
Chapter 22
TOSCA: Portable Automated Deployment
and Management of Cloud Applications

Tobias Binz, Uwe Breitenbücher, Oliver Kopp and Frank Leymann

Abstract Portability and automated management of composite applications are
major concerns of today’s enterprise IT. These applications typically consist of
heterogeneous distributed components combined to provide the application’s func-
tionality. This architectural style challenges the operation and management of the
application as a whole and requires new concepts for deployment, configuration,
operation, and termination. The upcoming OASIS Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA) standard provides new ways to enable
portable automated deployment and management of composite applications. TOSCA
describes the structure of composite applications as topologies containing their
components and their relationships. Plans capture management tasks by orchestrat-
ing management operations exposed by the components.This chapter provides an
overview on the concepts and usage of TOSCA.

22.1 Introduction

The increasing use of IT in almost any part of today’s enterprises leads to a steadily
increasing management effort, a challenge for enterprises as each new system or tech-
nology increases the degree of complexity [11]. This can be tackled by automation of

T. Binz (B) · U. Breitenbücher · O. Kopp · F. Leymann
University of Stuttgart, IAAS,
Universitätsstr. 38, 70569 Stuttgart, Germany
e-mail: binz@iaas.uni-stuttgart.de

U. Breitenbücher
e-mail: breitenbuecher@iaas.uni-stuttgart.de

O. Kopp
e-mail: kopp@iaas.uni-stuttgart.de

F. Leymann
e-mail: leymann@iaas.uni-stuttgart.de

A. Bouguettaya et al. (eds.), Advanced Web Services, 527
DOI: 10.1007/978-1-4614-7535-4_22,
© Springer Science+Business Media New York 2014

528 T. Binz et al.

IT management or by outsourcing to external providers [18], which are both enabled
and supported by cloud computing.

In recent years, cloud computing introduced a new way of using and offering IT
software, platforms, and infrastructure services [21]. The “utility-like” offering of
these services and flexible “pay-per-use” pricing are similar to how resources such as
electricity and water are offered today [18]: Applications and other IT resources such
as compute and storage must not be bought upfront and managed by the enterprise
on its own, but can be simply requested when the respective functionality is actu-
ally needed—without dealing with the complexity of management, configuration,
and maintenance. Therefore, enterprises move from a model of capital expenditure
(CAPEX) to operational expenditure (OPEX) [1]. These approaches are expected to
change the way how enterprises use and think about IT and may even relieve them
from owning their own IT environment, which could be seen as the “next revolu-
tion in IT” [17]. Not only Gartner considers the efficient use of cloud computing as
one of the key success factors for enterprises [12]. From a provider’s perspective,
automating the management of the offered services is of vital importance, because
management and operation of IT is one of the biggest cost factors today—in terms
of money and time. The ability to offer services which are elastic, self-serviced,
rapidly provisioned, and priced based on actual consuption (pay-as-you-go) depends
on the degree of automation of management. Thus, the management has to be orga-
nized in an industrial manner, i.e., shared throughout a number of customers and
tenants [18].

Enterprise applications are typically complex composite applications, which con-
sist of multiple individual components, each providing a clearly distinguishable piece
of functionality. The functionality of the involved components is aggregated and
orchestrated into a composite application providing a higher-level of functionality.
Components typically have relationships to other components. For instance, a Web
server component runs on an operating system component or an application con-
nects to a database and external services. These composite enterprise applications
typically rely on modular, component based architectures, which benefit from cloud
technologies and properties such as elasticity, flexibility, scalability, and high avail-
ability [1, 5, 33, 34]. The different components involved need to be managed in
terms of deployment, configuration, quality of service, and their communication to
other components. The management becomes time-consuming and error-prone if
the application structure, i.e., its components and relations, are not documented in
a well-defined, machine-readable format. The management is often done manually
by executing scripts or even completely manual work, which hinders automation,
repeatability, and self-service.

To enable the creation of portable cloud applications and the automation of their
deployment and management, the application’s components, their relations, and man-
agement must be modeled in a portable, standardized, machine-readable format. This
is where TOSCA—the Topology and Orchestration Specification for Cloud Appli-
cations [24]—proposes an XML-based modeling language tackling these issues by
formalizing the application’s structure as typed topology graph and capturing the
management tasks in plans. In the scope of IT service management in general

22 TOSCA: Portable Automated Deployment 529

and cloud computing in particular, three problems are addressed by TOSCA: (1)
automated application deployment and management, (2) portability of applications
and their management, and (3) interoperability and reuseability of components. An
overview on TOSCA and how TOSCA addresses these challenges is provided in
Sect. 22.2. After presenting the details of TOSCA in Sect. 22.3, we describe the
supporting ecosystem in Sect. 22.4. In Sect. 22.5, we discuss how TOSCA achieves
portability of composite cloud applications and what to do to improve portability of
a TOSCA application. Finally, we close with our conclusions in Sect. 22.6.

22.2 Overview on TOSCA

TOSCA is an upcoming OASIS standard to describe composite (cloud) applica-
tions and their management. It provides a standardized, well-defined, portable, and
modular exchange format for the structure of the application’s components, the rela-
tionships among them, and their corresponding management functionalities. In this
section, we provide a brief overview on the main concepts (Sect. 22.2.1) and which
challenges in the are of cloud computing are addressed by TOSCA (Sect. 22.2.2).

22.2.1 Main Concepts of TOSCA

TOSCA enables full automated deployment, termination, and further management
functionalities, such as scaling or backing up applications through the combination
of the two TOSCA main concepts: (1) Application topologies and (2) management
plans. Application topologies provide a structural description of the application, the
components it consists of and the relationships among them. Each node is accompa-
nied with a list of operations it offers to manage itself. Thus, the topology is not only
a description of the application’s components and their relations, but also an explicit

Node

Application Topology

calls
Node

Management Plans

Relationship

Management
Operation

TOSCA-based Application Description

X

Fig. 22.1 Relation of TOSCA concepts

530 T. Binz et al.

declaration of its management capabilities. Management plans combine these man-
agement capabilities to create higher-level management tasks, which can then be
executed fully automated to deploy, configure, manage, and operate the application.
Figure 22.1 presents an abstract TOSCA-based application description, showing the
two TOSCA main concepts and their relation: The application topology contains
nodes, which are connected by relationships. Management plan are started by an
external message and call management operations of the nodes in the topology.

