
Chapter 18
Automated Negotiation Among Web services

Khayyam Hashmi, Amal Alhosban, Zaki Malik, Brahim Medjahed
and Salima Benbernou

Abstract Automated negotiation among Web services not only provides an
effective way for the services to bargain for their optimal customizations, but also
allows the discovery of overlooked potential solutions. A number of negotiation
supporting techniques have been used to find solutions that are acceptable to all
parties in the negotiation. However, employing these solutions for automated nego-
tiations among Web services has its own challenges. In this chapter, we present the
design of a Negotiation Web service that would be used by both the consumers
and providers of Web services for conducting negotiations. This negotiation service
uses a genetic algorithm (GA) based approach for finding acceptable solutions in
multi-party and multi-objective negotiations. In addition to the traditional genetic
operators of crossover and mutation, the search is enhanced using a new operator
called the Norm. Norm operator represents the cumulative knowledge of all the parties
involved in the negotiation process. GA performance with the new Norm operator is
compared to the traditional GA, hill-climber and random search techniques. Experi-
mental results indicate the practicality of the approach in facilitating the negotiations
involved in a Web service composition process. Specifically, the proposed GA with
Norm operator performs better than other approaches.

K. Hashmi (B) · A. Alhosban · Z. Malik
Wayne State University, Detroit, Michigan, USA
e-mail: eh2304@wayne.edu

Z. Malik
e-mail: zaki@wayne.edu

A. Alhosban
e-mail: ea1179@wayne.edu

B. Medjahed
The University of Michigan - Dearborn, Dearborn, Michigan, USA
e-mail: brahim@umd.umich.edu

S. Benbernou
Universite Paris Descartes, Paris, France
e-mail: salima.benbernou@parisdescartes.fr

A. Bouguettaya et al. (eds.), Web Services Foundations, 451
DOI: 10.1007/978-1-4614-7518-7_18,
© Springer Science+Business Media New York 2014

452 K. Hashmi et al.

18.1 Introduction

A Web service is defined as an autonomous and self-contained unit of application
that is accessible over a network [83]. In recent years, the number of available Web
services has increased, and it is believed that in the near future, we may find multiple
services offering the same functionalities [57]. Moreover, with maturing standards
(e.g., BPEL [79]) it is now possible to combine several services to formulate a
composite solution (selecting the most suitable service for the composite solution
from among a pool of competing services). However, this selection process is not
straightforward as many inter-related variables of the different services may affect
the performance of the service composition. To help facilitate this process we can
use automated negotiation to provide an effective way for clients to bargain for an
optimal customization of their required variables and to discover any overlooked
potential solutions. In this chapter, the research problem of automated negotiation of
Quality of Service (QoS) components among Web services is analyzed. The chapter
is divided into four sections. The first section serves as an introduction to the service
oriented paradigm and the concept of Web services, their underlying QoS specifi-
cations, and the process of negotiation. Section two focuses on the communication
protocols for automated negotiation, while the third section discusses the different
techniques/agents used in the negotiation process. In Sect. 18.4, we discuss the over-
all service negotiation requirements, show how existing solutions perform in the light
of these requirements, and define an approach for solving the automated negotiation
problem.

18.1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) is defined as a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different owner-
ship domains [57]. In other words, boundaries of SOAs are usually explicit, i.e., the
services need to communicate across boundaries of different geographical zones,
ownerships, trust domains, and operating environments. Moreover, explicit message
passing is applied in SOAs instead of implicit method invocations. The services
in SOAs are autonomous, i.e., they are independently deployed, the topology is
dynamic, i.e., new services may be introduced without advanced acknowledgment,
and the applications consuming a service can leave the system or fail without noti-
fication [1]. Services in SOAs share schema and contracts. The message passing
structures are specified by the schema, and message-exchange behaviors are speci-
fied by contracts (both implicit or explicit) for each SOA transaction.

Two major entities are involved in any SOA transaction: service customers and
service providers. Figure 18.1 represents a typical Web service interaction model.
Service providers offer their services by publishing their information (WSDL) in
public registries (UDDI) [46, 54]. Customers then query these registries to find the

18 Automated Negotiation Among Web services 453

Request Matching
Service Information

Register as
a Provider

Registry

Customer Provider

Acknowledge
Registration

Return matched
WSDL

Bind and
Invoke Service

Fig. 18.1 Service-oriented interaction model

required services and then bind to the most suitable service, where input parameters
are sent to the service provider and output is returned to the customer [2]. Web ser-
vice registries thus serve as place holders and provide minimal functional information
about a service. Service providers may use t Models [21] to provide any additional
information. Since t Models are static place holders for information (service provider
may provide a single value or a range for QoS attribute(s)), hence they have limited
usability when it comes to negotiating non-functional requirements of the customers
(e.g., availability, reliability etc.). A customer looking for a Web service could ben-
efit from a service which if given both functional and non-functional requirements,
could provide the most effective solution by simultaneously negotiating with multiple
providers.

18.1.2 QoS Specification

The Quality of Service (QoS) is defined as a set of non-functional service attributes
that indicate the service’s ability to satisfy a stated or implied requirement in an end-
to-end fashion [41]. This set of quality attributes not only characterize the service
but also any entity used in the path between the service and its client. In a Service
Oriented Architecture (SOA), service providers may characterize their services to
define both the offered functionalities and the offered quality. Similarly the users
may not only express their requirements by listing the desired functionalities, but
also define a minimum level of quality that the service must ensure. The main issue
here is the subjectiveness of ‘quality’: the quality of a service from the provider’s
perspective may be different than the quality experienced by the user. At the same
time, the same quality level might be sufficient for a given user and not enough
for another one. Hence, QoS parameters consist of both quantitative (availability
99.9 %) and qualitative (privacy, security) parts. Most of the quantitative attributes
are not directly proportional in their cost/benefit curve e.g., 99.999 % uptime versus
99.0 % uptime. Hence this non-linear curve naturally generates a disparity among
the provided values for these QoS attributes and opens them to negotiation.

454 K. Hashmi et al.

18.1.3 Negotiation

Negotiation is a process that can be defined as the interplay of offers and counter-
offers between two entities, with different criteria and goals, working to reach a
mutually acceptable solution. A negotiation process enhances acquisition opportu-
nities and enables flexible communication that can lead to a better solution [10, 92].

However, negotiation are usually uncertain (due to incomplete information of both
parties) and knowledge intensive. Performing negotiations manually is thus ad-hoc
and time-consuming. Automated component negotiations (e.g., on the web) are thus
valuable not only for the customers and the providers to continuously customize
their needs and tailor their offerings, but also to discover overlooked solutions and
to maintain documented rationales for future references and reuse.

An automated negotiation mechanism requires at least three components; a high-
level protocol, objectives and strategies [47]. The high-level protocol controls the
negotiation process depending on types of negotiations (e.g., auction). The objectives
of all parties are based on a set of criteria, representing various parameters along with
their respective domain values (e.g., price range). Negotiation strategies include
mechanisms (rules and knowledge base) that the agent employs to generate and
evaluate offers.

Figure 18.2 depicts the state diagram of an automated negotiation process. Typi-
cally, negotiation starts when the customer requests for proposals for a component
service. After receiving the initial offers from service providers, it would then select
some providers to engage in bi-lateral negotiations. This would start a round of offers
and counter offers among the customer and selected service providers. Once both the
provider and the customer agree on a certain attributes (e.g., price) for the services

Start

Proposal

End

Response

Accept
Offer

Create
SLA

Approved
SLA

Terminate Negotiation [C, P]
(No contract)

Start Negotiation[C]

Propose a Solution

Counter Offer

Accept [P]

SLA Policies

Reject [C]

SLA Rejected [C, P]
Non-Functional issues

Accept SLA [C, P]

SLA Rejected [C, P]
Functional Issues

Terminate Negotiation
Contract Accepted

C = Customer
P = Provider Accepted

Offer
[P]

Accepted
Offer
[C]

Accept [C]

Reject [P]

Accept [C]

Accept [P]

Fig. 18.2 Negotiation state chart

18 Automated Negotiation Among Web services 455

to be provided, they enter into the formal Service Level Agreement (SLA) formation
phase. At this point, both parties agree on the terms and conditions of the agreement.
These usually include both the functional (service to be provided, cost, etc) and non-
functional (QoS parameters, violation terms, penalties, etc). This process could also
be modeled as the exchange of offers and counter offers (for SLA terms) among
the customer and the selected provider. Once agreed, the parties create/contract an
agreement and the services are rendered. If both the parties could not agree on the
terms of an SLA the current negotiation session is terminated and a new round of
negotiation is started.

18.2 Communication Protocols for Negotiation

A communication protocol defines the syntax, semantics, rules and synchronization
of messages exchanged between the partied involved. There are many communication
protocols that have been defined to conduct negotiations. This section discusses some
of the widely used negotiation protocols applied in the service’s domain.

18.2.1 WS-Agreement

WS-Agreement [28] is a protocol for establishing agreements between two parties,
such as between a service provider and customer. It uses XML for specifying the
nature of the agreement, and agreement templates to facilitate discovery of compat-
ible agreement parties. The specification consists of three parts which may be used
in a composable manner: a schema for specifying an agreement, a schema for spec-
ifying an agreement template, and a set of port types and operations for managing
agreement life-cycle, including creation, expiration, and monitoring of agreement
states.

There are two layers of WS-Agreement. The agreement layer provides a Web
service-based interface that can be used to create, represent and monitor agreements
with respect to provisioning of services implemented in the service layer. The ser-
vice layer represents the application-specific layer of the service being provided.
Although WS-Agreement does not have any negotiation specific structure but there
had been discussions for using it in negotiating agreements among parties [5, 87].
An implementation of WS-Agreement to negotiate SLA’s for resource orchestration
in grids have been presented in [66]. A bilateral WS-Agreement based negotiation
process is used to dynamically negotiate SLA templates. One option is for the origi-
nating agent to negotiate separately with each Autonomous System (AS) along each
potential path to ensure that an end-to-end path is available. The dominant choice,
however is to use a cascaded approach where each AS is responsible for the entire
path downstream of itself. To rely on WS-Agreement and minimize the extensions
to the proposed standard, the idea is not to negotiate SLAs but to negotiate and refine

456 K. Hashmi et al.

the templates that can be used to create an SLA. An agreement template defines
one or more services that are specified by their Service Description Terms (SDT),
their Service Property Terms (SPT), and their Guarantee Terms (GT). Additionally
an agreement provider can constrain the possible values within the SDTs, SPTs, and
GTs by defining appropriate creation constraints within the templates.

