
Chapter 8
Automated Service Composition Based
on Behaviors: The Roman Model

Giuseppe De Giacomo, Massimo Mecella and Fabio Patrizi

Abstract During the last years, many approaches have been proposed in order to
address the issue of automated service composition. In this chapter, we discuss the
so-called “Roman model”, in which services are abstracted as transition systems and
the objective is to obtain a composite service that preserves a desired interaction,
expressed as a (virtual) target service. We will also outline its deployment in the
challenging applications of smart houses, i.e., buildings pervasively equipped with
sensors and actuators making their functionalities available according to the service-
oriented paradigm.

8.1 Introduction

Services are software artifacts, possibly distributed and built on top of different
technologies, that export a description of themselves, are accessible to external clients
and communicate through a commonly known, standard interface which enables
interoperability. More in general, Service Oriented Computing (SOC) is a comput-
ing paradigm whose basic elements are services, that can be used as building blocks
to devise other services. A classical example of such a paradigm is provided by
Web services, i.e., applications published over the Internet and self-described, usu-
ally built by different companies and relying on different technologies, which share
a same communication protocol, namely SOAP. For instance, many online travel
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agencies integrate different Web services offered by hotels, airlines, restaurants,
etc., to provide final users with a complete service, combining all functionalities of
its basic components. No constraints are required over the internal structure of each
Web service, but they are all required to be published, compliant with the same com-
munication protocol and to export a description of their interface, so as to facilitate
access and communication.

Abstracting from this example, services can be thought as generic programs,
publicly available and wrapped so as to mutually interact and communicate over
a common platform. As such, the SOC paradigm makes easier code re-use and
extension, as, in a sense, each service is interpreted as a procedure/method in pro-
gramming languages and, thus, a set of services as a sort of programming library.
This similarity can be taken as the basis of service composition: as exactly as in a
programming language procedures/methods are combined to produce more complex
procedures/methods, so services can be combined to build more complex services.

This chapter focuses on automated service composition, that is, the problem of
automatically combining a set of available services, so as to meet a desired speci-
fication. To this end, we start from the classical architecture for Web services. The
parties typically involved include a client, that can be a service itself, the directory,
and a set of service providers. The directory is a central, publicly available registry
storing service descriptions which allow clients to search for some desired service;
service providers are organizations, typically companies, that publish actual running
services, advertised in registries. A typical session is as follows: (i) a client searches
for a desired service, e.g., weather forecasting, in a directory; (ii) if the service is
found, the client is redirected to the provider that deploys the service; (iii) the client
contacts the desired service and interacts with it, according to its needs. This simple
scenario is already sufficient to raises two classical questions in SOC: (i) how to
describe services? (ii) what if the desired service is not found? The first one con-
cerns service modeling, i.e., the definition of a suitable abstraction of services, able
to capture aspects that can be relevant to clients; the second one raises the problem
of finding a constructive alternative to the trivial answer: “the request cannot be ful-
filled”. As one may expect, there exist many reasonable, correct answers to them.
In this work we discuss both problems. We first present a model, sometime referred
to as the “Roman Model”, that substantially enriches existing ones, by providing
an abstraction of the conversations a service can carry on with clients; then, on top
of this model, we describe a technique for building a solution that fulfills a client
request by suitably combining the available services. In addition, we show that such
techniques is in fact best one can do, in the sense of returning the most general
solution, while being optimal with respect to worst-case time complexity.

8.1.1 Modeling Behaviors

In the literature, several approaches to service modeling have been proposed. Rather
than actual languages widely used to describe Web services, such as WSDL, we focus
on their conceptual model. A WSDL description exports a functional specification
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of a service, that is, from an abstract standpoint, the set of operations provided by the
service, along with the corresponding format of messages exchanged. We can say
that WSDL has an underlying atomic conceptual model, specified in terms of input-
output requirements. For instance, a service providing stock quotes of some market
can be successfully described this way, with a single operation that returns the list of
quotes. However, when more complex specifications need to be exported, it shows
severe limitations. For instance, let us consider the same Web service for stock quotes
and assume that it provides quotations only to authenticated clients. In an input-
output approach, one would describe two operations, auth and quote, as well as
the respective data format necessary for interaction. Unfortunately, the input-output
approach does not allow for conversation specification, i.e., for putting constraints
on the order that operations should be executed in. A very natural constraint would
be, e.g., requiring clients to authenticate before requesting quotes. Observe also
that cases may exist where two services export a same set of operations but allow
different execution sequences. Since this last constraint is not captured by input-
output approaches, such services would appear to clients as the same. In a word,
atomic conceptual models export services’ interface but not their behavior.

The need for a behavioral description of services has been already recognized in
the literature, e.g., [3], yet the community suffers from a lack of standard languages
for this purpose. In this work, we present the so-called Roman Model (as named
by [23]), originally introduced in [6], and oriented to describe all conversations
supported by services, that includes (in its various variants) relevant features, such
as nondeterminism and shared memory.

In our model, services export their behavioral features by means of a language that
represents transition systems, i.e., Kripke structures whose transitions are labeled
by service’s operations, under the assumption that each legal run of the system
corresponds to a conversation supported by the service. To clarify this, consider
Fig. 8.1. The former is a graphical representation of an input–output description
of the stock quote service with authentication, which provides information about
operations that can be requested; the latter is a behavioral representation of the
same service, providing more information: indeed, it tells clients that they (i) must
authenticate before requesting a quote operation and, then, (ii) may request any
number of quotes. Of course, more sophisticated examples do exist, where several
operations, even nondeterministic, can be executed in a state, with nondeterminism
modeling partial knowledge about service’s internal logic. Also, there are settings
relying on the same approach, where operations have parameters and are able to
exchange data with other clients and even with an underlying database (cf. [5]).

Fig. 8.1 Service descriptions.
a Input–output. b Behaviors

Input-output Behaviors(a) (b)
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A first advantage brought by such a model is its generality with respect to service
integration, in the sense that it is abstract enough to serve as conceptual model for
several classes of scenarios. As an example, it can be used to model Web service
applications as well as multi-agent system ones. As a consequence, results obtained
on this model are also relevant to areas different from SOC. Second, from the SOC
viewpoint, it provides a behavioral, stateful, service representation, which allows for
describing those inter-operation constraints that current languages, e.g., WSDL, do
not capture. We remark the importance of such a feature in a perspective of compo-
sition automatization: indeed, composition engines are intended to replace human
operators, who compose services based on their informal description, often provided
in natural language, which include behavioral information. Importantly, when dealing
with a behavioral model, we can look at services as high-level descriptions of soft-
ware artifacts. Indeed, they are characterized by states and state transitions triggered
by inputs, which, specifically, represent requested operations. This interpretation
suggests, hence, to see service (possibly finite) runs as computation fragments, that
can be suitably combined to generate more complex services.