22.2.2 Challenges Addressed by TOSCA

In the area of cloud computing, there is a number of research challenges (cf. [9, 14]).
This section discusses three major challenges and how TOSCA addresses them,
namely ensure the portability of applications (Sect. 22.2.2.1), enable the auto-
mated management of applications (Sect. 22.2.2.2), and allow interoperability and
re-usability of application components (Sect. 22.2.2.3).

22.2.2.1 Automated Management

The management of applications plays an important role in enterprise IT (see
Sect. 22.1). Especially external solutions impose the problem that the respective man-
agement knowledge must be acquired by each user, which usually results in slow and
error prone manual management. TOSCA aims to formally capture the knowledge
of the creator of the IT solution, who has all the knowledge of the solution’s internals
and proven best practices, in management plans [2]. These plans make the manage-
ment of complex enterprise applications automated, repeatable, traceable, and less
error prone. Users can easily fulfil management tasks without deep knowledge on
how to manage the IT solution.

Management plans are portable between various environments and can be exe-
cuted fully automated to support self-service management and rapid elasticity, both
major requirements in cloud computing today. TOSCA enables these capabilities
by using workflows to define management plans: Workflows provide the properties
portability and fully automated execution [20].

22.2.2.2 Portability of Applications

Current technologies and cloud providers usually define proprietary APIs to man-
age their services. Thus, moving an application based on these technologies to
another provider requires rebuilding management functionalities and often even re-
implementing parts of the application, if they use proprietary APIs offered only by
the former provider. This is called vendor lock-in, which is the fact that the invest-
ment to switch from one provider to another provider is too expensive for a customer
to be done economically. There is current research on technologies abstracting from

22 TOSCA: Portable Automated Deployment 531

concrete APIs towards a unified interface for different APIs in order to reduce the
problem of vendor lock-in, for example the work by Petcu et al. [29]. This may
prevent vendor lock-in on the lower level but the user is then locked into this unified
API, if, for instance, the unified API does not support certain providers. Research on
this issue has already proposed solutions for supporting movability and migration
of applications on a functional level, but especially application portability in terms
their (automated) management is still a big problem [3, 19, 30]. TOSCA achieves
portability by fomalizing the application topology as well as its management in a
self-contained way. Each component defines and implements its management func-
tionality in a portable way. How TOSCA achieves portability is discussed in detail
in Sect. 22.5.

22.2.2.3 Interoperability and Reusability of Application Components

TOSCA aims to enable the interoperability and reusability of application components
such as Web servers, operating systems, virtual machines, and databases. These com-
ponents are defined in a reusable manner by the developers, providers, or third parties
together with their executables. Components of different providers do not stand on
their own, as TOSCA enables combining them into new composite applications.
Thus, TOSCA enables defining, building, and packaging the building blocks of an
application in a completely self-contained manner. This allows a standardized way
to reuse them in different applications.

22.3 TOSCA in Detail

TOSCA conceptually consists of two different parts: (1) The structural descrip-
tion of the application, called topology, and (2) the standardized description of the
application’s management by plans. These concepts are explained in Sects. 22.3.1
and 22.3.2 in detail. Instantiating the topology requires software files such as instal-
lables. In TOSCA, required software files, the topology and the management plans
are packaged into one TOSCA archive. Section 22.3.3 describes this packaging.
Section 22.3.4 describes an application topology example with a respective man-
agement plan for deploying the exemplary application.

22.3.1 TOSCA Application Topologies

In TOSCA, the structure of a composite application is explicitly modeled by a col-
ored graph called “application topology”. Vertices represent the components of a
composite application, edges represent different kinds of relations between these
components. Relations may be, for example, one component is hosted on, depends

532 T. Binz et al.

Web Shop
(PHP Application)

PHP Container
(Apache PHP Module)

Web Server
(Apache)

Operating System
(Windows 2003 Server)

Server
(IBM Z Series)

deployedOn

installedOn

installedOn

hostedOn

Fig. 22.2 Conceptual layers of TOSCA-based applications

on, or communicates with another component. Figure 22.2 shows a PHP example
topology delivering a PHP Web shop: A Windows 2003 Server operating system is
hosted on an IBM server. Thereon, an Apache Web server is installed together with
the PHP module on which the PHP application is deployed.

Vertices and edges in the topology may define additional properties, the man-
agement operations they offer, the artifacts required to run the component, or non-
functional requirements. It is important to note that TOSCA does not only define the
functional aspects of vertices and edges, i.e., providing a certain business functional-
ity such as a Web service implementation, but in addition defines their management
operations, for example, how to setup the component, establish a relation, deploy
artifacts, scale-up, or backup. These management functionalities are reflected in the
topology model and are the basis for the automated management concept of TOSCA,
which is described in Sect. 22.3.2.

Figure 22.3 presents the structural elements of a Service Template: The Topol-
ogy Template, Node Templates, Relationship Templates, and their types. The term
template is used to indicate that it may be instantiated more than once and does not

22 TOSCA: Portable Automated Deployment 533

Node
Template

P
ro

pe
rt

ie
s Interfaces

Topology Template

type

NodeType

Relationship
Template

Service Template

type

P
ro

pe
rt

ie
s Relationship Type

Node
Template

Node
Template

Management Plan

X

Fig. 22.3 General structure of TOSCA service template (adapted from [24])

reflect the existing infrastructure. Each template is associated with a type, which
defines the semantics of the template.

The layers of the topology are discussed in detail in Sect. 22.3.1.1. Section 22.3.1.2
details Node Types and Relationship Types. Node Templates and Relationship Tem-
plates are detailed in Sect. 22.3.1.3.

22.3.1.1 Conceptual Layers of TOSCA

To enable a clear understanding of TOSCA it is important to distinguish three con-
ceptual layers as shown in Fig. 22.4: TOSCA defines a metamodel and exchange
format for (1) types and (2) templates, which results in a third layer, the (3) instance
layer, which depends on the TOSCA runtime (discussed in Sect. 22.4.2).

The metamodel layer defines Node Templates, which represent components, and
Relationship Templates, representing the relations among the components, e.g., a
hosted on relationship is used to define that a Web server component is hosted on
an operating system component. These templates are typed with reusable types, i.e.,
Node Type for Node Templates and Relationship Type for Relationship Templates,
respectively. These types are conceptually comparable to abstract classes in Java,
whereas the templates are comparable to concrete classes extending these abstract
classes.