Cremona [48] is an agreement management architecture that facilitates (agree-
ment-based) service binding for a variety of services. It uses WS-Agreement as the
communication infrastructure. The Cremona architecture separates multiple layers
of agreement management, orthogonal to the agreement management functions: the
functions associated with an agreement protocol role, initiator or provider, is the
Agreement Protocol Role Management (APRM). It comprises, on the agreement
provider side, the agreement factory, the agreement instance implementations, the
Web services container in which factory and instances are located and interfaces to an
agreement template repository, decision-making functionality for createAgreement
requests and the current state of terms. On the agreement customer side, it comprises
proxy functions to interact with an agreement factory and created agreements, tem-
plate processing functions to create agreement instance document from templates,
and interfaces to components initiating agreement establishment, to functions decid-
ing on how to fill an agreement template, and to guarantee monitors. The Agreement
Service Role Management (ASRM) is the collection of functions that deals with a
party’s role in the service relationship, provider or customer, and connects it to the
service system. On the service provider’s side, this includes the mapping of agree-
ments to provisioning specifications and other input to the service-implementing
system—the agreement implementation plan [44].

OpenCCS [35], AgentScape [58] and VIOLA MetaScheduling Service MSS [87]
also use negotiation to refine offers and requests in order to create SLAs. As WS-
Agreement does not include a protocol for negotiating the terms of an SLA (but an
“accept/reject” protocol for the whole SLA), these three approaches currently use
proprietary extensions of WS-Agreement for the negotiation.

18.2.2 Contract Net

Contract Net [78] is a generic negotiation protocol. It is viewed as a task having four
components (1) it is a local process that does not involve centralized control, (2)
there is two-way exchange of information, (3) each party to the negotiation evaluates
the information from its own perspective, and (4) the final agreement is achieved by
mutual selection.

A contract is established by a process of local mutual selection based on a two-way
transfer of information. In brief, available contractors evaluate task announcements
made by several managers and submit bids on those for which they are suited. The
managers evaluate the bids and award contracts to the nodes they determine to be
most appropriate. The negotiation process may then recur. A contractor may further
partition a task and award contracts to other nodes. It is then the manager for those

18 Automated Negotiation Among Web services 457

contracts. This leads to the hierarchical control structure that is typical of task-sharing.
Control is distributed because processing and communication are not focused at
particular nodes, but rather every node is capable of accepting and assigning tasks.
The basic message constructs of contract protocol are Task Announcement, Task
Announcement Processing, Bidding, Bid Processing, Contract Processing, Reporting
Results, Termination, and Negotiation Tradeoffs.

A variation of Contract Net protocol for Semantic Web service composition is
discussed in [43]. The issue of aligning data flow in semantic web service composition
is to ensure the robustness when executing the composed service by preventing any
cases when the wrong type of data is passed on from one service to the next is
tackled by proposing a unique solution that ensures the robustness of data flow when
automatically composing web services through the use of agent-based negotiation
between web service providers.

Another variation of Iterative model of Contract Net Protocol (CNP) for negotia-
tion is discussed in [65], where the manager initiates the negotiation process through
a call for proposals (CFP) announcing the task specification to the contractors. A con-
tractor receiving the CFP evaluates it and decides whether to answer with a refusal or
a proposal to execute the task. The manager receives the contractor’s proposals and
in turn decides which proposals to accept and which proposals to reject. Rejected
contractors consider that the negotiation has terminated, while accepted contractors
must expedite the task and send back the results of their work to the manager.

Multiple strategies are implemented using the Iterative model of Contract Net
Protocol in [64]. The most basic of them i.e., truth telling strategy, relies on the
fact that both the manager and contractors reveal their true preferences. Thus, each
CFP is constructed with its preferred value for each issue. A service replies with a
proposal where each issue is given its own preferred value for each issue. If the CFP
lies outside the reserve values for negotiable issues, then the service’s proposal is
grounded with the service’s reserve values.

18.2.3 WS-Policy

WS-Policy [86] provides a grammar for expressing Web services policies. WS-Policy
is used to specify policy information on a broad range of service requirements, pref-
erences, and capabilities. The WS-Policy is represented by a policy expression that
is an XML Infoset representation of one or more policy statements. The WS-Policy
includes a set of general messaging-related assertions defined in WSPolicyAsser-
tions and a set of security policy assertions related to supporting the WS-Security
specification defined in WS-SecurityPolicy.

A framework based on WS-Policy for negotiation of Quality of Service attributes
between Web services is proposed in [20]. The approach relies on the definition
of an extended SOA in which a service index with QoS information is available.
Service provider publishes the non-functional attributes, that may be negotiated by
the customer, in the WSDL. This QoS registry could be stored along with WSDL

458 K. Hashmi et al.

using WSOL, which is a WSDL-compatible language for specifying different service
offerings for the same service identified by the different values or constraints on the
service QoS attributes [82]. It can include different domain schemas on which the
QoS could be defined.

18.2.4 WS-Negotiation

WS-Negotiation [30] is an independent declarative XML language for Web service’s
providers and customers. In general, WS-Negotiation contains three parts: Negoti-
ation Message, Negotiation Protocol and Decision Making. The Negotiation Mes-
sage part describes the format of the messages exchanged. Some suggested message
types are: Offer, Counter-Offer, Rejected, Accepted, etc. This part of WS-Negotiation
tackles the “Initial Contact” and “Offer and Counter-Offer” tasks. Negotiation Pro-
tocol describes the mechanism and the rules that the negotiation parties should fol-
low to exchange messages. Messages contain offers and counter-offers and can be
exchanged between customer and provider as well as a third-party negotiation ser-
vice (Negotiation Support System-NSS). Negotiation primitives are also defined in
order to coordinate and execute the tasks and events. A negotiation primitive sets the
pre and post conditions that should hold as well as rules and constraints that should
be applied during the negotiation. Example of negotiation primitives are the “Pro-
pose” primitive for proposing an offer/counter-offer to the other party, the “Modify”
primitive to modify the sent offer/counter-offer before receiving the other party’s
reply etc. The Negotiation Decision-making component takes the decisions. It is pri-
vate and is based on the negotiation strategy each party has chosen (e.g., cost-benefit
strategy) and the agreement template. This part of WS-Negotiation tackles the “Eval-
uation”. Negotiation issues vary from one business domain to another but there are
some issues that are common or fixed in a domain. Hence, there are several Service
Level Agreement (SLA) template models, with domain specific vocabularies, for
supporting different types of business negotiations.

WS-AgreementNegotiation [89] describes the re-negotiation of agreements
between two parties. It specifies a set of messages and resources that can be used
to model several re-negotiation scenarios. WS-AgreementNegotiation sits on top
of WS-Agreement, which makes it possible to switch between different negotia-
tion protocol. However, this requires WS-AgreementNegotiation to express nego-
tiation offers in terms of WS-Agreement constructs. This adds a dependency to
WS-Agreement. Moreover, it only allows the re-negotiation of existing agreements
among two parties and could be initiated by either the provider or the customer.

18 Automated Negotiation Among Web services 459

18.2.5 Xplore

Xplore [4] provides a lightweight co-ordination platform focused at multi-party,
multi-attribute negotiation. It acts as a “middleware” which aims at addressing gen-
eral, domain independent requirements on the interaction infrastructure to support
negotiation. It is based on the negotiation mechanism which is an extension of the
Contract Net protocol [78] with transactional facilities, enabling the coordinated
execution of a collection of concurrent, interdependent Contract Nets. It exploits the
coordination mechanism provided by CLFMekano [3], a coordination middleware
platform designed to integrate negotiation and transaction aspects in distributed sys-
tems. CLF contains primitives enabling negotiation and transaction at the lowest
level. The primitives are expressed as a set of eight “interaction verbs” a la KQML,
similar to speech acts [38]. Xplore extends the unidirectional “announce/collect/
decide” paradigm of CLF to incorporate counter offers by providing a multi-
directional “announce/refine/decide” paradigm allowing flexible refinement of the
negotiation terms. Xplore’s protocol consists of the following negotiation verbs.
Open, it creates a new node in the negotiation tree i.e., creating a new negotiation
branch. Close, prevents any further development from the current negotiation branch,
effectively closing the negotiation on the current options. Request, requests informa-
tion on an aspect of the parameter passed at the current node of the negotiation tree,
retrieving information for making informed proposals along a negotiation branch.
Assert, is used the describe the aspects of a parameter i.e., refining the negotiation
term. Ready states that the component is ready to enter in the enactment phase in the
condition expressed by the passed node. The Reserve, Confirm verbs allow to first
reserve and then consume a resource previously returned as an offer. Split in two
phases, the operation of resource consumption (Reserve, then Confirm) allows the
customer to perform atomic consumption of resources coming from different offers
(possibly by different servers), thus realizing the most basic form of transaction. In
addition, the Cancel verb allows to cancel a reservation, in case other resources in
a transaction become unavailable. Finally, the Insert verb requests an extension of a
service capability by insertion of a new resource.

An example of using Xplore to describe a NegotiAuction is presented in [12].
NegotiAuction [81] is an algorithmic Internet-based auction procedure. It combines
various elements from negotiation and auction protocols, supports multiple attributes
of the auctioned good and allows both fully automated negotiation as well as semi-
automated negotiation process. Each NegotiAuction takes place in a one-to-many
market environment. Auction owner sets up the auction and defines the form of
auction i.e., reverse or forward and describes the goods and the quantity to be bought
(or to be sold) and decides whether the potential bidders should be explicitly invited
(closed format), or everybody could qualify for bidding (open format).

