
Chapter 23
On Bootstrapping Web Service
Recommendation

Qi Yu

Abstract We present a novel framework to bootstrap Web Service recommendation.
Service recommendation has become an effective means to achieve personalized
service selection. It leverages past user-service interaction information to accu-
rately predict user preference on previously unknown services. However, one key
impediment has been the incompetence of current service recommendation systems
in dealing with new users and services. Since a recommendation system has no
knowledge about new users and services, it may completely fail to provide any
recommendation or provide very poor ones. The proposed framework uses an agile
interview process to quickly profile new users and services. The interview is struc-
tured by a decision tree that enables adaptive, intuitive, and rapid querying of users
or services. We propose to exploit Non-negative Matrix Tri-Factorization (NMTF)
to simultaneously partition users and services into a set of user and service groups.
The group structure helps estimate the missing interaction information and also pro-
vides class labels to construct decision trees for both users and services, which will
be used in the interview process. We conduct extensive experiments to assess the
effectiveness of the proposed framework for bootstrapping service recommendation.

23.1 Introduction

Service Oriented Computing (SOC) offers an attractive paradigm for the provisioning
and consuming of computing resources across a wide spectrum of domains. The large
number of applications expected to heavily take advantage of SOC will lead to the
deployment of substantial software services on the Web. Many Web services may
also offer similar functionalities but vary from each other in terms of the Quality of
Service (QoS) they deliver [16]. The QoS is mainly made of user centered quality

Q. Yu (B)

Rochester Institute of Technology, Rochester, USA
e-mail: qi.yu@rit.edu

A. Bouguettaya et al. (eds.), Web Services Foundations, 589
DOI: 10.1007/978-1-4614-7518-7_23,
© Springer Science+Business Media New York 2014

590 Q. Yu

parameters and examples include availability, response time, throughput, and so on.
As the number of Web services is expected to grow far beyond the reach of any
manual effort, a key challenge is to automatically assess the QoS of large-scale Web
services. This will enable casual service users to easily select the Web service that
best fulfills their QoS requirements [17].

The distributed and dynamic SOC environment leads to very diverse QoS expe-
rience for service users. Users may locate in different network environments and
have different physical distances with the Web services they access. These discrep-
ancies imply that different users may receive significantly different QoS from the
same Web service. Service recommendation systems explicitly consider user dis-
crepancies by leveraging a Collaborative Filtering (CF) scheme [5, 11, 15, 18, 19].
CF assumes that users who have common QoS experiences with some services may
share similar experiences with other services. It exploits similar users’ QoS experi-
ence to accurately predict the QoS that an active user may receive from previously
unknown services. In this way, personalized service selection can be achieved that
enables users to conveniently choose the most suitable services from a large number
of previously unknown candidates.

Service recommendation systems rely on the historical user-service interaction
to make QoS predictions. The similarity between two users is measured based on
the QoS of their commonly invoked services. Similarly, the similarity between two
services is evaluated by the QoS received by the set of users that invoke both ser-
vices. Sufficient historical QoS information increases the chance to identify similar
users or services, which is central to the effectiveness of CF based recommendation
systems. Therefore, the more knowledge the system has on the users and services,
the more accurate QoS prediction can it provide. Existing service recommendation
systems perform reasonably well on warm-start users for which they possess ade-
quate information. One key impediment has been their incompetence in dealing with
new users and services, which is usually referred to as the cold start issue. As the
system possesses very little or no historical QoS information from new users and
services, it may fail to provide any recommendation or provide very poor ones.

Due to the wide adoption of SOC in both industry and government, new ser-
vices are being increasingly deployed and new users keep entering the SOC market.
Hence, effectively dealing with the cold-start issue is critical in attracting new users
and service providers, which is instrumental for SOC to reach its full potential. An
initial interview process is commonly used to elicit user’s information in many rec-
ommendation systems. User profiles are constructed based on the interview results,
which will then be used for recommendation. The initial interview process should be
both short and intuitive so that a new user won’t get bored or lost. Another desirable
feature of the interview process is to adaptively query the user based on the results
of prior interview questions [3, 9].

Decision trees have been employed to conduct initial interviews to bootstrap
e-commerce recommendation systems (e.g., Amazon and Netflix) [4, 21]. A ternary
tree is recursively constructed by selecting an item to split existing users assigned
to a tree node into its three child nodes along branches, labeled as “like”, “dislike”,
and “unknown”, respectively. During the interview, the new user is expected to rate

23 On Bootstrapping Web Service Recommendation 591

an item chosen by the decision tree at each given step. Based on the rating, she will
be directed to one of the child nodes. The interview continues until the new user is
assigned to a leaf node, which represents a homogeneous group of existing users.
These users are considered to be as the similar users and will be used to predict the
new user’s preferences on different items.

Bootstrapping service recommendation poses some new challenges, which hin-
der a direct application of ternary decision trees. In e-commerce recommendation
systems, users’ preferences on items are typically represented by few categorical
rating values, (e.g., 1–5). This enables a straightforward way to assign users into
different groups based on their ratings on an item. For example, the ternary tree
assigns a user into the “like” group if her rating is no less than a predefined threshold
(e.g., 3) and “dislike” group if otherwise. In contrast, the QoS data used in service
recommendation is described by continuous attributes (e.g., 1.2 s response time and
0.95 availability). Therefore, dividing users into groups is less intuitive and demands
some principled criterion.

