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Abstract Space mapping (SM) has been successfully applied in various fields of
engineering and science. However, despite its potential, SM has only recently been
applied in aerospace engineering. This chapter describes recent advances in aero-
dynamic design and optimization using SM. In particular, a detailed formulation of
the optimization methodology is provided, as well as several applications involving
the design of transonic airfoils and wings.
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1 Introduction

Aerodynamic shape optimization (ASO) is a field of engineering that couples op-
timization methods and fluid flow analysis to design streamlined surfaces. ASO is
important in the design of a number of engineering systems and devices, such as
aircraft [1], turbomachinery [2], and automotive [3] and marine vehicles [4]. Nowa-
days, high-fidelity computational fluid dynamic (CFD) simulations are widely used
in the design process. Although CFD analyses are accurate and reliable, they can
be computationally expensive. Therefore, efficient and robust design algorithms are
essential for rapid optimization.

Computationally efficient ASO can be performed using surrogate-based opti-
mization (SBO) techniques [5–7]. In SBO, direct optimization of the high-fidelity
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CFD model is replaced by an iterative correction-prediction process where a sur-
rogate model (a computationally cheap representation of the high-fidelity one) is
constructed and subsequently exploited to obtain an approximate location of the
high-fidelity model optimal design.

A surrogate model can be constructed by approximating sampled high-fidelity
model data using, e.g., polynomial approximation [5], radial basis functions [6, 8],
kriging [7, 9–11], neural networks [12, 13], or support vector regression [14] (re-
sponse surface approximation surrogates) or by correcting/enhancing a physics-
based low-fidelity model (physical surrogates) [7, 15]. Approximation surrogates
usually require a large number of high-fidelity model evaluations to ensure decent
accuracy, and the number of samples typically grows exponentially with the num-
ber of design variables. On the other hand, approximation surrogates can be a basis
of efficient global optimization techniques [6]. Various techniques of updating the
training data set (the so-called infill criteria [6]) have been developed that aim at ob-
taining global modeling accuracy, locating a globally optimal design, or achieving
a trade-off between the two, particularly in the context of kriging interpolation [6].

Physics-based surrogate models are not as versatile as approximation ones, be-
cause they rely on the underlying low-fidelity model (a simplified description of the
system). Low-fidelity models can be obtained by neglecting certain second-order
effects, using simplified equations, or—probably the most versatile approach—by
exploiting the same CFD solver as used to evaluate the high-fidelity model but with
a coarser mesh and/or relaxed convergence criteria [16]. It seems that physical sur-
rogates have the potential to offer better efficiency in terms of reducing the computa-
tional cost of the design process. The reason is that the knowledge about the system
of interest embedded into the low-fidelity model allows us to construct a quality sur-
rogate model using a limited amount of high-fidelity model data. For many practical
algorithms, only a single high-fidelity model evaluation is sufficient [7, 17]. For the
same reason, physical surrogates have much better generalization capability than
the approximation models [17].

Several SBO algorithms exploiting physical surrogates have been proposed in the
literature, including approximation and model management optimization (AMMO)
[18], space mapping (SM) [17, 19], manifold mapping (MM) [20], and, recently,
shape-preserving response prediction (SPRP) [21]. All of these methods differ in
the specific method of using the low-fidelity model to create the surrogate. Space
mapping is probably the most popular approach of this kind. It was originally de-
veloped for simulation-driven design in microwave engineering [17]; however, it
is currently becoming more and more popular in other areas of engineering and
science (see [17, 19]). Despite its potential, space mapping has only recently been
applied in ASO [22–24].

In this chapter, we describe a computationally efficient ASO methodology which
employs physics-based surrogate models created by space mapping [23, 24]. Sec-
tion 2 briefly describes aerodynamic shape design and the optimization problem.
The optimization methodology is described in detail in Sect. 3. Applications of the
method to transonic airfoil and wing design are given in Sects. 4, 5. Section 6 sum-
marizes the chapter.
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Fig. 1 Planform view of a trapezoidal wing (or a turbine blade) of a semi-span b/2 and quarter
chord sweep angle Λ. Span stations are marked 1 through 7 and the free-stream velocity is V∞.
Leading edge and trailing edge angles φ and ψ are also shown. Other design parameters are not
shown

2 Aerodynamic Shape Design

The fundamentals of aerodynamic shape design are briefly addressed in this sec-
tion. In particular, the geometry description, figures of merit, and the optimization
problem are defined.

2.1 Geometry

A three-dimensional streamlined aerodynamic surface is depicted in Fig. 1, which
could, for example, represent a simple aircraft wing or a turbine blade. Design pa-
rameters controlling the planform shape include the semi-span (b/2), the quarter
chord wing sweep angle (Λ), the thickness-to-chord ratio (t/c) at each span station,
the wing taper ratio (λ), and the twist distribution (γ ).