Another infrastructure based on Xplore for supporting negotiations in inter-
organizational alliances in a flexible way with respect to the autonomy of the partners
involved is defined as e-Alliance in [15]. It focuses on how to represent decentral-
ized organizations, modeling the coordination of different concurrent interactions,

460 K. Hashmi et al.

formalization of negotiations, deploying and maintaining an alliance during its life
cycle and creating administrative contracts. Similarly, the negotiation middleware
CooF supports processes provided by the facilities in the second layer. CooF is the
coordinator that supports multi-party, multi-directional, multi-attribute negotiation.
This process is modeled by a negotiation graph. This structure captures the dependen-
cies between the negotiation interactions. CooF’s job is to coordinate/synchronize
these different copies of negotiation graphs. The negotiation process can be consid-
ered as a Distributed Constraint Satisfaction Problem [40]. The “distribution” part
deals with constraint propagation between nodes, while the “satisfaction” part deals
with constraint based reasoning and strategic reasoning at each node.

18.3 Negotiation Agents

A negotiation agent can be termed as the brains behind the negotiation process. This
component interacts with the domain knowledge and the system rules to calculate
the usefulness of an offer and then generate counter offers against it. Hence, it is
responsible for the decision making process. There are different types of negotiation
agents that adhere to different types of negotiation (e.g., auction, reverse auction,
bilateral negotiation). A brief overview of these follows.

18.3.1 Auction Based Agents

An auction can be described as the simplest form of negotiation where a customer
bids on the price of an item and the provider has the option of either accepting the
offer or rejecting it. There are multiple types of auctions such as English, Dutch,
first-price and Vickery [52]. A service composition agent that both buys components
and sells services through auctions has been discussed in [67]. It buys component
services by participating in many English auctions. It sells composite services by
participating in Request-for-Quotes reverse auctions. Because it does not hold a
long-term inventory of component services, it takes risks. It makes offers in reverse
auctions prior to purchasing all the components needed, and bids in English auctions
prior to having a guaranteed customer for the composite good. The algorithms used
are able to manage this risk, by appropriately bidding/offering in many auctions and
reverse auctions simultaneously. The algorithms withdraws from one set of possible
auctions and moves to another set if this produces a better-expected outcome, but will
effectively manage the risk of accidentally winning outstanding bids/offers during
the withdrawal process. However only the scenarios with English auction type of
negotiation with no one-on-one negotiation are handled. It is assumed that the agent
maintains a probabilistic model of expected outcomes of each auction based on
past performance of similar auctions. The agent initially identifies the set of options
which maximize its a-priori expected utility. These options will consist of a reverse
auction for a given composite service, together with a set of English auctions for

18 Automated Negotiation Among Web services 461

the required components. It then places bids in these forward/reverse auctions and
continues to compete in these auctions, placing more bids when outbid. However,
if sufficient competing bids are placed to reduce the expected utility of this set of
auctions, then it may change to another set of auctions which can generate the same
composite service. It will do this if the expected gain from changing to this new bundle
outweighs the expected cost of currently held bids which appear in the old bundle
but not in the new bundle. If competing bids are placed in one of the reverse auctions
it is participating in, and the expected value of that auction decreases sufficiently it
may withdraw from that reverse auction. It may use the associated forward auctions
in another option, or may withdraw from them as well. Moreover, the problems of
not committing and evaluating each option are solved by limiting the search space
to promising offers only.

18.3.2 Trade-Off Based Negotiation Agents

In trade-off based negotiations the concerned parties make tradeoffs on different
negotiation parameters based on their respective importance (weights) to the nego-
tiator. Normally each round of negotiation has a slightly different feature vector based
on the counter offer generated in the previous negotiation round. This cumulative
information is used to generate future offers and hence reach a mutual agreement.
A tradeoff based negotiation mechanism for web service procurement using a bilat-
eral protocol to govern interactions between the negotiation parties is used in [63].
Each party can define its own set of evaluation function, utility function and offer
generating algorithm. For simplicity both parties share the same generic tradeoff
mechanism for automated offer generation while each party can have its own set
of objectives and evaluation function. The multi-round negotiation algorithm used
contains strategies that focus on generating a set of offers that have the same utility
as the current offers and is based on the offers generated by the opponent agent in
the previous round. The idea is to exploit the current utility as much as possible.
The generated set of offers is presented to opponent agent that chooses the offer that
is most suitable to its preferences based on its evaluation function. The negotiation
continues until the opponent presents an offer that is of an equal or greater utility
than the agent’s previous offer. A deadlock condition may be reached if no offer that
is of a higher utility to the opponent than the previous offer is being generated. In
such a situation the agent reduces its utility expecting to find, in the lower level an
offer that satisfies both agents. This strategy ensures that the agent concedes utility
in a more rational way.

A trade-offs based agent for multi-dimensional goods for the problem of dis-
tributed resource allocation has been presented in [25]. It uses a fuzzy similarity to
approximate the preference structure of the other negotiator and then uses a hill-
climbing technique to explore the space of possible trade-offs for the one that is
most likely to be acceptable. Similar approaches have been discussed in [26] and
[51]. Trade-off based agents have also been studied in [17, 50, 97].

462 K. Hashmi et al.

18.3.3 Negotiation with Uncertain Data

Having as much information as possible about the other parties is important to
strengthen one’s negotiation capabilities [60]. Unfortunately, more often than not,
we only have partial information about the negotiation context [50]. Hence it is very
important to be able to manage different types of unknown parameters about the
negotiation. An approach for bilateral negotiation under uncertainty, where a nego-
tiator is uncertain as to what offer or counteroffer to make, at a particular step in the
negotiation is presented in [59] and [93]. This uncertainty is resolved by making use
of the negotiation experience of reputable parties in [93]. The idea is similar to the
scenario where suppose, one has been offered a new employment and it is time to
negotiate benefits, including salary. The negotiating parties are yourself and the hir-
ing manager. The fact that mostly salaries are negotiable and often vary with specific
job responsibilities, a new hire may not have all the information needed to make a
good decision. In this case, a natural course of action, is to seek out others who are
trustworthy and who may have negotiated salaries with this company in the past, for
similar types of jobs and use their data to make an informed decision. So the main
idea is of using the negotiation experiences of trusted parties with matching interests
as aids in deciding which negotiating alternatives and offers should be employed.

A model for bilateral negotiations that considers the uncertain and dynamic outside
options is defined in [45]. Outside options affect the negotiation strategies via their
impact on the reservation price. The model is composed of three modules: single-
threaded negotiations, synchronized multi-threaded negotiations, and dynamic multi-
threaded negotiations. The single-threaded negotiation model provides negotiation
strategies without specifically considering outside options. The model of synchro-
nized multi-threaded negotiations builds on the single-threaded negotiation model
and considers the presence of concurrently existing outside options. The model
of dynamic multi-threaded negotiations expands the synchronized multi-threaded
model by considering the uncertain outside options that may come dynamically in
the future. A Poison Process is used to simulate the arrival process of uncertain
(dynamic) options.

18.3.4 Genetic Algorithm Based Negotiations

Negotiations are a special class of group decision making problems. Multi-party and
multi-objective negotiations add a lot of complexity to the already hard problem of
negotiation. Such negotiation problems can thus be formulated as constrained multi-
objective optimization problems. The main idea is to optimize a series of objectives
simultaneously while considering constraints on the system. The Genetic Algorithm
(GA) approach is consistent with the complex nature of real-world negotiations
and is, therefore, capable of addressing more realistic negotiation scenarios. Since
genetic algorithms and evolutionary algorithms in general search for entire popu-

18 Automated Negotiation Among Web services 463

lations of solutions, they are well suited for multi-criterion problems. A weighted
sum based genetic algorithm to support multiple-party multiple-objective negotia-
tions have been presented in [71]. The weighted sum approach is used to handle
multiple objectives of each participant. Since all the participant start negotiation
from a different position hence they will also have different preference for those
objectives and are described by how far their current position is from the objective.
Hence the objective is to minimize this distance. The genetic algorithm solution is
represented as a 2-Dimensional matrix, representing the participants and objectives.
Similar approaches have been discussed in [22, 62, 96]. A genetic algorithms based
approach that evolve Finite State Machines has been presented in [85]. Each individ-
ual in the population of FSMs represents a negotiation strategy that competes against
other strategies and is modified over time using traditional operators of mutation and
cross over. To mutate an FSM, several different operators are used which include
changing the target or source of an edge, changing the output or input symbol of an
edge and adding or deleting a state or an edge. A repair algorithm ensures that all
the FSMs are valid after mutation or crossover operation. A GA based negotiation
model using the traditional operators of mutilation and crossover has been presented
in [18]. A special penalty based evaluation function is used that measures the prior
concessionary behavior of the opponent agent. A negotiation time aware GA based
approach has been presented in [9]. The pace of concession of the agent is propor-
tional to the elapsed negotiation time while considering the opponent’s payoff gains
and the principal of Pareto optimality. Machine learning and bayesian learning have
also been used in conjunction with genetic algorithms to achieve satisfactory results
[56, 76].

18.3.5 Combinatorial Negotiations

A combinatorial negotiation is the type of negotiation where entities can negotiate on
a combination of items, rather than negotiating independently on each item from a
set of items. Combinatorial negotiation stemmed from the traditional combinatorial
auctions. In a combinatorial auction, a set M of items, |M | = m, is sold to n bidders.
The combinatorial character of the auction comes from the fact that each bidder
values bundles of items, rather than valuing items directly. The idea is to find such a
partition of the items so that the return is maximized for the auctioneer.

A Combinatorial Negotiation based decision-support service (iBundler) for highly
constrained negotiation scenarios has been proposed in [69]. iBundler acts as a combi-
natorial negotiation solver for both multi-item, multi-unit negotiations and auctions.
The service can be employed by both negotiating agents and auctioneers in combi-
natorial auctions. It consists of three main components. The Manager agent takes
care of all the communication. It provides brokering services of RFQ, collection of
bids, winner determination and contracting services. The Translator agent perform
the necessary XML translations for the Solver and FIPA-compliant descriptions for
the Manager agent. The Solver component extends the iBundler with the offering

464 K. Hashmi et al.

of an XML language for expressing offers, constraints and requirements. The win-
ner determination is modeled as a mixed integer problem similar to the the binary
multi-unit combinatorial reverse auction winner determination problem in [75] with
side constraints in [73].

