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Abstract With the proliferation of ubiquitous computing devices and the Internet,
context-aware Web services continue to evolve from simple proof of concept
implementations created in the laboratory to large and complex real-world services
developed in industry. Context-awareness capabilities in service interfaces introduce
additional challenges to the software engineer. In order to handle the additional
complexities associated with these special services, solid software engineering
methodologies are needed during their development and execution. This chapter
proposes a novel software engineering-based approach, which leverages the benefits
of model-driven architecture, aspect-oriented modeling, and formal model check-
ing, for engineering context-aware services for service-oriented architectures. The
approach has been validated using a real-world case study in intelligent transport.
An evaluation framework has been established to validate the main methods and
tools employed. We also present two key research directions, extending this work to
further benefit the wider service engineering and pervasive computing communities.

12.1 Introduction

Web services are software components that can be distributed over standard internet
technologies. They are designed to add interoperability between diverse, distributed
and heterogeneous applications. A context-aware Web service is a special type of
Web service that adapts its behavior or the content it processes to the context of one
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or several parameters of a target entity in a transparent way (e.g., restaurant finder
services) [20]. Context has been defined by Dey and Abowd ([16], p.3) as:

any information that can be used to characterize the situation of an entity: an entity is a
person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and application themselves.

Context information is characterized by several qualities that make the develop-
ment of context-aware services challenging compared to conventional Web services,
such as a highly dynamic nature, real-time requirements, quality of context infor-
mation and automation. The additional complexities associated with these special
services necessitate the use of solid software engineering methodologies during their
development and execution. Most state-of-the-art approaches to context-aware ser-
vices relate to the detailed design or implementation stages [21, 27, 29] of the soft-
ware life-cycle, such as context-aware Web services. Little work focuses on the early
phase of design such as the software architectural level, thus providing motivation
for our work.

This novel approach effectively leverages benefits of several software engineering
principles such as model-driven architecture, separation of concerns through aspect-
oriented modeling, and formal verification using model checking, for engineering
context-aware software services. This research adopts model-driven development
to represent complex crosscutting context-dependent functionality in service inter-
faces in a modular manner, and to automate the generation of state machine-based
adaptive behavior. The crosscutting context-dependent information of the interact-
ing pervasive services is modeled as aspect-oriented models in UML. Using auto-
mated model transformations, we ensure the correct separation of concerns of the
crosscutting context-dependent functionality at both semi-formal UML modeling
and formal behavioral specification levels. A prototype tool—Aspectual FSP
Generation—applying an effective pipeline of model-to-model and model-to-
text transformations has been built.

The generated context-dependent adaptive behavior and the core service behavior
for the pervasive services are rigorously verified using formal model checking against
specified system properties. Model checking is applied, first to check the behavior
of the individual pervasive aspects and components, and second to verify the overall
behavior of the woven model even if no errors are found in the individual aspects
and components. These verification stages can be used to gain confidence before
the complex pervasive services are actually implemented. The approach is explored
using a real-world case study in intelligent transport. An evaluation framework is
established to validate the main methods and tools developed.

This chapter discusses the key features of our overall research work [1, 6] for
engineering context-aware services. Also, it presents two key research extensions
extending this work to further benefit the wider service engineering and pervasive
computing communities. Section 12.2 establishes the motivation for the current study.
The case study used to validate our approach is presented in Sect. 12.3. In Sect. 12.4,
a high-level description of the methodology proposed for engineering context-
aware services is provided. Section 12.5 (models and transformations) and Sect. 12.6
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(verification using model checking) address this process in detail. An evaluation
framework to validate our work is provided in Sect. 12.7, and Sect. 12.8 discusses
two key research extensions to this work. Section 12.9 concludes this chapter.

12.2 Related Work

Previous approaches to the development of context-aware services have largely been
at the detailed design or implementation stages [21, 27, 29] of the software life-cycle.
In [21], the authors have discussed an approach for the context-aware development
of Web applications consisting of Web services. Application modeling has been
performed in UML, and a composite Web application targeting different implemen-
tation platforms has been generated. Context adaptation takes place on top of the
Web application business functionality. Serral et al. [27] introduced a model-driven
development method for developing context-aware pervasive systems. A context-
aware pervasive system has been specified using a set of models, and automated
code generation has been used to generate system Java code. Service adaptation has
been performed using an Web Ontology Language specification.

Two main limitations can be identified on state-of-the-art approaches on context-
aware services development. First, most existing approaches to representing context-
aware services focus on the detailed design or implementation phases of the software
life-cycle such as context-aware Web services. Little attention has been given to the
early phase of design such as the software architectural level. Building software
architectural models of pervasive services provides engineers with a better under-
standing of how these complex services interoperate and helps uncover any errors
during the early stages of the software life-cycle. Second, most of the existing work
applies the software engineering techniques of model-driven architecture [7, 9, 28],
aspect-oriented modeling [17, 32], and formal model checking [12] in isolation and
does not explore the combination of these technologies in the same approach. For
example, Sheng and Benatallah [28] have taken no account of any formal verification
aspects through techniques such as model checking nor have they applied aspect-
oriented modeling in their UML profile. The integration or the synergy of these
sound software engineering techniques would mutually complement and augment
each other if used in a single approach. While the application of these techniques
in isolation can be found in existing work in service engineering, however, an inte-
grated architecture-centric solution aimed at managing the complexities associated
with context-aware services is novel, as proposed in this chapter.

12.3 Case Study: Intelligent Transport

This section describes the case study that is used to validate our approach, and the
notion of context applied in our work.