8.1.2 Composing Services

Many works exist which deal with automated composition of services (see Sect. 8.2
for a survey). Our problem can be informally stated as follows:

Consider a set of available services, a.k.a. community, and an additional target service, all
exporting their conversational behaviors. Is it possible to coordinate the available services
so to support, at execution time, all conversations supported by the target service?

In other words, the problem amounts to realize a (virtual) target service, by resorting
only to (actual) available services. Obviously, how services are combined in the
practice depends on the exported behavioral models. To see how this can be done,
consider the following example.

Example 8.1 Figure 8.2 shows a service composition problem instance in the Roman
Model, which includes two available services, represented in subfigures (a) and (b),
and a target one, in subfigure (c). The one in subfigure (a), say Sa , provides
login/logout capabilities, allowing a client to be authenticated and to close an authen-
ticated session, whereas the one in subfigure (b), say Sb, provides market stock quotes
from all over the world. Clients willing to interact with Sb are, first, required to input
the market country of their interest and, then, are allowed to request either stock
quotes or currency rates (versus, e.g., euro and dollar) for that market. As for the
target service, say T , it provides stock quotes of a selected market only to authenti-
cated clients. Specifically, clients of such a service need first to login, then to select
a market country, then are allowed to request quotes and, finally, to logout.

As we said, target services are virtual, that is, only their specification exists,
whereas their implementation is missing. However, it is easily seen that, by resorting
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Service ServiceSa
Sb

Target service

Orchestrator

(a) (b) (c)

(d)

Fig. 8.2 A service composition example in the Roman Model. a Service Sa . b Service Sa . c Target
service. d Orchestrator

to available services, this example’s target service can be built. Indeed, it is enough
delegating login/logout operations to Sa and country selection and stock requests to
Sb. Observe that the target service not only provides a set of operations, but imposes
a set of constraints over their executions, e.g., stock can be requested only after
country has been executed. Since, on their side, also available service operations
are subject to such a kind of constraints, when a target service is to be realized,
they must be met. For instance, had not T required operation country be executed
before stock, it would be not realizable, as Sb is the only service that provides
stock and it requires country to be executed first.

The composition can be realized by a machine which, on one side, receives client’s
operation requests and, on the other side, forwards them to an appropriate available
service which executes it and, consequently, changes its state, where a new set of
operations becomes available. Such a machine, similar to a Mealy machine but that
can be, in general, infinite-state, is called orchestrator. A possible orchestrator is
shown in subfigure (d). Each state of the machine corresponds to a state of the target
service and each transition is labeled by a pair of the form operation/service, with
an intuitive semantics: the requested operation is assigned to the output service. For
instance, operation login is delegated to service Sa .

The example above shows how the existence of temporal constraints among oper-
ation executions makes the problem non trivial: each time an operation is to be
delegated to some available service, one needs to check whether all constraints are
fulfilled, i.e., whether the service chosen for delegation is in a state where the oper-
ation is actually executable. This makes the orchestrator construction an hard task:
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in the Roman Model, the service composition problem is shown to be EXPTIME-
complete [6, 32].

More complex scenarios can be considered. For instance, nondeterministic avail-
able services are also conceivable, where nondeterminism over operation execution
represents partial knowledge about service’s internal logic. Also, one could think of
services communicating through a common blackboard or even exchanging data. All
these scenarios require different notions of composition and, hence, different kind
of orchestrators.

8.1.3 The History of the Roman Model

The specific composition problem has been tackled with different techniques, starting
by exploiting a reduction to satisfiability in a well-known logic of programs, namely
PDL [6, 8, 9].1 Notably, Logics of Programs are tightly related to Description Logics,
for which highly optimized satisfiability checkers exist (e.g., RacerPro, Pellet, FACT,
etc.). This framework has been then extended to consider interesting variants, e.g.:
forms of target service loose specifications [7], trust-aware services [13], distributed
orchestrators [35], shared environments [18], data-aware services [5].

More recently, another approach has been proposed based on computing compo-
sitions by exploiting (variants of) the formal notion of simulation [10, 34]. Interest-
ingly, through this, the case where the state of services is only partially observable
has been also addressed [16]. The solution technique directly appeals to techniques
for Linear Time Logic (LTL) synthesis, to model-check a game structure represent-
ing a so-called safety-game. Since this can be realized in practice on top of symbolic
model checking technologies, the approach gained a high level of scalability, and
has been effectively realized in the context of an EU research project (see Sect. 8.4).
In the following we will focus on this latter approach.

8.2 State-of-the-art on Automated Service Composition

In order to discuss automated service composition, and compare different approaches,
we introduce here a sort of conceptual framework for “semantic service integration”,
that is constituted by the following elements2: (i) the community ontology, which rep-
resents the common understanding on an agreed upon reference semantics between

1 The reader should note that [6] has been historically one of the most cited papers in the automated
service composition field, cf. more than 390 citations according to Google Scholar—September
2012. The same for [5] (cf. more than 250 citations).
2 Such a framework is inspired by the research on “semantic data integration” [27]. Obviously that
research has dealt with data (i.e., static aspects) and not with computations (i.e., dynamic aspects)
that are of interest in composition of services. Still many notions and insights developed in that field
may have a deep impact in service composition. An example is the distinction that we make later
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the services,3 concerning the meaning of the offered operations, the semantics of the
data flowing through the service operations, etc; (ii) the set of available services,
which are the actual Web services available to the community; (ii) the mapping for
the available services to the community ontology, which expresses how services
expose their behavior in terms of the community ontology; and (iv) the client service
request, to be expressed by using the community ontology.

In general, the community ontology comprises several aspects: on one side, it
describes the semantics of the information managed by the services, through appro-
priate semantic standards and languages; on the other side, it should consider also
some specification of the service behaviors, on possible constraints and dependencies
between different service operations, not limited solely to pre- and post-conditions,
but considering also the process of the service. In building such a “semantic service
integration” system, two general approaches can be followed. (i) In the service-
tailored approach, the community ontology is built mainly taking into account the
available services, by suitably reconciling them; indeed the available services are
directly mapped as elements of the community ontology, and the service request is
composed by directly applying the mappings for accessing concrete computations.
(ii) Conversely in the client-tailored one, the community ontology is built mainly
taking into account the client, independently from the services available; they are
described (i.e., mapped) by using the community ontology, and the service request
is composed by reversing these mappings for accessing concrete computations.

In fact, most of the research on automated service composition has adopted a
service-tailored approach. For example, the works based on Planning in AI (e.g., [38,
40, 33]) consider services as atomic actions—only I/O behavior is modeled, and the
community ontology is constituted by propositions/formulas (facts that are known
to be true) and actions (which change the truth-value of the propositions); available
services are mapped into the community ontology as atomic actions with pre- and
post-conditions. In order to render a service as an atomic action, the atomic actions,
as well as the propositions for pre- and post-conditions, must be carefully chosen by
analyzing the available services, thus resulting in a service-tailored approach.