Dealing with incomplete QoS data gives rise to the second key challenge. Since
an existing user may only invoke a limited number of services, only a small subset
of QoS data is observed. The ternary tree introduces the “unknown” tree node to
group together users with no ratings on the selected item. Users in this node share a
similar opinion on the item, which may be interpreted as either “not know” or “no
interest”. Correspondingly, no response is also allowed during the interview process,
which directs the new user into the “unknown” node. When bootstrapping service
recommendation, a new user is expected to invoke a small number of selected services
during the interview.1 Invoking a service always generates a response. Even when
the service is down, a “time out” message is returned, indicating that the service
is not available. This is different from rating an item (e.g., a product or a movie),
which may result in no response when the user does not know or has no interest
in the item. In contrast, no response is no longer an option during the interview for
service recommendation. If a ternary tree is used, the “unknown” nodes will never
be visited during the interview. This in essence ignores a large number of users that
are assigned into these nodes and hence dramatically reduces the chance to locate
similar users.

We develop a novel framework to bootstrap Web service recommendation. In a
preliminary version of this paper, we developed a strategy to provide high-quality
service recommendations for new service users [14]. One key extension of the pro-
posed framework has been the ability to deal with new services. In this way, it provides
a complete solution to the cold-start issue in service recommendation by tackling
both new users and services. In particular, we propose to exploit Non-negative Matrix
Tri-Factorization (NMTF) to simultaneously partition users and services into a set
of user and service groups. The group structure helps estimate the missing interac-
tion information and also provides class labels to construct decision trees for both
users and services. The decision tree is used to structure an initial interview that

1 The service invocation code can be wrapped as a small software toolkit that is easily accessed by
end users.

592 Q. Yu

enables adaptive, intuitive, and rapid querying of users or services. At the end of
the interview, a new user or service will be classified into one of the user or service
groups obtained by NMTF. Since the group is deemed to be comprised of users or
services that are similar to the new user or service, the QoS of the new user or service
can be predicted based on the QoS of its similar users or services. One challenging
issue that is particular to profiling new services is that the interview process requires
to query existing users. However, a selected user may not want to participate in the
interview process. The user groups resulted from NMTF enable us to choose alter-
native users that are similar to the selected users to work as surrogates in the decision
tree. Experimental results clearly demonstrate the effectiveness of the surrogate user
strategy in profiling new services.

The remainder of the paper is organized as follows. We review some existing
works that are most relevant to ours in Sect. 23.2. We describe in detail the pro-
posed framework for bootstrapping service recommendation systems in Sect. 23.3.
We assess the effectiveness of the proposed framework via a set of experiments in
Sect. 23.4. We conclude in Sect. 23.5.

23.2 Related Work

The ever increasing number of Web services demands systematic approaches to facil-
itate service users in efficiently and accurately retrieving services that match both
their functional and non-functional requirements. Collaborative Filtering (CF) based
techniques have been recently adopted to provide personalized service recommenda-
tion to users [5, 11, 18, 19]. Shao et. al. present a service recommendation system by
assuming that similar users tend to receive similar QoS from similar services [11].
This is in essence a standard user-based CF algorithm. Zheng et. al. enhance the
user-based approach by integrating item-based CF, which results in a hybrid algo-
rithm with better prediction accuracy [19]. Complementary information, such as
users’ locations [1, 2], invocation frequencies of services [10], and query histories
of users [18], has also been leveraged to improve the quality of recommendation.

Both user- and item-based approaches follow the neighborhood centric strategy
in CF, which explores the local neighborhood to identify similar users or items for
recommendation. Zheng et. al. recently proposed a model based CF algorithm that
achieves higher prediction accuracy [20]. The proposed algorithm uses the user-
based approach as a precursor to identify top-k similar users. Based on the user
neighborhood information, matrix factorization is employed to construct a global
model, which can be used to predict unobserved QoS data. Different from our strat-
egy, an unconstrained version of matrix factorization is used, which does not discover
the user groups.

All existing service recommendation approaches focus on predicting QoS for
warm-start users. To our best knowledge, there is no existing work that provides a
systematic approach for cold-start service recommendation. Dealing with cold-start
users has received considerable attention in e-commerce recommendation systems.

23 On Bootstrapping Web Service Recommendation 593

An initial interview has been suggested as an effective way to quickly build new
users’ profiles. Based on how the seed questions are selected, there are two types of
interviews. The first type of interview chooses a static seed set based on some princi-
pled criteria, such as coverage [3], popularity [8], and discriminative power [9]. Users
always answer a fixed set of questions, which does not fully leverage the interactive
nature of the interview process. Recent works propose to adaptively query users based
on their responses to the prior interview questions [9, 4, 21]. Decision trees appear
as an ideal vehicle to carry out the adaptive initial interview. A ternary tree suits
perfectly for the rating-based recommendation systems, which are commonly used
in e-commerce. As discussed in Sect. 23.1, service recommendation poses some new
challenges that make a ternary tree inapplicable. In particular, since the “unknown”
nodes in a ternary tree will never be visited during the interview, valuable infor-
mation carried by existing users cannot be fully leveraged to provide high quality
recommendations.

23.3 Cold-start Service Recommendation

We present the framework for bootstrapping service recommendation in this section.
The proposed framework simultaneously deals with both new users and services. It
exploits Non-negative Matrix Tri-Factorization (NMTF) to discover the user and ser-
vice group structures from a set of incomplete QoS data that captures the historical
user-service interactions. The tree learning algorithm then constructs two decision
trees to partition the users and services, respectively, to fit the group structure dis-
covered by NMTF. The simple structure and interpretability of the decision tree
serve ideally for an initial interview process, which adaptively queries new users and
services for rapid profiling.