The research approach is explored using a real-world case study in intelligent
tagging for transport known as the ParcelCall project [14]. The case study describes
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a scalable, real-time, intelligent, end-to-end tracking and tracing system using radio
frequency identification (RFID), sensor networks, and services for transport and
logistics. This case study is particularly appealing to the current research as it provides
several scenarios for representing software services that interoperate in a pervasive,
mobile and distributed environment. A significant subset of the ParcelCall case study
is exception handling that needs to be enforced when a transport item’s context
information violates acceptable threshold values. The reference scenario used in
this research describes an awareness monitoring and notification
pervasive service, which alerts with regards to any exceptional situations that
may arise on transport items, primarily to the vehicle driver of the transport unit. The
threshold values for environment status (e.g., temperature, pressure, acceleration) of
transport items and route (location) for the vehicle are set by the carrier organization in
advance. The service alerts if items’ environment status exceeds acceptable levels or
if an item is lost or stolen during transport. The primary context parameters modeled
in the study include item identity, location, temperature, pressure and acceleration.

The notion of context used in our work is based on a definition provided in [8]
for context in information modeling. The authors in [8] describe context as a set of
objects, each of which is associated with a set of names and another context called its
reference. Furthermore, they enhance the definition for context by stating that each
object of a context is either a simple object or a link object (attribute, instance-of,
ISA) and each object can be related to other objects through attribute, instance-of or
ISA links. They use traditional object-oriented abstraction mechanisms of attribution,
classification, generalization and encapsulation to structure the contents of a context.

12.4 Context-Aware Services Engineering Process

In this section, we introduce the software engineering process followed for gen-
erating context-dependent adaptive behavior for pervasive services (see Fig. 12.1)
[3]. Sections 12.5 (models and transformations) and 12.6 (verification) address this
further.

The current approach is particularly based on (i) the model-driven development
techniques provided by the IBM Rational Software Architect [15], (ii) the formal
verification techniques provided by the model checker Labeled Transition System
Analyzer (LTSA) [23] and its process calculus Finite State Processes (FSP), and
(iii) the LTSA tool’s message sequence charts extension (LTSA-MSC). Java Emitter
Templates (JET) is an open-source technology developed by IBM. JET is included in
IBM Rational Software Architect and it is typically used in the implementation of a
code generator [15]. One of the main objectives of the current research is to perform
rigorous verification of the pervasive specification using formal model checking.
Therefore, we use finite state machines as opposed to other formalisms such as
petri-net based models.

The model transformation tool created in this study for adaptive behavior gen-
eration is called the Aspectual FSP Generation tool. The crosscutting
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Fig. 12.1 Context-aware services engineering process [3]

context-dependent information of the interacting pervasive services is modeled
as aspect-oriented models in UML (contextual-FSP aspects or c-FSP
aspects). Research works related to the aspect-oriented paradigm include
composition filters, subject-oriented programming, adaptive programming, multi-
dimensional separation of concerns and generative programming. However, com-
pared to these approaches the aspect-oriented paradigm provides better language
and tool support, and thus it is widely used in the software engineering community.

We use model transformations to automate the application of design patterns and
generate infrastructure code for the c-FSP aspects using FSP semantics. The
current study explores the strengths of both semi-formal UML meta-level extensions
and formal finite state machines for representing the context-dependent behavior
of software services, and model transformation techniques are applied as a bridge
to enforce correct separation of concerns between these two design abstractions.
The main benefits of this approach are: improving the quality and productivity of
service development; easing system maintenance and evolution; and increasing the
portability of the service design for the pervasive services engineer.

This approach focuses on the application of model-driven development for
engineering pervasive services at finite state machine level. An aspect in FSP can
be identified as an independent finite state machine that executes concurrently
and synchronizes with its base state machine. In general, an aspect in FSP needs
to contain synchronization events (transitions) to coordinate with its base state
machine and other aspects. Also, each aspect type (e.g., context, trigger
and recovery) contains its unique constructs which can be generated automat-
ically using model transformation techniques. For example, a trigger aspect
requires constructs to alert and send notifications while a recovery aspect
needs constructs to recover from exception-handling situations. On the other hand, a



296 D. B. Abeywickrama

context aspect has attribution, instance-of, ISA and reference constructs from
the notion of context applied in this research.

In Fig. 12.1, the models and activities of the engineering process are represented as
ellipses and square boxes respectively. The overall engineering process is structured
into three main flows of activities. Both Flow 1 and Flow 2 originate from the
c-FSP-UML profile. This profile effectively describes our conceptual model for
context-dependent adaptive behavior using the aspect-oriented modeling paradigm.
Using the profile we derive a UML model template and a UML class model to be used
in the transformations, which are elaborated in Sect. 12.5.1. Two variations of the
Aspectual FSP Generation tool have been built, which are represented
using Flow 1 and Flow 2 in Fig. 12.1. Initially, a model-to-text JET transforma-
tion (Flow 1) was implemented with XPath expressions to navigate the UML class
model for the c-FSP aspects and extract model information dynamically to the
transformation. However, JET’s support for UML models has several limitations.
Therefore, a more effective solution was implemented as shown by Flow 2, which
contains an effective pipeline of model-to-model and model-to-text JET transforma-
tions. The details of this transformation and its benefits are discussed in Sect. 12.5.2.
The LTSA-MSC tool has been used to generate the architecture model in FSP for
the service specification from which the core service model was extracted. Flow 3
contains activities for rigorously verifying the models generated for the core service
behavior and the context-dependent adaptive behavior using formal model checking
(see Sect. 12.6).