The instance-layer represents the real instances of the components and relation-
ships defined by templates. Thus, an instance of a Web server Node Template is a

534 T. Binz et al.

Node Type Relationship Type

Node Template Relationship Template

Node Instance Relationship Instance

Types

Templates

Instances

TOSCA
Metamodel

template Of Type template Of Type

instance Of Template instance Of Template

Fig. 22.4 Conceptual layers of TOSCA-based applications

real existing instantiated Web server node, i.e., several instances may be created in
“the real world”.

22.3.1.2 Node Types and Relationship Types

This section describes the information TOSCA offers to specify at Node Types and
Relationship Types.

Properties of Node Instances. A node instance may have properties. Therefore,
the respective Node Type references an XSD element (or type, [35]) declaring the
schema for the actual property document. Properties are runtime information such
as IP address, username, configuration, ports, and all other information required
for deployment and management of the application. XSD supports lists and other
complex structures, which basically allows to store all kind of information. In addi-
tion, XSD defines a strict schema for the resulting properties which can be used for
validation. Templates are capable to define property defaults used at instantiation,
for instance, the default port or username of the administrative interface. Support
for reading and writing the properties is offered by a TOSCA container, which is
explained in Sect. 22.4.2.

Deployment Artifacts. Deployment Artifacts specify the actual implementation
of a Node Type. For example, an operating system type may have an image as Deploy-
ment Artifact and a Web server Node Type a Tomcat servlet container installable.
During deployment of the application, the Deployment Artifacts are put onto the
respective node. The concrete deployment procedure is not defined in the TOSCA
topology. It is up to the management plans and management operations of the nodes.

Lifecycle Definition. Relationship instances and node instances may be in dif-
ferent states which aggregate the complex internal state of the instance. Example
states are starting, running, stopping, and error. During runtime, each instance is in
one of these states. The transition between the states is not described in a TOSCA
model itself: The management plans and management operations trigger transitions

22 TOSCA: Portable Automated Deployment 535

between the states. A TOSCA model defines, however, which states are possible in
general: The possible states are defined as URIs in the respective types.

Management and Implementation Artifacts. Each hardware and software com-
ponent offers explicit and implicit management capabilities. Explicit capabilities are
startup parameters, configuration files, management interfaces, hardware buttons
and so on. Implicit capabilities are descriptions of how to backup the application by
copying a certain file, for instance. Offered operations include deployment opera-
tions, which are the deployment of an application on an application server or instan-
tiating a new virtual machine, for instance. Further operations are offered for the
management of an application, for example, upgrade, backup, scale up, and config-
ure. A new concept introduced by TOSCA is that management capabilities of Node
Types and Relationship Types are explicitly defined as REST-Service [10], WSDL-
service [6], or scripts [26]. However, not all management capabilities of nodes are
accessible that way. This is either because of technical reasons, such as incompatible
protocols, or due to logical reasons, such as the operation being part of a composed
operation. Management plans require standardized interface descriptions to be able to
access management operations (see Sect. 22.3.2). Offering management capabilities
not directly accessible by TOSCA plans is done by Implementation Artifacts. They are
basically small management applications delivered together with the TOSCA appli-
cation (cf. Sect. 22.3.3). Implementation Artifacts expose management capabilities
of a Node Type via REST, WSDL, or script interfaces. Internally, they can do any-
thing required to provide this functionality, including the invokation of management
capabilities not compatible with TOSCA before. This ensures that all management
operations are either offered by the node itself, an external service, a script, or an
Implementation Artifact. Therefore, each Node Type or Relationship Type is self-
contained with respect to its management. These basic management operations are
then orchestrated by management plans into higher level management functionality
spanning the whole application and, therefore, making the application self-contained
with respect to its management.

Policies. TOSCA provides a generic container for attaching policies, for exam-
ple, using WS-Policy [36] or the Rei Ontology [13], to nodes and relationships. The
TOSCA specification does not state how and when policies are evaluated; it is only
expected that a TOSCA-compliant environment respects these policies. Two exam-
ples for using policies are a connection (represented by a Relationship Template)
with a policy that this connection must be encrypted and a server (represented by a
Node Template) with a policy that a certain power consumption must not be exceeded
during operation.

Standardized and Derivation Types. Node Types and Relationship Types can be
refined through derivation [24, Sect. 4.3]. For instance, the Node Type Tomcatmay
be derived from Node Type JavaApplicationServer and the Relationship
Type JDBCConnection may be derived from Relationship Type connectsTo.
Each type may be derived from exactly one or no other type, which structures the
types as trees.

Derivation enables groups of subject matter experts to standardize selected Node
Types and Relationship Types. For instance, a generic virtual machine with its prop-

536 T. Binz et al.

erties and operations may be offered as standardized Node Type. Vendors extend
these standardized Node Types to offer their specific implementations. Besides offer-
ing standardized functionality, they might add proprietary functionality representing
their competitive advantage. Offering different solutions under a common interface
simplifies the creation of applications suitable for multiple environments and fosters
portability.

From the ecosystem perspective (cf. Sect. 22.4), cloud and application providers
may create and distribute libraries containing the Node Types and Relationship Types
for their services and products to enable frictionless usage of them when building
new applications.

22.3.1.3 Node Templates and Relationship Templates

Node Templates and Relationship Templates, which are typed with exactly one
Node Type or Relationship Type respectively, are composed to create the Topology
Template of a TOSCA application. Templates define how the respective type is
instantiated for use in the application. Templates allow defining the start values of
the properties by specifying defaults for the properties. Deployment Artifacts, Imple-
mentation Artifacts, and policies may be overwritten and extended to adjust the types
for the usage in the respective application, for example, an Web Shop Application
Node Template of Node Type PHP Application defines a Deployment Artifact, which
contains the respective PHP application files. Additionally, constraints may be put
on properties to ensure that the properties fit to the overall application. For instance,
the IP range of an application might be restricted to internal IPs of the company.

