
Chapter 11
Transformation Framework for Consistent
Evolution of UML Behavioral Elements
into BPMN Design Element

Jayeeta Chanda, Ananya Kanjilal, Sabnam Sengupta
and Swapan Bhattacharya

Abstract There are many software products that have been developed in the
object-oriented paradigm. To incorporate the positive aspects of service-oriented
paradigm (SOA) and address the issues related to increasing size and complexity
of software products, they need to be evolved to service-oriented domain. There are
some proven Object Oriented (OO) Design Tools that can be used for Service Ori-
ented Application design incorporating both the behavioral and structural aspects in
a seamless, consistent evolution that can be made from object oriented to service ori-
ented domain. In this chapter, we concentrate on the evolution process of behavioral
aspect of design from OO to SOA. Business Process Modeling Notation (BPMN) has
become the de-facto standard for modeling business process on a conceptual level.
Business processes are an integral part of service-oriented architecture. In service-
oriented applications Use cases needs to be ordered along business processes. Busi-
ness Processes visualize global control-flow across Use cases. Therefore, use of a
business process language to visualize the dependencies among different use cases
is of high importance. Use case diagram along with activity diagrams represents the
behavioral aspect of a system in the analysis phase of an object-oriented system.
To enable modeling the relationship among different behavioral aspects and evolve
from object oriented domain to service oriented domain, a formal approach would
help in establishing the foundation. In order to do that, in this work, we propose a
formal framework, FAM (Formalized analysis model), which is a set of grammar

J. Chanda (B) · A. Kanjilal · S. Sengupta
BPPIMT, 137, VIP Road, Kolkata, India
e-mail: jayeeta.chanda@gmail.com

A. Kanjilal
e-mail: ag_k@rediffmail.com

S. Sengupta
e-mail: sabnamsg@gmail.com

S. Bhattacharya
National Institute of Technology Karnataka , Surathkal, India
e-mail: bswapan2000@yahoo.co.in

A. Bouguettaya et al. (eds.), Web Services Foundations, 273
DOI: 10.1007/978-1-4614-7518-7_11,
© Springer Science+Business Media New York 2014

274 J. Chanda et al

based formalized Use case and Activity diagram elements of UML and a framework
for verification of the diagrams, which includes syntactic correctness and require-
ment traceability. Along with that, we also propose FAM2BP (Formalized Analysis
Model to Business Process) for transformation of Formalized Analysis Model (FAM)
of object-oriented systems into BPMN process for SOA application using a set of
rules that will help in generating business processes for SOA application directly
from object oriented analysis models. This model would help in a consistent evolu-
tion of software development paradigms from Object Oriented to Service Oriented
systems.

11.1 Introduction

Design and development of software has become much more complex in the last
decade, resulting in the evolution of design and development paradigms. Object ori-
ented systems have thus become an integral part of more complex Service Oriented
Architecture (SOA) to address complex issues like Separation of Concerns, reusabil-
ity, granularity, modularity, componentization and interoperability. Evolution of soft-
ware design and development from OO to SOA domain has become the necessity
in this evolving scenario. There are some proven OO design tools that can be used
for SOA application design. In object-oriented systems, UML is a widely accepted
industry standard for modeling of different aspects of the system under construction.
Use case diagrams and activity diagrams are used to model the business functional
requirements in the analysis phase. These correlate to the business processes of SOA
architecture. In service-oriented architecture, BPMN processes play an important role
in the development of services. It is the dynamic behavioral diagrams that are often
used for modeling business processes, such as the UML Activity diagram and Use
Case diagram . BPMN is related to UML in the sense that it defines a visual notation
for business processes that is similar to UML behavioral diagrams. However, BPMN
and UML have very different approaches to business process modeling. UML offers
an object-oriented approach to the modeling of applications, while BPMN takes a
process-centric approach that is more natural and intuitive for the business analyst to
use. BPMN also offers the option of explicitly modeling business objects that may
be exposed through business services in the process flows. Automatic translation of
UML use case and activity models to BPMN design elements is thus necessary to
ensure consistent evolution of Object oriented systems to Service oriented paradigm.

In this work, we propose a grammar based framework FAM (Formalized analysis
Model) for syntactic and semantic verification of UML diagrams in the analysis
phase and a relational model based framework FAM2BP (Formalized Analysis Model
to Business Processes) for automated translation of elements of FAM to elements
of Business Processes, preserving the use case relationship and dependencies and
maintaining the control flow of the Business processes. Our framework would enable
a consistent evolution of software systems from object oriented paradigm to service
oriented paradigm.

