
Chapter 1
Design and Management of Web Service
Transactions with Forward Recovery

Peter Dolog, Michael Schäfer and Wolfgang Nejdl

Abstract In this chapter we describe a design of compensations using forward
recovery within Web service transactions. We introduce an approach to model com-
pensation capabilities and requirements using feature models, which are the basis for
defining compensation rules. These rules can be executed in a Web service environ-
ment that we extend with the concept of an abstract service, which is a management
component for flexible compensation capabilities. We describe the design and also
discuss advantages and disadvantages of such an approach.

1.1 Introduction

A Web service allows a provider to encapsulate functionality and to make it available
for use via a network. A client can invoke such a Web service to use its functionality.
By combining existing Web services from different service providers, a new and
more complex distributed application can be created, which in turn can be offered
as a new value-added composite service. Such a distributed application is usually
created based on a business process, which consists of a logical sequence of actions
that can include the invocation of a Web service. Accordingly, it is vitally important
to control the processing of each single action and the overall process in order to be
able to guarantee correct execution. This is done by using transactions.

P. Dolog (B)

Department of Computer Science, Aalborg University, Selma Lagerlöefs Vej 300,
9220 Aalborg, Denmark
e-mail: dolog@cs.aau.dk

M. Schäfer · W. Nejdl
L3S Research Center, University of Hannover, Appelstr. 9a, 30167 Hannover, Germany
e-mail: Michael.K.Schaefer@gmx.de

W. Nejdl
e-mail: nejdl@l3s.de

A. Bouguettaya et al. (eds.), Advanced Web Services, 3
DOI: 10.1007/978-1-4614-7535-4_1,
© Springer Science+Business Media New York 2014



4 P. Dolog et al.

A transaction consists of a set of operations (“units of work”) that are executed
within a system. Before and after the transaction, this system has to be in a consistent
state [6]. The concept of transaction originates from database systems, which require
an effective control of operations in order to guarantee data consistency. This is
achieved by requiring that transactions fulfill the ACID properties [6, 7]: Atomicity,
Consistency, Isolation, and Durability.

In the context of a distributed application, a distributed transaction [6] controls
the execution of operations on multiple loosely-coupled Web services (participants)
from different providers. Each operation is an invocation of one of the services and
executes functionality provided by the particular service that is called. Any kind of
service, independent of the actual functionality it implements (e.g. reserving a flight,
performing a money transfer, transforming data), can in principle participate in such
a transaction. A coordinator is responsible for the creation of the transaction, the
registration of participants, and the evaluation of the participant’s results.

Due to the fact that a distributed transaction has to include external sources via
a network connection, it is usually not possible to fulfill all ACID properties, as
each one imposes restrictions on the system which can be a disadvantage in such an
environment. For example, in order to be able to handle long-running transactions,
which take a long time until they complete, it is necessary to relax the isolation
property. This means that locks on resources are removed even though the overall
transaction is not yet complete, so that other transaction can access these resources
and are not blocked. However, it can still happen that the transaction fails, and if this
is the case it is necessary for the coordinator to initiate a compensation, which reverts
all operations that were already performed in order to restore the state of the system
before the transaction was started. The Web services that were already processed
have to do a rollback, i.e. they have to execute a predefined set of actions that
undo their original operation. This notion of rolling back the system to a previous
state is known as backward recovery [16], as it reverses the operations that have
been performed. Whether such rollback operations exist, and what steps they consist
of, depends highly on the system and the Web services involved. A compensation
protocol can only provide the orchestration of compensative activities, the developer
of a rollback operation has to ensure that its result represents the consistent state
before the transaction was started.

There are alternative approaches how to relax the isolation property within a Web
service environment. Reference [9] describes the “Promises” pattern, which defines
a “Promise Manager” that receives resource promise requests from a service. In
comparison to the classic ACID isolation, this promise does not lock an individual
resource but instead ensures that one from a pool of (anonymous) resources with the
same properties will be available.

Web service coordination and transaction specifications [11–13] have been defined
that provide the architecture and protocols required for transaction coordination of
Web services. Several extensions have been proposed to enhance these protocols to
add more flexibility [2, 20]. While these protocols provide the means for transac-
tions in a distributed environment, it is still a challenge to guarantee its consistency.



1 Design and Management of Web Service Transactions with Forward Recovery 5

[10] describes an approach to check already at application design time whether the
distributed application will always terminate in a consistent state.

The specifications in their original form provide only limited compensation capa-
bilities [8]. In most cases, the handling of a service failure is restricted to backward
recovery. Subsequently, the aborted transaction will usually have to be restarted,
because the failed distributed application still has to perform its tasks. Backward
recovery therefore results in the loss of time and money, and additional resources
are needed to restart the transaction. Moreover, the provider of the service that has
encountered an error might have to pay contractual penalties because of a violated
Service Level Agreement (SLA). The rollback of the complete transaction due to
the failure of one service can also have widespread consequences: All dependent
transactions on the participating Web services (i.e. transactions that have started
operations on a service after the currently aborting transaction and therefore have
a completion dependency [3]) have to abort and perform a rollback, which in turn
can trigger the abort of other transactions and thus lead to cascading compensations.
This is sometimes called the domino effect [16].

In addition to the problematic consequences of backward recovery, current
approaches do not allow any changes in a running transaction. If for example erro-
neous data was used in a part of a transaction, then the only possible course of action
is to cancel the transaction and to restart it with correct data.

An alternative to backward recovery is forward recovery. The goal of this
approach is to proactively change the state and structure of a transaction after a
service failure occurred, and thus to avoid having to perform a rollback and to enable
the transaction to finish successfully.

To illustrate forward recovery in a Web service environment, consider as example
a company’s monthly payroll processing. In the first step, the company has to calcu-
late the salary for each employee, which can depend on a multitude of factors like
overtime hours or bonuses. In the next step, the payment of the salary is performed,
which comprises several operations: Transfer of the salary from the company’s to
the employee’s account, transfer of the employee’s income tax to the account of the
fiscal authorities, and printing and mailing of the payslip. The employee has only
one task, which he has to perform each month: He transfers the monthly installment
for his new car to the car dealer’s account.

The company’s and the employee’s operations are each controlled by a business
process and are implemented using services from multiple providers (Fig. 1.1). The
two business processes use transactions in order to guarantee a consistent execution
of all required operations. For simplicity, only the services of transaction T1 are
shown, although of course also transaction T0 and T2 consist of several services.

While this scenario is quite simple, it has multiple dependencies within and
between the two running transactions. Therefore, it is important that both trans-
actions can complete successfully and do not have to be aborted and rolled back.
Nevertheless, a situation in which such a need arises can become imminent quite
easily:



6 P. Dolog et al.

Transfer 
salary

Print and 
send payslip

Transfer
tax

Company

Employee

Tax

Car Dealer

Accounts

Business Process: Company

Perform 
calculations

Transaction T0

Perform 
payment

Transaction T1

Business Process: Employee

Transaction T2

Perform 
monthly tasks

Fig. 1.1 The example scenario

• Situation 1: One of the Web services might encounter a problem during the exe-
cution of its operations. For example, it could be that the service that transfers the
salary fails due to an internal error.

