
Chapter 1
Web Services and Business Processes:
A Round Trip

Mohammed AbuJarour and Ahmed Awad

Abstract Service-oriented Architecture (SOA) is considered as an implementation
for business processes (BP). However, the relation between SOA and BPs is usually
inspected in one direction only. In this chapter, we investigate the bi-directional rela-
tion between web services and business processes, and explore potential benefits
therefrom. In particular, we introduce a novel approach to generate additional infor-
mation about web services based on the configurations of business processes that
consume these web services. This information is then used to enhance and smooth
the modeling and configuration of future business processes. Through our approach,
we can generate three types of information from consumers’ business processes,
namely annotations, context, and relations among web services. To evaluate our
approach, we use the SAP reference model and we show the results in this chapter.

1.1 The Relation Between Business Processes
and Web Services

Service-oriented Architecture (SOA) has been considered as an implementation
platform for business processes (BP), nevertheless, each of them is typically investi-
gated separately. Investigating both worlds (i.e., SOA and BP) together is expected
to result in several benefits for both SOA and BP communities. For instance, getting
a running instance of a business process model requires mapping its service tasks to
(web) services. This mapping step requires sufficient information about the used web

M. AbuJarour (B)

SAP AG, Potsdam, Germany
e-mail: mohammed.abujarour@sap.com

A. Awad
Faculty of Computers and Information,
Cairo University, Giza, Egypt
e-mail: a.gaafar@fci-cu.edu.eg

A. Bouguettaya et al. (eds.), Web Services Foundations, 3
DOI: 10.1007/978-1-4614-7518-7_1,
© Springer Science+Business Media New York 2014

4 M. AbuJarour and A. Awad

services that is understandable by process engineers or business people who create
such mappings. Finding candidate web services to execute each service task is one of
the key challenges in SOA, e.g., due to poor service descriptions [10]. We consider
the configurations of BPs as a rich source of information about their consuming web
services that enhance service discovery and future BP configurations.

Due to the increasing number of BPs, service consumers in several application
domains maintain repositories of business process models (BPM) for their daily
activities, e.g., “ship ordered item”. Each business process is composed of a set of
manual (i.e., performed by employees) or service tasks (i.e., performed through web
services). Building a new BPM incorporates three steps: (1) creating and labeling
its tasks (2) determining the interaction between them, i.e., data and control flow (3)
configuring the created model, i.e., selecting web services to perform service tasks.
The built BPM is typically stored in the consumer’s repository for future requests.

Using the aforementioned scenario in practice involves several challenges, such
as, service discovery, service selection, BP configuration. Service discovery is one
of the main challenges in Service-oriented Computing (SOC), where a list of can-
didate web services are returned to service consumer as a result for their queries.
Choosing a particular web service to invoke from this list is known as service selec-
tion [18], which has become a complex task due to several factors, e.g., lack of
rich service descriptions. Therefore, additional information about web services—
e.g., annotations, relations among web services, etc.—is expected to help meet this
challenge [7]. Business process configuration represents the service selection step,
where each service task is assigned a web service to execute it. Performing this task
dynamically requires sufficient information about web services so that process engi-
neers configure their BPMs accordingly. Technical information only is not sufficient,
because it does not fit their backgrounds and knowledge [19].

Using web services within distributed business processes brings the challenges
of service discovery and selection to business processes. In this work, we introduce
a novel approach to bridge both worlds (SOA and BPM), where we use business
process configurations to derive additional information about their implementing
web services that reflect service consumers’ perspective (business view) to enrich
their technical descriptions released by their providers. We are able to generate three
types of information about web services, namely annotations, context, and relations
among web services. Annotations for web services are generated from tasks’ labels
and documentations, whereas context is derived from models’ titles and descriptions.
We discover additional realistic and rich relations among web services in the form of
linkage patterns using behavioral profiles [24] of their consuming business processes.
Additionally, we derive a global representation of all relations among web services
that are derived from multiple business processes. We use this global representation
to predict relations among web services that are not used together in a single business
process using the gained knowledge in this global representation.

The contributions of the work introduced in this chapter are:

1. Supporting smooth configuration of business processes by enabling context-aware
service selection.

1 Web Services and Business Processes: A Round Trip 5

Build
BPM

Configure
BPM

Finalize
BPM

Discover
WSs

Extract
annotations

Task
labels

WSs+
Annotations

BP
Repository

BPM+
Annotations

New
BPM

Process
title

Derive
linkage patterns

Pre-configured
tasks

Recommend
WSs

Service
Registry

Linkage
patterns

Annotations +
Context

Merge with existing
linkage patterns

Predict potential
linkage patterns

Task-WS
assignment

Fig. 1.1 An overview of our approach of integrating business processes and web services

2. Finding realistic, rich relations among web services as linkage patterns.
3. Disambiguating exclusive relations between web services using lexical ontolo-

gies, e.g., WordNet.
4. Merging behavioral profiles of BPs into a single global behavioral profile.
5. Revealing relations among web services that have not yet been used together.

The rest of this chapter is organized as follows: We give an overview of our
approach in Sect. 1.2. Then, we introduce the fundamental concepts that are used
throughout this chapter in Sect. 1.3. After that, we present our approach to generate
annotations for web services from business process configurations in Sect. 1.4. In
Sect. 1.5, we describe our approach to derive rich relations among web services in
the form of linkage patterns. Deriving global behavioral profiles among web services
is described in Sect. 1.6. Implementation details and experiments are introduced in
Sect. 1.7. Related work is summarized in Sect. 1.8. We summarize this chapter in
Sect. 1.9.

1.2 Overview of Our Approach

In this section we give an overview of our approach that represents a round trip
between web services and business processes as shown in Fig. 1.1. The scenario starts
when a business process designer creates a new BPM. At that point, the designer
gives a descriptive name and summary for the new process, e.g., establish a company
in Germany. Behind the scene, a request is sent to a service registry to find relevant
web services that have been used in similar models, e.g., establish a company in UK.
The returned recommended services are provided as pre-configured tasks that are
made available to the designer to accelerate the process design.

6 M. AbuJarour and A. Awad

The process designer might not use all web services recommended by the service
registry in their new model. Therefore, they introduce new tasks to express the par-
ticular business needs in the process at hand. Each new task is given an identifying
label that we pass to the service registry to find potential web services that can be
candidate matches. For each new task in the model, a list of candidate web services
is returned to the process designer during the configuration phase. Each web service
in our collection is associated with a set of annotations that explain its functionality.
These annotations are extracted and generated automatically from the websites of
their providers [2], invocation analysis [3], and previous BP configurations. The new
BPM is finalized when each service task is configured by assigning a web service to
execute it. With the finalized BPM, two sources of information can be identified and
generated, namely task-to-web service assignment and annotated BPM.

On the one hand, the task-to-web service assignment is passed from the modeling
framework to the service registry, where annotations, context, and relations are gen-
erated therefrom. On the other hand, the tasks in the created BPM are automatically
annotated with the annotations of the web services they are bound with, resulting in
an annotated BPM. These annotations are crucial for BPM lookup, because not only
task labels are used to index and find tasks, but enriched annotations are also used to
achieve this goal [4] leading to better discovery of models from process repositories.

We use this assignment list also to generate behavioral profiles, based on which we
derive rich relations among web services. Even more, we discover hidden relations
among services that have not been used together in any business process configuration
yet. The notion of behavioral profiles is developed by Weidlich et al. [24] to give
a behavioral abstraction over business processes. We use this notion and extend it
according to requirements for discovering relations among web services.

1.3 Fundamentals: Business Process Knowledge

Researchers have proposed several approaches that investigate the behavioral rela-
tions among tasks within a process model. For instance, the α-algorithm [22], causal
footprints [23] and behavioral profiles [24].1 Although these approaches are devel-
oped for different purposes, they have a fundamental common feature; generating a
set of behavioral relations among tasks in a process model. We use these behavioral
relations in our approach to derive rich relations among web services. Causal foot-
prints [23] and behavioral profiles [24] take as input a process model, represented as
a WF-net [21]. Whereas the α-algorithm requires as input a set of process execution
traces (i.e., log). We use the behavioral profiles approach as a starting point, because
we have process models as input and because the behavioral profile approach is much
more efficient than causal footprints. Nevertheless, our approach is independent of
this selection and works with process behavior abstraction approaches that support
the fundamental behavioral relations.