18.4 Discussion

As mentioned earlier an automated negotiation mechanism consists of three main
components, namely, a high-level protocol, negotiation objectives, and decision
strategies; while the negotiation context dictates the selection and integration of
these components [33]. In existing literature, this has usually been accomplished in an
ad-hoc manner, which is of minimal interest in SOAs due to the high developmental
costs of such solutions, lack of ubiquity, and dynamic participants. Consequently, the
prime requirements for developing comprehensive negotiation mechanisms include:

• Multi-attribute negotiation. A typical SLA negotiation involves QoS attributes
such as reliability, availability, accessibility and response time [94, 95]. These
QoS attributes (and others) influence the negotiation protocol and the customer
preferences articulation that the negotiation system must support. Hence there
may be more than one combination of these attributes that may be suitable under
a specified negotiation context. User preferences could be expressed in a variety
of ways, e.g., utility functions [25], combination of attributes [23], or fuzzy con-
straints [50] etc. The negotiation system should not restrict its user to a single
negotiable attribute (e.g., price) rather it should allow the users to express multiple
attributes for the negotiation process (REQ 1).

• Support for heterogeneous negotiation protocols. In a service oriented system
it is very much expected that all the participants using the system may not be
similar. They may implement heterogeneous (probably incompatible) negotiation
protocols. Thus, there is a need for supporting multiple negotiation protocols (REQ
2), or be able to consent on the negotiation protocol for cases where a participant
supports multiple ones.

• Heterogeneous decision model articulation. Different participants prefer different
negotiation strategies (auction, bargaining etc.) based on their decision models,
domains, preferences and history. There are usually two types of decisions that an
automated negotiation system has to make. First, it has to generate counter offers
in the negotiation by implementing an appropriate algorithm [24, 25, 39, 50].
Second, it has to handle commitment to the new SLA i.e., deciding if the agree-
ment is acceptable and convenient to commit, and in some cases decommitment
from previously created SLA [61]. This decision is mostly protocol independent.
However, depending upon the negotiation strategy the counter offer generation
could be totally different. For instance, in case of a bargaining strategy, there has
to be a response for each negotiation message that is received, where as in an auc-
tion strategy, bids could be placed at any time. Hence, an automated negotiation

18 Automated Negotiation Among Web services 465

system must implement multiple decision models (REQ 3) so that it could support
protocol specific negotiations.

• Dynamic user preferences. Unlike traditional software environments, SOAs enable
delivery of the same service to different customers with varied quality of service
(QoS) requirements [23]. Moreover, since negotiation is a dynamic and interactive
process, the user preferences could change over time. The user may change the
required value of a QoS attribute during the negotiation process, (as it learns new
information during the negotiation) or may even add or remove new QoS attributes.
Thus, the negotiation system should allow the user preference about the negotiation
process to be changed over time (REQ 4).

• Simultaneous negotiations. Since services are not stored or downloadable, the
market environment tends to be very dynamic [27]. The ability to create on-the-fly
dynamic solutions emphasizes the need of conducting simultaneous negotiation
(REQ 5) with multiple component services, owned by different parties, at the same
time. On one hand, it is necessary for the system to have a global view of all these
negotiations to support them properly. However since the preferences of the parties
involved in the negotiation could potentially change, it is beneficial for the system
to guide the behavior of each negotiation based on the responses generated by
other (simultaneous) negotiations. This allows the system to choose the party that
would result in the most profitable agreement.

• Support for dynamic selection of decision making models. Simultaneous nego-
tiations are desirable in volatile service markets to allow selection of the most
profitable agreements for the participants [27]. This entails that the participants
are equipped to change their strategies/decisions at runtime (REQ 6), based on
market dynamics and changing contexts [70]. The underlying strategy should be
robust enough so that it can adapt to different behaviors of participants, and utilize
“peripheral knowledge”. For instance, information relating to whether the par-
ticipant tends to concede, participant reputation, etc. may be used to strengthen
one’s negotiation capabilities [60, 61]. Similarly, in some contexts if a more prof-
itable offer is found, there should be a provision to decommit from the current
agreement [74].

Table 18.1 summarizes how the current negotiation systems in the literature per-
form on the above mentioned requirements. An ‘✓’ in a cell means that the cor-
responding proposal provides explicit support for the corresponding requirement,
whereas a ‘✗’ indicates that the feature is not supported and ‘n/a’ means that there
is no information available. The table shows that most of the existing solutions do
not do well when it comes to supporting multiple negotiations at the same time or
dynamic selection of decision making models. Moreover, none of the solutions pro-
vide any dependency modeling among different QoS components. Howsoever this
is is an extended requirement in composite solutions that often have dependent QoS
objectives. For example, if we were to have a composite solution consisting of taskA
and taskB and one of the objective was to have services that could handle a load of
1 million transactions per minute. What if we have multiple services offering such a
solution for taskA but could not find any service for taskB that could meet our current

466 K. Hashmi et al.

Table 18.1 Summary of automated negotiation systems

Authors REQ 1 REQ 2 REQ 3 REQ 4 REQ 5 REQ 6

Ashri et al. [6] ✓ ✓ n/a n/a n/a n/a
AuctionBot [91] ✗ ✗ ✓ ✓ ✗ ✗

Bartolini et al. [8] ✓ ✓ ✗ ✗ ✗ ✗

Benyoucef et al. [11] n/a ✓ ✓ n/a ✗ ✗

Bruns et al. [13] ✓ ✗ ✓ n/a ✓ ✗

Comuzzi et al. [19] ✗ ✓ ✓ ✗ ✗ ✗

Cremona [48] ✓ ✗ ✓ ✓ ✗ n/a
DynamiCS [84] ✓ ✓ ✓ ✗ ✗ ✗

Inspire [36] ✓ ✗ ✓ ✗ n/a ✗

Jonker et al. [34] ✓ n/a ✓ ✓ ✗ ✗

Kasbah [16] ✓ ✓ ✓ ✗ ✗ ✗

Kim et al. [37] ✓ ✓ ✗ ✗ ✗ ✗

Lecue et al. [43] ✗ ✓ ✗ ✗ ✗ ✓

Ludwig et al. [49] ✓ ✓ ✓ ✗ ✗ ✗

MAGNET [31] ✓ ✗ ✓ ✓ ✗ ✗

Marco et al. [20] ✓ ✓ ✗ ✓ ✗ ✗

NegoPlan [72] ✓ ✗ ✓ ✗ ✗ ✗

Negotiator [14] ✓ ✗ ✓ ✗ ✗ ✗

PANDA [27] ✓ ✓ ✓ ✓ ✗ ✗

Paurobally et al. [65] ✓ ✗ ✗ ✗ ✗ ✗

Rinderle et al. [68] ✓ ✓ ✗ ✗ ✗ ✗

Skogsrud et al. [77] ✗ ✓ ✓ ✓ ✗ ✓

Strobel [80] ✓ ✓ ✗ ✗ ✗ ✗

Tete-a-Tete [42] ✓ ✓ ✓ ✗ ✗ ✗

objective. It would then be more economical for the composite solution to downgrade
taskA to the level of taskB’s solution (since throughput of a system is a composite
function of its constituent services). Continuing with this hypothetical scenario, we
need the negotiation service to be able to simultaneously negotiate multiple services
having multiple objectives with multiple providers. Existing communication proto-
cols [4, 28, 43, 78, 86] lack such capabilities, and a new standard language that
could be used to pass on all these constraints and decision model to the negotiation
system is required. This leads us to look for a new solution that not only fairs better
in comparison with the existing solutions, but also supports all the requirements of
a SOA based negotiation system.

18.4.1 A framework for Web Service Negotiation

In this section, we provide an overview of our solution for the service negotia-
tion problem. Figure 18.3 presents a high level architecture of a negotiation system

18 Automated Negotiation Among Web services 467

Negotiation Service

Policy and Protocol Preprocessor

Policy and
Protocol DB

Negotiation
History/

Community DB

Negotiation Manager

Negotiation
Component

Manager

Negotiation
Strategy
Manager

Consumer/Provider Policy and Negotiation Attributes

Consumer
Negotiation
Component

Provider
Negotiation
Component

Contract Manager

Communication
Manager

Fig. 18.3 WebNeg system architecture

(defined as WebNeg) that is very flexible in terms of its functionality and the ser-
vices provided. It is primarily targeted to be invoked by the customer searching for a
compatible service from a list of service providers providing similar functionalities.
The client does not need to implement any negotiation specific component to use the
proposed service. The WebNeg architecture is compatible with both the negotiation
scenarios i.e., the negotiating participants could either provide their own negotiation
component or send all the necessary information to the service, that would handle
all the negotiation process. A brief overview of the major modules of the proposed
negotiation architecture is as follows:

18.4.1.1 Negotiation Service

The negotiation service layer acts as the interface of the whole system. This layer is
responsible for any and all external communication of the system. All the internal
components use this service to communicate with both the customer and provider
as well as with the community (to be discussed later). Customer invokes the service
providing its negotiation attributes, negotiation policy as well its decision model.
The service then communicates with potential providers and request their decision
model and policy attributes for the negotiation process.

468 K. Hashmi et al.

18.4.1.2 Policy and Protocol Preprocessor

This component is responsible for standardizing the inputs from the communicating
participants. Different participants may use different protocols for describing their
decision models and policy attributes. A generic component would ensure that these
heterogeneous participants could communicate with the negotiation service. After
receiving this data from the negotiation service this component then translates it
into a standard form which is used for the internal information exchange among
different components of the system. It then stores these participant communication
preference in the Policy and Protocol database. Negotiation service would then use
this information for any future communication with the participants. This generic
module would ensure that the system is compatible with any future communication
protocol and ensures that customer and providers using different communication
protocols could still negotiate service attributes and form service level agreements
(SLA).

18.4.1.3 Negotiation Manager

Once the service receives a request for negotiation from the customer along with
all the necessary data, it then proceeds to the negotiation step. Negotiation manager
would then query the Web service directory e.g., UDDI to search for the matching
service providers. The customer also has the option of providing its own list of
possible providers. Once it has the list of service providers providing similar services,
it then ranks these providers based on their ratings, trust and reputation values.

It uses the trust model based on the concept of community [53] where the reputa-
tion represents the perception of the users in that community regarding a service. So,
the rating of a service represents the average of all the rating provided to the commu-
nity for that individual service. For the newly starting service that does not have any
history, it uses the reputation bootstrapping mechanism defined in [55]. Community
is a centralized knowledge base that would be responsible for storing all the data
regarding different providers, including reputation, trust and past negotiations. The
community ensures that no private information is released to its users but could pub-
lish non identifiable data e.g., It does not give out any information about systems that
are using lets say ServiceA, but could tell the total number of the systems currently
running ServiceA. These pieces of information combined with the above mentioned
methods of trust and reputation assessment, help the negotiation manger in selecting
appropriate services, from a number of services providing similar functionalities.

