
Chapter 24
An Approach for Service Discovery
and Recommendation Using Contexts

Hua Xiao and Ying Zou

Abstract Given the large amount of existing Web services nowadays, it is
time-consuming for users to find appropriate Web services to satisfy their diver-
sity requirements. Context-aware techniques provide a promising way to help users
obtain their desired services by automatically analyzing a user’s context and rec-
ommending services for the user. Most existing context-aware techniques require
system designers to manually define reactions to contexts based on context types
(e.g., location) and context values (e.g., Toronto). Those context-aware techniques
have limited support for dynamic adaptation to new context types and values. Due to
the diversity of user’s environments, the available context types and potential context
values are changing overtime. It is challenging to anticipate a complete set of context
types with various potential context values to provide corresponding reactions. In this
chapter, we present an approach which analyzes dynamic changing context types and
values, and formulates search criteria to discover desired services for users. More
specifically, we use ontologies to enhance the meaning of a user’s context values
and automatically identify the relations among different context values. Based on
the relations among context values, we infer the potential tasks that a user might be
interested in, then recommend related services. A case study is conducted to eval-
uate the effectiveness of our approach. The results show that our approach can use
contexts to automatically detect a user’s requirements in given context scenarios and
recommend desired services with high precision and recall.

H. Xiao (B)

IBM Canada Laboratory, Markham, ON, Canada
e-mail: huaxiao@ca.ibm.com

Y. Zou
Department of Electrical and Computer Engineering, Queen’s University,
Kingston, ON, Canada
e-mail: ying.zou@queensu.ca

A. Bouguettaya et al. (eds.), Web Services Foundations, 609
DOI: 10.1007/978-1-4614-7518-7_24,
© Springer Science+Business Media New York 2014

610 H. Xiao and Y. Zou

24.1 Introduction

With the growing prevalence of Service Oriented Architecture (SOA), more Web
services become available for users to enrich their daily online experience. It is time
consuming for users to find appropriate services to satisfy their various requirements.
Context-aware techniques provide a promising way to help users obtain their desired
services by automatically analyzing a user’s context and recommending services for
the user. Specifically, a context characterizes the situation of a person, place or the
interactions between humans, applications and the environment [13]. One way to
model contexts is to use pairs of context types and context values. A context type
describes a characteristic of the context. A context type is associated with a specific
context value. For example, “location”, “identity”, and “time” are context types of
a user. “New York” is a context value of the context type “location”. Furthermore,
a context scenario is the combination of different context types with specific values
to reflect a user’s situation. To manage different context types and values captured
by a context-aware system, a context model is used to specify the relations and the
storage structure of various context types and values.

Context-aware systems are designed to react to a user’s context without their inter-
vention. A context aware system generally consists of two parts: sensing a context
scenario, and adapting the system to the changing context scenario. Most context-
aware systems require the designer of context-aware systems to predict the context
types. Moreover, the designer needs to manually establish the relation between the
sensed context scenario and the corresponding reactions in the form of IF-THEN
rules which specify how a system should respond to context changes. However, due
to the diversity of user’s environments, the available context types and potential con-
text values are changing overtime. For example, if a user travels from her home to
another city “Los Angeles”. The user’s environment changes accordingly. The loca-
tion is changed from “home” which is a context value of context type “location” to
“Los Angeles”. And the activity of the user in the new location is “driving”, whereas
the context-aware system may not detect the activity of the user when she was at
home. It is challenging to anticipate a complete set of context types with various
potential context values to provide corresponding reactions. Moreover, fixed rules
are not flexible enough to accommodate the changing environment and various per-
sonal interests. To recommend services for a context scenario, this chapter presents
an approach which analyzes dynamic changing context types and values, and for-
mulates search criteria to discover desired services for users. Different from existing
approaches which depend on static context models to know the relations among con-
text types (or values) and use predefined rules to infer user’s requirements, we seek
an automatic approach to recognize the relations between context values and a user’s
requirements. For example, luxury hotel and limited budget are two context values in
conflict. Therefore, the services for booking luxury hotels are automatically filtered
when a user has limited budget. We expect that such relations can be used to express
more accurate searching criteria that better reflect a user’s context. When a new value
of a user is detected, our approach can automatically compute the relations between

24 An Approach for Service Discovery and Recommendation Using Contexts 611

the new context value with existing context values. Instead of manually defining
IF-THEN rules using specific context values as the traditional context-aware systems
[10], our approach automatically identifies the semantic relations among context val-
ues to infer user’s requirements. Then we generate service searching criteria based on
user’s requirements to discover and recommend services. This book chapter extends
our earlier work [27] published in the International Conference on Web Services
(ICWS) 2010. We enhance our earlier publication at ICWS 2010 in the following
aspects:

1. Improve the algorithm for identifying the relations among different context val-
ues by considering domain knowledge and semantics of phrases used to describe
the meaning of context values;

2. Extend the approach for generating service searching criteria to search for desired
services; and

3. Conduct a larger case study to evaluate our extended approach.

To facilitate the presentation of this chapter, we use the following travel scenario
as an illustrative example throughout this chapter. Tom is a graduate student living
in Toronto. Tom is interested in watching Hollywood movies and National Basket-
ball Association (NBA) games. Especially, Tom is a fan of Kobe Bryant who is an
American professional basketball player and plays for the NBA team, Los Angeles
Lakers. Tom plans to travel to Los Angeles and spend his vacation in Los Angeles
next month. When examining the context in this scenario, we find that some contex-
tual information can be helpful for Tom to plan his trip. For example, as a graduate
student who has low income, Tom might prefer budget hotel for the trip. As a fan of
NBA, Tom might be glad to know the NBA game schedules of “Los Angeles Lakers”
when he is in Los Angeles.

The remainder of this chapter is organized as follows. Section 24.2 gives an
overview of our approach. Section 24.3 introduces the background of ontologies.
Section 24.4 presents our approach to find matching ontologies from ontologies data-
bases. Section 24.5 discusses the details of inferring relations among different con-
text values. Section 24.6 presents our approach that identifies user’s requirements
in a given context scenario and generates searching criteria to search for services.
Sections 24.7 and 24.8 present an overview of our prototype and discuss the case
study. In Sect. 24.9, we present the related work. Finally, Sect. 24.10 concludes the
chapter and presents the future work.

24.2 Overview of Our Approach

Figure 24.1 gives an overview of our approach. Context types and context values
can be dynamically added and removed to reflect a user’s situation. The value of
a context type can also be changed over time. To correctly model relations among
context values, it is critical to understand the semantic meanings of each context
value. Ontologies capture the information related to a particular concept using expert

612 H. Xiao and Y. Zou

Detect
Context

Search for
Ontologies

Ontologies

Identify
Context

Relations

Generate Service
searching Criteria

Search for
Services

Services

Services

Context
Types &
Values

Fig. 24.1 Steps for context-aware service recommendation

Los Angeles

Semantic
Extension

Hollywood Woodland Hills Venice

Los Angeles
Lakers

Hollywood Walk of
Fame

USA : Country Los Angeles County
Museum of Art

Los Angeles
Clippers

Los Angeles:City

City

<<Instance>>

<<Instance>>

<<Instance>>

Sports TeamGeolocation Tourist Attraction

0..*

<<Instance>>

District

Fig. 24.2 An example of extending context value using ontology

knowledge. To identify the semantics of a context value, we search for publicly avail-
able ontologies to extend the meaning of the context value. Figure 24.2 illustrates
an example ontology for defining the concept “Los Angeles”. In particular, “Los
Angeles” is a context value for the context type “Location”. The ontology of “Los
Angeles” shown in Fig. 24.2 expands the semantic meaning of “Los Angeles” with
additional information, such as “Geographic Location”, “Sports Team”, and “Tourist
Attraction”. When a new context value for a user is detected, our approach automat-
ically searches for ontologies that expand the semantic meanings of the new value
and computes the relations with other context types and values.