A Node Template may be instantiated multiple times. For instance, this is the case
when there are multiple cluster nodes of an application or database cluster. Instead of
requiring to put multiple Node Templates into the Topology Template, the properties
minInstances and maxInstances are offered to set the range of the number
of instances. This concept also supports Node Templates having a variable number
of instances during runtime. For instance, the number of cluster nodes may be scaled
up and down between 2 and 10. During runtime, for each instance of a Topology
Template, each Node Template instance has its own identity and properties. This is
obviously required, for example, to have multiple cluster nodes being equal besides
the properties IP address and average load.

Grouping subgraphs of the Topology Template is possible by using Group Tem-
plates, which can be nested, but not overlapping. Group Templates can be used to
separate nodes technically. For instance, a database cluster may be scaled indepen-
dently of the other parts of the application. Either physically, e.g., by hosting all nodes
of the database cluster in one dedicated data center, or logically, e.g., by assigning
all database cluster nodes to a certain operations department.

22 TOSCA: Portable Automated Deployment 537

22.3.2 TOSCA Management Plans

Section 22.3.1.2 showed how nodes and relationships offer their management capa-
bilities. Based on the brief introduction to the concepts of management plans in
Sect. 22.2, this section discusses details of the management plan concept. Manage-
ment plans are not restricted to management operations of one node or relationship,
but can also invoke a series of operations from different nodes, relationships, and
also external services, including a human task interface [23]. Therefore, they are able
to cover all kind of management tasks required by a TOSCA application.

Without TOSCA, the deployment and management of composite applications
requires extensive, mostly manual, effort by the administrator, e.g., installing soft-
ware on servers by using installation software provided on a DVD, logging onto
servers updating applications, or creating backups. Each user has to learn on its
own how to manage and operate the application, most of them making the same
experiences and encounter the same difficulties, acquire management knowledge,
and sometimes automate some management aspects through scripts. This is even
more complicated for complex composite applications involving a large number of
components by different vendors, which are combined to provide a certain business
functionality. It requires significant knowledge and effort to provision, deploy, con-
figure, manage, and, finally, terminate the components and their relationships [31].
TOSCA tackles these issues by enabling application developers and operators to
capture reoccurring management tasks as management plans, which can be executed
fully automated and thus decrease manual effort for application management and
operation. Plans formalize the management knowledge and best practices implicitly
for everyone to reuse. The management cost of applications described using TOSCA,
including management plans, is significantly lower, especially because enterprises
executing these management plans must not know all the details behind the man-
agement best practices. Figure 22.5 presents a simplified management plan used to
deploy a PHP-based application: The plan installs an Apache Web server on a Win-
dows operating system, installs the PHP module on that Web server, and finally
deploys the PHP application thereon.

Automation of application management is a prerequisite to realize key cloud
properties. Most important are self-service and rapid elasticity. Self-service means
that a customer can instantiate and manage his application instance himself, e.g.,
add a new email account. Rapid elasticity enables on demand growing and shrinking
of resources depending on the user needs, e.g., extending the storage of an email
account. When going beyond cloud computing, automation has always been a key
goal in IT service and application management. We want to stress that, despite its
name, TOSCA is by no means restricted to cloud applications.

TOSCA does not introduce a new language for modeling and executing plans.
Instead, TOSCA includes plans by using existing workflow languages such as the
Business Process Model and Notation (BPMN, [25]) or the Business Process Exe-
cution Language (BPEL, [22]). By using workflow technology to automate man-
agement tasks, TOSCA benefits from all the capabilities and properties of workflow
languages and workflow execution environments. These properties include parallel

538 T. Binz et al.

Install Windows
on Server

Install Apache
WebServer on

Windows

Install PHP
Module on
WebServer

Deploy PHP
Application on
PHP Container

Fig. 22.5 Example management plan for deploying a PHP-based application

execution, monitoring, compensation, recovery, auditing, and tracing functionalities
[20]. In addition, established workflow languages and environments also support
human tasks to include manual work into the management plans. A typical example
for a manual task, which cannot be executed automatically without human interven-
tion, is installing physical infrastructure such as servers, network components, or
storage as basis for virtualized environments. Using workflow technology moves the
low level management tasks onto business processes level and makes them accessible
to people or software not aware of the technical management details.

To ensure portability of management plans, TOSCA relies on the portability of
standardized workflow languages such as BPEL and BPMN. The recommended
workflow language for TOSCA management plans is BPMN. However, TOSCA
allows plans to be defined in any workflow language providing clear execution seman-
tics required for automated execution. Unfortunately, not all existing languages are
suitable as many process modeling languages focus either on modeling or on execu-
tion [16, 28, 32].

22.3.2.1 Scripts and Plans

Today, many tasks in systems and operations management of applications are already
automated by using scripts. These scripts are typically—often manually—copied to
the target system on which they are executed. In comparison to plans, these scripts can
be seen as microflows: small isolated pieces of work which can be executed fast and
do not require transactional support, called micro script stream without transactions
by Leymann and Roller [20]. In TOSCA, scripts are used for small management
tasks such as setting up databases on a single component, whereas plans are used for
large management tasks typically involving multiple components such as deploying
a Tomcat servlet container on a Linux operating system followed by the configuration
of both components. Of course, both concepts can be combined to provide the ability
of specifying management operations on different layers of granularity. Then, plans
represent workflows orchestrating several microflows represented by scripts.

A main benefit of this separation of concerns is provided by the combination of
both concepts: Plans can use scripts to do more fine grained work directly on the
target components while all problems of script handling such as data passing from
and to other tasks, error handling, compensation, and recovery can be done by the
workflow technology, which is on a much more coarse grained layer. Thus, wrapping
script handling through workflow technology increases the level of abstraction for
the operators as they do not have to deal with the deep technical details of script

22 TOSCA: Portable Automated Deployment 539

handling [15]. This is in line with the programming-in-the-large idea by DeRemer
and Kron [8], which is applied by the workflow technology, too [20].

22.3.2.2 Plan Usage of the Application Topology Model

Management plans may inspect the application topology to retrieve nodes and rela-
tionships in order to manage them. This may be necessary for flexible plans not
developed for one specific application topology to manage, but for multiple different
topologies consisting of similar structures, or at least similar components. Thus, the
plan needs information about the concrete structure of the considered topology to find
the respective components and relationships therein the plan is supposed to manage.
One example is a large topology consisting of multiple software stacks and a plan
which updates the operating system components of each stack.