At each span station (numbered 1 through 7) of the surface, the cross section is
defined by an airfoil profile such as the one in Fig. 2. The number of span stations
can be larger or fewer than shown here and depends on the particular design sce-
nario. A straight line wrap is often assumed between the span stations. The airfoil
shapes are characterized by the chord length (c), thickness distribution (t), and cam-
ber distribution. Designable parameters controlling the overall shape depend on the
parameterization technique employed by the designer. Examples of such techniques
include the National Advisory Committee for Aeronautics (NACA) four-digit air-
foil shapes [25], the Hicks and Henne bump functions [26], and the Bezier-PARSEC
method [27], each with different types and numbers of control parameters.
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Fig. 2 Airfoil wing cross section (solid line) of thickness t and chord length c. V∞ is the
free-stream velocity and is at an angle of attack α relative to the x-axis. F is the resulting aerody-
namic force, where l is the lift force, perpendicular to V∞, and d is the drag force, parallel to V∞.
p is the pressure acting normal to a surface element ds. τ is the viscous wall shear stress acting
parallel to the surface element. θ is the angle that p and τ make relative to the z-axis and x-axis,
respectively, where a positive angle is clockwise

2.2 Figures of Merit

In general, a streamlined aerodynamic surface is designed to provide a certain lift
at a minimum drag. In ASO, the typical figures of merit are the lift and drag coeffi-
cients. The lift coefficient (for a three-dimensional surface) is defined as

CL = L

q∞S
, (1)

and the drag coefficient as

CD = D

q∞S
, (2)

where S is a reference area (usually chosen as the planform area), L and D are the
magnitude of the total lift and drag forces, respectively, and the dynamic pressure
q∞ is defined as

q∞ = 1

2
ρ∞V∞, (3)

where ρ∞ is the free-stream density and V∞ is the magnitude of the free-stream
velocity.

The forces acting on the surface are calculated from the results of a numerical
simulation of the flow past it. In particular, the lift and drag coefficients can be
calculated as

CL = −CA sinα + CN cosα, (4)

and

CD = CA cosα + CN sinα, (5)
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Table 1 Various problem formulations for aerodynamic shape optimization. Typically, constraints
on the minimum allowable cross-sectional area are also included, i.e., c2(x) = Amin(x)−A(x) ≤ 0,
where Amin(x) is the minimum cross-sectional area at a given span station. Cp.t is a target pressure
distribution

Case f (x) c1(x)

Lift maximization −CL(x) CD(x) − CD.min ≤ 0

Drag minimization CD(x) CL.max − CL(x) ≤ 0

L/D maximization −CL(x)/CD(x) CL.max − CL(x) ≤ 0

Inverse design 1/2
∫
(Cp(x) − Cp.t )

2 ds

respectively. Here, the nondimensional force coefficients parallel to the x- and z-
axes, CA and CN , respectively, are calculated by integrating the pressure distribution
(Cp) and the skin friction distribution (Cf ) over the surface as

CA =
∮

(Cp sin θ + Cf cos θ) ds, (6)

and

CN =
∮

(−Cp cos θ + Cf sin θ) ds, (7)

where ds is the length of the surface panel element and θ is the angle of the panel
relative to the x-axis (see definition in Fig. 2).

2.3 Optimization Problem

Generally, aerodynamic shape optimization can be formulated as a nonlinear mini-
mization problem; i.e., for a given operating condition, solve

min
x

f (x)

s.t. cj (x) ≤ 0 (8)

l ≤ x ≤ u,

where f (x) is the objective function, x is the design variable vector, cj (x) is a
design constraint (j = 1, . . . ,N and N is the number of constraints), and l and
u are the lower and upper bounds for the design variables, respectively. The design
variables and the detailed formulation are problem-specific, but typical formulations
are shown in Table 1. Other constraints such as mathematical models describing the
structural weight of the wing are often included in optimization [28].
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3 Space Mapping for Aerodynamic Design

In this section, we describe a space mapping (SM) optimization methodology for
aerodynamic shape design. First, the aerodynamic optimization problem described
in the previous section is formulated for the SM approach. Then, we briefly recall
some SM basics, and define the surrogate model construction. Finally, the SM algo-
rithm is described.

3.1 Problem Formulation

A simulation-driven design can be formulated as a nonlinear minimization problem
as noted before. Refining (8), we define

x∗ = arg min
x

H
(
f (x)

)
, (9)

where x is a vector of design parameters, f the high-fidelity model to be minimized
at x, and H is the objective function. x∗ is the optimum design vector. The high-
fidelity model will represent aerodynamic forces, the lift and drag coefficients, as
well as other scalar responses such as the cross-sectional area A of the wing at the
location of interest. The area response can be of a vector form A if one requires
multiple area cross-sectional constraints at various locations on the wing, e.g., the
wing root and the wing tip. The response will have the form

f (x) = [
CL.f (x) CD.f (x) Af (x)

]T
, (10)

where CL,f and CD,f are the lift and drag coefficients, respectively, generated by
the high-fidelity model. We are interested in maximizing lift or minimizing drag, so
the objective function will take the form

H
(
f (x)

) = −CL, (11)

or

H
(
f (x)

) = CD, (12)

respectively, with the design constraints denoted as

C
(
f (x)

) = [
c1(f (x)) . . . ck(f (x))

]T
. (13)

Maximizing lift will yield two nonlinear design constraints for drag and area,

c1
(
f (x)

) = CD,f (x) − CD,max ≤ 0, (14)

c2
(
f (x)

) = −Af (x) + Amin ≤ 0. (15)



Aerodynamic Shape Optimization by Space Mapping 219

Fig. 3 A flow diagram of a generic SBO algorithm

Similarly, minimizing drag we have two nonlinear design constraints for lift and
area,

c1
(
f (x)

) = −CL,f (x) + CL,min ≤ 0, (16)

c2
(
f (x)

) = −Af (x) + Amin ≤ 0. (17)

3.2 Space Mapping Basics

Space mapping (SM) [17, 19] is a surrogate-based optimization (SBO) technique
where the computational burden is shifted from an expensive high-fidelity model
(or fine model), denoted by f , to a cheaper model, the surrogate, denoted by s,
where the surrogate is iteratively optimized and updated. The flow of a typical SBO
algorithm is shown in Fig. 3.