• Situation 2: A mistake might have been made regarding the input data of one of the
operations. In this scenario, it could be that the calculation of the salary is flawed
and too much has been transferred to the employee’s account.

As explained above, using a backward recovery approach in such a scenario
would be costly. However, using a forward recovery approach allows to handle both
situations without a rollback:

• Situation 1: Although the Web service failed, it would still be possible to save
the transaction by using a different service. Such a replacement of the original
Web service is encouraged by the fact that usually multiple services from different
providers exist that provide the same or similar capabilities.

• Situation 2: The operations with the erroneous input data have already been
processed, and the transaction would have to be rolled back even if an admin-
istrator notices the failure before the transaction has been finished. However, the
salary transfer could be easily corrected with another money transfer operation.

This scenario is only one example where a forward recovery of transactions would
be beneficial. Similarly, such an approach could help in other situations such as
overloaded services, timeouts, or other errors.

In this chapter we describe a design approach [17] and an environment which is
able to handle forward recovery compensation of Web service transactions [19]. The
approach is based on the idea that there is a possibility to replace a failed service in
the transaction with another one with the same or similar capabilities and by doing
so to avoid unnecessary rollbacks. In addition, the design includes an approach
to model and match compensation capabilities and requirements. The contribution



1 Design and Management of Web Service Transactions with Forward Recovery 7

of this chapter is that it provides more detailed examples and explains the whole
approach from design of the rules to their execution within the environment.

The main idea of the design is the introduction of a new component called an
abstract service, which does not directly implement any functionality that is pro-
vided to the client, but instead functions as a management unit for flexible com-
pensation capabilities [18]. As part of these capabilities, it specifies and manages
potential replacements for participating Web services to be used. The compensations
are performed according to predefined rules, and are subject to contracts [14]. An
abstract service’s functional and compensation capabilities can be specified using
feature models, which allow a client to describe his requirements for a service, and
a provider to specify a service’s capabilities. These individual feature models can be
used to automatically find matching services for a given set of requirements.

Such a solution has the following advantages:

• Compensation strategies can be defined on both, the service provider and the client
side. They utilize local knowledge (e.g. the provider of a service knows best if and
how his service can be replaced in case of failure) and preferences, which increases
flexibility and efficiency.

• The environment can handle internally and externally triggered compensations.
• The client of a service is informed about complex compensation operations, which

makes it possible to trigger additional compensations. Compensations can thus
consist of multiple operations on different levels.

• By extending the already adopted Web service specification, it is not necessary to
discontinue current practices if compensations are not required.

• The separation of the compensation logic from the coordination logic allows for a
generic definition of compensation strategies, independent from the coordination
specification currently in use. They are therefore more flexible and can easily be
reused in a different context.

The rest of the chapter is structured as follows: Sect. 1.2 describes how we propose
to represent compensation capabilities using feature models. Section 1.3 describes the
specification of compensation rules and possible compensation activities. Section 1.4
describes the abstract service architecture where compensations can be executed
according to compensation rules. Finally, Sect. 1.5 provides a discussion regarding
advantages and shortcomings of the approach.

1.2 Compensations Design

We are introducing a compensation design approach which provides a set of models
that describe both functional and compensation capabilities of a service:

• on the service provider side, mandatory features which are needed to provide
at least the minimum functionality, as well optional features which extend the
capabilities or level of service;

• on the service consumer side, features the client requires in order for the service
to suit his needs.



8 P. Dolog et al.

We adopt a feature modeling approach and a methodology from [5, 17]. According
to that methodology, first a conceptual model is defined which describes the main
concepts and relationships between them. The configuration view on the concepts
is described by means of feature modeling for both functionality and compensation
capabilities.

Subsequently, the functionality and compensation models are merged to describe
the offered capabilities by a service provider, or requested functionalities and restric-
tions posed on compensations by a service consumer. Different algorithms can then
be employed to match feature models of a client and a service provider. In the fol-
lowing we will explain the introduced models in more detail.

1.2.1 Conceptual Model

In order to formalize different types of compensations, a conceptual model has been
created that constitutes the basis for the feature models in the following sections.
The result is the compensation concept model as seen in Fig. 1.2.

<<Concept>>
Compensation

Action

<<Concept>>
Replacement

<<Concept>>
Forwarding

<<Concept>>
Additional
Request

<<Concept>>
Additional

Service

<<Concept>>
Session
Restart

<<Concept>>
Compensation

Plan

<<Concept>>
Repetition

<<Concept>>
NoCompensation

1 1..*
<<Concept>>

Compensation 1 1

Fig. 1.2 The compensation concept model

Each Compensation contains a CompensationPlan, which in turn consists of one
or more CompensationActions. Which CompensationActions exist and how they can
be implemented depends on the actual environment. Accordingly, the ones listed are
not necessarily complete and can be extended in the future.

Based on this definition of compensation concepts, it is now possible to create
feature models in order to define what a service can do, should be able to do, and is
not allowed to do.

1.2.2 Compensation Feature Model

The compensation concept model is the basis for the definition of the compensation
feature model, which is depicted in Fig. 1.3. It describes the mandatory and optional
features of the compensation concept, and will be used in the next step to define
service-specific feature models, which can be part of a contract between a service
provider and a service client.



1 Design and Management of Web Service Transactions with Forward Recovery 9

<<Concept>>
Compensation

<<OptionalFeature>>
ExternalCompensation

Handling

<<MandatoryFeature>>
InternalCompensation

Handling

<<OptionalFeature>>
AdditionalRequest

<<OptionalFeature>>
AdditionalService

<<MandatoryFeature>>
ServiceAbort

<<OptionalFeature>>
Repetition

<<OptionalFeature>>
Replacement

<<VariationPoint>>
{Kind = AND}

<<MandatoryFeature>>
RequestSequence

Change

<<VariationPoint>>
{Kind = OR}

<<OptionalFeature>>
AllRequest
Repetition

<<MandatoryFeature>>
LastRequest

Repetition

<<MandatoryFeature>>
ResultResending

<<OptionalFeature>> 
SessionRestart

<<OptionalFeature>>
AdditionalActions

<<MandatoryFeature>>
NoCompensation

<<OptionalFeature>>
Forwarding

<<OptionalFeature>>
PartialRequest

Repetition

Fig. 1.3 The compensation feature model

The main two features of the model are the InternalCompensationHandling and
the ExternalCompensationHandling features. An internal compensation is triggered
by an internal service error, while an external compensation is triggered from outside
of the transaction. An example for an externally triggered compensation could be
the handling of the salary transfer mistake from the scenario described in Sect. 1.1
that is spotted by an administrator.

These main features structure the available compensation types as features accord-
ing to their application: Repetition and Replacement are only available for internal
compensation operations, and SessionRestart, Forwarding and AdditionalActions are
only available for external compensation operations. The exception for this separa-
tion is NoCompensation, which is the only common compensation feature. Only
two of these features are mandatory, the InternalCompensationHandling and the
NoCompensation feature. This is due to the fact that the elementary feature of a
compensation in our context is inactivity: If no rule or compensation capabilities
exist, then the service has to fail without any other operations. Accordingly, the
ability to perform external compensations is only optional.

