
Web Services
Foundations

Athman Bouguettaya · Quan Z. Sheng
Florian Daniel Editors

Web Services Foundations

Athman Bouguettaya • Quan Z. Sheng
Florian Daniel
Editors

Web Services Foundations

Foreword by Michael P. Papazoglou

123

Editors
Athman Bouguettaya
School of Computer Science

and Information Technology
RMIT University
Melbourne, VIC
Australia

Quan Z. Sheng
School of Computer Science
University of Adelaide
Adelaide, SA
Australia

Florian Daniel
Dipartimento di Ingegneria e Scienza

dell’Informazione
Università di Trento
Povo, Trento
Italy

ISBN 978-1-4614-7517-0 ISBN 978-1-4614-7518-7 (eBook)
DOI 10.1007/978-1-4614-7518-7
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013946213

� Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my parents, Horia and Mahmoud, and my
wife Malika

Athman Bouguettaya

To my parents Shuilian and Jianwu, my
brothers Guanzheng and Xinzheng, my wife
Yaping and my daughters Fiona and Phoebe

Quan Z. Sheng

To Cinzia, my family, my friends

Florian Daniel

Foreword

Service-Oriented Computing (SOC) is the computing paradigm that utilizes soft-
ware services as fundamental elements for developing and deploying distributed
software applications. Services are self-describing, platform-agnostic computa-
tional elements that support rapid, low-cost composition of distributed applica-
tions. They perform functions, which can be anything from simple requests to
complicated business processes. Services allow organizations to expose their core
competencies programmatically via a self-describing interface based on open
standards over the Internet (or intranet) using standard (XML-based) languages
and protocols. Because services provide a uniform and ubiquitous information
distributor for wide range of computing devices (such as handheld computers,
PDAs, cellular telephones, or appliances) and software platforms (e.g., UNIX or
Windows), they constitute a major transition in distributed computing.

A Web service is a specific kind of service that is identified by a URI that
exposes its features programmatically over the Internet using standard Internet
languages and protocols, and can be implemented via a self-describing interface
based on open Internet standards (e.g., XML interfaces which are published in
network-based repositories).

Understanding the conceptual underpinnings and mastering the technical
intricacies of Web services is anything but trivial and is absolutely necessary to
construct a well-functioning service-based system or application. Web service
technology is undergoing continuous, rapid evolution, thanks to both standardi-
zation efforts pushed forward by industry and the research efforts of the scientific
community.

Web services standards are still evolving. However, they seem to converge
today on a handful of standards: the Simple Object Access Protocol (SOAP) for
service communication, Web Services Description Language (WSDL) for service
description, Universal Description, Discovery, and Integration Infrastructure
(UDDI) for registering and discovering services, and the Business Process Exe-
cution Language (BPEL) for service composition. A plethora of WS-* specifica-
tions also exists to describe the full spectrum of activities related to Web services
in topics such as reliable messaging, security, privacy, policies, event processing,
and coordination, to name but a few.

vii

Leading international conferences, such as the International Conference on
Service-Oriented Computing (ICSOC), the International Conference on Web
Services (ICWS), the International Conference on Service Computing (SCC), and
others, have spearheaded groundbreaking research efforts. This has led to the
emergence of novel topics such as semantic Web services, automated Web service
composition, Web service recommendations, quality of service, trust, and a range
of other interesting themes. Related conference series such as Web Engineering,
Cloud Computing, Business Process Management, HCI, and Database related
conferences, have all been strongly influenced by the emergence of Web services
and consistently feature Web service related topics in their calls for papers. These
conferences contribute to the wealth of knowledge that is growing exponentially
around Web services.

The content of this book and that of its companion book Advanced Web Ser-
vices (Springer, 2013) reflect such activities. It is a testimonial of the leading role
of its editors and their highly influential work in the area of Web services.
Together, both books cover an enormous wealth of important topics and tech-
nologies that mirror the evolution of Web services. They provide an exhaustive
overview of the challenges and solutions of all major achievements pertaining to
Web services. Each chapter is an authoritative piece of work that synthesizes all
pertinent literature and highlights important accomplishments and advances in its
subject matter.

To my knowledge, this is the first attempt of its kind, providing complete
coverage of the key subjects in Web services. I am not aware of any other book
that is as thorough, comprehensive and ambitious in explaining the current state of
the art of scientific research and in synthesizing the perspectives and know-how of
so many experts in the field. Both books are a must-read for everyone interested in
the field. They cater for the needs of both novices to the field as well as seasoned
researchers and practitioners. They are a major step in this field’s maturation and
will serve to unify, advance, and challenge the scientific community in many
important ways.

It is a real pleasure to have been asked to provide the foreword for this book
collection. I am happy to commend the editors and authors on their accomplish-
ment, and to inform the readers that they are looking at a landmark in the
development of the Web services field. Anybody serious about Web services ought
to have handy a copy of Web Services Foundations and Advanced Web Services in
their private library!

Tilburg, The Netherlands Michael P. Papazoglou
December 2012

viii Foreword

Preface

Web Service technology is undeniably the preferred delivery method for the
Service-Oriented Computing (SOC) paradigm. It has evolved over the years to be
a comprehensive, interdisciplinary approach to modern software development.
Web services have gone beyond software componentization technology to embody
and express the software manifestation of a general trend transforming our modern
society from an industrial, production-centric economy into a digital, service-
centric economy. Web services aim to provide the missing conceptual links that
unify a variety of different disciplines, such as networking, distributed systems,
cloud computing, autonomic computing, data and knowledge management,
knowledge-based systems, and business process management. Web services are
the technological proxies of services that power much of the developed and
increasingly developing economies. In this respect, Web services play a central
role in enabling and sustaining the growth of service-centric economies and help
modernizing organizations, companies and institutions also from an IT
perspective.

Over the last decade, Web services have become a thriving area of research and
academic endeavors. Yet, despite a substantial body of research and scientific
publications, the Web services community has been hitherto missing a one stop-shop
that would provide a consolidated understanding of the scientific and technical
progress of this important subject. This book (the second of a two-book collection) is
a serious attempt to fill this gap and serve as a primary point of reference reflecting
the pervasive nature of Web services.

This book is the first installment of a two-book collection (we discuss the
advanced topics in the second book, Advanced Web Services, Springer, 2013).
Together, they comprise approximately 1,400 pages covering state-of-the-art
theoretical and practical aspects as well as experience using and deploying Web
services. The collection offers a comprehensive overview of the scientific and
technical progress in Web services technologies, design, architectures, applications,
and performance. The first book of the collection consists of two major parts:

ix

I Foundations of Web Services (12 chapters)—It explores the most representa-
tive theoretical and practical approaches to Web services, with a special focus
on the general state-of-the-art approaches to Web service composition;

II Service Selection and Assisted Composition (16 chapters)—It focuses on other
aspects of Web service composition problem, specifically takes a deep look at
non-functional aspects (e.g., quality of service), Web service recommenda-
tions, and how Web service composition is made easy for less expert
developers.

The second book (Advanced Web Services, Springer, 2013) consists of three
major parts:

I Advanced Services Engineering and Management (11 chapters)—It explores
advanced engineering problems, such as Web service transactions and recov-
ery, security and identity management, trust and contracts, and Web service
evolution and management;

II Web Service Applications and Case Studies (5 chapters)—It covers concrete
scenarios of the use of Web service technology and reports on empirical
studies of real-world Web service ecosystems;

III Novel Perspectives and Future Directions (10 chapters)—It surveys approa-
ches of the applications on how the Web service paradigm can be applied to
novel contexts, such as human-centric computing, human work and the
Internet of Things, and discusses the value of Web services in the context of
mobile and cloud computing.

The topics covered in the collection are reflective of their intent: they aim to
become the primary source for all pertinent information regarding Web service
technologies, research, deployment and future directions. The purpose of the two
books is to serve as a trusted and valuable reference point to researchers and
educators who are working in the area of Web services, to students who wish to
learn about this important research and development area, and to practitioners who
are using Web services and the service paradigm daily in their software devel-
opment projects.

This collection is the result of an enormous community effort, and their pro-
duction involved more than 100 authors, consisting of the worlds leading experts
in this field. We would like to thank the authors for their high-quality contributions
and the reviewers for their time and professional expertise. All contributions have
undergone a rigorous review process, involving three independent experts in two
rounds of review. We are also very grateful to Springer for their continuous help
and assistance.

Melbourne, Australia, December 2012 Athman Bouguettaya
Adelaide, Australia Quan Z. Sheng
Trento, Italy Florian Daniel

x Preface

Contents

Part I Foundations of Web Services

1 Web Services and Business Processes: A Round Trip. 3
Mohammed AbuJarour and Ahmed Awad

2 RESTful Web Services: Principles, Patterns, Emerging
Technologies. 31
Cesare Pautasso

3 Conceptual Design of Sound, Custom Composition Languages . . . 53
Stefano Soi, Florian Daniel and Fabio Casati

4 Service-Oriented Programming with Jolie 81
Fabrizio Montesi, Claudio Guidi and Gianluigi Zavattaro

5 From Artifacts to Activities . 109
Niels Lohmann and Karsten Wolf

6 On the Composability of Semantic Web Services 137
Brahim Medjahed, Zaki Malik and Salima Benbernou

7 Semantic Web Service Composition: The Web Service
Challenge Perspective . 161
Thomas Weise, M. Brian Blake and Steffen Bleul

8 Automated Service Composition Based on Behaviors:
The Roman Model . 189
Giuseppe De Giacomo, Massimo Mecella and Fabio Patrizi

9 Behavioral Service Substitution. 215
Christian Stahl and Wil M. P. van der Aalst

xi

http://dx.doi.org/10.1007/978-1-4614-7518-7_1
http://dx.doi.org/10.1007/978-1-4614-7518-7_1
http://dx.doi.org/10.1007/978-1-4614-7518-7_1
http://dx.doi.org/10.1007/978-1-4614-7518-7_1
http://dx.doi.org/10.1007/978-1-4614-7518-7_2
http://dx.doi.org/10.1007/978-1-4614-7518-7_2
http://dx.doi.org/10.1007/978-1-4614-7518-7_2
http://dx.doi.org/10.1007/978-1-4614-7518-7_3
http://dx.doi.org/10.1007/978-1-4614-7518-7_3
http://dx.doi.org/10.1007/978-1-4614-7518-7_4
http://dx.doi.org/10.1007/978-1-4614-7518-7_4
http://dx.doi.org/10.1007/978-1-4614-7518-7_5
http://dx.doi.org/10.1007/978-1-4614-7518-7_5
http://dx.doi.org/10.1007/978-1-4614-7518-7_6
http://dx.doi.org/10.1007/978-1-4614-7518-7_6
http://dx.doi.org/10.1007/978-1-4614-7518-7_7
http://dx.doi.org/10.1007/978-1-4614-7518-7_7
http://dx.doi.org/10.1007/978-1-4614-7518-7_7
http://dx.doi.org/10.1007/978-1-4614-7518-7_8
http://dx.doi.org/10.1007/978-1-4614-7518-7_8
http://dx.doi.org/10.1007/978-1-4614-7518-7_8
http://dx.doi.org/10.1007/978-1-4614-7518-7_9
http://dx.doi.org/10.1007/978-1-4614-7518-7_9

10 Web Service Adaptation: Mismatch Patterns
and Semi-Automated Approach to Mismatch Identification
and Adapter Development . 245
Woralak Kongdenfha, Hamid R. Motahari-Nezhad,
Boualem Benatallah and Regis Saint-Paul

11 Transformation Framework for Consistent Evolution of UML
Behavioral Elements into BPMN Design Element 273
Jayeeta Chanda, Ananya Kanjilal, Sabnam Sengupta
and Swapan Bhattacharya

