
Chapter 16
Composition of Web Services: From Qualitative
to Quantitative Timed Properties

Nawal Guermouche and Claude Godart

Abstract Dealing with service composition is an important and challenging issue of
distributed systems. Existing works investigate mechanisms for analyzing and syn-
thesizing a composition based on qualitative properties which characterize operations
and/or messages choreography constraints. Apart from these qualitative properties,
quantitative properties such as time related features are a crucial setting to consider.
Augmenting service’s behavior with timed properties increases the expressiveness
and brings new difficult problems. This requires defining rigorous verification and
composition primitives for taking into account such properties. In this chapter, we
present a formal composition and verification approach which considers quantitative
timed properties assigned to qualitative properties. The chapter starts with a general
introduction. Then, it introduces the concepts related to timed Web services, timed
conversations and protocols. The following section introduces the notion of com-
position of Web services with emphasis on the temporal dimension, and defines a
formal composition approach. This approach relies on the generation of a mediator
which aims surpassing timed conflicts. The next section presents validation primi-
tives based on model checking techniques to verify and validate timed compositions.
An implementation of the concepts previously introduced is then described. Before
concluding with a larger consideration of time implication in Web services definition
and composition, and with open issues, we present a study of the state of the art.

N. Guermouche (B)
CNRS, LAAS, 7 avenue du colonel Roche, Toulouse F-31400, France
e-mail: nawal.guermouche@laas.fr

N. Guermouche
Univ de Toulouse, INSA, LAAS, Toulouse F-31400, France

C. Godart
LORIA-INRIA-UMR 7503, Vandoeuvre-les-Nancy F-54506, France
e-mail: nawal.guermouche@laas.fr

A. Bouguettaya et al. (eds.), Web Services Foundations, 399
DOI: 10.1007/978-1-4614-7518-7_16,
© Springer Science+Business Media New York 2014

400 N. Guermouche and C. Godart

16.1 Introduction

Service Oriented Architecture (SOA) is gaining acceptance as a promising
architecture for organizations to integrate their business applications. In SOA, appli-
cation’s business logic can be modularized and outsourced as Web services so that
these services can be mutually used. Based on standards, Web services promote the
composition of loosely coupled applications to integrate them into complex business
systems. In this field, many industrial and academic efforts have been done to provide
specifications and techniques to allow verification and composition of heterogeneous
Web services [4].

Web service description is one of the important ingredients for Web service com-
position. In fact, selecting, using, and composing services in efficient and correct
manner, requires to provide rich specifications for describing various kind of impor-
tant service properties. Indeed, in real life scenarios, Web services and more par-
ticularly Web service composition depends on several properties, such as those
related to messages choreography constraints [4], security [15], and timed prope
rties [13, 25].

In this chapter, we focus on the Web service composition synthesis problem where
we consider qualitative properties associated with quantitative properties. Qualita-
tive properties define messages choreography constraints and quantitative properties
relate to timed properties which specify the necessary delays to exchange messages
(e.g., in an e-government application a prefecture must send its final decision to grant
an handicapped pension to a requester after 7 days and within 14 days). Thus, we
consider that building correct compositions requires managing message choreog-
raphy constraints augmented with timed properties. Few recent works have shown
the importance to deal with such timed properties in the compatibility analysis of
synchronous [27], asynchronous Web services [14], in checking requirements satis-
faction [18], and in calculating temporal thresholds for process activities [25].

Since services are developed autonomously, mismatches can arise and a compo-
sition can fail. Mainly, we distinguish two kind of problems: non-timed and timed
mismatches. Non-timed problems concern interfaces and sequence messages con-
flicts which happen when: (1) awaited messages are not produced by other services,
(2) awaited and sent messages are not adequate (i.e., they have different names or
different data types), and (3) there is a mutual services blocking (e.g., a service Q1
waits for a message m that must be sent by another service Q2, which also waits for
a message m′ from Q1 to send the awaited message m). Detecting and preventing
such composition timed problems is a difficult and challenging problem [13]. In
fact, when composing services, dependencies between timed properties can be cre-
ated and some dependencies can generate timed conflicts. In the context of service
composition, it is important to detect and prevent such timed conflicts to anticipate
composition failures. To do so, a possible solution, is to build a third party service,
called mediator. The notion of a mediator has been already used to solve many prob-
lems as data integration [28, 33], Web semantic heterogeneities [30], adaptation of
services interfaces (namely adaptators) [2], for discovering appropriate services to
satisfy client’s preferences [10], and as an interface between Web services [4].

16 Composition of Web Services 401

To summarize, the problem we are interested in can be defined as follows: given
a timed description of a given need, called client service in the following, and a set
of discovered timed services, how to build a composition of discovered services to
satisfy this client service. Note that we focus on correct interactions of services and
we do not consider exception handling which are out of the scope of this chapter.
The main contributions of our framework are as follows:

1. Unlike existing composition synthesis models, we propose a formal model of
asynchronous Web services that takes into account qualitative timed properties
associated to messages, data, and data constraints.

2. As we deal with timed properties, when synthesizing a composition, timed con-
flicts can arise. We propose a mechanism to discover these conflicts.

3. In addition, we propose the use of a mediator based process to anticipate and
prevent, when possible, the problem of timed (and non timed) conflicts.

4. We propose a model checking based verification process which can be used to
validate Web service compositions.

5. Finally, the primitives described in this chapter have been implemented in a
prototype that we have used to perform preliminary tests.

The reminder of the chapter is organized as follows: in Sect. 16.2 we present a
global overview of our framework. Section 16.3 describes the model we propose in
order to specify the Web services properties we consider. Section 16.4 describes our
composition approach steps. Section 16.5 presents a concrete example of composition
to illustrate our approach. In Sect. 16.6, we present a verification process which aims
at verifying compositions of Web services and an experimental setup. Related work
is introduced in Sect. 16.7, and finally Sect. 16.8 concludes.