12.5 Models and Transformations

12.5.1 Models: c-FSP-UML Profile and c-FSP Aspects

This subsection elaborates on the c-FSP-UML profile and the UML class
model created with c-FSP aspects to modularize the service architecture (see
Figs. 12.2, 12.3) [3].

Using the c-FSP-UML profile, we model the core service logic and the
context-dependent behavior of a service as two separate concerns within the same
model, allowing the modification of the context-dependent behavior without affect-
ing the main functionality. The core service logic of a service is represented by
the State, Transition, FiniteStateProcess, Service and Service
Specification classes while the rest of the classes represent the context-
dependent functionality. The c-FSP-UML profile encompasses constructs of
both aspect-orientation and object-orientation aimed at modularizing and reducing
the complexity of context-dependent behavior at the service interface level. The use
of aspect-oriented modeling in the profile further extends the UML model [2] created
previously, which was originally motivated by the ContextUML metamodel [28].
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Fig. 12.2 c-FSP-UML profile [3]

The aspect-oriented UML class model provided (see Fig. 12.3) contains several
classes on the case study with stereotypes applied from thec-FSP-UML profile.
As in the profile, this UML class model contains several constructs for representing
the core service behavior, the context-dependent adaptive behavior, and the depen-
dencies between the core service model and the context-dependent model. The core
service behavior of the model is represented by classes, such as ParcelCall,
InterpretContext, Broadcast, Recovery, ObserveEvents, the
FiniteStateProcess classes, and the Transition classes. The
c-FSP aspects of the UML class model are represented by several classes,

Fig. 12.3 UML class model derived from the profile with c-FSP aspects
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such as Temperature, Pressure, IsAdverseStatus, AdverseStatus
Trigger and AdverseStatusRecovery. The different constructs of the pro-
file and the UML class model are described next with examples from the case study.

• The Aspect class encapsulates several advices and pointcuts. The Advice
specifies the crosscutting behavior of the aspect while thePointcut encapsulates
a set of joinpoints. A joinpoint is the location (transition) where the crosscutting
behavior emerges in the service model. Three types of c-FSP aspects are
identified: context, trigger and recovery.

• Two types of context aspects are identified: atomic and composite.
AtomicContextAspect class models low-level context readings from
the context sources (e.g., Location or Temperature in Fig. 12.3) while
CompositeContextAspect class encapsulates high-level derived
context information (e.g., IsAdverseStatus or RouteStatus). Also, the
notions of attribution, classification, generalization and
encapsulation from the context definition are applied to structure and link
the objects defined in the aspects. Thus, both object-oriented and aspect-oriented
notions are used to represent the complex context-dependent functionality of the
services.

• TheContextSource class represents the resource from which context infor-
mation is obtained, for example, RFID Tag or GPS.

• The TriggerAspect class models the contextual adaptation where the ser-
vice is automatically executed or modified based on context information. For
example, if isAdverseStatus is true then send an SMS to vehicle driver
(AdverseStatusTrigger).

• The RecoveryAspect class models recovery actions that follow after an
exception situation is raised by the trigger aspect. For example, control the
refrigerator’s temperature in the vehicle unit (AdverseStatusRecovery in
Fig. 12.3).

• Dependency Relationships classes essentially associate the core
service classes (service elements of the profile) with the context elements of
the profile, or the context elements with their respective context sources. There
are three types of dependency relationships. SourceAssignment associates
the context attributes of a ContextAspect class with their respective
context sources, which provide values for these attributes. For example, the
SourceAssignment relationship associates the Location aspect and
the GPS, which provides GPS coordinates to the aspect (Fig. 12.3). Context-
Bindingmodels the automatic binding of service elements with context attributes
of the ContextAspect class. ContextTriggering provides an asso-
ciation between service elements and triggering operations that may affect the
service elements depending on context. In the case study this can be, for example,
the association between the NewRoute transition of the core service model
and the RouteStatusRecovery aspect of the context model (Fig. 12.3).
Both ContextBinding and ContextTriggering dependency relation-
ships essentially represent the binding of an aspect to its base class.
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• Precedence Relationships classes explicitly specify how aspect
precedence can be enforced at the modeling level to reduce the aspect inter-
ference problem. There are two types of precedence relationships. Precedes
is used to indicate the precedence order for the aspects at a single joinpoint
while DependentOn is used to specify that an aspect will only be matched
on the existence of both aspects at the joinpoint. For example, as shown in
Fig. 12.3, the AdverseStatusRecovery aspect is executed following the
AdverseStatusTrigger aspect (Precedes), and the existence of both
these aspects are required at the joinpoint (DependentOn).

12.5.2 Model Transformations

The previous subsection discussed the c-FSP-UML profile and aspect-oriented
models in UML (c-FSP aspects) derived to modularize the service architecture.
The current subsection provides the model transformations created to automate the
transformation of those UML models to formal behavioral specifications in FSP.

This multi-stage transformation chain describes an effective pipeline of model-
to-model and model-to-text JET transformations (see Fig. 12.1, Flow 2) [3]. In this
solution, first a model-to-model mapping transformation is created which extracts
relevant information from the UML model elements and stereotypes, and then a
code generator specific Eclipse Modeling Framework (EMF) intermediate model is
built which contains only information required for the back-end model-to-text JET
transformation. The front-end model-to-model transformation automatically invokes
the back-end JET transformation. The benefits of this transformation are:

• As the JET transformation is independent of UML, UML expertise is no longer
a requirement for the transformations [15]. This effective multi-stage transforma-
tions approach permits the development and validation of pattern implementations
independent of any complexities associated with the UML metamodel.