Starting from a initial design x(0), the genetic SM algorithm produces a sequence
x(i), i = 0,1, . . . of an approximate solution to (9) as

x(i+1) = arg min
x

H
(
s(i)(x)

)
, (18)

where

s(i)(x) = [
C

(i)
L.s(x) C

(i)
D.s(x) As(x)(i)

]T (19)
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is the surrogate model at iteration i. As previously described, the accurate high-
fidelity CFD model f is accurate but computationally expensive. Using SM, the
surrogate s is a composition of the low-fidelity CFD model c and a simple linear
transformation to correct the low-fidelity model response [17]. The corrected re-
sponse is denoted as s(x,p), where p represents a set of model parameters and at
iteration i the surrogate is

s(i)(x) = s(x,p). (20)

The SM parameters p are determined through a parameter extraction (PE) pro-
cess [17]. In general, this process is a nonlinear optimization problem, where the
objective is to minimize the misalignment of the surrogate response at some or all
previous iterations of the high-fidelity model data points [17]. The PE optimization
problem can be defined as

p(i) = arg min
p

i∑

k=0

wi,k

∥
∥f

(
x(k)

) − s
(
x(k),p

)∥∥2
, (21)

where wi,k are weight factors that control how much impact previous iterations
affect the SM parameters. Popular choices are

wi,k = 1 ∀i, k, (22)

and

wi,k =
{

1 k = i,

0 otherwise.
(23)

In the latter case, the parameters only depend on the most recent SM iteration.
Examples of SM surrogate models include input SM, where s(x,p) = s(x,q) =

c(x + q) (parameter shift) or s(x,p) = s(x,B,q) = c(Bx + q) (parameter shift and
scaling), output SM, with s(x,p) = s(x,A) = Ac(x) (multiplicative response cor-
rection) or s(x,p) = s(x,d) = c(x) + d (additive response correction), and a few
others such as implicit SM [29] and frequency SM [30].

3.3 Surrogate Model Construction

The SM surrogate model s is a composition of a low-fidelity model c and corrections
or linear transformations, where the model parameters p are extracted using one of
the PE processes described above. PE and surrogate optimization create a certain
overhead on the whole process, and this overhead can be a significant part of the
overall computational cost. This is mainly due to the fact that the physics-based
low-fidelity models are, in general, relatively expensive to evaluate compared to the
functional-based ones. Despite this, SM may be beneficial [31].
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This problem can be alleviated by exploiting the output SM with both multi-
plicative and additive response corrections where the surrogate model parameters
are extracted analytically. The surrogate model is then written as

s(i)(x) = A(i) ◦ c(x) + D(i) + q(i) (24)

= [
a

(i)
L CL.c(x) + d

(i)
L + q

(i)
L a

(i)
D CD.c(x) + d

(i)
D + q

(i)
D Ac(x)

]T
, (25)

where ◦ is a component-wise multiplication. No mapping is needed for the area
Ac(x), where Ac(x) = Af (x) ∀x since the low- and high-fidelity models represent
the same geometry. Parameters A(i) and D(i) are obtained using

[
A(i),D(i)

] = arg min
A,D

i∑

k=0

∥
∥f

(
x(k)

) − A ◦ c
(
x(k)

) + D
∥
∥2

, (26)

where wi,k = 1; i.e., all previous iteration points are used to globally improve the
response of the low-fidelity model. The additive term q(i) is defined so as to ensure
this perfect match between the surrogate and the high-fidelity model at design x(i),
namely f (x(i)) = s(x(i)) or a zero-order consistency [18]. We can write the additive
term as

q(i) = f
(
x(i)

) − [
A(i) ◦ c

(
x(i)

) + D(i)
]
. (27)

Since an analytical solution exists for A(i),D(i), and q(i), there is no need for
nonlinear optimization solving (21) to obtain parameters. We can obtain A(i) and
D(i) as

[
a

(i)
L

d
(i)
L

]

= (
CT

LCL

)−1CT
LFL, (28)

[
a

(i)
D

d
(i)
D

]

= (
CT

DCD

)−1CT
DFD , (29)

where

CL =
[
CL.c(x(0)) CL.c(x(1)) . . . CL.c(x(i))

1 1 . . . 1

]T

, (30)

FL =
[
CL.f (x(0)) CL.f (x(1)) . . . CL.f (x(i))

1 1 . . . 1

]T

, (31)

CD =
[
CD.c(x(0)) CD.c(x(1)) . . . CD.c(x(i))

1 1 . . . 1

]T

, (32)

FD =
[
CD.f (x(0)) CD.f (x(1)) . . . CD.f (x(i))

1 1 . . . 1

]T

, (33)
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and these are the least-square optimal solutions to the linear regression problems

CLa
(i)
L + d

(i)
L = FL, (34)

CDa
(i)
D + d

(i)
D = FD. (35)

Note that CT
LCL and CT

LCL are nonsingular for i > 1 and x(k) �= x(i) for k �= i. For
i = 1 only the multiplicative SM correction with A(i) is used.