16.2 Global Overview

In this section, we present an overview of our timed composition framework which
relies on the following elements:

• A client Service: the first element of our framework is the timed description of the
client service. This service specifies timed properties associated to the data flow
the client provides and to the data flow he expects without any reference to the
operations of available services.

• A set of discovered services: we assume that a set of timed Web services can be
discovered to answer the client service request.

• A mediator: it can access the data yet exchanged by the different services and use
them to generate any missing messages.

402 N. Guermouche and C. Godart

Case Study: e-government Application

Let us present a part of an e-government application inspired from [21] to illustrate the
related issues of the problem we handle. The goal of the e-government application
we consider is to manage handicapped pension requests. Such a request involves
three organizations: (1) a prefecture, (2) a health authority, and (3) a town hall.
We suppose that theses organizations are managed by, respectively, the prefecture
service (PS), the health authority service (HAS), and the town hall service (THS).

A high level choreography model of the process is depicted in Fig. 16.1. A citizen
can apply for a pension. Once applied, the prefecture solicits the medical entity
to deliver an examination report of the requester, and the town hall to deliver the
domiciliation attestation. After studying the received files, the prefecture sends the
notification of the final decision to the citizen. The interaction between these partners
is constrained by timed requirements:

• Once the health authority service proposes meeting dates to the citizen, this one
must confirm the meeting within 24 h.

• The prefecture requires at least 48 h and at most 96 h from receiving the file from
the requester to notifying the citizen with the final decision.

• The medical report must be sent to the prefecture after at least 120 h and at most
168 h after receiving the request of the medical report.

Notion of Timed Conflicts

Given this set of timed Web services and the client service, our aim is to build a
timed composition that satisfies this client service. When building a composition, it

Fig. 16.1 Global view of the e-government application

16 Composition of Web Services 403

is mandatory to ensure that data and timed constraints of the involved services are not
conflicting. In the context of our work, we do not focus on data type and semantics
related analysis problems. We consider simple data which can be simply checked:
two data constraints are said to be not conflicting if their solution set is not disjoint.
For example, the prefecture studies the pension request only if the requester is at
least 16 years old. If we want to create a connection between the requester and the
prefecture service to exchange the pension request while the requester is for example
at least 18 old, this is possible (i.e., the set of solution of age ≥16 ∩ the set of solution
of age≥18 �= ∅).

While the data constraints we consider can be checked by verifying their set of
solutions, timed constraints validation needs more complex investigations. In fact,
in a collaboration, timed properties of Web services cannot be checked like simple
constraints. In other words, to assert that an interaction is timed deadlock free, it is
not sufficient to check timed constraints assigned to sending a message with timed
constraints associated to its reception. For example, the prefecture must send its final
decision after 48 h and within 96 h from receiving the pension request. On the other
side, the requester must receive it within 120 h from sending the request. If we check
these two timed constraints as simple constraints, we can conclude that the prefecture
and the requester can collaborate together. However, if we examine the progress of
the interaction, we can remark that the prefecture can send its final decision only after
the medical report has been received. This report must be sent by the medical entity
after 120 h and within 168 h from receiving the report request. Since the prefecture
must wait for the medical report to send its final decision, i.e., after 120 h, the final
decision cannot be sent within 96 h from receiving the pension request. Figure 16.2,
illustrates this conflicting interaction. The prefecture sends its decision after 48 h
and within 96 h from receiving the pension request. But during this execution, the
prefecture must wait for at least 120 h to get the medical report. This presents a
simple timed conflict. More complex timed conflicts can arise and can make fail the

Fig. 16.2 Example of impact of timed properties on web services interaction

404 N. Guermouche and C. Godart

composition. As said previously, to succeed the composition, an alternative consists
in generating a mediator whose role is to try to prevent these conflicts.

Now, let us check the scenario depicted in Fig. 16.1. We can remark that the town
hall has to wait for a medical report of the medical entity before to, for example,
deliver an handicapped card. The town hall must receive the report within 144 h,
but the medical entity can send its report only after 168 h. So, the town hall cannot
receive the report in time and the composition will fail.

But, if we examine the situation in details, we can remark that the medical entity
sends its report to the prefecture after 120 h. As a consequence, intuitively, to succeed
the collaboration, we can build an indirect connection between the medical entity
and the town hall to deliver the medical report within 144 h. This indirect connection
can be built by the mediator that generates the message for transmitting the medical
report to the town hall in advance. Note that the mediator fails when a required data
(i.e., the data involved in the required message) is not available (i.e., the data is
not accessible).

To summarize, in this section we have intuitively discussed the impact and the
importance to consider timed properties in a composition framework. During a com-
position, different services with different timed constraints can be involved. Timed
properties can give rise to timed conflicts which can make fail the composition. In
the following, we propose a formal approach which aims at composing services so
that their timed properties are respected.

16.3 Modeling the Timed Behavior of Web Services

As introduced above, one of the important ingredients in a composition framework
is the timed conversational protocol of Web services which we assume deterministic
and able to support synchronous and asynchronous communications. In our frame-
work, the timed conversational protocol specifies the sequences of messages a service
supports, the involved data flow, and the associated timed properties to exchange mes-
sages. We have adopted a deterministic timed automata based formalism to model
the timed behavior of Web services (i.e., the timed conversational protocol). Intu-
itively, the states represent the different phases a service may go through during its
interaction. Transitions enable sending or receiving a message. An output message
is denoted by !m, whilst an input one is denoted by ?m. A message involving a list
of data is denoted by m(d1, . . . , dn), or m(d̄) for short. In an asynchronous com-
munication, when a message is sent, it is inserted into a bounded message queue,
and the receiver can consume (i.e. receives) the message when it is available in the
queue. To capture the timed properties when modelling Web services, we use stan-
dard timed automata clocks [1]. The automata are equipped with a set of clocks. The
values of these clocks increase with the passing of time. Transitions are labelled by
timed constraints, called guards, and resets of clocks. The former represent simple
conditions over clocks, and the latter are used to reset values of certain clocks to

16 Composition of Web Services 405

zero. The guards specify that a transition can be fired if the corresponding guards
are satisfiable.

