
Chapter 21
Software Product Line Engineering to Develop
Variant-Rich Web Services

Bardia Mohabbati, Mohsen Asadi, Dragan Gašević and Jaejoon Lee

Abstract Service-Oriented Architecture (SOA) enables enterprise for distributed
and flexible software development. SOA aims at promoting effective software asset
reuse by means of encapsulating functionalities as reusable services accessible
through well-defined interfaces. However, one of the challenging problems for the
realization of this vision is an need for design and management of variants of SOA-
based solutions. Such SOA-based solutions require customization to meet stake-
holders’ individual functional and non-functional requirements. In this chapter, a
methodological foundation for modeling and developing variant-rich SOA-solutions
by incorporating the principles of Software Product Line Engineering (SPLE) into
the SOA development life cycle.

21.1 Introduction

Nowadays enterprises and companies deal with several challenges for developing
SOA-based solutions. To stay relevant with the global competition, they need to
rapidly and cost effectively develop and deploy stockholder-tailored services. On
the other hand, enterprises often have to design and develop services which fit to a
wide variety of stakeholders (i.e., consumers) within a particular domain or targeted

B. Mohabbati (B) · M. Asadi · D. Gašević
Simon Fraser University, Burnaby, Canada
e-mail: mohabbati@sfu.ca

M. Asadi
e-mail: masadi@sfu.ca

D. Gašević
Athabasca University, Burnaby, Canada
e-mail: dgasevic@acm.org

J. Lee
Lancaster University, Lancaster, UK
e-mail: j.lee@comp.lancs.ac.uk

A. Bouguettaya et al. (eds.), Web Services Foundations, 535
DOI: 10.1007/978-1-4614-7518-7_21,
© Springer Science+Business Media New York 2014



536 B. Mohabbati et al.

market sectors. These challenges motivate enterprises to shift from mass software
production to mass software customization. A trend inclines towards developing soft-
ware applications composed from reusable software assets that can be re-targeted for
different requirement sets. To enable mass customization in the context of Service-
Oriented Architectures (SOAs), innovative software engineering methods and mod-
els need :(1) to capture the knowledge of variable requirements and reflect variability
in services (2) support reuse not only reuse of service, but also in all other software
development assets (3) enable service customization and management according to
different stakeholders’ functional and non-functional requirements [2, 13, 36].

Software Product Line Engineering (SPLE) is one of the most promising and well-
established paradigms, focusing on the development of software product lines [12,
49] based on the principles of variability modeling and mass-customization. SPLE
research has proposed numerous approaches and techniques for the efficient produc-
tion of similar software systems (i.e., also known as software families). Hence, the
adaptation of SPLE approaches for mass-customization have received much practi-
cal attention and have already been applied successfully in many enterprises [39].
Employing SPLE techniques results in the reduction of costs, efforts, and time-to-
market and the improvement of quality. This is done by decreasing the complexity of
the design and by alleviating customization, maintenance, and evolution of software
products [12, 44, 49].

Adopting SPLE offers promising prospects to provide scalable solutions to the
current challenges of the development, management and customization of Web ser-
vices and generally SOA-based systems [13, 14, 35, 36]. to which we refer as
Service-Oriented Software Product Lines (SOSPLs). In this chapter, we firstly pro-
vide a comparison of SPL and SOA from different perspectives. We then present a
method for a systematic development of a family of SOA-based applications (i.e.,
SOSPL). The underlying idea of the described method is to guide the development
process of an SOSPL and which extends the conventional SPLE life-cycle to support
modeling, developing and managing variant-rich service-oriented applications.

This chapter is organized as follows: Section 21.2 introduces the basic concepts of
SPLE and outlines some of the main SPLE activities. Section 21.3 presents a holistic
comparison of SPL and SOA, which focuses on reuse, architectural and variabil-
ity aspects of the two paradigms. Section 21.4 introduces the end-to-end method-
ology for SOSPL development by focusing on the main engineering activities of
the approach. Before concluding the paper in Section 21.6, we provide a detailed
discussion of the proposed approach in Section. 21.5.

21.2 Software Product Line Engineering (SPLE)

SPLE addresses the issues of software reuse and mass-customization. An SPL or a
software product family is defined as: “a set of software-intensive systems, sharing
a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and are developed from a common set of core assets in



21 Software Product Line Engineering to Develop Variant-Rich Web Services 537

a prescribed way” [12]. The ‘particular market segment’ refers to a domain (i.e.,
a business area) and the business strategies of an enterprise or organization whose
objectives of the business area are determined based on changes in its stakeholders’
requirements.

A key idea in SPLE is to capture the essential concepts of ’commonality’ and
’variability’ among a set of similar software products belonging to the same domain.
Therefore, rather than describing a single software system, the model of software
product lines describes the set of products in the same domain. A product line includes
predicted variations that are introduced by tailoring the core assets using variation
mechanisms. Variability introduced in SPLE is an abstraction that enables and facil-
itates customization. It empowers product derivation of different applications by
explicit modeling and management of variation points [49, 57]. which define deci-
sion points determining how the product family members may differ from each other.
Variations along with their possible choices, functions or qualities, can be defined at
each level of abstraction (e.g., requirements, architecture, or components).

SPLE relies on a fundamental distinction of development for reuse and develop-
ment with reuse with aims at maximizing reusability and eliminating wasteful generic
development of components used only once. This insight can be leveraged to improve
software development life-cycle [12, 49] that SPLE shifts from the development of a
specific application or individual system to a domain, in turn, leads to two character-
ized development processes commonly referred to as domain engineering and appli-
cation engineering. Domain engineering models variability among product family
members and develops the reusable software platform by focusing on developing-
for-reuse. The software platform encompasses all software development artifacts
that are liable to be recycle. On the other hand, application engineering adopts the
developing-with-reuse approach, where products are customized and derived from
product family and reference platform which is constructed and developed in the
domain engineering phase. Reuse of the software platform and binding variability
for different applications are then enacted in application engineering. Differentiat-
ing these two development lifecycles allows for establishing the software platform,
application customization, and product derivation.

Approaches to the analysis and construction of SPLs can be classified into three
strategies: (i) proactive, (ii) reactive, and (iii) extractive [22]. A proactive strategy
is similar to the waterfall approach in conventional software engineering, where
all product variations on the foreseeable horizon are analyzed and designed, while
architectures for the target domain are defined and implemented upfront. This
approach is suited for enterprises that to foresee and plan ahead of their product
line requirements well and that have available resource and time for a long develop-
ment cycle. A reactive strategy is an incremental approach where only the product-
line reusable assets needed in immediate terms are developed and built. Hence, this
approach typically requires less upfront efforts than proactive. In a reactive strat-
egy, one or several variations of software products can be analyzed, designed and
implemented in each development spiral. Such an approach is suitable where the
upfront requirements for product variations cannot be predicted well in advance or
where enterprises have to maintain an aggressive product schedule, which is usu-



538 B. Mohabbati et al.

ally limited in time and resources, through the transition to an SPLE approach. An
extractive strategy is between proactive and reactive ones and reuses existing software
products as the product line initial baseline.

21.3 Comparison of SPL and SOA

SPL and conventional SOA-based approaches to software development share com-
mon goals. With both promoting the concepts of reuse and foster organizations to
reuse existing assets and capabilities rather than repeatedly redeveloping them for
new software systems. Recent years have witnessed growth of research in the explo-
ration of the synergies of the combination of SPL and SOA in recent years [9, 13,
14, 23, 26, 36, 59]. Even though two paradigms support software reuse there are
different perspectives and outlooks [37]. In this section, commonalities and differ-
ences corresponding to the two paradigms are discussed, helping to enlighten how
SPLE can be adopted and leveraged for the development and customization of a fam-
ily of SOA-based applications. To compare SPL and SOA, we consider four main
aspects including development processes, reusability notions, architectural styles,
and variability modeling and management.

21.3.1 Development Processes

SPL and SOA follow different engineering goals. Therefor, the activities associated
with their software development life-cycles are different. One of the main objec-
tives of SPLs is to reduce the overall engineering efforts required to produce a set
of similar software applications by capitalizing on the commonality and by manag-
ing the knowledge of variability and customization. Therefore, the engineering goal
of SPL is remarked as the systematic development and management of core assets
and software platform in order to achieve the high level of reusability [12, 22, 44,
49]. In contrast, service-oriented approaches set the goal of achieving system agility
and of enabling automation to cope with integration, inteoperability and dynamic
execution in heterogeneous environments, and providing runtime flexibility [6, 20,
48]. Table 21.1 shows a summary of major life-cycle phases of two paradigms essen-
tially including requirement and domain analysis, design and implementation, and
deployment.