1 There are other related approaches that share similar underlying concepts.

1 Web Services and Business Processes: A Round Trip 7

reservation

Check train
reservation

Check car
Rental

Check hotel
Reservation

Find
restaurants

Find popular
sights

Fig. 1.2 A journey organizer business process modeled in BPMN 1.0

Behavioral profiles represent an abstract description of a business process and
identifies the behavioral relationship between any pair of its nodes. This relationship
can be: (1) strict order �, (2) concurrent ‖, (3) exclusive #, or (4) inverse order �.
The formal definition of behavioral profiles is introduced in Definition 1.1.

Definition 1.1 (Behavioral Profile) Let N be the set of nodes within a business
process model. The behavioral profile of a business process model is a function
bhp: N × N → {�, �, ‖, #} that assigns a behavioral property, strict order, inverse
order, parallel, or exclusive, between each pair of nodes within the business process
model.

If two tasks a, b appear in strict order, bhp(a, b) =�, then task a always executes
before task b. Similarly, if two tasks are concurrent then they can be executed in any
order. Exclusiveness means that at most one of the two tasks can execute within a
process instance. The behavioral profile of the BP shown in Fig. 1.2 includes several
behavioral properties, such as: bhp(U, V) = #, bhp(W, X)= �, bhp(X, W)= �,
bhp(Y, Z) = ‖, bhp(U, X) =�, bhp(Y, V)= �, etc.

The definition of behavioral profiles is not sufficient to achieve our goal of dis-
covering fine-grained linkage patterns among web services, in particular assigning
weights to the discovered linkage patterns. Therefore, we extend it by incorporat-
ing the shortest distance between each pair of tasks in addition to their behavioral
property. The distance between a pair of tasks is calculated by counting the num-
ber of edges between them in the considered BPM. A preliminary definition of the
extended behavioral profile is given in Definition 1.2. A comprehensive definition of
the “Extended Behavioral Profile” is introduced in Definition 1.3.

Definition 1.2 (Extended Behavioral Profile) Let N be a set of nodes within a busi-
ness process model. The extended behavioral profile of a business process model is
a function bhp′: N × N → {�, �, ‖, #} × N that assigns a behavioral property,
strict order, inverse order, parallel, or exclusive, and a distance, between each pair
of nodes within the business process model.

For instance, the extended behavioral profile of the BP in Fig. 1.2 includes several
pairs, such as: bhp′(U, V) = (#, 0), bhp′(W, X) = (�, 1), bhp′(X, W) = (�, 1),
bhp′(Y, Z) = (‖, 0), bhp′(U, X) = (�, 3), bhp′(Y, V) = (�, 5), etc. To derive
useful behavioral properties between tasks of a BP, we remove cyclic edges, because
their existence makes all tasks inside each BP concurrent.

8 M. AbuJarour and A. Awad

Transforming BPMs into executable processes is achieved through a configuration
step, where process engineers assign operations of web services to service tasks in the
considered BPM. Configuring a BP can be expressed as a function that takes a task of
a BP and assigns an operation to that task if it is a service task. The business process
shown in Fig. 1.2 can be configured as follows: con f (U) = BookFlightTicket,
con f (V) = BookTrainTicket, con f (W) = HotelReservation,
con f (X) = CarRental, con f (Y) = FindRestaurants, and con f (Z) =
FindSights. Where values to the right of the con f function are operations of web
services.

1.4 Annotating Web Services Using Business
Process Knowledge

In this section, we describe our approach to generate annotations and derive contexts
for web services based on the configurations of their consuming business processes.
From each finalized (i.e., configured) BPM, we generate a task-to-web service assign-
ment list, based on which we generate annotations for web services from the tasks
of their consuming business processes. Task labels and documentation are extracted
and their assigned web services are annotated with this extracted information. These
labels and documentations are created by service consumers that represent the appli-
cation level, i.e., business people. Additionally, the title of the created BPM is used
to derive the context in which these web services are typically used. This information
is then used to enable context-aware service selection for similar cases in the future.

Sharing information about business processes and web services used to execute
them is not usually desired by service consumers, because this information might be
considered one aspect of their competitive advantage. Nevertheless, our approach can
be valuable in several scenarios and application domains, in particular, where high
potentials for collaboration are expected and low potentials for competition among
service consumers exist, such as government services, education and research, online
modeling platforms, and quality-based service brokers.

Figure 1.3 shows a process model using BPMN for establishing a UK limited
company. The first six activities of the process are services of the UK Companies

Check Company
Name

Check Disqualified
Directors Register

Prepare
Memorandum
of Association

Prepare
Articles of

Association
File Form 10

File Form 12
Rent

Registered
Office

Buy Domain
Name

Fig. 1.3 Example process model of establishing a UK limited company

1 Web Services and Business Processes: A Round Trip 9

House. In the beginning, it has to be checked whether the desired company name is
not already in use and the directors are not disqualified from leading a company. For
the remaining steps, electronic forms are provided in the Portable Document Format
(PDF). The last two activities in the model are web services offered by private service
providers, e.g., “Buy domain name” can be executed using the whois web service
(http://www.webservicex.net/whois.asmx).

Using our approach, a process engineer can configure their BPM to establish a
company in UK using the existing annotations for web services and their operations
used in such a model. These annotations are generated from the websites of their
providers and through invocation analysis. Although they might be not rich enough,
such annotation can be helpful in some cases. Generating additional annotations for
such web services and operations from this BPM enrich their descriptions. In this
particular use case, all used operations are associated with the context “establish
a company in UK”. Additionally, each operation is annotated with the label and
documentation of each task that uses it. For instance, the whois web service is
annotated with “buy domain name”.

According to the German Federal Ministry of Economics and Technology, estab-
lishing a company in Germany incorporates 9 major steps.2 For instance, check the
company name, notarize the articles of association and foundation agreement, notify
the Office of Business and Standards, register at the Trade Office (involves check
manager’s qualifications), etc. Some of these steps are similar to the ones involved in
establishing a limited company in UK, such as “check the company name”, “check
qualified managers”, “rent office”, “buy domain name”. For instance, whois web
service (http://www.webservicex.net/whois.asmx), that is used to execute the “buy
domain name” task in the case of UK company, can be suggested to execute its
counterpart task in the German case.

Saving this model adds additional information to the service registry about the
considered web services, such as the new labels and the current context. This addi-
tional information helps the service registry provide better results in future similar
business processes, such as “Establishing a company in France”.

1.5 Fine-Grained Linkage Patterns Among Web Services

Relations among web services are important to understand the functionalities of
these web services and the interaction among them. We discover preliminary rela-
tions among web services from their WSDL files, and derive additional fine-grained
ones in the form of linkage patterns using their consuming BPs (Fig. 1.1). Each of
these linkage patterns has one of these types: Predecessors, successors, similar, com-
plementary, and related. Moreover, we assign weights to such relations based on the
usage of their web services in the corresponding BP. This weight is used to rank
web services that have the same linkage pattern, e.g., rank web services that have

2 http://www.existenzgruender.de/englisch/

http://www.webservicex.net/whois.asmx
http://www.webservicex.net/whois.asmx
http://www.existenzgruender.de/englisch/

10 M. AbuJarour and A. Awad

the predecessor relation with a particular web service. In this section, we describe
the types and weights of linkage patterns that we find based on business process
knowledge.