Let X be a set of clocks. The set of constraints over X , denoted �(X), is defined
as follows:

true | x �� c | ψ1 ∧ ψ2, where ��∈ {≤,<,=, �=,>,≥}, x ∈ X , ψ1, ψ2 ∈ �(X),
and c is a constant. With that:

Definition 16.1. A timed conversational protocol Q is a tuple (S, s0, F,M,C, X, T)
where S is a set of states, s0 is the initial state, F is a set of final states (F ⊆ S), M
is a set of messages, C is a set of constraints over data, X is a set of clocks, and T is
a set of transitions such that T ⊆ S × M × C × Ψ (X) × 2X × S with an element
of the alphabet (exchanged message (M)), a constraint over data (C), a guard over
clocks (Ψ (X)), and the clocks to be reset (2X).

The conversational protocols we consider are deterministic. A conversational pro-
tocol is said to be deterministic if for each two transitions (s, α1, c1, ψ1, s′

1) and
(s, α2, c2, ψ2, s′

2), the following conditions are satisfied:
α1 �= α2, or c1 ∧ c2 = false, or ψ1 ∧ ψ2 = false

Example 16.1 Figure 16.3 illustrates the timed conversational protocol of the P S,
T H S, H AS services of our use case study, and the client service. In this figure, the ini-
tial state of the PS service is p0, the set of states is {p0, p1, p2, p3, p4, p5, p6, p7, p9,

p10, p11, p12, p13, p14, p15, p16} and the set of final states is {p7, p9, p16}. This
service can send and receive messages. For example, it can send the message
examination−request (sn, handicap), denoted !examination−request (sn, han
dicap). This message has as parameters the security number (sn), and the handi-
cap (handicap) of the requester. Analogously, this service can consume a mes-
sage, for example, the message pension−request (sn, age, handicap), denoted
?pension−request (sn, age, handicap). This message has as parameters the secu-
rity number (sn), the age (age), and the handicap (handicap) of the requester. This
service achieves correctly its execution if for each interaction it reaches a final state.

To specify that the prefecture must send its final decision within a delay of 48–96 h
after receiving the pension request, we associate to the reception of the request of
the pension a reset of a clock t1 (t1 := 0) and we assign the constraint 48 ≤ t1 ≤ 96
to the sending of the final decision.

16.4 Analyzing the Timed Composition Problem

In this section, we present the algorithm that allows to synthesize a composition
of timed Web services. Our framework gathers three steps: (1) creating timed P2P
connections between the client service and the discovered services (see Sect. 16.4.1),
(2) discovering timed conflicts (see Sect. 16.4.2), (3) generating a mediator that tries
to step in to succeed a connection (see Sect. 16.4.3).

406 N. Guermouche and C. Godart

Fig. 16.3 Services of the e-government scenario

16 Composition of Web Services 407

16.4.1 Building Timed P2P Connections

Given a set of conversational protocols of the services and a client service, our aim is
to build a timed global automaton that characterizes the timed composition schema
(the global automaton is called Timed Composition Schema Automaton TCSA).

To build this TCSA, we introduce the concept of configuration that represents the
states of the TCSA at a given time. A configuration defines the evolution of services
states when they are interacting together (i.e., connected via channels). In the initial
configuration, all the services are in their initial states. Given a source configuration,
the TCSA reaches a new configuration when there exists two services that change
their states by exchanging a message so that no timed conflict arises.

Definition 16.2. (A Timed Composition Schema Automaton)
A timed composition schema automaton TCSA is a tuple (S, Q,M, X, L , T) such
that S is a set of configurations, Q is a set of services, M is a set of messages, L is
a set of channels, X is a set of clocks, and T is a set of TCSA transitions such that
T ⊆ S × L ×Ψ (X)× S. A transition specifies that, from a source configuration, the
TCSA reaches a new configuration when a channel can be created to interconnect
two services so that the associated (ordered) timed constraints are satisfied. The set
of channels L is defined as a set of (ps, pr ,m(d)), with ps, pr ∈ Q, and the tuple
(ps, pr ,m(d)) specifies that the service ps sends the message m(d), that involves
the set of data types (d), to the service pr . In our composition framework, a mediator
can be generated, hence the set of considered services is Q = {R, A,Med}, such
that R is the client service, A is the set of the available services, and Med is the
generated mediator.

Among the transitions of the different services, we distinguish two kinds of tran-
sitions: passive transitions and non-passive transitions.

• A passive transition is a timed (resp. non-timed) transition that has timed con-
straints of the form x ≤ v (resp. x < v). In fact, these transitions are considered
passive because they do not give rise to timed conflicts.

• A non-passive transition is a timed transition that has timed constraints of the
form x ≥ v (resp. x > v). In fact, timed conflicts can arise when these transitions
precede transitions that have constraints of the form x ≤ v (resp. x < v).

The approach of composition is based on the Algorithm 1. This algorithm aims
to build connections between the different services to try to satisfy the client service.
The steps of this algorithm can be described as follows:

From the set of transitions T , it isolates passive transitions Tp and non-passive
transitions Tnp. Initially, it tries to connect each transition of the client service with
the transitions of the different services. Note that this algortihm tries to connect pas-
sive transitions before non-passive transitions. In fact, the study we have performed
shows that timed conflicts can arise when non-passive transitions precede passive
transitions. When the connection fails, this algorithm calls the Algorithm 3 that aims
at generating the mediator. When a connection is created, the Algorithm 2 checks
if the created connection does not give rise to timed conflict. In the following, we
present the process of discovering timed conflicts.

408 N. Guermouche and C. Godart

16.4.2 Making Explicit the Implicit Timed Constraints
Dependencies

As said previously, when creating TCSA transitions, implicit timed dependencies
can be created. In that case, timed conflicts can arise. In order to discover timed
conflicts when combining services, we need mechanisms for making explicit the
implicit timed dependencies. To do so, we propose the clock ordering process. The
idea behind the clock ordering process is to define an order between the different
clocks of the services for each new TCSA transition.