We use the identified context relations to discover user’s requirements for a given
context scenario and generate the corresponding service searching criteria. For exam-
ple, when the semantics (i.e. ontologies) of several context values share a same con-
cept, the common concept might reflect the potential requirements of the user. In
the travel scenario, Tom is going to travel to “Los Angeles”, and he is interested in
watching NBA games. The ontologies of “Los Angeles” and “NBA” have a same
concept “Los Angeles Lakers”. It indicates a high likelihood that Tom would be
interested in watching the basketball game played by “Los Angeles Lakers”. Finally,
we use the generated service searching criteria to discover and recommend services
to the user.

24 An Approach for Service Discovery and Recommendation Using Contexts 613

24.3 Background of Ontology

Ontologies are described using ontology specification languages, such as Web
Ontology Language (OWL) [24], Resource Description Framework (RDF) [20] and
DAML+OIL [17]. We use ontologies to understand the meanings of context values.
The ontologies found for context values can be described in different ontology spec-
ification languages. To ease the inference of the relations among context values, we
define a simplified model which summarizes the structures and concepts of ontolo-
gies needed for our context analysis. Figure 24.3 illustrates the major entities in our
ontology definition model. Essentially, our ontology definition model contains the
following four major components.

• Class is an abstract description of a group of concepts with similar characteristics.
A class has a name and a set of properties that describe the characteristics of the
class. For example shown in Fig. 24.2, “Tourist Attraction” as a class contains
the common characteristics of tourist attractions. Class is also called “concept”,
“type”, “category” or “kind” in ontology specification languages.

• Individual refers to an instance of a class. For example, “Hollywood Walk of
Fame” in Fig. 24.2 is an instance of class “Tourist Attraction” and therefore it is
an individual.

• Property describes an attribute of a class or an individual. A property can also be
composed by other properties. Atomic properties are the lowest level of properties
without other properties. Atomic properties include property name and property
value. In our ontology definition model, we use properties to express specific
relations among classes and among individuals. For instance, to express that “Los
Angeles” is in “USA”, we define a property “isIn” for “Los Angeles” and assign
it with the value “USA”. Property is also referred to as “attribute”, “feature” or
“characteristic” in ontology specification languages.

• Relation defines ways in which classes or individuals can be associated with each
other. In our ontology definition model, the types of relations are predefined. Four
types of relations are defined to connect classes and individuals: (1) Subclass
extends an abstract class to convey more concrete knowledge; (2) PartOf means a

InstanceOf <<use>>
Individual Class Relation

<<use>>

Property

0…* 1

0…* 1

has

has

Ontology

Fig. 24.3 Major entities defined in ontologies

614 H. Xiao and Y. Zou

class or an individual is a part of another class or individual. For example, class
“Tourist Attractions” is a part of the class “Location”; (3) Complement expresses
that the instances of a class do not belong to another class; and the two classes
together contain all the instances in a given domain; and (4) Equivalence means that
two classes, individuals or properties are the same. For example, class “Nation”
could have an equivalence relation with “Country”. To express specific relations
(e.g., isIn) other than the four types of relations between classes or individuals, we
use properties.

24.4 Searching for Matching Ontologies

There are few ontologies named using long phrases, such as “Plan a trip to Los
Angeles” which is the context value for context type “activity”. We use the following
steps to find an annotated ontology for each context value.

1. We treat the context value as a searching string, and use the entire searching
string to search for ontologies from ontology databases, such as Freebase [2].
Freebase is an ontology database which extracts structured information from
Wikipedia [8]. If we can find a matching ontology, we annotate this ontology to
this context value. Otherwise, we go to step 2.

2. We use an adjective and adverb dictionary to identify and remove the first adjec-
tive or adverb in the searching string. Adjectives and adverbs are constraints for
the describing entity. Therefore, we can keep the important information in the
searching string without the adjectives and adverbs. Meanwhile, if the phrase of
a context value contains another context value, we remove the repeated words
from the long phrase. Thus, in our example, we can remove “Los Angeles” from
the context value “plan a trip to Los Angeles”. If the removed word is followed
by a stop word, we also remove the stop word. A stop word is a commonly
used word (such as “by”, “the”, and “about”) that does not contain important
significance and some search engines have been set to ignore. Then we use the
remainder part of the searching string to search for ontologies.

3. If we can find a matching ontology, we annotate this ontology to the context
value. For example, if we cannot find ontology for the context value “luxurious
travel” but an ontology of “travel” is available, we annotate the ontology “travel”
to the context value “luxurious travel”.

4. If we cannot find a matching ontology, repeat (2) and (3) until we find a matching
ontology or the string is empty.

Finally, if we cannot find any relevant ontology using the context value, we use
synonyms of the context value to search for ontologies and repeat above steps. In our
research, we use WordNet [5] to identify the synonyms of the context value. WordNet
is a lexical database which groups words into sets of synonyms and connects words
to each other via semantic relations. After trying above steps, if we still cannot find

24 An Approach for Service Discovery and Recommendation Using Contexts 615

...

Los Angeles
Lakers

Travel

Los Angeles County
Museum of Art

Hollywood
Walk of Fame

......

Have similar entities

Tourist Attractions

City: Los Angeles

District

Hollywood Woodland
Hills

Venice

Los Angeles
Lakers

The Los Angeles
Galaxy

NBA : sports

: Teams

...

Domain specific relation

Travel

Accormmodation ...
11

-

BudgetHotel

HiltonHotelComfortInn

<<Instance>> <<Instance>>

1

PriceRange:highEnd

LuxuryHotel

...
AnnualIncome: low

:Income

Link low income to
Budget Item

Tom : Graduate Student

 PriceRange: budget

1

0..*

City

Tourist Attraction

<<Instance>>

1

0..*

1

0..*

<<Instance>>

City: Los Angeles

City

<<Instance>>

1

0..*

<<Instance>>

Geolocation Sports Team

<<Instance>>

1

0..*

Sports

<<Instance>>

1

0..*

Fig. 24.4 Examples of relations between two context values

any matching ontologies for a context value, we create an empty ontology and set
the context value as the only entity of the new ontology.

24.5 Identifying Context Relations

Our approach uses the relations among context values to identify a user’s require-
ments in the given context scenarios. We use two steps to identify the relations among
multiple context values.

1. Identifying the relations between two context values. We compare the corre-
sponding ontologies which represent the semantics of context values to identify
the relations between two context values.

2. Integrating all the relations of two context values. To get the relations among
multiple context values, we integrate the relations between two context values to
construct a relation map that describes the relations of multiple context values.

