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Preface

Contemporary engineering design is heavily based on computer simulations. Ac-
curate, high-fidelity simulations are used not only for design verification but, most
importantly, to adjust parameters of the system (e.g., wing geometry, material pa-
rameters of antennas) so that it meets given performance requirements. Unfortu-
nately, accurate simulations are often computationally expensive, with evaluation
times ranging from hours to days per design. Consequently, design automation using
conventional optimization methods is often impractical or even prohibitive. Other is-
sues include the numerical noise that is often present in simulation responses, and
the absence of sensitivity information. These, and other problems, can be alleviated
by the development and employment of so-called surrogates, which reliably repre-
sent the expensive, simulation-based model of the system/device of interest, but are
much cheaper and analytically tractable.

This edited book is about surrogate-based modeling and optimization techniques
and their applications for solving difficult and computationally expensive engineer-
ing design problems. A group of international experts summarize recent develop-
ments in the field and demonstrate applications in various disciplines of engineering
and science. The main purpose of the work is to provide the basic concepts and for-
mulations of the surrogate-based modeling and optimization paradigm, as well as
to discuss relevant modeling techniques, optimization algorithms, and design pro-
cedures.

Simulation-driven design based on surrogate models plays an increasingly impor-
tant role in contemporary engineering and permits us to solve problems that cannot
be solved otherwise, particularly by dramatically reducing the computational cost of
the solution process. Unfortunately, recent results concerning surrogate-based mod-
eling and optimization are scattered throughout the literature in various engineering
fields and, therefore, are not easily accessible to a reader interested in this technol-
ogy. Thus, this book should be of interest to engineers from any discipline where
computationally heavy simulations (such as finite element, computational fluid dy-
namics, and computational electromagnetics analyses) are used on a daily basis in
the design process. The editors of this volume hope that the presented material will
allow the readers to gain an understanding of the basic mechanisms of the surro-
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gate modeling process and familiarize themselves with important components of
surrogate-based optimization algorithms and the advantages of employing variable-
fidelity simulation-driven design, as well as enable them to reduce the cost of the
design process aided by computer simulations.

Slawomir Koziel
Leifur Leifsson

Reykjavik, Iceland
March 2013
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Space Mapping for Electromagnetic-
Simulation-Driven Design Optimization

Slawomir Koziel, Leifur Leifsson, and Stanislav Ogurtsov

Abstract Space mapping (SM) has been one of the most popular surrogate-based
optimization techniques in microwave engineering to date. By exploiting the knowl-
edge embedded in the underlying coarse model (e.g., an equivalent circuit), SM
allows dramatic reduction of the computational cost while optimizing electromag-
netic (EM)-simulated structures such as filters or antennas. While potentially very
efficient, SM is not always straightforward to implement and set up, and may suffer
from convergence problems. In this chapter, we discuss several variations of an SM
optimization algorithm aimed at improving SM performance for design problems
involving EM simulations. These include SM with constrained parameter extraction
and surrogate model optimization designed to overcome the problem of selecting
preassigned parameters for implicit SM, SM with response surface approximation
coarse models that maintain SM efficiency when a fast coarse model is not avail-
able, and SM with sensitivity which takes advantage of adjoint sensitivity (which
has recently become commercially available in EM simulators) to improve the con-
vergence properties and further reduce the computational cost of SM algorithms.
Each variation of the SM algorithm presented here is illustrated using a real-world
microwave design example.

Keywords Computer-aided design (CAD) · Microwave engineering ·
Simulation-driven optimization · Electromagnetic (EM) simulation ·
Surrogate-based optimization · Space mapping · Surrogate model · High-fidelity
model · Coarse model

1 Introduction

Space mapping (SM) [1–3] was originally developed in the 1990s to deal with
computationally expensive design problems in microwave engineering [3, 4]. Au-
tomated design closure of structures evaluated using electromagnetic (EM) simu-
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lations is still a challenging task today, mostly due to the high computational cost
of accurate, high-fidelity EM simulation. The presence of massive computing re-
sources does not always translate into computational speedup. This is due to a grow-
ing demand for simulation accuracy (which requires, among other things, finer dis-
cretization of the structure), as well as the necessity of including important interac-
tions between the structure under design and its environment (e.g., antenna housing
and connectors, etc.), which increases the computational domain and, consequently,
slows down the simulation. At the same time, multiphysics simulations (e.g., in-
cluding thermal effects) become more and more important, further contributing to
the computational cost of the simulation. As conventional optimization algorithms
(e.g., gradient-based schemes with numerical derivatives) require tens, hundreds, or
even thousands of objective function calls per run (depending on the number of de-
sign variables), the computational cost of the whole optimization process may not
be acceptable.

SM belongs to a broader family of methods called surrogate-based optimization
(SBO) techniques [5–7]. SM and most other SBO methods share a main structure,
in which the direct optimization of the expensive (here, EM-simulated) structure,
referred to as the high-fidelity or fine model, is replaced by iterative refinement and
reoptimization of a low-fidelity (or coarse) model. The coarse model is a physics-
based representation of the high-fidelity one. It is less accurate but supposedly much
faster than the latter. An example of a coarse model in microwave engineering is an
equivalent circuit which describes the same structure as the fine model but using cir-
cuit theory rather than full-wave EM simulation. The SM surrogate is constructed
by enhancing the coarse model through auxiliary transformations, usually linear,
with parameters of these transformations obtained in what is called the parameter
extraction (PE) process [8], which is a trademark of SM. PE is executed to reduce
the misalignment between the responses of the space-mapped coarse model and the
fine model at a limited number of designs, usually those that have already emerged
during the SM optimization run. The benefit of SM lies in the fact that each SM iter-
ation usually requires evaluation the high-fidelity model at a single design (the one
obtained by optimizing the current surrogate model), and—for a well-performing
algorithm—only a few iterations are necessary to yield a satisfactory design.

SM has been successfully applied to optimize a number of microwave compo-
nents, the majority of which are filters [1–4] and impedance transformers [8], but
also antennas [9–11], etc. As mentioned before, one of the fundamental prerequisites
of SM is that the underlying coarse model be fast, so that the computational over-
head related to parameter extraction and surrogate model optimization performed
at each iteration of the algorithm can be neglected. For this reason, equivalent cir-
cuit models are preferred. Unfortunately, reliable equivalent circuit models are not
available for many structures, including broadband antennas [12] and substrate in-
tegrated structures [13]. Also, if EM coupling between the device of interest and its
environment has to be taken into account (e.g., an antenna mounted in a cellphone or
on a vehicle), full-wave simulation is probably the only way to evaluate the system.
A possible lack of fast models poses a difficulty for SM, because the computational
overhead related to multiple evaluation of the low-fidelity model, particularly due
to PE, may determine the total CPU cost of the SM process.
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Another issue is convergence: as SM does not use sensitivity information by de-
fault, it is not globally convergent in a conventional sense, unless certain conditions
regarding similarity between the low- and high-fidelity models [14] are met. Those
conditions are, unfortunately, difficult to verify in practice [15]. At the same time,
SM offers a number of ways of constructing the surrogate model. A number of ele-
mentary transformations (input SM [8], implicit SM [16], or frequency SM [2, 14])
can be combined into more involved models. The specific choice of the model af-
fects the algorithm performance [17], and the optimal choice is not trivial [15].

In this chapter, we discuss several variations of the SM algorithms specifically
targeted at improving the SM performance for microwave engineering applications.
The chapter is organized as follows. In Sect. 2, we recall the SM concept and formu-
late a generic SM algorithm. In Sect. 3, we describe implicit SM with constrained
parameter extraction, which helps improve convergence of the SM algorithm with-
out requiring careful selection of its preassigned parameters. Section 4 is devoted
to SM with auxiliary response surface approximation coarse models. This approach
aims at improving the efficiency of the SM optimization process in situations when
the available low-fidelity models are relatively expensive (e.g., obtained through
coarse-discretization EM simulations), which is usually the case in antenna design.
In Sect. 5, we discuss the enhancement of SM using adjoint sensitivity. By exploit-
ing derivative information whenever possible, specifically, to enhance the surrogate
model as well as to speed up both PE and surrogate model optimization, it is pos-
sible to improve the algorithm convergence and to reduce its computational cost.
Section 6 concludes the chapter with some recommendations for readers interested
in applying SM in their design work.

2 Space Mapping Optimization: A Brief Introduction

In this section, we briefly recall the formulation of the generic space mapping (SM)
algorithm, the concept of parameter extraction (PE), and the basic types of SM sur-
rogate models.

A microwave design task can be formulated as a nonlinear minimization problem

x∗ ∈ arg min
x∈Xf

U
(
Rf (x)

)
, (1)

where Rf ∈ Rm denotes the response vector of the device of interest, e.g., the mod-
ulus of the transmission coefficient |S21| evaluated at m different frequencies. U is
a given scalar merit function, e.g., a minimax function with upper and lower speci-
fications [8]. Vector x∗ is the optimal design to be determined. Normally, Rf is ob-
tained through computationally expensive electromagnetic (EM) simulation, and is
referred to as the high-fidelity or fine model. Because of the high computational cost,
using conventional optimization techniques to handle (1) may be impractical; both
gradient-based (e.g., quasi-Newton [18]) and derivative-free (pattern search [19],
genetic algorithms [20]) methods usually require a substantial number of objective
function (and thus, high-fidelity model) evaluations.
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SM [1–3, 21] is a methodology that aims at reducing the cost of solving the
problem (1). SM belongs to a broader class of surrogate-based optimization (SBO)
techniques [7–9]. Similarly to other SBO methods, SM speeds up the design pro-
cess by shifting the optimization burden to an inexpensive yet reasonably accurate
surrogate model of the device of interest. In the generic SM framework described
here the direct optimization of the computationally expensive EM-simulated high-
fidelity model Rf is replaced by an iterative procedure [7, 14]

x(i+1) = arg min
x

U
(
R(i)

s (x)
)
, (2)

that generates a sequence of points (designs) x(i) ∈ Xf , i = 0,1, . . . , that are ap-
proximate solutions to the original design problem (1). Each x(i+1) is the optimal
design of the surrogate model R

(i)
s : X(i)

s → Rm, X(i)
s ⊆ Rn, i = 0,1, . . . . R

(i)
s is as-

sumed to be a computationally cheap and sufficiently reliable representation of the
fine model Rf , particularly in the neighborhood of the current design x(i). Under
these assumptions, the algorithm (2) is likely to produce a sequence of designs that
quickly approach x∗

f .

Typically, Rf is only evaluated once per iteration (at every new design x(i+1))
for verification purposes and to obtain the data necessary to update the surrogate
model. Since the surrogate model is computationally cheap, its optimization cost
(cf. (2)) can usually be neglected, and the total optimization cost is determined by
the evaluation of Rf . The key point here is that the number of evaluations of Rf for
a well-performing surrogate-based algorithm is substantially smaller than for any
direct optimization method (e.g., a gradient-based one). Figure 1 shows the block
diagram of the SM optimization process.

If the surrogate model satisfies zero- and first-order consistency conditions with
the fine model, i.e., R

(i)
s (x(i)) = Rf (x

(i)) and (∂R
(i)
s /∂x)(x(i)) = (∂Rf /∂x)(x(i))

(verification of the latter requires Rf sensitivity data), and the algorithm (2) is en-
hanced by the trust region method [22], then it is provably convergent to a local fine
model optimum [23]. Convergence can also be guaranteed if the algorithm (2) is
enhanced by properly selected local search methods [24]. SM [8, 14, 25, 26] does
not normally rely on the aforementioned enhancements; however, it requires the
surrogate model to be constructed from the physically based coarse model [8]. This
usually gives remarkably good performance in the sense of the SM algorithm being
able to quickly locate a satisfactory design.

The way that SM constructs the surrogate model for the iterative process (2) is
one of the features that distinguish this technique from many other SBO approaches.
The surrogate model at iteration i, R

(i)
s , is constructed from the low-fidelity model

so that the misalignment between R
(i)
s and the fine model is minimized using the

parameter extraction (PE) process, which is the nonlinear minimization problem
by itself [8]. The surrogate is defined as [14]

R(i)
s (x) = Rs.g

(
x,p(i)

)
, (3)
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Fig. 1 Surrogate-based simulation-driven design optimization: the optimization burden is shifted
to the computationally cheap surrogate model which is updated and reoptimized at each iteration
of the main optimization loop. High-fidelity EM simulation is only performed once per iteration to
verify the design produced by the surrogate model and to update the surrogate itself. The number
of iterations for a well-performing SBO algorithm is substantially smaller than for conventional
techniques

where Rs.g is a generic SM surrogate model, i.e., the low-fidelity model composed
with suitable transformations, whereas

p(i) = arg min
p

i∑

k=0

wi.k

∥∥Rf

(
x(k)

)− Rs.g

(
x(k),p

)∥∥ (4)

is a vector of model parameters and wi.k are weighting factors; a common choice of
wi.k is wi.k = 1 for all i and all k.

Various SM surrogate models are available [8, 14]. They can be roughly catego-
rized into four groups:

• Models based on a (usually linear) distortion of coarse model parameter space,
e.g., input SM of the form Rs.g(x,p) = Rs.g(x,B, c) = Rc(B ·x + c) [8];

• Models based on a distortion of the coarse model response, e.g., output SM of the
form Rs.g(x,p) = Rs.g(x,d) = Rc(x)+ d [14];

• Implicit SM, where the parameters used to align the surrogate with the fine
model are separate from the design variables, i.e., Rs.g(x,p) = Rs.g(x,xp) =
Rc.i (x,xp), with Rc.i being the coarse model dependent on both the design vari-
ables x and the preassigned parameters xp (e.g., dielectric constant, substrate
height) that are normally fixed in the fine model but can be freely altered in the
coarse model [14];

• Custom models exploiting parameters characteristic to a given design problem;
the most characteristic example is frequency SM Rs.g(x,p) = Rs.g(x,F ) =



6 S. Koziel et al.

Rc.f (x,F ) [8], where Rc.f is a frequency-mapped coarse model, i.e., the coarse
model evaluated at frequencies ω different from the original frequency sweep for
the fine model, according to the mapping ω → f1 + f2ω, with F = [f1f2]T .

SM usually comprises combined transformations. For instance, a surrogate
model employing input, output, and frequency SM transformations would be
Rs.g(x,p) = Rs.g(x, c,d,F ) = Rc.f (x + c,F )+ d . The rationale for this is that a
properly chosen mapping may significantly improve the performance of the SM al-
gorithm; however, the optimal selection of the mapping type for a given design prob-
lem is not trivial [15]. Work has been done to ease the selection process for a given
design problem [17, 27]. However, regardless of the mapping choice, coarse model
accuracy is what principally affects the performance of the SM design process. One
can quantify the quality of the surrogate model through rigorous convergence con-
ditions [15]. These conditions, although useful for developing more efficient SM
algorithms and automatic surrogate model selection techniques, cannot usually be
verified because of the limited amount of data available from the fine model. In prac-
tice, the most important criterion for assessing the quality or accuracy of the coarse
model is still visual inspection of the fine and coarse model responses at certain
points and/or examining absolute error measures such as ‖Rf (x)− Rc(x)‖.

The coarse model is the most important factor that affects the performance of the
SM algorithm. The first stems from accuracy. Coarse model accuracy (more gener-
ally, the accuracy of the SM surrogate [15]) is the main factor that determines the
efficiency of the algorithm in terms of finding a satisfactory design. The more accu-
rate the coarse model, the smaller the number of fine model evaluations necessary
to complete the optimization process. If the coarse model is insufficiently accurate,
the SM algorithm may need more fine model evaluations or may even fail to find a
good quality design.

The second important characteristic is the evaluation cost. It is essential that the
coarse model be computationally much cheaper than the fine model, because both
PE (4) and surrogate optimization (2) require large numbers of coarse model eval-
uations. Ideally, the evaluation cost of the coarse model should be negligible when
compared to the evaluation cost of the fine model, in which case the total compu-
tational cost of the SM optimization process is merely determined by the necessary
number of fine model evaluations. If the evaluation time of the coarse model is too
high, say, larger than 1 % of the fine model evaluation time, the computational cost
of surrogate model optimization and, especially, PE, start playing important roles in
the total cost of SM optimization and may even determine it. Therefore, practical ap-
plicability of SM is limited to situations where the coarse model is computationally
much cheaper than the fine model. The majority of SM models reported in the lit-
erature (e.g., [4, 8, 14]) concern microstrip filters, transformers, or junctions where
fast and reliable equivalent circuit coarse models are easily available.
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3 Implicit Space Mapping with Constrained Parameter
Extraction for Microwave Filter Design

In this section, we discuss SM with constrained PE [28] as a way to alleviate the
problems related to the proper selection of the SM parameters used to construct the
surrogate model as well as to improve convergence properties of the SM algorithm.
Without loss of generality, we restrict our considerations to implicit SM [16], the
most general approach to SM. Implicit SM allows us to introduce any number of
surrogate model parameters. In particular, over-flexibility of the surrogate model
required by our method can be easily obtained. Also, implicit SM can incorporate
most other SM types, including input and output SM.

3.1 Implicit Space Mapping Algorithm

Implicit SM follows the generic SM scheme (2); however, for better clarity, we as-
sume here a specific form of the SM surrogate model. Let Rc : Xc × Xp → Rm,∈
Rm denote the response vector of the coarse model that describes the same object
as the fine model: less accurate but much faster to evaluate. Rc depends on two sets
of parameters: (i) design variables x, the same as in the fine model, and (ii) pre-
assigned parameters xp , i.e., parameters that are normally fixed in the fine model
(e.g., dielectric constants) but can be adjusted in the coarse model to match it to Rf .

The generic SM algorithm (2) can then be reformulated as follows:

x(i+1) = arg min
x

U
(
Rc

(
x,x(i)

p

))
, (5)

where

x(i)
p = arg min

xp

∥∥Rf

(
x(i)

)− Rc

(
x(i),xp

)∥∥. (6)

Thus, the coarse model with adjusted values of preassigned parameters becomes
a surrogate model for the implicit SM algorithm. We note that other types of
SM can also be reformulated in terms of implicit SM. For example, the surro-
gate model of the most popular input SM [14] is defined as Rs(x) = Rc(x + c),
where c is an n × 1 vector of parameters. It can be formulated in implicit SM
terms as Rc.i (x,xp), where Rc.i is the implicit-SM-like coarse model defined as
Rc.i (x,xp) = Rc(x + xp). In particular, the same software implementation can be
used to realize our algorithm for both implicit and input cases. Analogous reformu-
lations can be defined for scaling-like input SM Rs(x) = Rc(B · x), where B is an
n× n matrix of SM parameters, output [14] and frequency SM [14].

3.2 Space Mapping with Constrained Parameter Extraction

The performance of SM algorithms depends heavily on the quality of the coarse
model utilized in the optimization process and the type of mapping involved in
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creating the surrogate model [15]. For implicit SM, the number of possible ways
of selecting preassigned parameters is virtually unlimited. However, it is not ob-
vious how to select a set of parameters that might allow the surrogate to closely
approximate the fine model and simultaneously have good generalization capabil-
ity. A wrong choice of the parameter set may result in inadequate performance of
the SM algorithm, including convergence issues, poor quality of the final design,
and excessive computational cost [17].

Various ways of alleviating this problem have been proposed. They include adap-
tive SM algorithms [17] and assessment methodologies [15, 29]. Although useful
in the selection of the surrogate model and its parameters, none of these techniques
guarantees algorithm convergence and overall good performance. On the other hand,
trust region enhanced SM algorithms ensure algorithm convergence but not always a
sufficient quality of the final design, because in the case of inadequate improvement
of the objective function [30], they force the algorithm to terminate. Also, the trust
region approach increases the computational cost of the SM optimization process.

The technique described in this section controls the trade-off between the approx-
imation and generalization capability of the surrogate model by properly restricting
the parameter space of the model. Theoretical justification of the method can be
found in [28].

It is assumed that the initial surrogate model, i.e., the coarse model without any
constraints on its preassigned parameters, is able to approximate the fine model with
sufficient accuracy. This accuracy can be measured at a given iteration point x(i),
using any suitable criteria, e.g., ε(i) = ‖Rf (x

(i)) − Rc(x
(i),x

(i)
p )‖p , where ‖ · ‖p

determines the norm type (e.g., ‖ · ‖2 for the Euclidean norm, or ‖ · ‖∝ for the maxi-
mum norm). We would like ε(i) to be small, ε(i) ≤ εmax, where εmax is a user-defined
threshold value, so that the surrogate model is a sufficiently good representation
of Rf .

It is normally feasible to build a surrogate model satisfying the above require-
ments. Because Rc is physically based, its response is similar to that of Rf . An
appropriate surrogate model can then be created by introducing a sufficient num-
ber of preassigned parameters, e.g., dielectric constants and substrate heights cor-
responding, if necessary, to individual components of the microwave structure in
question. Even synthetic parameters can be used (i.e., parameters not corresponding
to any physical parameter in Rf but used to increase model flexibility, e.g., a small
capacitor introduced between coupled lines in the microstrip filter model). A rule
of thumb is that the number of parameters should be larger than the number of de-
sign variables. If necessary, other SM transformations (e.g., input, frequency) can
be incorporated (cf. Sect. 2).

According to the algorithm proposed in [31], the parameter extraction (PE) pro-
cess (6) is replaced by the following constrained version:

x(i)
p = arg min

l(i)≤xp≤u(i)

∥∥Rf

(
x(i)

)− Rc

(
x(i),xp

)∥∥, (7)

where l(i) and u(i) are lower and upper bounds for the preassigned parameters at
iteration i. We assume here that l(i) = x

(i−1)
p − δ(i) and u(i) = x

(i−1)
p + δ(i), where
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x
(i−1)
p is the vector of model parameters at iteration i − 1 (x(0)

p represents the ini-
tial values of the preassigned parameters), whereas δ(i) is a vector representing the
parameter space size (δ(0) is a user-defined initial value).

At iteration i, the algorithm adjusts l(i) and u(i) and performs PE as follows
(δ(i), x

(i−1)
p and εmax are input arguments):

1. Calculate l(i) = x
(i−1)
p − δ(i) and u(i) = x

(i−1)
p + δ(i);

2. Find x
(i)
p using (7);

3. If ε(i) ≤ αdecr · εmax then δ(i+1) = δ(i)/βdecr; Go to 6;
4. If ε(i) > αincr · εmax then δ(i+1) = δ(i) · βincr; Go to 6;
5. Set δ(i+1) = δ(i);
6. END;

Here, αdecr, αincr, βdecr, and βincr are user-defined parameters (typical values:
αdecr = 1, αincr = 2, βdecr = 5, βincr = 2). Our algorithm tightens the PE constraints
if the approximation error is sufficiently small; otherwise, it loosens them.

Note that constraint tightening improves the generalization capability of the sur-
rogate model: the low approximation error ε(i−1) = ‖Rf (x

(i−1)) − Rc(x
(i−1),

x
(i−1)
p )‖p and ε(i) = ‖Rf (x

(i)) − Rc(x
(i),x

(i)
p )‖p (satisfied when determin-

ing x
(i−1)
p and x

(i)
p , respectively) makes it more likely to have ‖Rf (x

(i−1)) −
Rc(x

(i−1),x
(i)
p )‖p small if δ(i) is reduced (because small ‖x(i)

p − x
(i−1)
p ‖∝ ≤

‖δ(i)‖∝ implies the similarity of subsequent surrogate models).
The convergence properties of the SM algorithm can be explicitly controlled by

constraining the surrogate optimization (2), which can be formulated as

x(i+1) = arg min
x,‖x−x(i)‖≤δ(i)

U
(
Rc

(
x,x(i)

p

))
, (8)

where δ(i) = α · ‖x(i)−x(i−1)‖ with α < 1 (recommended values are α = 0.6 to 0.9;
values too small could result in premature convergence without finding a satisfactory
design). Note that (8) is mostly used as a safeguard, because good convergence
should be ensured by the constrained PE algorithm formulated above. On the other
hand, constrained surrogate optimization is useful in finding a new design in the
close neighborhood of the current design x(i) (an over-flexible surrogate model may
result in many designs that are good with respect to specification error, but are not
necessarily close to x(i)).

It should be emphasized that the procedure described here is not related to the
trust region approach [22] that has been used to safeguard convergence for SM al-
gorithms [30]. The latter reduces the search range for the surrogate model. It rejects
a new design if it does not bring sufficient improvement with respect to the fine
model specification [32]. This increases the computational cost of SM optimization.
According to the algorithm described here, the new design is never rejected: the
generalization of the surrogate model is accommodated by the adaptive PE proce-
dure. As indicated in [28], the constrained PE algorithm is expected to improve the
convergence of the SM algorithm. The details can be found in [28].
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Fig. 2 Coupled microstrip bandpass filter: (a) geometry [33], (b) coarse model (Agilent ADS)

3.3 Design Example: Coupled Microstrip Bandpass Filter

Consider the coupled microstrip bandpass filter [33] shown in Fig. 2(a). The design
parameters are x = [L1 L2 L3 L4 S1 S2]T mm. The fine model is simulated in FEKO
[34]. The coarse model, Fig. 2(b), is an equivalent circuit implemented in Agilent
ADS [35]. The design specifications are |S21| ≥ −3 dB for 2.3 GHz ≤ ω ≤ 2.5 GHz,
and |S21| ≤ −20 dB for 1.8 GHz ≤ ω ≤ 2.15 GHz and 2.65 GHz ≤ ω ≤ 3.0 GHz.
The initial design is x(0) = [24 4 14 12 0.2 0.1]T mm.

The SM surrogate model has 14 preassigned parameters: εr1 = εr.Clin1 =
εr.Clin3, εr2 = εr.TL4 = εr.TL9, εr3 = εr.Clin2 = εr.Clin4, εr4 = εr.TL7, H1 = HClin1 =
HClin3, H2 = HTL4 = HTL9, H3 = HClin2 = HClin4, H4 = HTL7, and dL1, dL2,
dL3, dL4, dS1, dS2 (design variable perturbations). Thus, we have xp =
[εr1 εr2 εr3 εr4 H1 H2 H3 H4 dL1 dL2 dL3 dL4 dS1 dS2]T . Symbols εr.Elem and
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Fig. 3 Coupled microstrip bandpass filter: (a) responses of the fine model (solid line) and the
coarse model (dashed line) at the initial design; (b) responses of the fine model (solid line) and the
SM surrogate model (circles) at the initial design after PE. Note the excellent match between the
models

Fig. 4 Coupled microstrip bandpass filter: fine model response at the final design obtained

HElem refer to the dielectric constant (initial value 3.0) and substrate height (initial
value 0.51 mm) of element Elem, respectively. Initial values for other parameters
are zero. We take δ(0) = [1 1 1 1 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.02 0.02]T (in
respective units).

Figure 3(a) shows the fine and coarse model responses at the initial design.
Thanks to the large number of surrogate model parameters, we obtain an excellent
match to the fine model, as illustrated in Fig. 3(b). Figure 4 shows the fine model
response at the final design.
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Table 1 Coupled bandpass filter: optimization results

Algorithm Specification error Number of fine model
evaluationsBest found Final

Standard SM −0.9 dB −0.4 dB 21a

Trust region SM −2.1 dB −2.1 dB 21b

SM with constrained PE −2.1 dB −2.1 dB 12

aAlgorithm terminated after 20 iterations without convergence
bTerminated after 21 fine model evaluations (good convergence pattern, but tolerance requirements
not fulfilled yet)

Fig. 5 Coupled microstrip bandpass filter: (a) convergence plot for the standard SM (o), trust re-
gion enhanced SM (×), and for the constrained algorithm (∗). Note that there is more than one fine
model evaluation per iteration for the trust region algorithm (21 evaluations in total); (b) specifica-
tion error versus iteration index for the standard SM (o) and for the constrained algorithm (∗)

Optimization results for standard and trust region enhanced SM as well as for the
constrained algorithm of Sect. 3.2 are summarized in Table 1 as well as in Fig. 5.
We observe that the standard algorithm exhibits features typical of SM: fast initial
progress, then stagnation, as indicated by the lack of or slow convergence, and os-
cillation in the specification error values. On the other hand, the algorithm exhibits
both a nice convergence pattern and consistent behavior with respect to specifica-
tion error. The trust region convergence improves the convergence properties of the
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algorithm, but at the expense of extra computational effort: any designs that do not
reduce the specification error are rejected, so typically more than one fine model
evaluation per iteration is required for this algorithm. The total optimization cost is
almost twice as high as for the constrained algorithm.

4 Design of Antennas Using Space Mapping with Response
Surface Approximation Coarse Models

In this section we deal with a specific modification of the SM algorithm that is suit-
able in situations when the underlying low-fidelity model is relatively expensive.
This is particularly the case for antenna structures, where reliable equivalent cir-
cuit models are usually not available, and the only universal way to create a faster
representation of the structure is coarse-discretization EM simulation.

4.1 Response Surface Approximation Coarse Models

As mentioned before, the coarse model is a critical component of successful SM
optimization. The model should be physics-based; i.e., it should describe the same
phenomena as the fine model. This ensures that the surrogate model constructed us-
ing Rc will have good prediction capability [15]. Also Rc should be computation-
ally much cheaper than Rf so that the total costs of surrogate model optimization
(2) and PE (4) problems are negligible. The preferred choice for the coarse model
is therefore a circuit equivalent, e.g., one implemented in Agilent ADS [35]. Unfor-
tunately, for many structures, particularly antennas, it is difficult to build a reliable
circuit equivalent, or the circuit equivalent may be of insufficient accuracy, resulting
in poor performance of the SM process.

In general, Rc can be implemented using the same EM solver as the one of
the fine model by applying relaxed mesh requirements. However, the coarse-mesh
model may have poor analytical properties (e.g., numerical noise, nondifferentia-
bility and discontinuity of the response over the design variables) which make op-
timization of the surrogate difficult [11]. Also, it is not straightforward to find an
appropriate trade-off between the model accuracy and evaluation time. The rule of
thumb is that the evaluation time of Rc should be at least two orders of magni-
tude smaller than that of Rf in order to make the overhead of solving (2) and (4)
reasonably small.

We mention that coarse mesh is not the only different feature of the coarse model
compared to the fine model. Other options include: (i) a reduced number of cells in
the perfectly matched layer absorbing boundary conditions as well as a reduced dis-
tance from the simulated structure to the absorbing boundary conditions, in the case
of finite-volume EM simulators [36–38]; (ii) the lower order of the basis functions,
in the case of finite-element and integral equation solvers [37, 38]; (iii) simplified
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excitation [38, 39], e.g., the discrete source of the coarse model versus the waveg-
uide port of the fine model; (iv) zero thickness of metallization; (v) the use of a
perfect electric conductor in place of finite-conductivity metals.

In this chapter, a coarse model is built using a functional approximation of data
obtained with the same EM simulator as the fine model but with a much coarser
mesh. This coarse-discretization EM-based model will be denoted as Rcd. Note that
the functional approximation model would normally be set up using sampled fine
model data. Here, in order to reduce the computational overhead, the surrogate is
constructed using its simplified representation, Rcd.

A variety of function approximation methods are available, including polynomial
approximation [5], neural networks [40–44], kriging [5, 45, 46], multidimensional
Cauchy approximation [47], or support vector regression [48]. Here, the coarse
model is constructed using kriging interpolation. We made this choice not only be-
cause kriging is a reliable and popular technique [5], but also because the available
Matlab kriging toolbox, DACE [49], allows us to configure kriging-based models
in an efficient way. For brevity, we omit a formulation of the details of kriging. The
interested reader can find them in the literature (e.g., [5] or [9]).

Response surface approximation in general (and kriging interpolation in particu-
lar) as a method of generating the coarse model for the SM algorithm has a number
of advantages: (i) the resulting model is computationally cheap, smooth, and there-
fore, easy to optimize; (ii) there is no need for an equivalent circuit model, and,
consequently, no extra simulation software is needed; the SM algorithm implemen-
tation is simpler and exploits a single EM solver; (iii) it is possible to apply SM for
antenna design problems where finding reliable and fast coarse models is difficult or
impossible; (iv) the initial design obtained through optimization of the coarse-mesh
EM model is usually better than the initial design that could be obtained by other
methods.

4.2 Design Optimization Process

The design optimization procedure can be summarized as follows (Fig. 6):

1. Take initial design xinit;
2. Find the starting point x(0) for SM algorithm by optimizing the coarse-

discretization model Rcd;
3. Allocate N base designs, XB = {x1, . . . ,xN };
4. Evaluate Rcd at each design xj , j = 1,2, . . . ,N ;
5. Build the coarse model Rc as a kriging interpolation of data pairs

{(xj ,Rcd(x
j ))}j=1,...,N ;

6. Set i = 0;
7. Evaluate the fine model Rf at x(i);

8. Construct the space mapping surrogate model R
(i)
s as in (3) and (4);

9. Find a new design x(i+1) as in (2);
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Fig. 6 Flowchart of the design optimization procedure exploiting a response-surface-approxima-
tion-based coarse model and SM as the main optimization engine [9]

10. Set i = i + 1;
11. If the termination condition is not satisfied go to 7;
12. END

The first phase of the design process is to find an optimized design of the coarse-
discretization model. The optimum of Rcd is usually the best design we can get at
a reasonably low computational cost. This cost can be further reduced by relaxing
tolerance requirements while searching for x(0): due to a limited accuracy of Rcd it
is sufficient to find only a rough approximation of its optimum. Steps 3–5 describe
the construction of the kriging-based coarse model. Steps 6–12 describe the flow
of the SM algorithm. In principle, any SM surrogate model can be used except one
from implicit SM, as the kriging-based coarse model normally does not inherit pre-
assigned parameters from the coarse-discretization EM model. Here, the algorithm
is terminated when no improvement of the fine model objective function is obtained
in a given iteration. In general, the algorithm can be embedded in the trust region
framework [22] for improved convergence.

The mesh density for the coarse-discretization model Rcd should be adjusted so
that its evaluation time is substantially smaller than that of the fine model and, at the
same time, its accuracy is still decent. Typically, if Rcd is set up so that it is 20 to 60
times faster than Rf , its accuracy is acceptable for the purpose of the design proce-
dure. The coarse model is created in the neighborhood XN of x(0), the approximate
optimum of the coarse-discretization model Rcd. The relative size of this neighbor-
hood depends on the sensitivity of the antenna response to design variables as well
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Fig. 7 DRA: (a) 3D view, (b) top view, and (c) front view; substrate shown transparent

as the discrepancy between the fine and coarse-discretization models, and may vary
from a few to 20 percent. The number of base designs N depends on the problem
dimensionality; typical values are 50 to 200. The base points should be allocated as
uniformly as possible in XN . Here, we use a modified Latin hypercube sampling
[50] algorithm that gives a fairly uniform distribution of samples regardless of the
number of design variables.

4.3 Design Example: Dielectric Resonator Antenna

Consider a rectangular DRA [51]; see Fig. 7 for its geometry. The DRA comprises
a rectangular dielectric resonator (DR) estimated to operate at the perturbed TEδ11
mode [51], supporting RO4003C [52] slabs, and polycarbonate housing. The hous-
ing is fixed to the circuit board with four through M1 bolts. The DRA is ener-
gized with a 50 � microstrip through a slot made in the metal ground. The sub-
strate is 0.5 mm thick RO4003C. The design specifications are |S11| ≤ −15 dB for
5.1–5.9 GHz; also the DRA is required to have an antenna gain of better than 5 dBi
for the zero zenith angle over the bandwidth of interest.

There are nine design variables: x = [ax ay az ay0 us ws ys g1 y1]T , where ax ,
ay , and az are the dimensions of the DR, ay0 stands for the offset of the DR center
relative to the slot center (marked by a black dot in Fig. 7(b)) in the Y -direction, us
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Fig. 8 DRA, |S11| versus frequency: fine model Rf at the initial design (- - -), optimized
coarse-discretization model Rcd (· · · ·), and Rf at the optimum of Rcd (−)

and ws are the slot dimensions, ys is the length of the microstrip stub, and g1 and
y1 are the slab dimensions. The relative permittivity and loss tangent of the DR are
10 and 1e-4, respectively, at 6.5 GHz.

The width of the microstrip signal trace is 1.15 mm. Metallization of the trace
and ground is done with 50 μm copper. The relative permittivity and loss tangent of
the polycarbonate housing are 2.8 and 0.01 at 6.5 GHz, respectively. DRA models
are defined with the CST MWS [39], and the built-in single-pole Debye model is
used for all dielectrics to describe their dispersion properties. Other dimensions are
fixed as follows: hx = hy = hz = 1, bx = 7.5, sx = 2, and ty = ay − ay0 − 1, all in
millimeters.

The initial design is xin = [8.000 14.000 9.000 0 1.750 10.000 3.000 1.500
6.000]T mm. The fine (1,099,490 mesh cells at xin) and coarse-discretization
(26,796 mesh cells at xin) antenna models are evaluated with CST MWS transient
solver in 2,175 and 42 s, respectively.

A coarse-discretization model optimum is x(0) = [7.444 13.556 9.167 0.250
1.750 10.500 2.500 1.500 6.000]T mm. Figure 8 shows the fine model reflection
response at the initial design as well as that of the fine and coarse-discretization
model Rcd at x(0). The kriging coarse model is set up using 200 samples of Rcd al-
located in the vicinity of x(0) of size [0.5 0.5 0.5 0.25 0.5 0.25 0.25 0.25 0.5]T mm.

The final design, x(4) = [7.556 13.278 9.630 0.472 1.287 10.593 2.667
1.722 6.482]T mm, is obtained after four SM iterations; its reflection response
is shown in Fig. 9. The far-field response of the final design is shown in Fig. 10.
For the bandwidth of interest, the peak gain is above 5 dBi, and the back radiation
level is below −14 dB (relative to the maximum). All responses shown include the
effect of the 25 mm input microstrip. The surrogate model used by the optimization
algorithm exploited input and output SM of the form Rs(x) = Rc(x + c) + d . The
optimization costs are summarized in Table 2. The total design time corresponds to
about 11 evaluations of the fine model.
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Fig. 9 DRA, |S11| versus frequency: Rf at the final design

Fig. 10 DRA, realized gain versus frequency: (—) is for the zero zenith angle (θ = 00); (- - -) is
back radiation for θ = 180◦. Here, only θ -polarization (φ = 90◦) contributes to the gain for the
listed directions

Table 2 DRA: optimization cost

Algorithm component Number of model
evaluations

CPU time

Absolute Relative to Rf

Optimization of Rcd 150 × Rcd 105 min 2.9

Setting up Rc 200 × Rcd 140 min 3.9

Evaluation of Rf 4 × Rf 145 min 4.0

Total cost N/A 390 min 10.8

5 Space Mapping with Adjoint Sensitivity

In this section, we discuss the use of adjoint sensitivity [53] to enhance conventional
SM optimization algorithms. More specifically, adjoint sensitivity is exploited to:
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(i) speed up the surrogate model optimization process (2), (ii) speed up the PE pro-
cess (4), and (iii) improve the matching between the surrogate and the high-fidelity
model. Due to (i) and (ii), both PE and surrogate model optimization can be per-
formed using a small number of low-fidelity model evaluations, which allows us
to utilize coarse-discretization EM coarse models. This widens SM applications as
well as improving SM performance, as low-fidelity SM models are normally quite
accurate. Adjoint sensitivities are also used to match both the responses and first-
order derivatives of the surrogate and the high-fidelity model, which improves the
performance and convergence properties of the SM algorithm [54]. An illustrative
example is provided.

5.1 Low-Fidelity and Surrogate Models

SM with adjoint sensitivity follows the generic SM scheme (2). As usual, the sur-
rogate model is constructed using the underlying low-fidelity (or coarse) model Rc ,
which is a simplified representation of the high-fidelity one. Here, we focus on
coarse-discretization EM models, as they allow us to extend the applicability of
SM to all conceivable microwave structures. Coarse-discretization EM models are
typically accurate but relatively expensive; therefore, the SM surrogate exploited
here is based on input and output SM [21] of the form:

R(i)
s (x) = Rc

(
x + c(i)

)+ d(i) + E(i)
(
x − x(i)

)
. (9)

Here, only the input SM vector c(i) is obtained through the nonlinear PE process

c(i) = arg min
c

∥∥Rf

(
x(i)

)− Rc

(
x(i) + c

)∥∥. (10)

Output SM parameters are calculated as

d(i) = Rf

(
x(i)

)− Rc

(
x(i) + c(i)

)
(11)

and

E(i) = JRf

(
x(i)

)− JRc

(
x(i) + c(i)

)
, (12)

where J denotes the Jacobian of the respective model obtained using adjoint sen-
sitivities. Formulation (2)–(5) ensures zero- and first-order consistency [55] be-
tween the surrogate and the fine model, i.e., R(i)

s (x(i)) = Rf (x
(i)) and J

R
(i)
s
(x(i)) =

JRf
(x(i)), which substantially improves the ability of the SM algorithm to quickly

locate the high-fidelity model optimum [55]. Here, the algorithm (2) is embedded in
the trust region framework [30]; i.e., we have x(i+1) = arg min{‖x − x(i)‖ ≤ δ(i) :
U(R

(i)
s (x))}, where the trust region radius δ(i) is updated using classical rules [30].

Assuming first-order consistency and smoothness of R
(i)
s (x), this ensures conver-

gence to the local Rf optimum.
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5.2 Fast Parameter Extraction and Surrogate Optimization Using
Adjoint Sensitivities

To speed up the PE process (4), we exploit adjoint sensitivities. We use a simple
trust-region-based [22] algorithm, where the approximate solution c(i.k+1) of c(i) is
found as (k is the iteration index for PE process (13))

c(i.k+1) = arg min
‖c−c(i.k)‖≤δ

(k)
PE

∥∥Rf

(
x(i)

)− L(i.k)
c.c (c)

∥∥, (13)

where L
(i.k)
c.c (c) = Rc(x

(i)+c(i.k))+JRc (x
(i)+c(i.k)) ·(c−c(i.k)) is a linear approx-

imation of Rc(x
(i) + c) at c(i.k). The trust region radius δ

(k)
PE is updated according to

standard rules [22]. PE is terminated upon convergence or exceeding the maximum
number of coarse model evaluations (here, the limit is set to 5, which is sufficient
when using adjoint sensitivity).

Adjoint sensitivities are also utilized to lower the cost of surrogate model opti-
mization. Similarly to (13), we use a trust-region-based algorithm that produces a
sequence of approximations x(i+1.k) of the solution x(i+1) to (2) as follows (k is the
iteration index for surrogate model optimization process (14)):

x(i+1.k+1) = arg min
‖x−x(i+1.k)‖≤δ

(k)
SO

U
(
L(i.k)

c.x (x)
)
, (14)

where L
(i.k)
c.x (x) = R

(i)
s (x(i+1.k) + c(i)) + J

R
(i)
s
(x(i+1.k) + c(i)) · (x − x(i+1.k)) is a

linear approximation of R
(i)
s (x + c(i)) at x(i+1.k). The trust region radius δ

(k)
SO is

updated according to standard rules [54]. Typically, due to adjoint sensitivities, sur-
rogate model optimization requires only a few evaluations of the coarse model Rc .
Note that the sensitivities of the surrogate model can be calculated using the sensitiv-
ities of both Rf and Rc as follows: J

R
(i)
s
(x + c(i)) = JRc (x + c(i))+[JRf

(x(i))−
JRc (x

(i) + c(i))].

5.3 Design Example: Dielectric Resonator Filter

Consider the dielectric resonator filter [56] shown in Fig. 11. The design variables
are x = [u1 u2 u3 v1 v2]T mm, and the relative permittivity of the dielectric res-
onators (DR) is εr1 = 38. The relative permittivity of the DR supports and the coax
filling is εr2 = 2.1. The materials are considered lossless. Here h3 = h4 = h5 =
1 mm, r3 = r2 (the inner radius of the DR), and r4 = r2 +1 mm, and ρ1 = 2.05 mm.
Other dimensions are fixed as in [56].

The filter models are simulated by the CST MWS transient solver [39]. The
coarse-discretization model Rcd comprises 38,220 hexahedral cells and runs for
1 min, and the fine model Rf comprises 333,558 cells and runs for 28 min, both at
the initial design which is x(init) = [8 12 25 25 −10]T mm. The design specifica-
tions are |S21| ≥ −0.75 dB for 4.52 GHz ≤ ω ≤ 4.54 GHz, and |S21| ≤ −20 dB for
4.4 GHz ≤ ω ≤ 4.47 GHz and 4.59 GHz ≤ ω ≤ 4.63 GHz.
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Fig. 11 Dielectric resonator filter [56]: (a) 3D view, (b) side view, and (b) front view. Front and
side metal walls of the waveguide section are shown transparent

Table 3 Dielectric resonator filter: optimization results

Algorithm component Number of model
evaluationsa

CPU time

Absolute [min] Relative to Rf

Evaluation of Rc 80 80 2.9

Evaluation of Rf 11 308 11

Total costa N/A 398 13.9

aExcludes Rf evaluation at the initial design

The filter was optimized using the algorithm of Sects. 5.1 and 5.2. Figure 12(a)
shows the responses of Rf and Rc at xinit. Figure 12(b) shows the response of
the fine model at the final design x(∗) = [7.28 11.06 24.81 26.00 −11.07]T mm
obtained after ten SM iterations. Table 3 summarizes the total optimization cost.
Note that using adjoint sensitivities allows us to greatly reduce the number of both
fine and coarse model evaluations in the design process. The average cost of the
PE and surrogate optimization processes is only about 5 evaluations of Rc. The
evolution of the specification error is shown in Fig. 13.

6 Conclusion

In this chapter, a number of design examples concerning various microwave com-
ponents have been presented, including microstrip filters and planar antennas, as
well as transition structures. In all cases, the surrogate-based techniques presented
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Fig. 12 Dielectric resonator filter: (a) responses of Rf (—) and Rc (- - -) at the initial design xinit,
(b) response of Rf (—) at the final design

Fig. 13 Dielectric resonator filter: minimax specification error versus SM iteration index

here have been employed as optimization engines. The results presented here in-
dicate that the surrogate-based optimization methods make the simulation-driven
microwave design feasible and efficient, in terms of both the quality of the final
design and the computational cost. In most cases, the design cost corresponds to
a few high-fidelity electromagnetic simulations of the microwave structure under
consideration, typically comparable to the number of design variables. While this
kind of performance is definitely appealing, improved robustness and reliability as
well as availability through commercial software packages are needed to make the
surrogate-based techniques widely accepted by the microwave engineering commu-
nity. Therefore, a substantial research effort in this area is expected in the years to
come.
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Abstract Circuit design centering is one of the most important problems concern-
ing the optimal design of circuits. Circuit design centering seeks nominal values of
designable circuit parameters that maximize the probability of satisfying the design
specifications (yield function). Design centering can be performed geometrically by
finding the center of the feasible region (region in the designable parameter space
where the design specifications are satisfied), or by maximizing the yield function
explicitly. For all cases, the high expense of circuit simulations required obstructs
the design centering process, especially for microwave circuits. To overcome this,
computationally cheap surrogate-based models (e.g., space mapping, response sur-
faces, kriging, and neural networks) can be used for approximating the response
functions or the yield function itself. In this chapter the design centering problem
is formulated as an optimization problem, and the estimation of the yield function
through several sampling techniques is explained. The difficulties facing the design
centering process, especially for microwave circuits, are discussed, and the role of
surrogate-based models in overcoming these difficulties is demonstrated. Special
interest is devoted to space mapping surrogates and microwave circuit design cen-
tering. Some of the important surrogate-based circuit design centering approaches
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1 Introduction

In circuit design, circuits are characterized by some designable parameters x ∈ R
n

and circuit performance measures fi(x), i = 1,2, . . . ,m. Designable circuit param-
eters may be passive elements or transistor geometries. The performance measures
may be power dissipation or the circuit S-parameters. Naturally, circuit performance
measures are functions of circuit responses which are evaluated through circuit sim-
ulations. The desired performance of a circuit (the design specifications) is described
by specifying bounds on the performance measures of the circuit which is set by the
designer. These design specifications constrain the designable parameters and de-
fine a region in the designable parameter space known as the feasible region (design
region), which can be defined as:

F = {
x ∈R

n | fi

(
R(x)

)≤ bi, i = 1,2, . . . ,m
}
, (1)

where x ∈ R
n is the vector of the designable parameters, R : Rn → R

m is the re-
sponse vector, n is the number of designable parameters, m is the number of con-
straints, fi is the i-th performance function, and bi is the corresponding specification
bound. Every x ∈ F is considered as an acceptable circuit.

In general, the traditional circuit design trend uses optimization techniques to
find a nominal design of the circuit, i.e., to determine the nominal values of circuit
parameters which satisfy the design specifications. It is a fact that circuit param-
eters are subject to known but unavoidable statistical fluctuations inherent to the
manufacturing process used, due to environmental effects during operations, or due
to model uncertainties. This may cause the circuit performance to violate the de-
sign specifications, especially when the location of the nominal design point in the
designable parameter space is closer to the boundaries of the feasible region. To
simulate the statistical fluctuations, circuit designable parameters are assumed to be
random variables with a joint probability density function (PDF) P(x,x0), where
x0 ∈ R

n is the vector of nominal parameter values. Therefore, the probability of
satisfying the design specifications (yield function) can be defined as:

Y(x0) =
∫

F

P (x,x0) dx. (2)

The design centering problem seeks nominal values of circuit parameters which
minimize the undesirable effects of the statistical fluctuations that affect the des-
ignable circuit parameters; namely, it seeks the nominal values of circuit parameters
which maximize the yield function. Hence, the design centering or yield maximiza-
tion problem is formulated as:

max
x0

Y(x0). (3)

2 Yield Function Estimation and Sampling Techniques

It is clear that the yield integral (2) cannot be evaluated analytically, since it requires
the evaluation of an n-dimensional integral over a “non-explicitly defined” region
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[31]. Instead, it can be estimated. One of the famous methods used for estimating
the yield integral is the Monte Carlo method [41]. To verify this, we define the
acceptance index function, Ia :Rn →R, as:

Ia
(
xj

) =
{

1 if xj ∈ F,

0 if xj /∈ F,
(4)

where F is the feasible region defined by (1). Then, the yield integral (2) can be
rewritten as:

Y(x0) =
∫

Rn

Ia(x)P (x,x0) dx = E
{
Ia(x)

}
, (5)

where E{·} denotes expectation.
Hence, the yield value at a nominal parameter vector x0 can be estimated by

generating a set of sample points xj , j = 1,2, . . . ,K in the designable parameter
space using the PDF of designable parameters. The circuit is simulated for each
sample point xj , and the acceptance index function is evaluated. Hence, the yield
function at the nominal parameter vector x0 can be estimated as:

Y(x0) ≈ 1

K

K∑

j=1

Ia
(
xj

)= k

K
, (6)

where k is the number of sample points satisfying the design specifications; i.e.,
the percentage of acceptable circuits gives an estimate of the yield value at x0. The
error in estimating a yield value (the estimation variance) is given by the following
formula [34]:

V
(
Y(x0)

) ≈ Y(x0)(1 − Y(x0))

K − 1
. (7)

It is obvious that the estimation variance is inversely proportional to the number
of samples considered. Hence, the most straightforward way of improving accu-
racy and obtaining a low variance estimator is to increase the number of circuit
simulations. This can result in prohibitively large requirements for computing time.
Furthermore, there is no assurance that all regions of the parameter space will be
explored equally well. Several techniques have been proposed for improving the ac-
curacy of a Monte Carlo yield estimate without increasing the number of samples.
These methods are called variance reduction techniques [25, 34].

2.1 Variance Reduction Techniques

The main objective of variance reduction techniques is to spread the sample data
points as evenly as possible around the interior design space. The benefit is a fewer
number of runs, to achieve the same level of confidence, than the number required
by the Monte Carlo approach, because it is guaranteed that the entire probability
range will be explored.
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2.1.1 Importance Sampling

Importance sampling [34] uses another sampling density function in generating the
sample points. To compensate this, the values of the acceptance index for sample
points are multiplied by weighting factors equal to the ratio between the values of
the original PDF and the sampling density function at the sample points. The proper
choice of the sampling density function can lead to a variance smaller than that of
the standard Monte Carlo yield estimator for the same sample size.

2.1.2 Stratified Monte Carlo Method

The most powerful feature of the Monte Carlo method is the fact that it is the only
feasible and reliable method in large dimensions, since the number of required sam-
ples does not depend on the number of circuit parameters. The main drawback of
the basic Monte Carlo sampling design is that the generated samples may leave
large regions of the design region unexplored, as shown in Fig. 1(a) in a 2D case.
A modified method to solve this deficiency is the stratified Monte Carlo method, in
which stratified sampling is applied [34, 36]. In the stratified Monte Carlo method,
each design parameter range is divided into subintervals (bins) of equal probabil-
ity. A sampling site is then selected within each bin. Figure 1(b) shows an example
in the 2D case with a uniform distribution of design variables (four bins for each
design variable).

2.1.3 Latin Hypercube Sampling (LHS)

Latin hypercube sampling was developed in the work of McKay et al. [40]. It pro-
vides a more accurate estimate of the function value than the Monte Carlo method.
The LHS involves dividing the design space into equiprobable subregions. Then N

samples are selected such that all subregions are sampled.
One common way to generate N samples using the LHS design is to divide each

design variable range into N nonoverlapping equiprobable intervals, each with a
probability of 1/N . Then N different values are selected for each variable at random
(one for each interval). This process divides the n-dimensional design space into Nn

cells with a probability 1/Nn each. The final N samples are obtained by selecting
random combinations from the N values of all design variables. Figure 1(c) shows
an example of LHS sampling for n = 2 design variables and N = 4 samples.

3 Circuit Design Centering

Circuit design centering is one of the most important problems concerning the op-
timal design of circuits [10, 26]. The design centering problem seeks nominal val-
ues of circuit parameters which maximize the yield function. Design centering ap-
proaches can be classified as statistical approaches and geometrical approaches. Sta-
tistical approaches optimize the yield function explicitly using statistical analysis
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Fig. 1 (a) Basic Monte Carlo sampling. (b) Stratified Monte Carlo sampling. (c) Latin hypercube
sampling for two dimensions with N = 4

techniques in a straightforward way regardless of the size of the problem or its con-
vexity [23, 31, 32, 35, 36, 49, 53, 59, 60]. As previously stated, the accuracy of the
statistical estimation does not depend on the number of parameters and performance
features, but on the size of the sample [26]. An acceptable accuracy requires a large
number of circuit simulations, in the range of thousands. Hence, the large computa-
tional effort required in addition to the uncertainty involved in the estimation process
represent an obstacle against the statistical design centering approaches. Geometri-
cal approaches, on the other hand, optimize the yield function implicitly by finding
the center of the feasible region. This may be performed by approximating the fea-
sible region using a convex body, e.g., a hyperellipsoid. Then the center of this body
is considered as the design center [1–5, 7, 9, 22, 27–30, 33, 46, 48, 57, 58]. The
geometrical approaches have fast convergence for convex and small-dimensional
problems. Hybrid methods, which combine both approaches, may be used to over-
come such problems [33].

4 Surrogate-Based Circuit Design Centering

In general, treating the feasible region during implemention of the geometrical de-
sign centering approaches requires evaluating the performance functions and per-
haps also evaluating their gradients. Consequently, many circuit simulations will be
needed during the design centering process. On the other hand, the statistical design
centering process has some permanent special difficulties. For example, the cost of
finding a yield value for a given nominal design parameter represents an obstacle
for many optimization methods. Hence, robust optimization methods that utilize the
fewest possible number of yield evaluations are required. Another difficulty is the
absence of any gradient information, as the required simulations cost in evaluating
the gradient information is prohibitive in practice [26]. Attempting to approximate
the yield gradients using the finite difference approach requires many more yield
evaluations, which highly increase the computational cost. Another objection in es-
timating the gradients by finite differencing is that the estimated yield values are
usually contaminated by some numerical noise due to estimation uncertainty. In
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these cases, for any small perturbations around a given point, the corresponding
yield values do not reflect the local behavior of the yield function itself, but rather
that of the noise [31]. Hence, gradient-based optimization methods cannot be ap-
plied here.

For all cases of design centering, the high expense of the required circuit sim-
ulations may obstruct the design centering process. One of the intelligent methods
to overcome this obstacle is to use computationally cheap surrogate-based models.
The surrogate-based models may be, for example, space mapping, response sur-
faces, kriging models, or neural networks. These surrogate-based models can be
used for approximating the response functions and the yield function itself. The
surrogate-based models are initially constructed and iteratively updated during the
design centering process.

4.1 Surrogate-Based Statistical Design Centering Using Trust
Region Optimization and Variance Reduction

A surrogate-based statistical design centering algorithm was introduced by Hassan
et al. [31] to overcome the difficulties of statistical yield optimization. The algo-
rithm neither requires nor approximates the gradients of the yield and the perfor-
mance functions. It consists of two parts: a non-derivative unconstrained optimizer
and a variance reduction estimator. The first part of the algorithm implements a
non-derivative optimization method that combines a trust region framework with
quadratic interpolating surrogates for the yield function [18, 19, 43]. The principal
operation of the method relies on building, successively updating, and optimizing a
quadratic surrogate of the yield function over trust regions. The quadratic surrogate
of the yield function reasonably reflects the local behavior of the yield function in a
trust region around a current iterate. A new point is then found by maximizing the
surrogate model over the trust region. The second part of the algorithm utilizes the
stratified Monte Carlo sampling technique [34, 36] for yield estimation during the
optimization process. With this sampling technique, a lower variance yield estima-
tor can be obtained which decreases the number of circuit simulations required to
achieve a desired accuracy level.

In the given algorithm, the computationally expensive yield function is lo-
cally approximated around a current design point xk by a computationally cheaper
quadratic surrogate model M(x), which can be placed in the form:

M(x) = c + gT (x − xk)+ 1

2
(x − xk)

T B(x − xk), (8)

where c ∈R, g ∈R
n, and the symmetric matrix B ∈ R

n×n are the unknown param-
eters of M(x). The total number of these unknowns is N = 1

2 (n+ 1)(n+ 2). These
parameters are determined by interpolating the yield function at N interpolation
points xi using the matching conditions:

M(xi ) = Y(xi ), i = 1,2, . . . ,N. (9)
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However, for n > 1, the existence and uniqueness of M(x) are not guaranteed
by the number of interpolation points only. Some geometric restrictions on their po-
sitions must be satisfied [20, 47]. In other words, if expression (9) is written as a
system of linear equations in the unknown parameters of M(x), then the N ×N co-
efficient matrix of this system (Vandermonde matrix) should be nonsingular for the
quadratic interpolating model to be considered as a good approximation of the yield
function around xk . On the other hand, typical distances between the interpolation
points are taken to be of the magnitude of a positive scalar denoted ρ [43], which
helps to reduce the contribution from the noise to the computations.

Assume that the current design point xk in Eq. (8) is chosen to be the interpolation
point that provides the best yield value so far, i.e.,

Y(xk) ≥ Y(xi ), i = 1,2, . . . , N. (10)

The model M(s) is then maximized, in place of the yield function, over the current
trust region and a new point is produced by solving the trust region subproblem:

max
s∈Rn

M(s) s.t. ‖s‖ ≤ Δ, (11)

where s = x − xk , Δ ≥ ρ is the current trust region radius, and ‖ · ‖ throughout is
the l2-norm. This problem can be solved by the method of Moré and Sorensen [42].
Let s∗ denote the solution of (11), and then a new point xn = xk + s∗ is obtained.
The ratio between the actual yield increase and the model increase obtained at this
point is given by:

r = Y(xn)− Y(xk)

M(xn)−M(xk)
. (12)

This ratio reflects how much the surrogate model agrees with the yield function
within the trust region. If there is good agreement, i.e., r ≥ 0.7, the trust region
radius Δ is enlarged. However, if the agreement is poor, r < 0.1, then Δ is reduced.
For moderate r , i.e., 0.1 ≤ r < 0.7, Δ is considered suitable.

The newly obtained information represented in the pair (xn,Y (xn)) is exploited in
modifying and improving the quadratic model, if possible. For Y(xn) > Y(xk), one
of the current interpolation points will be dropped and xn will be included instead.
In this situation, xn enters the interpolation point set and a new iteration will then
begin by maximizing the improved model over the new trust region. When the point
xn fails to increase the yield or modify the model, a procedure aims at checking
and (possibly) improving the validity of the model around the current point xk . This
procedure eliminates the worst interpolation point, xj say, and searches for a new
replacing point x̂j in the neighborhood ‖x − xk‖ ≤ ρ [43]. The calculations will
continue with the current value of ρ if and only if ‖s∗‖ > ρ, where s∗ is the solution
of (11). Otherwise, no more iteration is required for the current value of ρ, since
the model is considered valid but it seems that steps of length ρ fail to increase the
yield. Hence, ρ is reduced, or termination occurs if either ρ reaches a final value or
a prescribed yield increase is achieved.



34 A.-K.S.O. Hassan and A.S.A. Mohamed

Fig. 2 A folded cascode operational amplifier [6]

Table 1 Performance specifications for the folded cascode operational amplifier [31]

Performance measure Specification Initial
value

Final value
(indep. par)

Final value
(correlated parameters)

Slew rate ≥10 V/μs 61 18.07 23.215

Power dissipation ≤10 mW 3.4 0.619 1.0125

Gain bandwidth product ≥10 MHz 49.3 25.6 26.7

Maximum output voltage ≥2 V 1.84 2.177 2.07

Minimum output voltage ≤ − 2 V −1.98 −2.216 −2.157

Maximum input CM voltage ≥2.5 V 2.87 3.028 2.98

Minimum input CM voltage ≤ − 1.3 V −1.28 −1.52 −1.4

Differential voltage gain ≥5,000 4,009 14,266 10,353

Area of designable transistors ≤300 (μm)2 176 245 260

Minimum channel length ≥0.8 μm 0.8 1.1 0.966

Minimum channel width ≥10 μm 30 21.3 15.05

4.2 Folded Cascode Operational Amplifier Design Centering

The optimal design of a folded cascode operational amplifier [6] is performed us-
ing the given algorithm. The amplifier is shown in Fig. 2. This is a 12D problem
in which the designable parameters are the widths and lengths of transistors M1,
M3, M4, M6, and M8 (in micrometers), together with the load capacitor CL (in
picofarads) and the biasing voltage Vbias (in volts). There are 11 performance mea-
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sures of interest given in Table 1. In this table, the area is defined as the sum of
the product of the widths and lengths of all the designable transistors. Table 1
also shows the specification bounds of the performance measures, and their val-
ues at the initial and final design parameters. The parameter variance vector is
assumed to be [0.125 0.125 0.125 0.125 0.125 0.5 0.5 0.5 0.5 0.5 0.15 0.125]T
and the maximum cross-correlation coefficient is 0.8. The algorithm starts from
a bad initial design [0.8 0.8 0.8 0.8 0.8 30.0 30.0 70.0 60.0 30.0 3.0 −1.5]T
at which the yield is 0.2 %. The algorithm reaches a final design for indepen-
dent parameters [1.23 1.19 1.09 1.25 1.14 29.22 25.59 69.12 59.75 5.47 1.83
−1.632]T at which the yield is 92.6 % by using 246 yield evaluations. For
the case of correlated parameters, the algorithm reaches the final design center
[1.19 1.57 1.16 1.04 1.2 30.59 23.77 70.37 65.85 30.19 2.33 −2.06]T at which
the yield is 93 % by using 259 yield evaluations. A comparison between the strati-
fied sampling and the Monte Carlo method showed that the standard deviation of the
stratified sampling yield estimator by using 1,000 samples is almost upper bounded
by that of the Monte Carlo estimator by using 1,800 samples, which saves about
44 % of the circuit simulations [31].

The effectiveness of the given algorithm is tested by applying another optimizer
for yield maximization. The optimizer uses the Nelder and Mead simplex method
with quadratic response surface [24]. After an upper bound of 1,000 yield evalua-
tions, yields of only 12.9 % for independent parameters and 23.5 % for the corre-
lated parameters are obtained.

5 Surrogate-Based Microwave Circuit Design Centering

Design centering of nonlinear microwave circuits is a great challenge [12]. The
computational overhead is one of the main difficulties in the design centering pro-
cess of these circuits, as many full-wave electromagnetic (EM) simulations would
be required. For both statistical and geometrical design centering approaches, the
high cost of expensive EM circuit simulations required obstructs the design center-
ing process. To overcome this, computationally cheap surrogate-based models can
be used for approximating the response functions and the yield function itself.

The problem of high computational cost required for microwave design center-
ing has been solved successfully by using space mapping interpolating surrogates
(SMISs) [5, 32]. Space mapping (SM) techniques employ computationally fast,
coarse models to greatly reduce the evaluation cost of the computationally expensive
full-wave EM fine models [8, 13–15, 17, 37]. The SMIS technique aims to calibrate
a space-mapped surrogate, via input and output mappings, to match the fine model
with high accuracy.

As previously given, the desired performance of a microwave circuit is described
by some performance specifications which define the feasible region in the des-
ignable parameter space:

F = {
x ∈R

n | fi

(
Rf (x)

) ≤ bi, i = 1,2, . . . ,m
}
, (13)
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where x ∈ R
n is the vector of the designable parameters, Rf : R

n → R
m is the

fine model response vector, n is the number of design parameters, m is the num-
ber of constraints, fi is the i-th performance function, and bi is the corresponding
specification bound. However, working with (13) involves a lot of computationally
expensive fine model evaluations. Instead, SMISs can be employed, and the feasible
region is approximated by:

Fs = {
x ∈R

n | fi

(
Rs(x)

) ≤ bi, i = 1,2, . . . ,m
}
, (14)

where Fs is the SM feasible region approximation, and Rs :Rn →R
m is the SMIS

response vector. Two matching conditions have to be satisfied:

Rs(x) = Rf (x), (15)

Js(x) = Jf (x), (16)

where Js and Jf are the Jacobian matrices of the surrogate and fine model, re-
spectively. These matrices contain the first-order partial derivatives of the response
vector with respect to designable parameters.

5.1 Generalized Space Mapping (GSM) Surrogate Model

The GSM surrogate model is constructed, using a computationally fast coarse model
with input and output mappings, in the form [37]:

Ri
s(x) = Ai .Rc

(
Bi .x + ci

)+ di + Ei
(
x − xi

0

)
, (17)

where xi
0 is the current nominal parameter vector, Ai ∈ Mm×m is a diagonal matrix,

Rc : Xc → R
m is the coarse model response vector, Bi ∈ Mn×n, ci ∈ Mn×1, and

di ∈ Mm×1 is given:

di = Rf

(
xi

0

)− Ai · Rc

(
Bi .xi

0 + ci
)
, (18)

where Rf : Xf →R
m is the fine model response vector, and Ei ∈ Mm×n is

Ei = Jf

(
xi

0

)− Ai · Jc

(
Bi .xi

0 + ci
)
.Bi , (19)

where Jf : Xf → R
m×n and Jc : Xc → R

m×n are the Jacobian matrices of the fine
and coarse model responses with respect to the corresponding points, respectively.
The mapping parameters Ai ,Bi , ci are obtained by the parameter extraction (PE)
optimization process given by:

(
Ai ,Bi , ci

)= arg min
A,B,c

ei (A,B, c), (20)

where ei represents the response deviation residual of the surrogate from the fine
model and is given by:



Surrogate-Based Circuit Design Centering 37

ei (A,B, c) =
i∑

k=0

wk

∥∥Rf

(
xk
)− A · Rc

(
B.xk + c

)∥∥

+
i∑

k=0

vk
∥∥Jf

(
xk
)− A · Jc

(
B.xk + c

)
.B

∥∥, (21)

where the coefficients wk and vk are chosen according to the nature of the design
problem.

5.2 The Ellipsoidal Technique for Design Centering of Microwave
Circuits

In this work, a SM technique is integrated with an ellipsoidal technique to obtain a
surrogate-based geometrical design centering method of microwave circuits with a
small number of EM simulations [5]. The ellipsoidal technique [2, 3] approximates
the feasible region with a hyperellipsoid which is the final hyperellipsoid of a gen-
erated sequence of decreasing volume of different shape and center hyperellipsoids.
The center of this final hyperellipsoid is considered as a design center. The gen-
eration of the sequence of hyperellipsoids requires successive linearization of the
feasible region boundaries at selected boundary points. This requires evaluating the
performance functions and their gradients. Consequently, many expensive circuit
simulations will be needed, especially for microwave circuits.

In this design centering method, an SMIS [14] is initially constructed and then
updated through SM iterations. In each SM iteration, a current SMIS model and the
corresponding SM feasible region approximation (14) are available. The ellipsoidal
technique is implemented with the current feasible region approximation to obtain
a new design centering point. This new center is validated by the fine model and
is used to update the current SMIS model. Enhanced improvement is achieved by
satisfying (15) at all preceding design centering points (global matching). The ellip-
soidal technique is then restarted with the updated SMIS to get the next center. The
process is repeated until a final design center is obtained.

5.2.1 The Ellipsoidal Technique

Assume that xk
0 is the design center obtained in the (k − 1)-th SM iteration. In the

k-th iteration, the feasible region approximation is Fk
s = {x ∈ R

n | fi(Rk
s (x)) ≤

bi, i = 1,2, . . . ,m}. The ellipsoidal technique starts with a sufficiently large hyper-
ellipsoid containing the feasible region approximation with an initial center t0 = xk

0.
An iteration of the ellipsoidal technique assumes that the current hyperellipsoid is
Ej = {(x−tj )T Q−1

j
(x−tj ) ≤ 1} with center tj and hyperellipsoid matrix Qj which

is symmetric and positive definite. A hyperplane aT x = b is then constructed by lin-
earizing the feasible region boundary at a selected boundary point. This hyperplane
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divides the current hyperellipsoid into two parts. The first is completely infeasible,
while the second contains the feasible region approximation. The new generated
hyperellipsoid Ej+1(t j+1,Q j+1) is the minimum volume hyperellipsoid enclos-
ing the second part with center and matrix given by:

tj+1 = tj − η
(Qja)

√
aT Qja

, Qj+1 = β

(
Qj − γ

(Qja)(Qja)T

aT Qja

)
, (22)

where

η = (1 + nδ)/(n+ 1), β = n2
(
1 − δ2

)
/
(
n2 − 1

)
,

γ = 2η/(1 + δ) and δ = (
aT tj − b

)
/

√
aT Qja.

(23)

The volumes of Ej+1 and Ej satisfy the ratio [2]:

ρ = ρ0
(
1 − δ2) (n−1)

2 (1 − δ), ρ0 = (nn)

((n+ 1)
(n+1)

2 (n− 1)
(n−1)

2 )
. (24)

The hyperellipsoid volume ratio ρ is a monotonically decreasing function in δ.
Thus, different strategies are used to locate the best boundary points, which are ac-
companied by maximum values of δ. This results in the greatest reduction in the vol-
ume of the generated hyperellipsoids and consequently increases the convergence of
the ellipsoidal technique [3].

The iterations of the ellipsoidal technique continue until no significant reduction
in the hyperellipsoid volume can be achieved. The center of the final hyperellipsoid,
denoted by tfinal, considers the next design center xk+1

0 and is fed into the next SM
iteration [5].

Note that the Broyden formula [16] offers a fast way to approximate the gra-
dients required in linearization. However, for some models, exact gradients can be
evaluated by the adjoint sensitivity technique [11, 50].

5.2.2 Design Centering of Coupled-Line Bandpass Filter

The optimal design of a coupled-line bandpass filter [52], shown in Fig. 3, is deter-
mined. The design constraint functions are given by:

fi

(
Rf (x)

) =

⎧
⎪⎪⎨

⎪⎪⎩

Rf,i(x)+ 20, 5 GHz <ωi < 7.25 GHz

−3 −Rf,i(x), 7.75 GHz <ωi < 8.25 GHz

Rf,i(x)+ 20, 8.75 GHz <ωi < 11 GHz

where Rf,i(x) = |S21| (dB) at frequency ωi . The substrate thickness is taken as
1.272 mm and εr = 10. The design parameters are [x1 x2 x3 x4 x5 x6 ]T in millime-
ters, as shown in Fig. 3. The simulation of this example is performed using an in-
house planar solver based on the method of moments [51]. The fine model is meshed
with 3 width and 15 length segments of the microstrip lines, while the coarse model
is meshed with 1 width and 5 length segments.
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Fig. 3 Coupled-line bandpass filter [52]

Table 2 Yield results for the coupled line bandpass filter assuming independent parameters [5]

Parameter spreads σ Initial yield Yield at minimax solution Final yield

σi = 2 %a 2 % 5 % 14 %

σi = 1 %a 0 % 20 % 34 %

σi = 0.5 %a 0 % 37 % 55 %

σi = 0.1019b 0 % 6 % 17 %

σi = 0.034b 0 % 45 % 75 %

aParameter spreads are relative to the nominal values at the final solution
bAbsolute parameter spreads in millimeters

Table 3 Yield results for the
coupled-line bandpass filter
assuming correlated
parameters [5]

Covariance
matrix

Initial yield Yield at minimax
solution

Final yield

Cov1 0 % 10 % 27 %

Cov2 0 % 57 % 93 %

The constraint functions are evaluated at all frequency points ωi = 5, 5.75, 6.5,
7.25, 7.75, 8, 8.25, 8.75, 9.5, 10.25, 11 GHz. The initial surrogate is taken as the
coarse model giving [5.682 13.991 6.835 0.522 1.051 1.511]T as the initial fine
model design. The final design center [5.298 12.960 6.052 0.416 2.122 1.099]T is
reached after six SM iterations. The initial and the final yield values are evaluated
via the Monte Carlo method with 100 sample points assuming normally distributed
parameters. The results assuming independent parameters are shown in Table 2.

The results for the correlated parameters are shown in Table 3. A much higher
yield is achieved with the obtained design center in comparison with the minimax
center [4.779 13.664 6.835 0.637 1.024 0.808]T . In Table 3, Cov1 and, Cov2 are fi-
nal hyperellipsoid matrices scaled to give hyperellipsoids of the same volume as the
hyperellipsoids with independent parameter spreads σi = 0.1019 and σi = 0.034.
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5.3 Design Centering of Microwave Circuits via Trust Region
Optimization and Space Mapping Surrogates

This approach of design centering is a statistical one and treats two types of surro-
gates [32]. It employs the GSM surrogate (17), to minimize the required expensive
EM simulations, in addition to the quadratic surrogate model (8) to approximate
the computationally expensive yield function. The approach integrates three strate-
gies to overcome the statistical microwave design centering difficulties. First, Latin
hypercube sampling (LHS) is used in the sampling process. Second, a derivative-
free trust region method is utilized in the yield optimization process. In the given
approach, the NEWUOA algorithm developed by Powell is used [44, 45, 61]. The
NEWUOA algorithm employs quadratic surrogate models to approximate the ex-
pensive yield function. Third, the GSM technique [37] is employed to reduce the
simulation computational effort. Thus, the NEWUOA algorithm is combined with
the GSM technique and the LHS technique to obtain a method for statistical mi-
crowave circuit design centering.

Starting from an initial point, the GSM surrogate model is initially constructed,
and then updated through SM iterations. In each SM iteration, a current SMIS
model and the corresponding SM feasible region approximation are available. The
NEWUOA algorithm is applied to optimize the yield function and get a better center
point. The yield values are estimated using the current feasible region approxima-
tion. The new center point is validated by the fine model and is used to update the
current SMIS using the matching conditions. Then, the NEWUOA algorithm starts
again with the updated surrogate to obtain the next center point.

5.3.1 NEWUOA Algorithm

In the NEWUOA algorithm, the computationally expensive yield function is locally
approximated around a current iterate utilizing the quadratic surrogate model M(x)
in (8) by interpolating the yield function at m = 2n + 1 points. The total number
of unknown parameters in the surrogate quadratic model is N = ½(n + 1)(n + 2).
The freedom in M(x) is taken up by minimizing the Frobenius norm of the change
in the Hessian matrix B during the optimization process, i.e., ‖Bnew − Bold‖F [44].
The estimated yield function values are submitted to the optimizer by a subroutine
that employs the LHS technique, and the generated samples are tested against the
current feasible region approximation.

The quadratic model in (8) is then maximized, instead of the yield function, over
a current trust region (TR) by solving the TR subproblem (11). The TR radius is re-
vised according to the agreement between the quadratic model and the yield function
at the new point. The TR radius Δ has a lower bound ρ in the interval [ρfin, ρini].
This parameter ρ is utilized to maintain enough distances between the interpolation
points where ρini and ρfin are user-defined initial and final radii, respectively. Let
Δold and Δnew be the old and new values of Δ. The choice of Δnew depends on
the ratio between the actual yield increase and the model increase as in (12), and
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Fig. 4 Seven-section capacitively loaded impedance transformer: (a) fine model, (b) coarse model

the Euclidean length of the step s obtained when solving (11). NEWUOA sets Δnew
to ρ or to Δint when Δint < 1.5ρ or Δint > 1.5ρ, respectively, where Δint is the
intermediate value [45]:

Δint =

⎧
⎪⎪⎨

⎪⎪⎩

‖s‖, r ≤ 0.1

max{‖s‖, 0.5 Δold}, 0.1 < r ≤ 0.7

max{‖s‖,Δold}, r > 0.7

(25)

The algorithm is terminated when the TR radius reaches the lower bound ρfin that
fixes the final accuracy required in the parameters [44, 45]. Numerically, NEWUOA
shows good results and acceptable accuracy in problems with dimensions up to 320
variables [45].

5.3.2 Design Centering of Seven-Section Transmission Line Capacitively
Loaded Impedance Transformer

The seven-section transmission line (TL) capacitively loaded impedance trans-
former is described in [8]. The coarse model is considered as an ideal seven-
section TL, where the “fine” model is a capacitively loaded TL with capaci-
tors C1 = · · · = C8 = 0.025 pF (see Fig. 4). The design parameters are x =
[L1 L2 L3 L4 L5 L6 L7]T , which are the normalized lengths with respect to the
quarter-wavelength Lq at the center frequency 4.35 GHz. The design specifications
are:

fi

(
Rf (x)

) = ∣∣S11(x,ωi)
∣∣≤ 0.07, 1 GHz ≤ ωi ≤ 7.7 GHz

with 68 points per frequency sweep.
An initial infeasible point [0.892 0.993 0.989 0.981 0.996 0.99 0.891]T is con-

sidered. The yield values are estimated via the LHS method with 200 sample
points assuming normally distributed parameters with covariance matrices G/49 and
G/441, where [0.193 0.194 0.145 0.046 0.155 0.239 0.38]T is a parameter variance
vector of the covariance matrix G with maximum cross-correlation coefficient 0.15.
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Table 4 Results of the
seven-section TL transformer
with normally distributed
correlated parameters

Covariance
matrix

Initial yield Final yield

Surrogate Fine Surrogate Fine

G/49 2.5 % 3.0 % 30.0 % 27.5 %

G/441 0.2 % 0.2 % 99.2 % 100 %

The technique needed three SM iterations to obtain the results shown in Table 4.
The yield results at the initial and final designs are shown in Fig. 5.

5.4 Microwave Design Centering via Semidefinite Programming
and Space Mapping Surrogates

The method has a statistical-geometrical nature [33]. It exploits semidefinite pro-
gramming [21, 54–56] and GSM surrogates [37] to approximate the feasible region
with two bounding ellipsoids. The centers of these ellipsoids are used as design
centers. The bounding ellipsoids are obtained using a two-phase algorithm. In the
first phase, the minimum volume ellipsoid enclosing the feasible region is obtained,
while the largest ellipsoid that can be inscribed within the feasible region is obtained
in the second phase.