• Requirement and Domain Analysis: Service-oriented design and development
are basically based on an iterative and incremental process. The process is initiated
with planning proportional to the requirements which, for a new application, are
investigated through the analysis phase. This process comprises of reviewing busi-
ness goals and objectives that derive the modeling and development of business
processes. In the analysis phase, business processes and services are identified
and specified in a stepwise manner [20, 47] with the main objective of it to facil-



21 Software Product Line Engineering to Develop Variant-Rich Web Services 539

Ta
bl

e
21

.1
C

om
pa

ri
so

n
of

th
e

m
aj

or
en

gi
ne

er
in

g
ac

tiv
iti

es
of

so
ft

w
ar

e
pr

od
uc

tl
in

e
en

gi
ne

er
in

g
an

d
se

rv
ic

e
or

ie
nt

at
io

n

E
ng

in
ee

ri
ng

pa
ra

di
gm

R
eq

ui
re

m
en

ta
na

ly
si

s
D

es
ig

n
an

d
im

pl
em

en
ta

tio
n

D
ep

lo
ym

en
ta

nd
m

ai
nt

en
an

ce
M

ai
n

en
gi

ne
er

in
g

go
al

s

Se
rv

ic
e-

or
ie

nt
ed

en
gi

ne
er

in
g

•P
la

nn
in

g
an

d
re

qu
ir

em
en

t
an

al
ys

is

•B
us

in
es

s
pr

oc
es

s
sp

ec
ifi

ca
tio

ns
•S

er
vi

ce
pu

bl
is

hi
ng

•I
nt

eg
ra

tio
n

an
d

In
te

ro
pe

ra
bi

lit
y

•B
us

in
es

s
pr

oc
es

s
m

od
el

s
•S

er
vi

ce
co

ns
tr

uc
tio

n
•S

er
vi

ce
m

at
ch

in
g

•S
ys

te
m

ag
ili

ty
th

ro
ug

h
ru

n-
tim

e
fle

xi
bi

lit
y

•S
er

vi
ce

id
en

tifi
ca

tio
n

•E
xe

cu
tio

n
an

d
m

on
ito

ri
ng

•D
yn

am
ic

ex
ec

ut
io

n

So
ft

w
ar

e
pr

od
uc

t
lin

e
en

gi
ne

er
in

g

D
om

ai
n

en
gi

ne
er

in
g:

D
ev

el
op

m
en

t
fo

r
re

us
e

•P
ro

du
ct

lin
e

sc
op

in
g

•D
om

ai
n

de
si

gn
•P

ro
du

ct
lin

e
m

ai
nt

en
an

ce
ev

ol
ut

io
n

•V
ar

ia
bi

lit
y

m
od

el
in

g

•P
ro

du
ct

lin
e

re
qu

ir
em

en
t

an
al

ys
is

•D
om

ai
n

re
al

iz
at

io
n

•V
ar

ia
bi

lit
y

m
an

ag
em

en
t

•V
ar

ia
bi

lit
y

an
al

ys
is

•D
om

ai
n

te
st

in
g

•S
ys

te
m

at
ic

re
us

e
of

as
se

ts
fo

r
de

ve
lo

pm
en

to
f

a
so

ft
w

ar
e

pr
od

uc
t

fa
m

ily
A

pp
lic

at
io

n
en

gi
ne

er
in

g:
D

ev
el

op
m

en
t

w
it

h
re

us
e

•A
pp

lic
at

io
n

re
qu

ir
em

en
t

an
al

ys
is

•A
pp

lic
at

io
n

de
si

gn
•A

pp
lic

at
io

n
de

pl
oy

m
en

t
•M

as
s

cu
st

om
iz

at
io

n

•A
pp

lic
at

io
n

re
al

iz
at

io
n

•A
pp

lic
at

io
n

te
st

in
g



540 B. Mohabbati et al.

itate the reuse (or reproposing) of the business process functionality through the
identification and orchestration of services when constructing new applications.
The requirement-analysis phase in SPLE also consists of determining the require-
ments and using domain information. Nonetheless , SPLE focuses on the analysis
and specification of requirements for the entire product family (i.e., product line).
To this end, domain engineering of SPLE mainly concentrates on a systematic
analysis and the settlement of the variability of both functional and non-functional
(quality) prerequisites performed by scoping the product line, by analysing product
line requirements, and identifying commonalities and variabilities among prod-
uct line members. Requirement analysis in the application engineering life-cycle
further focuses on the analysis and determination of prerequisites of individual
stakeholders. In the application engineering life-cycle, requirement analysis is
established for configuring reusable software assets developed and produced in
the domain engineering life-cycle.

• Design and Implementation: Service-oriented design and implementation is fol-
lowed by the design and specification of business processes and service com-
ponents corresponding to the requirements. Service implementation and testing
involves discovery of existing available services through local or remote service
repositories; and development of services by using the specifications developed in
the design phase.
In SPL, domain design and implementation involve the detailed design and real-
izing the reusable software components for the entire product family. It starts with
the domain design sub-process which consists of (1) defining and modeling the
commonality and variability based on the domain-specific requirements identified
in the requirement engineering phase; (2) specifying the reference architecture of
the product family; the reference architecture provides a common, high-level struc-
ture for all product line applications. Furthermore, the domain design incorporates
configuration mechanisms into the reference architecture for supporting variability
management in order to enable further product customization and derivation. The
domain realization sub-process focuses on the implementation and testing of each
component which is planned and designed for the reuse in different contexts (i.e.,
the applications of the product line). The application design sub-process in the
application engineering life-cycle employs the reference architecture to refine and
instantiate the application architecture and incorporates application specific adap-
tations. Afterward, the application realization sub-process focuses on the selection
and configuration of reusable software components and testing for specific appli-
cation, which are already contained product line architecture developed in domain
engineering phase.

• Deployment and Maintenance: In this phase, service-oriented development
deals with packaging, provisioning, publishing services, service-matching based
on requirements of stakeholders, executing stakeholders-acceptance testing, and
monitoring performance in the production environment. TheSPLE development
phase including the configuration and deployment of a final product is associated
with application engineering with activities for building and customizing systems
according to the result of domain engineering.



21 Software Product Line Engineering to Develop Variant-Rich Web Services 541

21.3.2 Reuse in SPL Versus SOA

Software reuse, as one of the important goals in software engineering, can improve
the quality and productivity of software development. For this purpose, several soft-
ware reuse approaches have been devised. Component-based software engineering
(CBSE) facilitates software reuse and promotes quality and productivity. The aims
of CBSE are to achieve interoperability, reusability, and extensibility. These objec-
tives are intended to facilitate fast-paced delivery of scalable evolving software sys-
tems [33]. Research on SOA is a modern instance of this vision [6, 46]. SOA lever-
ages a logical framework by decoupling several logical units of functionality (i.e.,
services), which facilitate reuse by eliminating the recreation of common services.
Thereby, business goals are achieved through loosely connected services with their
variability is guided by SOA policies.

Reuse in SPL versus services in SOA have different characteristics (cf. Table 21.2).
As mentioned, reusable assets in SPL encompass all the reusable software artifacts.
A core asset is the most essential element of SPL since it is a common asset which is
reused within multiple products and the reusability of which will largely determine
the success of the whole product line [49]. For instance, the most distinguishable
reusable assets in SPL context are as follows [12]:

• Analysis and design models: including the requirements and variability models,
which describe the common and variable features for all family members

• Domain models: describing and representing all the entities and concepts that can
be utilized in the context of software product families

• Architectures: specifying and determining which of the reusable components are
needed for configuring executable applications and how to configure software
families that best satisfy non-functional requirements

• Design decision models: specifying the family configuration model and determin-
ing how to derive software products based on specific requirements

• Software components: supporting variation points and implementing the required
functionalities of software families

• Interfaces: enabling different implementation of the same functionality
• Test artifacts: reusing test plans, test cases and scenarios, and test data

Table 21.2 Reuse in SPL and SOA

Reuse characteristic Reuse in SPL Reuse in SOA

Reuse units Analysis and design models
(requirement models), domain
models, architectures, decision
models, software components,
composition models, interfaces,
test cases, documentations

Service, business processes or col-
laboration templates, application
templates, data schema and data
provenance, policies and business
rules, test scripts, interfaces

Reuse context Software family members Various contexts
Coupling with reuse Tightly coupled Loosely coupled
Reuse method Instantiation Service invocation composition



542 B. Mohabbati et al.

In SOA, service, on the other hand, are intended to be reusable building blocks and
units of sharable software assets for different applications which implement different
business processes. As a consequence, services can be orchestrated to construct
composite services through business processes.

