
Chapter 17
Adaptive Composition and QoS Optimization
of Conversational Services Through Graph
Planning Encoding

Min Chen, Pascal Poizat and Yuhong Yan

Abstract Service-Oriented Computing supports description, publication, discov-
ery, composition of services as well as QoS optimization of service composition
to fulfil end-user needs. Yet, service composition processes commonly assume that
service descriptions and user needs share the same abstraction level, and that ser-
vices have been pre-designed to integrate. To release these strong assumptions and
to augment the possibilities of composition, we add adaptation features into the ser-
vice composition process using semantic structures for exchanged data, for service
functionalities, and for user needs. Graph planning encodings enable us to retrieve
service compositions efficiently. Our composition technique supports conversations
for both services and user needs, and it is fully automated and can interact with
state-of-the-art graph planning tools. In addition to service composition, QoS opti-
mization aims at satisfying end-user needs about quality requirements. However,
most existing work on QoS optimization is studied on the assumption that services
are stateless. To obtain a solution with the best QoS value, we propose a QoS-aware
service composition method to achieve QoS optimization during the adaptive com-
position over conversational services. An example is given as a preliminary proof of
our QoS-aware service composition method.

M. Chen (B) · Y. Yan
Concordia University, Montreal, Canada
e-mail: minchen2008halifax@yahoo.com

Y. Yan
e-mail: yuhong@encs.concordia.ca

P. Poizat
Université Nanterre Paris Ouest La Défense, Nanterre, France
e-mail: pascal.poizat@lri.fr

P. Poizat
LIP6 UMR 7606 CNRS, Orsay, France

A. Bouguettaya et al. (eds.), Web Services Foundations, 423
DOI: 10.1007/978-1-4614-7518-7_17,
© Springer Science+Business Media New York 2014



424 M. Chen et al.

17.1 Introduction

Task-Oriented Computing envisions a user-friendly pervasive world where user tasks
corresponding to a (potentially mobile) user would be achieved by the automatic
assembly of resources available in her/his environment. Service-Oriented Comput-
ing [28] (SOC) is a cornerstone towards the realization of this vision, through the
abstraction of heterogeneous resources as services and automated composition tech-
niques [17, 22, 30]. However, services being elements of composition developed
by different third-parties, their reuse and assembly naturally raises composition mis-
match issues [2, 13]. Moreover, Task-Oriented Computing yields a higher description
level for the composition requirements, i.e., the user task(s), as the user only has an
abstract vision of her/his needs which are usually not described at the service level.
These two dimensions of interoperability, namely horizontal (communication proto-
col and data flow between services) and vertical matching (correspondence between
an abstract user task and concrete service capabilities) should be supported in the
composition process.

Software adaptation is a promising technique to augment component reusability
and composition possibilities, thanks to the automatic generation of software pieces,
called adaptors, solving mismatch out in a non-intrusive way [31]. More recently,
adaptation has been applied in SOC to solve mismatch between services and clients
(e.g., orchestrators) [12, 23, 27]. In this article we propose to add adaptation features
in the service composition process itself. More precisely, we propose an automatic
composition technique based on planning, a technique which is increasingly applied
in SOC [15, 29] as it supports automatic service composition from underspecified
requirements, e.g., the data one requires and the data one agrees to give for this, or
a set of capabilities one is searching for. Such requirements do not refer to service
operations or to the order in which they should be called, which would be ill-suited
to end-user composition.

In addition to service composition, QoS optimization aims at satisfying end-user
needs about quality requirements. To obtain the solution with the best QoS values for
a service composition process, we propose a QoS-aware service composition method
to realize QoS optimization during the adaptive service composition.
Outline. Preliminaries on planning are given in Sect. 17.2. After introducing our
formal models in Sect. 17.3, Sect. 17.4 presents our encoding of service composition
into a planning problem, and Sect. 17.5 proposes a QoS-aware service composition
method over conversational services through planning graph as an extension work.
Related work is discussed in Sect. 17.6 and we end with conclusions and perspectives.

17.2 Preliminaries

In this section we give a short introduction to AI planning [18].



17 Adaptive Composition and QoS Optimization of Conversational Services 425

Definition 17.1. Given a finite set L = {p1, . . . , pn} of proposition symbols, a
planning problem [18] is a triple P = ((S, A, γ ), s0, g), where:

• S ⊆ 2L is a set of states.
• A is a set of actions, an action a being a triple (pre, e f f ect−, e f f ect+) where

pre(a) denotes the preconditions of a, and e f f ect−(a) and e f f ect+(a), with
e f f ect−(a) ∩ e f f ect+(a) = ∅, denote respectively the negative and the positive
effects of a.
• γ is a state transition function such that, for any state s where pre(a) ⊆ s,

γ (s, a) = (s − e f f ect−(a)) ∪ e f f ect+(a).
• s0 ∈ S and g ⊆ L are respectively the initial state and the goal.

Two actions a and b are independent iff e f f ect−(a)∩ [pre(b)∪ e f f ect+(b) ] = ∅
and e f f ect−(b) ∩ [pre(a) ∪ e f f ect+(a)] = ∅. An action set is independent when
its actions are pairwise independent. A plan is a sequence of actions π = a1; . . . ; ak

such that ∃s1, . . . , sk ∈ S, s1 = s0, ∀i ∈ [1, k], pre(ai ) ∈ si−1 ∧ γ (si−1, ai ) = si .
The definition in [18] takes into account predicates and constant symbols which are
then used to define states (ground atoms made with predicates and constants). We
directly use propositions here.

Graph Planning [7] is a technique that yields a compact representation of rela-
tions between actions and represent the whole problem world. A planning graph
G = (V, E) is a directed acyclic leveled graph. It has two kinds of vertices V =
VA ∪ VP where VA is the vertices representing actions and VP representing propo-
sitions. And edges E = (VP × VA) ∪ (VA × VP ) connect the vertices. The levels
alternate proposition levels Pi and action levels Ai . The initial proposition level P0
contains the initial propositions (s0). The planning graph is constructed from P0
using a polynomial algorithm. An action a is put in layer Ai iff pre(a) ⊆ Pi−1 and
then e f f ect+(a) ⊆ Pi . Specific actions (no-ops) are used to keep data from one
layer to the next one, and arcs to relate actions with used data and produced effects.
Graph planning also introduces the concept of mutual exclusion (mutex) between
non independent actions. Mutual exclusion is reported from a layer to the next one
while building the graph. The planning graph actually explores multiple search paths
at the same time when expanding the graph, which stops at a layer Ak iff the goal is
reached (g ⊆ Ak) or in case of a fixpoint (Ak = Ak−1). In the former case there exists
at least a solution, while in the later there is not. Solution(s) can be obtained using
backward search from the goal. Planning graphs whose computation has stopped at
level k enable to retrieve all solutions up to this level. Additionally, planning graphs
enable to retrieve solutions in a concise form, taking benefit of actions that can be
done in parallel (denoted ||).

An example is given in Fig. 17.1 where we suppose the initial state is {a} and the
objective is {e}. Applying U in the first action layer, for example, is possible because
a is present; and this produces b and c. The extraction of plans from the graph is
performed using a backward chaining technique over action layers, from the final
state (objective) back to the initial one. In the example, plans U;Y, Z;Y, (U||Z);Y
and (U||Z);S can be obtained (see bold arcs in Fig. 17.1 for U;Y). However, U and Z
are in mutual exclusion. Accordingly, since there is no other way to obtain c and d



426 M. Chen et al.

a

b

e

U

YZ

d

c

a U

Z

S x

c

a

b

d

P0 A1 P1 P2A2
layers

Z: pre={a}, 

effect -={a}, 

effect +={b,d}

U: pre={a}, 

effect -={a}, 

effect +={b,c}

Y: pre={b}, 

effect -={ }, 

effect +={e}

S: pre={c,d}, 

effect -={ }, 

effect +={e}

U c

c U

U x

c U

U c

U

a proposition

action

invalid action

precondition

negative effect

positive effect

backtrack 
to solution

Fig. 17.1 Graphplan example

than with exclusive actions, these two facts are in exclusion in the next (fact) layer,
making S impossible. Note that other nodes are indeed in mutual exclusion (such as
U and Z in A1, or two no-ops in A2 but we have not represented this for clarity).

