} 3,696

P-C,OSR = 2 {0.542,0.323,2.0} 6,720

methods, especially the one with OSR = 1. This emphasizes another aspect of the
importance of the accuracy of the stochastic response surfaces used in the robust
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Table 4 Robustness
assessment of the beam
problem

Method μV σV δσV

MCS 3.55 × 10−1 5.06 × 10−3 1.01 × 10−3

Q-B 3.50 × 10−1 4.96 × 10−3 9.91 × 10−4

P-C,OSR = 1 3.52 × 10−1 4.97 × 10−3 9.86 × 10−4

P-C,OSR = 2 3.50 × 10−1 4.94 × 10−3 9.88 × 10−4

optimization approach in terms of the number of iterations to converge, which may
influence the computational efficiency of the overall stochastic optimization pro-
cess.

Fig. 9 The convergence history of average mean, average standard deviation, and the standard
deviation difference of the beam volume for the optimization process with stochastic expansions
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4 Application Example: Robust Airfoil Design

In this section, a computationally efficient approach for robust aerodynamic opti-
mization under aleatory (inherent) and epistemic (model-form) uncertainties using
stochastic expansions based on the point-collocation NIPC method is described. The
deterministic CFD simulation model used in the optimization studies is described.
Then the robust aerodynamic optimization formulations are given, followed by a
discussion on the utilization of stochastic expansions in robust optimization. The
results of two case studies are presented.

4.1 Computational Fluid Dynamics and Airfoil Shape Model

This section describes the elements of the CFD model, including the governing
equations, numerical solution of the governing fluid flow equations (flow solver),
the airfoil shape model, and meshing of the solution domain.

4.1.1 Governing Equations

The flow is assumed to be steady, two dimensional, compressible, and turbulent.
The steady Reynolds-averaged Navier–Stokes (RANS) equations are taken as the
governing fluid flow equations. The fluid medium is air, assumed to be an ideal
gas, with the laminar dynamic viscosity (μ) described by Sutherland’s formula (see,
e.g., Ref. [58]). For modeling the turbulent kinematic eddy viscosity (νt ), we use
the turbulence model by Spalart and Allmaras [59]. The Spalart–Allmaras model,
designed specifically for aerodynamic wall-bounded flows, is a one-equation model
that solves a single conservation partial differential equation for the turbulent viscos-
ity. This conservation equation contains convective and diffusive transport terms, as
well as expressions for the production and dissipation of νt . The Spalart–Allmaras
model is economical and accurate for attached wall-bounded flows and flows with
mild separation and recirculation. However, the model may not be accurate for mas-
sively separated flows, free shear flows, and decaying turbulence. As described later,
the turbulent viscosity is multiplied by a factor k to introduce the epistemic uncer-
tainty in our robust optimization under mixed uncertainties problem. This is imple-
mented in the solution through a user-defined function (UDF) which is dynamically
loaded with the flow solver (described below) for each CFD simulation. The whole
procedure is executed automatically through scripts.

4.1.2 Flow Solver

The flow solver is of implicit density-based formulation, and the fluxes are calcu-
lated by an upwind-biased second-order spatially accurate Roe flux scheme. Asymp-
totic convergence to a steady state solution is obtained for each case. Automatic so-
lution steering is employed to gradually ramp up the Courant number and accelerate
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Fig. 10 A typical NACA four-digit airfoil section is shown. The free-stream flow is at Mach
number M∞, at an angle of attack αA relative to the chord axis

convergence. Full multigrid initialization is used to get a good starting point. Numer-
ical fluid flow simulations are performed using the computer code FLUENT [60].

The iterative convergence of each solution is examined by monitoring the overall
residual, which is the sum (over all the cells in the computational domain) of the L2

norm of all the governing equations solved in each cell. In addition to this, the lift
and drag forces are monitored for convergence. The solution convergence criterion
for the CFD runs is the one that occurs first of the following: a maximum residual
of 10−6, or a maximum number of iterations of 1,000.