Core assets in SPL including a generic architecture and components are used to
develop applications, whereas services are basic building blocks in SOA to support
software development by composition. In SOA, business processes or application
templates specify entire applications through the definition of execution sequences
of valid workflows. Services can be reusable artifacts which enable rapid SOA appli-
cation development [56].

Assets and applications are generally tightly coupled in SPL, while services are
loosely coupled which is one of the most pronounced properties of services in SOA
research [48]. Services maintain a relationship that minimizes the decency to the
context or state of other services.

Software components often operate within a context defined by a generic archi-
tecture for product family members in SPLs. SOA is grounded on the idea of open
integration of business processes by means of shared services where services are
described through standard-interface and are intended for reuse in different con-
texts. Nevertheless, services can also be developed and reused for internal processes
within organizations. In essence, SOA basically envisages and focuses on large scale
reuse [28] because SOA promotes services to be seamlessly consumed by diverse
applications where they can be published, discovered and invoked through standard-
ized specifications [6].

Unlike core assets are reused in application development time which is often
static, while services can be reused at design time but reconfigured at run-time [9].

21.3.3 Architectural Aspects of SPL Versus SOA

Both SPL and SOA require defining the architectural context and composition rules
with SPL architecture is often characterized as centralized, static, and specialized into
concrete products, but SOA is characterized as decentralized. Composition rules are
predefined in SPL, which describe common and variable behavioral characteristics
of architecture, while in SOA composition or business rules are generally defined
to govern the way in which a composition is constructed. SPL basically aims at
providing a common architecture for reuse, whereas SOA lacks enough support for
large grained software reuse at the architectural level.

Gomaa et al. [24, 53] discuss software architectural issues in SOA and describe
various practices to develop reusable services in order compose systems from ser-
vices efficiently. They draw attention that the architectural solution space offered
by SOA promises to provide potentially significant benefits for reutilization. How-
ever, achieving SOA’s benefits may not be guaranteed just by implementing based on
the SOA solution. Accordingly, the important software architecture and reuse issues
should be addressed prior to creating a SOA [53]. Tsai et al. propose a classifica-



21 Software Product Line Engineering to Develop Variant-Rich Web Services 543

tion schema of architectures for SOA-based applications in order to evaluate variety
of architectures [56]. The slackly coupling characteristic and platform-independent
view inherited in SOA may address many architectural issues that are open-design
and integration problems. Furthermore, architecture style offered by SOA is potential
to maximize reuse beside interoperability and flexibility; however, SOA lacks sup-
port to manage variability at the architectural level [13, 36]. Whereas SPL enables
managing variability to improve reutilization reuse at such level.

21.3.4 Variability in SPL and SOA

The concept of variability refers to the ability of software systems or artifacts to be
efficiently extended, modified, specialized, or configured (customized) for (re)use
in the specific context for a particular application [57]. This characteristic enables
for applying changes at different levels ranging from software architecture to imple-
mentation. Two important concepts related to variability discussed in the literature
are variation points and variants [49, 57] with the former being placed in the design
or implementation at which variants occur. Variants are the alternatives that can
be selected at those variation points. Therefore, variability can specify a part of an
architecture which remains variable, as variation points, or what is not completed
at design time. Variability can be implemented at design time or run-time [54]. It
is noteworthy that variability and flexibility are closely interconnected. Flexibility
offers adaptation and changes of architecture, while variability deals with various
version of architecture.

Variability in SPL encompasses all software artifacts from requirements to
code [12, 57]. Therefore, there are numerous modeling methods proposed that with
the objective of modeling variability within software artifacts and at different levels of
abstraction. Van Gurp et al. discuss about the notion of variability in SPL [57], where
variability is exposed at different levels: platform technologies and user expectations,
requirements specifications, designs, component source code, compiled code, linked
code, and running code. Variability in this context refers to the ability to select among
these artifacts at various stages during product derivations.

Effective management of variability is essential for the success of SPLs [57]. It
determines how flexibly new members of a given SPL can be obtained and defines
SPL boundaries. The distinction between variability modeling and other techniques
is based on the diversity between variability modeling and variability mechanism.
Variability modeling techniques model the variability provided by the product line
artifacts while variability mechanisms are commonly considered ways to introduce
or implement variability in those artifacts. Several of these mechanisms have been
proposed in the literature such as conditional compilation, patterns, generative pro-
gramming, macro programming, and aspect-oriented programming.

Accordingly, variability in SPL is an essential concern in all phases of devel-
opment life-cycle. Variability identification, modeling and management is rather
a large field of research in SPL [11]. Most current works address identification



544 B. Mohabbati et al.

and management of variability by modeling the concepts as features which consid-
ered as the first-class representation of variability and in terms of which the major
advantages of discussing a software system in terms of features is that the concept
of feature bridges the gap between the requirements and technical design decisions
because software components rarely address a single requirement but rather an entire
set of essentials (details are given in Sect. 21.5). There are number of well-studied
feature-oriented approaches for domain analysis and modeling common and variable
requirements in SPLE such as FODA (Feature-Oriented Domain Analysis) [29] and
its extension FORM (Feature-Oriented Reuse Method) [30], RSEB (Reuse-Driven
Software Engineering Business) [25], GPM (Generative Programming Methods) [16]
and PLUSS (Product Line Use case modeling for Systems and Software engineer-
ing) [19]. Every method generally shares feature as the common concept used in the
analyses of commonality and variability. Some approaches are architecture-centric
such as Hoek [27], Koalish [4], and Thiel [55] some of which are configuration-
based, e.g., COVAMOF [50] and Koalish [4]. Some of the approaches extend UML
to model variability like VPM [58]. Some proposed approaches focus on separating
variability representation from the representation of various SPL artifacts such as
Bachmann [5].

The development of SOA-based applications is accomplished through different
abstraction layers: business process or orchestration layer, service interface layer,
and service implementation or component layer [47] with the business process layer
or orchestration layer consists of composite services implementing coarse-grained
business activities, or even an entire business process. The service layer is com-
posed of self-contained and business-aligned services, which provide the imple-
mentation for fine-grained business activities. The service interface layer comprises
the interface of services published by a service provider. Finally, the component
layer (i.e., implementation layer) consists of a set of components that realize service
interfaces and provide the implementation for services. Variability in SOA affects
these different layers thoroughly. Chang and Kim [9] discuss four types of variation
points which occur in a general four-layered SOA architecture: workflow variability,
composition variability, interface variability, and business logic variability. Work-
flow variability is identified as variation of the control flow of a business process,
i.e., tasks can be alternatively and optionally completed in a workflow depending
on the individual service user. Composition variability is identified as variability
when there is more than one possible service interfaces for activity construct in
the business process which implement the service with either different logic or
quality attributes. Interface variability occurs when the candidate services interfaces
are different. Finally, components which realize and implement service interfaces by
different logic impose logic variability.

Granularity Levels: Granularity in SPL refers to the degree of detail and precision
of variability as produced by design or implementation artifacts. SPL variability may
exist at different levels of granularity ranging from entire components to single lines
of code [16, 31]. SPLE takes a top-down approach and decomposes artifacts into
fine grained artifacts, whereas a bottom-up compositional approach is often adopted
in SOA to combine artifacts into larger entities-service into composite services (i.e.,



21 Software Product Line Engineering to Develop Variant-Rich Web Services 545

business processes) that finally form the application. Decomposition or top-down
modeling means that an SPL architecture specifies the decomposition of a family
into architectural components. However, there are also hybrid approaches, such as
product populations modeled using Koala [45], where the mixture of bottom-up
and top-down approaches are leveraged. In SOA, generally there is no particular
architecture specifying the decomposition.