• The JET transformation can be automatically invoked by the front-end model-to-
model transformation. Therefore, the software engineer does not have to see or be
aware of the back-end JET transformation.

The above factors can make the pattern implementation process a more acces-
sible solution to the software engineer. As a result, this multi-stage transforma-
tions approach has been employed in the current research to transform the c-FSP
aspects into formal FSP code, which has several steps.

• Build an Intermediate EMF Model. In this study, an EMF project is created as the
intermediate model to be used in the transformations. The intermediate model can
be based on EMF or XML. However, EMF has a rich metamodel and with EMF
a Java API for the model can be generated [15].

• Build a UML Profile. The c-FSP-UML profile discussed earlier is used to
augment the standard UML with information that is necessary for generation of
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aspects in FSP. This profile defines stereotypes identifying core service elements,
context-dependent information and dependencies for the pervasive software ser-
vices. Stereotypes provide an efficient mechanism for extending the information
that is stored on UML model elements. As any changes to the stereotypes in the
profile affect the underlying UML model elements, it is important to track the
profile version. To this effect, the c-FSP-UML profile is released. The pro-
file can be distributed by creating an Eclipse plug-in that publishes the profile. To
this end, the existing c-FSP-UML profile project is converted into a plug-in
project. By publishing the profile as an Eclipse plug-in, any Eclipse-based product
that installs this plug-in has access to the c-FSP-UML profile and its stereotypes.

• Build a Model-to-Model Mapping Transformation. After creating the c-FSP-
UML profile and the intermediate EMF model, next we create a model-
to-model mapping transformation (aspectsFrontendMap) that effectively
maps the profile applied UML class model for the c-FSP aspects with the
EMF intermediate model. This mapping transformation essentially associates
elements of the input model (UML class model with the c-FSP aspects)
with elements of the output model, which is the EMF intermediate model
(aspectsEMFModel). To this end, several types of maps have been created.
A map defines how data from an input type (e.g., a UML class) are copied to
an output model type (e.g., an aspect). A map can move data from a source
element to a target element using three methods: move transformations, cus-
tom transformations and submap transformations. This study uses a combination
of move and submap transformations to associate elements of the UML class
model created for c-FSP aspects with the elements of the EMF intermedi-
ate model (aspectsEMFModel). In this study, the following maps have been
created: (i) UML Model elements to Root elements; (ii) UML Package elements
to AspectPackage elements; (iii) UML Class elements to Aspect elements;
(iv) UML Operation elements to aspect’s Operation elements; and (v) UML
Property elements to aspect’s Property elements. After creating the mappings,
the transformation source code is generated and customized to invoke the back-
end model-to-text JET transformation automatically from the front-end model-to-
model transformation. To link the model-to-model transformation’s output to the
back-end model-to-text JET transformation, the TransformationProvider Java file
needs to be edited with the ID of the transformation to invoke.

• Debug and Test. Finally, we test the transformations created to verify that they
are correct and function as required. This involves setting up a test environment
called a run-time workbench, in which the plug-ins created are installed. Testing
using a run-time workbench effectively launches a second copy of the Eclipse-
based product. Testing the transformations involves: build the UML class model
with c-FSP aspects and apply the c-FSP-UML profile to it; create a
transformation configuration and execute the transformation configuration. In the
transformations created in this study, the aspect name in UML becomes the process
(state machine) name in FSP while operations and properties for the aspect in UML
are used for generating states and transitions of the aspectual state machine in FSP.
This represents the variable nature (point of variability) of the transformations.
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Other than that, as stated previously, the transformations generate infrastructure
(skeleton) code for the aspects.

Next the generated context-dependent adaptive behavior and the core service behav-
ior for the pervasive services are rigorously verified using formal model checking
against specified system properties.

12.6 Formal Verification

As discussed in Sect. 12.5.1, the crosscutting context-dependent behavior in service
interfaces has been modeled using aspect-oriented UML models. To this effect, a
custom UML profile (c-FSP-UML profile), a UML model template and UML
class models (c-FSP aspects) have been created to modularize context informa-
tion with several stereotypes. UML has been a widely applied technique for modeling
object-oriented design or core design of a software specification. Also, exploring the
meta-level notation of UML or extending the UML notation has been a popular
approach used by many researchers for specifying crosscutting concerns. However,
one of the main limitations of UML is its lack of support for rigorous verification
due to its informal or semi-formal nature.

The expressive power of aspects in design specifications can be potentially harm-
ful. The crosscutting nature and the obliviousness principle of aspects are two main
issues that can introduce an additional correctness problem in an aspect-oriented
design specification. These can create several problems or risks such as partial
weaving, unknown aspect assumptions, unintended aspect effects, arbitrary aspect
precedence, failure to preserve state invariants, and incorrect changes in control
dependencies [24, 25]. Therefore, in order to address the main challenges associ-
ated with aspect-oriented modeling in software specifications (i.e., the semi-formal
nature of UML notations and the expressive power of aspects), tool support such
as automatic model checking is highly desirable to ensure the correctness of the
specification.

12.6.1 Model Checking Aspectual Pervasive Software Services

In this subsection, we provide an overview of our approach for rigorously verifying
the models generated for the context-dependent adaptive behavior and the core ser-
vice behavior using formal model checking [5] (see Fig. 12.1 (Flow 3), and Fig. 12.4).