The SessionRestart includes as an optional feature the invocation of an additional
service (AdditionalService), and requires via a variation point (AND) the Service-
Abort, RequestSequenceChange, and AllRequestRepetition features. The capability
to abort the service, change the request log, and resend all requests is needed to per-
form the session restart, and therefore these three features are mandatory. Likewise,
the AllRequestRepetition feature cannot work without the ResultResending feature.

Within an externally triggered compensation, it is possible to invoke additional
services and to create and send additional requests to the service. That is why the
AdditionalActions feature includes the AdditionalService and AdditionalRequest fea-
tures. They are connected via an OR variation point as the AdditionalActions feature
needs at least one of these two features.

The basic operation mode of the Repetition compensation feature is the resending
of the last request to the service. Therefore, the LastRequestRepetition feature is



10 P. Dolog et al.

mandatory, and the PartialRequestRepetition only optional. Finally, the Replacement
feature requires at least one of the LastRequestRepetition, PartialRequestRepetition,
or AllRequestRepetition features.

1.2.3 Capability Feature Model

The Capability feature model specifies the capabilities of a service. This model can
be provided in the public description of the service (e.g. in the UDDI entry), and can
thus be used in the client’s search process for a suitable service.

The definition of a service’s features includes both the specification of function-
ality as well as compensation capabilities. The capability feature model is realized
by merging the service’s functionality feature model with its compensation feature
model. The functionality feature model describes the features of the service that con-
stitute the offered operations, e.g. the booking of a flight. The compensation feature
model describes the service’s compensation capabilities. It is created by using the
compensation feature model described in the previous section as a basis, and then
altering it by deleting features that are not offered (e.g. a service that does not provide
external compensation capabilities will delete this part of the model completely), by
changing the mandatory/optional properties, or by adding features at certain parts
(e.g. by specifying the additional services that can be used in the compensation
process).

<<MandatoryFeature>>
InternalCompensation

Handling

<<OptionalFeature>>
Repetition

<<MandatoryFeature>>
LastRequest

Repetition

<<MandatoryFeature>>
NoCompensation

<<Concept>>
Service

<<MandatoryFeature>>
Operation 1

<<MandatoryFeature>>
Operation 2

Fig. 1.4 Merging of the functionality and compensation models

This process of merging the two different models is depicted in Fig. 1.4. Here, a
service offers two basic operations, “Operation 1” and “Operation 2”, which form
the functionality feature model (dark grey). The service is able to handle internal
compensations by either doing nothing (the mandatory default action), or by repeating
the last request. This forms the compensation model (light grey). The two models
are merged (symbolized by the dashed arrow), and thus form the service’s capability
feature model. The mandatory/optional properties are interpreted in this context as
“will be used by the service” and “can be used by the service”, respectively. The
interpretation is different in the requirement feature model.



1 Design and Management of Web Service Transactions with Forward Recovery 11

1.2.4 Requirement Feature Model

The client creates a requirement description in order to be able to initiate a search
for a suitable service. The specification is being done very much like the definition
of the capability feature model described in the previous section: A common model
is being created that includes the required functionality and compensation features.
This model is called the requirement feature model.

However, although the basic process of creating the requirement feature model is
the same, the interpretation of the mandatory/optional properties differs. A mandatory
feature has to be provided by the service and is thus critical for the comparison
process, while an optional feature can be provided by the service, and is seen as a
bonus in the evaluation of the available services.

In the search process, each service’s capability feature model will be compared to
the client’s requirement feature model, and the client can thus decide which service
is suitable for its needs.

1.2.5 Restriction Feature Model

After the client has found the necessary services that offer the required functional and
compensation features, the contract negotiation with each service will be performed.
A vital part of this contract is the specification of compensation features that the
service is allowed to use. While it is of course possible to do this restriction by simply
searching for services that only perform the allowed compensation actions, such an
approach significantly reduces the available services. Moreover, it is quite possible
that a client wants to use the same service in multiple applications, where each has
its own rules regarding the compensation actions that are permitted. Therefore, it is
beneficial to use a restriction feature model that can be part of the contract, and to
which the service dynamically adapts its compensation actions.

The restriction feature model can be defined by using the compensation feature
model described in Sect. 1.2.2. By removing features from this model, the client can
state that these are not allowed to be used in the compensation process. Only those
features that are still in the model are permitted. Therefore, it is not necessary to
distinct between mandatory and optional features.

When the service wants to invoke a specific compensation action, it will first
consult the contract’s restriction feature model. If the compensation action is part of
the model, then the service is allowed to use it. This way, the service can dynamically
adapt to the requirements of each single client.

1.2.6 Model Comparison Algorithm

We define a comparison algorithm to match the requirement model of a client
and the capability model of a service. These two models are the input for the



12 P. Dolog et al.

algorithm, which iteratively compares them and calculates a numerical compatibility
score:

• Using the requirement feature model as a basis, the features are compared stepwise.
In this process, it is required that the same features are found in the same places,
because the same feature structure is expected.

• Each mandatory feature in the requirement model has to be found in the capability
feature model. If this is not the case, the comparison has failed and a negative
compatibility score is returned to indicate this. However, if a mandatory feature is
included in the capability model, this will not have any impact on the comparison
score, as the mandatory features are the minimum this is expected.

• Each optional feature in the requirement model can exist in the capability model,
but does not have to. Each one found counts as a bonus added to the compatibility
score. This accounts for the fact that a service that provides more than the minimum
is better, as it can more easily be used in different applications.

• Additional features in the service’s capability model, like the specification of
additional services used in the compensation process, are ignored as long as they
are found in the appropriate place, e.g. as a subfeature to the “AdditionalService”
feature. Any other additional features will lead to a failure of the comparison.

Once the comparison is completed, the compatibility score will be returned. At
the moment, a very simple score is used that does not include advanced properties
like feature priorities, which could be used in the future:

• If the comparison has failed, the compatibility score will be −1.
• Each mandatory feature that is found does not increase the score. A service which

provides only the mandatory features (and is thus suitable) will therefore have a
compatibility score of 0.

• Each optional feature in the capability model increases the score by 1.

As it can be seen, every compatibility score equal to or higher than 0 classifies a
service as suitable for the client’s needs. Moreover, the higher the score is, the more
features a service provides. Using this simple score, it is easy to compare multiple
services and their capabilities.

1.2.7 Example

The use of feature models will now be examined based on the “Transfer salary”
service of the scenario described in Sect. 1.1. The services in this scenario can be
used in different distributed applications, and it is therefore important that their
compensation capabilities can be adapted.