17.3 Modeling

In this section, we present our formal models, grounding service composition. Table
17.1 lists the symbols used in this section. Both services and composition require-
ments support conversations. Therefore, we begin with their definition. We then
present the structures supporting the definition of semantic data and capabilities.
Finally, we present models for services and service composition requirement.

17.3.1 Conversation Modeling

Different models have been proposed to support service discovery, verification, test-
ing, composition or adaptation in presence of service conversations [3, 9, 23]. They

Table 17.1 Summary of symbols

Symbol Definition Symbol Definition

WF X A Workflow (WF) over a set of names X PA Activities
Pso XOR-Splits Psa AND-Splits
Pjo OR-Joins Pja AND-Joins
D Data Semantic Structure (DSS) K Capability Semantic Structure (CSS)
O A set of operations W A set of services



17 Adaptive Composition and QoS Optimization of Conversational Services 427

initial activity final activity
parallel

(split/join AND)
choice

(split/join XOR)

workflow notation

activity diagram
notation

Name

activity

Name

Fig. 17.2 Workflow notation and relation to the UML activity diagrams

mainly differ in their formal grounding (Petri nets, transition systems, or process
algebra), and the subset of service languages being supported. Since we target central-
ized composition (orchestration) with possible parallel service invocation, we choose
the workflow model from [19]. An important benefit of workflow models is that they
can be related via model transformation to graphical notations that are well-known
by the software engineers, e.g., UML activity diagrams (Fig. 17.2) or BPMN. Addi-
tionally, workflows are more easily mastered by a non-specialist through pre-defined
patterns (sequence, alternative choice, parallel tasks). Transition systems models
could yield a simpler encoding as a planning problem but raise issues when it comes
to implement the composition models, requiring model filtering to remove parts in
the composition models which are not implementable in the target language [23].

Definition 17.2. Given a set of activity names N , a Workflow (WF) [19] is a tuple
W F N = (P,→, Name). P is a set of process elements (or workflow nodes) which
can be further divided into disjoint sets P = PA∪Pso∪Psa∪Pjo∪Pja , where PA are
activities, Pso are XOR-Splits, Psa are AND-splits, Pjo are OR-Joins, and Pja are
AND-Joins.→⊆ P× P denotes the control flow between nodes. Name : PA → N
is a function assigning activity names to activity nodes.

We note •x = {y ∈ P|y → x} and x• = {y ∈ P|x → y}. We require that WF
are well-structured [19] and without loop. A significant feature of well-structured
workflows is that the XOR-splits and the OR-Joins, and the AND-splits and the
AND-splits appear in pairs (Fig. 17.2). Moreover, we require | • x | ≤ 1 for each x in
PA ∪ Psa ∪ Pso and |x • | ≤ 1 for each x in PA ∪ Pja ∪ Pjo.

17.3.2 Semantic Structures

In our work we use semantic information to enrich the service composition process
and its automation. We have two kinds of semantic information. Capabilities rep-
resent the functionalities that are either requested by the end-users or provided by
services. They are modelled using a Capability Semantic Structure (CSS). Further,
service inputs and outputs are annotated using a Data Semantic Structure (DSS).



428 M. Chen et al.

Table 17.2 eTablet buying—DSS relations: d1 � d2 (left), d1 �x d2 (right)

d1 d2

etablet pear_product
etelephone pear_product
pear_product product
product_price order_amount
user_address shipping_addr
user_address billing_addr
user_address address

d1 x d2

pear_product_info price product_price
pear_product_info details product_technical_information
user_info name user_name
user_info address user_address
user_info cc credit_card_info
user_info pim pim_wallet
pim_wallet paypal paypal_info
pim_wallet amazon amazon_info
paypal_info login paypal_login
paypal_info pwd paypal_pwd
amazon_info login amazon_login
amazon_info pwd amazon_pwd
credit_card_info number credit_card_number
credit_card_info name credit_card_holder_name

We define a Data Semantic Structure (DSS) as a tuple (D,�,�) where D is a set
of concepts (or semantic data type1) that represent the semantics of some data, � is
a composition relation ((d1, x, d2) ∈ �, also noted d1 �x d2 or simply d1 � d2 when
x is not relevant for the context, means a d1 is composed of an x of type d2), and �
is a subtyping relation (d1 � d2 means d1 can be used as a d2). We require there is
no circular composition. DSSs are the support for the automatic decomposition (of
d into D if D = {di | d � di }), composition (of D into d if D = {di | d � di })
and casting (of d1 into d2 if d1 � d2) of data types exchanged between services
and orchestrator. We also define a Capability Semantic Structure (CSS) as a set K of
concepts that correspond to capabilities.
Application. We will illustrate our composition technique on a simple, yet realistic,
case study: the online buying of an eTablet. A DSS describes concepts and relations
for this case study. For place matters, we only give the relations here (Table 17.2)
since concepts can be inferred from these and from the service operation signatures,
below.

1 In this paper, the concepts of semantics and type of data are unified.



17 Adaptive Composition and QoS Optimization of Conversational Services 429

Table 17.3 eTablet buying—services’ operations

Service Operation Profile

w_1 order pear_product→ pear_product_info, as_sessionid :: product_selection : 20
w_1 cancel as_sessionid→ ∅ :: nil:2
w_1 ship shipping_addr, as_sessionid→ ∅ :: shipping_setup:10
w_1 bill billing_addr, as_sessionid→ ∅ :: billing_setup:25
w_1 charge credit_card_info, as_sessionid→ ∅ :: payment:10
w_1 gift_wrapper giftcode, as_sessionid→ ∅ :: payment:20
w_1 ack as_sessionid→ tracking_num :: order_finalization:5
w_2 order product→ e_sessionid :: product_selection:5
w_2 ship shipping_addr, e_sessionid→ order_amount :: shipping_setup:7
w_2 charge_pp paypal_trans_id, e_sessionid→ ∅ :: nil:12
w_2 charge_cc credit_card_info, e_sessionid→ ∅ :: payment:15
w_2 bill billing_addr, e_sessionid→ ∅ :: billing_setup:8
w_2 finalize e_sessionid→ tracking_num :: order_finalization:6
w_3 login paypal_login, paypal_pwd→ p_sessionid :: nil:10
w_3 get_credit order_amount, p_sessionid→ paypal_trans_id :: payment:20
w_3 ask_bill address, p_sessionid→ ∅ :: billing_setup:8
w_3 logout p_sessionid→ ∅ :: nil:4

17.3.3 Services

A service is a set of operations described in terms of capabilities, inputs, outputs and
quality. Additionally, services have a conversation.

Definition 17.3. Given a CSS K and a DSS D = (D,�,�), a service is a tuple w =
(O, W F O), where O is a set of operations, an operation being a tuple (in, out, k, n)

with in ⊆ D, out ⊆ D, k ∈ K, n is the quality value, and W F O is a workflow built
over O .

For a simple service (without a conversation) w, a trivial conversation can be
obtained with a workflow where PA = O(w) (one activity for each operation),
Pso = {⊗}, Pjo = {⊗}, Psa = Pja = ∅, and ∀o ∈ PA, {(⊗, o), (o,⊗)} ⊆→. This
corresponds to a generalized choice between all possible operations. An operation
may not have a capability and the quality of the operation may not be given (we
then let k = nil). o = (in, out, k, n) is also noted o : in → out :: k : n. If several
quality values are given for operation o, we calculate the aggregated QoS value n
as an overall quality for o. How to calculate the aggregated quality value will be
introduced in Sect. 17.5.1.