4.1.3 Airfoil Geometry

In this work, we use the National Advisory Committee for Aeronautics (NACA)
airfoil shapes. In particular, we use the NACA four-digit airfoil parameterization
method, where the airfoil shape is defined by three parameters: c (the maximum or-
dinate of the mean camber line as a fraction of the chord), lc (the chordwise position
of the maximum ordinate as a fraction of the chord), and t (the thickness-to-chord
ratio). The airfoils are denoted by NACA mpxx, where xx represents (100 × t), m

is equal to (100 × c), and p is (10 × lc). The shapes are constructed using two poly-
nomials, one for the thickness distribution and the other for the mean camber line.
The full details of the NACA four-digit parameterization are given in Abbott and
von Doenhoff [61]. A typical NACA four-digit airfoil section is shown in Fig. 10.

4.1.4 Grid Generation

The solution domain boundaries are placed at 25 chord lengths in front of the airfoil,
50 chord lengths behind it, and 25 chord lengths above and below it. The compu-
tational meshes are of structured curvilinear body-fitted C-topology with elements
clustering around the airfoil and growing in size with distance from the airfoil sur-
face. The non-dimensional normal distance (y+) from the wall to the first grid point
is roughly one. The free-stream Mach number, angle of attack, static pressure, and
the turbulent viscosity ratio are prescribed at the far-field boundary. An example of
a computational grid is shown in Fig. 11. The computer code ICEM CFD [62] is
used for the mesh generation.
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Fig. 11 An example computational grid for the NACA 0012 airfoil

4.2 Robust Airfoil Optimization Formulation

Here, the details are given for the robust aerodynamic optimization with stochas-
tic expansions for two cases: (1) optimization under pure aleatory uncertainty and
(2) optimization under mixed (aleatory and epistemic) uncertainty.

4.2.1 Optimization Under Pure Aleatory Uncertainty

The robust airfoil optimization under pure aleatory uncertainty is formulated as

min μCd
+ σCd

subject to μCL
≥ C∗

L

0.0 ≤ c ≤ 0.05

0.3 ≤ lc ≤ 0.7

0.08 ≤ t ≤ 0.14,

(26)

where Cd = Cd(Xd ,Pa) is the profile drag coefficient, which is a function of the
deterministic design variable vector Xd and aleatory input uncertainty vector Pa .
Similarly, the lift coefficient is CL = CL(Xd,Pa). In our current optimization study,
we use the deterministic design variable vector Xd = {c, lc, t} to control our air-
foil shape. Note that this vector can contain the control points as the design vari-
ables when the airfoil shape is parameterized with different spline fitting techniques.
The free-stream Mach number (M∞) is treated as aleatory (inherent) input uncer-
tainty (i.e., Pa = {M∞}) and represented as a uniform random variable with bounds
(0.7 ≤ M∞ ≤ 0.8). As can be seen from the Mach number range, we focus on the
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transonic flow regime, where the drag coefficient is very sensitive to the changes
in the Mach number due to the lambda shock originating on the top surface of the
airfoil. This minimization is subject to satisfying a desired profile lift coefficient
(C∗

L) value or higher by the mean value of the lift coefficient adjusted by changing
the angle of attack for a given design variable and uncertain variable vector value.
The optimization also includes geometric constraints for the profile shape, which
bound the thickness, maximum camber, and the maximum camber location (note
that lc is taken as zero when c = 0.0). The drag coefficient and other aerodynamics
characteristics of the airfoil for a given design variable vector and aleatory uncer-
tain variable value are obtained from the CFD simulations that solve steady, two-
dimensional, Reynolds-averaged Navier–Stokes equations with Spalart–Allmaras
turbulence model.