The model checking process can be divided into three main tasks: modeling
(Sects. 12.6.2–12.6.3), specification and verification (Sect. 12.6.4). Modeling is the
task of converting the design into a formalism accepted by a model checking tool
[11]. Specification is the stating of the properties that the design needs to satisfy, and
verification is the actual validation of the models.
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• Modeling. The modeling step involves two main tasks that are performed to obtain
the context-dependent adaptive behavior and the core service model of the software
services. In this study, the Aspectual FSP Generation tool is used to
generate the context-dependent behavioral code in formal FSP. The LTSA-MSC
tool is used to generate the architecture model for the service specification in
FSP, which is used to extract the core service model of the services (see Figs. 12.1,
12.4). All service components and aspects are modeled as processes represented as
finite state machines in FSP. To verify the pervasive service specification, first the
aspects are woven into their base state machines in FSP using an explicit weaving
mechanism. Then concurrency and distributed notions (see Sect. 12.6.3) are added
to the service specification to facilitate reasoning by the LTSA tool. Abstraction
mechanisms are introduced to reduce the size of the woven model.

• Specification. Properties provide a way of formalizing and verifying system
requirements. Here the properties focus on the required effects of the pervasive
aspects, service components and the woven model. Rigorous modeling and spec-
ification of properties are very important to identify any defects in the pervasive
services early in the software life-cycle before these complex services are actually
implemented. According to the system requirements from the case study subset,
more than 30 properties have been formalized focusing on the required behavior

Fig. 12.4 Model checking aspectual pervasive software services [5]
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from both service components and aspects. These properties have been expressed
as property processes (safety and progress) and fluent linear temporal logic (FLTL)
assertions.

• Verification. Finally, all behavior and property processes are composed into a
system-level process and this process is fed to the LTSA. The LTSA verifies
whether any properties are violated and if so it reports a trace to the property
violation known as a counterexample. Also, the use of FLTL assertions provides
the opportunity to generate examples of traces (witness executions) which satisfy
the property. The use of counterexamples and witness executions is exploited to
identify and track any errors and their sources in the specification, which consists of
several distributed service components and aspects collaborating with each other.
Thus, this helps to iteratively improve the state models or the system properties
for the aspectual pervasive software services.

12.6.2 Weaving of Pervasive Aspects and Components

Weaving of an aspect to its base state machine is important in order to analyze the
overall system behavior. An explicit weaving mechanism is used here, where an
aspect is woven into its base state machine using the parallel composition operator
and shared actions in FSP. The main elements of the weaving process are the base
program and an aspectual state machine (aspect). In general, the base program is
not a single process but it is a combination of several processes. The base program
(core service model) is specified as the parallel composition of the constituent base
state machines. In order to support explicit parallel composition, the current study
injects synchronization events in both the aspectual and base state machines. These
events provide an effective mechanism to control the coordination between these state
machines. The advice of an aspect contains three logical parts: before advice
events, proceed events and after advice events. By using synchronization
events the correct execution of these three sequences of actions with the base program
can be ensured. Also, weaving of more than one aspect at the same joinpoint is
possible using these explicit synchronization events.

The crosscutting elements of the joinpoint model and the weaving process
are discussed next using a case study example. Figure 12.5a shows LTSs for
three processes. The RFID Tag (RFID_TAG) and the Context Interpreter
(CONTEXT_INTERPRETER) components are the base state machines while the
Atomic Context Aspect Temperature (ACA_TEMP) is an aspectual state
machine. The joinpoints of the base program are specified using the following syn-
chronization events:bf_a (before advice),pr_s (proceed start),pr_e
(proceed end), af_a (after advice). A pointcut is a sequence of joinpoints
(i.e., the sequence of bf_a, pr_s, pr_e and af_a).

The execution and coordination of the base program and the aspect can be
explained as follows (see Fig. 12.5b). The base program (RFID_TAG) emits the
bf_a event to the aspect. The aspect performs an initialization operation
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Fig. 12.5 Weaving per-
formed. a Weaving illustrated
using LTSs. b Synchroniza-
tion events

(a)

(b)

(initializeACATEMP), which is a before advice event. The base program waits
for a control event from the aspect, which is a proceed event (pr_s) in this exam-
ple. The base program performs the measureTemperature event and then emits
pr_e to return the control back to the aspect. The aspect performs receiving of tem-
perature readings using message passing, which is its after advice events. Finally,
the base program (Context_Interpreter) waits for the end of advice event
(af_a) from the aspect, and performs the storeContextInformation action.
The woven program is modeled as the parallel composition of the base state machines
and the aspect.
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12.6.3 Concurrency Modeling

After weaving aspects into their base state machines the concurrency and distrib-
uted notions of the interacting pervasive software services are modeled to facilitate
reasoning by the LTSA tool, such as message passing, shared objects and mutual
exclusion (see Fig. 12.6).

The pervasive service specification includes several distributed service compo-
nents and aspects collaborating with each other. These components and aspects
encompass the active entities of the specification. It also includes shared objects
and semaphores, which act as passive entities. All active and passive entities of the
specification have been modeled as processes represented as finite state machines in
FSP. In the specification, concurrency has been modeled using action interleaving.

