
Chapter 8
A Test Automation Framework
for Collaborative Testing of Web Service
Dynamic Compositions

Hong Zhu and Yufeng Zhang

Abstract The dynamic composition of services owned by different vendors demands
a high degree of test automation, which must be able to cope with the diversity of
service implementation techniques and to meet a wide range of test requirements
on-the-fly. These goals are hard to achieve because of the lack of software artefacts
of the composed services and the lack of the means of control over test executions
and the means of observations on the internal behaviours of composed services. Yet,
such integration testing on-the-fly must be non-intrusive and non-disruptive while the
composed services are in operation. This chapter presents a test automation frame-
work for such on-the-fly testing of service compositions to facilitate the collaboration
between test services through utilisation of Semantic Web Services techniques. In
this framework, an ontology of software testing called STOWS are used for the regis-
tration, discovery and invocation of test services. The composition of test services is
realized by using test brokers, which are also test services but specialized in the coor-
dination of other test services. The ontology can be extended and updated through
an ontology management service so that it can support a wide open range of test
activities, methods, techniques and types of software artefacts. We also demonstrate
the uses of the framework by two running examples.

H. Zhu (B)

Department of Computing and Communication Technologies,
Oxford Brookes University, Oxford OX33 1HX, UK
e-mail: hzhu@brookes.ac.uk

Y. Zhang
National Laboratory for Parallel and distributed Processing School of Computer Science,
The National University of Defense Technology, Changsha, China
e-mail: yufengzhang@nudt.edu.cn

A. Bouguettaya et al. (eds.), Advanced Web Services, 171
DOI: 10.1007/978-1-4614-7535-4_8,
© Springer Science+Business Media New York 2014

172 H. Zhu and Y. Zhang

8.1 Introduction

The past few years have seen a rapid growth in the research on testing Web Services
(WS) [15, 18], which mostly falls into the following categories.

• Generation of test cases. Techniques have been developed to generate test cases
from syntax definitions of WS in WSDL [1, 2, 10, 12, 13, 21, 23, 34, 35, 37, 41,
45, 49], business process and behavioural models in BPEL [4, 5, 22, 31, 33, 36,
39, 40, 53], ontology based descriptions of semantics in OWL-S [3, 28, 48], and
other formal models of WS such as finite state machines and labelled transition
systems [6, 14, 38], grammar graphs [24, 25], and first order logic [46], etc.

• Generation of testbed. A service often relies on other services to perform its
function. However, in service unit testing and also in progressive service integration
testing, the service under test needs to be separated from other services that it
depends on. Techniques have been developed to generate service stubs [8] or
mock services [27] to replace the other services for testing.

• Checking the correctness of test outputs. Research work has been reported in the
literature to check the correctness of service output against formal specifications,
such as using metamorphic relations [19], or a voting mechanism to compare the
output from multiple candidate services [44, 47], etc.

These techniques have addressed various WS specific issues, such as the robust-
ness in dealing with invalid inputs and errors in invocation sequences, fault tolerance
to the failures of other services that it depends on and broken communication con-
nections, and security in the environment that is vulnerable to malicious attacks, and
so on. A number of prototypes and commercial tools have also been developed to
support various activities in testing WS, such as Coyote [45], WS-FIT [37], TAXI
[11], PLASTIC [9], LTSA-WS [38]; just to mention a few.

However, despite the advances made in the past few years, great challenges remain.
In particular, it is still an open question how to cope with the following difficult issues
in WS integration testing [17, 18, 54].

• The lack of software artefacts. A service-oriented application commonly consists
of services owned by many different stakeholders. Thus, typically, developers of
a service have no access to the design document, source code, even the executable
code of the other services. These software artefacts are crucial to perform test
activities efficiently and effectively.

• The lack of control over test executions. A service-oriented application is intrin-
sically distributed, and typically contains components and services running on
hardware owned by other stakeholders. Thus, a tester usually cannot control the
test executions of the other owners’ services.

• The lack of a means of observation of internal behaviour. Another consequence
of distributed ownership of services is that testers often cannot observe the internal
behaviours of the services owned by other vendors.

Moreover, it is widely recognized that an integration testing technology for WS
dynamic composition must meet the following requirements.

8 A Test Automation Framework for Collaborative Testing 173

• Capability of dealing with diversity. The distributed and shared ownership of
services also implies that the parts of a service-oriented application may operate
on a variety of hardware and software platforms with different deployment config-
urations and delivering services of differing quality. Testing has to be performed
in a heterogeneous environment. On the other hand, different service requesters
may well have different test requirements to meet their own business purposes.
Testing must deal with all such varieties and their combinations.

• Capability of testing on-the-fly. A typical scenario of service-oriented computing
is that a service requester searches for a required function in a registry, and then
dynamically links to the service and invokes it. It is widely believed that testing
before the invocation is necessary especially in mission critical applications. Such
testing, called testing on-the-fly, differs from traditional integration testing due
to the fact that the time of testing is just before the invocation while all parts to
be integrated are already in operation. A consequence of testing on-the-fly is that
it eliminates the possibility of manual testing. Thus, all test activities must be
performed automatically.

• Capability of testing non-intrusively and non-disruptively. Another conse-
quence of testing on-the-fly is that, from a service provider’s point of view, the
test invocations of a service must be distinguished from the real ones so that the
normal operation of the service is not interrupted by test activities. On the other
hand, from a client’s point of view, test invocations should also be distinguished
from real ones so that they do not actually receive the real services and do not pay
for such test invocations as real services.

It has been recognized that to address all these issues, testing WS dynamic compo-
sitions should be a collaborative effort contributed to by all stakeholders [11, 44, 54].
In this chapter, we present a test automation framework for collaborative testing of
web services. The framework presented here has its inception in 2006 [54] based
on the author’s previous work on agent-based approach to testing web-based sys-
tems [55, 56]. A preliminary implementation and case study of the framework was
reported in [51]. In [57], the details of test brokers and ontology management were
presented and further experiments with the prototype implementation were reported.
In [52], the test broker were extended to a general service composition mechanism
so that not only test services can be dynamically composed and integrated through
service brokers.

The remainder of the chapter is organised as follows. In Sect. 8.2, the framework
and its prototype implementation are presented. Section 8.3 illustrates its uses with
two running examples in typical scenarios of WS dynamic composition. Section 8.4
discusses its main features and reports the main results of the experiments with the
prototype. Finally, Sect. 8.5 concludes the chapter with a discussion of future work.

174 H. Zhu and Y. Zhang

8.2 The Test Automation Framework

This section elaborates the framework and briefly outlines the prototype implemen-
tation. More details can be found in [57].

8.2.1 The Architecture of the Framework

As shown in Fig. 8.1, the architecture of the test automation framework consists of

• an ontology of software testing for web services called STOWS,
• an ontology manager, which is a web service for the extension and revision of the

ontology STOWS, and
• a number of test services.

These components are based on the Semantics Web Service technology and interact
with the UDDI and Matchmaker facility.