Application. To fulfill the user need, we have three services: pear_store (w1, online
store for pear products), ebay (w2, general online shop) and paypal (w3, online
payment facilities). Their operations are given in Table 17.3 and their workflows are
given in Fig. 17.3. The QoS of each operation in services is supposed to be throughput.



430 M. Chen et al.

order ship bill

cancel

charge ack

gift_wrapper

order ship

charge_pp

finalizecharge_cc bill

login get_credit

logout

logoutask_bill

Fig. 17.3 eTablet buying—services’ workflows

17.3.4 Composition Requirements

A service composition requirement is given in terms of the inputs the user is ready
to provide and the outputs this user is expecting. Additionally, the capabilities that
are expected from the composition are specified, and their expected ordering given
under the form of a workflow.

Definition 17.4. Given a CSS K and a DSS D = (D,�,�), a composition require-
ment is a tuple (Din, Dout, WFK) where Din ⊆ D, Dout ⊆ D, and WFK is a workflow
build over K.

Application. The user requirement in our case study is ({etablet, user_in f o},
{tracking_num}, w f c). As far as the w f c requirement workflow is concerned,
we have two alternatives for it. The first one (Fig. 17.4, left) requires that payment
is done after shipping and billing have been set up (which can be done in parallel).
The second one (Fig. 17.4, right) is less strict and enables the payment to be done in
parallel to shipping and billing setup.

17.4 Encoding Composition as a Planning Problem

In this section we present how service composition can be encoded as a graph plan-
ning problem. We will first explain how DSS can be encoded (to solve out horizontal
adaptation). Then we will present how a generic workflow can be encoded. Based on



17 Adaptive Composition and QoS Optimization of Conversational Services 431

Fig. 17.4 eTablet buying—
requirement workflows

product_selection

shipping_setup

billing_setup

payment

order_finalization order_finalization

product_selection

shipping_setup

billing_setup

payment

this, we will then explain how services and composition requirements are encoded
(the workflow of the later solving out vertical adaptation).

17.4.1 DSS Encoding

For each d � {xi : di } in the DSS we have an action compd(
⋃

i {di },∅, {d}) and an
action decd({d},∅,⋃i {di }) to model possible (de)composition. Moreover, for each
d � d ′ in the DSS we have an action castd,d ′({d},∅, {d ′}) to model possible casting
from d to d ′.

17.4.2 Workflow Encoding

We reuse here a transformation from workflows to Petri net defined in [19]. Instead of
mapping a workflow (P,→, Name) to a Petri net, we map it to a planning problem.
Let us first define the set of propositions that are used. The behavioral constraints
underlying the workflow semantics (e.g., an action being before/after another one)
are supported through two kinds to propositions: rx,y and cx,y . We also have a
proposition I for initial states, and a proposition F for correct termination states.
F will be used both for final states and for initial states (in this case to denote that a
service can be unused). We may then define the actions that are used (Fig. 17.5):

• for each x ∈ Psa , we have an action a = ⊕x (Fig. 17.5a), for each x ∈ Pja , we
have an action a = ⊕̄x (Fig. 17.5b), and for each x ∈ PA, we have an action
a = [Name(x)]x (Fig. 17.5c). In all three cases, we set pre(a) = e f f ect−(a) =⋃

y∈•x {rx,y}, and e f f ect+(a) =⋃
y∈x•{cx,y}.

• for each x ∈ Pso, for each y ∈ x•, we have an action a = ⊗x, y (Fig. 17.5d) and
we set pre(a) = e f f ect−(a) =⋃

z∈•x {rx,z}, and e f f ect+(a) = {cx,y}.



432 M. Chen et al.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 17.5 Workflow encoding

• for each x ∈ Pjo, for each y ∈ •x , we have an action a = ⊗̄x, y (Fig. 17.5e), and
we set pre(a) = e f f ect−(a) = rx,y , and e f f ect+(a) =⋃

z∈•x {cx,z}.
• for each x → y, we have an action a = ⊗̄x, y (Fig. 17.5f) and we set pre(a) =

e f f ect−(a) = {cx,y}, and e f f ect+(a) = {ry,x }.
• additionally, for any initial action a we add {I, F} in pre(a) and e f f ect−(a).
• additionally, for any final action a we add {F} in e f f ect+(a).

17.4.3 Composition Requirements Encoding

A composition requirement (Din, Dout, WFK) is encoded as follows. First we com-
pute the set of actions resulting from the encoding of WFK (see 17.4.2). Then we
have to encode the fact that capabilities in the composition requirement encoding
should interoperate with operations in service encodings. The idea is the following.
Taking a service w, when a capability k is enabled at the current state of execution
by WFK then we should invoke an operation of capability k that is enabled at the
current state by WF O(w) before any one of the capability possibly following k could
be enabled. Moreover, an operation o with capability k of w can be invoked only iff
this is enabled by the current state of execution in WF O(w) and k is enabled in WFK.
To achieve this, we replace any action a = [k]x in the encoding of WFK by two
actions, a′ = [k]x and a′ = [k]x , and we set:

• pre(a′) = pre(a), e f f ect−(a′) = e f f ect−(a), e f f ect+(a) = {ek, linkx }.
• pre(a′) = e f f ect−(a′) = {linkx , dk}, e f f ect+(a′) = e f f ect+(a).



17 Adaptive Composition and QoS Optimization of Conversational Services 433

Fig. 17.6 Principle of interaction between service and requirement encodings

ek and dk enforce the synchronizing rules between capability workflow (defining
when a capability k can be done) and service workflows (defining when an operation
with capability k can be done) as presented in Fig. 17.6. linkk ensure that two actions
a1 = [k]x1 and a2 = [k]x2 with the same capability will not interact incorrectly when
x1 and x2 are in parallel in a workflow.

17.4.4 Service Encoding

Each service w = (O, W F O) is encoded as follows. First we encode the workflow
W F O as presented in 17.4.2. Then, for each action a = [o]x in this encoding we
add:

• in(o) in pre(a) to model the inputs required by operation o and out (o) in
e f f ect+(a) to model the outputs provided by operation o.
• ek(o) in pre(a) and in e f f ect−(a) and dk(o) in e f f ect+(a) to implement the

interaction with capabilities presented in 17.4.3 and in Fig. 17.6.

17.4.5 Overall Encoding

Given a DSS D, a set of services W , and a composition requirement (Din, Dout,

W FK), we obtain the planning problem ((S, A, γ ), s0, g) as follows:



434 M. Chen et al.

• s0 = Din ∪ {w f c : I, w f c : F}⋃w∈W {w : I, w : F}.
• g = Dout ∪ {w f c : F}⋃w?∈W {w : F}.
• A = dss : ||D|| ∪ w f c : ||W FK||⋃w∈W w : ||W F O(w)||.
• S and γ are built with the rules in Definition 17.1.

where ||x || means the set of actions resulting from the encoding of x . Prefixing
(denoted with pre f i x :) operates on actions and on workflow propositions (I , F ,
rx,y , and cx,y) coming from encodings. It is used to avoid name clashes between
different subproblems. We suppose that, up to renaming, there is no service identified
as dss or w f c.