In SOA, granularity specifies the scope of variability in functionality exposed by
a service. A component which provides an implementation for a service interface
can be of various granularity levels that software developers can always encapsu-
late the entire functionality of a solution into a single service is possible due to
the well-known ‘fractal’ nature of services, where a higher-level service can encap-
sulate lower-level services to any level of granularity [8]. However, a fine-grained
service is more easily reused; in distinction, coarse-grained service is more difficult
to be reused [47, 53]. Nevertheless, services with high-level interfaces increase the
reusability because providing interfaces with a coarse-grained granularity masks spe-
cialized or implementation-specific methods, thereby, this enables a service adaptable
and reusable by multiple applications. Moreover, from the perspective of service-
oriented design and development, creating and designing high-level, coarse grained
interfaces that implement a complete business process is desirable [47, 20]. However,
there is a trade-off between fine-grained and coarse-grained.

Services at different levels of granularity can be generally classified into differ-
ent categories [34]: basic services, intermediary services, process-centric services
and public enterprise services. Basic services that represent the elements of a ver-
tical domain are simple logic-centric or data-centric services. Data-centric services
handle persistent data and logic-centric services encapsulate algorithms for com-
plex calculations or business rules. Intermediary services are designed to bridge
a technical gasp in architecture. They provide service links with other services or
application front-ends and services in gateways, adapters (mapping message formats
to enable interoperability), facades (providing a different view on one or more ser-
vices), and other functionality-adding services (extending functionality of existing
services without altering them internally). In SOA, process-centric services to con-
trol and maintain the state of the enterprises business processes which uses basic
or intermediary services to perform task and deal with business data. These ser-
vices separate process logic from representation layer and encapsulate the process
complexity for a single point of administration. A common example is an online
shopping process, which includes filling the shopping cart, ordering products, and
executing billing. Public enterprise services offered to partner companies as an in-
house-system interface which, in turn, have the granularity of business documents
and are coarse-grained integrate enterprises (B2B).



546 B. Mohabbati et al.

21.4 Running Example

To illustrate the concepts and the approach presented in the following sections, we
select a part of case study of a family of online marketplace portals providing appli-
cations for online trading like eBay.1 The portal, as an SOSPL, can be customized
and deployed based on different business requirements of targeted stakeholders.
Figure 21.1a presents a service scenario of e-payment processes-part of a large prod-
uct family that defines a common framework for online payment provided in online
marketplace. For the simplicity, a high-level view of the payment process is repre-
sented, and the details are omitted.

Different methods of online payment can be considered for different instances
of products from a family. Therefore, the number of possible payment method vari-
ations of a reference payment process, as a catalog and template, can be derived
and customized according to the stakeholders’ requirements and business objec-
tives. Some services are indispensable and prerequisite of the payment process (e.g.,
Credit Card payment feature as the dominant online payment), which should be
included for all the stakeholders’ service product instance where as, some func-
tional services (e.g., Smart Card e-Check and Debit Card) or extra-functional
services (e.g., Logging and Monitoring) can be determined as optional that can
be included or excluded based on stakeholders’ needs (see Fig. 21.1b). As a case
in point, Stakeholder A may require additional features for having highly-secured
payment transactions by including a fraud protection service, whereas this service
is not required to be included in the payment process of the final customized portal
for Stakeholder B. In another scenario, Stakeholder C could ask the payment
process to be supported by a Mobile-based Notification service in addition to
the common payment notification services such as the Mail-based Notification

<
<

In
st

an
tia

te
s>

>

Payment Methods
Notifications

s1

s2

s3 s4

s5

s6

s7

s8

s9

Payment  Service 
Customization

(a) (b)

s10

s11

Payment Process

Fig. 21.1 a) A holistic view of e-Payment process family. b) e-Payment process variants example

1 http://www.ebayinc.com/

http://www.ebayinc.com/


21 Software Product Line Engineering to Develop Variant-Rich Web Services 547

service. Therefore, in the context of a product family, a business process should be
imposed inevitably by variants (optional and mandatory services) which are required
to be managed, specialized and customized in order to meet different stakeholders’
functional or quality requirements.

21.5 Applying SPLE for Development of Service-Oriented
Software Product Lines

It is already mentioned that even though SOA has been widely adopted, there are
still no systematic methods to support modeling and managing variability during the
development of SOA-based applications and further service management, which calls
for a well-defined development process and understanding variability in functional
and non-functional requirements in the course of development.

This section outlines the activities of a proactive methodology. The proposed
method is an extension of a traditional software product-line life-cycle in order to
support development and customization of a family of SOA-based applications. The
proposed top-down method follows a two-life-cycle approach that separates two core
activities related to Service-Domain Engineering and Service-Application Engineer-
ing (see Figs. 21.2 and 21.6). Service-domain engineering constructs and evolves the
reuse infrastructure by analyzing the requirements and scoping the product line as
a whole and producing any common , reusable business processes and services. On
the other hand, service-application engineering derives individual services (i.e., cus-
tomized services) from the reference architecture. Domain and application engineer-
ing life-cycles can rely on fundamentally different processes, namely, plan-driven
and agile methods. In the following, we describe the major activities and their arti-
facts for three major development phases: (1) analysis (requirement engineering),
(2) design, and (3) implementation and testing.

21.5.1 Service-Domain Engineering

The overall service-domain engineering processes of an SOSPL is depicted in
Fig. 21.2. These activities (D1–D6 in Fig. 21.2) are performed iteratively. Domain
analysis in SOSPL mainly encompasses product-line requirements engineering stage
(D1) along with the analysis of variability by using feature modeling (D2). A feature
model, as a software artifact outcome of the feature modeling process, includes the
knowledge of variability associated to the functional and non-functional requirements
and describes the permissible configuration space further guiding the customization
process and determining how the reference business process model should be tai-
lored according to the stakeholders’ requirements in the application engineering
life-cycle. During the domain design phase (D3), a reference business process model



548 B. Mohabbati et al.

Variability
Modeling

Feature
Resolution

(Mapping Schema)

Reference 
Business Process
(Business Process Family

Template)

Reference
Business Process

Model
Implementation

Non-
Functional

Specifications

Product Line
Requirements

Analysis

Requirements
Models

Feature
Model

Reference
Business Process

Model
&

Specification

Service Discovery/
Implementation

Binding

Mapping Model

Feature Model
enriched by
Supporting

Quality Ranges
Domain 

Implementation 

Domain
Design

Domain 
Analysis

D1

D2

D3

D4

D5

D6

Fig. 21.2 Service-Domain Engineering of an Service-Oriented Software Product Line

(also known as business process family) is designed and constructed for the prod-
uct line architecture based upon the outcomes of the requirement engineering phase
(D1). The model mapping (D4) establishes the mapping relationships between the
features within the feature model and the corresponding activities specified within
the reference business process model. The activities of the reference business process
are delegated to the service(s) in SOSPLs. In as much as non-functional (quality)
requirements may also vary for different stakeholders, variability in the quality prop-
erties of services should also be captured and specified during the construction of
an SOSPL (D5). To this end, features in the feature model are annotated by quality
ranges which are supported by the entire product line architecture [40], progressively
helping service engineer and developers to evaluate the impact of variant features
selected according to the quality characteristics that services provide. In the final
phase, the reference business process model is realized and implemented either by
binding to the existing services or by developing new services. In the following, we
detail these activities.



21 Software Product Line Engineering to Develop Variant-Rich Web Services 549

21.5.1.1 Product Line Requirements Analysis

Similar to traditional requirements engineering, domain requirements engineering
should at least include the following activities [52]: (1) elicitation in which the prod-
uct line business goals and stakeholders’ requirements are discovered and scoped;
(2) specifications in which the requirements are analyzed in detail; (3) validation in
which the requirements are validated and consistency and completeness are checked,
and (4) management in which the requirements can be managed in terms of changes
or refinements. In addition to these activities, domain requirements engineering cap-
tures commonality and variability between the requirements of several stakeholders.
Moreover, an important activity of the requirements analysis of an SOSPL is to define
the product line scope [13, 49, 44] and decide on the boundary of the product line.