12 Context-Aware Services Engineering for Service-Oriented
Architectures . 291
Dhaminda B. Abeywickrama

Part II Service Selection and Assisted Composition

13 Service Selection in Web Service Composition: A Comparative
Review of Existing Approaches . 321
Mahboobeh Moghaddam and Joseph G. Davis

14 QoS Analysis in Service Oriented Computing 347
Huiyuan Zheng, Jian Yang and Weiliang Zhao

15 QoS-based Service Selection . 375
Fuyuki Ishikawa

16 Composition of Web Services: From Qualitative to Quantitative
Timed Properties . 399
Nawal Guermouche and Claude Godart

17 Adaptive Composition and QoS Optimization of Conversational
Services Through Graph Planning Encoding 423
Min Chen, Pascal Poizat and Yuhong Yan

18 Automated Negotiation Among Web services 451
Khayyam Hashmi, Amal Alhosban, Zaki Malik, Brahim Medjahed
and Salima Benbernou

19 DRAAS: Dynamically Reconfigurable Architecture
for Autonomic Services . 483
Emna Mezghani, Riadh Ben Halima and Khalil Drira

xii Contents

http://dx.doi.org/10.1007/978-1-4614-7518-7_10
http://dx.doi.org/10.1007/978-1-4614-7518-7_10
http://dx.doi.org/10.1007/978-1-4614-7518-7_10
http://dx.doi.org/10.1007/978-1-4614-7518-7_10
http://dx.doi.org/10.1007/978-1-4614-7518-7_11
http://dx.doi.org/10.1007/978-1-4614-7518-7_11
http://dx.doi.org/10.1007/978-1-4614-7518-7_11
http://dx.doi.org/10.1007/978-1-4614-7518-7_12
http://dx.doi.org/10.1007/978-1-4614-7518-7_12
http://dx.doi.org/10.1007/978-1-4614-7518-7_12
http://dx.doi.org/10.1007/978-1-4614-7518-7_13
http://dx.doi.org/10.1007/978-1-4614-7518-7_13
http://dx.doi.org/10.1007/978-1-4614-7518-7_13
http://dx.doi.org/10.1007/978-1-4614-7518-7_14
http://dx.doi.org/10.1007/978-1-4614-7518-7_14
http://dx.doi.org/10.1007/978-1-4614-7518-7_15
http://dx.doi.org/10.1007/978-1-4614-7518-7_15
http://dx.doi.org/10.1007/978-1-4614-7518-7_16
http://dx.doi.org/10.1007/978-1-4614-7518-7_16
http://dx.doi.org/10.1007/978-1-4614-7518-7_16
http://dx.doi.org/10.1007/978-1-4614-7518-7_17
http://dx.doi.org/10.1007/978-1-4614-7518-7_17
http://dx.doi.org/10.1007/978-1-4614-7518-7_17
http://dx.doi.org/10.1007/978-1-4614-7518-7_18
http://dx.doi.org/10.1007/978-1-4614-7518-7_18
http://dx.doi.org/10.1007/978-1-4614-7518-7_19
http://dx.doi.org/10.1007/978-1-4614-7518-7_19
http://dx.doi.org/10.1007/978-1-4614-7518-7_19

20 Comprehensive Variability Modeling and Management
for Customizable Process-Based Service Compositions 507
Tuan Nguyen, Alan Colman and Jun Han

21 Software Product Line Engineering to Develop Variant-Rich
Web Services . 535
Bardia Mohabbati, Mohsen Asadi, Dragan Gašević and Jaejoon Lee

22 QoS-Aware Web Service Recommendation via Collaborative
Filtering . 563
Xi Chen, Zibin Zheng and Michael R. Lyu

23 On Bootstrapping Web Service Recommendation 589
Qi Yu

24 An Approach for Service Discovery and Recommendation
Using Contexts . 609
Hua Xiao and Ying Zou

25 Data Transformation Knowledge Reuse in Spreadsheet-Based
Mashup Development Platform . 635
Vu Hung, Boualem Benatallah and Angel Lagares Lemos

26 A Unified RGPS-Based Approach Supporting Service-Oriented
Process Customization . 657
Jian Wang, Zaiwen Feng, Jia Zhang, Patrick C. K. Hung,
Keqing He and Liang-Jie Zhang

27 Assisted Mashup Development: On the Discovery
and Recommendation of Mashup Composition Knowledge 683
Carlos Rodríguez, Soudip Roy Chowdhury, Florian Daniel,
Hamid R. Motahari Nezhad and Fabio Casati

28 End Users Developing Mashups . 709
Nikolay Mehandjiev, Abdallah Namoun, Freddy Lécué,
Usman Wajid and Georgia Kleanthous

Index . 737

Contents xiii

http://dx.doi.org/10.1007/978-1-4614-7518-7_20
http://dx.doi.org/10.1007/978-1-4614-7518-7_20
http://dx.doi.org/10.1007/978-1-4614-7518-7_20
http://dx.doi.org/10.1007/978-1-4614-7518-7_20
http://dx.doi.org/10.1007/978-1-4614-7518-7_21
http://dx.doi.org/10.1007/978-1-4614-7518-7_21
http://dx.doi.org/10.1007/978-1-4614-7518-7_21
http://dx.doi.org/10.1007/978-1-4614-7518-7_22
http://dx.doi.org/10.1007/978-1-4614-7518-7_22
http://dx.doi.org/10.1007/978-1-4614-7518-7_22
http://dx.doi.org/10.1007/978-1-4614-7518-7_23
http://dx.doi.org/10.1007/978-1-4614-7518-7_23
http://dx.doi.org/10.1007/978-1-4614-7518-7_24
http://dx.doi.org/10.1007/978-1-4614-7518-7_24
http://dx.doi.org/10.1007/978-1-4614-7518-7_24
http://dx.doi.org/10.1007/978-1-4614-7518-7_25
http://dx.doi.org/10.1007/978-1-4614-7518-7_25
http://dx.doi.org/10.1007/978-1-4614-7518-7_25
http://dx.doi.org/10.1007/978-1-4614-7518-7_25
http://dx.doi.org/10.1007/978-1-4614-7518-7_25
http://dx.doi.org/10.1007/978-1-4614-7518-7_26
http://dx.doi.org/10.1007/978-1-4614-7518-7_26
http://dx.doi.org/10.1007/978-1-4614-7518-7_26
http://dx.doi.org/10.1007/978-1-4614-7518-7_27
http://dx.doi.org/10.1007/978-1-4614-7518-7_27
http://dx.doi.org/10.1007/978-1-4614-7518-7_27
http://dx.doi.org/10.1007/978-1-4614-7518-7_28
http://dx.doi.org/10.1007/978-1-4614-7518-7_28

Contributors

Dhaminda B. Abeywickrama Faculty of IT, Monash University, Clayton
Campus, Wellington Road, Clayton, VIC 3800, Australia, e-mail: dhaminda.
abeywickrama@gmail.com

Mohammed AbuJarour SAP AG, Potsdam, Germany, e-mail: mohammed.
abujarour@sap.com

Amal Alhosban Wayne State University, Detroit, MI, USA, e-mail: ea1179@
wayne.edu

Mohsen Asadi Simon Fraser University, Burnaby, BC, Canada, e-mail: masadi@
sfu.ca

Ahmed Awad Faculty of Computers and Information, Cairo University, Giza,
Egypt, e-mail: a.gaafar@fci-cu.edu.eg

Boualem Benatallah CSE, University of New South Wales, Sydney, NSW,
Australia, e-mail: boualem@cse.unsw.edu.au

Salima Benbernou Université Paris Descartes, Paris, France, e-mail: salima.
benbernou@parisdescartes.fr

Swapan Bhattacharya Jadavpur University, Kolkata, India, e-mail:
bswapan2000@yahoo.co.in

M. Brian Blake Graduate School, University of Miami, Coral Gables, FL 33124-
3220, USA, e-mail: m.brian.blake@miami.edu

Steffen Bleul Munich, Germany, e-mail: stbleul@gmx.de

Fabio Casati University of Trento, Via Sommarive 5, 38123 Trento, Italy, e-mail:
casati@disi.unitn.it

Jayeeta Chanda BPPIMT, 137, VIP Road, Kolkata, India, e-mail: jayeeta.
chanda@gmail.com

Min Chen Concordia University, Montreal, QC, Canada, e-mail: minchen2008
halifax@yahoo.com

xv

Xi Chen Schlumberger Technologies (Beijing) Ltd., Beijing, China, e-mail:
bargittachen@gmail.com

Alan Colman Faculty of Information and Communication Technology, Swin-
burne University of Technology, Melbourne, VIC, Australia, e-mail: acolman@
swin.edu.au

Florian Daniel University of Trento, Via Sommarive 5, Trento, Italy, e-mail:
daniel@disi.unitn.it

Joseph G. Davis School of Information Technologies, University of Sydney,
Sydney, NSW 2006, Australia, e-mail: joseph.davis@sydney.edu.au

Giuseppe De Giacomo Dipartimento di Ingegneria Informatica Automatica
e Gestionale Antonio Ruberti, Sapienza Università di Roma, via Ariosto 25, 00185
Rome, Italy, e-mail: degiacomo@dis.uniroma1.it

Khalil Drira CNRS, LAAS, University of Toulouse, 7 avenue du colonel Roche,
31400 Toulouse, France, e-mail: khalil.drira@laas.fr

Zaiwen Feng State Key Laboratory of Software Engineering, School of Com-
puter, Wuhan University, Wuhan, China, e-mail: fengzaiwen@whu.edu.cn

Dragan Gašević Athabasca University, Athabasca, AB, Canada; Simon Fraser
University, Burnaby, BC, Canada, e-mail: dgasevic@acm.org

Claude Godart LORIA-INRIA-UMR 7503, 54506 Vandoeuvre-les-Nancy,
France, e-mail: claude.godart@loria.fr

Nawal Guermouche CNRS, LAAS, University of Toulouse, 7 avenue du colonel
Roche, 31400 Toulouse, France, e-mail: nawal.guermouche@laas.fr

Claudio Guidi Dipartimento di Matematica, University of Padua, Via Trieste 63,
35121 Padua, Italy, e-mail: cguidi@math.unipd.it

Riadh Ben Halima ReDCAD, University of Sfax, 3038 Sfax, Tunisia, e-mail:
riadh.benhalima@enis.rnu.tn

Jun Han Faculty of Information and Communication Technology, Swinburne
University of Technology, Melbourne, VIC, Australia, e-mail: jhan@swin.edu.au

Khayyam Hashmi Wayne State University, Detroit, MI, USA, e-mail: eh2304@
wayne.edu

Keqing He State Key Laboratory of Software Engineering, School of Computer,
Wuhan University, Wuhan, China, e-mail: hekeqing@whu.edu.cn

Patrick C. K. Hung University of Ontario Institute of Technology, Oshawa, ON,
Canada, e-mail: patrick.hung@uoit.ca

Vu Hung University of New South Wales, Sydney, NSW, Australia, e-mail:
vthung@gmail.com

xvi Contributors

Fuyuki Ishikawa National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-
ku, Tokyo 101-8430, Japan, e-mail: f-ishikawa@nii.ac.jp

Ananya Kanjilal BPPIMT, 137, VIP Road, Kolkata, India, e-mail: ag_k@
rediffmail.com

Georgia Kleanthous Manchester Centre for Service Research, University of
Manchester, Manchester M60 1QD, UK, e-mail: georgia.kleanthous@gmail.com

Woralak Kongdenfha ECPE, Naresuan University, Phitsanulok, Thailand, e-mail:
woralakk@gmail.com