4.2.2 Optimization Under Mixed Uncertainty

The robust airfoil optimization under mixed (aleatory and epistemic) uncertainties
is formulated as

min w1μCd
+ w2σCd

+ w3δσCd

subject to μmin
CL

≥ C∗
L

0.0 ≤ c ≤ 0.05

0.3 ≤ lc ≤ 0.7

0.08 ≤ t ≤ 0.14,

(27)

where the profile drag coefficient Cd(Xd,Pa,Pe) is now a function of the determin-
istic design variable vector Xd , aleatory input uncertainty vector Pa , and the epis-
temic input uncertainty vector Pe. Similarly, the lift coefficient, CL(Xd,Pa,Pe), is
now a function of the same variables. In the multi-objective function w1, w2, w3 are
the weights whose sum is equal to 1.0. In this study, we have used equal weights;
however, one can choose different weights depending on the emphasis on each term.

In this optimization problem, we again consider airfoil shape parameters as
our deterministic design variable vector (Xd = {c, lc, t} and the free-stream Mach
number as the aleatory (inherent) input uncertainty (Pa = {M∞}) with bounds
(0.7 ≤ M∞ ≤ 0.8). The kinematic eddy viscosity (νt ) obtained from the Spalart–
Allmaras turbulence model used in RANS simulations is modeled as an epistemic
(model-form) input uncertainty (i.e., Pe = {νt }) through the introduction of a factor
k as shown below:

νt = kνtSA , (28)

where νtSA is the turbulent viscosity originally obtained with the Spalart–Allmaras
model. The range of this factor k is chosen between 0.5 and 2.0 to mimic the
model-form uncertainty due to the use of different turbulence models in RANS cal-
culations. Figure 12 shows the pressure distributions of a NACA 2412 airfoil at
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Fig. 12 The pressure distributions of NACA 2412 at M∞ = 0.75, αA = 1◦

M∞ = 0.75, αA = 1◦ with different k values. From this figure, it can be seen that
the k factor and thus the turbulence model have a considerable effect on the pressure
distribution, especially on the shock location.

This optimization is again subject to satisfying a desired profile lift coefficient
(C∗

L) value or higher by the minimum of the mean value of the lift coefficient ad-
justed by changing the angle of attack for a given design variable and uncertain vari-
able vector value. The optimization also includes geometric constraints for the pro-
file shape, which bound the thickness, maximum camber, and the maximum camber
location.

4.3 Utilization of Stochastic Response for Robust Optimization

Here, a stochastic response surface obtained with the point-collocation NIPC
method is used for the propagation of aleatory and epistemic uncertainties due to
its computational efficiency and accuracy as shown in the previous studies [43, 50].
When constructing the stochastic expansions, a combined expansion approach will
be utilized, which will expand the polynomials as a function of both uncertain vari-
ables (aleatory and epistemic) and deterministic design variables.

Since the angle of attack has to be adjusted to satisfy the lift coefficient con-
straint in both optimization problems, we create three separate stochastic response
surfaces with the point-collocation NIPC at three angles of attack (αA0 = 0.0◦,
αA1 = 1.0◦, and αA2 = 2.0◦). Then we apply Lagrange interpolation to create a
composite response surface using these three response surfaces, which is continu-
ous and quadratic in αA between αA = 0.0◦ and αA = 2.0◦ for all design variables,
aleatory uncertain variables (i.e., M∞), and the epistemic uncertain variables (i.e.,
k). This composite response surface R̂ (i.e., Cd or CL), which is now a function of
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αA, Pa(ξpa), Pe(ξ se), and Xd(ξd), can be written as

R̂
(
αA,Pa(ξpa),Pe(ξpe),Xd(ξd)

)

∼=
nαA∑
k=0

R
(
Pa(ξpa),Pe(ξpe),Xd(ξd)

)
αAk

LnαA
,k(αA). (29)

Based on this equation, we can slightly modify Eqs. (22) and (23) to calculate
the mean and variance from R̂:

μ
R̂

= μ
R̂
(αA, ξpe, ξd) =

nαA∑
k=0

P∑
j=0

αj (αAk)LnαA
,k(αA)

〈
Ψj (ξpa, ξpe, ξd)

〉
ξpa

, (30)