A successful scoping which is determined by factors such as the knowledge of
similar domain services and future stakeholders’ demands is required to be performed
carefully because a scope-either too large or too small-will impair the capability
of a SOSPL in achieving the goals of stakeholders [12]. A goal-oriented domain
analysis can be employed at the early stage of the requirement analysis in order to
capture the product line goals for requirement elicitation and to further align the final
service products with the business goals and intentions of both the stakeholders and
service providers. This is accomplished at the different levels of abstraction by goal
modeling about which interested readers can further read in [3]. The outcome of this
phase is the requirements models which can be described by goal models, use-cases,
documentations and details, which are used subsequently for the variability analysis
of the product line under development.

21.5.1.2 Variability Analysis and Modeling

The product line requirement engineering activity follows the variability analysis
and modeling of the entire family in order to identify common and variable features.
A feature is commonly defined as a visible incremental functionality and quality
in software system(s) [29]. Nevertheless, depending on the stage of development
it may also refer to a requirement or a coarse-grained or fine-grained component
in the system(s) which provide the required functionality from different technical
views. The emphasis in the variability (i.e., feature) analysis is on optional features,
because optional features substantially differentiating one member of the family from
the others.

In SOA, services constituting the orthogonal concept to the components notion,
are characterized as the loosely coupled building blocks of software. A services
encapsulates functionality and provides individual non-functional properties (i.e.,
QoS) through a well-described and published interfaces. From this view in the context
of SOSPL, we define a feature as an increment in service functionality [1], which
reflects stakeholders’ both functional and non-functional requirements; wherefore,
a feature, based on the granularity levels, a feature can be realized and associated to



550 B. Mohabbati et al.

a composite service at the high-level business processes, or associated and realized
by an atomic service at the lower-level.

Feature-oriented development [16, 29, 30] is widely employed as a means for
analysis, management, and visualization of commonality and variability in SPLE in
terms of features at different abstraction levels. In essence, feature modeling orga-
nizes features of a software product family into a model called feature residing
between the requirement model and the design specification model (i.e., the refer-
ence business process model described in Sect. 21.5.1.3). Figure 21.3 shows a part
of a feature model representing the variants (e.g., optional and alternative features)
that characterize a requirements model. These features are selected to derive ser-
vice products during the application engineering. Moreover, this model serves as
a catalog of the variability space offered by a product family to accommodate the
idiosyncrasies of the stakeholder enterprise or company.

Feature Model: A feature model consists of both formal semantics and graphical
representation (e.g., feature diagram) and encompasses the knowledge of config-
uration (i.e., customization) for a product line. A feature model is a hierarchical
decomposition of features in terms of parent-child relations on different levels of
abstraction. As some of the features are not assumed to be present in every product
during the application engineering, this differentiation is expressed by the indication
of feature types and their relationships. Contrary to a mandatory feature is always
selected if their parent is selected , an optional feature may or may not be selected.
For instance, in Fig. 21.3, all the products should include the Credit Card feature
as a mandatory feature. Other payment methods Fig. 21.3 are specified as optional
features.

A feature cardinality and group cardinality can also be determined in cardinality-
based feature modeling [17]. A cardinality associated to a feature determines the
lower and upper bound of the number of features required in any product in a product
family. In the SOSPL context, this attribute specifies the number of service instances
that should be linked to a given service at run time. Cardinality can be defined as an
interval, from zero to a given value.

<  −  >

<  −   >Fraud
Detection

Payment
Notification

Debit
Card

Smart
Card

Payment
Method

Credit
Card

Verification

Payment

Credit
Card

Email
Notification

Phone/
Fax

Notification

Mobile-based
Notification

Identity 
Federation

2  3

f

...

And  

Or

Alternative

Optional

Mandatory

Cardinality

Legend

Require 

Exclude

Electronic
Checks

Monitoring

fi

fj fn

k  k

<   −   >k   k

′ 

fmfl fsfp
...

...Customer
Profile

Order
Management

Coupon
Management

Shipment

...

(    )R
niq     f

R
iq Quality range

Mappingn

1

3, 4

2

3, 3 3, 5

3, 2, 2 3, 2, 1 

43 5

3, 1

3, 2, 3 

3, 2

3, 2, 4 3, 2, 5 3, 5, 1 3, 5, 2 3, 5, 3

...

Fig. 21.3 Feature model of e-Payment (conforming stakeholders’ requirements model)



21 Software Product Line Engineering to Develop Variant-Rich Web Services 551

Or feature groups with defined cardinality indicate that at least k and at most
k′ features that can be included out of the n features (k ≤ k′ ≤ n) in a group
if the parent is selected. Moreover, Alternative feature groups with specified the
cardinality indicate that that only k out of n features in the group must be included if
the parent is selected. Back to the simplified feature model example from Fig. 21.3,
all the products should include the Payment Notification features. Also, all the
final derived service products should include at least two methods of notification
according to the feature model.

Furthermore, because features are not always independent integrity constraints
(i.e., the includes and excludes) can be defined over features of a feature model to
model dependencies and relations among them. They are the means to describe that
the presence of a certain feature in the product imposes the presence or exclusion of
another feature (see Fig. 21.3).

Feature models are an efficient abstraction of variability derived from the domain
and stakeholders’ requirements. They also help to derive the design and the devel-
opment of variability through all the stages of the development including service
identification and design, and further customization [13, 41].

In the feature-oriented analysis phase, which subsequently guides the identifica-
tion of candidate services with right granularity, we organize feature based on the
following criteria:

• Features supporting a particular business process can be grouped and abstracted
as a higher-level feature on a coarse-grained level (e.g., Payment)

• Features supporting specific functional or non-functional services can be grouped
and abstracted as a higher-level feature (e.g., Payment Notification and Logg

ing services)
• A feature which incrementally realize a feature at the upper-level, then becomes

as a sub-feature at the lower-level
• Features at the leaf-level are realized by fine-grained services

21.5.1.3 Reference Business Process Model

The previous activities, domain decomposition, top-down variability analysis and
modeling provide an insight into a target domain in terms of product features. A
feature model is generated as an output of the domain analysis. This model is then
used to derive reference architecture and develop reusable components (business
processes and services) in the course of the domain design. The activities of the design
phase produce an architecture-independent model that defines reference architecture
as the behavioural model of features for the entire family and specifies how features
are composed at run-time.

A template-based approach has been widely adopted in SPLE for creating refer-
ence models. In the case of SOSPLs, such a reference model is designed as a tem-
plate for the entire service products family in a superimposed way [15]. A reference
business process model, as a model template, describes and specifies the execution



552 B. Mohabbati et al.

Payment  Management Service
+

Customer Account Management Service
+

AND
Mapping

(feature realization)XOR OR

1

2

3

4
5

:n FM BP⇒

3, 3

3, 4

3, 5

3, 2, 1 

3, 1

3, 2, 2 

3, 2, 3 

3, 2, 4 

3, 2, 5 

3, 5, 1

3, 5, 2

3, 5, 3

Fig. 21.4 A part of reference business process model

sequence of services for all instances of the product line. That is, a reference business
process model is a union of all the business processes of the product line. It provides
the common business logic for orchestration and choreography of services, which
implement features. The reference model comprises functional interfaces specifying
services capabilities, pre and post conditions of the services, and configuration prop-
erties representing the data needed to configure a service before its use, and service
bindings. The reference business process model can be modeled by using process-
oriented modeling languages (e.g., BPMN, EPC, and/or YAWL), and incrementally
refined and optimized. For example, Fig. 21.4 illustrates a part of reference business
process model, where variability and configuration knowledge have been modeled
and encapsulated in given feature model in Fig. 21.3.

The reference business process model configured through the selection/elimination
of features from the feature model during the application engineering and executive
instances are derived (see Fig. 21.1b). In other words, due to the fact that architec-
tural variations in the reference model are encoded as features, various parts of the
reference business process model are organized in variation points. These variation
points are managed and configured by means of feature models. It should be noted that
we distinguish between design and runtime variability. Feature models capture and
encapsulate only architectural variability at design time. In contrast, business process
models describe behavioral variability, i.e., how features are composed, which drives
runtime variability through composition patterns (discussed in the next section).

Furthermore, feature model configuration (i.e., specialization and customiza-
tion) is performed during the build-time. The configuration can be done through
the process of staged-configuration [18] where features further are prioritized and
selected according to the (non-)functional requirements of the stakeholders [41]. All
configured service products, which are instances of the family, have to conform to
the reference architecture.