Other works (e.g., Papazoglou’s et al. [39], Bouguettaya et al. [30], Sheth
et al. [12]) have essentially considered available services as atomic actions charac-
terized by the I/O behavior and possibly effects. But differently from those based on
planning, instead of concentrating on the automatic composition, they have focused
more on modeling issues and automated discovery of services described making use
of rich ontologies.

Also the work of McIlraith et al. [29] can be classified as service-tailored: services
are seen as (possibly infinite) transition systems, the common ontology is a Situation
Calculus Theory (therefore is semantically very rich) and service names, and each

between “service-tailored” and “client-tailored” service integration systems, which roughly mimic
the distinction between Global As View (GAV) and Local As View (LAV) in data integration.
3 Note that many scenarios of cooperative information systems, e.g., e-Government or e-Business,
consider preliminary agreements on underlying ontologies, yet yielding a high degree of dynamism
and flexibility.
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service name in the common ontology is mapped to a service seen as a procedure in
Golog/Congolog Situation Calculus; the client service request is a Golog/Congolog
program having service names as atomic actions with the understatement that it
specifies acceptable sequences of actions for the client (as in planning) and not a
transition system that the client wants to realize.

Finally, the work by Hull et al. [11] describes a setting where services are expressed
in terms of atomic actions (communications) that they can perform, and channels
linking them with other services. The aim of the composition is to refine the behavior
of each service so that the conversations realized by the overall system satisfy a given
goal (dynamic property) expressed as a formula in LTL. Although possibly more on
choreography synthesis than on composition of the form discussed here, we can still
consider it a service-tailored approach, since there is no effort in hiding the service
details from the client that specifies the goal formula.

Much less research has been done following a client-tailored approach, but some
remarkable exceptions should be mentioned: the work of Knoblock et al. [31] is
basically a data integration approach, i.e., the community ontology is the global
schema of an integrated data system, the available services are essentially data sources
whose contents is mapped as views over the global schema, and the client request
is basically a parameterized query over such a schema; therefore the approach is
client-tailored, but neither the ontology nor mappings consider service behavior at
all.

The work of Traverso et al. [33] can be classified also as client-tailored: services
are seen as (finite) transition systems, the common ontology is a set of atomic actions
and propositions, as in Planning; a service is mapped to the community ontology as a
transition system using the alphabet of the community and defining how transitions
affect the propositions, and the client service request asks for a sequence of actions
to achieve goal1 (main computation), with guarantees that upon failure goal2 is
reached (exception handling).

Finally, the line of research taken in [6–9], but also in [21], has the dynamic behav-
ior of services at the center of its investigation. In order to study the impact of such
dynamics on automatic composition, all these works make simplifying assumptions
on the community ontology, which essentially becomes an alphabet of actions. Still
the notion of community ontology is present, and in fact all these works adopt a client-
tailored approach. A fundamental issue that arises is whether such rich descriptions
of the dynamic behavior of the services can be combined with rich (non proposi-
tional) descriptions of the information exchanged by the services, while keeping
automated composition feasible. The first results on this issue were reported in [5],
where available services that operate on a shared world description (in a form of
a database) are considered. Such services can either operate on the world through
some atomic processes as in OWL-S, or exchange information through messages.
While the available services themselves are with finite states, the world description
is not. Under suitable assumptions on how the world can be queried and modified,
decidability of service composition is shown. Interestingly [5] shows that even if the
available services can be modeled as deterministic transition systems, the presence
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Fig. 8.3 Comparison of the various approaches

of a world description whose state is not known at composition time, requires dealing
with nondeterminism.

Figure 8.3 summarizes, on the basis of the previous discussion, the considered
works. The three axis represent the levels of detail according to which the community
ontology and the mappings and the client request can be modeled. Namely, (i) statics
in the system represents how fine grained is the modeling of the static semantics
(i.e., ontologies of data and/or services, inputs and outputs, alphabet of actions, etc.);
(ii) dynamics in component services represents how fine grained is the modeling of
the processes and behavioral features of the services (only atomic actions, transition
systems, etc.); and (iii) dynamics in client service request represents how fine grained
is the modeling of the process required by the client, varying from a single step (as in
the case of services consisting essentially of queries over a data integration system)
to a (set of) sequential steps, to a (set of) conditional steps, to including loops, up to
running under the full control of the client (as in our approach). Black/white lollipops
represent service-tailored (white) versus client-tailored (black) approaches.

Finally, in the last years, many works (e.g., [1, 19, 26, 36] consider how to per-
form composition by taking into account Quality-of-Service (QoS) of the composite
and component services. Moreover, some works consider non classical techniques
(e.g., [37] adopts learning approaches) for solving the composition problem.

8.3 The Roman Approach

The approach to service composition described here falls into the client-tailored
class. Its distinguishing features can be summarized as follows:

• The available services are grouped together into a so-called community (many
other approaches, e.g., [4], consider the notion of community as central in the
composition process).
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• Services in a community share a common set of actions Σ , the actions of the
community.

• Actions in Σ denote (possibly complex) interactions between service and clients.
As a result of an interaction the client may acquire new information (not necessarily
modeled in the description) that may affect the next interaction.

• The behavior of each available service is described in terms of a finite transition
system that uses only actions from Σ .

• The desired service, called the target service, is itself described as a finite, deter-
ministic transition system that uses actions from Σ . Determinism here captures
the absence of uncertainty over the desired behavior.

• The orchestrator has the ability of scheduling services on a step-by-step basis.

In this approach, the composition synthesis task consists in synthesizing an orches-
trator able to coordinate the community services so as to mimic the behavior of the
target service. Differently put, the behavior obtained by coordinating the services
should present no differences, from the client perspective, with the target service.

To describe this setting in terms of the framework previously discussed, we iden-
tify the following correspondences:

• the community ontology is simply Σ ;
• the available services are the actual services in the community;
• the mapping from the available services to the community ontology is represented

by the transition systems that describe the available services (built from community
actions);

• the client request is the target service (again, built from community actions).

In [6, 8], the simple case where available services are modeled as deterministic
finite transition systems is addressed, while in [9], (diabolic) nondeterminism has
been introduced, to account for those situations where the orchestrator cannot control
the outcome of interactions. The presence of nondeterministic conversations stems
naturally when services offer interactions with an unforeseeable result. For instance
consider a service that allows one to purchase items with a credit card. After obtain-
ing the credit card details, the service interacts with the bank, to request payment
authorization. If it is granted, the service offers the client the option to confirm the
payment, while in case of denial the service offers the possibility of entering the
details again. As it can be seen, the next options made available to clients depend
on the outcome of the authorization request, which, from the outside perspective, is
nondeterministic. As a result, the service itself is nondeterministic, from the perspec-
tive of its clients. Notice that after an interaction has taken place, its result becomes
observable, that is, clients can know the state that the service has moved to. This
feature can thus be exploited by the orchestrator (which is in fact a particular client),
that can observe the current state of the available services and choose how to carry
on a certain task.4

4 The reader should observe that also the standard proposal WSDL 2.0 adopts a similar approach:
an operation can have multiple output messages (the out message and various outfault
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t0 t1 t2 t3 t4

t5 t6 t7 t8 t9

Fig. 8.4 Target service for the smart-house scenario

In the following, we present some technical details of the Roman approach, by
considering non-deterministic services and the presence of data. In doing so, we
use a running example from the context of smart houses, an interesting application
scenario that our approach has been fully implemented in, proving effective. In
this context, the composition goal is to generate an orchestrator that realizes some
desired routines requested by the user, i.e., predefined sequences of operations that
the house is intended to execute by suitably exploiting some devices (considered as
services). For instance, a typical request issued in the morning could require heating
the bathroom, lifting the shutters, and preparing a coffee, while at night, a user might
request closing the shutters, locking the door, and switching the lights off.