Freddy Lecue IBM Research, Dublin, Ireland, e-mail: freddy.lecue@ie.ibm.com

Jaejoon Lee Lancaster University, Lancashire, UK, e-mail: j.lee@comp.
lancs.ac.uk

Angel Lagares Lemos University of New South Wales, Sydney, NSW, Australia,
e-mail: angell@cse.unsw.edu.au

Niels Lohmann University of Rostock, Rostock, Germany, e-mail: niels.loh-
mann@uni-rostock.de

Michael R. Lyu Department of Computer Science and Engineering, The Chinese
University of Hong Kong, Shatin, Hong Kong, China, e-mail: lyu@cse.
cuhk.edu.hk

Zaki Malik Department of Computer Science, Wayne State University, Detroit,
MI, USA, e-mail: zaki@cs.wayne.edu

Massimo Mecella Dipartimento di Ingegneria Informatica Automatica e
Gestionale Antonio Ruberti, Sapienza Università di Roma, via Ariosto 25, 00185
Rome, Italy, e-mail: mecella@dis.uniroma1.it

Brahim Medjahed Department of Computer and Information Science, University
of Michigan, Dearborn, MI, USA, e-mail: brahim@umich.edu

Nikolay Mehandjiev Manchester Centre for Service Research, University of
Manchester, Manchester M60 1QD, UK, e-mail: n.mehandjiev@manchester.ac.uk

Emna Mezghani CNRS, LAAS, University of Toulouse, 7 avenue du colonel
Roche, 31400 Toulouse, France; ReDCAD, University of Sfax, 3038 Sfax,
Tunisia, e-mail: emna.mezghani@laas.fr

Mahboobeh Moghaddam School of Information Technologies, University of
Sydney, Sydney, NSW 2015, Australia; National ICT Australia, Australian
Technology Park, Sydney, NSW, Australia, e-mail: mahboobe@it.usyd.edu.au

Bardia Mohabbati Simon Fraser University, Burnaby, BC, Canada, e-mail:
mohabbati@sfu.ca

Contributors xvii

Fabrizio Montesi IT University of Copenhagen, Rued Langgaards Vej 7, 2300
Copenhagen, Denmark, e-mail: fmontesi@itu.dk

Hamid R. Motahari-Nezhad HP Labs, Palo Alto, CA, USA, e-mail: hamid-
reza.motahari-nezhad@hp.com

Abdallah Namoun Manchester Centre for Service Research, University of
Manchester, Manchester M60 1QD, UK, e-mail: abdallah.namoune@mbs.ac.uk

Tuan Nguyen Faculty of Information and Communication Technology, Swin-
burne University of Technology, Melbourne, VIC, Australia, e-mail: tmnguyen@
swin.edu.au

Fabio Patrizi Dipartimento di Ingegneria Informatica Automatica e Gestionale
Antonio Ruberti, Sapienza Università di Roma, via Ariosto 25, 00185 Rome, Italy,
e-mail: patrizi@dis.uniroma1.it

Cesare Pautasso Faculty of Informatics, University of Lugano, via Buffi 13, 6900
Lugano, Switzerland, e-mail: c.pautasso@ieee.org

Pascal Poizat LRI UMR CNRS, 8623 Orsay, France, e-mail: pascal.poizat@lri.fr

Carlos Rodríguez University of Trento, Via Sommarive 5, 38123 Trento, Italy,
e-mail: crodriguez@disi.unitn.it

Soudip Roy Chowdhury University of Trento, Via Sommarive 5, 38123 Trento,
Italy, e-mail: rchowdhury@disi.unitn.it

Regis Saint-Paul Oceanet Technology, Nantes, France, e-mail: regis.saintpaul
@gmail.com

Sabnam Sengupta BPPIMT, 137, VIP Road, Kolkata, India, e-mail: sabnamsg
@gmail.com

Stefano Soi University of Trento, Via Sommarive 5, 38123 Trento, Italy, e-mail:
soi@disi.unitn.it

Christian Stahl Department of Mathematics and Computer Science, Technische
Universiteit Eindhoven, 5600 MB Eindhoven, 513, Eindhoven, The Netherlands,
e-mail: C.Stahl@tue.nl

Wil M. P. van der Aalst Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, 5600 MB Eindhoven, 513, Eindhoven, The
Netherlands, e-mail: W.M.P.v.d.Aalst@tue.n

Usman Wajid Manchester Centre for Service Research, University of Man-
chester, Manchester M60 1QD, UK, e-mail: usman.wajid@manchester.ac.uk

Jian Wang State Key Laboratory of Software Engineering, School of Computer,
Wuhan University, Wuhan, China, e-mail: jianwang@whu.edu.cn

xviii Contributors

Thomas Weise School of Computer Science and Technology, University of
Science and Technology of China, 230027 Hefei, Anhui, China, e-mail: tweise@
ustc.edu.cn

Karsten Wolf University of Rostock, Rostock, Germany, e-mail: karsten.wolf
@uni-rostock.de

Hua Xiao IBM Canada Laboratory, Markham, ON, Canada, e-mail: huaxiao@
ca.ibm.com

Yuhong Yan Concordia University, Montreal, QC, Canada, e-mail: yuhong@
encs.concordia.ca

Jian Yang Macquarie University, Sydney, NSW 2109, Australia, e-mail:
jian.yang@mq.edu.au

Qi Yu Rochester Institute of Technology, Rochester, NY, USA, e-mail:
qi.yu@rit.edu

Gianluigi Zavattaro INRIA Focus Research Team, University of Bologna, Mura
A. Zamboni 7, 40127 Bologna, Italy, e-mail: zavattar@cs.unibo.it

Jia Zhang Carnegie Mellon University, Silicon Valley, Mountain View, CA,
USA, e-mail: jia.zhang@sv.cmu.edu

Liang-Jie Zhang Kingdee International Software Group Co. Ltd., Shenzhen,
China, e-mail: zhanglj@ieee.org

Weiliang Zhao University of Wollongong, Wollongong, NSW 2522, Australia,
e-mail: wzhao@uow.edu.au

Huiyuan Zheng Macquarie University, Sydney, NSW 2109, Australia, e-mail:
huiyuan.zheng@mq.edu.au

Zibin Zheng Department of Computer Science and Engineering, The Chinese
University of Hong Kong, Shatin, Hong Kong, China, e-mail: zbzheng@
cse.cuhk.edu.hk

Ying Zou Department of Electrical and Computer Engineering, Queen’s
University, Kingston, ON, Canada, e-mail: ying.zou@queensu.ca

Contributors xix

Part I
Foundations of Web Services

Chapter 1
Web Services and Business Processes:
A Round Trip

Mohammed AbuJarour and Ahmed Awad

Abstract Service-oriented Architecture (SOA) is considered as an implementation
for business processes (BP). However, the relation between SOA and BPs is usually
inspected in one direction only. In this chapter, we investigate the bi-directional rela-
tion between web services and business processes, and explore potential benefits
therefrom. In particular, we introduce a novel approach to generate additional infor-
mation about web services based on the configurations of business processes that
consume these web services. This information is then used to enhance and smooth
the modeling and configuration of future business processes. Through our approach,
we can generate three types of information from consumers’ business processes,
namely annotations, context, and relations among web services. To evaluate our
approach, we use the SAP reference model and we show the results in this chapter.

1.1 The Relation Between Business Processes
and Web Services

Service-oriented Architecture (SOA) has been considered as an implementation
platform for business processes (BP), nevertheless, each of them is typically investi-
gated separately. Investigating both worlds (i.e., SOA and BP) together is expected
to result in several benefits for both SOA and BP communities. For instance, getting
a running instance of a business process model requires mapping its service tasks to
(web) services. This mapping step requires sufficient information about the used web

M. AbuJarour (B)
SAP AG, Potsdam, Germany
e-mail: mohammed.abujarour@sap.com

A. Awad
Faculty of Computers and Information,
Cairo University, Giza, Egypt
e-mail: a.gaafar@fci-cu.edu.eg

A. Bouguettaya et al. (eds.), Web Services Foundations, 3
DOI: 10.1007/978-1-4614-7518-7_1,
© Springer Science+Business Media New York 2014

4 M. AbuJarour and A. Awad

services that is understandable by process engineers or business people who create
such mappings. Finding candidate web services to execute each service task is one of
the key challenges in SOA, e.g., due to poor service descriptions [10]. We consider
the configurations of BPs as a rich source of information about their consuming web
services that enhance service discovery and future BP configurations.

Due to the increasing number of BPs, service consumers in several application
domains maintain repositories of business process models (BPM) for their daily
activities, e.g., “ship ordered item”. Each business process is composed of a set of
manual (i.e., performed by employees) or service tasks (i.e., performed through web
services). Building a new BPM incorporates three steps: (1) creating and labeling
its tasks (2) determining the interaction between them, i.e., data and control flow (3)
configuring the created model, i.e., selecting web services to perform service tasks.
The built BPM is typically stored in the consumer’s repository for future requests.

Using the aforementioned scenario in practice involves several challenges, such
as, service discovery, service selection, BP configuration. Service discovery is one
of the main challenges in Service-oriented Computing (SOC), where a list of can-
didate web services are returned to service consumer as a result for their queries.
Choosing a particular web service to invoke from this list is known as service selec-
tion [18], which has become a complex task due to several factors, e.g., lack of
rich service descriptions. Therefore, additional information about web services—
e.g., annotations, relations among web services, etc.—is expected to help meet this
challenge [7]. Business process configuration represents the service selection step,
where each service task is assigned a web service to execute it. Performing this task
dynamically requires sufficient information about web services so that process engi-
neers configure their BPMs accordingly. Technical information only is not sufficient,
because it does not fit their backgrounds and knowledge [19].

Using web services within distributed business processes brings the challenges
of service discovery and selection to business processes. In this work, we introduce
a novel approach to bridge both worlds (SOA and BPM), where we use business
process configurations to derive additional information about their implementing
web services that reflect service consumers’ perspective (business view) to enrich
their technical descriptions released by their providers. We are able to generate three
types of information about web services, namely annotations, context, and relations
among web services. Annotations for web services are generated from tasks’ labels
and documentations, whereas context is derived from models’ titles and descriptions.
We discover additional realistic and rich relations among web services in the form of
linkage patterns using behavioral profiles [24] of their consuming business processes.
Additionally, we derive a global representation of all relations among web services
that are derived from multiple business processes. We use this global representation
to predict relations among web services that are not used together in a single business
process using the gained knowledge in this global representation.

The contributions of the work introduced in this chapter are:

1. Supporting smooth configuration of business processes by enabling context-aware
service selection.

1 Web Services and Business Processes: A Round Trip 5

Build
BPM

Configure
BPM

Finalize
BPM

Discover
WSs

Extract
annotations

Task
labels

WSs+
Annotations

BP
Repository

BPM+
Annotations

New
BPM

Process
title

Derive
linkage patterns

Pre-configured
tasks

Recommend
WSs

Service
Registry

Linkage
patterns

Annotations +
Context

Merge with existing
linkage patterns

Predict potential
linkage patterns

Task-WS
assignment

Fig. 1.1 An overview of our approach of integrating business processes and web services

2. Finding realistic, rich relations among web services as linkage patterns.
3. Disambiguating exclusive relations between web services using lexical ontolo-

gies, e.g., WordNet.
4. Merging behavioral profiles of BPs into a single global behavioral profile.
5. Revealing relations among web services that have not yet been used together.