21.5.1.4 Feature Resolution and Mapping Model

During the design phase, feature resolution is the activity of analysing and connecting
the feature model and the reference business process model in order to specify explicit
mapping links between the two models: feature and reference business process mod-



21 Software Product Line Engineering to Develop Variant-Rich Web Services 553

els. The outcome of this activity constitutes a mapping model including links between
features in the feature model activities in the reference business process model. This
mapping model enables the configuration of the reference business process model
through feature section during application engineering. From one point of view, this
mapping model also provides the traceability links between the requirements and
implementation [15, 51].

A mapping model can simply consist of boolean expressions specifying presence
or removal of a modeling element (e.g., activity (abstract service)) in a model tem-
plate (i.e., a reference business process model in our case) based on the selection
of features in the feature model [15]. In our approach, we consider a boolean vari-
able ψ i corresponding to each feature fi . This approach uses presence conditions
(PC) as annotation properties for each activity within the reference business process
model. The PC of an activity is formulated as a boolean expression of ψ i variables
corresponding to the features mapped to the activity (see Fig. 21.3 and 21.4). Both
the feature and activity constructs refer to model elements of feature models and ref-
erence business process models. Thereby, when domain engineers map features to
activities, the activities’ PCs are defined. In application engineering, when a feature
fi are removed from the configuration, their corresponding ψ variables are set to
false.

Feature resolution also helps to identify cross-cutting concerns related to general
non-functional requirements. For example, feature Monitoring with given mapping
annotation ψ i in Fig. 21.3 is mapped to activity Monitoring as an extra-functional
abstract service in the reference business process model (see Fig. 21.4). Based on the
selection of features from the feature model in application engineering, the reference
business process model is configured (Fig. 21.1b).

21.5.1.5 Non-functional Specifications

The domain design phase is also followed by the specification of non-functional
properties based on the non-functional requirements (NFRs) analysis. This is due
to the fact that NFRs are interlaced and related to functional requirements. Vari-
ability in NFRs influences the SOSPL design and implementation. Non-functional
variations often exhibit different types and levels of quality properties (e.g., normal
and strong authentication or security). For instance, NFRs for feature Credit Card

can include cost, security, availability and reliability or they can also entail defined
domain-specific non-functional aspects such as usability and convenience of use. Fur-
thermore, in application engineering, non-functional variations directly impact the
selection of appropriate services from candidate services, all of which provide equiv-
alent functionalities but with different degree of non-functional properties related to
the service quality specification. To this end, there are a number of proposals [7], in
which feature models are extended to support feature attributes. Such attributes can
comprise non-functional properties which can be measured (e.g., cost, availability,
latency, bandwidth, etc).



554 B. Mohabbati et al.

In the context of SOSPL, these non-functional properties can be viewed as QoS
properties, which are associated to each feature. Mapping models interconnecting
feature and business process models enable for propagation of quality property values
of concrete service sets, which are bounded to activities (abstract services) within in
the process model. Based on the underlying implementation of a set of functionally
equivalent services, which may be available for each feature, ranges of values of
quality properties can be further specified and aggregated for each feature. Particu-
larly, during the domain engineering lifecycle, determining the implied QoS ranges
q R for individual features fn helps domain engineers ensure that the product line
architecture will fulfill and deliver the upper and lower bounds of the values of the
quality requirements requested by the stakeholders. Moreover, quality range com-
putation enables for keeping track of the product line quality ranges even after the
specification of the service quality has changed. For example, in Fig. 21.5, sets of
candidate services provide different range of quality q R for each features. The range
of the kth quality property for feature fn can be hierarchically computed. In [40],
we introduce a generic evaluation model and method for aggregation and compu-
tation of ranges of quantified values of quality properties defined for product line
architectures.

21.5.1.6 Reference Business Process Model Implementation

The domain design phase produces a reference business process model and architec-
ture for a family of service products (i.e, SOSPL). In the domain implementation and
realization, the reference business process model is realized and implemented. This
activity involves implementing and testing the detailed architecture of the family
modeled by reference model. Abstract services specified by the reference business
process model are implemented by using component models such as Java class,
Enterprise Java Beans, or .Net components. However, some of the services needed

Payment

Email
Notification

Phone/
Fax

Notification

Mobile-based
Notification

2 3< − >

f

ψ3, 5

3ψ

fi
...

3,5,1( )R
kq f

S3(1)

S3(2)
...

S3(10)

S1(1)

S1(2)
...

S1(5)

S2(1)

S2(2)
...

S2(8)

3,5,2( )R
kq f 3,5,3( )R

kq f

Cost = [A-B]
Availability =  [%C-%D]
Reliability   =  [%E-%F)
Security     = [%G-%H]

...

3,5,3( ) ,R LB UB
k k kq f q q⎡ ⎤= ⎢ ⎥⎣ ⎦

( )R
ikq f

ψi

3,5( )R
kq f

Payment
Notification

...

...

Feature Model Business Process Model

ψ3 , 5

( ) ,R LB UB
k k kq f q q⎡ ⎤= ⎢ ⎥⎣ ⎦

Fig. 21.5 Non-functional specification and aggregation for evaluating quality range supports by
product line architecture



21 Software Product Line Engineering to Develop Variant-Rich Web Services 555

for the implementation might already be available; for instance, can be either found
in a service catalog or retrieved through a service discovery process, and some of the
services could potentially be built by partly reusing or modifying existing solutions.

21.5.2 Service-Application Engineering

This section describes a holistic view to the application engineering life-cycle. This
lifecycle includes the major phases of service customization and derivation from the
business process family. Regardless of the chosen variability modeling approach, the
ultimate of in-service-application engineering is to employ the variability defined in
domain engineering by selecting shared assets similarly developed in domain engi-
neering. Figure 21.6 depicts a high-level application engineering process which starts
with the elicitation and capturing of both the functional and non-functional require-
ments of an individual stakeholder through the application-requirement-analysis
phase (A1). In the application design phase (A2), features are prioritized based on the
stakeholder’s captured preferences and business objectives concerning the optional
features and quality needs. There after, the feature model is specialized through the

Feature
Prioritization

Application
Integration

Deployment

Stakeholder’s
Requirement

Analysis

Service Application
Requirement
Specifications

Configured
Feature Model

Service ProductApplication 
Deployment 

Application 
Design 

& 
Implementation

Application 
Analysis

A1

A2

A3

Service
Selection

Customized
Reference 

Business Process

Fig. 21.6 Application Engineering of an Service-Oriented Product Line



556 B. Mohabbati et al.

decision-making process of selecting optional features. Subsequently, the reference
business process model is configured and corresponding services are selected and
bound in the deployment and integration phase (A3). The details of these application
engineering phases can be found in [41].

21.5.2.1 Application Analysis

This phase focuses on the elicitation of requirements of a particular stakeholder for
deriving customized process variants, which can be deployed as the final product. The
preferences of the stakeholder are captured and later utilized for feature prioritization
and selection. Similar to the requirements engineering phase in service engineering
methodologies like SOMA [2], activities in the application analysis phase capture
requirements for a single service (application). However, the application analysis
activities reuse the family requirements models to develop requirements models of a
target service. For example, assuming a family requirement model is represented in
a goal model, the service goal model is developed through reasoning on the family
goal model based on the inputs of current stakeholders [3]. Validation and verifica-
tion of the application requirements model with respect to the stakeholder’s needs
and product line constraints are performed. In the context of marketplace portals,
stakeholders of a target service application may request payment, shipment, order
management, and manage customer functionalities as well as high security and low
cost. The detail of stakeholders requirements can be achieved by applying label
propagation algorithms on the marketplace family goal model.