23.3.1 NMTF for User and Service Group Discovery

Before delving into the technical details, we first describe the symbols and notations
that are used throughout the paper. Assume that there are n existing users and m Web
services. The QoS attribute (e.g., response time, reliability, and availability) under
consideration takes positive real values. We use a matrix A ∈ R

m×n+ to denote the
QoS data, where Ai j represents the QoS that service i delivered to user j . In this
regard, the i-th row of A represents service si while the j-th column of A represents
user u j . This essentially models user u j as an m-dimensional feature vector, in which
each element u jq signifies u j ’s interaction with sq .

NMTF computes three low-rank matrices, the service coefficient matrix F ∈ R
m×k+ ,

the prototype matrix B ∈ R
k×l+ , and the service coefficient matrix G ∈ R

n×l+ to
approximate the original QoS matrix A, i.e., A ≈ F BG ′. In particular, the k × l pro-

594 Q. Yu

totype matrix B is deemed to provide a compact representation for the original QoS
matrix A with a k × l block structure. In this regard, the columns of B, {b1, ..., bl},
correspond to the l different types of users and the rows of B, {b′

1, ..., b′
k}, correspond

to the k different types of services.
Let vq = Fbq denote the q-th column vector of V = F B, where q = 1, ..., l. The

m dimensional vector vq ∈ R
m reflects how each service interacts with the q-th type

of users. Therefore, the columns of V are considered to form a new basis, where each
basis vector captures the QoS related latent feature of one (out of l) type of users.
Consequently, the user coefficient matrix G is the new representation of the users
under this new basis. G can also be regarded as a projection of A onto the latent user
feature space V . More specifically,

a j ≈
l∑

q=1

G jqvq (23.1)

where a j is the j-th column vector in A, representing user u j . Equation (23.1) shows
that each user vector a j is approximated by a linear combination of the column
vectors in V weighted by the components of G. Similarly, the service coefficient
matrix F is a projection of A′ onto the latent service feature space R′ = G B ′,2 i.e.,
a′

i ≈ ∑k
p=1 Fipr ′

p.

The latent user feature space V together with the new representation matrix G
should provide a good approximation of the original QoS data matrix A. Since only
a small subset of QoS data is observed, we introduce a weight matrix W , where
Wi j = 1 if Ai j is observable and Wi j = 0 otherwise. Therefore, we compute F, B,
and G by solving the following optimization problem:

min
F ≥ 0,G ≥ 0

J = ∥∥W ; (A − F BG ′)
∥∥2 (23.2)

=
m∑

i=1

n∑

j=1

Wi j

(
Ai j − (

F BG ′)
i j

)2
(23.3)

where ; is component-wise matrix product and || · || is matrix norm. Since all the
components of A take non-negative values, we also enforce a non-negative constraint
on matrices F, B, and G. As can be seen from Eq. (23.1), the nonnegative constraint
ensures that a user vector is an additive linear combination of the new basis vectors.
This allows a more intuitive interpretation than other matrix factorization approaches,
such as Singular Value Decomposition (SVD), where negative values are allowed in
the matrix components.

2 Along the same lines, a′
i , the i-th row vector in A, representing service si , is approximated by a

linear combination of the row vectors in BG ′ weighted by the components of F : a′
i ≈ ∑k

p=1 Fipr ′
p .

r ′
p = b′

pG ′ is the p-th row of BG ′, which reflects how each user interacts with the p-th type of
services

23 On Bootstrapping Web Service Recommendation 595

23.3.2 Decision Tree Learning for User and Service Profiling

Due to its simplicity, interpretability, and the ability to adaptively query users,
decision tree becomes an ideal tool to perform the initial interview via which a new
user’s profile can be constructed. As motivated in Sect. 23.1, the continuous nature of
the QoS attributes and the limited observable QoS data pose key challenges to build
a decision tree. The latent feature space discovered via matrix factorization carries
rich information that is instrumental to understand the interaction patterns between
users and services. It plays a critical role in learning a decision tree from a set of
incomplete QoS data. More specifically, the latent feature space enables us to:

• discover homogeneous user and service groups that contain similar users and
services;

• estimate the unobserved entries in the QoS matrix A.

Since the matrix G (or F) is a projection onto the latent user (or service) feature
space, it naturally captures the user (or service) group structure. More intuitively,
users (or services) that share similar latent features should have similar representa-
tions in the latent feature space. To make sure that each user (or service) is assigned
to only one user (or service) group (i.e., hard group membership), we enforce con-
straints GG ′ = diag(|U1|, ..., |Ul |) and F F ′ = diag(|S1|, ..., |Sk |). This makes G
(or F) a user (or service) group indicator matrix:

G jq =
{

1 if u j ∈ Uq

0 otherwise
(23.4)

Fip =
{

1 if si ∈ Sp

0 otherwise
(23.5)

where Uq is the q-th user group and |Uq | denotes the number of users assigned to
the group. Similarly, Sp is the p-th service group and |Sp| denotes the number of
services assigned to the group. These constraints ensure that each row of G (or F)
has only one non-zero element, which denotes the group that the user (or service) is
assigned to.

The second key usage of the latent feature space is to estimate the missing QoS
entries. If the latent features indeed capture the interaction patterns between users
and services, they are expected to provide a good estimation of the unobserved QoS
data. More specifically, the QoS that an unknown service si will deliver to a user u j

can be estimated as:

Ai j ≈ Âi j =
k∑

p=1

k∑

q=1

VipG jq (23.6)

The j-th column vector of the completed matrix Â corresponds to user u j and
the j-th row vector of matrix G encodes the class (or group) label for the user. The
class labels from G allow us to exploit the classical information gain as the principled

596 Q. Yu

criterion to select services to be used as the tree nodes. Using the completed matrix Â
avoids the generation of “unknown” nodes, which are never visited during the initial
interview for service recommendation. Instead of a ternary tree, our tree learning
algorithm generates a binary decision tree, via which all existing user information
can be leveraged to construct a new user’s profile. To ensure a concise interview
process, we employ two strategies to control the depth of the tree. First, we stop
splitting the a node if the number users assigned to it is less than a predefined
threshold value. Second, we exploit a standard pruning process to merge and join
leaf nodes after the tree is fully grown.