5.4.1 Phase (I): Minimum Volume Ellipsoid Enclosing the Feasible Region

The first phase of the method starts with an initial point and an initial GSM surro-
gate model. This surrogate model is iteratively updated through SM iterations. In
each SM iteration a current feasible region approximation is available and a conver-
gent sequence of increasing-volume Löwner–John ellipsoids is generated [21]. The

Fig. 5 Yield evaluated at the initial and final design parameter vectors with 100 sample points
with covariance matrix G/441 for the seven-section capacitively loaded impedance transformer
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generated ellipsoids enclose tightly selected sets of feasible points out of generated
sample points. The generated sequence of Löwner–John ellipsoids converges to the
minimum volume ellipsoid enclosing the current feasible region approximation, and
its center is considered as a design center point. This new point is used to update
the current GSM surrogate model using matching conditions. Consequently, a new
updated feasible region approximation is constructed, and the process is repeated
until the minimum volume ellipsoid is obtained.

Assume that xk
0 is the design center obtained in the (k − 1)-th SM iteration.

In the k-th iteration, the current feasible region approximation is Fk
s = {x ∈ R

n |
fi(Rk

s (x)) ≤ bi, i = 1,2, . . . ,m}. In the k-th SM iteration, the initial point qinit = xk
0

and an initial covariance matrix Binit are used to generate an LHS normally dis-
tributed sample set S(0). Circuit simulation is executed on the sample set S(0) in
order to determine the feasible points and find the feasible set S(0)

f = S(0) ∩ Fk
s .

Then, the minimum volume ellipsoid E (0)
Min(q

(0)
min,B(0)

min) enclosing the feasible set

S(0)
f (Löwner–John ellipsoid) is constructed as follows.

Let S(0)
f = {z1, z2, . . . , zp} ⊂R

n. Define the ellipsoid,

E(q,B) = {
z ∈R

n : (z − q)T B−1(z − q) ≤ 1
}
, (26)

where q ∈ R
n is the center of the ellipsoid, and B ∈ SRn,B � 0 (symmetric and

positive definite). Assume that B = QQT , where Q is nonsingular. Without loss of
generality, it can be assumed that Q ∈ SRn,Q � 0 [28].

Hence, the minimum volume ellipsoid E (0)
Min(q

(0)
min,B(0)

min) enclosing the set S
(0)
f

can be obtained by solving the following determinant maximization problem [54–
56]:

max log det A0

subject to

(
In A0zj + b0

(A0zj + b0)
T 1

)
� 0, j = 1,2, . . . , p,

A0 = AT
0 , A0 � 0,

(27)

where In is the n-dimensional identity matrix, A0 = Q(0)−1
min ,b0 = − Q(0)−1

min q(0)
min,

This problem can be solved using semidefinite programming techniques [21, 54].
Clearly, obtaining the optimization variables b0 and A0 characterizes the Löwner–
John ellipsoid E (0)

Min(q
(0)
min,B(0)

min). The most distant feasible samples of S
(0)
f , which

carry the dominant information about the ellipsoid E (0)
Min, are drawn into a new set

Sshell,

Sshell =
{
z ∈ S

(0)
f : r2

shell ≤
(
z − q(0)

min

)T B(0)−1
min

(
z − q(0)

min

)≤ 1
}
, (28)

where 0 ≤ rshell ≤ 0.98.
Using q(0)

min and B(0)
min, a generation of LHS normally distributed sample set S(1)

is performed. All the new samples of S(1) falling inside the current Löwner–John
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Fig. 6 Block diagram for SM iteration of phase (I) [33]

ellipsoid E (0)
Min(q

(0)
min,B(0)

min), or a reduced version of it, are deleted, and a reduced
sample set Sreduced is constructed for 0.9 ≤ rdiscard ≤ 1 as:

Sreduced = {
z ∈ S(1) : (z − q(0)

min

)T B(0)−1
min

(
z − q(0)

min

)≥ r2
discard

}
. (29)

Circuit simulation is performed on the reduced sample set Sreduced, giving a fea-
sible set Sf = Sreduced ∩ Fk

s . The stored feasible samples in the set Sshell (28) are
retrieved and added to the new feasible points of Sf , giving the first iteration’s fea-

sible set S
(1)
f = Sf ∪ Sshell. Then, a new Löwner–John ellipsoid E (1)

Min(q
(1)
min,B(1)

min)

can be constructed using the feasible set S(1)
f . Since the feasible set S(1)

f carries in-
formation about the last Löwner–John ellipsoid, an increased volume ellipsoid is
attained, and the convergence of the method is guaranteed. Note that the reduced
sample set Sreduced saves about 50–60 % of the required circuit simulations if the set
S(1) was considered completely [33].

By repeating this process, a sequence of increasing-volume Löwner–John ellip-
soids is generated to enclose the current feasible region approximation Fk

s . A suit-
able stopping criterion is chosen such that the minimum volume ellipsoid EMinVE
enclosing Fk

s is reached. The center of this ellipsoid is used to update the current
GSM surrogate model using matching conditions. Consequently, a new updated fea-
sible region approximation is constructed, and the process is repeated until the min-
imum volume ellipsoid EMinVE enclosing the feasible region is obtained; its center
is considered as a design center. Figure 6 shows an SM iteration of phase (I).

5.4.2 Phase (II): Maximum Volume Inscribed Ellipsoid

The second phase of the method treats the final SM feasible region approximation
obtained in phase (I). It begins by constructing an initial polytope P0 containing
the minimum volume ellipsoid EMinVE. The initial polytope hyperplanes are cho-
sen perpendicular to the ellipsoid axes, and passing through their end points. The
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initial maximum volume ellipsoid E (0)
Max(q

(0)
max,B(0)

max) inscribed in the polytope P0 is
the minimum volume ellipsoid EMinVE containing the feasible region. An updated
polytope P1 is constructed by adding new hyperplanes obtained by linearizing the
feasible region boundaries at selected boundary points. These points are obtained
by searching along orthogonal directions, e.g., the parameter directions and/or the
current ellipsoid axes, starting from the current ellipsoid’s center.

An ellipsoid in R
n can be defined as [28]:

E(q,Q) = {
x ∈R

n : x = q + Qs and ‖s‖ ≤ 1
}

(30)

where q ∈R
n is the center, Q ∈ SRn. Assume that the polytope P1 is given by:

P1 = {
x ∈R

n : Ax ≤ b
}
, (31)

where A ∈ R
m×n, m > n, b ∈ R

m. Then, E (1)
Max(q

(1)
max,Q(1)

max) inscribed within this
polytope can be obtained by solving the following problem:

max log det Q(1)
max

S.t.

(
(bj − AT

j q(1)
max)In Q(1)

maxAj

AT
j Q(1)

max (bj − AT
j q(1)

max)

)

� 0, j = 1,2, . . . ,m,

Q(1)
max = Q(1)T

max , Q(1)
max � 0,

(32)

where AT
j is the j -th row of A, and bj is the j -th element of b.

Proceeding with the last problem similarly to problem (27), both the ellipsoid
center q(1)

max and the ellipsoid matrix B(1)
max = Q(1)

maxQ(1)T
max can be obtained; hence the

ellipsoid E (1)
Max(q

(1)
max,B(1)

max) is obtained.
The previously stated two steps: polytope updating and maximum volume in-

scribed ellipsoid forming, are repeated until a suitable stopping criterion occurs.
Hence, a polytope approximation for the feasible region, attached with the maxi-
mum volume ellipsoid EMaxVE inscribed within this polytope, is obtained. Conse-
quently, the maximum volume inscribed ellipsoid in the feasible region is obtained.

5.4.3 Design Centering of Six-Section H-Plane Waveguide Filter

The given method is applied for design centering of a six-section H-plane waveg-
uide filter [39]. A waveguide with a width of 3.485 cm is used. The propagation
mode is TE10 with a cutoff frequency of 4.3 GHz. The six-waveguide sections are
separated by seven H-plane septa (as shown in Fig. 7) which have a finite thickness
of 0.6223 mm. The design parameters x are the three waveguide section lengths L1,
L2, and L3 and the septa widths W1, W2, W3, and W4. The feasible region is con-
strained by the magnitude of the reflection coefficients |S11| at 44 frequency points
{5.2,5.3, . . . ,9.5 GHz} as:

fi

(
Rf (x)

) =

⎧
⎪⎪⎨

⎪⎪⎩

|S11(x,ωi)| ≥ 0.85, ωi ≤ 5.2 GHz

|S11(x,ωi)| ≤ 0.16, 5.4 GHz ≤ ωi ≤ 9.0 GHz

|S11(x,ωi)| ≥ 0.5, ωi ≥ 9.5 GHz
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Fig. 7 The six-section H-plane waveguide filter

Table 5 Yield results for correlated parameter case

Covariance
matrix

Initial
yield

Final yield

Actual region MinVE Approx. MaxVE Approx.

qMinVE qMaxVE qMinVE qMaxVE qMinVE qMaxVE

BMinVE/49 0 % 93 % 94 % 100 % 100 % 54 % 58 %

BMaxVE/16 0 % 100 % 100 % 100 % 100 % 92 % 96 %

Table 6 Yield results for independent parameter case

Parameter
spreads Initial

yield

Final yield

Actual region MinVE Approx. MaxVE Approx.

qMinVE qMaxVE qMinVE qMaxVE qMinVE qMaxVE

σ a 0 % 71 % 68 % 99 % 99 % 32 % 35 %

σ/2 0 % 99 % 97 % 100 % 100 % 87 % 93 %

aσ = 10−4[0.762889 0.766507 0.797684 0.632623 0.584962 0.558823 0.551575]T

An empirical coarse model due to Marcuvitz [38], with lumped inductances and
dispersive transmission line sections, is utilized. The simulation of the fine model
is performed using High Frequency Structure Simulator (HFSS), starting with the
point x0 = 10−4[160 160 165 135 120 115 115]T mm with Bini = 10−4 × I7. Two
SM iterations are needed to obtain the following two design centers:

qMinVE = 10−4[159.703 161.876 165.426 134.022 122.086 116.969 115.662]T ,
qMaxVE = 10−4[159.099 161.617 165.495 134.243 121.954 117.122 115.561]T

The yield values are evaluated at qinit, qMinVE and qMaxVE via the Monte Carlo
method using 100 normally distributed samples for each yield evaluation. Tables 5
and 6 show the results for the correlated and independent cases, respectively.
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Simulation-Driven Antenna Design Using
Surrogate-Based Optimization

Slawomir Koziel, Stanislav Ogurtsov, and Leifur Leifsson

Abstract Accurate responses of antennas, in many cases, can be obtained only with
discrete full-wave electromagnetic (EM) simulations. Therefore, contemporary an-
tenna design strongly relies on these EM simulations. On the other hand, direct use
of high-fidelity EM simulations in the design process, particularly for automated pa-
rameter optimization, often results in prohibitive computational costs. In this chap-
ter, we illustrate how the designs of various antennas can be obtained efficiently us-
ing an automated surrogate-based optimization (SBO) methodology. The SBO tech-
niques considered here include the adaptive design specification technique, variable-
fidelity simulation-driven optimization, and shape-preserving response prediction.
The essence of these techniques resides in shifting the optimization burden to a fast
surrogate of the antenna structure, and using coarse-discretization EM models to
configure the surrogate. A properly created and handled surrogate serves as a reli-
able prediction tool allowing satisfactory designs to be obtained at the cost of a few
simulations of the high-fidelity antenna model. We also demonstrate the effect of the
coarse-discretization model fidelity on the final design quality and the computational
cost of the design process. Finally, we give an example of automatic management of
the coarse model quality. Recommendations concerning the application of specific
SBO techniques to antenna design are also presented.

Keywords Antenna design · Antenna optimization · Simulation-driven
optimization · Electromagnetic (EM) simulation · Surrogate-based optimization
(SBO) · Computer-aided design (CAD) · High-fidelity model · Coarse model ·
Coarse-discretization model

1 Introduction

Contemporary antenna design strongly relies on electromagnetic (EM) simula-
tions [1]. For accurate evaluation of responses, antenna models should account
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for environmental features such as the installation fixture, connectors, and housing.
Contemporary computational techniques—implemented in commercial simulation
packages—are capable of obtaining quite accurate reflection and radiation antenna
responses. However, full-wave simulations of realistic models are computationally
expensive, and simulation even for a single combination of design parameters may
take up to several hours. This computational cost poses a significant problem for
antenna design.

A task of automated adjustment of antenna parameters can be formulated as an
optimization problem with the objective function supplied by an EM solver [2].
However, most conventional optimization techniques—both gradient-based [3],
e.g., conjugate-gradient, quasi-Newton, sequential quadratic programming, and
derivative-free [4], e.g., Nelder–Mead and pattern search techniques—require large
numbers of design simulations, each of which is already computationally expensive.
As a consequence, the direct use of the EM solver to evaluate the high-fidelity an-
tenna model in the optimization loop is often impractical due to the unacceptably
high computational cost. Other obstacles for successful application of conventional
optimization techniques to antenna design originate from the poor analytical prop-
erties of simulation-based objective functions (e.g., discontinuity, numerical noise).
As a result, the practice of simulation-driven antenna design relies on repetitive pa-
rameter sweep. While this approach can be more reliable than brute-force antenna
optimization, it is very laborious and time-consuming, and it does not guarantee op-
timal results. Also, only antenna designs with a limited number of parameters can
be handled this way.

Adjoint sensitivities can substantially speed up microwave design optimization
while using gradient-based algorithms [5] and [6]; however, adjoint sensitivities are
not yet widespread in commercial EM solvers. Only CST Microwave Studio [7] and
HFSS [8] have recently implemented this feature. Also, the use of adjoint sensitivi-
ties is limited by the numerical noise of the response.

Population-based techniques (metaheuristics) have recently become popular in
solving certain antenna-design-related tasks [9, 10]. Methods such as genetic algo-
rithms [11], particle swarm optimizers [12], or ant colony optimization [13] can
alleviate certain problems (e.g., getting stuck in the local optimum). However, these
methods are mainly applicable if objective function evaluation is very fast, for ex-
ample, for synthesis of antenna array patterns [14]. The use of such techniques for
simulation-based antenna design is questionable due to the large number of model
evaluations required by metaheuristics.

In recent years, there has been a growing interest in surrogate-based optimiza-
tion (SBO) methods [15–17], where direct optimization of the CPU-intensive full-
wave EM model is replaced by iterative updating and reoptimization of a cheap and
yet reasonably accurate representation of the antenna structure under consideration,
called the surrogate model. There are many techniques exploiting both approxima-
tion surrogates, e.g., neural networks [18, 19], support vector regression [20, 21],
radial basis functions [22], kriging [23, 24], fuzzy systems [25], and rational ap-
proximations [26], as well as physics-based surrogates (space mapping [15, 27–29],
simulation-based tuning [30–32], manifold mapping [33], and shape-preserving re-
sponse prediction [34]). Approximation models are fast and universal; however, they
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are associated with a high initial cost (due to sampling of the design space and ac-
quiring EM simulation data) and they are typically not suitable for ad hoc optimiza-
tion. Techniques exploiting physics-based surrogates are particularly attractive be-
cause they are capable of yielding a satisfactory design using a very limited number
of expensive high-fidelity EM simulations [15].

One of the most important assumptions to ensure efficiency of the SBO tech-
niques exploiting physics-based surrogates is that the underlying low-fidelity model
is computationally cheap. The most prominent technique of this kind is space map-
ping [34]. It originated in the area of microwave filter design, where this assump-
tion is naturally satisfied with circuit equivalents [15] serving as low-fidelity mod-
els for filters. In the case of antennas, physics-based surrogates can be obtained
from coarse-discretization EM simulations, as this is the only versatile way to cre-
ate lower-fidelity antenna models. Unfortunately, these models may be relatively
expensive. As a result, their evaluation cost cannot be neglected and may contribute
considerably to the overall design expenses.

Therefore, the proper choice of the surrogate model fidelity (controlled, among
other things, by the mesh density) is of great significance. On one hand, using a
coarser low-fidelity model allows us to reduce its evaluation time; on the other hand,
the coarser models are less accurate. As a result, a large number of iterations of the
SBO algorithm may be necessary to yield a satisfactory design so that the total
cost may be about the same or even higher than the total cost of an optimization
algorithm employing only the finer model. Also, the SBO process may simply fail
if the underlying low-fidelity model is not sufficiently accurate. For finer models,
the individual evaluation time may be higher, but this is not directly translated into
a higher total design cost because a smaller number of iterations may be sufficient
to find a good design. In general, finding a good trade-off between the low-fidelity
model speed and accuracy is not obvious.

In this chapter, we will review antenna design using physics-based surrogates
originating from the coarse-mesh models. We also study the importance of a proper
selection of the antenna model fidelity and its influence on performance of the
surrogate-based design process in terms of the computational cost and design qual-
ity. Furthermore, we investigate the potential benefits of using several models of
different fidelity in the same optimization run.

2 Surrogate-Based Design Optimization of Antennas

In this section, we consider a number of antenna design examples. In every example
we describe the antenna structure under design, formulate the design problem, and
outline the SBO technique that seems to be the most suitable to handle that particular
antenna of interest. Results as well as design computational costs are provided.
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Fig. 1 Microstrip antenna [35]: top and side views, substrates shown transparent

2.1 Optimization of a Microstrip Composite Antenna Using the
Multi-Fidelity Optimization Technique

Consider the composite microstrip antenna [35] shown in Fig. 1. The design vari-
ables are x = [l1 l2 l3 l4 w2 w3 d1 s]T . The multilayer substrate is ls × ls (ls =
30 mm). The antenna stack comprises a metal ground, RO4003 dielectric, signal
trace, RO3006 dielectric with a through via connecting the trace to the driven patch,
the driven patch, RO4003 dielectric, and four extra patches. The signal trace is ter-
minated with an open-end stub. Feeding is with a 50 ohm SMA connector. The stack
is fixed with four through bolts at the corners.

The final design is required to satisfy |S11| ≤ −10 dB for 3.1–4.8 GHz. The
IEEE gain is required to be not less than 5 dB for the zero zenith angle over the
whole frequency band of interest.

In this example, the antenna under design is of relatively complex composition;
therefore, the choice of the mesh density for the coarse discretization model as well
as other settings of the EM solver, here the CST MWS transient solver, strongly
affect the total design optimization time. On the other hand, the computational cost
of the model and its accuracy can be easily controlled by changing the discretization
density. This feature has been exploited in the multi-fidelity optimization algorithm
introduced in [36].

The multi-fidelity optimization is based on a family of coarse-discretization mod-
els {Rc.j }, j = 1, . . . ,K , all evaluated by the same EM solver. Discretization of the
model Rc.j+1 is finer than that of the model Rc.j , which results in better accuracy
but also a longer evaluation time. In practice, the number of coarse-discretization
models, K , is two or three.

When we have the optimized design x(K) of the finest coarse-discretization
model Rc.K , the model is evaluated at all perturbed designs around x(K), i.e., at
x
(K)
k = [x(K)

1 · · ·x(K)
k + sign(k) · dk · · ·x(K)

n ]T , k = −n,−n + 1, . . . , n − 1, n. This
data can be used to refine the final design without directly optimizing Rf . Instead,
an approximation model is set up and optimized in the neighborhood of x(K) defined
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Fig. 2 Operation of the multi-fidelity design optimization procedure for three coarse-discretiza-
tion models (K = 3). The design x(j) is the optimal solution of the model Rc.j , j = 1, 2, 3. A re-
duced second-order model q is set up in the neighborhood of x(K) (gray area). The final design
x∗ is obtained by optimizing the model q as in (2)

as [x(K)−d,x(K)+d], where d = [d1 d2 . . . dn]T , and R(k) stands for Rc.K(x
(K)
k ).

The size of the neighborhood can be selected based on a sensitivity analysis of Rc.1
(the cheapest of the coarse-discretization models); usually d equals 2 to 5 percent of
x(K). A reduced quadratic model q(x) = [q1 q2 . . . qm]T is used for approximation,
where

qj (x) = qj
([x1 . . . xn]T

)

= λj.0 + λj.1x1 + · · · + λj.nxn + λj.n+1x
2
1 + · · · + λj.2nx

2
n. (1)

Coefficients λj.r , j = 1, . . . ,m, r = 0,1, . . . ,2n, can be uniquely obtained by
solving the linear regression problem.

In order to account for unavoidable misalignment between Rc.K and Rf , it is
recommended to optimize a corrected model q(x)+ [Rf (x

(K))−Rc.K(x(K))] that
ensures a zero-order consistency [37] between Rc.K and Rf . The refined design can
then be found as

x∗ = arg min
x(K)−d≤x≤x(K)+d

U
(
q(x)+ [

Rf

(
x(K)

)− Rc.K

(
x(K)

)])
. (2)

This kind of correction is also known as output space mapping [15]. If necessary,
step (2) can be performed a few times starting from a refined design where each
iteration requires only one evaluation of Rf .

The multi-fidelity optimization procedure can be summarized as follows (the in-
put arguments are initial design x(0) and the number of coarse-discretization mod-
els K):

1. Set j = 1;
2. Optimize coarse-discretization model Rc.j to obtain a new design x(j) using

x(j−1) as a starting point;
3. Set j = j+ 1; if j <K go to 2;
4. Obtain a refined design x∗ as in (2);
5. END

Note that the original model Rf is only evaluated at the final stage (step 4). The
operation of the algorithm in illustrated in Fig. 2. Coarse-discretization models can
be optimized using any available algorithm.

Application of the multi-fidelity optimization methodology to this example can
be outlined as follows. The initial design is set to x(0) = [15 15 15 20 −4 2 2]T mm.
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Fig. 3 Microstrip antenna: (a) model Rc.1 at the initial design x(0) (- - -) and at the optimized
design x(1) (—); (b) model Rc.2 at x(1) (- - -) and at its optimized design x(2) (—); (c) model Rf

at x(0) (· · · ·), at x(2) (- - -), and at the refined final design x∗ (—) [38]

Two coarse-discretization models are used: Rc.1 (122,713 mesh cells at x(0)) and
Rc.2 (777,888 mesh cells). The evaluation times for Rc.1, Rc.2, and Rf (2,334,312
mesh cells) are 3 min, 18 min, and 160 min at x(0), respectively. |S11| is the objective
function with the goal of |S11| ≤ −10 dB for 3.1–4.8 GHz. An IEEE gain of not
less than 5 dB for the zero elevation angle over the band is implemented as an
optimization constraint.

Figure 3(a) shows the responses of Rc.1 at x(0) and at its optimal design x(1).
Figure 3(b) shows the responses of Rc.2 at x(1) and at its optimized design x(2).
Figure 3(c) shows the responses of Rf at x(0), at x(2), and at the refined design
x∗ = [14.87 13.95 15.4 13.13 20.87 − 5.90 2.88 0.68]T mm (|S11| ≤ −11.5 dB for
3.1 GHz to 4.8 GHz) obtained in two iterations of the refinement step (2).

The design cost, shown in Table 1, corresponds to about 12 runs of the high-
fidelity model Rf . The antenna gain at the final design is shown in Fig. 4.

2.2 Optimization of a Broadband Dielectric Resonator Antenna
Using the Adaptively Adjusted Design Specifications Technique

Consider the rotationally symmetric dielectric resonator antenna (DRA) [40] shown
in Fig. 5. It comprises two annular ring dielectric resonators (DRs) with a relative
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Table 1 Microstrip antenna: optimization cost [38]

Design step Model evaluations Computational cost

Absolute [hours] Relative to Rf

Optimization of Rc.1 125 × Rc.1 6.3 2.6

Optimization of Rc.2 48 × Rc.2 14.4 5.4

Setup of model q 17 × Rc.2 5.1 1.9

Evaluation of Rf 2 × Rf 5.3 2.0

Total design time N/A 31.1 11.9

aExcludes Rf evaluation at the initial design

Fig. 4 Microstrip antenna gain [dBi] of the final design at 3.5 GHz (· − ·), 4.0 GHz (– –), and
4.5 GHz (—): (a) co-pol. in the E-plane (XOZ), with connector at 90◦ on the right; (b) x-pol.,
primary (thick lines) and co-pol. (thin lines) in the H -plane [39]

Fig. 5 Annular ring dielectric resonator antenna [40]: side view

permittivity, εr1, of 36; two supporting Teflon rings; a probe; and a cylindrical Teflon
filling. The inner radius of the filling is the radius of the probe, 1.27 mm. The probe
is an extension (h0 above the ground) of the inner conductor of the input 50 ohm
coaxial cable. The radius of each supporting ring equals that of the DR above it.
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All metal parts are modeled as perfect electric conductors (PECs). The coax is also
filled by Teflon. The ground is of infinite extent.

The design variables are the inner and outer radii of the DRs, heights of the DRs
and the supporting rings, and the probe length, namely, x = [a1 a2 b1 b2 h1 h2 g1
g2 h0]T . The design objective is |S11| ≤ −20 dB for 4 GHz to 6 GHz. A broadside
gain of not less than 5 dBi is an optimization constraint.

Here, the overall shape of the low- and high-fidelity model responses is quite
similar; therefore we use the adaptively adjusted design specifications (AADS) tech-
nique [41] that allows us to account for the misalignment between the models with-
out actually adjusting the low-fidelity one. AADS consists of the following two steps
that can be iterated if necessary:

1. Modify the original design specifications to account for the difference between
the responses of the high-fidelity model Rf and the coarse-discretization model
Rcd at their characteristic points.

2. Obtain a new design by optimizing the low-fidelity model Rcd with respect to
the modified specifications.

As Rcd is much faster than Rf , the design process can be performed at low cost
compared to direct optimization of Rf . Figure 6 explains the idea of AADS using
a bandstop filter example [41]. The design specifications are adjusted using charac-
teristic points that should correspond to the design specification levels. They should
also include local maxima/minima of the responses at which the specifications may
not be satisfied.

It should be emphasized again that for the AADS technique there is no surrogate
model configured from Rcd—the discrepancy between Rcd and Rf is “absorbed”
by the modified design specifications.

Figure 6(b) shows the characteristic points of Rf and Rcd. The design specifi-
cations are modified (mapped) so that the level of satisfying/violating the modified
specifications by the Rcd response corresponds to the satisfaction/violation levels
of the original specifications by the Rf response (Figs. 6(b) and (c)). Rcd is subse-
quently optimized with respect to the modified specifications, and the new design
obtained this way is treated as an approximated solution to the original design prob-
lem. Typically, a substantial design improvement is observed after the first iteration.
Additional iterations can bring further improvement.

The initial design is xinit = [6.9 6.9 1.05 1.05 6.2 6.2 2.0 2.0 6.80]T . The high-
and low fidelity models are evaluated using CST Microwave Studio (Rf : 829,000
meshes at xinit, evaluation time 58 min, Rcd: 53,000 meshes at xinit, evaluation time
2 min).

The optimized design is found to be x∗ = [5.9 5.9 1.05 1.55 7.075 7.2 4.5
1.0 8.05]T . It is obtained with three iterations of the AADS procedure. Significant
improvement of the DRA’s bandwidth is observed; the 48 % fractional bandwidth
at −20 dB is shown in Fig. 7. The far-field response of the optimized DRA, shown
in Fig. 8 at selected frequencies, stays at TM01δ DRA mode behavior over the 60 %
bandwidth (on the −10 dB level). The total design cost is equivalent to about 11
evaluations of the high-fidelity DRA model. The design cost budget is listed in Ta-
ble 2.
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Fig. 6 AADS concept (responses of Rf (—) and Rcd (- - -)) [41]: (a) responses at the initial de-
sign and the original design specifications, (b) characteristic points of the responses corresponding
to the specification levels (here, −3 dB and −30 dB) and to the local maxima, (c) responses at
the initial design as well as the modified design specifications. The modification accounts for the
discrepancy between the models so that optimizing Rcd with respect to the modified specifications
approximately corresponds to optimizing Rf with respect to the original specifications

Fig. 7 DRA: fine model response at the initial (- - -) and the optimized design (—)

2.3 Design of UWB Antenna Using the Shape-Preserving
Response Prediction Technique

Consider the planar antenna shown in Fig. 9. It consists of a planar dipole as
the main radiator element and two additional strips. The design variables are
x = [l0 w0 a0 lp wp s0]T . Other dimensions are fixed as a1 = 0.5 mm, w1 = 0.5 mm,
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Fig. 8 DRA at the optimal design: gain in the elevation plane at 3.5 GHz (thick —), 4 GHz (thick
– –), 4.5 GHz (thick · − ·), 5 GHz (thin –), 5.5 GHz (thin – –), and 6 GHz (thin · − ·)

Table 2 DRA: design optimization costs

Design step Model evaluations Computational cost

Absolute [hours] Relative to Rf

Optimization of Rcd 235 × Rcd 7.8 8.1

Evaluation of Rf 3 × Rf 2.9 3.0

Total design time N/A 10.7 11.1

aExcludes Rf evaluation at the initial design

Fig. 9 UWB dipole antenna geometry: top and side views. The dash-dotted lines show the electric
(YOZ) and the magnetic (XOY) symmetry walls. The 50 ohm source impedance is not shown

ls = 50 mm, ws = 40 mm, and h = 1.58 mm. The substrate material is Rogers
RT5880.

The high-fidelity model Rf of the antenna structure (10,250,412 mesh cells at
the initial design, evaluation time of 44 min) is simulated using the CST MWS
transient solver. The design objective is to obtain |S11| ≤ −12 dB for 3.1 GHz to
10.6 GHz. The initial design is xinit = [20 10 1 10 82]T mm. The low-fidelity model
Rcd is also evaluated in CST but with coarser discretization (108,732 cells at xinit,
evaluated in 43 s).

For this example, the shapes of the low- and high-fidelity model response are
similar (cf. Fig. 11(a)), which allows us to use the shape-preserving response
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Fig. 10 SPRP concept. (a) Low-fidelity model response at the design x(i), Rc(x
(i)) (solid line),

the low-fidelity model response at x, Rc(x) (dotted line), characteristic points of Rc(x
(i)) (circles)

and Rc(x) (squares), and the translation vectors (short lines). (b) High-fidelity model response at
x(i), Rf (x

(i)) (solid line) and the predicted high-fidelity model response at x (dotted line) obtained
using SPRP based on characteristic points of (a); characteristic points of Rf (x

(i)) (circles) and
the translation vectors (short lines) were used to find the characteristic points (squares) of the
predicted high-fidelity model response. (c) Low-fidelity model responses Rc(x

(i)) and Rc(x) are
plotted using thin solid and dotted line, respectively

prediction (SPRP) technique [34] as the optimization engine. SPRP, unlike some
other SBO techniques including space mapping, does not use any extractable pa-
rameters. As a result SPRP is typically very efficient: in many cases only two
or three iterations are sufficient to yield a satisfactory design. SPRP assumes
that the change of the high-fidelity model response due to the adjustment of the
design variables can be predicted using the actual changes of the low-fidelity
model response. Here, this property is ensured by the low-fidelity model being
the coarse-mesh simulation of the same structure that represents the high-fidelity
model.

The change of the low-fidelity model response can be described by the translation
vectors corresponding to what are called the characteristic points of the model’s re-
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Fig. 11 UWB dipole antenna reflection response: (a) high-fidelity model response (dashed line)
at the initial design xinit, and high- (solid line) and low-fidelity (dotted line) model responses at the
approximate low-fidelity model optimum x(0); (b) high-fidelity model |S11| at the final design

sponse. These translation vectors are subsequently used to predict the change of the
high-fidelity model response with the actual response of Rf at the current iteration
point, Rf (x

(i)), treated as a reference.
Figure 10(a) shows an example low-fidelity model response, |S11| versus fre-

quency, at the design x(i), as well as the coarse model response at some other de-
sign x. Circles denote characteristic points of Rc(x

(i)), selected here to represent
|S11| = −10 dB, |S11| = −15 dB, and the local |S11| minimum. Squares denote cor-
responding characteristic points for Rc(x), while line segments represent the trans-
lation vectors (“shift”) of the characteristic points of Rc when changing the design
variables from x(i) to x.

The high-fidelity model response at x can be predicted using the same translation
vectors applied to the corresponding characteristic points of the high-fidelity model
response at x(i), Rf (x

(i)). This is illustrated in Fig. 10(b). Figure 10(c) shows the
predicted high-fidelity model response and the actual high-fidelity model response
at x. A rigorous and more detailed formulation of the SPRP technique can be found
in [42].

For this example, the approximate optimum of Rcd, x(0) = [18.66 12.98 0.526
13.717 8.00 1.094]T mm, is found as the first design step. The computational cost
is 127 evaluations of Rcd, which corresponds to about two evaluations of Rf . Fig-
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Table 3 UWB dipole antenna: optimization cost

Algorithm component Number of model
evaluations

Evaluation time

Absolute [min] Relative to Rf

Evaluation of Rcd
a 233 × Rcd 167 3.8

Evaluation of Rf
b 3 × Rf 132 3.0

Total optimization time N/A 299 6.8

aIncludes initial optimization of Rcd and optimization of SPRP surrogate
bExcludes evaluation of Rf at the initial design

Fig. 12 UWB dipole at the final design: IEEE gain pattern (×-pol.) in the XOY plane at 4 GHz
(thick solid line), 6 GHz (dash-dotted line), 8 GHz (dashed line), and 10 GHz (solid line)

ure 11(a) shows the reflection responses of Rf at both xinit and x(0), as well as the
response of Rcd at x(0).

The final design x(2) = [19.06 12.98 0.426 13.52 6.80 1.094]T mm (|S11| ≤
−13.5 dB for 3.1 GHz to 10.6 GHz) is obtained after two iterations of the SPRP-
based optimization with the total cost corresponding to about seven evaluations of
the high-fidelity model (see Table 3). Figure 11(b) shows the reflection response and
Fig. 12 shows the gain response of the final design x(2).

2.4 Design of a Planar Antenna Array Using a Combination of
Analytical and Coarse-Discretization Electromagnetic Models

The design of two-dimensional antenna arrays requires full-wave simulations, each
of which is time-consuming due to the complexity and size of the antenna array
under design as well as the electromagnetic (EM) interaction within the structure.
Typically many EM simulations are necessary in the design process of a realistic
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Fig. 13 Microstrip antenna array. (a) Front view of the EM models Rf and Rcd. The symmetry
(magnetic) plane is shown with the vertical dashed line. (b) Analytical model of the planar array
embedding the simulated radiation response of a single array element

array. Moreover, array design normally involves a large number of design variables,
such as dimensions of the array elements, element spacing, location of feeds, exci-
tation amplitudes and/or phases, and dimensions of the substrate and ground [1].

The array model based on the single element radiation response combined with
the analytical array factor [43] cannot account for interelement coupling. In addi-
tion, this model produces inaccurate radiation responses in the directions off the
main beam. Therefore, discrete EM simulations of the entire array are required;
however, these simulations are computationally expensive when accurate. Conse-
quently, using numerical optimization techniques to conduct the design process may
be prohibitively expensive in terms of the CPU time. The use of coarse discretiza-
tion for the whole array model can substantially relieve the computational load.
However, the responses of such coarse-mesh models are typically noisy and of-
ten discontinuous, so that the optimization algorithm needs more objective function
calls to find an improvement or it can even fail.

In order to reduce the computational cost of the array optimization process and
make it robust, we apply surrogate-based optimization (SBO) [44] where we use
an analytical model of the planar array embedding the simulated radiation response
of a single array element, a coarse-discretization model of the entire array, and a
fine model of the entire array. The design optimization example presented below
describes and illustrates this approach.

Consider a planar microstrip array (Fig. 13) comprising 25 identical microstrip
patches. The array is to operate at 10 GHz and have a linear polarization. Each patch
is fed by a probe in the 50 ohm environment. The design tasks are as follows: to keep
the lobe level below −20 dB for zenith angles off the main beam with a null-to-null
width of 34◦, i.e., off the sector of [−17◦, 17◦]; to maintain the peak directivity of
the array at about 20 dBi; to have the direction of the maximum radiation perpen-
dicular to the plane of the array; to have returning signals lower than −10 dB, all at
10 GHz. The initial dimensions of the elements, the microstrip patches, are 11 mm
by 9 mm; a grounded layer of 1.58 mm thick RT/duroid 5880 is the substrate; the
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lateral extension of the substrate/metal ground is set to a half of the patch size in a
particular direction. The locations of the feeds at the initial design are at the center
of the patch in the horizontal direction and 2.9 mm up off the center in the vertical
direction, referring to Fig. 13(a). The symmetry of the array EM models is imposed
as shown in Fig. 13(a).

The use of discrete EM models of the entire array is unavoidable here for several
reasons, including the effect of element coupling on the reflection response and the
requirement of minor lobe suppression. In the same time the evaluation time of the
high-fidelity model of the array, Rf , is around 20 minutes using the CST MWS
transient solver, which makes its direct optimization impractical.

Even though we impose a symmetry on the array model and, therefore, re-
strict ourselves to adjusting distances between array components (xt1, xt2, yt1, yt2),
patch dimensions (x1, y1), and the amplitudes (a1, . . . a15) and/or phases (b1, . . . b15)
of the incident excitation signals, the number of design variables is still large
for simulation-based design optimization. Therefore, we consider two design op-
timization cases: a design with nonuniform amplitude (and uniform phase) ex-
citation where the design variables are x = [xt1 xt2 yt1 yt2 x1 y1 a1 . . . a15]T
and a design with nonuniform phase (uniform amplitude) excitation with x =
[xt1 xt2 yt1 yt2 x1 y1 b1 . . . b15]T .

To evaluate the response of the array under design we adopt the following three
EM models for it: a high-fidelity discrete EM model of the entire array, Rf ; a
coarse-discretization EM model of the entire array Rcd which is essentially a coarse-
mesh version of Rf (evaluation time of Rcd is about 1 min); and an analytical model
of the array radiation pattern, Ra outlined in Fig. 13(b), which embeds the simulated
radiation response of the single microstrip patch antenna. The use of these models
in a developed SBO procedure is described in the following section.

Due to the high computational cost of evaluating the array, the design process
exploits the SBO approach [45], where direct optimization of the array pattern is
replaced by iterative correction and adjustment of the auxiliary models Ra and Rcd,
described in the previous section.

The design procedure consists of the following two major stages:
Stage 1 (pattern optimization): In this stage, the design variables x are optimized

in order to reduce the side low level according to the specifications. Starting from
the initial design x(0), the first approximation x(1) of the optimum design is obtained
by optimizing the analytical model Ra . Further approximations x(i), i = 2,3, . . . ,
are obtained as x(i) = argmin{x : Ra(x)+ [Rf (x

(i−1))− Ra(x
(i−1))]}, i.e., by op-

timizing the analytical model Ra corrected using output space mapping [46] so that
it matches the high-fidelity model exactly at the previous design x(i−1). In prac-
tice, only two iterations are usually necessary to yield a satisfactory design. Note
that each iteration of the above procedure requires only one evaluation of the high-
fidelity model Rf .

Stage 2 (reflection adjustment): In this stage, the coarse-discretization model Rcd
is used to correct the reflection of the array. Although we use the term “reflection
response” and |Sk| referring to returning signals at the feed points (ports), these
signals include the effect of coupling due to simultaneous excitation of the elements.
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In practice, after optimizing the pattern, the reflection responses are slightly
shifted in frequency so that the minima of |Sk| are not exactly at the required fre-
quency (here, 10 GHz). The reflection responses can be shifted in frequency by
adjusting the size of the patches, y1 here. In order to find the appropriate change of
y1 we use the coarse-discretization model Rcd. Because both Rf and Rcd are eval-
uated using the same EM solver, we assume that the frequency shift of reflection
responses is similar for both models under the same change of the variable y1, even
though the responses themselves are not identical for Rf and Rcd (in particular,
they are shifted in frequency and the minimum levels of |Sk| are typically different).
By performing perturbation of y1 using Rcd, one can estimate the change of y1 in
Rf , necessary to obtain the required frequency shift of its reflection responses. This
change would normally be very small so that it would not affect the array pattern in
a substantial way. The computational cost of reflection adjustment using the method
described here is only one evaluation of the high-fidelity model and one evaluation
of the coarse-discretization model Rcd.

In the case of severe mismatch, the feed offsets dn can also be used to adjust
reflection; however, it was not necessary in the design cases considered in this work.

A starting point for the optimization procedure is chosen to be a uniform ar-
ray, and the spacings xt1, xt2, yt1, and yt2 are easily found using model Ra as-
suming xt1 = xt2 = yt1 = yt2. The radiation response of the array at this design
x(0) is shown in Fig. 14. x(0) = [xt1 xt2 yt1 yt2 x1 y1 a1 . . . a15 b1 . . . b15]T =
[20 20 20 20 11 9 1 . . . 1 0 . . .0] where the dimensional parameters are in millime-
ters, the excitation amplitudes are normalized, and the phase shifts are in degrees.
The side lobe level of this design x(0) is about −13 dB and the peak directivity of
x(0) is 21.4 dBi. The feed offset, dn, shown in Fig. 13(a), is 2.9 mm for all patches.

Design optimization with nonuniform amplitude excitation. Following the two-
stage procedure described above, design optimization has been carried out with inci-
dent excitation amplitude as design variables. The cost of stage 1, directivity pattern
optimization, is only three evaluations of Rf (the cost of optimizing the analytical
Ra can be neglected). At stage 2, matching, we change the y-size of the patches,
global parameter y1 to 9.05 mm in order to move reflection responses to the left in
frequency y1. The cost of this step is 1 × Rcd + 1 × Rf .

The final design is found at x∗ = [23.56 24.56 23.65 24.42 11.00 9.05 0.952
0.476 0.0982 0.982 0.946 0.525 1.000 0.973 0.932 0.994 0.936 0.529 0.858 0.594
0.0275]T . All excitation amplitudes are normalized to the maximum which is the
amplitude of the seventh element located at the array center. The radiation response
(directivity pattern cuts) and reflection response of the final design are shown in
Fig. 15. The side lobe level of this design x∗ is under −20 dB and the peak direc-
tivity of x(0) is 21.8 dBi. The total cost of optimization is 1 × Rcd + 4 × Rf , that
is, about 4 × Rf .

Design optimization with nonuniform phase excitation. Another optimiza-
tion case has been considered with the excitation phase shifts as design vari-
ables. The cost of stage 1, directivity pattern optimization, is again 3 × Rf , and
the cost of stage 2 is 1 × Rc + 1 × Rf . The final design is found at x∗ =
[23.85 25.00 23.72 24.56 11.00 9.01 0.0 −21.96 123.01 7.09 −13.15 79.58 41.53
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Fig. 14 Microstrip antenna array of Fig. 13 at the initial (uniform) design x(0), directivity pattern
cuts at 10 GHz: (a) H -plane; (b) E-plane. EM model Rf (solid lines) and model Ra (dash-dotted
lines)

37.33 0.51 24.75 65.94 −15.19 59.16 69.38 −67.62]T where the phase shifts are in
degrees and given relative to the first excitation element, which is shown in Fig. 13
and corresponds to the 0.0 entry in the vector x∗. The radiation response (directivity
pattern cuts) and reflection response of the final design are shown in Fig. 16. The
side lobe level of this design x∗ is about −19 dB and the peak directivity of x(0) is
19.2 dBi. The total cost of optimization for this case is the same as in the previous
example, i.e., around four evaluations of the high-fidelity model.
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Fig. 15 Microstrip antenna array of Fig. 13 at the final design with nonuniform amplitude excita-
tion: (a) directivity pattern cuts in the E- and H -planes at 10 GHz; (b) reflection responses of the
array at the patch feeds

2.5 SBO Techniques for Antenna Design: Discussions and
Recommendations

The SBO techniques presented in this section have proven to be computationally
efficient for the design of different types of antennas. The typical computational cost
of the design process expressed in terms of the number of equivalent high-fidelity
model evaluations is comparable to the number of design variables, as demonstrated
through examples. Here, we attempt to qualitatively compare these methods and
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Fig. 16 Microstrip antenna array of Fig. 1 at the final design with nonuniform phase excitation:
(a) directivity pattern cuts in the E- and H -planes at 10 GHz; (b) reflection responses of the array
at the patch feeds

give some recommendations for the readers interested in using them in their research
and design work.

The multi-fidelity approach applied in Sect. 2.1 is one of the most robust tech-
niques, yet it is simple to implement. The only drawback is that it requires at least
two low-fidelity models of different discretization density and some initial study of
the model accuracy versus computational complexity. While the multi-fidelity tech-
nique will work with practically any setup, careful selection of the mesh density can
reduce the computational cost of the optimization process considerably. More im-
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plementation details and application examples of this technique can be found in [38]
and [47].

Among the considered methods, the AADS technique of Sect. 2.2 is definitely
the simplest for implementation, as it does not require any explicit correction of the
low-fidelity model. Therefore, AADS can even be executed within any EM solver
by modifying the design requirements and using its built-in optimization capabili-
ties. On the other hand, AADS only works with minimax-like design specifications.
Also, AADS requires the low-fidelity model to be relatively accurate so that the
possible discrepancies between the low- and high-fidelity models can be accounted
for by design specification adjustment. More implementation details and application
examples of this technique to antenna design can be found in [48] and [49].

The SPRP technique of Sect. 2.3 does not use any extractable parameters. It
assumes that the change of the high-fidelity model response due to the adjustment
of the design variables can be predicted using the actual changes of the low-fidelity
model response. SPRP is typically very efficient: in many cases only two or three
iterations are sufficient to yield a satisfactory design [42].

Space mapping, discussed in Sect. 2.1 (at the last step of the variable-fidelity
technique) and in Sect. 2.3, is a very generic method used to correct the low-
fidelity model. In particular, it is able to work even if the low-fidelity model is
rather inaccurate. On the other hand, space mapping requires some experience in
selecting the proper type of surrogate model. More implementation details and ap-
plication examples of this technique to antenna design can be found in [50] and [51]
as well as in chapter Space Mapping for Electromagnetic-Simulation-Driven Design
Optimization of this book.

As already mentioned, the low-fidelity model accuracy may be critical for the
performance of the SBO algorithms. Using finer, i.e., more expensive but also more
accurate, models generally reduces the number of SBO iterations necessary to find a
satisfactory design; however, each SBO iteration turns to be more time-consuming.
For coarser models, the cost of an SBO iteration is lower but the number of itera-
tions may be larger, and for models that are too coarse, the SBO process may simply
fail. The proper selection of the low-fidelity model “coarseness” may not be obvi-
ous beforehand. In most cases, it is recommended to use finer models rather than
coarser ones to ensure good algorithm performance, even at the cost of some extra
computational overhead.

The problem discussed in the previous paragraph can be considered in the wider
context of model management, thus it may be beneficial to change the low-fidelity
model coarseness during the SBO algorithm run. Typically, one starts from the
coarser model in order to find an approximate location of the optimum design and
switches to the finer model to increase the accuracy of the local search process with-
out compromising the computational efficiency, e.g., as with the multi-fidelity tech-
nique of Sect. 2.1. Proper management of the model fidelity may result in further
reduction of the design cost. The next section addresses this problem.
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3 Model Fidelity Management for Cost-Efficient
Surrogate-Based Design Optimization of Antennas

A proper choice of the surrogate model fidelity is a key factor that influences both
the performance of the design optimization process and its computational cost. Here,
we focus on a problem of proper surrogate model management. More specifically,
we present a numerical study that aims for a trade-off between the design cost and
reliability of the SBO algorithms. Our considerations are illustrated using several
antenna design cases. Furthermore, we demonstrate that the use of multiple models
of different fidelity may be beneficial for reducing the design cost while maintaining
the robustness of the optimization process. Recommendations regarding the selec-
tion of the surrogate model coarseness are also given.

3.1 Coarse-Discretization Electromagnetic Simulations as
Low-Fidelity Antenna Models

The only universal way of creating physics-based low-fidelity antenna models is
through coarse-discretization EM simulations. This is particularly the case for wide-
band and ultra-wideband (UWB) antennas [52], as well as dielectric resonator an-
tennas (DRAs) [53], to name just a few. Here, we assume that the low-fidelity model
Rc is evaluated with the same EM solver as the high-fidelity model. The low-fidelity
model can be created by reducing the mesh density compared to the high-fidelity
one, as illustrated in Fig. 17. Other options of the low-fidelity model may include:

• Using a smaller computational domain with the finite-volume methods;
• Using low-order basis functions, e.g., with the moment method;
• Applying simple absorbing boundaries;
• Applying discrete sources rather than full-wave ports;
• Modeling metals with a perfect electric conductor;
• Neglecting the metallization thickness of traces, strips, and patches;
• Ignoring dielectric losses and dispersion.

Because of the possible simplifications, the low-fidelity model Rc is (typically
10 to 50 times) faster than Rf but not as accurate. Therefore, it cannot substitute for
the high-fidelity model in design optimization. Obviously, making the low-fidelity
model mesh coarser (and, perhaps, introducing other simplifications) results in a
loss of accuracy but also in a shorter computational time. Figure 18 shows the plots
illustrating the high- and low-fidelity model responses at a specific design for the
antenna structure in Fig. 17, as well as the relationship between the mesh coarseness
and the simulation time.

In Fig. 18, one can observe that the two “finest” coarse-discretization models
(with ∼400,000 and ∼740,000 cells) properly represent the high-fidelity model
response (shown as a thick solid line). The model with ∼270,000 cells can be con-
sidered as borderline. The two remaining models can be considered as too coarse,
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Fig. 17 A microstrip antenna [35]: (a) a high-fidelity EM model with a fine tetrahedral mesh, and
(b) a low-fidelity EM model with a coarse tetrahedral mesh

Fig. 18 An antenna of Fig. 17 evaluated with the CST MWS transient solver [7] at a selected de-
sign: (a) the reflection response with different discretization densities, 19,866 cells (���), 40,068
cells (· — ·), 266,396 cells (– –), 413,946 cells (· · ·), 740,740 cells (—), and 1,588,608 cells (—);
and (b) the antenna evaluation time versus the number of mesh cells
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Fig. 19 Coax-fed microstrip antenna [54]: (a) 3D view, (b) top view

particularly the one with ∼20,000 cells; its response substantially deviates from that
of the high-fidelity model.

We stress that, at the present stage of research, visual inspection of the model
responses and the relationship between the high- and low-fidelity models is an im-
portant step in the model selection process. In particular, it is essential that the low-
fidelity model capture all important features present in the high-fidelity one.

3.2 Selecting Model Fidelity: Design of Microstrip Antenna Using
Frequency Scaling

We consider an antenna design case with the optimized designs found using an
SBO algorithm of the following type. A generic SBO algorithm produced a series
of approximate solutions to (1), x(i), i = 0,1, . . . , as follows (x(0) is the initial
design) [15]:

x(i+1) = arg min
x

U
(
R(i)

s (x)
)
, (3)

where R
(i)
s is the surrogate model at iteration i. Typically, the surrogate model is

updated after each iteration using the high-fidelity model data accumulated during
the optimization process. Normally, the high-fidelity model is referred to rarely, in
many cases only once per iteration, at a newly found design vector x(i+1). This,
in conjunction with the assumption that the surrogate model is fast, allows us to
significantly reduce the computational cost of the design process when compared
with direct solving of the original optimization problem.

Here we use three low-fidelity EM models of different mesh densities. We inves-
tigate the performance of the SBO algorithm working with these models in terms of
the computational cost and the quality of the final design.

Consider the coax-fed microstrip antenna shown in Fig. 19 [54]. The design vari-
ables are x = [a b c d e l0 a0 b0]T . The antenna is on 3.81 mm thick Rogers TMM4
substrate (ε1 = 4.5 at 10 GHz); lx = ly = 6.75 mm. The ground plane is of infi-
nite extent. The feed probe diameter is 0.8 mm. The connector’s inner conductor is
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Fig. 20 Coax-fed microstrip antenna: (a) model responses at the initial design, Rc1 (· · ·), Rc2
(· − ·−), Rc3 (- - -), and Rf (—); (b) high-fidelity model response at the final design found using
the low-fidelity model Rc3

1.27 mm in diameter. The design specifications are |S11| ≤ −10 dB for 5 GHz to
6 GHz. The high-fidelity model Rf is evaluated with CST MWS transient solver [7]
(704,165 mesh cells, evaluation time 60 min). We consider three coarse models: Rc1
(41,496, 1 min), Rc2 (96,096, 3 min), and Rc3 (180,480, 6 min).

The initial design is x(0) = [6 12 15 1 1 1 1 −4]T mm. Figure 20(a) shows
the responses of all the models at the approximate optimum of Rc1. The major
misalignment between the responses is due to the frequency shift, so the surrogate is
created here using frequency scaling as well as output space mapping [15] and [16].
The results, summarized in Table 4, indicate that the model Rc1 is too inaccurate
and the SBO design process using it fails to find a satisfactory design. The designs
found with models Rc2 and Rc3 satisfy the specifications, and the cost of the SBO
process using Rc2 is slightly lower than that using Rc3.

3.3 Coarse Model Management: Design of a Hybrid DRA

In this section, we again consider the use of low-fidelity models of various mesh
densities for surrogate-based design optimization of the dielectric resonator antenna.
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Table 4 Coax-fed microstrip antenna: design results

Low-fidelity
model

Design cost: number
of model evaluationsa

Relative
design costb

Max |S11| for 5-to-6
GHz at final design

Rc Rf

Rc1 385 6 12.4 −8.0 dB

Rc2 185 3 12.3 −10.0 dB

Rc3 121 2 14.1 −10.7 dB

aNumber of Rf evaluations is equal to the number of SBO iterations in (2)
bEquivalent number of Rf evaluations

Fig. 21 Hybrid DRA: (a) 3D-cut view and (b) side view

We also investigate the potential benefits of using two models of different fidelity
within a single optimization run.

Consider the hybrid DRA shown in Fig. 21. The DRA is fed by a 50 ohm
microstrip terminated with an open-ended section. The microstrip substrate is
0.787 mm thick Rogers RT5880. The design variables are x = [h0 r1 h1 u l1 r2]T .
Other dimensions are fixed: r0 = 0.635, h2 = 2, d = 1, r3 = 6, all in millimeters.
The permittivity of the DRA core is 36, and the loss tangent is 10−4, both at 10 GHz.
The DRA support material is Teflon (ε2 = 2.1), and the radome is of polycarbon-
ate (ε3 = 2.7 and tan δ = 0.01). The radius of the ground plane opening, shown in
Fig. 21(b), is 2 mm.

The high-fidelity antenna model Rf (x) is evaluated using the time-domain
solver of CST Microwave Studio [7] (∼1,400,000 meshes, evaluation time 60 min).
The goal is to adjust the geometry parameters so that the following specifica-
tions are met: |S11| ≤ −12 dB for 5.15 GHz to 5.8 GHz. The initial design is
x(0) = [7.0 7.0 5.0 2.0 2.0 2.0]T mm. We consider two auxiliary models of different
fidelity, Rc1 (∼45,000 meshes, evaluation time 1 min), and Rc2 (∼300,000 meshes,
evaluation time 3 min). We investigate the algorithm (2) using either one of these
models or both (Rc1 at the initial state and Rc2 in the later stages). The surrogate
model is constructed using both output space mapping and frequency scaling [15]
and [16]. Figure 22(a) justifies the use of frequency scaling, which, due to the shape
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Fig. 22 Hybrid DRA: (a) high- (—) and low-fidelity model Rc2 response at certain design before
(· · · ·) and after (- - -) applying the frequency scaling, (b) high-fidelity model response at the initial
design (- - -) and at the final design obtained using the SBO algorithm with the low-fidelity model
Rc2 (—)

similarity of the high- and low-fidelity model responses, allows substantial reduc-
tion of the misalignment between them.

The DRA design optimization has been performed three times: (i) with the sur-
rogate constructed using Rc1—cheaper but less accurate (case 1), (ii) with the sur-
rogate constructed using Rc2—more expensive but also more accurate (case 2), and
(iii) with the surrogate constructed with Rc1 at the first iteration and with Rc2 for
subsequent iterations (case 3). The last option allows us to more quickly locate the
approximate high-fidelity model optimum and then refine it using the more accu-
rate model. The number of surrogate model evaluations was limited to 100 (which
involves the largest design change) in the first iteration and to 50 in the subsequent
iterations (which require smaller design modifications).

Table 5 shows the optimization results for all three cases. Figure 22(b) shows the
high-fidelity model response at the final design obtained using the SBO algorithm
working with low-fidelity model Rc2. The quality of the final designs found in all
cases is the same. However, the SBO algorithm using the low-fidelity model Rc1



Simulation-Driven Antenna Design Using Surrogate-Based Optimization 77

Table 5 Hybrid DRA design results

Case Number of
iterations

Number of model
evaluationsa

Total
design
costb

Max |S11| for 5.15 GHz to
5.8 GHz at final design

Rc1 Rc2 Rf

1 4 250 0 4 8.2 −12.6 dB

2 2 0 150 2 9.5 −12.6 dB

3 2 100 50 2 6.2 −12.6 dB

aNumber of Rf evaluations is equal to the number of SBO iterations
bEquivalent number of Rf evaluations

(case 1) requires more iterations than the algorithm using the model Rc2 (case 3),
because the latter is more accurate. In this particular case, the overall computational
cost of the design process is still lower for Rc1 than for Rc2. On the other hand, the
cheapest approach is case 2 when the model Rc1 is utilized in the first iteration that
requires the largest number of EM analyses, whereas the algorithm switches to Rc2
in the second iteration, which allows us to both reduce the number of iterations and
number of evaluations of Rc2 at the same time. The total design cost is the lowest
overall.

3.4 Discussion and Recommendations

The considerations and numerical results presented above allow us to draw some
conclusions regarding the selection of model fidelity for surrogate-based antenna
optimization. Using the cheaper (and less accurate) model may translate into a lower
design cost; however, it also increases the risk of failure. Using the higher-fidelity
model may increase the cost, but it definitely improves the robustness of the SBO
design process and reduces the number of iterations necessary to find a satisfactory
design. Visual inspection of the low- and high-fidelity model responses remains—so
far—the most important way of accessing the model quality, which may also give
a hint as to which type of model correction should be applied while creating the
surrogate.

We can formulate the following rules of thumb and “heuristic” model selection
procedure:

(i) An initial parametric study of low-fidelity model fidelity should be performed
at the initial design in order to find the “coarsest” model that still adequately
represents all the important features of the high-fidelity model response. The
assessment should be done by visual inspection of the model responses, keep-
ing in mind that the critical factor is not the absolute model discrepancy but the
similarity of the response shape (e.g., even a relatively large frequency shift
can be easily reduced by a proper frequency scaling).
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(ii) When in doubt, it is safer to use a slightly finer low-fidelity model rather than
a coarser one so that the potential cost reduction is not lost due to a possible
algorithm failure to find a satisfactory design.

(iii) The type of misalignment between the low- and high-fidelity models should be
observed in order to properly select the type of low-fidelity model correction
while constructing the surrogate. The two methods considered here (additive
response correction and frequency scaling) can be viewed as safe choices for
most situations.

We emphasize that, for some antennas, such as some narrowband antennas or
wideband traveling wave antennas, it is possible to obtain quite a good ratio between
the simulation times of the high- and low-fidelity models (e.g., up to 50), because
even for relatively coarse mesh, the low-fidelity model may still be a good represen-
tation of the high-fidelity one. For some structures (e.g., multi-resonant antennas),
only much lower ratios (e.g., 5 to 10) may be possible, which would translate into
lower design cost savings while using the SBO techniques.

4 Conclusion

Surrogate-based techniques for simulation-driven antenna design have been dis-
cussed, and it was demonstrated that optimized designs can be found at a low com-
putational cost corresponding to a few high-fidelity EM simulations of the antenna
structure. We also discussed an important trade-off between the computational com-
plexity and accuracy of the low-fidelity EM antenna models and their effects on
the performance of the surrogate-based optimization process. Recommendations re-
garding low-fidelity model selection were also formulated. We have demonstrated
that by proper management of the models involved in the design process one can
lower the overall optimization cost without compromising the final design qual-
ity. Further progress of the considered SBO techniques can be expected with their
full automation, combination, and hybridization with adjoint sensitivities, as well as
with metaheuristic algorithms.
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Practical Application of Space Mapping
Techniques to the Synthesis of CSRR-Based
Artificial Transmission Lines

Ana Rodríguez, Jordi Selga, Ferran Martín, and Vicente E. Boria

Abstract Artificial transmission lines based on metamaterial concepts have been
attracting increasing interest from the scientific community. The synthesis process
of this type of artificial line is typically a complex task, due to the number of design
parameters involved and their mutual dependence. Space mapping techniques are
revealed to be very useful for automating the synthesis procedure of these kinds of
structures. In this chapter, a review of their application to the automated synthesis
of microstrip lines loaded with complementary split ring resonators (CSRRs), either
with or without series capacitive gaps, will be presented. The most critical points
related to the implementation of these space mapping techniques are discussed in
detail. Different examples to illustrate and prove the usefulness of this synthesis
methodology are presented.

Keywords Aggressive space mapping · Computer aided design (CAD) · Planar
microwave circuits · Complementary split resonators · Artificial transmission lines

1 Introduction

Space mapping (SM) techniques and SM-based surrogate (modeling) have been
widely used in the design of many microwave components [1], but their application
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to the synthesis of artificial transmission lines is still marginal. Metamaterial trans-
mission lines can be a very interesting alternative to conventional lines for many
practical microwave devices [2, 3], since more compact solutions (compatible with
planar manufacturing processes) with higher degrees of design flexibility can be ob-
tained. Furthermore, metamaterial transmission lines can also provide many other
unique properties not achievable with conventional lines, which include negative or
low values of permittivity, permeability, and index of refraction, controllable disper-
sion, and tailored characteristic impedance values [4]. Their commercial impact is
still not very relevant, due the complexity of the related synthesis procedures used
nowadays. These procedures are mainly based on the engineer’s experience with the
help of full-wave electromagnetic (EM) simulators and parameter extraction meth-
ods. Hence, the motivation of this chapter is to review some promising advances
made recently in the field, which can simplify and speed up the process of artificial
line synthesis, and that it is hoped will be of interest to the readers.

There are two main approaches for implementing metamaterial transmission
lines. One strategy consists in loading a host transmission line with series capac-
itances and shunt inductances and, as a result, presenting a composite right/left-
handed behavior. In order to have propagation, the series and shunt reactances of
the equivalent circuit model have to present opposite signs. Depending on the fre-
quency range, either the loading elements (capacity gaps, strips, vias) or the host
line will determine the propagation characteristics. The mushroom structure, origi-
nally introduced by Sievenpiper et al. [5] and used often in low-profile antennas in
order to improve the gain and directivity, is a good example of this strategy, which
is usually known as the CL-loaded approach. The CL-loaded term means that the
host transmission line is loaded with series capacitances and shunted inductances.

The alternative technique to obtain metamaterial transmission lines consists of
etching electrically small (subwavelength) resonators to the host transmission line
(TL): this is called the resonant-type approach [6]. All these artificial transmission
lines are also identified as composite right/left-handed (CRLH) lines, since they ex-
hibit left-handed (backward) wave propagation at low frequencies and right-handed
(forward) wave propagation at high frequencies [7]. Depending on different aspects,
such as the kind of resonator, how it is coupled to the line, and the additional el-
ements it is combined with, it is possible to design many different transmission
lines [6, 8]. The split ring resonator (SRR) is probably the most widely used com-
mon element, and it is basically composed of two concentric metallic rings with
splits at their opposite ends [9]. A periodic array of SRRs was used for the first
actual demonstration of a negative index refraction medium [10]. Other electrically
small (subwavelength) particle elements inspired by the split ring resonator, such
as the complementary split ring resonator (CSRR) [11], and the recently proposed
use of open particles (i.e., the open split ring resonator (OSRR) and its complemen-
tary OCSRR) can be applied as well as the loading elements of a host transmission
line [8]. The present chapter focuses on the automated synthesis of CSRR-based
resonant-type artificial TLs, but there are works on the direct extension to other
loaded lines, too.

The chapter is organized as follows. First, the CSRR-based artificial transmission
lines are introduced and explained in detail. Starting from the physical topology of a
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single unit cell, the EM behavior, its equivalent circuit, and the related characteristic
electrical parameters are obtained in a straightforward way. From a practical point of
view, this is very interesting, since this approach, which is based on SM techniques,
greatly reduces the computational time related to the optimization process. Next,
the implemented aggressive space mapping (ASM) technique is outlined, as well
as its application to the automated synthesis of these lines. Finally, some examples
illustrating the potential of this SM technique, along with the main conclusions and
future directions in this area of research, are briefly discussed.

2 CSRR-Based Artificial Transmission Lines

In this type of artificial transmission line, the CSRRs usually appear etched on the
metalized ground plane of the substrate, and the host line is typically implemented
in microstrip technology. Other planar configurations are also possible. The first
line under study has a simple geometrical topology that has been widely studied in
the literature [12, 13]. ASM techniques have proven to be a suitable synthesis tool
for these lines, and similar strategies can be extended to more complex topologies.
The layout of a single unit cell is depicted in Fig. 1(a); it consists of a microstrip
line with a CSRR etched on the ground plane just beneath the conductor strip. The
geometrical dimensions are the width of the microstrip line W , the external CSRR
radius rext, the width of the slots c, the distance between them d , and the split of
the rings ssplit. This structure presents a stop-band response, over a narrow band, as
shown in Fig. 2(a). One of these unit cells, or some of the cells after cascading, can
be practically used to implement a notch (or stop-band) filter [14, 15].

The second type of artificial transmission line considered is called a CSRR-gap-
loaded line to make a clear distinction between it and the previous line. In this type,
a simple series gap of length s is introduced in the conductor strip line. This gap is
centered with respect to the CSRR locations, as illustrated in Fig. 1(b). Among other
applications, there are practical applications of this type of artificial transmission
line related to dual-band or enhanced bandwidth components. A slightly different
version of this line which presents the series gap with a T-shaped geometry is also
often used. This geometry allows an increase in the capacitance value for some
practical applications [16, 17].

As the size of the loading elements, the CSRRs, is much smaller than the op-
erating wavelength, the response of these two CSRR-based TLs can be accurately
described by equivalent lumped circuit models [12, 13] in the region where these el-
ements are operating. In Fig. 1, the equivalent model for each unit cell is presented
as a reactive element, since the CSRR is modeled by the parallel tank composed of
Cc and Lc. In the first case (Fig. 1(a)), L represents the line inductance and C the
coupling capacitance between the line and the CSRR. We note that the ohmic losses
of the CSRR could be easily taken into account by just including a parallel resistance
in the model [12]. In the second case, L also represents the line inductance, while
C and Cg model the gap and the coupling with the transmission line, respectively.
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Fig. 1 Layout and equivalent circuit model of a unit cell of a CSRR-loaded line without (a) and
with (b) series gap. The ground plane is depicted in light gray

This T-model is achieved after a transformation of the standard π -network [13] that
models a series gap in a microstrip line [18]. The values of the circuit elements
shown in Fig. 1 can be directly extracted from the EM simulation of these struc-
tures (see [12] for the details). The parameter extraction (PE) process is a crucial
step in SM techniques, since it directly affects the convergence speed of these algo-
rithms [19]. The agreement between the circuit simulation of the extracted values
and the corresponding EM simulation is excellent, as illustrated with the two exam-
ples in Fig. 2. The process we have followed is briefly explained for completeness
in the following paragraphs.

Two frequencies can be easily identified, by observing Figs. 1 and 2. The fre-
quency that nulls the shunt impedance is represented by fz, and the one that nulls
the shunt admittance is represented by f0:

fz = 1

2π
√
Lc(C +Cc)

, (1)

f0 = 1

2π
√
LcCc

. (2)

The representation of the magnitude of the transmission coefficient, i.e., S21,
allows us to identify clearly the transmission zero at fz. On the other hand, the
shunt branch becomes an open circuit for the value of f0, which causes the reflection
coefficient S11 to be intercepted with the unit resistance circle in the Smith chart.
Moreover, at an angular frequency of −π/2 (π/2 for the CSRR-gap-loaded line
case), the series and shunt impedances of the T-circuit model of the structure should
be equal with opposite signs:

Zs(ω−π/2) = −Zp(ω−π/2). (3)
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Fig. 2 Typical magnitude and phase of the transmission coefficient of the CSRR-based artificial
transmission lines shown in Fig. 1. The plots (a) and (c) correspond to the CSRR-loaded line;
(b) and (d) to the CSRR-gap-loaded line. EM and electrical simulations are depicted in bold and
dotted lines, respectively

Hence, for the first line all the parameters are determined just by solving the
equation system given by the previous expressions. In the CSRR-gap-loaded line,
an additional condition is needed to fully determine the complete circuit, which has
one more parameter (Cg). This extra condition is given by the resonance frequency
of the series branch as follows:

fs = 1

2π
√
LCg

, (4)

which is simply derived from the interception of S11 with the unit conductance
circle, when the impedance on the series branch is rendered closed-circuit.

3 Application of SM Techniques

The main advantage of SM techniques is that they shift the optimization load from
an expensive “fine” model to a cheaper “coarse” model. In the microwave area, fine
models are often based on full-wave EM simulations, while coarse models usually
employ equivalent circuits of the structures under study. After a reasonable number
of fine model evaluations, SM algorithms lead in general to the construction of a



86 A. Rodríguez et al.

mapping between “fine” and “coarse” models providing a satisfactory solution in
the accurate (“fine”) simulation space.

The ASM method was originally introduced by Bandler et al. in 1995 [20]. It
is one of the successive enhanced techniques that have been proposed in the liter-
ature since the appearance of the first SM approach [21]. In order to automate the
synthesis procedure of CSRR-based artificial lines, the constrained version of the
Broyden-based linear SM [22] is selected. Our approach uses constraints to avoid
the instabilities of the Broyden-based linear SM algorithm, as well as to avoid reach-
ing unwanted (from a practical realization point of view) solutions.

Each SM-based design strategy tries to find a mapping (P), which relates the
design parameters of the EM model, denoted from now on as vector xem, and the
coarse model parameters, vector xc:

xc = P(xem) (5)

such that the different model responses, Rem(xem) and Rc(xc), are aligned,

Rem(xem) ≈ Rc

(
P(xem)

)
, (6)

in the region of interest. The solution x∗
em is found via the inverse transformation

of P :

x∗
em = P−1(x∗

c

)
, (7)

where x∗
c is the optimal coarse solution which provides the desired target response

Rc(x
∗
c ). In the problems we considered, the coarse model parameters are the ele-

ments of the corresponding equivalent lumped circuit models. For the EM models,
the dielectric characteristic of the substrate and its related thickness are known data,
and the geometry dimensions are the design parameters. See Fig. 3 for each of the
considered cases. The model response is related to the device behavior, so the scat-
tering parameters are evaluated in a predefined frequency range.

Of course, the goal of ASM is to find the solution xem which approximates the
optimal coarse model response x∗

c . This means, expressed in mathematical terms,
that we must solve the following set of nonlinear equations:

f (xem) = P(xem)− x∗
c = 0, (8)

where f is a suitable error function. Since ASM is an iterative algorithm, we will
add a superscript to the notation in order to indicate the iteration number. Thus,
x
(j)
em indicates the j -th approximation to the solution layout. The next solution is

predicted by applying a step h(j) to the previous one in the quasi-Newton direction,

x
(j+1)
em = x

(j)
em + h(j), (9)

which is calculated as follows:

B(j)h(j) = −f (j), (10)

where B(j) is called the Broyden matrix [20, 22], which is properly updated in each
iteration. Since the calculation of h(j) requires the inverse of B(j) according to (10),
it is more convenient to have the same number of parameters in each model; as a
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Fig. 3 Conceptual diagram of space mapping techniques for the two cells to be synthesized

result, B(j) is a square, nonsingular matrix. Hence, the split of the CSRR ssplit is
considered a square gap of side c, and the length of the line l is fixed to the diameter
value of the CSRR external ring. This is a reasonable assumption due to the fact that
larger/smaller lengths of the line would lead to different equivalent circuit models,
and on the other hand the CSRR sensitivity on the split size is not very high.

In the constrained approach, h(j) is decreased in the same quasi-Newton direc-
tion by a shrinking factor δ, when the new solution x

(j)
em is not within the acceptable

established limits. Dimensions that are too small may be impossible to implement
due to technological limitations. Moreover, the equivalent circuit model used for
the PE stage might be inaccurate for very extreme dimensions, which is a critical is-
sue for ASM convergence. The algorithm continues with normal evolution once the
quasi-Newton step is properly adjusted; see Fig. 4. Convergence is achieved when
the norm of the error function f (j) given by:

∥∥f (j)
∥∥=

√(
L(j) −L∗)2 + (

C(j) −C∗)2 + (
L

(j)
c −L∗

c

)2 + (
C

(j)
c −C∗

c

)2 (11)

is smaller than a fixed positive value η � 1. In the case of CSRR-gap-loaded lines
the stopping criterion is slightly modified to ‖f (j)

norm‖ < η1 and/or ‖f (j)‖ < η2,
where the normalized error function is defined as:

∥∥f (j)
norm

∥∥=
√(

1 − L(j)

L∗

)2

+
(

1 − C(j)

C∗

)2

+
(

1 − L
(j)
c

L∗
c

)2

+
(

1 − C
(j)
c

C∗
c

)2

(12)

and where η1, η2 are small positive numbers close to zero, η1 < η2 � 1.
For the algorithm initialization, given an ideal target frequency response char-

acterized by x∗
c , an initial layout x

(1)
em needs to be inferred. This is done by using

well-known analytical formulas that link the electrical parameters with the geomet-
rical dimensions of the host line and the CSRR resonator separately, thus not taking
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Fig. 4 Flow diagram of the proposed constrained ASM algorithm

into account the coupling between them. For the host line, different models are used
depending on the presence or absence of the gap. In the simplest case (i.e., without
the gap, see Fig. 1(a)), the characteristic impedance can be approximated by:

Z0 =
√

Lpul

Cpul
≈

√
L∗
C∗ (13)

where Lpul and Cpul are the per-unit-length inductance and capacitance of the mi-
crostrip line, respectively. For a given impedance value and known dielectric con-
stant εr , the ratio of the width W over the substrate height h can be calculated as:

W

d
=

⎧
⎨

⎩

8eA

e2A−2
for (W/d) < 2,

2
π
[B − 1 − ln(2B − 1)+ εr−1

2εr
{ln(B − 1)+ 0.39 − 0.61

εr
}] for (W/d) > 2

(14)

and hence the initial width is estimated [23]. The terms A and B are given by:

A = Z0

60

√
εr + 1

2
+ εr − 1

εr + 1

(
0.23 + 0.11

εr

)
,

B = 377π

2Z0
√
εr

.

(15)

A host microstrip line with a gap, according to [18], can be modeled by means
of a π -circuit composed of three capacitors (Cs for the series branch and Cp for the
parallel capacitance). Those values, depicted in Fig. 5, can be connected with the
ones of the π -circuit model in Fig. 1(b) through the following expressions:
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Fig. 5 Equivalent circuit to the simplified model of Fig. 1(b), proposed in [12]

Cp = 2C∗
gC

∗

4C∗
g +C∗ , (16)

Cs = (2C∗
g)

2

4C∗
g +C∗ . (17)

The parallel capacitance Cp is defined as:
Cp = Cf +CL, (18)

where CL and Cf are the line and the fringing capacitance, respectively. Typically,
Cp is dominated by the line capacitance; therefore, we can neglect the fringe ca-
pacitance in a first-order approximation, and consider that the parallel capacitance
is equal to the line capacitance. Knowing CL and L∗, the characteristic impedance
of the host line is obtained following a similar procedure to (13), and consequently
the initial width can also be determined for the line [23].

Now, in order to estimate the CSRR initial dimensions, we need to perform a very
simple optimization process. Analytical formulas for the approximate characteristic
electrical parameters of a given topology are known (see [24]). In this case, we fix
one of the CSRR geometry parameters to a constant value (typically c) to ease the
optimization process followed to find a deterministic solution for the initial layout.
Therefore, we find the optimal values of r and d that minimize the error function
between the electrical parameters of the real structure (Lc, Cc) and the target ones
(L∗

c , C∗
c ):

ferror =
√
(Lc −L∗

c )
2 + (Cc −C∗

c )
2

√
(L∗

c )
2 + (C∗

c )
2

. (19)

The procedure followed for the initialization of the Broyden matrix B is based
on a finite difference scheme. Although the identity matrix is typically chosen for
initialization, a different approach was proposed in order to help the algorithm con-
verge faster, considering that the design parameters are completely different in each
model, i.e., physical versus electrical ones. To this extent, each geometrical param-
eter is slightly perturbed from the estimated initial value, the new layout is sim-
ulated, and then the corresponding electrical parameters are extracted. Thus, the
initial Broyden matrix is calculated as follows:

B(1) =

⎛

⎜⎜
⎝

∂L/∂W ∂L/∂rext ∂L/∂c ∂L/∂d

∂C/∂W ∂C/∂rext ∂C/∂c ∂C/∂d

∂Lc/∂W ∂Lc/∂rext ∂Lc/∂c ∂Lc/∂d

∂Cc/∂W ∂Cc/∂rext ∂Cc/∂c ∂Cc/∂d

⎞

⎟⎟
⎠ . (20)
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To conclude this section, some aspects regarding the practical implementation of
the proposed SM method are discussed (further details can be found in [25]). The
core of the program (the ASM algorithm) has been implemented in MATLAB [26].
External calls to a microwave engineering CAD suite that allows full-wave simula-
tions are done using scripts. After each layout simulation, MATLAB recovers the
control and makes use of the S-parameters to extract the electrical parameters in a
straightforward way, as was previously explained. Next, the norm of the error func-
tion is evaluated (11)–(12). Normal ASM execution continues if convergence is not
reached, or if the maximum number of EM simulations N (established by the user)
is not exceeded; see Fig. 4. Thus, a fully automated tool [27–29] that makes it pos-
sible to synthesize these artificial transmission lines is available. As a consequence,
the design process is shortened from many hours/days to several minutes/hours, and
does not require the user to have special designing skills.

4 Validation Examples

In order to demonstrate the capabilities of the proposed synthesis technique, differ-
ent examples (one for each cell of study) are presented. The optimal coarse solutions
for both cases are taken from [12], with the aim of checking whether the proposed
synthesis method provides final layouts close enough to the ones already given
in [12]. The selected substrate is Rogers RO3010 with a thickness of h = 1.27 mm,
a dielectric constant of εr = 10.2, and loss tangent tan δ = 0.0023. Dielectric losses
were not taken into account for the EM simulations, and metal parts were consid-
ered as perfect conductors (since we did not include a resistance in the equivalent
circuit model). For each example we have made use of a different commercial EM
solver: Ansoft Designer [30] was used in the first case and Agilent Momentum [31]
in the second one.

4.1 Example of a CSRR-Loaded TL

The optimal target solution x∗
c (see Table 1) has a transmission zero at fz = 1 GHz.

The initial layout, x
(1)
em, is quite shifted from the target response (see Fig. 7), but it

can still be considered a good starting point for initiating the algorithm. Neverthe-
less, it is obvious that a better initial point (smaller value of ‖f (1)‖) would lead to a
faster convergence of the algorithm. In Fig. 6 one can clearly see the evolution of the
error function with the execution of the ASM algorithm; it becomes rather small af-
ter just ten iterations. The final synthesis was obtained in iteration 17, which means
a CPU effort of approximately 30 min (using a standard computer with 3 GB of
RAM and a 2.86 GHz clock processor).