18.4.1.4 Negotiation Component Manager

Since negotiation is a multi-party mechanism, the WebNeg system needs to spawn
separate components for each customer and provider. In the most basic scenario
at any given instance, the systems would have one customer and multiple provider

18 Automated Negotiation Among Web services 469

components. These components operate in their separate context and communicate
with their original service through the communication manager. The communication
manager is responsible for creating and manging these components.

18.4.1.5 Negotiation Strategy Manager

There are multiple strategies available for conducting efficient negotiations. One such
strategy is defined below in Sect. 18.4.2 (defined as WebNeg). Our system architecture
does not restrict the components to any one negotiation strategy. It has multiple
strategies for the components to choose from. Participants could opt for using any
strategy and could pass on this information as a policy to the system. If none is chosen
the system selects one or a combination of strategies for the negotiation process. The
negotiation strategy manager selects and binds each component with the appropriate
strategy and is responsible for implementing the component policies and decision
model in the context of the selected strategy as well as monitoring and storing any
transient data related to the negotiation process.

18.4.1.6 Communication Manager

All the external pre-contract communications are handled by this manager. The com-
ponent may communicate with their respective services for any decision model or
policy/guidance queries. Communication manager ensures that all the communica-
tion is related to the current negotiation and adheres to the negotiation service’s
policies.

18.4.1.7 Contract Manager

Once the system identifies perspective negotiation solution(s), it is presented to the
respective services, if they agree, contract manager then handles all the formal SLA
creation process. If the current selected provider does not agree on the solution, the
system would then try the next best available solution, until either an agreement is
achieved or the system has ran out of options. If the system could not find a mutually
agreeable solution, then the process would be termed as a failure and the customer
would be asked to revise its negotiation model.

18.4.2 WebNeg

We present a GA based approach to solving the Web service negotiation problem
[29]. We enhance the traditional GA with a new operator called Norm. Our proposed
approach complements the proposed negotiation framework that is designed towards

470 K. Hashmi et al.

Table 18.2 Definition of symbols

Symbol Definition

f j Fitness of the solution s for participant j
Fs Fitness of the solution s (for all participants)
C j The value of j th component of Customer’s vector
C j (min) The minimum allowed value of j th component of customer’s vector as provided

by the customer
C j (max) The maximum allowed value of j th component of customer’s vector as provided

by the customer
WC j The weight of j th component of customer’s vector as provided by the customer
Pi j The value of j th component of i th Provider’s vector
Pi j (min) The minimum allowed value of j th component of i th Provider’s vector as

provided by the provider
Pi j (max) The maximum allowed value of j th component of i th Provider’s vector as

provided by the provider
W Pi j The weight of j th component of i th Provider’s vector as provided by the provider
R j Rank for solution j in the system
Ni Value of Norm i in the system
Ei j The willingness of participant j to exchange objective i
Ai j Amount of resource i exchanged by Web service j
G Total number of generations
Cross Pj Cross over probability for service j
AugV ali j The value of i th objective to be added or subtracted for Web service j

a scenario where a customer is involved in simultaneous negotiations with multiple
providers. Each instance of communication among the customer and service provider
is private and holds a lot of information. The proposed Norm operator makes it
possible to share this private information among all the participants without revealing
the source of any of such information. This in turn helps all the agents to adapt quickly
and significantly reduces the search space by guiding the negotiation process toward
a mutually agreeable solution.

We propose a weighted sum genetic algorithm to support multi-party multi-
objective negotiation. All the Web services provide their respective QoS parameters
to be negotiated. These are called the component vector of a Web service. Each vec-
tor is accompanied by a decision model, i.e., ranges of all the QoS parameters as
well as their respective priorities also known as the weights. We assume that all the
participating Web services are able to articulate their objectives and prioritize them.
Table 18.2 lists the definition of symbols used henceforth.

Since all the Web services (participants) start negotiation from a different position,
they have different preferences for those objectives, and are described by how far
their current position is from the customer’s objective. All the Web services conform
to some constraints in the solution. For instance, any QoS vector cannot have a
negative value (as shown by Eq. 18.1). The QoS values lie between the maximum
and minimum allowable values set by the Web service (as shown by Eq. 18.2). A

18 Automated Negotiation Among Web services 471

repair algorithm is applied to GA after each operator, to ensure all these constraints
are met.

C j ≥ 0 , Pi j ≥ 0 (18.1)

C j (min) ≤ C j ≤ C j (max) and Pi j (min) ≤ Pi j ≤ Pi j (max) (18.2)

Each gene is a combination of customer and provider chromosomes. If we have
n objectives to be negotiated then each gene will have 2n chromosomes. The fitness
function is a multi-step calculation that evaluates the level of disagreement between
the negotiating Web services. A weighted sum approach is used to combine these
multiple QoS parameters (objectives). We use a distance function to measure the
difference among the proposed solutions of both the customer and provider Web
services. Thus, lower fitness values are desired as they translate to lesser disagreement
among the participants. Similarly, lower values translate to higher ranks for the
solutions among the solution space. Ranks are then used for selection of subsequent
steps of the GA [88]. Each solution represents a probable distribution of values that
may be agreed upon by the other Web service in the negotiation. The fitness value
of a solution is calculated as follows.

Δi j = |C j − Pi j |
C j

(18.3)

f j =
n∑

j=0

(WC j ∗ Δi j + W Pi j ∗ Δi j) (18.4)

Fs = min
G∑

j=0

(f j) (18.5)

Pareto optimality is not enforced after each generation as it is possible for a Web
service to accept a less favorable solution for the time being (in the negotiation
process) for a better solution in the long run. However, a secondary population of
solutions is kept which is updated after each iteration. This secondary population
or Elitism is a an important concept in genetic searches [7, 98]. The probabilistic
nature of GA does not guarantee that the best solutions would be preserved in the
final generation. Hence a secondary population of best solutions is kept through all
generations. Below is the algorithm used to determine the optimal solution. Details
follow.

472 K. Hashmi et al.

Set generation number g equal to zero (g = 0)
Generate initial population
Calculate fitness for each member
Store the most fit solution in the secondary population
Rank the solutions
Apply Norm
Select members for crossover using Roulette-Wheel selection method
Perform crossover
Perform random mutations
IF g = G (last generation)

Ensure Pareto optimality
exit

ELSE
Set g = g + 1
Set Go to step 3

End Algorithm

18.4.2.1 Norm Operator

A new operator Norm is implemented to improve the performance of GA and to
simulate the exchange of resources based on the common knowledge of the society
in a negotiation scenario. The Norm operator is based on the observation that in each
society people follow certain trends or norms to conduct negotiations. These norms
are either informed by the environment or are discovered by the population based on
the prior experiences. These norms are transfered through generations and different
people follow different norms. Often people are inclined to abandon or follow a new
norm on the basis of the facts if they think they are being better off following or
deviating from them. Most helpful norms tend to accumulate more followers, which
in turn re-enforces that norm. People tend to abandon less useful norms in the favor
of useful ones. Once in a while people just hop around trying to find out what works
the best for them. These norms serve as a guide for achieving their desired goals.
Figure 18.4 shows a scenario that depicts the concept of norm. Assume we have
n norms (information sources) in the society and k population subsets. Set 1 may
follow Norm 1, Set 2 may follow Norm n and Set m may choose to follow Norm
2 while others may not choose to follow any Norm. The selection of subsets and
Norm selections are random. Population in Set 1 is effected by the values of Norm 1
and they in turn effect the values of the Norm. This cycle makes sure that beneficial
values are prevailed in the Norms.

We have the Norm operator behavior defined above in the GA, so that it takes
less time to find the solution and to reduce the search space. Each QoS negotiation
criteria is represented as a norm and certain members of the population follow a
certain norm. After each generation, the followers update the impact factor of their
respective norm. If increasing the value of the norm resulted in a better overall fitness
value for the member of population, it would influence the norm into increasing its

18 Automated Negotiation Among Web services 473

Norm 1 Norm 2 Norm n

Set 1

Set 2

Set m

Set k

Set j

Total Population
Subset of Population

Fig. 18.4 Norm operator in relation to population sets

value. The increase is dependent on the difference of current and previous values
of that objective of the reporting individual and the current absolute value of that
objective. Both customers and providers share the same influence values of norms.
This is an indirect information source for the customer about providers decision
model and vice versa. Ideally, we will have one customer and n providers, hence
sharing these impact factors does not reveal any trade secrets. These values have the
bias of n+1 agents and are averaged out.

Norm is implemented for the exchange of recourses among different participant.
Exchange must occur between two distinct objectives, participants can trade some
or all of their available objectives and there is at most one exchange per pair per
generation. Exchange is implemented probabilistically. Each member of population
is reviewed for possible exchange. The participants and objectives involved in the
exchange are selected randomly. Then it is decided if an exchange will actually occur
based on the willingness of participants. The exchange only occurs if both randomly
selected participants are willing to make an exchange. Essentially, willingness to
exchange is higher if a participant has more of an objective than he ideally wants
and if the information source that he is following is influencing a lower value of
that specific objective. If the current Web service is following Normm then the
willingness to exchange is calculated as

Ei j = | Ci

Nm
| (18.6)

and the amount exchanged would be

Ai j = (1 − WCi)|1 − Ci

Nm
| (18.7)

474 K. Hashmi et al.

If the current Web service is not following any Norm then the willingness to
exchange is calculated as

Ei j = | Ci

Pi j
| (18.8)

and the amount exchanged would be

Ai j = (1 − WCi)|1 − Ci

Pi j
| (18.9)

18.4.2.2 Crossover and Mutation

The crossover operator is invoked after applying the Norm operator. Roulette-wheel
selection is used for selecting solution pairs for crossover. Roulette-wheel selection
is analogous to a roulette wheel where the probability an individual is selected is
proportional to its fitness [32].