Management plans are executed on external workflow engines and may do various
kinds of manipulations on the node and relationship instances. During operation, the
state of node and relationship instances may change. For instance, the patch level of
an operating system changes after installing a patch on an operating system node.
To transfer this state information between different management plans, they need to
store this information externally of the workflow context to make them accessible
by various stakeholders. Therefore, the possible properties of nodes are explicitly
defined by a schema to standardize accessing them. This information is included in
the application topology model (see Sect. 22.3.1.2) and plans may read and write
these service instance state information [2].

22.3.3 Packaging

A TOSCA Service Template defines application topologies and corresponding man-
agement plans. The physical associated files such as Implementation Artifacts and
Deployment Artifacts, scripts, or XML schema files are packaged together with
the actual Service Template into a TOSCA archive, called “Cloud Service Archive
(CSAR)” [24, Sect. 3.3]. This standardized archive format provides a way to pack-
age applications fully self-contained, with all required management functionali-
ties into one single file used for installing the application. Thus, the archive can
be seen as single installable for complex composite applications including their
management. A TOSCA archive can be deployed on a TOSCA runtime environ-
ment (see Sect. 22.4.2) which is responsible for installing the application package,
i.e., processing the archive. TOSCA archives follow a standardized format ensur-
ing portability between different TOSCA runtime environments and thus provide an
exchange format for complex composite applications including their management
functionalities. Figure 22.6 shows the conceptual structure of a TOSCA archive.

540 T. Binz et al.

TOSCA Service Template

TOSCA Archive

Files

/DeploymentArtifacts

/ImplementationArtifacts

/Schemas

/Plans

/Scripts

/TOSCA-Metadata

/…

Node
Template

P
ro

pe
rt

ie
s Interfaces

Topology Template

type

NodeType

Relationship
Template

type

P
ro

pe
rt

ie
s RelationshipType

Node
Template

Node
Template

Management Plan

X

Fig. 22.6 Conceptual structure of TOSCA archives

22.3.4 TOSCA-Based Example Application

In this section we describe a TOSCA application example and a corresponding build
plan, which deploys and instantiates the application. The example implements an
online Web shop which consists of two functionally different software stacks: The
first stack provides a Web-based GUI for the Web shop application, the second stack
provides product information data stored in a MySQL database accessible through
a REST API which is called by the Web-based GUI.

The complete application topology is presented in Fig. 22.7. The stack providing
the GUI is presented on the left side of the figure. The infrastructure layer of this
stack consists of a Server Node Template of Node Type IBM Z Series. This represents
a physical server node. Thereon runs a Windows operating system represented by
an Operating System Node Template of Node Type Windows 2003 Server. On this
OS, a Web server Node Template of Node Type Apache runs with an installed PHP
Module, which in turn is represented as a PHP Container Node Template of Node
Type Apache PHP Module. This container is able to run PHP-based applications.
The Web Shop Node Template of Node Type PHP Application implements the GUI
of the Web shop software and is hosted on the PHP Container.

The infrastructure layer of the second topology stack providing product data for
the Web-based GUI consists of a Virtual Server Node Template of Node Type AWS
EC2 Server. This is an Infrastructure-as-a-Service (IaaS, [21]) offering provided
by Amazon.1 On this virtualized infrastructure an operating system of Node Type
Windows 7 runs in a VM which is represented by an Operating System VM Node
Template. On this operating system, there are two components hosted on: A Servlet
Container Node Template of Node Type Tomcat and the Product Database Node

1 http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

22 TOSCA: Portable Automated Deployment 541

Product REST API
(WAR)

Operating System VM
(Windows 7)

Virtual Server
(AWS EC2 Server)

Servlet Container
(Tomcat)

Product Database
(MySQL Database)

(hostedOn)

Connection
(JDBC Connection)Web Shop

(PHP Application)

PHP Container
(Apache PHP Module)

Web Server
(Apache)

Operating System
(Windows 2003 Server)

Server
(IBM Z Series)

Call
(HTTP Call)

Fig. 22.7 Example TOSCA application topology

Template of Node Type MySQL Database, which represents the database in which
the product data are stored. On the servlet container, there is a REST API providing
access to the product data stored in the database. The API is implemented as Java
application, which is deployed as Web Archive (WAR) file. This Java application is
hosted on the Tomcat servlet container and is represented as Product REST API Node
Template of Node Type WAR hosted on the servlet container node. For simplification
reasons, we modeled all runsIn, deployedOn, and installedIn relations as hostedOn
relation, which is the parent Relationship Type for all these Relationship Types.

The Build Plan shown in Fig. 22.8 is responsible for deploying both software
stacks. We simplified the plan in some points to reduce the degree of complexity. For
instance, handling of security issues (e.g., password generation and storage) are hid-
den. BPMN supports parallel execution of tasks. Therefore, the two software stacks
are deployed in parallel. First, the deployment of the Web-based GUI is described.
The first activity installs the Windows 2003 Server operating system on a physical
server whose IP-address is given by the input message of the Build Plan. Thus, for
executing the plan, the IP-address of the server has to be known by the operator
and written into the input message. After the OS is installed, the subsequent activ-
ity configures the operating system such as setting the correct firewall rules. After
that, the Apache Web server is installed on the Windows 2003 operating system,
the PHP Module is installed on the Apache Web server and the PHP Application
is deployed into the PHP Container. The second software stack is deployed in the

542 T. Binz et al.

parallel branch. First, an activity acquires a Windows 7 VM on Amazon EC2. The
required credentials are contained in the input message of the plan, i.e., the operator
has to know the credentials and put them into the input message for executing the
plan. After the operating system VM is provisioned, installing the Tomcat servlet
container followed by the deployment of the WAR file on it are done in parallel with
installing the MySQL database server. The REST API Java application has to know
the endpoint of the database. The last activity in this parallel branch sets this endpoint
to the Java application. After both application stacks are deployed, the Web-based
GUI needs to know the endpoint of the REST API. This is done by the last activity
of the workflow which sets this endpoint to the PHP application.

22.4 Supporting Ecosystem

TOSCA specifies an exchange format for application topologies and their manage-
ment plans. The TOSCA standard does not live on its own, but requires a supporting
ecosystem to exploit its full potential. This section presents three key parts which
are important for a viable TOSCA ecosystem: (1) Topologies and their management
plans have to be modeled properly (Sect. 22.4.1). (2) After a TOSCA model is created,
it has to be interpreted by a TOSCA-compliant runtime environment to enable auto-
matic deployment and management (Sect. 22.4.2). (3) Finally, Sect. 22.4.3 presents
how an application marketplace could benefit from the new possibilities enabled by
TOSCA.