616 H. Xiao and Y. Zou

24.5.1 Identifying Relations of Two Context Values

24.5.1.1 Similarity of Entities in Ontologies

Ontologies may be defined by various people from different perspectives. The entities
(i.e. classes, individuals or properties) defined in two different ontologies may have
different names for the same concept. Moreover, the entities of two ontologies can be
defined in different granularities, even though both ontologies refer to the same thing.
For example, “United States”, “USA” and “America” are different names for a same
entity. As shown in Fig. 24.2, the class “Tourist Attraction(s)” defined in ontologies
“Los Angeles” and “Travel” contains different levels of details although both classes
of “Tourist Attraction(s)” refer to places of interest where tourists visit. To identify
the same entities defined in different ontologies, we define the term similarity. We
describe the similarity between two entities in ontologies as follows:

1. Two phrases (e.g., entity names, property values) are similar, when the words
are identical, synonyms or originated from the same stem. In this case, we use
WordNet to identify synonyms and stems of words. For the example shown
in Fig. 24.4, phrases “Tourist Attractions” and “Tourist Attraction” are similar
since both are stemmed from the phrase “Tourist Attraction”.

2. E1 and E2 are atomic properties. E1 and E2 are similar if and only if the prop-
erty names and property values of E1 and E2 are similar. For example, atomic
properties “Price Range: budget” and “Price Range: cheap” are similar since
both properties have the same property name “Price Range” and have similar
properties values “budget” and “cheap”.

3. E1 and E2 are classes, individuals or non-atomic properties. E1 and E2 are
similar if and only if

a. The names of E1 and E2 are similar; and
b. All the properties defined in entity E1 exist in entity E2, or all the properties

defined in entity E2 exist in E1.

For example, class “Tourist Attractions” with properties “location: Los Angeles”
and another class “Tourist Attraction” which does not have properties are similar,
since the class name “Tourist Attractions” and “Tourist Attraction” are similar,
and the properties defined in the latter class (i.e. no properties) belong to the
former class.

We use WordNet [5] to identify the synonyms and stem of words. WordNet is a
lexical database which groups words into sets of synonyms and connects words to
each other via semantic relations. By considering the synonyms and stems of words,
we can discover that two entities are similar even if the entities are not described using
the same words. In (3), E1 and E2 might have different numbers of properties. When
describing the same entity, some ontologies may provide more detailed information
than others due to the different levels of granularity in ontologies. If the properties
of E1 (i.e. class or individual) are a subset of the properties of E2, E1 and E2 are
treated as similar entities.

24 An Approach for Service Discovery and Recommendation Using Contexts 617

24.5.1.2 User-Defined Relations Using Domain Knowledge

By comparing the similarity of entities, we can discover the semantic relations
between context values. However, the similarity of entities cannot identify the rela-
tions which require domain knowledge. For example, in the travel scenario, Tom is
a graduate student with low income. We can infer that he might prefer budget hotel
instead of luxury hotel while he is traveling. From the ontology of graduate students,
we may know that graduate students have low income, but the ontology of graduate
students would not specify that he prefers budget hotels. To overcome this problem,
we use LinQL language [18] to specify links between entities. LinQL is an extension
of SQL and defines the conditions that two given entities must satisfy before a link
of two entities can be established.

Linkspec_stmt = CREATE LINKSPEC linkspec_name

AS link_method opt_args opt_limit. (24.1)

Equation (24.1) shows the main structure of defining a link specification statement
(linkspec for short) using LinQL. As shown in Eq. (24.1), a CREATE LINKSPEC
statement defines a new linkspec which specifies the name of the linkspec and a
method to establish the link. For example, Eq. (24.2) defines that if a person’s income
is low, then the person would prefer economical consumption style.

CREATE LINKSPEC consumption_style
AS LINK low_income WITH target
WHERE synonym(term, economy)

AND
target LIKE ′%term%′

(24.2)

The economical consumption style is defined as terms with a property of econ-
omy. The details of defining LinQL are described in the publication of Hassanzadeh
et al. [18]. In our approach, the administrator of the context-aware system can use
LinQL to provide the domain knowledge. Meanwhile, we could develop a graphic
user interface to visualize LinQL and enable users to create some simple relations
using their knowledge.

24.5.1.3 Relations Between Two Context Values

Based on the definitions of similarity and user-defined relations, we identify the
following 5 types of relations between two context values extended by ontologies:

1. Intersection: refers to the fact that the ontologies of two context values contain
similar entities (i.e. classes or individuals). Figure 24.4 shows three examples
of intersection relations. In Fig. 24.4, the context value “travel” (i.e. its relevant
context type is “activity”) and context value “Los Angeles” share the same

618 H. Xiao and Y. Zou

entity “Tourist Attraction”. Context values, “Los Angeles” and “NBA”, contain
a common entity, “Los Angeles Lakers”. When a context value is a part of another
context value, such context values are in an intersection relation. In the travel
example, ontology “Los Angeles” contains an entity “Hollywood”. Therefore,
“Hollywood” is a part of “Los Angeles”. The context values “Hollywood” and
“Los Angeles” have an intersection relation.
We use entity names, properties and individuals to describe the common entities
among two ontologies. The children entities (e.g., sub-classes, and individuals
of sub-classes) of the common entities are ignored if the children entities are
not defined in one of the ontologies. This can make the description of common
classes simple, since children entities contain too many details and could become
noises of the common entities.

2. Complement: indicates that all members (i.e. classes or individuals) defined in
one ontology do not belong to another; and both context ontologies define all the
elements in a given domain. The complement relations can be directly derived
from the ontology definitions. For example, context values “Economy Hotel”
and “Luxury Hotel” have a complement relation as defined in the ontology of
“Travel”.

3. Equivalence: defines that two context values describe the same concept. Equiv-
alence relations should be explicitly defined in one of the ontologies. Explicit
defined equal entities are treated as similar entities when we compare the entities
from two different ontologies.

4. Domain Specific relation: means that the corresponding ontologies of two con-
text values contain entities which are linked by user-defined relations. As shown
in Fig. 24.4 (3), the domain specific relation is identified by a user-defined rela-
tion which links the low income to budget items, i.e. budget hotel in the travel
scenario.

5. Independence: means that two context values do not have any connection.

24.5.2 Inferring Relations Among Multiple Context Values

We use entity-relationship (E-R) diagrams [16] to create a global view of relations
among multiple context values. E-R diagrams provide a formal description for a set
of entities and relationships among entities.

For each relation of two context values, we convert the two context values into
two entities in the E-R diagrams. The relation type (e.g., intersection and comple-
ment) is converted into a relationship node in the E-R diagrams. A relationship node
connects its relevant entities. If the relation type is intersection, the common enti-
ties are converted into attributes of the intersection relationship in the E-R diagram.
Equivalence relations are used to combine entities in the E-R diagram. To simplify an
E-R diagram, independence relations are not explicitly described in an E-R diagram.

24 An Approach for Service Discovery and Recommendation Using Contexts 619

If two entities are not connected by a relation node in the E-R diagram, it indicates
that the entities are independent.

We integrate the relations of two context values into an integrated E-R diagram
in the following steps:

1. Initialize the integrated E-R diagram as empty.
2. For each relation in the relation list, we repeat the following steps:

a. Convert a relation of two context values into an E-R diagram.
b. Add the E-R diagram created in step 2.a to the integrated E-R diagram. If

there exist similarity or equivalence entities, we merge the similarity and
equivalence entities by keeping the one with the richer information in the E-R
diagram. If there exist subset or complement relations, we add a relationship
node in the integrated E-R diagram to indicate the corresponding relation.
If two relationship nodes contain the same relation type and relationship
attributes, we merge them into one relationship node.