3.4 Algorithm

The SM optimization algorithm, exploiting the trust region convergence safeguard
[6], is as follows:

1. Set i = 0; Select λ, the trust region radius; Evaluate the high-fidelity model at
the initial solution, f (x(0));

2. Using data from the low-fidelity model c, and f at x(k), k = 0,1, . . . , i, set up
the SM surrogate s(i); Perform PE;

3. Optimize s(i) to obtain x(i+1);
4. Evaluate f (x(i+1));
5. If H(f (x(i+1))) < H(f (x(i))), accept x(i+1); Otherwise set x(i+1) = x(i);
6. Update λ;
7. Set i = i + 1;
8. If the termination condition is not satisfied, go to 2, else proceed;
9. End; Return x(i) as the optimum solution.

Note that the trust region parameter λ is updated after each iteration.

4 Airfoil Design

The use of the SM algorithm is demonstrated here for the design optimization of
airfoil shapes at transonic flow conditions. A steady inviscid Euler CFD model is
used with a structured grid for both the high- and low-fidelity models, but with
different grid resolution and convergence criteria (variable-resolution models). The
algorithm is applied to both lift maximization and drag minimization.

4.1 High-Fidelity Model

The flow is assumed to be steady, inviscid, and adiabatic with no body forces. The
compressible Euler equations are taken to be the governing fluid flow equations (see,
e.g., [32]). The solution domain boundaries are placed at 25 chord lengths in front
of the airfoil, 50 chord lengths behind it, and 25 chord lengths above and below
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Fig. 4 Particulars of the two-dimensional solution domain and the grid: (a) a sketch of the com-
putational domain for the flow past an airfoil with a chord length c, (b) example grid for the NACA
0012 airfoil

it (see Fig. 4). The computational meshes are of structured curvilinear body-fitted
C-topology with elements clustering around the airfoil and growing in size with
distance from the airfoil surface. The computer code ICEM CFD [33] is used for
the mesh generation. The free-stream Mach number, static pressure, and angle of
attack are prescribed at the far-field boundary.

Numerical fluid flow simulations are performed using the computer code FLU-
ENT [34]. The flow solver is of an implicit density-based formulation, and the in-
viscid fluxes are calculated by an upwind-biased second-order spatially accurate
Roe flux scheme. Asymptotic convergence to a steady state solution is obtained for
each case. The iterative convergence of each solution is examined by monitoring the



224 L. Leifsson et al.

Fig. 5 Grid convergence study using the NACA 0012 airfoil at Mach number M∞ = 0.75 and
angle of attack α = 1 deg: (a) lift and drag coefficients versus the number of grid elements, and (b)
the simulation time versus the number of grid elements

overall residual, which is the sum (over all the cells in the computational domain)
of the L2 norm of all the governing equations solved in each cell. In addition to
this, the lift and drag forces (defined in Sect. 2) are monitored for convergence. The
solution convergence criterion for the high-fidelity model is the one that occurs first
of the following: a maximum residual of 10−6, or a maximum number of iterations
of 1,000.

A grid convergence study was performed using the NACA 0012 airfoil at Mach
number M∞ = 0.75 and angle of attack α = 1 deg. The study, shown in Fig. 5a,
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revealed that 407,676 mesh cells are needed for mesh convergence; thus, that par-
ticular mesh was used for the high-fidelity model. The overall simulation time for
the case considered is around 67 min (Fig. 5b). The flow solver reached a converged
solution after 352 iterations. The other meshes required around 350 to 500 iterations
to converge, except the coarsest mesh, which terminated after 1,000 iterations, with
an overall simulation time of around 9.5 min.

4.2 Low-Fidelity Model

The low-fidelity CFD model is constructed in the same way as the high-fidelity
model, but with a coarser computational mesh and relaxed convergence criteria. For
the low-fidelity model, we use the coarse mesh in the grid study presented in Fig. 5a,
with 31,356 mesh cells. The flow solution history for the low-fidelity model, shown
in Fig. 6a, indicates that the lift and drag coefficients are nearly converged after
80 to 100 iterations. The maximum number of iterations is set to 100 for the low-
fidelity model. This reduced the overall simulation time to 1.5 min. A comparison
of the pressure distributions, shown in Fig. 6b, indicates that the low-fidelity model,
despite being based on a much coarser mesh and reduced flow solver iterations,
captures the main features of the high-fidelity model pressure distribution quite well.
The biggest discrepancy in the distributions is around the shock on the upper surface,
leading to an overestimation of both lift and drag (Fig. 5a).

The ratio of simulation times of the high- and low-fidelity model in this particular
case study is 43.8. In many cases, the solver does not fully converge with respect to
the residuals and goes on up to 1,000 iterations. Then, the overall evaluation time of
the high-fidelity model goes up to 170 min. In those cases, the ratio of simulation
times of the high- and low-fidelity models is around 110. For simplicity, we will
use a fixed value of 80 when estimating the equivalent number of function calls,
i.e., when the number of low-fidelity function calls is added to the number of high-
fidelity function calls.