This study models the awareness monitoring and notification
service as a process-oriented context value chain (see Fig. 12.6). This value chain
contains several stages: sensing, refinement, aggregation and contextualization. The
context procurement and contextualization tasks of the pervasive service are driven
by the c-FSP aspects. The communication between the distributed service com-
ponents and aspects (e.g., between RFID Tag and Atomic Context Aspect
Temperature) has been modeled using the synchronous message passing tech-
nique. The environmental readings (e.g., temperature, pressure) from theRFID Tag
are sent using a single channel to the receiver (e.g., Atomic Context Aspect
Temperature, Atomic Context Aspect Pressure) and the communi-
cation is one to one. In addition to using the message passing technique, shared objects
have been used to model inter-process communication between the service compo-
nents and the aspects. The problem of interference has been solved by enforcing
mutually exclusive access to the shared objects. This has been modeled using binary
semaphores, which are mechanisms for dealing with inter-process synchronization
problems. For example, theAtomic Context Aspect Temperature aspect
and the Context Interpreter component interact using a shared object for
communicating temperature values used in the refinement stage of the context value
chain of the pervasive service. The mutually exclusive access to this shared object has
been enforced using a semaphore, thus only one process can access it at a given time.
The Context Database process has been modeled as a shared resource where
the Context Interpreter and the Context Aggregator service com-
ponents write to it (writers) and the Composite Context Aspect Route
Status and the Composite Context Aspect Adverse Environment
Status aspects read from it (readers). This scenario has been modeled as a readers-
writers problem with writers priority. The readers are denied access if there are writers
waiting to acquire access and if a writer is not accessing the database any number of
readers can access the database concurrently.
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Fig. 12.6 Concurrency modeling between aspects and components [5]
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12.6.3.1 Abstraction Mechanisms Applied

These are needed as a woven program may have too many states to be analyzed by
the LTSA. One of the main challenges associated with model checking is the state
space explosion problem. We use action hiding and minimization features available
in FSP to reduce the size of the woven model before analyzing using the LTSA tool.
For example, the actions modeled in the Context Interpreter and Context
Aggregator components for enforcing mutually exclusive access to their shared
variables are not required when modeling the readers-writers problem with writers
priority, which involves the same components collaborating with aspects. Also, when
executing the entire specification model, the partial order reduction feature has been
used to reduce the size of the state space searched by the LTSA.

12.6.4 Properties Specification and Verification

Having discussed the modeling stage of the model checking process, the properties
specification and verification stages are briefly addressed next (see [6, 5] for details).
Properties have been expressed as property processes (safety and progress) and FLTL
assertions.

Safety properties are used in a concurrent program to assert that nothing bad
happens during the execution of the program [23]. In the case study subset, several
safety properties have been specified for verifying (i) the behavior of the individual
aspects and the components, and (ii) the overall behavior of the woven model even
if no errors are found in the individual aspects and components. At the individual
aspect or component level, a safety property has been defined for the Trigger
Aspect Adverse Environment Status aspect to verify whether a notifi-
cation is sent only when environment status is adverse. Another safety property has
been defined for the Context Interpreter component to verify whether the
refinement stage of the pervasive service is performed as expected. At the woven
model level, safety properties have been defined to ensure the correct weaving of the
base state machines and the aspectual state machines. These properties ensure that
the ordering of the synchronization events is correct in the components and aspects
of the woven models, thus ensuring the correct weaving of the components and the
aspects at the joinpoints in the specification. For example, a safety property has
been defined to ensure the correct weaving between the following components and
aspects: RFID Tag, Atomic Context Aspect Temperature, Atomic
Context Aspect Pressure and Context Interpreter. This property
is composed with the woven process before performing analysis using the LTSA.
LTSA analysis shows that there are no deadlocks or safety violations. Also at the
woven model level, safety properties have been created to verify whether the mutually
exclusive access to the shared variables is enforced properly.

Unlike safety properties, which are concerned with a program not reaching a
bad state, liveness properties are concerned with a program eventually reaching
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a good state [23]. For example, in the case study subset, progress properties have been
specified for the readers-writers problem. To this end, two progress properties have
been defined to ensure that both readers (i.e., Composite Context Aspect
Adverse Environment Status, Composite Context Aspect
Route Status aspects) and writers (i.e.,Context Interpreter,Context
Aggregator service components) will eventually gain access to the lock to access
the Context Database component. A progress analysis for this problem using
the LTSA shows no errors.

In addition to safety and progress property processes, properties can be defined as
state-based logical propositions in FSP. Fluents in FSP allow the expression of prop-
erties about the abstract state of a system at a particular point in time [23]. The current
study employs FLTL assertions as a method for specifying system requirements of
the case study subset. For example, two FLTL assertions have been defined to ensure
mutually exclusive access to the shared variables by the Context Interpreter
and the Context Aggregator service components. These properties ensure
the required mutual exclusion safety property, and an additional liveness prop-
erty, which asserts that if a process (i.e., Context Interpreter or Context
Aggregator) enters the critical section that process should eventually exit before
another process can enter. Verification performed for this logical property shows that
there are no violations.

The use of FLTL assertions provides the opportunity to generate examples of
traces (witness executions), which satisfy the property. This research applies witness
executions as a means of identifying potential errors in the specification. For example,
a FLTL property has been defined to verify the weaving of the base state machines
and aspectual state machines in the specification. The negation of this assertion
generates a counterexample. By using counterexamples and witness executions, the
state models and system properties for the aspectual pervasive services are iteratively
improved.

12.7 Evaluation Framework

This section provides the evaluation framework established to validate the research
approach.

This evaluation framework [4] mainly validates the main contributions or deliv-
erables of this study against several key evaluation criteria. The main tools used
in this study include the Aspectual FSP Generation tool created in this
research, the LTSA model checker and the LTSA-MSC tool. The method of evalua-
tion is based on key feature comparison. Key feature comparison is used as a credible
method for evaluating software engineering-based approaches [30]. The evaluation
framework developed here does not produce additions to the research methodology
but instead validates the methods and tools used in the research as a whole. The
framework comprises a set of detailed criteria for two dimensions or views: vertical
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Fig. 12.7 Evaluation frame-
work: vertical and horizontal
views

and horizontal (see Fig. 12.7). The notions of vertical and horizontal views were
motivated by [30] (p. 14), which also uses a two-dimensional evaluation approach.