11 Transformation Framework for Consistent Evolution 275

11.2 Related Work

Lots of research work are undertaken presently to address various issues in design-
ing and developing software in service oriented paradigm. We discuss some of the
significant contributions and present it in the following two subsections. In the first
subsection, we discuss the existing works in the domain of formalization of object
oriented design modeled by UML diagrams which forms the basis of automated trans-
lation and verification. Our proposed framework FAM is presented subsequently in
the context of these existing works. In the second subsection, we discuss the work in
the domain of relationship between UML use case model and BPMN process model.
This forms the basis of our proposed framework FAM2BP for automated evolution
of BPMN process models from UML models.

11.2.1 Formalization Approaches

Formalization of UML has become a prominent domain of research for the last few
years. Achievement of automated consistency checking and execution has led the
software engineers and researchers to focus in this domain. In this section we will
discuss a few works done in this domain related to formalization of UML static
and dynamic models. To reduce the risks associated with software development and
to increase the safety and the reliability by formalizing the syntax of (a sub-set of
the popular UML diagrams (Use Case diagram, Class diagram, and State Machine
diagram) using Z specifications has been proposed in [1].

The class diagram being the reference point of the notation, any formalization must
start with this diagram. To make it possible to provide computer aided support during
the application design phase in order to automatically detect relevant properties, such
as inconsistencies and redundancies, in [2], UML class diagram is formalized in terms
of a logic belonging to Description Logics, which are subsets of First-Order Logic. An
algebraic approach is chosen in [3] because it is more abstract than state-based style
languages. UML’s class diagram (including type definitions, attributes, operations,
aggregation and association) and OCL constraints (syntax and semantics), have been
formalized using theorem prover Isabelle using one of its built-in logics, HOL.

RSL (RAISE (Rigorous Approach to Industrial Software) Specification Lan-
guage) has been used in [4] as a syntactic and semantic reference for UML. An
automated tool that implements the translation and the abstract syntax in RSL for the
RSL-translatable class diagrams are also presented. The integration of the domain
modeling method for analyzing and modeling families of software systems with
the SOFL formal specification language is discussed in [5]. A UML 1.5 profile
named TURTLE (Timed UML and RT-LOTOS Environment) endowed with a for-
mal semantics given in terms of RT-LOTOS is proposed in [6]. Preliminary results
on an approach to formally define UML class diagrams using hierarchical predicate

276 J. Chanda et al

transition nets (HPrTNs) have been presented in [7]. The authors show how to define
the main concepts related to class diagrams using HPrTN elements.

The semantics presented in [8] captures the consistency between sequence dia-
gram with class diagram and state diagram. This approach may be useful to develop
the model consistent checking functions in UML CASE tools and also to reason
about the correctness of a design model with respect to a requirement model. The
transformation rules for formalizing UML statechart diagrams have been proposed
in [9]. The target language for the transformation is Concurrent Regular Expressions
(CREs), which are extensions of regular expression. In [10], the alternative approach
of using -calculus to formalize UML activity diagrams is presented to get rich process
semantics for activity diagrams. This process model can be automatically verified
with the help of -calculus analytical tools. Hoare’s CSP (communicating sequential
processes) has been used in [1] to formalize the behaviors of UML activity diagrams
and provides an approach to model checking during software analysis or design stage.
The operational semantics of UML sequence diagrams is specified and this specifi-
cation is extended to include features for modeling multimedia applications as a case
study in [11]. Dynamic Meta modeling has been proposed for specifying operational
semantics of UML behavioral diagrams based on UML collaboration diagrams that
are interpreted as graph transformation rules. The authors in [12] have defined a tem-
plate to formalize the structured control constructs of sequence diagram, introduced
in UML 2.0.

In all these research works, UML diagrams have been formalized using other
formal languages. Our earlier work [13] also used Z to propose a formal model for
six UML diagrams. However, Z is a non-executable language and hence automated
verification is not possible unless translated or mapped to executable models like
XML using ZML. In this work, we use context free grammar to formally define
the very widely used UML diagrams namely Use case, Activity and Class. This
approach is executable unlike the existing approaches like Z-notation etc and hence
can be validated using LEX and YACC.

11.2.2 UML Model and BPMN Model Mapping

There exist some works related to the relationship between use case models and
BPMN process model. In [14], Cockburn mentions the possibility of applying Use
cases for deriving business processes but no rules are proposed. The field of model-
driven development has tried to integrate the concept of Use cases within its UML
models. Instead of tabular and textual descriptions, UML sequence diagrams or simi-
lar models are used in [15]. In [16], an UML based development of business processes
is discussed. Expression of control flow between use cases is missing in this approach.