Install
Windows on

Server

Install Apache
Web Server
on Windows

Configure
Windows

Install PHP
Module on

Apache Web
Server

Deploy PHP
Application on
PHP Container

Set REST API
Endpoint

Acquire
Windows VM

on EC2

Install
Tomcat Servlet

Container on
Windows VM

Install MySQL
Database on
Windows VM

Deploy WAR on
Tomcat Servlet

Container

Set Database
Endpoint

Fig. 22.8 Build plan for the example application

22.4.1 Modeling Tool Support

As TOSCA’s representation format is XML, modeling TOSCA-based applications
and their management plans, typically also having a textual XML representation,
may be time-consuming when using text editors only. XML editors may be helpful

22 TOSCA: Portable Automated Deployment 543

as TOSCA defines a schema which can be used by the editor to provide features such
as auto-completion and tag-proposals. These tools might help avoiding syntactic
errors and improve the speed of creating models compared to pure text editors. Nev-
ertheless, they are still uncomfortable as manual typing is error prone and semantical
dependencies are hard to recognize textually by the user or the tool.

Therefore, graphical modeling tools tailored towards TOSCA could reduce the
effort significantly as topologies as well as plans can be represented visually easily.
For example, modeling topologies can be enriched with graphical details, such as
icons for nodes, which supports a faster recognition of the semantics. Thus, semantic
errors, such as wrong hostedOn-relationships, can be recognized faster by the user.
In addition, the speed of modeling increases noticeably as a lot of unnecessary typing
is spared. As modeling of topologies as well as modeling of plans can be done graph-
ically, some modeling tools combine both activities. This is an important advantage
as bringing together modeling of topologies and corresponding management plans
might be cumbersome—especially for annoying frequently reoccurring tasks such
as copying IDs, creating boilerplate code, and so on. Enhancing a BPMN model-
ing tool to provide a tight integration with TOSCA has been presented by Kopp et
al. [15]. TOSCA-tailored graphical modeling tools also may support reusability of
Node Types by providing existing Node Types in a palette for dragging them into the
topology, for example. Automated management of a variety of artifacts and export-
ing them into a TOSCA archive as described in Sect. 22.3.3 additionally reduces the
complexity and assists the user.

Fig. 22.9 Screenshot of Valesca

544 T. Binz et al.

One open source implementation of a TOSCA-tailored graphical tool com-
bining the modeling of TOSCA application topologies and associated manage-
ment plans is “Valesca”.2 It implements “Vino4TOSCA” [4], a visual notation for
TOSCA topologies. Valesca uses the Signavio Core Components,3 which are the
commercially-supported enhancements of Oryx [7]. Figure 22.9 shows a screenshot.
Valesca supports all the advantages mentioned above and is provided under the
Apache 2.0 license.

22.4.2 TOSCA Container

To use all the features of TOSCA—especially automation of application manage-
ment—a TOSCA-compliant runtime is required. Without such a container, TOSCA
could be used as pure exchange format and manually operated according to the defi-
nitions in the Service Template. However, a bare-minimum TOSCA container stores
and serves the files contained in the TOSCA archive, installs and operates Imple-
mentation Artifacts and Management Plans, and manages the instance data of the
application: The container is the glue between these functionalities. During modeling
the management plans are written without knowing the exact location of the Imple-
mentation Artifacts, only referencing the abstract service description (port type and
operation in case of WSDL services). Implementation Artifacts are deployed by the
TOSCA container to the respective runtime, for example, Java Web services to an
Apache Tomcat known and managed by the TOSCA container. Knowing the runtime
and the location of the deployed Implementation Artifact, the TOSCA container is
able to set the location information when deploying the Management Plans onto
a workflow engine. The container is also responsible for managing the properties
assigned to node and relationship instances. Therefore, the container offers a stan-
dardized API which may be used by Implementation Artifacts and the workflow
engine to work on the properties.

To increase convenience, other functionalities, such as a user interface for starting
the management plans, identity management, integrated monitoring and auditing, can
be supported by the container, which exceeds the scope of this chapter.

22.4.3 Marketplace and Catalog

TOSCA enables new business models in terms of application exchange, offering,
and trading. Due to the fact that TOSCA applications are portable between different
TOSCA-compliant providers, moving application flexibly between providers avoids
vendor lock-in: Customers have the ability to choose applications independent from

2 http://www.cloudcycle.org/valesca/
3 http://code.google.com/p/signavio-core-components/

http://www.cloudcycle.org/valesca/
http://code.google.com/p/signavio-core-components/

22 TOSCA: Portable Automated Deployment 545

the cloud provider which hosts the application later on. This enables a new kind of
marketplaces for trading manageable and portable applications which can be hosted
by any TOSCA-compliant provider, as shown in Fig. 22.10. Inside enterprises, the
TOSCA ecosystem enables offering self-service catalogs which allow flexible and
rapid deployment of business applications.

Cloud Provider A

TOSCA Application Marketplace

TOSCA Container

Cloud Provider B

TOSCA Container

Cloud Provider C

TOSCA Container

TOSCA
App

Fig. 22.10 Sketch of an TOSCA application marketplace

22.5 Portability

As portability is a central goal of TOSCA, this section discusses in detail how TOSCA
supports portability (Sects. 22.5.1 and 22.5.2) and propose how modelers can increase
the portability of their TOSCA applications (Sect. 22.5.3).

22.5.1 Portability of Applications

TOSCA addresses the portability of application descriptions and their management,
not the portability of the application components themselves. That means, TOSCA
does not make Deployment Artifacts portable, e.g., to run a .net application on Apache
Tomcat or to migrate one flavor of relational database system to another.