12.7.1 Vertical Evaluation of the Research

This evaluation focuses on comparing four tools across the modeling layers of
platform-independent model (PIM) and platform-specific model (PSM) against the
Aspectual FSP Generation tool. The compared tools are Groher and
Schulze [19] approach, Whittle and Jayaraman [31] approach, Motorola WEAVR
[13] and Fuentes et al. [18] approach (see [4] for details). Like the Aspectual
FSP Generation tool, these tools have been developed using commercially
available toolchains of similar area of application such as IBM Rational Software
Modeler, Borland Together, Telelogic Modeller and Topcased [30]. This evaluation
is based on the following criteria: context-dependent behavioral modeling at the PIM
level, explicit joinpoint model of aspect-oriented modeling at the PIM level, weaving
performed at the PIM or PSM level, and context-dependent behavioral code genera-
tion from the PIM to PSM level. A particular evaluation criterion can be fully satisfied
(complete cover), partly satisfied (partial cover), or not supported at all.

The results of the vertical evaluation are assuring (see Table 12.1). Like the
Aspectual FSP Generation tool, [13, 18, 19] support an explicit join-
point model of aspect-oriented modeling at PIM level. Also, all the compared
approaches support PIM or PSM level weaving of aspects. The vertical evaluation
has demonstrated that the Aspectual FSP Generation tool has unique
features on context-dependent behavioral modeling and context-dependent behav-
ioral code generation. Table 12.1 shows that the Aspectual FSP Generation
tool satisfies all the criteria as opposed to the other tools which satisfy only some
criteria.
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Table 12.1 Comparison matrix for vertical evaluation [4]

Evaluation criteria Groher and
Schulze

Whittle and
Jayaraman

Cottenier
et al.

Fuentes
et al.

Aspectual
FSP
generation
tool

PIM level support for
context-dependent
behavioral modeling

− − − * +

PIM level support for
explicit joinpoint model
of aspect-oriented
modeling

+ − + + +

PIM or PSM level support
for weaving

+ + + + +

PIM and PSM level support
for context-dependent
behavioral code
generation

− − − − +

+ Complete cover of a criterion; * partial cover of a criterion; − no cover of a criterion

12.7.2 Horizontal Evaluation of the Research

In contrast to the vertical evaluation discussed above, the horizontal evaluation is
aimed at investigating particular features of our approach at a single modeling level
(i.e., the PSM level). These evaluation criteria cover two aspects of the study: the
formal methods and tools employed in the study, and the context and adaptation
dimensions of the customization approach used in the services.

12.7.2.1 Formal Methods and Tools Used in the Approach

Clarke et al. [10] provide several criteria that formal methods-based approaches and
tools need to support. According to [10], although some of these criteria are ideals, it
is still considered good to aim for them. The criteria are: early payback, incremental
gain for incremental effort, multiple use, integrated use, ease of use, efficiency, ease
of learning, orientation toward error detection, focused analysis and evolutionary
development. The research methodology of the current study contains three stages:
service specification, architecture definition and architecture modularization. In the
present study, formal methods and tools (LTSA tool and LTSA-MSC tool) have
been applied during the service specification and architecture definition stages of
the research methodology, and finally for model checking the aspectual pervasive
software services specification. This evaluates the application of the aforementioned
formal methods and tools used in the current research against the criteria provided
in [10]. Our approach has been evaluated using all the criteria provided by them (see
[4]). However, due to space limitations this chapter discusses one key criterion. Early
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payback: this study is focused on the architectural level of the software life-cycle.
This architecture-centric approach builds models of pervasive software services and
their compositions and verifies their behavior against specified system properties.
Building architectural models of pervasive software services allows the software
engineers to validate the actual correctness of the services before the services are
implemented later in the software life-cycle. Thus, it provides early payback or
feedback to the service engineer on the validity of the services.

12.7.2.2 Context and Adaptation of the Customization Approach

Kappel et al. [22] and Schwinger et al. [26] present a comprehensive and uniform
evaluation framework, which can be used to compare customization capabilities of
approaches originating from the mobile computing and the personalization domains.
The notion of customization refers to the adaptation of an applications services
toward the current context. Their framework has two orthogonal dimensions, which
are context and adaptation, and the mapping between context and adaptation has
been represented by the notion of customization. They provide detailed criteria for
both the context and adaptation dimensions of the framework. The context and adap-
tation dimensions of the customization approach used in the pervasive services of
the current research are evaluated using those criteria. The results of this evaluation
are summarized in two tables respectively: Tables 12.2 and 12.3. See [4] for a more
detailed analysis of these results.

The horizontal evaluation of the approach has shown that the formal methods and
tools employed in the research, and the customization approach used in the services,
are effective toward the overall objectives of this research.

12.8 Research Extensions

In this section, we discuss two key research directions, extending this work to benefit
the broader service engineering and pervasive computing communities.