In [17], it is possible to define control-flow dependencies between Use cases with
the introduction of Use case Charts and their formalizations. Use cases are called
scenarios that may not have extensions and that are modeled as UML sequence
diagrams. However, dependencies between Use cases cannot be derived from the
Use Case themselves but have to be modeled explicitly.

11 Transformation Framework for Consistent Evolution 277

In [18], synthesis of state transition graphs from Use Cases is addressing the
visualization aspect in a better way. A tabular Use case can be converted to a state
transition graph similar to graphical business process languages. In [19], the state
transition graphs can be used for simulating one Use case but are not suited for
visualizing dependencies between Use Cases. The generation of EPC models from
Use Cases is addressed in [20]. EPC models consist of fewer graphical symbol types
but are not as powerful as BPMN. BPMN has become the standard business process
modeling language in SOA. Therefore, the transformation of Use cases should have
BPMN as the target notation and our framework is developed upon this concept.

In [21], an algorithm is proposed that restores the overview of the Use cases and
visualizes the control flow of the resulting business process. This approach automati-
cally assembles Use cases to business process. But this work is unable to keep the rela-
tionship (includes and extends) among use cases and treated as the flat use case model.

Our work is closely related to these works but improves upon them in several
aspects. We capture the use case scenarios as a formalized analysis model (FAM)
that is a grammar based representation of UML Use case and Activity models. A for-
mal definition of semantics for the subset of BPMN that is applied here has been
presented in [22]. Then, a set of rules are proposed that automatically transforms the
FAM to BPMN elements (FAM2BP) maintaining the control flow of scenarios as
well as preserving all relationships between the use cases.

11.3 Scope of Work

In this chapter, we propose an integrated framework for automatic evolution of UML
analysis models to BPMN design elements of service oriented paradigm. The UML
use case and activity diagrams that capture the business functional requirements
and their flow of events are formally represented as Formal Analysis Model (FAM)
which is the grammar based representation of these artifacts. The elements of UML
correspond and correlate to the BPMN elements based on which we have designed
the transformation framework FAM2BP. The framework consists of a set of rules
to map the UML elements like events and flow of events into BPMN elements
like start/stop/intermediate events, parallel/exclusive-OR Gateway, etc. A relational
model is proposed to represent the relationship among the artifacts. Finally, an algo-
rithm is presented to automatically transform the UML elements into BPMN ele-
ments. The block diagram in Fig. 11.1 depicts our approach.

Fig. 11.1 Our integrated
framework

278 J. Chanda et al

11.4 Formalized Analysis Model

UML, being visual in nature, is easy to understand and communicate, but, it lacks the
rigor of formal modeling languages and hence verification of a model specified in
UML and ensuring requirement traceability within these models becomes difficult.
Formalization of UML diagrams is now a dominant area of research. This section
is a work in that direction. We have proposed a formal grammar for the Use case,
Activity and Class diagrams. We have considered OMG UML 2.0 standard and
proposed formal models for some of its constituent diagrams. The production rules,
terminals, non-terminals for the grammars are chosen and proposed accordingly. We
have also proposed a set of verification criteria that comprises of syntactic correctness
rules and traceability rules.

The consistency rules have been proposed by analyzing the inter-relationships
among the diagrams so that they together represent a coherent design. Verification
of all the rules has been presented based on the proposed grammar. We have used
regular expression features (eg. +, *) in the production rules for simplicity and easy
understanding. However, for Lex/YACC implementation, we have used a recursive
definition of the grammar. Let, the grammar be G = {S, N, T, P}
where S, N, T, P represent start symbol, non-terminals, terminals and production
rules
T= {char, digit, +, -, #, association, generalization, aggregation, (,) , .. ,:, basic,
alternate, include, extend}
All other symbols used in the production rule P are non-terminals (N).

Grammar for use case Diagram
P:S → usecase_diagram
usecase_diagram → usecase+ actor* UC_relation* actor_relation*
usecase → UC_id UC_name event+
event → event_ID event_name event_type
event_type → basic | alternate
UC_relation → UC_id UC_reltype UC_id
UC_reltype → �include� | �extend� | �generalization�
actor_relation → actor actor_reltype actor
actor_reltype → �include� | �extend�
event_ID → char
event_name → char
UC_id → char
UC_name → char
actor → char
char→ [a-z A-Z 0-9]+
digit → [0 9]

11 Transformation Framework for Consistent Evolution 279

Grammar for activity diagram
activity_diagram → activity_state+ transition+ objectflow*
activity_state → act_ID event_ID activity_node act_desc

className pre_element post_element
activity_node → start | end | join | fork | action | decision | merge
pre_element → className prenode
post_element → className postnode
prenode → start | join | fork | action | decision | merge
postnode → end | join | fork | action | decision | merge
transition → tran_ID prenode postnode objectfl_ID

| tran_ID prenode postnode
objectflow → objectfl_ID objName className preState poststate
preState → objName = statename
postState → objName = statename
act_ID → char
className → char
objName → char
act_desc → char
tran_ID → char
objectfl_ID → char
statename → char

The syntactic rules and traceability rules for the use case diagram and activity diagram
are stated as given in the following subsections.

