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    Abstract     The paper analyses the problem of class generalisation from the 
 non- traditional point of view—class life cycles. Model of class life cycle represents 
a process-oriented view on the class which is not usual in the fi eld of conceptual 
modelling. This paper focuses on the problem of modelling life cycles of generic 
classes when there is a need to model several life cycles, valid at the same time. The 
paper shows that this problem is rooted in the natural contradiction of object- and 
process-oriented approach to modelling following from the fact that these two basic 
approaches are based on mutually contradicting primary types of hierarchical 
abstraction. The paper also shows that this problem is closely connected with the 
“problem of confl icting identities” in generalisation trees discussed on the border of 
the conceptual modelling and ontology engineering fi elds.  

1         Introduction: Historical Background 

 The latest development of the  enterprise architecture  methodologies is strongly 
infl uenced by the need for modelling the real-world aspects of an enterprise as a 
universal base for the further design. The basic technique for modelling the real 
world, representing the basic approach to the analytical thinking in the fi eld of 
informatics, is the  conceptual modelling . The concept “conceptual” has been fi rstly 
used in the area of data modelling. It expresses the fact that the database should 
describe the essential characteristics of the real world: objects and their mutual 
 relationships. This origin is still visible in common understanding of the adjective 
“conceptual” in the sense of modelling with the Unifi ed Modelling Language [ 10 ]: 
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Craig Larman [ 8 ] describes conceptual modelling such as the following: classes 
represent concepts from the real-world domain, binary associations describe rela-
tionships between two concepts, and the concepts can have attributes but no opera-
tions. Cris Kobryn [ 6 ] speaks about “structural model” which shows the static 
structure of the system: the entities that exist, internal structure, and relationships to 
other entities. Roni Weisman [ 12 ] uses the term “conceptual system model” and 
distinguishes three types of objects: entity (objects which hold the system’s data), 
boundary object (interface objects which directly interact with the external world—
actors), and control object (objects which manage the system operations). Although 
there are various approaches to the conceptual modelling in object-oriented meth-
ods, each of them reduces the conceptual model (represented by the class diagram) 
to the model of objects and relationships between them, represented by their attri-
butes but not by their methods. This reduction is present even in Weisman’s approach 
(see above) where only “entities” represent the real-world objects while “control 
object” expresses rather the behaviour of the “system”. The common understanding 
of the term “conceptual” thus tends to be the synonym for “static”. 

 However, such an approach contrasts with the basic principle and the main con-
tribution of the object-oriented paradigm—unity of data and operations. This prin-
ciple evokes the idea that it is necessary to model not only static aspects of the real 
world but also its dynamics. Thus, not only attributes but also relevant object’s 
operations together with their essential time consequences should be regarded as a 
property of the real world. Such description of the essential dynamics of the object 
is usually called the object’s life cycle. 

 The interest in object life cycles originated in the historical context of business 
process modelling in the early 1990s. According to Kappel and Schrefl  [ 5 ],  an 
object life cycle is a model that captures allowed states and state transitions for a 
particular object type . A common means for modelling life cycles of objects is a 
non-deterministic fi nite state machine. The UML contains for this purpose the state 
chart (state machine) diagram. Other UML diagrams for description of dynamics 
(activity diagram, sequence diagram, objects interaction diagram) are also usable 
but not so suitable for this purpose because they are not so closely and explicitly 
connected with the class diagram as a crucial diagram for the conceptual modelling 
(see the further argumentation below). 

 The historical context of the business process modelling, mentioned above, also 
brought the general, still persisting, erroneous impression that business processes 
can be modelled via life cycles of participating objects. Küster et al. [ 7 ] clearly 
identifi ed the substantial difference between an object life cycle and a business pro-
cess formulating the set of rules for “generation of a compliant business process 
model from given object life cycles”. Although this approach views the business 
process too mechanically, almost as a mechanical consequence of business rules 
expressed by object life cycles, the identifi ed difference is a very signifi cant shift in 
the perception of essence of object life cycles. 

 The motivation for modelling life cycles of classes presented in this paper comes 
from the methodology for information modelling of organisations [ 9 ]. This method-
ology is based on systematic work with two parallel model dimensions, conceptual 
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(object oriented) and behavioural (process oriented), and distinguishes between the 
two main types of processes which are to be described in order to fully defi ne the 
nature of the real world:

•    Business (intentional) processes  
•   Life cycle (non-intentional, substantial) processes    

 The  business process  always represents some intention, expresses the way of 
achieving some goal, and has some products, and it is typical expression of the 
human will. 