Test Broker 1Tester T1

T-service of A1

F-service of A1

Tester T2

T-service of AK

F-service of AK

T-service of A2

F-service of A2

Ontology
ManagerUDDI Registry Matchmaker

Test Broker 2

Test Broker NTester TM

ST
O

W
S O

ntology

...

...

Testers Test Brokers

T-services

F-services

Fig. 8.1 Reference architecture of the framework

The following subsections will present these components of the architecture.

8.2.2 Test Services

The key notion of the framework is test services (T-service in short), which are
services designated to perform various test tasks [54].

8 A Test Automation Framework for Collaborative Testing 175

A T-service can be provided by the same organization of the normal service in
order to perform the testing of a normal web service. For the sake of clarity, we use
functional service (or F-service in short) to denote the normal services in the sequel.

A Test service can also be provided by a third party that is independent of the
normal service provider, and specialized in performing certain testing tasks. A special
type of such T-services is test brokers, which coordinate and compose test services
in order to perform complicated test tasks.

8.2.2.1 Service Specific T-services

Ideally, each F-service should be accompanied by a special T-service to support the
testing of the F-service. Such a T-service should provide the following three types
of functions related to testing.

1. Invoking test execution. The T-service accompanying an F-service should enable
test executions of the F-service to be invoked. Thus, the normal operation of
the original F-service is not disturbed by test requests and the cost of testing
is not charged as real invocations of the F-service. The F-service provider can
distinguish real requests from the test requests so that no real world effect is caused
by test requests. A T-service that only provides this test execution function can be
regarded as a mock service [27]. However, T-service can be much more powerful
by providing the following two functions.

2. Providing required documents. A T-service accompanying an F-service should
also provide further support to other test activities. For example, the formal speci-
fication of the semantics of the F-service, the internal design of the F-service such
as UML diagrams, the configuration of the hardware and software platform, the
service policy, even the source code, etc., are of particular importance to testers.
These kinds of information can be released to trusted T-services subject to pre-
serve the intellectual property rights and privacy, but withheld from the general
public.

3. Observing internal behaviour. Many test activities rely on the information of
system’s internal behaviours, such as the measurement of code coverage, the
checking of the internal states of the program during test executions, etc. These
can also be provided by the accompanying T-services.

To ensure that the testing carried out on a T-service faithfully represents the
functional services, the following two principles should be maintained in the design
and implementation of T-services.

• (a) A T-service should act in the same way as its functional service as much as
possible so that the F-service is correct on an input if the T-service passes a test
on the input.

• (b) A T-service should have a ‘firewall’ so that effects on the environment are
stopped and the normal operation of the F-service is not disrupted.

176 H. Zhu and Y. Zhang

An implication of principle (a) is that the business logic that a service implements
may be duplicated by its corresponding T-service in order to test it adequately. On
the other hand, an exact copy of the F-service may not achieve the goal of T-service
according to principle (b). It is worth noting that in certain special cases the T-service
can be absent and all testing are performed on the F-services. For example, if a service
contains no internal state and has no effect on its environment, the T-service can be a
simple duplicate of the F-service, even be the F-service itself. When the development
and maintenance of a T-service is too expensive, or testing the service on-the-fly is
unnecessary, the role of T-service can be performed by the F-service, or an identical
copy of the F-service.

For example, the American’s Insurance Industry Committee on Motor Vehicle
Administration (IICMVA) requires that each insurance company provides a WS for
online verification of car insurances and maintains two identical environments: one
for test and one for production [29].

8.2.2.2 General Purpose Testers

Besides the service specific T-service that accompanies an F-service, a test service
can also be a general purpose test tool that performs various test activities, such
as test planning, test case generation, and test result checking, etc. A general pur-
pose T-service can be specialized in certain testing techniques or methods such as
the generation of test cases from WSDL or BPEL using certain WS testing tech-
niques mentioned in Sect. 8.1. For the sake of convenience, such general purpose T-
services are also called testers in the sequel to distinguish them from service specific
T-services.

It is worth noting that the framework provides a facility for the integration of
testing services rather than any specific testing techniques or tools. Most existing
works on WS testing are complementary to the framework in the sense that their
methods, techniques and tools can be implemented as T-services. The framework
facilitates their integration by providing the interfaces and collaboration mechanisms
and enables test services to provide the software artefacts that testing processes
require. The loosely coupled framework lays a foundation for composing various
T-services by the utilization of Semantic WS technology.

8.2.2.3 Test Brokers

One particular type of general purpose T-services that will greatly improve the col-
laboration between the parties involved in WS testing is test broker. As discussed
in Sect. 8.1, test tasks are usually too complicated to be performed directly by one
T-service. A solution to this problem is to introduce test brokers, which compose and
coordinate other T-services to carry out test tasks. Typically, there are multiple test
brokers; for example, each specializes in one type of testing processes.

8 A Test Automation Framework for Collaborative Testing 177

As a coordinator, a test broker receives test requests, decomposes the task into
subtasks and generates test plans, searches for capable testers for each subtask,
invokes testers and returns test results to users. It controls the process of testing.
A test broker not only bridges the gap between the users and testers, but can also
monitor the dynamic behaviours of T-services and keep a repository of tests per-
formed on each service for future choices of T-services and optimization of test
efforts.

We have developed a prototype test broker. Figure 8.2 shows the architecture of
our prototype test broker. It receives test tasks from service requesters, decomposes
a test task into a sequence of subtasks, sets a test plan, searches for other T-services
capable of performing the subtasks, and then invokes the T-services according to
the plan to carry out the subtasks and passes information between them. Finally,
it assembles the results from the services and reports to the service requester. The
broker is composed of the following four modules.

Communication Module provides an interface to the users. It receives test requests
in the form of test tasks and sends out test results in SOAP format. It transfers test
tasks to Task Analyzer and gets test results from the Task Execution Module. Failures
to fulfil test requests are also reported to the requesters through this module.

Test Broker

Testing
Service

Requester

Tester T1 Tester T2

Matchmaker

Task Analyzer
Ontology

Management
Service

Tester Search
Module

Task Execution
Module

UDDI
Registry

Communication
Module

Knowledge-Base
of Software Testing

Tester Tn

Fig. 8.2 The structure of a test broker

Task Analyzer decomposes a test task into several subtasks and produces test plans
according to codified knowledge of software testing processes. It also keeps the track
of test plan executions for each task so that backtracking can be made when a subtask
fails.

Tester Search Module searches for testers for each subtask in the test plan gener-
ated by the Task Analyzer. A failure to find a suitable tester for a subtask is reported
to the Task Analyzer and an alternative test plan may be generated if any, or the
whole testing process fails.

Task Execution Module executes the test plan by invoking the testers and passing
information between them. A failure to carry out a subtask is reported to the Task

178 H. Zhu and Y. Zhang

Analyzer and an alternative tester will be employed if any, or an alternative test plan
is generated if possible. Otherwise, the whole testing process fails.