A good matching for the responses of the optimal coarse solution x∗
c and the final

optimum layout x∗
em can be clearly seen in Fig. 7. The dimensions of the final unit

cell are summarized in Table 2, where the initial layout is also included.
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Table 1 Coarse solutions and norm of the error function

L [nH] C [pF] Lc [nH] Cc [nH] ‖f ‖

Target x∗
c 5.080 4.430 2.980 4.060

Initial x
(1)
c 8.201 2.793 2.672 4.109 3.5377

Final x
(17)
c 5.076 4.420 2.986 4.063 0.0124

Fig. 6 Evolution of ‖f ‖ versus iteration number for the first example

Fig. 7 Magnitude (a) and phase (b) of transmission coefficient S21 at initial solution x
(1)
em, final

solution x∗
em, and target circuital solution x∗

c
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Table 2 Layout dimensions

rext [mm] c [mm] d [mm] W [mm] lstrip [mm]

Initial x
(1)
em 6.39 0.25 0.95 2.43 12.78

Final x∗
em 5.67 0.33 0.34 4.93 11.34

Table 3 Layout dimensions

rext [mm] c [mm] d [mm] W [mm] s [mm]

Initial x
(1)
em 5.46 0.25 0.33 1.14 0.11

Final x∗
em 5.62 0.31 0.19 3.90 0.31

4.2 Example of a CSRR-Gap-Loaded TL

The target parameters of the circuit model for this example are L∗ = 4.92 nH, C∗ =
35.87 pF, L∗

c = 3.41 nH, C∗
c = 3.85 pF, and C∗

g = 1.05 pF. Note that the requested
value for the coupling capacitance C∗ is big due to the presence of the gap, and since
its magnitude is much larger than the rest of the circuit parameters, the norm of the
normalized error (12) has been used for the stopping criterion. The final synthesis
data (see Table 3) were obtained after 25 iterations, which means around 90 min of
CPU time, and it can be seen that they are really close to the ones provided in [12]
(which were derived via a manual optimization procedure).

The agreement between the circuit simulation of x∗
c and the final EM simulation

x∗
em is indeed very good, as it can be see in Fig. 8. There is a slight discrepancy

between the measurements and simulations attributed to the tolerances of the fabri-
cation process.

5 Enhancements

In order to increase the robustness and accelerate the convergence rate of the algo-
rithm, some other enhancements have been implemented. For instance, a line search
(LS) technique has been introduced in the ASM update stage, with the aim of avoid-
ing abrupt variations in the error norm evolution ‖f ‖ [32]. Introducing LS causes
‖f ‖ to follow a global decreasing behavior until convergence is achieved. See Fig. 9.

When the error function is enormously increased with respect to the previous
iteration, taking the full Newton step h(j) is a bad choice. The length of the step is
controlled with LS in the same Newton direction by means of a factor λ:

x
(j+1)
em = x

(j)
em + λ · h(j), 0 < λ ≤ 1. (21)

First, λ is chosen equal to unit (i.e., the normal evolution of the algorithm), and
if the solution x

(j+1)
em does not meet the following criterion:

f
(
x
(j+1)
em

)≤ f
(
x
(j)
em

)+ κ · ∇f
(
x
(j)
em

) · λ · h(j) with κ = 10−4, (22)
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Fig. 8 Magnitude (a) and phase (b) of the transmission coefficient of the structure previously pub-
lished in [29]. The initial solution x

(1)
em, final solution x∗

em, target response x∗
c , and measurements

are drawn with blue dotted, red dotted, red solid, and solid blue lines, respectively

several backtracks along the Newton directions are applied until the error func-
tion is decreased, or x

(j+1)
em is equal to x

(j)
em . For the first backtrack, the error func-

tion is modeled by a quadratic polynomial function, and in the following ones by
means of a cubic polynomial approach; see [33] for more details about the LS tech-
nique. One example where LS results in a clear improvement is the one shown in
Fig. 10. The synthesized cell corresponds to the first type of lines (Fig. 1(a)) with
a target response given by L∗[nH] = 4.860, Lc[nH] = 2.180, C∗[pF] = 1.640, and
C∗

c [pF] = 2.890. The number of EM simulations needed to find the final synthesis is
decreased from 29 to 18, hence reducing the computational time significantly. The
initial layout and the corresponding final synthesis dimensions are summarized in
Table 4. The ASM constrained approach used a shrinking factor of δ = 0.4.
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Fig. 9 Flow diagram of the ASM algorithm with the LS technique

Table 4 Layout dimensions and error function values

rext [mm] c [mm] d [mm] W [mm] ‖f ‖

Initial x
(1)
em 4.83 0.25 0.93 0.99 3.105

ASM x∗
em (δ = 0.4) 4.02 0.42 0.15 1.95 0.048

ASM + LS x∗
em (δ = 0.4) 4.03 0.43 0.16 1.99 0.050

Fig. 10 Evolution of ‖f ‖ versus iteration number, using ASM with δ = 0.4 (solid blue line) and
ASM + LS (dashed black line)

After applying the LS algorithm to several examples, we have found that the
introduction of LS does not always provide the expected positive effects. In some
cases, we have observed that the convergence of the algorithm with LS can be-
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Fig. 11 Evolution of ‖f ‖ versus iteration number, using ASM (solid blue line), ASM + LS
(dashed black line), and ASM + LS modified (dotted green line)

Table 5 Layout dimensions and error function values

rext [mm] c [mm] d [mm] W [mm] ‖f ‖

Initial x
(1)
em 4.83 0.25 0.93 0.99 3.1053

ASM x∗
em (δ = 0.3) 4.02 0.40 0.18 1.93 0.0104

ASM + LS x∗
em (δ = 0.3) 4.03 0.38 0.19 1.95 0.0137

ASM + LS mod x∗
em (δ = 0.3) 4.02 0.40 0.18 1.93 0.0104

come slower than without it. Each backtrack performed implies an additional EM
simulation. If the error is high (far from the final synthesis) it has no sense to per-
form several backtracks when previous iteration presents an error of the same order.
Many backtracks will have a high cost and not a real benefit, it is enough to apply a
small correction in order not to slow the progress of the algorithm. Therefore, only
one backtrack is performed while the norm of the error (or normalized error for
the case of CSRR-gap loaded lines) is still far from the stopping criterion for the
ASM algorithm. In Fig. 11 this fact is illustrated using the same target response as
tested previously but a different shrinking factor: δ = 0.3. The algorithm is forced
to continue until 70 iterations to clearly appreciate the softer evolution of the algo-
rithm when standard LS is applied. For the modified LS algorithm, convergence is
already achieved at iteration 13, whereas the normal execution of ASM (δ = 0.3)
converges at iteration 44. All solutions for this last example are collected in Table 5.
It is remarkable that sometimes choosing a bad value of δ can also lead to a slow
convergence of the algorithm, and this modified solution of LS can help to minimize
that effect.
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6 Conclusions
In conclusion, it has been demonstrated that SM techniques are very valuable when
used for the automated and efficient synthesis of CSRR-based artificial transmis-
sion lines. A robust method, which provides very good agreement between the tar-
get response and the EM simulation of the final layout solution, has been success-
fully proposed. This work opens a promising path towards the application of similar
methodologies to synthesize other artificial transmission lines, as well as more com-
plex passive devices based on them.
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The Efficiency of Difference Mapping in Space
Mapping-Based Optimization

Murat Simsek and Neslihan Serap Sengor

Abstract In space mapping, a time-consuming but accurate fine model is used
along with a less accurate but fast coarse model to reduce the overall computa-
tional effort. In this work, techniques using the difference mapping concept will
be introduced. These techniques are efficient in reducing the computational effort
while improving convergence. Difference mapping is constructed similarly to the
mechanism used in space mapping, but, unlike space mapping, it facilitates the use
of terminating conditions based on the simultaneous use of input and output val-
ues. Rigorous mathematical expressions related to difference mapping techniques
will be given, and the improvement provided by these techniques will be discussed.
Furthermore, to expose the efficiency of using the difference in input and output,
simulation results obtained for high-dimensional applications will be given.

Keywords Artificial neural network · Knowledge-based modeling · Difference
mapping · Inverse scattering · Optimization

1 Introduction

The efficiency of a design process is mainly improved through design optimization,
in which appropriate values for design variables are determined. Conventional op-
timization techniques involve long iterative processes to obtain satisfactory results.
In cases where expensive execution efforts are needed for a response, design opti-
mization does not give satisfactory results due to time limitations.

Surrogate-based optimization techniques [3, 9, 21] have emerged to eliminate
expensive, time-consuming calculations during the conventional optimization pro-
cess. In these techniques, more accurate but time-consuming fine model execution
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is utilized in a limited number of iterations. Less accurate but cheaper coarse model
execution is mainly utilized during the optimization process; hence, the time spent
on the design process is decreased using coarse model optimization instead of fine
model optimization.

The space mapping-based optimization technique was first introduced by Bandler
in 1994 [5] as an easily applicable surrogate-based optimization technique. Space
mapping (SM) is based on constructing parameter mapping from the fine model
parameter space to the coarse model parameter space. With this mapping between
parameter spaces the coarse model becomes more related to the fine model and
it provides approximate responses more similar to the fine model responses. SM
exploits affine mapping to construct a mathematical link between the parameter
spaces of coarse and fine models [4, 13].

In order to enhance SM-based optimization, the aggressive space mapping
(ASM) technique was developed [6, 7]. The iterative method in ASM, namely the
quasi-Newton method, is used to update the mapping while the mapping in SM is
updated using the approximate matrix inverse. In ASM, a projection of the error
between the responses of the fine and coarse models is used to determine the new
iteration point. This projection could be built by using Broyden’s update, which
results in better convergence performance for ASM.

The difference mapping idea was introduced to exploit the use of existing knowl-
edge obtained from the fine model such as a mathematical formulation, a simple
equivalent model, or an artificial neural network model which would be based on the
input–output relationship of the fine model. This a priori knowledge is known as the
coarse model in surrogate-based techniques. The knowledge-based techniques [22]
also use a priori knowledge, especially during the modeling process. Prior knowl-
edge input with difference (PKI-D) [16, 17, 20] is developed especially to make
use of existing knowledge twice. Therefore, using both input and output knowledge
it is shown that it is possible to get more accurate results through mappings using
input and output relationships. Difference mapping is based on PKI-D modeling;
it involves embedding existing knowledge into a mapping where the output is the
difference between fine and coarse model parameters. Since this technique depends
on forming a mapping based on the difference, it is called difference mapping to
distinguish it from other SM-based techniques.

Through a combination of difference mapping and the inverse coarse model ob-
tained from the fine model using the relation between its input and outputs, the space
mapping with difference (SM-D) technique [15, 18] has been developed. Moreover,
to eliminate the inverse matrix calculation, the space mapping with inverse differ-
ence (SM-ID) technique [18, 19] has been developed by combining inverse differ-
ence mapping and the inverse coarse model. Both techniques show fast convergence,
as they are based on a limited number of fine model executions. As a priori knowl-
edge from the fine model is used, more accurate results are obtained, as shown by
the lower error value compared with those of similar methods [8, 10, 14, 19].
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2 Fundamentals of Space Mapping Optimization

Space mapping depends on using a coarse model in an efficient manner during op-
timization instead of using the fine model. Fine model execution is only needed to
correct the mapping formed between the fine and coarse model parameters during
optimization. In the SM technique, a more accurate fine model (ff ) with a higher
computational burden is used with a less accurate but computationally cheap coarse
model (fc) via mapping P(·) during iterations. Consequently, the SM optimization
technique combines the computational efficiency of the coarse model with the ac-
curacy of the fine model, giving rise to a technique that is both computationally
efficient and accurate. P(·) constructs a mapping from the fine model parameters to
the coarse model parameters. The purpose of the SM technique is to obtain a desired
input design parameter xf set which satisfies the target fine model response Yf . The
original optimization problem can be represented as follows:

xf = min
x

∥∥Yf − ff (x)
∥∥. (1)

This problem can be solved using direct optimization, but as using the fine model is
a time-consuming and complex process, a surrogate-based optimization technique,
especially SM, is preferred to obtain the desired input parameters of the fine model.
During the construction of the mapping between the fine and coarse model parame-
ter spaces, a parameter extraction process [2, 7] is necessary. The parameter extrac-
tion process allows us to find the coarse model parameters corresponding to the fine
model parameters, so that both models give the same response. Uniqueness is the
biggest issue for parameter extraction. The general form of parameter extraction for
iteration j is represented as follows:

x(j)
c = min

x

∥
∥Y(j)

f − fc(x)
∥
∥. (2)

The SM optimization mapping structure can be represented by

xc = P(xf ) = Bxf + c, (3)

P = [[c]n×1 [B]n×n

]
n×(n+1), (4)

where xf , xc, c, and B are the fine and coarse model design parameters, and the
shifting and linear transformation terms of affine mapping P, respectively.

The mapping P is constructed iteratively, and execution of the fine model is re-
quired for each step. The Q and D matrices given below are used to construct a new
mapping P for iteration step j as in (7).

Q(j) =
[

x(1)
c . . . x(j)

c

]

n×j
, (5)

D(j) =
[

1 . . . 1

xf
(1) . . . x(j)

f

]

(n+1)×j

, (6)
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Fig. 1 Pre-iteration steps of space mapping technique

P(j) = Q(j)D(j)†
. (7)

The dimension of the matrix D is (n+1)×j . If j is not equal to n+1, the inverse of
non-square matrix D can be calculated using a pseudoinverse denoted by (†) as long
as the full rank condition is satisfied. When the inverse of the non-square matrix is
involved, the pseudoinverse technique gives an approximate solution in the sense of
the least squares error.

After construction of the mapping using the fine and coarse model input param-
eters, a new fine model parameter is obtained by the inverse of mapping P. This
relation can be represented by

x(j+1)
f = P(j)−1(

x∗
c

)
, (8)

where P(j)−1
can be calculated by the inverse matrix formulation if the dimensions

of the fine model parameter xf and coarse model parameter xc are the same. x∗
c in (8)

is the optimum coarse model parameter satisfying the target fine model response for
the coarse model. Before beginning iteration, several pre-iteration steps (see Fig. 1)
should be completed as follows to determine the initial parameter values:

Step 1: Select Yf as an optimization point.
Step 2: Choose Y∗

c = Yf .
Step 3: Find x∗

c from x∗
c = minxc ‖Yf − fc(xc)‖.

Step 4: Set x(1)
f = x∗

c and j = 1.

After the pre-iteration steps, the main iterations run until the stopping criterion is
satisfied. The main iteration circle of the SM technique is given in Fig. 2. Each step
of the SM algorithm is given below.

Step 1—Stopping Criterion:
calculate Y(j)

f = ff (x
(j)
f ) and if ‖Y(j)

f − Y∗
c‖ ≤ ε

then xf = x(j)
f else go to step 2.
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Fig. 2 Main iteration steps of space mapping technique

Step 2—Parameter Extraction:
find x(j)

c using x(j)
c = minxc ‖Yf

(j) − fc(xc)‖
Step 3—Forming P:

form x(j) = Q(j)D(j)†

Step 4—New Iteration Point:
x(j+1)
f = P(j)†

(x∗
c ), set j = j + 1 go to step 1.

The Q and D matrices are augmented at the end of each iteration step, so their di-
mensions are changed. This augmentation is due to the new knowledge added to
these matrices to construct a suitable mapping during the iteration process. There-
fore, at each new iteration point more information based on the relationship between
the fine model parameters and corresponding coarse model parameters is used. The
D and Q matrices are updated with new xf and xc, respectively.

3 Difference Mapping Concept

The difference mapping concept has emerged with the idea of exploiting knowledge
during optimization. Fine model execution is only used for parameter extraction
in SM-based techniques; whereas, difference mapping makes use of the already-
calculated fine model response besides the fine model parameters to construct the
mapping. The output of this mapping is the difference between the fine and coarse
model parameters. The fine model parameters are expected to be sufficiently close
to the corresponding coarse model parameters. Using the difference between the
fine and coarse model parameters restricts the range at the output of the difference
mapping.
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Fig. 3 Prior knowledge input with difference model structure [20]

To clarify the understanding of this new concept, the knowledge-based technique
PKI-D can be considered. PKI-D is the latest knowledge-based technique and the
most commonly used to improve the modeling efficiency by using coarse models.
For the coarse model, an artificial neural network (ANN) structure is preferred, as its
construction depends only on the input and output data, which can even be obtained
from measurements. So there is no need for extra knowledge other than input-output
relation. Thus, the coarse model response provides extra knowledge besides normal
inputs to reduce the complexity of ANN mapping. As it is constructed to give the
difference between the fine model response and the coarse model response, using
the coarse model response twice gives a more accurate and less complex structure
for ANN modeling. The mathematical formulation of the mapping structure for the
PKI-D technique can be represented by

Yf ≈ YPKI-D = Yc + fANN(xf ,Yc)︸ ︷︷ ︸
Yd

, (9)

where YPKI-D is the final model responses obtained from summation of the coarse
model and ANN responses. fANN is ANN model with extra inputs to obtain the
difference Yd between Yf and Yc, as shown in Fig. 3.

The key idea behind difference mapping is using two different information items
in order to obtain efficient convergence to the desired fine model parameter. The first
piece of information used is the coarse model parameters obtained from the coarse
model through the parameter extraction process. SM-based techniques utilize this
information to construct mappings between fine and coarse model parameters. The
new iteration point of the fine model parameter is obtained by using the optimum
coarse model parameter corresponding to the desired fine model parameters. With
each iteration, more knowledge is provided to improve the mapping ability and the
new iteration point converges to the desired fine model parameter more than the
previous one.

Difference mapping utilizes fine model responses without an extra computational
burden. This existing knowledge is embedded in the mapping structure; hence, the
mapping constructed builds the connection between the optimum coarse model pa-
rameter and the desired fine model parameter. This connection, as it depends on the
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fine model responses, provides extra knowledge during generation of the new itera-
tion point. The new iteration point converges to the desired fine model parameter by
satisfying two conditions simultaneously. The parameter-based and response-based
conditions increase the efficiency of the convergence as they satisfy the following
conditions:

∥∥P
(
x(j)
f

)

︸ ︷︷ ︸
x(j)
c

−x∗
c

∥∥≤ εp,
∥∥fc

(
P
(
x(j)
f

)

︸ ︷︷ ︸
x(j)
c

)− Y∗
c

∥∥≤ ε. (10)

Here, x∗
c and Y∗

c indicate the optimum coarse model parameter and optimum
coarse model response, respectively. Thus, the constructed difference mapping sat-
isfies these two conditions simultaneously, whereas other SM-based techniques sat-
isfy only one.

4 Difference Mapping-Based Optimization Techniques

Using the difference mapping concept, two optimization techniques have been de-
veloped: space mapping with difference (SM-D) and space mapping with inverse
difference (SM-ID). The main distinction between these two techniques is that in
SM-ID, because it is based on inverse mapping, calculating an inverse is unneces-
sary. Since SM-ID is a new technique, this section will focus on it rather than SM-D.
More information about SM-D can be obtained from [15, 18]. SM-ID involves in-
verse coarse model usage to eliminate the parameter extraction process. The inverse
coarse model can be constructed by using an ANN. The considered ANN can be
trained either with a small data set obtained from the fine model or with a larger data
set obtained from the coarse model. The model parameters and model responses are
used as inputs and outputs during the training process of a feedforward multi-layer
perceptron. As the amount of training data increases, the accuracy of the inverse
coarse model is increased. One hidden layer would be sufficient for the ANN, but
two hidden layers are very convenient for solving highly nonlinear complex model-
ing problems. After the training process is completed, the inverse coarse model can
generate coarse model parameters to construct difference mapping.

The SM-ID technique exploits inverse difference mapping iP
(j)
d . The Q and D

matrices are rearranged differently than in SM-based mapping, and they are given
as follows:

Q(j) =
⎡

⎣
x(1)
f − x(1)

c
︸ ︷︷ ︸

x(1)
d

x(2)
f − x(2)

c
︸ ︷︷ ︸

x(2)
d

· · · x
(mj )

f − x
(mj )
c

︸ ︷︷ ︸
x
(mj )

d

⎤

⎦

n×mj

, (11)

D(j) =
⎡

⎢
⎣

1 1 · · · 1

x(1)
c x(2)

c · · · x
(mj )
c

Y(1)
f Y(2)

f · · · Y
(mj )

f

⎤

⎥
⎦

(1+n+m)×mj

. (12)
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The difference between the fine and coarse model parameters is represented as
in (11). The structure of the Q and D matrices shows that the difference between
fine and coarse model parameters x(j)

f − x(j)
c is related not only to the coarse model

parameter x(j)
c but also to the fine model response Y(j)

f . The convergence and ro-
bustness of this technique against divergence improve due to this relation built into
inverse difference mapping:

Q(j) = iP(j)
d D(j). (13)

iP(j)
d denotes the mapping from D(j) to Q(j) as shown in (13). The inverse difference

mapping iP(j)
d is partitioned into two parts such as input mapping iP(j)

din and output

mapping iP(j)
dout. The contributions of the coarse model parameter and fine model

response are denoted by iP(j)

din and iP(j)
dout in (14):

[
x(1)
d x(2)

d · · · x(j)
d

]
=

[
[iP(j)

din] [iP(j)
dout]

]
⎡

⎢⎢
⎣

[
1 1 · · · 1

x(1)
c x(2)

c · · · x(j)
c

]

[
Y(1)

f Y(2)
f · · · Y(j)

f

]

⎤

⎥⎥
⎦ .

(14)
After the inverse difference mapping is updated using (15), a new iteration point as
the fine model parameter is generated by (16). Each data pair added to the inverse
difference mapping improves the approximate iteration point, and it converges to the
desired fine model parameter. The new iteration point is obtained by using the opti-
mum coarse model parameter and optimum coarse model response, simultaneously.
A simple form of (16) is given in (17).

iP(j)
d =

[
[iP(j)

din] [iP(j)
dout]

]
= Q(j)D(j)†

(15)

[
x(j+1)
f − x∗

c

] =
[
[iP(j)

din] [iP(j)
dout]

]
⎡

⎢
⎣

[
1
x∗
c

]

[
Y∗

c

]

⎤

⎥
⎦ (16)

[
x(j+1)
f

] = iP(j)
d

(
x∗
c ,Y∗

c

)+ [
x∗
c

]
. (17)

This inverse structure in Fig. 4 is constituted using feedforward ANN, which is
convenient if it is not possible to get a mathematical formulation for the modeling.
After the ANN training process, the third pre-iteration step is slightly different from
that in SM. The rest of the pre-iteration process in SM-ID is the same as in SM
except for the third step. Thus, only step 3 is given here:

Step 3: Find x∗
c from x∗

c = ifc(Y∗
c ).

The main iteration steps of the SM-ID technique are denoted in Fig. 4. The SM-
ID algorithm is given below:
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Fig. 4 Main iteration steps of space mapping with inverse difference (SM-ID) technique

Step 1—Stopping Criterion:
calculate Y(j)

f = ff (x
(j)
f ) and if ‖Y(j)

f − Y∗
c‖ ≤ ε

then xf = x(j)
f else go to step 2.

Step 2—Inverse Coarse Model Response:
find x(j)

c using x(j)
c = ifc(Y

(j)
c )

Step 3—Forming iPd :

form iP(j)
d =

[
[iP(j)

din] [iP(j)
dout]

]
= Q(j)D(j)†

Q(j) =
[
(x(1)

f − x(1)
c ) . . . (x(j)

f − x(j)
c )

]

n×j

D(j) =
⎡

⎢
⎣

1 . . . 1

x(1)
c . . . x(j)

c

Y(1)
f . . . Y(j)

f

⎤

⎥
⎦

T

(n+k+1)×j

where k denotes the number of coarse model outputs.
Step 4—New Iteration Point:
x(j+1)
f = iP(j)

din(1,x∗
c )+ iP(j)

dout(Y
∗
c )+ x∗

c ,
set j = j + 1 go to step 1.

5 An Application for Optimization

In this section, the convergence of the difference mapping-based technique SM-ID
is discussed by comparing it with the SM-based technique ASM. Since ASM is a
well-known technique and easy to apply to optimization problems, it is preferred
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Fig. 5 Scattering problem geometry [19]

for comparison to demonstrate the convergence efficiency of SM-ID. The problem
considered is a high inverse scattering problem. In order to show the effect of the
coarse model, different inverse coarse models are generated using the ANN struc-
ture. These inverse coarse models are used for the parameter extraction process
during the SM-ID and ASM optimization process.

5.1 Scattering Problem Definition

We consider the direct scattering problem depicted in Fig. 5. The arbitrarily shaped,
infinitely long impedance cylinder in free space is illuminated by a plane wave
whose polarization is the cylinder axis (z axis). The cylinder contour can be ex-
pressed by means of a Fourier series as

ρ(φ) =
P∑

p=−P

ape
ipφ, a−p = a∗

p, (18)

where ap is the Fourier coefficient satisfying a−p = a∗
p and obtained as in (19),

ap = 1

2π

∫ 2Π

0
ρ(φ)e−ipφ dφ. (19)

The fine model constitutes a relation between the Fourier coefficients and the mea-
sured electric field, as depicted in Fig. 6. The formulation to obtain this relation is
given here for the general case, and once the potential density ϕ is determined, the
scattered field on the measurement points is obtained.

The electric field of the z-polarized incident wave can be expressed as

ui(r) = e−ikk̂.r, (20)
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Fig. 6 Fine model for scattering problem

where r = xûx +yûy is a position vector and k̂ = −(sinφiûx +cosφiûy) is a propa-
gation unit vector of the incident wave with incident angle φi , and k = ω

√
εμ is the

wave number of the background medium. Due to the homogeneity of the impedance
cylinder with respect to the z axis, the total and the scattered electric fields also will
be polarized parallel to the z axis. Therefore, the problem reduces to a transverse
magnetic wave at direction z (TMz) case scalar problem in the x–y plane. The total
field satisfies the impedance boundary condition [1] given in (21),

u(r)+ η

ik

∂u(r)
∂n

= 0, r ∈ ∂D, (21)

where η is the normalized surface impedance of the boundary. As a conducting
cylinder is considered, η is assumed to be almost zero. In order to obtained the
scattered field, (22) must be solved, where the scattered field is expressed by a single
layer potential as in [12],

us(r) =
∫

∂D

ϕ
(
r′)Φ

(
r, r′)ds

(
r′), r ∈ R2/D̄, (22)

where Φ(r, r′) is Green’s function in two dimensions given as

Φ
(
r, r′) = i

4
H

(1)
0

(
k
∣∣r − r′∣∣) (23)

with H
(1)
0 (·), which is the Hankel function of the first kind and zero order. Substi-

tuting (22) into (21) and using the jump relation of the single layer potential, one
gets the boundary integral equation for unknown ϕ as

(Sϕ)(r)+ η

ik
(Kϕ)(r)− η

2ik
(ϕ)(r) = −ui(r)− η

ik

∂ui

∂n
(r), (24)
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Fig. 7 Constituting inverse coarse model for scattering problem using MLP-ANN

r ∈ ∂D, where S and K are the single and double layer operators given by

(Sϕ)(r) =
∫

∂D

ϕ
(
r′)Φ

(
r, r′)ds

(
r′), (25)

(Kϕ)(r) = ∂

∂n(r)

∫

∂D

ϕ
(
r′)Φ

(
r, r′)ds

(
r′). (26)

The boundary integral equation in (24) can be solved numerically by using a
Nyström method that has an exponential convergence property [11, 12].

5.2 Inverse Scattering Problem with High Dimension

The inverse scattering problem involves obtaining the shape of a conductor cylinder
using electromagnetic field measurements. This problem will be calculated using
the ANN, ASM, and SM-ID methods, to give a detailed comparison between them.
The conductance cylinder is illuminated by a TMz wave with frequency 33 MHz
and angle of incidence φi = 0. The scattered field data is measured at 10 points
on a measurement circle with radius 100λ as indicated in Fig. 5. The shape of the
conductor cylinder is represented by one real and four complex Fourier coefficients,
as indicated in Fig. 6. The inverse coarse model used has 20 inputs for complex
measurement data and 9 outputs for Fourier coefficients.

The ANN is used not only as one method for solving the problem but also as
a way of building the coarse model. The considered ANN structure as indicated in
Fig. 7 is a feedforward multi-layer perceptron (MLP) with two hidden layers having
“20” and “30” neurons, respectively. The ANN is trained with different numbers
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of data, such as 25, 50, and 100. Therefore, inverse coarse models with different
accuracies are generated to investigate the efficiency of the SM-ID technique de-
pending on the coarse model. Normally ASM utilizes parameter extraction to find
coarse model parameters, but to convey equality in comparing the results obtained
by SM-ID and ASM, the inverse coarse model is also used in ASM.

In this work, the high inverse scattering problem is solved for two different ge-
ometries. The shapes of the conductor cylinder obtained by ANN, ASM, and SM-ID
are given for three inverse coarse models. Different accuracies of the inverse coarse
model affect the convergence and accuracy of the desired fine model parameters. To
compare accuracy, it is necessary to use error measures. The mean and maximum
error are determined by (27) and (28):

Mean Error = 1

360
×

360∑

i=1

|Xoriginal,i −Xmethod,i |
Xoriginal,i

, (27)

Max Error = max
i

{ |Xoriginal,i −Xmethod,i |
Xoriginal,i

}
. (28)

The stopping criterion is satisfied if the maximum error between the target fine
model response and the fine model response corresponding to the obtained fine
model parameter is less than 0.003. This corresponds to a maximum error of less
than 0.003. However, the maximum and mean error calculations are different from
this stopping criterion based on maximum error as defined above. The maximum
and mean error calculations depend on the difference between the desired fine model
parameters and the obtained fine model parameters; hence, the mean error can be
greater than the stopping criterion.

The results of the shape reconstruction using optimization techniques for two
geometries are given in two parts. The first part includes shape reconstructions for
geometry 1 obtained from ANN, ASM, and SM-ID. The ANN results for different
inverse coarse models are shown in Fig. 8. The ASM and SM-ID results are given
in Fig. 9 and Fig. 10, respectively.

The second part includes shape reconstructions for geometry 2. The ANN results
for different inverse coarse models are shown in Fig. 11, and the ASM and SM-ID
results are shown in Fig. 12 and Fig. 13, respectively. The result obtained from the
13th iteration is shown in Fig. 12(a) instead of the original shape because of the
divergence of ASM,25. The original solution is given in Table 1.

The convergence of ASM and SM-ID obtained from inverse coarse models
trained with three sets including 25, 50, and 100 data, respectively, for geometry 1
is given in Fig. 14. When the accuracy of the inverse coarse model reduces due to
less data usage for training, the required iteration step increases. In contrast, SM-ID
is not badly affected by a less accurate inverse coarse model, since SM-ID exploits
inverse difference mapping based on more knowledge obtained from the fine model
execution.

The convergence of ASM and SM-ID obtained from inverse coarse models
trained with three sets including 25, 50, and 100 data, respectively, for geometry
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Fig. 8 The shape reconstruction obtained from coarse models trained with three sets including 25,
50, and 100 data, respectively: (a) ANN-25, (b) ANN-50, and (c) ANN-100 for geometry 1
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Fig. 9 The shape reconstruction obtained from ASM model for different inverse coarse models
trained with three sets including 25, 50, and 100 data, respectively: (a) ASM,25, (b) ASM,50, and
(c) ASM,100 for geometry 1
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Fig. 10 The shape reconstruction obtained from SM-ID model for different inverse coarse models
trained with three sets including 25, 50, and 100 data, respectively: (a) SM-ID,25, (b) SM-ID,50,
and (c) SM-ID,100 for geometry 1
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Fig. 11 The shape reconstruction obtained from coarse models trained with three sets including
25, 50, and 100 data, respectively: (a) ANN-25, (b) ANN-50, and (c) ANN-100 for geometry 2
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Fig. 12 The shape reconstruction obtained from ASM model for different inverse coarse models
trained with three sets including 25, 50, and 100 data, respectively: (a) ASM,25, (b) ASM,50, and
(c) ASM,100 for geometry 2
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Fig. 13 The shape reconstruction obtained from SM-ID model for different inverse coarse models
trained with three sets including 25, 50, and 100 data, respectively: (a) SM-ID,25, (b) SM-ID,50,
and (c) SM-ID,100 for geometry 2
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Table 1 Overall results for geometry 1 and geometry 2 obtained from ANN, ASM, and SM-ID

Method Geometry 1 Geometry 2

Iteration
number

Mean
error

Max
error

Iteration
number

Mean
error

Max
error

ANN-25 – 0.07899 0.25313 – 0.04413 0.12717

ANN-50 – 0.06081 0.25466 – 0.04202 0.07488

ANN-100 – 0.04331 0.15857 – 0.03175 0.07912

ASM,25 10 0.04562 0.24170 18 321.741 1182.46

ASM,50 6 0.04729 0.24891 18 0.01681 0.05040

ASM,100 5 0.01608 0.05203 6 0.02290 0.06720

SM-ID,25 4 0.03621 0.17425 3 0.03258 0.12518

SM-ID,50 3 0.03384 0.17799 4 0.00591 0.01808

SM-ID,100 2 0.01676 0.07092 3 0.00309 0.01041

Fig. 14 For different inverse coarse models with different accuracies, the convergence of (a) ASM
and (b) SM-ID for geometry 1

Fig. 15 For different inverse coarse models with different accuracies, the convergence of (a) ASM
and (b) SM-ID for geometry 2
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2 is given in Fig. 15. The required iteration steps of ASM increase with the lower
accuracy of the inverse coarse model. With only a few data sets used in the in-
verse coarse model, like the one trained with 25 data, ASM diverges as shown in
Fig. 15(a). In contrast, SM-ID is not badly affected by a less accurate inverse coarse
model, since SM-ID exploits inverse difference mapping based on more knowledge
obtained from the fine model execution. Because in SM-ID a new iteration point is
determined not only from optimum coarse model parameters but also by using the
target fine model response, SM-ID is robust against more discrepancy between the
coarse model and the fine model.

6 Conclusion

The difference mapping concept is considered from the convergence point of view
in this work. The power of difference mapping based on the PKI-D technique is
expressed with mathematical representations. To demonstrate the efficiency of dif-
ference mapping, SM-ID is compared with ASM and ANN in solving a high inverse
scattering problem. High dimensions increase the complexity of the problem, so the
results from two different geometries are used to demonstrate the difference map-
ping advantage explicitly. Different inverse coarse models with different accuracies
are generated to show the efficiency of SM-ID compared with ASM. The robustness
of SM-ID against less accurate coarse models is observed from the figures and ta-
ble. Moreover, it is observed that SM-ID requires fewer iteration steps than ASM to
solve the high inverse scattering problem.
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Bayesian Support Vector Regression Modeling
of Microwave Structures for Design Applications

J. Pieter Jacobs, Slawomir Koziel, and Leifur Leifsson

Abstract Fast and accurate models are indispensable in contemporary microwave
engineering. Kernel-based machine learning methods applied to the modeling of
microwave structures have recently attracted substantial attention; these include
support vector regression and Gaussian process regression. Among them, Bayesian
support vector regression (BSVR) with automatic relevance determination (ARD)
proved to perform particularly well when modeling input characteristics of mi-
crowave devices. In this chapter, we apply BSVR to the modeling of microwave
antennas and filters. Moreover, we discuss a more efficient version of BSVR-based
modeling exploiting variable-fidelity electromagnetic (EM) simulations, where
coarse-discretization EM simulation data is used to find a reduced number of fine-
discretization training points for establishing a high-fidelity BSVR model of the
device of interest. We apply the BSVR models to design optimization. In particu-
lar, embedding the BSVR model obtained from coarse-discretization EM data into
a surrogate-based optimization framework exploiting space mapping allows us to
yield an optimized design at a low computational cost corresponding to a few eval-
uations of the high-fidelity EM model of the considered device. The presented tech-
niques are illustrated using several examples of antennas and microstrip filters.
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1 Introduction

Full-wave electromagnetic (EM) simulations based on the method of moments
and/or finite elements play a ubiquitous part in microwave engineering, as they per-
mit highly accurate evaluation of microwave structures such as planar antennas and
filters. Such simulations, however, are costly in computational terms, and their use
for tasks requiring numerous analyses (e.g., statistical analysis and parametric de-
sign optimization) might become infeasible under certain conditions (for instance, a
genetic algorithm optimization might necessitate thousands of full-wave analyses of
candidate geometries of the structure to be optimized). Hence, surrogate models are
used instead. Trained on a training set consisting of a limited number of input-output
pairs (such as adjustable antenna geometry parameters and frequency as input, and
the magnitude of the input reflection coefficient |S11| obtained from full-wave simu-
lations as output), these models, by virtue of their ability to generalize over the input
space, make it possible to quickly obtain the desired performance characteristics for
inputs not previously presented to the model.

The kernel-based machine learning method most widely used for microwave
modeling tasks has been support vector regression (SVR) utilizing an isotropic
Gaussian kernel [1]. It has recently been shown [2] that Bayesian support vector
regression (BSVR) [3] using a Gaussian kernel with automatic relevance determi-
nation (ARD) significantly outperforms the above standard SVR with an isotropic
kernel in modeling |S11| versus the frequency of CPW-fed slot antennas with mul-
tiple tunable geometry variables. BSVR is in essence a version of Gaussian process
regression (GPR) [4]; the Bayesian framework enables efficient training of the mul-
tiple hyperparameters of the ARD kernel by minimizing the negative log probability
of the data given the hyperparameters. Such training of multiple hyperparameters is
intractable under standard SVR, which employs a grid-search/cross-validation ap-
proach towards this end. In addition to its advantageous Bayesian-based features,
BSVR also exhibits certain desirable properties of standard SVR, such as quadratic
programming and sparseness of solutions, i.e., solutions that are fully characterized
by the set of SVs, which is a subset of the training set.

In this chapter, we explore BSVR within both global and local modeling con-
texts. Global, or “library-type,” surrogate models aim at giving accurate predictions
over the entire input space, and can be used for a variety of applications (e.g., op-
timization and statistical analysis). In contrast, local/trust region models only apply
to a subregion of input space specified by the optimization algorithm within which
the model usually is embedded.

Similar to many other global modeling methods, a drawback of BSVR is the high
starting cost of gathering the fine-discretization full-wave simulation data necessary
to train the model so that it has high predictive accuracy. We address this problem
by exploiting the sparseness property of BSVR to reduce the amount of expensive
high-fidelity data required for training (see Sects. 3–5). Earlier methods aimed at
optimal data selection for microwave modeling problems include various adaptive
sampling techniques that aim, within optimization contexts, to reduce the number of
samples necessary to ensure the desired modeling accuracy. This is done by iterative



Bayesian Support Vector Regression Modeling of Microwave Structures 123

identification of the model and the addition of new training samples based on the
actual model error at selected locations (e.g., [5]) or expected error values (statistical
infill criteria, e.g., [6]); [5, 6] were local/trust region models.

Our approach entails first training an auxiliary BSVR model using fast, inexpen-
sive coarse-discretization data selected by means of traditional experimental design
procedures, and then taking the support vectors of this model simulated at a high
mesh density as training data for the actual (high-fidelity) BSVR model. (A similar
approach was adopted in [7], but only standard SVR with an isotropic kernel was
used to model comparatively uncomplicated underlying functions.) The role of the
auxiliary model can be viewed as locating regions of the design space where more
samples are needed compared to other regions—for example, because the response
is more variable with respect to the design and/or frequency variables. Our modeling
approach is demonstrated using both planar antenna and microstrip filter examples
(see Sects. 4 and 5, respectively). We also evaluate the accuracy of our reduced-
data BSVR surrogates by using them within a space mapping (SM) optimization
framework.

As to local BSVR modeling, we consider surrogates for variable-fidelity EM-
driven optimization (see Sect. 6). In this approach, the optimization is carried out
using SM, whereas the underlying coarse model is created by approximating coarse-
discretization EM simulation data using BSVR. The high-fidelity EM simulation is
only launched to verify the design produced by the space-mapped BSVR coarse
model and obtain the data for its further correction. This allows us to significantly
reduce the computational cost of the design optimization process as illustrated using
two antenna examples.

The above sections are preceded by a short overview in Sect. 2 of the BSVR
framework, and followed by some summary remarks (see Sect. 7).

2 Modeling Using Bayesian Support Vector Regression

In this section, we briefly give an overview of the formulation of Bayesian support
vector regression (BSVR).

Consider a training data set of n observations, D = {(ui , yi) | i = 1, . . . , n}.
The BSVR formulation, which is explained at length in [3], follows the standard
Bayesian regression framework for GPR in which training targets yi corresponding
to input vectors ui are expressed as yi = f (ui )+δi , where δi are independent, iden-
tically distributed noise variables; and the underlying function f is a random field. If
f = [f (u1) f (u2) . . . f (un)], then Bayes’s theorem gives the posterior probability
of f given the training data D as

p(f|D) = p(D|f)p(f)
p(D)

, (1)



124 J.P. Jacobs et al.

with p(f) the prior probability of f, p(D|f) the likelihood, and p(D) the evidence.
The likelihood is given by

p(D|f) =
n∏

i=1

p(δi), (2)

where p(δi) ∝ exp(−ζL(δi))with L(δi) the loss function, and ζ a constant. In stan-
dard GPR [4] the loss function is quadratic; the crucial point in the BSVR formu-
lation is that a new loss function, the soft insensitive loss function, is used that
combines advantageous properties of both the ε-insensitive loss function (sparse-
ness of solutions) of standard SVR [8], and Huber’s loss function (differentiability).
It is defined as [3]:

Lε,β(δ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−δ − ε; δ ∈ (−∞,−(1 + β)ε),

(δ+(1−β)ε)2

4βε ; δ ∈ [−(1 + β)ε,−(1 − β)ε],
0; δ ∈ (−(1 − β)ε, (1 − β)ε),

(δ−(1−β)ε)2

4βε ; δ ∈ [(1 − β)ε, (1 + β)ε],
δ − ε; δ ∈ ((1 + β)ε,+∞),

(3)

where 0 < β ≤ 1, and ε > 0.
Solving for the maximum a posteriori (MAP) estimate of the function values

entails solving the primal problem [3, Eqs. (19)–(21)], with the corresponding dual
problem given by

min
α,α∗

1

2

(
α − α∗)�Σ

(
α − α∗)−

n∑

i=1

yi
(
αi − α∗

i

)

+
n∑

i=1

(
αi + α∗

i

)
(1 − β)ε + βε

C

n∑

i=1

yi
(
α2

i
+ α∗2

i

)
(4)

subject to 0 ≤ αi,α
∗
i ≤ C, i = 1, . . . , n. In the above, Σ is an n × n matrix with

Σij = k(ui ,uj ) and k(·) is the kernel function. In particular, the Gaussian kernel
with ARD (used throughout in this work) is given by

k(ui ,uj ) = σ 2
f exp

(

−1

2

D∑

k=1

(uik − ujk)
2

τ 2
k

)

+ κ, (5)

where uik and ujk are the kth elements of the ith and j th training input vectors. The
hyperparameter vector θ , which includes σ 2

f , τk , κ , C, and ε, can be determined by
minimizing the negative log probability of the data given the hyperparameters [3],

− lnp(D|θ) = 1

2

(
α − α∗)�Σ

(
α − α∗)

+C

n∑

i=1

Lε,β

(
yi − fMP(xi)

)+ 1

2
ln

∣∣∣∣I + C

2βε
ΣM

∣∣∣∣+ n lnZS, (6)
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with ΣM an m×m submatrix of Σ corresponding to the off-bound support vectors,
I the m × m identity matrix, fMP = Σ(α − α∗), and Zs defined as [3, Eq. (15)].
The length scale τk associated with the kth input dimension can be considered the
distance that has to be traveled along that dimension before the output changes sig-
nificantly [4]. The regression estimate at a test input u∗ can be expressed as

f
(
u∗) =

n∑

i=1

k
(
ui ,u

∗)(αi − α∗
i

)
. (7)

Training points corresponding to |αi − α∗
i | > 0 are the support vectors (SVs); of

these, points corresponding to 0 < |αi −α∗
i | <C are termed off-bound SVs. Usually,

the lower the parameter β in the loss function, the smaller the number of SVs [3]; β
determines the density function of the additive noise associated with training targets.

3 BSVR Modeling with Reduced Data Sets

In this section, we discuss a method of exploiting EM simulations of variable fidelity
in order to reduce the computational cost of creating the BSVR model. The model
response of interest typically is |S11| or |S21| over a specified frequency range for
a particular antenna or filter geometry. A model input (column) vector u consists
of the set of adjustable geometry parameters u and a frequency value f ; thus we
have u = [xT f ]T . The (scalar) response of a model at a specific frequency, for ex-
ample, the model response Rf , which is the fine-discretization full-wave simulated
S-parameters, is denoted as Rf (u), or Rf (x, f ). Suppose now that a BSVR sur-
rogate Rs of the CPU-intensive high-fidelity model Rf has to be constructed. As
noted earlier, the computational cost of gathering sufficient data to train Rs typi-
cally is high. To address this, first, an auxiliary BSVR model Rs.aux of the antenna
(or filter) is set up with training data obtained from coarse-discretization full-wave
simulations (these simulations are referred to as the low-fidelity full-wave model
Rc). The training set for Rs.aux consists of n input vectors xi , i = 1, . . . , n, and
associated targets yi = Rc(ui ), where ui contains geometry parameters and a fre-
quency value as noted above, and yi is the corresponding simulated |S11| (or |S21|)
value. The SVs obtained from Rs.aux are then simulated at the (high) mesh density
of Rf , providing the reduced fine-discretization training set for Rs .

As experience has shown that the coarsely simulated targets Rc and finely simu-
lated targets Rf of microwave structures such as antennas or filters are usually rea-
sonably well correlated (in Sects. 4 and 5 we give coarse and fine meshing densities
for specific examples to indicate by how much they can differ), we assume that the
regions of the input space which support the crucial variations in the coarse response
surface will also support the crucial variations in the fine response surface. Hence,
the SVs of the coarse model should largely capture the crucial variations in the fine
data as well, and along with target values obtained through fine-discretization simu-
lations should make an adequate reduced-data training set for a high-fidelity BSVR
model, i.e., Rs .
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4 Modeling and Optimization of Antennas Using BSVR

In this section, we present examples illustrating how global BSVR models for the
reflection coefficients of planar slot antennas can be set up based on reduced finely
discretized data sets. We then use these models for design optimization. We con-
sider three examples of antennas with highly nonlinear |S11| responses as a function
of tunable geometry parameters and frequency: a narrowband coplanar waveguide
(CPW)-fed slot dipole antenna, an ultra-wideband (UWB) CPW-fed T-shaped slot
antenna, and a broadband probe-fed microstrip patch with two U-shaped parasitic
elements. We furthermore evaluate the accuracy of our reduced-data BSVR surro-
gates by using them within a space mapping (SM) optimization framework [9–14].

4.1 Slot Dipole Antenna (Antenna 1)

Figure 1 shows the geometry of a CPW-fed slot dipole antenna on a single-layer
dielectric substrate. The design variables were x = [W L]T mm, and the input
space was specified as 5 ≤ W ≤ 10 mm and 28 ≤ L ≤ 50 mm. Other dimen-
sions/parameters were w0 = 4.0 mm, s = 0.5 mm, h = 1.6 mm, and εr = 4.4. We
were concerned with |S11| over the frequency band 2.0–2.7 GHz (visual inspection
revealed that |S11|-versus-frequency responses over this band varied substantially
throughout the above geometry input space). Using CST Microwave Studio [15] on
a dual-core 2.33 GHz Intel CPU with 2 GB RAM, we considered a high-fidelity
model Rf (∼130,000 mesh cells, simulation time 12 min) and a low-fidelity model
Rc (∼5,000 mesh cells, simulation time 30 s).

For training input data, 99 geometries were selected at random from the in-
put space using Latin hypercube sampling (LHS), with three frequencies per ge-
ometry uniformly randomly sampled from the above frequency range such that,
in general, each geometry had a different set of frequencies. The total number
of training points was n = 99 × 3 = 297; training input vectors had the form
{ui = [xT

i fi]T = [Wi Li fi]T |i = 1, . . . , n}, with Wi and Li the design variables
corresponding to the ith input vector, and fi a frequency value within the range of
interest. Test data consisted of 100 new geometries, also obtained via LHS, with 71
equally spaced frequencies per geometry. The training data were simulated at the
Rc mesh density, and used to train the BSVR model Rs,aux for three different val-
ues of β at the low end of its possible range (β ∈ {0.05,0.15,0.25}; as noted earlier,
usually the smaller the value of β , the smaller the number of SVs). Each Rs,aux was
used to predict the test data (also simulated at the Rc mesh density). %RMSE (per-
centage root mean square error normalized to the target range) values were in the
vicinity of 1.1 %; this high predictive accuracy confirmed that the training set was
sufficiently large.

For each Rs,aux model, the SVs were identified and simulated at the Rf mesh
density. BSVR models fitted to these fine-discretization data gave the desired surro-
gate models Rs . For comparison, surrogate models Rs,full trained on the full fine-
discretization training data set (n = 297) were also set up. Table 1 gives, for each of
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Fig. 1 Geometry of a CPW-fed slot dipole antenna (Antenna 1). The ground plane (GND) has
infinite lateral extent

Table 1 Predictive errors of surrogate antenna models

Antenna β RMSE (%) nSV nSV/n

(%)
Model costa

Rs,aux Rs Rs,full Rs
b Rs,full

1 (n = 297) 0.05 1.14 1.77 1.68 168 56 168 297

0.15 1.13 1.71 1.72 176 59 176

0.25 1.15 1.68 1.68 206 69 206

2 (n = 3,528) 0.05 3.37 4.14 3.83 1,819 52 1,819 3528

0.15 3.14 4.11 3.52 2,010 57 2,010

0.25 3.13 3.89 3.50 2,225 63 2,225

3 (n = 6,400) 0.05 6.59 5.77 5.53 3,658 57 3,658 6,400

0.15 6.54 5.87 5.41 3,937 62 3,937

0.25 6.59 5.71 5.27 3,916 61 3,916

aCost is in terms of number of Rf evaluations, i.e., fine-discretization full-wave simulations, re-
quired to generate the training data
bThe actual cost of setting up Rs is slightly (by 1 to 4 percent depending on the particular antenna
example) higher due to the coarse-discretization EM simulations used in the model construction
process

the β values, the %RMSE values obtained with Rs,aux on the coarse-discretization
test data, and Rs and Rs,full on the fine-discretization test data.

Also given in the table is nSV, the number of SVs associated with Rs,aux (and
therefore the number of training points for Rs ), and nSV/n, the proportion of the
full training data that were SVs of Rs,aux. The %RMSE values obtained for Rs and
Rs,full were either the same, or only marginally higher in the case of Rs , indicating
that reducing the number of training points from n to nSV by using the SVs of
Rs,aux as training points for Rs incurred insignificant accuracy loss. In all cases, the
reduction in training data was considerable: for example, for β = 0.15 the number of
SVs was 176, which is 59 % of the original training data set. For ready comparison,
Table 1 also explicitly lists the computational cost of generating the training data
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for the models, expressed in terms of the number of fine-discretization simulations
Rf (for each model it simply equals the number of training points). In terms of total
CPU time (which was proportional to the costs in the table), these numbers translate
to about 12 h for Rs (β = 0.15), and 20 h for Rs,full.

4.2 UWB T-Shaped Slot Antenna (Antenna 2)

Figure 2 shows the antenna layout [16]. The design variables were x =
[ax ay a b]T mm, with design space 35 ≤ ax ≤ 45 mm, 20 ≤ ay ≤ 35 mm, 2 ≤
a ≤ 12 mm, and 10 ≤ b ≤ 30 mm (w0 = 4.0 mm, s0 = 0.3 mm, s1 = 1.7 mm; the
single-layer substrate had height h = 0.813 mm and dielectric constant εr = 3.38).
The frequency band of interest was 2–8 GHz (as before, visual inspection confirmed
that |S11|-versus-frequency responses varied substantially throughout the geome-
try input space). Using CST Microwave Studio [15], we considered a high-fidelity
model Rf (∼2,962,000 mesh cells, simulation time 21 min) and a low-fidelity
model Rc (∼44,500 mesh cells, simulation time 20 s).

The training data consisted of 294 geometries obtained by LHS, with 12 frequen-
cies per geometry, randomly selected as before (n = 3,528). The test data comprised
49 new LHS geometries, with 121 equally spaced frequencies per geometry (as be-
fore, the value of n was determined by the performance of Rs,aux on the test data
simulated at the coarse mesh density).

The surrogate models Rs,aux, Rs , and Rs,full were set up similarly to those for
Antenna 1. Table 1 gives, for three values of β , the %RMSEs obtained with Rs,aux
on the coarse test data and with Rs, and Rs,full on the fine test data; as well as counts
of SVs.

In general, %RMSE values of Rs were only somewhat higher than those of
Rs,full, suggesting as before that reducing the number of training points from n to
nSV by using the SVs of Rs,aux as fine-discretization training points for Rs has little
effect on prediction accuracy. The CPU time required to generate fine-discretization
training data for Rs in the case β = 0.05 (i.e., the model used in the optimization
below) was approximately 56 h; the CPU time for Rs,full was 103 h.

4.3 Microstrip Antenna with Parasitic Elements (Antenna 3)

Figure 3 shows the antenna geometry [17]. The design variables were x =
[a b c d e]T mm, with design space 14 ≤ a ≤ 22 mm, 0.4 ≤ b ≤ 2 mm, 0.4 ≤
c ≤ 2 mm, 0.4 ≤ d ≤ 2 mm, and 0.4 ≤ e ≤ 2 mm. The main patch had dimensions
a0 = 5.8 mm and b0 = 13.1 mm. The lateral dimensions of the dielectric material
and the metal ground were lx = 20 mm and ly = 25 mm. The dielectric substrate
height, h, was 0.4 mm, and its relative permittivity, εr , was 4.3. The feed pin offset
from the main patch center, l0, was 5.05 mm, and the pin was 0.5 mm in diameter.
The frequency band of interest was 4–7 GHz.
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Fig. 2 Geometry of a UWB CPW-fed T-shaped slot antenna (Antenna 2, top view). The ground
plane (GND) has infinite lateral extent

Fig. 3 Geometry of a broadband probe-fed microstrip patch antenna with two U-shaped parasitic
elements (Antenna 3, top view). The dielectric substrate and ground plane both have lateral dimen-
sions lx and ly . The empty circle below the center of the patch indicates the position of the feed
pin

The training data were 400 geometries obtained by LHS, with 16 randomly se-
lected frequencies per geometry (n = 6,400). The test data comprised 50 new LHS
geometries with 121 equally spaced frequencies per geometry. We considered a
high-fidelity model Rf (∼440,500 mesh cells, simulation time 12 min) and a low-
fidelity model Rc (∼25,700 mesh cells, simulation time 15 s). It is instructive to
consider three randomly picked responses from the training data, shown in Fig. 4.
In spite of what appears to be a narrowly circumscribed input space (cf. the bound-
aries on the b, c, d , and e dimensions), the responses show considerable variety
from one training point to the next. Furthermore, while within-training point coarse
and fine responses agreed to some extent for some regions of the frequency band,
there were considerable differences for others.

Surrogate models were constructed as before. The %RMSE values obtained
with Rs,aux on the coarse test data, and Rs and Rs,full on the fine test data for
β ∈ {0.15,0.20,0.25} are shown in Table 1, as well as nSV. The greatest data re-
duction, by 43 %, occurred for β = 0.15, while the %RMSE only increased from
5.53 % (full model) to 5.77 % (reduced model). The CPU time necessary to simu-
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Fig. 4 Full-wave simulation responses Rc (- - -) and Rf (—) for the Antenna 3 train-
ing geometries x = [16.2267 0.7904 1.8943 0.4476 1.1148]T mm (top), [14.8396 0.6347
0.9242 0.9358 0.8196]T mm (center), and [15.2672 1.3194 1.2827 0.5165 1.0004]T mm (bot-
tom)

late fine-discretization training data for Rs for β = 0.05 (i.e., the model used for the
optimization) was approximately 49 h; for Rs,full it was 80 h.

To further explore the influence of mesh density on our method, a second coarse
model Rcc (∼8,000 mesh cells, simulation time 8 s), i.e., coarser than Rc, was
generated, and corresponding surrogate models constructed. The predictive results
for the new Rs were similar to previous results; e.g., for β = 0.2 the predictive
%RMSE was 5.82 %, although the number of SVs increased somewhat to 3,992
(see Table 1). In order to evaluate the general similarity between the coarsely and
finely simulated data, Pearson product-moment correlation coefficients were com-
puted for the respective |S11| values, i.e., for |S11| of Rc and Rf ; and also for Rcc

and Rf (using all training geometries with 121 equally spaced frequency points per
geometry). The correlation coefficients were 0.74 and 0.51, respectively, suggesting
some robustness to our procedure.

4.4 Application Examples: Antenna Optimization

The full and reduced BSVR models were used to perform design optimization of
the antenna structures considered in Sects. 4.1 through 4.3. We again note that our
models are intended as multipurpose global models that give accurate predictions
for the whole of the input space; multiple optimization runs corresponding to any
number of sets of design specifications constitute one kind of repeated-use appli-
cation. The initial design in each case is the center of the region of interest x(0).
The design process starts by directly optimizing the BSVR model. Because of some
limitations in the accuracy of the models given the design context (linear responses
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were modeled—the preferred choice given the Gaussian kernel—but logarithmic
responses (in decibels) are optimized), the design is further refined by means of the
SM iterative process [14]

x(i+1) = arg min
x

U
(
R(i)

su (x)
)
, (8)

where R
(i)
su is a surrogate model, enhanced by frequency and output SM [14]. The

surrogate model setup is performed using an evaluation of Rf at x(i). U implements
design specifications. For simplicity, we use the symbol Rco to denote either of
Rs.full or Rs , which can be considered the “coarse” models in the SM context. Let
Rco(x,F ) denote the explicit dependency of the model on the frequency (F is the
set of frequencies of interest at which the model is evaluated). The surrogate model
is defined as

R(i)
su (x) = Rco

(
x,α(i)F

)+ d(i) (9)

with

d(i) = Rf

(
x(i)

)− Rco
(
x(i),α(i)F

)
(10)

and

α(i)F = α
(i)
0 + α

(i)
1 F (11)

the affine frequency scaling (shift and scaling). The frequency scaling parameters
are calculated as

[
α
(i)
0 α

(i)
1

] = arg min
x

∥∥Rf

(
x(i)

)− Rco
(
x(i), α

(i)
0 + α

(i)
1 F

)∥∥ (12)

i.e., to minimize the misalignment between the high-fidelity and the scaled low-
fidelity model responses at x(i). Although the models are evaluated at a discrete
set of frequencies, the information at other frequencies can be obtained through
interpolation. The misalignment is further reduced by the output SM (10); this en-
sures zero-order consistency (i.e., R

(i)
su (x(i)) = Rf (x

(i))) between the surrogate and
Rf [18]. The algorithm (8) working with the SM surrogate model (9)–(12) typically
requires only three to four iterations to yield an optimized design, with the cost of
each iteration effectively equal to a single evaluation of the high-fidelity model.

Figure 5 shows the responses of the reduced BSVR and fine models at the ini-
tial designs as well as the responses of the fine models at the final designs obtained
for both antenna structures. The reduced BSVR models correspond to β values in
Table 1 of 0.15 (Antenna 1), 0.05 (Antenna 2), and 0.15 (Antenna 3). Table 2 sum-
marizes the results. One can see that the design quality and cost (expressed in terms
of number of Rf evaluations) are very similar for the BSVR models obtained us-
ing full and reduced data sets (the CPU times associated with three Rf evaluations
(Antennas 1 and 2) and four Rf evaluations (Antenna 3) were 36 min, 63 min, and
48 min, respectively).

For comparison, we also optimized the three antennas using a conventional (not
surrogate-based) method, namely a state-of-the-art pattern search algorithm [19, 20]
that directly relied on fine-discretization full-wave simulations (i.e., Rf ) for its ob-
jective function evaluations. While the maximum |S11| values at the final designs
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Fig. 5 Optimization results: responses of the BSVR model with reduced data set (· · ··), the fine
model at the initial design (- - -), and the fine model at the optimized design (—) for (a) Antenna 1,
(b) Antenna 2, and (c) Antenna 3. Design specifications are marked with horizontal solid line

Table 2 Results of antenna optimizations

Antenna Model max |S11| at final designa Optimization costb

1 Rs,full −18.3 dB 3

Rs −17.6 dB 3

2 Rs,full −11.0 dB 3

Rs −11.0 dB 3

3 Rs,full −10.2 dB 4

Rs −10.2 dB 4

amax |S11| at the frequency band of interest: 2.3 to 2.4 GHz (Antenna 1), 2.3 to 7.7 GHz (An-
tenna 2), and 5 to 6 GHz (Antenna 3)
bNumber of Rf evaluations including evaluation at the initial design

obtained for Antennas 1, 2, and 3 (−21.6 dB, −11.6 dB, and −10.7 dB, respec-
tively) were similar to those obtained using our BSVR models and the above SM
procedure, the computational expense for the conventional optimization was at least
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an order of magnitude larger (i.e., 40, 148, and 201 Rf evaluations for Antennas 1,
2, and 3, respectively, compared to the 3, 3, and 4 Rf evaluations reported in Ta-
ble 2). This accentuates how much faster optimization can be realized when accurate
models such as BSVR models are available: our approach reduces by up to 43 %
the high initial cost of setting up these multipurpose global models (in comparison
the cost of the optimization using SM is insignificant).

5 Modeling and Optimization of Filters Using BSVR

Here we discuss global BSVR models based on reduced finely discretized data sets
for the |S21| responses of two microstrip filters: a capacitively coupled dual-behavior
resonator microstrip bandpass filter, and an open-loop ring resonator (OLRR) band-
pass filter. As before, we use these models for design optimization.

5.1 Capacitively Coupled Dual-Behavior Resonator (CCDBR)
Microstrip Bandpass Filter

Consider the capacitively coupled dual-behavior resonator (CCDBR) bandpass fil-
ter [21] implemented in microstrip lines, shown in Fig. 6(a). The three design vari-
ables were x = [L1 L2 L3]T . The design variable space for the BSVR models was
defined by the center vector x0 = [3 5 1.5]T mm and size vector δ = [1 1 0.5]T mm
such that the variable ranges were x0 ± δ mm (x0 and δ were guesses, guided to
some extent by expert knowledge of the filters and a very rudimentary exploration
of the design space). The substrate height was h = 0.254 mm and the relative per-
mittivity was εr = 9.9; the value of S was 0.05 mm, while the microstrip line widths
w1 and w2 were 0.25 mm and 0.5 mm, respectively. We were interested in the fil-
ter response over the frequency range 2 to 6 GHz. The high-fidelity model Rf of
the filter was simulated using FEKO [22] (total mesh number 715, simulation time
about 15 s per frequency). The low-fidelity model Rc was also simulated in FEKO
(total mesh number 136, simulation time 0.6 s per frequency).

In order to set up the training data input vectors, 400 geometries were randomly
selected from the design space using Latin hypercube sampling (LHS) [23]. For each
geometry, 12 simulation frequencies were selected by uniform random sampling
from the above frequency range, yielding a total of n = 400 × 12 = 4,800 training
input vectors of the form {xi = [L1i L2i L3i fi]T |i = 1, . . . , n}, with L1i , L2i , and
L3i the design variables corresponding to the ith input vector, and fi a frequency
value within the range of interest. The corresponding output scalars, obtained from
FEKO simulations, were yi = |S21i |. The test data were likewise obtained from 50
new geometries, also obtained via LHS, with 41 equally spaced frequencies per
geometry. The training data were simulated at the Rc mesh density and used to train
the BSVR model Rs,aux for β = 0.1, 0.2, and 0.3 (β is the loss function parameter
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Fig. 6 Geometry of the (a) CCDBR bandpass filter [21] and (b) OLRR bandpass filter [24]

in Eq. (3) discussed above). Rs,aux was used to make predictions on the test data
(also simulated at the Rc mesh density).

The %RMSE (root mean square error normalized to the target range expressed
as a percentage) was around 4.13 % for the three β values, which was acceptable
for this highly nonlinear problem, and indicated that the training set was sufficiently
large. Next, for each value of β the nSV SVs of Rs,aux were simulated at the Rf

mesh density. BSVR models fitted to these reduced training sets gave the desired
surrogate models Rs .

For comparison, surrogates Rs,full trained on the full fine-discretization training
data (n = 4,800) were also set up. Table 3 gives, for the three β values, the %RM-
SEs obtained with Rs,aux on the coarse test data, and with Rs and Rs,full on the
fine test data; as well as the number of SVs obtained in each instance. The highly
similar %RMSEs obtained with Rs and Rs,full indicate that reducing the number
of expensive fine-discretization training points from n to nSV incurred negligible
accuracy loss, even for a reduction in data as large as 48 % (β = 0.1). Figure 7(a)
shows typical predictive results for |S21| versus frequency obtained for the test ge-
ometry x = [2.794 4.407 1.491]T mm. Some discrepancy can be observed when
comparing the RMSE values for Rs.aux in Table 3 to those for Rs (and Rs.full). This
occurs because the coarse model responses are slightly smoother as functions of fre-
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Table 3 Predictive errors of surrogate filter models. Rs,aux are BSVR models trained on all n data
points obtained from coarsely discretized simulations, Rs,full are BSVR models trained on all n

data points obtained from finely discretized simulations, and Rs are BSVR models trained on the
nSV finely discretized data points corresponding to SVs of Rs,aux

Filter β RMSE (%) nSV nSV/n

(%)Rs,aux Rs Rs,full

CCDBR
(n = 4,800)

0.1 4.17 6.05 5.98 2,488 52

0.2 4.12 5.87 5.95 2,563 53

0.3 4.11 5.95 5.86 2,886 60

OLRR
(n = 4,800)

0.1 4.12 4.26 4.21 2,360 49

0.2 3.77 4.47 4.32 2,565 53

0.3 3.46 3.90 3.64 2,744 57

Fig. 7 Predictive response of BSVR models Rs (—) and Rs,full (- - -), and high-fidelity model Rf

(· · · ·) for (a) the CCDBR bandpass filter test geometry x = [2.794 4.407 1.491]T mm, and (b) the
OLRR bandpass filter test geometry x = [38.088 8.306 5.882 4.029 0.193 0.061 0.985]T mm

quency (i.e., they do not contain as much detail particularly in the passband) than the
fine model ones, which make them easier to model; this results in a lower value of
%RMSE. Using a finer mesh for the Rc model would reduce this discrepancy. The
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RMSE values for Rs and Rs.full nevertheless were good given the highly nonlinear
nature of the modeling problem, and of sufficient accuracy to yield good optimiza-
tion results, as we show in Sect. 4. The total computational time necessary to gather
the training data for setting up Rs.full was 20 h, whereas the corresponding time
for setting Rs (including both low- and high-fidelity model evaluations) was 11.2,
11.4, and 12.8 h (for β = 0.1, 0.2, and 0.3, respectively) on a quad core PC with a
2.66 GHz Intel processor and 4 GB RAM. Thus the computational savings due to
the proposed technique vary between 36 % (for β = 0.3) to 44 % (for β = 0.1).

5.2 Open-Loop Ring Resonator (OLRR) Bandpass Filter

The filter geometry [24] is shown in Fig. 6(b). The seven design variables
were x = [L1 L2 L3 L4 S1 S2 G]T . The design space was described by x0 =
[40 8 6 4 0.2 0.1 1]T mm and δ = [2 1 0.4 0.4 0.1 0.05 0.2]T mm. The substrate
parameters were h = 0.635 mm and εr = 10.2, while the microstrip line widths
were W1 = 0.4 mm and W = 0.6 mm. The frequency range of interest was 2 to
4 GHz. High- and low-fidelity models were simulated in FEKO [22] (total mesh
number 1,084 and simulation time 40 s per frequency for Rf ; total mesh number
148 and simulation time 0.8 s per frequency for Rc). The training data comprised
400 geometries obtained by LHS [23], with 12 randomly selected frequencies per
geometry (n = 4,800), while the test data were 50 new LHS geometries with 81
equally spaced frequencies per geometry. Setting up Rs,aux, Rs , and Rs,full pro-
ceeded in a manner similar to the earlier filter. Table 3 gives the %RMSE values
obtained with Rs,aux on the coarse test data and with Rs and Rs,full on the fine
test data; as well as the SV counts. In general, %RMSE values of Rs were only
marginally higher than those of Rs,full, suggesting as before that reducing the num-
ber of training points from n to nSV by using the SVs of Rs,aux as fine-discretization
training points for Rs has little effect on the prediction accuracy. The greatest re-
duction in data (51 %) was obtained for β = 0.1. Figure 7(b) shows representa-
tive predictive results for |S21| versus frequency, in particular for the test geometry
x = [38.088 8.306 5.882 4.029 0.193 0.061 0.985]T mm. The computational time
necessary to gather the training data for setting up Rs.full was 53.3 h. The cor-
responding time for setting up Rs (including both low- and high-fidelity model
evaluations) was 27.2, 29.3, and 31.4 h (β = 0.1, 0.2, and 0.3, respectively). The
computational savings due to the proposed technique range from 41 % (for β = 0.3)
to 49 % (for β = 0.1).

5.3 Filter Optimization Using BSVR Surrogates

The BSVR developed in Sects. 5.1 and 5.2 is used to perform design optimization
of the filters. The optimization methodology is essentially the same as described in
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Fig. 8 CCDBR filter: responses of the high-fidelity model (—) and BSVR models Rs.full (- - -)
and Rs (· · · ·) at the initial design x(0). Design specification as per horizontal solid (red) lines

Fig. 9 CCDBR filter: responses of the high-fidelity model at the optimized designs found using
Rs.full (—) and Rs (- - -). Design specification as per horizontal solid (red) lines

Sect. 4.4 and involves iterative correction and optimization of the surrogates in order
to (locally) improve their accuracy [25].

The design process starts by directly optimizing the BSVR model (for each fil-
ter, we used the BSVR surrogates corresponding to β = 0.1). Each iteration (see
Eq. (8)) requires only one evaluation of the high-fidelity model. The CCDBR band-
pass filter had design specifications |S21| ≥ −3 dB for 3.8 ≤ f ≤ 4.2 GHz; and
|S21| ≤ −20 dB for 2.0 ≤ f ≤ 3.2 GHz, and 4.8 ≤ f ≤ 6.0 GHz (f denotes
frequency). Figure 8 shows the responses of the high-fidelity model Rf as well
as the responses of Rs and Rs.full at the initial design x(0) = [3 6 1.5]T mm.
The high-fidelity model responses at the optimized designs found using both Rs

and Rs.full are shown in Fig. 9 (these designs were [3.47 4.79 1.01]T mm and
[3.21 4.87 1.22]T mm, respectively). In both cases, the design process is accom-
plished in three iterations, which correspond to a design cost of four high-fidelity
model evaluations.

For the OLRR bandpass filter, the design specifications were |S21| ≥ −1 dB
for 2.85 ≤ f ≤ 3.15 GHz, and |S21| ≤ −20 dB for 2.0 ≤ f ≤ 2.5 GHz and
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Fig. 10 OLRR bandpass filter: responses of the high-fidelity model (—) and BSVR models Rs.full
(- - -) and Rs (· · · ·) at the initial design x(0). Design specification as per horizontal solid (red)
lines

Fig. 11 OLRR bandpass filter: responses of the high-fidelity model at the optimized designs found
using Rs.full (—) and Rs (- - -). Design specification as per horizontal solid (red) lines

3.5 ≤ f ≤ 4.0 GHz. Figure 10 shows the responses of Rf , Rs , and Rs.full at
the initial design x(0) = [40.0 8.0 6.0 4.0 0.1 0.1 1.0]T mm. The responses
at the optimized designs obtained using Rs and Rs.full are shown in Fig. 11
(these designs were [39.605 8.619 6.369 3.718 0.300 0.069 0.986]T mm and
[39.010 8.219 5.786 4.260 0.268 0.050 1.068]T mm, respectively). In both cases,
the design process is accomplished in two iterations, which correspond to the design
cost of three high-fidelity model evaluations.

6 Variable-Fidelity Optimization Using Local BSVR Surrogates

In this section, we discuss the application of BSVR surrogates defined locally (i.e.,
in a specific region of the input space) towards low-cost design optimization of
antennas [26].
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As we have shown, BSVR models can be accurate; however, similarly to other
approximation-based modeling methods, considerable computational overhead is
necessary to acquire the training data. This is not convenient when using approxi-
mation surrogates for ad hoc optimization of a specific structure.

Here, we describe a computationally efficient antenna design methodology that
combines space mapping (as the optimization engine), and coarse model response
surface approximation implemented through BSVR. BSVR serves to create a fast
coarse model of the antenna structure. In order to reduce the computational cost of
creating the latter, it is obtained from coarse discretization EM simulation data.

6.1 Optimization Algorithm

As mentioned before, the main optimization engine is space mapping (SM) [26].
The generic SM optimization algorithm produces a sequence of approximate solu-
tions to the problem (1), x(0),x(1), . . . , as follows:

x(i+1) = arg min
x

U
(
R(i)

s (x)
)
, (13)

where R
(i)
s is the SM surrogate model at iteration i. x(0) is the initial design. The

surrogate model is constructed using the underlying coarse model Rc and suitable
auxiliary transformations [27]. The elementary SM transformations include input
SM [28] with the surrogate defined as R

(i)
s (x) = Rc(x + c(i)), multiplicative output

SM [27], R
(i)
s (x) = A(i) · Rc(x), additive output SM [28], R

(i)
s (x) = Rc(x)+ d(i),

and frequency scaling [27], R(i)
s (x) = Rc.f (x;F (i)). In frequency SM, it is assumed

that the coarse model is an evaluation of a given performance parameter over a cer-
tain frequency range, i.e., Rc(x) = [Rc(x;ω1) . . .Rc(x;ωm)]T , and the frequency-
scaled model is then given as Rc.f (x;F (i)) = [Rc(x; s(ω1)) . . .Rc(x; s(ωm))]T ,
where s is a scaling function dependent on the set of parameters F (i). Typically,
a linear scaling function s(ω) = f

(i)
0 + f

(i)
1 ω is used.

Parameters of SM transformations are obtained using the parameter extraction
(PE) process, which, in the case of input SM, takes the form

c(i) = arg min
c

i∑

k=0

∥∥Rf

(
x(k)

)− Rc

(
x(k) + c

)∥∥. (14)

Formulation of PE for the other transformations is similar [28].
Because PE and surrogate model optimization may require a large number of

coarse model evaluations, it is beneficial that Rc is fast, which is usually not possible
for antenna structures, where the only universally available (and yet accurate) type
of coarse model is the output of coarse-discretization EM simulations. To alleviate
this problem, we construct the coarse model by using a fixed number of such low-
fidelity simulations as training data for the coarse model, so that, once set up, the
coarse model can be used by the SM algorithm without further reference to the EM
solver.
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Fig. 12 CPW-fed slot dipole antenna: responses of the low- (· · · ·) and high- (—) fidelity models
at the initial design xinit, and the response of the low-fidelity model at its approximate optimum
x(0) (- - -)

In order to improve the convergence properties of the algorithm, it is embedded
in the trust region framework [29], so that the new design x(i+1) is found only in the
vicinity of the current one, x(i), as follows:

x(i+1) = arg min
x,‖x−x(i)‖≤δ(i)

U
(
R(i)

s (x)
)
, (15)

where δ(i) is the trust region radius updated in each iteration according to the stan-
dard rules [29]. Within this framework, the designs that do not improve the specifi-
cation error are rejected, and the search is repeated with the reduced value of δ(i).

The steps in the modeling procedure are as follows. First, we find an approx-
imate optimum of the coarse model Rcd (i.e., the low-fidelity full-wave EM sim-
ulations). Then we construct a BSVR surrogate Rc, only using relatively densely
spaced training data in the vicinity of this optimum, thus further enhancing the
computational efficiency. Once constructed, Rc is used as the basis for the itera-
tive optimization (13)–(15).

6.2 Antenna Optimization Examples

As examples, we consider again the CPW-fed slot dipole antenna of Sect. 4.1 (An-
tenna 1, Fig. 1) and the CPW-fed T-shaped slot antenna of Sect. 4.2 (Antenna 2,
Fig. 2).

For Antenna 1, we have two design variables, x = [W L]T mm. Using CST
Microwave Studio [15], we consider a high-fidelity model Rf (∼130,000 mesh
cells, simulation time 12 min), and a low-fidelity model Rcd (∼5,000 mesh cells,
simulation time 30 s). The initial design is xinit = [7.5 39.0]T mm. The starting
point of the SM optimization is the approximate optimum of the low-fidelity model,
x(0) = [5.0 43.36]T mm, found using a pattern search algorithm [19]. The computa-
tional cost of this step was 26 evaluations of Rcd. The BSVR coarse model has been
created using 100 low-fidelity model samples allocated using LHS [23] in the vicin-
ity of x(0) defined by deviation d = [1 3]T mm. The size of this vicinity must be
sufficiently large to allow the coarse model to “absorb” the misalignment between
the low- and high-fidelity models at x(0) through appropriate SM transformations.
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Fig. 13 CPW-fed slot dipole antenna: response of the high-fidelity model at the final design x(4)

Table 4 CPW-fed slot dipole antenna: design cost

Algorithm component Number of model
evaluations

Evaluation time

Absolute [min] Relative to Rf

Optimization of Rcd 26 × Rcd 13 1.1

Creating BSVR coarse model 100 × Rcd 50 4.2

Evaluation of Rf
a 5 × Rf 60 5.0

Total optimization time N/A 123 10.3

aIncludes evaluation of Rf at x(0)

The low-fidelity model at the initial design, as well as the low- and high-fidelity
model responses at x(0), are shown in Fig. 12. In this case, the major discrepancy
between the models is a frequency shift. Therefore, the primary SM transformation
used for this example is frequency scaling applied to all designs, x(0),x(1), . . . ,x(i),
considered during the optimization run. The SM surrogate is then enhanced using a
local additive output SM [27] so that the entire SM model has the form R

(i)
s (x) =

Rc.f (x;F (i))+ [Rf (x
(i))− Rc(x

(i))].
The final design, x(4) = [5.00 41.56]T mm, is obtained in four SM iterations.

The high-fidelity model response at x(4) is shown in Fig. 13. At this design, we
have |S11| ≤ −18.3 dB over the entire frequency band of interest. The design cost is
summarized in Table 4 and corresponds to about ten evaluations of the high-fidelity
model. Figure 14 shows the convergence plot and the evolution of the specification
error versus iteration index.

For Antenna 2, the design variables are x = [ax ay a b]T mm. The design spec-
ifications are |S11| ≤ −12 dB for 2.3 to 7.6 GHz. The high-fidelity model Rf is
evaluated with the CST MWS transient solver [15] (3,556,224 mesh cells, simu-
lated in 60 min). The low-fidelity model Rcd is also evaluated in CST MWS but
with a coarser mesh: 110,208 mesh cells, simulation time 1.5 min. The initial de-
sign is xinit = [40 30 10 20]T mm. The approximate low-fidelity model optimum,
x(0) = [40.33 25.6 8.4 20.8]T mm, has been found using a pattern search algorithm,
at the cost of 85 evaluations of Rcd. The BSVR coarse model has been created using
100 low-fidelity model samples allocated using LHS in the vicinity of x(0) defined
by deviation d = [2 2 1 1]T mm. The BSVR model Rc was subsequently used as a



142 J.P. Jacobs et al.

Fig. 14 CPW-fed slot dipole antenna: (a) convergence plot, (b) specification error versus iteration
index

Fig. 15 Broadband CPW-fed T-shaped slot antenna: responses of the low- (· · · ·) and high- (—) fi-
delity models at the initial design xinit and the response of the low-fidelity model at its approximate
optimum x(0) (- - -)

coarse model for the SM algorithm. Figure 15 shows the low-fidelity model at the
initial design, as well as the low- and high-fidelity model responses at x(0). Because
the major discrepancy between the models is a vertical shift, the primary SM trans-
formation used for this example is the multiplicative response correction applied
to all designs, x(0),x(1), . . . ,x(i), considered during the optimization run. The SM
surrogate is then enhanced using an additive output SM with the SM model having
the form R

(i)
s (x) = A(i) · Rc(x)+ [Rf (x

(i))− Rc(x
(i))].