The application topology may have some prerequisites concerning the environ-
ment it is deployed on. For instance, it might require an external service such as
Amazon EC2 or inhouse infrastructure such as VMware. However, there are ways to
abstract from concrete providers and increase portability between different environ-
ments, for example, by using software such as Deltacloud,4 which unifies the APIs of

4 http://deltacloud.apache.org/

http://deltacloud.apache.org/

546 T. Binz et al.

different cloud infrastructure providers into a common interface or by using a generic
and standardized virtual machine Node Type as described in Sect. 22.3.1.2, which
can be bound to different implementations. The remaining parts of the application
topology are built on top of these lower-level infrastructure and, therefore, are basi-
cally self-contained inside this application topology. Thus, they only depend on the
lower-level infrastructure components. If these are portable, the whole application
is portable. The application topology’s main purpose is to be an information source
and description of the component’s management aspects for the management plans.
By concerning the existence of standardized Node Types as lower-level components
and that higher-level components can depend on these lower-level ones, we conclude
that the application topology can be modeled in a portable way. Based on this we
must have a look on the portability of management plans.

22.5.2 Portability of Management

Management plans are written in certain workflow languages and it is the TOSCA
container’s responsibility to execute them on a compatible workflow engine. There-
fore, TOSCA container support for the workflow language is the first precondition
for TOSCA portability, which is, however, softened to some extend by the fact that
BPMN is the recommended workflow language in TOSCA. Management plans are
orchestrations of three types of services: (1) External services, which are portable,
because services are, by definition, accessible from everywhere [6], (2) manage-
ment operations offered by Node Types and Relationship Types, and (3) APIs of
the TOSCA container, for example, to access the instance data of the application
instance. As discussed in Sect. 22.3.1.2, the management operations can be provided
as Implementation Artifacts, whose execution is also the TOSCA container’s respon-
sibility. The API of the TOSCA container will be standardized. Therefore, support for
the language of the Implementation Artifact by the TOSCA container is the second
precondition for TOSCA portability.

Consequently, the portability of TOSCA applications only fails if the type of
management plan or Implementation Artifact is not known and supported by the
TOSCA container. We want to highlight that both of them, management plans and
Implementation Artifacts, represent the management part of TOSCA and are not the
actual application. Moreover, we expect most TOSCA containers to provide some
kind of extensibility mechanism to add plugins supporting additional plan types
and additional Implementation Artifact types. A couple of basic types will then
be offered by most of the TOSCA containers, which will provide a solid basis for
portable TOSCA applications.

22 TOSCA: Portable Automated Deployment 547

22.5.3 Improving Portability of TOSCA Applications

The conclusions of the previous two sections lead to the following recommendations
on how to increase the portability of a TOSCA application: For Implementation
Artifacts, the goal is to provide them in programming languages, which are widely
supported by TOSCA containers. Due to the fact that Implementation Artifacts are
bound to Node Types and Relationship Types, they are widely reused so it may be
worth the effort to do multiple implementations. Management plans are tied to the
actual application and, therefore, their level of reusability is lower than reusability
for Implementation Artifacts. Providing them in multiple workflow languages would
also increase their portability, but doing this manually might not be worth the effort.
Fortunately, there are existing approaches to transform workflow languages [32], for
example, transforming BPMN to BPEL by using the approach by Ouyang et al. [27].
In addition, due to the fact that BPMN is the recommended workflow language for
management plans, a wide variety of TOSCA containers will presumably support
BPMN.

22.6 Conclusions

This chapter presented the upcoming OASIS standard Topology and Orchestration
Specification for Cloud Applications (TOSCA). We highlighted that TOSCA distin-
guishes between the application topology and management plans. The application
topology declares the components of the application and their relationships as a graph.
We discussed that each vertex in the graph represents a Node Template, which has
a Node Type and is instantiated as node instance. The management plans invoke
management operations on these node instances.

TOSCA is a standard not providing any software and, therefore, requires an
ecosystem. We gave a short overview on possible modeling tool support and run-
time support. TOSCA packages may be distributed directly by a software vendor or
available through dedicated marketplaces.

At the point of writing this chapter, the TOSCA specification was not finally
released. However, we expect no fundamental changes going beyond what we
described. One can follow the current development of the TOSCA specification
on the OASIS TC website5 and the development of the OpenTOSCA ecosystem of
the University of Stuttgart on the OpenTOSCA website6.

Acknowledgments This work was partially funded by the BMWi project CloudCycle (project
01MD11023).

5 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
6 http://www.opentosca.org

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://www.opentosca.org

548 T. Binz et al.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D.,
Rabkin, A., Stoica, I., et al.: Above the Clouds: A Berkeley View of Cloud Computing. Tech.
Rep. UCB/EECS-2009-28, EECS Department, University of California, Berkeley (2009)

2. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using TOSCA. IEEE
Internet Computing 16(03), 80–85 (2012). doi:10.1109/MIC.2012.43

3. Binz, T., Leymann, F., Schumm, D.: CMotion: A Framework for Migration of Applications into
and between Clouds. In: Proceedings of the 2011 IEEE International Conference on Service-
Oriented Computing and Applications (SOCA). IEEE Computer Society Conference Publish-
ing Services (2011). doi:10.1109/SOCA.2011.6166250

4. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA: A Visual
Notation for Application Topologies based on TOSCA. In: Proceedings of the 20th International
Conference on Cooperative Information Systems (CoopIS 2012), Lecture Notes in Computer
Science. Springer-Verlag (2012) doi:10.1007/978-3-642-33606-5_25

5. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerg-
ing it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems 25(6), 599–616 (2009). doi:10.1016/j.future.2008.12.001

6. Curbera, F., Leymann, F., Storey, T., Ferguson, D., Weerawarana, S.: Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging
and More. Prentice Hall PTR (2005).

7. Decker, G., Overdick, H., Weske, M.: Oryx - An Open Modeling Platform for the BPM Com-
munity. In: Proceedings of the 6th International Conference on Business Process Management
(2008). doi:10.1007/978-3-540-85758-7_29

8. DeRemer, F., Kron, H.: Programming-in-the-Large Versus Programming-in-the-Small. Soft-
ware Engineering, IEEE Transactions on SE-2(2), 80–86 (1976). doi:10.1109/TSE.1976.
233534

9. Dillon, T., Wu, C., Chang, E.: Cloud Computing: Issues and Challenges. In: Advanced Infor-
mation Networking and Applications (AINA), 2010 24th IEEE International Conference on,
pp. 27–33 (2010). doi:10.1109/AINA.2010.187

10. Fielding, R.: Architectural styles and the design of network-based software architectures. Ph.D.
thesis, University of California (2000)