Solution rankings are used to implement selection. The population is augmented
so that solutions with better ranks are more prevalent in the population. We use
both ranks and fitness values for our selection technique because ranking indicates
the performance of solutions relative to others in the population and minimizes the
effect of large disparities in fitness values within the population [88]. Augmentation
of the population for roulette-wheel selection is performed as follows:

Cross Pj = 1 − 1

R j
(R j − 1) (18.10)

Crossover rate is used to determine if crossover will actually occur or if the selected
solution will simply be copied over to the next generation. If it is determined that
crossover will occur, uniform crossover is implemented on the pair. It has been proved
that custom operators provide superior performance for real-valued problems [90].

Mutation is the last operator to act on the population of solutions and is also applied
randomly to the elements of the solution, in accordance with the experimentally
predetermined mutation rate. A random number is generated for each member in the
population and compared to the mutation rate. If the random number is less than or
equal to the mutation rate, mutation will occur in that solution. Mutation here involves
arbitrarily changing one element of the negotiation vector and then implementing a
repair algorithm to ensure that objective values lies within the valid range for that
agent.

18.4.2.3 Study and Results

To determine the efficiency to GA with the Norm operator we performed experiments
covering different scenarios. We compared the performance of GA with Norm with

18 Automated Negotiation Among Web services 475

other methods of solving similar problems. We used (1) a traditional GA with only
mutation and crossover operator, (2) a random search and (3) a hill-climber. We used
experiments to determine the GA parameters such as population size, number of
generations, crossover rate and mutation rate.

Traditional GA: A traditional GA was implemented by removing the Norm oper-
ator. It only uses the simple GA operators of crossover and mutation. All the GA
parameters are same as that of GA with Norm operator.

Random Search: Random search simulates the behavior of arbitrarily exploring
the search space in the hope of finding a solution. It is applied on one half of the gene at
a time. Either the customer’s Web service gene or provider’s Web service gene para-
meters are augmented. This augmentation likelihood is determined randomly. Once
selected, a random number is generated for each QoS parameter that lies between
the allowable range for that participant. Then all the numbers are aggregated by sub-
tracting their respective minimum values. This summation is then averaged out and
either added or subtracted randomly to all the parameters. Then the repair algorithm
is applied to ensure that all the constraints from Eqs. 18.1–18.3 are held. Then we
add this new solution of our population. The population is then ranked according
to their fitness values and members with higher fitness values are taken to the next
generation.

Hill-Climber: Hill-climber uses the concept of randomly exchanging the QoS
values. It is somewhat similar to the Norm operator as both use Eq. 18.10 to determine
the amount of the objective to be exchanged. However, the GA with Norm uses either
Eq. 18.7 or Eq. 18.9 to determine if the exchange will occur, while in hill-climber
it is done randomly. Once a gene is randomly selected, the exchange takes place.
However, it is guaranteed that only one objective per gene is exchanged and that once
selected, that gene does not participate in any other exchange for that generation.
We create the initial population and rank them according to their fitness values.
We then perform crossover using Roulette-Wheel selection method. Then we apply
the mutation operator. After we are done with the basic GA operators we apply
the Hill Climbing operator on the population. The repair algorithm ensures that all
the constraints from Eqs. 18.1–18.3 are held. All the GA parameters are same as that
of GA with Norm operator.

Experiment Environment

Our development environment consisted of a Windows server 2008 (SP2) based
Quad core machine with 8.0 GB of ram. We developed 1 client and 50 provider Web
services running on Microsoft .Net version 3.5 to simulate multi-party negotiations.
A large number of similar providers are chosen to show the applicability/scalability
of the proposed solution. The client negotiated four QoS components of reliability,
availability, throughput and accessibility with the providers. We performed 200 iter-
ations consisting of 500 generations each, for all the four algorithms and analyzed
the results for efficiency and completeness.

476 K. Hashmi et al.

Fig. 18.5 Sample representation of multi-party negotiation

Results

Figure 18.5 shows results of a representative run of the four algorithms after each
generation. Note that these are the actual output values without Elitism [7, 98]. We
have plotted the output of 500 generations (X-axis) against the degree of disagreement
(Y-axis) among the client and provider Web services. Lower values of degree of
disagreement are desired as they show a higher chance of reaching an agreement
e.g., Assume that Web service A wants a solution that has an Availability value of
98 % and the provider B presents a solution that has an Availability value of 95 %.
The degree of disagreement among the A and B is small and hence they are more
likely to reach a solution. Note that both the customer and provider must have some
overlapping search space values for the algorithm to identify a solution. If both
the customer and provider have mutually exclusive ranges of QoS parameters, the
algorithm fails and no solution is returned.

The graph confirms the assumption that the probabilistic nature of GA does not
guarantee that the best solution will be passed on to the next generation. Hence, using
Elitism to ensure Pareto optimality is an important factor. Our proposed technique
(GA with Norm) takes almost 1/4th the time to reach an agreeable solution. We can
see in the graph that Norm found a mutually agreeable solution after 100 generations,
where as Hill Climber took 475 generations, Traditional GA took 450 generations
and Random Search took 375 generations to find their respective best solutions.
Hence, we can find the solution faster with our proposed approach. Similarly our
proposed approach finds a lot better solution than any of the other techniques.

The probabilistic nature of GA does not guarantee the same solution every time.
Hence, it is appropriate to analyze the performance of GA over multiple rounds.
Table 18.3 shows that average of 200 runs for all four algorithms.

We can see that the best solution of 0.00002 returned by Norm is far better that
best solution returned by any other technique. Similarly Traditional GA performed
better than the Hill Climber in finding a more agreeable solution. As far as the worst
solution is concerned, Norm still performed better than any of the other techniques.

18 Automated Negotiation Among Web services 477

Table 18.3 Average results over 200 iterations

Random search Traditional GA Hill climber Norm

Min 0.00568 0.00027 0.00041 0.00002
Max 0.06153 0.08547 0.05171 0.03163
Mean 0.02718 0.02192 0.01461 0.00925
Std. dev 0.01663 0.02177 0.01668 0.01157

The worst solution of 0.03163 returned by Norm is almost twice as good as that of Hill
Climber, the second best technique. The average solution returned by Norm shows a
remarkable improvement from the next best i.e., Hill Climber technique, depicting
that the Norm also has the best average case performance among the compared
techniques. Similarly our proposed technique has the lowest standard deviation of
0.01157. Lowest mean value combined with the lowest standard deviation indicates
that our technique performs consistently better than other techniques.

These results suggest that our approach outperforms other compared methods
in terms of finding the optimal solution in the amount of time it takes to find that
solution.

18.5 Conclusion and Future Directions

Designing an automated, flexible and efficient negotiation system that facilitates the
Web service selection process, is challenging. None of the existing solutions meet all
the requirements for a completely automated solution for Web service negotiation.
One of the limitations of the presented techniques involve the assumption of a static
environment, where the Web service procurement time window is so small that the
user preferences do not change during the course of negotiations. Secondly, most
of the solutions use a priori decision model articulation, which requires that all the
negotiating participants can identify and share their preferences at the beginning of
the negotiation. However, some of these limitations involved with the static envi-
ronment assumption could be overcome, if participants decide to provide their own
negotiating component rather than only articulating their preferences. However, this
limits the effectiveness of sharing private information. Therefore, we need to design
a negotiation system that can support multiple communication protocols for enabling
interactions among different customers and providers as well as supporting multiple
negotiation strategies for an optimized solution. The solution should support mul-
tiple simultaneous negotiations and provide mechanisms to model the dependency
relationships among different component services to achieve an optimal solution.

In this chapter we have presented the framework for Web services negotiation
to enable customers and providers negotiating QoS parameters in SLA’s. The pre-
sented architecture uses a GA based approach to conduct multi-party multi-objective
negotiations. Our approach integrates the concepts of Pareto optimality and multiple
decision making preferences of the participants. We have enhanced the traditional

478 K. Hashmi et al.

GA with a new operator called Norm. This operator is based on the concept of cumu-
lative knowledge of the society over a period of time. This accumulated knowledge
influences the decision making process of negotiating participants. Furthermore,
Norm provides a platform for sharing private information of all the participants of
the negotiation in such a manner that allows for using this shared knowledge for the
overall gain of the society, without revealing the identity of information providers.
We have compared Norm’s performance with similar optimization techniques i.e.,
Traditional GA, Hill-Climbing and Random Search. The results show that our pro-
posed technique performs better than any of the above mentioned techniques, and
that applying a genetic algorithm based approach to complex negotiation for Web
service composition problems is a viable option.

We are currently investigating on enhancing the effectiveness of private informa-
tion sharing by exploring the possibilities of having people follow multiple infor-
mation sources rather than following just one source. This is motivated by the fact
that composite solutions often have dependent objectives. We want to further extend
our approach to incorporate these dependencies among the different QoS parameters
of multiple services to formulate optimized solutions. We need to be able to use
the information sources of Norm operator to share such information. We need the
negotiation service to be able to simultaneously negotiate multiple service having
multiple objectives with multiple providers. Existing communication protocols [4,
28, 43, 78, 86] lack such capabilities. This requires a new standard language that
could be used to pass on all these dependency constraints and decision model to
WebNeg. We are exploring the options of extending WS-Negotiation [30] and WS-
AgreementNegotiation [89] by adding the support of complex logical functions for
articulating these and similar complex decision models. We are also working on
a solution that moves away from the centralized approach in the favor of a more
adaptive distributed model.