Figure 23.1 shows an example decision tree constructed from a real-world QoS
dataset obtained from [19]. Each internal node of the tree represents a service. Based
on the QoS value, users are directed to one of its child nodes. For example, if the
response time that a user received from service s53 is less than 0.74 s, she will be
directed to child node s59. At this node, the response time of the user will be evaluated
against the service in the node. This process continues until the user reaches one of
the leaf nodes, which corresponds to one of the user groups.

In what follows, we present an important property of the binary decision tree as
constructed by following the above procedure. This helps justify why it can provide
high-quality service recommendations for cold-start users and services.

Theorem 23.1 A decision tree that exploits class labels provided by matrix G parti-
tions users into cohesive user groups, where G is computed by minimizing objective
function J with constraint in Eq. (23.4).

Proof Since each column vector of A corresponds to a user, we reformulate the
objective function J using column vectors of A.

Fig. 23.1 An example decision tree for new user interview

23 On Bootstrapping Web Service Recommendation 597

J =
n∑

j=1

∥∥∥∥∥∥
w j ; [a j −

k∑

q=1

G jqvq]
∥∥∥∥∥∥

2

(23.7)

=
n∑

j=1

∥∥∥∥∥∥

k∑

q=1

G jq [w j ; (a j − vq)]
∥∥∥∥∥∥

2

(23.8)

=
n∑

j=1

k∑

q=1

G jq
∥∥w j ; (a j − vq)

∥∥2 (23.9)

=
k∑

q=1

∑

u j ∈Uq

∥∥w j ; (a j − vq)
∥∥2 (23.10)

where w j is the j-th column of W and ◦ is element-wise vector product. Due
to Eq. (23.4) and the fact that one user is assigned to only one group, we have∑k

q=1 G jq = 1, which leads Eqs. (23.7) – (23.8). From Eqs. (23.8) – (23.9), we use

the fact G2
jq = G jq since G jq = 1 or 0. Finally, G jq = 1 only when u j ∈ Uq gives

Eq. (23.10).
Minimizing objective function J is equivalent to find the optimal set {(Uq , vq)|q ∈

(1, k)} that minimizes Eq. (23.10). We know that Uq denotes the q-th user group and
the group membership is encoded by G. If we can find out what the latent feature
vector vd denotes, we are able to interpret what matrix factorization actually achieves
under constraint specified in Eq. (23.4). Since the optimal V minimizes J , in order
to find out V , we take the partial derivative of J with respect to V :

∂ J

∂V
= −2(W ; A)G + 2(W ; (V G ′))G (23.11)

= −2(W ; (−A + V G ′))G (23.12)

Setting ∂ J
∂V = 0 gives −A + V G ′ = 0. Multiplying both sides by G gives

V G ′G = AG. Using the fact GG ′ = diag(|U1|, ..., |Uk |), we get

|Uq |vq =
n∑

j=1

G jqa j (23.13)

vq = 1

|Uq |
n∑

j=1

G jqa j (23.14)

= 1

|Uq |
∑

u j ∈Uq

G jqa j (23.15)

We exploit Eq. (23.4) in the last step of derivation.

598 Q. Yu

Equation (23.13) reveals that vq is actually the centroid of the q-th user group.
Hence, we conclude that minimizing J with constraint in (23.4) is equivalent to per-
forming k-means clustering on the existing users. The result is a set of cohesive user
groups with minimal total squared deviation from their group means (or centroids).
As G encodes the group memberships, our tree learning algorithm aims to construct
a decision tree that partitions users into the same set of cohesive user groups.

Theorem 23.2 A decision tree that exploits class labels provided by matrix F par-
titions services into cohesive service groups, where F is computed by minimizing
objective function J with constraint in Eq. (23.5).

23.3.2.1 Profiling New Users and Services

Profiling a new user is straightforward by following an initial interview structured
by a decision tree like the one in Fig. 23.1. During the interview, the user invokes
the services on the tree nodes until being directed into one of the leaf nodes, which
represents a user group. The new user hence is expected to share similar QoS expe-
rience with other users in the same group. To make the interview process painless,
the service invocation code can be wrapped as a small software toolkit that is easily
accessed by end users.

Profiling a new service, on the other hand, is a little bit more complicated. In the
decision tree for new service interview, each internal tree node represents a user.
During the interview process, the users on the tree nodes need to invoke the new
service and report their QoS. Since a number of users are involved in the interview
process, it will take longer than interviewing new users, which just invokes a set of
services. In fact, rapidness of the interview process is not critical for profiling new
services as it makes sense that introducing a new service into the market may take
some time. However, the key issue is that there might be some users that do not
want to participate in the interview. One possible solution is to adopt some bonus
mechanism to stimulate users. In addition, we propose to use a surrogate user strategy
to improve the response rate of service users. The surrogate user strategy benefits
from the co-clustering nature of NMTF, which simultaneously clusters both users
and services. While the goal of new service profiling is to classify a new service
into one of the service groups obtained by NMTF, the user groups provide options
to choose alternative users when a selected user is not willing to participate in the
interview. More specifically, when a user ui fails to provide QoS information on
the new service st , we randomly choose another user u j from user group Uq , where
ui ∈ Uq , to replace ui . Since u j and ui are from the same user group, they are
expected to receive similar QoS from st . Therefore, it is highly probable that st

will be directed to the same path in the decision tree when u j is queried instead of
ui . This will have the effect of leading st to the same service group as when ui is
queried during the interview. Our experimental results in Sect. 23.4 demonstrate the
effectiveness of the surrogate user strategy.