11. Garbani, J., Mendel, T., Radcliffe, E.: The Writing on ITs Complexity Wall (2010). Forrester
Research

12. Gartner: Gartner Identifies the Top 10 Strategic Technologies for 2011 (2010). Press Release
13. Kagal, L.: Rei Ontology Specifications, Ver 2.0 (2012). http://www.csee.umbc.edu/~lkagal1/

rei/
14. Khajeh-Hosseini, A., Sommerville, I., I, S.: Research Challenges for Enterprise Cloud Com-

puting. Tech. rep., LSCITS (2010)
15. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A Domain-Specific Lan-

guage to Model Management Plans for Composite Applications. In: 4th International Workshop
on the Business Process Model and Notation. Springer (2012) doi:10.1007/978-3-642-33155-
8_4

16. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The Difference Between Graph-Based and
Block-Structured Business Process Modelling Languages. Enterprise Modelling and Informa-
tion Systems 4(1), 3–13 (2009)

17. Leymann, F.: Cloud Computing: The Next Revolution in IT. In: Proc. 52th Photogrammetric
Week, pp. 3–12. Wichmann Verlag (2009)

18. Leymann, F.: Cloud Computing. it - Information Technology 53(4) (2011) doi:10.1524/itit.
2011.9070

19. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving Applications to the
Cloud: An Approach based on Application Model Enrichment. International Journal of Cooper-
ative Information Systems (IJCIS) 20(3), 307–356 (2011). doi:10.1142/S0218843011002250

http://dx.doi.org/10.1109/MIC.2012.43
http://dx.doi.org/10.1109/SOCA.2011.6166250
http://dx.doi.org/10.1007/978-3-642-33606-5_25
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1007/978-3-540-85758-7_29
http://dx.doi.org/10.1109/TSE.1976.233534
http://dx.doi.org/10.1109/TSE.1976.233534
http://dx.doi.org/10.1109/AINA.2010.187
http://www.csee.umbc.edu/~lkagal1/rei/
http://www.csee.umbc.edu/~lkagal1/rei/
http://dx.doi.org/10.1007/978-3-642-33155-8_4
http://dx.doi.org/10.1007/978-3-642-33155-8_4
http://dx.doi.org/10.1524/itit.2011.9070
http://dx.doi.org/10.1524/itit.2011.9070
http://dx.doi.org/10.1142/S0218843011002250

22 TOSCA: Portable Automated Deployment 549

20. Leymann, F., Roller, D.: Production Workflow - Concepts and Techniques. Prentice Hall PTR
(2000)

21. Mell, P., Grance, T.: Cloud Computing Definition. National Institute of Standards and Tech-
nology (2009)

22. OASIS: Web Services Business Process Execution Language Version 2.0 - OASIS Standard
(2007). https://www.oasis-open.org/committees/wsbpel/

23. OASIS: WS-BPEL Extension for People (BPEL4People) Specification Version 1.1 (2010).
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html

24. OASIS: Topology and Orchestration Specification for Cloud Applications Version 1.0 Com-
mittee Specification Draft 03 (2012). http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/
TOSCA-v1.0-csd03.html

25. OMG: Business Process Model and Notation (BPMN) Version 2.0 (2011). http://www.omg.
org/spec/BPMN/2.0/. OMG Document Number: formal/2011-01-03

26. Ousterhout, J.: Scripting: Higher level programming for the 21st century. Computer 31(3),
23–30 (1998)

27. Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W.: Pattern-based Translation of
BPMN Process Models to BPEL Services. International Journal of Web Services Research
5(1), Idea Group Publishing (2008)

28. Palmer, N.: Understanding the BPMN-XPDL-BPEL Value Chain. Business Integration Journal
November/December, 54–55 (2006)

29. Petcu, D., Craciun, C., Rak, M.: Towards a Cross Platform Cloud API - Components for Cloud
Federation. In: CLOSER. SciTePress (2011)

30. Petcu, D., Macariu, G., Panica, S., Crciun, C.: Portable Cloud applications–From theory to
practice. Future Generation Computer Systems (2012). doi:10.1016/j.future.2012.01.009

31. Rus, I., Lindvall, M.: Knowledge management in software engineering. Software, IEEE 19(3),
26–38 (2002)

32. Stein, S., Kühne, S., Ivanov, K.: Business to IT Transformations Revisited. In: 1st International
Workshop on Model-Driven Engineering for Business Process Management (2008). doi:10.
1007/978-3-642-00328-8_18

33. Varia, J.: Architecting for the Cloud: Best Practices. Tech. rep., Amazon (2010). http://media.
amazonwebservice.com/AWS_Cloud_Best_Practices.pdf

34. Varia, J.: Cloud Architectures. Tech. rep., Amazon (2010). http://jineshvaria.s3.amazonaws.
com/public/cloudarchitectures-varia.pdf

35. W3C: XML Schema Part 1: Structures Second Edition (2004). http://www.w3.org/TR/
xmlschema-1/

36. W3C: Web Services Policy 1.5 - Framework (2007). http://www.w3.org/TR/ws-policy/

https://www.oasis-open.org/committees/wsbpel/
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/TOSCA-v1.0-csd03.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/TOSCA-v1.0-csd03.html
http://www.omg.org/spec/BPMN/2.0/.
http://www.omg.org/spec/BPMN/2.0/.
http://dx.doi.org/10.1016/j.future.2012.01.009
http://dx.doi.org/10.1007/978-3-642-00328-8_18
http://dx.doi.org/10.1007/978-3-642-00328-8_18
http://media.amazonwebservice.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservice.com/AWS_Cloud_Best_Practices.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/ws-policy/

	22 TOSCA: Portable Automated Deployment and Management of Cloud Applications
	22.1 Introduction
	22.2 Overview on TOSCA
	22.2.1 Main Concepts of TOSCA
	22.2.2 Challenges Addressed by TOSCA

	22.3 TOSCA in Detail
	22.3.1 TOSCA Application Topologies
	22.3.2 TOSCA Management Plans
	22.3.3 Packaging
	22.3.4 TOSCA-Based Example Application

	22.4 Supporting Ecosystem
	22.4.1 Modeling Tool Support
	22.4.2 TOSCA Container
	22.4.3 Marketplace and Catalog

	22.5 Portability
	22.5.1 Portability of Applications
	22.5.2 Portability of Management
	22.5.3 Improving Portability of TOSCA Applications

	22.6 Conclusions
	References