8.3.1 The Framework

Technically, the behavior of services and the state of the house, called environment,
are abstracted as finite-state transition systems. In details: each service is represented
as a nondeterministic transition system (to model partial controllability); the user
request, called target, is represented as a deterministic transition system (to model full
controllability); and the environment is represented as a nondeterministic transition
system (to model partial predictability). The state of the environment is assumed fully
observable by all services, including the target. Our ultimate goal is to simulate the
target by suitably delegating actions to the available services, as they are requested
by the client.

For an example consider Fig. 8.4, which shows a fragment of a target behavior
for the smart house scenario. It captures some requests typically issued by a user in

messages), and the client observes how the service behaved only after receiving a specific output
message.
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Bathroom heating device Bathtub device Door device

Kitchen exhaust fan
device

s0 s1

s2s3

User behavior

(a) (b) (c)

(e)(d)

Fig. 8.5 Service community for the smart-house scenario. a Bathroom heating device. b Bathtub
device. c Door device. d Kitchen exhaust fan device. e User behavior

the morning: having a shower and breakfast. States t1, t2, and t3 contain the requests
for heating the bathroom (“hot air on”), filling up the bathtub, opening the bathroom
door, etc., that is, all the actions necessary to have a shower; the remaining states
correspond to the actions to execute in order to have a breakfast ready. Checking
whether these requests can be fulfilled in the proper order and, if so, which devices
can be used to perform the actions, is exactly the objective of the synthesis task.

Figure 8.5 shows the set of available services, i.e., the community, for the same
scenario. Notice that also the user is represented as a service. This is because users
can in general execute actions that contribute to the realization of a target. Obviously,
when this is not desired, a user can be simply excluded themselves from the commu-
nity. For the environment, we consider the following state variables, with respective
domain:

• temp_bathroom : {warm, hot, cold};
• user_posi tion : {bedroom, bathroom, ki tchen};
• door_bathroom : {closed, open};
• door_ki tchen : {closed, open};
• smell_ki tchen : boolean;

in which every state variable assignment corresponds to a different environment state.

8.3.1.1 Environment and Behaviors

Formally, we have a shared nondeterministic, fully observable environment, which
provides an abstract account of action preconditions and effects, and a mean of com-
munication among services. In details, an environment is a tuple E = 〈A, E, e0, ρ〉,
where:
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• A is a finite set of shared actions;
• E is the finite set of environment states;
• e0 ∈ E is the initial state;
• ρ ⊆ E × A × E is the transition relation among states: 〈e, a, e′〉 ∈ ρ, or e

a−→ e′
in E , denotes that action a performed in state e may lead the environment to a
successor state e′.

Services stand for the interface that available devices expose. At each step, a
service offers a set of executable actions that can be chosen by the client. The client
selects one, the service executes it, and a new step starts. In general service executions
affect the environment (cf. above), hence they are equipped with the ability to test
conditions (i.e., guards) on the environment, when needed. A (service) behavior over
an environment E = 〈A, E, e0, ρ〉 is a tuple B = 〈B, b0, G, �〉, where:

• B is the finite set of behavior states;
• b0 ∈ B is the initial state;
• G is a set of guards, that is, boolean functions g : E �→{true, false};
• δ ⊆ B × G × A × B is the behavior transition relation, where 〈b, g, a, b′〉 ∈ �,

or b
g,a−→ b′ in B, denotes that action a executed in state b, when the environment

is in a state e such that g(e) = true, may lead the behavior to state b′.

The target in Fig. 8.4 has guarded actions, e.g., temp_bathroom ! = hot :
hot air on, meaning that action hot air on can be requested only if the envi-
ronment is in a state where temp_bathroom ! = hot holds. We then decouple the
state of physical device from that of the house, coping with unpredictable situations.
Suppose the plan is running and the orchestration module instructs the bath heating
device to switch the hot air on, while a tenant is switching the air off when leaving
the bathroom: thanks to guards, the plan does not progress until hot temperature is
reached. In other words, the fact that the bath heating device is in state hot air on
does not yield that the bathroom temperature is actually hot.

As discussed, behaviors are nondeterministic. That is, given a state and an action,
there may be several transitions whose guards evaluate to true. We say that a
behavior B over E is deterministic if for no behavior state b ∈ B and no environment
state e ∈ E there exist two transitions b

g1,a−→ b′ and b
g2,a−→ b′′ in B such that b′ 	= b′′

and g1(e) = g2(e) = true. Obviously, given a state of a deterministic behavior
and a legal action, we know exactly the next behavior state, while this is not the case
for nondeterministic behaviors. Thus, we say that the former are fully controllable
while the latter are only partially controllable.

Finally, we define a system S = 〈B1, . . . ,Bn, E〉 as an environment E and n pre-
defined available behaviors Bi over E . A target behavior is a deterministic behavior
over E that represents the fully controllable desired behavior to be obtained through
the available behaviors.

Let us analyze the target of Fig. 8.4. The transition system represents the actions
that a user may ask at each moment in time. In state t0, the initial one, the user can make
a choice: either to have a shower and then to have breakfast, or to have a breakfast only.
In the first case he asks for action hot air on, otherwise, he can move to ki tchen
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only if the kitchen door is open, or, if not, ask for open door ki tchen. Let us
suppose he decides to have a shower. In state t1 he may request to f illup bathtub
(guarded action) only if the bathroom temperature is reasonably hot. Then he may
ask to open door bathroom (guarded) and only when it is opened he can move to
the bathroom, wash and go back to the bedroom. Unless the system is sure that the
user is back in the bedroom, the bathtub cannot be emptied, and the hot air cannot
be switched off in the bathroom. After having a shower, the user is supposed to have
breakfast. So, when the kitchen door is open, he can decide to either prepare a tea
or cook eggs. In the latter case, the house system should vent the kitchen until the
smell is gone. After these activities, the target returns in its starting state, allowing
the tenants to repeat infinitely many times the same sequences of actions.