17.4.6 Plan Implementation

Solving the planning problem, we may get a failure when there is no solution sat-
isfying both that (i) a service composition exists to get Dout from Din, (ii) using
operations/capabilities in an ordering satisfying both used service conversations and
capability conversation, (iii) leaving used services in their final state. In other cases,
we obtain (see Sect. 17.2) a plan π = L1; . . . ; Li ; . . . ; Ln where ; is the sequence
operator and each Li is of the form (Pi,1|| . . . ||Pi, j || . . . ||Pi,mi ) where || is the par-
allel operator and each Pi, j is a workflow process element. First of all, we begin by
filtering out π by removing from it all Pi, j that is not of the form dss : . . . or w : [o]x ,
i.e., that is a purely structuring item, not corresponding to data transformation or ser-
vice invocation. Given the filtered plan, we can generate a WS-BPEL implementation
for it as done for transitions systems in [23]. Still, we may benefit here from the fact
that actions that can be done in parallel are explicited in a graph planning plan (using
operation ||), while in transition systems we only have interleaving semantics (find-
ing out which actions can be done in parallel is much more complex). Therefore, for
the main structure of the <process> …< /process> element we replace the [23]
state machine encoding by a more efficient version using sequence and flows. For π

we get:

〈sequence〉modeltrans(L1) . . . modeltrans(Li ) . . . modeltrans(L − n)〈/sequence〉
and for each Li = (Pi,1|| . . . ||Pi, j || . . . ||Pi,mi ) we have:

〈flow〉 modeltrans(Pi,1) . . . modeltrans(Pi, j ) . . . modeltrans(Pi,mi )) 〈/flow〉
where modeltrans is the transformation of basic assignment/communication activ-
ities defined in [23].

17.4.7 Tool Support

Our composition approach is supported with a tool, pycompose (Fig. 17.7), written
in the Python language. This tool takes as input a DSS file, several service descrip-
tion files (list of operations and workflow), and the composition requirement (input



17 Adaptive Composition and QoS Optimization of Conversational Services 435

Semantic Service 
Registry

Services
(operations + operation wo ow)

Parser

Encoder

Problem 
Fusion

Parser

Parser

Planning
Problem

Planning
Solution

Planner 
Interface

Planner
(external)

DSS

Composition Requirement
(capability wo ow)

DSS model

capability
wor ow m odel

operations
wor ow m odel

problem m odel

Encoder

problem m odel

Encoder

problem m odel problem m odel

composition
wor ow m odelComposition Implementation

(WS-BPEL)

Model
Trans.

WF
Generator

plan m odel

Fig. 17.7 Architecture of the pycompose tool

list, output list, and a workflow file). It then generates the encoding of this com-
position problem. pycompose supports through a command-line option the use of
several planners: the original C implementation of graph planning, graphplan,2 a
Java implementation of it, PDDLGraphPlan,3 and Blackbox,4 a planner combining
graphplan building and the use of SAT solvers to retrieve plans. The pycompose
architecture enables to support other planners through the implementation of a class
with two methods: problemToString and run, respectively to output a problem in
planner format and to run and parse planner results.

Application. If we run pycompose on our composition problem with the first
requirement workflow (Fig. 17.4, left), we get one solution (computed in 0.11 s
on a 2.53 GHz Mac Book Pro, including 0.03 s for the planner to retrieve the plan):

(pear_product:=cast(etablet) || {user_name,user_address,credit_card_info,pim_wallet}
:=dec(user_info)) ;

(shipping_addr:=cast(user_address) || billing_addr:=cast(user_address) || w1:order) ;
w1:ship ; w1:bill ; w1:charge ; w1:ack

The workflow representation of this solution is presented in Fig. 17.8.
However, let us now suppose that the user does not want to give his credit card

(user_info �cc credit_card_info is removed from DSS, or the user input is replaced
with {etablet,user_name,user_address,pim_wallet}). There is no longer any possible
composition: w1 cannot proceed with payment (no credit card information), more-
over, w2 and w3 cannot interact since this would yield that capability payment is

2 http://www.cs.cmu.edu/avrim/graphplan.html
3 http://www.cs.bham.ac.uk/zas/software/graphplanner.html
4 http://www.cs.rochester.edu/kautz/satplan/blackbox/

http://www.cs.cmu.edu/avrim/graphplan.html
http://www.cs.bham.ac.uk/zas/software/graphplanner.html
http://www.cs.rochester.edu/kautz/satplan/blackbox/


436 M. Chen et al.

cast

dec

cast

cast

w1.order

w1.ship w1.bill w1.charge w1.ack

Fig. 17.8 eTablet buying—composition solution

dec

cast cast

cast

dec

w2.order

dec

w3.login w2.ship

w3.get_credit

w2.charge_ppw3.ask_billw3.logoutw2.finalize

Fig. 17.9 eTablet buying—alternative composition solution

done before capability billing_setup (see w3 workflow in Fig. 17.3 and its opera-
tions in Table 17.3) while the requirement workflow forbids it. However, if we let a
more permissive requirement workflow (Fig. 17.4, right) then we get a composition
(computed in 0.11 s on a 2.53 GHz Mac Book Pro, including 0.04 s for the planner
to retrieve the plan) where w2 and w3 interact:

(pear_product := cast(etablet) || {user_name,user_address,credit_card_info,pim_wallet}
:= dec(user_info)) ;

(product := cast(pear_product) || shipping_addr := cast(user_address)
|| {paypal_info,amazon_info} := dec(pim_wallet)) ;

(w2:order || {paypal_login,paypal_pwd} := dec(paypal_info)) ;
w3:login ; w2:ship ; w3:get_credit ; w2:charge_pp ; w3:ask_bill ; w3:logout ; w2:finalize

The workflow representation of this second solution is given in Fig. 17.9.

17.5 QoS Optimization of Conversational Service Composition
as an Extension

In this section we first introduce how to calculate the aggregation of Quality of
Services (QoS). Then we extend the developed composition method to include QoS
optimization as a non-functional goal.



17 Adaptive Composition and QoS Optimization of Conversational Services 437

17.5.1 Aggregation of Quality of Services

A conversational service is composed of a set of operations over which a workflow
is specified. Each operation o can be regarded as an elementary service w with
certain qualities. For a network of conversational services, we can calculate the
QoS of the network as if we have a network of elementary services. Suppose we use
σ = w1, w2, . . . , wn to represent a network of connected elementary services. If they
are connected in sequence, σ = w1;w2; . . . ;wn , or in parallel, σ = w1||w2|| . . . ||wn .
For an elementary service w, a finite set of quality criteria of w is denoted as Q(w).
Since our work focuses on throughput and execution price, the two quality criteria
for an elementary service w and the aggregated value over σ :

• Throughput Q1(w): the average rate of successful message delivery over a com-
munication channel, e.g., 10 successful invocations per second.

Q1(w1; . . . ;wn) = min Q1(wi ) (17.1)

Q1(w1|| . . . ||wn) = min Q1(wi ) (17.2)

• Execution price Q2(w): the fee to invoke w.

Q2(w1, . . . , wn) =
∑

Q2(wi ) (17.3)

Some of the above criteria are negative, i.e., the higher the value, the lower the
quality. Execution price and response time are in this category. The other criteria,
such as throughput, are positive, i.e., the higher the value, the higher the quality. We
want to have a uniform way to compare the qualities, especially with the multiple
criteria. We apply a Multiple Criteria Decision Making (MCDM) technique [33]
to aggregate QoS value Q(w). Similar to [8] and [36], we first scale the value of
a quality i for a service w j . For negative criteria, e.g., execution price, values are
scaled according to Eq. 17.4. For positive criteria, e.g., throughput, values are scaled
according to Eq. 17.5. For all the criteria, the higher the quality value, the lower
the utility value Ui (w j ). This is because the classic Dijkstra’s algorithm finds the
“shortest distance”(lowest cost) over a graph.

Ui (w j ) =
⎧
⎨

⎩

Qi (w j )−Qmin
i

Qmax
i −Qmin

i
if Qmax

i − Qmin
i �= 0

1 if Qmax
i − Qmin

i = 0
(17.4)

Ui (w j ) =
{ Qmax

i −Qi (w j )

Qmax
i −Qmin

i
if Qmax

i − Qmin
i �= 0

1 if Qmax
i − Qmin

i = 0
(17.5)

The overall quality score for a Web service w j is defined in Eq. 17.6:

U (w j ) =
∑

Ui (w j )×Wi (17.6)



438 M. Chen et al.

where Wi ∈ [0, 1] and
∑

Wi = 1. Wi represents the weight of criterion i .
For a network of services σ , we would like to do the same conversion. The

following equations for defining Ui (σ ) are the same as those defining Qi (σ ), just
changing Qi (wi ) to Ui (wi ), except in Eqs. 17.9 and 17.10, max replaces min, it is
because U2 decreases when Q1 increases. Thus, the max value of U1 corresponds
to the min value of Q2.