Capability Feature Model (depicted in Fig. 1.5): The functional features of this
service are the “Debit” and “Credit” operations, which are mandatory. The service
is capable of performing all compensation actions, and accordingly the complete
compensation feature model is merged with the functional model. Finally, the service



1 Design and Management of Web Service Transactions with Forward Recovery 13

<<OptionalFeature>>
ExternalCompensation

Handling

<<MandatoryFeature>>
InternalCompensation

Handling

<<OptionalFeature>>
AdditionalRequest

<<OptionalFeature>>
AdditionalService

<<MandatoryFeature>>
ServiceAbort

<<OptionalFeature>>
Repetition

<<OptionalFeature>>
Replacement

<<VariationPoint>>
{Kind = AND}

<<MandatoryFeature>>
RequestSequence

Change

<<VariationPoint>>
{Kind = OR}

<<OptionalFeature>>
AllRequest
Repetition

<<MandatoryFeature>>
LastRequest

Repetition

<<MandatoryFeature>>
ResultResending

<<OptionalFeature>> 
SessionRestart

<<OptionalFeature>>
AdditionalActions

<<MandatoryFeature>>
NoCompensation

<<OptionalFeature>>
Forwarding

<<OptionalFeature>>
PartialRequest

Repetition

<<Concept>>
SalaryTransfer

<<MandatoryFeature>>
Debit

<<MandatoryFeature>>
Credit

<<MandatoryFeature>>
TelephoneCall

Fig. 1.5 The SalaryTransfer capability feature model

specifies that an additional service will be used in the compensation procedures: This
is defined by adding the “TelephoneCall” feature to the “AdditionalService” feature.
By providing this feature model, the service can state its capabilities and informs the
client about a special operation it uses for this purpose.

<<MandatoryFeature>>
ExternalCompensation

Handling

<<MandatoryFeature>>
InternalCompensation

Handling

<<OptionalFeature>>
AdditionalRequest

<<OptionalFeature>>
AdditionalService

<<MandatoryFeature>>
ServiceAbort

<<MandatoryFeature>>
Repetition

<<MandatoryFeature>>
Replacement

<<VariationPoint>>
{Kind = AND}

<<MandatoryFeature>>
RequestSequence

Change

<<VariationPoint>>
{Kind = OR}

<<OptionalFeature>>
AllRequest
Repetition

<<MandatoryFeature>>
LastRequest

Repetition

<<MandatoryFeature>>
ResultResending

<<OptionalFeature>>
AdditionalActions

<<MandatoryFeature>>
NoCompensation

<<OptionalFeature>>
Forwarding

<<OptionalFeature>>
PartialRequest

Repetition

<<Concept>>
SalaryTransfer

<<MandatoryFeature>>
Debit

<<MandatoryFeature>>
Credit

<<MandatoryFeature>>
SessionRestart

Fig. 1.6 The SalaryTransfer requirement feature model

Requirement Feature Model (Fig. 1.6): The client that creates the payment
processing application specifies its requirements for the “Salary Transfer” service in
a requirement feature model. The functional features are the “Debit” and “Credit”
operations. Regarding the required compensation features, the client is looking for
a service that is able to perform the “Repetition” and “Replacement” compensation
actions for internal error handling, and the “SessionRestart” for external compensa-
tion handling. Accordingly, these features are marked as “mandatory”.



14 P. Dolog et al.

<<Concept>>
Compensation

<<AllowedFeature>>
ExternalCompensation

Handling

<<AllowedFeature>>
InternalCompensation

Handling

<<AllowedFeature>>
AdditionalRequest

<<AllowedFeature>>
ServiceAbort

<<AllowedFeature>>
Repetition

<<AllowedFeature>>
Replacement

<<VariationPoint>>
{Kind = AND}

<<AllowedFeature>>
RequestSequence

Change

<<AllowedFeature>>
AllRequest
Repetition

<<AllowedFeature>>
LastRequest

Repetition

<<AllowedFeature>>
ResultResending

<<AllowedFeature>> 
SessionRestart

<<AllowedFeature>>
AdditionalActions

<<AllowedFeature>>
NoCompensation

<<AllowedFeature>>
PartialRequest

Repetition

Fig. 1.7 The restriction feature model

Restriction Feature Model (Fig. 1.7): After the client has found a suitable service
that offers the required capabilities, he defines the permitted compensation actions.
In this example, the client does not want for the new application’s service that it
uses additional services in the event of a compensation. Therefore, the respective
feature (“AdditionalService”) is removed from the compensation feature model. This
restriction model is part of the contract that the client has with the service. When the
service now encounters a situation that requires compensation, it will only execute
compensation plans that are in accordance with the model’s restrictions.

1.3 Compensation Rules

Compensation rules are specifications of permitted compensations in the context
of a particular Web service. The compensation activities and types that are part
of these rules are adopted by a designer from the compensation and capabilities
feature models. Two different kinds of compensations can be specified within these
rules: Internally triggered compensations, which can be handled through a service
replacement, and externally triggered compensations.

Each rule specifies the exact steps that have to be performed in the compensation
process. For the purpose of defining the available compensation operations, we dis-
tinguish between basic compensation activities, which constitute the available single
compensation operations, and complex compensation types, which are composed
compensation processes consisting of multiple activities. This is shown in Fig. 1.8.

The compensation types specify which combinations of compensation activities
can be defined in rules for handling internal and external compensations, as it is
not desirable to allow every possible combination within the environment. When a
service receives a request for a compensation, it will first of all check whether a rule
for the current situation exists, and if this is the case, it will validate each rule before
executing the given set of compensation activities in order to guarantee that they are
consistent with the available compensation types.



1 Design and Management of Web Service Transactions with Forward Recovery 15

Included compensation activity Possibly included compensation activity

S
er

vi
ce

R
ep

la
ce

m
en

t

La
st

R
eq

ue
st

R
ep

et
iti

on

P
ar

tia
lR

eq
ue

st
R

ep
et

iti
on

A
llR

eq
ue

st
R

ep
et

iti
on

C
om

pe
ns

at
io

nF
or

w
ar

di
ng

A
dd

iti
on

al
S

er
vi

ce
In

vo
ca

tio
n

A
dd

iti
on

al
R

eq
ue

st
G

en
er

at
io

n

S
er

vi
ce

A
bo

rt
In

iti
at

io
n

R
eq

ue
st

S
eq

ue
nc

eC
ha

ng
e

R
es

ul
tR

es
en

di
ng

Compensation Activities

Compensation Type
NoCompensation

Repetition

Replacement

Forwarding

AdditionalService

AdditionalRequest

SessionRestart

Nr

In
te

rn
al

E
xt

er
na

l

01

02

03

04

05

06

07

08

09

10

Fig. 1.8 The compensation types and their included activities

Therefore, although the combination of different compensation activities allows
the definition of flexible and complex rules, it is not permitted to define arbitrary
compensation handling processes. Only the predefined compensation types can be
used, and it is thus guaranteed that a service does not execute a process defined in a
compensation rule that is not permitted or possible. At the same time, this approach
allows the future extension of the environment with new compensation strategies: In
order to test or include new compensation strategies, it is possible to simply define
a new compensation type and extend the service to accept it.

1.3.1 Basic Compensation Activities

Compensation activities are the basic operations which can be used in a compen-
sation process. ServiceReplacement replaces the currently used Web service with
a different one, which offers the same capabilities. LastRequestRepetition resends
the last request to the service. PartialRequestRepetition resends the last n requests
from the request sequence of the current session (i.e. within the current transaction)
to the service, while AllRequestRepetition resends all requests. CompensationFor-
warding forwards the external compensation request to a different component that
will handle it. AdditionalServiceInvocation invokes an additional (external or inter-
nal) service, which performs a particular operation required for the compensation



16 P. Dolog et al.

(e.g. the invocation of a logging service). AdditionalRequestGeneration creates and
sends an additional request to the Web service. Such a request is not influenced by the
client, and the result will not be forwarded to the client. ServiceAbortInitiation can-
cels the operations on the service, i.e. the service aborts and reverses all operations
which have been performed so far. RequestSequenceChange performs changes in the
sequence of requests that have already been sent to the Web service. ResultResending
sends new results for old requests, which have already returned results.