8.3.2 Enacted Behaviors

To show how the composition task is automatically carried out, we introduce some
intermediate notions. Given a behavior B over E , the enacted behavior of B over E
is the tuple TB = 〈S,A, s0, δ〉, where:

• S = B × E is the (finite) set of TB states—given a state s = 〈b, e〉, we denote b
by beh(s) and e by env(s);

• A is the set of actions in E ;
• s0 ∈ S, with beh(s0) = b0 and env(s0) = e0, is the initial state of TB;
• δ ⊆ S × A × S is the enacted transition relation, where 〈s, a, s′〉 ∈ δ, or s

a−→ s′

in TB, iff: (i) env(s)
a−→ env(s′) in E ; and (ii) beh(s)

g,a−→ beh(s′) in B, with
g(env(s)) = true for some g ∈ G.

Technically, TB is the synchronous product of the behavior and the environment,
and represents all the possible executions obtainable by executing B, once guards are
evaluated and actions are performed on E . Observe that both the environment and
the behavior are possible sources of nondeterminism for an enacted behavior.

All available behaviors in a system act concurrently, in an interleaved fashion, in
the same environment. For simplicity, we assume that behaviors are asynchronous,
that is, exactly one moves at each step.5 The behavior emerging from the joint
execution of all the available behaviors on an environment is referred to as the enacted
system behavior. Let S = 〈B1, . . . ,Bn, E〉 be a system, where E = 〈A, E, e0, ρ〉
and Bi = 〈Bi , bi0, Gi , �i 〉 (i ∈ {1, . . . , n}). The enacted system behavior of S is
the tuple TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉, where:

• SS = B1 × · · · × Bn × E is the finite set of TS states; when sS = 〈b1, . . . , bn, e〉,
we denote bi by behi (sS), for i ∈ {1, . . . , n}, and e by env(sS);

5 In fact, it is possible to extend the approach and results presented here, to the case in which at
each step more than one available behaviors acts as in [35].
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• sS0 ∈ SS with behi (sS0) = bi0, for i ∈ {1, . . . , n}, and env(sS0) = e0, is the
initial state of TS ;

• δS ⊆ SS ×A×{1, . . . , n}×SS is the TS transition relation, where 〈sS , a, k, s′
S 〉 ∈

δS , or sS
a,k−→ s′

S in TS , iff:

– env(sS)
a−→ env(s′

S) in E ;

– behk(sS)
g,a−→ behk(s′

S) in Bk , with g(env(sS)) = true, for some g ∈ Gk ;
and

– behi (sS) = behi (s′
S), for i ∈ {1, . . . , n} \ {k}.

Note that the enacted system behavior TS is the synchronous product of the environ-
ment with the asynchronous product of the available behaviors. It is essentially the
same form as any other enacted behavior, except for the presence of the index k in
transitions. This makes explicit which behavior is the one that performs the action
in the transition (while all other remain still).

8.3.3 Orchestrator and Composition

We can now introduce the notion of orchestrator, and define when it is a compo-
sition of the desired target service. The orchestrator is a component intended to
activate, stop, and resume the available services (behaviors), and to instruct them to
execute an action among those allowed in the current state. The orchestrator has full
observability on the available behaviors and the environment, that is, it can keep
track (at runtime) of their current states.

To formally define orchestrators, some technical notions are needed. A trace for

an enacted behavior TB is a possibly infinite sequence of the form s0 a1−→ s1 a2−→ · · ·
such that (i) s0 = s0 and (ii) s j a j+1−→ s j+1 in TB, for all j > 0. A history is a finite

prefix h = s0 a1−→ · · · a�−→ s� of a trace. We denote s� by last(h), and � by length(h).
The notions of trace and history extend immediately to enacted system behaviors:

system traces have the form s0 a1,k1−→ s1 a2,k2−→ · · · , and system histories have the form

s0 a1,k1−→ · · · a�,k�−→ s�.
Let S be a system and H the set of its histories (i.e., histories of TS ). An

orchestrator for S is a function P : H × A �→ {1, . . . , n, u} that, given a history
h ∈ H and an action a ∈ A, selects a behavior, by returning its index, to delegate a
to for execution. For technical convenience, a special value u (“undefined”) can be
returned, to make P a total function defined also on irrelevant histories or actions
that no behavior can perform after a given history.

The problem we are interested in is the following: given a system S = 〈B1, . . . ,

Bn, E〉 and a deterministic target behavior Bt over E , synthesize an orchestrator P
that realizes the target behavior Bt by suitably delegating each action requsted by
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Bt to one of the available behaviors Bi in S. A solution to such problem is called a
composition.

Intuitively, the orchestrator realizes a target if for every trace of the enacted target
and a requested action, the orchestrator returns the index of an available behavior
able to perform the requested action. Observe that these orchestrators are somewhat
akin to an advanced form of conditional plans and, in fact, the problem itself is related
to planning, being both synthesis tasks. Here, though, plans do not select the next
action, but who shall execute the next action.

One can formally define when an orchestrator realizes the target behavior, as
in [18]. To this end, one first needs to define when an orchestrator P realizes a trace
of the target Bt . Then, since the target behavior is a deterministic transition system,
and thus its behavior is completely characterized by the set of its traces, we can define
that an orchestrator P realizes the target behavior Bt iff it realizes all of its traces.

8.3.4 Composition via Simulation

Let us next present our approach for synthesizing a composition, based on the notion
of simulation [22]. Intuitively, a transition system S1 “simulates” a system S2 if S1 is
able to match all of S2 moves. Due to the (devilish) nondeterminism of the available
behaviors and the environment, we cannot use the off-the-shelf notion of simulation,
but we need a variant, here called ND-simulation.

Let S = 〈B1, . . . ,Bn, E〉 be a system, Bt a target behavior over E , and let
TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉 and Tt = 〈St ,A, st0, δt 〉 the enacted system
and enacted target behaviors corresponding to S and Bt , respectively.

An ND-simulation relation of Tt by TS is a relation R ⊆ St × SS , such that
〈st , sS〉 ∈ R implies:

1. env(st ) = env(sS);

2. for all a ∈ A, there exists a k ∈ {1, . . . , n} such that for all transitions st
a−→ s′

t in Tt :

• there exists a transition sS
a,k−→ s′

S in TS with env(s′
S) = env(s′

t ); and

• for all transitions sS
a,k−→ s′

S in TS with env(s′
S) = env(s′

t ), we have 〈s′
t , s′

S〉 ∈ R.

In words, if a pair is in the ND-simulation, then (i) the component states share the
same environment and (ii) for any possible move of the target from its state in the pair,
there exists a behavior Bk able to match the move, while guaranteeing preservation
of the ND-simulation.