U1(w1; . . . ;wn) =
∑

U1(wi ) (17.7)

U1(w1|| . . . ||wn) = max U1(wi ) (17.8)

U2(w1; . . . ;wn) = max U2(wi ) (17.9)

U2(w1|| . . . ||wn) = max U2(wi ) (17.10)

The aggregated utility value for σ is:

U (w1, . . . , wn) =
∑

Ui (w1, . . . , wn)×Wi (17.11)

With Eqs. 17.7–17.11, we could compare two networks of services by the indi-
vidual utility values Ui or by the overall score U . The lower the value, the higher
the quality of service. We uniform the increasing and decreasing sense of the qual-
ity criteria. But the calculation of the precise values are still different for different
criteria.

17.5.2 Encoding QoS-Aware Composition as a QoS-Aware
Planning Problem

When QoS is given, people expect a solution with the best quality. A QoS-aware
service composition is to generate a business process that fulfills the functional
goals and optimizes the QoS value simultaneously. We first explain the intuition
behind the QoS-aware planning technique. Then we present how to solve QoS-aware
composition using QoS-aware planning technique.

17.5.2.1 Motivations

When service composition is encoded as a graph planning problem, the planning
graph built by the graph planning technique records all the functional elements, i.e.,
all the execution paths, to achieve functional goals. If the planning graph can be
extended into a QoS-aware planning graph that not only records functional elements
but also includes the QoS information, it is possible to solve QoS-aware service
composition problem using planning graph technique.



17 Adaptive Composition and QoS Optimization of Conversational Services 439

We discover that combining Dijkstra’s algorithm with the planning graph tech-
nique provides a good way to associate the QoS value with each vertex in a planning
graph. Firstly, a planning graph is a compact representation of the whole problem
space. All the execution paths that achieve goals can be extracted from the planning
graph. We could use a systematic search algorithm like Dijkstra’s algorithm to tra-
verse the planning graph from the initial layer to the goals. Secondly, the principle
of Dijkstra’s algorithm is to calculate the best cost-to-come value for a vertex. Since
a proposition can be regarded as a vertex of the planning graph, we could use the
same principle to calculate the best cost-to-come value which is the best QoS value
for each proposition. Then, we could get the overall cost-to-come for all the goal
propositions. And during the search, we could record the best path which is the best
plan.

17.5.2.2 QoS-Aware Graph Planning Technique

Our QoS-aware Graph Planning technique builds a Tagged Planning Graph (TPG)
instead of a normal planning graph. This technique is firstly developed in our paper
[34] for QoS-aware composition problems without negative effects. In this paper we
extend it to work with negative effects. A TPG is an extension of a planning graph in
the sense that each vertex in the planning graph is assigned with a tag. The affiliated
tag records the related QoS information for each vertex. In the following, we present
the way to calculate the tag values for action vertices and for proposition vertices
respectively.

Actions

When service composition is encoded as a Graph Planning problem, actions in the
planning graph come from DSS encoding, workflow encoding, service encoding and
composition requirement encoding. The tag for each action vertex is the QoS value
of the action. Except the actions encoded from the operations of the conversational
services, the other actions, such as decomposition, composition and casting from
DSS encoding, Pso, Psa , Pjo and Pja from service encoding, etc., do not have QoS
values. We need to assign a default QoS value to an action vertex which does not
have a QoS value in order to facilitate QoS aggregation.

For negative criteria, e.g., execution price, the default QoS value is zero. For
position criteria, e.g., throughput, the default QoS value is the maximal value of
all actions encoded from operations. These assignments make sense, because these
values do not affect the calculation of the aggregated QoS of the resulting composite
service.



440 M. Chen et al.

Propositions

The tag Tp for a proposition vertex p is a set {t p
1 , . . . , t p

k } (k = ||Tp||), which repre-
sents all possible execution paths leading to the proposition p. Each tag member t p

j
( j = 1, . . . , k) in Tp is a tuple (QoSV alue, executionpath) and corresponds to an
execution path executionpath with its QoS value QoSV alue. An executionpath
is actually a plan Π = π1; . . . ;πn to achieve p, where π j ( j = 1, . . . , n) is a set of
actions that can be executed in parallel. When we search a plan for p, we exclude
the invalid plans that contain mutex pairs of actions due to the negative effects of
actions. Also, we calculate the QoS values for these valid plans at the same time.

For a proposition p at layer P0, Tp = {(U, {})} where U is a default QoS value.
The assignment of the default QoS value for a proposition at P0 is similar to the
assignment of the default QoS value for actions. For negative criteria, such as response
time or execution price, the default QoS value is zero. For position criteria, such as
throughput, the default QoS value is the maximal value of all actions encoded from
operations. These values do not affect the calculation of the aggregated QoS of the
resulting composite service. The executionpath is {} since p is provided by service
composition query.

Inspired by the Dijkstra’s algorithm, we calculate the tag for a p at layer Pi (i ≥ 1)
when the planning graph is constructed. If an action a at layer Ai (i ≥ 1) produces
p at layer Pi (i ≥ 1), we calculate the tag for p as the following.

• Calculate the execution paths. If action a produces p, the combinations of the
execution paths of pre(a) (in parallel) appended by a are the execution paths of
p. If there are several actions produce p, the execution paths calculated from these
actions are all execution paths for p. If these actions are mutex, the execution paths
are mutex too.
• Calculate the QoS value for each execution path. The calculation of the QoS

value for each execution path follows the QoS aggregation formulas. One execution
path leading to p is consist of one combination of the execution paths of pre(a) and
a. For example, if throughput is the QoS criterion, the throughput of an execution
path leading to p is the minimum of the throughput of the combined execution
paths and the throughput of a. If execution price is the QoS criterion, that the total
execution price of all the combined execution paths plus the execution price of a
is the execution price of the execution path leading to p.

After the TPG is constructed, we extract an optimal plan by backtracking the
execution path for each goal proposition. An optimal plan is consist of the optimal
plans to achieve each individually goal simultaneously. Since a plan cannot contain
any mutex pair of actions, we need to consider all the possibilities.

17.5.2.3 QoS-Aware Graph Planning

QoS-aware Graph Planning extends the standard Graph Planning technique. In the
construction phase, the QoS tag is calculated and the graph is constructed until a fixed-



17 Adaptive Composition and QoS Optimization of Conversational Services 441

point layer, because a longer plan may have a better QoS value. In the backtracking
phase, a solution with the best QoS value is extracted. For simplicity, we present
our algorithms using throughput as the single quality criterion and the calculation of
throughput follows Eqs. 17.1 and 17.2. The calculation of the other QoS criteria is
discussed in Sect. 17.5.3.

Algorithm 1 called QoSGraph Plan is the main algorithm QoS-aware Planning
Graph. Line 1 sets U as the the maximum throughput of actions. At layer P0, the
multiple tags Tp only contains a tuple of U and an empty set (line 2). Starting from
layer 0 (line 3), the algorithm calls ExpandGraph (Algorithm 2) to construct a TPG
layer by layer until it reaches Fixedpoint (line 4–7). If the fixed-point layer Pn con-
tains all goal propositions without mutex (line 8), the algorithm calls Extract Plan
(Algorithm 4) (line 9) to extract an optimal plan from the TPG. Otherwise, there is
no plan exist (line 11).