Following the aforementioned steps, all the context values are converted into
entities in the integrated E-R diagram and the entities which are associated to relations
of context values are transformed into properties in the E-R diagram. Figure 24.5
shows an example of an integrated E-R diagram for the context values in the travel
scenario. In Fig. 24.5, context ontologies “Student” and “Travel” have an domain
specific relation due to a user-defined relation which links “Income: Low” to “Budget
Hotel”. The NBA team “Los Angeles Lakers” is shared by three context values “Los
Angeles”, “Kobe Bryant” and “NBA”. Context ontology “travel” shares the same
class “Tourist Attractions” with ontology “Los Angeles”. Class “Tourist Attractions”
contains a set of individuals such as “Hollywood Walk of Fame” and “Los Angeles
County Museum of Art”. We can use the individuals to recommend specific tourist
attractions (i.e. services) in Los Angeles.

Travel
Los

Angeles
Has

Intersection
with

Tourist
Attractions

Has
Intersection

with

Hollywood

1 1

1

1

Has domain
specific relation

1 1Student

BudgetHotel
(Income: Low)

Has
intersection

with

NBA

1

1

Los Angeles
Lakers

Entity Property
Relation Attribute (i.e.,
shared or linked entity)

Hollywood

Relation

Kobe
Bryant

1 1

Fig. 24.5 An example integrated E-R diagram

620 H. Xiao and Y. Zou

24.6 Generating Service Searching Criteria

To recommend services, we need to identify user’s requirements, and then generate
searching criteria to search for services. A user’s requirements describe the potential
tasks to perform in a given context scenario. We define generic rules to infer user’s
requirements from the E-R diagram. Then we extract service searching criteria from
the description of user’s requirements to search for services.

24.6.1 Identify User’s Requirements in Given Context Scenarios

In our approach, the requirements of a user in a context scenario are identified based
on the relations among different context values. However, some relations among
context values generally exist in all the scenarios of a user due to the long-term
existence of certain context values or the inherent relations of context types. For
instance, in the travel scenario, Tom’s preferences involve “NBA” and “Kobe Bryant”.
These preferences can be explicitly specified by Tom and generally exist for a long
time. Our approach might always need to recommend the service of “Los Angeles
Lakers” since the ontologies of “NBA” and “Kobe Bryant” share the same entity
“Los Angeles Lakers”. Another example is a case where, the current “city” (e.g.,
Toronto) always belongs to the current “country” (e.g., Canada). To avoid repeated
recommendations, we ignore the relations among context values when the relations
are derived from the context values that exist for a long time or inherently exist in
the associated context types.

We design 3 generic rules to derive user’s requirements from the integrated
E-R diagram as shown in Table 24.1. Suppose Ec1, Ec2, . . . , Ecn are entities in the
integrated E-R diagram. Potential Task Set represents a set of a user’s requirements.

Rule 1 collects the common entities and properties from the E-R diagram. The
entities in the Potential Task Set are contained in two or more ontologies corre-
sponding to the context values. Each entity in the Potential Task Set indicates a part
of a user’s requirements. For example, the context value “Los Angeles” and context
value “NBA” have a common entity “Los Angeles Lakers”. The common entity “Los
Angeles Lakers” is a NBA team in Los Angeles, and there is a high chance that the
user would be interested in the services related to this team.

A user-defined relation connects two entities from two different ontologies. The
linked entities are represented as pairs (e.g., e1i → e2i) in Table 24.1. If two entities
from different context values are linked by a user-defined relation, it means these two
entities are different from other entities in the ontologies of context values and the
information in these two entities might be interesting for the end-users. Therefore,
in rule 2, we extract the linked entities and add them to Potential Task Set. In the
example of planning a trip, “Budget Hotel” has a high chance to be of interest to
Tom since the entity “Budget Hotel” is linked by an attribute of the occupation of
the user.

24 An Approach for Service Discovery and Recommendation Using Contexts 621

Table 24.1 Generic rules to derive user’s requirements

Rule
number

Relations Potential Task Set Description

1 Intersection relations:
EC1

⋂
EC2 . . .

⋂
ECm =

{e1, e2, . . . , ek} �= ∅

{e1, e2, . . . , ek} Ec1, Ec2, . . . , Ecm are entities
in the integrated E-R diagram.
e1, e2, . . . , ek are entities or
relationship attributes in the
integrated E-R diagram

2 Domain specific relations:
EC1 is linked to EC2 by
user-defined
relations {(e11 → e21)

, . . . , (e1k → e2k)}

{(e11 → e21), . . . ,

(e1k → e2k)}
Ec1, Ec2, . . . , Ecn are entities
in the integrated E-R diagram,
and (e1i → e2i) are a pair of
linked entities between entity
Ec1 and entity Ec2. In the E-R
diagram, (e1i → e2i)

represents a property of the
user-defined relation

3 Complement relations:
Ēci = Ecj , e1 ∈ Eci ,

e2 ∈ Ecj and
e1, e2 ∈ potential Task Set

e1 and e2 have an
OR relation

Eci and Ecj are entities in the
integrated E-R diagram. e1 and
e2 are entities or relationship
attributes in the integrated E-R
diagram; and Ē represents the
complement of entity E

Complement relations show that two entities cannot co-exist at the same time.
In Rule 3, we use complement relations to split the entities in Potential Task Set
and identify them as “OR” relation. For example, if a Potential Task Set contains
both the entities “Budget Hotel” and “Luxury Hotel”, we can use the complement
relations to identify them as a “OR” relations. Therefore, when an end-user choose
one recommendation (e.g., Budget Hotel), we stop to recommend the complement
recommendation (e.g., Luxury Hotel) since the user has made a decision between
these two types of hotels.

Once the rules are applied on the E-R diagram, we obtain a Potential Task Set
which contains a set of entities and properties of the entities in the E-R diagram.
Some entities in the Potential Task Set may describe the same concept at different
levels of details. For example, one entity can be a subclass of another entity. To reduce
the redundancy of service recommendations, we classify the entities in a Potential
Task Set t into different groups to merge similar user’s needs. Each group maps to a
specific service searching criterion.

24.6.2 Generate Service Searching Criteria

The entities and properties in a user’s requirements (e.g., Potential Task Set) are
described using structured data defined in ontologies. We use the mapping rules

622 H. Xiao and Y. Zou

specified in Table 24.2 to convert structured data to service searching criteria. A class
name in Table 24.2 refers to the name of a class defined in an ontology. Furthermore,
the generated searching criteria are submitted to existing search engines, such as
Google [3].

In Table 24.2, the first column contains the entities from the extracted user’s
requirements (i.e. Potential Task Set). The second column lists the associated query
to find matching Web services described in WSDL. The third column shows the
generated query submitted to a Web search engine. As shown in Table 24.2, a class
contains a class name and prosperities. In a WSDL query, a class name is used to
match a service name or operation name in a WSDL document since the class name
is the major object name involved in a Web service and it is generally used to describe
service names and operation names in WSDL. In most cases, a service name and an
operation name are not identical to the class name defined in ontologies. For example,
an operation used to search for budget hotels can be named as “GetBudgetHotel”
or “BookBudgetHotel”. The operation names contain the class name “BudgetHotel”
with additional verbs (i.e. “Get” or “Book”). Therefore, in the generated WSDL
query, instead of specifying that we need to find a WSDL having the service name
or operation exactly matching with the class name, we check if a class name appears
in the service name or the operation name. We apply the same requirements to other
ontology entities in the conversion process.