We say that a state st ∈ St is ND-simulated by a state sS ∈ SS (or sS ND-
simulates st ), denoted st 
 sS , iff there exists an ND-simulation R of Tt by TS such
that 〈st , sS〉 ∈ R. Observe that this is a coinductive definition, thus the relation 

is itself an ND-simulation, and in fact the largest ND-simulation relation w.r.t. set
containment. Such a relation can be computed by the following NDS algorithm.
Roughly speaking, the algorithm works by iteratively removing those tuples for

which the conditions of the ND-simulation definition do not apply.
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Algorithm 1 NDS(Tt , TS) – Largest ND-Simulation
R := St × SS \ {〈st , sS〉 | env(st ) 	= env(sS)}
repeat

R := (R \ C), where C is the set of 〈st , sS〉 ∈ R such that there exists a ∈ A for which for each

k there is a transition st
a−→ s′

t in Tt such that either:

(a) there is no transition sS
a,k−→ s′

S in TS such that env(s′
t ) = env(s′

S); or

(b) there exists a transition sS
a,k−→ s′

S in TS such that env(s′
t ) = env(s′

S) but 〈s′
t , s′

S〉 	∈ R.

until (C = ∅)
return R

The next result shows that checking for the existence of a composition can be
reduced to checking whether there exists an ND-simulation between the enacted
target and the enacted system that includes their respective initial states.

Theorem 8.1 Let S = 〈B1, . . . ,Bn, E〉 be a system and Bt a target behavior over E .
Let Tt = 〈St ,A, st0, δt 〉 and TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉 be the enacted target
behavior and the enacted system behavior for Bt and S, respectively. An orchestrator
P for a system S that is a composition of the target behavior Bt over E exists iff
st0 
 sS0.

Theorem 8.1 provides us with a straightforward procedure to check the existence
of a composition. Namely, (i) compute the largest ND-simulation relation of Tt by
TS and (ii) check whether 〈st0, sS0〉 occurs in the relation.

From the computational point of view, the algorithm NDS above computes the
largest ND-simulation relation 
 between Tt and TS in polynomial time in the size of
Tt and TS . Since in our case the number of states of TS is exponential in the number
of available behaviors B1, . . . ,Bn , we get that 
 can be computed in exponential
time in the number of available behaviors.

Theorem 8.2 The existence of compositions can be checked in polynomial time in
the number of states of the available behaviors, of the environment, and of the target
behavior, and in exponential time in the number of available behaviors.

Since the composition problem is EXPTIME-hard [32], the obtained bound is
tight.

With the ND-simulation at hand we can synthesize an orchestrator. In fact, there is
a well-defined procedure that, given an ND-simulation, builds a finite-state program
that returns, at each point, the set of available behaviors capable of performing a
target-conformant action, and guarantee the preservation of the ND-simulation. We
call such a program orchestrator generator. Let S be a system, Bt a target behavior
over E , and let TS and Tt be the enacted system behavior and the enacted target
behavior corresponding, respectively, to S and Bt . The orchestrator generator of S
for Bt is a tuple OG = 〈Σ,A, {1, . . . , n}, ∂, ω〉, where:
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1. Σ = {〈st , sS〉 ∈ St × SS | st 
 sS} is the set of states of OG, formed by those
pairs of Tt and TS states that are in the largest ND-simulation relation; given a
state σ = 〈st , sS〉 we denote st by comt (σ ) and sS by comS(σ ).

2. A is the finite set of shared actions.
3. {1, . . . , n} is the finite set of available behavior indexes.
4. ∂ ⊆ Σ × A × {1, . . . , n} × Σ is the transition relation, where 〈σ, a, k, σ ′〉 ∈ ∂ ,

or σ
a,k−→ σ ′ in OG, iff

• comt (σ )
a−→ comt (σ

′) in Tt ;

• comS(σ )
a,k−→ comS(σ ′) in TS ;

• for all comS(σ )
a,k−→ s′

S in TS , 〈comt (σ
′), s′

S〉 ∈ Σ .

5. ω : Σ×A �→ 2{1,...,n} is the output function, where ω(σ, a) = {k | ∃σ ′ s.t. σ
a,k−→

σ ′ in OG}.
Thus, OG is a finite state transducer that, given an action a (compliant with

the target behavior, and according to the system state corresponding to the current
OG state), outputs, through ω, the set of all available behaviors that can perform a
next while preserving the ND-simulation 
. Observe that computing OG from the
relation 
 is easy, as it involves checking local conditions only.

Coming back to our example, when the user asks for action hot air on, the OG
outputs the index that represents the bathroom heating device, which is the only one
that can perform the requested action. If many bathrooms are available, thanks to
the guards and to function ω, the composition layer can instruct one bathroom or
another to perform the action, depending on realtime conditions, such as availability
of a particular bathroom or device.

If there exists a composition of Bt by S, then st0 
 sS0 and OG does include
the state σ0 = 〈st0, sS0〉. In such cases, we get actual orchestrators, called gener-
ated orchestrators, which are compositions of Bt by S, by picking up, at each step,
one available behavior among those returned by ω. More precisely, we proceed as

follows. A trace for OG starting from σ 0 is a finite or infinite sequence σ 0 a1,k1−→
σ 1 a2,k2−→ · · · , such that σ j

a j+1,k j+1−→ σ j+1 in OG, for all j . A history for OG start-

ing from state σ 0 is a prefix of a trace starting from σ 0. By using histories, one
can introduce OG -orchestrators, which are functions CGPchoose : HOG × A �→
{1, . . . , n, u}, where HOG is the set of OG histories starting from any state in Σ ,
and defined as follows: CGPchoose(hOG, a) = choose(ω(last(hOG), a)), for all
hOG ∈ HOG, where choose stands for a choice function that chooses one element
among those returned by ω(last(hOG), a)). Assuming that OG (of S for Bt ) includes

σ0 = 〈st0, sS0〉, for any OG history hOG = σ 0 a1,k1−→ · · · a�,k�−→ σ� starting from
σ 0 = σ0, we can obtain the corresponding system history projS(hOG), called the
projected system history, as follows:
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projS(hOG) = comS(σ 0)
a1,k1−→ · · · a�,k�−→ comS(σ �), i.e., we take the “system”

component of each OG state σ i in the history.
Moreover, from a OG-orchestrator CGPchoose, we obtain the corresponding

generated orchestrator as the function Pchoose : H × A �→ {1, . . . , n, u}, where
H is the set of system histories starting from sS0, defined as follows. For each sys-
tem history h and action a: (i) if h = projS(hOG) for some OG history hOG, then
Pchoose(h, a) = CGPchoose(hOG, a); else (ii) Pchoose(h, a) = u.

Through generated orchestrators, we can relate OGs to compositions and show that
one gets all orchestrators that are compositions by considering all choice functions for
choose. Notably, while each specific composition may be an infinite state program,
the orchestrator generator OG, which includes all of them, is always finite.

We have the following central result, which states soundness and completeness
of the orchestrator generation defined above.

Theorem 8.3 If OG includes the state σ0 = 〈st0, sS0〉, then every orchestrator
generated by OG is a composition of the target behavior Bt by system S. Moreover,
every orchestrator that is a composition of the target behavior Bt by system S can
be generated by OG.