1.5.1 Types of Linkage Patterns

Traditional approaches to discover relations among operations of web services
usually give binary decisions whether two web services are related or not, with-
out providing control flow dependency, e.g., parallel, sequence, etc. Such relations
are not sufficient given the increasing number and complexity of web services and
business processes. In our approach—based on extended behavioral profiles—we
are able to identify five types of relations among operations of web services based
on their usage in BPMs. Consider two tasks, A and B, that are configured with OP1
and OP2, respectively. Based on their behavioral properties, the following five types
of linkage patterns can be identified:

1. Predecessor: An operation OP1 is a predecessor of another operation OP2 if it
appears before OP2 in the configurations of BPMs where both operations have
been used, i.e., bhp(A, B) =�.

2. Successor: An operation OP1 is a successor of another operation OP2 if it appears
after OP2 in the configurations of BPMs where both operations have been used,
i.e., bhp(A, B) = �.

3. Similar: An operation OP1 is similar to another operation OP2 if it appears within
exclusive relations with OP2 in the configurations of BPMs where both operations
have been used (i.e., bhp(A, B) = #) and there is a high semantic similarity
between the terms used to label both tasks and their executing operations, e.g.,
“rent a bike” and “buy a bike”.

4. Complementary: An operation OP1 is complementary to another operation OP2
if it appears within exclusive relations with OP2 in the configurations of BPMs
where both operations have been used (i.e., bhp(A, B) = #) but there is no high
semantic similarity between the terms used to label both tasks and their executing
operations, e.g., accept and reject.

5. Related: An operation OP1 is related to another operation OP2 if it appears
concurrently to OP2 in the configurations of BPMs where both operations have
been used, i.e., bhp(A, B) = ‖. For instance, “validate address” and “validate
email address”.

1.5.2 Weights of Linkage Patterns

Existing approaches of discovering relations among web services give binary
decisions on whether there is a relation between two web services or not. Such
decisions are based on the co-occurrence of both services in service compositions,

1 Web Services and Business Processes: A Round Trip 11

for instance. In our approach, we are able to discover fine-grained relations and assign
a weight (between 0 and 1) to each relation to reflect its strength.

The first type of information that we use to calculate the weight of a relation
between two web services is the distance between their consuming tasks in the
corresponding BP. This information is provided in the extended behavioral profile
of the BP. The distance between any two tasks in a BP is greater than 0 if their
behavioral property is either strict order or inverse order. Therefore, the distance
is used to assign a weight to predecessor and successor linkage patterns only. The
weight, ω, of a linkage pattern, r , between two operations where the distance between
their consuming tasks is d, and the maximum distance between any pair of tasks in
their BP is len, is given by Eq. 1.1.

ω(r) = len − d

len
(1.1)

Exclusive tasks can be similar (doing the same functionality) or complementary
to each other (doing different functionalities). For instance, “Get weather by city”
and “Get weather by post code” are similar tasks. Whereas, “Send acceptance” and
“Send rejection” are complementary. To determine the linkage pattern between two
web services whose consuming tasks are exclusive to each other, we investigate
the semantics of terms appearing in their names and their consuming tasks. We use
WordNet [13] to find synsets for these terms and calculate the average distance,
(syn_dist), among their nearest common ancestors (NCA) in WordNet [26]. The
special value (−1) means that there is no similarity between both terms, i.e., they do
not have a common ancestor in WordNet, e.g., acceptance and rejection. If the average
distance, (syn_dist), is between 0 and a predefined threshold, then the linkage pattern
between both services is similar and its weight is calculated using the same equation
above, where len is replaced by our threshold value, and d is replaced by syn_dist .
For instance, syn_dist (“bookFlightTicket”, “BookTrainTicket”) = 16. Based on our
experiments, we set the value of the maximum WordNet distance threshold to 20.
Given this value, the aforementioned web services are similar and the weight of
their linkage pattern is 0.2. Linkage patterns are classified as complementary if the
semantic similarity is low, i.e., syn_dist is higher than the predefined threshold.
Linkage patterns complementary and related are assigned the weight 1.

Whenever a new BPM is created by a service consumer, we discover all possible
linkage patterns from that BPM and store them in the database of the service reg-
istry. Frequencies and weights of linkage patterns are used to derive scores for these
patterns to rank recommended web services within each type of recommendation.
The score of each linkage pattern is the aggregation of weights of all instances of this
pattern that are typically discovered from multiple BPMs. In practice, web services
are used by different service consumers in multiple business processes with different
arrangements. These differences result in incompatible relations among web ser-
vices, i.e., ws1 is a predecessor for ws2 in one business process, but ws1 is similar to
ws2 in another business process. To handle such situations, we merge all behavioral
profiles of business process in a single global profile. Additionally, we use gained

12 M. AbuJarour and A. Awad

knowledge in this global profile to predict relations among web services that are not
used together in the same business process, yet (Sect. 1.6.).

1.5.3 Example: Linkage Patterns of Purchase Order Processing

In this section, we apply our approach to a real-world purchase order processing
scenario from the SAP Reference Model, whose BP is shown in Fig. 1.4. When this
process is configured, we assume that a single operation of a web service is assigned
to each task in this model. For instance, operation A is assigned to task “process
purchase requisition order”. Following the traditional approaches of discovering
relations among web services, we get the result that there is a relation between
A and B. No further information about the type and strength of this relation is
provided. In our approach, we get the extended behavioral profile that encapsulates
business process knowledge for these operations as shown previously. This extended
behavioral profile is shown in Table 1.1.

From Table 1.1, we notice that operations A and E are exclusive and also are
the operations A and B. We refine this relation further as either similar or comple-
mentary. To achieve this refinement, we analyze the semantics of the terms in the
labels of their corresponding tasks. Based on our experiments, we set our threshold
maximum WordNet distance to 20 to control the similarity search in WordNet. We
repeat this step for each pair of operations that are exclusive to each other. With
result obtained, we establish the linkage patterns among the operations as shown in
Table 1.2. Based on the semantic analysis, the exclusive relation between operations
A, E—obtained from the profile—is refined to a complementary linkage pattern. On
the other hand, the exclusive relation between A, B is identified as similar, because
of the high similarity between terms appearing in the labels of their counterpart tasks.

Using these linkage patterns, users who search for a particular service, e.g., A,
get useful lists of recommendations. These recommendations represent inter-links
among web services that help service consumers explore web service comfortably.

Schedule
Agreement

Delivery

Process purchase
requisition for

contract release
order

Processing of
Shipping

cations/
rmations

Delivery and
Acknowledgment

Expediter

Transmit Shipping
cations

Create inbound
delivery for

purchase order

Process purchase
requisition order

Transmit
Scheduling
Agreement

Release of
Purchase Orders

Transmission of
Purchase Orders

E

A

B D

C

F

G H

I

J

Fig. 1.4 A business process for “purchase order processing” from SAP reference model represented
in BPMN 1.0

1 Web Services and Business Processes: A Round Trip 13

Ta
bl

e
1.

1
E

xt
en

de
d

be
ha

vi
or

al
pr

ofi
le

fo
r

bu
si

ne
ss

pr
oc

es
s

in
Fi

g.
1.

4

A
B

C
D

E
F

G
H

I
J

A
(‖

,0
)

(#
,
0)

(�
,
2)

(�
,
3)

(#
,
0)

(#
,
0)

(�
,
5)

(�
,
6)

(�
,
8)

(�
,
8)

B
(#

,0
)

(‖,
0)

(�
,
2)

(�
,
3)

(#
,
0)

(#
,
0)

(�
,
5)

(�
,
6)

(�
,
8)

(�
,
8)

C
(

�,2
)

(

�,2
)

(‖,
0)

(�
,
1)

(#
,
0)

(#
,
0)

(�
,
3)

(�
,
4)

(�
,
6)

(�
,
6)

D
(

�,3
)

(

�,3
)

(

�,1
)

(‖,
0)

(#
,
0)

(#
,
0)

(�
,
2)

(�
,
3)

(�
,
5)

(�
,
5)

E
(#

,0
)

(#
,
0)

(#
,
0)

(#
,
0)

(‖,
0)

(�
,
1)

(�
,
3)

(�
,
4)

(�
,
6)

(�
,
6)

F
(#

,0
)

(#
,
0)

(#
,
0)

(#
,
0)

(

�,1
)

(‖,
0)

(�
,
2)

(�
,
3)

(�
,
5)

(�
,
5)

G
(

�,5
)

(

�,5
)

(

�,3
)

(

�,2
)

(

�,3
)

(

�,2
)

(‖,
0)

(�
,
1)

(�
,
3)

(�
,
3)

H
(

�,5
)

(

�,5
)

(

�,3
)

(

�,2
)

(

�,4
)

(

�,3
)

(

�,1
)

(‖,
0)

(�
,
2)

(�
,
2)

I
(

�,8
)

(

�,8
)

(

�,6
)

(

�,5
)

(

�,6
)

(

�,5
)

(

�,3
)

(

�,2
)

(‖,
0)

(‖,
0)

J
(

�,8
)

(

�,8
)

(

�,6
)

(

�,5
)

(

�,6
)

(
�,5

)
(

�,3
)

(

�,2
)

(‖,
0)

(‖,
0)

14 M. AbuJarour and A. Awad

Ta
bl

e
1.