The final design, x(7) = [39.84 24.52 8.84 21.40]T mm, is obtained in seven
SM iterations. The high-fidelity model response at x(7) is shown in Fig. 16. At that
design, we have |S11| ≤ −10.9 dB for 2.3 GHz to 7.6 GHz. The overall design cost is
summarized in Table 5 and corresponds to about 15 evaluations of the high-fidelity
model. The convergence of the algorithm (Fig. 17) is consistent with that for the
previous example.
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Fig. 16 Broadband CPW-fed T-shaped slot antenna: response of the high-fidelity model at the
final design x(7)

Table 5 Broadband CPW-fed T-shaped slot antenna: design cost

Algorithm component Number of model
evaluations

Evaluation time

Absolute [min] Relative to Rf

Optimization of Rcd 85 × Rcd 128 2.1

Creating BSVR coarse model 100 × Rcd 150 2.5

Evaluation of Rf
a 10 × Rf 600 10.0

Total optimization time N/A 878 14.6

aIncludes evaluation of Rf at x(0)

Fig. 17 Broadband CPW-fed T-shaped slot antenna: (a) convergence plot, (b) specification error
versus iteration index

7 Conclusion

In this chapter, we presented a Bayesian support vector regression methodology for
accurate modeling of microwave components and structures. We demonstrated the
possibility of reduction of the number of fine-discretization training points by per-
forming BSVR modeling on coarse-discretization EM simulation data (selected by
standard experimental design) and then obtaining high-fidelity simulations only for



144 J.P. Jacobs et al.

the points that contribute to the initial BSVR model in a nontrivial way. The com-
putational savings thus obtained had little effect on the modeling accuracy. We have
also demonstrated that the reduced-training-set BSVR models perform as well as the
full-training-set models in parametric optimization of antenna structures. A notable
advantage of BSVR is that only a single parameter must be set by the user, namely β

(hyperparameters are initialized randomly during training). This is in contrast to, for
instance, neural network-based methodologies for regression, which might require
the tuning of a variety of architectural/performance parameters (e.g., number of hid-
den units, learning rate, momentum). We also discussed the use of BSVR surrogates
for variable-fidelity design optimization of antennas, where the main optimization
engine is space mapping, whereas the underlying coarse model is obtained by ap-
proximating low-fidelity EM simulation data. As a result, the optimization can be
accomplished at a low computational cost corresponding to a few evaluations of the
high-fidelity EM simulations of the structure under design.
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Artificial Neural Networks and Space Mapping
for EM-Based Modeling and Design
of Microwave Circuits

José Ernesto Rayas-Sánchez

Abstract This chapter reviews the intersection of two major CAD technologies
for modeling and design of RF and microwave circuits: artificial neural networks
(ANNs) and space mapping (SM). A brief introduction to ANNs is first presented,
starting from elementary concepts associated to biological neurons. Electromagnetic
(EM)-based modeling and design optimization of microwave circuits using ANNs is
addressed. The conventional and most widely used neural network approach for RF
and microwave design optimization is explained, followed by brief descriptions of
typical enhancing techniques, such as decomposition, design of experiments, clus-
terization, and adaptive data sampling. More advanced approaches for ANN-based
design exploiting microwave knowledge are briefly reviewed, including the hybrid
EM-ANN approach, the prior knowledge input method, and knowledge-based neu-
ral networks. Computationally efficient neural SM methods for highly accurate EM-
based design optimization are surveyed, contrasting different strategies for devel-
oping suitable (input and output) neural mappings. A high-level perspective is kept
throughout the chapter, emphasizing the main ideas associated with these innovative
techniques. A tutorial example using commercially available CAD tools is finally
presented to illustrate the efficiency of the neural SM methods.

Keywords Computer-aided design (CAD) · Design automation · RF and
microwave modeling · EM-based design optimization · Artificial neural network
(ANN) · Space mapping (SM) · Knowledge-based neural network (KBNN) ·
Neural space mapping

1 Introduction

The modern era of artificial neural networks (ANNs) started in the 1940s and de-
veloped explosively in the 1980s, finding applications in many areas of science, en-
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gineering, management, and other disciplines [1]. ANN applications in RF and mi-
crowave engineering have been reported since the 1990s [2]. Descriptions of ANNs
and their key features, e.g., architectures, paradigms, training methods, data set for-
mation, learning and generalization errors, and learning speed, in the context of RF
and microwave CAD, have been extensively reported [3–8]. An excellent compila-
tion and review of the main issues and initial applications of ANNs in the microwave
arena was made by Burrascano and Mongiardo [8]. Patnaik and Mishra [9] devel-
oped an abbreviated review of ANN techniques to microwave modeling, design, and
measurement problems (with some emphasis on antenna applications). Another ex-
cellent review on ANNs for RF circuits, high-speed interconnects, and microwave
modeling is the work by Zhang et al. [10], which includes a comprehensive foun-
dation on neural model development as well as a list of practical microwave neuro-
models.

Neural networks have been widely used for modeling microwave devices and
high-speed circuits in several innovative ways. The training and testing data for
these models are typically obtained from full-wave electromagnetic (EM) simula-
tors, from physics-based models, or from measurements. In the case of massive sim-
ulation tasks such as those required in RF/microwave nonlinear subsystems (e.g.,
front ends for mobile and personal communications), the training and testing data
can be obtained from standard harmonic balance simulations using very detailed
circuit models [11]. The resulting neural models are excellent vehicles for fast and
accurate simulation.

By contrast, the use of neural networks for direct RF and microwave design by
optimization is less developed. A review of the most relevant work in EM-based de-
sign and optimization of RF and microwave circuits exploiting ANNs can be found
in [12], including measurement-based design of high-speed circuits using ANNs as
well as synthesis neural networks, also called “inverse neural models.”

This chapter focuses on the intersection of two major CAD technologies for mod-
eling and design of RF and microwave circuits: ANNs and space mapping (SM), and
it endeavors to address the most significant milestones at the intersection of these
two consolidated technologies.

A brief introduction to neural networks is first presented, starting from elemen-
tary concepts associated to biological neurons up to the essential definitions con-
cerning artificial neural models.

EM-based modeling and design optimization of microwave circuits using ANNs
is subsequently addressed. The conventional and most widely used ANN approach
for RF and microwave design optimization is explained, also referred to as the
“black-box” approach, followed by indications of typical enhancing techniques,
such as decomposition, design of experiments, clusterization, and adaptive data
sampling.

More advanced approaches for ANN-based design exploiting microwave knowl-
edge are briefly reviewed, including the hybrid EM-ANN approach, also called the
difference method, the prior knowledge input (PKI) method, and knowledge-based
neural networks (KBNNs).
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Abbreviated descriptions of computationally efficient neural space mapping
methods for highly accurate EM-based design optimization are formulated, con-
trasting different strategies for developing suitable neural mappings.

A high-level perspective is kept throughout the chapter, emphasizing the main
ideas associated with these innovative techniques. A tutorial example using com-
mercially available CAD tools is then presented to illustrate the efficiency of some
of these neural space mapping methods.

2 Artificial Neural Networks

A biological brain can be seen as a highly complex, nonlinear, and massively parallel
computer. The neuron is its fundamental processing unit; it receives and combines
signals from many other neurons through filamentary paths called dendrites [13].
A simplified representation of a biological neuron is shown in Fig. 1.

Dendritic trees collect signals from many other neurons and transmit them to
the main body of the neuronal cell, the soma, where most of the signal process-
ing takes place. When the resultant processed signals reach a threshold, the neuron
fires, transmitting an electrical signal, the action potential or induced local field [1],
along a transmission channel called the axon (see Fig. 1). When the action poten-
tial reaches the axonic ending, chemical messengers known as neurotransmitters are
released [13].

The connection between neurons is called a synapse. When a signal appears at
the synapse, an electrical charge is generated, whose magnitude depends on the
strength of all the incoming signals processed at the soma, which are weighted by
factors that in general vary over time. Biological neurons also grow in size and
connections over time through the natural learning process. Each neuron connects
to many other neurons, forming complicated neural networks. A biological neural
network may be conceived as a sophisticated signal processor, in which the strength
of each connection or synapse (i.e., the synaptic weight) and the bias and threshold
values of each neuron at steady state constitute the network’s program.

Artificial neural networks (ANNs) emulate these biological processors: they are
inspired by the ability of biological brains to learn from observation and generalize
by abstraction.

2.1 Neuronal Models

Several basic models to approximate the behavior of a biological neuron in a sim-
plified manner have been proposed [1]. The most widely used models for artificial
neurons in RF and microwave engineering applications are the linear neuron, the
inner product nonlinear neuron, and the Euclidean distance nonlinear neuron [14].
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Fig. 1 Representation of a biological neuron

Fig. 2 Linear neuron: (a) model, (b) symbol

2.1.1 Linear Neuron

A general linear neuron can be modeled as shown in Fig. 2. Linear neurons are
mostly used in the output layer of ANNs.

The k-th linear neuron (see Fig. 2) has n inputs and one output, where uk =
[uk1 . . . ukn]T is the vector of inputs, which represent signals coming from other
neurons, wk = [wk1 . . . wkn]T is the vector of weighting factors to represent the
corresponding synapse strengths, and bk is the bias or offset term. The output signal
sk is the activation potential given by

sk = bk + uT
k wk. (1)

2.1.2 Inner-Product Nonlinear Neuron

The most popular nonlinear neuron, used mainly in the hidden layers of multiple-
layer perceptrons (see Sect. 2.2), is the inner-product nonlinear neuron, whose
model and symbol are shown in Fig. 3.

The inner-product nonlinear k-th neuron represented in Fig. 3 has n inputs and
one output, where sk is the activation potential or induced local field given by (1)
and zk is the output signal in neuron k calculated as

zk = ϕk(sk). (2)

The purpose of the nonlinear function ϕk(sk), called the activation function or
squashing function, is to ensure that the neuron’s response is bounded, to emulate
that the actual response of the biological neuron is conditioned or damped, as a result
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Fig. 3 Inner-product nonlinear neuron: (a) model, (b) symbol

Fig. 4 Most popular activation functions: (a) sigmoid or logistic function (3), (b) hyperbolic tan-
gent function (4)

of large or small stimuli. In the biological nervous system, conditioning of stimuli is
continuously done by all sensory inputs [13]. Three popular nonlinearities for inner-
product neurons are the sigmoid, the hard limiter, and the hyperbolic tangent [1].

If a sigmoid or logistic function is used, the response of neuron k is given by

zk = 1

1 + e−ask
, (3)

where the parameter a can be used to control the slope of the sigmoid, and therefore
the amount of nonlinearity, as illustrated in Fig. 4a.

If a hyperbolic tangent is used, the neuronal response is given by

zk = eask − e−ask

eask + e−ask
. (4)

The hyperbolic tangent activation function is illustrated in Fig. 4b, showing its
behavior for different slope parameter values. The sigmoid and hyperbolic tangent
functions are the most popular activation functions for ANNs because they are easy
to implement and continuously differentiable.
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Fig. 5 Euclidean distance nonlinear neuron: (a) model, (b) symbol

2.1.3 Euclidean Distance Neuron

Euclidean distance neurons, shown in Fig. 5, are nonlinear neurons used to imple-
ment radial basis function (RBF) ANNs.

The Euclidean distance k-th neuron shown in Fig. 5 has n inputs and one output,
where θk = [θk1 . . . θkn]T is the k-th center vector measured with respect to the
Euclidean distance, sk is the activation potential or induced local field given by

sk = ‖uk − θk‖2, (5)

and zk is the output signal in neuron k calculated by (2).
The following nonlinear functions are of particular interest for RBF: multi-

quadratics, inverse multiquadratics, and Gaussian functions [1]. If a Gaussian func-
tion is used,

zk = ϕk(sk) = e
− sk

2

2σ2 (6)

for some σ > 0. Gaussian activation functions for several values of σ are illustrated
in Fig. 6.

2.2 Three-Layer Perceptrons

Individual neurons can be connected in different ways, yielding different ANN
topologies, also known as ANN paradigms. The most widely used paradigms are
the multilayer feedforward perceptrons and the recurrent neural networks. Among
the first kind, three-layer perceptrons (3LPs) are by far the most popular in RF and
microwave applications [12].

The topology of a 3LP with n inputs, h hidden neurons, and m outputs is illus-
trated in Fig. 7. This ANN is denoted as a 3LP:n-h-m. The hidden layer is made up
of nonlinear neurons, and the output layer typically uses linear neurons. The main
input-output relationship is given by

v = bo + W oΦ(s), with s = bh + W hu, (7)

where matrix W o ∈ �m×h contains all the weighting factors of the output layer,
bo ∈ �m has the bias levels of the output neurons, bh ∈ �h has the bias levels of the
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Fig. 6 Gaussian activation function typically used in radial basis function ANNs

Fig. 7 Topology of a 3LP ANN. The hidden layer uses inner-product nonlinear neurons (see
Fig. 3), while the output layer uses linear neurons (see Fig. 2)

hidden neurons, W h ∈ �n×h stores the weighting factors of the hidden layer, and
the vector of activation functions Φ ∈ �h has the following structure:

Φ(s) = [
ϕ(s1) · · · ϕ(sh)

]T
. (8)

Figure 7 also indicates the scaling and descaling operations of the input and out-
put signals. Scaling the input data allows controlling the relative importance of input
parameters. Scaling the input/output training data also defines the dynamic range of
the actual training region, and improves convergence during ANN training [2]. For
instance, scaling training data between −1 and +1 requires

vi = −1 + 2(yi − yi min)

(yi max − yi min)
, (9a)
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ui = −1 + 2(xi − xi min)

(xi max − xi min)
(9b)

for i = 1,2, . . . ,m, while descaling the outputs requires

yi = yi min + 1

2
(vi + 1)(yi max − yi min). (10)

2.3 Training ANNs

Learning, also called training, is the process by which an ANN adapts itself to dif-
ferent stimuli, by adjusting its synaptic weights and bias levels until it produces a
desired response. Various learning strategies have been proposed to suit different
ANN applications, including supervised learning, unsupervised learning, and com-
petitive learning [1]. Sophisticated training strategies allow the possibility for the
ANN to modify its own topology during learning, motivated by the fact that neu-
rons in a biological brain can die and new synaptic connections can grow.

The problem of training an ANN can be formulated as an optimization prob-
lem, where ANN free parameters (weights, bias, etc.) are found such that the ANN
responses match the desired responses in a region of interest. Some of the most
used optimization techniques for ANN training are the delta rule algorithm, Boltz-
mann’s algorithm, backpropagation, simulated annealing, and the Markovian tech-
nique [13]. In the RF and microwave engineering arena, ANNs are commonly
trained by quasi-Newton methods, the scaled conjugate gradient method, and the
Levenberg–Marquardt method.

3 The Conventional Approach to ANN-Based Design
Optimization

The most common approach to design optimization of RF and microwave circuits
using ANNs consists of developing a neuromodel of the original circuit within a
certain region of the design parameters, and then applying conventional optimiza-
tion techniques to the neuromodel to find the optimal solution that yields the desired
response. This approach is illustrated in Fig. 8. Examples of this neural optimization
approach can be found in [15–18].

The neuromodel is trained so that it approximates the fine model responses Rf
in a region of interest for the design parameters xf and operating conditions ψ ,
as illustrated in Fig. 8a. The fine model responses Rf are typically obtained from
a full-wave EM simulator; in general, they represent the responses of an accurate
but computationally expensive model (the term “fine model” comes from the space
mapping literature [19–22]). The operating conditions are in vector ψ , which can
contain any combination of independent variables according to the nature of the
simulation, such as the operating frequencies, bias levels, excitation levels, rise time,
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Fig. 8 Conventional ANN-based design optimization approach: (a) training the ANN to approx-
imate the fine model responses in a region of interest, (b) design optimization with the available
trained neuromodel

fall time, initial conditions, and temperature. Vector w contains the internal free
parameters of the ANN (weighting factors, bias, etc.).

As mentioned before, the process of training the neuromodel (see Fig. 8a) can be
formulated as an optimization problem, where the optimal vector of the ANN free
parameters w∗ is found by minimizing the difference between the ANN outputs and
the fine model responses at all of the learning samples,

w∗ = arg min
w

∥∥[eT1 . . . eTL
]T ∥∥, (11)

ek(w) = Rf(xfk,ψ)− N(xfk,ψ,w), k = 1, . . . ,L, (12)

where N represents the input–output relationship of the ANN (including scaling),
ek is the error vector at the k-th learning sample, L is the total number of learning
base points, and ‖ · ‖ denotes a suitable norm (typically Euclidean, Manhattan, or
Huber).

An adequate complexity of the ANN must be selected; in other words, the num-
ber of internal free parameters must be sufficiently large to achieve a small learning
error, and small enough to avoid poor generalization performance. The latter oc-
curs when too many free parameters in the ANN give large errors at points not seen
during training. This generalization ability of the neuromodels is controlled during
the training process by using separated testing data, also obtained from fine model
evaluations.

Once the ANN is trained with sufficient learning samples and adequate gener-
alization performance, i.e., once vector w∗ is obtained from (11), the ANN can
be used for fast and accurate simulations within the region of interest. It can also
be used for inexpensive design optimization, to find an approximation of the opti-
mal fine model solution x∗

f that yields the desired response R∗
f = Rf(x

∗
f ,ψ) (see

Fig. 8b). This design problem consists in finding x∗
f such that

x∗
f ≈ arg min

xf
U
(
N
(
xf,ψ,w∗)), (13)

where U is the objective function (typically minimax) expressed in terms of the de-
sign specifications. Problem (13) is usually solved by classical optimization meth-
ods, such as sequential quadratic programming (SQP).
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The conventional approach to ANN-based design described before, which is also
known as the “black-box” approach [23], has three important disadvantages: (1) the
considerable time required to generate sufficient training and testing samples, (2) the
unreliability of the optimal solution found in (13) when it lies outside the training re-
gion (due to the well-known poor extrapolation performance of ANNs), and (3) the
“curse of dimensionality,” which refers to the fact that the number of learning sam-
ples needed to approximate a function grows exponentially with the ratio between
the dimensionality and its degree of smoothness [24]. This last disadvantage is very
important when full-wave EM simulators or other computationally expensive mod-
els are employed for generating training data, since it implies that the number of
EM model evaluations needed grows exponentially with the number of design pa-
rameters in the circuit.

A good alternative to reduce the size of the learning set in the black-box approach
is to carefully select the learning points using the design of experiments (DOE)
methodology, to ensure adequate parameter coverage, as in [25, 26]. Another way
to speed up the learning process is by means of preliminary neural clusterization
of similar responses using the self-organizing feature map (SOFM) approach, as
in [8].

The conventional approach to ANN-based design optimization is very suitable
when the device’s physics is not fully understood and hence there is no empirical
model available for the device, but the device’s outputs for specified inputs are avail-
able, either from measurements or from accurate and reliable simulations. Another
nice feature of the conventional neural optimization approach is its adequacy for
full automation, to generate neuromodels for any desired level of accuracy within a
user-defined region of interest, as in the work by Zhang et al. [27], where adaptive
sampling schemes are incorporated to save fine model evaluations.

4 ANN-Based Design Optimization Exploiting Knowledge

The main disadvantages of the ANN-based conventional approach to design op-
timization can be alleviated by incorporating available knowledge into the neural
network training scheme.

In most cases, the microwave knowledge incorporated into the neural network
takes the form of a coarse model, usually obtained from an empirical, equivalent
circuit model based on quasi-static approximations. It can also be incorporated by
using analytical approximations or closed-form empirical functions. In any case,
this knowledge representation is very fast to compute, but it is not accurate (the
term “coarse model” comes from the space mapping literature [19–22]). Several
innovative strategies to incorporate this knowledge are conceptually described in
this section. A brief historical perspective of the evolution of these strategies can be
found in [28].
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Fig. 9 The difference method for ANN-based design optimization approach: (a) training the ANN
to approximate the difference between the fine and coarse model responses, (b) design optimization
with the already-trained hybrid EM-ANN neuromodel

4.1 Hybrid EM-ANN Method

The hybrid EM-ANN method, also known as the difference method, trains the cor-
responding neural network to approximate the difference in the responses between
an available coarse model and the fine model, as illustrated in Fig. 9a. Once the
ANN model is trained, a shunt arrangement between the coarse model and the ANN
is employed for fast design optimization (see Fig. 9b).

Training the neuromodel in the hybrid EM-ANN method can be formulated
as (11) with the error functions calculated by

ek(w) = [
Rf(xfk,ψ)− Rc(xfk,ψ)

]− N(xfk,ψ,w). (14)

The design optimization problem is then formulated as

x∗
f ≈ arg min

xf
U
(
Rc(xf,ψ)+ N

(
xf,ψ,w∗)). (15)

Application examples of this hybrid EM-ANN approach are given in [29, 30],
including the design of a two-layer end-coupled bandpass filter. In some cases, the
number of fine model simulations needed to train the ANN can be significantly re-
duced by this approach. However, the reduction in training samples is achieved only
when the mapping from the difference between the fine and coarse model responses
to the input parameters is simpler than the original target relationship [31], which is
not always the case, as demonstrated in [12].

4.2 Prior Knowledge Input Method

In the prior knowledge input (PKI) method the coarse model responses are used
as inputs for the ANN in addition to the design parameters and independent vari-
ables, as shown in Fig. 10. The neural network is trained such that its response is
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Fig. 10 The PKI method for design optimization: (a) training the ANN to approximate the fine
model responses, considering the coarse model responses as additional inputs to the ANN; (b) de-
sign optimization with the already-trained PKI neuromodel

as close as possible to the fine model response for all the data in the training set
(see Fig. 10a). Once it is trained, it can be combined with the original coarse model
for inexpensive optimization (see Fig. 10b). It has been reported [31, 32] that the
PKI approach exhibits better accuracy than the hybrid EM-ANN approach, at the
expense of a more complex ANN. The PKI method is used in [33] to optimize a
coplanar waveguide (CPW) patch/slot antenna on Duroid substrate.

4.3 Knowledge-Based ANN Approach

Developed by Zhang et al. [34], the knowledge-based neural network (KBNN) ap-
proach modifies the internal structure of the ANN to incorporate available knowl-
edge, as illustrated in Fig. 11. This knowledge usually takes the form of microwave
empirical or analytical equations.

Knowledge-based ANNs have non-fully connected architectures, with one or
several layers assigned to the microwave knowledge in the form of single or multi-
dimensional vector functions, usually obtained from available closed-form expres-
sions based on quasi-static approximations.

By inserting the microwave circuit empirical formulas into the neural network
structure, the empirical formulas can also be adjusted as part of the overall neural
network training process. Since these empirical functions are used for some neurons
instead of standard activation functions, KBNNs do not follow a typical multilayer
perceptron architecture and are trained using methods other than the conventional
backpropagation [34]. In Fig. 11a, vector w contains not only the typical free pa-
rameters of an ANN (weights, bias, etc.), but also the adjustable parameters of the
microwave empirical functions.

KBNNs have been extensively used for developing models of microwave cir-
cuits [2, 34]. Once a KBNN model is appropriately trained, it can be used as an
accurate and inexpensive model for realizing conventional design optimization (see
Fig. 11b).
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Fig. 11 The KBNN approach to design optimization: (a) training the KBNN model (the empir-
ical functions and formulas are embedded in the ANN internal structure), (b) designing with the
already-trained KBNN model

The KBNN method is perhaps the most matured and automated technique for
developing neuromodels of microwave circuits. The automatic model generation
(AMG) scheme [35] allows the development of knowledge-based neuromodels
with intelligent data sampling, adaptive ANN sizing, and under-learning and over-
learning detection.

4.4 Neural Space Mapping Methods

In general, neural space mapping methods can be regarded as a special case of ANN-
based modeling and design exploiting knowledge [12, 36]. Although KBNN meth-
ods have also incorporated space mapping techniques, as in [35], they differ with
respect to pure neural space mapping methods by the fact that the latter do not mod-
ify the internal architecture of the ANN [28]. In neural space mapping methods the
ANN is a classical feedforward perceptron with conventional nonlinear activation
functions, and it is used to implement a mapping function, either at the level of
the design parameters (input space mapping) or at the level of the model responses
(output space mapping).

The initial work for efficient EM-based modeling exploiting space mapping and
neural networks originated with Bandler et al. in [37]. Similarly to KBNN, neural
space mapping methods decrease the cost of training, improve the generalization
ability, and reduce the complexity of the ANN with respect to conventional neuro-
modeling approaches.

The essential idea of neural space mapping methods is to implement with an
ANN the mapping between fine and coarse models, exploiting the well-known abil-
ity of ANNs to model high-dimensional and highly nonlinear problems, obtaining
enhanced coarse models valid over large regions of design parameters. This map-
ping can be developed at the input (see Fig. 12) or at the output (see Fig. 13).

In the output neural space mapping approach an input mapping function P is still
used, as illustrated in Fig. 13. However, in this case the function P is usually linear,
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Fig. 12 Neural input space mapping: (a) training the ANN mapping function, (b) designing with
the already-trained neural space-mapped model

Fig. 13 Neural output space mapping: (a) training the ANN mapping function, (b) designing with
the already-trained neural space-mapped model

since the output neural network Q is able to eliminate any residual between the
coarse and fine model responses [38], which is more useful for statistical analysis
and yield estimation. In a strict sense, P is not required; however, it is included to
decrease the level of complexity in Q, improving the generalization performance
of the output neural network. Application examples of this approach can be found
in [39].

5 Design Optimization by Neural Space Mapping: Example

An example of practical design optimization using neural input space mapping is
now described. First, the general formulation is reviewed. Next, the structure exam-
ple is described, along with its coarse and fine model representations using commer-
cially available simulators. Finally, the results are provided.
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Fig. 14 Flow diagram for neural input space mapping design optimization (see Fig. 12)

5.1 Neural Input Space Mapping Algorithm

The general concept of neural input space mapping is illustrated in Fig. 12, where
the mapping function from the fine to the coarse model design parameter space is
implemented by an ANN. A simplified flow diagram for neural input space map-
ping optimization is illustrated in Fig. 14. This technique was the first algorithmic
formulation of ANN-based design of microwave circuits [40].

The algorithm starts by applying conventional optimization to the coarse model
to find the optimal coarse model solution x∗

c that yields a target response R∗ =
Rc(x

∗
c). In Fig. 14, U(·) represents the same objective function employed in (13)

and (15). The initial training set to develop a space mapping (SM)-based neuro-
model [37] is defined by taking 2n additional base points in a star distribution [41]
centered at x∗

c , where n is the number of design parameters (xc, xf ∈ �n). Training
the neuromapping is formulated as in (11), but we replace (12) by the error vector
function

ek(w) = Rf(xfk,ψ)− Rc
(
N(xfk,ψ,w)

)
, k = 1, . . . , (2n+ i). (16)
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Once an SM-based neuromodel is trained (see Fig. 12a), it is used as an improved
coarse model, optimizing its design parameters to generate the desired response. The
solution to the optimization problem

x
(i+1)
f = arg min

xf
U
(
Rc

(
N
(
xf,ψ,w∗))) (17)

becomes the next iterate and is included in the learning set, as indicated in Fig. 14.
The fine model response at the new point is calculated and compared with the de-

sired response. If they are not close enough, the SM-based neuromodel is re-trained
over the extended set of learning samples and the algorithm continues; otherwise,
the algorithm terminates.

An interesting feature of this algorithm is that the independent variable ψ can
also be transformed through the neural network in order to improve the alignment
between the fine and coarse model responses, as shown in Fig. 12. This allows
us, for instance, to define a frequency-sensitive mapping. Additionally, the map-
ping N can be defined to map only some of the design parameters. This flexibil-
ity yields a number of different techniques to establish the neuromapping N [37].
The neural space mapping approach has been successfully adapted for nonlinear
modeling [42, 43], and extended to large-signal statistical modeling of nonlinear
microwave devices [44].

When training the neuromapping N in the flow diagram of Fig. 14, the com-
plexity of the neural network N is gradually increased, starting with a three-layer
perceptron (3LP) with zero hidden neurons (linear mapping). The number of hid-
den neurons h is increased according to the total learning error at the i-th iteration.
This is realized to control the generalization performance of the current neural net-
work N . A better strategy to do this consists of using two-layer perceptrons (2LPs)
with optimized nonlinearity, as in [45]. A comparison between these two strategies
to control the generalization performance of N is realized in the following example.

5.2 Microstrip Notch Filter with Mitered Bends and Open Stubs

A microstrip notch filter with mitered bends and open stubs is illustrated in
Fig. 15 [39]. Lo is the open stubs length, Lc is the length of the coupled lines,
and Sg is the separation gap. The width W50 is the same for all the sections as well
as for the input and output lines, of length Lp. A substrate with thickness H and
relative dielectric constant εr is used.

The design parameters are xf = [Lc Lo Sg]T (mil). The preassigned parameter
values are H = 10 mil, W50 = 31 mil, and εr = 2.2 (RT Duroid 5880, with loss
tangent tan δ = 0.0009). Lossless metals are considered.

The design specifications are |S21| ≤ 0.05 for frequencies between 13.19 GHz
and 13.21 GHz, and |S21| ≥ 0.95 for frequencies below 13 GHz and above
13.4 GHz.



Artificial Neural Networks and Space Mapping for EM-Based Modeling 163

Fig. 15 Microstrip notch filter with mitered bends and open stubs

Fig. 16 Coarse model of the microstrip notch filter with mitered bends and open stubs, as imple-
mented in APLAC

The coarse model is illustrated in Fig. 16. It consists of an equivalent distributed
circuit implemented in APLAC,1 using its built-in microstrip circuit models avail-
able for lines, open circuited lines, coupled lines, and mitered bends.

1APLAC version 8.10 2005, APLAC Solutions Corporation, now AWR Corporation, 1960 E.
Grand Avenue, Suite 430, El Segundo, CA 90245.
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Fig. 17 Fine model of the microstrip notch filter with mitered bends and open stubs, as imple-
mented in Sonnet

The fine model is implemented in the full-wave EM simulator Sonnet,2 whose
simulation box is illustrated in Fig. 17. It uses a very high resolution grid (cell size of
0.5 mil × 0.5 mil) with Hair = 60 mil, Lp = 1/2(Lo +Lc), and ygap = Lo. By using
these values of ygap and Hair, the effects of unwanted EM interaction and potential
resonances with Sonnet’s box are disabled.

After optimizing the coarse model for this example using the sequential quadratic
programming (SQP) method available in MATLAB,3 the optimal coarse model so-
lution is x∗

c = [143 158 8]T (mil). To generate the learning base points, 6 in this
case, a 3 % of deviation for Lc and Lo is used, while a 50 % for Sg is applied, with
respect to their values at x∗

c . The coarse and fine model responses at x∗
c are shown

in Fig. 18.
To contrast both strategies for controlling the generalization performance of the

neuromapping, as mentioned in the previous section, this example is solved using
3LPs with gradually increasing complexity [40], as well as 2LPs with optimized
nonlinearity [45]. In the latter case, after only one additional evaluation of the fine
model, the SM solution xSM

f = [143 159.5 6.5]T (mil) is found, while the former
approach requires 3 additional fine model simulations, as seen in Fig. 19, where the
evolution of the fine model objective function values for each strategy is shown.

2em™ Suite version 12.52 2009, Sonnet Software, Inc., 100 Elwood Davis Road, North Syracuse,
NY 13212.
3MATLAB Optimization Tolbox, Version 7.4.1 (R2007a), The Mathworks, Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098.
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Fig. 18 Coarse and fine model responses at the optimal coarse model design of the microstrip
notch filter

Fig. 19 Fine model objective function values at each neural input space mapping iteration for the
microstrip notch filter

Table 1 summarizes the fine model design parameter values at each iteration of
the algorithms, as well as the corresponding fine model objective function values. It
is seen that formulation using 2LPs with optimized nonlinearity yields a better final
objective function value in fewer fine model evaluations.

Finally, the target response and fine model responses evaluated at the space map-
ping solutions are shown in Fig. 20. It is seen that the space-mapped response found
by using 2LPs with optimized nonlinearity is significantly better than the one found
by using 3LPs with a gradually increasing number of hidden neurons.
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Table 1 Design parameters and fine model objective function values at each iteration of neural
input space mapping for the microstrip notch filter

Iteration Using 3LP Using 2LP

x
(i)
f U(i) x

(i)
f U(i)

0 [143 158 8]T 0.8807 [143 158 8]T 0.8807

1 [142.5 160 9.5]T 0.02354 [143 159.5 6.5]T −0.0215

2 [143.5 159 9]T 0.00580

3 [143.5 159 9]T 0.00580

Fig. 20 Final results after applying neural input space mapping optimization to the microstrip
notch filter, using 3LPs with gradually increasing complexity and 2LPs with optimized nonlinearity

6 Conclusion

A tutorial review of artificial neural networks and space mapping for EM-based
modeling and design optimization of RF and microwave circuits has been presented
in this chapter. The emphasis was on the most significant milestones at the inter-
section of these two consolidated CAD technologies. A brief introduction to the
essentials of artificial neural networks was presented. The conventional or “black-
box” approach for RF and microwave design optimization was explained, indicat-
ing typical enhancing techniques. More advanced methods for ANN-based design
exploiting microwave knowledge were reviewed. Neural space mapping methods
for highly accurate EM-based design optimization were surveyed, contrasting sev-
eral different strategies, and the main ideas associated with these advanced tech-
niques were highlighted. A tutorial example was presented to illustrate some of the
most advanced methods for design optimization using neural space mapping tech-
niques.
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Model-Based Variation-Aware Integrated
Circuit Design

Ting Zhu, Mustafa Berke Yelten, Michael B. Steer, and Paul D. Franzon

Abstract Modern integrated circuit designers must deal with complex design and
simulation problems while coping with large device to device parametric variations
and often imperfect information. This chapter presents surrogate model-based meth-
ods to generate circuit performance models for design, device models, and high-
speed input-output (IO) buffer macromodels. Circuit performance models are built
with design parameters and parametric variations, and they can be used for fast
and systematic design space exploration and yield analysis. Surrogate models of the
main device characteristics are generated in order to assess the effects of variability
in analog circuits. The variation-aware IO buffer macromodel integrates surrogate
modeling and a physically based model structure. The new IO macromodel provides
both good accuracy and scalability for signal integrity analysis.

Keywords Surrogate modeling · Design exploration · Integrated circuit ·
Model-based design · Performance model · IO model · Device model · Variation
aware · Circuit optimization · Design aids · Yield analysis · Self-calibrated circuit

1 Introduction

As integrated circuit (IC) technology continues to scale down, process variations be-
come increasingly critical and lead to large variances of important transistor param-
eters. These large process uncertainties have caused significant yield loss. In addi-
tion, environmental variations (such as changes in supply voltage and temperature)
and reliability issues contribute to further yield reduction and make it more chal-
lenging to create a reliable, robust design. In coping with these problems in circuit
design, it is important to consider the effects of variations in circuit modeling and
design analysis at an early stage. However this is a nontrivial task. In this chapter,
surrogate modeling is applied to handle the complexities in variation-aware circuit
macromodeling, model-based design optimization, high-speed IO macromodeling
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Fig. 1 Circuit performance modeling

and device modeling. This chapter presents the advantages of using surrogate mod-
eling in enhancing the accuracy, flexibility, and efficiency in those applications.

2 Circuit Performance Modeling and Design Optimization

2.1 Overview

Today circuit designers are confronted with large design spaces and many design
variables whose relationships must be analyzed. In this situation, tasks such as sen-
sitivity analysis, design space exploration, and visualization become difficult, even
if a single simulation takes only a short period of time. The analyses are becoming
impractical, as some of the circuit simulations are computationally expensive and
time-consuming. In addition a designer must not only search for the optimal design
with the nominal conditions, but must also carefully consider the circuit robustness
in the presence of variations. However, the fulfillment of all these requirements in-
troduces more complications in circuit design. One way to reduce design complex-
ities and costs is to build performance models which can be used as replacements
for the real circuit performance responses.

In the approach described here, performance models are built by directly approx-
imating circuit performance parameters (e.g., S-parameter, gain, power consump-
tion, and noise figure) with design variables (e.g., transistor size, bias voltage, and
current) and parametric variations (e.g., Vth, tox, Leff) and then these models are
used to drive the design. The modeling concept is illustrated in Fig. 1. This method
is data-driven and black-box by nature, and thus it can be applied to a wide range of
circuit design problems. When performance models are available, it is possible to
explore the design space with these cheap-to-run performance models. This could
help provide circuit designers with a better understanding of the design problem.
Performance models can also help designers to better formulate the design prob-
lems with virtualization, sensitivity analysis, and optimization.

2.2 Performance Model Construction

Technique Approaches Global surrogate modeling [1] is used to create perfor-
mance models with good accuracy over the complete design space. This is different
from building a local surrogate model for the purpose of optimization [2, 3].
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Surrogate modeling accuracy and efficiency are determined by several key steps
including the sampling plan, model template, and validation.

The first step is determination of a sampling plan. A good sampling plan decides
how to efficiently choose samples for fitting good models, considering that the num-
ber of samples is limited by the desire to constrain computational expense. Recently,
adaptive sampling techniques were developed in order to achieve better efficiency
in sampling [4, 5]. These techniques analyze the data from previous iterations and
select new samples in the areas that are more difficult to fit.

The model template selection step determines the surrogate model type and
model complexity. Multiple popular surrogate model types are available, including
rational functions, Kriging models, radial basis function (RBF) models, artificial
neural networks (ANNs), and support vector machines (SVMs) [4, 6]. All of these
methods can have an embedded analytic coarse model. The model complexity is
controlled by a set of hyperparameters which would be optimized during a model-
ing process.

The model validation step establishes the predictive capabilities of the models
and estimates their accuracy. One popular method is fivefold cross-validation [4, 6]
in which the training data are divided into five subsets. A surrogate model is then
constructed five times: each time four subsets are used for model construction and
one subset is used for error measurement. The model error can be measured as
an absolute error, e.g., maximum absolute error (MAE), or a relative error, e.g.,
root mean square error (RMSE), root relative square error (RRSE), and Bayesian
estimation error quotient (BEEQ).

Automatic Modeling Flow Figure 2 presents an automatic modeling flow that
is able to generate performance models from transistor-level circuit simulations.
Before the modeling starts, sets of input and output parameters are defined. The
modeling techniques are also configured, including the model template, adaptive
sampling strategy, and accuracy measurement. An accuracy target is defined as well.
At the beginning of the modeling process a small set of initial samples are generated.
Then transistor-level Simulation Program with Integrated Circuit Emphasis (SPICE)
simulations are performed using this initial set, and the corresponding responses are
collected and used as the modeling data. Surrogate models are then constructed and
their parameters optimized. The model accuracy is measured, and the optimization
continues until only negligible improvements can be made by changing the model
parameters. If the desired accuracy is not reached, the adaptive sampling is evoked
to add a new set of samples. The process continues until the fit reaches the targeted
accuracy. When the process finishes, the model expressions are exported and used
in the follow design steps.

In the examples presented in this section, the modeling techniques are explored
using the SUrrogate MOdeling (SUMO) Matlab Toolbox [7]. SUMO is a plug-in
based, adaptive platform that can be customized flexibly. The toolbox makes it fea-
sible to test a variety of modeling techniques. Transient circuit simulators, including
Cadence Virtuoso Spectre® and Synopsys HSPICE®, are used here for performing
transistor-level circuit simulations.
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Fig. 2 Automatic adaptive circuit performance surrogate modeling flow

2.3 Surrogate-Based Design and Optimization

Once the surrogate models are constructed, it is possible to explore the multidimen-
sional design space by plotting the model surfaces. The design space set by different
design parameters and parametric variation values can be conveniently explored. By
using the models it is possible to quickly estimate design feasibility. It is also feasi-
ble to compute global sensitivity using the models, and to obtain the relations among
factors such as the performance versus the design parameters, the performance ver-
sus the variation parameters, and the correlation among the design and variation
parameters.

Surrogate models can be integrated to enable global circuit optimization which
requires a great number of iterative evaluations of objective functions. In the
surrogate-based optimization process there are generally two types of simulation
models: a low-fidelity and a high-fidelity model. In circuit design problems the
transistor-level circuit simulation is used as a high-fidelity model while the con-
structed surrogate model is used as the low-fidelity model. Figure 3 shows a general
surrogate-based optimization process for circuit design. This method can accom-
modate additional samples chosen as the optimal design is approached, with the
guidance of the existing surrogate model based on past samples [3]. As the surro-
gate model is used as a guide for adaptive sampling, model accuracy is enhanced
with a higher density of samples near the optimum design. Some optimization flows
do not involve model updating. Therefore, a global surrogate model is fitted and
used as a surrogate for the expensive functions. This method requires high-fidelity
surrogate models and uses a relatively large number of samples to build the mod-
els. Adaptive sampling can also be used during initial model construction, to obtain
better sampling efficiency.
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Fig. 3 Surrogate-based optimization flow

2.4 Application Case: Self-Calibrated Low Noise Amplifier Design

This section presents self-calibrated circuit design with application of the surrogate-
based performance modeling and model-based optimization.

Recently, post-silicon calibration techniques have been used to compensate for
the impact of process-voltage-temperature (PVT) variations on analog and RF cir-
cuits [8, 9]. With appropriate design, the circuits are capable of self-calibrating their
performance. However, a general design infrastructure and the tools to assist a self-
calibrated design are unavailable. Without a general design method, it takes much
ad hoc work to realize such an adaptive design.

Recently, a new design approach was developed for designing cost-effective self-
calibrating analog and RF circuits [10]. The key idea is building multiple operating
states to compensate for large PVT variations. In particular, each operating state
tolerates a specific range of variations. In circuit implementation a set of design pa-
rameters are selected to construct the operating states, and their values for each state
are determined at the design phase. A surrogate model-based design flow was devel-
oped to select these effective design parameters and to design the optimal operating
states.

This section presents a self-calibrated low noise amplifier (LNA) circuit design
using this new design approach. The 12 GHz LNA design with the simplified cir-
cuit schematic shown in Fig. 4 was implemented in a 65 nm CMOS process. The
LNA employs a cascode structure which is composed of a common-source ampli-
fier stage followed by a common-gate amplifier stage. A negative gm cell is used
in the load. The supply voltage is 1.2 V. The specifications of interest are voltage
gain, noise factor (NF), |S11|, and power. Table 1 lists the nominal performance and
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Fig. 4 Simplified schematic of the low noise amplifier (LNA) circuit [10]

Table 1 Performance
specifications (center
frequency = 12 GHz) [10]

Performance Specification Nominal performance

Gain (dB) ≥20 22.46

|S11| (dB) ≤−15 −18.10

NF (dB) ≤2.8 2.17

Power (mW) ≤35 25

design specifications. Two key bias voltages, the input bias voltage Vg and tail bias
voltage Vc in the negative gm cell, are selected as the tunable design parameters
for self-calibration. These bias voltages are chosen as they provide critical control
over the performance of interest and introduce low area overhead. To ensure that the
transistors are working in the correct operating regions, the tunable bias Vg has the
range 0.58 V to 0.8 V and Vc has the range 0.58 V to 1.0 V. As a design choice,
the bias voltages Vc and Vg can be tuned in 10 mV steps, provided by the voltage
generator, indicated in Fig. 4.

In this case, we consider transistor threshold voltage variation �Vth as the main
process variation and assume that �Vth has a normal distribution with 3σ = 15 %.
Temperature is considered as an additional environmental variation and is in the
range of −10 ◦C to 80 ◦C. The variation space is uniformly partitioned into 36
subregions. This requires that each operating state be able to tolerate 5 % threshold
voltage variation and 15 ◦C temperature change.

Model Construction The automatic modeling process discussed in Sect. 2.2 was
used to construct the performance models. A Kriging model [4] was selected as
the model template. The Gaussian correlation function and a linear regression were
used in the kriging model construction. The hyperparameters of the models were
optimized using a genetic algorithm [7] suitable for the cases where little problem
specific information can be explored.



Model-Based Variation-Aware Integrated Circuit Design 177

Fig. 5 Slice plots of performance response |S11|. The three slices in each plot are for three tem-
peratures: 80 ◦C, 45 ◦C, and −10 ◦C

Table 2 LNA performance
modeling samples and
accuracy measurement with
RRSE and MRE [10]

Performance Samples RRSE MRE

Gain 257 3.50 % 6.7e-2

|S11| 459 4.39 % 7.1e-2

NF 180 3.01 % 5.7e-2

Power 102 1.54 % 3.33e-3

An initial optimized Latin hypercube design [4] of size 24 was used augmented
with the corner points. New samples were selected using the adaptive sampling al-
gorithm with a combination of LOLA-Voronoi [5] and error-based sampler. LOLA-
Voronoi is a highly adaptive sampling algorithm which performs a trade-off between
exploration (filling up the design space as equally as possible) and exploitation (se-
lecting data points in highly nonlinear regions). Error-based sampling is driven by
the evaluation of the model on a dense grid, and this algorithm selects samples in
the locations where the model error is estimated to be the largest. Fivefold cross-
validation [4, 6] was used to assess the model accuracy. In addition to the train-
ing set, a separate data set of 500 samples was available for validation purposes.
This data set was sampled by Latin hypercube design and was not used in training
the models. The model accuracy was measured using the root relative square error
(RRSE) and maximum relative error (MRE).

Figure 5 shows the slice plot of the performance model |S11|(Vg,Vc,P ,T ). The
sample numbers and the achieved accuracy are listed in Table 2. The results show
that the modeling cost is dominated by |S11| modeling, as its response is strongly
nonlinear.
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Fig. 6 Plot of performance response |S11|: (a) the nominal design, (b) the self-calibrated de-
sign [10]

Model-Based Design The design objective is to minimize the performance de-
viations from the nominal performance. The design objective function is defined as
follows:

Minimize Φ(X,V) = ∥∥f1(X,V ),f2(X,V ),f3(X,V ),f4(X,V )
∥∥

2

fi(X,V) = Pi(X,V )− Pi_norm

Pi_norm
, i = 1,2,3,4

(1)

where Pi is one of the performance parameters |S11|, gain, NF, and power, as se-
lected by the index i. Pi_norm is the ith nominal performance. X is the vector of
the tunable design parameters, i.e., bias voltages Vg and Vc. V is a set of variation
conditions used for validation.

Design Results As the tunable bias voltages are discrete variables, a grid search
is used with the performance surrogate model and the derived operating states. Fig-
ure 6 shows |S11| performance responses of the nominal design and of the self-
calibrated design. Figure 6a shows that when the design parameters are set to their
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Table 3 LNA performance calculated using transistor-level simulations of the nominal design and
the self-calibrated design [10]

Performance specification Nominal design Self-calibrated design

μ σ μ σ

Gain ≥ 20 dB 21.93 1.03 22.62 0.49

|S11| ≤ −15 dB −16.89 2.58 −20.03 1.13

NF ≤ 2.8 dB 2.32 0.34 2.31 0.27

Power ≤ 35 mW 24.23 2.14 21.50 2.8

Table 4 LNA performance
yield calculated using
transistor-level simulations of
the nominal design and the
self-calibrated design [10]

Performance yield Nominal design Self-calibrated design

Gain 99.8 % 100 %

|S11| 66.6 % 100 %

NF 87.5 % 100 %

Power 100 % 100 %

Total 66.6 % 100 %

nominal values, only a limited number of the subregions are able to meet specifi-
cations. Figure 6b shows that when the tunable parameters for the optimal design
are set in each sub-region, all of the sub-regions are able to meet the performance
constraints.

Validation The results are validated using transistor-level Monte Carlo simula-
tions. It is assumed that �Vth has a normal distribution with a 3σ of 15 % and a
uniform temperature distribution from −10 ◦C to 80 ◦C. Note that the process vari-
ations are bounded by ±3σ . The results after calibration were generated using the
precomputed optimal operating states for the subregions. The circuit performance
was analyzed by running 1,000 Monte Carlo simulations. Tables 3 and 4 list the
performance mean (μ), standard deviation (σ ), and yield. As the results show, the
performance degradation is fully compensated and thus the final circuit is able to
meet specifications.

In summary, the method designs multiple operating states in the LNA circuit in
order to compensate for extensive process and temperature variations. By consider-
ing both performance constraints and variation tolerance at the design stage, the cir-
cuit is able to calibrate performance responding to the variations. A surrogate-based
process is constructed to obtain the optimal operating states. Surrogate modeling
technologies approximate the circuit performances as a function of design param-
eters and parametric variations using the results of detailed circuit simulations ob-
tained using a small number of samples. Thus, it efficiently assists design analysis
and optimization. The results show that the new design method reduces performance
distribution and significantly improves the circuit yield.
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Fig. 7 Structural IO buffer macromodel template with surrogate model elements [12]

3 Accurate and Scalable IO Macromodel

Macromodels of input/output (IO) circuits are essential for fast timing, signal in-
tegrity, and power integrity analyses in high-speed digital systems. The most popular
approach to IO modeling is to use the traditional table-based input-output buffer in-
formation specification (IBIS) [11]. IBIS models are simple, portable, IP-protected,
and fast in simulations. However, they are unable to simulate continuous process-
voltage-temperature (PVT) variations and are unsuitable for statistical analysis. This
section describes a new type of macromodel, called the surrogate IBIS model, to
solve this problem [12]. In the new method, an equivalent circuit structure is used to
capture the static and dynamic circuit behaviors, while surrogate modeling is used to
approximate each element over a range of PVT parameters, so that the macromodel
is able to dynamically adapt to the PVT variations in analysis. Figure 7 shows the
structure of the surrogate-based IBIS model. Ipu and Ipd represent the nonlinear out-
put current. Time-variant coefficients Kpu and Kpd determine the partial turn-on of
the pull-up/down networks during switching transitions. Cpower and Cgnd represent
the nonlinear parasitic capacitance between the output and the supply rails. Surro-
gate models of these model elements are constructed to capture the effects of supply
voltage, terminal voltages, semiconductor process, and temperature.

3.1 IO Macromodel Construction

The automatic modeling process described in Sect. 2.2 can be used to construct
surrogate models for the model elements in Fig. 7. Here modeling data extracted
from transistor-level SPICE circuit simulations is used. Figure 8a shows the circuit
test-bench used to extract the pull-up output current Ipu (VS, Vpu, T , �Vth). The
parameter Vpu is defined as the voltage difference between the power supply rail and
the output, and it ranges from −VCC to +2VCC, covering the maximum reflection
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Fig. 8 Test-benches for extracting model elements: (a) pull-up current Ipu, (b) output capacitance
Cgnd and Cpower [12]

case [13]. Transient simulations are performed, and the simulation time must be
long enough to record a stable output current Ipu. Similarly, the pull-down current
model Ipd was extracted by turning on the pull-down network and turning off the
pull-up network. Ipd was extracted as a model function of PVT variations and Vpd,
where Vpd is defined as the voltage difference between the output and the ground.

The data was used to fit rational function models in the form

f (X) = P(X)

Q(X)
, (2)

where P and Q are polynomial functions in X = {x1, x2, . . . , xn}, and Q is nonzero.
P and Q have no common factor of positive degree.

The test setup for extracting the output parasitic capacitance is shown in Fig. 8b.
An AC signal is attached to the output ports, and the imaginary currents in the power
and the ground ports are measured. The capacitances Cpower and Cgnd were derived
using Eq. (3):

Cpower = �(IVCC)

2πfVAC
, and Cgnd = −�(Ignd)

2πfVAC
, (3)

where �(IVCC) and �(Ignd) are the imaginary parts of the measured currents, f is
the frequency of the AC source, and VAC is the AC voltage amplitude.

The time-variant transition coefficients Kpu and Kpd were obtained using the
2EQ/2UK algorithm [14]. Figure 9a shows the test to obtain the switching out-
put voltage waveforms. A simplified circuit to illustrate the 2EQ/2UK algorithm is
shown in Fig. 9b. The switching output voltage waveforms wfm1 and wfm2 were
obtained for different terminal voltages Vterm, and the unknown coefficients Kpu and
Kpd were derived using the equations

Kpu(t)Ipu
(
Vwfm1(t)

)−Kpd(t)Ipd
(
Vwfm1(t)

)− Iout = 0 (4)

and

Kpu(t)Ipu
(
Vwfm2(t)

)−Kpd(t)Ipd
(
Vwfm2(t)

)− Iout = 0, (5)

where Iout = (Vout − Vterm)/Rload. Ipu and Ipd are the output current models.
The new model can be implemented in the Verilog-A behavioral version of the

IBIS model [15], in which the surrogate models are implemented in the form of
analog functions.
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Fig. 9 (a) Test-benches for extracting rising/falling transition waveforms for Kpu and Kpd. (b) Il-
lustration of 2EQ/2UK algorithm [12]

Fig. 10 Simplified buffer circuit and test setup for validation [12]

3.2 Example

This section presents the macromodeling of a single-ended output buffer circuit with
the new method. Figure 10 shows the circuit designed in the 180 nm CMOS process
with a 3.3 V nominal supply voltage. The threshold voltage variations �Vth in the
MOS transistors are considered as the main process variations, and they are assumed
to be within ±20 % of the nominal value Vth0. The parameter P = �Vth/Vth0 is
used to describe the threshold voltage variation. The supply voltage Vs is assumed to
fluctuate within ±30 % of the nominal supply (3.3 V), and the temperature (T ) is set
in the range of 0 to 100 ◦C. In the modeling process, those PVT-related parameters
are sampled adaptively in their ranges.

The generated surrogate IBIS model is compared to the reference provided by the
transistor-level simulation, and to the traditional IBIS model extracted from SPICE
using the S2IBIS3 v1.0 tool [16].
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Fig. 11 Output voltage at the far end of the transmission line. (a) Case 1, black solid
line—transistor model, gray solid line—traditional IBIS, black dashed line—proposed surrogate
IBIS. Black dash-dotted line—supply voltage. (b) Case 2, gray solid line—transistor, black dashed
line—macromodel [12]

The test setup is shown in Fig. 10 where the driver is connected to a 0.75-m long
lossy transmission line (RLGC model) with a loading resistor. The characteristic
impedance of the transmission line is 50 �. The loading resistor is 75 �. Two test
cases were examined. The results are shown in Fig. 11.

1. Case 1: This case has a 250 MHz square wave as the test input signal. The input
data has the pattern “01010” with a 0.1-ns rise/fall time and 2-ns bit period. The
supply voltage varies from 2.8 to 3.8 V.

2. Case 2: This case has a data pattern with a 1,024-bit-long pseudorandom bit
sequence (PRBS) with 2-ns bit time. The power supply voltage is constant.

The accuracy of the macromodels is quantified by computing the timing error and
the maximum relative voltage error. The timing error is defined as the time differ-
ence between the reference and the macromodel voltage responses measured for
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crossing half of the output voltage swing. The maximum relative voltage error is
defined as the maximum error between the reference and macromodel voltage re-
sponses divided by the voltage swing.

The results for Case 1 show that when there is a large variation of the supply volt-
age, the surrogate IBIS model has much better accuracy for both the timing error and
the relative voltage error than does the traditional IBIS model. The maximum timing
error of the surrogate IBIS model is 79 ps, and the maximum relative voltage error
is 6.77 %. The surrogate IBIS model achieves the improved accuracy by capturing
the complex output capacitance characteristics and the effects of the supply voltage
and gate modulation effects on the output current [17].

In Case 2, the results show that the surrogate IBIS model achieves good accuracy.
In this case the maximum timing error is 70 ps (3.5 % of the bit time) and the max-
imum relative voltage error is 6.45 %. An analysis of the eye diagram of the output
in Case 2 is a further test of model fidelity. The eye width (W ) was measured when
the eye height (H ) was equal to 1 V. The results under different PVT conditions
show that the eye-width differences are within 0.04 ns (2 % of the bit time).

In summary, the proposed surrogate IBIS macromodel achieves good accuracy
in analysis. The macromodels obtained show good accuracy in capturing the effects
of reflections and variations, and their scalability enables flexible design analysis.

4 Surrogate-Based Device Modeling

Scaling of device sizes induces high variability of transistor parameters. There are
two major reasons for this. First, quantum mechanics-based phenomena such as
drain-induced barrier lowering (DIBL) or gate tunneling, which are negligible in
long-channel devices, become more significant. Additional physics-based effects in-
crease the dependence of many circuit design quantities (including the drain current,
Ids, and device transconductance, gm) on transistor process parameters such as the
oxide thickness, tox. Furthermore, the tolerances of semiconductor manufacturing
components do not scale down as the transistor sizes shrink [18]. As a consequence,
the amount of uncertainty of the design quantities remains constant as device sizes
become smaller, leading to higher percentage variability with respect to the nominal
values of the transistor process parameters. The experimental data revealed that a
traditional process corner analysis might not reflect the real distribution of the crit-
ical transistor parameters such as the threshold voltage Vth [19], while the Monte
Carlo analysis becomes more computationally intensive with the increasing number
of variability factors.

The response surfaces of design quantities, which become more complex with
the process variations, can be accurately captured by surrogate modeling. Surrogate
modeling aims to express the output quantity in terms of a few input parameters by
evaluating a limited number of samples. These samples are used by the basis func-
tions which establish the response surface of the desired output. The coefficients
of the basis functions for the response surfaces should be optimized to minimize
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modeling error. This approach has been applied to the problem of Ids modeling in
order to assess the effects of variability in analog circuit building blocks, in particu-
lar, for differential amplifiers [20]. In this section, the modeling of gm of n-channel
transistors will be discussed.

The transconductance gm is an important quantity for analog circuits, particularly
in determining the AC performance of amplifiers, mixers, and voltage-controlled os-
cillators. The modeling here is based on 65 nm device technology (IBM 10SF design
kit) and uses six process parameters (tox, intrinsic threshold voltage Vth,0, intrinsic
drain-source resistance Rds,0, intrinsic mobility μ0, channel length variation �Leff,
and channel doping N ch) as input to the model in addition to the terminal voltages
of the transistor (gate-source voltage Vgs, drain-source voltage Vds, and bulk-source
voltage Vbs) and the temperature T . The choice of these process parameters is based
on their physical origin, which ensures a weak correlation between each parameter.
The Ids equations of the BSIM model are analytically differentiated to yield gm [21]:

gm = ∂Ids/∂Vgs. (6)

The gm expression is validated by extensive SPICE circuit simulations over the
process corners and at temperature extremes so that it can be used to evaluate the
samples, each a function of the ten parameters described above. Although an an-
alytic equation for gm is used in this work, the modeling methodology is general
and can employ simulations or measurement results if they have the same input and
output parameters.

Kriging basis functions are used to construct the surrogate model, and the nec-
essary coefficients are optimized using the MATLAB toolbox Design and Analysis
of Computer Experiments (DACE) [22]. The device width is assumed to be 10 μm.
The final model is tested for accuracy using the root relative square error (RRSE)
metric [4, 6].

The gm model was constructed using a total number of 2,560 input samples and
tested with 6,400 samples not part of the set of input samples used in developing
the model. The resulting model yields an RRSE of 3.96 %, indicating a high level
of accuracy.

The model can be used to observe the changes in gm with respect to its input
parameters. Examples of this are provided in Fig. 12. The graphs provide critical
insight to the designer about the fundamental relations and trade-offs between the
chosen process parameters, terminal voltages, and temperature. Higher gm values
are obtained with smaller V th0, Leff, and tox, as well as larger μ0. This information
becomes especially vital when variability of the circuit performance that depends
on gm must be considered. In the example of an RF cascode LNA, the voltage gain
Av, input and output scattering parameters S11 and S22, as well as the optimum
noise impedance Zopt are complex functions of the gm value of the common source
transistor [23]. Any variability of the process parameters of this transistor may push
the design outside of the specification range. In this case, the information presented
in Fig. 12a–c can be used to change the matching network of the amplifier such that
it can yield the desired design metrics in all cases of process variability.

Finally, note that surrogate model-based device modeling is not limited to a sin-
gle design quantity. Response surface models of other important design metrics can
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Fig. 12 3D graphs showing the trade-offs between the different inputs on the modeled gm. (a) in-
puts are μ0 and V , (b) inputs are Leff and tox, (c) inputs are V and T

also be developed by using the methodology described here. As an example, con-
sider the bandwidth of a single-stage amplifier. The bandwidth is a function of both
the process parameters used in gm modeling and of the parasitic capacitances of
the transistors. However, these capacitances also depend on some process param-
eters. The exact relationships can be quantified by analytical expressions as given
in the device model equations [21]. Once the additionally required parameters are
determined, then the surrogate modeling process can be applied as in gm modeling.

It should be kept in mind that the main premise of using surrogate models in
device modeling is both to enhance the computational efficiency and to provide the
designer with insight about the relation of the process parameters and circuit out-
puts. With respect to the first goal, Monte Carlo methods have been traditionally
applied to describe the output variation of circuits. However, Monte Carlo methods
require a very large number of samples to be simulated to yield meaningful rela-
tions between the process parameters and circuit parameters. Surrogate models can
be used to replace Monte Carlo methods by building a response surface model rep-
resenting the circuit outputs in terms of the input parameters and using it instead
of the actual simulations to determine the effects of process variations. Thus, the
computational cost will be reduced considerably.

The second goal, which tries to identify the impact of die-to-die and within-die
variations on circuit outputs, has been achieved using application-specific process
cards that are generated to satisfy different levels of process variations leveraging
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from device-level measurements [24]. This method accurately indicates the level of
variations in the circuit outputs, but it does not really show how within-die varia-
tions can alter the circuit output. Additionally, designers must use multiple different
process cards to check the performance variations, which can result in conflicting
recommendations to be implemented in design. Surrogate models aim to unify the
information regarding the process variations in a single model. The designer can
then use this model to visualize both the die-to-die and within-die variations by
evaluating different devices with distinct process parameters that are not necessarily
specified by a process card.

5 Conclusions

This chapter presented applications of surrogate modeling to variation-aware cir-
cuit macromodeling and design analysis. Surrogate modeling facilitates efficient
design exploration and optimization with variation-aware performance models. An
example was provided that showed that surrogate modeling can be used to enhance
the accuracy and scalability of IO macromodels. Moreover, the surrogate model-
based method is able to generate device models with critical variability parameters.
The surrogate-based method greatly reduces the complexities and costs of variation-
aware macromodeling and circuit design.
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Computing Surrogates for Gas Network
Simulation Using Model Order Reduction

Sara Grundel, Nils Hornung, Bernhard Klaassen, Peter Benner,
and Tanja Clees

Abstract CPU-intensive engineering problems such as networks of gas pipelines
can be modelled as dynamical or quasi-static systems. These dynamical systems
represent a map, depending on a set of control parameters, from an input signal to an
output signal. In order to reduce the computational cost, surrogates based on linear
combinations of translates of radial functions are a popular choice for a wide range
of applications. Model order reduction, on the other hand, is an approach that takes
the principal structure of the equations into account to construct low-dimensional
approximations to the problem. We give an introductory survey of both methods,
discuss their application to gas transport problems and compare both methods by
means of a simple test case from industrial practice.

Keywords Reproducing kernels · Radial basis functions · Model order reduction ·
Proper orthogonal decomposition · Gas transport · Networks · Differential
algebraic equations

1 Introduction

Gas network simulation is a challenging problem that can become large scale, if
one considers a realistic network. However, the ability to simulate these large mod-
els accurately and efficiently is becoming increasingly more important as gas is
used more widely as an energy source. In order to optimize processes related to
gas pipeline operation or other gas network problems, it is important to be able to
simulate the flow of gas within complex pipe networks in real time. This is a chal-
lenging problem, since the flow within a pipe is a complex physical phenomenon
and the network itself can be very large and complex, spanning entire continents
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with pipelines joined by numerous junctions. When we write the system as a set
of equations for discrete values of the pressure and flows or possibly other impor-
tant states, the system size can increase to an order of tens of thousands. Since the
equations are highly nonlinear differential algebraic equations, this is already a chal-
lenging problem. Creating surrogate models in general can often solve the problem.
Since we are interested in solutions of equations, the functions to be modelled are
only given implicitly. Model order reduction is however a technique that is used
to reduce the complexity of dynamical systems or sometimes parameter-dependent
equations. The reduction of the dimension will typically reduce the computational
time. It possibly may allow us to compute a solution, where standard solvers fail
due to the complexity of the system. One of the problems for gas networks is for
example to compute a stationary solution for a given fixed configuration of supplies
and demands within a network. Reduced-order modelling is particularly powerful
when used during an optimization algorithm where one needs to solve the equa-
tions several times. If a trust region method is used, one is even able to give at least
heuristic error estimators, or bounds. In certain cases it can be interesting to create
a surrogate of the solution vector by interpolation methods. One of these methods
is radial basis metamodelling. Radial basis function (RBF) metamodelling is a very
powerful technique, since it can be used to interpolate any given smooth data set.

In Sect. 2 we give a detailed explanation of the modelling of gas within a pipe.
We explain the benchmark equations often used as well as the approximations we
will apply for modelling the whole network. We show the effects of this approxi-
mation in Sect. 5.1. We summarize in Sect. 3 the radial basis function interpolation
methods. Section 4 on model order reduction gives a very brief general introduction
into model order reduction and a summary of the model order reduction technique
we used, which is called proper orthogonal decomposition. We will show first re-
sults in Sect. 5 on reducing two different ways of modelling the gas network. One is
a dynamic model and the other a stationary one. In the stationary case we also com-
pare it to a radial basis surrogate in which we can see the advantage and limitations
of this model.

2 Gas Network Simulation

Modelling and simulation of a gas network is a challenging problem for many
reasons. One is that gas pipe network simulation connects combinatorial aspects,
through the network topology, with continuous behaviour within individual compo-
nents. The physics within these components is often complex, and one needs to find
suitable approximations. The gas flow within one individual pipe is described by
nonlinear partial differential equations (PDEs). When we add valves, for example,
the solution of the system is no longer differentiable. Because the problem can be
arbitrarily complex, we will have to limit ourselves within this chapter. We cannot
address all the challenges of gas networks, but rather mean to describe and discuss
certain aspects of a simplified, though still practically relevant, version of the prob-
lem.
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We will mainly follow [8, 13, 23] for the mathematical modelling of the gas
network. We are going to discuss a dynamical model and a quasi-stationary model
to describe the gas flow within a pipe. The topology of a pipe network, after [23],
is modelled as a directed graph G = (A ,N ), where the vertices are supply nodes
N+, demand nodes N− and interior nodes N0 (junctions),

N = N+ + N− + N0.

The edges of the graph can constitute pipes, connections, compressors, valves, reg-
ulators or other components of a realistic gas network. We will, however, restrict
ourselves to a network that consists of pipes only. This is certainly a strong sim-
plification, but the main focus of this chapter is to develop a fast surrogate for the
problem. One can still explain the techniques of surrogate modelling we use as well
as address issues within the simulation of gas networks, namely the problem of
finding a stationary solution for a given configuration.

An edge is denoted by ij ∈ A , where the flow is directed from i to j . Within
each pipe we want to model the physics of the gas by thermodynamic conservation
laws. This procedure is based on [8].

We now assume that x ∈ [0,L] is the independent variable along the length of a
pipe segment, where L is the length of the segment (D is its diameter). The other
independent variable, if one considers time-varying problems, is the time t .

Conservation of mass yields what is called the continuity equation (1) and conser-
vation of momentum the pressure loss equation (2). These equations form a coupled
PDE together with the equations of state of a real gas (3). Altogether they are called
the isothermal Euler equations:

∂tρ + ∂xq = 0, (1)

∂tq + ∂xp + ∂x
(
ρv2)+ gρ∂xh = −λ(q)

2D
ρv|v|, (2)

p = γ (T )z(p,T )ρ. (3)

The dependent state variables are gas density ρ(x, t), gas velocity v(x, t), gas pres-
sure p(x, t) and gas temperature T (x, t). From the density and velocity of the gas
we can calculate the gas flow q(x, t) = ρ(x, t) v(x, t). The network of pipes can
have a given geodesic height h(x). The friction coefficient λ(q) can be determined
by a variety of formulæ. The simplest one is

λ = 0.067

(
158

Re
+ 2k

D

)0.2

,

where Re is the Reynolds number and k = 0.03 mm the equivalent roughness of the
pipe [16]. If we even consider an approximation of Re, λ will be a constant num-
ber independent of q . The term z(p,T ) is a compressibility factor that can also be
computed by several formulæ [16]. It denotes the deviation from the behaviour of
an ideal gas (z = 1) and may even be approximated by this ideal behaviour without
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the loss of practical utility of the equations. γ = RT is a field determined by tem-
perature and a gas constant R [16]. The full term γ z is often approximated by the
square of the sound velocity a ≈ 300 m/s in practice. Making use of the described
simplifications yields

∂tρ + ∂xq = 0,

∂tq + ∂xp + ∂x
(
ρv2)+ gρ ∂xh = − λ

2D
ρv|v|,

p = a2 ρ.

We now consider a small pipe network and allow for an approximation of
h(x) ≡ h0 and T (x) ≡ T0. We will also drop the kinetic energy term, replace v = q

ρ
,

plug the third equation into the second and obtain:

∂tρ + ∂xq = 0,

∂tq + a2∂xρ = − λ

2D

q|q|
ρ

.
(4)

We will consider two models for our pipe network, one where the physics within the
pipe is modelled by (4) and the other where we assume the dependent variables ρ

and q are time-invariant as in [13, Sect. 2.3], leading to the quasi-static equations

∂xρ = − λ

2Da2

q|q|
ρ

, q = const. (5)

Equations (4) or (5) must be satisfied for every pipe ij ∈ A . The pipes are con-
nected at the nodes and for each interior node we have to satisfy Kirchhoff’s current
law; i. e. the sum of all incoming gas flows equals the sum of all outgoing flows
per node. In the following, we will describe how to discretize these two sets of
equations inside a given network and see the full set of equations to be solved. We
start with (4) which is the dynamic case and use these equations to then derive the
quasi-static discretized equation in Sect. 2.2. This quasi-static case uses the equa-
tions for the stationary solution. If one considers time-dependent inputs, however,
one can use these simplified equations to construct time-dependent functions for q

and ρ. This is a relevant approach in practice and is referred to as the quasi-static
solution.

2.1 Dynamic Equations

Given a network with pipes as edges, experience shows that in practice any rough
discretization of xi − xi−1 ∈ [1,000 m,5,000 m] is sufficient. We therefore take
discrete points for the pressure only at the nodes and flows q at the beginning and at
the end of each pipe. If the pipe is longer than 5 km we add artificial interior nodes
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into the network. We then have a density ρi at every node i ∈ N , and for every pipe
segment ij ∈ A we have a flow qout

ij and a flow q in
ij . Here (out) stands for the flow

at the end of the pipe, out of the pipe, and (in) for the flow at the beginning of the
pipe. The dynamic pipe equations are then discretized for a given pipe ij by

∂t
ρi + ρj

2
+ qout

ij − q in
ij

Lij

= 0,

∂t
qout
ij + q in

ij

2
+ a2 ρj − ρi

Lij

= − λ

4Dij

(qout
ij + q in

ij )|qout
ij + q in

ij |
ρi + ρj

.

For every node we have to add an algebraic constraint. Introducing the new vari-

able yij = qout
ij +q in

ij

ρi+ρj
, one can write the full system as:

∂t
ρi + ρj

2
+ qout

ij − q in
ij

Lij

= 0 ∀e = ij ∈ Apipe, (6)

∂t
qout
ij + q in

ij

2
+ a2 ρj − ρi

Lij

+ λ

4Dij

∣∣qout
ij + q in

ij

∣∣yij = 0 ∀e = ij ∈ Apipe, (7)

∑

ji∈A

qout
ji −

∑

ik∈A

q in
ik = 0 ∀i ∈ N0, (8)

∑

ji∈A

qout
ji −

∑

ik∈A

q in
ik −Di(t) = 0 ∀i ∈ N−, (9)

a2ρi(t)− p̂i(t) = 0 ∀i ∈ N+, (10)

(ρi + ρj )yij − (
qout
ij + q in

ij

)= 0 ∀e = ij ∈ Apipe. (11)

Equations (6) and (7) describe the dynamics of the system. Equation (8) is Kirch-
hoff’s current law for interior nodes. In (9) the sum of flows has to be equal to the de-
mand at the demand node. For the supply node, we have a given pressure p̂i(t) (10).
Equation (11) is necessary since we introduce the extra variables yij .

We will consider λ,1/Dij ,1/Lij , a
2 as parameters and collect them in a large

vector p. The demand flows Di(t) and the supply pressures p̂i(t) are considered
inputs to the system and are collected in a vector u(t). The states of the system
are ρi, q

out
ij , q in

ij , yij . Collecting all states in a vector x, this system can be written as

Eẋ = A(p)x +H(p)
(
x ⊗ g(x)

)+Bu, (12)

where (g(x))i = xi or (g(x))i = |xi |. In a variety of applications one is interested in
optimizing a quantity that depends on the states. If one calls that quantity y = h(x)

we are in the framework of a dynamical system of the form

Eẋ = A(p)x +H(p)
(
x ⊗ g(x)

)+Bu,

y = h(x).



194 S. Grundel et al.

Due to the fact that E is singular, this system is called a differential-algebraic equa-
tion (DAE). For general network structures it is an index 1 DAE. Furthermore, it is
reasonable to assume g(x) = x for certain networks. Then the dynamical system is
purely quadratic. The matrices in (12) are sparse and the parameter dependence is
linear.

2.2 Quasi-static Equation

Starting from Eq. (5) we follow [13, Eq. (6)] for an explicit solution, which is a
discretization of the pipe with nodes at the beginning and end of the pipe only:

∂xρ = − λ

2Da2

q|q|
ρ

, q = const,

⇒ ρ∂xρ = − λ

2Da2
q|q|, q = const,

⇒ 1

2
∂x
(
ρ2) = − λ

2Da2
q|q|, q = const,

⇒ ∂x
(
p2) = −a2λ

D
q|q|, q = const,

p2
j − p2

i = −a2λ

Dij

qij |qij |Lij , qij = const.

Together with Kirchhoff’s laws at the nodes the full algebraic system is given by

p2
j − p2

i + a2λ

Dij

qij |qij |Lij = 0 ∀e = ij ∈ A , (13)

∑

ji∈A

qji −
∑

ik∈A

qik = 0 ∀i ∈ N0, (14)

∑

ji∈A

qji −
∑

ik∈A

qik −Di = 0 ∀i ∈ N−, (15)

p − p̂i = 0 ∀i ∈ N+. (16)

With the parameters a2, λ,Lij /Dij collected in p, the pressures and flows (pi, qij )

collected in x, and p̂i as well as Di collected in u we get

A(p)x +H(p)
(
x ⊗ g(x)

)+Bu = 0, (17)

where (g(x))i = |xi | or xi again. In some cases one can assume the relevant x to be
positive as in the dynamic case. Then g(x) = x and the system is quadratic.
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2.3 Discussion of Nonlinearity

The gas flow within the pipe network leads to a moderate nonlinearity of the
quadratic term and possibly to a discontinuity due to the absolute value. Never-
theless, further elements like connections, valves and regulators may introduce a
stronger nonlinearity or can even cause a loss of smoothness within the solution.
Connections do not introduce nonlinearity, since they can be thought of as simple,
very short pipes with a constant relative pressure loss. If valves are seen as either
open or closed, they will also not introduce any further nonlinearity. An opening
or closing procedure of a valve would cause a discontinuity within the state and
should therefore be modelled differently, i.e. by a smooth transition. The remaining
elements, the regulators or control valves, do introduce strong nonlinearity, since
they will usually reduce gas pressure, but they do not interfere if the gas pressure is
too low to be reduced. One must ensure that the solution algorithm of the DAE can
deal with such non-smoothness, either by appropriate adaptation of the algorithm
itself, or by a smoothing procedure. The character of these kinds of nonlinearities or
discontinuities should be studied further. Within the scope of this chapter and with
model order reduction in mind, we will consider the moderately nonlinear part only,
since regulators will not essentially contribute to the size of the system.

3 Radial Kernel Interpolation

Before we give a detailed overview of model order reduction of gas transport prob-
lems, we introduce a more general interpolation approach for comparison. Radial
basis function (RBF) interpolation is a very intuitive black-box interpolation ap-
proach that is easy to implement and makes very general assumptions about the
function that is to be approximated. Recall, for example, the quasi-static equations
in matrix form (17). If we use an RBF approach, we do not consider the state x, but
only the implicitly defined function of parameters p onto one (or more) outputs y,

f : p ∈ Ω ⊂R
d → y ∈R.

However, if no output is defined, one can consider the whole state vector as output.
The assumptions of RBF interpolation about the approximand f are, simply put,
continuity and smoothness. Since we are dealing explicitly with an implicitly de-
fined function, we cannot make these assumptions in general. On the other hand, we
are dealing with a mildly nonlinear setting, where in practice we can expect conti-
nuity and smoothness most of the time. The RBF interpolant is then given by the
linear combination of M translates of a radial function φ(r), r ∈R

+,

s : x ∈ Ω ⊂R
d →

M∑

i=1

λiφ
(‖x − xi‖

)
, (18)
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for given interpolation points x1, . . . , xM . Here, we adopt the convention from the
RBF literature, where x denotes a parameter from Ω , while in the model order
reduction literature x denotes a state. ‖ · ‖ stands for the 2-norm or Euclidean norm
of a d-dimensional vector. Although other norms have been used, many results in the
literature are obtained for this specific choice; refer to [6], [9, Chap. 10] for a brief
discussion of alternatives. The coefficients λi are determined by M interpolation
conditions

s(xj ) = f (xj ) ∀j ∈ [1, . . . ,M] (19)

of a sampling f (xj ), xj ∈ X ⊂ Ω of the parameter space Ω . The choice of this
sampling strongly determines the quality of the approximation. Since the interpo-
lation is only dependent on Euclidean distances, scattered samplings that do not lie
on a regular grid can be considered without any difficulty.

Classical choices of RBFs are infinitely differentiable functions such as (inverse)
multiquadrics φ(r) = (ε2r2 + 1)β,β ∈ R or Gaussians φ(r) = e−ε2r2/2. The shape
parameter ε > 0 scales the width of the functions and thus influences the quality of
the approximation critically. Other important choices of RBFs are finitely differen-
tiable, such as the Matérn class of radial functions and the polyharmonics [5] as well
as radial functions with compact support. As a prominent example among compactly
supported radial functions is that of the Wendland functions stand out [9, 24]. Wend-
land functions speed up the setup and evaluation of the interpolant, thereby trading
computational expense for accuracy. Since RBF interpolants can always be set up
and evaluated comparably fast within our framework of the gas transport problem,
we do not consider radial functions with compact support in the following, nor will
we report on any other accelerating approaches.

3.1 Convergence Rates

In order to be able to derive general properties of RBF interpolation, RBFs are
seen as symmetric positive definite reproducing kernels K(x,y) that induce certain
Hilbert spaces [19]. The main idea is to choose the kernel K as the translate of a
radial function

K(x,y) = φ
(‖x − y‖).

Then the theory of reproducing kernels can be applied and error estimates as well
as convergence rates of RBF interpolation can be concluded. The Hilbert space in-
duced by a kernel is called its ‘native’ Hilbert space, and properties of the kernel
such as the radial symmetry and its translation invariance are responsible for the
innate structure of this induced space. Not strictly positive definite functions such
as the popular multiquadrics can be incorporated into the framework as condition-
ally positive definite kernels. Polynomial detrending, which allows us to exactly
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reproduce polynomial functions of a low degree, plays an important role in indus-
trial practice as well as in the theory of conditionally positive definite reproducing
kernels. We will use polynomial detrending and conditionally positive definite ker-
nel interpolation within this chapter, but without a thorough theoretical treatment.
The reason is that we are mainly concerned with the basic practical questions of
its application to gas network problems. The interested reader is referred to the in-
troduction of the topic in [19] as well as to the very comprehensible and practical
treatment in [9] and to the comprehensive account of all the theory involved that is
given in [24].