1.3.2 Compensation Types

Compensation types aggregate multiple compensation activities, and thus form com-
plex compensation operations (Fig. 1.8). These types are the compensation actions
which can be used for internal and external compensations.

The most simple type is NoCompensation, which does not perform any operation.
The Repetition type is important for the internal error handling, as it repeats the

last request or the last n requests. The last request can for example be resent to a
service after a response was not received within a timeout period. A partial resend
of n requests can for instance be necessary if the request which failed was part of a
sequence. A partial repetition of requests will result in the resending of results for
old requests to the client, which has to be able to process them.

The compensation type Replacement can be used if a service fails completely. It
replaces the current service with a different one, and resends either all requests, a
part of the requests, or only the last one. Resending only the last request is possible if
a different instance of the service that has failed can be used as replacement, which
works on the same local data and can therefore simply continue with the operations.

Forwarding is special in comparison with the other types as it only indirectly uses
the available activities. It forwards the handling of the compensation to a different
component, which can potentially use each one of the compensation activities (which
are therefore marked as “possibly included”) in the process.

In an externally triggered compensation, it is sometimes necessary to invoke
additional services and send additional requests to the service. For this purpose, the
compensation types AdditionalService and AdditionalRequest exist.

The final compensation type is SessionRestart. This operation is required if the
external compensation request cannot be handled without a restart of the complete
session, i.e. the service has to be aborted and subsequently the complete request
sequence has to be resent. The requested change will be realised by a change in the
request sequence prior to the resending.

1.3.3 Example of a Compensation Rule

Figure 1.9 shows an example of an external compensation rule specified in an XML
document. This example rule handles the refund of excess salary that has been trans-
ferred to the employees account as described in the example in Sect. 1.1.



1 Design and Management of Web Service Transactions with Forward Recovery 17

<cmp:ExternalCompensationRule identifier="refundSalaryDifference">
<cmp:CompensationCondition>

<cmp:RequestMethod identifier="transferSalaryMethod" />
<cmp:ParticipantRequest identifier="getAccountBalanceMethod"

parameterFactory="CheckEmployeeAccountParameterFactory">
<cmp:Result resultEvaluator="AccountInCreditResultEvaluator" />

</cmp:ParticipantRequest>
</cmp:CompensationCondition>
<cmp:CompensationPlan>

<cmp:Compensation>
<cmp:AdditionalRequest identifier="transferSalaryMethod"
parameterFactory="RefundSalaryDifferenceParameterFactory" />

</cmp:Compensation>
<cmp:Compensation>

<cmp:ServiceRequest
serviceAddress="http://localhost:8080/axis/services/TelephoneCall"
methodName="initializeTelephoneCall" />

</cmp:Compensation>
</cmp:CompensationPlan>

</cmp:ExternalCompensationRule>

Fig. 1.9 An example compensation rule

The compensation condition consists of two single condition elements:

1. RequestMethod—The rule applies to external compensation requests, which
aim at changing requests that originally invoked the service’s method “trans-
ferSalaryMethod”, i.e. it applies to external compensations that try to change the
details of an already completed salary transfer.

2. ParticipantRequest—The second condition element specifies a request that has
to be sent to the current service. The goal of the request is to check whether the
account of the employee will still be in credit after the excess amount has been
refunded. The condition’s request invokes the service’s method “getAccount-
BalanceMethod”. The request parameters are created by the parameter factory
“CheckEmployeeAccountParameterFactory”. After the request has returned the
current balance, the predefined result evaluator “AccountInCreditResultEvalua-
tor” is responsible for checking whether the salary refund can be performed, and
thus whether the rule’s condition is fulfilled or not.

The rule’s compensation plan consists of two steps as well:

1. AdditionalRequest—An additional request is sent to perform the required changes,
i.e. the money transfer back to the company’s account. It invokes the service’s
method “transferSalaryMethod”. The parameters for this request are created by
the parameter factory “RefundSalaryDifferenceParameterFactory”.

2. ServiceRequest—An additional external service is used as part of the compen-
sation. The method “initializeTelephoneCall” has to be invoked. This external
service performs a precautionary telephone call which informs the employee
about the error in the salary calculation and the refund that has been performed.

This is of course only a simple example. External compensation rules can consist
of a multitude of single conditions and/or compensation operations.



18 P. Dolog et al.

1.4 Web Service Environment with Transaction Coordination

The compensation rules from the previous section can be interpreted by an envi-
ronment we have designed and implemented as a prototype. The environment builds
upon adapted Web service coordination and transaction specifications [11–13]. They
provide a conceptual model and architecture for environments where business activ-
ities performed by Web services are embedded in a transactional context.

A1

A2

A3

A4 A5

Client Stub

Client

Client ProcessServer Process

Web Service 1

2. Register, get transaction context

1.
3. Call with TID

and context

4. Register with TID

5.

N. Run transaction 
protocol

N+1. Notify about outcome

Service Stub

Transaction 
Coordinator

Fig. 1.10 Transactional environment for Web services adopted from [1]

Figure 1.10 depicts an excerpt of such an environment with the main components.
The client runs business activities A1 to A5, which are part of a transactional context
that is maintained by a transaction coordinator. Client and server stubs are responsible
for getting and registering the activities and calls for Web services in the right context.
The sequence of conversation messages is numbered. For clarity, we only show a
conversation with a Web service provider that performs business activity A1. The
coordinator is then responsible for running appropriate protocols, for example a
distributed protocol for Web service environments such as [2].

We extend the architecture and the infrastructure based on the specifications
[11–13] in order to enable it to handle both internally and externally triggered com-
pensations as described in the previous sections.

Figure 1.11 depicts the extension to the transaction Web service environment,
namely the abstract service and the adapter components. This extension does not
change the way how client, coordinators and providers operate. Instead of invok-
ing a normal Web service, a client invokes an abstract service, which looks like a
standard Web service to the outside. However, the abstract service is a management
component for forward recovery compensation handling, which wraps multiple con-



1 Design and Management of Web Service Transactions with Forward Recovery 19

crete services that offer the same functionalities and can thus replace each other. The
abstract service is therefore a mediator between a client and the concrete service
that performs the required operations. At the same time, the adapter functions as
a mediator between transaction coordinator, abstract service and concrete service
to ensure proper transactional context and to provide the means to intercept failure
notifications and create messages required in the compensation handling process.