σ 2
R̂

= 〈
(R̂ − μ̂R)2〉

ξpa

=
{nαA∑

k=0

nαA∑
l=0

P∑
i=0

P∑
j=0

LnαA,k
(αA)Lnα,l

(αA)αi(αAk)αj (αAl)〈ΨiΨj 〉ξpa

}
− μ2

R̂
,

(31)

where αA is the angle of attack, nαA
= 2 is the degree of interpolation in αA, and

Lnα,k
is the Lagrange polynomial at αAk given by

LnαA,k
(αA) =

nαA∏
i=0,i �=k

(
αA − αAi

αAk − αAi

)
. (32)

Note that the introduction of αA to the problem with the above approach indicates
that it is considered as a deterministic design variable within R̂. An alternative ap-
proach to involve αA in the response surface would be to include it among the other
deterministic design variables during the original construction.

The above formulations show that the mean and the standard deviation of re-
sponse variables at a design point and angle of attack are characterized by two
bounds due to epistemic uncertainties with specified interval bounds [PL

e ,PU
e ]. In

other words, the mean and standard deviation of response R (i.e., Cd or CL) at a de-
sign point and angle of attack will also be bounded by its maximum and minimum
values. Once we create the composite stochastic response surface (Eq. (29)), we can
use Eqs. (30) and (31) to calculate the mean and the standard deviation and use any
standard optimization technique to determine μmax

cd
, μmin

cd
, σ max

cd
, and σ min

cd
at a given

design point and angle of attack.
With the combined expansion approach, it will be straightforward to calculate the

total number of CFD simulations (NCFD) required to create the composite response
surface R̂ that will be used in the entire optimization process:

NCFD = OSR × Nt × (nαA
+ 1), (33)



272 Y. Zhang and S. Hosder

where Nt is calculated from Eq. (11), and nαA
is the degree of interpolation in αA

used in the creation of the composite response surface. It is important to note that
NCFD will be the computational cost of the described optimization approach, since
once the response surface is created, the numerical evaluations at each optimization
step will be computationally cheap due to the polynomial nature of the stochastic
surrogate. Note that for a stochastic optimization problem with only a few design
variables (i.e., Nd ≤ 3), the combined expansion approach described above will be
computationally very efficient, since a single response surface (a surrogate) is cre-
ated which is a function of the design, aleatory, and epistemic uncertain variables.
The optimization can be performed using this single response surface. On the other
hand, in optimization problems with a large number of design variables, one can
choose an alternative approach which is based on the expansion of the polynomial
chaos surface only on the uncertain (aleatory and epistemic) variables. With this ap-
proach a separate stochastic response surface should be created at each design point,
which will increase the computational cost; however, the accuracy of the response
surface approximation will increase due to the reduction in the number of expansion
variables.

4.4 Results and Discussion

The robust airfoil optimization approach with NIPC stochastic response surface is
demonstrated here for two cases: (1) optimization under pure aleatory input uncer-
tainty and (2) optimization under mixed (aleatory and epistemic) uncertainty.

4.4.1 Optimization Results for the Pure Aleatory Uncertainty Case

The free-stream Mach number is the only uncertain variable for this case and mod-
eled with a uniform probability distribution between M∞ = 0.7 and M∞ = 0.8.
The objective (Eq. (26)) is to reduce the mean and the standard deviation of the
drag coefficient simultaneously to obtain an airfoil shape with minimum drag that
is least sensitive to the change in Mach number in the specified range. Besides the
side (geometric) constraints on the design variables, the minimization is performed
such that the mean lift coefficient obtained with the optimum design is greater than
or equal to 0.5. The stochastic response surfaces for the drag and the lift coefficients
were created with the point-collocation NIPC method using a quadratic polynomial
expansion with an OSR of 2 for four variables (three deterministic design variables
and one uncertain variable). The total number of CFD evaluations required for this
case was NCFD = 90, as can be calculated using Eq. (33) along with Eq. (11). Note
that this number is considerably low compared to the cost of alternative robust opti-
mization formulations, which utilize Monte Carlo simulations for the calculation of
the statistics. After the stochastic response surfaces for the drag and lift coefficients
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Fig. 13 NACA 2412 and the optimized airfoil shapes for the pure aleatory uncertainty case

Table 5 Optimization results
for the pure aleatory
uncertainty case

Initial airfoil Optimized airfoil

c lc t c lc t

NACA 2412 0.020 0.40 0.120 0.0195 0.70 0.080

NACA 0012 0.0 0.0 0.120 0.0195 0.70 0.080

are created, the robust optimization is performed using the approach described in
the previous section.