23 On Bootstrapping Web Service Recommendation 599

23.3.3 Computing G, B, and F

Matrices G, B and F play key roles in both decision tree learning and cold-start
service recommendation. G, B and F can be derived by solving the optimiza-
tion problem in Eq. (23.2). However, minimizing J under constraints specified by
Eq. (23.4) and Eq. (23.5) is non-trivial. Since there is no analytical solution for that,
we develop an iterative algorithm to efficiently compute G, B and F .

The constraints in Eq. (23.4) and Eq. (23.5) require binary values on the compo-
nents of G and F , which makes the optimization problem unsolvable [12]. To resolve
this issue, we instead enforce the following constraints: G1 = 1 and F1 = 1. This
is equivalent to enforcing a soft group membership. Take the user group as an exam-
ple and the same idea is applied to the service group. From G1 = 1, we have
∑k

q=1 G jq = 1,∀ j ∈ [1, n]. Hence, G jq can be interpreted as the probability that

u j belongs to group Uq . User u j will be assigned to group Uq̂ , where

q̂ = arg max
q

{G jq |1 ≤ q ≤ k}

We incorporate these new constraints into objective function J as penalty terms,
which lead to the following objective function:

min
F ≥ 0,B ≥ 0,G ≥ 0

J (G, B, F) = ∥∥W ; (A − F BG ′)
∥∥2 + α||G1 − 1||2 + β||F1 − 1||2

(23.16)
In order to minimize J (G, B, F), the proposed iterative algorithm updates G, B and
F alternatively. That is, while J (G, B, F) is minimized with respect to G, B and
F will be fixed and vice versa. The update of G, B and F is performed by using a
set of update rules, which guarantee the convergence of the iterative algorithm. The
update rules are derived based on a set of auxiliary functions of objective function
J (G, B, F), which are formally defined as follows.

Definition 23.1 Z(G, G̃) is an auxiliary function of function J (G) if it satisfies the
following conditions for any G and G̃: Z(G, G̃) ≥ J (G); Z(G, G) = J (G) [6].

Now, let’s plug the auxiliary function into our iterative algorithm and see how we
can exploit it to derive the update rules. Let J (G) denote the part of J (G, F) that is
only relevant to G. Assume that {G(1), ..., G(t), ...} is a set of matrices obtained by
the iterative algorithm, where (t) denotes the t-th iteration. Assume that G is updated
using the following update rule:

G(t+1) = arg min
G

Z(G, G(t)) (23.17)

where G(t) and G(t+1) are matrix G at the t-th and (t + 1)-th iterations, respectively.
It is straightforward to show that J (G) monotonically decreases under update rule
in Eq. (23.17):

600 Q. Yu

J (G(t)) = Z(G(t), G(t)) ≥ Z(G(t), G(t+1)) ≥ J (G(t+1))

Following the same lines, we can use similar update rules for B and F . Since the
iterative algorithm updates G, B and F in turn, we have

J (F (t), B(t), G(t)) ≥ J (F (t+1), B(t), G(t)) ≥ J (F (t+1), B(t+1), G(t))

≥ J (F (t+1), B(t+1), G(t+1))

As J (G, B, F) is apparently lower bounded, it is guaranteed to converge under the
above update rules. What remains is to derive the update rules, which requires to find
suitable auxiliary functions for J (G, B, F) and compute their global minima.

Theorem 23.3 Let

J (G) = ∥∥W ; (A − F BG ′)
∥∥2 + α||G1 − 1||2 (23.18)

The auxiliary function of J (G) is given by

Z(G, G̃) = Z1(G, G̃) + Z2(G, G̃) (23.19)

where,

Z1(G, G̃) =
∑

i j

Wi j

[
A2

i j − 2
∑

pq

Ai j Fip Bpq G̃ jq

(
1 + log

G jq

G̃ jq

)

+
∑

pq

[F BG̃ ′]i j Fip Bpq
G2

jq

G̃ jq

]
(23.20)

Z2(G, G̃) = α
∑

jq

(
[G̃1] j

G2
jq

G̃ jq

)

− α
∑

jq

2G̃ jq

(
1 + log

G jq

G̃ jq

)
+ nα (23.21)

The global minimum of Z(G, G̃) is

G jq = G̃ jq

[
[(W ; A)′F B] jq + α

[(W ; (F BG̃ ′))′F B + αG̃ E] jq

] 1
2

(23.22)

Proof Sketch It is straightforward to show that Z(G, G) = J (G). Furthermore,
J (G) has two quadratic terms. Applying Jensen’s inequality and inequality
x ≥ 1 + log x,∀x > 0 when expanding both terms, we get

23 On Bootstrapping Web Service Recommendation 601

∥∥W ; (A − F BG ′)
∥∥2 ≤ Z1(G, G̃) (23.23)

α||G1 − 1||2 ≤ Z2(G, G̃) (23.24)

From Eqs. (23.23) and (23.24), we have Z(G, G̃) ≥ J (G). Hence, we prove that
Z(G, G̃) is an auxiliary function of J (G).

To show that Eq. (23.22) gives the global minimum of Z(G, G̃), we need to first
prove that Z(G, G̃) indeed has a global minimum. This can be achieved by showing
that Z(G, G̃) is a convex function on G. We compute the second order derivative of
Z(G, G̃) with respect to G, which gives the Hessian matrix of Z(G, G̃):

∂2 Z(G, G̃)

∂G jq∂G pr
= δ j pδqr

(
2[W ; AF B] jq G̃ jq + 2αG̃ jq

G2
jq

+ 2[W ; (F BG̃ ′)F B] jq + 2α[G̃ E] jq

G̃ jq

)

where δab = 1 when a = b and 0 otherwise. Hence, the Hessian is a diagonal
matrix with positive diagonal elements, which makes it positive definite. Therefore,
Z(G, G̃) is a convex function on G. To compute the global minimum, it is sufficient

to compute its local minimum. We set ∂ Z(G,G̃)
∂G jq

= 0 and through some algebra, we
get Eq. (23.22).