To explain why simple checking of timed constraints as simple constraints (called
local checking) is not sufficient to detect conflicts, we consider the following example
depicted in Fig. 16.4.

Example 16.2 Let us consider the two timed conversational protocols P and P ′. We
start by building the TCSA of the two conversational protocols by considering the
timed constraints as simple constraints, i.e., we check locally the timed constraints
of the transitions.

As we can see, the service P sends the message m0 and resets the clock x .
The service P ′ can receive this message. So we can build the TCSA transition
(s0s′

0,m0, x1 = 0, s1s′
1). Then the service P ′ sends the message m1 and resets

the clock y. The service P can receive the message m1. We build the TCSA tran-
sition (s1s′

1,m1, y = 0, s2s′
2). Later, the service P sends the message m2, the ser-

vice P ′ can receive it after 20 units of time. Hence, we build the TCSA transi-
tion (s2s′

2,m2, y ≥ 20, s3s′
3). After that, the service P ′ sends the message m3, the

service P must receive it within 10 units of time. We build the TCSA transition
(s3s′

3,m3, x < 10, s4s′
4). As we can see in Fig. 16.4a, by simply checking timed

constraints of transitions, we could build a TCSA.

(a) (b)

Fig. 16.4 Make explicit the implicit timed constraints dependency. a Local checking of the con-
straints of the transitions. b Clock ordering

16 Composition of Web Services 409

However, the message m2 can be exchanged after 20 units of time and m3 can be
exchanged within 10 units of time. As m3 can be exchanged after exchanging the
message m2, it can be exchanged only after 20 units of time. However, the message
m3 should be exchanged within 10 (i.e., [0, 10]) units of time and after 20 (i.e., [20,
∞)) units of time, which is a contradiction and represents a timed conflict. To cater
for such implicit timed properties, we propose to perform a clock ordering process.
This process allows to define an order between the clocks of the TCSA transitions.
Below, we show how we define the clock order.

The two services can exchange the message m0 via the TCSA transition (s0s′
0,m0,

x = 0, s1s′
1). Then when building the TCSA transition (s1s′

1,m1, y = 0, s2s′
2)

410 N. Guermouche and C. Godart

we can define the order y ≤ x since y is reset after x . So we associate this order to
the TCSA transition as follows (s1s′

1,m1, 0 ≤ y ≤ x, s2s′
2). Then, the service P can

send the message m2 to the service P ′ which can receive it after 20 units of time. So
when the two services exchange the message m2, (0 ≤ y ≤ x) ∧ (y ≥ 20) must be
satisfied. We build the TCSA transition (s2s′

2,m2, 0 ≤ y ≤ x, y ≥ 20, s3s′
3). Until

now, there is no timed conflict. Note that we propagate the constraint y ≥ 20 over the
successor transitions. When the service P ′ sends the message m3, the service P can
receive it within 10 units of time, i.e., 20 ≤ y ≤ x ≤ 10 must be satisfied. However,
this latter induces to a timed conflict (20 ≤ 10). As we can see in Fig. 16.4b, by
defining a clock ordering when combining services, implicit timed conflicts can be
discovered.

The Algorithm 2 allows to define an order between the different clocks of ser-
vices. Based on the computed order, it detects timed conflicts. This algorithm has as
input a candidate TCSA transition ti = (si ,mi (d), ci , ψi ,Yi , s′

i). To discover timed
conflicts, it proceeds as follows.

• It propagates timed constraints, of the form x > v (resp. x ≥ v), from a predecessor
transition ti−1 to the transition ti .

• A clock z which is reset in a predecessor transition ti−1, has a value bigger than a
clock y which is reset in the current transition ti . Hence, it defines the order y ≤ z.

• In addition, it propagates the order z1 ≤ · · · ≤ zn of the predecessor transition
ti−1.

• If in the transition ti there exists a constraint of the form x ≤ v (resp. x ≥ v)
and at the same time, a clock y is reset, then it defines the order x − y ≤ v (resp.
x − y ≥ v). That means, the difference between the two clocks x and y is always
less (resp. bigger) than v.

• If among the set of constraints and defined orders, there exists two constraints
x ≥ v and x ′ ≥ v′, and at the same time, there is an order of the form x − x ′ ≥ v,
it implies the order x ≥ v + v′. In fact, this order allows to consider the clocks
value accumulation.

By applying theses steps when building TCSA transitions, timed conflicts are
discovered if at least one of the following conditions is satisfied.

• There exists an order of the form v ≤ x1 ≤ · · · ≤ xn ≤ v′ where v′ ≤ v.
• There exists three constraints x ≥ v′ and y ≤ v′′ and x − y ≤ v with v′ − v′′ > v

(i.e., following the constraints x ≥ v′ and y ≥ v′′, the difference x − y ≤ v is
violated).

• There exists three constraints x ≤ v′, y ≤ v′′ and x − y ≥ v with v′ < v (i.e., the
constraint x − y ≥ v is violated),

• There exists three constraints x ≤ v′, y ≥ v′′, and x − y ≥ v with v′ − v′′ < v

(i.e., the constraint x − y ≥ v is violated).

16 Composition of Web Services 411

The clock ordering process is very important as it allows to predict timed conflicts.
A simple technique such as using only a mediator, whose aim is to provide messages
without a clock ordering process, will be insufficient and cannot resolve a problem
when it arises (i.e., when a timed conflict occurs it means that timed properties are
violated). Indeed, our goal is to predict and prevent timed conflicts before they arise.
To do so, we use the clock ordering process in association with a mediator.

16.4.3 Generation of a Timed Mediator

As said previously, because of timed (and non-timed) conflicts, a timed P2P con-
nection process can fail. The mediator aims to prevent these conflicts by creating
the required messages. In our approach, a required message is created taking the

412 N. Guermouche and C. Godart

involved data from the history of past exchanged messages, i.e., the current available
data (we assume here that data having the same name, have also the same value).