The knowledge-base of software testing processes plays a central role in the test
plan generation. It contains codified knowledge on how a task can be fulfilled by a
number of subtasks. Each type of tasks is defined by a set of parameters. There are two
kinds of parameters: descriptive parameters and functional parameters. The former
describes the functionality of the task, such as the activity of the task, the execution
environment of the task, and so on. The latter gives the data to be transformed by the
task, including input and output data. The values of these parameters are concepts
defined in the ontology.

The knowledge is represented in the form of rules:

T (p1, . . . , pn) ⇒ T ′
1(p1,1, . . . , p1,n1); . . . ; T ′

k(pk,1, . . . , pk,nk)

where T is a task and p1, . . . , pn are its parameters. It means that the task T can be
decomposed into k subtasks T ′

1 · · · T ′
n , where pi,1, ..., pi,ni (1 ≤ i ≤ k) are parame-

ters.
It is required that a parameter pi, j of subtask T ′

i is constructed from p1, . . . , pn

and the output parameters of its previous subtasks, i.e. {px,y |x < i, y ≤ nx }. This
means that the subtasks can be executed in the order as they occur in the rule. The
value of a parameter will be passed from one to the next according to the parameters
dependency between subtasks.

It is also required that each of the output parameters of task T is constructed from
the set of output parameters of subtasks T ′

i (i = 1, . . . , k). This is to ensure that task
T is realized by the subtasks in the rule.

Therefore, a rule is not only a logic decomposition of a task into several sub-
tasks, but also an expression of the workflow and the collaborations between various
kinds of services to complete a specific kind of task. Moreover, from computational
point of view, these rules also provide heuristic rules for narrowing the search space
for generating service composition plans. In fact, each rule can be considered as a
template of test plans. A test task is then checked against the templates one by one.
When a match is found, a test plan is produced by instantiating the template. Each
rule can also be regarded as a collaboration pattern of T-services with heuristics about
how to compose and coordinate T-services. This significantly reduces the size and
complexity of the space in which T-services are searched for and combined. Thus,
the complexity of T-service composition and collaboration can be reduced.

Our implementation of test brokers enables the user to write their own rules and
instantiate the knowledge-base so that a number of test brokers can be registered and
employed in testing. Figure 8.3 shows the process that the test broker interacts with
Matchmaker and other T-services.

8 A Test Automation Framework for Collaborative Testing 179

8.2.3 Registry and Matchmaker

As discussed above, in our framework, T-services interoperate with each other via
SOAP messages. They need to advertise their service descriptions in a service registry
to be discovered and invoked at runtime to achieve testing on-the-fly with a high
degree of automation. Because of the complexity of the semantics of the service
descriptions, we use Semantic WS registry to register T-services, which is composed
of an UDDI registry and a Matchmaker [30].

Fig. 8.3 Process model of test broker

The OWL-S/UDDI Matchmaker (Matchmaker for short) extends UDDI registry
with a capability based service matching engine [30, 43]. It provides three levels of
matching between capability and search request.

1. Exact matching: the capabilities in the registry and in the request match exactly.

180 H. Zhu and Y. Zhang

2. Plug-in matching: the service provided is more general than the requested.
3. Relaxed matching: the service provided is similar to the requested.

The Matchmaker also provides filters for users to construct more accurate service
discovery: which are namespace filter, domain filter, text filter, I/O type filter and
constraint filter [32]. With these filters, users can construct necessary compound
filters to control the precision of matching. The matching engine returns a numeric
score for each candidate so that the higher the score, the more similar between the
candidate and the request. Therefore, selection from the candidates can be based on
the scores that tagged by the Matchmaker on the candidate services.

We have used Matchmaker to enhance the registration and discovery of T-services
with semantic information. A T-service provider must first register the service with
its profile that defines its capability by using the API provided by the Matchmaker.
A service search request is also submitted to the Matchmaker.

8.2.4 STOWS: Ontology of WS Testing

The semantic information used in the registration, discovery and invocation of
T-services are represented in an ontology called STOWS (Software Testing Ontology
for WS), which proposed in [54] based on the ontology developed in [55, 56]. It was
adapted for WS testing.

Concepts in STOWS are classified into three categories: elementary concepts,
basic testing concepts and compound testing concepts.

The elementary concepts are those general concepts about computer software
and hardware based on which testing concepts are defined. They include the simple
objects involved in software testing, such as the types of hardware and software
artefacts and their formats, etc.

The basic testing concepts include Tester, Artefact, Activity, Context, Method, and
Environment. They are described as follows.

• Tester. A tester refers to a particular party who participates in a test activity. Gen-
erally speaking, testers can be human beings, organizations and software systems.
In the service-oriented framework, T-services perform the test tasks, thus they
are testers, too. It can be an atomic T-service, or a composition of T-services.
One important property of tester is its capability, which reflects the capability to
perform test tasks.

• Activity. There are various test activities including test planning, test case gen-
eration, test execution, result validation, adequacy measurement and test report
generation, etc.

• Artefact. Various kinds of artefacts may be involved in test activities as input/output,
such as test plan, test case, test result, program, specification and so forth. The most
important property of class Artefact is Location, whose value is an URL referring
to the location of the Artefact. Each type of artefacts is a subclass of Artefact, and

8 A Test Automation Framework for Collaborative Testing 181

inherits the properties from Artefact. The subclasses of Artefact can be added into
the ontology using the ontology management services.

• Context. Test activities may occur in different software development stages and
have various test purposes. The concept context defines the contexts of test activ-
ities in testing processes and test methodologies. Typically, the contexts include
unit testing, integration testing, system testing, regression testing, etc.

• Method. For each test activity, there may be multiple applicable test methods.
Method is a part of the capability and also an optional part of test task. Test
methods can be classified in a number of different ways. For example, test methods
can be classified into program-based, specification-based, usage-based, etc. They
can also be classified into structural testing, fault-based testing, error-based testing,
etc. Structural testing methods can be further classified into control-flow testing,
data-flow testing, etc. Therefore, test methods are represented as a hierarchy in the
ontology.

• Environment. It is the hardware and software configuration in which a test activity
is performed.

These basic concepts are combined together to express compound testing con-
cepts, which include Task and Capability.

• Capability. The capability of a T-service represents its capability of performing
test tasks. The class Capability in the ontology defines the aspects that affect the
capability of a service to perform tasks, including the activities that the service can
do, the test methods that the service uses, the artefacts that the service consumes
and produces, the context in which the service performs test activities, and the
environment in which test activities are carried out, etc. Therefore, it is composed
of several basic test concepts. The structure of Capability is shown in the UML
class diagram given in Fig. 8.4.

• Task. Task describes the test task to be carried out. It is used in service invocation.
A test task also has six aspects: the activity to be performed, the context of the
activity, the required test method and test environment, and the input and output
artefacts. The compositions are in the same structure as capability as shown in
Fig. 8.4, but have different semantics.

Capability/Task

Activity Method

Artifact

Capability Data

Context Environment

Fig. 8.4 The structure of capability and task

182 H. Zhu and Y. Zhang

In OWL-S,1 semantic descriptions are represented in the form of service profiles
and used in service registration and discovery. The vocabulary of a subject domain
is defined in a data model as classes with subclass relations.