4.3 Surrogate Model

The surrogate model is constructed using (24). The responses for a few randomly
selected airfoil geometries using the low-fidelity model c(x) (selected in the previ-
ous section) and the high-fidelity model f (x) are shown in Fig. 7, as well as the
globally corrected surrogates A ◦ c(x) + D, calculated using (26). Note that out-
put SM is capable of substantially reducing the misalignment between the surrogate
and high-fidelity model responses. The supplemental additive output SM term q(i)

is only applied locally, as in (27), to further improve the surrogate model accuracy
in the vicinity of the current design.
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Fig. 6 Simulation results for NACA 0012 at Mach number M∞ = 0.75 and angle of attack α = 1
deg: (a) evolution of the lift and drag coefficients obtained by the low-fidelity model, (b) compari-
son of the pressure distributions obtained by the high- and low-fidelity models

4.4 Case Description

Four design cases are presented: three lift maximizations (Cases 1–3) and one drag
minimization (Case 4). For Cases 1 through 3, the objective is to maximize the
lift coefficient Cl.f , subject to constraints on drag (Cd.f ≤ Cd.max) and nondi-
mensionalized airfoil cross-sectional area with the chord squared (A ≥ Amin). For
Case 4, the objective is to minimize the drag, subject to constraints on lift coefficient
(Cl.f ≥ Cl.min) and nondimensionalized airfoil cross-sectional area with the chord
squared (A ≥ Amin).
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Fig. 7 The effect of output SM (26) on the low- and high-fidelity model alignment: (a) high-
(◦) and low-fidelity (�) lift coefficient for selected airfoil geometries, (b) high- (◦) and output-S-
M-aligned low-fidelity (�) lift coefficient for corresponding geometries, (c) the same as (a) but for
the drag coefficient, (d) the same as (b) but for the drag coefficient. The model misalignment is
greatly reduced by applying both multiplicative and additive output SM. The alignment is further
improved by the supplemental local additive output SM term q(i) (cf. (27))

For simplicity, and because we have a small number of design variables, the
NACA four-digit method is used to parameterize the airfoil shapes. Although these
airfoils are intended for subsonic flow, it is used here for demonstration purposes
only, as the method has only three design parameters. The particulars of the method
are given in the Appendix.

The NACA four-digit airfoil design variables are m (the maximum ordinate of
the mean camber line as a fraction of the chord), p (the chordwise position of
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the maximum ordinate), and t/c (the thickness-to-chord ratio). The design vector
can be written as x = [m p t/c]T . The side constraints on the design variables are
0 ≤ m ≤ 0.1, 0.2 ≤ p ≤ 0.8, and 0.05 ≤ t/c ≤ 0.2. Details of the test cases and opti-
mization results are given in Table 2. The results are compared with the direct design
optimization of the high-fidelity model using the pattern search algorithm. For the
surrogate model optimization in the SM algorithm, the pattern search algorithm is
also used. The termination condition for the SM algorithm is ‖x(i) −x(i−1)‖ < 10−3.

4.5 Results

Consider Case 1 in Table 2, where the initial airfoil design is NACA 2412 and the
drag constraint is violated. The direct method and the SM algorithm obtain compa-
rable optimized designs by reducing camber, placing the location of the maximum
camber relatively aft, and reducing the thickness. The SM algorithm required 210
surrogate model evaluations (Nc) and 4 high-fidelity model evaluations (Nf ), yield-
ing an equivalent number of high-fidelity model evaluations of less than 7. The
direct method required 96 high-fidelity model evaluations.

In Case 2, the initial design is NACA 2412, which is feasible for the assumed
constraints. The SM algorithm is able to obtain a better optimized design than the
direct method. The shape changes are similar to those of Case 1, except that the
camber is increased. The effects on the pressure distribution can be observed in
Fig. 8: the shock strength is reduced by reducing the thickness, and the aft camber
location opens up the pressure distribution behind the shock to increase the lift. The
SM algorithm required less than 9 equivalent high-fidelity model evaluations (260
surrogate and 5 high-fidelity).

The optimization history for Case 2 is shown in Fig. 9. In particular, one can
observe a convergence plot, as well as the evolution of the objective function, the
lift coefficient, and the drag coefficient. It follows that the SM algorithm exhibits
a good convergence pattern and enforces the drag limitation to be satisfied while
increasing the lift coefficient as much as possible.

Case 3 has an initial design with higher camber and thinner section than the other
cases, namely the NACA 3210. The SM algorithm achieves a better design than the
direct method. Now the camber is reduced, but the location of the maximum camber
is again moved aft and the thickness is slightly reduced. Less than 9 equivalent high-
fidelity model evaluations are required.

In Case 4, the drag minimization case, the initial design is NACA 2412 and the
lift constraint is slightly violated. Similar optimized designs are obtained by the
direct method and the SM algorithm. The camber is reduced, the maximum camber
moved aft, and the thickness reduced. As a result, the shock is weakened, and the lift
improved by opening the pressure distribution behind the shock (see Fig. 10). The
SM algorithm required 5 equivalent high-fidelity model evaluations (160 surrogate
and 3 high-fidelity), whereas the direct method required 110.