In order to produce the required messages, we check if the involved data are
available, i.e, they have been already exchanged. In other terms, the mediator reuses
the data historic to produce the required messages.

The mediator is defined using the computed TCSA, by adding input, output and
empty messages. As long as the TCSA can be executed, the mediator does nothing.
When two services can exchange a message and there are clocks which are reset,
the mediator resets the same clocks via an empty transition. In fact, these clocks can
be used later by the mediator to consume messages within a defined time window,
whilst, when a deadlock can arise, the mediator generates the required message to
prevent this deadlock.

16.5 Back to the Case Study

In order to illustrate the approach presented in this chapter, we propose to show a con-
crete composition example using the P S, H AS, T H S services, and the client service
introduced in Sect. 16.2. We first try to build a TCSA (Sect. 5.1, Fig. 16.5a without
the timed involvement of a mediator. Then we introduce the mediator (Sect. 5.2,
Fig 16.5b to resolve timed problems.

16.5.1 Composition Without the Timed Involvement of the Mediator

As in our framework, a mediator can be involved, we generate an empty media-
tor that has initially only one state m0. The initial configuration of the TCSA is

http://dx.doi.org/10.1007/978-1-4614-7518-7_5
http://dx.doi.org/10.1007/978-1-4614-7518-7_5

16 Composition of Web Services 413

(a)

(b)

Fig. 16.5 Composition without the timed involvement of the mediator. a A conflicted TCSA. b The
associated mediator

s0 p0r0d0m0 (respectively the client service, PS, HAS, THS, and the mediator are
in their initial states). From the current state of the client service s0, the message
!pension−request (sn, age, handicap) can be sent. As we can remark, the P S ser-
vice waits for this message. Since, the constraints over data (age ≥ 18 and age ≥ 16)
are not disjoint, we can connect the two transitions (s0, !pension−request (sn, age,
handicap), age ≥ 18, t5 = 0, s1) and (p0, ?pension−request (sn, age, handic
ap), age ≥ 16, t1 = 0, p1). When the two transitions are fired, the two clocks
t1 and t5 are reset. So, we generate an empty mediator transition that allows to reset
the same clocks. In fact, theses clocks can be used later to specify constraints to
produce or consume messages. We build a global TCSA transition that connects
the two transitions of the client and P S services with the transition of the mediator
(s0 p0r0d0m0, pension−request (sn, age, handicap), t1 = t5 = 0, s1 p1r0d0m1).
The new configuration becomes s1 p1r0d0m1 and the new current state of the client
service becomes s1. From this new configuration, the current transition of the client
service is (s1, ?medical−examination(reason), s2). There is no transition that
enables sending the message medical−examination(reason). So we check if the
mediator can produce this message. Since the data reason has not been already
exchanged, the mediator cannot generate the message medical−examination(reas
on). Among the services transitions, we choose the transition (p1, !noti f ication(pre
f Code), t2 = 0, p2). Since, the H AS service can consume it, we can connect them.
As the clocks t2 and t3 are reset, we generate an empty mediator transition that reset
the same clocks. We build the TCSA transition (s1 p1r0d0m1, noti f ication(pre f Co
de), t2 ≤ t5, t2 = t3, s1 p2r0d1m2). From the new configuration, the HAS ser-
vice waits for the message examination−request (sn, handicap) that must be
consumed within 24 h from receiving the message noti f ication(codePre f). The
message examination−request (sn, handicap) can be sent by the P S after 36 h
from sending the message noti f ication(codePre f). We build the TCSA transition
(s1 p2r0d1m2, examination−request (sn, handicap), t2 = t3, t2 ≤ t5,
t3 ≤ 24, t2 ≥ 36, s1 p3r0d2m2). This transition is conflicting, since t2 = t3, t3 ≤ 24
et t2 ≥ 36. Thus, we can see that without involving the mediator to handle timed
conflicts, the compositions fails.

414 N. Guermouche and C. Godart

16.5.2 Involving the Mediator

We show here how the mediator can be involved to handle timed conflicts.
To generate the TCSA (Fig. 16.6a) and the associated timed mediator (Fig. 16.6b),

we use the following steps. We apply the same steps described above to reach the con-
figuration s1 p2r0d1m2. From this configuration, the HAS service can fire the passive
transition (d1, ?examination−request (sn, handicap), t3 ≤ 24, d2). Since the cor-
responding transition of the PS service (p2, !examination−request (sn, handicap),
t2 ≥ 36, p3) is a non-passive transition, we check if the mediator can generate the
message examination−request (sn, handicap). The data sn, and handicap have
been already exchanged. Hence, the mediator can generate the required message
examination−request (sn, handicap)via the transitions (m2, !examination−req
uest (sn, handicap), t3 ≤ 24,m3). When the message is generated, we build the
global transition (s1 p2r0d1m2, examination−request (sn, handicap),
t2 = t3, t2 ≤ t5, t3 ≤ 24, s1 p2r0 d2m3). From the new configuration s1 p2r0d2m3, we
choose the passive transition (d2, ! f orm−to− f ill(medical Form, reason), d3) of
the HAS service. As there is no service that waits for the message f orm−to− f ill
(medical Form, reason), we generate the mediator transition to consume this
message, i.e., (m3, ? f orm−to− f ill(medical Form, reason),m4), and then we
build the global transition (s1 p2r0d2m3, f orm−to− f ill(medical Form, reason),
s1 p2r0d3m4). From the new configuration, the current client transition is (s1, ?medic
al−examination(reason), s2). There is no transition that enables sending the
message medical−examination(reason). The mediator can produce the message
medical−examination(reason), via the transition (m4, !medicalexamination
(reason),m5), and then we build the TCSA transition (s1 p2r0d3m4, medical−
examination(reason), s2 p2r0d3m5). The current transition of the client service
is (s2, ?medical− f orm(medical Form), s3). The data medical Form has been
already sent by the HAS service. So, the mediator can generate the missing message

%

4

*

6

% % *+

7

%

*

% *

%

(a)

(b)

Fig. 16.6 The timed composition schema automaton (TCSA). a A part of the generated TCSA. b
A part of the associated mediator

16 Composition of Web Services 415

medical− f orm(medical Form) via the transition (m5, !medical− f orm(medical
Form),m6). Once the transition of the mediator is generated, we build the global
transition (s2 p2r0d3m5,medical− f orm(medical Form), s3 p2r0d3m6). From the
new configuration, we connect respectively the two transitions of the client and H AS
services (s3, ! f orm(f illed Form), s4) and (d3, ! f orm(f illed Form), d4) via the
TCSA transition (s3 p2r0d3m6, f orm(f illed Form), s4 p2r0d4m6).