11.4.1 Syntactic Rules

1) The usecase diagram consists of

a. One or many use cases
b. Zero or many actors
c. Zero or many use case relationships
d. Zero or many actor relationships

2) An usecase consists of One or many events
3) An event has to be of the type basic or alternate.
4) The Use case relationship can be of the type include, extend and generalization.
5) The actor relationship can be of the type include and extend.
6) An activity diagram consists of

a. A start state
b. An end state
c. One or many activity states
d. Two or many transitions.

280 J. Chanda et al

7) Zero or many object flows (change in state of an object)
8) Zero or many swimlanes (Transition of state is between two different class)

11.4.2 Traceability Rules

An action/activity state in activity diagram has a one-to-one mapping with an event
of a use case in use case diagram.

This traceability rule can be validated using the grammar of use case diagram and
activity diagram as stated in the earlier sections.

In this section, we have formalized the analysis phase of OO design elements.
These formalized analysis model (FAM) elements are input to the transformation
framework FAM2BP. The proposed FAM will establish traceability among the dif-
ferent elements of analysis model. We are establishing traceability in this stage before
the transformation because the consistent elements of OO system will generate more
robust design elements of the SOA paradigm.

11.5 FAM2BP: Proposed Transformation Model

This section discusses the relational model which maps the artifacts of the two
paradigms. The transformation rules and the algorithms for automatic transformation
are presented in the following sections.

Fig. 11.2 Relational model

11 Transformation Framework for Consistent Evolution 281

11.5.1 Relational Model

The elements of Formalized Analysis Model (FAM) are mapped with the BPMN
node. For example, the Use case and Event entity are related to each other. Similarly
all other elements of the FAM are related as shown in Fig. 11.2. These elements of
FAM model are mapped with the BPMN nodes to ensure automatic transformation
from Formalized Analysis Model to Business process. The tables corresponding to
this model are generated as follows-
Table Event

(UC_id, event_id, event_name, event_type)
Table ActivityState

(UC_id, event_id, Act_id, activity_node, act_desc, preElement, postElement)
Table ActUCRelation

(Act_ID, UC_id, Rel_type)
Table BPMN_node

(Name, activity_node, Graphical_notation)
The events of the OO behavioral domain are mapped with the BPMN nodes.The
SOA behavioral elements BPMN nodes are given below:

• Start Event
• End Event
• Intermediate Event
• Parallel Gateway
• Exclusive-OR Gateway

11.5.2 Transformation Rules

We propose a set of rules to transform Formalized Analysis model into BPMN
notation.
Rule 1
The use case activity whose node is marked as start will be assigned as the Start
Event of the BPMN node. The BPMN node will be labeled as Activity ID (act_ID)
of the activity node.
Rule 2
The use case activity whose node is marked as end will be assigned as the End Event
of the BPMN node. The BPMN node will be labeled as Activity ID (act_ID) of the
activity node.
Rule 3
The use case activity whose node is marked as action / decision will be assigned
as the Intermediate Event of the BPMN node. The BPMN node will be labeled as
Activity ID (act_ID) of the activity node.
Rule 4
The use case activity whose node is marked as fork will be assigned as the Parallel

282 J. Chanda et al

Gateway of the BPMN node if both the postElement of the activity node are of the
type basic. The BPMN node will be labeled as Activity ID (act_ID) of the activity
node.
Rule 5
The use case activity whose node is marked as fork will be assigned as the Exclusive-
OR Gateway of the BPMN node if one the postElement of the activity node are of
the type basic and the other is of the type alternate. The BPMN node will be labeled
as Activity ID(act_ID) of the activity node.

These rules are realized in the next section to automate the transformation of
Formalized Analysis Model into BPMN nodes.

11.5.3 Algorithm for Automated Transformation

The rules cited in the previous section are realized using two algorithms namely
NodeGeneration and FlowGeneration. The flow of the algorithm is as follow:

The elements of Formalized Analysis Model (FAM) in the form of different table
schema are used as input to the first algorithm named NodeGeneration The out-
puts of this algorithm are different BPMN nodes. This output along with the Array
FAM_Flow are fed as input to the second algorithm named FlowGeneration. The
Array FAM_Flow is formal method of storing the flow information of events of
FAM. The FlowGeneration algorithm will generate the BPMN design elements.