21.5.2.2 Application Design and Implementation

During this phase, the feature model is utilized to manage and select variants that
constitute service product instances. This is accomplished through the feature pri-
oritization and selection of sub-processes. This activity includes the selection of the
best and at the same time permissible combination of optional features along with
the selection of the corresponding services that would optimally satisfy the stake-
holder’s functional and non-functional requirements. Several (semi-) automatic and
manual feature model configuration techniques have been proposed to guide the
final product configuration (i.e., customization) according to the requirements and
preferences of stakeholders. Automatic configuration approaches employ AI opti-
mization techniques such as Genetic Algorithms (GAs), Bayesian Belief Networks,
and Constraint Satisfaction Optimization Problem (CSOP) to create the final cus-
tomized product [7]. On the other hand, manual configuration techniques through
staged-configuration [18] provide specialization steps for service engineers helping
them resolve variability in the process of family customization (see Sect. 21.6). After
configuring the feature model, due to the established mappings between the feature
model and the reference business process model, a concrete business process for a
target service-oriented application and its realizations are derived from the family



21 Software Product Line Engineering to Develop Variant-Rich Web Services 557

design and implementation models. However, since there may be some requirements
which could not be satisfied by existing assets (i.e., services) contained in the devel-
oped SOSPL architecture, further refinement of instantiated service products from the
reference model can be performed, and new required services can be implemented.
In our running example, according to the requirements of the current application
derived in the previous stage, application engineers can configure marketplace fea-
ture model and derive a business process model for the service-oriented application
under development. Also, proper services based on the requested quality of services
(e.g. high security and low cost) are selected.

21.5.2.3 Application Deployment

This phase focuses on creating an executable business process and deployment of the
customized services in the production environment after validating the customized
services against the application requirement specification. After the deployment of
the final service product on to the stakeholders’ environment, the execution of the
customized services is monitored to ensure the compliance of the service execution
to stakeholders’ requirements and any service level agreements.

21.6 Discussion

The development, management and evolution of many modern software systems rely
on the notion of variability and suitable design techniques. SPLE research has devoted
a considerable amount of resources to the development of various approaches to
dealing with variability analysis, modeling, management, customization and related
challenges over the last decade. These approaches can be employed in the design and
development of variant-rich service-oriented applications (referred to as SOSPLs in
this chapter).

Feature-oriented analysis enables for capturing variability in services at different
levels of abstraction in order to support managing variability and leverage it for cus-
tomization. Variability can be considered in terms of four different general levels of
abstractions in service-oriented development [47]: requirements, business process
models, service interface model and service component. In that sense, variability
at a lower-level of abstraction realizes variability at a higher level. As described
earlier in the chapter, we leveraged feature modeling for managing variability by
focusing on the requirements and business processes at the higher levels of abstrac-
tion. However, feature models also can be employed for modeling, representing and
managing variability at the levels of service components, service interface to support
efficient service management. For instance, in [21], Fantinato et al. employed feature
modeling to manage and enable customization in service contracts.

Nguyen and Colman [42] propose a feature-based service customization frame-
work for modeling and managing variability of complex Web service specifications.



558 B. Mohabbati et al.

The proposed approach employed feature models as an extension to service descrip-
tion artifacts in order to facilitate the customization of service interfaces. In [43], the
same authors adopt a feature-oriented approach to modelling variability in process-
based service compositions and to enabling process customization. The approach
extends the BPMN 2.0 metamodel to allow for defining variation points and variants
within business process models. The extension is focused on modeling variabil-
ity of three aspect of business process: control flow, data flow, and message flow.
A variation point in a control flow is interpreted as any location in a process model
at which different execution paths can be take place, and variants can be arbitrary
process fragments. Variability in data flow is considered as a different way for stor-
ing data objects. Variability in message flow is identified as alternative conversations
and interactions between two parties, i.e. the process and a partner service (or a
consumer).

Koning et al. [32] investigate how variability can be incorporated into service-
based systems in order to enable variability modeling and management. They
describe how variability management helps to support run-time reconfiguration of
systems by service replacement corresponding to the non-functional requirements of
stakeholders. VxBPEL is proposed as an extension of Business Process Execution
Language (BPEL) for to the process description and definition. VxBPEL allows for
run-time variability and variability management in Web service-based systems. Vari-
ability information is defined in-line with the process definition. VxBPEL builds upon
COVAMOF [50], a framework for modeling variability. Koning et al. note that the
architectural modeling and management of variability in Web service-based systems
provides the following advantages: enhances the extensibility of systems through
service replacement; improves run-time flexibility for reconfiguration and rebinding
of services (e.g., being able to optimize quality attributes through reconfiguration).

As already mentioned, improving reusability in service-oriented development is
an often-stated goal in the literature. There are a number of important concerns that
can influence highly-important analysis and design decision for the quality of service
design. The major concerns include analysis and design for service reuse, service
granularity management, and design of composable service [47]. Hence, several
challenges have been unveiled for the development of service-oriented systems such
as how to identify reusable services at the right level of granularity in order to facilitate
service composition. Hence, the identification of service candidates is a challenging
task in services engineering [2, 47]. SPL approaches can be adopted to consolidate
design principles and service identification during the course of service engineering.

Lee et al. [38] present a feature-oriented approach to the analysis, identification
and development in order to improve reusability of service-based systems. The pro-
posed approach provides guidelines about how to address the key issue of granularity
and orchestration of services by using feature models. They show how reusable ser-
vice can be identified and specified based on software features. The proposed method
is based on analysis of features that may vary from a user’s point of view and will be
subject to reconfigurations at runtime. Another approach to using feature-oriented
analysis for service identification during the analysis and design phases is proposed by
Chen et al. [10] whose main focus is re-engineering towards service-oriented systems



21 Software Product Line Engineering to Develop Variant-Rich Web Services 559

and the remark of whom that feature-oriented analysis bridges the gap between the
abstract architectural and source code level, whereas business processes are excluded.

Service-Oriented Modeling and Architecture (SOMA) proposed by IBM [2]
has been developed as a generic development method for SOA-based applications.
SOMA provides the guidelines for identification and specialization of services that
realize and implement business processes through service composition. The authors
of SOMA remarks that variability analysis in the practical SOA solution design
is crucial for the initial finding-binding relationships between a service consumer
(i.e., stakeholder) and a service provider. Moreover, it was noted that the publishing
and discovery of relationships are often affected by variations, which are identified
later in the design process. Hence, such variations may cause expensive fundamental
re-design of SOA-based solutions [2]. To address this problem, the authors remark
that a development life-cycle for SOA-based solutions should be extended by a
variation-oriented analysis as an extra dimension that should be performed.

21.7 Conclusion

We can observe that the convergence of service-oriented and software product line
engineering is gaining a considerable amount of attention and rapidly emerging
as a viable and important software development paradigm. As we have discussed
in this chapter, they both share common goals and promises to collaborate in the
development of flexible, cost-effective software systems and to support a high level of
reuse. Yet, their main goals are somewhat different. In this chapter, we discussed that
how service-oriented development can benefit from SPLE approaches for variability
modeling and management in the process of identification and design of variant-rich
service-oriented applications.

By combining ideas of service-oriented development and SPLE, we expect to
derive new software engineering approaches to make use of the best from both
paradigms: (a) development of generic software architectures for highly adaptive
Web services that can respond effectively to fluctuations in stakeholders’ (non-)
functional requirements, and (b) development of shared architectures that could be
reused in different instances (benefits from the SPLE principles).

References

1. Apel, S., Kaestner, C., Lengauer, C.: Research challenges in the tension between features and
services. In: Proceedings of the 2nd International Workshop on Systems Development in SOA
Environments, pp. 53–58. ACM (2008)

2. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: a method
for developing service-oriented solutions. IBM Syst. J. 47(3), 377–396 (2008)

3. Asadi, M., Bagheri, E., Gašević, D., Hatala, M., Mohabbati, B.: Goal-driven software product
line engineering. In: SAC ’11, pp. 691–698. ACM, NY, USA (2011)



560 B. Mohabbati et al.

4. Asikainen, T., Soininen, T., Männistö, T.: A Koala-based approach for modelling and deploying
configurable software product families, pp. 225–249. Software Product-Family Engineering
(2004)

5. Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl, K., Ramesh, B., Vilbig, A.: A meta-model
for representing variability in product family development, pp. 66–80. Software Product-Family
Engineering (2004)

6. Benatallah, B., Nezhad, H.M.: Service oriented architecture: overview and directions. In:
Advances in Software Engineering, Lecture Notes in Computer Science, vol. 5316, pp. 116–
130. Springer, Berlin (2008)

7. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years later:
a literature review. Inf. Syst. 35(6), 615–636 (2010)

8. Bussler, C.: The fractal nature of web services. Computer 40, 93–95 (2007)
9. Chang, S.H., Kim, S.D.: A variability modeling method for adaptable services in service-

oriented computing. In: SPLC ’07: Proceedings of the 11th International Software Product
Line Conference, pp. 261–268. IEEE Computer Society, DC, USA (2007)