Following the same lines, we can derive the update rules for F and B:

Fiq = F̃iq

[
[W ; ABG ′]i p + β

[W ; (F̃ BG ′)BG ′ + β F̃ E]i p

] 1
2

(23.25)

Bpq = B̃pq

[
[F ′(W ; A)G]pq

[F ′(W ; (F B̃G ′))G]pq

] 1
2

(23.26)

Having update rules (23.22), (23.25), and (23.26), the iterative algorithm essen-
tially updates F, B and G alternatively in each iteration. The algorithm continues
until it converges or a predefined number of iterations is reached.

23.4 Experiments

We carry out a set of experiments to evaluate the effectiveness of the proposed frame-
work for boostrapping service recommendation. The experiments are conduced on
a real-world QoS dataset that consists of 1.5 million service invocation records. 150
computer nodes from the Planet-Lab,3 which are located in over twenty countries, are

3 http://www.planet-lab.org

602 Q. Yu

leveraged to automatically invoke a hundred selected Web services. These services
are distributed across more than twenty countries. Each computer node invokes each
service for 100 times and the average Round-Trip Time (RTT) is used as the QoS
dataset in our experiments.

23.4.1 Experiment Design

We organize the QoS data into a 100 × 150 matrix A, in which entry Ai j denotes the
averaged RTT that user j used to invoke service i . We randomly remove a certain
percentage (80–96 %) of entries from A to simulate a real-world QoS dataset, where
only a small subset of entries are observed. To assess the proposed bootstrapping
strategy, we follow a similar design as in [21], which splits users (or services) into
two disjoint subsets: the training set and the test set, consisting of 80 and 20 % users
(or services), respectively. We apply NMTF to the training set to discover the user and
service groups and estimate the missing QoS entires. We then construct the decision
tree for the initial interview. The actual RTT records of the test users are used to
simulate the results of invoking the services in the decision tree.

We employ Mean Absolute Error (MAE), one of the most widely used metric in
recommendation systems, to assess the quality of recommendation:

M AE =
∑

i, j

|Ai j − Âi j |
N

(23.27)

where Ai j and Âi j denote the actual and estimated RTT respectively. N is the total
number of estimated QoS entries. Since the RTT entries are randomly removed, all
the results reported below are obtained by computing the average over 20 runs. The
numbers of user and service groups are 30 and 20, respectively. The default value
for the penalty terms α and β are both set to 10. These default values will be used in
all the experiments unless specified otherwise.

23.4.2 Quality of Cold-start Recommendation

To our best knowledge, there is no existing work on providing service recommen-
dation for cold-start users. As discussed in Sect. 23.1, the ternary tree approach pre-
sented in [4, 21] is not suitable for the initial interview of service recommendation,
either. To demonstrate the effectiveness of the proposed bootstrapping strategy, we
implemented four representative collaborative filtering methods, including:

• the user based algorithms using both Pearson Correlation Coefficient (UPCC) and
cosine similarity (referred to as UCOS) as similarity measures [11];

23 On Bootstrapping Web Service Recommendation 603

• the item based algorithm using Pearson Correlation Coefficient (IPCC) as similarity
measure;

• the hybrid collaborative algorithm that combines both user and item based
approaches using their prediction accuracy as the aggregation weights (referred to
as WSRec) [19].

• the constrained matrix factorization model (referred to as NMTF), as discussed in
Sect. 23.3, in which Eq. (23.6) is utilized to make the prediction after the model is
constructed.

We apply the above methods to the warm-start users and use the obtained result
as the baseline to assess our cold-start performance. As indicated in [21], using a
ternary tree model, the cold-start performance is always worse than the warm-start
performance considering that more information is available for the warm-start users.
Therefore, the relative warm/cold start performance is a good indicator about the
effectiveness of the bootstrapping process.

Figure 23.2 compares the warm-start MAE performance from the four representa-
tive CF algorithms with the MAE performance for cold-start users from the proposed
bootstrapping framework (referred to as NMTF-DT). We vary the sparsity ratio of
the QoS matrix A from 80 to 96 % and achieve two important observations. First,
the cold-start performance of NMTF-DT outperforms the warm-start performance
of other algorithms in all cases. This clearly demonstrates the effectiveness of the
bootstrapping strategy. As can be seen later in Fig. 23.6, a new user only needs to
invoke few services (3–6 on average) during the interview process. This is usually
much smaller than the number of services invoked by a warm-start user. For example,
if the sparsity of A is 80 %, since we have 100 services in total, each existing user
invoked 20 services on average. The fundamental reason for this is that the integra-
tion of MF with decision tree learning identifies the most important few services
to invoke for the new user. The QoS collected from these services captures the key

Fig. 23.2 Cold-start user
MAE performance compari-
son

0.8 0.84 0.88 0.92 0.96
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sparsity ratio

M
A

E

MAE on Real QoS Data [New User]

NMTF−DT
NMTF
WSRec
UPCC
IPCC
UCOS

604 Q. Yu

(latent) features of the user. This is critical to discover the most similar user group,
which is used to predict the QoS from other services that are unknown to the new
user.