To implement the ontology STOWS, we represent the concepts, including ele-
mentary, basic and compound concepts, as classes in OWL data model. To use the
ontology for the registration, discovery and invocation of T-services, the compound
concepts capability and task are transformed into service profiles. In OWL-S, a
service profile contains the IOPR (Inputs, Outputs, Preconditions and Results) and
a classification of the service. Figure 8.5 shows how the concept of capability is
represented in service profile.

Capability

Context

Environment

Method

Input Artefact

Output Artefact

Service Profile
Activity

INPUT
Context
Environment
Method
Artefacts

OUTPUT
Artefact

Service Classification

Fig. 8.5 Mapping between capability and service profile

In the service profile of T-service, the test context, the environment and the method
aspects are represented as input parameters Context, Environment and Method. For
example, Fig. 8.6 shows a part of a service profile, whose serviceClassification is
TestCaseGeneration. The hasInput and hasOutput properties indicate that the service
takes a Program as input and produces TestCase as output. By representing capa-
bility and task concepts in profiles, OWL-S/UDDI Matchmaker can be employed to
perform semantic-based search of T-services.

It is worth noting that test tasks and capabilities have the similar structure and the
corresponding semantics so that test requests (i.e. test tasks) can be easily transformed
into search requests (i.e. testers’ capabilities). Similarly, testers’ capabilities can be
transformed into test subtasks according to the test plan and submitted to the testers.
In the implementation of the prototype, we used the Mindswap OWL-S API2 to parse
task and capability profiles and to invoke T-services automatically.

The use of an ontology of software testing provides a standard set of vocabulary for
encoding the semantic information passed between T-services as well as for T-service
registration and discovery. However, it is impossible to build a complete ontology
of software testing given the huge volume of software testing knowledge and the
rapid development of new testing techniques, methods and tools. Instead, we take
the so-called crowd-sourcing approach to the construction of the ontology. It is the
same approach that Wikipedia is developed. We achieve this by regarding STOWS

1 http://www.w3.org/Submission/OWL-S/
2 http://www.mindswap.org/2004/owl-s/api/

http://www.w3.org/Submission/OWL-S/
http://www.mindswap.org/2004/owl-s/api/

8 A Test Automation Framework for Collaborative Testing 183

Fig. 8.6 An example of service profile

as an ontology framework in which new vocabulary can be added and updated, and
make it open to the public for population. This is supported by a facility for dynamic
management of the ontology detailed in the next section.

8.2.5 Ontology Manager

The crowd-sourcing approach to ontology construction is achieved by dynamic
management of the ontology through another special service, i.e. the ontology
management service (OMS). It provides a mechanism to populate and update the
ontology. It is delivered as a WS to facilitate the public access to the mechanism.

The ontology management service is implemented using the Protege-OWL API3,
which is an open source Java library for OWL and RDF. Using the API, OWL data
model stored in OWL files or databases can be loaded, changed and saved, queries be
made, and reasoning performed using a description logic inference engine. Therefore,
the manipulation of the ontology can be implemented as operations on OWL files.
Figure 8.7 shows the structure of OMS.

OMS provides a WS interface to read and update the ontology data model, which
is open to the public. The kernel of OMS is the Manager module. It provides three
services to users: AddClass, DeleteClass and UpdateClass to add new concept, delete
concept and revise concept of the ontology.

3 http://protege.stanford.edu/plugins/owl/api/guide.html

http://protege.stanford.edu/plugins/owl/api/guide.html

184 H. Zhu and Y. Zhang

Ontology Management Service

Ontology
Data Model

Update
Log

Logger

Conflict Checker

Authority Checker

Manager

AddClass

DeleteClass

UpdateClass

Fig. 8.7 The structure of OMS

For example, suppose that a T-service is developed to generate test cases using a
new method not included in the ontology, say data mutation. Then, a new test method
name DataMutation can be added to the ontology as a subclass of TestMethod. If a
new T-service is to be registered that generates test cases from a new formal specifi-
cation language called FSL, then a new type of software artefacts called FSL can be
added to the ontology as a subclass of SoftwareArtefact. The relationship between
classes in Ontology is represented as properties of classes. Adding or removing a
relation can be done by applying operations on the ontology file via OMS. For exam-
ple, if a subsumes relation from branch testing to statement testing is to be added, a
Subsumes property can be added to class BranchTesting with the value that refers to
the class StatementTesting.

However, to prevent misuses of the ontology management service, restrictions on
the manipulation of the data model are imposed through two technical solutions.

First, we classify the classes in the ontology into two types: elementary classes
and extended classes. Elementary classes are those that form the framework of the
ontology STOWS. None of them could be pruned down from the ontology hier-
archy to avoid structural damage to the ontology. The extended classes are those
classes attached to the framework to populate the ontology with concrete concepts
and instances of the concepts. They can be added by the users and deleted from
the hierarchy. We have implemented an Authority Checker, which checks delete
operations to ensure that the class to be deleted is an extended class.

Second, we have also implemented a Conflict Checker, which checks the opera-
tions on the ontology to ensure that the new class to be added does not exist in the
ontology and that the class to be deleted has no subclasses in the hierarchy.

Due to the openness of ontology management, there is a risk of errors caused
by update during task executions. If the update is only to add a new concept to the
ontology, there should be no effect on existing tasks and services, thus no risk of such
errors. However, if the update changes or deletes an existing concept or relation, a
task running at the time of update may be affected if it uses the changed concept or
relation and rely on the ontology to understand the messages. In such cases, errors
may occur due to the updates during execution. How to prevent such errors and reduce
the risk of such errors remains an open question that deserves further research.

8 A Test Automation Framework for Collaborative Testing 185

8.3 Running Examples

We now illustrate how the framework works in WS integration testing using two
running examples of typical scenarios in the dynamic composition of WS.

8.3.1 Example 1: Testing On-The-Fly for WS Dynamic
Composition

Our first example is the integration testing in the dynamic composition of the services
of a car insurance broker with the web services of an insurance company.

8.3.1.1 The Scenario

Suppose that a fictitious car insurance broker CIB operates a web-based system that
provides online services of car insurance. In particular, they provide the following
services to their end users.

The end users submit car insurance requirements to CIB and get quotes from
various insurers that CIB is connected to, and then select one to insure the car. To
do so, CIB takes information of the car, including its usage, and the payment. It uses
the WS of its bank B to check the validity of user’s payment information, passes
the payment to the selected insurer and takes commissions from the insurer and/or
the user. The car insurance broker’s software system has a user interface to enable
interactive uses, and a WS interface to enable other programs to connect as service
requesters. Its binding to the bank’s WS is static. However, since insurance is an active
business domain, new insurance providers may emerge and existing ones may leave
the market from time to time, the broker’s software binds dynamically to multiple
insurance providers to ensure that the business is competitive on the market. The
structure of the system is shown in Fig. 8.8.