By applying the same steps, either we build the TCSA, or we detect a conflict that
cannot be avoided.

16.6 Formal Verification and Validation of the Built Composition

As presented previously, when the composition succeeds, the algorithm generates
a mediator and produces a global timed composition schema TCSA. Such a built
TCSA is an optimized product built on the fly: indeed, we build progressively the
product of timed protocols rather than building the whole product.

The built TCSA is correct if it is deadlock free and it satisfies the client service.
Checking that the TCSA is deadlock free can be reduced to checking reachability
properties. This problem is PSPACE-complete in general. The problem of client
service satisfaction checking can be reduced to the inclusion problem, which is
decidable [1]. In fact, the formal model of timed conversational protocol that we have
defined relies on a deterministic timed automata for which closure and decidability
properties have been proved [1].

In the following, we present a formal verification process which aims to validate
the built composition. We note that this verification process is generic and can be used
to verify atomic and composite services built automatically or manually. This process
relies on a model checking approach inspired from [14] and using the UPPAAL model
checker.

16.6.1 UPPAAL Overview

UPPAAL is a model checker for the verification and simulation of real time sys-
tems [19]. An UPPAAL model is a set of timed automata, clocks, channels for systems
(automata) synchronization, variables and additional elements [19].

Each automaton has one initial state. Synchronization between different processes
can take place using channels. A channel can be written into (denoted as channel_na
me !), and can be read (denoted as channel_name ?). A channel can be defined as
urgent to specify that the corresponding transition must be fired as soon as possible,
i.e. immediately and without a delay. Variables and clocks can be associated to
processes (automaton). Conditions on these clocks and variables can be associated
to transitions and states of the process. The conditions associated to transitions,
called guards, specify that a transition can be fired if the corresponding guards are

416 N. Guermouche and C. Godart

satisfiable. The conditions associated to states, called invariants, specify that the
system can stay in the state while the invariant is satisfiable.

The UPPAAL properties query language is a subset of Computation Tree Logic
(CTL) [16]. The properties that can be analyzed by UPPAAL are:

• A[]ψ : for all the automata’ paths, the property ψ is always satisfiable, i.e., for
each transition (or a state) of each path, the property ψ is satisfiable.

• A <> ψ : for all the automata’ paths, the property ψ is eventually satisfiable, i.e.,
for each path , there is at least one transition (or a state) in which the property ψ
is satisfiable.

• E[]ψ : there is at least a path in the automata such that the property ψ is always
satisfiable, i.e., there is at least one path such that for each transition (or a state),
the property ψ is satisfiable.

• E <> ψ : there is at least a path in the automata such that the property ψ is
eventually satisfiable, i.e., there is at least one transition (or a state) of at least one
path in which the property ψ is satisfiable.

• ψ � φ: when ψ holds, φ must hold.

In the following, we present the formal primitives we propose for composition
checking.

16.6.2 Verification of Web service Compositions

In this section, we present the verification process we propose using the model
checker UPPAAL. The purpose of this verification process is to check if the built
composition holds deadlocks. In this context, we define three composition classes:
(1) fully correct composition , (2) partially correct composition, (3) incorrect com-
position.

16.6.2.1 Fully Correct Composition

We say that a composition is correct if it is (timed and non-timed) deadlock free. This
is equivalent to check that its corresponding TCSA does not hold timed and non-
timed conflicts. Formally, checking that a composition is fully correct is equivalent
to check that all the paths of the TCSA lead to a final state.

Let Q be a TCSA and s f its final state. Q is said to be fully correct, if the following
CTL formula is correct:

A <> Q.s f (16.1)

16 Composition of Web Services 417

16.6.2.2 Partially Correct Composition

A composition is said to be incorrect if its TCSA is not deadlock free. Formally, a
composition is not fully correct if there exists at least a path of the TCSA which does
not lead to a final state. This latter can be specified as the following CTL formula:

E[] not Q.s f (16.2)

When the composition is not fully correct, we check if it can achieve at least one
correct execution. Formally, a composition can terminate at least one execution if its
final state can be reached via at least one path. The former property can be specified
as follows.

E <> Q.s f (16.3)

A composition is said to be partially correct if it is not fully correct (i.e., the
property 16.2 is satisfiable) but at the same time it can fulfil at least one execution
(i.e., the property 16.3 is satisfiable).

16.6.2.3 Incorrect Composition

When the composition is not even partially correct, we say that the composition is
fully incorrect. As specified by the following CTL formula, a composition is said to
be fully incorrect if all its TCSA paths do not lead to a final state.

A[] not Q.s f (16.4)

In order to experiment the proposed approach, a prototype has been imple-
mented [12]. Its underlying architecture is depicted in Fig. 16.7. The tool inputs the
description of services and the client service as XML documents. The P2P coordi-

Fig. 16.7 Underlying archi-
tecture of the prototype.

418 N. Guermouche and C. Godart

nation component tries to build P2P connections (channels) among the services and
updates the TCSA description thanks to the Algorithm 1. A third component, the
timed mediator component, steps in to consume extras messages or to produce, if
possible, the required messages using the Algorithm 3. We note that the data historic
repository is a database in which we store the involved exchanged data.