Second, as the sparsity of A increases, the performance advantage of NMTF-
DT becomes more significant. This is because the warm-start performance drops
quickly when less information is available for users. For a very sparse QoS dataset,
most users may invoke very few or even zero services. In fact, these algorithms
essentially suffer from the cold-start problem, which we aim to resolve in this
paper. The MAE performance of NMTF-DF also drops as sparsity increases because
it relies on the similar user groups to make the prediction. However, the performance
goes down much slower than other algorithms. It is also interesting to note that NMTF
suffers less than other algorithms for the cold-start issue. This also contributes to the
good performance of NMTF-DT, in which NMTF serves as a precursor of the entire
bootstrapping process.

Figure 23.3 shows the results on cold-start services. In this set of experiments, we
randomly choose 80 % rows from matrix A, which represent 80 % of the services,
and use these services as the training set. The remaining rows are used as the test
set. The results show a very similar trend as in Fig. 23.2. The MAE performance on
cold-start services is a little bit worse than the performance on cold-start users but it is
still comparable with the warm-start performance achieved by NMTF. Furthermore,
it outperforms NMTF when the data becomes very sparse.

Figure 23.4 demonstrates the effectiveness of the proposed surrogate user mecha-
nism for profiling new services. In this set of experiments, we randomly choose a user
from the query path and replace it with a user that is randomly chosen from the user
group where the original user belongs to. As can be seen, using the surrogate user
delivers a MAE performance, which is almost identical to using the original user. It
is also interesting to see that using the surrogate user sometimes even achieves better
MAE performance. This may be due to some noises that affect the QoS delivery

Fig. 23.3 Cold-start service
MAE performance compari-
son

0.8 0.84 0.88 0.92 0.96
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sparsity ratio

M
A

E

MAE on Real QoS Data [New Service]

NMTF−DT
NMTF
WSRec
UPCC
IPCC
UCOS

23 On Bootstrapping Web Service Recommendation 605

0.8 0.84 0.88 0.92 0.96
0.0395

0.04

0.0405

0.041

0.0415

0.042

0.0425

0.043

0.0435

Sparsity ratio

M
A

E

Effect of Surrogate Users

Original User
Surrogate User

Fig. 23.4 Effectiveness of surrogate users

to the original user. The surrogate user may not be affected by these noises, which
contributes to a better estimation of the QoS of the new service.

23.4.3 Impact of Parameters

We investigate the impact of two important parameters in this section, including the
height of the decision tree and the number of user groups. The sparsity ratio of A is
kept as 80 %.

We control the height of the decision tree by restricting the minimum num-
ber of services per leaf node, referred to as min_ leaf_ size. As shown in the left
chart of Fig. 23.5, when we vary min_ leaf_ size from 1 to 10, the average tree
height decreases from 13.36 to 6.16. The MAE performance on cold-start users also
decreases slowly as tree height decreases although there are some small fluctuations

13.36 13.32 10.96 10.18 8.72 8.4 7.76 7 6.36 6.16
0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

Average Height of the Tree

M
A

E

MAE Vs. Decison Tree Height

MAE on New Users

10.08 9.14 7.78 6.88 6.1 5.8 5.14 4.92 4.38 4.16
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Average Height of the Tree

M
A

E

MAE Vs. Decison Tree Height

MAE on New Services

Fig. 23.5 Impact of decision tree height

606 Q. Yu

due to the randomness in removing entries from A and the initialization of F, B and
G. A very similar trend is shown in the right chart of the figure, which gives the
result on cold-start services.

A service (or user) may appear multiple times in the decision tree. For example,
in Fig. 23.1, services S53, S59 and S54 all appear more than one times in the example
decision tree. Therefore, the number of services (or users) that need to be queried
by a new user (or service) during the interview is actually much smaller than the
tree height. Figure 23.6 reports the average number of service invocations versus the
min_ leaf_ size, which confirms our hypothesis. It is obvious only very small number
(3–6 on average) of services (or users) need to be queried to achieve good cold-start
recommendation performance.

Figure 23.7 shows the impact of the number of user and service groups. An optimal
MAE performance is reached when the number of groups is 20 for both new users
and new services. As the number of groups further increases, many smaller groups
will be generated. Restricted by the group size, similar users or services may be
spitted into different groups, which will lower the prediction accuracy.

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

Min Leaf Size

N
u

m
b

er
 o

f
S

er
vi

ce
s

Number of Service Invocations [New User]

Tree Height
Service Invocations

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

11

Min Leaf Size

N
u

m
b

er
 o

f
S

er
vi

ce
s

Number of Service Invocations [New Service]

Tree Height
Service Invocations

Fig. 23.6 Number of service invocations

10 20 30 40 50 60 70 80
0.029

0.03

0.031

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

Number of User Groups

M
A

E

MAE Vs. Number of User Groups

MAE on New Users

10 20 30 40 50 60
0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045

0.046

Number of Service Groups

M
A

E

MAE Vs. Number of Service Groups

MAE on New Services

Fig. 23.7 Impact of number of user and service groups

23 On Bootstrapping Web Service Recommendation 607

23.5 Conclusion and Future Work

We develop a novel framework for bootstrapping service recommendation. The
proposed framework offers a complete solution that tackles both new users and
services. The framework is underpinned by Non-negative Matrix Tri-Factorization
(NMTF) that simultaneously clusters users and services into a set of user and service
groups. The group structure helps estimate the missing interaction information and
also provides class labels to construct decision trees for both users and services.
An initial interview is conducted to adaptively query users or services for rapid
profiling. We propose to exploit surrogate users obtained from the user groups to
improve the user response rate for profiling new services. The effectiveness of the
proposed framework has been demonstrated via experiments on a real-world QoS
dataset and through comparison with competitive collaborative filtering algorithms.
An interesting future direction is to exploit existing work on reputation and trust
management [7, 13] in service computing to get high-quality QoS data from users
to further improve the quality of the recommendation result.