12.8.1 Aspectual FSP Generation as an Integrated Eclipse Plug-in

The Aspectual FSP Generation tool developed in the current research
can be extended as an integrated plug-in to the Eclipse development environment.
This will be beneficial as it will allow our tool to be used in conjunction with other
plug-ins for engineering context-aware services. Also, it can be leveraged by inter-
ested researchers in the wider service engineering community. To the best of our
knowledge, such an integrated Eclipse-based plug-in for facilitating the engineering
of context-aware software services has not been addressed in existing work.
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Eclipse is a multi-language software development platform, which comprises an
integrated development environment and a plug-in system to extend it. LTSA tool
[23], which was originally created as a stand-alone tool, has now been extended
to the Eclipse platform. LTSA Eclipse has an extensible architecture which allows
extra features to be added by means of extended plug-ins. At present, the follow-
ing plug-ins are supported which are available from the Eclipse install site: Mes-
sage Sequence Chart, Architecture, WS-Engineer and SceneBeans. Similarly, the
Aspectual FSP Generation tool can be integrated as an editor of the
existing Eclipse-based LTSA tool. With this solution, service engineers can use a sin-
gle integrated development environment to design and verify the pervasive software
services specification for any property violations with much ease and confidence. At
present, the current research performs the service engineering process using three
stand-alone tools: LTSA-MSC tool, Aspectual FSP Generation tool and
LTSA tool. In the integrated environment, the Message Sequence Chart plug-in can
be used to specify the software services, generate and extract the core service model
of the architecture while the Aspectual FSP Generation plug-in can be
used to model the context-dependent adaptive behavior of the services using UML
models and transform them into behavioral FSP. Finally, the LTSA can be used to
perform model checking of the aspectual pervasive software services specification.

The extension of the Aspectual FSP Generation tool as an integrated
plug-in to the Eclipse platform can be performed as follows. IBM Rational Software
Architect [15], which is the development environment used to create theAspectual
FSP Generation tool, allows exporting of plug-in projects using an export
wizard or a mechanism called the Plug-in Development Environment build. The
Eclipse platform provides several notions to facilitate extension, which are plug-
in, feature and update site [15]. A plug-in is the unit of new function contribution
while a feature, which can include one or more plug-ins, is the unit of new function
installation. An update site is a mechanism for finding and installing features. An
update site can distribute one or more features. The multi-stage transformation chain
developed in the current study includes several plug-ins, such as the back-end model-
to-text JET transformation, the model-to-model mapping project, the c-FSP-UML
profile project, and the EMF project. In order to export these plug-ins, first, a
feature project that references those plug-ins needs to be created. Second, an update
site needs to be created to distribute the feature created. The created update site can
be deployed by copying the required files of the update site to a local or network
folder, or to a Web server. Finally, the Eclipse Update Manager can be used to scan
update sites for the newly created feature and install it.

12.8.2 Implementing the Model Checked Aspectual Pervasive
Services

Service development is considered a very complex process that involves several
stages of the software life-cycle, such as requirements analysis, design, imple-
mentation, testing and maintenance. In general, a service is validated during the
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testing phase, which is performed late in the software life-cycle. Testing the service
code is considered costly, as any erroneous situations identified during the testing
phase essentially require to reperform the design and implementation phases until
the expected result is obtained. However, if service implementation can be generated
automatically on an already-validated service specification using model transforma-
tion techniques, then it reduces or minimizes the need for testing the service code.
This essentially reduces implementation time as the code is automatically generated,
and the verified design and implementation levels of services are synchronized. Thus,
reducing the need for any maintenance by the service engineer. The application of
model transformations on an already-verified service design is also appropriate in
the context of the current study.

This study has employed rigorous model checking to check whether individual
aspects or components, and the woven model, contain any undesired behavior. This
model checked pervasive software services specification, which is free of any erro-
neous behavior, can be fed into a custom model-to-code transformation tool created
to automate the generation of executable service code or service implementation.
Model-to-text transformations can be employed to generate both core and adaptable
code of a service implementation. The core service code is the unchanging or static
portion of the service while context handling or the adaptable code is the dynamic
portion of the service, which can evolve based on available contextual information.
In the current study, at the behavioral modeling level of FSP, the core service behav-
ior and context-dependent information have been treated as separate concerns using
the aspect-oriented modeling paradigm (c-FSP aspects). The same separation
of concerns can be effectively enforced at the source code level with aspect-oriented
programming. Model-to-text transformations can be employed to ensure the correct
separation of concerns at both FSP and aspect-oriented programming levels. The
service code can be provided using the aspect-oriented version of Java known as
AspectJ of aspect-oriented programming and can target readily available software
platforms such as Apache Tomcat Web Server and the Axis Simple Object Access
Protocol engine. However, one of the main limitations of AspectJ is that it only sup-
ports compile time aspect weaving. In this regard, AspectWerkz can be a solution,
which is a dynamic, lightweight and high-performing aspect-oriented programming
framework for Java.

12.9 Conclusion

In summary, the primary contribution of this chapter is a novel, systematic
architecture-centric approach for engineering context-aware services at the software
architectural level. Context-awareness capabilities in service interfaces introduce
additional challenges to the software engineer. The additional complexities associ-
ated with these special services necessitate the use of solid software engineering
methodologies during their development and execution. To this end, this chapter has
proposed a novel approach which integrates the benefits of solid software engineering
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principles of model-driven architecture, aspect-oriented modeling and formal model
checking for engineering context-aware services. A prototype tool—Aspectual
FSP Generation—applying an effective pipeline of model-to-model and model-
to-text transformations has been built. The generated formal behavioral models for
context-dependent behavior and the core service behavior have been rigorously veri-
fied using model checking against desired system properties. The approach has been
explored using a real-world case study in intelligent transport, and an evaluation
framework has been developed to validate the main methods and tools employed in
the study. We have also discussed two key research directions, extending this work
to benefit the broader service engineering and pervasive computing communities.
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