16.7 Related Work and Discussion

The research field about how to synthesize automatically a composition is very
active. Several research works have been published on automatic service compo-
sition, using techniques based on situation calculus [24, 29], transition based sys-
tems [9, 23, 11], or symbolic model-checking applied to planning [26]. Unlike the
proposed approaches, in our framework we cater for timed properties when compos-
ing services.

In [31, 32] the authors consider services as views over data sources. They build on
the idea that heterogeneity of data sources may be overcome by exploiting services
as wrappers of different information sources, thus providing uniform access to them,
exploiting standard protocols such as SOAP and XML. Each data source, i.e., service,
is described in terms of input and output parameters (the latter provided by the
source), binding patterns and additional constraints on the source. The latter allow to
characterize the output data. Analogously, these works consider only atomic services.
However, the control flow between data is a crucial aspect. Furthermore, the authors
do not consider timed properties.

Like the above works in [20, 22], the considered Web services are atomic. The
behavioral aspect is not considered and the timed aspects are not taken into account.

In [6], Web services are described by their BPEL specification. The authors pro-
posed to translate the BPEL specifications into a finite state machine (FSM) spec-
ification. As this composition approach is not oriented by the client need (there is
no client need notion), the composition consists in performing the product of the
whole FSM specification. The composition problem consists then to find paths in the
computed cartesian product that satisfies reachability properties. According to our
work, this work does not cater for timed properties when building a composition.
Moreover, in [6], the authors do not deal with the problem of missing messages, since
they do not consider data and communications capabilities as in our framework. In
addition, our composition approach is oriented by the client need, defined upon the
required data flow, that allows to optimize the cartesian product: we compose only
the relevant parts of the services and not the whole services.

In [9], Web services exchange asynchronous messages and they are modelled as
Mealy machines. The authors investigate an approach dealing with the unexpected
interactions between the local and global behavior of composite Web services. How-
ever, only messages without parameters are considered. Moreover, the authors are
not concerned with how composing services but they are interested in analyzing the

16 Composition of Web Services 419

local and global behavior of Web services in a composition. Furthermore, the authors
do not deal with timed properties.

An other remark is that, works that consider the control flow, address the compo-
sition problem at process level, i.e., they consider the operations the services perform
[4, 5, 8, 17]. For example, in [4], one of the important assumptions is that the client
need (called goal service) is specified upon the operations of the services. The pre-
cise specification of the goal service allows for precise matching with available, more
elementary services. Nevertheless, in real life scenarios, it is not always possible for
a client to precisely specify his need according to the operations of the services.
A simple client does not have any preliminary knowledge about the service opera-
tions.

Whilst, in our framework, the client need (client service) is specified by the (input
and output) data the client expects. Moreover, in [4], the authors do not deal with
timed properties when composing services.

The few frameworks that deal with timed properties in Web services specification,
focus on compatibility and replaceability analysis [27] and timed model checking
a given composition [18]. In both works, the authors consider synchronous Web
services. While, in our work, we deal with asynchronous Web services. Furthermore,
these works do not deal with the composition synthesis problem of asynchronous
timed services. For instance, in [18], the authors assume that the composition is
already built.

In [7], the authors focus on the interoperability problem of networked systems
where they consider non-functional properties such as the response time (e.g., a
consumer who asks for photos must get a list of photos in less than x ms). This work is
part of the Connect Integrated Project which aims at enabling continuous composition
of networked systems [3]. The non functional properties the author consider are
simple and are associated to atomic systems (analogously simple services) which
must be connected (analogously composed). Moreover, the approach proposed in [7]
aims at monitoring the connected system to check that the non-functional properties
such as response time are respected. In our work, we consider timed properties
associated to complex services and we handle the problem of building compositions
so that timed properties of the involved services are analysed to detect and prevent
timed conflicts.

16.8 Conclusion and Perspectives

In this chapter, we present a formal approach to handle timed properties in asynchro-
nous Web services composition. Our framework is oriented by the client data flow.
To reach this goal, we first propose a timed automata based formal model of timed
conversational protocols. This model provides an operational semantic to consider
timed properties of asynchronous communicating Web services. This model gathers:
(1) supported messages, (2) data, (3) constraints over data, (4) timed constraints, and
(5) the asynchronous conversational aspect of Web services. Based on this model,

420 N. Guermouche and C. Godart

we provide an algorithm which aims at building a composition so that no timed con-
flict arises. In this context, we use the clock ordering process that allows to discover
implicit timed conflicts that can arise when composing services.

Unfortunately, due to the heterogeneous nature of Web services, timed P2P con-
nections can fail, and the composition too. To tackle this problem, we propose to
generate a third party service, called mediator. The role of this latter is to avoid
conflicts. Obviously, the mediator has a crucial role when composing services, since
it contributes to connect the required services by producing the expected messages.

The proposed approach has been implemented in a prototype, which has been
used to perform preliminary experiments. Currently, we are trying to carry out fine
grained experimentations on a set of richer services.

The framework we presented in this chapter focuses on the composition of timed
asynchronous services and considers correct interactions of services. Our ongoing
work studies the problem of exceptions handling within the timed composition frame-
work. Moreover, we plan to extend our approach with semantic capabilities in order
to support more complex timed properties. This will allow us to construct a com-
position not only by considering timed properties associated to message exchanges,
but also more global constraints.