CIB Bank B

Insurer A1’s Insurer A2’s Insurer An’s
Services

Services Services

Services Services

GUI Interface CIB’s service
requester

WS
Registry

Fig. 8.8 Structure of car insurance broker services

186 H. Zhu and Y. Zhang

The developer of CIB’s service must test not only its own code, but also its inte-
gration with other WS, i.e. the WS of the insurers and the bank. Here, we focus on the
integration with dynamic binding. Thus, suppose that CIB will dynamically compose
with the WS of the PingAn Insurance Ltd. in China that provides car insurance to
the customers through a web-based application.4 It is a real-world example.

8.3.1.2 Architecture of Test Services

By applying the framework to the scenario, each of the functional WS of the bank
B, CIB and insurer Ai has an accompanying T-service. Thus, we have the following
architecture shown in Fig. 8.9. In particular, the following services are involved in
the testing of the dynamic composition of CIB and the WS of PingAn Insurance.

• CIQS: the WS of the PingAn Insurance. It is the web service to be tested.
• TCE: a service specific T-service that executes the test cases for CIQS.
• TCG: a special purpose WS testing tool that generates test cases.
• CIB: the WS of the car insurance broker CIB. It acts as the testing requester, and

generates and submits test tasks to the test broker to test CIQS.

Test Broker

T-service of CIB

TCG: Tester (Test
Case Generator)

TCE: T-Serv ice of
CIQS

CIQS: PingAn Insur-
ance Quote F-Service

Register/
Matchmaker

F-service of CIBBank B’s
F-service

Bank B’s
T-service

Insurer A1’s
F-service

Insurer A1’s
T-service

Insurer A2’s
F-service

Insurer A2’s
T-serv ice

Insurer An’s
F-service

Insurer An’s
T-serv ice

Fig. 8.9 System architecture of the typical scenario

These T-services are registered to the UDDI registry using the STOWS ontology.
For example, TCG is a WS that takes the WSDL file of a service to be tested as input

4 http://www.pingan.com/campaign/channels/pingan/car-quote/index.jsp

http://www.pingan.com/campaign/channels/pingan/car-quote/index.jsp

8 A Test Automation Framework for Collaborative Testing 187

and generates random test cases as output. These artefacts are stored in files and
referred to through URLs of the file locations. To describe this service, the following
classes were added into the ontology.

• WSDL: a subclass of ServiceDescription, which is in turn the subclass of Artefact.
It stands for the WSDL document of a service.

• ServiceTesting: a subclass of Context that stands for service testing.
• RandomTestingMethod: a subclass of Method that stands for the random testing

method in test case generation.
• CarInsuranceQuoteServiceTestCase: a subclass of TestCase that stands for the test

case file for testing car insurance quote service.

In the service profile that describes the capability of TCG, the serviceClassifi-
cation is TestCaseGeneration. The Input artefact is WSDL. The context of TCG is
ServiceTesting. Its environment is of type Environment, which is the ancestor of
all the classes and stands for test environments. This means it imposes no specific
requirement on the environment. Its method is RandomTestingMethod. The output
artefact is of type CarInsuranceQuoteServiceTestCase.

8.3.1.3 Collaboration Process

Consider the situation that the CIB intends to establish a dynamic composition with
insurer PingAn and to test the service on-the-fly. It delegates the task to a test broker
TB. Figure 8.10 shows a typical example of collaboration processes managed by TB.

CIB
F-service

CIQS: PingAn
Insurance Quote

F-Service

Intended composition
of services

Test Broker
TB

Registry
(UDDI + Matchmaker)

4. Search for testers

3. Request of test
service

10. Test report

TCG:
Tester (Test

Case Generator)

6. Request to
generate test
cases

TCE:
T-Service of

CIGS

7. Test
cases

8.Request
to invoke
test execu-
tions9.Test

results

CIB
T-service

1. Search for testers

2. List of testers

5. Lists of testers

Fig. 8.10 The collaboration process in a typical scenario

188 H. Zhu and Y. Zhang

The process starts with the generation of a test task by CIB’s WS and submission
of a search request for finding a proper tester to the service registry. The search
request message contains a test task, which is matched against the capabilities of the
registered testers. The search result is a list of testers who are capable of performing
the task. From this list, the test broker TB is selected. A test request as shown in
Fig. 8.11 is then sent to TB requesting to test CIQS.

Once the test broker receives the test task, it generates a test plan that consists of
two subtasks:

• Subtask 1: Generating test cases according to a car insurance industry standard.
The input artefact of the task is of type WSDL. The output of this subtask is of
type CarInsuranceQuoteServiceTestCase.

• Subtask 2: Executing test cases and reporting test results. Its input is of type
CarInsuranceQuoteServiceTestCase and its output type is CarInsuranceQuoteSer-
viceTestResult.

Fig. 8.11 An instance of test tasks in the running example

For each subtask in the test plan, the broker translates the subtask into the cor-
responding capability description and constructs a service profile. The test broker
then submits the service profile to the Matchmaker to search for appropriate testers.
In this case, testers TCG and TCE are selected for the subtasks, respectively. The

8 A Test Automation Framework for Collaborative Testing 189

test planning finished with each subtask associated with a tester, and the test plan is
passed to the execution module of the test broker for executing the subtasks.

The task execution module of the test broker calls the testers associated to each
subtask according to the order given in the test plan. Data are passed from one subtask
to another through invocation messages. In particular, the output artefact of the first
subtask is passed to the second subtask. The output of the second subtask is the final
result of the test, which is an OWL object. It is then returned to the client.

8.3.2 Example 2: Wrapping A Testing Tool into a Test Service

In this running example we demonstrate how to wrap an automated testing tool into
a test service and how the tester can be composed together with other T-services to
accomplish complex testing tasks.

8.3.2.1 Wrapping a Testing Tool

The testing tool in this running example is a general purpose testing tool called
CASCAT [50], which generates test cases from algebraic specifications. It is wrapped
into a web service by providing it with a WS interface. The web service version of the
tool is referred to as TCG in the sequel. The following gives some technical details
of the registration, search and invocation of the tester.

In the registration of TCG, the service takes a CASOCC specification file as input
and generates test cases as output. These artefacts are stored in files and referred
to through URLs of the file locations. To describe this service, the following new
classes are added into the ontology.

• CasoccSpecification: a subclass of Specification that stands for algebraic specifi-
cation in CASOCC.

• ComponentTest: a subclass of Context that stands for component testing.
• CASOCCmethod: a subclass of Method that stands for the method of test case

generation from CASOCC.

In its service profile, the serviceClassification is set as TestCaseGeneration. The
Input artefact is specified as the class CasoccSpecification. As described in the pre-
vious section, the service profile has three parameters that represent the aspects of
the service capability. The context of TCG is ComponentTest. Its environment is
Environment and represents no requirement on the test environment. Its method is
CASOCCmethod. The output artefact is TestCase.

190 H. Zhu and Y. Zhang

8.3.2.2 Collaboration Process

Similar to the first running example, suppose that a client wants to test a WS called
NCS, which is a web service that provides numeric calculations of complex numbers.
The client constructs a test task and submits it to the registry to search for a tester.
As a result, a test broker is found to perform the testing.