8.4 A Practical Application in Smart Homes

As previously stated, a concrete case of application of automated service composition
with the Roman Model has been performed in the SM4All EU research project,
recently and successfully concluded.6

8.4.1 Software Architecture, Service and Data Models

The goal of SM4All is to seamlessly integrate devices, in order to simplify the
access to the services that they expose, and dynamically compose such services
in order to offer the end users more complex functionalities and a richer experience
with the domotic environment. In SM4All, all the devices make their functionalities
available as SOAP-based Web services, according to a rich service model7 consisting

6 SM4All—Smart hoMes for All, is an FP7 project running from 1 September 2008 to 31
August 2011. Cf. the WWW site http://www.sm4all-project.eu/ and news on major interna-
tional televisions: Globo TV—http://video.globo.com/Videos/Player/Noticias/0,,GIM1751401-
7823-CASA+INTELIGENTE+E+MOVIDA+A+PENSAMENTO+NA+ITALIA,00.html, Chan-
nel 1 Russia—http://www.1tv.ru/news/other/191509, Italian Rai3—http://www.youtube.com/
watch?v=a9F72_E4mT0 and http://rai.it/dl/tg3/rubriche/PublishingBlock-79554b45-1e4c-41a8-
a474-ad3e22ab750f.html#, Ability Channel—http://www.abilitychannel.tv/video/casa-domotica-
sm4all/ .
7 Cf. http://www.dis.uniroma1.it/~cdc/sm4all/proposals/servicemodel/latest.

http://www.sm4all-project.eu/
http://video.globo.com/Videos/Player/Noticias/0,,GIM1751401-7823-CASA+INTELIGENTE+E+MOVIDA+A+PENSAMENTO+NA+ITALIA,00.html
http://video.globo.com/Videos/Player/Noticias/0,,GIM1751401-7823-CASA+INTELIGENTE+E+MOVIDA+A+PENSAMENTO+NA+ITALIA,00.html
http://www.1tv.ru/news/other/191509
http://www.youtube.com/watch?v=a9F72_E4mT0
http://www.youtube.com/watch?v=a9F72_E4mT0
http://rai.it/dl/tg3/rubriche/PublishingBlock-79554b45-1e4c-41a8-a474-ad3e22ab750f.html#
http://rai.it/dl/tg3/rubriche/PublishingBlock-79554b45-1e4c-41a8-a474-ad3e22ab750f.html#
http://www.abilitychannel.tv/video/casa-domotica-sm4all/
http://www.abilitychannel.tv/video/casa-domotica-sm4all/
http://www.dis.uniroma1.it/~cdc/sm4all/proposals/servicemodel/latest
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not only of the service interface specification, but also, e.g., of its conversational
description and of the related graphical widgets (i.e., icons) to be presented in the
user layer. Proxies are indeed the software components offering such services by
“wrapping” and abstracting the real devices offering the functionalities. Services are
not necessarily offered by hardware devices, but could be also realized through a
human intervention; in this case, the proxy exposes a SOAP-based service to the
platform, whereas it interacts with the service provider (i.e., the human) by means
of a dedicated GUI, when executing the requested operations.

During their run time, services continuously change their status, both in terms of
values of sensed/actuating variables (e.g., a service wrapping a temperature sensor
reports the current detected temperature, a service wrapping windows blinds report
whether the blinds are open, closed, half-way, etc.) and in terms of their conversa-
tional state. The definition of the sensed/actuating variables, representing the “state”
of the domotic environment, is performed in accordance with the data model.8

The SM4All architecture, described in details in [20], consists of a Pervasive
Controller and a Discovery Framework, which are in charge, when a new device
joins the system, to dynamically load and deploy the appropriate service, and to
register all the relevant information into the Service Semantic Repository. All of the
status information, both in terms of (i) service conversational states and (ii) values
of the environmental variables, are kept available in the Context Awareness Man-
ager, through a publish&subscribe mechanism. On the basis of the service descrip-
tions, Composition Engines are in charge of providing complex services by suitably
composing the available ones. In SM4All, three different types of approaches are
provided, each providing different functionalities and therefore complementing one
another, in order to provide a rich and novel environment to the users:

• Off-line synthesis (provided through the Off-line Synthesis Engine). In the off-
line mode, at design/deployment time of the house, a desiderata (i.e., not really
existing) target service is defined, as a kind of complex routine, and the synthesis
engine synthesizes a suitable orchestration of the available services realizing the
target one. Such an orchestration specification is used at execution-time (i.e., when
the user chooses to invoke the composite/desiderata service) by the Orchestration
Engine in order to coordinate the available services (i.e., to interact with the user on
one hand and to schedule service invocations on the other hand). In this approach,
the orchestration specification is synthesized off-line (i.e., not triggered by user
requests, at run time) and executed on-line as if it were a real service of the home.
The off-line mode is based on the Roman Model. The Off-line Synthesis Engine
produces what in SM4All is referred to as a routine.

• On-line planning (provided through the On-line Planning Engine). The user,
during its interaction with the home, may decide not to invoke a specific ser-
vice (either available/real or composite), but rather to ask the home to realize a
goal; in such a case, the engine, on the basis of specific planning techniques [25],

8 Cf. http://www.dis.uniroma1.it/~cdc/sm4all/proposals/datamodel/latest.

http://www.dis.uniroma1.it/~cdc/sm4all/proposals/datamodel/latest
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synthesizes and executes available service invocations in order to reach such a
goal.

• Visual design of complex services (provided through the Compound Service Work-
bench). A skilled user may want to define a compound service, by visually com-
posing services offered by proxies, in a way similar to what currently happen in
technologies like WS-BPEL. The compound service offers an aggregated opera-
tion, which is the result of the proper orchestration of operations offered by other
services. Also in this case, the synthesis is performed off-line, but differently from
the previous case, it is not supported by automatic techniques, but by a visual work-
bench. Both routines and compound services fall under the category of “composite
services”.

The Orchestration Engine interprets the specification of a composite service
(either synthesized automatically, through the Off-line Synthesis Engine, or visually
by the user, through the Compound Service Workbench) and consequently orches-
trates the set of component services. In the case of the On-line Planning Engine, due
to the need of continuously planning and monitoring services during plan executions,
the Orchestration Engine is bypassed and services are directly invoked by the planner
itself.

Users are able to interact with the home and the platform through different kinds
of user interfaces, e.g., a home control station accessible through a touchscreen in the
living room. In particular, Brain Computer Interfaces (BCIs, [28]) allow also people
with disabilities to interact with the system. Of course, users can still control the
home equipment as if there were not the SM4All platform, e.g., a user is obviously
allowed to switch the living room light on directly from the manual switcher on the
wall, without using any BCI and/or touchscreen; in such a case, the platform, through
the specific proxy wrapping the light/switcher as a service, is notified of the specific
variable value change. De facto, the event is equivalent, due to the engineering of the
platform, to the one of clicking a specific button on the touchscreen and/or selecting
the icon on the BCI. Users are able, trough the interfaces, to invoke actions offered
by services (either simple of composite) and to achieve goals, in order to reach
specific situations that they would like to be realized in the home. Moreover, through
the interfaces, they receive the feedback about state changes in the home, as well as
requests for further inputs (in case additional parameters are needed for some actions
to be executed), notifications about action/service completions, etc.