Our main assumptions of continuity and smoothness, as we mentioned earlier,
can be seen in terms of properties of the native space. If the approximand f lives in
the native space of an RBF, the literature provides upper bounds for error estimates
depending on the fill distance h = supx∈Ω minxj∈X ‖x − xj‖ of a sampling X .
Here h is a quantity that measures how well a sampling X covers the parameter
space Ω . These error bounds typically are given such that they have a factor which
depends on h and a second factor which depends on |f |NK(Ω), where | · |NK(Ω) is
the norm of the native space of the kernel K . In other words, the given error bounds
try to separate the influence of the sampling from that of the approximand f . Both
factors do depend on the kernel K , though—a fact which assigns an important role
to our choice of the radial function φ. A general rule of thumb is that we can obtain
better convergence rates with respect to h if the approximand is infinitely smooth
and thus can be approximated by an infinitely smooth RBF interpolation. Gaussians
and multiquadrics allow for exponential convergence orders in the best case if we
keep ε constant [9, Chap. 15], while the known best bounds for finitely smooth
radial functions such as the Matérn class of functions and thin plate splines are
polynomial. The Matérn functions

φ(r) = Kβ−d/2(r) r
β−d/2

2β−1Γ (β)
, β > d/2

have Sobolev spaces W
β

2 (Rd) as their native spaces Nφ(R
d) [9, Chap. 13] with

W
β

2

(
R

d
)= {

g ∈ L2(Ω)∩C(Ω) : Dαg ∈ L2(Ω) ∀|α| ≤ β, α ∈N
d
}
,

where Ω is bounded and Dα denotes the distributional derivative with multi-
index α. The native spaces of Gaussians and multiquadrics are smaller. If we try
to approximate a function f which lives in W

β

2 (Rd) but outside the native space
of a multiquadric or Gaussian, the expected convergence rate becomes polynomial
again, even if we apply a multiquadric or Gaussian kernel, and is therefore compa-
rable to the convergence of finitely smooth RBF interpolation [18]. Although their
native space is rather small, we will therefore mainly use multiquadrics in our ex-
periments.
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3.2 Shape Parameter Selection

Apart from the important choice of the type of radial basis, there are several
other parameters to consider that influence the approximation quality. The most
obvious is the scaling parameter ε, which is also called the shape parameter or
‘width’ in the literature and which determines if the translate of a basis function
has a more local or global influence. The discussion about the choice of ε is very
similar to that of the basis function itself. Some researchers therefore argue that
very flat and thus smooth and global functions yield the most accurate approxima-
tions [10, 11].

Unfortunately, flat basis functions cause numerical ill-conditioning; thus high-
accuracy results cannot be obtained with the described standard method. The so-
lution of the system of interpolation conditions (19) leads to large coefficients λi

introducing numerical cancellation errors within the interpolant; recall (18). If this
ill-conditioning grows too strong, the theoretically favourable convergence rates are
lost [9, Chap. 17].

Several remedies have been suggested in the literature, such as a computation-
ally more expensive expansion of the interpolant s by a rational polynomial of finite
order [10, 12]. Other authors use numerical preconditioning of the system or certain
basis transformations [9, Chap. 34], [17]. In practice, the problem of ill-conditioning
becomes important if the approximand f exhibits strong local nonlinearity, while
most of the function is rather smooth. If this is the case, the simplest solution is
to locally adapt the shape parameter so that it takes a different value for each ba-
sis function. The goal is to use smoother basis functions in smoother areas of the
approximand and less smooth basis functions in more nonlinear regions. Such an
adaption of ε, which was originally proposed in [15], is easy to implement and po-
tentially even enlarges the native space of infinitely smooth RBFs (it does not for
the finitely smooth Matérn class functions and thin plate splines [5]). Unfortunately,
one cannot ensure that the system is still non-degenerate when varying ε, although
this method has often been used in practice with good results [11]. If degeneration
of the system is an issue, we like to point out some very similar approaches like
non-stationary multilevel iteration [9, Corr. 32.1] and adaptive univariate interpola-
tion by scaled multiquadrics [4]. The details of the selection of ε in these methods
are beyond the scope of this chapter. The simplest rule of thumb is that the variable
shape parameter should decrease in a ’stationary way’, i.e. according to the decrease
in the fill distance h. The simple gas transport problems considered in this chapter
do not make it necessary to apply any of these measures at all. Also, the example
on p. 289 of [9, Table 32.6] shows that a simple uniform choice of ε can still give
good approximation results compared to a multilevel approach. However, if a prob-
lem exhibits strong local nonlinearities, we recommend trying one of the adaptive
or multilevel approaches.
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3.3 Sampling and Refinement

A different, though related, question is how to select the samples in X . Since the
error bounds are given in terms of the fill distance h, it is intuitive to select X
such that h is minimized. Random or quasi-random samplings (Halton points) are
most common. Other empirical choices of X consider numerical stability or lo-
cal nonlinearity of the approximand f . Since all these topics have already been
discussed in the context of the choice of ε, we omit most of the discussion here
for brevity and refer to [9] for more details. The most important result is that non-
uniform samplings may be necessary to approximate locally nonlinear functions f ,
but may cause ill-conditioning. The remedies are essentially again preconditioning,
basis transformations, iterative refinement of the sampling and local adaption of the
shape parameter such as in multilevel iteration.

Among the black-box surrogate methods, RBF interpolation can be compared to
kriging. Reference [20] makes a comparison between intrinsic kriging and general
conditionally positive definite kernel interpolation. As stated in [20], radial kernels
correspond to kriging with covariance functions of a weakly stationary and isotropic
random field.

4 Model Order Reduction (A Special Form of Surrogate)

Model order reduction (MOR) can be seen as a form of surrogate modelling which
was originally developed in systems and control theory for dynamical systems. It is
neither a black-box approach nor a physical surrogate. MOR can be understood as
an interpolatory method that takes the general form of the function that should be
approximated into account. Today it is a wide area of research with many applica-
tions. For a first introduction into the topic of MOR consult [1, 3, 21].

The main idea behind MOR is that there is a redundancy within the system. The
dynamical system, for example, has a large state space, but most of the solution
trajectories lie on a lower dimensional subspace. The idea is to solve a system only
on that lower dimensional subspace, therefore reducing the size of the state space.

We will introduce the concept of projection-based MOR as a surrogate for dy-
namical systems of the following problem type:

Eẋ = Ax + f (x)+Bu,

y = Cx + h(x),
(20)

where u(t) is an input function, x(t) is the state vector and y(t) the output function.
The idea of projection-based MOR is to find projection matrices V,W ∈R

n×r with
WT V = I and r < n such that x ≈ V x̂ where x̂ ∈R

r solves the reduced equations

Ê ˙̂x = Âx̂ + f̂ (x̂)+ B̂u,

ŷ = Ĉx̂ + ĥ(x̂),
(21)
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where Ê = WTEV, Â = WTAV, B̂ = WTB, Ĉ = CV, f̂ (x̂) = WTf (V x̂), ĥ(x̂) =
h(V x̂). With this step we have reduced the number of states in the system (the
unknowns) as well as the number of equations. The projection we described above is
called a Petrov–Galerkin projection if V �= W and a Galerkin projection if V = W .

In order to measure the quality of the reduced system we need a measure for
the error. One can measure the error by ‖x − V x̂‖ for an appropriate norm. This is
the focus of proper orthogonal decomposition (POD), which we will explain in more
detail in Sect. 4.1. One can also measure the error in the output. When measuring the
error in the states we are focusing on the input-to-state map, whereas in the second
case in which we measure the error in the output we are interested in the input-
to-output map. Other widely used MOR methods are Krylov subspace methods,
moment matching, balanced truncation and the reduced basis method.

A problem in projection methods for general nonlinear systems is that, even if
one can reduce the number of states and equations considerably, it could still be
very expensive to evaluate f̂ (x̂) = WTf (V x̂) since in the evaluation of this process
one has to create the full large state vector V x̂ and evaluate the large vector-valued
function f to then project it back down. For linear, quadratic or other more simple
systems this additional evaluation of the full system can be avoided as certain ma-
trices can be precomputed. For general nonlinear functions, on the other hand, one
has to use the empirical interpolation method (EIM) or the discrete empirical inter-
polation method (DEIM) [2, 7] which we will not explain here, since the considered
gas network problems show only mild nonlinearity.

Different MOR methods have different guarantees on the error created by re-
placing the original model with the reduced model. Some methods have strict error
bounds and others only heuristic error estimators. However, not so much is known
for nonlinear systems and especially for nonlinear differential algebraic systems.
Another big challenge of nonlinear DAEs is that reducing the system can lead to a
system that has no solution. Therefore, there are still many issues to be solved that
need further theoretical investigations.

4.1 Proper Orthogonal Decomposition (POD)

We are interested in reducing the system (20). Since POD tries to find a good ap-
proximation in the state, we are not interested in the output behaviour. POD finds a
projection matrix W to minimize ‖x − Wx̂‖ for a given norm ‖ · ‖ at least approx-
imately. POD is a Galerkin projection method, which means we only have to find
one matrix W . The method we describe is sometimes referred to as the method of
snapshots [22]. Within some communities the general underlying concept of POD
is also called principal component analysis (PCA) or Karhuenen–Loeve decomposi-
tion. Given samples x1, . . . , xN of any kind (they could be solutions or outcomes of
a process in general), the method extracts a basis u1, . . . , u� that solves the following
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minimization problem:

min
u1,...,u�

N∑

k=1

∥∥∥
∥∥
xk −

�∑

i=1

〈xk,ui〉ui

∥∥∥
∥∥

s.t. 〈ui, uj 〉 = δij . (22)

The solution to this problem is directly connected to the singular value decom-
position (SVD) of the matrix Y = [x1, . . . , xN ]. Given the SVD of Y = UΣV T the
solution to (22) for the standard Euclidean inner product and Euclidean norm is ob-
tained by the first � left singular vectors which are the first � columns of U . Here
we assume that the singular values in Σ are ordered. Per definition of the SVD, U
and V are orthogonal matrices and Σ is a diagonal matrix.

For a dynamical system as given above, what we would really like to do is solve
the following optimization problem:

min
∫ T

0

∥∥∥x(t)−
∑〈

x(t), ui

〉
ui

∥∥∥
2

dt s.t. 〈ui, uj 〉 = δij . (23)

Since this is difficult and we do not always know the solution x(t) everywhere in
time, we solve the approximated version of this. Here we pick times t1, . . . , tN and
look at solutions at these discrete time steps x(t1), . . . , x(tN ), the so-called snap-
shots. We typically consider a fixed input function u(t). The optimization prob-
lem (23) reduces to (22).

Given the singular vectors ui of the snapshot matrix Y = [x(t1), . . . , x(tN )] we
have that

x(tk) ≈
�∑

i=1

〈
x(tk), ui

〉
ui =

�∑

i=1

x̂i (tk)ui = Wx̂(tk),

where W is given by the matrix W = [u1, . . . , uN ]. Since this is true for all discrete
time steps tk , it can be considered as evidence that it is true at arbitrary times, which
gives us

x(t) ≈ Wx̂(t).

We are not able to compute ‖x(t)−Wx̂(t)‖ at every t , but we minimize

∑

k

∥∥x(tk)−Wx̂(tk)
∥∥.

If the system is furthermore dependent on a parameter, this is typically extended
by creating snapshots for several parameter values and times. All the snapshots will
be put into one large matrix Y and the rest can be done as described above.
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5 Surrogates for Gas Network Modelling

In this section we will discuss approaches to verify the discussed simplifications for
the pipe equations, the different surrogate models constructed by MOR methods and
also RBF surrogates.

We will start with a gas network consisting of one pipe only in which we compare
the quasi-static approximation with the dynamic approximation and the simulation
of the full isothermal Euler equations. We will see the advantages and limitations of
our two approaches. Furthermore, we discuss in detail the solution of a larger ex-
ample network using the quasi-static equations in the pipe. We construct a surrogate
with POD MOR as well as with an RBF metamodel. The third test is a simulation
of the dynamic model on that given network and its surrogate, computed by POD.

5.1 Pipe Equation Comparison

As a first verification of the pipe equations we are considering one long pipe (L =
100 km) with given pressures at the inlet and outlet. This example was studied
in [13]. For comparability we use the same constants a = 377.9683 m/s, λ = 0.011,
D = 0.5 m. The pressure at the inlet will always be given by constant 45 bar and the
pressure at the outlet varies smoothly from pO(0) = 40 bar to pO(T ) = 45 bar. We
have different test cases with fast and slowly changing inlet pressure profiles as well
as one oscillating profile.

1. pO(t) = pO(0)+ pO(T )−pO(0)
2 (1 − cos(π t

T
)) for T = 1,3 and 6 h

2. pO(t) = pO(0)+ pO(T )−pO(0)
2 (1 − cos(4π t

T
)) for T = 12 h

We compute the flow at the inlet and outlet by using three different sets of equa-
tions. First we solve the benchmark model, the isothermal Euler equations given
by (1)–(3). These equations are discretized using a second-order relaxed method
with adaptive characteristics speeds; see [13] and the references therein. In [13]
the underlying grid has 2,001 spatial points and uses a Courant–Friedrichs–Lewy
(CFL) condition of 0.49. We do not adhere to this choice of discretization and con-
struct a graph out of the pipe by adding 19 nodes such that the pipe segments all
have a length of 5 km. This, as discussed above, is the maximal length we allow
for our network. Apart from the full isothermal equations we also solve the DAEs
given by (6)–(11). Then the third solution is the quasi-static solution given by solv-
ing Eqs. (13)–(16). One can solve them on the network as above with the 19 added
nodes or directly on the whole pipe. The solution will be the same since the flow in
the beginning and end of the pipe (or pipe segment) is always the same.

Figures 1 and 2 show a comparison of the isothermal equations, our slightly sim-
plified dynamic discretized equation solved in time by an implicit Euler as well as
the quasi-static solution for the pressure profiles (1). One can see of course that
the quasi-static solution is the same at the inlet and the outlet and is non-smooth
at the final time. The approximated dynamic solution shown in red is closer to the
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Fig. 1 Case (1). Flux at the inlet

Fig. 2 Case (1). Flux at the outlet

isothermal benchmark solution the more slowly we change the pressure at the inlet.
However, it is significantly better than the quasi-static solution which is used of-
ten in practical applications. Figures 3 and 4 compare the two different models for
oscillating boundary pressure.

In general, one can see that at the inlet the quasi-static solution is a decent ap-
proximation, where at the outlet it is not. For slowly varying pressure profiles the
dynamic approximation is a very good approximation. This simplification produces
a system that is quadratic (if set up accordingly to ensure g(x) = x) and can there-
fore be approximated more efficiently by MOR methods than the full isothermal
equations, which justifies its use.
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Fig. 3 Case (2). Flux at the inlet

Fig. 4 Case (2). Flux at the outlet

5.2 Test Example

We will compute the surrogate in the two following sections based on a model that is
a modified version of a part of a true gas network. It consists of 17 nodes, 16 pipes,
1 supply node and 8 demand nodes. Its graph structure can be seen in Fig. 5. The
lengths of the pipes are given by

L1,2 = 46 m, L2,3 = 7 m, L3,4 = 3,080 m, L4,5 = 4,318 m,

L5,6 = 323 m, L5,7 = 790 m, L7,8 = 1,820 m, L7,9 = 1,460 m,

L9,10 = 2,368 m, L10,11 = 1,410 m, L11,12 = 296 m,

L11,13 = 3,979 m, L13,14 = 119 m, L13,15 = 3,881 m,
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Fig. 5 Gas network graph

L15,17 = 687 m, L15,16 = 6,114 m

and the diameters of the pipes are a constant 0.206 m. We will also assume λ =
0.0003328 and a = 430.5 m/s in the following if not specified otherwise. Further-
more, the supply pressure is 44.5 bar and the demands are given by:

D4 = 0.21 kg/s, D8 = 34.86 kg/s, D9 = 0.22 kg/s,

D10 = 2.83 kg/s, D12 = 1.81 kg/s, D14 = 1.04 kg/s,

D16 = 2.85 kg/s, D17 = 1.45 kg/s.

However, we will also consider a trivial input vector where all demands are zero
and the supply (or generally all supplies) are a constant p0. Then setting all pres-
sures to p0 and all flows to 0 is always a trivial solution of the equations. Since
even computing stationary solutions for arbitrary demand and supply distributions
can be difficult, one sometimes has to use this kind of trivial solution as a starting
configuration.

5.3 Quasi-static Case with POD

The equation is given by (17), which we recall here for convenience:

A(p)x +H(p)
(
x ⊗ g(x)

)+Bu = 0. (24)

The parameter p consists of λ,a2,Dij ,Lij and the input u of the pressure at the
supply node and the outflows at the demand nodes. Since we are mainly interested
in computing stationary solutions with this equation the question is: Can one cre-
ate a good surrogate to find the solution x for a given u? In general applications
one typically knows the parameters to be in some range or with some uncertainty.
Given the example network described above, we compute solutions x0, . . . , xN for
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Fig. 6 Singular values

different inputs u0, . . . , uN with

ui = u0 + i

N
(uN − u0).

Here u0 for the trivial solution is a starting input as described above with p0 ≡
45 bar. This means we are solving the equation for a path of input distributions that
move from the trivial solution u0 to the one for uN , which is the desired input as
described in Sect. 5.2. We are using the equation solver fsolve from [14] to solve
the system above. The singular values of the snapshots matrix Y = [x0, . . . , xN ] are
given by Fig. 6.

This shows that there is a low-dimensional linear space in which the solutions lie
approximately. We create the reduced model by the projection described in Sect. 4.1.
This is a special case, since we only have to consider algebraic equations, but no
differential equations. However, we consider a time-varying input system and com-
pute the stationary solution of the system for discrete time steps. Interpreting this
sequence of stationary solutions as a time-dependent state, we talk about the quasi-
static solution, which can be a reasonable solution as we have seen above if the
inputs vary slowly enough. Concretely, given the projection matrix W from the
snapshot matrix Y by POD, the reduced equation looks like

WT AWx̂ +WT H(p) (W ⊗ I )
(
x̂ ⊗ g(Wx̂)

)+WT Bu = 0.

Given a tolerance of 10−8 we create a reduced model of order 5. Having obtained
that reduced model, we compute solutions for uTEST which has the same demands as
uN , but the supply is given by 50 bar. Furthermore, we vary the parameter λ slightly
around its given value. The error ‖x −Wx̂‖ is given in Fig. 7 for the 1,000 different
test values of λ ∈ [0.0002,0.0006].
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Fig. 7 Different error norms

This shows that, for a given path of input vectors, starting from a trivial con-
figuration, the system is reducible without producing a significant error. Given a
configuration u for which the original system is hard to solve, one can create a
path u0, . . . , uN = u and solve the system starting with u0 for each ui , where
fsolve is started with the solution of the previous problem. It is known that one
can still run into a point where the Newton method no longer converges. One can
then use the information from before to reduce the system, solve the reduced system
and get a more accurate starting value for the quasi-Newton solver. If we are inter-
ested in parameter studies for a given input, the above example already shows that
the reduced model is a good model for many parameters. However, we could also
reduce the model based on snapshot solutions for different parameters. We com-
puted a snapshot matrix for values of λ varying from 0.0002 to 0.0006, choosing
40 equally spaced points in between. The reduced model is then of order 4, using the
same tolerance of 10−8 in the singular values. Given 1,000 values of λ between 0
and 1.5, the maximum error of the solution in the reduced system with the solution
of the true system is then found to be 10−6.

We also created several RBF metamodels for the solution to this algebraic equa-
tion. In order to do that we understand the solution x as an implicitly given func-
tion of the parameters and/or the inputs. Multiquadrics, Gaussians and Matérn-class
functions have been implemented within a simple interpolation setting. We have not
made use of polynomial detrending. Polynomial interpolation is expected to be very
efficient and accurate in our example problems, since these problems show a certain
polynomial behaviour. On the other hand, such an assumption can probably not be
generalized, which is why we refrain from this choice. The shape parameter ε has
been selected manually as ε = 0.1. In order to allow for a comparison with POD,
the same uniform sampling was used for both methods.
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Table 1 Comparing RBF surrogates and POD reduced models

λ× a2 # of samples Order
reduced
model

Error RBF Error POD

[1.5 × 10−4,4.5 × 10−4] × [150,450] 33 4 10−7 10−6

[0,6 × 10−4] × [0,600] 33 4 2 × 10−6 10−6

[0,6 × 10−4] × [0,600] 100 5 3.5 × 10−7 1.6 × 10−7

In Table 1 we compare creating a surrogate model for the function from the
parameters λ × a2 to the state vector x containing the pressures and the flows. In
each test we pick a certain parameter range and compute the solution for a number
of grid-like distributed points. With that we create an RBF metamodel as well as
a reduced-order model via POD as above, where the order is again picked by the
tolerance of 10−8. We show the maximum error between the approximated and the
true solution sampled on 10,000 grid points.

One can see that if enough samples are chosen within a small enough region, one
can get almost arbitrarily small errors in the RBF model. However, this model is only
accurate for the exact region in which we have interpolation points. We again stress
that we have assumed that the function x of p specified by an implicit function is
smooth, which cannot be guaranteed in general. The advantage of the reduced model
is that it takes this implicit definition into account and gives good solutions even
outside the range which was used to create the model. We can furthermore change
other parameters and still get reasonable approximations. On the other hand, it can
still be considered a disadvantage that in order to obtain x there is still a system to
solve, although of reduced order.

5.4 Dynamic Case

We now consider the set of equations given by (6)–(11). Since the flow is no longer
constant within the pipe and we add another set of variables, we have for the ex-
ample problem a state space dimension of 65 = 16 × 3 + 17. Since this is a DAE,
we use POD exactly as described above, where we consider the solution x(t) given
by solving the system for the input u(t) which has constant demands and a varying
supply pressure p̂1(t) given by

p̂1(t) = 44.5 bar + 2.5 bar ×
(

1 − cos

(
πt

1 h

))
, t ∈ (0,1.5 h).

We take 100 snapshots of the solution trajectory x(t) at equidistant time steps for
t ∈ [0,1.5 h]. The singular values of the snapshot matrix are given by Fig. 8. Cutting
off at 10−8, we create a reduced-order model of size 39. To compare we compute
the solution at 3,000 time steps between 0 and 1.5 h. The maximal relative error
between the reduced solution and the true solution is then found to be 10−8. This
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Fig. 8 Singular values of snapshot matrix

Fig. 9 Flux at node 5

small relative error is not surprising, since cutting off the singular values at 10−8

is cutting them off at a relative error of 10−8/106 = 10−14, where 106 is the value
of the largest singular value. And since we reduce the model only for a given input
function and fixed parameters, the solution trajectory lies in that subspace and we
can reduce the system to that subspace without creating an error. We can see the flux
of the original model and the flux of the reduced model at node number 5 in Fig. 9.
It shows that there is no difference.
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6 Discussion and Conclusions

We have compared a dynamic approximation to the isothermal Euler equations for
a network consisting of one long pipe. We use different outlet pressures and can see
that the dynamic approximation is very close to the true isothermal Euler equations,
especially if the pressure at the outlet is varying slowly enough. The often-used
quasi-static approximation is shown to not exhibit the right behaviour, but for very
slowly varying inputs it could still be a valuable option. We also investigated a part
of a realistic gas network with 17 nodes and 16 pipes. We created a reduced model
for the quasi-static set of equations by POD. We were able to reduce the model for
varying inputs to just four unknowns with a relative error of only 10−7. This shows
clearly that gas networks are reducible and that model reduction is a valued surro-
gate. We also created RBF surrogates for this problem. Given good sampling points
in the whole range, one can create very accurate and efficient RBF interpolants.
However, the reduced model gives good results even outside the sampled parameter
values. As discussed in Sect. 4, there are many methods for reduced-order mod-
elling; however, very little is known for nonlinear differential algebraic systems. We
tested the POD approach, since it is easy to use and it works for arbitrary systems.
The selected RBF approach works well due to the simple relation between x and p

in our example, but it might not be applicable to more involved settings.
With respect to the dynamic problem, proper orthogonal decomposition is prob-

ably not the most efficient model order reduction scheme. H2-optimal methods for
linear systems that allow for a best approximation in the H2-norm of the system can
be computed efficiently by an iterative Krylov subspace algorithm without solving
the full system of equations. They have recently been extended to differential alge-
braic equations and to quadratic problems. However, there are still some issues. It is
not yet fully clarified how optimality can be achieved with these methods. Neither
is it understood in detail how and when the iterative procedure converges and how
to implement the approach efficiently. Network systems have already been studied
as nonlinear DAEs and there exist some tractability and stability results. However,
we believe that there are still a lot of possible research topics, in order to arrive at
tractable and stable reduced-order systems of nonlinear gas transport network prob-
lems. One of the main questions is: Does the reduced-order system still adhere to
the algebraic equations? Another one is: How can quadratic terms and switched state
systems be incorporated into some of the DAE-specific linear model order reduc-
tion approaches?

As to RBF interpolation, again, the dynamic case is more involved. There are
very general RBF interpolation methods for PDEs that may have the potential to
be adapted for gas networks. One might consider time as a parameter or a set of
solutions for discrete time steps as a vector-valued output. In the computer graphics
literature there are also RBF methods for the interpolation of implicit functions,
which might have the potential to be extended to a multidimensional setting and thus
to gas network simulation. Of course, the techniques for local strong nonlinearities
mentioned in Sect. 3 may be of use if the problem setting becomes more demanding.

As has been mentioned earlier, the gas transport network problem can become
much more difficult to solve if nonlinear compressors, regulators or other elements
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are considered. Therefore, the model order reduction problem can also become very
ambitious. RBF interpolation might deal well with smooth nonlinearities but is ex-
pected to have difficulties with piecewise continuous functions or switched state
systems. Therefore, one of the challenges in this application area is to combine the
different approaches in such a way as to benefit from the advantages of each without
suffering their disadvantages.
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Aerodynamic Shape Optimization by Space
Mapping

Leifur Leifsson, Slawomir Koziel, Eirikur Jonsson, and Stanislav Ogurtsov

Abstract Space mapping (SM) has been successfully applied in various fields of
engineering and science. However, despite its potential, SM has only recently been
applied in aerospace engineering. This chapter describes recent advances in aero-
dynamic design and optimization using SM. In particular, a detailed formulation of
the optimization methodology is provided, as well as several applications involving
the design of transonic airfoils and wings.

Keywords Aerodynamic shape optimization · Space mapping · CFD

1 Introduction

Aerodynamic shape optimization (ASO) is a field of engineering that couples op-
timization methods and fluid flow analysis to design streamlined surfaces. ASO is
important in the design of a number of engineering systems and devices, such as
aircraft [1], turbomachinery [2], and automotive [3] and marine vehicles [4]. Nowa-
days, high-fidelity computational fluid dynamic (CFD) simulations are widely used
in the design process. Although CFD analyses are accurate and reliable, they can
be computationally expensive. Therefore, efficient and robust design algorithms are
essential for rapid optimization.

Computationally efficient ASO can be performed using surrogate-based opti-
mization (SBO) techniques [5–7]. In SBO, direct optimization of the high-fidelity
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CFD model is replaced by an iterative correction-prediction process where a sur-
rogate model (a computationally cheap representation of the high-fidelity one) is
constructed and subsequently exploited to obtain an approximate location of the
high-fidelity model optimal design.

A surrogate model can be constructed by approximating sampled high-fidelity
model data using, e.g., polynomial approximation [5], radial basis functions [6, 8],
kriging [7, 9–11], neural networks [12, 13], or support vector regression [14] (re-
sponse surface approximation surrogates) or by correcting/enhancing a physics-
based low-fidelity model (physical surrogates) [7, 15]. Approximation surrogates
usually require a large number of high-fidelity model evaluations to ensure decent
accuracy, and the number of samples typically grows exponentially with the num-
ber of design variables. On the other hand, approximation surrogates can be a basis
of efficient global optimization techniques [6]. Various techniques of updating the
training data set (the so-called infill criteria [6]) have been developed that aim at ob-
taining global modeling accuracy, locating a globally optimal design, or achieving
a trade-off between the two, particularly in the context of kriging interpolation [6].

Physics-based surrogate models are not as versatile as approximation ones, be-
cause they rely on the underlying low-fidelity model (a simplified description of the
system). Low-fidelity models can be obtained by neglecting certain second-order
effects, using simplified equations, or—probably the most versatile approach—by
exploiting the same CFD solver as used to evaluate the high-fidelity model but with
a coarser mesh and/or relaxed convergence criteria [16]. It seems that physical sur-
rogates have the potential to offer better efficiency in terms of reducing the computa-
tional cost of the design process. The reason is that the knowledge about the system
of interest embedded into the low-fidelity model allows us to construct a quality sur-
rogate model using a limited amount of high-fidelity model data. For many practical
algorithms, only a single high-fidelity model evaluation is sufficient [7, 17]. For the
same reason, physical surrogates have much better generalization capability than
the approximation models [17].

Several SBO algorithms exploiting physical surrogates have been proposed in the
literature, including approximation and model management optimization (AMMO)
[18], space mapping (SM) [17, 19], manifold mapping (MM) [20], and, recently,
shape-preserving response prediction (SPRP) [21]. All of these methods differ in
the specific method of using the low-fidelity model to create the surrogate. Space
mapping is probably the most popular approach of this kind. It was originally de-
veloped for simulation-driven design in microwave engineering [17]; however, it
is currently becoming more and more popular in other areas of engineering and
science (see [17, 19]). Despite its potential, space mapping has only recently been
applied in ASO [22–24].

In this chapter, we describe a computationally efficient ASO methodology which
employs physics-based surrogate models created by space mapping [23, 24]. Sec-
tion 2 briefly describes aerodynamic shape design and the optimization problem.
The optimization methodology is described in detail in Sect. 3. Applications of the
method to transonic airfoil and wing design are given in Sects. 4, 5. Section 6 sum-
marizes the chapter.
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Fig. 1 Planform view of a trapezoidal wing (or a turbine blade) of a semi-span b/2 and quarter
chord sweep angle Λ. Span stations are marked 1 through 7 and the free-stream velocity is V∞.
Leading edge and trailing edge angles φ and ψ are also shown. Other design parameters are not
shown

2 Aerodynamic Shape Design

The fundamentals of aerodynamic shape design are briefly addressed in this sec-
tion. In particular, the geometry description, figures of merit, and the optimization
problem are defined.

2.1 Geometry

A three-dimensional streamlined aerodynamic surface is depicted in Fig. 1, which
could, for example, represent a simple aircraft wing or a turbine blade. Design pa-
rameters controlling the planform shape include the semi-span (b/2), the quarter
chord wing sweep angle (Λ), the thickness-to-chord ratio (t/c) at each span station,
the wing taper ratio (λ), and the twist distribution (γ ).

At each span station (numbered 1 through 7) of the surface, the cross section is
defined by an airfoil profile such as the one in Fig. 2. The number of span stations
can be larger or fewer than shown here and depends on the particular design sce-
nario. A straight line wrap is often assumed between the span stations. The airfoil
shapes are characterized by the chord length (c), thickness distribution (t), and cam-
ber distribution. Designable parameters controlling the overall shape depend on the
parameterization technique employed by the designer. Examples of such techniques
include the National Advisory Committee for Aeronautics (NACA) four-digit air-
foil shapes [25], the Hicks and Henne bump functions [26], and the Bezier-PARSEC
method [27], each with different types and numbers of control parameters.
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Fig. 2 Airfoil wing cross section (solid line) of thickness t and chord length c. V∞ is the
free-stream velocity and is at an angle of attack α relative to the x-axis. F is the resulting aerody-
namic force, where l is the lift force, perpendicular to V∞, and d is the drag force, parallel to V∞.
p is the pressure acting normal to a surface element ds. τ is the viscous wall shear stress acting
parallel to the surface element. θ is the angle that p and τ make relative to the z-axis and x-axis,
respectively, where a positive angle is clockwise

2.2 Figures of Merit

In general, a streamlined aerodynamic surface is designed to provide a certain lift
at a minimum drag. In ASO, the typical figures of merit are the lift and drag coeffi-
cients. The lift coefficient (for a three-dimensional surface) is defined as

CL = L

q∞S
, (1)

and the drag coefficient as

CD = D

q∞S
, (2)

where S is a reference area (usually chosen as the planform area), L and D are the
magnitude of the total lift and drag forces, respectively, and the dynamic pressure
q∞ is defined as

q∞ = 1

2
ρ∞V∞, (3)

where ρ∞ is the free-stream density and V∞ is the magnitude of the free-stream
velocity.

The forces acting on the surface are calculated from the results of a numerical
simulation of the flow past it. In particular, the lift and drag coefficients can be
calculated as

CL = −CA sinα +CN cosα, (4)

and

CD = CA cosα +CN sinα, (5)
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Table 1 Various problem formulations for aerodynamic shape optimization. Typically, constraints
on the minimum allowable cross-sectional area are also included, i.e., c2(x) = Amin(x)−A(x) ≤ 0,
where Amin(x) is the minimum cross-sectional area at a given span station. Cp.t is a target pressure
distribution

Case f (x) c1(x)

Lift maximization −CL(x) CD(x)−CD.min ≤ 0

Drag minimization CD(x) CL.max −CL(x) ≤ 0

L/D maximization −CL(x)/CD(x) CL.max −CL(x) ≤ 0

Inverse design 1/2
∫
(Cp(x)−Cp.t )

2 ds

respectively. Here, the nondimensional force coefficients parallel to the x- and z-
axes, CA and CN , respectively, are calculated by integrating the pressure distribution
(Cp) and the skin friction distribution (Cf ) over the surface as

CA =
∮

(Cp sin θ +Cf cos θ) ds, (6)

and

CN =
∮

(−Cp cos θ +Cf sin θ) ds, (7)

where ds is the length of the surface panel element and θ is the angle of the panel
relative to the x-axis (see definition in Fig. 2).

2.3 Optimization Problem

Generally, aerodynamic shape optimization can be formulated as a nonlinear mini-
mization problem; i.e., for a given operating condition, solve

min
x

f (x)

s.t. cj (x) ≤ 0 (8)

l ≤ x ≤ u,

where f (x) is the objective function, x is the design variable vector, cj (x) is a
design constraint (j = 1, . . . ,N and N is the number of constraints), and l and
u are the lower and upper bounds for the design variables, respectively. The design
variables and the detailed formulation are problem-specific, but typical formulations
are shown in Table 1. Other constraints such as mathematical models describing the
structural weight of the wing are often included in optimization [28].
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3 Space Mapping for Aerodynamic Design

In this section, we describe a space mapping (SM) optimization methodology for
aerodynamic shape design. First, the aerodynamic optimization problem described
in the previous section is formulated for the SM approach. Then, we briefly recall
some SM basics, and define the surrogate model construction. Finally, the SM algo-
rithm is described.

3.1 Problem Formulation

A simulation-driven design can be formulated as a nonlinear minimization problem
as noted before. Refining (8), we define

x∗ = arg min
x

H
(
f (x)

)
, (9)

where x is a vector of design parameters, f the high-fidelity model to be minimized
at x, and H is the objective function. x∗ is the optimum design vector. The high-
fidelity model will represent aerodynamic forces, the lift and drag coefficients, as
well as other scalar responses such as the cross-sectional area A of the wing at the
location of interest. The area response can be of a vector form A if one requires
multiple area cross-sectional constraints at various locations on the wing, e.g., the
wing root and the wing tip. The response will have the form

f (x) = [
CL.f (x) CD.f (x) Af (x)

]T
, (10)

where CL,f and CD,f are the lift and drag coefficients, respectively, generated by
the high-fidelity model. We are interested in maximizing lift or minimizing drag, so
the objective function will take the form

H
(
f (x)

) = −CL, (11)

or

H
(
f (x)

) = CD, (12)

respectively, with the design constraints denoted as

C
(
f (x)

) = [
c1(f (x)) . . . ck(f (x))

]T
. (13)

Maximizing lift will yield two nonlinear design constraints for drag and area,

c1
(
f (x)

) = CD,f (x)−CD,max ≤ 0, (14)

c2
(
f (x)

) = −Af (x)+Amin ≤ 0. (15)
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Fig. 3 A flow diagram of a generic SBO algorithm

Similarly, minimizing drag we have two nonlinear design constraints for lift and
area,

c1
(
f (x)

) = −CL,f (x)+CL,min ≤ 0, (16)

c2
(
f (x)

) = −Af (x)+Amin ≤ 0. (17)

3.2 Space Mapping Basics

Space mapping (SM) [17, 19] is a surrogate-based optimization (SBO) technique
where the computational burden is shifted from an expensive high-fidelity model
(or fine model), denoted by f , to a cheaper model, the surrogate, denoted by s,
where the surrogate is iteratively optimized and updated. The flow of a typical SBO
algorithm is shown in Fig. 3.

Starting from a initial design x(0), the genetic SM algorithm produces a sequence
x(i), i = 0,1, . . . of an approximate solution to (9) as

x(i+1) = arg min
x

H
(
s(i)(x)

)
, (18)

where

s(i)(x) = [
C

(i)
L.s(x) C

(i)
D.s(x) As(x)(i)

]T (19)
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is the surrogate model at iteration i. As previously described, the accurate high-
fidelity CFD model f is accurate but computationally expensive. Using SM, the
surrogate s is a composition of the low-fidelity CFD model c and a simple linear
transformation to correct the low-fidelity model response [17]. The corrected re-
sponse is denoted as s(x,p), where p represents a set of model parameters and at
iteration i the surrogate is

s(i)(x) = s(x,p). (20)

The SM parameters p are determined through a parameter extraction (PE) pro-
cess [17]. In general, this process is a nonlinear optimization problem, where the
objective is to minimize the misalignment of the surrogate response at some or all
previous iterations of the high-fidelity model data points [17]. The PE optimization
problem can be defined as

p(i) = arg min
p

i∑

k=0

wi,k

∥∥f
(
x(k)

)− s
(
x(k),p

)∥∥2
, (21)

where wi,k are weight factors that control how much impact previous iterations
affect the SM parameters. Popular choices are

wi,k = 1 ∀i, k, (22)

and

wi,k =
{

1 k = i,

0 otherwise.
(23)

In the latter case, the parameters only depend on the most recent SM iteration.
Examples of SM surrogate models include input SM, where s(x,p) = s(x,q) =

c(x + q) (parameter shift) or s(x,p) = s(x,B,q) = c(Bx + q) (parameter shift and
scaling), output SM, with s(x,p) = s(x,A) = Ac(x) (multiplicative response cor-
rection) or s(x,p) = s(x,d) = c(x) + d (additive response correction), and a few
others such as implicit SM [29] and frequency SM [30].

3.3 Surrogate Model Construction

The SM surrogate model s is a composition of a low-fidelity model c and corrections
or linear transformations, where the model parameters p are extracted using one of
the PE processes described above. PE and surrogate optimization create a certain
overhead on the whole process, and this overhead can be a significant part of the
overall computational cost. This is mainly due to the fact that the physics-based
low-fidelity models are, in general, relatively expensive to evaluate compared to the
functional-based ones. Despite this, SM may be beneficial [31].
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This problem can be alleviated by exploiting the output SM with both multi-
plicative and additive response corrections where the surrogate model parameters
are extracted analytically. The surrogate model is then written as

s(i)(x) = A(i) ◦ c(x)+ D(i) + q(i) (24)

= [
a
(i)
L CL.c(x)+ d

(i)
L + q

(i)
L a

(i)
D CD.c(x)+ d

(i)
D + q

(i)
D Ac(x)

]T
, (25)

where ◦ is a component-wise multiplication. No mapping is needed for the area
Ac(x), where Ac(x) = Af (x) ∀x since the low- and high-fidelity models represent
the same geometry. Parameters A(i) and D(i) are obtained using

[
A(i),D(i)

] = arg min
A,D

i∑

k=0

∥∥f
(
x(k)

)− A ◦ c
(
x(k)

)+ D
∥∥2

, (26)

where wi,k = 1; i.e., all previous iteration points are used to globally improve the
response of the low-fidelity model. The additive term q(i) is defined so as to ensure
this perfect match between the surrogate and the high-fidelity model at design x(i),
namely f (x(i)) = s(x(i)) or a zero-order consistency [18]. We can write the additive
term as

q(i) = f
(
x(i)

)− [
A(i) ◦ c

(
x(i)

)+ D(i)
]
. (27)

Since an analytical solution exists for A(i),D(i), and q(i), there is no need for
nonlinear optimization solving (21) to obtain parameters. We can obtain A(i) and
D(i) as

[
a
(i)
L

d
(i)
L

]

= (
CT

LCL

)−1CT
LFL, (28)

[
a
(i)
D

d
(i)
D

]

= (
CT

DCD

)−1CT
DFD , (29)

where

CL =
[
CL.c(x(0)) CL.c(x(1)) . . . CL.c(x(i))

1 1 . . . 1

]T

, (30)

FL =
[
CL.f (x(0)) CL.f (x(1)) . . . CL.f (x(i))

1 1 . . . 1

]T

, (31)

CD =
[
CD.c(x(0)) CD.c(x(1)) . . . CD.c(x(i))

1 1 . . . 1

]T

, (32)

FD =
[
CD.f (x(0)) CD.f (x(1)) . . . CD.f (x(i))

1 1 . . . 1

]T

, (33)
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and these are the least-square optimal solutions to the linear regression problems

CLa
(i)
L + d

(i)
L = FL, (34)

CDa
(i)
D + d

(i)
D = FD. (35)

Note that CT
LCL and CT

LCL are nonsingular for i > 1 and x(k) �= x(i) for k �= i. For
i = 1 only the multiplicative SM correction with A(i) is used.

3.4 Algorithm

The SM optimization algorithm, exploiting the trust region convergence safeguard
[6], is as follows:

1. Set i = 0; Select λ, the trust region radius; Evaluate the high-fidelity model at
the initial solution, f (x(0));

2. Using data from the low-fidelity model c, and f at x(k), k = 0,1, . . . , i, set up
the SM surrogate s(i); Perform PE;

3. Optimize s(i) to obtain x(i+1);
4. Evaluate f (x(i+1));
5. If H(f (x(i+1))) < H(f (x(i))), accept x(i+1); Otherwise set x(i+1) = x(i);
6. Update λ;
7. Set i = i + 1;
8. If the termination condition is not satisfied, go to 2, else proceed;
9. End; Return x(i) as the optimum solution.

Note that the trust region parameter λ is updated after each iteration.

4 Airfoil Design

The use of the SM algorithm is demonstrated here for the design optimization of
airfoil shapes at transonic flow conditions. A steady inviscid Euler CFD model is
used with a structured grid for both the high- and low-fidelity models, but with
different grid resolution and convergence criteria (variable-resolution models). The
algorithm is applied to both lift maximization and drag minimization.

4.1 High-Fidelity Model

The flow is assumed to be steady, inviscid, and adiabatic with no body forces. The
compressible Euler equations are taken to be the governing fluid flow equations (see,
e.g., [32]). The solution domain boundaries are placed at 25 chord lengths in front
of the airfoil, 50 chord lengths behind it, and 25 chord lengths above and below
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Fig. 4 Particulars of the two-dimensional solution domain and the grid: (a) a sketch of the com-
putational domain for the flow past an airfoil with a chord length c, (b) example grid for the NACA
0012 airfoil

it (see Fig. 4). The computational meshes are of structured curvilinear body-fitted
C-topology with elements clustering around the airfoil and growing in size with
distance from the airfoil surface. The computer code ICEM CFD [33] is used for
the mesh generation. The free-stream Mach number, static pressure, and angle of
attack are prescribed at the far-field boundary.

Numerical fluid flow simulations are performed using the computer code FLU-
ENT [34]. The flow solver is of an implicit density-based formulation, and the in-
viscid fluxes are calculated by an upwind-biased second-order spatially accurate
Roe flux scheme. Asymptotic convergence to a steady state solution is obtained for
each case. The iterative convergence of each solution is examined by monitoring the
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Fig. 5 Grid convergence study using the NACA 0012 airfoil at Mach number M∞ = 0.75 and
angle of attack α = 1 deg: (a) lift and drag coefficients versus the number of grid elements, and (b)
the simulation time versus the number of grid elements

overall residual, which is the sum (over all the cells in the computational domain)
of the L2 norm of all the governing equations solved in each cell. In addition to
this, the lift and drag forces (defined in Sect. 2) are monitored for convergence. The
solution convergence criterion for the high-fidelity model is the one that occurs first
of the following: a maximum residual of 10−6, or a maximum number of iterations
of 1,000.

A grid convergence study was performed using the NACA 0012 airfoil at Mach
number M∞ = 0.75 and angle of attack α = 1 deg. The study, shown in Fig. 5a,
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revealed that 407,676 mesh cells are needed for mesh convergence; thus, that par-
ticular mesh was used for the high-fidelity model. The overall simulation time for
the case considered is around 67 min (Fig. 5b). The flow solver reached a converged
solution after 352 iterations. The other meshes required around 350 to 500 iterations
to converge, except the coarsest mesh, which terminated after 1,000 iterations, with
an overall simulation time of around 9.5 min.

4.2 Low-Fidelity Model

The low-fidelity CFD model is constructed in the same way as the high-fidelity
model, but with a coarser computational mesh and relaxed convergence criteria. For
the low-fidelity model, we use the coarse mesh in the grid study presented in Fig. 5a,
with 31,356 mesh cells. The flow solution history for the low-fidelity model, shown
in Fig. 6a, indicates that the lift and drag coefficients are nearly converged after
80 to 100 iterations. The maximum number of iterations is set to 100 for the low-
fidelity model. This reduced the overall simulation time to 1.5 min. A comparison
of the pressure distributions, shown in Fig. 6b, indicates that the low-fidelity model,
despite being based on a much coarser mesh and reduced flow solver iterations,
captures the main features of the high-fidelity model pressure distribution quite well.
The biggest discrepancy in the distributions is around the shock on the upper surface,
leading to an overestimation of both lift and drag (Fig. 5a).

The ratio of simulation times of the high- and low-fidelity model in this particular
case study is 43.8. In many cases, the solver does not fully converge with respect to
the residuals and goes on up to 1,000 iterations. Then, the overall evaluation time of
the high-fidelity model goes up to 170 min. In those cases, the ratio of simulation
times of the high- and low-fidelity models is around 110. For simplicity, we will
use a fixed value of 80 when estimating the equivalent number of function calls,
i.e., when the number of low-fidelity function calls is added to the number of high-
fidelity function calls.

4.3 Surrogate Model

The surrogate model is constructed using (24). The responses for a few randomly
selected airfoil geometries using the low-fidelity model c(x) (selected in the previ-
ous section) and the high-fidelity model f (x) are shown in Fig. 7, as well as the
globally corrected surrogates A ◦ c(x) + D, calculated using (26). Note that out-
put SM is capable of substantially reducing the misalignment between the surrogate
and high-fidelity model responses. The supplemental additive output SM term q(i)

is only applied locally, as in (27), to further improve the surrogate model accuracy
in the vicinity of the current design.
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Fig. 6 Simulation results for NACA 0012 at Mach number M∞ = 0.75 and angle of attack α = 1
deg: (a) evolution of the lift and drag coefficients obtained by the low-fidelity model, (b) compari-
son of the pressure distributions obtained by the high- and low-fidelity models

4.4 Case Description

Four design cases are presented: three lift maximizations (Cases 1–3) and one drag
minimization (Case 4). For Cases 1 through 3, the objective is to maximize the
lift coefficient Cl.f , subject to constraints on drag (Cd.f ≤ Cd.max) and nondi-
mensionalized airfoil cross-sectional area with the chord squared (A ≥ Amin). For
Case 4, the objective is to minimize the drag, subject to constraints on lift coefficient
(Cl.f ≥ Cl.min) and nondimensionalized airfoil cross-sectional area with the chord
squared (A ≥ Amin).
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Fig. 7 The effect of output SM (26) on the low- and high-fidelity model alignment: (a) high-
(◦) and low-fidelity (�) lift coefficient for selected airfoil geometries, (b) high- (◦) and output-S-
M-aligned low-fidelity (�) lift coefficient for corresponding geometries, (c) the same as (a) but for
the drag coefficient, (d) the same as (b) but for the drag coefficient. The model misalignment is
greatly reduced by applying both multiplicative and additive output SM. The alignment is further
improved by the supplemental local additive output SM term q(i) (cf. (27))

For simplicity, and because we have a small number of design variables, the
NACA four-digit method is used to parameterize the airfoil shapes. Although these
airfoils are intended for subsonic flow, it is used here for demonstration purposes
only, as the method has only three design parameters. The particulars of the method
are given in the Appendix.

The NACA four-digit airfoil design variables are m (the maximum ordinate of
the mean camber line as a fraction of the chord), p (the chordwise position of
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the maximum ordinate), and t/c (the thickness-to-chord ratio). The design vector
can be written as x = [m p t/c]T . The side constraints on the design variables are
0 ≤ m ≤ 0.1, 0.2 ≤ p ≤ 0.8, and 0.05 ≤ t/c ≤ 0.2. Details of the test cases and opti-
mization results are given in Table 2. The results are compared with the direct design
optimization of the high-fidelity model using the pattern search algorithm. For the
surrogate model optimization in the SM algorithm, the pattern search algorithm is
also used. The termination condition for the SM algorithm is ‖x(i)−x(i−1)‖ < 10−3.

4.5 Results

Consider Case 1 in Table 2, where the initial airfoil design is NACA 2412 and the
drag constraint is violated. The direct method and the SM algorithm obtain compa-
rable optimized designs by reducing camber, placing the location of the maximum
camber relatively aft, and reducing the thickness. The SM algorithm required 210
surrogate model evaluations (Nc) and 4 high-fidelity model evaluations (Nf ), yield-
ing an equivalent number of high-fidelity model evaluations of less than 7. The
direct method required 96 high-fidelity model evaluations.

In Case 2, the initial design is NACA 2412, which is feasible for the assumed
constraints. The SM algorithm is able to obtain a better optimized design than the
direct method. The shape changes are similar to those of Case 1, except that the
camber is increased. The effects on the pressure distribution can be observed in
Fig. 8: the shock strength is reduced by reducing the thickness, and the aft camber
location opens up the pressure distribution behind the shock to increase the lift. The
SM algorithm required less than 9 equivalent high-fidelity model evaluations (260
surrogate and 5 high-fidelity).

The optimization history for Case 2 is shown in Fig. 9. In particular, one can
observe a convergence plot, as well as the evolution of the objective function, the
lift coefficient, and the drag coefficient. It follows that the SM algorithm exhibits
a good convergence pattern and enforces the drag limitation to be satisfied while
increasing the lift coefficient as much as possible.

Case 3 has an initial design with higher camber and thinner section than the other
cases, namely the NACA 3210. The SM algorithm achieves a better design than the
direct method. Now the camber is reduced, but the location of the maximum camber
is again moved aft and the thickness is slightly reduced. Less than 9 equivalent high-
fidelity model evaluations are required.

In Case 4, the drag minimization case, the initial design is NACA 2412 and the
lift constraint is slightly violated. Similar optimized designs are obtained by the
direct method and the SM algorithm. The camber is reduced, the maximum camber
moved aft, and the thickness reduced. As a result, the shock is weakened, and the lift
improved by opening the pressure distribution behind the shock (see Fig. 10). The
SM algorithm required 5 equivalent high-fidelity model evaluations (160 surrogate
and 3 high-fidelity), whereas the direct method required 110.

Overall, it can be observed that the SM performance is consistent across the
considered test cases. The average airfoil design cost is equivalent to about 5 to 9
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Table 2 Numerical results for four test cases. Shown are results for the initial design, direct opti-
mization, and optimization using space mapping

Variable Case 1 (Lift maximization) Case 2 (Lift maximization)

M∞ = 0.75, α = 0◦,
Cd,max = 0.005, Amin = 0.075

M∞ = 0.70, α = 1◦,
Cd,max = 0.006, Amin = 0.075

Initial Direct SM Initial Direct SM

m 0.02 0.0140 0.0150 0.02 0.0200 0.0237

p 0.40 0.7704 0.7463 0.40 0.7467 0.6531

t/c 0.12 0.1150 0.1140 0.12 0.1200 0.1148

Cl 0.4745 0.5572 0.5650 0.5963 0.8499 0.8909

Cdw 0.0115 0.0050 0.0050 0.0047 0.0060 0.0060

A 0.0808 0.0774 0.0767 0.0808 0.0808 0.0773

Nc – 0 210 – 0 260

Nf – 96 4 – 59 5

Cost – 96 <7 – 59 <9

Variable Case 3 (Lift maximization) Case 4 (Drag minimization)

M∞ = 0.75, α = 1◦,
Cd,max = 0.0041, Amin = 0.065

M∞ = 0.70, α = 1◦,
Cl,min = 0.6, Amin = 0.075

Initial Direct SM Initial Direct SM

m 0.03 0.0080 0.0100 0.02 0.0180 0.0180

p 0.20 0.6859 0.6929 0.40 0.5207 0.5290

t/c 0.10 0.1044 0.0980 0.12 0.1141 0.1113

Cl 0.8035 0.4641 0.5281 0.5963 0.6001 0.6002

Cdw 0.0410 0.0041 0.0041 0.0047 0.0019 0.0017

A 0.0675 0.0703 0.0659 0.0808 0.0768 0.0749

Nc – 0 260 – 0 160

Nf – 121 5 – 110 3

Cost – 121 <9 – 110 5

high-fidelity model evaluations, which corresponds to a cost savings of 80 percent
or more depending on a test case, when compared to direct airfoil optimization using
pattern search.

5 Wing Design

In this section, the SM algorithm is demonstrated for the design of a three-
dimensional wing shape. Again, transonic flow is considered, but a steady viscous
Reynolds-averaged Navier–Stokes (RANS) CFD model is used with an unstruc-
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Fig. 8 Initial and optimized pressure distributions and airfoil shapes for Case 2

tured grid. Still, the variable-resolution approach is employed. One design case is
considered, but optimization runs for two different initial designs are presented.

5.1 High-Fidelity Model

The flow is steady, compressible, viscous, and without body forces, mass diffusion,
chemical reactions, or external heat addition. The RANS equations with the one-
equation Spalart-Allmaras turbulence model [32] are solved. Air is modeled by the
ideal gas law and the Sutherland dynamic viscosity model.

The far field is configured in a box topology where the wing root airfoil is placed
in the center of the symmetry plane, with its leading edge placed at the origin. The
far field extends 100 chord lengths in all directions upstream, above, below, and
aft of the wing. The computational domain, along with the boundary conditions, is
shown in Fig. 11.

An unstructured tri/tetra shell grid is created on all surfaces. The shell grid from
the wing is then extruded into the volume where the volume is flooded with tri/tetra
elements. The grid is made dense close to the wing, where it then gradually grows
in size as it moves away from the wing surfaces. To capture the viscous boundary
layer an inflation layer or a prism layer is created on the wing surfaces as well. The
grid is generated using ANSYS ICEM CFD and is shown in Fig. 12.

In the stream-wise direction, the number of elements on the wing is set to 100 on
both the upper and lower surfaces. The bigeometric bunching law with a growth ratio
of 1.2 is employed in the stream-wise direction over the wing to obtain a more dense
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Fig. 9 Optimization history for Case 2: (a) convergence plot, (b) evolution of the objective func-
tion, (c) evolution of the lift coefficient, and (d) evolution of the drag coefficient (drag constraint
marked using a dashed horizontal line). The graphs show all high-fidelity function evaluations
performed in the optimization

Fig. 10 Initial and optimized pressure distributions and airfoil shapes for Case 4
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Fig. 11 Far field configured as a box topology. The leading edge of the wing root airfoil is placed
at (x, y, z) = (0,0,0)

element distribution at the leading edge and the trailing edge. This is done in order to
capture the high pressure gradient at the leading edge and potential separation at the
trailing edge. The minimum element size of the wing in the stream-wise direction
is set to 0.1 %c, and it is located at the leading and trailing edge. In the span-wise
direction, elements are distributed uniformly and the number of elements is set to
100 over the semi-span. A prism layer is used to capture the viscous boundary layer.
This layer consists of a number of structured elements that grow in size normal to
the wing surface into the domain volume. The inflation layer has an initial height of
5 × 10−6c where it is grown 20 layers into the volume using an exponential growth
law with a ratio of 1.2. The initial layer height is chosen so that y+ < 1 at all nodes
on the wing.

The numerical fluid flow simulations are performed using the computer code
ANSYS FLUENT [34]. The implicit density-based solver is applied using the Roe
flux-difference splitting (FDS) flux type. The spatial discretization schemes are set
to second order for all variables, and the gradient information is found using the
Green–Gauss node-based method. The residuals, which are the sum of the L2 norms
of all governing equations in each cell, are monitored and checked for convergence.
For the high-fidelity model, a solution is considered to be converged if the residu-
als have dropped by six orders of magnitude, or the total number of iterations has
reached 1,000. Also, the lift and drag coefficients are monitored for convergence.

A grid convergence study is conducted using the ONERA M6 wing [35].
The flow past the ONERA M6 wing is simulated at various grid resolutions at
Re∞,cmac = 11.72 × 106, M∞ = 0.8395, and angle of attack α = 3.06◦, where cmac

is the mean aerodynamic chord length. The flow conditions are selected to match the
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Fig. 12 Shell grid shown for all surfaces: (a) wing shell grid, (b)–(c) symmetry plane where the
wing is placed, (d) prism layer applied close to the wing surface to capture the viscous boundary
layer, (e) far-field volume
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Fig. 13 Grid convergence study using the ONERA M6 wing at M∞ = 0.8395 and angle of attack
α = 3.06◦: (a) lift (CL) and drag (CD) coefficients versus number of grid elements, (b) simulation
time versus number of grid elements

experimental flow conditions of an ONERA M6 wing experiment 2308 conducted
by Schmitt and Charpin [36].

The grid convergence study, shown in Fig. 13a, revealed that 1,576,413 cells
are needed for convergence in lift. The drag, however, can still be improved, as is
evident from Fig. 13a, where convergence has not been reached due to limitations
in the computational resources. However, we proceed with this grid as the high-
fidelity model grid. The overall simulation time needed for one high-fidelity CFD
simulation was around 223 min, as shown in Fig. 13b, executed on four Intel-i7-
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Fig. 14 Lift and drag coefficient convergence plot for low-fidelity model obtained in grid con-
vergence study simulation using ONERA M6 wing at Mach number M∞ = 0.8395 and angle of
attack α = 3.06◦

2600 processors in parallel. This execution time is based on 1,000 solver iterations,
where the solver terminated due to the maximum number of iterations limit.

5.2 Low-Fidelity Model

The low-fidelity model c(x) is constructed in the same way as the high-fidelity
model f (x), but with a coarser grid discretization and with a relaxed convergence
criterion. Referring back to the grid study of the previous section, and inspecting
Fig. 13a, we make our selection for the coarse low-fidelity model. Based on time
and accuracy with respect to lift and drag, we select the grid parameters that repre-
sent the second point from the left with 107,054 elements. The time taken to evaluate
the low-fidelity model is 13.2 min on four Intel-i7-2600 processors in parallel.

Inspecting further the lift and drag convergence plot for the low-fidelity model in
Fig. 14, we note that the solution has converged after about 500 iterations. The max-
imum number of iterations for the low-fidelity model is therefore set to 500 itera-
tions. This reduces the overall simulation time to 6.6 min. The ratio of the simulation
times of the high- and low-fidelity models in this case is high/low = 223/6.6 � 34.
This is based on the solver using all 500 iterations in the low-fidelity model to obtain
a solution.
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Fig. 15 A planform view of a constant chord rectangular wing constructed by two NACA airfoils.
Each airfoil has its own set of design parameters

5.3 Surrogate Model

The low-fidelity CFD model c turns out to be very noisy. In order to alleviate the
problem, a second-order polynomial approximation model [7] is constructed using
nc = 50 training points sampled using Latin hypercube sampling (LHS) [6] using
the low-fidelity CFD model. The polynomial approximation model is defined as

c(x) = c0 + cT1 x + xT c2x, (36)

where c1 = [c1.1 c1.2 c1.3]T and c2 = [c2.ij ]i,j=1,2,3. The coefficients c0, c1, c2 are
found by solving the linear regression problem

c
(
xk
)= c

(
xk
)
, (37)

where k = 1, . . . , nc. The resulting second-order polynomial model c has nice an-
alytical properties, such as smoothness and convexity. The surrogate model is then
constructed as described in Sect. 3.

5.4 Case Description

For demonstration purposes, an unswept and untwisted wing is considered. The
wing is constructed by two NACA four-digit airfoils, located at the root and tip, as
shown in Fig. 15. The root is fixed to the NACA 2412 airfoil and the tip airfoil is to
be designed. The initial design x(0) for the wing tip is chosen at random at the start
of each optimization run. The normalized semi-wingspan is set as twice the wing
chord length c as (b/2) = 2c. All other wing parameters are kept fixed. The design
vector can be written as x = [m p t/c]T , where the variables represent the wing tip
NACA four-digit airfoil parameters (see the Appendix).

The objective is to maximize the lift coefficient CL.f , subject to constraints on
the drag coefficient CD.f ≤ CD.max = 0.03 and the wing tip normalized cross-
sectional area A ≥ Amin = 0.01. The side constraints on the design variables are
0.02 ≤ m ≤ 0.03, 0.7 ≤ p ≤ 0.9 and 0.06 ≤ t/c ≤ 0.08.
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Table 3 Numerical
comparison of Run 1 and Run
2, initial and optimized
designs. The ratio of the
high-fidelity model evaluation
time to the low-fidelity time
is 34

Variable Initial Optimized

Run 1 Run 2 Run 1 Run 2

m 0.0200 0.0259 0.0200 0.0232

p 0.7000 0.8531 0.8725 0.8550

t/c 0.0628 0.0750 0.0793 0.0600

CL 0.2759 0.3426 0.3047 0.3388

CD 0.0241 0.0344 0.0311 0.0307

CL/CD 11.4481 9.9593 9.7974 11.0358

A 0.0422 0.0505 0.0534 0.0404

Nc – – 50 50

Nf – – 8 7

Total cost – – <10 <9

5.5 Results

Two optimization runs were performed, denoted as Run 1 and Run 2. The numerical
results are given in Table 3, and the initial and optimized airfoil cross sections are
shown in Fig. 16a and Fig. 16b, respectively.

Fig. 16 A comparison of Run 1 and Run 2: (a) initial and (b) optimized designs. Run 1 is shown
with a solid lines (–), and Run 2 with dashed lines (- -)
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Fig. 17 Optimization history for Run 1: (a) convergence history, (b) evolution of the objective
function, (c) evolution of lift coefficient, and (d) evolution of drag coefficient where dashed line
(- -) is the drag constraint

In Run 1, the lift is increased by +10 % and the drag is pushed above its con-
straint at CD.max = 0.03, where the optimized drag coefficient is CD = 0.0311. The
drag constraint is violated slightly, or by +4 %, which is within the 5 % constraint
tolerance band. The lift-to-drag ratio is decreased by −14 %. The SM algorithm
requires less than 10 high-fidelity model evaluations, where 50 low-fidelity model
evaluations (Nc) are used to create the approximation model and 8 high-fidelity
model evaluations (Nf ) are used for each design iteration. It is evident that the
optimized wing tip airfoil is thicker as the normalized cross-sectional area is in-
creased by +26 %, and the increased drag can be related to the increment in area.
No change occurs in the camber m, but the location of the maximum camber p has
moved slightly aft. The convergence history is shown in Fig. 17.

The initial design for Run 2 violates the drag constraint. The SM algorithm is,
however, able to push the drag to its constraint limit, where the optimized drag coef-
ficient is slightly violated, by +2 %. While the drag is decreased by −11 %, the lift
is maintained and only drops by −1 %. As a result, the lift-to-drag ratio is increased
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Fig. 18 Run 1 planform pressure coefficient contour plots of the initial design geometry. (a) The
upper surface shows shocks at midsection of the wing; (b) the lower surface shows one shock at
the leading edge

by +11 %. The SM algorithm requires less than 9 high-fidelity model evaluations
(50 low-fidelity model evaluations used to create the approximation model and 7
high-fidelity model evaluations). The optimized wing tip airfoil is thinner than the
initial design (the normalized cross-sectional area is reduced by −20 %). Small
changes are made to the camber m and the maximum camber location p.

Comparing Runs 1 and 2, we note that, although they start from different initial
designs, the optimized designs show similarities in two of three design variables,
namely, the maximum camber m and maximum camber location p. The third, the
airfoil thickness t/c, differs by approximately 2 %. The shock on the mid-wing has
been moved aft, on both the upper and the lower surfaces (see Figs. 18, 19, 20, 21).
Also, note that a second shock was formed near the tip on the upper surface. This
causes the drag and the lift to increase.

6 Conclusions

A robust and computationally efficient optimization methodology for the design of
aerodynamic surfaces is presented. The approach exploits a low-fidelity model that
is corrected using the space mapping technique to create a fast and reliable predic-
tion tool (the surrogate) that is subsequently used to yield an approximate optimum
design of the expensive, high-fidelity model at low CPU cost. A space mapping cor-
rection is applied both to the objectives and constraints in a two-stage process with
a quasi-global space mapping alignment supplemented by a local one that ensures
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Fig. 19 Run 1 planform pressure coefficient contour plots of the optimized design geometry.
(a) The upper surface shows two shocks, one at midsection of the wing and one close to the
wing tip at the trailing edge. (b) The lower surface shows one shock at the leading edge

perfect alignment between the surrogate and the high-fidelity model. Applications
for transonic airfoil and wing design are demonstrated with the optimized designs
obtained at a computational cost corresponding to a few high-fidelity model evalua-
tions.

Acknowledgements This work was funded in part by The Icelandic Research Fund for Graduate
Students, grant ID: 110395-0061.

Appendix

The NACA four-digit airfoils are denoted by convention as NACA mpxx, where m

is the maximum ordinate of the mean camber line as a percentage of the chord, p
is the chordwise position in tens of percentages of the maximum ordinate, and xx

is the thickness-to-chord ratio in percentages of the chord (t/c). The NACA airfoils
are constructed by combining a thickness function zt (x) with a mean camber line
function zc(x) [25]. The x and z coordinates are

xu,l = x ∓ zt sin θ, (38)

zu,l = zc ± zt cos θ, (39)

where u and l are the upper and lower surfaces, respectively, and

θ = tan−1
(
dzc

dx

)
, (40)
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Fig. 20 Run 1 Mach number contour plot at y/(b/2) = 0.2, where M∞ = 0.8395 and angle of
attack α = 0◦. (a) Initial design, (b) optimized design
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Fig. 21 Run 1 Mach number contour plot at y/(b/2) = 0.8, where M∞ = 0.8395 and angle of
attack α = 0◦: (a) initial design, (b) optimized design. Notice the shock at the trailing edge
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Fig. 22 Examples of two airfoil sections generated with the NACA four-digit method.
NACA 0012 (m = 0,p = 0, t/c = 0.12) is shown by solid line (–); NACA 4608
(m = 0.04,p = 0.6, t/c = 0.08) is shown by a dashed line (- -)

is the mean camber line slope. The NACA four-digit thickness distribution is given
by

zt = t
(
a0x

1/2 − a1xa2x
2 + a3x

3 − a4x
4), (41)

where a0 = 1.4845, a1 = 0.6300, a2 = 1.7580, a3 = 1.4215, a4 = 0.5075, and t is
the maximum thickness. The mean camber line is given by

zc =
{

m

p2 (2px − x2), x < p,
m

(1−p)2 (1 − 2p + 2px − x2), x ≥ p.
(42)

Examples of airfoils generated with the NACA four-digit method are shown in
Fig. 22.
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Efficient Robust Design with Stochastic
Expansions

Yi Zhang and Serhat Hosder

Abstract This chapter describes the application of a computationally efficient un-
certainty quantification approach, non-intrusive polynomial chaos (NIPC)-based
stochastic expansions, for robust design under mixed (aleatory and epistemic) uncer-
tainties and demonstrates this technique on robust design of a beam and on robust
aerodynamic optimization. The approach utilizes stochastic response surfaces ob-
tained with NIPC methods to approximate the objective function and the constraints
in the optimization formulation. The objective function includes the stochastic mea-
sures, which are minimized simultaneously to ensure the robustness of the final
design to both aleatory and epistemic uncertainties. The results of the optimization
case studies show the computational efficiency and accuracy of the robust design
with stochastic expansions, which may be applied to any stochastic optimization
problem in science and engineering.

Keywords Aerodynamics · Optimization · Uncertainty quantification · Robust
design · Stochastic expansions · Computational fluid dynamics

1 Introduction

Uncertainties are generally ubiquitous in the analysis and design of highly complex
engineering systems, such as aerospace systems. Uncertainties can arise due to ig-
norance, lack of knowledge, and incomplete information in physical modeling (e.g.,
epistemic uncertainty in turbulence models) and from inherent variations in the sys-
tems (e.g., aleatory uncertainty in operating conditions). It is important to consider
these uncertainties in engineering design. Robust design [1, 2] is a methodology for
improving the quality of a product by minimizing the impact of uncertainties on the
product performance. The objective is to optimize the mean performance while min-
imizing the variation of performance caused by various uncertainties. Many studies
of robust design have been investigated in the past [3–12]. A comprehensive survey
of robust optimization approaches is given by Beyer and Sendhoff [13].
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One very important component of robust design is the uncertainty quantifica-
tion (UQ), which may increase the computational expense of the design process
significantly compared to the computational work of deterministic optimization, es-
pecially when high-fidelity analysis tools are used to improve accuracy. Therefore,
it is important to develop and implement computationally efficient robust design
methodologies while keeping the desired accuracy level in the optimization process.

The goal of UQ is to determine how random variation (aleatory) and lack of
knowledge (epistemic) affect the sensitivity, performance, or reliability of the sys-
tem that is being modeled. Various studies have been made on the topic of propagat-
ing aleatory uncertainty through Monte Carlo sampling (MCS) [14–18], expansion-
based methods (e.g., Taylor series [19–22] and perturbation methods [23–25]) and
non-intrusive polynomial chaos (NIPC) expansions [26–28], and propagating epis-
temic uncertainty through interval analysis and evidence theory [29–34].

MCS is the most comprehensive (but expensive) UQ approach for evaluating sta-
tistical moments and the reliability and quality of the system response. It is a method
for iteratively evaluating a deterministic model using sets of random numbers as in-
puts. This method is often used when the model is complex or nonlinear, or when
it involves a large number of uncertain parameters. M.G. Cox et al. [16] worked on
using MCS to determine the probability density function (PDF) of the output quan-
tities. L.Y. Zhao et al. investigated UQ of a flapping airfoil with stochastic velocity
deviations by using a classic Monte Carlo method to numerically investigate the
responses of the time-averaged thrust coefficient and the propulsive efficiency with
respect to a stochastic flight velocity deviation under Gaussian distributions [17, 18].
Y.P. Ju et al. conducted studies on multi-point robust design optimization of wind
turbine airfoils under geometric uncertainty where the MCS technique was used for
simulating the geometric uncertainty in the robust optimization [35]. Although MCS
is the most popular sampling-based method, it requires thousands of computational
simulations (e.g., computational fluid dynamics (CFD) and finite element analysis
(FEA)) to obtain accurate results. It is extremely expensive and cannot be made af-
fordable for complex engineering simulations, so it is often used as a benchmark for
verification of UQ analysis when other methods are used.

Expansion-based UQ is used to estimate the statistical moments (e.g., mean, vari-
ance, etc.) of the system response with a small perturbation to simulate the effect
of the input uncertainty. The Taylor series and perturbation method are two main
expansion-based UQ approaches. The Taylor series is a series expansion of a func-
tion about a point that is used to approximate a function with a Taylor polynomial.
For example, the first-order reliability method (FORM) uses the first-order Taylor
expansion (linearization) to approximate the uncertainty in the output [19]. There
have also been some studies on Taylor series expansion techniques and applications
in physics [20–22]. The perturbation method is used to find an approximate solution
to a problem which cannot be solved by traditional analytical methods. It allows
the simplification of complex mathematical problems [23–25]. Both Taylor series
and perturbation methods have advantages when dealing with relatively small input
variability and outputs that do not express high nonlinearity. However, most real-
life problems require much more difficult mathematical models, such as nonlinear
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differential equations. Therefore, Taylor series and perturbation methods will not be
a good option for uncertainty propagation in these cases.

The NIPC expansion is a spectral-based technique for UQ that has been used
recently for numerous physical models, such as elasticity and fluid mechanics [36–
38]. Some studies conducted by Eldred et al. [27, 28] introduced efficient stochastic
expansions based on NIPC for UQ. In their study, they used Legendre and Her-
mite orthogonal polynomials to model the effect of uncertain variables described by
uniform and normal probability distributions, respectively, and used Legendre or-
thogonal polynomials to model the effect of epistemic uncertainties. The accuracy
and the computational efficiency of the NIPC method applied to stochastic problems
with multiple uncertain input variables were investigated by Hosder et al. [39–41].

The non-probabilistic approaches which are used for epistemic UQ include inter-
val analysis and evidence theory. Several studies have been conducted on epistemic
uncertainty propagation [29–31]. The simplest way to propagate epistemic uncer-
tainty is by interval analysis [32–34]. In interval analysis, it is assumed that noth-
ing is known about the uncertain input variables except that they lie within certain
intervals. L.P. Swiler and T.L. Paez [32, 33] examined three methods in propagat-
ing epistemic uncertainty: interval analysis, Dempster–Shafer evidence theory, and
second-order probability, and demonstrated examples of their use on a problem in
structural dynamics. They also examined the use of surrogate methods in epistemic
analysis, both surrogate-based optimization in interval analysis and the use of poly-
nomial chaos expansions to provide upper and lower bound approximations. From
their studies, it was proved that interval analysis can be effective in the quantification
of epistemic uncertainty.

Recently, there have been some studies investigating the topic of mixed (aleatory
and epistemic) uncertainty propagation. Eldred et al. [42] proposed using second-
order probability for estimating the effect of mixed uncertainties. This method was
used to separate the aleatory and epistemic uncertainties into inner and outer sam-
pling loops, respectively. Moreover, they applied this method to a cantilever beam
design problem which was represented by two simple analytical functions. They
utilized these analytical functions to represent ideal test cases, since they were inex-
pensive to evaluate. Therefore, this study provided an analytical reference for vali-
dating codes used for mixed aleatory and epistemic UQ. Bettis and Hosder applied
the NIPC approach to the propagation of mixed uncertainties in hypersonic reentry
problems [41, 43].

Most of the previous stochastic design studies focused on optimization under
aleatory uncertainties which utilized different approaches for uncertainty propa-
gation [3–12, 44]. Among these studies, Eldred [44] formulated and investigated
design under aleatory uncertainty with stochastic expansions. Dodson and Parks
utilized polynomial chaos expansions for robust airfoil design under aleatory input
uncertainties [45]. B.D. Youn et al. also developed a robust design optimization with
epistemic uncertainty. They proposed a new metric for product quality loss which
was defined for epistemic uncertainty using the analogy between the probability
and possibility theories. For the epistemic uncertainty, the maximum likely value
and equivalent variation were employed to define the new metric for the product
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quality loss in three different types of robust objectives [46]. A number of robust
design studies have considered both aleatory and epistemic uncertainties, such as
the work by Eldred [47], and Du et al. [48], who used a double-loop Monte Carlo
sampling approach to determine the statistics of the response given in their model
problems.

In this chapter, we describe a computationally efficient approach for robust aero-
dynamic optimization under aleatory (inherent) and epistemic (model-form) uncer-
tainties using stochastic expansions based on the NIPC method [49]. In the con-
text of aerodynamic shape optimization, robust design implies that the performance
(such as the lift-to-drag ratio) of the final configuration should be insensitive to
the uncertainties in the operating conditions (e.g., free-stream Mach number). Fur-
thermore, the final design should be relatively insensitive to the physical modeling
uncertainties in the computational tools used for aerodynamic analysis such as the
computational fluid dynamics (CFD) codes.

The chapter is organized as follows. Section 2 describes the details of the robust
design formulation with stochastic expansions. In Sect. 3, the methodology is ap-
plied to a model problem involving the design of a beam, and Sect. 4 describes an
application to airfoil design at transonic flow conditions. The chapter is summarized
in Sect. 5.

2 Robust Design with Stochastic Expansions

This section gives the details of different robustness measures for a system depend-
ing on the input uncertainty type, as well as the utilization of stochastic expansions
in robust optimization.

2.1 Formulation of Robust Optimization

Following Du et al. [48], we describe the following robust measures: (1) purely
aleatory (inherent) input uncertainty, (2) purely epistemic input uncertainty, and
(3) mixed (aleatory and epistemic) input uncertainty.

2.1.1 Aleatory Uncertainties Only

If there are only aleatory uncertainties as input variables, the response R can be
described as a function of Sa = (Sa1, Sa2 , . . . , SaNa

), which is the vector consisting
of Na aleatory uncertainties; this vector can include both aleatory design variables
(Xa) and aleatory parameters (Pa). In a design study, the aleatory uncertainty can
be imposed on the design variables through the statistical distribution parameters
that define them (e.g., mean and variance), which vary in the design space. Figure 1
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Fig. 1 Robustness estimation of response in the presence of aleatory uncertainties only

shows the propagation of input aleatory uncertainties through the simulation code
and the uncertainty of the response, R = f (Sa). For a probabilistic output uncer-
tainty, the mean and the variance of R can be calculated by

μR = E(R) =
∫

Ω

R(Sa)ρ(Sa) dSa, (1)

σ 2
R = E

[
(R −μR)

2]=
∫

Ω

(
R(Sa)−μR

)2
ρ(Sa) dSa, (2)

where ρ(Sa) represents the joint PDF of Sa , and Ω stands for the support region of
Sa . For this case, the variance (or the standard deviation, σ ) of R is considered as
the robustness measure.

2.1.2 Epistemic Uncertainties Only

If there are only epistemic uncertainties as input, the response will be a function of
epistemic uncertainty vector Se = (Se1, Se2, . . . , SeNe

), which may include epistemic
design variables (Xe) and epistemic parameters (Pe) in general. In a design study, the
epistemic uncertainty can be imposed on the design variables through the parameters
that define them (e.g., average and the limits of the interval), which vary in the
design space. The relationship between input epistemic uncertainties and response
R = f (Se) is shown in Fig. 2. The midpoint (R) and width (δR) of interval R are
the most relevant statistics of response R for this case, and are given by

R = 1

2
(RL +RU), (3)

δR = RU −RL, (4)



252 Y. Zhang and S. Hosder

Fig. 2 Robustness estimation of response in the presence of epistemic uncertainties only

Fig. 3 Robustness estimation of response in the presence of mixed uncertainties

respectively, where RU and RL represent the upper bound and lower bound of R.
For this case, the robustness of the response is assessed by δR. For robust optimiza-
tion, δR should be as low as possible, while R is equal to the desired value.

2.1.3 Mixed Uncertainties (Both Aleatory and Epistemic Uncertainties)

When both aleatory uncertainties Sa = (Sa1 , . . . , SaNa
) and epistemic uncertainties

Se = (Se1, Se2, . . . , SeNe
) exist as input variables, the response R becomes a function

of both types of uncertainty, R = f (Sa,Se), as shown in Fig. 3.
For this case, the uncertainty of R will be in the form of a family of probability

distributions, each due to the aleatory input uncertainties at a fixed value of the
epistemic input uncertainty vector. The intervals at each probability level will reflect
the effect of epistemic uncertainties on R. The average mean value of R is calculated
by

μR = 1

2

(
μmax

R +μmin
R

)
, (5)

where μmax
R and μmin

R are the maximum and minimum means of response R, respec-
tively. The average value of the standard deviation of R (σR) is obtained by

σR = 1

2

(
σmax
R + σmin

R

)
, (6)
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Fig. 4 Robustness assessment of mixed uncertainty design

where σmax
R and σmin

R are the maximum and minimum standard deviations of re-
sponse R, respectively. The difference between σmax

R and σmin
R is computed by

δσR = σmax
R − σmin

R . (7)

In a design study, the average standard deviation σR can be used as a robustness
measure for aleatory input uncertainties (Sa), whereas the standard deviation differ-
ence δσR can be used as the robustness measure for epistemic uncertainties (Se).
Note that one may also consider alternative measures for robustness to aleatory in-
put uncertainties in the presence of mixed uncertainties. One approach will be to
consider the maximum value of the standard deviation as a conservative measure,
which in turn can be used in the robust optimization formulation described below.