 On the other hand, the  life cycle of an object  has no goal, nor product; it is rather 
the expression of the objective necessity, usually called business rules. Objects are 
typically taking different roles in different processes giving them the context (real- 
world rules), while business process typically combines different objects giving 
them the specifi c meaning (roles of actors, products, etc.). 

 As it follows from the previous paragraph, the objects life cycles cannot be 
regarded as business processes but rather as a  description of business rules in a pro-
cess manner . The presented methodology uses for the modelling objects life cycles 
the state chart from the UML which is, according to the UML metamodel [ 11 ], prin-
cipally connected with the class diagram via the concepts of class, method, and some 
others. This connection is also well visible in the Business Substance Metamodel 
from the Business System Metamodel [ 1 ] as a part of the OpenSoul Methodology 
where the UML metamodel is extended with the concepts of class state, class life 
cycle step, and class life cycle which address exactly this methodical consequence. 

 The example in Fig.  1  illustrates the state chart describing the life cycle of the 
object  order  as a complement to the class diagram which describes the context of 

  Fig. 1    Life cycle of the class       
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this object. All methods of the conceptual object should be ordered into one 
 algorithm which defi nes the “conceptual meaning” of each method as its place in 
the process of the object’s life.

    Generalisation —a natural way of building the hierarchy of concepts—is one of 
the most signifi cant concepts in the fi eld of conceptual modelling. This way of 
organising concepts is also used as a basic tool for the top-down process of the 
analysis of concepts. On the higher level of abstraction, we work with global—
generic concepts and their general associations, then on more detailed level we can 
analyse detailed—more specifi c types of previously analysed concepts and their 
specifi c relationships. Generalisation as an essential way of building hierarchies of 
concepts forms the roots of conceptual (alias “object oriented”) modelling lan-
guages. In the UML the generalisation occurs as one of basic principles hidden in 
the so-called principle of inheritance. 

 Combining the above discussed need for modelling the dynamics of objects 
together with the importance of generalisation as a natural way of building the hier-
archy of concepts, we can formulate the crucial question:  how to model life cycles 
of generic classes ? 

 In the following text, we will discuss the problem of generalisation of classes 
from a non-traditional (class life cycles) point of view. We will focus on the problem 
of modelling life cycles of generic classes when there is a need to model the life of 
the generic class together with the life of its specifi c subtype at the same time. This 
problem is rooted in the natural contradiction of object- and process-oriented 
approach to modelling following from the fact that these two basic approaches are 
based on mutually contradicting primary types of hierarchical abstraction. We also 
show that this problem is closely connected with the “problem of confl icting identi-
ties” in generalisation trees discussed in several works in the fi elds of conceptual 
modelling as well as ontology engineering. 

 In the fi rst section, we will pay attention to the problem of using generalisation 
in conceptual models. We will formulate the problem of modelling life cycles of 
different concepts representing the same object in the generalisation tree, and we 
show that this problem has the common root with the language insuffi ciencies dis-
cussed before. In the last section, we will summarise previous sections and formu-
late basic conclusions.  

2     Generalisation from the System Versus Process 
Point of View 

 Generalisation as a principal way of hierarchical classifi cation of concepts is widely 
used in the conceptual modelling based on modal logics. Giancarlo Guizzardi [ 3 ] 
convincingly shows the necessity of the classifi cation of different types of speciali-
sation of concepts which occurs especially in the case of subtypes of the so-called 
<<phase>> type (see the example in Fig.  2 ). The problem is that the particular 
instance of the class  customer  can be over time of different subtypes  potential , 
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 active ,  passive , and  former  staying the same individual. Thus, these subtypes do 
not represent different instances of the class  customer  but rather different states 
(phases) of the same instance. Guizzardi also notes that the same problem is 
addressed by Heller and Herre in [ 4 ] who, in generalisations, distinguish between 
abstract substances called  persistents  and so-called presentials which represent 
momentary states.

   In this example we pragmatically reduce our universe of discourse ignoring the 
general fact that the  customer  is rather the role of some general concept (person for 
instance) instead of the standalone kind as it is regarded here. In our real world, the 
 customer  is a substantial primary concept and we do not analyse its general super- 
classifi cations as it is not relevant there. 

 Figure  2  shows the nonconfl icting multiple specialisation of the concept 
  customer . From the point of view of the natural evolution of general  customer , it is 
important to distinguish among its particular phases  potential ,  active ,  passive , and 
 former  which the  customer  generally can pass over time. Nevertheless, it is also 
important to distinguish between two general types of  customer :  physical person  
and  corporation , simultaneously. As the second classifi cation ( corporation / physical 
person ) is not transitive, i.e. the particular instance of customer cannot transit from 
one type to another during its life, there is no danger of possible confl ict of this clas-
sifi cation with the fi rst one (evolution phases of  customer ). Both classifi cations can 
exist simultaneously without mutual interference because they are independent in 
principle. The mechanism of evolution of a  customer  is exactly the same whether it 
is a  physical person  or  corporation , and  customer  is either  physical person  or  cor-
poration  no matter in which evolution stage it is. 