Properties of a class specify the detailed attributes of the class. There is a high
chance that the properties of classes are required input for performing an operation or
are the output data after executing an operation in WSDL services. For example, in our
travel scenario, the property “price” in class “Budget Hotel” becomes a parameter of
the operation “BookBudgetHotel”. As listed in Table 24.2, the names of the properties
are used to match parameters of operations in WSDL service. However, a service
may not need to use all the properties defined in the class. Therefore, we use the OR
relation to connect all the properties. The searching criteria for Web search engines
are focused on keywords. In column 3, we convert the class name into a keyword and
the properties of classes to the optional (i.e. OR relations) keywords in the query. For
the individuals in the Potential Task Set, we use the same way as classes of ontologies
to convert them to two different queries.

When we specify user-defined relations, entities with more generic meanings
are generally used to search for specific entities. For example, we use the generic
entity “low income” to find all the budget (or economic, cheap) items. The entity
with relevantly more specific meanings plays a more important role in identifying a
potential task since the specific entity contains more concrete information. Therefore,
we convert the specific entity instead of the general entity to search query as shown
in the fourth row of Table 24.2.

24 An Approach for Service Discovery and Recommendation Using Contexts 623

Ta
bl

e
24

.2
M

ap
pi

ng
on

to
lo

gy
en

tit
ie

s
in

po
te

nt
ia

lt
as

k
se

tt
o

W
SD

L
qu

er
y

an
d

ge
ne

ra
lq

ue
ry

E
nt

iti
es

in
th

e
Po

te
nt

ia
lT

as
k

Se
t

W
SD

L
qu

er
y

G
en

er
al

qu
er

y
fo

r
W

eb
Pa

ge
s

Ty
pe

In
vo

lv
ed

da
ta

C
la

ss
C

la
ss

na
m

e:
na

m
e c

la
ss

(n
am

e c
la

ss
⊆

in
vo

lv
ed

C
on

te
xt

Va
lu

e
A

N
D

(n
am

e o
pe

ra
ti

on
⋃

na
m

e s
er

vi
ce

))
na

m
e c

la
ss

A
N

D
&

&
(n

am
e p

ro
pe

rt
y i

⊆
(p

ro
pe

rt
y 1

O
R

pr
op

er
ty

2
(n

am
e i

np
ut

Pa
r
⋃

na
m

e o
ut

pu
tP

ar
))

..
.

O
R

pr
op

er
ty

k
)

Pr
op

er
ty

na
m

es
of

th
e

cl
as

s:
∪n

am
e p

ro
pe

rt
y

w
he

re
na

m
e p

ro
pe

rt
y i

∈(
⋃

na
m

e p
ro

pe
rt

y)

In
di

vi
du

al
In

di
vi

du
al

na
m

e:
na

m
e i

nd
iv

id
ua

l
(n

am
e i

nd
iv

id
ua

l
⊆

in
vo

lv
ed

C
on

te
xt

Va
lu

e
A

N
D

(n
am

e o
pe

ra
ti

on
⋃

na
m

e s
er

vi
ce

))
na

m
e i

nd
iv

id
ua

l
A

N
D

&
&

(n
am

e p
ro

pe
rt

y i
⊆

(p
ro

pe
rt

y 1
O

R
pr

op
er

ty
2

(n
am

e i
np

ut
Pa

r
⋃

na
m

e o
ut

pu
tP

ar
))

..
.

O
R

pr
op

er
ty

k
)

Pr
op

er
ty

na
m

es
of

th
e

cl
as

s:
∪n

am
e p

ro
pe

rt
y

w
he

re
na

m
e p

ro
pe

rt
y i

∈(
⋃

na
m

e p
ro

pe
rt

y)

U
se

r-
de

fin
ed

re
la

ti
on

(e
1

→
e 2

)

N
am

e
of

th
e

cl
as

s
th

at
en

tit
y

e 2
be

lo
ng

s
to

:
na

m
e c

la
ss

(n
am

e c
la

ss
⊆

in
vo

lv
ed

C
on

te
xt

Va
lu

e
A

N
D

(n
am

e o
pe

ra
ti

on
⋃

na
m

e s
er

vi
ce

))
na

m
e i

nd
iv

id
ua

l
A

N
D

&
&

(n
am

e p
ro

pe
rt

y i
⊆

(p
ro

pe
rt

y 1
O

R
pr

op
er

ty
2

(n
am

e i
np

ut
Pa

r
⋃

na
m

e o
ut

pu
tP

ar
))

..
.

O
R

pr
op

er
ty

k
)

Pr
op

er
tie

s
of

en
tit

y
e 2

:
∪n

am
e p

ro
pe

rt
y

624 H. Xiao and Y. Zou

Fig. 24.6 An annotated screenshot for our service recommendation page

24.7 Implementation

A prototype of the proposed approach was implemented. The prototype is devel-
oped in Java and uses OWL API [4] as the ontology/RDF parser. To evaluate the
WSDL query generated by our approach, we implemented a component to support
advanced search based on elements of WSDL (i.e. service name, operation name and
input/output parameters). Figure 24.6 shows an annotated screenshot of our service
recommendation page. A list of services of potential interest to the user is provided in
the services recommendation table. A service in the services recommendation table
can be associated with one or more concrete services as shown in Fig. 24.6. Once a
user selects the “Tourist Attractions” in the service recommendation table, the asso-
ciated services (e.g., a list of tourist attractions in Los Angeles) are automatically
displayed in the service selection panel on the right side of the Web page. The user
can select the services the best fit its requirements.

We use Freebase [2] as the ontology database. In Freebase, there are common
entities shared by most of the ontologies, such as “type.object.key”, “namespace”,
and “common.topic”. Those entities are used to organize the resources in the database,
but are not useful for identifying user’s requirements. To increase the accuracy of
relation identification, we manually analyze the schema of ontologies defined in
Freebase to identify and filter out those meaningless entities.

24 An Approach for Service Discovery and Recommendation Using Contexts 625

24.8 Case Study

The objective of our case study is to evaluate the effectiveness of our approach. In
particular, we want to examine: (1) whether our approach can effectively recommend
useful tasks represented as classes, individuals and properties in the set Potential Task
Set; and (2) whether the generated searching criteria can find the desired services.

24.8.1 Setup

Table 24.3 lists the context types used in our case study. By providing different
context values for each context type, we can create different user scenarios. Each
scenario is composed of the context types listed in Table 24.3 with assigned context
values. For each scenario, our approach automatically detects various potential tasks
for the user and recommends different services. In our case study, we provide 5
different context values for each context type. Using different combinations of these
context values, we generate 600 different context scenarios for our case study.

Due to the limitation of time and resources, we cannot evaluate all the 600 sce-
narios. In our case study, we randomly select 2 % (i.e., 12) context scenarios from
the 600 context scenarios to evaluate our approach. To evaluate the identified poten-
tial tasks and the service searching criteria generated by our approach in different
scenarios, we recruited 6 graduate students to participate in our case study. These
graduate students have many years of experiences using online services and possess
basic knowledge on the context values that appeared in the context scenarios.

24.8.2 Evaluation Criteria

Precision and recall are widely used in information retrieval. We use precision and
recall to measure our approach. Precision and recall are defined as follows.