Abstract Service Interface

Compensation Interface

C
o

n
tr

ac
t 

E
xc

h
an

g
e 

In
te

rf
ac

e

Registration

Incident reporting,
Compensation interaction

Request/response Registration,
Status messaging

Registration,
Status messaging

Management

Concrete service list

Concrete service wrappers

Request log

Compensation rules repository

Contract repository

Coordinator 
Capabilities

Adapter Management

AdapterE
ven

t In
terface

Abstract Service

Transaction 
Coordinator

Client

Request/response

Initiator

Concrete 
Service

Contract exchange

External compensation 
interaction

Fig. 1.11 The abstract service and adapter transaction environment

1.4.1 Abstract Service

The central element of the extension is the notion of the abstract service. The client
stub communicates with the Web service provider stub through the abstract service.
An abstract service does not directly implement any operations, but rather functions
as a management unit, which allows to:

• define a list of Web services which implement the required capabilities,
• invoke a service from the list in order to process requests which are sent to the

abstract service,
• replace a failed service with another one from the list without a failure of the

transaction, and
• process externally triggered compensations on the running transaction.

To the outside, it provides an abstract interface and can be used like any other Web
service, and uses the same mechanisms like SOAP [15] and WSDL [4]. On the inside,



20 P. Dolog et al.

it manages a list of concrete services which provide the required capabilities. When
the abstract service receives a request, it chooses one of these services and invokes it.
Which concrete service is chosen depends on the abstract service’s implementation.
In the simplest case, the abstract service only selects the next concrete service on
the list. However, it would be possible to give the abstract service the capability
to dynamically assess each concrete service and to choose the one that optimizes
the client’s QoS requirements. Interface and data incompatibilities are solved by
predefined wrappers.

This approach has multiple benefits:

• Usually, a client does not care which specific service handles his requests, as
long as the job will be done successfully and in accordance with the contract.
The abstract service design supports this notion by providing the capabilities to
separate the required abilities from the actual implementation.

• The available list of concrete services enables the abstract service to provide
enhanced compensation possibilities.

• The definition of an abstract service can be done independently from the business
process in which it will be used. It can therefore be reused in multiple applications.
If a specific service implementation is no longer usable, then the business process
does not have to be changed, as this is managed in the abstract service.

Figure 1.11 depicts the basic structure of an abstract service. Four interfaces are
supplied to the outside: The service operations for which the abstract service has
been defined can be accessed via the abstract service interface. A contract can be
exchanged or negotiated by using the contract exchange interface. Execution events
of a service (e.g. a failure) can be signaled via the event interface. Compensations
can be triggered from the outside using the compensation interface.

On the inside, the main component is the management unit, which receives and
processes requests, selects and invokes concrete services, and handles compensa-
tions. In order to do so, it has several elements at its disposal:

• Concrete service list: Contains the details of all available concrete services.
• Concrete service wrappers: Define the mapping of the generic abstract service

interface to the specific interface of each concrete service.
• Request log: Holds all requests of the current session.
• Compensation rules repository: Manages the rules that control the compensation

handling process.
• Contract repository: Contains the existing contracts with the different clients.

1.4.2 Adapter

Abstract services could be used in conjunction with a wide variety of technologies.
Therefore, it would be preferable if the definition of the abstract service itself could
be generic. However, the participation in a transaction requires capabilities that are
different for each transaction management specification.



1 Design and Management of Web Service Transactions with Forward Recovery 21

That is why the transaction specific requirements are encapsulated in a so-called
adapter (see Fig. 1.11). An abstract service registers with this adapter, which in
turn registers with the transaction coordinator. To the coordinator it appears as if the
abstract service itself has registered and sends the status messages. When the abstract
service invokes a concrete service, it forwards the information about the adapter,
which functions as a coordinator for the service. The service registers accordingly
at the adapter as a participant in the transaction.

As can be seen, the adapter works as a mediator between the abstract service,
the concrete service, and the transaction coordinator. The adapter receives all status
messages from the concrete service and is thus able to process them before they
reach the actual coordinator. Normal status messages can be forwarded directly to
the coordinator, while failure messages can initiate the internal compensation han-
dling through the abstract service. If the adapter receives such an error message,
it informs the abstract service that can then assess the possibility of compensation,
which includes checking both the existing compensation rules and the restriction
feature model. The adapter will be informed about the decision, and can act accord-
ingly. If for example the replacement of a failed concrete service is possible, then the
adapter will deregister this service and wait for the replacement to register. In this
case, the failure message will not be forwarded to the transaction coordinator. The
compensation assessment could of course also show that a compensation is not possi-
ble (or permitted). In such a case, the adapter will simply forward the failure message
to the coordinator, which will subsequently initiate the abort of the transaction.

1.4.3 Compensation Protocol

While the compensation rules specify when and how a compensation can be per-
formed, the compensation protocol controls the external compensation process itself
and its interaction with the different participants.

An externally triggered compensation always has the purpose of changing one
particular request that has already been processed at the service. More specifically,
the compensation request contains the original request with its data that has to be
changed (request1(data1)), and the new request-data (data2) to which the
original request has to be changed to (request1(data2)). The participants in
the protocol are the abstract service, the client which uses the abstract service in
its business process, the initiator which triggers the external compensation (either
the client itself, or any other authorized source like an administrator), the concrete
service which is currently being utilized by the abstract service, and the transaction
coordinator. An externally triggered compensation can only be performed if the
transaction in which the abstract service participates has not yet finished, as this
usually has consequences for the client due to result resending.

The protocol consists of two stages. The first stage is the compensation assess-
ment: As soon as the abstract service receives a request for a compensation, it
checks whether it is feasible and what the costs would be. To that end, predefined



22 P. Dolog et al.

compensation rules are being used, which consist of a compensation condition
(defines when a compensation rule can be applied) and a compensation plan (defines
the compensation actions that have to be performed). The second stage of the protocol
is the compensation execution, which performs the actual compensation according
to the plan. Whether this stage is actually reached depends on the initiator: After the
assessment has been completed and has come to a positive conclusion, the initiator,
based on this data, has to decide whether the compensation should be performed.

As the client and the initiator of an external compensation can differ, the pro-
tocol contains the means to inform the client about the compensation process. It
also ensures that the current concrete service and the transaction coordinator are
informed about the status of the external compensation, as it is possible that the
concrete service’s (and thus the abstract service’s) state changes due to the external
compensation. The concrete service has to enter a specific external compensation
handling procedure state for this purpose. While the concrete service is in this state,
it will wait for additional requests from the abstract service, and the coordinator is
not allowed to complete the transaction. While assessing the possibilities for a com-
pensation, and while performing it, the abstract service cannot process additional
requests (and either has to store the requests in a queue, or has to reject them with
an appropriate error message).

Because of the requirements of the compensation protocol, it is necessary to adapt
the normal transaction protocol with additional state changes regarding the coordina-
tor and participant (i.e. the concrete service). This has been done in our implementa-
tion for the BusinessAgreementWithCoordinatorCompletion protocol
(refer to [11]), using an extended version introduced in [2] as a basis that uses trans-
action dependency graphs in order to solve cyclic dependencies. The result of the
state diagram adaptation for the compensation protocol is depicted in Fig. 1.12.

Two new states have been introduced, ExCompensation I and ExCompen-
sation II. While both represent the external compensation handling procedure
state which the concrete service has to enter, it is necessary to distinct between them,
because depending on the former state different consequential transitions exist.