References

1. Alhosban, A., Hashmi, K., Malik, Z., Medjahed, B.: Assessing fault occurrence likelihood
for service-oriented systems. In: Proceedings of the 11th International Conference on Web,
Engineering, pp. 59–73 (2011)

2. Alhosban, A., Hashmi, K., Malik, Z., Medjahed, B.: S2r: a semantic web service similarity and
ranking approach. Int. J. Next-Gener. Comput. 3(2) (2012). http://perpetualinnovation.net/ojs/
index.php/ijngc/article/view/145

3. Andreoli, J., Arregui, D., Pacull, F., Rivire, M., Vion-dury, J., Willamowski, J.: Clfmekano: a
framework for building virtual-enterprise applications. In: Proceedings of the EDOC’99 (1999)

4. Andreoli, J.M., Castellani, S.: Towards a flexible middleware negotiation facility for distributed
components. In: International Workshop on Database and Expert Systems Applications 0732
(2001)

5. Andrieux, A., Dan, A., Keahy, K., Ludwig, H., Rofrano, J.: From ws-agreement to sla
negotiation (2004). http://www.mcs.anl.gov/keahey/Meetings/GRAAP/WS-AgreementNegot-
iabilityConstrains.pdf

6. Ashri, R., Rahwan, I., Luck, M.: Architectures for negotiating agents. In: Proceedings of the
3rd Central and Eastern European conference on Multi-agent systems, pp. 136–146 (2003)

http://perpetualinnovation.net/ojs/index.php/ijngc/article/view/145
http://perpetualinnovation.net/ojs/index.php/ijngc/article/view/145

18 Automated Negotiation Among Web services 479

7. Baker, J.E.: Adaptive selection methods for genetic algorithms. In: Proceedings of the 1st
International Conference on Genetic Algorithms, pp. 101–111 (1985)

8. Bartolini, C., Preist, C., Jennings, N.R.: A software framework for automated negotiation. In:
SELMAS, Lecture Notes in Computer Science, vol. 3390, pp. 213–235. Springer (2004)

9. Beheshti, R., Rahmani, A.T.: A multi-objective genetic algorithm method to support multi-
agent negotiations. In: Second International Conference on Future Information Technology
and Management Engineering, 2009. FITME ’09, pp. 596–599 (2009). doi:10.1109/FITME.
2009.154

10. Benbernou, S., Brandic, I., Cappiello, C., Carro, M., Comuzzi, M., Kertész, A., Kritikos, K.,
Parkin, M., Pernici, B., Plebani, P.: Modeling and negotiating service quality, in service research
challenges and solutions for the future internet—s-cube—towards engineering, managing and
adapting service-based systems. In: Papazoglou, M.P., Pohl, K., Parkin, M., Metzger A. (eds.)
S-CUBE Book, Lecture Notes in Computer Science, vol. 6500, pp. 157–208. Springer (2010)

11. Benyoucef, M., Verrons, M.H.: Configurable enegotiation systems for large scale and trans-
parent decision making. Group Decis Negot 17(3), 211–224 (2008)

12. Brandl, R., Andreoli, J., Castellani, S.: Ubiquitous negotiation games: a case study. In: Pro-
ceedings of the DEXA e-negotiations, Workshop (2003)

13. Bruns, G., Cortes, M.: A hierarchical approach to service negotiation. In: IEEE International
Conference on Web Services, pp. 460–467 (2011)

14. Bui, T.X., Shakun, M.F.: Negotiation processes, evolutionary systems design, and negotiator.
Group Decis Negot 5(10), 339–353 (1996)

15. Castellani, S., Andreoli, J., Bratu, M., Boissier, O., Alloui, I., Megzari, K.: E-alliance: a nego-
tiation infrastructure for virtual alliances (2002)

16. Chavez, A., Maes, P.: Kasbah: an agent marketplace for buying and selling goods. In: Proceed-
ings of the First International Conference on the Practical Application of Intelligent Agents
and Multi-Agent Technology, pp. 75–90 (1996)

17. Cheung, S.C., Hung, P.C.K., Chiu, D.K.: On the e-negotiation of unmatched logrolling views.
In: Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS-36)
(2003)

18. Choi, S.P.M., Liu, J., Chan, S.: A genetic agent-based negotiation system. Comput. Netw. 37(2),
195–204 (2001)

19. Comuzzi, M., Pernici, B.: Negotiation support for web service selection. In: TES (2004)
20. Comuzzi, M., Pernici, B.: An architecture for flexible web service qos negotiation. In: Pro-

ceedings of the Ninth IEEE International EDOC Enterprise Computing Conference, pp. 70–82
(2005)

21. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the
web services web: an introduction to soap, wsdl, and uddi. Internet Comput. IEEE 6(2), 86–93
(2002)

22. Deng, M.D., Li, J.: An agent negotiation system based on adaptive genetic algorithm. In: 2009
5th International Conference on Wireless Communications Networking and Mobile Comput-
ing, vol. 18, pp. 5307–5310 (2009)

23. Elfatatry, A., Layzell, P.J.: A negotiation description language. Softw. Pract. Exp. 35(4), 323–
343 (2005)

24. Faratin, P., Sierra, C., Jennings, R.: Negotiation decision functions for autonomous agents.
Robot. Auton. Syst. 24(3–4), 159–182 (1998). http://eprints.ecs.soton.ac.uk/2117/

25. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in
automated negotiations. Artif. Intell. 142, 205–237 (2002)

26. Freuder, E.C., O’Sullivan, B.: Modeling and generating tradeoffs for constraint-based config-
uration (2001)

27. Gimpel, H., Ludwig, H., Dan, A., Kearney, B.: Panda: specifying policies for automated nego-
tiations of service contracts, pp. 287–302 (2003)

28. (GRAAP) G.R.A.A.P.: Wsagreement (2007). http://www.ogf.org/documents/GFD.107.pdf
29. Hashmi, K., Alhosban, A., Malik, Z., Medjahed, B.: Webneg: A genetic algorithm based

approach for service negotiation. In: Proceedings of the 2011 IEEE International Conference

http://dx.doi.org/10.1109/FITME.2009.154
http://dx.doi.org/10.1109/FITME.2009.154
http://eprints.ecs.soton.ac.uk/2117/
http://www.ogf.org/documents/GFD.107.pdf

480 K. Hashmi et al.

on Web Services, ICWS ’11, pp. 105–112. IEEE Computer Society, Washington, DC, USA
(2011). doi:10.1109/ICWS.2011.55.http://dx.doi.org/10.1109/ICWS.2011.55

30. Hung, P.C.K., Li, H., Jeng, J.: Ws-negotiation: an overview of research issues. In: Proceedings
of the 37th Hawaii International Conference on System Sciences (2004)

31. Jaiswal, A., Kim, Y., Gini, M.L.: Design and implementation of a secure multi-agent market-
place. Electron. Commer. Res. Appl. 3(4), 355–368 (2004)

32. James, E.B.: Reducing bias and inefficiency in the selection algorithm. In: Proceedings of
the Second International Conference on Genetic Algorithms and their application, pp. 14–21
(1987)

33. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M.: Automated
negotiation: prospects, methods and challenges. Int. J. Group Decis. Negot. 10(2), 199–215
(2001). http://eprints.ecs.soton.ac.uk/4231/

34. Jonker, C., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using
incomplete preference information. Auton. Agents MultiAgent Syst. 15, 221–252 (2007)

35. Keller, A.: openccs: Computing center software. Technical report, Aderborn Center for Parallel
Computing (2007)

36. Kersten, G.E., Noronha, S.J.: Www based negotiation support: design, implementation and
use. Decis. Support Syst. 25(2), 135–154 (1999)

37. Kim, J., Segev, A.: A web services-enabled marketplace architecture for negotiation process
management. Decis. Support Syst. 40, 71–87 (2005)

38. Kit, C.M., Woo, C.C.: A speech-act-based negotiation protocol: design, implementation, and
test use. ACM Trans. Inf. Syst. 12(4), 360–382 (1994)

39. Kowalczyk, R.: Fuzzy e-negotiation agents. Soft Computing—a fusion of foundations, method-
ologies and applications 6, 337–347 (2002). doi:10.1007/s00500-002-0187-5

40. Kowalczyk, R., Bui, V.: Jfsolver: a tool for modeling and solving fuzzy constraint satisfaction
problems. In: FUZZ-IEEE, pp. 304–307 (2001)

41. Kritikos, K., Plexousakis, D.: Requirements for qos-based web service description and discov-
ery. IEEE Trans. Serv. Comput. 2(4), 320–337 (2009). doi:10.1109/TSC.2009.26

42. Lab, M.M.: Teteatete (2000). Online: ecommerce.media.mit.edu.
43. Lecue, F., Wajid, U., Mehandjiev, N.: Negotiating robustness in semanticweb service compo-

sition. In: Seventh IEEE European Conference on Web Services (2009)
44. Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., N.Tantawi, A., Youssef, A.: Performance

management for cluster based web services. In: IFIP/IEEE 8th International Symposium on
Integrated Network Management (2003)

45. Li, C., Giampapa, J., Sycara, K.: Bilateral negotiation decisions with uncertain dynamic outside
options. IEEE Trans. Syst. Man Cybern. 36(1), 45–55 (2006)

46. Lin, C., Lu, S., Lai, Z., Chebotko, A., Fei, X., Hua, J., Fotouhi, F.: Service-oriented architecture
for view: a visual scientific workflow management system. In: SCC ’08, Proceedings of the
2008 IEEE International Conference on Services Computing, pp. 335–342. IEEE Computer
Society, Washington, DC, USA (2008). http://dx.doi.org/10.1109/SCC.2008.118

47. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in
electronic commerce. Group Decis. Negot. 12(1), 31–56 (2004)

48. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for creation and
monitoring of ws-agreements. In: 2nd International Conference on Service Oriented Computing
(2004)

49. Ludwig, A., Braun, P., Kowalczyk, R., Franczyk, B.: A framework for automated negotiation
of service level agreements in services grids. In: Bussler, C., Haller, A. (eds.) Business Process
Management Workshops 2005, vol. 3812, pp. 89–101 (2005)

50. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H., Lee, J.: A fuzzy constraint based model for
bilateral multi-issue negotiations in semi-competitive environments. Artif. Intell. J. 148(1–2),
53–102 (2003)

51. Luo, X., Jennings, N.R., Shadbolt, N.: Acquiring user strategies and preferences for negotiating
agents: a default then adjust method. Int. J. Human Comput. Stud. 64(4), 304–321 (2006)

http://dx.doi.org/10.1109/ICWS.2011.55.
http://dx.doi.org/10.1109/ICWS.2011.55
http://eprints.ecs.soton.ac.uk/4231/
http://dx.doi.org/10.1007/s00500-002-0187-5
http://dx.doi.org/10.1109/TSC.2009.26
http://dx.doi.org/10.1109/SCC.2008.118

18 Automated Negotiation Among Web services 481

52. Maasland, E., Onderstal, S.: Going, going, gone! a swift tour of auction theory and its appli-
cations. De Economist 154, 197–249 (2006). http://dx.doi.org/10.1007/s10645-006-9002-5.
doi:10.1007/s10645-006-9002-5