2
L

in
ka

ge
pa

tte
rn

s
fo

r
bu

si
ne

ss
pr

oc
es

s
in

Fi
g.

1.
4.

P
Pr

ed
ec

es
so

r,
S

Su
cc

es
so

r,
M

Si
m

ila
r,

C
C

om
pl

em
en

ta
ry

,
R

R
el

at
ed

A
B

C
D

E
F

G
H

I
J

A
–

(M
,
0.

30
0)

(S
,
0.

87
5)

(S
,
0.

75
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(S
,
0.

50
0)

(S
,
0.

37
5)

(S
,
0.

12
5)

(S
,
0.

12
5)

B
(M

,
0.

30
0)

–
(S

,
0.

87
5)

(S
,
0.

75
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(S
,
0.

50
0)

(S
,
0.

37
5)

(S
,
0.

12
5)

(S
,
0.

12
5)

C
(
P

,
0.

87
5)

(
P

,
0.

87
5)

–
(S

,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(S
,
0.

75
0)

(S
,
0.

62
5)

(S
,
0.

37
5)

(S
,
0.

37
5)

D
(
P

,
0.

75
0)

(
P

,
0.

75
0)

(
P

,
1.

00
0)

–
(C

,
1.

00
0)

(C
,
1.

00
0)

(S
,
0.

87
5)

(S
,
0.

75
0)

(S
,
0.

50
0)

(S
,
0.

50
0)

E
(C

,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

–
(S

,
1.

00
0)

(S
,
0.

75
0)

(S
,
0.

62
5)

(S
,
0.

37
5)

(S
,
0.

37
5)

F
(C

,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(
P

,
1.

00
0)

–
(S

,
0.

87
5)

(S
,
0.

75
0)

(S
,
0.

50
0)

(S
,
0.

50
0)

G
(
P

,
0.

50
0)

(
P

,
0.

50
0)

(
P

,
0.

75
0)

(
P

,
0.

87
5)

(
P

,
0.

75
0)

(
P

,
0.

87
5)

–
(S

,
1.

00
0)

(S
,
0.

75
0)

(S
,
0.

75
0)

H
(
P

,
0.

50
0)

(
P

,
0.

50
0)

(
P

,
0.

75
0)

(
P

,
0.

87
5)

(
P

,
0.

62
5)

(
P

,
0.

75
0)

(
P

,
1.

00
0)

–
(S

,
0.

87
5)

(S
,
0.

87
5)

I
(
P

,
0.

12
5)

(
P

,
0.

12
5)

(
P

,
0.

37
5)

(
P

,
0.

50
0)

(
P

,
0.

37
5)

(
P

,
0.

50
0)

(
P

,
0.

75
0)

(
P

,
0.

87
5)

–
(
R

,
1.

00
0)

J
(
P

,
0.

12
5)

(
P

,
0.

12
5)

(
P

,
0.

37
5)

(
P

,
0.

50
0)

(
P

,
0.

37
5)

(
P

,
0.

50
0)

(
P

,
0.

75
0)

(
P

,
0.

87
5)

(
R

,
1.

00
0)

–

1 Web Services and Business Processes: A Round Trip 15

1.6 Global Behavioral Profiles

Several approaches have been proposed to find relations among web services [5, 9,
12, 15], whose main goal is finding whether two web services are related or not, with-
out further refinement of the suggested relations. Additionally, these approaches are
not able to find indirect relations among web services, because they use knowledge
about web services that are used together only. Relations between web services that
are not used together remain missing.

Missing relations between web services do not necessarily indicate their indepen-
dence. Several reasons can lead to such missing relations, such as lack of knowledge
about web services and their functionalities, multiple web services with equivalent
functionalities, and non-functional requirements (e.g., price, quality). We consider
such missing relations as hidden ones and aim at revealing (part of) them. One
approach of revealing such hidden relations is using knowledge concealed in the
configurations of business processes that use these web services. Each configuration
is considered an identifier for its tasks and its web services. Multiple tasks that have
different labels are similar if they are bound with the same web service. Similarly,
web services that have different names are considered similar if they are bound with
tasks that share the same label.

In Sect. 1.5, we introduced an approach to discover rich relations among web
services in the form of linkage patterns using business process knowledge that is
contained in a single business process. As different consumers use web services in
multiple business processes with different relations among them, multiple configu-
rations over the same set of web services appear. These configurations are local to
each individual process. In this section, we develop an approach to derive a global
behavioral profile over the entire set of web services in a service registry and reveal
hidden relations among web services within this global profile.

To validate our approach, we use a set of business processes from the SAP ref-
erence model [8]. These models represent possibilities to configure SAP R/3 ERP
systems. Thus, it is analogous to business process configurations over a service land-
scape.

1.6.1 Extending Behavioral Profiles

Revealing hidden relations among web services requires a global behavioral profile,
where all services in the considered registry are involved. A global profile is the
result of merging all individual behavioral profiles of business processes. Merging
two relations from two profiles results in unknown relations between web services
that do not appear together in one business process. Moreover, this merging step
might result in contradicting relations, e.g., merging a #x b and a �y b. Therefore,
the four basic behavioral relations of the original behavioral profile in Definition 1.1
are not sufficient. We extend the four basic relations to capture such situations when

16 M. AbuJarour and A. Awad

merging individual profiles by introducing two additional relations: Unknown (?)
and contradicts (※). These two relations do not appear on the level of individual raw
profiles. They appear only when profiles are merged as we show in Sect. 1.6.2. We
record the distance between tasks bound to web services in the process configuration
similar to Definition 1.2. This distance is used in the derived linkage patterns among
web services to rank services during service discovery. We obtain this distance by
counting the edges on the shortest path between the nodes representing the tasks in
the process graph of each BP. In this section, we present the formal notion of extended
behavioral profiles. Additionally, we introduce a business process with its extended
behavioral profile that is used as a running example in the rest of this section.

1.6.1.1 Formal Model

The original definition of behavioral profiles is concerned with behavioral relations
among tasks within a business process. However, in our approach, we are interested in
discovering relations among web services used in such business processes. Therefore,
we extend the notion of behavioral profiles and generalize the one introduced in
Definition 1.2 to capture this requirement.

Definition 1.3 (Extended Behavioral Profile)3 Let W be the set of web services
within a service registry. The extended behavioral profile of web services in W is a
function xbhp : W ×W → P({�, �, ‖, #, ?,※ } × N) that assigns a set of pairs
of a behavioral property (strict order, inverse order, parallel, exclusive, unknown,
or contradicts) and a distance between each pair of web services within the service
registry.