If the concrete service as participant is currently either in the Active state or
the Completing state when receiving an ExCompensate notification from the
adapter, it will enter the ExCompensation I state. While the concrete service is
in this state, it will wait for new requests from the abstract service, and the coordinator
will not finish the transaction. If the external compensation procedure is canceled
after the assessment has been performed, the concrete service will be instructed to
re-enter its former state by receiving either an Active or a Complete instruction
from the adapter. The transaction processing can then continue in the normal way.
In contrast, if the external compensation is executed and performed successfully,
the concrete service will receive an ExCompensated message, which instructs it
to enter the Active state. This is necessary for two reasons: Firstly, because any
additional requests as part of the external compensation handling require that the
participant again performs the Completing operations. And secondly, because
the abstract service’s client will be informed about the external compensation that



1 Design and Management of Web Service Transactions with Forward Recovery 23

Active Completing Completed

Canceling

Exiting

Closing

Compensating

Faulting

Ended
Complete Completed Close Closed

Compensated

Fault

Fault

Faulted

ExitExit

Cancel Cancel

Exited

Canceled

ExCompensation I

Fault

ExCompensated,
Active

Cancel

Waiting
Compensate

CompletedWait

Exit

ExCompensate

ExCompensate

Complete

ExCompensation II

ExCompensate ExCompensate
Wait

Completed

Fault

CompensateExCompensated

Coordinator generated Participant generated Adapter generated

Compensate

Fig. 1.12 The state diagram of the BusinessAgreementWithCoordinatorCompletion
protocol with extensions for the external compensation handling

has been performed, and it is possible that additional operations are required by the
client as a consequence of the compensation.

In addition to these options within the ExCompensation I state, the same
transitions exist as in the Active and Completing states, i.e. the coordinator can
Cancel the operations, and the participant can Exit or send a Fault notification.

If the concrete service is either in the Waiting or Completed state when
receiving an ExCompensate message, it will enter the ExCompensation II
state. In principle, the state has the same meaning as ExCompensation I:
The concrete service will wait for new abstract service requests, and at the same
time the coordinator is not allowed to finish the transaction. The concrete service
will be notified to enter the Active state through an ExCompensated mes-
sage after a successful external compensation execution. However, in contrast to
ExCompensation I, different consequential transitions are available, and there-
fore it is necessary to separate these two states. In case of a compensation abort, the
concrete service can be instructed to re-renter its former state through a Wait or
Completedmessage. Moreover, a Faultmessage can be sent to signal an internal
failure. Finally, the coordinator can send a Compensate instruction while the con-
crete service is in the ExCompensation II state. The concrete service can only
be instructed to Compensate if it is either in the Waiting or the Completed
state. Therefore, it is necessary to introduce ExCompensation II, as this option
is not available for the Active and Completing states and thus may not be
permitted within ExCompensation I.

The extended state diagram contains new transitions generated by the adapter in
addition to the ones from the participant (i.e. the concrete service) and the coordinator.



24 P. Dolog et al.

This is actually a simplification, because although the adapter creates the messages
and sends them to the coordinator and the participant, both are not aware of the fact
that the adapter has sent them. To the coordinator it always looks as if the participant
has sent the messages, while the participant thinks that the coordinator has sent them,
as both are unaware of the extended transaction environment. Therefore, in order to
obtain a state diagram that shows only transitions generated by either the coordinator
or the participant, it would be necessary to create two different state diagrams, one
from the participant’s view and one from the coordinator’s.

1.4.4 Application on the Client and Provider Side

The abstract service design can be applied on both, the client and the provider side.
A client who wants to create a new distributed application using services provided
by multiple providers can utilize abstract services in two different ways:

1. The client can include the abstract service from a provider in his new business
process, and can use the added capabilities.

2. The client can define a new abstract service, which manages multiple concrete
services that can perform the same task.

The main goal of a Web service provider is a successful and stable execution of
the client’s requests in accordance with the contracts. If the service of a provider fails
too often, he might face contractual penalties, or the client might change the provider.
He can use abstract services in order to enhance the reliability and capability of his
services by creating an abstract service which encapsulates multiple instances or
versions of the same service. These can be used in case of errors to compensate the
failure without the need for a transaction abort.

1.4.5 Client Contracts

While the different compensation capabilities of an abstract service allow the han-
dling of internal and external compensations, it may not always be desirable for a
client that these functionalities are applied. The abstract service environment there-
fore allows the definition and evaluation of contracts.

A client will negotiate a contract with the abstract service before sending the
first request. This contract not only contains legal information and the Service Level
Agreement, but can also specify (using a restriction feature model as described in
Sect. 1.2.5) which compensation operations the abstract service is permitted to apply.
The abstract service adapts dynamically to this contract by checking the restrictions
defined in it prior to performing a compensation: A compensation rule may only be
applied if all necessary compensation operations are permitted via the contract. It can
thus happen that although a compensation rule exists for handling a compensation,
the abstract service will not apply it because the contract restricts the use of required



1 Design and Management of Web Service Transactions with Forward Recovery 25

compensation operations. Accordingly, an abstract service that is not allowed to
use any compensation capabilities will act exactly like a standard Web service. A
client therefore can make use of the forward recovery capabilities, but he does not
have to, and thus always has the control over the environment’s forward recovery
compensation handling features.

Because of this ability to dynamically adapt to each client’s contract, it is possible
to use the same abstract service in a wide variety of distributed applications with
differing requirements regarding compensation handling.

1.4.6 Transaction Environment Adaptation

The abstract service and adapter approach has been designed as an extension of the
current transaction coordination structure so that it is easy to integrate it into existing
environments and different transaction protocols. Therefore, it is not necessary to
change either the client, coordinator or concrete service in order to use the internal
compensation handling capability: An abstract service that manages different con-
crete services and that is able to replace failed concrete services can be used like a
normal Web service and without any changes to the transaction protocol.

However, the introduced external compensation functionality for changing already
processed requests requires some changes in the transaction environment:

1. It is necessary to extend the existing transaction specification protocols to pro-
vide the capability to perform external compensations. This has been shown
for the BusinessAgreementWithCoordinatorCompletion protocol
in Sect. 1.4.3. Accordingly, the coordinator and the participating concrete service
have to be able to handle this adapted protocol.

2. The external compensation process requires that reports about a performed com-
pensation or the resending of results can be sent to the client of a transaction. It
is therefore necessary that the client provides the expected interfaces and that he
is able to process these reports in accordance with his business process.

The extent of the changes thus depends on the compensation requirements.

1.4.7 Middleware Prototype

The described design approach has been implemented as a prototype in order to ver-
ify the design and the protocols. The implementation has been done using Apache
Tomcat as Web container, and Apache Axis as SOAP engine. The WS-Transaction
specification has been chosen for the transaction coordination, more specifically
the adapted BusinessAgreementWithCoordinatorCompletion proto-
col that has been introduced in Sect. 1.4.3. The implementation has been published
online at SourceForge.net as the FROGS (forward recovery compensation handling
system) project: http://sourceforge.net/projects/frogs/.

http://sourceforge.net/projects/frogs/


26 P. Dolog et al.

1.5 Discussion

The evaluation of the approach is discussed in detail in [19]. Here we provide a sum-
mary of the findings: The experiments showed that in our environment about twice
as many transactions as in a standard environment finish successfully. Furthermore,
a similar improvement can also be found if we look at how many transactions finish
in one minute. The number of messages sent in the environment is of course higher,
which is, however, compensated by the increased number of transactions that do not
have to roll back. Also, the number of additional messages is justified well enough
if the overall cost of forward recovery is lower than the cost of the rollback and
cumulative cascading rollbacks.