Figure 8.12 shows the test task that client submitted to the test broker requesting
test NCS against an algebraic specification written in CASOCC. The input artefact
of the task is of type CasoccSpecification, and the output artefact type is TestResult.

Once the test broker receives the test task, it decomposes it into subtasks and
generated a test plan that consisted of the following three subtasks:

• Subtask 1: Generating test cases from the specification. The input artefact of the
task is of type CasoccSpecification. The output of this subtask is of type Casoc-
cTestCase.

• Subtask 2: Transforming the test cases into the format that are executable by
the T-service of NCS. Its input is of type CasoccTestcase and output is of type
CalculatorTestCase.

• Subtask 3: Executing test cases and report test results. Its input is of type Calcula-
torTestCase and its output artefact type is TestResult.

Fig. 8.12 The task to test NCS based on algebraic specification

For each subtask in the test plan, the broker translates it into the corresponding
capability description and constructs a service profile. The test broker then submits

8 A Test Automation Framework for Collaborative Testing 191

the service profile to the Matchmaker to search for appropriate testers. In this case,
testers TCG, TFT and T-NCS are discovered for the subtasks, respectively. The test
planning finishes with each subtask associated with a tester. The test plan is then
passed to the execution module for executing the subtasks.

The task execution module calls the testers associated to each subtask according
to the order given in the test plan. Data are passed from one subtask to another by the
construction of invocation message to the testers. In particular, the output artefact of
a subtask is passed to the next subtask. The output of the third subtask is the final
result of the test, which is again an OWL object. It is returned to the client by the
broker. Figure 8.13 summarises the collaboration process described above.

Test Broker Client

TCG: Test Case
Generator

TFT: Test Case
Format Transformer

T-NCS: Test
Executor for NCS

NCS: Numeric Calculation Web Service

Matchmaker Request
testing NCS

Search
testers

Invoke
tester

Register

Fig. 8.13 The collaboration between the web services in running Example 2

8.4 Discussion: Main Feature of the Framework

The framework implements collaborative testing of WS within the service-oriented
architecture using ontology and also the concept of T-services. In this framework,
various testing functions are provided by T-services, such as generating test plan and
test cases, invoking test executions, collecting test results, checking output correct-
ness, measuring test adequacy and coverage, and so forth. It does not only applicable
to functional testing as demonstrated in the running examples, but also applicable
to non-functional tests, for example, through collaboration with a non-functional
test service. The collaborations between test services are autonomous rather than
enforced. That is, what to test and how to test is the choice of the service requester,
but how to fulfil a client’s test request is the choice of test service provider. A T-
service requester need to search for T-services, negotiate the cost of test, select a
T-service provider and invoke the T-service at runtime. The test activities are then
performed by a T-service provider. Test brokers are also T-services but specialised
in the composition of T-services. Complicated testing processes and interactions
between T-services can be handled by such professionally developed T-services to
simplify the uses of T-services. The approach has the following advantages.

192 H. Zhu and Y. Zhang

A. Scalability
The framework is scalable since T-services are distributed and there is no extra-

burden on UDDI servers. Experiments reported in [52, 57] shows that the average test
service search time increases with the number of testers in the registry, but in almost
a linear manner, as shown in Fig. 8.14. With the size of knowledge base increases, the
time spent by a test broker to generate test service composition plans also increases,
but again in an almost linear rate as shown in Fig. 8.15. With the increase of the
complexity of testing tasks, which is measured by the number of different types of
subtasks to fulfil the task, the time overhead increases in a quadratic polynomial
function as shown in Fig. 8.16. Therefore, the test broker is capable of dealing with
test problems of practical sizes with respect to the number of testers registered, the
size of the knowledge-base, and the complexity of test tasks.

y = 0.0004x 2+ 6.1862x+ 207.16
R²= 0.9948

0

500

1000

1500

2000

2500

3000

3500

0 60 120 180 240 300 360 420 480

T
im

e
(m

s)

The number of services

Search Services Time

Trend

Fig. 8.14 Execution time dependence on the number of testers registered in UDDI

y =4E 05x2+ 0.0609x+20.044
R²= 0.9873

0

50

100

150

200

250

300

350

0 200 400 600 800 10001200140016001800 20002200

T
im

e
(m

s)

The number of task plan templates

AverageTime

Trend

Fig. 8.15 Execution time dependence on the number of plan templates in knowledge-base

8 A Test Automation Framework for Collaborative Testing 193

y = 10.601x2+3168.2x+119.49
R²= 0.9999

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

T
im

e
(s

)

The number of subtasks

Total
Search for Services
Invocation of Subtasks
Task Planning
Trend

Fig. 8.16 Execution time dependence on the number of subtasks

B. Feasibility

The framework is implemented without any change to the existing standards of
Semantic WS [7]. A case study reported in [57] demonstrated that a wide range of
different types of test services can be supported and integrated into the framework.
Table 8.1 summarises the services used in the case study.5

C. Capability of dealing with diversity

The need of dealing with variety is achieved through collaborations among many
T-services and the employment of ontology of software testing to integrate multiple
testing tools. An experiment applying data mutation testing techniques [42] shows
clearly that the framework is capable of dealing with services of subtle differences
so that the best match can be automatically selected to perform testing tasks [57].

D. Fully automated for testing on-the-fly

The automation of test processes for testing on-the-fly, especially the dynamic
composition of T-services, can be also achieved by employing ontology of software
testing and test brokers. Moreover, test executions can be performed by running
a separate T-service, thus they do not interfere with the normal operations of the
services under test.

E. Extendibility

This framework employs an ontology management facility to enhance its extendibil-
ity. With this, the software testing ontology can be extended and maintained through
public services.

5 Java NCSS can be found at URL: http://javancss.codehaus.org/, and PMD can be found at URL:
http://pmd.sourceforge.net/

http://javancss.codehaus.org/
http://pmd.sourceforge.net/

194 H. Zhu and Y. Zhang

Table 8.1 Testers integrated in the framework

Name Description

CASCAT [50] A CASOCC-based test case generation tool
Test case format translator Translates the test case generated by CASCAT into the

format recognizable by calculator test case executor
Test case executor Executes test case for a numeric calculator web service
Klee [16] Generate and execute test cases from C source code by

symbolic execution
Magic [20] Check conformance between component specifications

and their implementations
XML comparator Compare XML files
Java NCSS Measure two standard metrics for Java program
Findbugs [26] Find bugs in Java program by static analysis
PMD A static analysis tool for finding potential bugs and other

problems in Java source code
WSDL-based test generator [2] A WSDL based test case generation tool
Web service test case executor [2] Execute the test case generated by WSDL based test

case generator

8.5 Conclusion and Future work

In this chapter, we presented a service-oriented architecture for testing WS. In this
architecture, various T-services collaborate with each other to complete test tasks.
We employ the ontology of software testing STOWS to describe the capabilities of
T-services and test tasks for the registration, discovery and invocation of T-services.
The knowledge intensive composition of T-services is realized by the development
and employment of test brokers, which are also T-services. We implemented the
architecture in Semantic WS technology. Case studies have demonstrated the fea-
sibility of the architecture and illustrated how to wrap up general purpose testing
tools and turn them into T-services and how to develop service specific T-services to
support the testing of a WS. Experimental evaluation also shows its scalability.