2.1.4 Robust Optimization Formulation Under Mixed Uncertainties

To achieve a robust design in the presence of aleatory and epistemic uncertainties,
both a lower value of σR and a lower value of δσR are desired. To illustrate this,
let us consider two designs (A and B) with performances (i.e., responses) having
two different families of probability distributions represented by one blue and one
red curve in Fig. 4. From these distributions, it is obvious that σR of design A is
less than that of design B , which indicates that design A is more robust than de-
sign B when only randomness of the input is considered. Now comparing δσR for
the two designs, it can be seen that design A has a smaller difference between the
distribution variances, indicating that it is also more robust to epistemic uncertain-
ties. From the above discussion and following the formulation of Du et al. [48], a
composite (weighted sum) objective function for robust optimization under mixed
uncertainties can be written as

F(Xd,Sa,Se) = w1μR +w2σR +w3δσR, (8)

where Xd is the deterministic design variable vector, Sa = {Xa,Pa}, and Se =
{Xe,Pe}. The values of the weight factors w1, w2, and w3 should be chosen based on
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the emphasis on the contribution of each term to the objective function by also con-
sidering the order of magnitude of each term. While minimizing F , a feasible design
should also satisfy the inequality constraints gi(Xd ,Sa,Se) (i = 1,2, . . . ,Ng) and
the side constraints for aleatory design variables Xa (specified by the lower and the
upper limits of the mean of the each aleatory variable), epistemic design variables
Xe (specified by the lower and the upper limits of the epistemic variable), and the
deterministic design variables Xd . Under mixed uncertainties, a conservative form
of the satisfaction of the inequality constraints can be written as μmax

gi +βσmax
gi ≤ 0,

where μmax
gi

and σmax
gi

are the maximum of the mean and the maximum of the stan-
dard deviation of the constraint function gi , respectively. Here βi is a positive con-
stant which denotes the probability of constraint satisfaction.

In summary, the overall formulation for robust design optimization under
aleatory and epistemic uncertainties can be written as:

Minimize w1μR +w2σR +w3δσR

S.t. μmax
gi

+ βiσ
max
gi

≤ 0, i = 1,2, . . . ,Ng

XL
dj

≤ Xdj ≤ XU
dj
, j = 1,2, . . . ,Nd

XL
ek

≤ Xek ≤ XU
ek
, k = 1,2, . . . ,Ne

μL
Xam

≤ μXam
≤ μU

Xam
, m = 1,2, . . . ,Na.

(9)

2.2 Stochastic Expansions for Response Surface Modeling

For the robust optimization methodology described in this chapter, we adopt
stochastic expansions obtained with non-intrusive polynomial chaos (NIPC) due
to its computational efficiency and accuracy in aleatory and epistemic uncertainty
propagation, as shown in the previous studies [43, 50]. The stochastic expansions
are used as response surfaces (i.e., surrogates of the response) in the optimization
procedure and are used to approximate the stochastic objective function or the con-
straint functions. In the robust optimization problems, we use two different NIPC
approaches, point-collocation NIPC and quadrature-based NIPC. Below we give the
description of these NIPC methods.

2.2.1 Non-intrusive Polynomial Chaos

Non-intrusive polynomial chaos is derived from polynomial chaos theory, which
is based on the spectral representation of the uncertainty. An important aspect of
spectral representation of uncertainty is that one may decompose a random function
(or variable) into separable deterministic and stochastic components. For example,
for any response variable (i.e., R) in a stochastic optimization problem, one can
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write

R(ξ ) ≈
P∑

j=0

αjΨj (ξ), (10)

where αj is the coefficient of each term in the expansion, and Ψj (ξ) is the random
basis function corresponding to the j th mode and is a function of the n-dimensional
random variable vector ξ = (ξ1, . . . , ξn), which has a specific probability distribu-
tion. In theory, the polynomial chaos expansion given by Eq. (10) should include an
infinite number of terms; however, in practice a discrete sum is taken over a number
of output modes. For a total order expansion, the number of output modes is given
by

Nt = P + 1 = (n+ p)!
n!p! , (11)

which is a function of the order of polynomial chaos (p) and the number of random
dimensions (n). The basis function ideally takes the form of a multidimensional
Hermite polynomial to span the n-dimensional random space when the input uncer-
tainty is Gaussian (unbounded), which was first used by Wiener [51] in his original
work of polynomial chaos. To extend the application of the polynomial chaos the-
ory to the propagation of continuous non-normal input uncertainty distributions, Xiu
and Karniadakis [52] used a set of polynomials known as the Askey scheme to ob-
tain the “Wiener–Askey generalized polynomial chaos.” The Legendre and Laguerre
polynomials, which are among the polynomials included in the Askey scheme, are
optimal basis functions for bounded (uniform) and semibounded (exponential) input
uncertainty distributions, respectively, in terms of the convergence of the statistics.
The multivariate basis functions can be obtained from the product of univariate or-
thogonal polynomials (see Eldred et al. [27]). If the probability distribution of each
random variable is different, then the optimal multivariate basis functions can again
be obtained by the product of univariate orthogonal polynomials employing the op-
timal univariate polynomial at each random dimension. This approach requires the
input uncertainties to be independent standard random variables, which also allows
the calculation of the multivariate weight functions by the product of univariate
weight functions associated with the probability distribution at each random dimen-
sion. Detailed information on polynomial chaos expansions can be found in Walters
and Huyse [53], Najm [54], and Hosder and Walters [55].

The objective of the stochastic methods based on polynomial chaos is to deter-
mine the coefficient of each term (αj (x, t) (j = 0,1, . . . ,P )) in the polynomial ex-
pansion given by Eq. (10). The statistics of the response can then be calculated using
the coefficients and the orthogonality of basis functions. The mean of the random
solution is given by

μR = E
[
R(ξ )

] =
∫

Ω

R(ξ)ρ(ξ) dξ = α0, (12)

which indicates that the zeroth mode of the expansion corresponds to the expected
value or the mean of R(ξ). Similarly, the variance of the distribution can be obtained
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as

σ 2
R = Var

[
R(ξ)

] =
∫

Ω

(
R(ξ)−μR

)2
ρ(ξ) dξ (13)

or

σ 2
R =

P∑

j=1

[
α2
j

〈
Ψ 2

j

〉]
. (14)

In the above equations, we have used the fact that 〈Ψj 〉 = 0 for j > 0 and 〈ΨiΨj 〉 =
〈Ψ 2

j 〉δij , where the inner product expression 〈· · · 〉 represents

〈
f (ξ)g(ξ )

〉
ξ
=

∫

Ω

f (ξ)g(ξ )ρ(ξ) dξ (15)

written in terms of two generic functionsf (ξ) and g(ξ) in the support region Ω of
ξ with ρ(ξ) as the weight function.

To model the uncertainty propagation in computational simulations via polyno-
mial chaos with the intrusive approach, all dependent variables and random param-
eters in the governing equations are replaced with their polynomial chaos expan-
sions. Taking the inner product of the equations (or projecting each equation onto
the j th basis) yields P +1 times the number of deterministic equations which can be
solved by the same numerical methods applied to the original deterministic system.
Although straightforward in theory, an intrusive formulation for complex problems
can be relatively difficult, expensive, and time-consuming to implement. To over-
come these inconveniences associated with the intrusive approach, non-intrusive
polynomial chaos formulations have been considered for uncertainty propagation.

Point-Collocation NIPC The point-collocation NIPC method starts with replac-
ing the uncertain variables of interest with their polynomial expansions given by
Eq. (10). Then, Nt = P + 1 vectors (ξ j = {ξ1, ξ2, . . . , ξn}j , j = 0,1, . . . ,P ) are
chosen in random space for a given PC expansion with P + 1 modes, and the deter-
ministic code is evaluated at these points. With the left-hand side of Eq. (10) known
from the solutions of deterministic evaluations at the chosen random points, a linear
system of equations can be obtained:

⎛

⎜⎜⎜⎜
⎝

R(
−→
ξ0 )

R(
−→
ξ1 )
...

R(
−→
ξP )

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

Ψ0(
−→
ξ0 ) Ψ1(

−→
ξ0 ) · · · ΨP (

−→
ξ0 )

Ψ0(
−→
ξ1 ) Ψ1(

−→
ξ1 ) · · · ΨP (

−→
ξ1 )

...
...

. . .
...

Ψ0(
−→
ξP ) Ψ1(

−→
ξP ) · · · ΨP (

−→
ξP )

⎞

⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜
⎝

α0
α1
...

α0

⎞

⎟⎟⎟
⎠

. (16)

The coefficients (αj ) of the stochastic expansion are obtained by solving the lin-
ear system of equations given above. The solution of the linear problem given by
Eq. (16) requires Nt deterministic function evaluations. If more than Nt samples
are chosen, then the overdetermined system of equations can be solved using the
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least squares approach. Hosder et al. [56] investigated this option on model stochas-
tic problems by increasing the number of collocation points in a systematic way
through the introduction of an oversampling ratio (OSR) defined as the number of
samples divided by Nt . Based on a study of different model problems, they sug-
gested an effective OSR of 2.0. Point-collocation NIPC has the advantage of flexi-
bility on the selection of collocation points. With the proper selection of collocation
points, it has been shown that point-collocation NIPC can produce highly accu-
rate stochastic response surfaces with computational efficiency [56]. In the model
problems considered in this study, we use Latin hypercube sampling with an over-
sampling ratio of 1 or 2 to choose the collocation points. The number of response
evaluations will be OSR ×Nt when point-collocation NIPC is used to construct the
stochastic response surface.

Quadrature-Based NIPC With the quadrature-based NIPC method, stochastic
expansion coefficients αj (see Hosder and Walters [55] for details) can be obtained
by using the equation

αj = 〈R,Ψj (ξ)〉
〈Ψ 2

j (ξ)〉
= 1

〈Ψ 2
j (ξ)〉

∫

Ω

RΨj (ξ)ρ(
−→
ξ ) d

−→
ξ . (17)

Since the denominator 〈Ψ 2
j 〉 in Eq. (17) can be computed analytically for multi-

variate orthogonal polynomials, the main purpose is to compute the coefficients
by estimating the numerator 〈R,Ψj 〉 in Eq. (17). In the quadrature-based NIPC
method, the approximation of multidimensional integrals can be achieved by apply-
ing a tensor product of one-dimensional quadrature rules. The Gaussian quadrature
points are precisely the roots of the orthogonal polynomial on the same interval (the
support region of the uncertain variable ξ ), and a weighting function is associated
with the given uncertainty distribution (i.e., Gauss–Legendre and Gauss–Hermite
quadrature for expansions on uniform and normal random variables, respectively).
For one-dimensional integrals, if the polynomial chaos expansion degree is p, then
the minimum Gaussian points required for the exact estimation of the integral will
be p + 1 (with the assumption that the response R can be represented exactly with
a polynomial expansion of p), since the p-point Gaussian quadrature rule will yield
an exact result for polynomials of degree 2p − 1 or less, and the polynomial degree
of the product of function estimation and the basis polynomials in the numerator in
Eq. (17) will be 2p. Therefore, the number of response evaluations will be (p + 1)n

when quadrature-based NIPC is used to construct the response surface as a function
of n expansion variables. For multidimensional problems with a large number of
uncertain variables, the computational cost of this method will be significant due
to its exponential growth with the number of random dimensions. For these cases,
an alternative approach for more efficient evaluation of the multidimensional inte-
grals will be to use sparse tensor product spaces instead of full tensor products of
Gauss quadrature points to cover the multidimensional random space (see Eldred et
al. [27, 44] for details).
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2.3 Utilization of Stochastic Expansions for Robust Design

The methodology described in this chapter employs the stochastic response surfaces
obtained with NIPC methods described above. While constructing the stochastic
response surfaces, a combined expansion approach is utilized, which expands the
polynomials as a function of uncertain design variables and parameters (aleatory
and epistemic), as well as the deterministic design variables. We will describe this
approach and robust optimization with stochastic expansions in the following sec-
tions.

2.3.1 Formulation with Combined Expansions

With the introduction of deterministic design variables (Xd ), design variables with
epistemic uncertainty (Xe), parameters with epistemic uncertainty (Pe), design vari-
ables with aleatory uncertainty (Xa), and parameters with aleatory uncertainty (Pa),
a combined stochastic expansion of R is written as

R
(
Xa(ξxa),Pa(ξpa),Xe(ξxe),Pe(ξpe),Xd(ξd)

)

=
P∑

j=0

αjΨj (ξxa, ξpa, ξxe, ξpe, ξd). (18)

In this approach, multidimensional basis functions Ψj are derived from the tensor
product of one-dimensional optimum basis functions for the aleatory uncertain pa-
rameters and design variables (Pa and Xa) selected based on their input probability
distributions (e.g., Hermite polynomials for normal uncertain variables, the Legen-
dre polynomials for the epistemic uncertain parameters and design variables (Pe

and Xe), and the Legendre polynomials for the deterministic design variables (Xd )).
The selection of the Legendre polynomials as basis functions for the epistemic un-
certainties and the design variables is due to their bounded nature (PL

e ≤ Pe ≤ PU
e ,

XL
e ≤ Xe ≤ XU

e , and XL
d ≤ Xd ≤ XU

d ) and should not be interpreted as a probabil-
ity assignment to these variables. In Eq. (18), ξxa and ξpa correspond to standard
aleatory random variable vectors associated with Xa and Pa , whereas ξxe , ξpe, and
ξd are the standard variables in the interval [−1,1], which are mapped from the
associated intervals of Xe, Pe, and Xd via

ξxe =
(

Xe −
(

XL
e + XU

e

2

))/(
XU

e − XL
e

2

)
, (19)

ξpe =
(

Pe −
(

PL
e + PU

e

2

))/(
PU
e − PL

e

2

)
, (20)

ξd =
(

Xd −
(

XL
d + XU

d

2

))/(
XU

d − XL
d

2

)
. (21)
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Using the combined expansion given in Eq. (18), the mean and the variance of the
response are obtained by evaluating the expectations over the aleatory uncertain
variables (ξxa and ξpa), which will be functions of standard epistemic design vari-
ables (ξxe), standard epistemic parameters (ξpe), and standard deterministic design
variables (ξd ):

μR(ξxe, ξpe, ξd) =
P∑

j=0

αj

〈
Ψj (ξxa, ξpa, ξxe, ξpe, ξd)

〉
ξxa,ξpa

, (22)

σ 2
R(ξxe, ξpe, ξd) =

(
P∑

j=0

P∑

k=0

ajak〈ΨjΨk〉ξxa,ξpa

)

−μ2
R. (23)

2.3.2 Robust Design Based on Stochastic Expansions

The flowchart of robust optimization under mixed uncertainties based on combined
stochastic expansions is shown in Fig. 5. From Eqs. (22) and (23) it can be clearly
seen that the mean and standard deviation of the response R (i.e., objective func-
tion F or constraint gi ) at a given design point are characterized by two bounds due
to epistemic uncertainties with specified interval bounds [XL

e ,XU
e ] and [PL

e ,PU
e ].

In other words, the mean and standard deviation of the output (response) will also
be bounded by its maximum and minimum values. In our approach, we calculate
μmax

R , μmin
R , σmax

R , and σmin
R at a given design point through optimization using the

analytical expressions of response statistics obtained with Eq. (22) and Eq. (23).
Then, these values are used in the robust optimization formulation given by Eq. (9),
which is performed with the sequential quadratic programing (SQP) method [57].
The whole procedure is repeated until the convergence is achieved. Note that when
at least one design variable is uncertain (aleatory or epistemic), the stochastic re-
sponse surfaces for the objective function and the constraints (if necessary) have to
be reconstructed at each optimization iteration, since the uncertain design variables
and the associated statistics are updated at each iteration, changing the bounds on
which the response surfaces are created. On the other hand, if all design variables
are deterministic and the uncertainties are associated with the problem parameters,
only a single stochastic response surface for the objective function and a single re-
sponse surface for each constraint function have to be constructed, since the bounds
on the statistics of uncertain parameters and the bounds on the design variables are
fixed and do not vary during the entire optimization process.

3 Model Problem: Robust Design of a Beam

In this model problem, which includes uncertainties in both design variables and
parameters, we consider the robust design of a cantilever beam shown in Fig. 6 with
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Fig. 5 Flowchart of the robust optimization process under mixed uncertainties with combined
stochastic expansions

Fig. 6 Schematic of the beam design problem

length l, width b, and height h. The beam is subjected to a torque T and an external
force F acting normal to the horizontal axis of the beam at its free end. The objective
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Table 1 Design variables
(DV) and parameters (P) with
epistemic uncertainty (beam
design model problem)

DV / P lower limit upper limit

l (DV) l − 0.1l l + 0.1l

F (P) 270 lb 330 lb

Table 2 Design variables
(DV) and parameters (P) with
aleatory uncertainty (beam
design model problem)

DV / P Mean Standard deviation Distribution

h (DV) μh 1 %μh Normal

b (DV) μb 1 %μb Normal

S (P) 100 kpsi 10 kpsi Normal

T (P) 450 lb-in 50 lb-in Normal

is to reduce the volume (V = lbh) of the beam while satisfying a stress constraint
given by

g =
√(

6FL

bh2

)2

+ 3

[
T

b2h

(
3 + 1.8b

h

)]2

− S � 0. (24)

This equation represents the difference between the maximum equivalent stress
of the beam and the yield strength S, which must be less than or equal to zero for a
safe design. In this design problem, the external force F is considered as a parame-
ter with epistemic uncertainty and the length of the beam l is treated as an epistemic
design variable (Table 1). The external torque T and yield strength S are treated as
parameters with aleatory uncertainty, whereas the width b and the height h of the
beam are modeled as aleatory design variables with statistics given in Table 2. To
ensure robustness of the design under epistemic and aleatory uncertainties, the ob-
jective function, which is the weighted sum of the average mean of the volume (μV ),
the average standard deviation of the volume (σV ), and the difference between the
maximum and minimum standard deviation of the volume (δσV ) should be mini-
mized. The inequality constraint given by Eq. (24) should be satisfied at the worst
case with a specified β value of 3. With the addition of the limits for the design
variables, the robust design formulation for this problem is given as:

mind w1μV +w2σV +w3δσV

s.t. μmax
g + βσmax

g ≤ 0

0.1 ≤ μh ≤ 0.8

0.1 ≤ μb ≤ 0.4

2 ≤ l ≤ 20.

(25)

Considering the magnitude of μV , σV , and δσV , the weights in the multi-objective
function are chosen as w1 = 1, w2 = 100, and w3 = 500 to ensure equal contribu-
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tions to the objective function from each term (i.e., scaling them to approximately
the same order of magnitude).

For this problem, besides the stochastic response surface-based approach, robust
optimization was also performed with double-loop Monte Carlo sampling (MCS),
which was the approach used by Du et al. [48] to propagate the mixed uncertain-
ties and obtain the maximum and minimum value of the response statistics used in
the robust optimization formulation. After performing a convergence study based
on the inner and outer loop samples, the desired accuracy with the double-loop
MCS approach for the robustness measures was obtained with 500 epistemic vari-
able samples in the outer loop and 105 aleatory variable samples in the inner loop.
The convergence of the performance and robustness measures used in the objective
function (μ̄V , σ̄V , and δσV ) obtained with quadrature-based and point-collocation
NIPC with OSR = 1 and OSR = 2 was studied for different polynomial expan-
sion orders at the optimum design point obtained with the Monte Carlo approach
(Fig. 7). For the same robustness measures, the error values relative to the Monte
Carlo results at each polynomial order are shown in Fig. 8. It is evident that the con-
vergence is rapid for μV and is achieved by the first-order expansion for all NIPC
methods. The convergences for σV and δσV are obtained at the second-order ex-
pansion. From Fig. 8, it can be seen that quadrature-based NIPC is more accurate
than the point-collocation-based approach in terms of the error levels (especially for
δσV ) observed at the second-order expansion.

Based on the convergence results, the robust optimization was performed with
stochastic response surfaces representing the objective function and the inequality
constraint obtained with the NIPC approach utilizing a second-order polynomial
expansion over aleatory and epistemic design variables and parameters. The two
NIPC methods, point-collocation and quadrature-based, were implemented to ob-
tain the stochastic response surfaces for comparison. The point-collocation method
was performed with an OSR of 1 and 2. The number of original function evalua-
tions required to construct a single response surface was 28 for the point-collocation
method with OSR = 1 and 56 with OSR = 2. The quadrature-based method required
729 function evaluations. For this case, two response surfaces were constructed at
each optimization iteration, one for the objective function and the other for the in-
equality constraint. The optimum design variable values obtained with the stochastic
response surface based optimization again compare well with the result of the ap-
proach utilizing the double-loop MCS (Table 3) at a significantly reduced cost in
terms of the total number of function evaluations, which include both the objective
and constraint functions. Point-collocation NIPC is more efficient than quadrature-
based NIPC for this problem, since the number of expansion variables (n = 6) is
greater than the number of variables in the previous model problem (n = 3) and
the computational cost of quadrature-based NIPC increases exponentially with the
number of expansion variables for a given polynomial degree. An alternative ap-
proach to reduce the computational expense of the quadrature-based approach will
be to implement sparse grid and cubature techniques, which may improve the com-
putational efficiency significantly while retaining the accuracy of the original tensor
product quadrature method. Table 4 presents the average mean, average standard



Efficient Robust Design with Stochastic Expansions 263

Fig. 7 Convergence of NIPC results as a function of expansion order for beam design model
problem

deviation, and the standard deviation difference of the beam volume at the optimum
design point; these are approximately the same for all the methods. The convergence
histories of these terms are given in Fig. 9 for the optimization process with stochas-
tic expansions. As can be seen from this figure, all three quantities are minimized
simultaneously and converge to the same final values, which validates the described
stochastic response surface based robust optimization approach. Another important
observation made from this figure is that the quadrature-based approach seems to
converge to the optimum robust design in terms of all measures at a lower number
of iterations and in a more stable manner compared to the point-collocation-based
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Fig. 8 Error convergence of NIPC results as a function of expansion order for beam design model
problem

Table 3 Optimum design
results of the beam problem
(RS: response surface, Q-B:
quadrature-based, P-C:
point-collocation, MCS:
Monte Carlo sampling, FE:
function evaluations)

Method {μh,μb, l} (in) Total # of FE

MCS {0.548,0.327,2.0} 23.5 × 108

Q-B {0.542,0.323,2.0} 96,228

P-C,OSR = 1 {0.543,0.324,2.0} 3,696

P-C,OSR = 2 {0.542,0.323,2.0} 6,720

methods, especially the one with OSR = 1. This emphasizes another aspect of the
importance of the accuracy of the stochastic response surfaces used in the robust
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Table 4 Robustness
assessment of the beam
problem

Method μV σV δσV

MCS 3.55 × 10−1 5.06 × 10−3 1.01 × 10−3

Q-B 3.50 × 10−1 4.96 × 10−3 9.91 × 10−4

P-C,OSR = 1 3.52 × 10−1 4.97 × 10−3 9.86 × 10−4

P-C,OSR = 2 3.50 × 10−1 4.94 × 10−3 9.88 × 10−4

optimization approach in terms of the number of iterations to converge, which may
influence the computational efficiency of the overall stochastic optimization pro-
cess.

Fig. 9 The convergence history of average mean, average standard deviation, and the standard
deviation difference of the beam volume for the optimization process with stochastic expansions
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4 Application Example: Robust Airfoil Design

In this section, a computationally efficient approach for robust aerodynamic opti-
mization under aleatory (inherent) and epistemic (model-form) uncertainties using
stochastic expansions based on the point-collocation NIPC method is described. The
deterministic CFD simulation model used in the optimization studies is described.
Then the robust aerodynamic optimization formulations are given, followed by a
discussion on the utilization of stochastic expansions in robust optimization. The
results of two case studies are presented.

4.1 Computational Fluid Dynamics and Airfoil Shape Model

This section describes the elements of the CFD model, including the governing
equations, numerical solution of the governing fluid flow equations (flow solver),
the airfoil shape model, and meshing of the solution domain.

4.1.1 Governing Equations

The flow is assumed to be steady, two dimensional, compressible, and turbulent.
The steady Reynolds-averaged Navier–Stokes (RANS) equations are taken as the
governing fluid flow equations. The fluid medium is air, assumed to be an ideal
gas, with the laminar dynamic viscosity (μ) described by Sutherland’s formula (see,
e.g., Ref. [58]). For modeling the turbulent kinematic eddy viscosity (νt ), we use
the turbulence model by Spalart and Allmaras [59]. The Spalart–Allmaras model,
designed specifically for aerodynamic wall-bounded flows, is a one-equation model
that solves a single conservation partial differential equation for the turbulent viscos-
ity. This conservation equation contains convective and diffusive transport terms, as
well as expressions for the production and dissipation of νt . The Spalart–Allmaras
model is economical and accurate for attached wall-bounded flows and flows with
mild separation and recirculation. However, the model may not be accurate for mas-
sively separated flows, free shear flows, and decaying turbulence. As described later,
the turbulent viscosity is multiplied by a factor k to introduce the epistemic uncer-
tainty in our robust optimization under mixed uncertainties problem. This is imple-
mented in the solution through a user-defined function (UDF) which is dynamically
loaded with the flow solver (described below) for each CFD simulation. The whole
procedure is executed automatically through scripts.

4.1.2 Flow Solver

The flow solver is of implicit density-based formulation, and the fluxes are calcu-
lated by an upwind-biased second-order spatially accurate Roe flux scheme. Asymp-
totic convergence to a steady state solution is obtained for each case. Automatic so-
lution steering is employed to gradually ramp up the Courant number and accelerate
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Fig. 10 A typical NACA four-digit airfoil section is shown. The free-stream flow is at Mach
number M∞, at an angle of attack αA relative to the chord axis

convergence. Full multigrid initialization is used to get a good starting point. Numer-
ical fluid flow simulations are performed using the computer code FLUENT [60].

The iterative convergence of each solution is examined by monitoring the overall
residual, which is the sum (over all the cells in the computational domain) of the L2

norm of all the governing equations solved in each cell. In addition to this, the lift
and drag forces are monitored for convergence. The solution convergence criterion
for the CFD runs is the one that occurs first of the following: a maximum residual
of 10−6, or a maximum number of iterations of 1,000.

4.1.3 Airfoil Geometry

In this work, we use the National Advisory Committee for Aeronautics (NACA)
airfoil shapes. In particular, we use the NACA four-digit airfoil parameterization
method, where the airfoil shape is defined by three parameters: c (the maximum or-
dinate of the mean camber line as a fraction of the chord), lc (the chordwise position
of the maximum ordinate as a fraction of the chord), and t (the thickness-to-chord
ratio). The airfoils are denoted by NACA mpxx, where xx represents (100 × t), m
is equal to (100 × c), and p is (10 × lc). The shapes are constructed using two poly-
nomials, one for the thickness distribution and the other for the mean camber line.
The full details of the NACA four-digit parameterization are given in Abbott and
von Doenhoff [61]. A typical NACA four-digit airfoil section is shown in Fig. 10.

4.1.4 Grid Generation

The solution domain boundaries are placed at 25 chord lengths in front of the airfoil,
50 chord lengths behind it, and 25 chord lengths above and below it. The compu-
tational meshes are of structured curvilinear body-fitted C-topology with elements
clustering around the airfoil and growing in size with distance from the airfoil sur-
face. The non-dimensional normal distance (y+) from the wall to the first grid point
is roughly one. The free-stream Mach number, angle of attack, static pressure, and
the turbulent viscosity ratio are prescribed at the far-field boundary. An example of
a computational grid is shown in Fig. 11. The computer code ICEM CFD [62] is
used for the mesh generation.
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Fig. 11 An example computational grid for the NACA 0012 airfoil

4.2 Robust Airfoil Optimization Formulation

Here, the details are given for the robust aerodynamic optimization with stochas-
tic expansions for two cases: (1) optimization under pure aleatory uncertainty and
(2) optimization under mixed (aleatory and epistemic) uncertainty.

4.2.1 Optimization Under Pure Aleatory Uncertainty

The robust airfoil optimization under pure aleatory uncertainty is formulated as

min μCd
+ σCd

subject to μCL
≥ C∗

L

0.0 ≤ c ≤ 0.05

0.3 ≤ lc ≤ 0.7

0.08 ≤ t ≤ 0.14,

(26)

where Cd = Cd(Xd ,Pa) is the profile drag coefficient, which is a function of the
deterministic design variable vector Xd and aleatory input uncertainty vector Pa .
Similarly, the lift coefficient is CL = CL(Xd,Pa). In our current optimization study,
we use the deterministic design variable vector Xd = {c, lc, t} to control our air-
foil shape. Note that this vector can contain the control points as the design vari-
ables when the airfoil shape is parameterized with different spline fitting techniques.
The free-stream Mach number (M∞) is treated as aleatory (inherent) input uncer-
tainty (i.e., Pa = {M∞}) and represented as a uniform random variable with bounds
(0.7 ≤ M∞ ≤ 0.8). As can be seen from the Mach number range, we focus on the
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transonic flow regime, where the drag coefficient is very sensitive to the changes
in the Mach number due to the lambda shock originating on the top surface of the
airfoil. This minimization is subject to satisfying a desired profile lift coefficient
(C∗

L) value or higher by the mean value of the lift coefficient adjusted by changing
the angle of attack for a given design variable and uncertain variable vector value.
The optimization also includes geometric constraints for the profile shape, which
bound the thickness, maximum camber, and the maximum camber location (note
that lc is taken as zero when c = 0.0). The drag coefficient and other aerodynamics
characteristics of the airfoil for a given design variable vector and aleatory uncer-
tain variable value are obtained from the CFD simulations that solve steady, two-
dimensional, Reynolds-averaged Navier–Stokes equations with Spalart–Allmaras
turbulence model.

4.2.2 Optimization Under Mixed Uncertainty

The robust airfoil optimization under mixed (aleatory and epistemic) uncertainties
is formulated as

min w1μCd
+w2σCd

+w3δσCd

subject to μmin
CL

≥ C∗
L

0.0 ≤ c ≤ 0.05

0.3 ≤ lc ≤ 0.7

0.08 ≤ t ≤ 0.14,

(27)

where the profile drag coefficient Cd(Xd,Pa,Pe) is now a function of the determin-
istic design variable vector Xd , aleatory input uncertainty vector Pa , and the epis-
temic input uncertainty vector Pe. Similarly, the lift coefficient, CL(Xd,Pa,Pe), is
now a function of the same variables. In the multi-objective function w1, w2, w3 are
the weights whose sum is equal to 1.0. In this study, we have used equal weights;
however, one can choose different weights depending on the emphasis on each term.

In this optimization problem, we again consider airfoil shape parameters as
our deterministic design variable vector (Xd = {c, lc, t} and the free-stream Mach
number as the aleatory (inherent) input uncertainty (Pa = {M∞}) with bounds
(0.7 ≤ M∞ ≤ 0.8). The kinematic eddy viscosity (νt ) obtained from the Spalart–
Allmaras turbulence model used in RANS simulations is modeled as an epistemic
(model-form) input uncertainty (i.e., Pe = {νt }) through the introduction of a factor
k as shown below:

νt = kνtSA , (28)

where νtSA is the turbulent viscosity originally obtained with the Spalart–Allmaras
model. The range of this factor k is chosen between 0.5 and 2.0 to mimic the
model-form uncertainty due to the use of different turbulence models in RANS cal-
culations. Figure 12 shows the pressure distributions of a NACA 2412 airfoil at
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Fig. 12 The pressure distributions of NACA 2412 at M∞ = 0.75, αA = 1◦

M∞ = 0.75, αA = 1◦ with different k values. From this figure, it can be seen that
the k factor and thus the turbulence model have a considerable effect on the pressure
distribution, especially on the shock location.

This optimization is again subject to satisfying a desired profile lift coefficient
(C∗

L) value or higher by the minimum of the mean value of the lift coefficient ad-
justed by changing the angle of attack for a given design variable and uncertain vari-
able vector value. The optimization also includes geometric constraints for the pro-
file shape, which bound the thickness, maximum camber, and the maximum camber
location.

4.3 Utilization of Stochastic Response for Robust Optimization

Here, a stochastic response surface obtained with the point-collocation NIPC
method is used for the propagation of aleatory and epistemic uncertainties due to
its computational efficiency and accuracy as shown in the previous studies [43, 50].
When constructing the stochastic expansions, a combined expansion approach will
be utilized, which will expand the polynomials as a function of both uncertain vari-
ables (aleatory and epistemic) and deterministic design variables.

Since the angle of attack has to be adjusted to satisfy the lift coefficient con-
straint in both optimization problems, we create three separate stochastic response
surfaces with the point-collocation NIPC at three angles of attack (αA0 = 0.0◦,
αA1 = 1.0◦, and αA2 = 2.0◦). Then we apply Lagrange interpolation to create a
composite response surface using these three response surfaces, which is continu-
ous and quadratic in αA between αA = 0.0◦ and αA = 2.0◦ for all design variables,
aleatory uncertain variables (i.e., M∞), and the epistemic uncertain variables (i.e.,
k). This composite response surface R̂ (i.e., Cd or CL), which is now a function of
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αA, Pa(ξpa), Pe(ξ se), and Xd(ξd), can be written as

R̂
(
αA,Pa(ξpa),Pe(ξpe),Xd(ξd)

)

∼=
nαA∑

k=0

R
(
Pa(ξpa),Pe(ξpe),Xd(ξd)

)
αAk

LnαA
,k(αA). (29)

Based on this equation, we can slightly modify Eqs. (22) and (23) to calculate
the mean and variance from R̂:

μ
R̂

= μ
R̂
(αA, ξpe, ξd) =

nαA∑

k=0

P∑

j=0

αj (αAk)LnαA
,k(αA)

〈
Ψj (ξpa, ξpe, ξd)

〉
ξpa

, (30)

σ 2
R̂

= 〈
(R̂ − μ̂R)

2〉
ξpa

=
{nαA∑

k=0

nαA∑

l=0

P∑

i=0

P∑

j=0

LnαA,k
(αA)Lnα,l

(αA)αi(αAk)αj (αAl)〈ΨiΨj 〉ξpa

}

−μ2
R̂
,

(31)

where αA is the angle of attack, nαA
= 2 is the degree of interpolation in αA, and

Lnα,k
is the Lagrange polynomial at αAk given by

LnαA,k
(αA) =

nαA∏

i=0,i �=k

(
αA − αAi

αAk − αAi

)
. (32)

Note that the introduction of αA to the problem with the above approach indicates
that it is considered as a deterministic design variable within R̂. An alternative ap-
proach to involve αA in the response surface would be to include it among the other
deterministic design variables during the original construction.

The above formulations show that the mean and the standard deviation of re-
sponse variables at a design point and angle of attack are characterized by two
bounds due to epistemic uncertainties with specified interval bounds [PL

e ,PU
e ]. In

other words, the mean and standard deviation of response R (i.e., Cd or CL) at a de-
sign point and angle of attack will also be bounded by its maximum and minimum
values. Once we create the composite stochastic response surface (Eq. (29)), we can
use Eqs. (30) and (31) to calculate the mean and the standard deviation and use any
standard optimization technique to determine μmax

cd
, μmin

cd
, σmax

cd
, and σmin

cd
at a given

design point and angle of attack.
With the combined expansion approach, it will be straightforward to calculate the

total number of CFD simulations (NCFD) required to create the composite response
surface R̂ that will be used in the entire optimization process:

NCFD = OSR ×Nt × (nαA
+ 1), (33)
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where Nt is calculated from Eq. (11), and nαA
is the degree of interpolation in αA

used in the creation of the composite response surface. It is important to note that
NCFD will be the computational cost of the described optimization approach, since
once the response surface is created, the numerical evaluations at each optimization
step will be computationally cheap due to the polynomial nature of the stochastic
surrogate. Note that for a stochastic optimization problem with only a few design
variables (i.e., Nd ≤ 3), the combined expansion approach described above will be
computationally very efficient, since a single response surface (a surrogate) is cre-
ated which is a function of the design, aleatory, and epistemic uncertain variables.
The optimization can be performed using this single response surface. On the other
hand, in optimization problems with a large number of design variables, one can
choose an alternative approach which is based on the expansion of the polynomial
chaos surface only on the uncertain (aleatory and epistemic) variables. With this ap-
proach a separate stochastic response surface should be created at each design point,
which will increase the computational cost; however, the accuracy of the response
surface approximation will increase due to the reduction in the number of expansion
variables.

4.4 Results and Discussion

The robust airfoil optimization approach with NIPC stochastic response surface is
demonstrated here for two cases: (1) optimization under pure aleatory input uncer-
tainty and (2) optimization under mixed (aleatory and epistemic) uncertainty.

4.4.1 Optimization Results for the Pure Aleatory Uncertainty Case

The free-stream Mach number is the only uncertain variable for this case and mod-
eled with a uniform probability distribution between M∞ = 0.7 and M∞ = 0.8.
The objective (Eq. (26)) is to reduce the mean and the standard deviation of the
drag coefficient simultaneously to obtain an airfoil shape with minimum drag that
is least sensitive to the change in Mach number in the specified range. Besides the
side (geometric) constraints on the design variables, the minimization is performed
such that the mean lift coefficient obtained with the optimum design is greater than
or equal to 0.5. The stochastic response surfaces for the drag and the lift coefficients
were created with the point-collocation NIPC method using a quadratic polynomial
expansion with an OSR of 2 for four variables (three deterministic design variables
and one uncertain variable). The total number of CFD evaluations required for this
case was NCFD = 90, as can be calculated using Eq. (33) along with Eq. (11). Note
that this number is considerably low compared to the cost of alternative robust opti-
mization formulations, which utilize Monte Carlo simulations for the calculation of
the statistics. After the stochastic response surfaces for the drag and lift coefficients
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Fig. 13 NACA 2412 and the optimized airfoil shapes for the pure aleatory uncertainty case

Table 5 Optimization results
for the pure aleatory
uncertainty case

Initial airfoil Optimized airfoil

c lc t c lc t

NACA 2412 0.020 0.40 0.120 0.0195 0.70 0.080

NACA 0012 0.0 0.0 0.120 0.0195 0.70 0.080

are created, the robust optimization is performed using the approach described in
the previous section.

The robust optimization was performed starting from two different initial air-
foil geometries (NACA 2412 and NACA 0012). As can be seen from Table 5,
both optimization runs converged to the same optimum airfoil shape with t = 0.08,
c = 0.0195, and lc = 0.7 (Fig. 13). The optimum airfoil has the minimum thick-
ness allowable and the camber is located as aft as possible toreduce the drag while
satisfying the required CL, which are typical characteristics of airfoils designed to
operate at transonic speeds (e.g., supercritical airfoils). The camber value is the op-
timum to produce the required lift at an optimum angle of attack.

The pressure distributions of the NACA 2412 and optimum airfoils at M∞ =
0.75 are shown in Fig. 14. From this figure we can see that, at M∞ = 0.75, the
NACA 2412 airfoil has a shock wave on the top surface, whereas no shock wave
exists on the optimized airfoil, due to the increase in minimum suction pressure
(i.e., the decrease of the maximum value of −Cp) and the reduction in the maximum
velocity value on the top surface, giving a more flat pressure distribution. The aft
camber compensates the lift that is lost in the suction region by loading the airfoil
in the aft region.

The optimization history of the mean and the standard deviation of the drag coef-
ficient is given in Fig. 15, which shows that both quantities are minimized simultane-
ously regardless of the initial airfoil chosen, which confirms the robust optimization
approach used. This result is further verified by Fig. 16, which gives drag versus
Mach number over the uncertain Mach number range for the NACA 2412 and op-
timized airfoil at a lift coefficient value of 0.5. As can be seen from this plot, the
drag rise of NACA 2412 is significant, whereas the optimum airfoil maintains a low
drag coefficient value over the uncertain Mach number range with no significant
variation. The drag coefficient and L/D values for both airfoils are reported in Ta-
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Fig. 14 The pressure distributions of NACA 2412 and optimum airfoil at M∞ = 0.75 for the pure
aleatory uncertainty case

ble 6, which quantifies the better aerodynamic performance of the optimum airfoil
compared to NACA 2412.

The drag characteristics of both airfoils can also be explained by examining the
Mach number contours given in Fig. 17. As the Mach number increases, the shock
wave on the top surface of the NACA 2412 airfoil gets stronger and eventually in-
duces the boundary layer separation at a free-stream Mach number of 0.8, increasing
the drag significantly. On the other hand, the delayed shock formation on the top sur-
face of the optimum airfoil shape prevents a significant drag rise over the uncertain
Mach number range considered. The pressure distributions of the NACA 2412 and
optimum airfoils at M∞ = 0.7, 0.75, and 0.8 are shown in Fig. 18. It can be seen
that at M∞ = 0.7, 0.75, the NACA 2412 airfoil has a shock wave on the top surface,
whereas no shock wave exists on the optimized airfoil. At M∞ = 0.8, the shock
wave on the optimized airfoil is much weaker compared to the shock on the NACA
2412 airfoil.

4.4.2 Optimization Results for the Mixed Uncertainty Case

As described with the optimization formulation in Sect. 4.2.2, the free-stream Mach
number is taken as the aleatory uncertain variable for this case and modeled with
a uniform probability distribution between M∞ = 0.7 and M∞ = 0.8, the same
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Fig. 15 The optimization history of the mean and the standard deviation of the drag coefficient for
the pure aleatory uncertainty case starting from two initial airfoil shapes (NACA 2412 and NACA
0012)

as in the pure aleatory case. The k factor, which is multiplied by the turbulent
eddy-viscosity coefficient of the Spalart–Allmaras turbulence model, is the epis-
temic uncertain variable defined with the interval [0.5,2.0]. The objective of the
robust optimization under mixed uncertainties (Eq. (27)) is to reduce the average
of the mean (μ̄Cd

), the average of the standard deviation (σ̄Cd
), and the difference

in the standard deviation of the drag coefficient (δσCd
) simultaneously to obtain

an airfoil shape with minimum drag that is least sensitive to the change in Mach
number and the k factor (i.e., the turbulence model) in the range specified for each
variable. Besides the side (geometric) constraints on the design variables, the min-
imization is performed such that the minimum of the mean lift coefficient obtained
with the optimum design is greater than or equal to 0.5. The stochastic response sur-
faces for the drag and the lift coefficients were again created with point-collocation
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Fig. 16 The drag coefficients of the NACA 2412 and optimized airfoils at C∗
L = 0.5

Table 6 Drag coefficient and
L/D values for NACA 2412
and optimum airfoils at
various Mach numbers for
pure aleatory uncertainty case

M Cd L/D

NACA 2412 Optimized NACA 2412 Optimized

0.7 0.0110 0.0086 45.45 58.14

0.75 0.0242 0.0088 20.66 56.82

0.8 0.0727 0.0126 6.88 39.68

NIPC using a quadratic polynomial expansion with an OSR of 2 for five variables
(three deterministic design variables, one aleatory uncertain variable, and one epis-
temic uncertain variable). The total number of CFD evaluations required for this
case was NCFD = 126, as can be calculated using Eq. (33) along with Eq. (11). Be-
cause we consider the propagation of an aleatory and epistemic uncertain variable
simultaneously, this number signifies the computational efficiency of the proposed
optimization approach. After the stochastic response surfaces for the drag and lift
coefficients are created, the robust optimization is performed using the approach
described in the previous section. As a result of the optimization under mixed un-
certainties, the same optimum airfoil shape as in the pure aleatory uncertainty case
is obtained (Table 7). This optimum has been verified by starting the optimization
from two different initial profile shapes (NACA 2412 and NACA 0012). This result
is somehow expected, since the flow field around the optimum airfoil shape does not
include complex flow features such as strong shocks and shock-induced separation
over the range of Mach numbers considered to make the effect of the turbulence
model (i.e., the k factor) significant on different aerodynamic quantities including
the drag coefficient.

Figure 19 gives the convergence history of the average mean, average standard
deviation, and the difference of the drag coefficient for the mixed uncertainty case
starting from two initial airfoil shapes (NACA 2412 and NACA 0012). Regardless
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Fig. 17 Mach number contours for the NACA 2412 and optimum airfoil shapes for the pure
aleatory uncertainty case
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Fig. 18 The pressure distributions of the NACA 2412 and optimum airfoils at M∞ = 0.7, 0.75,
0.8 for the pure aleatory uncertainty case

Table 7 Optimization results
for the mixed uncertainty case Initial airfoil Optimized airfoil

c lc t c lc t

NACA 2412 0.020 0.400 0.120 0.019 0.700 0.080

NACA 0012 0 0 0.120 0.019 0.700 0.080

of the initial airfoil geometry used, all three quantities are reduced compared to their
starting values and converge to the same final values. On the other hand, the reduc-
tion in the average mean and the average standard deviation of the drag coefficient is
larger compared to the reduction in the difference of the standard deviation, which
already has a small value for the initial airfoil shapes considered. This observation
may imply that, for this optimization problem, the contribution of the epistemic un-
certainty (i.e., k factor) is not as much as the contribution of the aleatory uncertainty
(Mach number) to the total uncertainty in the drag coefficient. Since the optimiza-
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Fig. 20 Drag coefficient values of the optimized airfoil and NACA 2412 for M∞ = [0.7,0.75,0.8]
and k = [0.5,1.25,2.0] at C∗

L = 0.5

tion is performed at a relatively low lift coefficient value (C∗
L = 0.5), one may also

expect to see more contribution from the epistemic uncertainty at higher lift coeffi-
cients. Figure 20, which shows a carpet plot of the drag coefficient over the range of
M∞ and the k factor considered, also verifies that the aerodynamic characteristics of
the optimum airfoil are better compared to the characteristics of NACA 2412 (one of
the airfoils used to initiate the optimization) in the case of mixed uncertainties, and
no significant drag rise (i.e., variation) is observed with the optimum geometry. This
plot also shows that the uncertainty in the Mach number is the main contributor to
the overall uncertainty and variation in the drag coefficient, which can be quantified
by the results tabulated in Table 8.

5 Conclusions

This chapter described the utilization of a computationally efficient uncertainty
quantification (UQ) approach and NIPC-based stochastic expansions in robust de-
sign under mixed (aleatory and epistemic) uncertainties and demonstrated this tech-
nique on a model problem and robust aerodynamic optimization.

The optimization approach utilized stochastic response surfaces obtained with
NIPC methods to approximate the objective function and the constraints in the op-
timization formulation. The objective function includes stochastic measures, which
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Table 8 Drag coefficient and
L/D values for NACA 2412
and optimum airfoils at
various Mach numbers and k

values for the mixed
uncertainty case

K M∞ Cd L/D

NACA 2412 Optimized NACA 2412 Optimized

K = 0.5 0.7 0.0171 0.0131 29.22 38.17

0.75 0.0401 0.0136 12.48 36.76

0.8 0.0819 0.0189 6.11 26.48

K = 1.25 0.7 0.0233 0.0184 21.46 27.21

0.75 0.0427 0.0190 11.71 26.37

0.8 0.0798 0.0248 6.26 20.16

K = 2.0 0.7 0.0277 0.0201 18.07 24.88

0.75 0.0474 0.0224 10.55 22.32

0.8 0.0817 0.0286 6.12 17.51

are minimized simultaneously to ensure the robustness of the final design to both
aleatory and epistemic uncertainties. The optimization approach was first demon-
strated on the robust design of a beam under mixed uncertainties. The stochastic
expansions are created with two different NIPC methods, quadrature-based and
point-collocation NIPC. The optimization results were compared to the results of
another robust optimization technique that utilized double-loop Monte Carlo sam-
pling for the propagation mixed uncertainties. The results obtained with the two
different optimization approaches agreed well; however, the number of function
evaluations was much less than the number required by the Monte Carlo-based ap-
proach, indicating the computational efficiency of the described optimization tech-
nique.

For robust aerodynamic optimization under aleatory (Mach number) and epis-
temic (turbulence model) uncertainties, the NIPC response surface was also used as
the basis for surrogates in the optimization process. To create the surrogates, a com-
bined point-collocation NIPC approach was utilized, which was a function of both
the design and uncertain variables. Two stochastic optimization formulations were
studied: (1) optimization under pure aleatory uncertainty and (2) optimization under
mixed (aleatory and epistemic) uncertainty. The formulations were demonstrated for
the drag minimization of NACA four-digit airfoils described with three geometric
design variables over the range of uncertainties under transonic flow conditions.
Deterministic CFD simulations were performed to solve steady, two-dimensional,
compressible, turbulent RANS equations. The pure aleatory uncertainty case in-
cluded the Mach number as the uncertain variable. For the mixed uncertainty case,
a k factor, which is multiplied by the turbulent eddy-viscosity coefficient, is in-
troduced to the problem as the epistemic uncertain variable. The results of both
optimization cases confirmed the effectiveness of the robust optimization approach
with stochastic expansions by giving an optimum airfoil shape that has the mini-
mum drag over the range of aleatory and epistemic uncertainties. The optimization
under pure aleatory uncertainty case required 90 deterministic CFD evaluations,
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whereas the optimization under mixed uncertainty case required 126 CFD eval-
uations to create the stochastic response surfaces, which show the computational
efficiency of the stochastic optimization with stochastic expansions. Note also that
the stochastic optimization methodology described in this chapter is general in the
sense that it can be applied to any robust design problem in science and engineer-
ing.
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Surrogate Models for Aerodynamic Shape
Optimisation

Selvakumar Ulaganathan and Nikolaos Asproulis

Abstract The main challenges in full-scale aerospace systems development are re-
lated to the level of our understanding with respect to the systems behaviour. Com-
putational modelling, through high-fidelity simulations, provides a viable approach
towards efficient implementation of the design specifications and enhancing our un-
derstanding of the system’s response. Although high-fidelity modelling provides
valuable information the associated computational cost restricts its applicability to
full-scaled systems. This chapter presents a Computational Fluid Dynamics optimi-
sation strategy based on surrogate modelling for obtaining high-fidelity predictions
of aerodynamic forces and aerodynamic efficiency. An Aerodynamic Shape Opti-
misation problem is formulated and solved using Genetic Algorithm with surrogate
models in the place of actual computational fluid dynamics algorithms. Ordinary
Kriging approach and Hammersley Sequence Sampling plan are used to construct
the surrogate models.

Keywords Surrogate models · Surrogate-based optimisation · Aerodynamic shape
optimisation · Supervised machine learning

1 Introduction

The computational cost involved in performing numerical simulations for designing
and optimising various engineering systems, such as aircraft wings, has been con-
tinuously increasing. From an engineering perspective, the design process is crucial
for achieving maximum efficiency with the minimum possible cost and within the
manufacturing restrictions. In the context of aircraft wings, aerodynamic shape op-
timisation (ASO) techniques are of great importance for designing a lifting surface
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with maximum aerodynamic efficiency. In ASO, aerodynamic constraints such as
flow properties, Mach number (M), etc. alone are taken into account, in contrast
to multidisciplinary design optimisation (MDO) where constraints from various (fi-
nancial, structural, manufacturing, etc.) disciplines are considered. As the number
of influencing disciplines increases, the complexity of the optimisation problem in-
creases.

The constraints of the optimisation problem define the spectrum of the design
variables and strongly influence the search space where the optimal solution lies.
Parameterisation parameters, which will parameterise the geometry of the engineer-
ing system to be optimised, serve as a part of the design variables of the optimisation
problem. Since the number of design variables directly influences the complexity
of the problem, various parameterisation approaches such as the discrete point ap-
proach, partial differential equation approach and polynomial approach have been
developed with the intention of simplifying the parameter space without compro-
mising the accurate description of the geometry [1].

Once the geometry is generated, the flow-governing equations can be solved on a
suitable mesh using a high- (computationally very intensive) or low-fidelity (compu-
tationally less intensive) solver based on the availability of computational resources
and time. The solution algorithm is the most time-consuming part of an optimisa-
tion approach, since the entire simulation process must be repeated several times
within the optimiser until an optimum solution is obtained or the entire search space
is explored.

The optimisation schemes can be broadly classified into two different categories:
gradient-based optimisation schemes and evolutionary optimisation schemes. The
choice of the starting point becomes increasingly important in gradient-based opti-
misation schemes, as they are more likely to be converged or stuck into local optima
[2, 3]. The non-derivative methods are more powerful in finding the global opti-
mum within the given search space; however they are lacking in terms of finding
the exact global optimum [2, 3]. These characteristics are given by the concepts
of exploration (ability to find the location of the global optimum without getting
trapped in a local extremum) and exploitation (ability to exploit the exact optimum
solution).

The cost of the ASO process increases by several orders of magnitude when
the actual, computationally expensive solution algorithms are employed for resolv-
ing the fluid flow [4]. Consequently, the computational cost becomes prohibitively
expensive, and a need arises to use well-tuned optimisation methods in order to
efficiently identify the optimum configurations within the design space. The com-
putational limitations become more apparent when numerically demanding solution
methods, such as computational fluid dynamics (CFD), are coupled with the opti-
miser. As a consequence, the fidelity of the analysis at the early stages of the design
process is sacrificed with the aim of reducing the overall computational burden.
In order to circumvent this problem, the use of approximation models has become
more popular in recent years in imitating complex solution algorithms due to their
quick response and reduced computing requirements. Within this framework, ap-
proximation models are constructed for computationally demanding solution algo-
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Fig. 1 Work flow of the problem

rithms and, further, are used in the place of actual solution algorithms during the
optimisation [5, 6].

The process of constructing an approximation model usually involves the fol-
lowing steps: (a) generation of computational data, (b) learning from the collected
computational data, and (c) constructing a surrogate model based on the learning.
Various approaches such as polynomial regression, response surfaces, neural net-
works and kriging are used to construct the approximation models [4, 7].

In this chapter, in order to show the advantage of surrogate-assisted optimisation,
an ASO problem is formulated to identify the best possible airfoil geometry which
will have an improved aerodynamic efficiency for the given flow, structural and
aerodynamic conditions. The aerodynamic efficiency (E) is defined as the ratio of
lift to drag. Lift and drag are the vertical and horizontal forces, respectively, which
act on an airfoil when it is introduced into the airflow. These forces are primarily
responsible for the aerodynamic efficiency of an airfoil. The example problem for-
mulated in this chapter considers the NACA 2411 airfoil geometry as the baseline
shape to be optimised. The airfoil is assumed to be introduced into a viscous, com-
pressible and low turbulence airflow with M varying between 0.1 and 0.6 at a fixed
angle of attack of 5.0◦. The formulated problem is solved to optimise the baseline
airfoil in the assumed airflow conditions. Figure 1 depicts the work flow involved in
solving the formulated optimisation problem.
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Fig. 2 PARSEC control parameters

2 Methodology

This section provides an overview of the methodology used in this chapter and
is structured as follows. Section 2.1 describes the parameterisation method em-
ployed, called PARSEC, Sect. 2.2 describes the sampling algorithm used, Sect. 2.3
describes the construction of approximation models using the OK approach, and
finally Sect. 2.4 provides the overall optimisation procedure.

2.1 Parameterisation

PARSEC is a parameterisation scheme which describes the lower and the upper sur-
face of an airfoil independently using a sixth order polynomial [8]. In this approach,
the shape of the airfoil is controlled by the following 11 parameters [9, 10]: leading
edge radius (Rle), upper crest point (yup), lower crest point (ylo), position of upper
crest (xup), position of lower crest (xlo), upper crest curvature (yxxup), lower crest
curvature (yxxlo), trailing edge thickness (Tte), trailing edge offset (Toff), trailing
edge wedge angle (βte), trailing edge direction angle (αte). These parameters are
shown in Fig. 2 [8].

Rle is divided into lower leading edge radius (Rleu) and upper leading edge radius
(Rlel) in order to increase the accuracy of the method near the leading edge. Hence,
12 design parameters are used instead of the typical 11 parameters [11].

The mathematical formulation of the approach is given by Eqs. (1) and (2) for
the upper and lower surfaces of the airfoil, respectively [1, 11, 12].

yu =
6∑

i=1

aix
i−(1/2), (1)

yl =
6∑

i=1

bix
i−(1/2), (2)

where, yu is the required y co-ordinate for the upper surface, yl is the required
y co-ordinate for the lower surface, x is the non-dimensional chord-wise location
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(chord (c) is assumed to be 1) and ai and bi are the coefficients to be solved. The
surface of the airfoil is obtained from the solution of the above two equations subject
to the following geometrical conditions: (1) at x = maximum, y = maximum, (2) at

x = maximum, dy
dx

= 0, (3) at x = maximum, d2y
dx2 = maximum, (4) at xup = 1, yup =

Toff + TTE
2 , (5) at xlo = 1, ylo = Toff − TTE

2 , (6) at xup = 1, dyup
dx

= tan(αTE − βTE
2 ),

(7) at xlo = 1, dylo
dx

= tan(αTE + βTE
2 ).

2.2 Sample Generation

The Hammersley sequence sampling (HSS) technique is a low-discrepancy sam-
pling approach that generates N sample points in a k-dimensional hypercube [13].
Each sample point that falls within the design space constitutes a design point by
defining the design variables. For measuring the deviation of the generated sam-
ple points from a uniform distribution a quantitative criterion is employed, called
the discrepancy [14]. It is always desired to have a more uniform distribution of
the sample points within the design space, since it increases the efficiency of the
learning from the collected data during the construction of surrogate models. An
extensive description regarding the HSS technique can be found in Kalagnanam and
Diwekar [15].

In this approach, an integer n is represented by the radix-R notation as shown
below [15]:

n ≡ nmnm−1 · · ·n2n1n0, (3)

n = n0 + n1R + n2R
2 + · · · + nmRm, (4)

where m = [logR n] = [ lnn
lnR

] is the integer portion of logR n. For example, the integer
1,256 has p0 = 6, p1 = 5, p2 = 2, p3 = 1, R = 10 and m = 3 in the radix-10
notation [14]. The inverse radix number, which is defined as a unique fractional
value located between 0 and 1, is obtained by reversing the order of the digits of the
integer around the decimal point [14]:

φR(n) = .n0n1n2 · · ·nm, (5)

φR(n) = n0R
−1 + n1R

−2 + · · · + nmR−m−1. (6)

The HSS algorithm generates N sample points in a k-dimensional hypercube
using the following relation [14]:

xk(n) =
(

n

N
,φR1(n),φR2(n), . . . , φRk−1(n)

)
,

n = 0,1,2, . . . ,N − 1, (7)

where R1,R2, . . . ,Rk−1 represent the first k−1 prime numbers. For the opted prob-
lem, ten PARSEC parameters (Tte and Toff are fixed due to structural and aerody-
namic constraints) together with M serve as the design variables.
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2.3 Surrogate Model Construction

Kriging techniques are employed for interpolations of random responses and are
based on stochastic processes. In the case of ordinary kriging (OK), the mathemati-
cal expression for the function is defined as

f̂ (xp) =
N∑

i=1

γi(xp)f (xi) ∀xp ∈ S, (8)

where f̂ is the linear estimator function for f , γi(xp) is the weighting function and
xp is a vector of sample points in the design space, which in our case is defined
through the range of values of ten PARSEC parameters along with M and is denoted
by S ⊂R

11.
Since the OK model is an isotropic stationary model [16], it is implied that the

covariance of f between two sample points is described by a function which is
solely based on the distance between the two sample points rather than their exact
locations. It can be expressed as

C
[
f (xa), f (xb)

]= C
(|xa − xb|

)
. (9)

C[f (xa), f (xb)] is often expressed by the covariance matrix as [16]

C =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 2 = C(0) C(‖x1 − x2‖) . . . C(‖x1 − xN‖)
C(‖x2 − x1‖) σ 2 . . . C(‖x2 − xN‖)

...
...

. . .
...

C(‖xN − x1‖) C(‖xN − x2‖) . . . σ 2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (10)

where σ 2 is the variance of the sample points. For the unknown sample point xp ∈ S,
the covariance vector (−→c ) and the weighting functions vector can be expressed as
[16]

−→
c (xp) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C(‖xp − x1‖)
C(‖xp − x2‖)

...

C(‖xp − xN‖)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

; γi(xp) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ1(xp)

γ2(xp)
...

γN(xp)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (11)

Since it is an isotropic stationary model, the sum of all the weighting functions
should be equal to 1, as given in Eq. (12). Hence the covariance matrix and covari-
ance vector are then expressed as Eqs. (13) and (14), respectively.

N∑

i=1

γi(xp) = 1 ∀xp ∈ S, (12)
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C =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2 = C(0) C(‖x1 − x2‖) . . . C(‖x1 − xN‖) 1

C(‖x2 − x1‖) σ 2 . . . C(‖x2 − xN‖) 1

...
...

. . .
...

...

C(‖xN − x1‖) C(‖xN − x2‖) . . . σ 2 1

1 1 . . . 1 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (13)

c(xp) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C(‖xp − x1‖)
C(‖xp − x2‖)

...

C(‖xp − xn‖)
1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (14)

A Lagrange multiplier (λxp ) is introduced in the weighting functions vector in
order to enforce the unbiasedness constraint of the OK model. Hence the weighting
functions vector becomes:

γi(xp) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ1(xp)

γ2(xp)
...

γN(xp)

λxp

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (15)

The weighting functions are calculated using the covariance matrix and covari-
ance vector as given by the following relation:

γi(xp) = C−1c(xp). (16)

Since the predicted value of the response at an unknown sample point is always
different from the actual value at that sample point, an error measure is introduced to
measure the prediction capability of the OK model. This measure of error is known
as the estimation error (ep) and is defined as follows:

ep = f̂ (xp)− f (xp), (17)

where f (xp) is the actual value at an unknown point xp ∈ S. If the weighting func-
tions are obtained in such a way that they will reduce the variance of the estimation
error, then a function predictor with optimal prediction capability can be obtained.
The error variance can be computed using the following expression:

V (ep) =
N∑

i=1

(
c(xp)γi(xp)

)
. (18)

Since the covariogram function is arbitrarily computed from the observed data,
a suitable theoretical variogram model should be used to fit the experimental vari-
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ogram model, so that the kriging equations become solvable. Generally, the selec-
tion of a suitable theoretical variogram model is carried out using maximum likeli-
hood estimation (MLE) or cross-validation (CV) approaches. For the current prob-
lem, the following theoretical variogram models are employed and the most suitable
one is selected based on the MLE approach.

• Gaussian model with actual range:

C(h) = sill

(
1 − exp

( −h2

range2

))
(19)

• Gaussian model with practical range:

C(h) = sill

(
1 − exp

( −3h2

prange2

))
(20)

• Spherical model with actual range:

C(h) = sill

((
3.0

2.0

)(
h

range

)
− 0.5

(
h

range

)3)
(21)

• Exponential model with actual range:

C(h) = sill

(
1 − exp

( −h

range

))
(22)

• Exponential model with practical range:

C(h) = sill

(
1 − exp

( −3h

prange

))
, (23)

where h is the isotropic lag defined as the distance between two sample points in S.
In the semivariogram, the lag value at which the semivariance becomes constant is
called the range, and the corresponding semivariance value is called the sill. The
practical range is the value of the lag at which 0.94 % of the sill is achieved.

2.4 Aerodynamic Shape Optimisation

A genetic algorithm (GA), which is one of a class of evolutionary algorithms where
the evolution is based on the theory of the mechanics of natural selection and the
evolution process, is used to carry out the optimisation problem. Here the optimi-
sation parameters are described by a group of genes called chromosomes [17–20];
each chromosome is a binary string which describes an individual (i.e. a sample
point). In the current problem, the PARSEC parameters Tte and Toff are fixed during
the optimisation along with the flow parameter α. This is done to avoid the evolution
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Fig. 3 Genetic algorithm approach

of airfoils with trailing edge thickness and trailing edge offset during the optimisa-
tion. The parameter α is fixed because the optimisation procedure is carried out for
a fixed value of (α = 5.0◦) angle of attack. These two fixed parameters will also
ensure the satisfaction of the structural and aerodynamic constraints of the current
problem. Hence, the remaining ten PARSEC parameters along with the flow param-
eter, M , serve as the optimisation parameters in the current problem. The typical
work flow of the GA is depicted in Fig. 3 and is discussed further below.

2.4.1 Search Space

The search space for the current problem is defined by the range of values of the ten
PARSEC parameters and M and their required decimal accuracy. For each optimisa-
tion parameter, the required accuracy of the decimal place (d) can be specified.
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Once d is specified, the domain length for a particular optimisation parameter
can be expressed as follows [21]:

Domain length = 10d(Xu −Xl), (24)

where Xu and Xl are the upper and lower bound values of the optimisation parame-
ter, respectively. The binary string corresponding to the parameter X is expressed as
bm−1, bm−2, . . . , b1, b0, which will be equal to X′ = ∑m

i=1(bi2
i ). The value of m,

which is defined to specify the number of possibilities for a given ‘d’, can be chosen
as [21]

2m−1 < 10d(Xu −Xl) < 2m. (25)

All the optimisation parameters are represented as binary strings of length (Li )
and combined as a single binary string. The length of the single binary string (Lk)
can be calculated as follows:

Lk =
k∑

i=1

Li, (26)

where k is the number of optimisation parameters, which is equal to n in the current
problem. The first L1 binary strings of the single binary string (Lk) correspond to the
first optimisation parameter, the second L2 binary strings correspond to the second
optimisation parameter and so on.

2.4.2 Initial Population

The random number approach is employed to generate the initial pool of optimisa-
tion parameters. In this approach, a random number is generated between 0 and 1.
If the random number is between 0 and 0.5, then the bit is considered as 0, whereas
if it lies between 0.5 and 1, then the bit is set to 1. The size of the initial population
can be controlled by a parameter called popsize.

2.4.3 Selection of Parents

Individuals (containing the optimisation parameters) are selected from the pool of
the initial population and placed into the mating pool. These individuals are fur-
ther used for mating and generating new offspring. Since the characters of these
individuals are passed to the next generation, only the individuals who have desir-
able properties are selected. This is accomplished by the tournament wheel selec-
tion technique. In this approach, a tournament is defined among the individuals by
specifying a selection pressure. The individuals with higher fitness are considered
as winners of the tournament and will be placed in the mating pool [22]. The fit-
ness function (P(i)) is evaluated by calculating the total objective function (F ) as
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follows:

f (i) = obj(Vi), i = 1,popsize, (27)

F =
popsize∑

i=1

(
f (i)

); P(i) = f (i)

F
, (28)

where f (i) (different from the f (x) defined in the OK section) is the objective
function to be optimised and V is the set of optimisation parameters. The process of
selection holds some important properties: (a) Best individuals are preferred but not
always selected. (b) Worst individuals are not always excluded in order to maintain
the variability in each generation.

2.4.4 Crossover

Crossover is performed to combine the desirable characters of two different parents
who are selected for mating. The method of crossover depends on the kind of prob-
lem to be solved and the method of encoding. For the current problem, the uniform
crossover approach is employed. In this approach, a crossover probability (pc) is
defined and a probability test is performed for each bit in the bit string. If passed,
then the bits are randomly exchanged between the two parents selected for mating
[23].

2.4.5 Mutation

Mutation is performed in order to refine the process of mating. Here a mutation
probability (pm) is defined and the probability test is performed on each bit in the
bit stream. If passed, the bit is flipped directly. If not passed, the bit is generated ran-
domly and compared with the current one. If the randomly generated bit is different
from the original bit, then the original bit is flipped [23].

2.4.6 Fitness Evaluation

Fitness evaluation is the process of evaluating the objective function for each set of
optimisation parameters. Based on the fitness of the new offspring, they are consid-
ered as new parents and selected for further mating. This process is repeated until
the convergence is achieved. The following fitness criterion is used in the current
problem to select the best possible airfoil geometries:

Fitness(f ) = obj(E) = obj

(
(Cl)High-fidelity

(Cd)High-fidelity

)
, (29)

where (Cl)High-fidelity and (Cd)High-fidelity are the high-fidelity coefficient of lift and
the high-fidelity coefficient of drag, respectively. The method of estimating their
values is described in the following section.
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Table 1 Design variables
and their ranges of values Var. No. Design variable Lower bound Upper bound

01 Rleu 0.020 0.023

02 Rlel 0.006 0.010

03 xup 0.300 0.380

04 yup 0.077 0.080

05 yxxup −0.630 −0.650

06 xlo 0.160 0.180

07 ylo −0.032 −0.034

08 yxxlo 0.660 0.680

09 αte −4.700 −4.800

10 βte 15.00 15.10

11 M 0.100 0.600

Fig. 4 Number of HS sample points: 20

3 Results and Analysis

Computer-based simulations must be performed at the optimal sample points gener-
ated by the HSS algorithm to obtain data. The collected data are used to initiate the
learning process during the construction of surrogate models. As discussed earlier,
the dimension (n) and the design space of the current problem are 11 and S ⊂R

11,
respectively. Table 1 gives the design variables and their ranges of values for the
current problem.

A sample point has ten PARSEC parameters and M . 50 (N ) such sample points
are generated where the simulations need to be performed. The HSS technique gen-
erates uniform sample points in an unstructured way. Figures 4 and 5 show the
uniformity and space-filling properties of the Hammersley sequence (HS) sample
points. These sample points are generated for a two-dimensional problem defined
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Fig. 5 Number of HS sample points: 50

in the design space of [0,1]2. It can be seen from these figures that the HSS tech-
nique retains its uniformity and space-filling properties irrespective of the number
of sample points. Observe also that the sample points are spread over the interior of
the design space for the given number of “N” sample points in contrast to the classi-
cal design of experiments (DOE) techniques, where the sample points are generated
mainly near the boundaries of the design space [14].

Computer-based simulations, both panel (low-fidelity) and CFD (high-fidelity),
are performed at these 50 sample points. A Linear Vorticity Surface Panel method
code developed by Ilan Kroo [24] is used for the low-fidelity simulations. Panel
methods are more effective in giving reasonably accurate results without being com-
putationally expensive. The flow around the NACA 2411 airfoil is solved using the
panel code for different angles of attack with Np = 1,000 (number of panels). The
results (Cl) (which are theoretically valid at M = 0.0) are compared with the Xfoil
viscous simulation results obtained at M = 0.1, as shown in Fig. 6. The influence
of Np on the low-fidelity results is shown in Fig. 7. It can be seen that the panel
method slightly over-predicts the Cl , and the accuracy of the solution increases as
the number of panels increases.

High-fidelity, CFD simulations are performed by solving two-dimensional,
steady and compressible Navier–Stokes equations using the FLUENT software
[25]. The turbulence phenomena have been modelled using the Spalart–Allmaras
turbulence model, which is a one-equation model for solving the turbulent viscosity
transport equation [26, 27] and has been widely used for aerospace applications. The
computational grid is generated with the ICEM CFD package. The C-grid topology
is used since it is quite good at capturing the flow physics in the wake region of the
airfoil [28, 29]. Figure 8 shows the topology of the grid and the dimensions involved
with the grid generation. The grid extends to a dimension of 14c in the downstream
direction (L), 9c in the upstream direction (A) and 10c in the cross-stream direction
(H ). In order to capture the flow physics within the boundary layer region, y+ = 1
has been used [30].
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Fig. 6 Cl as a function of α

Fig. 7 Influence of number of panels on Cl

The density-based implicit solver in FLUENT is used to solve the flow around
the airfoil geometry with an ideal gas as a working fluid. The viscosity is calculated
from the three-coefficient Sutherland law, and the basic flow properties are given
in Table 2. Turbulence is specified in terms of turbulent intensity (I ) and turbulent
length scale (l), and a least squares cell-based discretisation scheme is used for the
gradient together with the Roe-FDS flux type. Third order Monotone Upstream-
centred Schemes for Conservation Laws (MUSCL), which can provide more ac-
curate numerical results even when the solutions exhibit shock, are employed for
the spatial discretisation of the flow [31, 32]. The solution converges down to an
accuracy of 10−5 and 10−6 in about 3,000 iterations.

In order to validate the mesh generation and solution techniques, the flow over
the NACA 2411 and NACA 0012 airfoils is solved using the above-described mesh
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Fig. 8 Grid topology

Table 2 Fluid flow
properties Property Value

Pressure (p) 101,325 N/m2

Density (ρ) 1.1766 Kg/m3

Temperature (T ) 300 K

AOA (α) 5.0 deg

Mach (M) From sample point

generation and solution methods. The flow properties for the current validation case
are the same as tabulated above except for α and M . The validation is carried out
for various α at M = 0.1. The fine grid, which is obtained after a grid convergence
study, has 1,000 points on the surface of the airfoil in the circumferential direction
and has about 80,000 cells in total. A two-stage boundary layer is used in the grid
generation to have more cells around the geometry of the airfoil (see Fig. 9). Fig-
ures 10 and 11 show the error (variation of CFD results from the actual results) of
Cl and Cd for the NACA 2411 and NACA 0012 airfoils, respectively. One can see that
the error increases when the number of cells (Nc) goes above 8,000. Figure 12 shows
the variation of Cl from the results published by Klimas and Sheldahl in Ref. [33]
for NACA 2411 with fine mesh (Nc = 8,000). Figure 13 shows the variation of Cd

from the Xfoil viscous simulation results for NACA 0012 with fine mesh.
The grid generation process for the remaining 50 sample points is automated, so

that the same grid generation technique can be applied for all the airfoil geometries.
It is also ensured that the applied grid generation technique results in a fine mesh

for all the airfoil geometries. The flow around the 50 airfoil geometries is solved
using both the low-fidelity panel simulations and high-fidelity CFD simulations.
Once the aerodynamic forces ((Cl)Low-fidelity, (Cl)High-fidelity and (Cd)High-fidelity)
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Fig. 9 Two-stage boundary layer

Fig. 10 Grid convergence [Cl ] error estimation

are obtained for the generated 50 airfoil geometries, they can then be used for the
learning process.

Three surrogate models are constructed using the in-house OK code. The first
surrogate model is constructed using the low-fidelity panel data and can predict the
low-fidelity Cl for any airfoil geometry placed within the design space S. The sec-
ond surrogate model is constructed using the high-fidelity Cd data and can predict
the high-fidelity Cd for any airfoil geometry placed within S. The third one is con-
structed using the difference in Cl between the low- and high-fidelity data (ΔCl)
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Fig. 11 Grid convergence [Cd ] error estimation

Fig. 12 Cl as a function of α for NACA 2411

and can be used to estimate the difference in Cl between the low- and high-fidelity
analysis for any airfoil geometry placed within S.

Figures 14, 15 and 16 show the capability of different theoretical semivariogram
models in fitting the experimental semivariogram model for the first, second and
third black surrogate models respectively. It can be clearly observed that the Gaus-
sian model with practical range fits the experimental semivariogram model more
accurately than any other theoretical models for all the three surrogate models. The
second most accurate one is the spherical model with actual range. These con-
clusions are confirmed by carrying out the prediction at various unknown sample
points. Figures 17, 18 and 19 show the comparison at some of these unknown sam-
ple points for all three surrogate models with N = 50. For all the predictions, the ep
is on the order of 10−2 and 10−3.
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Fig. 13 Cd as a function of α for NACA 0012

Fig. 14 Theoretical semivariogram models [low-fidelity Cl ]

The number of sample points (N ) (and so the amount of data) which is used to
construct the surrogate models has a huge influence on the prediction capability of
the constructed surrogate models. As “N” increases, the capability of the surrogate
model to predict the right solution increases until a saturation level is reached for
“N”. This behaviour is further depicted in Figs. 20, 21 and 22 for the first, second
and third surrogate models, respectively. It can be observed that ep is reduced as
“N” increases for all three surrogate models.

The aerodynamic efficiency (E) of an airfoil geometry which is placed within ‘S’
can be calculated using the constructed surrogate models. Once an unknown sample
point (airfoil geometry and M) is generated, it can be supplied to the three surrogate
models. As discussed earlier, the first surrogate model can predict the low-fidelity
Cl , while the second one can predict the high-fidelity Cd . The ΔCl can be predicted
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Fig. 15 Theoretical semivariogram models [high-fidelity Cd ]

Fig. 16 Theoretical semivariogram models [ΔCl ]

by the third surrogate model. Now the E of the airfoil at α = 5.0◦ for the above
discussed flow conditions can be calculated from the following relations. Since the
airfoil is placed within ‘S’, the M will have a value between 0.1 and 0.6.

(Cl)High-fidelity = (Cl)Low-fidelity −ΔCl, (30)

E = L

D
= (Cl)High-fidelityq∞S

(Cd)High-fidelityq∞S
, (31)

where L is the lift force of the airfoil, D is the drag force of the airfoil, q = (
ρV 2

2 ) is
the dynamic pressure of the flow, ρ is the density of the flow, V is the velocity of the
flow and S is the surface area of the airfoil. Since S and q are constant for a given
airfoil and flow conditions (M , ρ, temperature) respectively, the above relation can
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Fig. 17 Estimation error of the predictions [low-fidelity Cl ]

Fig. 18 Estimation error of the predictions [high-fidelity Cd ]

be written as follows:

E = L

D
= (Cl)High-fidelity

(Cd)High-fidelity
. (32)

E is estimated at various sample points (i.e. airfoil geometries) placed within
the design space ‘S’ using the constructed surrogate models. The estimated values
are compared with the actual values of E which are calculated from separate CFD
simulations. The comparison is shown in Fig. 23.

Figure 23 shows that the prediction of the constructed surrogate models leads
to having E within low error bounds with the maximum % of error being smaller
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Fig. 19 Estimation error of the predictions [ΔCl ]

Fig. 20 Influence of “N” on the predictions [low-fidelity Cl ]

than 4.8 %. The deviation can be further reduced by increasing the accuracy of the
predictions by increasing the number of training sample points.

The constructed surrogate models have been coupled with the GA [34]. The pa-
rameters for controlling the ASO are summarised in Table 3. Each generation of the
GA has 5 different individuals (i.e. airfoil geometries) and the ASO process is car-
ried out in 500 generations. In total, 2,500 different airfoil geometries with different
M are obtained and tested for maximum E. An optimised solution, which has an
aerodynamic efficiency of E = 80.326, is obtained and converges around the 495th
generation of the GA. The flow around the optimised airfoil geometry is solved in
FLUENT using the corresponding flow properties as shown in Table 4. The CFD cal-
culations show that the optimised airfoil geometry has E = 77.106, corresponding
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Fig. 21 Influence of “N” on the predictions [high-fidelity Cd ]

Fig. 22 Influence of “N” on the predictions [ΔCl ]

to a 4.1 % error. As already discussed, this value is less than the maximum expected
error of 4.8 %. Despite the small prediction error, the obtained airfoil geometry is
still better than the baseline shape, which has 67.015 for the flow conditions tab-
ulated in Table 4, and other explored airfoil geometries. It can then be confirmed
that the optimised geometry has 15.04 % improvement in E over the actual NACA
2411 at the specified flow conditions. The variation in the geometry, pressure and
velocity distribution between the baseline airfoil and optimised airfoil are depicted
in Figs. 24–29. It can be observed from these figures that the higher airflow acceler-
ation at the suction side and higher positive Cp at the pressure side are the primary
reasons for the optimised airfoil to have more E than its counterpart.
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Fig. 23 % of error of E prediction

Table 3 GA parameters to
control the evolution (ASO) Parameters Values

Number of parameters 11

Population size (popsize) 5

Crossover probability (pc) 0.7

Mutation probability (pm) 0.02

Table 4 Flow properties to
solve the optimised geometry Property Value

Pressure (p) 101,325 N/m2

Density (ρ) 1.1766 Kg/m3

Temperature (T ) 300 K

Mach (M) 0.331351

Velocity (V ) 115.05

Re 7.337 × 106

I 0.022 %

μ 1.845 × 10−5 Kg/m s

The whole ASO problem is carried out in 0.341399E + 03 sec (5.6 min) with a
computer system which has 1.5 GB of DDR 2 RAM, 2.6 GHz of processor speed
and 2 MB of L2 cache memory. If the actual CFD algorithm were to be employed for
solving the flow during the optimisation, 156 days would have been required for the
same computer system to obtain the optimised solution. This is calculated based on
the time taken for a single CFD simulation (90 min approximately) during the data
mining process. Clearly, applying the surrogate models in the place of actual CFD
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Fig. 24 Optimised geometry

Fig. 25 Cp distribution

algorithms has drastically reduced the required computational time and resources to
carry out an ASO problem.