Overall, it can be observed that the SM performance is consistent across the
considered test cases. The average airfoil design cost is equivalent to about 5 to 9
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Table 2 Numerical results for four test cases. Shown are results for the initial design, direct opti-
mization, and optimization using space mapping

Variable Case 1 (Lift maximization) Case 2 (Lift maximization)

M∞ = 0.75, α = 0◦,
Cd,max = 0.005, Amin = 0.075

M∞ = 0.70, α = 1◦,
Cd,max = 0.006, Amin = 0.075

Initial Direct SM Initial Direct SM

m 0.02 0.0140 0.0150 0.02 0.0200 0.0237

p 0.40 0.7704 0.7463 0.40 0.7467 0.6531

t/c 0.12 0.1150 0.1140 0.12 0.1200 0.1148

Cl 0.4745 0.5572 0.5650 0.5963 0.8499 0.8909

Cdw 0.0115 0.0050 0.0050 0.0047 0.0060 0.0060

A 0.0808 0.0774 0.0767 0.0808 0.0808 0.0773

Nc – 0 210 – 0 260

Nf – 96 4 – 59 5

Cost – 96 <7 – 59 <9

Variable Case 3 (Lift maximization) Case 4 (Drag minimization)

M∞ = 0.75, α = 1◦,
Cd,max = 0.0041, Amin = 0.065

M∞ = 0.70, α = 1◦,
Cl,min = 0.6, Amin = 0.075

Initial Direct SM Initial Direct SM

m 0.03 0.0080 0.0100 0.02 0.0180 0.0180

p 0.20 0.6859 0.6929 0.40 0.5207 0.5290

t/c 0.10 0.1044 0.0980 0.12 0.1141 0.1113

Cl 0.8035 0.4641 0.5281 0.5963 0.6001 0.6002

Cdw 0.0410 0.0041 0.0041 0.0047 0.0019 0.0017

A 0.0675 0.0703 0.0659 0.0808 0.0768 0.0749

Nc – 0 260 – 0 160

Nf – 121 5 – 110 3

Cost – 121 <9 – 110 5

high-fidelity model evaluations, which corresponds to a cost savings of 80 percent
or more depending on a test case, when compared to direct airfoil optimization using
pattern search.

5 Wing Design

In this section, the SM algorithm is demonstrated for the design of a three-
dimensional wing shape. Again, transonic flow is considered, but a steady viscous
Reynolds-averaged Navier–Stokes (RANS) CFD model is used with an unstruc-
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Fig. 8 Initial and optimized pressure distributions and airfoil shapes for Case 2

tured grid. Still, the variable-resolution approach is employed. One design case is
considered, but optimization runs for two different initial designs are presented.

5.1 High-Fidelity Model

The flow is steady, compressible, viscous, and without body forces, mass diffusion,
chemical reactions, or external heat addition. The RANS equations with the one-
equation Spalart-Allmaras turbulence model [32] are solved. Air is modeled by the
ideal gas law and the Sutherland dynamic viscosity model.

The far field is configured in a box topology where the wing root airfoil is placed
in the center of the symmetry plane, with its leading edge placed at the origin. The
far field extends 100 chord lengths in all directions upstream, above, below, and
aft of the wing. The computational domain, along with the boundary conditions, is
shown in Fig. 11.

An unstructured tri/tetra shell grid is created on all surfaces. The shell grid from
the wing is then extruded into the volume where the volume is flooded with tri/tetra
elements. The grid is made dense close to the wing, where it then gradually grows
in size as it moves away from the wing surfaces. To capture the viscous boundary
layer an inflation layer or a prism layer is created on the wing surfaces as well. The
grid is generated using ANSYS ICEM CFD and is shown in Fig. 12.

In the stream-wise direction, the number of elements on the wing is set to 100 on
both the upper and lower surfaces. The bigeometric bunching law with a growth ratio
of 1.2 is employed in the stream-wise direction over the wing to obtain a more dense
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Fig. 9 Optimization history for Case 2: (a) convergence plot, (b) evolution of the objective func-
tion, (c) evolution of the lift coefficient, and (d) evolution of the drag coefficient (drag constraint
marked using a dashed horizontal line). The graphs show all high-fidelity function evaluations
performed in the optimization

Fig. 10 Initial and optimized pressure distributions and airfoil shapes for Case 4
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Fig. 11 Far field configured as a box topology. The leading edge of the wing root airfoil is placed
at (x, y, z) = (0,0,0)

element distribution at the leading edge and the trailing edge. This is done in order to
capture the high pressure gradient at the leading edge and potential separation at the
trailing edge. The minimum element size of the wing in the stream-wise direction
is set to 0.1 %c, and it is located at the leading and trailing edge. In the span-wise
direction, elements are distributed uniformly and the number of elements is set to
100 over the semi-span. A prism layer is used to capture the viscous boundary layer.
This layer consists of a number of structured elements that grow in size normal to
the wing surface into the domain volume. The inflation layer has an initial height of
5 × 10−6c where it is grown 20 layers into the volume using an exponential growth
law with a ratio of 1.2. The initial layer height is chosen so that y+ < 1 at all nodes
on the wing.

The numerical fluid flow simulations are performed using the computer code
ANSYS FLUENT [34]. The implicit density-based solver is applied using the Roe
flux-difference splitting (FDS) flux type. The spatial discretization schemes are set
to second order for all variables, and the gradient information is found using the
Green–Gauss node-based method. The residuals, which are the sum of the L2 norms
of all governing equations in each cell, are monitored and checked for convergence.
For the high-fidelity model, a solution is considered to be converged if the residu-
als have dropped by six orders of magnitude, or the total number of iterations has
reached 1,000. Also, the lift and drag coefficients are monitored for convergence.