The test broker in the framework plays an important role in automation of testing
processes. Further research on the design and implementation of powerful test bro-
kers will have a significant impact on the usability of the T-services. In particular,
using knowledge of software testing processes to generate test plans seems a promis-
ing topic for further work. Currently, such knowledge of software testing process is
represented in the form of task decomposition rules. A question is whether such
knowledge can be encoded in a process definition language such as BPEL. If yes,
a careful analysis of the benefit and comparison of the two are necessary. Another
direction to enhance the functionality of test brokers is to associate monitoring func-
tions to brokers as Tsai et al. suggested so that the previous performance of T-services
can be taken into consideration in the selection of testers.

An issue that has not been addressed adequately in the prototype is the testing of
long running processes. A simple solution could be to allow testers to distinguish

8 A Test Automation Framework for Collaborative Testing 195

long running processes from short running tasks either in the test request message
(i.e. in the test task description) or in the service description (i.e. in WSDL). An
upper limit to the waiting time for test results should then be set accordingly to avoid
infinite waiting. The broker could also set different running modes for short and long
running tasks.

Moreover, as discussed in Sect. 8.1, a particular difficulty in testing WS is due to
the lack of software artefacts to support test activities. The framework presented in
this chapter offers the opportunity to incorporate a trust mechanism so that design
documents, source code and many other types of internal information of services can
be delivered to trustable T-services. Further research on how such a trust mechanism
to interoperate with the T-services needs to be worked out in detail.

Another hard problem to be solved is associated to the management of ontology.
Consistency problem may occur when the ontology is updated during the execution
of a task. How to prevent such errors and to reduce the risk is still an open question.

Testing is one of the quality assurance activities for the development of services. It
is worth investigating into how to extend and/or adapt the framework for a wider range
of quality assurance activities such as static analysis and verification and dynamic
monitoring of services, etc. This may need to extend the network model of WS to
incorporate the internal structure of services.

Acknowledgments The work reported in this chapter is partly funded by the National Basic
Research Program of China (973) under Grant No. 2011CB302603 and the National Natural Science
Foundation of China under Grant No. 60725206.

References

1. de Almeida, L.F., Vergilio, S.R.: Exploring perturbation based testing for web services. In:
Proc. of ICWS’06, pp. 717–726. IEEE CS (2006)

2. Bai, X., Dong, W., Tsai, W., Chen, Y.: Wsdl-based automatic test case generation for web
services testing. In: Proc. of SOSE’05, pp. 215–220. IEEE CS (2005)

3. Bai, X., Lee, S., Tsai, W.T., Chen, Y.: Ontology-based test modeling and partition testing of
web services. In: Proc. of ICWS’08, pp. 465–472. IEEE CS (2008)

4. Bartolini, C., Bertolino, A., Marchetti, E.: Introducing service-oriented coverage testing. In:
Proc. of ASE’08, pp. 57–64. IEEE CS (2008)

5. Bartolini, C., Bertolino, A., Marchetti, E., Parissis, I.: Data flow-based validation of web ser-
vices compositions: Perspectives and examples. In: R.e.a. Lemos V (ed.) Architecting Depend-
able Systems, LNCS, vol. 5135, pp. 298–325. Springer-Verlag (2008)

6. Belli, F., Linschulte, M.: Event-driven modeling and testing of web services. In: Proc. of
COMPSAC’08, pp. 1168–1173. IEEE CS (2008)

7. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–43
(2001).

8. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: Model-based generation of testbeds for
web services. In: Proc. of TestCom/FATES’08, pp. 266–282 (2008)

9. Bertolino, A., Angelis, G.D., Frantzen, L., Polini, A.: The plastic framework and tools for testing
service-oriented applications. In: Software Engineering: Int’l Summer Schools, (ISSSE’08),
pp. 106–139 (2008)

196 H. Zhu and Y. Zhang

10. Bertolino, A., Gao, J., Marchetti, E.: Xml every-flavor testing. In: Proc. of WEBIST’06, pp.
268–273. INSTICC Press (2006)

11. Bertolino, A., Gao, J., Marchetti, E., A.Polini: Taxi-a tool for xml-based testing. In: Proc. of
ICSE’07 (Companion), pp. 53–54. IEEE CS (2007)

12. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Automatic test data generation for xml schema-
based partition testing. In: Proc. of AST’07, p. 4. IEEE CS (2007)

13. Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Systematic generation of xml instances to test
complex software applications. In: N.e.a. Guelfi (ed.) Rapid Integration of Software Engineer-
ing Techniques, LNCS, vol. 4401, pp. 114–129. Springer (2007)

14. Bertolino, A., Polini, A.: The audition framework for testing web services interoperability. In:
Proc. of EUROMICRO’05, pp. 134–142 (2005)

15. Bozkurt, M., Harman, M., Hassoun, Y.: Testing & verification in service-oriented architecture:
A survey. Software Testing, Verification and Reliability (STVR) (To Appear).

16. Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. OSDI (2008)

17. Canfora, G., Penta, M.: Testing services and service-centric systems: Challenges and opportu-
nities. IT Professional 8(2), 10–17 (2006)

18. Canfora, G., Penta, M.: Service-oriented architectures testing: A survey. In: A. Lucia, F. Ferrucci
(eds.) Software Engineering: Int’l Summer Schools (ISSSE 2006–2008), Revised Tutorial
Lectures, LNCS, vol. 5413, pp. 78–105. Springer-Verlag (2009)

19. Chan, W.K., Cheung, S.C., Leung, K.R.P.H.: A metamorphic testing approach for online testing
of service-oriented software applications. Int’l Journal of Web Services Research 4(2), 61–81
(2007)

20. Edmund, S.C., Clarke, E., Groce, A., Jha, S., Vienna, T.: Modular verification of software
components in c. IEEE Trans. Softw. Eng. 30, 388–402 (2004)

21. Emer, M.P., Vergilio, S.R., Jino, M.: A testing approach for xml schemas. In: Proc. of
COMPSAC’05, pp. 57–62. IEEE CS (2005)

22. Garcia-Fanjul, J., Tuya, J., de la Riva, C.: Generating test cases specifications for bpel compo-
sitions of web services using spin. In: Proc. of WS-MaTe (2006)

23. Hanna, S., Munro, M.: An approach for wsdl-based automated robustness testing of web ser-
vices. In: C.e.a. Barry (ed.) Information Systems Development: Challenges in Practice, Theory,
and Education, vol. 2, pp. 493–504. Springer (2009)

24. Heckel, R., Lohmann, M.: Towards contract-based testing of web services. Electronic Notes
in Theoretical Computer Science 82(6) (2004)

25. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Proc. of FASE’05,
pp. 34–48. Springer (2005)

26. Hovemeyer, D., Pugh, W.: Finding more null pointer bugs, but not too many. In: Proc. of
PASTE’07, pp. 9–14 (2007)

27. Huang, H., Liu, H., Li, Z., Zhu, J.: Surrogate: A simulation apparatus for continuous integration
testing in service oriented architecture. In: Proc. of SCC’08, vol. 2, pp. 223–230. IEEE CS
(2008)

28. Huang, H., Tsai, W., Paul, R., Chen, Y.: Automated model checking and testing for composite
web services. In: Proc. of ISORC’05, pp. 300–307. IEEE CS (2005)

29. IICMVA: Model user guide for implementing online insurance verification, version 4, Insur-
ance Industry Committee on Motor Vehicle Administration, USA. http://www.iicmva.com/
IICMVAPublications.html (2010). (Accessed on 20 Oct. 2010).