 If there is a need for time dependent—<< phase >> specialisation of a class—it 
can be supposed that there is also a need for detailed description of general condi-
tions and circumstances for the transitions between its particular phases. Such 

  Fig. 2    Ontologically correct multiple specialisation of the class customer       
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description can be done as a so-called life cycle of a class where above mentioned 
conditions and other general circumstances are described as a process of possible 
transitions among identifi ed states of a class. 

 While modelling life cycles of both generic classes and their specifi c subtypes, 
we always need to handle the following problem: we should express the common 
structure expressing both generalisation and aggregation. This problem is also 
addressed by Ebert and Engels in [ 2 ] where they pointed to the need to reconcile the 
conceptual modelling with modelling of life cycles in the case of generic objects. It 
is rooted in the natural contradiction of object- and process-oriented approach to 
modelling. This contradiction follows from the fact that each of these two basic 
approaches have a different primary type of hierarchical abstraction. In the object- 
oriented approach, hierarchy means primarily generalisation; while in the process- 
oriented approach to modelling, hierarchy means primarily aggregation. As these 
two basic types of hierarchical abstraction are mutually exclusive (the hierarchy can 
express either generalisation or aggregation), object- and process-oriented approach 
to modelling are in principal contradiction. Practically, this means that it is impos-
sible to express all crucial process aspects of a reality by means of objects only 
(alias to model processes as objects and their relationships) as well as it is impos-
sible to express all crucial object aspects of a reality just by means of processes 
(alias to model objects as processes and their successions). 

 In the object-oriented approach, the generalisation exists as a principle (so-called 
inheritance principle), and the second possible type of hierarchical abstraction—the 
aggregation plays the role of just a specifi c type of relationships of objects. In the 
process-oriented approach, the aggregation exists as a principle (the rule that “any 
activity as a part of a process can be taken as a standalone process on a deeper level 
of detail”), and generalisation plays a secondary role of just a specifi c kind of rela-
tionships of different, mutually exclusive, activities. Above discussed facts mean 
that to express the life cycles of both generic and specifi c classes of the same gener-
alisation tree we have to describe the generalisation tree as a set (i.e. aggregation 
tree) of processes. 

 Figure  3  describes the life cycle of the generic class  customer  from Fig.  2 . 
According to the methodology, each phase—specifi c subtype of the generic class—
is represented by the specifi c state of its life cycle. The life cycle thus describes the 
general process of the class metamorphosis from one subtype to the others.

   The example in Fig.  3  specifi es the general mechanism of possible changes of the 
states (alias subtypes) of the object  customer . Each transition between states has its 
reason (real-world event) and is performed by the action which belongs to the class 
(class method). 

 If needed, it is possible to describe also specifi c structure of the life of the object 
in the specifi c state as it is illustrated in Fig.  4 . This allows expressing the generali-
sation structure of concepts as an aggregation of life cycles. Nevertheless, the very 
important fact, and the fatal condition of this situation, is that the whole generalisa-
tion is of the << phase >> type (i.e. all subtypes are of this type of specialisation).
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  Fig. 3    Life cycle of the generic class customer       

  Fig. 4    Life cycle of the specifi c—active—type of the generic customer       
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   The second crucial problem connected with describing life cycles of generic 
object classes occurs in the case of multiple << phase >> generalisation trees for the 
same class. Such situation is illustrated by the example in Fig.  5 .

   In this situation there is the additional valid life cycle of the same class customer 
besides the life cycle described in Fig.  3 . This additional life cycle is described in 
Fig.  6 . The problem is that these two life cycles must be valid at the same time as it 

  Fig. 5    Confl icting “phase” specialisations of the class customer       

  Fig. 6    Life cycle of the class customer from the importance point of view       
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belongs to the real-life situation like the example illustrates. There are specifi c com-
binations of specifi c states of different types for the same object. At the particular 
moment, just one specifi c combination is valid.

   The model in Fig.  7  expresses a virtually suffi cient solution of the problem of 
confl icting “phase” specialisations of the class  customer  from Fig.  5 . Both classifi ca-
tion structures are combined in the Cartesian product and the result is one specifi c 
subtype for each combination of each two possibilities. From the global point of 
view (represented by the class diagram), it seems that the problem is no more exist-
ing; the only structure of the subtypes naturally prevents any possible confl ict of 
identity, and the completeness is guaranteed by the combination of all possibilities.