Table 24.3 Context types used in our case study

Context types

Previous environment Location (city and county)
Current environment Location (city and country)

Activity (described by keywords)
Future environment Location (city and country)

Activity (provided by calendar, described using keywords)
User’s preferences and background Favorite sports

Favorite food
Favorite celebrities
Major
Other preferences
Income

626 H. Xiao and Y. Zou

Precision = |{relevant items} ⋂ {retrieved items}|
|{retrieved items}| , (24.3)

Recall = |{relevant items} ⋂ {retrieved items}|
|{relevant items}| (24.4)

Precision and recall are defined in terms of a set of retrieved items (e.g. the set
of potential tasks found by our prototype for a given context scenario) and a set
of relevant items (e.g. the set of potential tasks existing in the context scenario).
Precision is the ratio of the number of returned relevant items to the total number of
returned items of a query. Recall is the ratio of the number of returned relevant items
to the total number of existing relevant items.

24.8.3 Experiment Procedure

To evaluate the potential tasks identified by our approach, we assign 2 context sce-
narios to each subject described in the previous section. For each scenario, a subject
manually examines the context values and uses her knowledge to identify the poten-
tial tasks that she would like to perform. Independent from the manual evaluation,
we also use our prototype to automatically identify the potential tasks by analyzing
the context values and the relations among context values. We compare the task sets
produced by the subjects and the ones generated by our prototype tool to calculate
the precision and recall of each scenario.

To evaluate the service searching criteria generated by our approach, we use the
approach described in Sect. 24.6 to generate the service searching criteria, then we
submit the searching criteria to search engines Google [3] and Seekda [6] to search
for online services. Seekda is a search engine to search for Web services described
using WSDL. One of the authors manually examined the available services in Seekda
for each scenario. If there are available Web services in Seekda for a given topic,
we use Seekda. Otherwise, we use Google to search for services. We use the key-
words in the generated searching criteria to search for services. In both cases, we
use the generated WSDL query to check the top 20 returned services to identify
the matching services. For each query, our prototype chooses the top two returned
services to recommend to the subject. The 6 aforementioned subjects manually pro-
vided the description of desired services based on the given context scenarios. One of
the authors manually compared the services recommended by our prototype with the
desired services described by the subjects to evaluate if our prototype can correctly
recommend services to a subject for a given context scenario.

24.8.4 Result Analysis

In the 12 context scenarios, 2 scenarios do not have any tasks recommended according
to the results from the subjects as well as the results of our prototype. We manually
examined both scenarios. We found that the context values in both scenarios do not

24 An Approach for Service Discovery and Recommendation Using Contexts 627

Table 24.4 Recall and precision for detecting potential tasks

Scenarios # of retrieved
tasks

of retrieved
relevant tasks

of relevant tasks Recall (%) Precision (%)

1 2 2 2 100 100
2 1 1 1 100 100
3 3 2 3 67 67
4 3 3 4 75 100
5 2 2 2 100 100
6 3 1 1 100 33
7 3 3 3 100 100
8 3 2 2 100 67
9 4 4 4 100 100
10 1 1 1 100 100
Average 94 87

have any relations. Table 24.4 shows the results for detecting potential tasks from
the remainder 10 scenarios. We notice that some tasks in certain scenarios are not
included in the result from the subjects due to the limitation of subject’s knowledge.
However, such tasks are identified by our prototype. For example, in a travel scenario,
“Michael Jordan” is a favorite celebrity of a subject, and one of the context values is
the city “New York”. Our prototype can identify that “New York” is the birth place
of “Michael Jordan”. As a fan of Michael Jordan, the subject would be interested to
know this information and purchase the related souvenirs using an on line shopping
service. However, such information is overlooked by the subject. When calculating
recall and precision, we add the missed tasks into the relevant items set and treat the
missed tasks as desired potential tasks. The 94 % of recall reveals that our approach
can identify most of the potential tasks based on the semantics of context values.
Moreover, our prototype can identify the tasks that are overlooked by the subjects.

Table 24.5 lists the evaluation results of service recommendation. The results show
that our approach can recommend most of the needed services desired by subjects.
However, as listed in Table 24.5, the recall and precision are not very high in some
context scenarios. Here are some reasons which we plan to address in our future work:

1. Some ontologies do not describe all the aspects of a context value. The incom-
plete ontologies cause incomplete service recommendation. Meanwhile, we only
define one user-defined relation which is Eq. (24.2) to capture the domain knowl-
edge of “Income: low”. If we add more domain knowledge using user-defined
relations, it could increase the recall and precision. For example, one subject in
our case study lists “Tickets for Museums at Miami” as a potential task for a
context scenario which specifies that the subject majors in “Art” and will attend
a conference in “Miami”. Due to the lack of domain knowledge of “Art”, it is
difficult for our prototype to automatically establish the relations between “Art”
and “Museums”.

628 H. Xiao and Y. Zou

Table 24.5 Evaluation Results of service recommendation

Scenarios Total # of retrieved
services

Total # of retrieved
relevant services

Total # of relevant
services

Recall
(%)

Precision
(%)

1 4 4 4 100 100
2 2 2 2 100 100
3 6 4 6 67 67
4 6 6 8 75 100
5 4 3 4 75 75
6 6 2 2 100 33
7 6 5 6 83 83
8 6 4 4 100 67
9 8 8 8 100 100
10 2 2 2 100 100
Average 90 83

2. Although WordNet can provide stems and synonyms for a single word, it cannot
give the synonyms of phrases (i.e. two or more words in sequences to represent a
specific meaning) which are the most common expressions of entities in ontolo-
gies. The lack of phrases in our semantic analysis database (i.e. WordNet) makes
it challenging for our prototype to identify the similarity of phrases defined in
ontologies.

3. When the number of keywords increases, the results returned by Google or
Seekda are likely to diminish. Especially, we may extract general terms from
ontologies, such as “people”, “person”, and “location”. Such terms in the search-
ing keywords often result in drastically reduction of the quality of searching
results.

24.8.5 Threats to Validity

Construct validity is the degree to which the independent and dependent variables
accurately measure the concepts which they are intended to measure. We have care-
fully designed our case study to avoid the threats of construct validity. To evaluate the
effectiveness of identified context relations and recommended services, we use recall
and precision which are well adopted evaluation criteria in literature. However, the
potential tasks and relevant services of context scenarios contain subjective issues.
For example, one subject may be satisfied by a recommended task while another user
may not like the recommended task at all. In our case study, we ask the 6 subjects
to provide the potential tasks and evaluate the returned services according to the
relations among context values and their understanding of the context scenario. The
identified potential tasks and relevant services recommended by the 6 objects may
not reflect the potential tasks of all the users in practices. Especially, in our case

24 An Approach for Service Discovery and Recommendation Using Contexts 629

study, all the 6 subjects are graduate students. In the future, we plan to hire more
subjects with different backgrounds to participate in our case study.

External validity refers to the generalization of the results. In our case study,
we automatically generated 600 different context scenarios and randomly selected
12 scenarios out of the 600 context scenarios. We believe that the automated gener-
ation and random selection of context scenarios can reflect the practical situations.
However, there are various context types and many variations of context values in
a context-aware system. Our case study only evaluates a limited number of context
types and values. In the future, we plan to expand our context scenarios with more
context types and values. When the number of context types and values increases in
our case study, we expect that the precision and recall is likely to be lower than the
result of our current experiment.