A grid convergence study is conducted using the ONERA M6 wing [35].
The flow past the ONERA M6 wing is simulated at various grid resolutions at
Re∞,cmac = 11.72 × 106, M∞ = 0.8395, and angle of attack α = 3.06◦, where cmac

is the mean aerodynamic chord length. The flow conditions are selected to match the
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Fig. 12 Shell grid shown for all surfaces: (a) wing shell grid, (b)–(c) symmetry plane where the
wing is placed, (d) prism layer applied close to the wing surface to capture the viscous boundary
layer, (e) far-field volume
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Fig. 13 Grid convergence study using the ONERA M6 wing at M∞ = 0.8395 and angle of attack
α = 3.06◦: (a) lift (CL) and drag (CD) coefficients versus number of grid elements, (b) simulation
time versus number of grid elements

experimental flow conditions of an ONERA M6 wing experiment 2308 conducted
by Schmitt and Charpin [36].

The grid convergence study, shown in Fig. 13a, revealed that 1,576,413 cells
are needed for convergence in lift. The drag, however, can still be improved, as is
evident from Fig. 13a, where convergence has not been reached due to limitations
in the computational resources. However, we proceed with this grid as the high-
fidelity model grid. The overall simulation time needed for one high-fidelity CFD
simulation was around 223 min, as shown in Fig. 13b, executed on four Intel-i7-
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Fig. 14 Lift and drag coefficient convergence plot for low-fidelity model obtained in grid con-
vergence study simulation using ONERA M6 wing at Mach number M∞ = 0.8395 and angle of
attack α = 3.06◦

2600 processors in parallel. This execution time is based on 1,000 solver iterations,
where the solver terminated due to the maximum number of iterations limit.

5.2 Low-Fidelity Model

The low-fidelity model c(x) is constructed in the same way as the high-fidelity
model f (x), but with a coarser grid discretization and with a relaxed convergence
criterion. Referring back to the grid study of the previous section, and inspecting
Fig. 13a, we make our selection for the coarse low-fidelity model. Based on time
and accuracy with respect to lift and drag, we select the grid parameters that repre-
sent the second point from the left with 107,054 elements. The time taken to evaluate
the low-fidelity model is 13.2 min on four Intel-i7-2600 processors in parallel.

Inspecting further the lift and drag convergence plot for the low-fidelity model in
Fig. 14, we note that the solution has converged after about 500 iterations. The max-
imum number of iterations for the low-fidelity model is therefore set to 500 itera-
tions. This reduces the overall simulation time to 6.6 min. The ratio of the simulation
times of the high- and low-fidelity models in this case is high/low = 223/6.6 � 34.
This is based on the solver using all 500 iterations in the low-fidelity model to obtain
a solution.
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Fig. 15 A planform view of a constant chord rectangular wing constructed by two NACA airfoils.
Each airfoil has its own set of design parameters

5.3 Surrogate Model

The low-fidelity CFD model c turns out to be very noisy. In order to alleviate the
problem, a second-order polynomial approximation model [7] is constructed using
nc = 50 training points sampled using Latin hypercube sampling (LHS) [6] using
the low-fidelity CFD model. The polynomial approximation model is defined as

c(x) = c0 + cT
1 x + xT c2x, (36)

where c1 = [c1.1 c1.2 c1.3]T and c2 = [c2.ij ]i,j=1,2,3. The coefficients c0, c1, c2 are
found by solving the linear regression problem

c
(
xk

) = c
(
xk

)
, (37)

where k = 1, . . . , nc. The resulting second-order polynomial model c has nice an-
alytical properties, such as smoothness and convexity. The surrogate model is then
constructed as described in Sect. 3.

5.4 Case Description

For demonstration purposes, an unswept and untwisted wing is considered. The
wing is constructed by two NACA four-digit airfoils, located at the root and tip, as
shown in Fig. 15. The root is fixed to the NACA 2412 airfoil and the tip airfoil is to
be designed. The initial design x(0) for the wing tip is chosen at random at the start
of each optimization run. The normalized semi-wingspan is set as twice the wing
chord length c as (b/2) = 2c. All other wing parameters are kept fixed. The design
vector can be written as x = [m p t/c]T , where the variables represent the wing tip
NACA four-digit airfoil parameters (see the Appendix).

The objective is to maximize the lift coefficient CL.f , subject to constraints on
the drag coefficient CD.f ≤ CD.max = 0.03 and the wing tip normalized cross-
sectional area A ≥ Amin = 0.01. The side constraints on the design variables are
0.02 ≤ m ≤ 0.03, 0.7 ≤ p ≤ 0.9 and 0.06 ≤ t/c ≤ 0.08.
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Table 3 Numerical
comparison of Run 1 and Run
2, initial and optimized
designs. The ratio of the
high-fidelity model evaluation
time to the low-fidelity time
is 34

Variable Initial Optimized

Run 1 Run 2 Run 1 Run 2

m 0.0200 0.0259 0.0200 0.0232

p 0.7000 0.8531 0.8725 0.8550

t/c 0.0628 0.0750 0.0793 0.0600

CL 0.2759 0.3426 0.3047 0.3388

CD 0.0241 0.0344 0.0311 0.0307

CL/CD 11.4481 9.9593 9.7974 11.0358

A 0.0422 0.0505 0.0534 0.0404

Nc – – 50 50

Nf – – 8 7

Total cost – – <10 <9

5.5 Results

Two optimization runs were performed, denoted as Run 1 and Run 2. The numerical
results are given in Table 3, and the initial and optimized airfoil cross sections are
shown in Fig. 16a and Fig. 16b, respectively.