The method of the parameterisation scheme is crucial for both surrogate model
construction and optimiser, since its variables are used as the design and optimi-
sation variables. The PARSEC parameterisation scheme is effective, since it offers
flexibility in controlling the aerodynamic characteristics of the airfoil geometry with
a minimum number of parameters. The distribution of sample points within the de-
sign space strongly influences the performance of the surrogate models. Hence, it is
important to use a sampling plan that is able to explore the design space uniformly
rather than just distributing the sample points in an arbitrary fashion. The Hammers-
ley sequence sampling (HSS) technique has more uniformity and stratification prop-
erties for the given “N” irrespective of “n” of the problem. These properties make
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Fig. 26 Pressure distribution around the NACA 2411 airfoil

Fig. 27 Velocity distribution around the NACA 2411 airfoil

this algorithm suitable for problems where the evaluation of objective functions
at one sample point is computationally more expensive. The statistically unbiased
characteristics of the ordinary kriging (OK) approach enhance the ability and accu-
racy of the surrogate models in predicting response values at an unexplored space.
The GA is observed to be more effective in exploring the search space. Since vari-
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Fig. 28 Pressure distribution around the optimised airfoil

Fig. 29 Velocity distribution around the optimised airfoil

ability exists in all the generations of the GA, a huge number of desirable solutions
to the defined problem are generated. Hence, this process can also be considered as
a data mining process and can be further used for airfoil design and analysis.
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4 Conclusions

This chapter may be summarised as follows. The chapter begins with a review of
the basic activities involved in an aerodynamic shape optimisation problem. Next, it
gives more information about the construction of the surrogate models for various
aerodynamic functions and their application to the aerodynamic shape optimisation
problems. The chapter is concluded with a discussion on the practical challenges in-
volved in employing the surrogate models to aerodynamic shape optimisation prob-
lems.
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Knowledge-Based Surrogate Modeling
in Engineering Design Optimization

Qian Xu, Erich Wehrle, and Horst Baier

Abstract Simulations and numerical experiments of engineering problems are of-
ten expensive, which may restrict sensitivity analysis and design optimization. Sur-
rogate modeling methodologies are currently being studied to construct approxima-
tion models of system responses based on a limited number of the expensive evalua-
tions. The use of surrogate models allows more efficient exploration and exploitation
of the system. However, the curse of dimensionality is still an obstacle for large and
complex engineering design problems. The required number of high-fidelity eval-
uations becomes tremendously large in a high-dimensional space. Therefore, it is
advisable to adopt knowledge-based surrogate modeling in engineering design opti-
mization. With engineering insight into the system, a high-dimensional design space
can be intelligently mapped into system properties, so that better choices of inputs,
outputs, and function formulations can be made for surrogate modeling. This chap-
ter covers the methods of embedding engineering knowledge in surrogate modeling
for structural mechanical systems and provides application examples in the field of
aerospace engineering.

Keywords Surrogate model · Kriging · Structural optimization · Surrogate-based
design optimization · Knowledge-based surrogate modeling

1 Introduction and Overview of Surrogate Modeling in
Engineering Optimization

Engineering design optimization finds the best available values of design variables
to maximize or minimize design objective function(s) while satisfying all specified
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constraints in engineering problems [4]. It usually requires a number of evaluations
of the objective and constraint functions, which can be complex and time consum-
ing. Sources of complexity include high-dimensional and nonconvex design spaces,
highly nonlinear system responses, multidisciplinary design problems, etc. High-
fidelity evaluations for many engineering design problems, i.e., simulations with
finite element analysis (FEA) and computational fluid dynamics (CFD) of complex
engineering systems, can take many hours or even days to complete. For parame-
ter and sensitivity studies many evaluations are required and, further, design opti-
mization can be limited by extensive computational effort. For engineering design
optimization problems for which system equations and gradient information are ex-
pensive to obtain, it is worth using surrogate models to accelerate the engineering
design process. Surrogate modeling involves generating system models, which are
cheaper to evaluate. In this chapter, system response surface approximation is ex-
plained.

Surrogate models are constructed after a design of experiments (DoE) [19] with
a number of high-fidelity evaluations carried out. The process involves two basic
steps: sampling and surrogate model construction, both of which can be affected by
the curse of dimensionality resulting from a large number of design variables [17].

1. Sampling: The sample size required in DoE grows tremendously with the in-
creasing dimension of the design space, i.e., at least (k+1)(k+2)

2 samples are re-
quired to perform a full quadratic polynomial regression in k-dimensional design
space.

2. Surrogate model construction: High dimensionality requires more coefficients
and parameters to be determined to best fit the samples. Matrix operations such as
matrix inverse or Cholesky and LU decomposition have to be performed for large
matrices in least-squares estimation. Large numerical errors can occur when a
poor combination of regression model and design sites is formulated and the
matrices in the regression model become ill conditioned.

Parallel computation can alleviate some problems associated with the curse of di-
mensionality, but it remains a restricting factor for the use of surrogate modeling.
Studies on surrogate modeling strategies are oriented to reduce computational ef-
fort without significantly compromising model accuracy [16]. Strategies studied in
recent years include but are not limited to the following.

1. Sequential design space reduction and expected improvement:
Giunta [9] estimates the improvement of surrogate models, based on which the
size of the trust region is updated and the design space is reduced. Expected im-
provement as an infill criterion is described by Forrester [8], according to which
additional sample points (infill points) are generated to refine surrogate mod-
els. Such strategies risk losing characteristics of system responses, especially for
highly nonlinear systems [21].

2. Gradient information:
For selected sample sites, derivative information is included to increase approx-
imation accuracy. Gradient-enhanced and Hessian-enhanced surrogate modeling
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show the possibility of building more accurate predictions [8]. However, analyti-
cal or semi-analytical gradients are not always available, and numerical gradients
are expensive to calculate.

3. Reduced basis functions:
Substitutes of full-polynomial terms are utilized to reduce the number of coeffi-
cients, thus reducing the required number of samples. Alvarez et al. [2] propose a
tree-searching algorithm and use genetic programming methodology to generate
the basis terms that fit best to the sample points. Such methods show consider-
able potential in reducing sample points and increasing accuracy for many design
problems. However, candidate basis functions or operations are required in these
methods. Further improvements could be expected by providing a better choice
of candidates considering engineering knowledge.

4. Kernel-based method and space mapping:
Instead of modeling the design space, a mapped space is used. Baudat [6] uses
a kernel-based method, which extracts a relevant data set into a feature space
according to geometrical considerations. Bandler [5] introduces space mapping
procedures to iteratively update and optimize surrogates based on a physical-
based coarse model, in which engineering experience is adopted.

Combinations of the techniques above may also be used to further enhance surrogate
modeling.

In this chapter, knowledge-based surrogate modeling will be described. The fo-
cus will be on choosing surrogate modeling factors such as inputs, outputs, and
function formulations based on knowledge of an engineering system. The imple-
mentation of knowledge-based surrogate modeling is realized by embedding terms
in the surrogate functions, which are mapped from the design space and are able to
represent the system properties. With those terms fewer surrogate parameters need
to be determined, and the relationship to be approximated becomes more directly
related or even linearly related. Application examples in aerospace engineering are
given to elaborate the implementation of knowledge-based surrogate modeling.

2 Surrogate Modeling with Latin Hypercube Sampling and
Kriging

There are a variety of methods used for sampling and construction of surrogate
models. Typical sampling methods are Latin hypercube sampling (LHS), central
composite designs, Box-Behnken designs, orthogonal arrays, and Hammersley se-
quences [18]. Surrogate modeling methods include, e.g., polynomial regression,
kriging, radial basis functions (RBF) [15], artificial neural networks (ANN), and
support vector regression (SVR) [7]. In this section, the LHS method and the kriging
modeling method are briefly described and extended to perform knowledge-based
surrogate modeling.
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Latin Hypercube Sampling It is important to control the density of sample
points so that the corresponding amount of evaluations is affordable and still main-
tains good distribution in the design space. LHS is a high-dimensional extension of
Latin square sampling. In two-dimensional space, samples are distributed in square
grids of the design domain with only one sample in each column and each row.
For a higher-dimensional space, the range of each design variable is divided into the
required number of intervals. In each interval of each design variable, only one sam-
ple point is allowed. This feature benefits design space mapping strategies, because
duplicate points can be avoided and, therefore, sample points can be maximally uti-
lized.

Kriging Kriging, which is widely used, is a combination of polynomial regres-
sion and Gaussian stochastic processes. The regression model fits the samples ac-
cording to the rule of least-squares estimation. The correlation model adjusts the
prediction error by using maximum likelihood estimation. Kriging is formulated as

ŷ = Y(x)+Z(x) =

regression
︷ ︸︸ ︷
n∑

i=0

βifi(x)+ Z(x)︸︷︷︸
correlation

, (1)

where Y(x) = ∑n
i=0 βifi(x) is the regression model, which usually adopts poly-

nomials up to the second order to represent the global trend of the sample points.
Z(x) is the correlation model, which is a Gaussian process with mean value 0 and
covariance σ . The correlation model is given by

Cov
(
Z(xj ),Z(xk)

) = σ 2Rjk(θ ,xj ,xk), (2)

where Rjk is the Gaussian correlation function on the p-dimensional design space

Rjk(θ ,xj ,xk) =
p∏

i=1

e−θi (|xj i−xki |2). (3)

In Eqs. (2) and (3), θ is the coefficient vector of the correlation model. The opti-
mal coefficients θ∗ are found for maximum likelihood estimation. It is important to
choose proper formulations of the regression functions which represent the system
behavior as precisely as possible. Higher-order polynomial regressions have the ca-
pability of approximating more complex responses, but they require more sample
points to determine the polynomial coefficients. By properly selecting the polyno-
mial orders and mixed terms of design variables using knowledge of a system, the
number of coefficients in regression functions can be greatly reduced.

The relative root mean square error εrrms is used for comparison of surrogate
models. It is defined as the root mean square error normalized by the maximal re-
sponse value,

εrrms = 1

max(y)

√∑n
i=0[ŷ(xi)− y(xi)]2

n
. (4)
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Fig. 1 Traditional metamodel and knowledge-based metamodel

3 Knowledge-Based Surrogate Model

The efficiency and accuracy of the traditional surrogate models can be improved by
considering the physical properties of the engineering system. These systems are
well understood by engineers and, therefore, do not have an unknown black-box na-
ture. Figure 1 compares traditional and knowledge-based surrogate modeling meth-
ods. The traditional surrogate modeling process is performed assuming the system
as a black box. The information from the design space and system responses is taken
to construct a surrogate model without considering engineering understanding of the
system. However, in knowledge-based surrogate modeling, engineering knowledge
is considered in the surrogate modeling process. The design space is mapped into a
modeling space, which is composed of structural mechanical properties of the sys-
tem. The system responses are replaced by modeling responses, which can be more
accurately approximated.

This section first explains the implementation of the knowledge-based surrogate
modeling method. An introductory example is then given for more detailed descrip-
tion of the method and its advantages.

3.1 Implementation of Knowledge-Based Surrogate Modeling with
Kriging

Knowledge-based kriging is constructed by considering the mechanical system
properties and is formulated as

q̂(y) = Y
(
p(x)

)+Z
(
p(x)

) =

regression
︷ ︸︸ ︷
n∑

i=0

βifi

(
p(x)

)+Z
(
p(x)

)

︸ ︷︷ ︸
correlation

, (5)

where p(x) is used to form polynomial terms instead of x. p(x) is an algebraic com-
bination of the design variables that represents the structural mechanical properties.
q(y) is transformed from y using engineering knowledge to form a relationship that
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Fig. 2 Cross section of a cantilever with design variables

can be more accurately represented by kriging. The use of knowledge-based kriging
has the following advantages:

• Fewer coefficients βi are determined: Since only physically sensible terms are
considered, the number of mixed terms in the regression function can be reduced.

• A higher approximation accuracy can be achieved: Compared with the original
system responses, the modeling outputs q(y) are more directly related or even
linearly related to the modeling inputs p(x).

3.2 Introductory Example of Knowledge-Based Surrogate
Modeling

The design problem of a cantilever is shown as an introductory example of utilizing
engineering knowledge for surrogate modeling. The cantilever has an I-shaped cross
section (see Fig. 2), the geometric parameters of which are to be determined to
minimize the structural mass, subject to a number of structural constraints. The
cantilever is loaded with force in the y-direction at the tip and is clamped at the
opposite end. The responses to be analyzed are the bending stress σb, the shear
stress τ , the tip deflection δ, the failure force for twist buckling Fcr, and the first
resonance frequency of bending fb . The design problem is formulated as follows:

minimize m(x)

subject to σb(x) ≤ σcrit

τ(x) ≤ τcrit

δ(x) ≤ δcrit

−Fcr(x) ≤ −Fload

−fb(x) ≤ −f0

and xl ≤ x ≤ xu,

(6)
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Fig. 3 Traditional surrogate modeling results of the cantilever with I-shaped cross section. Circle
(o): system responses, cross (+): surrogate function values

where x = {b1, b2, b3, t1, t2, t3}T (see Fig. 2), xl and xu refer to the lower and upper
boundaries of the design variables, and m refers to the mass of the structure. σcrit,
τcrit, δcrit, Fload, and f0 are constant values in the design criterion. Surrogate models
for σb , τ , δ, Fcr, and fb are built with respect to x.

For a six-dimensional design space, at least 28 sample points are required for
a quadratic regression. Considering a typical oversampling factor of 1.5, 42 sam-
ple points are generated by LHS. The surrogate models are constructed with krig-
ing. The quality of the surrogate model is tested with 3,000 high-fidelity system
responses. The results are shown in Fig. 3: Shown from left to right are normalized
values of σb, τ , δ, Fcr, and fb , respectively. The consistency of system responses
and surrogate function values represent the quality of surrogate modeling. As can
be seen, the quality of the surrogate models can be further improved, especially for
the bending stress and tip deflection.

With a knowledge of structural mechanics, it is known that the system responses
are dependent on the geometrical and mechanical properties, such as the cross-
sectional area A, the position of the center of the cross section, the area moment
of inertia Iz and Iy , etc. It is also known that the bending stress is inversely pro-
portional to the area moment of inertia Iz, and directly proportional to the distance
from the geometrical center hmax. The system structural responses and the respec-
tive geometrical properties are shown in Table 1.

The geometrical properties hmax, Iy , Iz, and A are directly related to the system
responses. With these listed terms used as p(x) in the kriging regression functions,
fewer coefficients are to be determined and fewer sample points are required. The
results of knowledge-based surrogate modeling are shown in Fig. 4. A comparison
of the surrogate modeling results is shown in Table 2. nsamp represents the number
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Table 1 The structural responses and the respective geometrical properties

Structural responses σb τ δ Fcr fb

Geometrical properties hmax, 1
Iz

1
A

1
Iz

Iy , Iz
√

Iz
A

Fig. 4 Knowledge-based surrogate modeling results of the cantilever with I-shaped cross section.
Circle (o): system responses, cross (+): surrogate function values

Table 2 Results of the traditional surrogate modeling method and the knowledge-based surrogate
modeling method for the cantilever with I-shaped cross section

nsamp εrrms(σb) εrrms(τ ) εrrms(δ) εrrms(Fcr) εrrms(fb)

Traditional surrogate model 42 5.42 % 1.91 % 4.36 % 1.12 % 1.12 %

Knowledge-based surrogate model 12 0.00 % 0.00 % 0.00 % 1.02 % 0.00 %

of sample points used in surrogate modeling. Compared with the traditional surro-
gate modeling approach, the knowledge-based surrogate modeling method not only
saves sample points but also results in a much higher accuracy. For complex me-
chanical structures, the mechanical properties would not be directly found as in the
cantilever example shown here. However, one can obtain clues from engineering
knowledge and experience.
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4 Knowledge-Based Terms for Structural Systems

In this section, the construction of a knowledge-based modeling space for structural
systems is described. The equation of motion is considered here:

Mü + Cu̇ + Ku = F, (7)

where M, C, and K are the global mass, damping, and stiffness matrices, respec-
tively. K and M are combinations of design variables that most directly describe
the relation between geometric parameters and system responses. The global matri-
ces K and M are assembled from the element matrices Ke and Me , which can be
explicitly derived from the design variables.

Beam and shell elements are frequently employed element types in aerospace en-
gineering. The element matrices will be extracted to assist in forming the modeling
space. Besides traditional metallic materials, composite materials have also been
commonly applied in the aerospace industry, the mechanical properties of which
will also be extracted to assist knowledge-based surrogate modeling.

4.1 Knowledge-Based Terms for Beam Elements

For beam elements, the geometric parameters of the cross section are considered
in engineering design. The complete stiffness matrix for the 12 degree-of-freedom
beam element is given by [10]

Ke =
[

Ke
11 Ke

12
sym Ke

22

]
, (8)

in which

Ke
11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

EA
l

0 0 0 0 0
12EIz
l3Ψy

0 0 0 6EIz
l2Ψy

12EIy

l3Ψz
0 − 6EIy

l2Ψz
0

sym GJ
l

0 0
Ψ ′

zEIy
l

0
Ψ ′

yEIz

l

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

, (9)

where E, G, A, and l represent Young’s modulus, the shear modulus, the cross-
sectional area, and the length of the beam element, respectively. Refer to [10] for
details of Ke

12, Ke
22 and the substitutions Ψy , Ψ ′

y , Ψz, and Ψ ′
z . In the stiffness matrix

Ke, the terms EA, EI
Ψ

, EIΨ ′, and GJ are combinations of design variables that
represent mechanical properties of axial, bending, shear, and torsional stiffnesses,
respectively. Similarly, in the element mass matrix Me , terms such as I

A
and J

A
are

combinations of design variables that represent translational and rotational inertia.
These terms can be used to form the modeling space. Based on the responses to
be approximated, different combinations of mechanical properties can be selected



322 Q. Xu et al.

Fig. 5 Stiffened aircraft wing skin. The stringers are constructed with beam elements, and the skin
is constructed with shell elements

to represent the system behavior under particular load cases. The combinations are
used as the basis for p(x) of the regression model in kriging for knowledge-based
surrogate modeling.

4.2 Knowledge-Based Terms for Shell Elements

For shell elements, the thicknesses are often considered as design variables in engi-
neering sizing optimization. To prevent local buckling of the shell structures, they
are usually stiffened at certain distances, which may also be considered as design
variables. t , b, and l represent the thickness, and the horizontal and the vertical sizes,
respectively. The membrane stiffness matrix Ke

M , bending stiffness matrix Ke
B , and

shear stiffness matrix Ke
S of a shell element are given by [10]

Ke
M = t

4A

[
P R

sym Q

]
, Ke

B = t3

48A

[
Q −RT

sym P

]
,

Ke
S = t

4A

⎡

⎣
S11 S12 S13

S22 S23
sym S33

⎤

⎦ ,

(10)

where P, Q, R, and S are position-dependent matrices, which are composed of
quadratic terms of the horizontal and the vertical parameters b and l. A represents
the shell face area, which is directly proportional to bl. As a result, terms involving
t , t3, b

l
, and l

b
, as well as their production should be considered in the regression

model of kriging for knowledge-based surrogate modeling.

4.2.1 Demonstrative Example: Knowledge-Based Surrogate Modeling in
Design of Aircraft Wing Skin

To describe how the above-mentioned mechanical properties are used in construct-
ing knowledge-based surrogate models, we give a structural design example. Con-
sider a piece of stiffened aircraft wing skin (see Fig. 5), for which the stringers are
constructed with beam elements and the skin is constructed with shell elements. The
wing is clamped at one end, representing the connection with the fuselage, and is
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free at the other end. Distributed pressure is loaded on the skin surface. The design
variables are as shown in Fig. 5: the thickness of the skin t1, the flange t2, and the
web t3, width of the flange w, height of the web h, and the horizontal distance b be-
tween stringers. The maximum bending stress σb , the tip deflection δ, and the first
two bending frequencies fb1 and fb2 are responses of the structural system that will
constrain the weight minimization design. This is formulated as

minimize m(x)

subject to σb(x) ≤ σcrit

δ(x) ≤ δcrit

−fb1(x) ≤ −f1

−fb2(x) ≤ −f2

and xl ≤ x ≤ xu,

(11)

where x = {t1, t2, t3,w,h, b}T (see Fig. 5). Considering the mechanical properties
of the structure, the following attributes are used in the regression function of krig-
ing:

• Area moment of inertia of the skin Iskn and the stringer Istr around the y-axis.
Since the skin and the stringers are combined as a whole structure, the area mo-
ment of inertia is not calculated in their local coordinates but in the global coor-
dinate system. The summation Iall = Iskn + 3Istr is also considered for the global
behavior of the structure.

• The geometrical maximum distance to the center of the cross section, hmax, which
is also a physically sensible combination of the design variables.

• The cross-sectional area of the skin Askn and the stringer Astr. The summation
Aall = Askn + 3Astr is also an important property of the system global behavior,
such as vibration frequencies [12].

These terms are combinations of design variables and used as the knowledge-
based terms p(x) in kriging to perform knowledge-based surrogate modeling. By
including these properties in surrogate modeling, the dimension and complexity of
the problem are reduced. A sensitivity study of the system responses with respect to
the knowledge-based terms has been performed (see Fig. 6). As can be seen, a quasi
one-dimensional linear relationship is shown between

• the maximum bending stress σb and hmax
Iall

,

• the tip deflection δ and 1
Iall

,

• the bending frequencies and
√

Iall
Aall

.

It is shown in Fig. 6 that by adopting knowledge-based terms, the responses
to be approximated are reduced from multidimensional nonlinear cases to one-
dimensional linear cases. A comparison of the traditional surrogate modeling
method and the knowledge-based surrogate modeling method is shown in Table 3.
It can be seen that the knowledge-based surrogate modeling method uses only 12
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Fig. 6 A sensitivity study of the system responses to the knowledge-based terms

Table 3 Results of the traditional surrogate modeling method and the knowledge-based surrogate
modeling method for the stiffened aircraft wing skin

nsamp εrrms(σb) εrrms(δ) εrrms(fb1) εrrms(fb2)

Traditional surrogate model 50 3.83 % 3.01 % 1.99 % 2.02 %

Knowledge-based surrogate model 12 0.71 % 0.56 % 0.38 % 0.96 %

high-fidelity analyses for this problem. The relative root mean square error of the
approximations are calculated on 1,000 test points of the system responses; the test
points are used to verify the precision of the surrogate models. In complex engineer-
ing problems, a large number of test points will not be provided, and the accuracy of
surrogate models must be verified using other methods, such as the Bayesian infor-
mation criterion (BIC), cross-validation [11], etc. As can be seen, the knowledge-
based surrogate modeling method has benefited from the lower-dimensional relation
and requires much fewer samples to get higher precision than the traditional surro-
gate modeling method.

4.3 Knowledge-Based Terms for Laminated Fiber Composite
Structures

Composite materials have increasingly widespread application in aerospace struc-
tures. The system behavior of composite materials with respect to the design param-
eters is generally highly nonlinear. Therefore, the adoption of engineering knowl-
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edge becomes even more important. As an example in this section, laminated fiber
composites are applied to describe how engineering knowledge of composites is
extracted to assist in surrogate modeling. For laminated fiber composites, usually
the stresses and strains in the laminate are to be determined for known loads. The
system equation is written as [1]

{
ε0

k

}
=

[
A∗ B∗
B∗ D∗

]{
N
M

}
, (12)

where N and M are vectors representing the forces and moments acting on a lami-
nate cross section. ε0 and k are the midplane strains and the plate curvatures, respec-
tively. The matrices A∗, B∗, D∗ are inverted from the matrices A, B, and D, which
are the extensional stiffness matrix, coupling stiffness matrix, and bending stiff-
ness matrix, respectively [1]. Thin laminates can be considered as two-dimensional
cases. There are six independent matrix elements for each matrix, which are derived
from the lamina stiffness matrix Q̄ in the global coordinate system. The stresses on
a lamina are then calculated as

σ k = [Q̄]kε0 + z[Q̄]kk. (13)

The matrices A∗, B∗, D∗, and Q̄ allow the laminate stresses and strains to be solved
directly. Using elements of such matrices instead of the original design variables can
generate more accurate approximations of the system responses in surrogate model-
ing. The system responses such as stresses, strains, and deflection are approximated
with linear or quadratic relations of these matrix elements.

4.3.1 Demonstrative Example: Knowledge-Based Surrogate Modeling in
Fiber Angle Design of Stiffened Composite Plate

The implementation of knowledge-based surrogate modeling is described here with
a fiber angle design. Knowledge-based surrogate models for the fiber composite
structural systems can be further used in engineering designs, such as stacking se-
quence optimization [20]. The structure in the example comprises laminated skin
and stiffeners, both of which are composed of laminated carbon fiber reinforced
polymer (CFRP) (see Fig. 7). The skin and the flanges have the same fiber angle
design of 40 plies, and the webs have 60 plies. All laminates have a symmetric
stacking sequence with respect to their middle planes. As a result, 50 fiber angles
(20 for the skin and 30 for the webs) are to be determined. The fiber angle design
is subjected to strength, stiffness, and stability constraints. The following two load
cases are considered:

1. The structure is loaded in the x-direction (0◦ fiber orientation). Global buckling
analysis is performed and system responses to be analyzed are:

• failure criterion value FTsai−Wu of each lamina,
• buckling load factor λcr.
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Fig. 7 Stiffened aircraft wing skin with fiber reinforced laminates

Fig. 8 One-dimensional parameter study of the fiber angle design problem. The graphs show
system responses subject to θ1

2. The structure is loaded with distributed pressure on the skin surface. The system
responses to be analyzed under this load are:

• maximum von Mises equivalent stress σ eqv,
• tip deflection δ under bending.

Parameter studies of the structural system are performed to explain the difficulties
of approximation with traditional surrogate modeling methods. Among the system
responses the following are shown as examples: FTsai−Wu at the first lamina of the
skin, λcr, σ eqv, and δ. First, a one-dimensional parameter study is shown, in which
only the fiber angle of the first lamina of the skin θ1 is varied (see Fig. 8). A two-
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Fig. 9 Two-dimensional parameter study of the fiber angle design problem. The graphs show
system responses subject to θ1 and θ21

dimensional parameter study is then performed, in which only the fiber angle of the
first lamina of the skin θ1 and of the webs θ21 are variable (see Fig. 9).

It is shown in the parameter studies that the system responses are highly non-
linear with respect to the design variables. A large number of sample points are re-
quired using traditional surrogate modeling methods. For example, a kriging model
with quadratic regression function needs at least 1,326 samples, not to mention the
oversampling factor required for adjusting the regression error and correlation pa-
rameters. It can be seen from the parameter studies that the relationships are almost
incapable of being well approximated by quadratic regression functions. Higher-
order polynomials are also undesirable, since the number of sample points needed
will be extremely large and the computational cost extremely high.

As discussed in Sect. 4.3, the dimensionality of surrogate modeling space can be
reduced by adopting elements of the stiffness matrices A∗, B∗, D∗, and Q̄. In this
example, laminates in all plates are symmetrically stacked so that the B∗ matrices
are zero and can be neglected. Three different sections of the structure are chosen to
generate mechanical properties of the system. They are described as follows:

1. Skin: sections containing only the skin, which have 40 plies. For these sections,
12 independent matrix elements in A∗ and D∗ (6 in each matrix) and 6 indepen-
dent matrix elements of Q̄ for each ply are to be considered.

2. Webs: sections containing only the webs, which have 60 plies. The number of
matrix elements to be considered is the same as in the skin.

3. Skin + flanges: sections containing the skin and the flanges, which have 80 plies
(40 plies in skin and 40 plies in flange). For these sections, the Q̄ matrix of each
ply has the same element as the sections containing only the skin. As a result,
only another 12 terms in A∗ and D∗ are to be considered.
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The mechanical properties generated for the three sections are used as knowledge-
based terms in surrogate modeling. For a particular system response, not all terms
are necessarily included in the regression function. The relevant terms can be se-
lected based on knowledge of the system. For example, if FTsai−Wu of a particu-
lar lamina is considered, then knowledge-based terms to be selected are only the
elements of A∗, D∗ of the relevant sections and Q̄ of the lamina. The selected
knowledge-based terms are then used as p(x) in kriging to form the corresponding
regression functions Y(p(x)) = ∑n

i=0 βifi(p(x)). The knowledge-based regression
models for the system responses are formulated as follows.

• FTsai−Wu: the relevant section is the skin. For the first lamina of the skin, the
relevant terms are elements of A∗, D∗ of the skin, and Q̄ of the lamina. The
regression function in kriging is formulated as

Y1
(
p1(x)

) = α0 +
∑

i

∑

j

(
βAij

A∗
ij Q̄1ij + βDij

D∗
ij Q̄1ij

)

+
∑

i

∑

j

(
γAij

A∗
ij

2
Q̄2

1ij + γDij
D∗

ij
2
Q̄2

1ij

)
, (14)

where 91 coefficients are to be determined.
• λcr: relevant sections are skin, webs and skin+flanges. Considering the elements

of A∗ and D∗ of all sections, the regression function in kriging is formulated as

Y2
(
p2(x)

) = α0 +
∑

i

∑

j

(
βAij

A∗
ij + βDij

D∗
ij

)

+
∑

i

∑

j

(
γAij

A∗
ij

2 + γDij
D∗

ij
2)
, (15)

where 73 coefficients are to be determined.
• σ eqv: relevant sections are webs. The relevant terms are elements of A∗, D∗ of the

webs, and Q̄ of the first lamina of the webs. The regression function in kriging is
formulated as

Y3
(
p3(x)

) = α0 +
∑

i

∑

j

(
βAij

A∗
ij Q̄1ij + βDij

D∗
ij Q̄1ij

)

+
∑

i

∑

j

(
γAij

A∗
ij

2
Q̄2

1ij + γDij
D∗

ij
2
Q̄2

1ij

)
, (16)

where 97 coefficients are to be determined.
• δ: relevant sections are skin, webs, and skin+flanges. Elements of A∗ and D∗ of

all sections are considered. The regression function in kriging is formulated as

Y4
(
p4(x)

) = α0 +
∑

i

∑

j

(
βAij

A∗
ij + βDij

D∗
ij

)

+
∑

i

∑

j

(
γAij

A∗
ij

2 + γDij
D∗

ij
2)
, (17)

where 73 coefficients are to be determined.
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Fig. 10 Parameter study of the system responses FTsai−Wu, λcr, σ eqv, and δ with respect to the
knowledge-based regression functions Y (p(x))

Table 4 Results of the traditional and knowledge-based surrogate modeling methods for the fiber
design problem

nsamp εrrms(FTsai−Wu) εrrms(λcr) εrrms(σeqv) εrrms(δ)

Traditional surrogate model 1,500 13.19 % 12.36 % 24.26 % 7.49 %

Knowledge-based surrogate model 300 2.81 % 0.79 % 2.41 % 0.38 %

A parameter study of the system responses with respect to the knowledge-based
terms is performed (see Fig. 10). It is shown that the system responses can be well
approximated by linear or quadratic combinations of the knowledge-based terms.
Therefore, the dimensionality and the nonlinearity of the system are greatly reduced,
and we can approximate it with much higher accuracy and efficiency.

A comparison of the performance of the traditional and the knowledge-based
surrogate modeling methods is shown in Table 4, where the advantages of using the
knowledge-based surrogate modeling method can be seen.

The traditional surrogate model with 1,500 samples is constructed using kriging,
which contains a quadratic regression model. The knowledge-based surrogate model
is constructed with 300 samples using knowledge-extended kriging (see Sect. 3.1),
which contains the regression models formulated with the knowledge-based terms.
As can be seen, a large approximation error results with the use of traditional surro-
gate modeling methods, which proves that, for high-dimensional, highly nonlinear
responses, the traditional surrogate modeling method becomes incapable. On the
contrary, knowledge-based surrogate models, which adopt terms representing the
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mechanical properties, are able to capture the system behavior with much fewer
sample points. By adopting engineering knowledge-based terms, the design space
for surrogate modeling is reduced. The complexity of the relationships between the
inputs and outputs of surrogate models is also remarkably reduced. As a conse-
quence, the approximation quality is significantly improved, and the surrogate mod-
eling process is much more efficient than a black-box surrogate modeling on a high-
dimensional space.

5 Practical Example: Knowledge-Based Surrogate Modeling in
Aircraft Wingbox Design Optimization

In this section an application example of an aircraft wingbox design optimization
is described. The original optimization problem requires a large number of evalu-
ations involving time-consuming FEA and CFD; therefore, surrogate-based design
optimization is preferred. In order to represent the system behavior with lower com-
putational cost, engineering knowledge is emphasized in the surrogate modeling.
First, knowledge-based terms, which represent the structural mechanical properties
are generated algebraically and act as a bridge between the design variables and
system responses. Second, an infill criterion based on expected improvement and
probability of feasibility [8] is used to verify and refine the surrogate models itera-
tively.

5.1 Introduction of the Aircraft Wingbox Design Optimization

The wingbox of an aircraft wing [3] to be optimized is shown in Fig. 11. A parame-
terized wingbox model is constructed with the ANSYS Parametric Design Language
(APDL). The model is composed of shell and beam elements to represent the skins,
ribs, spars, and stringers of the wingbox, as well as mass point elements to represent
the engine and fuel. A cross section of the wingbox at a specific y-coordinate is
represented in Fig. 12.

The structural design and analysis of an aircraft wing involves the considera-
tion of inertial, elastic, and aerodynamic forces [13]. A thickness distribution of the
aircraft wingbox is performed in order to achieve the minimal mass m, while satis-
fying required strength, stiffness, and stability constraints [14]. This design problem
is shown mathematically as

minimize m(x)

subject to σ (x) ≤ σ crit

δ(x) ≤ δcrit

−f(x) ≤ −fload

and xl ≤ x ≤ xu.

(18)



Knowledge-Based Surrogate Modeling in Engineering Design Optimization 331

Fig. 11 CAD model of an aircraft wing, the wingbox structure (only the parts between the front
and rear spars) of which is to be optimized

Fig. 12 Cross section of the wingbox at a specific y-coordinate

The wingbox model contains 344 design variables x: the thicknesses of the skins,
spars, ribs and stringers, which are variable spanwise and chordwise. The system
responses include stresses σ , displacements δ, and resonance frequencies f of the
wingbox structure, which are obtained by performing FEA. A CFD simulation is
used to generate an updated pressure distribution on the deformed wing. Exam-
ples of the deformed wingbox and corresponding pressure distribution are shown in
Fig. 13. The pressure on the wing surface is then interpolated onto the upper and
lower skin surfaces of the wingbox, as shown in Fig. 14. With the interpolation,
the node displacement and pressure distribution data can be transferred between the
structural model and the aerodynamic model. Structural FEA and CFD simulations
are coupled to obtain the required system responses.
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Fig. 13 Deformed wingbox (left) and pressure distribution on the wing skin surface (right)

Fig. 14 Pressure distribution interpolated to the upper and lower skin surfaces of the wingbox

5.2 Knowledge-Based Surrogate Modeling Assisted Aircraft
Wingbox Design Optimization

Coupled fluid-structure simulations, e.g., for the above-mentioned wing, are rather
computationally expensive; therefore, surrogate models are constructed and used
in the optimization process. The surrogate-based optimization process is shown in
Fig. 15.

Engineering knowledge can be used to choose proper inputs and outputs for sur-
rogate modeling. First, instead of stresses, section forces are approximated. Sec-
ond, instead of the design variables, geometrical properties of the spanwise cross
sections of the wingbox are generated. The geometrical properties are used to for-
mulate knowledge-based terms for surrogate modeling. It is found that using all
26 spanwise sections can generate ill-conditioned regression functions, because the
knowledge-based terms of one section are too close to those of neighboring sections.
The study of conditional values in knowledge-based surrogate modeling suggests
that neighbor sections should be grouped and share the same design variables. The
wingbox model is grouped, spanwise, into five segments, and the total number of
design variables reduces from 344 to 74. Knowledge-based terms are generated for
the five segments as follows:
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Fig. 15 Flowchart of surrogate-based wingbox design optimization

• geometrical properties for five cross sections, Ai , Ixx,i , Izz,i , Jyy,i , i = 1,2, . . . ,5,
• thicknesses of five ribs, ti , i = 1,2, . . . ,5.

As a result, there are only 25 terms to form a modeling space. 360 samples are used
in constructing initial surrogate models. The design optimization is then carried out
parallelized on the initial surrogate models from 20 different initial designs. With
the infill criterion, 20 infill points are generated to refine the surrogate models. Af-
ter two iterations of surrogate-based optimization with knowledge of the system, an
optimum is obtained. The surrogate-based optimization results of some design vari-
ables are shown in Fig. 16. In the left graph of Fig. 16, the optimized thickness of
the front spar, the rear spar, and the ribs of the five spanwise segments are shown. In
these components the middle segments have the largest thickness, and the inboard
segments are thicker than the outboard segments. This is done because the middle
segments are susceptible to local buckling, and the inboard segments have to with-
stand greater stress than the outboard segments. The ribs are under shear stress and
can be thinner, as the results suggest. Usually the ribs are designed with lightening
holes. The right top graph of Fig. 16 shows the optimized thickness of the upper and
the lower skin in the spanwise segments. The thickness generally decreases from
the root to the tip, as the root segments must sustain higher stresses. The upper skin
needs to be thicker because it is usually under compression, while the lower skin is
under extension. The thickness of the flanges of the stringers is shown on the right
bottom graph of Fig. 16, where the thickness values are smaller compared with other
components. No clear trend along the chordwise direction is shown, which suggests
that the chordwise influence is smaller than the spanwise influence.

The results of the adaptive surrogate modeling based optimization are shown
in Table 5. The initial model refers to the initial surrogate models constructed by



334 Q. Xu et al.

Fig. 16 Surrogate-based optimization results of the wingbox design optimization. The graphs
show the thickness values of the wingbox components in spanwise segments or in the chordwise
direction

Table 5 Results of the wingbox sizing optimization assisted by knowledge-based surrogate mod-
els

nsamp max(εrrms) nfeas mopt gmax

Initial model 360 3.25 % 0 – –

1st iteration model 20 infill points 2.08 % 2 1318.5 −0.0302

2nd iteration model 20 infill points 1.99 % 15 1302.6 −0.0172

knowledge-based surrogate modeling. The first and second iteration models refer
to the knowledge-based surrogate models refined by additional sample points from
the infill criterion. max(εrrms) is the maximum relative root mean square error of
the approximation, tested on another set of points generalized in parallel with the
sample points. nfeas is the number of feasible designs obtained from 20 parallelized
optimization processes. gmax is the maximum constraint violation value, for which a
negative value indicates a feasible design. It can be seen that the initial knowledge-
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based surrogate models have good accuracy, which is then improved in two itera-
tions with infill points. Note that no feasible design can be guaranteed by optimizing
on the initial surrogate models, and the feasibility of surrogate-based optimization
results should always be verified. When more information on the design problem is
obtained, the knowledge-based surrogate models are refined and are finally suitable
to be used as system equations in the optimization process.

5.3 Discussion of Computational Effort

The aircraft wingbox design optimization problem contains 344 design variables;
therefore, thousands of system evaluations are required using either numerical
gradient-based optimization algorithms or evolutionary algorithms. As already de-
scribed in Sect. 5.1, high-fidelity system evaluation of this problem is computa-
tionally expensive and time consuming, which prevents efficient optimization. If
no surrogate models are established, for design optimization of this problem, es-
pecially in the case of finite differencing, the total computational effort would be
specifically large. As a result, the surrogate modeling technique is required. How-
ever, a large number of system evaluations are still necessary using conventional
surrogate modeling methods. For example, the full second-order polynomial regres-
sion would need at least 59,685 sample points, resulting in a massive computa-
tional effort. Using the knowledge-based surrogate modeling technique, 25 system
geometrical properties are used as knowledge-based terms in kriging to assist the
design optimization process. An optimum design is obtained with altogether 400
high-fidelity system evaluations for the provision of sample points. The design opti-
mization is performed with the surrogate models, which requires a nearly negligible
computational effort compared with the high-fidelity system evaluations.

6 Conclusions

In a large and complex engineering design optimization, the system equations are
usually expensive to evaluate, and gradient-based optimization might require a large
number of system evaluations. As a result, surrogate models are used to facilitate
engineering design optimization and reduce the computational effort. Aerospace
structures are often composed of extruded aluminum and various composite mate-
rials, which are modeled as beam and shell elements in engineering analysis. It is
suggested that a knowledge of these materials and elements as well as the struc-
tural system be adopted in surrogate modeling. With engineering knowledge, terms
which are capable of representing the system properties, such as stiffness, strength,
and stability, can be generated and used in surrogate models. Thereby, the number
of sample points for surrogate modeling can be reduced, and a higher approxima-
tion efficiency and accuracy can be obtained. Compared with traditional surrogate
modeling methods, knowledge-based surrogate modeling is more appropriate and
reliable to assist in engineering design optimization.
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Switching Response Surface Models
for Structural Health Monitoring of Bridges

Keith Worden, Elizabeth J. Cross, and James M.W. Brownjohn

Abstract Structural health monitoring (SHM) is the discipline of diagnosing dam-
age and estimating safe remaining life for structures and systems. Often SHM is
accomplished by detecting changes in measured quantities from the structure of in-
terest; if there are no competing explanations for the changes, one infers that they
are the result of damage. If the structure of interest is subject to changes in its
environmental or operational conditions, one must understand the effects of these
changes in order that one does not falsely claim that damage has occurred when
one observes measurement changes. This problem—the problem of confounding
influences—is particularly pressing for civil infrastructure where the given structure
is usually openly exposed to the weather and may be subject to strongly varying
operational conditions. One approach to understanding confounding influences is
to construct a data-based response surface model that can represent measurement
variations as a function of environmental and operational variables. The models can
then be used to remove environmental and operational variations so that change de-
tection algorithms signal the occurrence of damage alone. The current chapter is
concerned with such response surface models in the case of SHM of bridges. In par-
ticular, classes of response surface models that can switch discontinuously between
regimes are discussed.
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1 Introduction

Very briefly, structural health monitoring (SHM) is the engineering discipline con-
cerned with inferring the state of health of a structure or system from measurements
obtained from sensors permanently installed on the structure or within the system
[1]. It is possible to exploit a very diverse range of sensor technologies in the imple-
mentation of an SHM system, but one of the more common choices is to monitor
dynamical response using accelerometers, etc. This choice leads to vibration-based
SHM, and this is the main choice considered in this chapter.

It is critical to note that an SHM system is much more than a sensor network.
It is almost always the case that the information about the health of the structure
is well hidden in the raw time series data acquired by sensing. The reason is that
small incipient damage will not usually cause a major departure from the dynamical
behaviour of the healthy structure. Because of this fact, the vital ingredient in any
SHM system is an inference engine which constructs low-dimensional data vectors
called features in which the effect of damage is much more visible. An example of
a damage-sensitive feature vector often used in vibration-based SHM would be a
set of the natural frequencies or resonance frequencies of the structure of interest.
Natural and resonance frequencies are functions of the structural stiffness and will
(usually) decrease when damage—such as a fatigue crack—causes a local reduction
in stiffness. Determining natural frequencies from the raw time data is one exam-
ple of feature extraction as it is referred to in the context of pattern recognition or
machine learning [1]. Once damage-sensitive features have been determined, the
SHM inference engine can proceed to an analysis which provides diagnostic and
prognostic information about the health of the structure.

One of the major problems associated with SHM is that features may change as
a result of mechanisms other than damage and one does not usually wish to raise
an alarm as a result of these benign changes. These other influences on the fea-
tures will be referred to here as confounding influences; they most often arise in the
context of engineering as the result of changes in the environment or operating con-
ditions of the structure of interest. For the bridges discussed in this chapter, ambient
temperature is an environmental variable which strongly affects the SHM features,
while traffic loading is an equally important operational influence. If natural fre-
quencies are to be used as features for SHM, it has long been known that variations
in the frequencies due to temperature changes can mask variations due to damage
[2]. In order to implement damage detection by detecting changes in features one
must clearly produce features that are sensitive to damage but insensitive to envi-
ronmental and operational variations, or alternatively, one must project out from the
features the influence of the benign variations. This process is commonly referred
to in the SHM literature as data normalisation; various techniques can be applied
and a good, fairly recent, survey of the field can be found in [3].

Among the techniques available for data normalisation, one of the simplest is a
regression-based approach. This relies on the availability of measurements of the
environmental or operational variables of interest. When the features for SHM are
based on the dynamics of the structure—as in vibration-based SHM—the response
variables almost always change on a much shorter time scale than the confounding
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influences. For example, accelerations measured on a bridge will have frequencies
associated with tens of hertz, while cycles of variation associated with temperature
or traffic will be on scales of hours or more. This means that time histories acquired
over hours or days will show their main variation as a result of the confounding
influences with the dynamical behaviour superimposed as a form of high-frequency
‘noise’. Fitting a regression model to such data with the environmental or opera-
tional variables as the independent variables will then capture only the dependence
on the confounding influences, and predictions from this model can then be sub-
tracted from subsequent data, with the remaining residual (hopefully) sensitive only
to damage. Regression models used in this context are often called response surface
models and can vary in sophistication from simple polynomials [4] to state-of-the-
art structures derived from modern machine learning theory like artificial neural net-
works and support vector machines [5, 6]; examples from both ends of the spectrum
will be presented in this paper. Complications can arise if the confounding influ-
ences cause discontinuous changes in the features as the ambient variables change;
for example if polynomial models are selected, discontinuous behaviour may force
the choice of very high-order polynomials with the result that very many coefficients
need to be estimated. If the response surface models have the capability to switch
between simple (e.g. linear) submodels, the number of parameters for estimation
from the data can be much smaller; such models are often referred to as parsimo-
nious. Parsimonious models are always selected where possible as they require less
training data for their estimation problem, and data in engineering problems can
often be in short supply.

This chapter will illustrate the use of switching models in the context of the SHM
of bridges. Illustration will be via two case studies of real bridges. In the first case,
relating to the Tamar Bridge, it will be shown how engineering insight allowed a
switching model based on simple polynomials to be hand-crafted; in the second
case, relating to the Z24 Bridge, a class of powerful switching models that require
no a priori engineering insight will be demonstrated.

2 Case Study 1: The Tamar Bridge

2.1 Background

The Tamar Bridge (Fig. 1) in the south-west of the UK carries a major road across
the River Tamar from the town of Saltash in the county of Cornwall to the city of
Plymouth in Devon. The bridge was originally constructed to a classical suspension
bridge design and, for some time, was the longest in the UK. On its construction in
1961, the bridge had a main span of 335 metres and side spans of 114 metres; in-
cluding anchorage and approach, the overall length of the structure was 643 metres.
The bridge has two reinforced concrete towers with a height of 73 metres with the
bridge deck suspended at mid-height. The original deck had three lanes and was of
a composite construction (concrete, asphalt and longitudinal beams).
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Fig. 1 The Tamar suspension bridge

In the late 1990s it was found that the bridge would not be able to meet a new
EU directive demanding that bridges should carry lorries up to 40 tonnes in weight.
Since restricting use by such vehicles would damage the local economy, the bridge
was strengthened and widened. While the main deck was being replaced, two tem-
porary relief lanes were added; however it was finally decided to make the extra
lanes part of the permanent structure. The major upgrade gave rise to interest in the
bridge performance, and various sensor systems were installed to measure parame-
ters such as tensions on stays added during the upgrade, wind velocity and structural
temperature. Deflection and tilt sensors were also added.

Interest in monitoring the bridge was maintained and currently three systems
are in place and running. For the purposes of this chapter, the relevant system is a
vibration-based system that was installed by members of the Vibration Engineering
Section of the Department of Civil and Structural Engineering in the University of
Sheffield in 2006. The system is based around a set of accelerometer sensors in-
stalled to monitor dynamic behaviour of the deck and some selected cables. Eight
accelerometers are assigned in orthogonal pairs to four stay cables and three sensors
measure deck accelerations. The monitoring system records time data at a sampling
rate of 64 Hz at 10-min intervals; this data is passed to a computer which carries out
an automated modal analysis in order to extract the natural frequencies of the struc-
ture. For further details, the reader can consult [4], a reference which also discusses
the other monitoring systems currently in operation on the bridge.

2.2 Analysis

In a recent study [4], simple polynomial response surface models were fitted to the
natural frequency data from the Tamar Bridge in order to gain insight into which en-
vironmental and operational effects were driving the feature variation. The analysis
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Fig. 2 Linear model of first deck modal frequency with traffic loading only

yields a type of sensitivity analysis that can be used to rank variables according to
their effect on natural frequencies. The response surface models used were simple
multinomials; if the operational and environmental variables are grouped in a vector
θ = {θ1, . . . , θd}, the models take the form

fi(θ) = h(θ)T β (1)

where fi is the natural frequency under study, h(θ) is a vector of multinomial basis
functions and β their corresponding vector of coefficients. In (almost) the simplest

case, one can take h(θ) = (1, θT )T and the model will be linear in the θi . Models of
the form (1) have the advantage that simple least-squares methods allow coefficient
estimation. A major advantage of linear response surface models is that (if the θi
are standardised), the coefficients in the expansion model give an indication of the
importance of the expansion variables. As an illustration, the results of fitting a
linear response surface to the first natural frequency of the bridge will be given here.
In this case, it was clear from the coefficient estimates that the dominant effect on
the natural frequency was from traffic loading; Fig. 2 shows how well the behaviour
is captured using this single independent variable in the model.

A more careful analysis of the models was carried out by using F - and T -
statistics in order to establish which coefficients were statistically significant. For
the details of this analysis, the reader can refer to [4]; however, the main result was
to indicate that there was a quite small but statistically significant effect of tem-
perature which improved the response surface models slightly from those based on
traffic alone. However, a careful consideration of long periods of Tamar data showed
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Fig. 3 Linear model of first deck modal frequency with traffic loading only; a breakdown of the
model is clearly visible in the data

a small number of anomalous regions where the models completely failed to cap-
ture the behaviour regardless of whether temperature variation was added or not. An
example is shown in Fig. 3.

A careful consideration of the variables showed that the times at which the lin-
ear response surface failed were associated with high wind speeds, with the wind
crossing the bridge deck in the transverse direction to the span, i.e. from the north or
south. Further investigation showed that two regimes were visible in the vibrational
behaviour of the bridge: below 25 mph wind speed (transverse to the span direc-
tion), the vertical acceleration of the bridge showed no significant dependence on
wind speed; however, above 25 mph, vertical acceleration increased linearly with
wind speed (Fig. 4). For easterly or westerly winds, there was no marked depen-
dence of the vertical acceleration on wind speed. In order to try and capture this
behaviour, and its possible reflection in the natural frequency, it would have been
possible to add wind speed as an input to the response surface model; however,
this would have forced adoption of a nonlinear model in order to allow switching
between regimes. In this specific case a simpler solution was available; adding the
RMS vertical acceleration as an input variable incorporated the required switching
behaviour while still allowing a linear response surface model. The addition of the
additional variable on the basis of engineering insight allowed a much more accurate
representation of the natural frequency in the formerly anomalous region (Fig. 5).

The advantage of the new model is very clear here: by allowing the simple linear
model to still operate in the two separate regimes, the number of coefficients in the
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Fig. 4 RMS vertical acceleration of deck as a function of wind speed, sorted in terms of wind
direction

Fig. 5 Linear model of first deck modal frequency with traffic loading and RMS vertical acceler-
ation

model is kept very small. Any attempt to capture the behaviour here in a polyno-
mial model incorporating wind speed would have resulted in the use of a high-order
polynomial and would have likely resulted in orders of magnitude greater numbers
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of coefficients. One perceived problem with the approach taken here might be that a
certain amount of engineering insight and expertise was necessary in order to estab-
lish the model form. Fortunately, there are response surface models available that
can identify and capture switching behaviour based on data alone with minimal user
intervention. The issue is that these models are much more complex to formulate
in the first place. In the remainder of the paper a group of such models will be in-
troduced and illustrated; in order to minimise the complexity of the presentation, a
case study involving a single important environmental variable will be considered.

3 Switching Regression Models: Regression Trees

3.1 Regression Trees

The idea of a regression tree is fairly simple to state (much of the theory and practice
of such trees can be attributed to the work of Breiman and colleagues, and a good
reference is [7]). The idea is to partition the independent variable space into regions
over which the response behaviour is smooth and fit low-order regression models
over each region. If the partitioning is carried out by hand, the resulting problem is
still amenable to linear least-squares methods. However, the idea of a regression tree
in general is that the partitions are determined from the data as part of the modelling
problem; this renders the estimation problem highly nonlinear and alternatives to
least squares are needed. Breiman and co-workers established a greedy algorithm
for fitting the trees that gave good (but suboptimal) solutions. If an effective parti-
tion of the data is found, linear regression models over each distinct region can give
excellent results; however, in principle, any algorithm can be used once the data
have been partitioned into sensible regions. Once the concept of classification and
regression trees (CART) was established, arguably the next major advance was the
development of a Bayesian framework for the algorithm [8, 9]. The new algorithm
was based on rigorous concepts of probability theory and proved an effective depar-
ture from the greedy algorithm. In Bayesian CART, a prior probability distribution
was proposed over all possible tree structures as well as all possible coefficients.
This was then refined by using the data to determine which tree was supported by
the greatest evidence. The original formulation is too complicated to describe here
without taking this paper a long way from its illustrative objectives. In the original
Chipman formulation, all the regression models within the tree were linear. This
restriction was later removed by Gramacy [10], who replaced the linear models by
more powerful Gaussian process (GP) models; Gramacy’s work also extended the
Bayesian formulation of the problem significantly.

3.2 Gaussian Processes

Gaussian process (GP) regression has recently become a popular technique in ma-
chine learning, although its roots go back many years [11]. (In fact, the subject had
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its roots in geotechnical signal processing as early as the 1950s, where the idea
was referred to as Kriging [12].) In essence, GPs are an extension of the multi-
variate Gaussian probability distribution. Unlike most forms of regression models
that return a crisp value f (x) for any given x, a GP returns a Gaussian probability
distribution. The GP is thus a Gaussian distribution over functions. Among the ad-
vantages of the GP for regression purposes are its principled statistical (Bayesian)
foundations and the fact that it automatically returns a confidence interval for pre-
dictions. GPs adhere to the Bayesian paradigm in the sense that a number of prior
assumptions are made about the function being modelled, and then training data
(samples of the features) are used to update and evaluate a posterior distribution
over functions. A key assumption is that the model is a smooth function of its inputs
and this allows extra information concerning the response to be gained at reduced
computational cost. An extended variant of the GP algorithm was developed by O’
Hagan and colleagues [13] using additional ideas from Bayesian probability, and it
is this variant that will be described briefly here. The Bayesian formulation makes
the incorporation into a Bayesian regression tree formulation more direct. Because
the implementation of the GP algorithm (unlike its derivation) is straightforward to
state, it will be given here in a little detail.

For any set of n input points {x1, . . . , xn} (which represent the values of the iden-
tification parameters for the specific problem considered here), each of dimension d ,
the prior beliefs about the corresponding outputs can be represented by a multivari-
ate normal distribution, the mean of which is a least-squares regression fit through
the training data,

E
[
f (x)|β]= m(x) = h(x)T β (2)

where h(x)T is a specified (vector) regression function of x, and β is the corre-

sponding vector of coefficients. For simplicity, h(x)T was chosen here to be (1, xT ),
representing a linear regression (this can be extended to higher polynomial fits if re-
quired or simply set to zero). The covariance between output points is given as

cov
[
f (x), f

(
x′)∣∣σ 2,B

]= σ 2c
(
x, x′) (3)

where σ 2 is a scaling factor (sometimes called the height parameter) and B is a
diagonal matrix of (inverse) length scales, representing the roughness of the output
with respect to the individual input parameters. The covariance function commonly
adopted, and used here, is a squared exponential function of the form

c(x, x′) = exp
[−(

x − x′)T B
(
x − x′)]+ σ 2

n (4)

where the nugget σ 2
n is a hyperparameter accounting for measurement noise. (For

simplicity, the closed-form expressions for the case σn = 0 are given below, al-
though all the results presented later were obtained without this restriction.)

These equations complete the prior specification of the problem; the posterior
distribution is then found by conditioning the prior distribution on the training data
y (the vector of output points corresponding to the input training set) and integrat-

ing out (or marginalising over) the hyperparameters σ 2 and β . The calculation is
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straightforward but very time-consuming, a detailed walkthrough can be found in
[14]. The integrals involved are usually all Gaussian, and although the expressions
are almost always very complicated, the results can be given in closed form. The
result is a Student’s t-process, conditional on B and the training data,

[
f (x)|y,B] ∼ tn−q

(
m∗(x), σ̂ 2c∗(x, x)

)
(5)

where

m∗(x) = h(x)T β̂ + t(x)T A−1(y −Hβ̂) (6)

c∗(x, x′)= c
(
x, x′)− t(x)T A−1t

(
x′)

+ (
h(x)− t(x)A−1H

)(
HT A−1H

)(
h
(
x′)− t

(
x′)A−1H

)T (7)

t(x)T = (
c(x, x1), . . . , c(x, xn)

)
(8)

HT = (
h(x1), . . . , h(xn)

)
(9)

A =

⎛

⎜⎜⎜⎜⎜
⎝

1 c(x1, x2) . . . c(x1, xn)

c(x2, x1) 1
...

...
. . .

c(xn, x1) . . . 1

⎞

⎟⎟⎟⎟⎟
⎠

(10)

β̂ = (
HT A−1H

)T
HT A−1y (11)

σ̂ 2 = yT (A−1 −A−1H(HT A−1H)HT A−1)y

n− d − 3
(12)

y = (
f (x1), . . . , f (xn)

)T (13)

Determination of this model is basically an exercise in machine learning, and
therefore its quality is critically dependent on the number and distribution of train-
ing data points in the input space, and the values of the hyperparameters. The ex-
pressions for β̂ and σ̂ 2 shown above are the result of marginalisation; however, it
can be shown that they actually coincide with least-squares estimates. The diagonal
matrix of roughness parameters B cannot generally be integrated out analytically,
and it is usually evaluated using maximum likelihood estimation or a Markov chain
Monte Carlo (MCMC) method. This calculation typically represents the most com-
putationally intensive part of the process.

This almost completes the basic description of the models used here: treed Gaus-
sian processes (TGPs). Although the actual implementation is too complex to ex-
plain here in any detail, the basic ingredients have been covered. The TGP partitions
the variable space in much the same way as a Bayesian CART and then fits GP re-
gressors over each independent region. The software used for modelling in this work
is the TGP package written by Gramacy in the language R [15]. A useful feature of
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Fig. 6 Z24 Bridge longitudinal section and top view [17]

the TGP software is the limiting linear model [16]. Because of the Bayesian frame-
work adopted for the TGP, the software can essentially assess if the evidence for a
full GP model outweighs that for a linear model; if the software judges that a lin-
ear model is sufficient over a given region of the feature, it switches to the simpler
representation.

In the next section, the use of the treed models is demonstrated on data from
the Z24 Bridge, a situation in which a single environmental variable provided the
confounding influences and required removal from the SHM feature data.
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4 Case Study 2: The Z24 Bridge

4.1 Background

The Z24 Bridge, a pre-stressed concrete highway bridge in Switzerland (Fig. 6),
was subject to a comprehensive monitoring campaign under the ‘SIMCES project’
[18]. Prior to its demolishment in the late 1990s, the bridge had become a landmark
benchmark study in SHM. The monitoring campaign, which spanned a whole year,
tracked modal parameters and included extensive measurement of the environmen-
tal factors affecting the structure, such as air temperature, soil temperature, humidity
etc. The Z24 monitoring exercise was an important study in the history of SHM de-
velopments, because towards the end of the monitoring campaign researchers were
able to introduce a number of realistic damage scenarios to the structure. In order,
these scenarios were [19]:

• Pier settlement
• Tilt of foundation followed by settlement removal
• Concrete spalling
• Landslide
• Concrete hinge failure
• Anchor head failure
• Tendon rupture.

The papers immediately produced as a result of the COST action were [20–23],
although many have followed.

The SHM features of interest here are the natural frequencies of the bridge, which
were tracked over the period of a year and additionally over the period where the
bridge was damaged according to the various scenarios. Modal properties of the
bridge were extracted from acceleration data [24]. Figure 7 shows a time history of
the four natural frequencies between 0–12 Hz of the bridge. The solid vertical line
marks the start of the period where the different levels of damage (starting with pier
lowering) were introduced. Gaps where the monitoring system failed have been re-
moved. On inspection of Fig. 7, one can see that the natural frequencies of the bridge
are by no means stationary. There are some large fluctuations in the first half of the
time history before the introduction of any damage. These fluctuations occurred dur-
ing periods of very cold temperatures and have been associated with an increase in
stiffness caused by freezing of the asphalt layer on the bridge deck. The natural fre-
quency time histories are, therefore, another good example of how damage-sensitive
parameters can also be very sensitive to environmental variations—in this case tem-
perature.

As the natural frequencies in their current form would not be suitable to monitor
as a damage-sensitive feature, some action must be taken to remove the variable set’s
sensitivity to temperature. Although the regression approach discussed in this paper
is one of the simpler methods conceptually, it is indicated here as, in the Z24 case,
the modal properties of the bridge are nonlinearly dependent on temperature (as an
example, Fig. 8 plots how the first natural frequency changes with temperature).
The bilinear form of the dependence on temperature also means that the switching
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Fig. 7 Time histories of the extracted natural frequencies of the Z24 Bridge, monitored over one
year including a period when damage was introduced

Fig. 8 First natural frequency’s nonlinear dependence on temperature
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Fig. 9 Bayesian linear model of Z24 second natural frequency as a function of temperature: train-
ing data

models should prove useful. For the purposes of this case study, the second natural
frequency will be discussed, as the first frequency is rather insensitive to damage.

4.2 Analysis

As a benchmark, the first analysis of the data simply fitted a linear regression model.
However, the analysis was carried out in the Bayesian framework in order to provide
confidence intervals for the model predictions. A rather long-winded way of accom-
plishing this is to train a GP and set the height parameter σ 2 to zero; however, more
direct ways are easily established, as discussed in the first chapter of [11]. In order
to develop the models in a principled manner, the natural frequency data were di-
vided into a training set (to establish the model) and a testing set to make sure that
the model could generalise. The first 1,000 points of data from Fig. 7 were used
for training (only temperature variation) and the remainder for testing (temperature
variation and damage).

Figure 9 shows the model fit to the training data; the linear model is clearly inca-
pable of capturing the bilinear dependence on temperature. However, an interesting
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Fig. 10 Bayesian linear model predictions compared to true measurements on testing data set

feature is that the 99 % confidence intervals on the predictions computed by the
software do actually encompass the data. Now, recall that the object of the exercise
is to remove the temperature dependence in order to create a feature for damage
detection. The residual data for the testing set could be computed by subtracting the
model predictions from the data. If the structure were to remain in normal condi-
tion throughout the testing period so that temperature changes were the only source
of variation, the residual should resemble a stationary noise process with a mean
of zero. Confidence intervals could be constructed from the residual values on the
training data or could be adopted from the model fit, and then any excursions out-
side the confidence intervals would potentially indicate damage. As a slightly more
informative alternative to plotting residuals, the model predictions with their 99 %
confidence limits as compared to the measured data will be shown in this chapter.
Damage is indicated when the measured data deviates significantly from the pre-
dictions, i.e. goes outside the model confidence intervals. For the Bayesian linear
model fitted to the training data, Fig. 10 compares the measured data on the test-
ing set with the model predictions. Although the damage begins to show itself by a
monotonic decline in the measured data, the model predictions have so little confi-
dence that there are no excursions outside the 99 % limits. The poor fidelity of the
model in capturing the temperature variations has resulted in a residual insensitive
to damage. (Within the TGP software, there are a number of methods of computing
model predictions, including sampling from the posterior distribution of the model;
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Fig. 11 Bayesian treed linear model of Z24 second natural frequency as a function of temperature:
training data. Vertical dotted and dash-dotted lines indicate the position of switch points

however, one of the simplest methods is to use the kriging means and variances as
specified in Eqs. (6) and (7), and this is the approach adopted here.)

The next model fitted was a treed linear model, e.g. a Bayesian CART model.
While Fig. 9 shows very clear evidence of the bilinear switching behaviour in the
measured data at close to zero Celsius, the variations in the training data between
zero and three degrees convince the algorithm that two switching points are needed.
This is not an issue in terms of fitting a good predictive model, but it does mean
that the model has perhaps not captured the true physics. As one might expect, the
treed linear model fits the data much better than the simple linear one, and this
is reflected in the much tighter confidence bounds on the training data (Fig. 11).
When the model predictions are compared to the measured data on the testing set,
the results are far better than those for the linear model; the much higher prediction
confidence results in a very clear detection of the damage when the measured data
moves outside the confidence bounds not long after initiation of damage (Fig. 12).
The important point here is that the complexity of the models in the various regimes
is not the issue; more important is the recognition that there are different regimes.
Another interesting feature can be seen in Fig. 12: the presence of bursts of low
prediction confidence at points in the early part of the testing data. The reason for
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Fig. 12 Bayesian treed linear model predictions compared to true measurements on testing data
set

this is that the points correspond to slightly higher temperatures than were present
in the training data; the model recognises that it is moving from interpolation to
extrapolation and adjusts its confidence accordingly.

For the next exercise, a Bayesian GP model was fitted. This model structure al-
lows the nonlinear dependence on temperature to be modelled, but assumes that it
can be captured by a single GP over the entire feature space. The results on the
training set are shown in Fig. 13. While the results are better than those of the lin-
ear model, they are inferior to those from the treed linear model. The explanation
for this lies with the covariance function which determines the smoothness of the
predictions for the GP model. At the point of discontinuity in the data, the GP re-
quires a covariance function changing rapidly over short time scales; away from the
discontinuity the GP would like a very slowly changing covariance function to re-
flect the smoothness of the model. The two objectives cannot be met with a single
B hyperparameter and so the GP adopts a compromise value; this worsens the pre-
diction confidence and generally expands the confidence interval. The effect of this
on damage sensitivity can be seen in the comparison plot of Fig. 14. Although the
damage is detected when the test data leaves the prediction confidence intervals, it
is detected at a later time than for the treed linear model.

The final model fitted to the data was the treed GP. As there is no real advantage
of doing otherwise, the variant of the model allowing switching to a limiting linear
model was used. The results on the training data can be seen in Fig. 15. Once again,
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Fig. 13 Bayesian GP model of Z24 second natural frequency as a function of temperature: training
data

Fig. 14 Bayesian GP model predictions compared to true measurements on testing data set
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Fig. 15 Bayesian treed GP model of Z24 second natural frequency as a function of temperature:
training data. The vertical dotted line indicates the position of the switch point

the switching model proves superior; however, in this case there are two additional
features of interest for the treed GP. In the first case, the model has recognised that
only one switching point is needed. As in the treed linear case, the model switches
at a higher point than the freezing point; however, the nonlinear nature of the GP
means that the behaviour of the data below that is captured by a single GP. Another
interesting aspect of the model is that it switches to a linear model above the switch
point; there is nothing to be gained in terms of model evidence from adopting the
more complex model. In terms of the damage detection issue, the comparison plot
in Fig. 16 shows that the damage is detected as promptly as in the case of the treed
linear model but is not significantly different. The treed GP essentially achieves the
same result as the treed linear model, but with a simpler partition on the feature
space.

5 Conclusions

There is no cause here for lengthy conclusions; the objectives of this chapter have
simply been to present a powerful and versatile class of response surface models
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Fig. 16 Bayesian treed GP model predictions compared to true measurements on testing data set

with the capability to switch discontinuously between different regimes and to show
the value of the models in the context of vibration data-based SHM. However, there
has been an opportunity to touch on some interesting points along the way. The
models presented were initially applied here as black-box models—the intention
was simply to learn a predictive model from the data. However, the fact that the
models can automatically learn the switching points between regimes arguably lifts
them into the domain of grey-box models when a physical interpretation can be as-
signed to the regime boundaries. In the case of the Z24 Bridge, the physics is clear:
the asphalt in the deck freezes below zero degrees Celsius and the bridge stiffens. In
the case of the Tamar Bridge, the cause of the switching is arguably more obscure;
however, it is possible that it is the result of unsteady aerodynamics and as this is a
subject of some interest to bridge researchers, identifying and modelling the switch-
ing behaviour may well be of value. The models are also arguably superior to other
schemes in terms of parsimony. If simple models are allowed over the identified
regimes, this means fewer ‘coefficients’ need to be identified; this in turn reduces
the demands on acquiring data and allows models to better generalise away from
their training data. Finally, the authors would argue that, if responses are switching
discontinuously between regimes, it may be harmful to smooth out the effects by,
e.g. fitting overall polynomial models; at the very least, one is not giving proper
respect to the physics shown.

Acknowledgements The authors would like to thank their colleague Dr Will Becker of the Joint
Research Centre, Ispra for drawing their attention to the TGP software package and for a number of



Switching Response Surface Models for Structural Health Monitoring of Bridges 357

valuable discussions on the nature of treed and non-treed Gaussian processes. Thanks are also due
to Robert Gramacy for providing the community with the TGP package in the first place. In terms
of the bridge data discussed here, thanks are due to Dr Ki-Young Koo, formerly of the Department
of Civil and Structural Engineering at the University of Sheffield, for helping to provide access to
the Tamar Bridge data. The authors would also like to express their gratitude to the researchers on
the project SIMCES who conducted the benchmark study on the Z24 Bridge and also made their
data freely available. Finally, thanks should also go to Ville Lämsä of Aalto University, Finland for
providing the authors with the Z24 data in the form used here.

References

1. Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective.
Wiley, New York (2013)

2. Farrar, C.R., Baker, W.E., Bell, T.M., Cone, K., Darling, T.W., Duffey, T.A.: Damage charac-
terization and damage detection in the I-40 bridge over the Rio Grande. Los Alamos National
Laboratories Report, LA-12767-MS (1994)

3. Sohn, H.: Effects of environmental and operational variability on structural health monitoring.
Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 365, 539–561 (2007)

4. Cross, E.J., Koo, K.-Y., Brownjohn, J.M.W., Worden, K.: Long-term monitoring and data
analysis of the Tamar Bridge. Mech. Syst. Signal Process. 35, 16–34 (2013)

5. Ni, Y.Q., Hua, X.G., Fan, K.Q., Ko, J.M.: Correlating modal properties with temperature using
long-term monitoring data and support vector machine technique. Eng. Struct. 27, 1762–1773
(2005)

6. Ni, Y.Q., Zhou, H.F., Ko, J.M.: Generalization capability of neural network models for
temperature-frequency correlation using monitoring data. J. Struct. Eng. 135, 1290–1300
(2009)

7. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees.
Chapman & Hall/CRC, London (1984)

8. Chipman, H.A., George, E.I., McCulloch, R.E.: Bayesian CART model search. J. Am. Stat.
Assoc. 93, 935–948 (1998)

9. Chipman, H.A., George, E.I., McCulloch, R.E.: Bayesian treed models. Mach. Learn. 48,
299–320 (2002)

10. Gramacy, R.B.: Bayesian treed Gaussian process models. Ph.D. Thesis, University of Califor-
nia, Santa Cruz (2005)

11. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press,
Cambridge (2006)

12. Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Probab. 5,
439–468 (1973)

13. Kennedy, M.C., Anderson, C.W., Conti, S., O’Hagan, A.: Case studies in Gaussian process
modelling of computer codes. Reliab. Eng. Syst. Saf. 91, 1301–1309 (2006)

14. Becker, W.E.: Uncertainty propagation through large nonlinear models. Ph.D. Thesis, Univer-
sity of Sheffield, Sheffield, UK (2011)

15. Gramacy, R.B.: tgp: an R package for Bayesian nonstationary, semiparametric nonlinear re-
gression and design by treed Gaussian process models. J. Stat. Softw. 19 (2007)

16. Gramacy, R.B., Lee, H.K.H.: Gaussian processes and limiting linear models. Comput. Stat.
Data Anal. 53, 123–136 (2008)

17. Kramer, C., De Smet, C.A.M., De Roeck, G.: Z24 bridge damage tests. In: Proc. 17th Intl.
Modal Analysis Conference (IMAC), Kissimmee, Florida (1999)

18. De Roeck, G.: The state-of-the-art of damage detection by vibration monitoring: the SIMCES
experience. J. Struct. Control 10, 127–134 (2003)



358 K. Worden et al.

19. Yan, A.-M., Kercshen, G., De Boe, P., Golinval, J.-C.: Structural damage diagnosis under
varying environmental conditions—part II: local PCA for non-linear cases. Mech. Syst. Signal
Process. 19, 865–880 (2005)

20. Maeck, J., De Roeck, G.: damage assessment using vibration analysis on the Z24 bridge.
Mech. Syst. Signal Process. 17, 133–142 (2003)

21. Mevel, L., Gourset, M., Basseville, M.: Stochastic subspace-based structural identification and
damage detection and localisation—application to the Z24 bridge benchmark. Mech. Syst.
Signal Process. 17, 143–151 (2003)

22. Garibaldi, G., Marchesiello, S., Bonisoli, E.: Identification and up-dating over the Z24 bench-
mark. Mech. Syst. Signal Process. 17, 153–161 (2003)

23. Kullaa, J.: Damage detection of the Z24 bridge using control charts. Mech. Syst. Signal Pro-
cess. 17, 163–170 (2003)

24. Peeters, B., De Roeck, G.: One-year monitoring of the Z24-bridge: environmental effects ver-
sus damage events. Earthq. Eng. Struct. Dyn. 30, 149–171 (2001)



Surrogate Modeling of Stability Constraints
for Optimization of Composite Structures

S. Grihon, E. Burnaev, M. Belyaev, and P. Prikhodko

Abstract Problem of aircraft structural components (wing, fuselage, tail) optimiza-
tion is considered. Solution of this problem is very computationally intensive, since
it requires at each iteration a two-level process. First from previous iteration an up-
date step at full component level must be performed in order to take into account
internal loads and their sensitivities in the whole structure involved by changes in
local geometry. Second numerous local analyzes are run on isolated elements (for
example, super stiffeners) of structural components in order to calculate mechani-
cal strength criteria and their sensitivities depending on current internal loads. An
optimization step is then performed from combined global-local sensitivities. This
bi-level global-local optimization process is then repeated until convergence of load
distribution in the whole structure. Numerous calculations of mechanical strength
criteria are necessary for local analyzes and results in great increase of the time
between two iterations. In this work an effective method for speeding up the opti-
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mization process was elaborated. The method uses surrogate models of optimization
constraints (mechanical strength criteria) and provides reduction of the structure op-
timization computational time from several days to a few hours.

Keywords Buckling analysis · Approximation · Mixture of experts · HDA ·
Composite structure · Surrogate modeling · Optimization

1 Introduction

Aeronautical structures are mainly made of stiffened panels, i.e., thin shells (also
called skin) enforced with stiffeners (called frames and stringers) in both the orbital
and longitudinal directions. The whole structure is studied by dividing it into ele-
mentary parts called super stiffeners, consisting of the theoretical union of a stringer
and two half-panels. These basic structures are subject to highly nonlinear phenom-
ena such as buckling, collapse, and damage tolerance.

In order to determine the optimal size of these super stiffeners, static mechanical
criteria must be computed using dedicated software based on nonlinear calculations.
Thus, the analysis and the dimension estimation of the whole structure is currently
computed by running a two-level study: at a global level a finite element (FE) anal-
ysis run on the whole FE model provides internal loads applied to each super stiff-
ener; at a local level these loads are used to compute static mechanical criteria. Most
of these criteria are formulated using reserve factors (RF): a structure is validated
provided all its RFs are greater than one.

Therefore, a detailed design of an aircraft fuselage requires a two-level loop.
First, changes from the local geometry, defined at the previous iteration, involve a
new internal load distribution in the whole structure; an update step must then be
performed to take these changes into account and to compute sensitivities. Second,
numerous local analyses are run on isolated super stiffeners to compute mechani-
cal criteria and their sensitivities depending on current internal loads. This bi-level
global-local optimization process is then repeated until convergence of the load dis-
tribution in the whole structure is achieved.

Local mechanical criteria are computed by local methods, which are used be-
cause of the huge dimensionality of the problem (O(104) variables and O(105)

constraints). Local methods require gradients of the constraint functions, defined
by static mechanical criteria. These gradients can only be obtained by finite differ-
ences. Values of the mechanical strength constraints are computed using dedicated
software. A call to this software takes up to a second; as a consequence, the need
for finite difference calculations in each of numerous local optimizations greatly
increases the time between two update steps.

Therefore, the dimension estimation step in an aircraft development program is
a repetitive and time-consuming process. Much time could be saved by using surro-
gate modeling instead of performing straightforward computing [14, 23]. Thus, the
main motivation of this work is a surrogate modeling of buckling analysis in support
of composite structure optimization. We want to achieve two goals of great impor-
tance for engineers working in the Airbus structural analysis framework: saving
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time in the pre-sizing processes and having the advantage of response smoothing,
since surrogate models (SMs) provide a continuous and differentiable approxima-
tion of RFs that sometimes are not themselves continuous (as is often the case for
semi-empirical approaches).

For surrogate modeling of static instability phenomena (the buckling and the
collapse of a super stiffener) we used the MACROS software toolkit for surrogate
modeling and optimization, developed by DATADVANCE [12].

Finally, the constructed MACROS Surrogate Model (MSM) was embedded into
the pre-sizing optimization process of A350XWB composite boxes, realized in a
pre-sizing tool COMBOX, for checking the validity of the approximation and its
use instead of the corresponding constraint functions in the optimization process.
It turned out that MSM allows one to obtain smoother convergence to a reasonable
solution in fewer iterations with a smoother distribution of thickness/stringer dimen-
sions and reduces the structure optimization computational time from several days
to a few hours.

In the following sections we describe the pre-sizing tool COMBOX (Sect. 2),
the surrogate modeling and optimization software toolkit MACROS (Sect. 3), the
construction of the MSM for Airbus skill tool (Sects. 3 and 4), and the analysis of
the optimization results based on the skill tool and constructed SM (Sect. 5). We
end this article with some concluding remarks (Sect. 6).

2 COMBOX: A Pre-Sizing Tool Developed for A350XWB

The COMBOX tool (COMposite BOX pre-sizing) was developed in 2005 to sup-
port the pre-sizing of the A350XWB composite wing box (see Fig. 1). It has since
been continuously improved and is being applied to all A350XWB boxes: wing,
horizontal tail plane, and vertical tail plane.

2.1 COMBOX Sizing Process

The COMBOX sizing process encapsulates the full stress process for a wing box
(see Fig. 2):

• Mapping of sizing properties,
• Update of a global finite element model (FEM),
• Calculation of internal loads through a static linear analysis based on the global

FEM,
• Calculation of strength responses as reserve factors (RFs) through Airbus skill

tools.

These are the usual steps of an airframe structural analysis for pre-sizing.
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Fig. 1 COMBOX pre-sizing optimization tool is now applied to all A350XWB boxes

Fig. 2 COMBOX pre-sizing optimization tool is a global-local optimization capability encapsu-
lating the overall stress analysis process

Remarks

• An RF indicates whether the structure is feasible (i.e., has enough strength) with
respect to a given mechanical criterion or failure mode. If the RF is greater than
one, the structure is feasible. If the RF is less than one, it is not feasible. Therefore,
when modeling the dependency of some RF on a vector of design variables x,
the highest possible accuracy should be provided for what is called the accuracy
domain X̃ = {x : RF(x) ∈ (1 − ε,1 + ε)}, ε = 0.2.