10. Chen, F., Li, S., Chu, W.C.C.: Feature analysis for service-oriented reengineering. In: APSEC
’05: Proceedings of the 12th Asia-Pacific Software Engineering Conference, pp. 201–208.
IEEE Computer Society (2005)

11. Chen, L., Ali Babar, M., Ali, N.: Variability management in software product lines: a systematic
review. In: Proceedings of the 13th International Software Product Line Conference, pp. 81–90.
CMU (2009)

12. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,
Reading (2001)

13. Cohen, S.G., Krut, R.: Managing variation in services in a software product line context.
Technical Report SEI-2010-TN-007, CMU (2010)

14. Cohen, S.G.S., Krut, R.W.: Proceedings of the 1st workshop on service-oriented architectures
and product lines: what is the connection? Technical Report CMU/SEI-2008-SR-006 (2008)

15. Czarnecki, K.: Mapping features to models: a template approach based on superimposed vari-
ants. In: GPCE 2005, pp. 422–437. Springer (2005)

16. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley Professional, Reading (2000)

17. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models and
their specialization. Softw. Process: Improve. Pract. 10(1), 7–29 (2005)

18. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through specialization and
multilevel configuration of feature models. Softw. Process: Improve. Pract. 10(2), 143–169
(2005)

19. Eriksson, M., Börstler, J., Borg, K.: The PLUSS approach—domain modeling with features,
use cases and use case realizations, pp. 33–44. SPLC (2005)

20. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,
Upper Saddle River (2005)

21. Fantinato, M., de Toledo, M.B.F., de Souza Gimenes, I.M.: Ws-contract establishment with
QoS: an approach based on feature modeling. Int. J. Cooperative Inf. Syst. 17(3), 373–407
(2008)

22. Frakes, W.B., Kang, K.: Software reuse research: status and future. IEEE Trans. Softw. Eng.
31, 529–536 (2005)

23. Galster, M.: Describing variability in service-oriented software product lines. In: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume, pp. 344–350
(2010)

24. Gomaa, H.: Advances in software design methods for concurrent, real-time and distributed
applications. In: Software Engineering Advances, 2008. ICSEA’08. The 3rd International Con-
ference on, pp. 451–456. IEEE (2008)

25. Griss, M.L., Favaro, J., Alessandro, M.d.: Integrating feature modeling with the RSEB. In:
Proceedings of the 5th International Conference on Software Reuse, ICSR ’98, p. 76. IEEE
Computer Society, Washington, DC, USA (1998)



21 Software Product Line Engineering to Develop Variant-Rich Web Services 561

26. Helferich, A., Herzwurm, G., Jesse, S., Mikusz, M.: Software product lines, service-oriented
architecture and frameworks: worlds apart or ideal partners? In: Trends in Enterprise Applica-
tion Architecture, pp. 187–201. IEEE Computer Society (2007)

27. van der Hoek, A.: Design-time product line architectures for any-time variability. Sci. Comput.
Program. 53(3), 285–304 (2004)

28. Huhns, M., Singh, M.: Service-oriented computing: key concepts and principles. IEEE Internet
Comput. 9(1), 75–81 (2005)

29. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
(FODA) feasibility study (1990)

30. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented reuse method
with domain-specific reference architectures. Ann. Softw. Eng. 5, 143–168 (1998)

31. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In: Proceedings
of the 30th International Conference on Software Engineering, pp. 311–320. ACM (2008)

32. Koning, M., Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: supporting variability for Web
services in BPEL. Inf. Softw. Technol. 51(2), 258–269 (2009)

33. Kozaczynski, W., Booch, G.: Component-based software engineering. IEEE Softw. 15(5), 34–
36 (1998)

34. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture Best Prac-
tices. Prentice Hall PTR, Englewood Cliffs (2005)

35. Krut, R.W., Cohen, S.G.: 2nd Workshop on Service-Oriented Architectures and Software Prod-
uct Lines: Putting Both Together, pp. 115–147. CMU (2009)

36. Krut, R.W., Cohen, S.G.: 3rd Workshop on Service-Oriented Architectures and Software Prod-
uct Lines: Enhancing Variation, pp. 301–302. CMU (2009)

37. Lee, J., Kotonya, G.: Combining service-orientation with product line engineering. IEEE Softw.
27, 35–41 (2010)

38. Lee, J., Muthig, D., Naab, M.: A feature-oriented approach for developing reusable product
line assets of service-based systems. J. Syst. Softw. 83(7), 1123–1136 (2010)

39. McGregor, J., Muthig, D., Yoshimura, K., Jensen, P.: Guest editors’ introduction: successful
software product line practices. IEEE Softw. 27(3), 16–21 (2010)

40. Mohabbati, B., Gašević, D., Hatala, M., Asadi, M., Bagheri, E., Bošković, M.: A quality aggre-
gation model for service-oriented software product lines based on variability and composition
patterns. In: ICSOC, pp. 436–451 (2011)

41. Mohabbati, B., Hatala, M., Gašević, D., Asadi, M., Bošković, M.: Development and configu-
ration of service-oriented systems families. SAC ’11, pp. 1606–1613, NY, USA (2011)

42. Nguyen, T., Colman, A.: A feature-oriented approach for Web service customization. In: 2010
IEEE International Conference on Web Services, pp. 393–400. IEEE (2010)

43. Nguyen, T., Colman, A., Han, J.: Modeling and managing variability in process-based ser-
vice compositions. In: Proceedings of the 9th International Conference on Service-Oriented
Computing, ICSOC’11, pp. 404–420. Springer, Berlin (2011)

44. Northrop, L.: Sei’s software product line tenets. IEEE Softw. 19(4), 32–40 (2002)
45. van Ommering, R.: Building product populations with software components. In: ICSE ’02, pp.

255–265. ACM (2002)
46. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a research

roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)
47. Papazoglou, M., Van Den Heuvel, W.: Service-oriented design and development methodology.

Int. J. Web Eng. Technol. 2(4), 412–442 (2006)
48. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and directions. Web

Information Systems Engineering, International Conference on, vol. 0, p. 3 (2003)
49. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,

Principles and Techniques. Springer, New York (2005)
50. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A framework for modeling

variability in software product families. SPLC’04 pp. 25–27 (2004)
51. Sochos, P., Riebisch, M.: Feature-oriented development of software product lines: mapping

feature models to the architecture. In: Object-Oriented and Internet-Based Technologies, pp.
138–152. Springer (2004)



562 B. Mohabbati et al.

52. Sommerville, I., Sawyer, P.: Requirements Engineering. Wiley, London (1997)
53. Street, J., Gomaa, H.: Software architectural reuse issues in service-oriented architectures. In:

HICSS, p. 316. IEEE Computer Society (2008)
54. Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.

Softw.: Pract. Exp. 35(8), 705–754 (2005)
55. Thiel, S., Hein, A.: Systematic integration of variability into product line architecture design.

Software Product Lines, pp. 67–102 (2002)
56. Tsai, W., Jin, Z., Wang, P., Wu, B.: Requirement engineering in service-oriented system engi-

neering. In: e-Business Engineering, 2007. ICEBE 2007. IEEE International Conference on,
pp. 661–668. IEEE (2007)

57. Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product lines.
In: Proceedings of the Working IEEE/IFIP Conference on Software Architecture, p. 45 (2001)

58. Webber, D.L., Gomaa, H.: Modeling variability in software product lines with the variation
point model. Sci. Comput. Program. 53(3), 305–331 (2004)

59. Ye, E., Moon, M., Kim, Y., Yeom, K.: An approach to designing service-oriented product-line
architecture for business process families. In: Advanced Communication Technology, The 9th
International Conference on, vol. 2, pp. 1002, 999 (2007)


	21 Software Product Line Engineering to Develop Variant-Rich Web Services
	21.1 Introduction
	21.2 Software Product Line Engineering (SPLE)
	21.3 Comparison of SPL and SOA
	21.3.1 Development Processes
	21.3.2 Reuse in SPL Versus SOA
	21.3.3 Architectural Aspects of SPL Versus SOA
	21.3.4 Variability in SPL and SOA

	21.4 Running Example
	21.5 Applying SPLE for Development of Service-Oriented Software Product Lines
	21.5.1 Service-Domain Engineering
	21.5.2 Service-Application Engineering

	21.6 Discussion
	21.7 Conclusion
	References