Internal validity is concerned with the cause-effect relationship between inde-
pendent and dependent variables. In our case study, the retrieved tasks are automat-
ically identified by our prototype, and the relevant potential tasks are identified by
subjects who did not observe the results of our prototype. Therefore, we can rule out
a learning effect of subjects that may impact the results of our case study.

24.9 Related Work

24.9.1 Context Modeling and Context-Aware Systems

Several context models and context-aware systems are proposed in the literature
[10, 14, 19, 23, 24]. Strang and Linnhoff-Popien [25] survey existing context models
and classify them into different types based on the data structures. The context models
are classified into 6 types: key-value models, markup scheme models, graphical
models, object oriented models, logic based models, and ontology based models.
The context models are evaluated using six requirements. Ontologies are the most
expressive model that can fulfill most of the requirements. Sakurai et al. [23] propose
a methodology to interpret and combine sensor outputs with contexts as sets of
annotated business rules. Chen and Kotz [14] investigate the research on context-
aware mobile computing. Chen and Kotz discuss the types of context used, the ways
of using context, the system level support on collecting context, and approaches
to adapt to the changing context. Baldauf et al. [10] present a layered conceptual
design framework to describe the common architecture principles of context-aware
systems. Based on their proposed design framework, Baldauf et al. compare different
context-aware systems on various issues: the context sensing, context models, context
processing, resource discovery, historical context data, security and privacy. In the
aforementioned approaches, the context models are predefined and are not flexible
to address the dynamical changing environment. In our approach, we can generate
and adjust the context relation model automatically according to different available
context values.

630 H. Xiao and Y. Zou

24.9.2 Discovering and Recommending Services Using Context

Applying context-aware techniques to discover and recommend services has gained
lots of attentions. Yang et al. [15, 28] design an event-driven rule based system to rec-
ommend services according to people’s context. Yang et al. define an ontology-based
context model to represent a context. Requester ontology and service ontology are
developed for specifying the context of requesters and services respectively. Using
rules, further contextual information can be inferred from the current contextual
information. For example, a user’s activity at a given time can be derived by examin-
ing the time and calendar. When searching for Web services, Yang et al. identify the
similarities of inputs/outputs between requests and published services using capa-
bility matching. If there are no matched services, a semantic matching component
would decompose the request into sub-requests based on requester’s contextual infor-
mation and search for services for each sub-request. Balke and Wagner [11] propose
an algorithm to select a Web service based on user’s preferences. The algorithm
starts with a general query. If there are too many results, it expands the service query
using user’s preferences. The algorithm expands the query with loose constraints
extracted from user’s preferences. If there are too many results, it extends the query
with restricted constraints and searches for Web services again. By adding constraints
step by step, the algorithm narrows down the number of service searching results to
a small value. However, aforementioned approaches need to predefine the specific
reactions on context scenarios using rules which are hard to provide in practice due
to the diversity of context types and values in the real world. Our approach can auto-
matically recommend services based on the semantics of context scenarios without
requiring the designer of context-aware systems to provide specific rules.

Xi et al. [26] use a collaborative filtering technique to recommend services based
on the Quality of services. Qi et al. [22] combine UDDI and OWL-S to describe
semantic Web services. In OWL-S, class “process: local” allows users to define
some local parameters. Qi et al. use “process: local” to describe context information.
Qi et al. define 6 types of contexts: load of server, performance of server, response
time of service, geographical position of client, geographical position of server, and
distance between client end and server. Dynamic context can be updated on time.
After finding services using semantic matching, Qi et al. use context data to evaluate
the quality of services and rank the matching services. Mostefaoui et al. [21] present
a CB-SeC (Context-Based Service Composition) service description model. In the
CB-SeC service description model, Mostefaoui et al. define an optional part called the
context function. The context function represents the context of the service (e.g. the
current workload of the service) and is shipped with other service description. The
context function is used to select the best services from the matching Web service
list if there is more than one matching Web service. The value of context function is
not known in advance. It needs to be calculated during run time when it is needed.
Different from Chen, Qi and Mostefaoui’s approaches which use contexts to select
services with high Quality of Service (QoS), our approach is intended to detect the
requirements of users and recommend services with desired functions.

24 An Approach for Service Discovery and Recommendation Using Contexts 631

Abbar et al. [9] provide an approach to recommend services using the logs of a user
and the current context of the user. To select and recommend services, the proposed
approach requires historical data which are usually not available in the practice. Our
approach only needs the context types and values to recommend services. Blake et al.
[12] use an agent to detect the execution of applications and the behavior of human
users, such as browsing the Internet. Then the agent extracts the context data from
applications and users’ behaviors. Based on the contextual data, the agent generates
a query to search for available Web services. The agents recommend services by
matching the similarity of input/output and the operation name of Web services with
the contextual information extracted by the agent. The approach by Blake et al. only
analyzes the data that the user is currently processing. Their approach cannot combine
and analyze two or more context values to recommend services. Our approach can
analyze the relations of multiple context types and values and recommend services
based on such relations.

24.10 Conclusion and Future Work

In this chapter, we present an approach to dynamically derive context relations from
ontologies and automatically recommend services based on specific context values.
By discovering the semantic relations among context values, our approach can iden-
tify user’s tasks hidden behind the context values and generate searching criteria for
service discovery. The case study shows that our approach can identify the context
relations and user’s potential tasks in different context scenarios with high precision
and recall.

Context types and context values are interpreted from the outputs of sensors. For
example, a GPS signal is mapped to abstract location such as at home or at work. Our
current approach is based on the context types and context values which are provided
by third part. In our next step, we plan to extend our approach to use or directly
interpret the data from the outputs of different sensors. Meanwhile, we observe that
some ontologies in FreeBase are not very suitable for extending the context values.
As a result, it reduces the accuracy of service recommendation in our approach. To
enhance our approach, we could try to use the ontologies from different ontology
databases, such as DBpedia [1] and Swoogle [7]. There may have several matching
ontologies for the same context value. Currently, there are no effective criteria to help
us select the appropriate ontologies for the purpose of extending the context values.
A further study can be conducted to evaluate the effectiveness of different criteria
for ontology selection and identify the effective criteria for our work.

Acknowledgments This work is financially supported by NSERC and the IBM Toronto Cen-
tre for Advanced Studies (CAS). We would like to thank Mr. Alex Lau, Ms. Joanna Ng and
Mr. Leho Nigul at IBM Canada Toronto Laboratory and Dr. Foutse Khomh at Queen’s University
for their suggestions on this work. IBM and WebSphere are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both. Other
company, product, and service names may be trademarks or service marks of others.