References

1. Chen, X., Liu, X., Huang, Z., Sun, H.: Regionknn: A scalable hybrid collaborative filtering
algorithm for personalized web service recommendation. In: ICWS, pp. 9–16 (2010)

2. Chen, X., Zheng, Z., Liu, X., Huang, Z., Sun, H.: Personalized qos-aware web service rec-
ommendation and visualization. IEEE Trans. Serv. Comput. 99(PrePrints) (2011). http://doi.
ieeecomputersociety.org/10.1109/TSC.2011.35

3. Golbandi, N., Koren, Y., Lempel, R.: On bootstrapping recommender systems. In: Proceedings
of the 19th ACM International Conference on Information and Knowledge Management, CIKM
’10, pp. 1805–1808. ACM, New York (2010). doi:doi.acm.org/10.1145/1871437.1871734

4. Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender systems using
decision trees. In: Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining, WSDM ’11, pp. 595–604. ACM, New York (2011). doi:doi.acm.org/10.
1145/1935826.1935910

5. Jiang, Y., Liu, J., Tang, M., Liu, X.F.: An effective web service recommendation method based
on personalized collaborative filtering. In: ICWS, pp. 211–218 (2011)

6. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–
562 (2000). http://citeseer.ist.psu.edu/lee01algorithms

7. Malik, Z., Bouguettaya, A.: Rateweb: Reputation assessment for trust establishment among
web services. VLDB J. 18(4), 885–911 (2009)

8. Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting
to know you: learning new user preferences in recommender systems. In: Proceedings of the
7th International Conference on Intelligent User Interfaces, IUI ’02, pp. 127–134. ACM, New
York (2002). doi:doi.acm.org/10.1145/502716.502737

9. Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recommender sys-
tems: an information theoretic approach. SIGKDD Explor. Newsl. 10, 90–100 (2008). doi:doi.
acm.org/10.1145/1540276.1540302

10. Rong, W., Liu, K., Liang, L.: Personalized web service ranking via user group combining
association rule. IEEE Int. Conf. Web Serv. 0, 445–452 (2009). doi:doi.ieeecomputersociety.
org/10.1109/ICWS.2009.113

http://doi.ieeecomputersociety.org/10.1109/TSC.2011.35
http://doi.ieeecomputersociety.org/10.1109/TSC.2011.35
http://dx.doi.org/doi.acm.org/10.1145/1871437.1871734
http://dx.doi.org/doi.acm.org/10.1145/1935826.1935910
http://dx.doi.org/doi.acm.org/10.1145/1935826.1935910
http://citeseer.ist.psu.edu/lee01algorithms
http://dx.doi.org/doi.acm.org/10.1145/502716.502737
http://dx.doi.org/doi.acm.org/10.1145/1540276.1540302
http://dx.doi.org/doi.acm.org/10.1145/1540276.1540302
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/ICWS.2009.113
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/ICWS.2009.113

608 Q. Yu

11. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized qos prediction forweb
services via collaborative filtering. In: ICWS, pp. 439–446 (2007)

12. Wang, F., Li, T., Zhang, C.: Semi-supervised clustering via matrix factorization. In: SDM, pp.
1–12 (2008)

13. Yahyaoui, H., Zhioua, S.: Bootstrapping trust of web services through behavior observation.
In: Auer, S., Díaz, O., Papadopoulos G.A. (eds.) ICWE, Lecture Notes in Computer Science,
vol. 6757, pp. 319–330. Springer (2011)

14. Yu, Q.: Decision tree learning from incomplete qos to bootstrap service recommendation. In:
ICWS ’12: Proceedings of the 2012 IEEE International Conference on Web Services (2012)

15. Yu, Q.: Qos-aware service selection via collaborative qos evaluation (accepted to appear).
The World Wide Web Journal (WWWJ) (2012) http://link.springer.com/article/10.1007%
2Fs11280-012-0186-0

16. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimization. TWEB
2(1), 1–35 (2008)

17. Yu, Q., Rege, M., Bouguettaya, A., Medjahed, B., Ouzzani, M.: A two-phase framework for
quality-awareweb service selection. Serv. Oriented Comput. Appl. 4(2), 63–79 (2010)

18. Zhang, Q., Ding, C., Chi, C.H.: Collaborative filtering based service ranking using invocation
histories. In: ICWS, pp. 195–202 (2011)

19. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Wsrec: A collaborative filtering based web service
recommender system. In: ICWS, pp. 437–444 (2009)

20. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service qos prediction via neighbor-
hood integrated matrix factorization. IEEE Trans. Serv. Comput. 99(PrePrints) (2011). doi:doi.
ieeecomputersociety.org/10.1109/TSC.2011.35

21. Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommendation.
In: Proceedings of the 34th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’11, pp. 315–324. ACM, New York (2011). doi:doi.acm.
org/10.1145/2009916.2009961

http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs11280-012-0186-0
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs11280-012-0186-0
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TSC.2011.35
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TSC.2011.35
http://dx.doi.org/doi.acm.org/10.1145/2009916.2009961
http://dx.doi.org/doi.acm.org/10.1145/2009916.2009961

	23 On Bootstrapping Web Service Recommendation
	23.1 Introduction
	23.2 Related Work
	23.3 Cold-start Service Recommendation
	23.3.1 NMTF for User and Service Group Discovery
	23.3.2 Decision Tree Learning for User and Service Profiling
	23.3.3 Computing G, B, and F

	23.4 Experiments
	23.4.1 Experiment Design
	23.4.2 Quality of Cold-start Recommendation
	23.4.3 Impact of Parameters

	23.5 Conclusion and Future Work
	References