Algorithm 1: QoSGraph Plan(A, s0, g)

Data: G = 〈P0, A1, μA1, ..., An, μAn, Pi , μPn〉 is a planning graph;

1: U ← max{cost (a)|a ∈ A};
2: P0 ← {(p, Tp)|p ∈ s0, Tp is a multiple-tag set of p where Tp ← {(U, {})}};
3: i ← 0;
4: repeat
5: i ← i + 1;
6: G ← ExpandGraph(G);
7: until Fixedpoint (G)

8: if g ⊆ Pn and g2 ∩ μPn = ∅ then
9: print Extract Plan(G, g);
10: else
11: print ∅;
12: end if

Algorithm 2 called ExpandGraph expands the TPG by one layer. Ai gets all the
enabled actions at layer i and each actions has a tag t (line 1). The tag t is the QoS
value, i.e., throughput, of the action. The enabled actions are those whose inputs are
in the previous layer i − 1 and there is no mutual exclusion between propositions
belonging to the inputs. μAi is the set of mutex pairs of actions in Ai (line 2). Pi

contains positive effects of actions in Ai (line 3). We assign a tag Tp to each p ∈ Pi .
Tp is actually a multiple-tag set. Each element t p

j ∈ Tp ( j = 1, . . . , ||Tp||) is a tuple

(t p
j .v, t p

j .Π), where t p
j .Π is a execution path that leads to p and t p

j .v is the QoS

value of t p
j .Π . It calls Cal MultiT ag (Algorithm 3) to calculate Tp for p. Line 4

gets the set of mutex pairs of propositions in Pi , denoted as μPi . Line 5–line 9 create
the arcs between actions and propositions.



442 M. Chen et al.

Algorithm 2: ExpandGraph(G)

Data: G = 〈P0, A1, μA1, ..., An, μAn, Pi , μPn〉;
1: Ai ← {(a, t)|pre(a) ⊆ Pi−1, pre2(a) ∩ μPi−1, t = cost (a)};
2: μAi ← {(a, b) ∈ A2

i , a �= b|e f f ects−(a) ∩ [pre(b) ∪ e f f ects+(b)] �= ∅ or
e f f ects−(b) ∩ [pre(a) ∪ e f f ects+(a)] �= ∅ or ∃(p, q) ∈ μPi−1 : p ∈ pre(a), q ∈
pre(b)};

3: Pi ← {(p, Tp)|∃a ∈ Ai : p ∈ e f f ects+(a), Tp = Cal MultiT ag(G, p, i) is a multiple-
tag set of p where Tp is represented as {t p

j | j = 1, . . . , ||Tp|| and t p
j = (t p

j .v, t p
j .Π)}};

4: μPi ← {(p, q) ∈ P2
i , p �= q|∀a, b ∈ A, a �= b : p ∈ e f f ects+(a), q ∈ e f f ects+(b)⇒

(a, b) ∈ μAi };
5: for each a ∈ Ai do
6: link a with precondition arcs to pre(a) in Pi−1;
7: link a with positive arcs to each of its e f f ects+(a) in Pi ;
8: link a with negative arcs to each of its e f f ects−(a) in Pi ;
9: end for
10: return (〈P0, A1, μA1..., An, μAn, Pn, μPn〉);

Algorithm 3 calculates the tag value for each proposition p. Initially, T is an
empty set (line 1). S is a subset of Ai and each action in S produces p as one of its
positive effects (line 2). For each pair (a, t) ∈ S, we get a subset of Pi−1, denoted
as PT . Each element (p, Tp) in PT satisfies p ∈ pre(a) (line 4). Tp is a multiple-
tag set for p where Tp = {t p

j |t p
j = (t p

j .v, t p
j .Π) is the j-th element of Tp and

j = {1, . . . , ||Tp||}. For each element t p
j of Tp, t p

j .Π is a execution path that leads to

p and t p
j .v is the cost, i.e., throughput, of the execution path t p

j .Π . Q is the product

of all elements in PT (line 5). For a set of execution paths {t p1
m , . . . , t pk

h } ∈ Q (line
6), a new execution path Π ′ is obtained by combining all the execution paths (line
7). Check Mutex(G,Π ′) is a function to check whether there exists a mutex pair
of actions at the same layer Π ′.π j ( j = 1, . . . , ||Π ′||). If Check Mutex(G,Π ′)
returns true, it means there exists at least a mutex pair of actions in Π ′ (line 8). In
this case, Π ′ becomes the execution path Π without mutex pairs of actions (line 9).
Accordingly, the cost v (line 10) and the multiple-tag set T (line 11) are updated.

Algorithm 4 extracts a plan with optimal QoS value. First, the optimal plan Π is
set to be 〈〉 (line 1). In line 2, all goal propositions obtained from layer Pn are added
into S. Line 3 calculates the direct product of all multiple-tag sets in S. The set of
possible plans T is initially an empty set (line 4). For each element {t p1

m , . . . , t pk
h } ∈ Q

(line 5), a new possible execution path Π ′ is obtained by combining all the execution
paths (line 6). The cost v is the minimum cost of all sub-execution paths that construct
Π ′ (line 7). Line 8 adds (v′,Π ′) into T . The algorithm starts to find an optimal
plan from T until T becomes an empty set (lines 10–20). Select Opt Plan(T ) is
a function to find the current optimal plan with the maximum throughput from T .
For every possible optimal plan with the current maximum throughput returned by
Select Opt Plan(T ) (line 11), Check Mutex(G,Π) is to filter out the plans that
contain any mutual exclusion pairs of actions.



17 Adaptive Composition and QoS Optimization of Conversational Services 443

Algorithm 3: Cal MultiT ag(G, p, i)
Data: G = 〈P0, A1, μA1, ..., Ai , μAi 〉;
1: T ← {};
2: S← {(a, t)|(a, t) ∈ Ai andp ∈ e f f ects+(a)};
3: for (a, t) ∈ S do
4: PT ← {(p, Tp)|(p, Tp) ∈ Pi−1 and p ∈ pre(a)};
5: Q ← Tp1 × Tp2 , . . . ,×Tpk where (p j , Tp j ) ∈ PT and j = 1, . . . , ||PT ||;
6: for {t p1

m , . . . , t pk
h } ∈ Q do

7: Π ′ ← t p1
m .Π.π1|| . . . ||t pk

h .Π.π1; . . . ; t p1
m .Π.πi−1|| . . . ||t pk

h .Π.πi−1;
8: if Check Mutex(G,Π ′) = true then
9: Π = Π ′;
10: v← min{t p1

j .v|m ≤ j ≤ n};
11: T ← T ∪ {(min{v, t},Π; a)};
12: end if
13: end for
14: end for
15: return T ;

Algorithm 4: Extract Plan(G, g)

Data:G = 〈P0, A1, μA1, ..., An, μAn, Pn, μPn〉 is a planning graph.