30. K. Sycara M. Paolucci, A., Srinivasan, N.: Automated discovery, interaction and composition
of semantic web services. J. Web Semantics 1(1), 27–46 (2003)

31. Kaschner, K., Lohmann, N.: Automatic test case generation for services. In: Proc. of Fourth
Int’l Workshop on Engineering Service-Oriented Applications: Analysis and Design (WESOA
2008), LNCS. Springer-Verlag (2008)

32. Kawamura, T., Blasio, J.A.D., Hasegawa, T., Paolucci, M., Sycara, K.: A preliminary report of
a public experiment of a semantic service matchmaker combined with a uddi business registry.
In: Proc. of ICSOC’03, pp. 208–224. IEEE CS (2003)

http://www.iicmva.com/IICMVAPublications.html
http://www.iicmva.com/IICMVAPublications.html

8 A Test Automation Framework for Collaborative Testing 197

33. Lallali, M., Zaidi, F., Cavalli, A., Hwang, I.: Automatic timed test case generation for web
services composition. In: Proc. of ECOWS’08, pp. 53–62 (2008)

34. Lee, S.C., Offutt, J.: Generating test cases for xml-based web component interactions using
mutation analysis. In: Proc. of ISSRE’01, pp. 200–209. IEEE CS (2001)

35. Li, J.B., Miller, J.: Testing the semantics of w3c xml schema. In: Proc. of COMPSAC’05, pp.
443–448. IEEE CS (2005)

36. Li, Z., Sun, W., Jiang, Z.B., Zhang, X.: Bpel4ws unit testing: Framework and implementation.
In: Proc. of ICWS’05, pp. 103–110. IEEE CS (2005)

37. Looker, N., Munro, M., Xu, J.: Ws-fit: A tool for dependability analysis of web services.
In: Proc. of COMPSAC’04, pp. 120–123. IEEE CS (2004)

38. Magee, J., Kramer, J., Uchitel, S., Foster, H.: Ltsa-ws: a tool for model-based verification of
web service compositions and choreography. In: Proc. of ICSE’06, pp. 771–774. IEEE CS
(2006)

39. Mayer, P.: Design and implementation of a framework for testing bpel compositions. Master’s
thesis, Leibnitz Univ., Germany (2006)

40. Mei, L., Chan, W.K., Tse, T.H.: Data flow testing of service-oriented workflow applications.
In: Proc. of ICSE’08, pp. 371–380. IEEE CS (2008)

41. Offutt, J., Xu, W.: Generating test cases for web services using data perturbation. SIGSOFT
Softw. Eng. Notes 29(5), 1–10 (2004)

42. Shan, L., Zhu, H.: Generating structurally complex test cases by data mutation. The Computer
Journal 52, 571–588 (2009)

43. Srinivasan, N., Paolucci, M., Sycara, K.: Adding owl-s to uddi, implementation and throughput.
In: Proc. of The 1st Int’l Workshop on Semantic Web Services and Web Process Composition,
pp. 169–182 (2004)

44. Tsai, W., Chen, Y., Paul, R., Liao, N., Huang, H.: Cooperative and group testing in verification
of dynamic composite web services. In: Proc. of COMPSAC’04, vol. 2: Workshops and Fast
Abstracts, pp. 170–173. IEEE CS (2004)

45. Tsai, W., Paul, R., Song, W., Cao, Z.: Coyote: An xml-based framework for web services
testing. In: Proc. of HASE’02, pp. 173–174. IEEE CS (2002)

46. Tsai, W., Wei, X., Chen, Y., Paul, R., Bai, X.: Swiss cheese test case generation for web services
testing. IEICE - Trans. Inf. Syst. 88(12), 2691–2698 (2005)

47. Tsai, W., Zhou, X., Chen, Y., Bai, X.: On testing and evaluating service-oriented software.
Computer 41(8), 40–46 (2008)

48. Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for testing web
services. In: Proc. of ISADS’07, pp. 43–50. IEEE CS (2007)

49. Xu, W., Offutt, J., Luo, J.: Testing web services by xml perturbation. In: Proc. of ISSRE’05,
pp. 257–266. IEEE CS (2005)

50. Yu, B., Kong, L., Zhang, Y., Zhu, H.: Testing java components based on algebraic specifications.
In: Proc. of ICST’08, pp. 190–199. IEEE CS (2008)

51. Zhang, Y., Zhu, H.: Ontology for service oriented testing of web services. In: Proc. of SOSE’08.
IEEE CS (2008)

52. Zhang, Y., Zhu, H.: An intelligent broker approach to semantics-based service composition.
In: Proc. of COMPSAC 2011, pp. 20–25. IEEE CS, Munich, Germany (2011)

53. Zheng, Y., Zhou, J., Krause, P.: An automatic test case generation framework for web services.
Journal of Software 2(3), 64–77 (2007)

54. Zhu, H.: A framework for service-oriented testing of web services. In: Proc. of COMPSAC’06,
pp. 679–691. IEEE CS (2006)

55. Zhu, H., Huo, Q.: Developing a software testing ontology in uml for a software growth envi-
ronment of web-based applications. In: e. H. Yang (ed.) Software Evolution with UML and
XML, pp. 263–295. IDEA Group Inc. (2005)

56. Zhu, H., Huo, Q., Greenwood, S.: A multi-agent software environment for testing web-based
applications. In: Proc. of COMPSAC’03, pp. 210–215. IEEE CS (2003)

57. Zhu, H., Zhang, Y.: Collaborative testing of web services. IEEE Transactions on Services
Computing 5(1), 116–130 (2012)

	8 A Test Automation Framework for Collaborative Testing of Web Service Dynamic Compositions
	8.1 Introduction
	8.2 The Test Automation Framework
	8.2.1 The Architecture of the Framework
	8.2.2 Test Services
	8.2.3 Registry and Matchmaker
	8.2.4 STOWS: Ontology of WS Testing
	8.2.5 Ontology Manager

	8.3 Running Examples
	8.3.1 Example 1: Testing On-The-Fly for WS Dynamic Composition
	8.3.2 Example 2: Wrapping A Testing Tool into a Test Service

	8.4 Discussion: Main Feature of the Framework
	8.5 Conclusion and Future work
	References