The rest of this chapter is organized as follows: We give an overview of our
approach in Sect. 1.2. Then, we introduce the fundamental concepts that are used
throughout this chapter in Sect. 1.3. After that, we present our approach to generate
annotations for web services from business process configurations in Sect. 1.4. In
Sect. 1.5, we describe our approach to derive rich relations among web services in
the form of linkage patterns. Deriving global behavioral profiles among web services
is described in Sect. 1.6. Implementation details and experiments are introduced in
Sect. 1.7. Related work is summarized in Sect. 1.8. We summarize this chapter in
Sect. 1.9.

1.2 Overview of Our Approach

In this section we give an overview of our approach that represents a round trip
between web services and business processes as shown in Fig. 1.1. The scenario starts
when a business process designer creates a new BPM. At that point, the designer
gives a descriptive name and summary for the new process, e.g., establish a company
in Germany. Behind the scene, a request is sent to a service registry to find relevant
web services that have been used in similar models, e.g., establish a company in UK.
The returned recommended services are provided as pre-configured tasks that are
made available to the designer to accelerate the process design.

6 M. AbuJarour and A. Awad

The process designer might not use all web services recommended by the service
registry in their new model. Therefore, they introduce new tasks to express the par-
ticular business needs in the process at hand. Each new task is given an identifying
label that we pass to the service registry to find potential web services that can be
candidate matches. For each new task in the model, a list of candidate web services
is returned to the process designer during the configuration phase. Each web service
in our collection is associated with a set of annotations that explain its functionality.
These annotations are extracted and generated automatically from the websites of
their providers [2], invocation analysis [3], and previous BP configurations. The new
BPM is finalized when each service task is configured by assigning a web service to
execute it. With the finalized BPM, two sources of information can be identified and
generated, namely task-to-web service assignment and annotated BPM.

On the one hand, the task-to-web service assignment is passed from the modeling
framework to the service registry, where annotations, context, and relations are gen-
erated therefrom. On the other hand, the tasks in the created BPM are automatically
annotated with the annotations of the web services they are bound with, resulting in
an annotated BPM. These annotations are crucial for BPM lookup, because not only
task labels are used to index and find tasks, but enriched annotations are also used to
achieve this goal [4] leading to better discovery of models from process repositories.

We use this assignment list also to generate behavioral profiles, based on which we
derive rich relations among web services. Even more, we discover hidden relations
among services that have not been used together in any business process configuration
yet. The notion of behavioral profiles is developed by Weidlich et al. [24] to give
a behavioral abstraction over business processes. We use this notion and extend it
according to requirements for discovering relations among web services.

1.3 Fundamentals: Business Process Knowledge

Researchers have proposed several approaches that investigate the behavioral rela-
tions among tasks within a process model. For instance, the α-algorithm [22], causal
footprints [23] and behavioral profiles [24].1 Although these approaches are devel-
oped for different purposes, they have a fundamental common feature; generating a
set of behavioral relations among tasks in a process model. We use these behavioral
relations in our approach to derive rich relations among web services. Causal foot-
prints [23] and behavioral profiles [24] take as input a process model, represented as
a WF-net [21]. Whereas the α-algorithm requires as input a set of process execution
traces (i.e., log). We use the behavioral profiles approach as a starting point, because
we have process models as input and because the behavioral profile approach is much
more efficient than causal footprints. Nevertheless, our approach is independent of
this selection and works with process behavior abstraction approaches that support
the fundamental behavioral relations.

1 There are other related approaches that share similar underlying concepts.

1 Web Services and Business Processes: A Round Trip 7

reservation

Check train
reservation

Check car
Rental

Check hotel
Reservation

Find
restaurants

Find popular
sights

Fig. 1.2 A journey organizer business process modeled in BPMN 1.0

Behavioral profiles represent an abstract description of a business process and
identifies the behavioral relationship between any pair of its nodes. This relationship
can be: (1) strict order �, (2) concurrent ‖, (3) exclusive #, or (4) inverse order �.
The formal definition of behavioral profiles is introduced in Definition 1.1.

Definition 1.1 (Behavioral Profile) Let N be the set of nodes within a business
process model. The behavioral profile of a business process model is a function
bhp: N × N → {�, �, ‖, #} that assigns a behavioral property, strict order, inverse
order, parallel, or exclusive, between each pair of nodes within the business process
model.

If two tasks a, b appear in strict order, bhp(a, b) =�, then task a always executes
before task b. Similarly, if two tasks are concurrent then they can be executed in any
order. Exclusiveness means that at most one of the two tasks can execute within a
process instance. The behavioral profile of the BP shown in Fig. 1.2 includes several
behavioral properties, such as: bhp(U, V) = #, bhp(W, X)= �, bhp(X,W)= �,
bhp(Y, Z) = ‖, bhp(U, X) =�, bhp(Y, V)= �, etc.

The definition of behavioral profiles is not sufficient to achieve our goal of dis-
covering fine-grained linkage patterns among web services, in particular assigning
weights to the discovered linkage patterns. Therefore, we extend it by incorporat-
ing the shortest distance between each pair of tasks in addition to their behavioral
property. The distance between a pair of tasks is calculated by counting the num-
ber of edges between them in the considered BPM. A preliminary definition of the
extended behavioral profile is given in Definition 1.2. A comprehensive definition of
the “Extended Behavioral Profile” is introduced in Definition 1.3.

Definition 1.2 (Extended Behavioral Profile) Let N be a set of nodes within a busi-
ness process model. The extended behavioral profile of a business process model is
a function bhp′: N × N → {�, �, ‖, #} × N that assigns a behavioral property,
strict order, inverse order, parallel, or exclusive, and a distance, between each pair
of nodes within the business process model.

For instance, the extended behavioral profile of the BP in Fig. 1.2 includes several
pairs, such as: bhp′(U, V) = (#, 0), bhp′(W, X) = (�, 1), bhp′(X,W) = (�, 1),
bhp′(Y, Z) = (‖, 0), bhp′(U, X) = (�, 3), bhp′(Y, V) = (�, 5), etc. To derive
useful behavioral properties between tasks of a BP, we remove cyclic edges, because
their existence makes all tasks inside each BP concurrent.

8 M. AbuJarour and A. Awad

Transforming BPMs into executable processes is achieved through a configuration
step, where process engineers assign operations of web services to service tasks in the
considered BPM. Configuring a BP can be expressed as a function that takes a task of
a BP and assigns an operation to that task if it is a service task. The business process
shown in Fig. 1.2 can be configured as follows: con f (U) = BookFlightTicket,
con f (V) = BookTrainTicket, con f (W) = HotelReservation,
con f (X) = CarRental, con f (Y) = FindRestaurants, and con f (Z) =
FindSights. Where values to the right of the con f function are operations of web
services.

1.4 Annotating Web Services Using Business
Process Knowledge

In this section, we describe our approach to generate annotations and derive contexts
for web services based on the configurations of their consuming business processes.
From each finalized (i.e., configured) BPM, we generate a task-to-web service assign-
ment list, based on which we generate annotations for web services from the tasks
of their consuming business processes. Task labels and documentation are extracted
and their assigned web services are annotated with this extracted information. These
labels and documentations are created by service consumers that represent the appli-
cation level, i.e., business people. Additionally, the title of the created BPM is used
to derive the context in which these web services are typically used. This information
is then used to enable context-aware service selection for similar cases in the future.

Sharing information about business processes and web services used to execute
them is not usually desired by service consumers, because this information might be
considered one aspect of their competitive advantage. Nevertheless, our approach can
be valuable in several scenarios and application domains, in particular, where high
potentials for collaboration are expected and low potentials for competition among
service consumers exist, such as government services, education and research, online
modeling platforms, and quality-based service brokers.

Figure 1.3 shows a process model using BPMN for establishing a UK limited
company. The first six activities of the process are services of the UK Companies

Check Company
Name

Check Disqualified
Directors Register

Prepare
Memorandum
of Association

Prepare
Articles of

Association
File Form 10

File Form 12
Rent

Registered
Office

Buy Domain
Name

Fig. 1.3 Example process model of establishing a UK limited company

1 Web Services and Business Processes: A Round Trip 9

House. In the beginning, it has to be checked whether the desired company name is
not already in use and the directors are not disqualified from leading a company. For
the remaining steps, electronic forms are provided in the Portable Document Format
(PDF). The last two activities in the model are web services offered by private service
providers, e.g., “Buy domain name” can be executed using the whois web service
(http://www.webservicex.net/whois.asmx).

Using our approach, a process engineer can configure their BPM to establish a
company in UK using the existing annotations for web services and their operations
used in such a model. These annotations are generated from the websites of their
providers and through invocation analysis. Although they might be not rich enough,
such annotation can be helpful in some cases. Generating additional annotations for
such web services and operations from this BPM enrich their descriptions. In this
particular use case, all used operations are associated with the context “establish
a company in UK”. Additionally, each operation is annotated with the label and
documentation of each task that uses it. For instance, the whois web service is
annotated with “buy domain name”.

According to the German Federal Ministry of Economics and Technology, estab-
lishing a company in Germany incorporates 9 major steps.2 For instance, check the
company name, notarize the articles of association and foundation agreement, notify
the Office of Business and Standards, register at the Trade Office (involves check
manager’s qualifications), etc. Some of these steps are similar to the ones involved in
establishing a limited company in UK, such as “check the company name”, “check
qualified managers”, “rent office”, “buy domain name”. For instance, whois web
service (http://www.webservicex.net/whois.asmx), that is used to execute the “buy
domain name” task in the case of UK company, can be suggested to execute its
counterpart task in the German case.

Saving this model adds additional information to the service registry about the
considered web services, such as the new labels and the current context. This addi-
tional information helps the service registry provide better results in future similar
business processes, such as “Establishing a company in France”.

1.5 Fine-Grained Linkage Patterns Among Web Services

Relations among web services are important to understand the functionalities of
these web services and the interaction among them. We discover preliminary rela-
tions among web services from their WSDL files, and derive additional fine-grained
ones in the form of linkage patterns using their consuming BPs (Fig. 1.1). Each of
these linkage patterns has one of these types: Predecessors, successors, similar, com-
plementary, and related. Moreover, we assign weights to such relations based on the
usage of their web services in the corresponding BP. This weight is used to rank
web services that have the same linkage pattern, e.g., rank web services that have

2 http://www.existenzgruender.de/englisch/

http://www.webservicex.net/whois.asmx
http://www.webservicex.net/whois.asmx
http://www.existenzgruender.de/englisch/

10 M. AbuJarour and A. Awad

the predecessor relation with a particular web service. In this section, we describe
the types and weights of linkage patterns that we find based on business process
knowledge.

1.5.1 Types of Linkage Patterns

Traditional approaches to discover relations among operations of web services
usually give binary decisions whether two web services are related or not, with-
out providing control flow dependency, e.g., parallel, sequence, etc. Such relations
are not sufficient given the increasing number and complexity of web services and
business processes. In our approach—based on extended behavioral profiles—we
are able to identify five types of relations among operations of web services based
on their usage in BPMs. Consider two tasks, A and B, that are configured with OP1
and OP2, respectively. Based on their behavioral properties, the following five types
of linkage patterns can be identified:

1. Predecessor: An operation OP1 is a predecessor of another operation OP2 if it
appears before OP2 in the configurations of BPMs where both operations have
been used, i.e., bhp(A, B) =�.

2. Successor: An operation OP1 is a successor of another operation OP2 if it appears
after OP2 in the configurations of BPMs where both operations have been used,
i.e., bhp(A, B) = �.

3. Similar: An operation OP1 is similar to another operation OP2 if it appears within
exclusive relations with OP2 in the configurations of BPMs where both operations
have been used (i.e., bhp(A, B) = #) and there is a high semantic similarity
between the terms used to label both tasks and their executing operations, e.g.,
“rent a bike” and “buy a bike”.