11.5.3.1 Algorithm NodeGeneration to Generate BPMN Node

The algorithm NodeGeneration as proposed below will generate the BPMN nodes.
We define the algorithm using the tuple relational calculus. The algorithm is proposed
as follows-
Query 1:
The following query is the realization of rule 1 of Sect. 11.5.2.It generates the Start
of the BPMN node. It selects the Graphical_notation from BPMN_node and map
that with the start event of the activity_node.
{t.Graphical_notation| BPMN_node(t) ∧ t.ID =1 ∧

∃ d (d.act_ID | ActivityState (d) ∧ d.activity_node = t.activity_node ∧
t.label = d.act_ID ∧ d.activity_node = start)}

Query 2:
The following query is the realization of rule 2 of Sect. 11.5.2. It generates the End
of the BPMN node. It selects the Graphical_notation from BPMN_node and map
that with the end event of the activity_node.

{t. Graphical_notation | BPMN_node(t) ∧ t.ID = 2 ∧
∃ d(d.act_ID | ActivityState(d) ∧ d.activity_node =

11 Transformation Framework for Consistent Evolution 283

t.activity_node ∧ t.label = d.act_ID ∧ d.activity_node = end)}

Query 3:
The following query is the realization of rule 3 of Sect. 11.5.2. It generates the
Intermediate Event of the BPMN node. It selects the Graphical_notation from
BPMN_node and map that with the action or decision event of the activity_node
{t.Graphical_notation | BPMN_node(t) ∧ t.ID = 3 ∧

∧ d(d.act_ID | ActivityState(d) ∧ d.activity_node =
t.activity_node ∧ t.label = d.act_ID ∧ (d.activity_node = action
∨ d.activity_node = decision)) }

Query 4:
The following query is the realization of rule 4 of Sect. 11.5.2. It generates the
graphical notation for Parallel Gateway. It selects the particular graphical notation
and map this with that activity_node of ActivityState where activity_node is fork and
the event_type of all the postElement of that activity node is basic.
{t.Graphical_notation | BPMN_node(t) ∧ t.ID = 4 ∧

∃ q (q.act_ID | ActivityState(q) ∧ q.activity_node = t.activity_node ∧
t.label = q.act_ID ∧ q.activity_node = fork
∃ r(r.postElement | ActivityState (t) ∧ r.act_ID = q.act_ID ∧
∃ s(s.event_ID | ActivityState(s) ∧ s.act_ID = r.postElement ∧
∃ p(p.event_ID | Usecase(p) ∧ p.event_ID = s.event_ID ∧
s.event_type = basic))))}

Query 5:
The following query is the realization of rule 5 of Sect. 11.5.2. It generates the graph-
ical notation for Exclusive_OR Gateway. It selects the particular Graphical notation
and map this with that activity_node of ActivityState where activity_node is fork
and the event_type of the one of postElement of that activity node is basic and the
event_type of the other postElement of that activity node is alternate.

{t.Graphical_notation | BPMN_node(t) ∧ t.ID = 5 ∧
∃ q(q.act_ID | ActivityState(q) ∧ q.activity_node = t.activity_node ∧
t.label = q.act_ID ∧ q.activity_node = fork ∧

∃ r (r.postElement | ActivityState (t) ∧ r.act_ID = q.act_ID ∧
∃ s(s.event_ID | ActivityState(s) ∧ s.act_ID = r.postElement ∧
∃p(p.event_ID | Usecase(p) ∧ p.event_ID = s. event_ID

In this way, the algorithm NodeGeneration described in this section will map the
different nodes of the OO design elements with that of the BPMN design elements.
The algorithm FlowGeneration as proposed in the following section will generate
the flows between these nodes that are generated by the algorithm NodeGeneration.

284 J. Chanda et al

11.5.3.2 Algorithm FlowGeneration to Generate the Flow Between
BPMN Nodes

We use an array representation FAM_flow to represent the flow between different
activity nodes. FAM_flow is a part of our Formalized Analysis Model to depict the
flow between different events of use cases of objects oriented systems.
The array FAM_Flow is an [n] [3] array where n is the number of flows in the
formalized analysis model.