The current approach still has some shortcomings. The transition from design
to compensation rules needs to be studied in order to support it via semi-automatic
tools. Also, the algorithms for matching capability and requirement models require
further studies, as the proposed algorithm is limited to an exact match. Especially
approximation and similarity methods can be beneficial in this context. In addition,
the support for different types of configuration models seems quite useful to study.
So far, we have concentrated our efforts on defining the architecture and the required
protocol. It will be necessary to do a further analysis of the proposed protocol to
ensure that it is complete and is not susceptible to race conditions, which can occur
in a real-life environment where less than optimal conditions exist, messages can be
delayed or lost, and many concurrent accesses can exist.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services - Concepts, Architectures and
Applications. Springer (2003)

2. Alrifai, M., Dolog, P., Nejdl, W.: Transactions Concurrency Control in Web Service Environ-
ment. In: ECOWS ’06: Proceedings of the European Conference on Web Services, pp. 109–118.
IEEE, Washington, DC, USA (2006). DOI 10.1109/ECOWS.2006.37

3. Choi, S., Jang, H., Kim, H., Kim, J., Kim, S.M., Song, J., Lee, Y.J.: Maintaining Consistency
Under Isolation Relaxation of Web Services Transactions. In: A.H.H. Ngu, M. Kitsuregawa,
E.J. Neuhold, J.Y. Chung, Q.Z. Sheng (eds.) WISE, Lecture Notes in Computer Science, vol.
3806, pp. 245–257. Springer (2005)

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description Lan-
guage (WSDL) 1.1. W3C note, W3C (2001)

5. Dolog, P., Nejdl, W.: Using UML-Based Feature Models and UML Collaboration Diagrams to
Information Modelling for Web-Based Applications. In: T. Baar, A. Strohmeier, A. Moreira,
S.J. Mellor (eds.) Proc. of UML 2004 — The Unified Modeling Language. Model Languages
and Applications. 7th International Conference, LNCS, vol. 3273, pp. 425–439. Springer (2004)

6. Dostal, W., Jeckle, M., Melzer, I., Zengler, B.: Service-orientierte Architekturen mit Web
Services. Spektrum-Akademischer Verlag (2005)

7. Gray, J.: The Transaction Concept: Virtues and Limitations. In: VLDB 1981: Intl. Conference
on Very Large Data Bases, pp. 144–154. Cannes, France (1981)

http://dx.doi.org/10.1109/ECOWS.2006.37


1 Design and Management of Web Service Transactions with Forward Recovery 27

8. Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is Not Enough. In: 7th International
Enterprise Distributed Object Computing Conference (EDOC 2003), pp. 232–239. IEEE Com-
puter Society, Brisbane, Australia (2003)

9. Greenfield, P., Fekete, A., Jang, J., Kuo, D., Nepal, S.: Isolation Support for Service-based
Applications: A Position Paper. In: CIDR, pp. 314–323 (2007)

10. Greenfield, P., Kuo, D., Nepal, S., Fekete, A.: Consistency for Web Services Applications.
In: Proceedings of the 31st international conference on Very large data bases, VLDB ’05,
pp. 1199–1203. VLDB Endowment (2005). URL http://dl.acm.org/citation.cfm?id=1083592.
1083731

11. Ltd., A.T., Systems, B., Ltd., H., Corporation, I., Technologies, I., Corporation, M.: Web
Services Business Activity Framework (2005). Published at ftp://www6.software.ibm.com/
software/developer/library/WS-BusinessActivity.pdf

12. Ltd., A.T., Systems, B., Ltd., H., Corporation, I.B.M., Technologies, I., Corporation, M.: Web
Services Coordination (2005). Published online at ftp://www6.software.ibm.com/software/
developer/library/WS-Coordination.pdf

13. Ltd., A.T., Systems, B., Ltd., H., Corporation, I.B.M., Technologies, I., Inc., M.C.: Web Services
Atomic Transaction (2005). Published at ftp://www6.software.ibm.com/software/developer/
library/WS-AtomicTransaction.pdf

14. Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
15. Nielsen, H.F., Mendelsohn, N., Moreau, J.J., Gudgin, M., Hadley, M.: SOAP Version 1.2 Part

1: Messaging Framework. W3C recommendation, W3C (2003)
16. Pullum, L.L.: Software Fault Tolerance — Techniques and Implementation. Artech House,

Inc., Norwood, MA, USA (2001)
17. Schäfer, M., Dolog, P.: Feature-Based Engineering of Compensations in Web Service Envi-

ronment. In: M. Gaedke, M. Grossniklaus, O. Díaz (eds.) Web Engineering, 9th International
Conference, ICWE 2009, Lecture Notes in Computer Science, vol. 5648, pp. 197–204. Springer,
San Sebastián, Spain (2009)

18. Schäfer, M., Dolog, P., Nejdl, W.: Engineering Compensations in Web Service Environment.
In: P. Fraternali, L. Baresi, G.J. Houben (eds.) ICWE2007: International Conference on Web
Engineering, LNCS, vol. 4607, pp. 32–46. Springer Verlag, Como, Italy (2007)

19. Schäfer, M., Dolog, P., Nejdl, W.: Environment for Flexible Advanced Compensations of Web
Service Transactions. ACM Transactions on Web 2(2) (2008)

20. Yang, Z., Liu, C.: Implementing a Flexible Compensation Mechanism for Business Processes
in Web Service Environment. In: ICWS ’06. Intl. Conference on Web Services, pp. 753–760.
IEEE Press, Salt Lake City, Utah, USA (2006)

http://dl.acm.org/citation.cfm?id=1083592.1083731
http://dl.acm.org/citation.cfm?id=1083592.1083731
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-BusinessActivity.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-Coordination.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf
ftp://www6.software.ibm.com/software/developer/library/WS-AtomicTransaction.pdf

	1 Design and Management of Web Service Transactions with Forward Recovery
	1.1 Introduction
	1.2 Compensations Design
	1.2.1 Conceptual Model
	1.2.2 Compensation Feature Model
	1.2.3 Capability Feature Model
	1.2.4 Requirement Feature Model
	1.2.5 Restriction Feature Model
	1.2.6 Model Comparison Algorithm
	1.2.7 Example

	1.3 Compensation Rules
	1.3.1 Basic Compensation Activities
	1.3.2 Compensation Types
	1.3.3 Example of a Compensation Rule

	1.4 Web Service Environment with Transaction Coordination
	1.4.1 Abstract Service
	1.4.2 Adapter
	1.4.3 Compensation Protocol
	1.4.4 Application on the Client and Provider Side
	1.4.5 Client Contracts
	1.4.6 Transaction Environment Adaptation
	1.4.7 Middleware Prototype

	1.5 Discussion
	References