4. Complementary: An operation OP1 is complementary to another operation OP2
if it appears within exclusive relations with OP2 in the configurations of BPMs
where both operations have been used (i.e., bhp(A, B) = #) but there is no high
semantic similarity between the terms used to label both tasks and their executing
operations, e.g., accept and reject.

5. Related: An operation OP1 is related to another operation OP2 if it appears
concurrently to OP2 in the configurations of BPMs where both operations have
been used, i.e., bhp(A, B) = ‖. For instance, “validate address” and “validate
email address”.

1.5.2 Weights of Linkage Patterns

Existing approaches of discovering relations among web services give binary
decisions on whether there is a relation between two web services or not. Such
decisions are based on the co-occurrence of both services in service compositions,

1 Web Services and Business Processes: A Round Trip 11

for instance. In our approach, we are able to discover fine-grained relations and assign
a weight (between 0 and 1) to each relation to reflect its strength.

The first type of information that we use to calculate the weight of a relation
between two web services is the distance between their consuming tasks in the
corresponding BP. This information is provided in the extended behavioral profile
of the BP. The distance between any two tasks in a BP is greater than 0 if their
behavioral property is either strict order or inverse order. Therefore, the distance
is used to assign a weight to predecessor and successor linkage patterns only. The
weight,ω, of a linkage pattern, r , between two operations where the distance between
their consuming tasks is d, and the maximum distance between any pair of tasks in
their BP is len, is given by Eq. 1.1.

ω(r) = len − d

len
(1.1)

Exclusive tasks can be similar (doing the same functionality) or complementary
to each other (doing different functionalities). For instance, “Get weather by city”
and “Get weather by post code” are similar tasks. Whereas, “Send acceptance” and
“Send rejection” are complementary. To determine the linkage pattern between two
web services whose consuming tasks are exclusive to each other, we investigate
the semantics of terms appearing in their names and their consuming tasks. We use
WordNet [13] to find synsets for these terms and calculate the average distance,
(syn_dist), among their nearest common ancestors (NCA) in WordNet [26]. The
special value (−1) means that there is no similarity between both terms, i.e., they do
not have a common ancestor in WordNet, e.g., acceptance and rejection. If the average
distance, (syn_dist), is between 0 and a predefined threshold, then the linkage pattern
between both services is similar and its weight is calculated using the same equation
above, where len is replaced by our threshold value, and d is replaced by syn_dist .
For instance, syn_dist (“bookFlightTicket”, “BookTrainTicket”) = 16. Based on our
experiments, we set the value of the maximum WordNet distance threshold to 20.
Given this value, the aforementioned web services are similar and the weight of
their linkage pattern is 0.2. Linkage patterns are classified as complementary if the
semantic similarity is low, i.e., syn_dist is higher than the predefined threshold.
Linkage patterns complementary and related are assigned the weight 1.

Whenever a new BPM is created by a service consumer, we discover all possible
linkage patterns from that BPM and store them in the database of the service reg-
istry. Frequencies and weights of linkage patterns are used to derive scores for these
patterns to rank recommended web services within each type of recommendation.
The score of each linkage pattern is the aggregation of weights of all instances of this
pattern that are typically discovered from multiple BPMs. In practice, web services
are used by different service consumers in multiple business processes with different
arrangements. These differences result in incompatible relations among web ser-
vices, i.e., ws1 is a predecessor for ws2 in one business process, but ws1 is similar to
ws2 in another business process. To handle such situations, we merge all behavioral
profiles of business process in a single global profile. Additionally, we use gained

12 M. AbuJarour and A. Awad

knowledge in this global profile to predict relations among web services that are not
used together in the same business process, yet (Sect. 1.6.).

1.5.3 Example: Linkage Patterns of Purchase Order Processing

In this section, we apply our approach to a real-world purchase order processing
scenario from the SAP Reference Model, whose BP is shown in Fig. 1.4. When this
process is configured, we assume that a single operation of a web service is assigned
to each task in this model. For instance, operation A is assigned to task “process
purchase requisition order”. Following the traditional approaches of discovering
relations among web services, we get the result that there is a relation between
A and B. No further information about the type and strength of this relation is
provided. In our approach, we get the extended behavioral profile that encapsulates
business process knowledge for these operations as shown previously. This extended
behavioral profile is shown in Table 1.1.

From Table 1.1, we notice that operations A and E are exclusive and also are
the operations A and B. We refine this relation further as either similar or comple-
mentary. To achieve this refinement, we analyze the semantics of the terms in the
labels of their corresponding tasks. Based on our experiments, we set our threshold
maximum WordNet distance to 20 to control the similarity search in WordNet. We
repeat this step for each pair of operations that are exclusive to each other. With
result obtained, we establish the linkage patterns among the operations as shown in
Table 1.2. Based on the semantic analysis, the exclusive relation between operations
A, E—obtained from the profile—is refined to a complementary linkage pattern. On
the other hand, the exclusive relation between A, B is identified as similar, because
of the high similarity between terms appearing in the labels of their counterpart tasks.

Using these linkage patterns, users who search for a particular service, e.g., A,
get useful lists of recommendations. These recommendations represent inter-links
among web services that help service consumers explore web service comfortably.

Schedule
Agreement

Delivery

Process purchase
requisition for

contract release
order

Processing of
Shipping

cations/
rmations

Delivery and
Acknowledgment

Expediter

Transmit Shipping
cations

Create inbound
delivery for

purchase order

Process purchase
requisition order

Transmit
Scheduling
Agreement

Release of
Purchase Orders

Transmission of
Purchase Orders

E

A

B D

C

F

G H

I

J

Fig. 1.4 A business process for “purchase order processing” from SAP reference model represented
in BPMN 1.0

1 Web Services and Business Processes: A Round Trip 13

Ta
bl

e
1.

1
E

xt
en

de
d

be
ha

vi
or

al
pr

ofi
le

fo
r

bu
si

ne
ss

pr
oc

es
s

in
Fi

g.
1.

4

A
B

C
D

E
F

G
H

I
J

A
(‖

,0
)

(#
,
0)

(�
,
2)

(�
,
3)

(#
,
0)

(#
,
0)

(�
,
5)

(�
,
6)

(�
,
8)

(�
,
8)

B
(#

,0
)

(‖,
0)

(�
,
2)

(�
,
3)

(#
,
0)

(#
,
0)

(�
,
5)

(�
,
6)

(�
,
8)

(�
,
8)

C
(

�,2
)

(

�,2
)

(‖,
0)

(�
,
1)

(#
,
0)

(#
,
0)

(�
,
3)

(�
,
4)

(�
,
6)

(�
,
6)

D
(

�,3
)

(

�,3
)

(

�,1
)

(‖,
0)

(#
,
0)

(#
,
0)

(�
,
2)

(�
,
3)

(�
,
5)

(�
,
5)

E
(#

,0
)

(#
,
0)

(#
,
0)

(#
,
0)

(‖,
0)

(�
,
1)

(�
,
3)

(�
,
4)

(�
,
6)

(�
,
6)

F
(#

,0
)

(#
,
0)

(#
,
0)

(#
,
0)

(

�,1
)

(‖,
0)

(�
,
2)

(�
,
3)

(�
,
5)

(�
,
5)

G
(

�,5
)

(

�,5
)

(

�,3
)

(

�,2
)

(

�,3
)

(

�,2
)

(‖,
0)

(�
,
1)

(�
,
3)

(�
,
3)

H
(

�,5
)

(

�,5
)

(

�,3
)

(

�,2
)

(

�,4
)

(

�,3
)

(

�,1
)

(‖,
0)

(�
,
2)

(�
,
2)

I
(

�,8
)

(

�,8
)

(

�,6
)

(

�,5
)

(

�,6
)

(

�,5
)

(

�,3
)

(

�,2
)

(‖,
0)

(‖,
0)

J
(

�,8
)

(

�,8
)

(

�,6
)

(

�,5
)

(

�,6
)

(
�,5

)
(

�,3
)

(

�,2
)

(‖,
0)

(‖,
0)

14 M. AbuJarour and A. Awad

Ta
bl

e
1.

2
L

in
ka

ge
pa

tte
rn

s
fo

r
bu

si
ne

ss
pr

oc
es

s
in

Fi
g.

1.
4.

P
Pr

ed
ec

es
so

r,
S

Su
cc

es
so

r,
M

Si
m

ila
r,

C
C

om
pl

em
en

ta
ry

,
R

R
el

at
ed

A
B

C
D

E
F

G
H

I
J

A
–

(M
,
0.

30
0)

(S
,
0.

87
5)

(S
,
0.

75
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(S
,
0.

50
0)

(S
,
0.

37
5)

(S
,
0.

12
5)

(S
,
0.

12
5)

B
(M
,
0.

30
0)

–
(S
,
0.

87
5)

(S
,
0.

75
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(S
,
0.

50
0)

(S
,
0.

37
5)

(S
,
0.

12
5)

(S
,
0.

12
5)

C
(
P
,
0.

87
5)

(
P
,
0.

87
5)

–
(S
,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(S
,
0.

75
0)

(S
,
0.

62
5)

(S
,
0.

37
5)

(S
,
0.

37
5)

D
(
P
,
0.

75
0)

(
P
,
0.

75
0)

(
P
,
1.

00
0)

–
(C
,
1.

00
0)

(C
,
1.

00
0)

(S
,
0.

87
5)

(S
,
0.

75
0)

(S
,
0.

50
0)

(S
,
0.

50
0)

E
(C
,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

–
(S
,
1.

00
0)

(S
,
0.

75
0)

(S
,
0.

62
5)

(S
,
0.

37
5)

(S
,
0.

37
5)

F
(C
,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(C
,
1.

00
0)

(
P
,
1.

00
0)

–
(S
,
0.

87
5)

(S
,
0.

75
0)

(S
,
0.

50
0)

(S
,
0.

50
0)

G
(
P
,
0.

50
0)

(
P
,
0.

50
0)

(
P
,
0.

75
0)

(
P
,
0.

87
5)

(
P
,
0.

75
0)

(
P
,
0.

87
5)

–
(S
,
1.

00
0)

(S
,
0.

75
0)

(S
,
0.

75
0)

H
(
P
,
0.

50
0)

(
P
,
0.

50
0)

(
P
,
0.

75
0)

(
P
,
0.

87
5)

(
P
,
0.

62
5)

(
P
,
0.

75
0)

(
P
,
1.

00
0)

–
(S
,
0.

87
5)

(S
,
0.

87
5)

I
(
P
,
0.

12
5)

(
P
,
0.

12
5)

(
P
,
0.

37
5)

(
P
,
0.

50
0)

(
P
,
0.

37
5)

(
P
,
0.

50
0)

(
P
,
0.

75
0)

(
P
,
0.

87
5)

–
(
R
,
1.

00
0)

J
(
P
,
0.

12
5)

(
P
,
0.

12
5)

(
P
,
0.

37
5)

(
P
,
0.

50
0)

(
P
,
0.

37
5)

(
P
,
0.

50
0)

(
P
,
0.

75
0)

(
P
,
0.

87
5)

(
R
,
1.

00
0)

–

1 Web Services and Business Processes: A Round Trip 15

1.6 Global Behavioral Profiles

Several approaches have been proposed to find relations among web services [5, 9,
12, 15], whose main goal is finding whether two web services are related or not, with-
out further refinement of the suggested relations. Additionally, these approaches are
not able to find indirect relations among web services, because they use knowledge
about web services that are used together only. Relations between web services that
are not used together remain missing.