FAM_Flow [0] [i] lists the source activity node of the flow for i=0 to n
FAM_Flow [1] [i] lists the destination activity node of the flow i= 0 to n
FAM_Flow [2] [i] lists the types of flow between A(0,i) and A(1,i) for i= 0 to n

Entries in FAM_Flow [2, i] are of the following types:

1) S indicates sequential flow
2) D indicates Default Flow
3) C indicates Conditional Flow
4) I indicate Iterative flow

Table BPMN_Flow stores different graphical notations of BPMN flows and are
assigned with unique IDs.
Table BPMN_Flow will have the following kind of flows:

1) Sequential Flow (ID is 1)
2) Default Flow (ID is 2)
3) Conditional Flow (ID is 3)
4) Iterative flow (ID is 4)

The algorithm FlowGeneration is proposed as follow:
Input:

Output of Nodegeneration algorithm, FAM_Flow[n] [3], Table BPMN_Flow.

Algorithm:
for(m=0 ; m<=n-1;m++)
{
flow. from = FAM_flow[m] [0] ;
flow. to = FAM_flow[m] [1] ;
If FAM_flow [m] [2] = S
Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=1
If FAM_flow [m] [2] = D
Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=2
If FAM_flow [m] [2] = C
Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=3
If FAM_flow [m] [2] = I
Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=4
}

11 Transformation Framework for Consistent Evolution 285

Output:
Different flows of the BPMN design elements.

In this section, we have proposed and described the transformation framework
FAM2BP which is BPMN design elements from the elements of the formalized
analysis model. As we have ensured the consistency at the OO level before transfor-
mation, this transformation will generate consistent design elements at this stage.

11.6 Case Study

Our proposed Automatic Transformation Model FAM2BP is explained with the help
of the case study of a Banking System. We have taken four use cases where use case
2 (UC2) is the primary use case that includes use case (UC1) and use case 3 (UC3)
and is extended in specialized case like housing loan by use case 4 (UC4).

These use cases are tabulated in Table 11.1 in the form of Use case Schema as
defined in Sect. 11.4.2. The events of individual use cases are stored in Table 11.2 as
Event schema which is defined in Sect. 11.4.2. These events will be mapped with the
ActivityState. The information regarding ActivityState, will be stored in Table 11.3 as
ActivityState schema. Table ActivityState contains the information regarding activity
node. The entry in the table will have new activity like fork or join or decision etc
apart from normal activity (start/action/end) which are mapped from the events of
the Event table. The normal activity will carry the same event_ID as in the table
Event. And new event_ID will be generated for the new activity. All the activities
will be assigned an unique identifier.

Table 11.4 (Table ActUCRelation) which keeps information regarding any activity
that includes any use cases. Table 11.4 can be used for extends relation, as well. Here,
UC4 extends UC2 and we can replace this with the relation UC4 includes UC2, which
implies that UC4 has all the functionalities of UC2, along with its own functionalities.
Henceforth, UC4 will have an activity which will include UC2. The Reuse field in
Table 11.3 is used to incorporate reusability (include, extend in terms of include
relationship) of use cases. If the Reuse field is Y, then Table 11.4 has to be checked
to find which usecase has to be included by checking the UC_id field.

Table activitystate (Table 11.3) contains the information regarding activity node.
The entry in the table will have new activity like fork or join or decision etc apart
from normal activity (start or action or end) which are mapped from the events of

Table 11.1 Table use case UC_id UC_name

UC1 Verify customer
UC2 Sanction loan
UC3 Determine the maximum limit of loan amount
UC4 Sanction home Loan

286 J. Chanda et al

Table 11.2 Table event

UC_id Event_id Event_name Event_type

UC1 EV1 A customer has called the bank or visit the bank Basic
UC1 EV2 The customer will be asked the requisite set of

questions
Basic

UC1 EV3 Customer is able answer all verification questions
successfully

Basic

UC1 EV4 Customer is unable answer verification questions Alternate
UC1 EV5 Verification is complete Basic
UC2 EV1 A customer has called the bank Basic
UC2 EV2 Includes UC1 Basic
UC2 EV3 Includes UC3 Basic
UC2 EV4 Verify address Basic
UC2 EV5 Finalization of interest rate Basic
UC2 EV6 Calculation of EMI Basic
UC2 EV7 Loan is sanctioned Basic
UC3 EV1 Customer has applied for loan Basic
UC3 EV2 Income and other factor are taken as input Basic
UC3 EV3 The maximum loan limit of the customer is calcu-

lated
Basic

UC3 EV4 The maximum calculated limit is less than the
requested loan limit

Basic

UC3 EV5 Customer loan amount is sanctioned Basic
UC4 EV1 Customer has applied for home loan Basic
UC4 EV2 Customer submit property details etc Basic
UC4 EV3 The searching of property is done and searching

result is satisfactory
Basic

UC4 EV4 The searching of property is done and searching
result is not satisfactory

Alternate

the Event table (Table 11.2). The normal activity will carry the same event_ID as
in the table Event and new event_ID will be generated for the new activity. All the
activities will be assigned an unique identifier. As a result , the different BPMN nodes
and flows are generated using Tables 11.1, 11.2, 11.3, 11.4 and the array FAM_flow
(defined in the previous section). The Table ActUCRelation (Table 11.4) which keeps
information regarding any activity that includes any use cases. Table 11.4 can be used
for extends relation as well. Here, UC4 extends UC2 and we can replace this with the
relation UC4 that includes UC2, which implies that UC4 has all the functionalities
of UC2, along with its own functionalities. Henceforth, UC4 will have an activity
which will include UC2.