The robust optimization was performed starting from two different initial air-
foil geometries (NACA 2412 and NACA 0012). As can be seen from Table 5,
both optimization runs converged to the same optimum airfoil shape with t = 0.08,
c = 0.0195, and lc = 0.7 (Fig. 13). The optimum airfoil has the minimum thick-
ness allowable and the camber is located as aft as possible toreduce the drag while
satisfying the required CL, which are typical characteristics of airfoils designed to
operate at transonic speeds (e.g., supercritical airfoils). The camber value is the op-
timum to produce the required lift at an optimum angle of attack.

The pressure distributions of the NACA 2412 and optimum airfoils at M∞ =
0.75 are shown in Fig. 14. From this figure we can see that, at M∞ = 0.75, the
NACA 2412 airfoil has a shock wave on the top surface, whereas no shock wave
exists on the optimized airfoil, due to the increase in minimum suction pressure
(i.e., the decrease of the maximum value of −Cp) and the reduction in the maximum
velocity value on the top surface, giving a more flat pressure distribution. The aft
camber compensates the lift that is lost in the suction region by loading the airfoil
in the aft region.

The optimization history of the mean and the standard deviation of the drag coef-
ficient is given in Fig. 15, which shows that both quantities are minimized simultane-
ously regardless of the initial airfoil chosen, which confirms the robust optimization
approach used. This result is further verified by Fig. 16, which gives drag versus
Mach number over the uncertain Mach number range for the NACA 2412 and op-
timized airfoil at a lift coefficient value of 0.5. As can be seen from this plot, the
drag rise of NACA 2412 is significant, whereas the optimum airfoil maintains a low
drag coefficient value over the uncertain Mach number range with no significant
variation. The drag coefficient and L/D values for both airfoils are reported in Ta-
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Fig. 14 The pressure distributions of NACA 2412 and optimum airfoil at M∞ = 0.75 for the pure
aleatory uncertainty case

ble 6, which quantifies the better aerodynamic performance of the optimum airfoil
compared to NACA 2412.

The drag characteristics of both airfoils can also be explained by examining the
Mach number contours given in Fig. 17. As the Mach number increases, the shock
wave on the top surface of the NACA 2412 airfoil gets stronger and eventually in-
duces the boundary layer separation at a free-stream Mach number of 0.8, increasing
the drag significantly. On the other hand, the delayed shock formation on the top sur-
face of the optimum airfoil shape prevents a significant drag rise over the uncertain
Mach number range considered. The pressure distributions of the NACA 2412 and
optimum airfoils at M∞ = 0.7, 0.75, and 0.8 are shown in Fig. 18. It can be seen
that at M∞ = 0.7, 0.75, the NACA 2412 airfoil has a shock wave on the top surface,
whereas no shock wave exists on the optimized airfoil. At M∞ = 0.8, the shock
wave on the optimized airfoil is much weaker compared to the shock on the NACA
2412 airfoil.

4.4.2 Optimization Results for the Mixed Uncertainty Case

As described with the optimization formulation in Sect. 4.2.2, the free-stream Mach
number is taken as the aleatory uncertain variable for this case and modeled with
a uniform probability distribution between M∞ = 0.7 and M∞ = 0.8, the same
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Fig. 15 The optimization history of the mean and the standard deviation of the drag coefficient for
the pure aleatory uncertainty case starting from two initial airfoil shapes (NACA 2412 and NACA
0012)

as in the pure aleatory case. The k factor, which is multiplied by the turbulent
eddy-viscosity coefficient of the Spalart–Allmaras turbulence model, is the epis-
temic uncertain variable defined with the interval [0.5,2.0]. The objective of the
robust optimization under mixed uncertainties (Eq. (27)) is to reduce the average
of the mean (μ̄Cd