Missing relations between web services do not necessarily indicate their indepen-
dence. Several reasons can lead to such missing relations, such as lack of knowledge
about web services and their functionalities, multiple web services with equivalent
functionalities, and non-functional requirements (e.g., price, quality). We consider
such missing relations as hidden ones and aim at revealing (part of) them. One
approach of revealing such hidden relations is using knowledge concealed in the
configurations of business processes that use these web services. Each configuration
is considered an identifier for its tasks and its web services. Multiple tasks that have
different labels are similar if they are bound with the same web service. Similarly,
web services that have different names are considered similar if they are bound with
tasks that share the same label.

In Sect. 1.5, we introduced an approach to discover rich relations among web
services in the form of linkage patterns using business process knowledge that is
contained in a single business process. As different consumers use web services in
multiple business processes with different relations among them, multiple configu-
rations over the same set of web services appear. These configurations are local to
each individual process. In this section, we develop an approach to derive a global
behavioral profile over the entire set of web services in a service registry and reveal
hidden relations among web services within this global profile.

To validate our approach, we use a set of business processes from the SAP ref-
erence model [8]. These models represent possibilities to configure SAP R/3 ERP
systems. Thus, it is analogous to business process configurations over a service land-
scape.

1.6.1 Extending Behavioral Profiles

Revealing hidden relations among web services requires a global behavioral profile,
where all services in the considered registry are involved. A global profile is the
result of merging all individual behavioral profiles of business processes. Merging
two relations from two profiles results in unknown relations between web services
that do not appear together in one business process. Moreover, this merging step
might result in contradicting relations, e.g., merging a #x b and a �y b. Therefore,
the four basic behavioral relations of the original behavioral profile in Definition 1.1
are not sufficient. We extend the four basic relations to capture such situations when

16 M. AbuJarour and A. Awad

merging individual profiles by introducing two additional relations: Unknown (?)
and contradicts (※). These two relations do not appear on the level of individual raw
profiles. They appear only when profiles are merged as we show in Sect. 1.6.2. We
record the distance between tasks bound to web services in the process configuration
similar to Definition 1.2. This distance is used in the derived linkage patterns among
web services to rank services during service discovery. We obtain this distance by
counting the edges on the shortest path between the nodes representing the tasks in
the process graph of each BP. In this section, we present the formal notion of extended
behavioral profiles. Additionally, we introduce a business process with its extended
behavioral profile that is used as a running example in the rest of this section.

1.6.1.1 Formal Model

The original definition of behavioral profiles is concerned with behavioral relations
among tasks within a business process. However, in our approach, we are interested in
discovering relations among web services used in such business processes. Therefore,
we extend the notion of behavioral profiles and generalize the one introduced in
Definition 1.2 to capture this requirement.

Definition 1.3 (Extended Behavioral Profile)3 Let W be the set of web services
within a service registry. The extended behavioral profile of web services in W is a
function xbhp : W ×W → P({�, �, ‖, #, ?,※ } × N) that assigns a set of pairs
of a behavioral property (strict order, inverse order, parallel, exclusive, unknown,
or contradicts) and a distance between each pair of web services within the service
registry.

Comparing Definitions 1.2 and 1.3 of the extended behavioral profile with Defin-
ition 1.1, we notice that the behavioral relations are leveraged from the level of tasks
within individual process models (configurations) to the level of web services within
the service registry. Moreover, the extended profile records the distance between web
services consumed within an individual profile. This distance is greater than zero if
the behavioral relation is either � or �and zero otherwise. Finally, Definition 1.3
allows multiple behavioral properties to exist between two web services in the global
behavioral profile where two additional behavioral relations (※&?) are introduced.
An individual behavioral profile (Definition 1.1) of a process can be turned into an
extended profile by adding all web services in the service registry to the services
consumed by that process where their behavioral relations are set to unknown. For
simplicity, we ignore these unknown relations for input behavioral profiles.

Definition 1.4 (Projections over an Extended Behavioral Profile) Let W be the set
of web services within a service registry and let x be an extended behavioral profile.
The function relx : W ×W → {�, �, ‖, #, ?,※} projects the behavioral relation
between two web services a and b in the registry with respect to profile x . Similarly

3 This is a comprehensive definition for Definition 1.2

1 Web Services and Business Processes: A Round Trip 17

B A

D

C

E

F

(a)

C

G

B

H

F

A

E

I

(b)

Fig. 1.5 Two anonymized business processes from SAP reference model

Table 1.3 The extended behavioral profile of BP1 shown in Fig. 1.5a

A B C D E F

A (‖, 0) (�, 1) (�, 2) (�, 2) (�, 4) (�, 4)
B (�, 1) (‖, 0) (�, 3) (�, 3) (�, 5) (�, 5)
C (�, 2) (�, 3) (‖, 0) (‖, 0) (�, 2) (�, 2)
D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0)
E (�, 4) (�, 5) (�, 2) (‖, 0) (‖, 0) (# , 0)
F (�, 4) (�, 5) (�, 2) (‖, 0) (# , 0) (‖, 0)

distx :W ×W → N projects the distance between the two services with profile x .
For simplicity, we express relx (a, b) = {∗} as a ∗x b where ∗ ∈ {�, �, ‖, #, ?,※}.

1.6.1.2 Running Example of Global Profiles

In Fig. 1.5, we introduce two anonymized business processes from the SAP reference
model that are used as a running example throughout this section. The common
anonymized labels between both business processes indicate using the same service
in their configuration. BP1 has 6 tasks where only task D is not a common task with
BP2. On the other hand, BP2 has 8 tasks among which 3 tasks are not common with
BP1, namely G, H , and I .

The extended behavioral profile of BP1 is shown in Table 1.3, and that of BP2 can
be generated similarly, we omit it. It is worth mentioning that both BPs are configured
such that each task is bound with a web service to execute it. According to Table 1.3,
xbhpB P1(E, F) = {(#, 0)} and xbhpB P1(A, D) = {(�, 2)}. Relations that are not
shown in this profile are implicitly unknown, e.g., xbhpB P1(A,G) = {(?, 0)}.

1.6.2 Deriving Global Behavioral Profiles

Knowledge about relations among web services is usually scattered in disparate pro-
files of business processes. Collecting this knowledge into a single profile is essential
to reveal hidden relations among these web services. We call the result of this step a
global behavioral profile. The global profile might include unknown or contradicting
relations among some pairs of web services. We inspect the gained knowledge in the

18 M. AbuJarour and A. Awad

Table 1.4 Merging the relations from two profiles x and y into an intermediate profile t

Profile a �x b a �x b a ‖x b a #x b a ?x b a※x b

a �y b a �t b a ‖t b a※t b a ‖t b a※t b a※t b a �t b a※t b
a �yb a ‖t b a※t b a �t b a ‖t b a※t b a※t b a �t b a※t b
a ‖y b a ‖t b a※t b a ‖t b a※t b a ‖t b a※t b a ‖t b a※t b
a #yb a※t b a※t b a※t b a #t b a #t b a※t b
a?yb a �t b a �t b a ‖t b a #t b a?t b a※t b
a※y b a※t b a※t b a※t b a※t b a※t b a※t b

global profile to predict possible resolutions for its unknown relations. Both steps,
i.e., deriving a global profile and predicting unknown relations are of incremental
nature. That is, at the point that a new process configuration is available, this new
profile is merged with the global profile, to obtain a new global profile, and the
prediction of unknown relations is performed again.

Given a set of behavioral profiles, we want to derive a global profile that contains
pairwise relations between all web services. We achieve this by merging all individual
profiles iteratively in a pairwise manner. The result of each merging iteration is an
intermediate profile that is merged with another profile. This step is repeated until
all individual profiles are incorporated. Merging individual profiles might result in
unknown or contradicting relations among web services. Unknown relations appear
between web services that are not used together in the same business process, whereas
contradicting relations appear due to conflicting relations in source profiles. For
instance, the relations (a #x b) (i.e., a and b are exclusive in profile x) and (a �y b)
(i.e., a precedes b in profile y) might imply that one of these relations is wrong,
i.e., used incorrectly by a process engineer. Exclusiveness usually means that web
services do similar or complementary jobs [1]. Currently, we propagate such conflicts
to the resulting intermediate profile by adding two relations (a ※zb) and (b※za) that
represent a contradiction to the resulting intermediate profile z.

We merge two relations between web services a and b that appear in both input
profiles x and y into the global profile t according the rules that are summarized in
Table 1.4. These rules can be grouped as follows:

1. Merging (a ∗x b) with (a ∗y b) gives (a ∗t b), where ∗ is the same type of
relation.

2. Merging (a �x b) with (a �y b) gives (a ‖t b) and (a ※t b).
3. Merging (a ∗x b) with (a •y b) gives (a ‖t b) and (a ※t b), where ∗ ∈ {�, �}

and • =‖.
4. Merging (a ∗x b) with (a #y b) gives (a #t b) if ∗ = #, and a ※t b otherwise.
5. Merging (a ?x b) with (a ∗y b) gives (a ∗t b), where ∗ is a basic relation.
6. Merging (a ※x b) with (a ∗y b) gives a ※t b.

Some merging rules are non-deterministic, i.e., produce multiple alternatives
(Table 1.4). For instance, merging (a �x b) and (a �y b) gives two options: (a ‖t b)
and (a ※t b). Parallelism means that there is no dependency between a and b, i.e., they

1 Web Services and Business Processes: A Round Trip 19

can be used in any order. On the other hand, a dependency between a and b means
that either profile x or y is incorrect, where it includes a data anomaly, e.g., missing
data [20]. In this case, we conclude that there is a contradiction (a ※t b). To resolve
such uncertainties, a human intervention is needed, which is out of scope of this
work.

An important property of these rules is associativity, where the order of merging
behavioral profiles of business processes does not affect the global behavioral profile.
Consider three profiles of three business processes, where two tasks appear in all three
profiles. We can identify the following cases:

1. Three similar relations in all three profiles: According to the first rule, the result
will always be the same relation in the global profile.

2. Three different ordering relations: According to the second rule, at least one of the
merging steps results in a parallel relation. This resulting parallel relation occurs
either as an intermediate (first merging two different ordering relations) or a final
one (first merging two similar ordering relations). As an intermediate relation is
further merged with the remaining order relation. This last merging step results
in a parallel relation in the global profile according to the third rule. This shows
that such merging steps always result in a parallel relation in the global profile.

3. Parallel and ordering: Merging three relations that include parallel and ordering
relations results in a parallel relation in the global profile according to the third
rule.

4. Exclusive and others: Merging three relations that include exclusive and ordering
or parallel relations results in a contradiction relation in the global profile accord-
ing to the fourth rule.

5. Unknown and others: Unknown relations do not affect the result of such merging
steps according to fifth rule.

6. Contradicts and others: Contradicts relations always result in a contraction relation
in the global profile according to the sixth rule.

The second component in the extended behavioral profile (besides the relation’s
type) is distance between services. This distance between two services in an inter-
mediate profile is calculated as the shortest distance in the corresponding profiles
unless one of both distances is zero, i.e., # or ‖. In that case, we use the non-zero
distance from both input relations.