11 Transformation Framework for Consistent Evolution 287

Table 11.3 Table activity state

UC_id Event_id Act_id Activity_node preElement postElement Reuse

UC1 EV1 AC1 start —— AC2 N
UC1 EV2 AC2 action AC1 AC3 N
UC1 F AC3 fork AC2 AC4,AC5 N
UC1 EV3 AC4 action AC3 AC6 N
UC1 EV4 AC5 action AC3 AC2 N
UC1 J AC6 join AC4,AC5 AC7 N
UC1 EV5 AC7 end AC6 —— N
UC2 EV1 AC8 start —— AC8 N
UC2 F AC9 fork AC8 AC10,AC11 N
UC2 EV2 AC10 action AC9 AC12 Y
UC2 EV3 AC11 action AC9 AC12 Y
UC2 J AC12 join AC10,AC11 AC13 N
UC2 EV4 AC13 action AC12 AC14 N
UC2 EV5 AC14 action AC13 AC15 N
UC2 EV6 AC15 action AC14 AC16 N
UC2 EV7 AC16 end AC15 —— N

Table 11.4 Table
ActUCRelation

Act_id UC_id

AC10 UC1
AC11 UC3

11.7 Implementation

In this section, we will discuss the implementation details in the direction of evolution
from the OO to the SOA domain. We develop a tool that generates the BPMN
design elements of the SOA paradigm from the use case design elements of the OO
paradigm. The technical environment for this evolution tool comprises of J2SE 1.6.
The Integrated Development Environment (IDE) that is used for developing the tool
is Net Beans. The tool is developed as a Multi Document Interface (MDI) desktop
application using the Java Swing framework (Fig. 11.3).

The program uses a text file as an input. The text file contains the grammatical
constructs that define the pre and post elements for each behavioral artifacts, its
type etc of OO domain. The grammatical constructs used in the input file are given
below:
Usecase name, Element Name, Event Name, Type, Pre Element, Post Element,
Reuse

Example:
UC1,AC1,EV1,START,-,AC2,N
UC1,AC7,EV7,ACTION,AC1,AC2,N
UC1,AC2,EV2,FORK,AC7,AC3,N
UC1,AC2,EV2,FORK,AC7,AC4,Y

288 J. Chanda et al

Fig. 11.3 BPMN as generated by our tool

UC1,AC3,EV3,ACTION,AC2,AC5,N
UC1,AC6,EV6,ACTION,AC2,AC4,N
UC1,AC4,EV4,END,AC6,-,N
UC1,AC5,EV5,END,AC3,-,N

11.8 Conclusion

In this chapter, we have proposed an approach for automated translation of Formal-
ized Analysis Models that consists of a formal grammar based description of UML
models to Business Processes in the analysis phase. Design and development of
software has become much more complex in the last decade resulting in evolution
of design and development paradigms. Object oriented systems have thus become
an integral part of more complex Service Oriented Architecture (SOA). Evolution
of software design and development from the object oriented to the SOA domain
has become the necessity in this evolving scenario. This approach would help us in
seamless evolution of object oriented systems to the service oriented domain. As this
model is based on a formal grammar, this approach can be automated resulting in
correct and consistent transformations.

References

1. Mostafa, A.M., Ismail, M.A,. El-Bolok, H., Saad, E.M.: Toward a formalization of UML2.0
metamodel using Z specifications, In: Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007.

11 Transformation Framework for Consistent Evolution 289

SNPD 2007, vol. 1, pp 694–701, July 30–August 1, 2007
2. Cal, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: A formal framework for reasoning on

UML Class diagrams. In: Proceedings of the 13th International Symposium on Methodologies
for Intelligent Systems (ISMIS 2002), pp. 503–513 (2002)

3. Andre, P., Romanczuk, A., Royer, J.-C.: Checking the consistency of UML class diagrams
using Larch prover. In: Rigorous Object Oriented Method (ROOM) (2000)

4. Meng, S., Zhang, N., Aichernig, B.K.: The formal foundations in RSL for UML statechart
diagram. Technical Report 299. UNU/IIST, July (2004)