Fig. 16 A comparison of Run 1 and Run 2: (a) initial and (b) optimized designs. Run 1 is shown
with a solid lines (–), and Run 2 with dashed lines (- -)
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Fig. 17 Optimization history for Run 1: (a) convergence history, (b) evolution of the objective
function, (c) evolution of lift coefficient, and (d) evolution of drag coefficient where dashed line
(- -) is the drag constraint

In Run 1, the lift is increased by +10 % and the drag is pushed above its con-
straint at CD.max = 0.03, where the optimized drag coefficient is CD = 0.0311. The
drag constraint is violated slightly, or by +4 %, which is within the 5 % constraint
tolerance band. The lift-to-drag ratio is decreased by −14 %. The SM algorithm
requires less than 10 high-fidelity model evaluations, where 50 low-fidelity model
evaluations (Nc) are used to create the approximation model and 8 high-fidelity
model evaluations (Nf ) are used for each design iteration. It is evident that the
optimized wing tip airfoil is thicker as the normalized cross-sectional area is in-
creased by +26 %, and the increased drag can be related to the increment in area.
No change occurs in the camber m, but the location of the maximum camber p has
moved slightly aft. The convergence history is shown in Fig. 17.

The initial design for Run 2 violates the drag constraint. The SM algorithm is,
however, able to push the drag to its constraint limit, where the optimized drag coef-
ficient is slightly violated, by +2 %. While the drag is decreased by −11 %, the lift
is maintained and only drops by −1 %. As a result, the lift-to-drag ratio is increased
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Fig. 18 Run 1 planform pressure coefficient contour plots of the initial design geometry. (a) The
upper surface shows shocks at midsection of the wing; (b) the lower surface shows one shock at
the leading edge

by +11 %. The SM algorithm requires less than 9 high-fidelity model evaluations
(50 low-fidelity model evaluations used to create the approximation model and 7
high-fidelity model evaluations). The optimized wing tip airfoil is thinner than the
initial design (the normalized cross-sectional area is reduced by −20 %). Small
changes are made to the camber m and the maximum camber location p.

Comparing Runs 1 and 2, we note that, although they start from different initial
designs, the optimized designs show similarities in two of three design variables,
namely, the maximum camber m and maximum camber location p. The third, the
airfoil thickness t/c, differs by approximately 2 %. The shock on the mid-wing has
been moved aft, on both the upper and the lower surfaces (see Figs. 18, 19, 20, 21).
Also, note that a second shock was formed near the tip on the upper surface. This
causes the drag and the lift to increase.

6 Conclusions

A robust and computationally efficient optimization methodology for the design of
aerodynamic surfaces is presented. The approach exploits a low-fidelity model that
is corrected using the space mapping technique to create a fast and reliable predic-
tion tool (the surrogate) that is subsequently used to yield an approximate optimum
design of the expensive, high-fidelity model at low CPU cost. A space mapping cor-
rection is applied both to the objectives and constraints in a two-stage process with
a quasi-global space mapping alignment supplemented by a local one that ensures
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Fig. 19 Run 1 planform pressure coefficient contour plots of the optimized design geometry.
(a) The upper surface shows two shocks, one at midsection of the wing and one close to the
wing tip at the trailing edge. (b) The lower surface shows one shock at the leading edge

perfect alignment between the surrogate and the high-fidelity model. Applications
for transonic airfoil and wing design are demonstrated with the optimized designs
obtained at a computational cost corresponding to a few high-fidelity model evalua-
tions.

Acknowledgements This work was funded in part by The Icelandic Research Fund for Graduate
Students, grant ID: 110395-0061.

Appendix

The NACA four-digit airfoils are denoted by convention as NACA mpxx, where m

is the maximum ordinate of the mean camber line as a percentage of the chord, p

is the chordwise position in tens of percentages of the maximum ordinate, and xx

is the thickness-to-chord ratio in percentages of the chord (t/c). The NACA airfoils
are constructed by combining a thickness function zt (x) with a mean camber line
function zc(x) [25]. The x and z coordinates are

xu,l = x ∓ zt sin θ, (38)

zu,l = zc ± zt cos θ, (39)

where u and l are the upper and lower surfaces, respectively, and

θ = tan−1
(

dzc

dx

)

, (40)
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Fig. 20 Run 1 Mach number contour plot at y/(b/2) = 0.2, where M∞ = 0.8395 and angle of
attack α = 0◦. (a) Initial design, (b) optimized design
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Fig. 21 Run 1 Mach number contour plot at y/(b/2) = 0.8, where M∞ = 0.8395 and angle of
attack α = 0◦: (a) initial design, (b) optimized design. Notice the shock at the trailing edge
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Fig. 22 Examples of two airfoil sections generated with the NACA four-digit method.
NACA 0012 (m = 0,p = 0, t/c = 0.12) is shown by solid line (–); NACA 4608
(m = 0.04,p = 0.6, t/c = 0.08) is shown by a dashed line (- -)

is the mean camber line slope. The NACA four-digit thickness distribution is given
by

zt = t
(
a0x

1/2 − a1xa2x
2 + a3x

3 − a4x
4), (41)

where a0 = 1.4845, a1 = 0.6300, a2 = 1.7580, a3 = 1.4215, a4 = 0.5075, and t is
the maximum thickness. The mean camber line is given by

zc =
{

m

p2 (2px − x2), x < p,
m

(1−p)2 (1 − 2p + 2px − x2), x ≥ p.
(42)

Examples of airfoils generated with the NACA four-digit method are shown in
Fig. 22.
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