1.6.2.1 Example Revisited

Assuming that the two processes from Fig. 1.5 are the only individual profiles in our
knowledge base. By applying our merging rules shown in Table 1.4, we get the global
profile shown in Table 1.5. This global profile has 9 web services that represent the
union of all services in its source profiles, i.e., BP1 and BP2. For instance, merging
relations (�, 1) and (�, 2) between web services A and B from BP1 and BP2,
receptively, gives the relation (�, 1) in the global profile. The distance of the relation
in the global profile is the minimum distance from input relations. Some merging

20 M. AbuJarour and A. Awad

Table 1.5 Merging profiles of BP1 and BP2 (Fig. 1.5a,b) in one global profile

A B C D E F G H I

A (‖, 0) (�, 1) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 2) (�, 2) (�, 8)
(※, 0)

B (�, 1) (‖, 0) (‖, 0) (�, 3) (�, 4) (�, 4) (# , 0) (�, 4) (�, 10)
(※, 0)

C (‖, 0) (‖, 0) (‖, 0) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 8) (�, 14)
(※, 0) (※, 0)

D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0) (?, 0) (?, 0) (?, 0)
E (�, 2) (�, 4) (�, 2) (‖, 0) (‖, 0) (# , 0) (�, 4) (# , 0) (�, 2)
F (�, 2) (�, 4) (�, 2) (‖, 0) (# , 0) (‖, 0) (�, 4) (# , 0) (�, 2)
G (�, 2) (# , 0) (�, 2) (?, 0) (�, 4) (�, 4) (‖, 0) (�, 4) (�, 10)
H (�, 2) (�, 4) (�, 8) (?, 0) (# , 0) (# , 0) (�, 4) (‖, 0) (�, 2)
I (�, 8) (�, 10) (�, 14) (?, 0) (�, 2) (�, 2) (�, 10) (�, 2) (‖, 0)

rules produce multiple alternatives. For instance, A and C has the relation (�, 2) and
(�, 4) in BP1 and BP2, respectively. Merging both relations gives two alternatives
in the global profile between A and C : (‖, 0) and (※, 0). The remaining relations can
be derived in the same way. Merging extended behavioral profiles of BPs that do not
have the same exact set of web services results in unknown relations between web
services that do not appear in the same BP. For instance, relations between D from
one side and G, H , and I on the other side in the global profile. In the sequel, we aim
at using the knowledge gained from merging both profiles to reveal such unknown
relations.

1.6.3 Predicting Unknown Relations (a ? b)

Merging two profiles that do not have the same set of web services results in a global
profile with unknown relations among web services that do not appear in both source
profiles. In this section, we describe our approach to reveal such unknown relations
by predicting potential resolutions for them.

We predict potential resolutions for the unknown relation between web services
a and b in the global profile g with the help of a common service between them,
e.g., c. Having more than one common service is resolved by intersecting all predicted
relations from each common service according to Alg. 1. Our goal is to resolve the
relation (a ?g b) into (a �g b), (a �g b), (a ‖g b), or (a #g b) by investigating the
relations between a and c on the one hand and between b and c on the other hand.
We select a common service c such that we can derive useful information from its
relations with the considered services. For instance, selecting c such that (a ※g c)
is not of value. Therefore, the common service c has to be in one of the basic four
relations with both a and b. Furthermore, the predicted relation has to be consistent

1 Web Services and Business Processes: A Round Trip 21

Table 1.6 Resolving the unknown relation a ?g b via a common service c

Relation a � c a �c a ‖ c a # c

b � c a � b
a �b
a ‖ b
a # b

a �b a ‖ b
a �b

a#b
a �b

b �c a � b a �b
a � b
a ‖ b
a#b

a ‖ b
a � b

a#b
a � b

b ‖ c a ‖ b
a � b

a ‖ b
a �b

a ‖ b
a � b
a �b

a ‖ b
a#b

b#c a#b
a � b

a#b
a �b

a ‖ b
a#b

a#b
a � b
a �b

with existing relations in the global profile. Finding a useful resolution for unknown
relations depends on the used knowledge, therefore it is not always possible to predict
such a resolution. In such cases, the unknown relation between a and b (a ?g b) in
the global profile g remains and a human expert is informed about the situation to
find a resolution manually if necessary.

We predict potential resolutions for each unknown relation between web services
a and b in the global profile g—i.e., (a ?g b)—using a common service, c, according
to the set of rules that is summarized in Table 1.6. For instance, resolving (a ∗g c) and
(b ∗g c) gives (a �g b), (a �g b), (a ‖g b), and (a #g b), where ∗ =� or ∗ = �.
Each of these predicted relations still preserves the existing relations (a � c) and
(b � c) or (a �c) and (b �c). Resolving (a �g c) and (b �g c) gives (a �g b).
Any other relation, e.g., (a � b), does not preserve the existing relation between
a, b on the one hand and c on the other hand. For instance, (a � b) means that b
executes before a, that contradicts (a �c). Similarly, we cannot deduce that (a # b)
as it contradicts (b � c), since that implies either (c �b) or (c # b), which is not
the case.

Distances of the predicted � and �relations in the global profile are calculated
according to the functions shown in Table 1.7. Distances are used to rank relevant web
services during service discovery [1]. Additionally, we use them to prune possible
resolutions. For some cases, the new distance is the absolute value of the difference
of two distance. As an example, consider the case where we have (a � c) and
(b � c). According to Table 1.6, all four basic relations are valid resolutions. For
the predicted (a ‖ b) and (a # b) we set distance to zero. However, for the two
remaining cases, i.e. (a � b) and (a �b), the distance is the absolute value of the
difference in input distances. When we have no information to calculate the distance,
we set it to an artificial value infinity, e.g., the case of (a ‖ c) and (b ‖ c). For the

22 M. AbuJarour and A. Awad

Table 1.7 Distances of the predicted relation a ? b via a common service c

Relation a � c a �c a ‖ c a # c

b � c |di f f ()| sum() dist (b, c) dist (b, c)
b �c sum() |di f f ()| dist (b, c) dist (b, c)
b ‖ c dist (a, c) dist (a, c) ∞ N/A
b # c dist (a, c) dist (a, c) N/A ∞

cases where there is no order in the predicted relation between a and b, we express
this using N/A in the table.

According to our rules of resolution shown in Table 1.6, possible resolutions to
an unknown relation a ? b can include both a � b and a �b. We use the distance
information to prune one or both of these resolutions according to the following rules.
Consider two relations (a ∗x b) and (b •y c) with distances dx and dy , respectively,
where ∗ and • are either � or �, and �d is defined as dx − dy , we identify three
cases:

1. �d = 0: The unknown relation (a ? b) cannot be predicted to (a � b) or
(a �b).

2. �d > 0: The unknown relation (a ? b) can be predicted to (a � b), but not to
(a �b).

3. �d < 0: The unknown relation (a ? b) can be predicted to (a �b), but not to
(a � b).

Table 1.6 shows possible resolutions of a ? b using one common service c. However,
a and b might have a set of common services, which includes services that have useful
behavioral relations (�, �, ‖, or #) with both a and b. In Algorithm 1, we show the
steps we follow to achieve this resolution. We use each element in this set to predict
the unknown relation between a, b according to the rules in Table 1.6 (Line 7). After
that, we do an intersection among all possible resolutions deduced from each element
in that set (Line 11). The resulting relations from this intersection are then used as
potential resolutions to that unknown relation between a and b. If this intersection
gives an empty set (e.g., due to contradictions), we are unable to predict resolutions
for a ? b (Lines 12–13). These steps are repeated for all unknown relations in the
global profile until no further resolutions are found.

1.6.3.1 Example Revisited

In Table 1.5, we show the global profile that we get by merging the extended global
profiles of BP1 (Fig. 1.5a) and BP2 (Fig. 1.5b). That global profile has three unknown
relations between service D on the one hand and services G, H , and I on the other
hand, because these services are not used in the same BP. However, BP1 and BP2
have other common web services, e.g., A, B and C . We use such common services
to predict resolutions for (part of) these three unknown relations.

1 Web Services and Business Processes: A Round Trip 23

Algorithm 1: Predicting unknown relations in the global profile
Require: g the global profile
Ensure: g′ the global profile with some unknown relations revealed
1: pred ← ∅
2: for all a?b ∈ g do
3: CT ← getCommonT asks(a, b)
4: for all c ∈ CT do
5: ac← relg(a, c)
6: bc← relg(b, c)
7: tmp← predict Relaton(ac, bc) {According to Tables 1.6 and 1.7}
8: if pred = ∅ then
9: pred ← tmp
10: else
11: pred ← intersect (pred, temp)
12: if pred = ∅ then
13: break
14: end if
15: end if
16: end for
17: g← merge(g, pred) {According to Table 1.4}
18: end for
19: g′ ← g
20: return g′

Table 1.8 Possible relations between services D & G via common services {A, B, C, E, F}

Common task A B C E F

Relation with D D �A D �B D ‖ C D ‖ E D ‖ F
Relation with G G � A G # B G �C G � E G � F
Deduced relation D �G D �G D � G D �G D �G

D # G D ‖ G D ‖ G D ‖ G

To predict (D ? G), we select the set of common tasks among them. In this example,
this set is {A, B, C, E, F}. Because (D �A) and (G � A), we deduce that (D �G)
according to the transitivity rule. Similarly, we deduce all potential relations between
D and G using their common services as shown in Table 1.8. The intersection of
these alternatives is φ, i.e., there is no common relation among potential relations.
Therefore, the relation between D and G in the global profile remains unknown.

We follow the same steps to predict the relation (D ? H). The set of common
tasks is the same. Intersecting all potential relations between D and H gives the
new relation (D ‖ H). Again, the same set of common tasks is used to reveal the
(D ? I). In this case, the intersection of all potential relations between these tasks
gives two alternatives: (D ‖ I) and (D � I). The distance in the new strict order
relation is the minimum distance between I and the common tasks. In this case, the
distance is 2. The global profile after revealing potential hidden relations is shown
in Table 1.9.

24 M. AbuJarour and A. Awad

Table 1.9 Revealing hidden relations in the global profile of BP1 and BP2

A B C D E F G H I

A (‖, 0) (�, 1) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 2) (�, 2) (�, 8)
(※, 0)

B (�, 1) (‖, 0) (‖, 0) (�, 3) (�, 4) (�, 4) (# , 0) (�, 4) (�, 10)
(※, 0)

C (‖, 0) (‖, 0) (‖, 0) (‖, 0) (�, 2) (�, 2) (�, 2) (�, 8) (�, 14)
(※, 0) (※, 0)

D (�, 2) (�, 3) (‖, 0) (‖, 0) (‖, 0) (‖, 0) (?, 0) (‖, 0) (‖, 0)
(�, 2)

E (�, 2) (�, 4) (�, 2) (‖, 0) (‖, 0) (# , 0) (�, 4) (# , 0) (�, 2)
F (�, 2) (�, 4) (�, 2) (‖, 0) (# , 0) (‖, 0) (�, 4) (# , 0) (�, 2)
G (�, 2) (# , 0) (�, 2) (?, 0) (�, 4) (�, 4) (‖, 0) (�, 4) (�, 10)
H (�, 2) (�, 4) (�, 8) (‖, 0) (# , 0) (# , 0) (�, 4) (‖, 0) (�, 2)
I (�, 8) (�, 10) (�, 14) (‖, 0) (�, 2) (�, 2) (�, 10) (�, 2) (‖, 0)

(�, 2)

1.7 Implementation and Evaluation

In this section, we describe the implementation of our prototype to validate our
proposed approach, in addition to a set of experiments using a subset of the BPs
from the SAP reference model.

1.7.1 Implementation: Integrating Depot and Oryx

We have developed a prototype that implements our approach to enrich service
descriptions using business process configurations. In this section, we give details
about the implementation of this prototype that integrates Oryx—a business process
modeling platform and repository—and Depot—a web service registry.4 The front-
end of our prototype is Oryx, whereas Depot represents the backend. Figure 1.6 shows
a screenshot of using our prototype to design a business process for establishing a
company in Germany.