1: Π ← 〈〉;
2: S← {(p, Tp)|(p, Tp) ∈ Pn and p ∈ g};
3: Q ← Tp1 × Tp2 , . . . ,×Tpk where (p j , Tp j ) ∈ S and j = 1, . . . , ||S||;
4: T = {};
5: for {t p1

m , . . . , t pk
h } ∈ Q do

6: Π ′ ← t p1
m .Π.π1|| . . . ||t pk

h .Π.π1; . . . ; t p1
m .Π.πi−1|| . . . ||t pk

h .Π.πi−1;
7: v′ = min{t p1

m .v, . . . , t pk
h .v};

8: T ← T ∪ {(v′,Π ′)};
9: end for
10: repeat
11: t ← Select Opt Plan(T );
12: Π ← t.Π ;
13: v← t.v;
14: if Check Mutex(G,Π) = true then
15: return (Π );
16: else
17: Π ← 〈〉;
18: end if
19: T ← T − {(v,Π)}
20: until ||T || = 0
21: return Π ;

Application. We have a new service Dangdang (w4, online store). Suppose
Dangdang shares the same workflow and operations with ebay service. The oper-
ations “order”, “ship”, “charge_pp”, “charge_cc”, “bill”, and “finalize”of w4 have
the throughput of 4, 6, 26, 13, 10, and 5 repectively. The requirement in our case



444 M. Chen et al.

wfc: 1’

wfc:I

wfc:F

p

p

p

p

wfc: 1’

wfc: 1s2

wfc: s2

26

26

26
26

{(26,{wfc: 1’;no-op})}

p

s2

s3

s4

p

2 12

1

2

2

2: 1

4: 12

2

wfc: 1s

26

4 12

2

2: 12

4: 12

2 21

4 21

3

2

s1 1s

5

4

26

26

26

P3 P4P2 A3 A4

{(26,{no-op;no-op})}

{(26,{no-op;no-op})}

{(26,{cast;cast})}

{(26,{no-op;no-op})}

{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1}),

(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1})}

{(26,{wfc: 1’;no-op})}
{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1})}

{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1}),

(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1})}

{(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1})}

{(26,{dec;cast;
no-op;no-op})}

{(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1;w4: 12})}

{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1;no-op}),

(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1;no-op})}

{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1})}

W
F

O
(w

)
K

W
F

W
F

Fig. 17.10 Part of the tagged planning graph

study are ({etablet, user_in f o}, {tracking_num}, w f c, ) and optimization of the
throughput of the plan. w f c requires that the payment to be done in parallel to
shipping and billing setup as shown in Fig. 17.4 (right). Figure 17.10 presents how
to calculate the tag values for each action node in the planning graph. Because
the maximum throughput of operations is 26, the tag values of no-op actions and
actions that are not encoded from operations are set to be 26. Due to the page limit,
we only list part of actions in the planing graph as shown in Table 17.4. Because
e f f ects−(w2 : a1) ∩ [pre(w4 : a1) ∪ e f f ects+(w4 : a1)] = {ep} �= ∅. The pair
(w2 : a1, w4 : a1) is an element of μA3. For the proposition dp in P3, there are two
execution paths without mutex pairs of actions that produce dp as one of their positive
effects. Finally, we remove useless actions from the plan obtained by Extract Plan
algorithm such that the plan only contains operation-derived actions. The workflow
of the optimal plan is similar to the one in Fig. 17.9 by replacing w2 with w4. The
throughput of the optimal plan is 4.



17 Adaptive Composition and QoS Optimization of Conversational Services 445

Ta
bl

e
17

.4
Pa

rt
of

ac
tio

ns
en

co
de

d
fr

om
w

2
,w

4
an

d
w

fc

A
ct

io
n

N
ot

at
io

n
C

os
t

pr
e(

a)
e

ff
ec

t−
(a

)
e

ff
ec

t+
(a

)

or
de

r
w

2
:a

1
5

w
2
:I

,w
2
:F

,e
p
,p

ro
du

ct
(d

ss
:d

1
)

w
2
:I

,w
2
:F

,e
p

e_
se

ss
io

ni
d(

d
ss

:d
2
),

d
p
,w

2
:c

12

w
2

or
de

r→
sh

ip
w

2
:a

12
26

w
2
:c

12
w

2
:c

12
w

2
:r

21

sh
ip

w
2
:a

2
7

sh
ip

pi
ng

_a
dd

r(
d

ss
:d

3
),

e_
se

ss
io

ni
d(

d
ss

:d
2
),

e s
,w

2
:r

21
e s

,w
2
:r

21
d s

,w
2
:c

2s
,o

rd
er

_a
m

ou
nt

(d
ss

:d
4
)

or
de

r
w

4
:a

1
4

w
4
:I

,w
4
:F

,e
p
,d

p
,w

4
:c

12
w

4
:I

,w
4
:F

,e
p

e_
se

ss
io

ni
d(

d
ss

:d
2
),

d
p
,w

4
:c

12

w
4

or
de

r→
sh

ip
w

4
:a

12
26

w
4
:c

12
w

4
:c

12
w

4
:r

21

sh
ip

w
4
:a

2
6

sh
ip

pi
ng

_a
dd

r(
d

ss
:d

3
),

e_
se

ss
io

ni
d(

d
ss

:d
2
),

e s
,w

4
:r

21
e s

,w
4
:r

21
d s

,w
4
:c

2s
,o

rd
er

_a
m

ou
nt

(d
ss

:d
4
)

pr
od

uc
t_

se
le

ct
io

n
w

fc
:a
′ 1

26
w

fc
:I

,w
fc

:F
w

fc
:I

,w
fc

:F
e p

,l
in

k 1
w

fc
:ā
′ 1

26
li

nk
1
,d

p
li

nk
1
,d

p
w

fc
:c

1s

w
fc

pr
od

uc
t_

se
le

ct
io

n→
⊕

w
fc

:a
1s

26
w

fc
:c

1s
w

fc
:c

1s
w

fc
:r

s1

⊕
w

fc
:a

1s
2

26
w

fc
:r

s1
w

fc
:r

s1
w

fc
:c

s2
,w

fc
:c

s3
,w

fc
:c

s4

⊕
→

sh
ip

pi
ng

_s
et

up
w

fc
:a

s2
26

w
fc

:c
s2

w
fc

:c
s2

w
fc

:r
25

..
.



446 M. Chen et al.

17.5.3 Other QoS Criteria

Up to now, we use throughput as the quality criterion to develop our method. We can
also consider how to calculate the other criteria.

For execution price (Eq. 17.3), min() function is used. The tag values for the
actions encoded from operations are their corresponding execution price. The tag
values of other actions are set to be 0. Then, the cost v of a execution path Π is
the total execution prices of the plan. Finally, the optimal plan is the plan with the
minimum overall execution price.

For successful execution rate and availability, each service contributes the QoS
value in the same way, no matter how they are connected (i.e., sequential or parallel).
Here, we focus on throughput and execution price as quality criteria.

17.6 Related Work

Our work is at the intersection of two domains: service composition and software
adaptation. Automatic composition is an important issue in Service-Oriented Com-
puting and numerous works have addressed this over the last years [17, 22, 30].
Planning-based approaches have particularly been studied due to their support for
underspecified requirements [15, 29]. Automatic composition has also been achieved
using matching and graph/automata-based algorithms [4, 11, 25] or logic reasoning
[5]. Various criteria could be used to differentiate these approaches, yet, due to our
Task-Oriented Computing motivation, we will focus on issues related to service and
composition requirement models, and to adaptation.

While both data input/output and capability requirements should be supported,
as in our approach, to ensure composition is correct wrt. the user needs, only [6,
25] do, while [4, 11, 16, 20, 21, 37] support data only and [5] supports capabilities
only. As far as adaptation is concerned, [4, 16, 21, 25] support a form of horizontal
(data) adaptation, using semantics associated to data; and [20] a form of vertical
(capability abstraction) adaptation, due to its hierarchical planning inheritance. We
combined both techniques to achieve both adaptation kinds. Few approaches support
expressive models in which protocols can be described over capabilities—either for
the composition requirement [5] or for both composition and services [6, 25] like us.
[4, 11, 20, 16, 21] only support conversations over operations (for a given capability).

As opposed to the aforementioned works dealing with orchestration, in [24], the
authors present a technique with adaptation features for automatic service choreog-
raphy. It supports a simple form of horizontal adaptation, however their objective
is to maximize data exchange between services but they are not able to compose
services depending on an abstract user task.

Most software adaptation works, e.g., [10, 14, 32] are pure model-based approa-
ches whose objective is to solve protocol mismatch between a fixed set of compo-
nents, and that do not tackle service discovery, composition requirements, or ser-



17 Adaptive Composition and QoS Optimization of Conversational Services 447

vice composition implementation. Few works explicitly add adaptation features to
Service-Oriented Computing [12, 23, 27]. They adopt a different and complementary
view wrt. ours since their objective is not to integrate adaptation within composition
in order to increase the orchestration possibilities, but to tackle protocol adaptation
between clients and services, e.g., to react to service replacement.