   The problem connected with the specialisation in Fig.  7  is that it is principally 
impossible to express exactly all combined phases as the states of one single life 
cycle (i.e. in one common state chart). Although from the system point of view 
(class diagram), each combination of states looks real, when we look at these com-
bined states regarding the factor of time, we can realise that:

    (a)    Some combinations cannot exist in reality because they do not make sense (e.g. 
if there is a rule that the customer without an order cannot be  VIP , the subtypes 
 Passive VIP  as well as  Potential VIP  are not real).   

   (b)    Some combined states represent rather an aggregation of really elementary 
states of this type (from the time point of view) than a single state (i.e. in a 
single moment). This fact causes the possible situation where different states 
can exist at the same time. For example, the states  Former VIP  and  Former 
Regular  cannot be clearly distinguished as this single customer could be several 
times VIP and several times regular in history. If the states cannot be clearly 
distinguished it is impossible to express their ordering on the time line. Such a 
situation usually signals that there are more different objects which the states 
belong to; thus, it is not possible to describe these states as elements of the 
single algorithm (life cycle).    

  While the problem (a) is not critical because it can be easily solved by omitting 
non-relevant states, the problem (b) is fatal. It is a proof that the solution of the 
confl ict of phases via the Cartesian product of the possible phase combinations is 
principally wrong. 

 The correct solution of the confl ict of phases from Fig.  7  is described in Fig.  8 . It 
is necessary to respect the fact that these two << phase >> specialisations ( potential , 
 active ,  passive ,  former  versus  regular ,  VIP ) are independent in principle and cannot 

  Fig. 7    Possible solution of the confl ict of phases via the Cartesian product of possible phases       
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thus be combined. Therefore, we introduce abstract concepts  activity  and  impor-
tance  which represent two different points of view which are, in fact, represented by 
these two independent classifi cations. Each new generic concept represents the part 
of the super-concept  customer  from its point of view.

   For this general-methodical solution of the problem of multiple << phase >> gen-
eralisation trees, we introduce a new type of abstract class << viewpoint >> existing 
under following rules:

    (a)    << viewpoint >> must be an abstract generic class representing specialisation 
tree of the << phase >> type.   

   (b)    << viewpoint >> class never represents the real object.   
   (c)    << viewpoint >> must be a part of an aggregation structure. This aggregation 

represents an abstract class which is a generic concept representing all phases 
of all its components, and which:

•    Cannot be of the <<phase>> type  
•   Always represents the real object       

  The purpose of this methodological construction is to allow expressing two cru-
cial facts:

•    The abstract class which is a head of the structure (the concept  customer  in the 
example) is specifi ed with multiple life cycles which are mutually independent.  

•   All the specifi ed life cycles of the class are valid at the same time.    

 This way the problem is defi nitely solved. Each of the both life cycles is guaran-
teed valid (independently of the second one), and both are valid at the same time as 
it is warranted by the aggregation of both viewpoints.  

  Fig. 8    Generally correct solution of the confl ict of phases with << viewpoint >> decomposition       
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3     Summary and Conclusion 

 In this paper we have discussed the problem of modelling life cycles of generic 
classes. We have identifi ed two basic types of problems which can occur:

•    The problem of aggregated life cycles if there is a need to model the life of the 
generic class together with the life of its specifi c subtype at the same time  

•   The problem of multiple << phase >> generalisation trees for the same class if 
there is a need to model the life of the generic class from different points of view 
which all are valid at the same time    

 We have shown that both crucial problems have a common root—the natural 
contradiction of two basic types of hierarchical abstraction. This root manifests 
itself also in the way of solution of both above stated problems: in both cases the 
solution lies in the use of the combination of both abstraction types together. 

 The general conclusion made from this paper is as follows: generalisation, unlike 
the aggregation, leads to the need to principally distinguish between the meta- 
concepts “object” and “concept”. This difference is not always primarily visible at 
the global level (i.e. at the level of the system of objects). Nevertheless, it is well 
visible at the detail level (i.e. at the level of the object life cycle) especially in two 
basic situations   :

•    In the situation where it is a need for expressing the life cycle of the generic 
concept together with the life cycles of its specifi c subtypes  

•   In the situation where it is a need for expressing several different and mutually 
incompatible life cycles valid for the same class at the same time    

 This fact can be used as an additional and “physical” reason for distinguishing 
between the above mentioned types of generic objects. Consequently, it can be used 
as a proof of the general validity of the need for distinguishing between substantial 
and temporally dependent types of generalisation.     
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