53. Malik, Z., Bouguettaya, A.: Evaluating rater credibility for reputation assessment of web ser-
vices. In: WISE’07: Proceedings of the 8th International Conference on Web Information
Systems Engineering, pp. 38–49. Springer (2007)

54. Malik, Z., Bouguettaya, A.: Rateweb: reputation assessment for trust establishment among web
services. VLDB J. 18(4), 885–911 (2009). doi:dx.doi.org/10.1007/s00778-009-0138-1

55. Malik, Z., Bouguettaya, A.: Reputation bootstrapping for trust establishment among web ser-
vices. Internet Comput. IEEE 13(1), 40–47 (2009)

56. Matwin, S., Szapiro, T., Haigh, K.: Genetic algorithms approach to a negotiation support
system. IEEE Trans. Syst. Man Cybern 21(1), 102–114 (1991)

57. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-end support for qos-aware service
selection, binding, and mediation in vresco. IEEE Trans. Serv. Comput. 3(3), 193–205 (2010)

58. Mobach, D., Overeinder, B., Brazier, F.: A ws-agreement based resource negotiation framework
for mobile agents. Scalable Comput. Pract. Exp. 7(1), pp. 23–26 (2006)

59. Mudgal, C., Vassileva, J.: Bilateral negotiation with incomplete and uncertain information: a
decision-theoretic approach using a model of the opponent. In: Klusch, M., Kerschberg, L.
(Eds.) Cooperative Information Agents IV, LNAI, pp. 107–118. Springer-Verlag (2000)

60. Nguyen, T.D., Jennings, N.R.: Bayesian learning in negotiation. Int. J. Hum.-Comput. Stud.
48(1), pp. 125–141 (1998)

61. Nguyen, T.D., Jennings, N.R.: Managing commitments in multiple concurrent negotiations.
Electron. Commer. Res. Appl. 4(4), 362–376 (2005)

62. Niu, X., Wang, S.: Genetic algorithm for automatic negotiation based on agent. In: 7th World
Congress on Intelligent Control and Automation, 2008. WCICA 2008, pp. 3834–3838 (2008)

63. Patankar, V., Hewett, R.: Automated negotiation in web service procurement. In: Proceedings
of the Third International Conference on Internet and Web Applications and Services (2008)

64. Paurobally, S., Aart, C.V., Tamma, V., Wooldridge, M., Hapert, P.V.: Web services negotiation
in an insurance grid. In: Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems (2007)

65. Paurobally, S., Tamma, V., Wooldrdige, M.: A framework for web service negotiation. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 2(4) (2007)

66. Pichot, A., Waldrich, O., Ziegler, W., Wieder, P.: Towards dynamic service level agreement
negotiation: an approach based on ws-agreement. In: 4th International Conference on Web
Information Systems and Technologies, WEBIST 2008, Funchal, Madeira, Portugal (2008)

67. Preist, C., Bartolini, C., Byde, A.: Agentbased service composition through simultaneous nego-
tiation in forward and reverse auctions. In: Proceedings of the 4th ACM conference on Elec-
tronic commerce, pp. 55–63. ACM (2003)

68. Rinderle, S., Benyoucef, M.: Towards the automation of e-negotiation processes based on web
services a modeling approach. In: WISE 05, pp. 443–453 (2005)

69. Rodrguez-Aguilar, J.A., Giovanucci, A., Reyes-Moro, A., Noria, F.X., Cerquides, J.: Agent-
based decision support for actual-world procurement scenarios. In: Proceedings of the
IEEE/WIC International Conference on Intelligent Agent Technology (2003)

70. Ros, R., Sierra, C.: A negotiation meta strategy combining trade-off and concession moves. J.
Auton. Agent Multiagent Syst. 12, 163–181 (2006)

71. Rubenstein-Montano, B., Malaga, R.A.: A weighted sum genetic algorithm to support multiple-
party multiple-objective negotiations. IEEE Trans. Evol. Comput. 6(4), 366–377 (2002)

72. Matwin, S., Szpakowicz, S., Koperczak, Z.: Negoplan: an expert system shell for negotiation
support. IEEE Expert 4(4), 50–62 (1996)

73. Sandholm, T., Suri, S.: Side constraints and non-price attributes in markets. In: International
Joint Conference on Artificial Intelligence (IJCAI), (2001)

74. Sandholm, T.W., Lesser, V.R.: Leveled commitment contracts and strategic breach. Games
Econ. Behav. 35, 212–270 (2001)

http://dx.doi.org/10.1007/s10645-006-9002-5
http://dx.doi.org/10.1007/s10645-006-9002-5
http://dx.doi.org/dx.doi.org/10.1007/s00778-009-0138-1

482 K. Hashmi et al.

75. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Winner determination in combinatorial auction
generalizations. In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (2002)

76. Sim, K.M., Guo, Y., Shi, B.: Blgan: Bayesian learning and genetic algorithm for supporting
negotiation with incomplete information. IEEE Trans. Syst. Man Cybern. B 39(1), 198–211
(2009)

77. Skogsrud, H., Motahari-Nezhad, H., Benatallah, B., Casati, F.: Modeling trust negotiation for
web services. Computer 42(2), 54–61 (2009). doi:10.1109/MC.2009.56

78. Smith, R.G.: The contract net protocol: high-level communication and control in a distributed
problem solver. IEEE Trans. Comput. C-29(12), 1104-1113 (1980)

79. Standard, O.: Wsbpel (2005). http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
80. Strobel, M.: Design of roles and protocols for electronic negotiations. Electron. Commer. Res.

1, 335–353 (2001)
81. Teich, J., Wallenius, H., Wallenius, J., Zaitsev, A.: An internet-based procedure for reverse

auctions combining aspects of negotiations and auctions. In: DEXA ’00: Proceedings of the
11th International Workshop on Database and Expert Systems Applications (2000)

82. Tosic, V., Bernard, P., Kruti, P., Babak, E., Wei, M.: Management applications of the web
service offerings language (wsol). Inf. Syst. 30(7), 564–586 (2005)

83. Treiber, M., Andrikopoulos, V., Dustdar, S.: Calculating service fitness in service networks.
In: ICSOC/ServiceWave Workshops, pp. 283–292 (2009)

84. Tu, M., Seebode, C., Griffel, F., Lamersdorf, W.: Dynamics: an actor-based framework for
negotiating mobile agents 1, 101–117 (2001)

85. Tu, M.T., Wolff, E., Lamersdorf, W.: Genetic algorithms for automated negotiations: a fsm-
based application approach. In: Proceedings of the 11th International Workshop on Database
and Expert Systems Applications, pp. 1029–1033 (2000)

86. (W3C) W.W.W.C.: Wspolicy (2006). http://www.w3.org/Submission/WS-Policy/.
87. Waldrich, O., Wieder, P., Ziegler, W.: A meta-scheduling service for co-allocating arbitrary

types of resources. In: Parallel Processing and Applied Mathematics. Lecture Notes in Com-
puter Science, vol. 3911/2006. Springer, Berlin (2006)

88. Whitley, D.: The genitor algorithm and selection pressure: why rank-based allocation of repro-
ductive trials is best. In: Proceedings of the third international conference on Genetic algorithms,
pp. 116–121. Morgan Kaufmann Publishers Inc., San Francisco (1989)

89. Wieder, P.: Ws-agreementnegotiation (2010). http://forge.gridforum.org/sf/go/doc15831
90. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1(1), 67–82 (1997)
91. Wurman, P.R., Wellman, M.P., Walsh, W.E.: The michigan internet auctionbot: a configurable

auction. In: Second International Conference On Autonomous Agents, pp. 301–308 (1998)
92. Yao, Y., Yang, F., Su, S.: Evaluating proposals in web services negotiation. In: Computer and

Information Sciences ISCIS 2006, pp. 613–621. Springer, Berlin (2006)
93. Yee, G., Korba, L.: Bilateral e-services negotiation under uncertainty. In: Proceedings of the

2003 Symposium on Applications and the Internet (2003)
94. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web services: issues,

solutions, and directions. VLDB J. 17(3), 537–572 (2008). doi:dx.doi.org/10.1007/s00778-
006-0020-3

95. Zarras, A., Vassiliadis, P., Issarny, V.: Model-driven dependability analysis of webservices. In:
Web Services, International Symposium on Distributed Objects and Applications, pp. 69–79
(2004)

96. Zhai, D., Wu, Y., Lu, J., Yan, F.: A fuzzy negotiation model with genetic algorithms. In: I3E
(1)’07, pp. 35–43 (2007)

97. Zhu, J.: A buyer-seller game model for selection and negotiation of purchasing bids: exten-
sions and new models. Eur. J. Oper. Res. 154(1), 150–156 (2004). http://EconPapers.repec.
org/RePEc:eee:ejores:v:154:y:2004:i:1:p:150--156

98. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empir-
ical results. Evol. Comput. 8, 173–195 (2000)

http://dx.doi.org/10.1109/MC.2009.56
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
http://www.w3.org/Submission/WS-Policy/.
http://forge.gridforum.org/sf/go/doc15831
http://dx.doi.org/dx.doi.org/10.1007/s00778-006-0020-3
http://dx.doi.org/dx.doi.org/10.1007/s00778-006-0020-3
http://EconPapers.repec.org/RePEc:eee:ejores:v:154:y:2004:i:1:p:150--156
http://EconPapers.repec.org/RePEc:eee:ejores:v:154:y:2004:i:1:p:150--156

	18 Automated Negotiation Among Web services
	18.1 Introduction
	18.1.1 Service Oriented Architecture
	18.1.2 QoS Specification
	18.1.3 Negotiation

	18.2 Communication Protocols for Negotiation
	18.2.1 WS-Agreement
	18.2.2 Contract Net
	18.2.3 WS-Policy
	18.2.4 WS-Negotiation
	18.2.5 Xplore

	18.3 Negotiation Agents
	18.3.1 Auction Based Agents
	18.3.2 Trade-Off Based Negotiation Agents
	18.3.3 Negotiation with Uncertain Data
	18.3.4 Genetic Algorithm Based Negotiations
	18.3.5 Combinatorial Negotiations

	18.4 Discussion
	18.4.1 A framework for Web Service Negotiation
	18.4.2 WebNeg

	18.5 Conclusion and Future Directions
	References