In an earlier work [1] we already used graph planning to perform service composi-
tion with both vertical and horizontal adaptation. With reference to this work, we add
support for conversations in both service descriptions and composition requirements.
Moreover, adaptation was supported in an ad-hoc fashion, yielding complexity issues
when backtracking to get composition solutions. Using encodings, we are able in
our work to support adaptation with regular graph planning which enables us to use
state-of-the-art graph planning tools.

17.7 Conclusion

Software adaptation is a promising approach to augment service interoperability and
composition possibilities. In this paper we have proposed a technique to integrate
adaptation features in the service composition process. With reference to related
work, we support both horizontal (data exchange between services and orchestra-
tor) and vertical adaptation (abstraction level mismatch between user need and ser-
vice capabilities). This has been achieved combining semantic descriptions (for data
and capabilities) and graph planning. We also support conversations in both service
descriptions and composition requirements.

The approach at hand is dedicated to deployment time, where services are discov-
ered and then composed out of a set of services that may change. Yet, in a pervasive
environment, services may appear and disappear also during composition execution,
e.g., due to the user mobility, yielding broken service compositions. We made a first
step towards repairing them in [35], still with a simpler service and composition
requirement model (no conversations). A first perspective concerns extending this
approach to our new model. Further, we plan to study the integration of our com-
position and repair algorithms as an optional module in existing runtime monitoring
and adaptation frameworks for services composition such as [26].

Acknowledgments This work is supported by project “Service Oriented Systems Integration”
(RGPIN/298362-2012) of Canada NSERC Discovery Grant, and by project “Personal Informa-
tion Management through Internet” (ANR-2010-VERS-0014-03, PIMI) of the French National
Agency for Research.

References

1. Beauche, S., Poizat, P.: Automated service composition with adaptive planning, pp. 530–537.
In: Proceedings of the ICSOC (2008)



448 M. Chen et al.

2. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: Towards an Engi-
neering Approach to Component Adaptation. In: Architecting Systems with Trustworthy Com-
ponents, vol. 3939. LNCS (2006)

3. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal methods for service composition. Ann.
Math. Comput. Teleinf. 1(5), 1–10 (2007)

4. Benigni, F., Brogi, A., Corfini, S.: Discovering service compositions that feature a desired
behaviour. In: Proceedings of the ICSOC (2007)

5. Berardi, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Calvanese, D.: Synthesis of under-
specified composite e-services based on automated reasoning. In: Proceedings of the ICSOC
(2004)

6. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via planning in
asynchronous domains. Artif. Intell. 174(3–4), 316–361 (2010)

7. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. J. 90(1–2),
225–279 (1997)

8. Bouguettaya, A., Yu, Q., Liu, X., Malik, Z.: Service-centric framework for a digital government
application. IEEE Trans. Serv. Comput. 4(1), 3–16 (2011)

9. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: a survey. Technical Report TR-
10-01, Centre for Research on Evolution, Search & Testing, King’s College London (2010)

10. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. J. Syst. Softw.
74(1), 45–54 (2005)

11. Brogi, A., Popescu, R.: Towards semi-automated workflow-based aggregation of web services.
In: Proceedings of the ICSOC (2005)

12. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Proceedings of the
ICSOC (2006)

13. Canal, C., Murillo, J.M., Poizat, P.: Software adaptation. L’Objet 12, 9–31 (2006)
14. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioural mismatching compo-

nents. IEEE Trans. Softw. Eng. 34(4), 546–563 (2008)
15. Chan, K.S.M., Bishop, J., Baresi, L.: Survey and comparison of planning techniques for web

service composition. Technical report, Dept Computer Science, University of Pretoria (2007)
16. Constantinescu, I., Binder, W., Faltings, B.: Service composition with directories. In: Proceed-

ings of the SC (2006)
17. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Serv. 1(1),

1–30 (2005)
18. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kauf-

mann Publishers, Amsterdam (2004)
19. Kiepuszewski, B.: Expressiveness and suitability of languages for control flow modelling in

workflow. PhD thesis, Queensland University of Technology, Brisbane, Australia (2003)
20. Klush, M., Gerber, A., Schmidt, M.: Semantic web service composition planning with OWLS-

Xplan. In: Proceedings of the AAAI Fall Symposium on Agents and the Semantic Web (2005)
21. Liu, Z., Ranganathan, A., Riabov, A.: Modeling web services using semantic graph transfor-

mation to aid automatic composition. In: Proceedings of the ICWS (2007)
22. Marconi, A., Pistore, M.: Synthesis and composition of web services. In: Proceedings of the

9th International School on Formal Methods for the Design of Computer, Communications
and Software Systems: Web Services (SFM)

23. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process algebra and
on-the-fly reduction techniques, pp. 84–99. In: Proceedings of the ICSOC (2008)

24. Melliti, T., Poizat, P., Ben Mokhtar, S.: Distributed behavioural adaptation for the automatic
composition of semantic services. In: Proceedings of the FASE (2008)

25. Mokhtar, B.S., Georgantas, N., Issarny, V.: COCOA: conversation-based service composition
in pervasive computing environments with QoS support. J. Syst. Softw. 80(12), 1941–1955
(2007)

26. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
ws-bpel, pp. 815–824. In: Proceedings of the WWW (2008)



17 Adaptive Composition and QoS Optimization of Conversational Services 449

27. Nezhad, H.R.M., Xu, G.Y., Benatallah, B.: Protocol-aware matching of web service interfaces
for adapter development, pp 731–740. In: Proceedings of the WWW (2010)

28. Papazoglou, M.P., Georgakopoulos, D.: Special issue on service-oriented computing. Commun.
ACM 46(10), 25–28 (2003)

29. Peer, J.: Web service composition as AI lanning—a survey. Technical report, University of
St.Gallen (2005)

30. Rao, J., Su, X.: A survey of automated web service composition methods. In: Proceedings of
the SWSWPC (2004)

31. Seguel, R., Eshuis, R., Grefen, P.: An Overview on Protocol Adaptors for Service Component
Integration. Technical report, Eindhoven University of Technology (2008) BETA Working
Paper Series WP 265

32. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based architectures.
Sci. Comput. Program 71(3), 181–212 (2008)

33. Triantaphyllou, E.: Multi-Criteria Decision Making: A Comparative Study. Springer, New York
(2000)

34. Yan, Y., Chen, M.: Anytime QoS optimization over the planGraph for web service composition.
In: Proceedings of the ACM SAC, Italy (2012)

35. Yan, Y., Poizat, P., Zhao, L.: Repairing service compositions in a changing world. In: Proceed-
ings of the SERA (2010)

36. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web services
composition, pp. 411–421. In: Proceedings of the WWW (2003)

37. Zheng, X., Yan, Y.: An efficient web service composition algorithm based on planning graph,
pp 691–699. In: Proceedings of the ICWS (2008)


	17 Adaptive Composition and QoS Optimization of Conversational Services Through Graph Planning Encoding
	17.1 Introduction
	17.2 Preliminaries
	17.3 Modeling
	17.3.1 Conversation Modeling
	17.3.2 Semantic Structures
	17.3.3 Services
	17.3.4 Composition Requirements

	17.4 Encoding Composition as a Planning Problem
	17.4.1 DSS Encoding
	17.4.2 Workflow Encoding
	17.4.3 Composition Requirements Encoding
	17.4.4 Service Encoding
	17.4.5 Overall Encoding
	17.4.6 Plan Implementation
	17.4.7 Tool Support

	17.5 QoS Optimization of Conversational Service Composition as an Extension
	17.5.1 Aggregation of Quality of Services
	17.5.2 Encoding QoS-Aware Composition as a QoS-Aware Planning Problem
	17.5.3 Other QoS Criteria

	17.6 Related Work
	17.7 Conclusion
	References