), the average of the standard deviation (σ̄Cd
), and the difference

in the standard deviation of the drag coefficient (δσCd
) simultaneously to obtain

an airfoil shape with minimum drag that is least sensitive to the change in Mach
number and the k factor (i.e., the turbulence model) in the range specified for each
variable. Besides the side (geometric) constraints on the design variables, the min-
imization is performed such that the minimum of the mean lift coefficient obtained
with the optimum design is greater than or equal to 0.5. The stochastic response sur-
faces for the drag and the lift coefficients were again created with point-collocation
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Fig. 16 The drag coefficients of the NACA 2412 and optimized airfoils at C∗
L = 0.5

Table 6 Drag coefficient and
L/D values for NACA 2412
and optimum airfoils at
various Mach numbers for
pure aleatory uncertainty case

M Cd L/D

NACA 2412 Optimized NACA 2412 Optimized

0.7 0.0110 0.0086 45.45 58.14

0.75 0.0242 0.0088 20.66 56.82

0.8 0.0727 0.0126 6.88 39.68

NIPC using a quadratic polynomial expansion with an OSR of 2 for five variables
(three deterministic design variables, one aleatory uncertain variable, and one epis-
temic uncertain variable). The total number of CFD evaluations required for this
case was NCFD = 126, as can be calculated using Eq. (33) along with Eq. (11). Be-
cause we consider the propagation of an aleatory and epistemic uncertain variable
simultaneously, this number signifies the computational efficiency of the proposed
optimization approach. After the stochastic response surfaces for the drag and lift
coefficients are created, the robust optimization is performed using the approach
described in the previous section. As a result of the optimization under mixed un-
certainties, the same optimum airfoil shape as in the pure aleatory uncertainty case
is obtained (Table 7). This optimum has been verified by starting the optimization
from two different initial profile shapes (NACA 2412 and NACA 0012). This result
is somehow expected, since the flow field around the optimum airfoil shape does not
include complex flow features such as strong shocks and shock-induced separation
over the range of Mach numbers considered to make the effect of the turbulence
model (i.e., the k factor) significant on different aerodynamic quantities including
the drag coefficient.

Figure 19 gives the convergence history of the average mean, average standard
deviation, and the difference of the drag coefficient for the mixed uncertainty case
starting from two initial airfoil shapes (NACA 2412 and NACA 0012). Regardless



Efficient Robust Design with Stochastic Expansions 277

Fig. 17 Mach number contours for the NACA 2412 and optimum airfoil shapes for the pure
aleatory uncertainty case
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Fig. 18 The pressure distributions of the NACA 2412 and optimum airfoils at M∞ = 0.7, 0.75,
0.8 for the pure aleatory uncertainty case

Table 7 Optimization results
for the mixed uncertainty case Initial airfoil Optimized airfoil

c lc t c lc t

NACA 2412 0.020 0.400 0.120 0.019 0.700 0.080

NACA 0012 0 0 0.120 0.019 0.700 0.080

of the initial airfoil geometry used, all three quantities are reduced compared to their
starting values and converge to the same final values. On the other hand, the reduc-
tion in the average mean and the average standard deviation of the drag coefficient is
larger compared to the reduction in the difference of the standard deviation, which
already has a small value for the initial airfoil shapes considered. This observation
may imply that, for this optimization problem, the contribution of the epistemic un-
certainty (i.e., k factor) is not as much as the contribution of the aleatory uncertainty
(Mach number) to the total uncertainty in the drag coefficient. Since the optimiza-
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Fig. 20 Drag coefficient values of the optimized airfoil and NACA 2412 for M∞ = [0.7,0.75,0.8]
and k = [0.5,1.25,2.0] at C∗

L = 0.5

tion is performed at a relatively low lift coefficient value (C∗
L = 0.5), one may also

expect to see more contribution from the epistemic uncertainty at higher lift coeffi-
cients. Figure 20, which shows a carpet plot of the drag coefficient over the range of
M∞ and the k factor considered, also verifies that the aerodynamic characteristics of
the optimum airfoil are better compared to the characteristics of NACA 2412 (one of
the airfoils used to initiate the optimization) in the case of mixed uncertainties, and
no significant drag rise (i.e., variation) is observed with the optimum geometry. This
plot also shows that the uncertainty in the Mach number is the main contributor to
the overall uncertainty and variation in the drag coefficient, which can be quantified
by the results tabulated in Table 8.