Comparing Definitions 1.2 and 1.3 of the extended behavioral profile with Defin-
ition 1.1, we notice that the behavioral relations are leveraged from the level of tasks
within individual process models (configurations) to the level of web services within
the service registry. Moreover, the extended profile records the distance between web
services consumed within an individual profile. This distance is greater than zero if
the behavioral relation is either � or �and zero otherwise. Finally, Definition 1.3
allows multiple behavioral properties to exist between two web services in the global
behavioral profile where two additional behavioral relations (※&?) are introduced.
An individual behavioral profile (Definition 1.1) of a process can be turned into an
extended profile by adding all web services in the service registry to the services
consumed by that process where their behavioral relations are set to unknown. For
simplicity, we ignore these unknown relations for input behavioral profiles.

Definition 1.4 (Projections over an Extended Behavioral Profile) Let W be the set
of web services within a service registry and let x be an extended behavioral profile.
The function relx : W ×W → {�, �, ‖, #, ?,※} projects the behavioral relation
between two web services a and b in the registry with respect to profile x . Similarly

3 This is a comprehensive definition for Definition 1.2

1 Web Services and Business Processes: A Round Trip 17

B A

D

C

E

F

(a)

C

G

B

H

F

A

E

I

(b)

Fig. 1.5 Two anonymized business processes from SAP reference model

Table 1.3 The extended behavioral profile of BP1 shown in Fig. 1.5a

A B C D E F

A (‖, 0) (�, 1) (�, 2) (�, 2) (�, 4) (�, 4)
B (�, 1) (‖, 0) (�, 3) (�, 3) (�, 5) (�, 5)
C (�, 2) (�, 3) (‖, 0) (‖, 0) (�, 2) (�, 2)
D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0)
E (�, 4) (�, 5) (�, 2) (‖, 0) (‖, 0) (# , 0)
F (�, 4) (�, 5) (�, 2) (‖, 0) (# , 0) (‖, 0)

distx :W ×W → N projects the distance between the two services with profile x .
For simplicity, we express relx (a, b) = {∗} as a ∗x b where ∗ ∈ {�, �, ‖, #, ?,※}.

1.6.1.2 Running Example of Global Profiles

In Fig. 1.5, we introduce two anonymized business processes from the SAP reference
model that are used as a running example throughout this section. The common
anonymized labels between both business processes indicate using the same service
in their configuration. BP1 has 6 tasks where only task D is not a common task with
BP2. On the other hand, BP2 has 8 tasks among which 3 tasks are not common with
BP1, namely G, H , and I .

The extended behavioral profile of BP1 is shown in Table 1.3, and that of BP2 can
be generated similarly, we omit it. It is worth mentioning that both BPs are configured
such that each task is bound with a web service to execute it. According to Table 1.3,
xbhpB P1(E, F) = {(#, 0)} and xbhpB P1(A, D) = {(�, 2)}. Relations that are not
shown in this profile are implicitly unknown, e.g., xbhpB P1(A, G) = {(?, 0)}.

1.6.2 Deriving Global Behavioral Profiles

Knowledge about relations among web services is usually scattered in disparate pro-
files of business processes. Collecting this knowledge into a single profile is essential
to reveal hidden relations among these web services. We call the result of this step a
global behavioral profile. The global profile might include unknown or contradicting
relations among some pairs of web services. We inspect the gained knowledge in the

18 M. AbuJarour and A. Awad

Table 1.4 Merging the relations from two profiles x and y into an intermediate profile t

Profile a �x b a �x b a ‖x b a #x b a ?x b a※x b

a �y b a �t b a ‖t b a※t b a ‖t b a※t b a※t b a �t b a※t b
a �yb a ‖t b a※t b a �t b a ‖t b a※t b a※t b a �t b a※t b
a ‖y b a ‖t b a※t b a ‖t b a※t b a ‖t b a※t b a ‖t b a※t b
a #yb a※t b a※t b a※t b a #t b a #t b a※t b
a?yb a �t b a �t b a ‖t b a #t b a?t b a※t b
a※y b a※t b a※t b a※t b a※t b a※t b a※t b

global profile to predict possible resolutions for its unknown relations. Both steps,
i.e., deriving a global profile and predicting unknown relations are of incremental
nature. That is, at the point that a new process configuration is available, this new
profile is merged with the global profile, to obtain a new global profile, and the
prediction of unknown relations is performed again.

Given a set of behavioral profiles, we want to derive a global profile that contains
pairwise relations between all web services. We achieve this by merging all individual
profiles iteratively in a pairwise manner. The result of each merging iteration is an
intermediate profile that is merged with another profile. This step is repeated until
all individual profiles are incorporated. Merging individual profiles might result in
unknown or contradicting relations among web services. Unknown relations appear
between web services that are not used together in the same business process, whereas
contradicting relations appear due to conflicting relations in source profiles. For
instance, the relations (a #x b) (i.e., a and b are exclusive in profile x) and (a �y b)
(i.e., a precedes b in profile y) might imply that one of these relations is wrong,
i.e., used incorrectly by a process engineer. Exclusiveness usually means that web
services do similar or complementary jobs [1]. Currently, we propagate such conflicts
to the resulting intermediate profile by adding two relations (a ※zb) and (b※za) that
represent a contradiction to the resulting intermediate profile z.

We merge two relations between web services a and b that appear in both input
profiles x and y into the global profile t according the rules that are summarized in
Table 1.4. These rules can be grouped as follows:

1. Merging (a ∗x b) with (a ∗y b) gives (a ∗t b), where ∗ is the same type of
relation.

2. Merging (a �x b) with (a �y b) gives (a ‖t b) and (a ※t b).
3. Merging (a ∗x b) with (a •y b) gives (a ‖t b) and (a ※t b), where ∗ ∈ {�, �}

and • =‖.
4. Merging (a ∗x b) with (a #y b) gives (a #t b) if ∗ = #, and a ※t b otherwise.
5. Merging (a ?x b) with (a ∗y b) gives (a ∗t b), where ∗ is a basic relation.
6. Merging (a ※x b) with (a ∗y b) gives a ※t b.

Some merging rules are non-deterministic, i.e., produce multiple alternatives
(Table 1.4). For instance, merging (a �x b) and (a �y b) gives two options: (a ‖t b)
and (a ※t b). Parallelism means that there is no dependency between a and b, i.e., they

1 Web Services and Business Processes: A Round Trip 19

can be used in any order. On the other hand, a dependency between a and b means
that either profile x or y is incorrect, where it includes a data anomaly, e.g., missing
data [20]. In this case, we conclude that there is a contradiction (a ※t b). To resolve
such uncertainties, a human intervention is needed, which is out of scope of this
work.

An important property of these rules is associativity, where the order of merging
behavioral profiles of business processes does not affect the global behavioral profile.
Consider three profiles of three business processes, where two tasks appear in all three
profiles. We can identify the following cases:

1. Three similar relations in all three profiles: According to the first rule, the result
will always be the same relation in the global profile.

2. Three different ordering relations: According to the second rule, at least one of the
merging steps results in a parallel relation. This resulting parallel relation occurs
either as an intermediate (first merging two different ordering relations) or a final
one (first merging two similar ordering relations). As an intermediate relation is
further merged with the remaining order relation. This last merging step results
in a parallel relation in the global profile according to the third rule. This shows
that such merging steps always result in a parallel relation in the global profile.

3. Parallel and ordering: Merging three relations that include parallel and ordering
relations results in a parallel relation in the global profile according to the third
rule.

4. Exclusive and others: Merging three relations that include exclusive and ordering
or parallel relations results in a contradiction relation in the global profile accord-
ing to the fourth rule.

5. Unknown and others: Unknown relations do not affect the result of such merging
steps according to fifth rule.

6. Contradicts and others: Contradicts relations always result in a contraction relation
in the global profile according to the sixth rule.

The second component in the extended behavioral profile (besides the relation’s
type) is distance between services. This distance between two services in an inter-
mediate profile is calculated as the shortest distance in the corresponding profiles
unless one of both distances is zero, i.e., # or ‖. In that case, we use the non-zero
distance from both input relations.