5. Gomaa, H., Liu, S., Shin, M.E.: Integration of the domain modeling method for families of
systems with the SOFL formal specification language. In: 6th IEEE International Conference
on Complex Computer Systems (ICECCS’00), September 11–15, Tokyo, Japan, pp. 61–71
(2000)

6. Apvrille, L., Courtiat, J.-P., Lohr, C., de Saqui-Sannes, P.: TURTLE: a real-time UML profile
supported by a formal validation toolkit. IEEE Trans. Softw. Eng. 30(7), 473–487 (2004)

7. He, X.: Formalizing UML class diagrams: a hierarchical predicate transition net approach. In:
The Twenty-Fourth Annual International Computer Software and Applications Conference,
Taipei, Taiwan, 25–28 October 2000

8. Li, X., Liu, Z., He J.: A formal semantics of UML sequence diagram. In: 2004 Australian
Software Engineering Conference (ASWEC’04), Melbourne, Australia, 13–16 April 2004

9. Jansamak, S., Surarerks, A.: Formalization of UML statechart models using concurrent regular
expressions. In: 27th Australasian Computer Science Conference, The University of Otago,
Dunedin, NZ, January (2004)

10. Yang, D., Zhang, s.: Using p - calculus to formalize UML activity diagram. In: 10th IEEE
International Conference and Workshop on the Engineering of Computer-Based Systems
(ECBS’03), Huntsville, Alabama, 7–10 April 2003

11. Hausmann, J.H., Heckel, R., Sauer, S.: Towards dynamic meta modeling of uml extensions: an
extensible semantics for UML sequence diagrams. In: IEEE 2001 Symposia on Human Centric
Computing Languages and Environments (HCC’01), Stresa, Italy, 5–7 September 2001

12. Shen, H., Virani, A., Niu, J.: Formalize UML 2 sequence diagrams. In: 11th IEEE High Assur-
ance Systems Engineering Symposium, HASE 2008, pp. 437–440, 3–5 December 2008

13. Sengupta, S., Bhattacharya, S.: Formalization of functional requirements of software develop-
ment process, In: In the Journal of Foundations of Computing and Decision Sciences (FCDS).
Institute of Computing Science, Poznan University of Technology, Poland 33(1), 83–115 (2008)

14. Cockburn, A.: Writing Effective Use Cases, 14th edn. Addison-Wesley, New York (2005)
15. Object Management Group (2004). Unified Modeling Language: Superstructure. http://www.

omg.org/cgibin/doc?formal/05-07-04. Accessed 1 Sept 2007
16. Oestereich, B., Weiss, C., Schroder, C., Weilkiens, T., Lenhard, A.: Objektorientierte Geschft-

sprozessmodellierungmit der UML. d.punkt Verlag (2003)
17. Whittle, J.: A formal semantics of Use Case charts, Technical Report ISE Dept, George Mason

University, ISE-. TR-06-02. http://www.ise.gmu.edu/techrep
18. Some, S.: An approach for the synthesis of State transition graphs from Use Cases. In: Pro-

ceedings of the International Conference on Software Engineering Research and Practice, Las
Vegas, Nevada, USA, 23–26 June 2003

19. Some, S.: Supporting Use Cases based requirements simulation. In: Proceedings of the Interna-
tional Conference on Software Engineering and Practice (SERP04), Las Vegas, Nevada, USA,
21–24 June 2004

20. Lbke, D.: Transformation of use cases to EPC models. In: Proceedings of the EPK 2006
Workshop (2006)

21. Lubke, D., Schneider, K., Weidlich, M.: Visualizing Use Case sets as BPMN processes. In:
Requirements Engineering Visualization (REV’08), Barcelona, Spain, 8–12 September 2008

22. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in
BPMN. In: Information and Software Technology (IST) (2008)

http://www.omg.org/cgibin/doc?formal/05-07-04
http://www.omg.org/cgibin/doc?formal/05-07-04
http://www.ise.gmu.edu/techrep

	11 Transformation Framework for Consistent Evolution of UML Behavioral Elements into BPMN Design Element
	11.1 Introduction
	11.2 Related Work
	11.2.1 Formalization Approaches
	11.2.2 UML Model and BPMN Model Mapping

	11.3 Scope of Work
	11.4 Formalized Analysis Model
	11.4.1 Syntactic Rules
	11.4.2 Traceability Rules

	11.5 FAM2BP: Proposed Transformation Model
	11.5.1 Relational Model
	11.5.2 Transformation Rules
	11.5.3 Algorithm for Automated Transformation

	11.6 Case Study
	11.7 Implementation
	11.8 Conclusion
	References