• The simplest example of an RF is a ratio between an allowable stress (for exam-
ple, material strength) and the applied stress.
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Fig. 3 COMBOX optimization process

• Skill tools are usually analytical semi-empirical tools, which are rather quick and
are used for pre-sizing.

2.2 COMBOX Components

COMBOX is based on commercial off-the-shelf software and incorporates four
components:

• CAESAM: Software framework from SAMTECH [20] (provides GUI and stress
model),

• NASTRAN: Finite element software from MSC [19],
• Skill tools developed by Airbus,
• BOSS Quattro: Optimization software from SAMTECH [21] (provides process

manager and optimiser).

2.3 COMBOX Optimization Process

COMBOX is a pre-sizing tool based on numerical optimization (mathematical pro-
gramming). Therefore, besides sizing calculations (see Sect. 2.1) during optimiza-
tion process it is necessary to compute the sensitivities of internal loads and RFs
and combine them by chain ruling (see Fig. 3). Internal load sensitivities are semi-
analytically calculated via the NASTRAN SOL200 module (NASTRAN optimiza-
tion and sensitivity analysis module). The responses and sensitivities are then sent to
the optimization algorithm in BOSS Quattro. CAESAM is mainly used to manage
all data, and BOSS Quattro manages the work flow and the optimization process
including the sensitivity chain ruling.
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Fig. 4 Illustration of COMBOX design variables

2.4 COMBOX Optimization Problem Formulation

COMBOX is able to address all sizing variables of a composite cover with T-
stringers (other stringer sections are possible but not presented here; see also Fig. 4):

• Skin thickness,
• Percentages of standard draping angles: 0 %, 45 %, 90 %,
• T-stringer core and web percentages: 0 %, 45 %, 90 %,
• T-stringer web thickness, core thickness, height, and width.

Bounds are given to these variables to satisfy design rules. Some additional de-
sign rules are included like bounds on the As/bt ratio, which represents the ratio of
the stringer area to the skin area.

All usual criteria for a composite wing cover sizing are considered (see Fig. 5):

• Local skin buckling and general skin buckling,
• Post-buckling and post-buckling cut-off,
• Skin damage tolerance and stringer damage tolerance,
• Skin reparability and stringer reparability.

RFs are associated to each of these failure modes.
Damage tolerance criteria are there to ensure that the structure can resist small

damages. Reparability criteria anticipate some future repairs in the skin (filled hole
criteria).

Therefore, the optimization problem can be formulated as

M(z) → min
z∈Rn

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zlow ≤ z ≤ zup,

RFi,j,k(N(z), z) ≥ 1,

i = 1, . . . ,Ne, j = 1, . . . ,Nl, k = 1, . . . ,Nfm,

dl(z) ≥ 1,
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Fig. 5 Illustration of COMBOX strength criteria

where

• The objective function is the mass M(z) of the FEM, independent of percentages,
that is to be minimized,

• z is the vector of n optimization variables (skin, stringer thicknesses, dimensions,
and percentages),

• N(z) is the vector of internal loads.

The constraints are

• Variable bounds: zlow ≤ z ≤ zup,
• Strength constraints: RFi,j,k(N(z), z) ≥ 1, i = 1, . . . ,Ne, j = 1, . . . ,Nl, k =

1, . . . ,Nfm,
• Design constraints: dl(z) ≥ 1.

The indexes i, j, k for the strength constraints remind us that there are as many
strength constraints as structural elements Ne, external loads Nl , and failure modes
Nfm. The computational time of the process is mainly contained in the strength
analysis due to the high value of Ne · Nl · Nfm. On top of that, RF sensitivities
are obtained via finite differences; so the number of strength analyses is multiplied
by the number of local variables and internal load components (approximately a
factor 10).
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Fig. 6 Computational times in COMBOX

Therefore, even if strength analysis tools for pre-sizing are rather quick (1s per
element), the total number of calculations is huge and leads from one to five days per
iteration with an optimization process usually converging in 20 iterations (see Fig. 6
for details). To save time in the pre-sizing processes and particularly in the COM-
BOX tool, it is thus necessary to build numerical approximations of the strength
tools using surrogate modeling, which is the main goal of this paper. Besides the
time reduction, there is also the advantage of response smoothing. Indeed, SMs give
a continuous and differentiable approximation of RFs that sometimes are not them-
selves continuous (as is often the case for semi-empirical approaches). This is also
demonstrated in the current study.

3 MACROS: A Surrogate Modeling and Optimization Software
Toolkit

MACROS is a software toolkit for

• Intellectual data analysis, and
• Multidisciplinary optimization,

developed by DATADVANCE [12]. It provides proprietary and state-of-the-art data
analysis and optimization techniques.

The MACROS toolkit consists of Generic Tools (GTs) for Dimension Reduc-
tion, Important Variable Extraction, Design of Experiments, Approximation, Data
Fusion, and Optimization.

GT for Dimension Reduction includes unsupervised and supervised (feature ex-
traction) techniques for automatic reparameterization of an object’s description with
a smaller number of parameters.

GT for Important Variable Extraction includes techniques for sensitivity analysis
necessary for ranking the available parameters with respect to their influence on the
given response function and selecting the most important ones.
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GT for Design of Experiments enables systematic and efficient analysis of the
design space by using classical and advanced methods (full factorial, optimal Latin
hypercube, Halton and Sobol sequences, etc.) as well as specially designed adaptive
techniques.

GT for Approximation allows automatic construction of fast-running data-based
SMs using best-in-class predictive modeling techniques. The tool includes built-in
robustness and accuracy assessment, control of SM smoothness, etc., and is efficient
for small and huge data samples in low and high dimensions.

GT for Data Fusion allows approximating data of variable fidelities. The tool
operates like GT for Approximation, but assumes that the response function is rep-
resented by two types of data: scarce high-fidelity data and abundant low-fidelity
data. The tool then constructs an enhanced approximation of the high-fidelity model
taking into account the abundant low-fidelity data.

GT for Optimization includes efficient state-of-the-art optimization methods to
solve various problems (large-scale, linear/nonlinear, unconstrained/constrained,
single/multi-objective, and stochastic).

Adaptive and automatic selection of the best method for a given problem on the
basis of specially designed decision trees opens up elaborated methods for use by
people who interact with problems on the engineering rather than the mathematical
level.

4 Construction of MACROS Surrogate Model

Let us describe the following in this section:

• Proposed methodology for surrogate model (SM) construction, based on mixture
of experts framework and used for construction of MACROS Surrogate Model
(MSM),

• New High Dimensional Approximation (HDA) algorithm, implemented in GT
for Approximation (GT Approx) and used for construction of experts (approxi-
mations in local regions),

• Differences and similarities between the proposed and already existing ap-
proaches for SM construction including results of computational experiments.

Construction of the SM is necessary for obtaining a more computationally effi-
cient approximation of the original dependency. Therefore, let us formulate engi-
neering statement of the approximation problem and then formulate requirements,
which we impose on the SM.

4.1 Approximation Problem Statement

Let us denote by

Slearn = {
(xi , yi), i = 1, . . . ,Nlearn

}
(1)
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points generated independently randomly such that there is some unknown func-
tional dependency yi = f (xi ) between the output value (output) yi ∈ Y ⊂ R1 and
the input vector (input) xi ∈ X ⊂ Rp .

The SM construction problem statement is to construct an approximation (ap-
proximator, approximating model) f̂ (x) = f̂ (x|Slearn) for the given dependency
f (x) using learning sample Slearn such that for all x ∈ X (not only for x ∈ Slearn)
the following approximate equality holds:

f̂ (x) ≈ f (x), (2)

i.e., the approximator f̂ (x) has good generalization ability and recovers the given
dependency with good accuracy.

Equation (2) is considered to be fulfilled if on independent test set Stest =
{(xj , yj ), j = 1, . . . ,Ntest} the value of the error

êrStest(f, f̂ ) = 1

Ntest

Ntest∑

j=1

(
yj − f̂ (xj )

)2 (3)

is small (accuracy is high).
In order for the criterion (3) of approximation quality to make sense, the input

vectors from the samples Slearn and Stest should be generated by the same distribu-
tion and distributed in X sufficiently densely.

In practice, when constructing an SM f̂ (x), additional requirements and data
generation source properties often should be taken into account.

4.1.1 Specific Requirements on Accuracy

There can exist different requirements on the accuracy of the SM in different do-
mains of the design space X. For example, when constructing an MSM for the
considered stability constraints approximation problem, high accuracy of prediction
should be provided in the domain X̃ ⊂ X, where X̃ = {x : f (x) ∈ (1 − ε,1 + ε)},
ε = 0.2. Due to this requirement, it is necessary to construct approximation only
in the domain X̃ using the subsample S̃ = {(x, y) ∈ Slearn : x ∈ X̃} and then glue it
with approximation, constructed in the domain X\ X̃ using the subsample Slearn \ S̃.
Since the variation of the approximable function f (x) is smaller in the domain X̃,
than in the whole design space X, then this approach will allow to construct a more
accurate approximation for x ∈ X̃.

4.1.2 Spatial Inhomogeneity of the Sample

When decomposing the design space and selecting domains (see Sect. 4.1.1) corre-
sponding to different requirements on the accuracy of the SM, it can happen that the
majority of these domains can be represented as the unions of some disconnected
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sets. Subsamples, corresponding to the selected domains, will also be some unions
of clusters of points.

It is obvious that the global SM will have poor accuracy if it is to be constructed
using a sample that is some union of several clusters of points. Thus it is reasonable
to perform a preliminary decomposition of such a sample into several homogeneous
subsamples, each of which is located in the connected subdomain of the design
space. Then, using each subsample, a local approximation (expert) is constructed in
the corresponding subdomain.

4.1.3 Redundancy in Data

It can also happen that the set of input parameters is redundant in one of the two (or
even in both) senses:

• Input parameters can be dependent. In the simplest case it means that several
input parameters are correlated.

• It may be that a function does not depend on all input parameters. In this situation,
two main scenarios are worth considering:

– the function weakly depends on several inputs,
– the function depends not on initial inputs, but on their projection onto some

linear subspace of smaller dimension.

Detection and removal of such redundancies in general allows us to significantly
improve the quality of the constructed SM.

4.2 Methodology for Surrogate Model Construction

Let some sample Slearn (1) be given. Also, let us use GT Approx for construction of
an approximation model y = g(x, θ) based on the given sample Slearn. By construc-
tion of the approximation model we mean selecting some element g(·, θ) from the
predefined parametric family G by tuning parameters θ such that approximation is
optimal with respect to criterion (3).

An elaborated approach for construction of the SM can be described as follows:

1. Methods to remove redundancy. In order to remove redundancy from the in-
put parameters, methods for important variables extraction, dimension reduction,
and feature extraction are used. Application of these methods for preprocessing
the data will not be considered here further, since these methods are not used for
constructing an SM in the considered applied problem. The problem statement
and a detailed description of the method for effective dimension reduction are
given in [8].
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2. Decomposition of the design space into domains X =⋃Ny−1
j=0 Xj , corresponding

to different ranges of the output. This decomposition is useful, since for differ-
ent ranges of the output we need to provide different approximation accuracies.
A detailed description of the procedure is given in Sect. 4.2.1.

3. Decomposition of the domains Xj into connected subdomains Xj,k , correspond-
ing to more regular behavior of the approximable dependency. A detailed de-
scription of the process is given in Sect. 4.2.2.

4. Construction of the approximators using the subsamples Sj,k = {(x, y) ∈ Slearn :
x ∈ Xj,k}.

5. Construction of the classifier that estimates the proximity from the given point x
to subdomains Xj . A detailed description of the process is given in Sect. 4.2.3.

6. Construction of the final SM by gluing obtained approximators. A detailed de-
scription of the process is given in Sect. 4.2.3.

4.2.1 Decomposition of the Design Space into Domains Based on Output
Values

Decomposition of the design space into domains based on output values can be
described as follows:

1. Let ymin and ymax be an upper and a lower bounds on the output value y = f (x).
The interval of output variation y ∈ [ymin, ymax] is partitioned into Ny subinter-

vals, i.e., [ymin, ymax] ∈ ⋃Ny−1
j=0 [y2j , y2j+1], where y0 = ymin, y2Ny−1 = ymax,

and y2j < y2j+1, y2j+2 < y2j+1, j = 0,1, . . . ,Ny − 1. Conditions on the ends
of the subintervals provide nonempty intersections of these subintervals. This
allows us to provide smooth gluing of the corresponding approximators (see
Sect. 4.2.3). Selection of the decomposition is done, for example, according to
accuracy requirements on the SM, imposed by the subject domain. The decompo-

sition X = ⋃Ny−1
j=0 Xj of the design space corresponds to such a partition, where

Xj = {x : f (x) ∈ [y2j , y2j+1]}.
2. The sample Slearn is partitioned into Ny subsamples Slearn = ⋃Ny−1

j=0 Sj such

that Sj = {(x, y) ∈ Slearn : y ∈ [y2j , y2j+1]}. An approximator f j
approx(x) is con-

structed using each subsample Sj . This approximator can be some model from
G (e.g., it can be constructed using GT Approx), or it can have a more complex
structure; see Sect. 4.2.2.

We should note that the described decomposition of the design space into do-
mains based on output values is not only useful if there are different requirements
on the accuracy of the SM in different regions of the design space X. In fact, if
the function f (x) is significantly spatially inhomogeneous, then the variability of
the function f (x) in the domain Xj ⊂ X is significantly lower than in all the design
space X. Thus, if approximations are constructed for domains Xj ⊂ X and are glued,
then a more accurate SM can be obtained compared to the global SM, constructed
at once for all the design space X.



Surrogate Modeling of Stability Constraints for Optimization of Composite Structures 371

4.2.2 Decomposition of the Design Space into Domains Based on Input Values

In this subsection it is described how to additionally decompose the input design
space into subdomains with more regular behavior of the approximable function.

An approximator f j
approx(x) for x ∈ Xj (see Sect. 4.2.1) can be constructed using

the sample Sj as an approximation model from G (by applying GT Approx to the
sample Sj ). However, if the sample Sj is significantly spatially inhomogeneous or
even is represented by several separated clusters of points, then the approximator,
constructed on the basis of this inhomogeneous sample, will in general have lower
accuracy compared to an approximator constructed using a more uniform sample.
In order to increase the accuracy, it is proposed to

• Additionally decompose the domains Xj into connected subdomains Xj =
⋃Nx

k=1 Xj,k , such that

– subsamples of the sample Sj , belonging to these connected subdomains, are
more homogeneous,

– within the subdomains Xj,k approximable dependency f (x) has actually more
regular behavior.

• Construct a separate local approximator gj,k ∈ G for each subdomain Xj,k ; then

the final approximating model f j
approx(x) is represented as a continuous mixture

of these local models.

For constructing the decomposition Xj = ⋃Nx

k=1 Xj,k on the basis of the sample
Sj , j = 0, . . . ,Ny − 1, it is proposed to use a Gaussian mixture model (GMM, see
[15]). It is assumed that the points (x, y) ∈ Sj are generated according to the model

Law(x, y) =
Nx∑

k=1

α
j
kN

(
μ

j
k,Θ

j
k

)
,

Nx∑

k=1

α
j
k = 1, αj

k > 0, (4)

where μ
j
k and Θ

j
k are the mean vector and the covariance matrix for the k-th normal

distribution of the GMM, generating j -th sample Sj . Also, the unconditional distri-

bution of the input vector x ∈ Xj has the form Law(x) = ∑Nx

k=1 α
j
kN (μ

j
k,x,Θ

j
k,x),

where μ
j
k,x and Θ

j
k,x are the subvector of the mean vector μ

j
k and the submatrix of

the covariance matrix Θ
j
k , respectively.

Parameters of the GMM are estimated using the sample Sj by the standard EM
algorithm [15], and in the framework of the GMM model additional clustering of
the sample Sj is done. Note that since for clustering we use not only input values
but also output values, then we take into account possible spatial inhomogeneity of
the function in the domain Xj . Then estimated parameters of the GMM in fact will

provide the decomposition Xj = ⋃Nx

j=1 Xj,k . Indeed, let us define the Mahalanobis
distance from the center of the k-th cluster to the point x according to the formula
dj,k(x) = (x − μ

j
k,x)

T (Θ
j
k,x)

−1(x − μ
j
k,x); then the set Xj,k = {x ∈ Xj : dj,k(x) ≤

χ2
97%(p)}, where χ2

97 %(p) is a 97 % quantile of the distribution χ2 with p degrees
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of freedom. Local approximators gj,k ∈ G for each subdomain Xj,k are constructed
using subsamples Sj,k = {(x, y) ∈ Slearn : x ∈ Xj,k}, k = 1, . . . ,Nx and GT Approx.

Let us estimate the weight characterizing to what extent the point x belongs to
the k-th cluster according to the formula

w(k|x, j) = 1

2

(
tanh

(
1 − 2

dj,k(x)− χ2
97%(p)

χ2
99%(p)− χ2

97%(p)

)
+ 1

)
, (5)

where χ2
99%(p) and χ2

97%(p) are 99 % and 97 % quantiles of the distribution χ2

with p degrees of freedom, respectively. In the framework of the model GMM (4),
the classifier, which estimates the extent to which the point x belongs to the k-th
cluster, can be constructed according to the formula

ŵ(k|x, j) = w(k|x, j)
∑

r w(r|x, j) . (6)

The final prediction is obtained using smooth gluing of the local models gj,k for all
clusters to which the point belongs and is calculated according to the formula

f
j
approx(x) =

Nx∑

k=1

ŵ(k|x, j)gj,k(x), (7)

where gj,k(x) is a local approximator in the k-th cluster, constructed using the sub-
sample Sj,k .

In fact, when constructing MSM, we initially tried to use weights equal to
the posterior probabilities ŵ(k|x, j) = P(k|x, j) of the point x to belong to the
corresponding clusters. Of course, for any point x there exist such clusters that
are located far from it, but nonetheless the corresponding posterior probabilities
ŵ(k|x, j) = P(k|x, j) are not zero. This means that predictions from local approxi-
mators, constructed for these clusters, are taken into account in the mixture (7), thus
introducing the error into prediction.

Experiments showed that an additional significant increase in accuracy of MSM
can be obtained by cutting the weights according to the distance to the cluster; i.e.,
we define the weight according to the formula

w̃(k|x, j) =
{
ŵ(k|x, j) if dj,k(x) ≤ χ2

99%(p),

0 else.
(8)

However, it is obvious that such an approach introduces discontinuities into MSM,
due to which usage of MSM in the optimization process is impossible.

Thus, in order to smooth discontinuities and at the same time additionally pe-
nalize predictions (by decreasing the corresponding weights) which correspond to
clusters lying far away from the considered point x, we have introduced the ap-
proach based on the formula (5). Experiments showed that such an approach is more
robust/accurate compared to other possible approaches.



Surrogate Modeling of Stability Constraints for Optimization of Composite Structures 373

4.2.3 Construction of the Classifier and Calculation of the Output Value of
the Surrogate Model

In order to select approximating models f
j
approx(x), j = 0, . . . ,Ny − 1 for calcula-

tion of the prediction f̂ (x), it is proposed to use the classifier fclass(x) ∈ G that is
a usual approximator, constructed on the basis of the whole sample Slearn by GT
Approx. In this case the prediction f̂ (x) for the given input vector x is calculated as
follows:

• Calculate the value fclass(x). Let us denote by #(A) the capacity of the set A,
J (x) = {j ∈ (0, . . . ,Ny − 1) : fclass(x) ∈ [y2j , y2j+1]}. According to the con-

ditions imposed on the decomposition [ymin, ymax] ∈ ⋃Ny−1
j=0 [y2j , y2j+1] of the

output range (see Sect. 4.2.1), it holds that #(J (x)) ∈ {1,2}.
• If #(J (x)) = 1, then calculate the prediction according to the formula f̂ (x) =

f
J(x)
approx(x).

• If #(J (x)) = 2, then, defining by j ∈ J (x) the smallest of the two index values
from the set J (x), calculate the prediction according to the formula

f̂ (x) = f
j
approx(x)

(
1 − v

(
f

j+1
approx(x)− y2j+2

y2j+1 − y2j+2

))

+ f
j+1
approx(x)v

(
f

j+1
approx(x)− y2j+2

y2j+1 − y2j+2

)
,

where v(x) = 3x2 − 2x3. This definition of the weight function v(x) ensures
smooth gluing of the models f

j
approx(x) and f

j+1
approx(x).

4.2.4 Positioning of the Proposed Methodology for Surrogate Model
Construction Among Other Similar Methodologies

As can be seen from reviews [14, 26], the construction of an SM is usually consid-
ered to be just a solution of an approximation problem using conventional approxi-
mation methods such as (see [5, 11, 15]):

• Kriging (Gaussian process regression),
• Artificial neural networks (ANNs),
• Radial basis functions (RBFs),
• Support vector regression (SVR),
• Multivariate nonparametric regression,
• Polynomial regression, etc.

However these standard methods cannot provide sufficient accuracy, especially
when approximating spatially inhomogeneous functions.

Therefore, in [4] a mixture of experts based methodology called IMAGE (Im-
proved Metamodeling Approximation through Gaussian mixture of Experts) for SM
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construction was described. However, we have the following significant differences
between the approach of [4] and the elaborated methodology.

1. Before decomposing the input design space using the GMM and EM algorithm
(as in [4]), it is proposed to:

– perform decomposition of the design space into domains based on output val-
ues. Such an approach is allowed to ensure more accurate approximation in the
region X̃ = {x : f (x) ∈ (1 − ε,1 + ε)}, ε = 0.2.

– perform effective dimension reduction, for which an efficient algorithm based
on Gaussian processes was developed; see [8].

2. Instead of using posterior probabilities as weights in mixture (7) (as in [4]), we
use weights directly based on the Mahalanobis distance from the considered point
x to clusters combined with a sigmoid activation function. This definition allows
the additional penalization of terms in (7) that correspond to clusters located far
away from the considered point x.

3. Instead of using standard approximation techniques (RBF, SVR, etc.), as was
done in [4], the powerful High Dimensional Approximation (HDA) technique,
implemented in GT Approx, is applied. A short description of the HDA algo-
rithm and its comparison with conventional approximation methods are given in
Sect. 4.3.

The IMAGE surrogate modeling approach, based on a mixture of experts (stan-
dard approximation techniques are used as experts, such as RBF, ANN, SVR, etc.)
and described in [4], was extensively compared, using data from the considered
problem (see Sects. 1 and 2), with the global approximation algorithm HDA imple-
mented in GT Approx (see Sect. 4.3). It turned out that:

• HDA provides better accuracy of approximation than conventional methods (see
Sect. 4.3.4 for details),

• HDA global approximation provides better accuracy of approximation than the
IMAGE SM, composed of local experts which were trained using conventional
methods (see Sect. 4.3.5 for details).

Therefore it is reasonable to combine the mixture of experts approach for working
with spatially inhomogeneous functions with the good approximation properties of
HDA. This is done in the proposed framework for SM construction and allows us to
obtain an efficient and accurate solution for the considered problem. See Sect. 5 for
details.

4.3 High-Dimensional Approximation

As was mentioned in Sect. 4.2 (see also Sect. 4.2.2), MACROS GT Approx is
used to construct approximation model g(x) using the given sample Slearn and best-
in-class predictive modeling techniques. For the considered problem, described in
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Sects. 1 and 2, the decision tree built in GT Approx automatically selects the High
Dimensional Approximation (HDA) method, which is efficient in the case of huge
data samples and high input dimensions. The HDA method is briefly described as
follows.

HDA approximator g(x) (see also [9] for details) consists of several basic ap-
proximators gi(x), i = 1,2, . . . , which are iteratively constructed and integrated into
g(x) using a specially elaborated boosting algorithm, until the accuracy of approxi-
mator g(x) stops to increase. In fact,

g(x) = 1

B

B∑

k=1

gk(x), (9)

where the number B of basic approximators gk(x), k = 1,2 . . . ,B is also estimated
by the boosting algorithm. Each gk(x), k = 1,2, . . . is trained on the modified sam-
ple Sk = {(xi , ỹi,k), i = 1, . . . ,Nlearn}, where ỹi,k is some function of (xi , yi) ∈ Slearn
and {ŷi,j = gj (xi ), j = 1,2, . . . , k − 1}. See [7] for details.

In turn, basic approximators gk(x), k = 1,2, . . . ,B are represented as some av-
erages

gk(x) = 1

Mk

Mk∑

l=1

hk,l(x), k = 1,2, . . . ,B

of elementary approximators hk,l(x), l = 1, . . . ,Mk, k = 1,2, . . . ,B , obtained using
multistart on their parameters. The value of Mk is estimated by the HDA training
algorithm. An elementary approximator model is described in the next subsection.

4.3.1 Elementary Approximator Model

A linear expansion of parametric functions from the dictionary is used as an el-
ementary approximator model in HDA; i.e., the elementary approximator has the
form

h(x) =
q∑

j=1

αjψj (x), (10)

where ψj(x), j = 1, . . . , q are some parametric functions. Three main types of para-
metric functions are used (the justification for using these basis functions is given in
[15]), namely:

1. Sigmoid basis function ψj(x) = σ(
∑p

i=1 βj,ixi), where x = (x1, . . . , xp),

σ(z) = ez−1
ez+1 . In order to model sharp features a different parameterization can

be used, namely,

ψj (x) = σ

(∣∣∣∣∣

p∑

i=1

βj,ixi

∣∣∣∣∣

σ(αj )+1

sign

(
p∑

i=1

βj,ixi

))

,
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where parameter αj is adjusted independently of parameters βj =
(βj,1, . . . , βj,p). The essence is that for big negative values of αj the function
ψj(x) behaves like a step function.

2. Gaussian functions ψj(x) = exp(−‖x − dj‖2
2/σ

2
j ).

3. Linear functions ψj(x) = xj , j = 1,2, . . . , p, x = (x1, . . . , xp).

Thus the index set J = {1, . . . , q} can be decomposed into three parts J = Jlin ∪
Jsigmoid ∪ JGF, where Jlin ⊆ {1, . . . , p} corresponds to the linear part (linear func-
tions), and Jsigmoid and JGF correspond to sigmoid and Gaussian functions, respec-
tively. Therefore, in order to fit the model (10) to the data, we should choose the
number and type of functions q , and estimate their parameters by minimizing the
mean-square error (performance function) on the learning set.

4.3.2 Training of Elementary Approximator Model

Training of the elementary approximator model (10) consists of the following steps:

1. The parameters of the functions from the dictionary are initialized (see descrip-
tion of the algorithm in [3]). An initial number of functions is selected with
redundancy.

2. The model selection is made, i.e., values of q , #(Jsigmoid), and #(JGF) are esti-
mated, and redundant functions are deleted (see the descriptions of algorithms in
[2, 7, 9]).

3. The parameters of the approximator are tuned using a hybrid algorithm based
on regression analysis and gradient optimization methods. At each step of this
algorithm:

• parameters of linear decomposition (10) are estimated using ridge regression
with adaptive selection of regularization parameter, while parameters of the
functions from the decomposition are kept fixed,

• parameters of the functions from the decomposition are tuned using a trust
region based gradient method, while parameters of linear decomposition (10)
are kept fixed.

Additional details of the algorithm can be found in [1, 9].

4.3.3 Positioning of HDA Among Other Approximation Methods

The approximation problem appears in many applications, each of which imposes
its specific requirements on the accuracy and properties of the approximator f̂ (x).
Also, depending on the nature of the data source, the corresponding learning sample
can have different characteristics (for example, the size of the learning sample Nlearn
and input dimension p). It is natural that the selection of the approximation method
should depend on both the requirements of the considered subject domain and the
specific properties of the data. For example, a distinctive feature of many problems
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in biology is a very high input dimensionality Nlearn � p, so application of nonlin-
ear approximation methods for such problems is senseless. In the current work we
consider an approximation problem in the framework of surrogate modeling, which
also imposes its own requirements on the approximation method. The main pecu-
liarity of data samples from this applied domain is a large sample size (Nlearn can be
up to several hundred thousand points), with input dimension p usually of size from
3 up to 50. Typically, the unknown function f has a complex nonlinear structure,
and the approximation quality should be rather high. Along with that, approxima-
tion f̂ should be smooth enough and have continuous derivatives, since very often
an obtained approximation is then used as a cost function (or as an objective) in
some optimization process.

One of the most widespread approximation methods is regression on the basis
of Gaussian processes [25] (in engineering applications the name kriging is usually
used, see [14]). In the framework of this approach it is assumed that approximable
function f can be represented as a linear combination of some known functions (for
example, linear functions) and a realization of a Gaussian process with zero mean
and covariance function from some parametric family. Approximation construction
then reduces to estimation of covariance function parameters using a maximum like-
lihood method, and the coefficients of linear combination can be explicitly obtained
using a least-squares method. Regression based on Gaussian processes is a flexible
model with a rather small number of tunable parameters, and it provides accurate
recovery of nonlinear dependences even in the case of small sample size. More-
over, due to the probabilistic nature of the model, Gaussian process-based regres-
sion provides not only approximation f̂ (defined by the posterior mean), but also an
accuracy evaluation capability (defined by the posterior variance of the process).

However, this approach has shortcomings. When tuning parameters of the covari-
ance function using the maximum likelihood principle, it is necessary to invert the
covariance matrix of size Nlearn ×Nlearn during each iteration of the tuning process,
and the complexity of each inversion is O(N3

learn). Thus, this operation requires a
lot of computational resources (CPU time and memory) for big sample sizes. For
Nlearn % 1,000 such operations cannot be done within a reasonable time on a mod-
ern PC, which restricts the application of kriging if the sample size is big. There
is a solution for this problem, based on an approximation of the covariance matrix
[10, 25] with computational complexity O(Nlearnm

2), where m is the size of some
subsample. A sufficiently big part of the initial sample is taken as the subsample,
which allows us to widen the range of applicability of Gaussian process regression
up to sample sizes equal to 104. Also, the use of a covariance matrix approximation
instead of its true value decreases the approximation accuracy.

The method based on K nearest neighbors suffers from the curse of dimensional-
ity: in the high-dimensional case the notion of vicinity degrades, and the distance to
the nearest points becomes comparable to the distance to the faraway points, which
decreases the approximation quality.

Another very popular approximation method is based on artificial neural net-
works (ANNs) [15, 16], including their special subclass: radial basis functions
(RBFs). The use of ANNs is largely explained on the basis of theoretical results
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(see, for example, [24]), which state that the ANN can provide approximation of a
wide function class with any predefined accuracy. However, in practice this accu-
racy is not usually attained, since the theoretical results do not provide a practical
method on how to construct an ANN (select the structure of the ANN, tune its pa-
rameters) for the given data sample Slearn. Nevertheless, an ANN is a flexible model
which can be easily extended (by increasing the number of layers and/or their sizes)
if the sample size grows. This flexibility also has drawbacks: ANN-based models
have a lot of parameters (especially when there are many hidden layers), which pre-
vents us from constructing robust/accurate approximations when only samples with
small sizes are available. Moreover, model selection for an ANN is a very heuristic
process.

The standard approach for tuning ANN parameters is an error backpropagation
algorithm. Other methods exist for the tuning of parameters, which have faster con-
vergence, for example, second-order methods, methods with adaptive learning rate,
etc. However, these methods do not take into account the specific structure of the
ANN, and in fact can be considered as applications of standard numerical optimiza-
tion methods for tuning parameters in nonlinear regression. Also, the constructed
approximation significantly depends on the (random) initialization of ANN param-
eters and (random) split of the learning sample into training and validation subsam-
ples. So, ANN-based methods are rather flexible, but not very reliable for approxi-
mation construction.

For applications it is enough to consider only a two-layer perceptron as an ANN.
Usually the hidden layer is composed either from sigmoid-type or RBF-type func-
tions. However, in fact functions of different types can be mixed in one hidden
layer, including, e.g., sigmoids, RBFs, and wavelets. A generalization of the two-
layer perceptron can then be obtained with representation like that of Eq. (10). We
call this kind of generalization approximation by linear decomposition in nonlinear
functions from a parametric dictionary and we use the corresponding model as a
base model in the HDA algorithm.

A typical algorithm for ANN learning can be decomposed into the following
steps:

• Selection of the ANN structure,
• Random initialization of parameters,
• Random splitting of the learning sample into training and validation subsamples,
• Tuning of parameters using some gradient method for minimizing the mean-

square error on the training subsample until the error on the validation subsample
begins to increase.

However, such algorithms are mainly tailored for ANNs with general structure and
do not take into account any specific structure of the model like (10). Therefore,
in the HDA framework for all of these steps we have developed specific algo-
rithms, which provide better results compared to the typical algorithms realized in
commercial software. This allows us to obtain a good approximation accuracy; see
Sect. 4.3.4 for more details.
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4.3.4 Results of HDA Comparison with Conventional Approximation
Methods

There are two possible ways to estimate the quality of the proposed approximation
method. The first way is to check compliance with the requirements on accuracy,
which are necessary for successful SM application. These requirements can be ob-
tained only from the engineer and vary greatly for different problems. The second,
more universal, method is to compare the quality of the proposed approach with
conventional methods for approximation. We will consider realizations of such con-
ventional methods in the software toolkits MatLab [17], modeFrontier [18], which
are widely used in many industrial companies. In each of these software toolkits
there are several methods for approximation of multidimensional dependency, in-
cluding ANNs, regression based on Gaussian processes, etc.

A priori two main shortcomings of these toolkits can be pointed out. First, in
order to select a particular approximation method for solving a given problem, an
engineer must have either some knowledge of machine learning or must perform
numerical experiments using all available approximation methods. Otherwise, one
might select an approximation method which does not provide the best approxi-
mation quality. Moreover, many implemented approximation methods have strong
limitations on the input dimension p and sample size Nlearn, which in general de-
creases the approximation quality.

Let us consider the results on some indicative problems, covering a wide range
of sample sizes and input dimensions (these results were obtained in 2010 during
work on the PhD thesis):

• Airplane fuselage composite structure design (data from the Airbus in-house sta-
bility tools approximation problem considered here; see also [6] for details),

• Radiator characteristics modeling using dipoles,
• Fuel consumption of an airplane engine.

The accuracy of approximation is estimated using the square root of an error (3) on
the test set, divided by the range of the corresponding output.

Remark 1 For the data from the airplane fuselage composite structure design prob-
lem, all computational experiments were made on the so-called accuracy domain
X̃ = {x : RF(x) ∈ (1 − ε,1 + ε)}, ε = 0.2. This means that the training (1) and test
samples had the forms S̃learn = {(x, y) ∈ Slearn : x ∈ X̃} and S̃test = {(x, y) ∈ Stest :
x ∈ X̃}, respectively.

The results of the approximation accuracy comparison are given in Table 1.
Further, let us consider a significantly bigger set of problems (including three

problems considered above), based on data from physical experiments or from sim-
ulation experiments with some physical model. The characteristics of the corre-
sponding learning samples are rather diverse:

• Input dimension p varies from 2 to 435; the output dimension varies from 1 to
100.
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Table 1 Relative approximation errors

Problem name Composite structure Dipole Fuel cons.

Dimension p 16 7 3

Sample size Nlearn 50,000 5,000 351

MACROS HDA 0.0120 0.0019 0.0044

MatLab Linear reg. 0.0806 0.1137 0.2075

Quadratic reg. 0.0525 0.0971 0.1180

RBF 0.0454 0.0246 0.0172

modeFrontier K-nearest 0.0753 0.0811 0.0777

Anisotropic kriging 0.0804 0.0071 0.0126

Kriging 0.0496 0.0359 0.1845

RBF 0.0496 0.0177 0.0375

ANN 0.0503 0.0037 0.0147

Evolutionary design 0.2242 0.1570 0.0266

Gaussian processes 0.0898 0.0612 0.0211

• The size of the learning sample is up to 65,000 points.
• The number of considered problems is 30.

For each of these problems we constructed approximations using all available meth-
ods. For convenient representation of the comparison results on the full set of prob-
lems we used the visualization method described in [13]. This approach provides
a graphical comparison of approximations accuracies for several considered meth-
ods and a large number of test problems. Let us briefly describe this visualization
method using the following notation:

• Mk,k = 1, . . . ,K are considered approximation methods,
• Pl, l = 1, . . . ,L are considered test problems,
• e(Mk,Pl) is a root mean square approximation error for the approximator, con-

structed using method Mk on the problem Pl ,
• ẽ(Pl) = mink e(Mk,Pl) is a minimal (among all available approximation meth-

ods) error for the problem Pl .

For any method Mk and scaling factor a ≥ 1 let us define the following quantity:

Pk(a) = #{l : e(Mk,Pl) ≤ a · ẽ(Pl)}
L

.

In fact, the quantity Pk(a) shows on which part of problems approximation errors
of the method Mk are not a times bigger than minimal (among methods) approx-
imation errors for the corresponding problems. In particular, Pk(1) is equal to the
fraction of problems for which the method Mk provides the smallest approximation
error.
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Fig. 7 Results of comparison

According to the obtained results (see Fig. 7), on 65 % of problems the HDA
algorithm has the smallest error of approximation. Moreover, profile P(a) of the
HDA algorithm converges to 1 rather fast, which also shows its robustness. There-
fore, this algorithm provides significantly better accuracy compared to conventional
methods, realized in commercial products. Similar results were obtained during the
internal comparison of GT Approx in Airbus with in-house software realizing dif-
ferent approximation methods.

4.3.5 Comparison of HDA with IMAGE

A comparison of IMAGE and HDA with conventional methods on the problem of
Airbus in-house stability tools approximation showed that these methods had a sig-
nificantly bigger accuracy than that of the conventional ones (for IMAGE see [4]
and for HDA see [6], Sect. 4.3.4). Therefore, the main goal of this section is to
compare the accuracies of IMAGE and HDA.

4.3.6 Setup of Experiments

The setup of the experiments can be described as follows:

• Input dimension p = 20, input vector defines geometries, material properties, etc.
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• Typical learning sample size, used for construction of an approximation, is
Nlearn ∼ 200 000.

• Output characteristics consist of various reserve factors (RF for stringer local
buckling, RF for skin local buckling, etc.) and strain values at different locations,
also considering bending. The number of output characteristics to approximate is
equal to 25.

An RF indicates whether the structure is feasible with respect to a given failure
mode. If the RF is greater than one, the structure is feasible. If the RF is less than
one it is not feasible. Therefore, when modeling the dependency of an RF on a
vector of design variables x, the highest possible accuracy should be provided for
values of RF close to one. Thus for each output characteristic two domains were
identified, X1 = {x ∈ X : f (x) ∈ [0.5,1.5]} and X2 = {x ∈ X : f (x) ∈ [0,3]}, and
for each of these domains an approximator was constructed using the corresponding
train sample. Let us denote these approximators as f̂1 and f̂2, respectively.

As accuracy indicators we used Emean (mean absolute error), Eq95 (95 %
quantile absolute error), and Eq99 (99 % quantile absolute error). Accuracy in-
dicators were estimated using separate test samples for sets X1,1 = {x ∈ X : f (x) ∈
[0.8,1.2]} and X1,2 = {x ∈ X : f (x) ∈ [1.2,1.5]} in the case of approximator f̂1 and
for sets X2,1 = {x ∈ X : f (x) ∈ [0,1.5]} and X2,2 = {x ∈ X : f (x) ∈ [1.5,3]} in the
case of approximator f̂2.

4.3.7 Obtained Results

Due to lack of space, detailed results are given only for two RFs: RF for stringer
local buckling (RF STR, see Table 2) and RF for first skin buckling mode (RF PND
GEN, see Table 3). We can see that HDA provides significantly higher accuracy.

Let us consider the fraction of cases (out of 50) for which the considered ap-
proximation method has the smallest error (of considered type); see the results in
Table 4. We can see that for most cases HDA achieves the smallest approximation
errors.

Let us quantify to what extent on average the accuracy of HDA is higher than the
accuracy of IMAGE. We denote by E(M) an approximation error of some particular
type, obtained by a method M on some test problem, �(M1,M2) = (E(M1) −
E(M2))/E(M1) · 100 % for some two methods M1 and M2. Then the average gain
(AvgGain) of using M2 instead of M1 is equal to the average of positive values of
�(M1,M2) over all considered problems. Analogously, the average loss (AvgLoss)
of using M2 instead of M1 is equal to the average of negative values of �(M1,M2)

over all considered problems. The obtained results for IMAGE (M1) and HDA (M2)
are given in Table 5. We can see that HDA is significantly more accurate.
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Table 2 Accuracy Indicators for RF STR

Error IMAGE HDA

30 experts 40 experts 45 experts 50 experts

f̂1 for RF STR

x ∈ X1,1 Emean 0.0579 0.0172 0.0279 0.0295 0.0046

Eq95 0.2403 0.1115 0.1528 0.1665 0.0145

Eq99 0.3435 0.1873 0.2453 0.2609 0.0362

x ∈ X1,2 Emean 0.0982 0.0323 0.0462 0.0492 0.0078

Eq95 0.3639 0.1427 0.1952 0.2122 0.0219

Eq99 0.5378 0.3024 0.3588 0.3782 0.0893

f̂2 for RF STR

x ∈ X2,1 Emean 0.1105 0.1039 0.0990 0.0961 0.0056

Eq95 0.3829 0.3636 0.3530 0.3451 0.0191

Eq99 0.5785 0.5526 0.5350 0.5479 0.0599

x ∈ X2,2 Emean 0.2395 0.2294 0.2254 0.2208 0.0186

Eq95 0.7099 0.7079 0.6857 0.6734 0.0525

Eq99 1.2116 1.2142 1.2116 1.1529 0.1807

Table 3 Accuracy indicators for RF PND GEN

Error IMAGE HDA

30 experts 40 experts 45 experts 50 experts

f̂1 for RF PND GEN

x ∈ X1,1 Emean 0.0526 0.0575 0.0577 0.0596 0.0399

Eq95 0.2092 0.2212 0.2134 0.2196 0.1136

Eq99 0.3060 0.3153 0.2931 0.2991 0.1784

x ∈ X1,2 Emean 0.0829 0.0849 0.0841 0.0854 0.0579

Eq95 0.2656 0.2652 0.2528 0.2650 0.1753

Eq99 0.4085 0.3960 0.3900 0.3981 0.2926

f̂2 for RF PND GEN

x ∈ X2,1 Emean 0.2679 0.2555 0.2500 0.2498 0.0530

Eq95 0.6374 0.5808 0.5983 0.6011 0.1623

Eq99 0.8298 0.7671 0.7793 0.7967 0.2655

x ∈ X2,2 Emean 0.2731 0.2597 0.2538 0.2470 0.1039

Eq95 0.7476 0.7033 0.6893 0.6745 0.3238

Eq99 1.0702 1.0016 0.9907 0.9784 0.5705
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Table 4 Fraction of cases
Error HDA IMAGE

Emean 0.853 0.147

Eq95 0.941 0.059

Eq99 1 0.000

Table 5 Average gain and
loss Error HDA vs IMAGE

Emean AvgGain (%) 56.20

AvgLoss (%) −8.02

Eq95 AvgGain (%) 54.27

AvgLoss (%) −1.65

Emean AvgGain (%) 48.56

AvgLoss (%) 0.00

5 Results of Optimization Based on Skill Tool and MSM

In this section some results of using SMs in the pre-sizing optimization tool COM-
BOX for composite structures are presented. The classical skill tool called PS3
(Plane Super-Stiffener Sizing) was replaced by the MACROS Surrogate Model
(MSM). The objective of this study was to check the impact of this replacement
on the accuracy, on the convergence of the optimization process, and on the run
time.

5.1 Optimization Runs

In this study the optimization was performed on the wing lower and upper covers,
as described in Fig. 8. Two test cases for the optimization study were considered
corresponding to two starting points:

• The first one is close to an optimal design, obtained by using only the PS3 skill
tool.

• The second one is a heavy one, where all design variables are set to their upper
bound. This last run illustrates the behavior using SMs for a complete optimiza-
tion run.

For each test case, the first run was done with MSM (until convergence), and then
update and restart with PS3 was performed. Due to limited space only some repre-
sentative results are shown.
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Fig. 8 A30X wing stress model

Fig. 9 Evolution of the objective function for initial starting point

5.1.1 Optimization Runs: Initial Starting Point

The comparison with the pure PS3 run is presented in Fig. 9 (solid black-gray curve
corresponds to MSM and subsequent update with PS3; dashed curve corresponds to
the run with only PS3).
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Fig. 10 Evolution of the objective function for heavy starting point

We can observe a more chaotic evolution with PS3 which is not only due to
proximity to the optimal solution, but is also linked to some discontinuities in the
RFs calculated with PS3.

5.1.2 Optimization Runs: Heavy Starting Point

The evolution of the objective value is given in Fig. 10 (black solid curve cor-
responds to MSM, gray solid curve corresponds to restart from MSM with PS3,
dashed curve corresponds to PS3 only). We observe a smooth evolution with both
MSM (SM is a continuous function) and PS3 (the behavior of PS3 is smoother than
in the previous run, since the starting point is not as close to the optimal design), but
the evolution is nevertheless smoother with MSM.

The evolution of the numbers of violated constraints is given in Fig. 11 and sat-
urated constraints is given in Fig. 12. The peak at the beginning of the left plot
appears due to the strategy of active constraints. We can observe an increase of the
number of violated constraints when updating the model (due to the switch of skill
tool) and after a quick decrease of it. A decrease of the number of saturated con-
straints at iteration six occurs due to the reactualization of the active constraints and
the identification of new violated constraints; a decrease of the number of saturated
constraints from MSM to restart with PS3 occurs due to the switch of the skill tool.
The restart with PS3 presents less saturated constraints than MSM. This proves a
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Fig. 11 Evolution of the number of violated constraints

Fig. 12 Evolution of the number of saturated constraints

better quality of the optimum found with MSM, which is linked to the smoothness
and mathematical differentiability of MSM, in contrast to PS3.
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Fig. 13 Run Time (hh/mm/ss) for MACROS 14.1/PS3 V4/MACROS 10 on iterations 1 and 2

5.2 Execution Time

The objective of this study was to compare the run time of the MSM and PS3 skill
tools for one iteration of the optimization process. The study was done on test case
1 (initial point), during the first two iterations. The sequence of computations for
one iteration is the following:

• NASTRAN SOL200: for internal load update and sensitivity analysis,
• Computation of the RFs corresponding to the current design with the PS3 stress

process or the MSM,
• Computation of the interregional constraints corresponding to the current design,
• Computation (by using PS3 or MSM) of the sensitivities for all the RFs,
• Computation of the sensitivities for the interregional constraints.

We observed an overall gain factor of at least 2.5 by using MSM instead of PS3
(because of the acceleration of the steps MACROS or PS3 Nominal and MACROS
or PS3 Sensitivities, see Fig. 13). Since MSM provides very fast analytical compu-
tation of sensitivities, further significant speedup can be obtained by using analyt-
ical sensitivity computations instead of numerical ones. The speedup factor is less
than expected, because much system time is spent in the management of jobs via
IBM Platform LSF (Load Sharing Facility, a workload management platform for
demanding, distributed HPC environments, see [22]).
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Fig. 14 Check with PS3 of optimum results found with MACROS SM
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5.3 Check of Reserve Factors

A check of RFs was performed with the optimum based on MSM. The results are
presented in Fig. 14. These results show a satisfactory accuracy for a pre-sizing
result, according to Airbus experts, considering that a pre-sizing is always to be re-
engineered including, e.g., manufacturing constraints. Work is ongoing to further
improve the accuracy.

6 Conclusion

A constructed MACROS Surrogate Model (MSM) was embedded into the pre-
sizing optimization process of A350XWB boxes realized in the pre-sizing tool
COMBOX for checking the validity of the approximation and its usage as a con-
straint in an optimization process. An analysis/comparison of optimization results
based on a skill tool and optimization results based on the constructed MSM was
performed and showed that MSM:

• gives a high accuracy of approximation (see also [6]),
• allows one to obtain smoother convergence in fewer iterations with a smoother

distribution of thickness/stringer dimensions and a small violation of constraints,
which could be easily repaired at the detailed design phase,

• provides a reduction of structure optimization computational time from several
days to a few hours.
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Engineering Optimization and Industrial
Applications

Xin-She Yang

Abstract Design optimization is important in engineering and industrial appli-
cations. It is usually very challenging to find optimum designs, which require
both efficient optimization algorithms and high-quality simulators that are often
time-consuming. To some extent, an optimization process is equivalent to a self-
organizing system, and the organized states are the optima that are to be searched
for. In this chapter, we discuss both optimization and self-organization in a unified
framework, and we use three metaheuristic algorithms, the firefly algorithm, the bat
algorithm and cuckoo search, as examples to see how this self-organized process
works. We then present a set of nine design problems in engineering and industry.
We also discuss the challenging issues that need to be addressed in the near future.

Keywords Bat algorithm · Cuckoo search · Firefly algorithm · Optimization ·
Metaheuristic · Self-organizaion

1 Introduction

Optimization is ubiquitous in many applications in engineering and industry. In
essence, optimization is a process of searching for the optimal solutions to a par-
ticular problem of interest, and this search process can be carried out using multiple
agents which essentially form a system of evolving agents. This system can evolve
by iterations according to a set of rules or mathematical equations. Consequently,
such systems will show some emergent characteristics, leading to self-organizing
states which correspond to some optima in the search space. Once the self-organized
states are reached, we say the system has converged. Therefore, the design of an
efficient optimization algorithm is equivalent to mimicking the evolution of a self-
organizing system.

In almost all applications in engineering and industry, we are always trying to
optimize something—whether to minimize the cost and energy consumption, or to
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maximize the profit, output, performance and efficiency. In reality, resources, time
and money are always limited; consequently, optimization is far more important in
practice [2, 13, 30, 32, 36, 39, 41].

It is worth pointing out that computational efforts are a main issue in many op-
timization problems in engineering and industry, because the most time-consuming
part of the optimization process is the evaluations of objective functions [17, 39].
The use of the most efficient algorithms is just one way of tackling the prob-
lem, while an alternative is to use surrogate-based models which can often be
more efficient if the number of evaluating high-fidelity models is significantly re-
duced [18–20]. Such surrogate-based optimization using a combination of low-
fidelity and high-fidelity models can be a powerful tool for many real-world ap-
plications. This book contains many examples of surrogate-based modelling and
optimization. In this chapter, our focus is mainly on the introduction of some widely
used new algorithms and a well-chosen set of design benchmarks.

2 Optimization Algorithms and Self-organization

2.1 Self-organizing Systems

Self-organization exists in many systems, from physical and chemical to biologi-
cal and artificial systems. Emergent phenomena such as Rayleigh–Bénard convec-
tion, Turing pattern formation [26] and organisms and thunderstorms [15] can all
be called self-organizing. Though there is no universal theory for self-organizing
processes, some aspects of self-organization can be partly understood using theo-
ries based on nonlinear dynamical systems, far-from-equilibrium [23] multiple in-
teracting agents, and closed systems under unchanging laws [3]. As pointed out by
cyberneticist and mathematician Ross Ashby, every isolated determinate dynamic
system, obeying unchanging laws, will ultimately develop some sort of ‘organisms’
that are adapted to their ‘environments’ [3].

For simple systems, going to equilibrium is trivial, but, for a complex system, if
its size is so large that its equilibrium states are just a fraction of the vast number
of possible states, and if the system is allowed to evolve long enough, some self-
organized structures may emerge. Changes in environment can apply pressure on
the system to re-organize and adapt to such changes. If the systems have sufficient
perturbations or noise, often working at the edge of the chaos, some spontaneous
formation of structures will emerge as the systems move, far from equilibrium, and
select some states, thus reducing the uncertainty or entropy.

The state set S of a complex system such as a machine may change from initial
states S(ψ) to other states S(φ), subject to the change of a parameter set α(t) which
can be time-dependent. That is,

S(ψ)
α(t)−→ S(φ), (1)

where α(t) must come from external conditions such as the heat flow in Rayleigh–
Bénard convection, not from the states S themselves. Obviously, S + α(t) can be
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considered as a larger, closed system [3]. In this sense, self-organization is equiva-
lent to a mapping from some high-entropy states to low-entropy states.

An optimization algorithm can be viewed as a complex, dynamical system. If
we can consider the convergence process as a self-organizing process, then there
are strong similarities and links between self-organizing systems and optimization
algorithms.

2.2 Algorithms for Self-organization

Mathematically speaking, an algorithm is a procedure to generate outputs for given
inputs. From the optimization point of view, an optimization algorithm generates
a new solution xt+1 to a given problem from a known solution xt at iteration or
time t . That is

xt+1 = A
(
xt ,p(t)

)
, (2)

where A is a nonlinear mapping from a given solution, or d-dimensional vector,
xt to a new solution vector x t+1. The algorithm A has k algorithm-dependent pa-
rameters p(t) = (p1, . . . , pk) which can be time-dependent and can thus be tuned if
necessary.

To find the optimal solution x∗ to a given optimization problem S with an of-
ten infinite number of states is to select some desired states φ from all states ψ ,
according to some predefined criterion D. We have

S(ψ)
A(t)−→ S

(
φ(x∗)

)
, (3)

where the final converged state φ corresponds to an optimal solution x∗ to the prob-
lem of interest. The selection of the system states in the design space is carried out
by running the optimization algorithm A. The behaviour of the algorithm is con-
trolled by p, the initial solution x t=0 and the stopping criterion D. We can view the
combined S + A(t) as a complex system with a self-organizing capability.

The change of states or solutions of the problem of interest is controlled by the
algorithm A. In many classical algorithms such as hill-climbing, gradient informa-
tion is often used to select states, say, the minimum value of the landscape, and the
stopping criterion can be a given tolerance or accuracy, or zero gradient etc. Alter-
natively, an algorithm can act like a tool to tune a complex system. If an algorithm
does not use any state information of the problem, then it is more likely to be ver-
satile to deal with many types of problems. However, such black-box approaches
can also imply that the algorithm may not be as efficient as it could be for a given
type of problem. For example, if the optimization problem is convex, algorithms
that use such convexity information will be more efficient than those that do not use
such information. In order to select states/solutions efficiently, the information from
the search process should be used to enhance the search process. In many cases,
such information is often fed into the selection mechanism of an algorithm. By far
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the most widely used selection mechanism is to identify and keep the best solution
found so far. That is, some form of ‘survival of the fittest’ is used.

Optimization algorithms can be very diverse. There are dozens of widely used
algorithms. The main characteristics of different algorithms will only depend on the
actual, often highly nonlinear or implicit, forms of A(t) and their parameters p(t).

In many situations concerning optimization, the generation and verification of the
new solutions can often involve computationally expensive computer simulations or
even measurements of the physical system. In such cases, the expensive model of the
system under consideration is often replaced by its cheaper representation, called a
surrogate model, and the algorithm A uses that model to produce a new solution.
The parameters p(t) may then include variables that are used to align the surrogate
with the expensive model to make it a reliable representation of the latter.

3 Three New Algorithms

In this chapter, we illustrate the concept of a self-organizing optimization algorithm
using a specific class of algorithms called metaheuristics. Metaheuristics have some
important characteristics that uses stochastic components to enable an algorithm to
escape the possibility of being trapped in a local optimum. This often makes the
search process more ergodic, and thus such algorithms can generate high-quality
solutions over the search space during iterations, which may ultimately converge
towards the true optimality of the problem of interest.

There are well over two dozen metaheuristic algorithms now in use for opti-
mization [16, 30, 34]. All metaheuristic algorithms have to balance exploration and
exploitation during the search process by using some sort of algorithm-dependent
parameter setting. From the viewpoint of a self-organizing system, parameter set-
tings will affect the way and routes by which the optimization process converges to
an organized state. Here we analyse three relatively new nature-inspired algorithms
and see the ways in which they can quickly converge towards optimality.

3.1 Firefly Algorithm

The first algorithm to be discussed is the firefly algorithm, which is essentially a dy-
namical system. The firefly algorithm (FA), first developed by Xin-She Yang in 2008
[29, 30], was based on the flashing patterns and behaviour of fireflies. In essence,
FA uses the following three idealized rules:

• Fireflies are unisex, so one firefly can be attracted to any other one.
• The attractiveness is proportional to the brightness and they both decrease as their

distance increases. Thus for any two flashing fireflies, the less brighter one will
move towards the brighter one. If there is no brighter one than a particular firefly,
it will move randomly.
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• The brightness of a firefly is determined by the landscape of the objective func-
tion.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent
fireflies, we can now define the variation of attractiveness β with the distance r by

β = β0e
−γ r2

, (4)

where β0 is the attractiveness at r = 0.
The movement of a firefly i that is attracted to another more attractive (brighter)

firefly j is determined by

xt+1
i = xt

i + β0e
−γ r2

ij
(
xt
j − xt

i

)+ αεt
i , (5)

where the second term is due to the attraction. The third term is randomization with
α being the randomization parameter, and εt

i is a vector of random numbers drawn
from a Gaussian distribution or uniform distribution at time t . If β0 = 0, it becomes
a simple random walk. Furthermore, the randomization εt

i can easily be extended to
other distributions such as Lévy flights. A Lévy flight essentially provides a random
walk whose random step length is drawn from a Lévy distribution

Lévy ∼ u = t−λ (1 < λ ≤ 3), (6)

which has an infinite variance with an infinite mean. Here the steps essentially form
a random walk process with a power-law step-length distribution with a heavy tail.
Some of the new solutions should be generated by the Lévy walk around the best
solution obtained so far, and this will speed up the local search. A demo version of
firefly algorithm implementation, without Lévy flights, can be found at the Math-
works file exchange web site.1 FA has attracted much attention recently [1, 11, 25].

A discrete version of FA can efficiently solve NP-hard scheduling problems [25],
while a detailed analysis has demonstrated the efficiency of FA over a wide range
of test problems, including multiobjective load dispatch problems [1]. Highly non-
linear and non-convex global optimization problems can be solved efficiently using
FA [11, 42].

From the self-organization point of view, FA acts as a simple dynamic system
with diverse characteristics that can automatically subdivide the entire population
into subgroups, and each subgroup can swarm around a local mode. Among all the
local modes, there is always a global optimum, and thus FA can find the global
optimality and local optima simultaneously if the number of fireflies is sufficiently
higher than the number of modes.

1http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm.

http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm
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3.2 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang and Suash Deb [34]. CS is based on the brood
parasitism of some cuckoo species. In addition, this algorithm is enhanced by Lévy
flights, rather than by simple isotropic random walks. Recent studies show that CS
is potentially far more efficient than particle swarm optimization (PSO) and genetic
algorithms [35].

Cuckoos are fascinating birds, not only because of the beautiful sounds they can
make, but also because of their aggressive reproduction strategy. Some species such
as the Ani and Guira cuckoos lay their eggs in communal nests, though they may
remove others’ eggs to increase the hatching probability of their own eggs. Quite a
number of species engage the obligate brood parasitism by laying their eggs in the
nests of other host birds (often other species).

For simplicity in describing CS, we now use the following three idealized rules:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest.
• The best nests with high-quality eggs will be carried over to the next generations.
• The number of available host nests is fixed, and the egg laid by a cuckoo is dis-

covered by the host bird with a probability pa ∈ [0,1]. In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by a fraction
pa of the n host nests that are replaced by new nests (with new random solutions).
For a maximization problem, the quality or fitness of a solution can simply be pro-
portional to the value of the objective function. Other forms of fitness can be defined
in a similar way to the fitness function in genetic algorithms.

This algorithm uses a balanced combination of a local random walk and a global
explorative random walk, controlled by a switching parameter pa . The local random
walk can be written as

xt+1
i = xt

i + αs ⊗H(pa − ε)⊗ (
xt
j − xt

k

)
, (7)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

xt+1
i = xt

i + αL(s,λ), (8)

where

L(s,λ) = λΓ (λ) sin(πλ/2)

π

1

s1+λ
(s % s0 > 0). (9)

Here α > 0 is the step size scaling factor, which should be related to the scales of
the problem of interest. In most cases, we can use α = O(L/10), where L is the
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characteristic scale of the problem of interest, while in some case α = O(L/100)
can be more effective and avoid flying too far.

The above equation is essentially the stochastic equation for a random walk. In
general, a random walk is a Markov chain whose next status/location only depends
on the current location (the first term in the above equation) and the transition proba-
bility (the second term). However, a substantial fraction of the new solutions should
be generated by far-field randomization, and their locations should be far enough
from the current best solution to make sure that the system will not be trapped in a
local optimum [34].

Though the pseudo-code given in many papers is sequential, vectors should be
used from the implementation point of view, as vectors are more efficient than loops.
A Matlab implementation is given by the author, and it can be downloaded.2

The literature on CS is expanding rapidly. Much attention and many recent stud-
ies have used CS with a diverse range of applications [7, 11, 27, 37]. Walton et al.
improved the algorithm by formulating a modified CS algorithm [27], while Yang
and Deb extended it to multiobjective optimization problems [37].

Looking at CS in terms of self-organization, we can see that this swarm-
intelligence-based algorithm uses multiple interacting Markov chains by switching
between two key branches of global search and local search using Lévy flights as
well as random walks so that a balance between global exploration and local ex-
ploitation can be achieved during the optimization process.

3.3 Bat Algorithm

A third way of looking at an algorithm, apart from dynamic systems and Markov
chains, is by using a varying parameter setting. This idea is used in the bat algorithm;
the parameter tuning is essentially achieved by frequency tuning and mimicking the
hunting strategy of microbats.

The bat algorithm (BA) is a relatively new metaheuristic, developed by Xin-She
Yang in 2010 [40], which was inspired by the echolocation behaviour of micro-
bats. Microbats use a type of sonar, called echolocation, to detect prey, avoid ob-
stacles and locate their roosting crevices in the dark. These bats emit a very loud
sound pulse and listen for the echo that bounces back from surrounding objects.
Their pulses have varying properties and can be correlated with their hunting strate-
gies, depending on the species. Most bats use short, frequency-modulated signals
to sweep through about an octave, while others more often use constant-frequency
signals for echolocation. The signal bandwidth varies depending on the species, and
is often increased by using more harmonics.

The bat algorithm has three idealized rules:

• All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers in some magical way.

2www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm.

http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
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• Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automatically
adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of
pulse emission r ∈ [0,1], depending on the proximity of their target.

• Although the loudness can vary in many ways, we assume that it varies from a
large (positive) A0 to a minimum constant value Amin.

Obviously, we have to define the rules of how their positions xi and velocities vi

in a d-dimensional search space are updated. The new solutions xt
i and velocities vt

i

at time step t are given by

fi = fmin + (fmax − fmin)β, (10)

vt
i = vt−1

i + (
xt−1
i − x∗

)
fi, (11)

xt
i = xt−1

i + vt
i , (12)

where β ∈ [0,1] is a random vector drawn from a uniform distribution. Here x∗
is the current global best location (solution) which is located after comparing all
the solutions among all the n bats at each iteration t . As the product λifi is the
velocity increment, we can use fi (or λi ) to adjust the velocity change while fixing
the other factor λi (or fi ), depending on the type of problem of interest. In our
implementation, we will use fmin = 0 and fmax = O(1), depending on the domain
size of the problem of interest. Initially, each bat is randomly assigned a frequency
which is drawn uniformly from [fmin, fmax].

For the local search part, once a solution is selected among the current best solu-
tions, a new solution for each bat is generated locally using random walk

xnew = xold + εAt, (13)

where ε is a random number vector drawn from [−1,1], while At = 〈At
i〉 is the

average loudness of all the bats at this time step.
Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated

accordingly as the iterations proceed. As the loudness usually decreases once a bat
has found its prey, while the rate of pulse emission increases, the loudness can be
chosen as any value of convenience. For simplicity, we can also use A0 = 1 and
Amin = 0, assuming Amin = 0 means that a bat has just found the prey and will
temporarily stop emitting any sound. Now we have

At+1
i = αAt

i, (14)

rt+1
i = r0

i

[
1 − exp(−γ t)

]
, (15)

where α and γ are constants. In fact, α is similar to the cooling factor of a cooling
schedule in the simulated annealing. For any 0 < α < 1 and γ > 0, we have

At
i → 0, rti → r0

i , as t → ∞. (16)
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In the simplest case, we can use α = γ , and we have used α = γ = 0.95 to 0.97 in
our simulations.

BA has been extended to the multiobjective bat algorithm (MOBA) by Yang [31],
and preliminary results suggest that it is very efficient.

Again looking at BA from the self-organization point of view, the convergence
is controlled by loudness and pulse emission rate so that it can explore the vast
search space in the earlier stage and then focus on the local exploitation in the more
promising regions. Compared with FA and CS, where fixed parameters are used in
terms of balancing exploration and exploitation, BA uses a more dynamic approach
to balance exploration and exploitation.

4 Engineering Optimization and Applications

Engineering optimization is very diverse with vast collections of case studies, and
some case studies require lengthy descriptions to provide sufficient details [6, 10–
12, 24]. Here we provide nine case studies as a subset of design optimization bench-
marks in engineering and industrial applications.

4.1 Bending Beam Design

Probably the simplest design problem with engineering relevance is the design of
a cantilever beam with five different square cross sections with heights/widths of
x1, x2, . . . , x5, respectively. The thickness is fixed with t = 2/3, and the objective is
to minimize [5, 9]

f (x) = 0.0624(x1 + x2 + x3 + x3 + x4 + x5), (17)

subject to

g(x) = 61

x3
1

+ 37

x3
2

+ 19

x3
3

+ 7

x3
4

+ 1

x3
5

− 1 ≤ 0. (18)

It is straightforward to use all three algorithms discussed earlier to find the best
solution

x = (6.0089, 5.3049, 4.5023, 3.5077, 2.1504), (19)

which gives

fmin = 1.33999. (20)
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4.2 Spring Design

Tensional and/or compressional springs are used widely in engineering. A standard
spring design problem has three design variables: the wire diameter w, the mean
coil diameter d and the length (or number of coils) L.

The objective is to minimize the weight of the spring, subject to various con-
straints such as maximum shear stress, minimum deflection and geometrical limits.
For a detailed description, please refer to earlier studies [2, 4]. This problem can be
written compactly as

Minimize f (x) = (L+ 2)w2d, (21)

subject to

g1(x) = 1 − d3L

71785w4
≤ 0,

g2(x) = 1 − 140.45w

d2L
≤ 0,

g3(x) = 2(w + d)

3
− 1 ≤ 0,

g4(x) = d(4d −w)

w3(12566d −w)
+ 1

5108w2
− 1 ≤ 0,

(22)

with the following limits:

0.05 ≤ w ≤ 2.0, 0.25 ≤ d ≤ 1.3, 2.0 ≤ L ≤ 15.0. (23)

Using any of the algorithms discussed earlier, we can easily obtain the same or
slightly better solutions than the best solution obtained by [4]:

f∗ = 0.012665 at (0.051690,0.356750,11.287126), (24)

but both CS and FA use significantly fewer evaluations.

4.3 Three-Bar Truss Design

The three-bar truss design is a simple but practical example first presented by
Nowcki [22], which requires one to find the optimal cross-sectional areas A1

and A2. The problem can be formulated as

Minimize f (A1,A2) = (
√

8A1 +A2)L, (25)
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subject to

g1 = (
√

2A1 +A2)P√
2A2

1 + 2A1A2
− σ ≤ 0, (26)

g2 = A2P√
2A2

1 + 2A1A2
− σ ≤ 0, (27)

g3 = P

A1 + √
2A2

− σ ≤ 0, (28)

where σ = 2,000 N/cm2 is the stress constraint, and P = 2,000 N/cm2 is the load.
The simple limits are

0 ≤ A1,A2 ≤ 1. (29)

Using CS and BA, it is easy to find the optimal solution

x∗ = (A1,A2) = (0.78867,0.40902), (30)

and

fmin = 263.97156. (31)

4.4 Discrete Beam Design

Reinforced concrete beam designs are relevant in many applications in engineering
and construction. One class of beam designs is the discrete beam design, where the
dimensions and some design variables can only take discrete values [11, 21]. For
example, a very simple design benchmark of a reinforced concrete beam can be
written as

Minimize f (As, b,h) = 0.6bh+ 2.9As, (32)

subject to

g1 = h

b
− 4 ≤ 0, (33)

g2 = 7.375A2
s

b
+ 180 −Ash ≤ 0. (34)

However, the area As only take values of {6.0,6.16, 6.32,6.6, 7.0,7.11,7.2,
7.8,7.9, 8.0,8.4} in2, and b only takes a value from {28,29,30, . . . ,39,40} and
5 ≤ h ≤ 10 in the continuous domain [21].

By using FA and CS, we have found the best solution

fmin = 359.2080, (35)
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with

(As, b,h) = (6.32,34,8.5), (36)

which is better than any solutions found so far in the literature [11].

4.5 Heat Exchanger Design

The heat exchanger design is a problem with six constraints [38], which can be
expressed in the simplest case as the following minimization problem with eight
design variables:

Minimize f (x) = x1 + x2 + x3, (37)

subject to

g1(x) = 0.0025(x4 + x6)− 1 ≤ 0, (38)

g2(x) = 0.0025(x5 + x7 − x5)− 1 ≤ 0, (39)

g3(x) = 0.01(x8 − x5)− 1 ≤ 0, (40)

g4(x) = 833.33252x4 + 100x1 − x1x6 − 83333.333 ≤ 0, (41)

g5(x) = 1250x5 + x2x4 − x2x7 − 125x4 ≤ 0, (42)

g6(x) = x3x5 − 2500x5 − x3x8 + 1250000 ≤ 0. (43)

For example, using CS with n = 20 cuckoos, we can easily find the optimal solution
for these eight design variables as

x∗ = (579.3068,1359.9708,5109.9705,182.0177,

295.6012,217.9823,286.4165,395.6012). (44)

4.6 Welded Beam Design

The welded beam design is another standard test problem for constrained design op-
timization [4, 38]. The problem has four design variables: the width w and length L

of the welded area, and the depth d and thickness h of the main beam. The objective
is to minimize the overall fabrication cost, under the appropriate constraints of shear
stress τ , bending stress σ , buckling load P and maximum end deflection δ.

The problem can be written as

minimize f (x) = 1.10471w2L+ 0.04811dh(14.0 +L), (45)
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subject to

g1(x) = w − h ≤ 0,

g2(x) = δ(x)− 0.25 ≤ 0,

g3(x) = τ(x)− 13,600 ≤ 0,

g4(x) = σ(x)− 30,000 ≤ 0,

g5(x) = 0.10471w2 + 0.04811hd(14 +L)− 5.0 ≤ 0,

g6(x) = 0.125 −w ≤ 0,

g7(x) = 6000 − P(x) ≤ 0,

(46)

where

σ(x) = 504,000

hd2
, Q = 6000

(
14 + L

2

)
,

D = 1

2

√
L2 + (w + d)2, J = √

2wL

[
L2

6
+ (w + d)2

2

]
,

δ = 65,856

30,000hd3
, β = QD

J
,

α = 6000√
2wL

, τ(x) =
√

α2 + αβL

D
+ β2,

P = 0.61423 × 106 dh
3

6

(
1 − d

√
30/48

28

)
.

(47)
The simple limits or bounds are 0.1 ≤ L, d ≤ 10 and 0.1 ≤ w, h ≤ 2.0. For example,
using both CS and FA, we have obtained the following optimal solution:

x∗ = (w,L,d,h)

= (0.20572963978,3.47048866563,9.03662391036,0.20572963979), (48)

with

f (x∗)min = 1.72485230859. (49)

This solution is exactly the same as those in the literature [4]

f∗ = 1.724852 at (0.205730,3.470489,9.036624,0.205729). (50)

We have also solved this problem using BA, and we got exactly the same solution.
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4.7 Pressure Vessel Design

Pressure vessels are literally everywhere; some examples are champagne bottles and
gas tanks. For a given volume and working pressure, the basic aim of designing a
cylindrical vessel is to minimize the total cost. Typically, the design variables are
the thickness d1 of the head, the thickness d2 of the body, the inner radius r and the
length L of the cylindrical section [4, 38]. This is a well-known test problem for
optimization and it can be written as

minimize f (x) = 0.6224d1rL+ 1.7781d2r
2 + 3.1661d2

1L+ 19.84d2
1 r, (51)

subject to the following constraints:

g1(x) = −d1 + 0.0193r ≤ 0,

g2(x) = −d2 + 0.00954r ≤ 0,

g3(x) = −πr2L− 4π

3
r3 + 1296000 ≤ 0,

g4(x) = L− 240 ≤ 0.

(52)

The simple bounds are

0.0625 ≤ d1, d2 ≤ 99 × 0.0625, (53)

and

10.0 ≤ r, L ≤ 200.0. (54)

We have used all three algorithms (FA, CS, BA) to solve this problem, and they
all found the same solution f∗ ≈ 6,059.714 at

x∗ ≈ (0.8125, 0.4375, 42.0984, 176.6366), (55)

which is the same as the one obtained by Cagnina et al. [4]. This means that the
lowest price is about $6,059.71.

4.8 Gearbox Design

Another important benchmark is the design of a speed reducer which is commonly
used in many mechanisms such as a gearbox [14]. This problem involves the op-
timization of seven variables, including the face width, the number of teeth, the
diameter of the shaft and others. All variables are continuous within some limits,
except x3 which only takes integer values. We have

f (x) = 0.7854x1x
2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)

− 1.508x1
(
x2

6 + x2
7

)+ 7.4777
(
x3

6 + x3
7

)+ 0.7854
(
x4x

2
6 + x5x

2
7

)
, (56)
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subject to

g1(x) = 27

x1x
2
2x3

− 1 ≤ 0, (57)

g2(x) = 397.5

x1x
2
2x

2
3

− 1 ≤ 0, (58)

g3(x) = 1.93x3
4

x2x3x
4
6

− 1 ≤ 0, (59)

g4(x) = 1.93x3
5

x2x3x
4
7

− 1 ≤ 0, (60)

g5(x) = 1.0

110x3
6

√(
745.0x4

x2x3

)2

+ 16.9 × 106 − 1 ≤ 0, (61)

g6(x) = 1.0

85x3
7

√(
745.0x5

x2x3

)2

+ 157.5 × 106 − 1 ≤ 0, (62)

g7(x) = x2x3

40
− 1 ≤ 0, (63)

g8(x) = 5x2

x1
− 1 ≤ 0, (64)

g9(x) = x1

12x2
− 1 ≤ 0, (65)

g10(x) = 1.5x6 + 1.9

x4
− 1 ≤ 0, (66)

g11(x) = 1.1x7 + 1.9

x5
− 1 ≤ 0, (67)

where the simple bounds are 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤
x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.4, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

The best result in the literature [4] is

x∗ = (3.5,0.7,17,7.3,7.8,3.350214,5.286683), (68)

with fmin = 2996.348165.
By using FA and BA as well as CS, we have obtained a new best result:

x∗ = (3.5,0.7,17,7.3,7.8,3.34336449,5.285351) (69)

with the best objective fmin = 2993.7495888.
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Fig. 1 The topology optimization benchmark to maximize |TA − TB |

4.9 Simulation-Driven Shape Optimization

Heat management, thus heat transfer modelling, is very important for many elec-
tronic applications, especially those using large-scale integrated circuits. In fact,
nanoscale heat transfer is a challenging area, and topological optimization for de-
signing nanoscale device is even more challenging [8, 28, 43]. For example, Ev-
grafov et al. proposed a topology optimization benchmark for a nanoscale heat-
conducting system with a size of 150 nm by 150 nm [8]. Heat transfer can occur
at many different scales, though smaller scales may be more difficult to control.
Now we extend this to a unit of area of 1 mm by 1 mm, and the aim is to distribute
two different materials so as to maximize the temperature difference |TA − TB | at
these two points A and B under the boundary conditions given in Fig. 1 where the
top and bottom boundaries are symmetric. Obviously, if there is only one type of
material, then TA = TB can be expected at the steady state, due to symmetry in the
system configuration. However, two types of different materials will change this into
a tough shape optimization problem.

Two materials used in the design of the unit area have heat diffusivities of K1 and
K2, respectively. In addition, K1 % K2. For example, for Si and Mg2Si, K1/K2 ≈
10. The domain is continuous, and the objective is to distribute the two materials
such that the difference |TA − TB | is as large as possible.

By dividing the domain into 40 × 40 small grids and using CS to search for
possible design solutions, an optimal shape and distribution of materials is obtained,
as shown in Fig. 2, where Si is shown in light blue and Mg2Si is shown in red.

For each configuration generated during the search process, the temperature dis-
tribution is estimated using the finite difference method by solving the heat conduc-
tion equation with varied material conductivities so that the temperature difference
at the two fixed points is as large as possible.
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Fig. 2 Optimal topology and distribution of two different materials

5 Challenges and Further Research Topics

Despite the huge success of optimization and extensive applications, many chal-
lenging issues must be addressed in the near future. As an optimization process
typically involves an optimization algorithm and a simulator, two main issues nat-
urally arise: the efficiency of the algorithm and the efficiency and accuracy of the
numerical simulator. Obviously, we try to use the most efficient algorithms avail-
able, but the actual efficiency of an algorithm may depend on many factors such
as the inner working of the algorithm, the available information (such as objective
functions and their derivatives) and implementation details. The associated issue is
how to assign the right algorithms to a given problem, which is not easy to solve.
In fact, for some highly nonlinear problems, there may not be any efficient algo-
rithm at all. One well-known case is the travelling salesman problem, which is hard
in the non-deterministic polynomial-time (NP) sense, that is, NP-hard. There is no
efficient algorithm to deal with these types of problems.

The efficiency of a simulator or solver is even more complicated, depending on
the actual numerical methods used and the complexity of the problem of interest.
Straightforward optimization of a given objective function is not always practical. If
the objective function comes from a computer simulation, it may be computationally
expensive, noisy or non-differentiable. In such cases, a surrogate-based optimization
algorithm may be a very useful alternative [18]. The surrogate model can be typi-
cally constructed from the sampled data of the original objective function; however,
this surrogate model should reasonably be cheap, smooth and easy to optimize, and
yet accurate enough so that it can produce a good prediction of the function’s opti-
mum [17]. A challenging issue is how to construct good surrogate models that have
good fidelity and yet can save sufficient computational efforts.

On the other hand, it may be no exaggeration to say that metaheuristics have had
great success in solving various tough optimization problems. However, there are
many important questions which remain unanswered.
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First, an important issue to be addressed in any metaheuristic algorithm is how
to provide a good balance between local intensification and global diversifica-
tion [29, 30]. At present, different algorithms uses various techniques and mech-
anisms with various parameters to control this, which may be far from optimal. Is
there any optimal way to achieve this balance? If yes, how? If not, what is the best
we can achieve?

Second, it is still only partly understood why different components of heuristics
and metaheuristics interact in a coherent and balanced way so that they produce
efficient algorithms which converge under the given conditions. For example, why
does a balanced combination of randomization and a deterministic component lead
to a much more efficient algorithm (than a purely deterministic and/or a purely ran-
dom algorithm)? How can we measure or test if a balance is reached? How can we
prove that the use of memory can significantly increase the search efficiency of an
algorithm? Under what conditions?

Finally, most applications in the current literature have been tested against toy
problems or small-scale benchmarks with a few design variables or at most prob-
lems with several dozen variables. In real-world applications, many design problems
in engineering, business and industry may involve thousands or even millions of
variables. We have not seen case studies for such large-scale problems in the litera-
ture. A crucial issue is that there is no indication that the methodology that works for
such toy benchmarks will work equally well for large-scale problems. Apart from
the difference in the problem size, there may be other fundamental differences for
large-scale problems, and thus the methodology could be very different [33].

Such challenges still remain unresolved, both in theory and in practice. These
important issues also provide golden opportunities for researchers to rethink the
existing methodology and approaches, perhaps more fundamentally. We can expect
that some significant progress will be made in the next ten years.
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