1.6.2.1 Example Revisited

Assuming that the two processes from Fig. 1.5 are the only individual profiles in our
knowledge base. By applying our merging rules shown in Table 1.4, we get the global
profile shown in Table 1.5. This global profile has 9 web services that represent the
union of all services in its source profiles, i.e., BP1 and BP2. For instance, merging
relations (�, 1) and (�, 2) between web services A and B from BP1 and BP2,
receptively, gives the relation (�, 1) in the global profile. The distance of the relation
in the global profile is the minimum distance from input relations. Some merging

20 M. AbuJarour and A. Awad

Table 1.5 Merging profiles of BP1 and BP2 (Fig. 1.5a,b) in one global profile

A B C D E F G H I

A (‖, 0) (�, 1) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 2) (�, 2) (�, 8)
(※, 0)

B (�, 1) (‖, 0) (‖, 0) (�, 3) (�, 4) (�, 4) (# , 0) (�, 4) (�, 10)
(※, 0)

C (‖, 0) (‖, 0) (‖, 0) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 8) (�, 14)
(※, 0) (※, 0)

D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0) (?, 0) (?, 0) (?, 0)
E (�, 2) (�, 4) (�, 2) (‖, 0) (‖, 0) (# , 0) (�, 4) (# , 0) (�, 2)
F (�, 2) (�, 4) (�, 2) (‖, 0) (# , 0) (‖, 0) (�, 4) (# , 0) (�, 2)
G (�, 2) (# , 0) (�, 2) (?, 0) (�, 4) (�, 4) (‖, 0) (�, 4) (�, 10)
H (�, 2) (�, 4) (�, 8) (?, 0) (# , 0) (# , 0) (�, 4) (‖, 0) (�, 2)
I (�, 8) (�, 10) (�, 14) (?, 0) (�, 2) (�, 2) (�, 10) (�, 2) (‖, 0)

rules produce multiple alternatives. For instance, A and C has the relation (�, 2) and
(�, 4) in BP1 and BP2, respectively. Merging both relations gives two alternatives
in the global profile between A and C : (‖, 0) and (※, 0). The remaining relations can
be derived in the same way. Merging extended behavioral profiles of BPs that do not
have the same exact set of web services results in unknown relations between web
services that do not appear in the same BP. For instance, relations between D from
one side and G, H , and I on the other side in the global profile. In the sequel, we aim
at using the knowledge gained from merging both profiles to reveal such unknown
relations.

1.6.3 Predicting Unknown Relations (a ? b)

Merging two profiles that do not have the same set of web services results in a global
profile with unknown relations among web services that do not appear in both source
profiles. In this section, we describe our approach to reveal such unknown relations
by predicting potential resolutions for them.

We predict potential resolutions for the unknown relation between web services
a and b in the global profile g with the help of a common service between them,
e.g., c. Having more than one common service is resolved by intersecting all predicted
relations from each common service according to Alg. 1. Our goal is to resolve the
relation (a ?g b) into (a �g b), (a �g b), (a ‖g b), or (a #g b) by investigating the
relations between a and c on the one hand and between b and c on the other hand.
We select a common service c such that we can derive useful information from its
relations with the considered services. For instance, selecting c such that (a ※g c)
is not of value. Therefore, the common service c has to be in one of the basic four
relations with both a and b. Furthermore, the predicted relation has to be consistent

1 Web Services and Business Processes: A Round Trip 21

Table 1.6 Resolving the unknown relation a ?g b via a common service c

Relation a � c a �c a ‖ c a # c

b � c a � b
a �b
a ‖ b
a # b

a �b a ‖ b
a �b

a#b
a �b

b �c a � b a �b
a � b
a ‖ b
a#b

a ‖ b
a � b

a#b
a � b

b ‖ c a ‖ b
a � b

a ‖ b
a �b

a ‖ b
a � b
a �b

a ‖ b
a#b

b#c a#b
a � b

a#b
a �b

a ‖ b
a#b

a#b
a � b
a �b

with existing relations in the global profile. Finding a useful resolution for unknown
relations depends on the used knowledge, therefore it is not always possible to predict
such a resolution. In such cases, the unknown relation between a and b (a ?g b) in
the global profile g remains and a human expert is informed about the situation to
find a resolution manually if necessary.

We predict potential resolutions for each unknown relation between web services
a and b in the global profile g—i.e., (a ?g b)—using a common service, c, according
to the set of rules that is summarized in Table 1.6. For instance, resolving (a ∗g c) and
(b ∗g c) gives (a �g b), (a �g b), (a ‖g b), and (a #g b), where ∗ =� or ∗ = �.
Each of these predicted relations still preserves the existing relations (a � c) and
(b � c) or (a �c) and (b �c). Resolving (a �g c) and (b �g c) gives (a �g b).
Any other relation, e.g., (a � b), does not preserve the existing relation between
a, b on the one hand and c on the other hand. For instance, (a � b) means that b
executes before a, that contradicts (a �c). Similarly, we cannot deduce that (a # b)
as it contradicts (b � c), since that implies either (c �b) or (c # b), which is not
the case.

Distances of the predicted � and �relations in the global profile are calculated
according to the functions shown in Table 1.7. Distances are used to rank relevant web
services during service discovery [1]. Additionally, we use them to prune possible
resolutions. For some cases, the new distance is the absolute value of the difference
of two distance. As an example, consider the case where we have (a � c) and
(b � c). According to Table 1.6, all four basic relations are valid resolutions. For
the predicted (a ‖ b) and (a # b) we set distance to zero. However, for the two
remaining cases, i.e. (a � b) and (a �b), the distance is the absolute value of the
difference in input distances. When we have no information to calculate the distance,
we set it to an artificial value infinity, e.g., the case of (a ‖ c) and (b ‖ c). For the

22 M. AbuJarour and A. Awad

Table 1.7 Distances of the predicted relation a ? b via a common service c

Relation a � c a �c a ‖ c a # c

b � c |di f f ()| sum() dist (b, c) dist (b, c)
b �c sum() |di f f ()| dist (b, c) dist (b, c)
b ‖ c dist (a, c) dist (a, c) ∞ N/A
b # c dist (a, c) dist (a, c) N/A ∞

cases where there is no order in the predicted relation between a and b, we express
this using N/A in the table.

According to our rules of resolution shown in Table 1.6, possible resolutions to
an unknown relation a ? b can include both a � b and a �b. We use the distance
information to prune one or both of these resolutions according to the following rules.
Consider two relations (a ∗x b) and (b •y c) with distances dx and dy , respectively,
where ∗ and • are either � or �, and �d is defined as dx − dy , we identify three
cases:

1. �d = 0: The unknown relation (a ? b) cannot be predicted to (a � b) or
(a �b).

2. �d > 0: The unknown relation (a ? b) can be predicted to (a � b), but not to
(a �b).

3. �d < 0: The unknown relation (a ? b) can be predicted to (a �b), but not to
(a � b).

Table 1.6 shows possible resolutions of a ? b using one common service c. However,
a and b might have a set of common services, which includes services that have useful
behavioral relations (�, �, ‖, or #) with both a and b. In Algorithm 1, we show the
steps we follow to achieve this resolution. We use each element in this set to predict
the unknown relation between a, b according to the rules in Table 1.6 (Line 7). After
that, we do an intersection among all possible resolutions deduced from each element
in that set (Line 11). The resulting relations from this intersection are then used as
potential resolutions to that unknown relation between a and b. If this intersection
gives an empty set (e.g., due to contradictions), we are unable to predict resolutions
for a ? b (Lines 12–13). These steps are repeated for all unknown relations in the
global profile until no further resolutions are found.

1.6.3.1 Example Revisited

In Table 1.5, we show the global profile that we get by merging the extended global
profiles of BP1 (Fig. 1.5a) and BP2 (Fig. 1.5b). That global profile has three unknown
relations between service D on the one hand and services G, H , and I on the other
hand, because these services are not used in the same BP. However, BP1 and BP2
have other common web services, e.g., A, B and C . We use such common services
to predict resolutions for (part of) these three unknown relations.