Another interesting research direction consists in studying dynamic substitution
in order to resolve timed conflicts which can be complementary with a mediator
based approach. In addition, we plan to extend our approach to support dynamic
instantiation when composing timed Web services. In this chapter, we assume that
only one instance of each service is required. However, in real scenarios, we can need
one or several instances of each service. So, it is interesting to extend the proposed
approach to handle such features.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
2. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing adapters for

web services integration. In: CAiSE, pp. 415–429 (2005)
3. Bennaceur, A., Cavallaro, L., Inverardi, P., Issarny, V., Romina Spalazzese Daniel Sykes, M.T.:

Dynamic connector synthesis: revised prototype implementation. In: Deliverable D3.3 ICT
FET IP Project (2012)

4. Berardi, D., Calvanese, D., Giacomo, G.D., Hull, R., Mecella, M.: Automatic composition of
transition-based semantic web services with messaging. In: Proceedings of the 31st Interna-
tional Conference on Very Large Data Bases, pp. 613–624. ACM, 30 August 2005–2 September
2005

5. Berardi, D., Calvanese, D., Giacomo, G.D., Mecella, M.: Composition of services with nonde-
terministic observable behavior. In: Service-Oriented Computing—ICSOC 2005, Third Inter-
national Conference (ICSOC), pp. 520–526 (2005)

6. Bertoli, P., Pistore, M., Traverso, P.: Automated web service composition by on-the-fly belief
space search. In: Proceedings of the Sixteenth International Conference on Automated Planning
and Scheduling, ICAPS 2006, pp. 358–361 (2006)

16 Composition of Web Services 421

7. Bertolino, A., Inverardi, P., Issarny, V., Sabetta, A., Spalazzese, R.: On-the-fly interoperability
through automated mediator synthesis and monitoring? In: 4th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA’10) (2010)

8. Brogi, A., Popescu, R.: Towards semi-automated workflow-based aggregation of web services.
In: Service-Oriented Computing—ICSOC 2005, Third International Conference (ICSOC), pp.
214–227 (2005)

9. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-service composition. In: Proceedings of the international conference on World
Wide Web, WWW 2003, pp. 403–410 (2003)

10. Charif, Y., Sabouret, N.: An overview of semantic web services composition approaches. Electr.
Notes Theor. Comput. Sci. 146(1), 33–41 (2006)

11. Díaz, G., Cambronero, M.E., Pardo, J.J., Valero, V., Cuartero, F.: Automatic generation of
correct web services choreographies and orchestrations with model checking techniques. In:
Advanced International Conference on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT/ICIW’06), p. 186, 19–25 February 2006

12. Guermouche, N.: Timed interation-aware web service composition (wrtiten in french: Etude des
interactions temporises dans la composition de services web). Ph.D. thesis, Nancy university,
France (2010)

13. Guermouche, N., Godart, C.: Timed properties-aware asynchronous web service composition.
In: Proceedings of the 16th International Conference on Cooperative, Information Systems
(CoopIS’08) pp. 44–61, 9–14 November 2008

14. Guermouche, N., Godart, C.: Timed model checking based approach for web services analysis.
In: IEEE International Conference on Web Services (ICWS’09) (2009)

15. Guermouche, N., Benbernou, S., Coquery, E., Hacid, M.S.: Privacy-aware web service protocol
replaceability. In: IEEE International Conference on Web Services (ICWS’07), pp. 1048–1055,
9–13 July 2007

16. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. Inf. Comput. 111(2), 193–244 (1994)

17. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the curtain. In: Pro-
ceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pp. 1–14 (2003)

18. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and computation
of timed properties in web service compositions. In: Proceedings of the IEEE International
Conference on Web Services (ICWS), pp. 497–504 (2006)

19. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf.
1, 134–152 (1997)

20. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services. In:
Proceedings of the 8th International Conference on Principles and Knowledge Representation
and Reasoning (KR’02), pp. 482–496, 22–25 April 2002

21. Mecella, M., Batini, C.: Enabling italian e-government through a cooperative architecture.
IEEE Comput. 34(2), 40–45 (2001)

22. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the semantic
web. VLDB J. 12, 333–351 (2003)

23. Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. In: Proceedings
of Foundations of Software Science and Computation Structures (FOSSACS), vol. 4423, pp.
274–287. LNCS (2007)

24. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web
services. In: Proceedings of the International Conference on World Wide Web, WWW 2002,
pp. 77–88 (2002)

25. Pichler, H., Wenger, M., Eder, J.: Composing time-aware web service orchestrations. In: Pro-
ceedings of the 21st International Conference on Advanced Information, Systems Engineering
(CAiSE’09), pp. 349–363, 8–12 June 2009

26. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services by
planning at the knowledge level. In: IJCAI, pp. 1252–1259 (2005)

422 N. Guermouche and C. Godart

27. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and replaceability
analysis of timed web service protocols. In: The 26th International Conference on Conceptual
Modeling (ER) (2007)

28. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Comput. Surv. 22(3), 183–236 (1990)

29. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via generic procedures
and customizing user preferences. In: International Semantic Web Conference, pp. 597–611
(2006)

30. Stollberg, M., Cimpian, E., Mocan, A., Fensel, D.: A semantic web mediation architecture. In:
Canadian, Semantic Web, pp. 3–22 (2006)

31. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A view integration approach to dynamic composi-
tion of web services. In: Proceeding of 2003 ICAPS Workshop on Planning for Web Services
(2003)

32. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A data integration approach to automatically com-
posing and optimizing web services. In: Proceedings of the 2nd ICAPS International Workshop
on Planning and Scheduling for Web and Grid Services (2004)

33. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Comput.
25(3), 38–49 (1992)

	16 Composition of Web Services: From Qualitative to Quantitative Timed Properties
	16.1 Introduction
	16.2 Global Overview
	16.3 Modeling the Timed Behavior of Web Services
	16.4 Analyzing the Timed Composition Problem
	16.4.1 Building Timed P2P Connections
	16.4.2 Making Explicit the Implicit Timed Constraints Dependencies
	16.4.3 Generation of a Timed Mediator

	16.5 Back to the Case Study
	16.5.1 Composition Without the Timed Involvement of the Mediator
	16.5.2 Involving the Mediator

	16.6 Formal Verification and Validation of the Built Composition
	16.6.1 UPPAAL Overview
	16.6.2 Verification of Web service Compositions

	16.7 Related Work and Discussion
	16.8 Conclusion and Perspectives
	References