5 Conclusions

This chapter described the utilization of a computationally efficient uncertainty
quantification (UQ) approach and NIPC-based stochastic expansions in robust de-
sign under mixed (aleatory and epistemic) uncertainties and demonstrated this tech-
nique on a model problem and robust aerodynamic optimization.

The optimization approach utilized stochastic response surfaces obtained with
NIPC methods to approximate the objective function and the constraints in the op-
timization formulation. The objective function includes stochastic measures, which
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Table 8 Drag coefficient and
L/D values for NACA 2412
and optimum airfoils at
various Mach numbers and k

values for the mixed
uncertainty case

K M∞ Cd L/D

NACA 2412 Optimized NACA 2412 Optimized

K = 0.5 0.7 0.0171 0.0131 29.22 38.17

0.75 0.0401 0.0136 12.48 36.76

0.8 0.0819 0.0189 6.11 26.48

K = 1.25 0.7 0.0233 0.0184 21.46 27.21

0.75 0.0427 0.0190 11.71 26.37

0.8 0.0798 0.0248 6.26 20.16

K = 2.0 0.7 0.0277 0.0201 18.07 24.88

0.75 0.0474 0.0224 10.55 22.32

0.8 0.0817 0.0286 6.12 17.51

are minimized simultaneously to ensure the robustness of the final design to both
aleatory and epistemic uncertainties. The optimization approach was first demon-
strated on the robust design of a beam under mixed uncertainties. The stochastic
expansions are created with two different NIPC methods, quadrature-based and
point-collocation NIPC. The optimization results were compared to the results of
another robust optimization technique that utilized double-loop Monte Carlo sam-
pling for the propagation mixed uncertainties. The results obtained with the two
different optimization approaches agreed well; however, the number of function
evaluations was much less than the number required by the Monte Carlo-based ap-
proach, indicating the computational efficiency of the described optimization tech-
nique.

For robust aerodynamic optimization under aleatory (Mach number) and epis-
temic (turbulence model) uncertainties, the NIPC response surface was also used as
the basis for surrogates in the optimization process. To create the surrogates, a com-
bined point-collocation NIPC approach was utilized, which was a function of both
the design and uncertain variables. Two stochastic optimization formulations were
studied: (1) optimization under pure aleatory uncertainty and (2) optimization under
mixed (aleatory and epistemic) uncertainty. The formulations were demonstrated for
the drag minimization of NACA four-digit airfoils described with three geometric
design variables over the range of uncertainties under transonic flow conditions.
Deterministic CFD simulations were performed to solve steady, two-dimensional,
compressible, turbulent RANS equations. The pure aleatory uncertainty case in-
cluded the Mach number as the uncertain variable. For the mixed uncertainty case,
a k factor, which is multiplied by the turbulent eddy-viscosity coefficient, is in-
troduced to the problem as the epistemic uncertain variable. The results of both
optimization cases confirmed the effectiveness of the robust optimization approach
with stochastic expansions by giving an optimum airfoil shape that has the mini-
mum drag over the range of aleatory and epistemic uncertainties. The optimization
under pure aleatory uncertainty case required 90 deterministic CFD evaluations,
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whereas the optimization under mixed uncertainty case required 126 CFD eval-
uations to create the stochastic response surfaces, which show the computational
efficiency of the stochastic optimization with stochastic expansions. Note also that
the stochastic optimization methodology described in this chapter is general in the
sense that it can be applied to any robust design problem in science and engineer-
ing.
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