1 Web Services and Business Processes: A Round Trip 23

Algorithm 1: Predicting unknown relations in the global profile
Require: g the global profile
Ensure: g′ the global profile with some unknown relations revealed
1: pred ← ∅
2: for all a?b ∈ g do
3: CT ← getCommonT asks(a, b)

4: for all c ∈ CT do
5: ac← relg(a, c)
6: bc← relg(b, c)
7: tmp← predict Relaton(ac, bc) {According to Tables 1.6 and 1.7}
8: if pred = ∅ then
9: pred ← tmp
10: else
11: pred ← intersect (pred, temp)

12: if pred = ∅ then
13: break
14: end if
15: end if
16: end for
17: g← merge(g, pred) {According to Table 1.4}
18: end for
19: g′ ← g
20: return g′

Table 1.8 Possible relations between services D & G via common services {A, B, C, E, F}

Common task A B C E F

Relation with D D �A D �B D ‖ C D ‖ E D ‖ F
Relation with G G � A G # B G �C G � E G � F
Deduced relation D �G D �G D � G D �G D �G

D # G D ‖ G D ‖ G D ‖ G

To predict (D ? G), we select the set of common tasks among them. In this example,
this set is {A, B, C, E, F}. Because (D �A) and (G � A), we deduce that (D �G)
according to the transitivity rule. Similarly, we deduce all potential relations between
D and G using their common services as shown in Table 1.8. The intersection of
these alternatives is φ, i.e., there is no common relation among potential relations.
Therefore, the relation between D and G in the global profile remains unknown.

We follow the same steps to predict the relation (D ? H). The set of common
tasks is the same. Intersecting all potential relations between D and H gives the
new relation (D ‖ H). Again, the same set of common tasks is used to reveal the
(D ? I). In this case, the intersection of all potential relations between these tasks
gives two alternatives: (D ‖ I) and (D � I). The distance in the new strict order
relation is the minimum distance between I and the common tasks. In this case, the
distance is 2. The global profile after revealing potential hidden relations is shown
in Table 1.9.

24 M. AbuJarour and A. Awad

Table 1.9 Revealing hidden relations in the global profile of BP1 and BP2

A B C D E F G H I

A (‖, 0) (�, 1) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 2) (�, 2) (�, 8)
(※, 0)

B (�, 1) (‖, 0) (‖, 0) (�, 3) (�, 4) (�, 4) (# , 0) (�, 4) (�, 10)
(※, 0)

C (‖, 0) (‖, 0) (‖, 0) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 8) (�, 14)
(※, 0) (※, 0)

D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0) (?, 0) (‖, 0) (‖, 0)
(�, 2)

E (�, 2) (�, 4) (�, 2) (‖, 0) (‖, 0) (# , 0) (�, 4) (# , 0) (�, 2)
F (�, 2) (�, 4) (�, 2) (‖, 0) (# , 0) (‖, 0) (�, 4) (# , 0) (�, 2)
G (�, 2) (# , 0) (�, 2) (?, 0) (�, 4) (�, 4) (‖, 0) (�, 4) (�, 10)
H (�, 2) (�, 4) (�, 8) (‖, 0) (# , 0) (# , 0) (�, 4) (‖, 0) (�, 2)
I (�, 8) (�, 10) (�, 14) (‖, 0) (�, 2) (�, 2) (�, 10) (�, 2) (‖, 0)

(�, 2)

1.7 Implementation and Evaluation

In this section, we describe the implementation of our prototype to validate our
proposed approach, in addition to a set of experiments using a subset of the BPs
from the SAP reference model.

1.7.1 Implementation: Integrating Depot and Oryx

We have developed a prototype that implements our approach to enrich service
descriptions using business process configurations. In this section, we give details
about the implementation of this prototype that integrates Oryx—a business process
modeling platform and repository—and Depot—a web service registry.4 The front-
end of our prototype is Oryx, whereas Depot represents the backend. Figure 1.6 shows
a screenshot of using our prototype to design a business process for establishing a
company in Germany.

To create a new model for this process in Oryx, a proper title, such as “Establishing
a company in Germany” is given by the process designer. The area labeled with A in
Fig. 1.6 shows a list of web services discovered in Depot that have been used is similar
contexts and are relevant to this process. For instance, the whois web services used
in the UK example can be shown in this example despite the fact that there is no
high similarity between terms appearing in “establish a company in Germany” and
“whois”. Each of these web services is already configured and can be simply dragged-

4 The authors conducted this work during their stay at Hasso-Plattner-Institut at University of
Potsdam, Germany

1 Web Services and Business Processes: A Round Trip 25

A

C

B

Fig. 1.6 A screenshot of our prototype used to model the process of establishing a company in
Germany. A Suggested web services, B A pre-configured task from A, C Task properties

and-dropped to the design area. Indeed, the task labeled with B “FEINSearch” is an
example of such pre-configured tasks. The web service assigned to this task gives
company’s details by its name or address. If the provided name does not exist, this
hints that this name can be used as a name for the new company to be established.

1.7.2 Experiments

In this section, we show a set of experiments to evaluate our approach of predicting
potential relations among web services using business process knowledge. We use a
set of business processes from the SAP reference model [8], because these models
represent possibilities to configure SAP R/3 ERP systems. Thus, it is analogous
to business process configurations over a service landscape. We use 18 BPs with
related missions from the SAP reference model. In particular, they are concerned with
purchase order/requisition processing. These processes include 146 tasks in total.
On average, each BP has about 8 tasks. Among the 146 tasks, 81 tasks are distinct,
i.e., bound (configured) with distinct web services. We performed this configurations
manually and verified the results manually as well. We analyzed the labels of the
tasks and decided which labels (tasks) that can be bound to the same web service.
Additionally, we had to manually restructure the models to have a single start and a
single end node so that the behavioral profile calculation algorithm can be applied
to them. Moreover, we excluded loops to obtain useful behavioral relations among
tasks. A loop yields relations among all nodes within that loop concurrent.

26 M. AbuJarour and A. Awad

Table 1.10 Types and ratios of relations in raw profiles, derived global profile, and resolved profile

Type Raw processes (%) Global profile (%) Resolved global profile (%)

Strict Order � 33.25 3.87 14.48
Inverse Order � 33.25 3.87 14.48
Parallel ‖ 9.7 1.60 34.03
Exclusive # 23.8 3.42 17.97
Conflict ※ 0 0.15 0.12
Unknown ? 0 87.10 18.91

The baseline approach is predicting relations among tasks of BPs without using
their configurations information, i.e., only identical labels of tasks in different BPs
are considered similar. Following this approach, we are able to predict resolutions for
54.8 % of all unknown relations in the generated global behavioral profile. The ratio
of resolved relations using labels of tasks depends considerably only on the degree
of similarity and cohesion among labels. Using the configurations of these BPs
where semantically similar tasks are bound to a single web services, we are able to
predict resolutions for around 72 % of all unknown relations among tasks used in our
experiments.

We are able to reveal different types of relations among web services. In Table 1.10,
we show the ratio of each type of relations with respect to the total number of relations
in source profiles, their derived global profile, and after revealing part of the hidden
relations in that global profile. Note that percentages in this table are local to each
column. The majority of relations in the revealed global profile are parallel (34 %).
Additional knowledge about such tasks and their bound web services can be used to
resolve such relations in more concrete ones. This further resolution is part of our
future work. Conflicting relations appear due to inaccurate configurations of BPs or
due to lack of sufficient knowledge about tasks and web services. Unknown relations
are still in the global profile even after applying our resolutions approach. Either the
used knowledge is not sufficient to reveal such relations or there are no such useful
relations. For instance, a music web service and a web service for Gene analysis.

1.8 Related Work

Bringing SOA and BPMs has been an active research topic. For instance Buchwald
et al. propose an approach to bridge the gap between business process models and
service compositions [6]. The proposed approach introduces an intermediate layer
between business process models (business view) and executable models, service
compositions (technical view). The authors identify the need to store and maintain
the relationship between business view tasks and technical view ones. To this point,
the middle layer provides several types of transformation rules from the business
to the technical view. However, this knowledge is kept in the middle layer and it is

1 Web Services and Business Processes: A Round Trip 27

not the intention of that approach to reuse this knowledge to either enhance process
modeling and/or service discovery.