Going into implementation details of the Off-line Synthesis and Orchestration
Engines, they have been realized as Java modules, realizing the techniques presented
in Sect. 8.3. In particular, the Off-line Synthesis Engine is built around TLV (Temporal
Logic Verifier),9 an environment for verification of finite state systems; we defined
a set of modules that make TLV compute the orchestration generator. Starting from
XML descriptions of services (according to the service model), target service and
variables, we had to devise a suitable translation into the TLV input language. After
the orchestrator generator (see Sect. 8.3) has been computed, it is converted into our

9 http://www.wisdom.weizmann.ac.il/~verify/tlv/

http://www.wisdom.weizmann.ac.il/~verify/tlv/
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XML orchestration language (we named CBL—Composition Behavioral Language)
which is interpreted by the Orchestration Engine, thus really executing at runtime
the automatically synthesized composition. Further technical details can be found in
[24].

As discussed in Sect. 8.3, the service model focuses on the behavior of services, in
terms of conversational states that they traverse during the execution of the exposed
actions, as well as on the way they (i) affect the environment and (ii) are inhibited
(allowed) in the execution by the environment (respectively, by the expression of
post-conditions and pre-conditions on top of the variables). The smart home environ-
ment is populated by many deployed service instances, which are actual occurrences
of given service types (also services for sake of brevity). Indeed a developer can
produce many instances showing the same behavior: e.g., many lamps of the same
product series, installed in different rooms, are different instances of the same service
type. Therefore, every service instance can be identified by one or more properties,
which are deployment characteristics (such as the location in the house, the power
consumption, etc.).

The data model is an extensible framework of variable types. They concern the
specific environmental information used by reasoning engines only. I.e., free parame-
ters such as, e.g., name in an operation cheers(name: string): string
may not adhere to the data model. Nevertheless, in case the developer wants (i)
to describe the effects on the environment once a service action is invoked (post-
condition), or (ii) to express the conditions that must hold in the context for an
action to take place (pre-condition), she has to write statements formulated on top
of variables whose type is coherent with the data model.

This is due to the fact that the platform should be able to cope with a predefined
uniform set of common data types, so that the interaction with the environment is
clear, despite of the service developer. We call variable types (or simply types) the
types, and variables are the entities whose type is a variable type. The data model
is an XML standard, i.e., it is based on XML Schemata to define value spaces. Each
service developer can define her own types, provided that (i) they are described in
XML Schema documents identified by a unique namespace, and (i) they extend,
directly or indirectly, the SM4All base types.10 Indeed, types in the data model are
derived by XML Schema native ones, and are designed to be extended by SM4All
system service designers. The data model allows XML Schema simple types only as
SM4All variable types, according to the XML Schema definition: complex types
are not considered. Common variable types are enumerations on top of the numeric
type. This allows the ordering over the possible values, as inherited from the basic
integer type. In such cases, the insertion of a documentation tag for each enumerated
value, provides also a human-readable form. The documentation node is intended to
contain the information to (possibly) show the users. That is to say: if, e.g., a variable
of type temperatureLevel reaches the value 3, the reasoning engines are informed
of it, whereas the users are notified of a new “warm” status. Having enumerations
over variables with finite sets of possible values makes feasible and effective the

10 Base types are identified by the http://www.sm4all-project.eu/datamodel/base namespace.

http://www.sm4all-project.eu/datamodel/base
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reasoning tasks of the composition engines (as discussed in Sect. 8.3, the approach
requires that the set of environmental states is finite).

8.4.2 Discussion and Lessons Learned

Applying automated composition in practice allowed to gain interesting lessons
learned, about the performances and the acceptability of the approach by users.
As stated in Sect. 8.3, computing an orchestrator generator is EXPTIME-complete,
so an interesting question is which are the real dimensions of problems that can be
practically solved by the approach. In the SM4All project, a testbed/showcase has
been realized in a real domotic house located in Roma, Italy, equipped with about 20
sensors, some human-based services (e.g., a nurse assisting a disabled person) and
some routines computed with the proposed approach. Table 8.1 reports the average
times (over 20 runs) for computing such routines used in the testbed, by using the
Off-line Synthesis Engine on a Intel Pentium 4 M, 512 Mb RAM, Ubuntu 10.04 32
bit. The available services amount to 18, whereas the column “services” reports how
many services (over the 18 available) are effectively given as input of the problem.
The reader should note the low features of the machine, as in a real smart home
scenario, a platform like SM4All should run on a low-end hardware of type “set-
top-box” (e.g., a multimedia player, an EEEBox, etc.) and not on an high-end server.
Such times are appropriate, as the reader should remind that the routines are com-
puted off-line, i.e., at design/deployment time of the smart home, and not during
run-time, i.e., while living inhabitants exploit the platform.

In order to keep the number of variables and of services (effectively consid-
ered in the community given as input to the problem) as low as possible, a careful
decomposition approach should be undertaken when defining service descriptions.
The reader should note that if a variable should be considered in a composition,
then also all possible services affecting such a variable should be considered as
input to the problem. Indeed in our testbed, naively the nurse service was affecting

Table 8.1 Average times for synthesis

Target Transitions States Variables Services Avrg. time (millis)

WakeUp 332 84 3 5 1240.9
CheckIngredients 2704 352 5 3 3340.8
SetAlarm 48 29 1 3 305.3
WakeUpLite 101 41 2 4 487.75
EscapeRoutine 597 93 3 4 1126
RestoreFromWakeUp 85 25 2 3 320.5
RelaxModeSetup 4437 357 4 5 7806.3
FootbalMatchSetupN 2263 215 4 5 3257.75
FootbalMatchSetupW 301 53 3 4 643.95
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7 variables, with the result that all routines require, during the composition, to con-
sider as input community all the 18 available services, finally making the computation
not practically feasible (after 3 days of running, no composition has been computed
yet). Conversely, considering nurse4bedroom, nurse4kitchen and nurse4livingRoom
distinct services, each one affecting different variables, we were finally able to keep
the number of input services and of variables low, obtaining the above results.

As far as user acceptability, assuming that a designer is willing to provide a target
service as input for the composition revealed difficult in many cases, especially if
the target is quite complex; on the other side, defining goals is widely accepted,
even if in many cases a more fine-grained control over possible intermediate goals
is desiderated. To this aim, we started investigating a novel model, which in some
sense merges the conversational approach of the Roman model with the “goal-based”
approach typical of automated composition based on planning; preliminary results
can be found in [14, 15, 17].
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