632 H. Xiao and Y. Zou

References

1. Dbpedia. http://dbpedia.org/ (2012)
2. Freebase. http://www.freebase.com/ (2012)
3. Google. http://www.google.com (2012)
4. Owl api. http://owlapi.sourceforge.net/ (2012)
5. Princeton University: Wordnet, 2010. http://wordnet.princeton.edu (2012)
6. Seekda. http://webservices.seekda.com/ (2012)
7. Swoogle. http://swoogle.umbc.edu/ (2012)
8. Wikipedia. http://en.wikipedia.org/wiki/Wikipedia:About (2012)
9. Abbar, S., Bouzeghoub, M., Lopez, S.: Context-aware recommendation systems: a service-

oriented approach. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB) Proflie Management and Context Awareness (PersDB) Workshop, Lyon, France
(2009)

10. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc
Ubiquitous Comput. 2(4), 263–277 (2007)

11. Balke, W.T., Wagner, M.: Towards personalized selection of web services. In: WWW (Alternate
Paper Tracks) (2003). http://dblp.uni-trier.de/db/conf/www/www2003at.html#BalkeW03

12. Blake, M.B., Kahan, D.R., Nowlan, M.F.: Context-aware agents for user-oriented web services
discovery and execution. Distrib. Parallel Databases 21(1), 39–58 (2007). doi:10.1007/s10619-
006-7001-9. http://dx.doi.org/10.1007/s10619-006-7001-9

13. Brézillon, P.: Focusing on context in human-centered computing. IEEE Intell. Syst. 18(3), 62–
66 (2003). doi:10.1109/MIS.2003.1200731. http://dx.doi.org/10.1109/MIS.2003.1200731

14. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report,
Hanover, NH, USA (2000)

15. Chen, I., Yang, S., Jia, Z.: Ubiquitous provision of context aware web services. In: Services
Computing, 2006. SCC ’06. IEEE International Conference on, pp. 60–68 (2006). doi:10.1109/
SCC.2006.110

16. Chen, P.P.S.: The entity-relationship model toward a unified view of data. ACM Trans.
Database Syst. 1(1), 9–36 (1976). doi:10.1145/320434.320440. http://doi.acm.org/10.1145/
320434.320440

17. Connolly, D., Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.:
DAML+OIL (March 2001) Reference Description, W3C Note 18 December 2001. http://www.
w3.org/TR/daml+oil-reference (2011)

18. Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R.J., Wang, M.: A framework for seman-
tic link discovery over relational data. In: Proceedings of the 18th ACM Conference on Infor-
mation and Knowledge Management, CIKM ’09, pp. 1027–1036. ACM, New York, NY, USA
(2009). doi:10.1145/1645953.1646084. http://doi.acm.org/10.1145/1645953.1646084

19. Hesselman, C., Tokmakoff, A., Pawar, P., Iacob, S.: Discovery and composition of services for
context-aware systems. In: Proceedings of the 1st European Conference on Smart Sensing and
Context (EuroSCC’06) (2006)

20. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and Abstract Syn-
tax. W3C Recommendation (2004)

21. Mostefaoui, S., Hirsbrunner, B.: Context aware service provisioning. In: Pervasive Services,
2004. ICPS 2004. IEEE/ACS International Conference on, pp. 71–80 (2004). doi:10.1109/
PERSER.2004.13

22. Qi, Y., Qi, S., Zhu, P., Shen, L.: Context-aware semantic web service discovery. In: Semantics,
Knowledge and Grid, Third International Conference on, pp. 499–502 (2007). doi:10.1109/
SKG.2007.127

23. Sakurai, Y., Takada, K., Anisetti, M., Bellandi, V., Ceravolo, P., Damiani, E., Tsuruta, S.:
Toward sensor-based context aware systems. Sensors 12(1), 632–649 (2012). doi:10.3390/
s120100632. http://www.mdpi.com/1424-8220/12/1/632

24. Smith, M.K., Welty, C., McGuinness, D.L. (eds.) : Owl Web Ontology Language Guide. W3C
Recommendation (2004). http://www.w3.org/TR/owl-guide/ (2012)

http://dbpedia.org/
http://www.freebase.com/
http://www.google.com
http://owlapi.sourceforge.net/
http://wordnet.princeton.edu
http://webservices.seekda.com/
http://swoogle.umbc.edu/
http://en.wikipedia.org/wiki/Wikipedia:About
http://dblp.uni-trier.de/db/conf/www/www2003at.html#BalkeW03
http://dx.doi.org/10.1007/s10619-006-7001-9
http://dx.doi.org/10.1007/s10619-006-7001-9
http://dx.doi.org/10.1007/s10619-006-7001-9
http://dx.doi.org/10.1109/MIS.2003.1200731
http://dx.doi.org/10.1109/MIS.2003.1200731
http://dx.doi.org/10.1109/SCC.2006.110
http://dx.doi.org/10.1109/SCC.2006.110
http://dx.doi.org/10.1145/320434.320440
http://doi.acm.org/10.1145/320434.320440
http://doi.acm.org/10.1145/320434.320440
http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/daml+oil-reference
http://dx.doi.org/10.1145/1645953.1646084
http://doi.acm.org/10.1145/1645953.1646084
http://dx.doi.org/10.1109/PERSER.2004.13
http://dx.doi.org/10.1109/PERSER.2004.13
http://dx.doi.org/10.1109/SKG.2007.127
http://dx.doi.org/10.1109/SKG.2007.127
http://dx.doi.org/10.3390/s120100632
http://dx.doi.org/10.3390/s120100632
http://www.mdpi.com/1424-8220/12/1/632
http://www.w3.org/TR/owl-guide/

24 An Approach for Service Discovery and Recommendation Using Contexts 633

25. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced Context
Modelling, Reasoning and Management, UbiComp 2004—The Sixth International Conference
on Ubiquitous Computing, Nottingham/England (2004)

26. Xi, C., Xudong, L., Zicheng, H., Hailong, S.: Regionknn: a scalable hybrid collaborative
filtering algorithm for personalized web service recommendation. In: Web Services (ICWS),
2010 IEEE International Conference on, pp. 9–16 (2010). doi:10.1109/ICWS.2010.27

27. Xiao, H., Zou, Y., Ng, J., Nigul, L.: An approach for context-aware service discovery and
recommendation. In: Web Services (ICWS), 2010 IEEE International Conference on, pp. 163–
170 (2010). doi:10.1109/ICWS.2010.95

28. Yang, S.J.H., Zhang, J., Chen, I.Y.L.: A JESS-enabled context elicitation system for providing
context-aware web services. Expert Syst. Appl. 34(4), 2254–2266 (2008). doi:10.1016/j.eswa.
2007.03.008. http://dx.doi.org/10.1016/j.eswa.2007.03.008

http://dx.doi.org/10.1109/ICWS.2010.27
http://dx.doi.org/10.1109/ICWS.2010.95
http://dx.doi.org/10.1016/j.eswa.2007.03.008
http://dx.doi.org/10.1016/j.eswa.2007.03.008
http://dx.doi.org/10.1016/j.eswa.2007.03.008

	24 An Approach for Service Discovery and Recommendation Using Contexts
	24.1 Introduction
	24.2 Overview of Our Approach
	24.3 Background of Ontology
	24.4 Searching for Matching Ontologies
	24.5 Identifying Context Relations
	24.5.1 Identifying Relations of Two Context Values
	24.5.2 Inferring Relations Among Multiple Context Values

	24.6 Generating Service Searching Criteria
	24.6.1 Identify User's Requirements in Given Context Scenarios
	24.6.2 Generate Service Searching Criteria

	24.7 Implementation
	24.8 Case Study
	24.8.1 Setup
	24.8.2 Evaluation Criteria
	24.8.3 Experiment Procedure
	24.8.4 Result Analysis
	24.8.5 Threats to Validity

	24.9 Related Work
	24.9.1 Context Modeling and Context-Aware Systems
	24.9.2 Discovering and Recommending Services Using Context

	24.10 Conclusion and Future Work
	References