The fact of having process repositories with hundreds to thousands of process
models has attracted researchers to reuse-based process modeling. Smirnov et al. use
so-called behavioral profiles of business process models to extract association rules
and action patterns among tasks [17]. Based thereon, process modeling tools can
suggest to the user the insertion of certain tasks, if the user inserts other tasks within
the model. Moreover, the approach can suggest a structuring relationship among the
inserted tasks, e.g., tasks A and B should be exclusive to each other.

In our work, we make an explicit bi-directional link between business processes
and web services. This link is used to discover fine-grained linkage patterns among
web services used in BPs. The goal of this approach is to use these linkage patterns
to enhance service discovery during the configuration of business process models.

Finding relations among web services has been considered by several researchers
in the community. Approaches that tackle this problem can be grouped roughly in
four groups:

• Input/output matching approaches: These approaches match inputs and outputs
of operations of web services to find relations among them [9]. The main goal of
these approaches is to investigate composability among web services [14, 16].
• Semantic approaches: These approaches apply Artificial Intelligence planning

techniques to find valid compositions of web services [11, 12]. They are based on
the assumption that web services are described formally using ontologies, such as
OWL-S, WSMO, etc.
• Service compositions-based approaches: These approaches are based on the idea

that web services used in a service composition are related [5, 25]. Compared to
our approach, these approaches are unable to reveal hidden relations among web
services that were never used in the same process model.
• Consumer-consumer similarity approaches: These approaches use the idea that

similar service consumers usually use the same web services [15].

1.9 Summary

In this chapter, we introduced a novel approach to enrich poor service descriptions
with information extracted from the configurations of BPs that consume them. We
use business process configurations to discover fine-grained relations among web
services used in such processes in the form of linkage patterns. The required business
process knowledge is captured using the notion of extended behavioral profiles. Based
on these profiles, we can determine five types of linkage patterns among web services,
namely predecessor, successor, similar, complementary, and related. Additionally,
each linkage pattern is assigned a weight that reflects its strength. These weights are
used to rank service recommendations that enables service exploration.

Additionally, we introduced an approach to reveal hidden relations among web
services by exploiting process configurations over these services. Typically, several

28 M. AbuJarour and A. Awad

process configurations exist. Therefore, we merge these individual profiles into a
single global profile. After that, unknown relations within the global profiles were
input to our prediction approach to reveal possible behavioral relations that might
exist among them. To reveal these relations, we use common services between the
two services with an unknown relation. We applied our approach to a subset of the
SAP reference models and our experiments show that we could reveal about 72 % of
the unknown relations in the global profile.

References

1. AbuJarour, M., Awad, A.: Discovering linkage patterns among web services using business
process knowledge. In: Proceeding of the 8th International Conference on Services Computing,
SCC (2011)

2. AbuJarour, M., Naumann, F., Craculeac, M.: Collecting, annotating, and classifying public web
services. In: Proceedings of the 2010 International Conference on On-the-Move to Meaningful
Internet Systems, OTM (2010)

3. AbuJarour, M., Oergel, S.: Automatic sampling of web services. In: Proceeding of the 9th
International Conference on Web Services, ICWS (2011)

4. Awad, A.: BPMN-Q: A language to query business processes. In: Proceedings of the 2nd Inter-
national Workshop on Enterprise Modelling and Information Systems Architectures, EMISA
(2007)

5. Basu, S., Casati, F., Daniel, F.: Toward web service dependency discovery for SOA manage-
ment. In: Proceedings of the 5th International Conference on Services Computing, SCC (2008)

6. Buchwald, S., Bauer, T., Reichert, M.: Bridging the Gap Between Business Process Models and
Service Composition Specifications, Chap. Methods, Trends and Advances, Int’l Handbook on
Service Life Cycle Tools and Technologies (2011)

7. Buchwald, S., Tiedeken, J., Reichert, M.: Anforderungen an ein Metamodell für SOA-
Repositories. In: Proceedings of the 2nd Central-European Workshop on Services and their
Composition (Services und ihre Komposition), ZEUS (2010)

8. Curran, T.A., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model, 1st edn. Prentice Hall (1997)

9. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web services.
In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, VLDB,
(2004)

10. Fensel, D., Keller, U., Lausen, H., Polleres, A., Toma, I.: WWW or what is wrong with web
service discovery? In: Proceedings of the W3C Workshop on Frameworks for Semantics in
Web Services (2005)

11. Lecue, F., Leger, A.: Semantic web service composition based on a closed world assumption.
In: Proceedings of the 2006 European Conference on Web Services (2006)

12. Lin, L., Arpinar, I.B.: Discovery of semantic relations between web services. In: Proceedings
of the 2006 International Conference on Web Services, ICWS (2006)

13. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38, 38–41 (1995)
14. Omer, A.M., Schill, A.: Web service composition using input/output dependency matrix. In:

Proceedings of the 3Rd Workshop on Agent-Oriented Software Engineering Challenges for
Ubiquitous and Pervasive Computing, AUPC 09 (2009)

15. Rong, W., Liu, K., Liang, L.: Personalized web service ranking via user group combining
association rule. In: Proceedings of the 2009 International Conference on Web Services, ICWS
(2009)

16. Segev, A.: Circular context-based semantic matching to identify web service composition.
In: Proceedings of the 2008 International Workshop on Context Enabled Source and Service
Selection, Integration and Adaptation, CSSSIA (2008)

1 Web Services and Business Processes: A Round Trip 29

17. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process
models. In: Proceedings of the 7th International Conference on Service-Oriented Computing,
ICSOC/ServiceWave (2009)

18. Sreenath, R.M., Singh, M.P.: Agent-based service selection. J. Web Sem. 1(3), 0–0 (2004)
19. Stein, S., Barchewitz, K., El Kharbili, M.: Enabling business experts to discover web services

for business process automation. In: Proceedings of the 2nd Workshop on Emerging Web
Services Technology, WEWST (2007)

20. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Liu Sheng, O.R.: Formulating the data-flow perspective
for business process management. Info. Sys. Research 17(4), 374–391 (2006)

21. van der Aalst, W.M.P., van Hee, K.M.: Workflow management: models, methods, and systems.
MIT Press, London (2002)

22. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models
from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

23. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural patterns for soundness of
business process models. In: EDOC, pp. 116–128. IEEE Computer Society (2006)

24. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of causal behav-
ioural profiles using structural decomposition. In: Proceedings of the 31st International Con-
ference on Applications and Theory of Petri Nets, Petri Nets (2010)

25. Winkler, M., Springer, T., Trigos, E.D., Schill, A.: Analysing dependencies in service compo-
sitions. In: Proceedings of the 2009 International Conference on Service-Oriented Computing,
ICSOC/ServiceWave (2009)

26. Weikum G. et al.: The YAGO-NAGA project: harvesting, searching, and ranking knowledge
from the web. http://www.mpi-inf.mpg.de/yago-naga/

http://www.mpi-inf.mpg.de/yago-naga/

	1 Web Services and Business Processes: A Round Trip
	1.1 The Relation Between Business Processes and Web Services
	1.2 Overview of Our Approach
	1.3 Fundamentals: Business Process Knowledge
	1.4 Annotating Web Services Using Business Process Knowledge
	1.5 Fine-Grained Linkage Patterns Among Web Services
	1.5.1 Types of Linkage Patterns
	1.5.2 Weights of Linkage Patterns
	1.5.3 Example: Linkage Patterns of Purchase Order Processing

	1.6 Global Behavioral Profiles
	1.6.1 Extending Behavioral Profiles
	1.6.2 Deriving Global Behavioral Profiles
	1.6.3 Predicting Unknown Relations (a?b)

	1.7 Implementation and Evaluation
	1.7.1 Implementation: Integrating Depot and Oryx
	1.7.2 Experiments

	1.8 Related Work
	1.9 Summary
	References