To create a new model for this process in Oryx, a proper title, such as “Establishing
a company in Germany” is given by the process designer. The area labeled with A in
Fig. 1.6 shows a list of web services discovered in Depot that have been used is similar
contexts and are relevant to this process. For instance, the whois web services used
in the UK example can be shown in this example despite the fact that there is no
high similarity between terms appearing in “establish a company in Germany” and
“whois”. Each of these web services is already configured and can be simply dragged-

4 The authors conducted this work during their stay at Hasso-Plattner-Institut at University of
Potsdam, Germany

1 Web Services and Business Processes: A Round Trip 25

A

C

B

Fig. 1.6 A screenshot of our prototype used to model the process of establishing a company in
Germany. A Suggested web services, B A pre-configured task from A, C Task properties

and-dropped to the design area. Indeed, the task labeled with B “FEINSearch” is an
example of such pre-configured tasks. The web service assigned to this task gives
company’s details by its name or address. If the provided name does not exist, this
hints that this name can be used as a name for the new company to be established.

1.7.2 Experiments

In this section, we show a set of experiments to evaluate our approach of predicting
potential relations among web services using business process knowledge. We use a
set of business processes from the SAP reference model [8], because these models
represent possibilities to configure SAP R/3 ERP systems. Thus, it is analogous
to business process configurations over a service landscape. We use 18 BPs with
related missions from the SAP reference model. In particular, they are concerned with
purchase order/requisition processing. These processes include 146 tasks in total.
On average, each BP has about 8 tasks. Among the 146 tasks, 81 tasks are distinct,
i.e., bound (configured) with distinct web services. We performed this configurations
manually and verified the results manually as well. We analyzed the labels of the
tasks and decided which labels (tasks) that can be bound to the same web service.
Additionally, we had to manually restructure the models to have a single start and a
single end node so that the behavioral profile calculation algorithm can be applied
to them. Moreover, we excluded loops to obtain useful behavioral relations among
tasks. A loop yields relations among all nodes within that loop concurrent.

26 M. AbuJarour and A. Awad

Table 1.10 Types and ratios of relations in raw profiles, derived global profile, and resolved profile

Type Raw processes (%) Global profile (%) Resolved global profile (%)

Strict Order � 33.25 3.87 14.48
Inverse Order � 33.25 3.87 14.48
Parallel ‖ 9.7 1.60 34.03
Exclusive # 23.8 3.42 17.97
Conflict ※ 0 0.15 0.12
Unknown ? 0 87.10 18.91

The baseline approach is predicting relations among tasks of BPs without using
their configurations information, i.e., only identical labels of tasks in different BPs
are considered similar. Following this approach, we are able to predict resolutions for
54.8 % of all unknown relations in the generated global behavioral profile. The ratio
of resolved relations using labels of tasks depends considerably only on the degree
of similarity and cohesion among labels. Using the configurations of these BPs
where semantically similar tasks are bound to a single web services, we are able to
predict resolutions for around 72 % of all unknown relations among tasks used in our
experiments.

We are able to reveal different types of relations among web services. In Table 1.10,
we show the ratio of each type of relations with respect to the total number of relations
in source profiles, their derived global profile, and after revealing part of the hidden
relations in that global profile. Note that percentages in this table are local to each
column. The majority of relations in the revealed global profile are parallel (34 %).
Additional knowledge about such tasks and their bound web services can be used to
resolve such relations in more concrete ones. This further resolution is part of our
future work. Conflicting relations appear due to inaccurate configurations of BPs or
due to lack of sufficient knowledge about tasks and web services. Unknown relations
are still in the global profile even after applying our resolutions approach. Either the
used knowledge is not sufficient to reveal such relations or there are no such useful
relations. For instance, a music web service and a web service for Gene analysis.

1.8 Related Work

Bringing SOA and BPMs has been an active research topic. For instance Buchwald
et al. propose an approach to bridge the gap between business process models and
service compositions [6]. The proposed approach introduces an intermediate layer
between business process models (business view) and executable models, service
compositions (technical view). The authors identify the need to store and maintain
the relationship between business view tasks and technical view ones. To this point,
the middle layer provides several types of transformation rules from the business
to the technical view. However, this knowledge is kept in the middle layer and it is

1 Web Services and Business Processes: A Round Trip 27

not the intention of that approach to reuse this knowledge to either enhance process
modeling and/or service discovery.

The fact of having process repositories with hundreds to thousands of process
models has attracted researchers to reuse-based process modeling. Smirnov et al. use
so-called behavioral profiles of business process models to extract association rules
and action patterns among tasks [17]. Based thereon, process modeling tools can
suggest to the user the insertion of certain tasks, if the user inserts other tasks within
the model. Moreover, the approach can suggest a structuring relationship among the
inserted tasks, e.g., tasks A and B should be exclusive to each other.

In our work, we make an explicit bi-directional link between business processes
and web services. This link is used to discover fine-grained linkage patterns among
web services used in BPs. The goal of this approach is to use these linkage patterns
to enhance service discovery during the configuration of business process models.

Finding relations among web services has been considered by several researchers
in the community. Approaches that tackle this problem can be grouped roughly in
four groups:

• Input/output matching approaches: These approaches match inputs and outputs
of operations of web services to find relations among them [9]. The main goal of
these approaches is to investigate composability among web services [14, 16].
• Semantic approaches: These approaches apply Artificial Intelligence planning

techniques to find valid compositions of web services [11, 12]. They are based on
the assumption that web services are described formally using ontologies, such as
OWL-S, WSMO, etc.
• Service compositions-based approaches: These approaches are based on the idea

that web services used in a service composition are related [5, 25]. Compared to
our approach, these approaches are unable to reveal hidden relations among web
services that were never used in the same process model.
• Consumer-consumer similarity approaches: These approaches use the idea that

similar service consumers usually use the same web services [15].

1.9 Summary

In this chapter, we introduced a novel approach to enrich poor service descriptions
with information extracted from the configurations of BPs that consume them. We
use business process configurations to discover fine-grained relations among web
services used in such processes in the form of linkage patterns. The required business
process knowledge is captured using the notion of extended behavioral profiles. Based
on these profiles, we can determine five types of linkage patterns among web services,
namely predecessor, successor, similar, complementary, and related. Additionally,
each linkage pattern is assigned a weight that reflects its strength. These weights are
used to rank service recommendations that enables service exploration.

Additionally, we introduced an approach to reveal hidden relations among web
services by exploiting process configurations over these services. Typically, several

28 M. AbuJarour and A. Awad

process configurations exist. Therefore, we merge these individual profiles into a
single global profile. After that, unknown relations within the global profiles were
input to our prediction approach to reveal possible behavioral relations that might
exist among them. To reveal these relations, we use common services between the
two services with an unknown relation. We applied our approach to a subset of the
SAP reference models and our experiments show that we could reveal about 72 % of
the unknown relations in the global profile.

References

1. AbuJarour, M., Awad, A.: Discovering linkage patterns among web services using business
process knowledge. In: Proceeding of the 8th International Conference on Services Computing,
SCC (2011)

2. AbuJarour, M., Naumann, F., Craculeac, M.: Collecting, annotating, and classifying public web
services. In: Proceedings of the 2010 International Conference on On-the-Move to Meaningful
Internet Systems, OTM (2010)

3. AbuJarour, M., Oergel, S.: Automatic sampling of web services. In: Proceeding of the 9th
International Conference on Web Services, ICWS (2011)

4. Awad, A.: BPMN-Q: A language to query business processes. In: Proceedings of the 2nd Inter-
national Workshop on Enterprise Modelling and Information Systems Architectures, EMISA
(2007)

5. Basu, S., Casati, F., Daniel, F.: Toward web service dependency discovery for SOA manage-
ment. In: Proceedings of the 5th International Conference on Services Computing, SCC (2008)

6. Buchwald, S., Bauer, T., Reichert, M.: Bridging the Gap Between Business Process Models and
Service Composition Specifications, Chap. Methods, Trends and Advances, Int’l Handbook on
Service Life Cycle Tools and Technologies (2011)

7. Buchwald, S., Tiedeken, J., Reichert, M.: Anforderungen an ein Metamodell für SOA-
Repositories. In: Proceedings of the 2nd Central-European Workshop on Services and their
Composition (Services und ihre Komposition), ZEUS (2010)

8. Curran, T.A., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model, 1st edn. Prentice Hall (1997)

9. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web services.
In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, VLDB,
(2004)

10. Fensel, D., Keller, U., Lausen, H., Polleres, A., Toma, I.: WWW or what is wrong with web
service discovery? In: Proceedings of the W3C Workshop on Frameworks for Semantics in
Web Services (2005)

11. Lecue, F., Leger, A.: Semantic web service composition based on a closed world assumption.
In: Proceedings of the 2006 European Conference on Web Services (2006)

12. Lin, L., Arpinar, I.B.: Discovery of semantic relations between web services. In: Proceedings
of the 2006 International Conference on Web Services, ICWS (2006)

13. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38, 38–41 (1995)
14. Omer, A.M., Schill, A.: Web service composition using input/output dependency matrix. In:

Proceedings of the 3Rd Workshop on Agent-Oriented Software Engineering Challenges for
Ubiquitous and Pervasive Computing, AUPC 09 (2009)

15. Rong, W., Liu, K., Liang, L.: Personalized web service ranking via user group combining
association rule. In: Proceedings of the 2009 International Conference on Web Services, ICWS
(2009)

16. Segev, A.: Circular context-based semantic matching to identify web service composition.
In: Proceedings of the 2008 International Workshop on Context Enabled Source and Service
Selection, Integration and Adaptation, CSSSIA (2008)

1 Web Services and Business Processes: A Round Trip 29

17. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process
models. In: Proceedings of the 7th International Conference on Service-Oriented Computing,
ICSOC/ServiceWave (2009)

18. Sreenath, R.M., Singh, M.P.: Agent-based service selection. J. Web Sem. 1(3), 0–0 (2004)
19. Stein, S., Barchewitz, K., El Kharbili, M.: Enabling business experts to discover web services

for business process automation. In: Proceedings of the 2nd Workshop on Emerging Web
Services Technology, WEWST (2007)

20. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Liu Sheng, O.R.: Formulating the data-flow perspective
for business process management. Info. Sys. Research 17(4), 374–391 (2006)

21. van der Aalst, W.M.P., van Hee, K.M.: Workflow management: models, methods, and systems.
MIT Press, London (2002)

22. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models
from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

23. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural patterns for soundness of
business process models. In: EDOC, pp. 116–128. IEEE Computer Society (2006)

24. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Efficient computation of causal behav-
ioural profiles using structural decomposition. In: Proceedings of the 31st International Con-
ference on Applications and Theory of Petri Nets, Petri Nets (2010)

25. Winkler, M., Springer, T., Trigos, E.D., Schill, A.: Analysing dependencies in service compo-
sitions. In: Proceedings of the 2009 International Conference on Service-Oriented Computing,
ICSOC/ServiceWave (2009)

26. Weikum G. et al.: The YAGO-NAGA project: harvesting, searching, and ranking knowledge
from the web. http://www.mpi-inf.mpg.de/yago-naga/

http://www.mpi-inf.mpg.de/yago-naga/

Chapter 2
RESTful Web Services: Principles, Patterns,
Emerging Technologies

Cesare Pautasso

Abstract RESTful Web services are software services which are published on the
Web, taking full advantage and making correct use of the HTTP protocol. This
chapter gives an introduction to the REST architectural style and how it can be used
to design Web service APIs. We summarize the main design constraints of the REST
architectural style and discuss how they impact the design of so-called RESTful
Web service APIs. We give examples on how the Web can be seen as a novel kind
of software connector, which enables the coordination of distributed, stateful and
autonomous software services. We conclude the chapter with a critical overview of
a set of emerging technologies which can be used to support the development and
operation of RESTful Web services.

2.1 Introduction

REST stands for REpresentational State Transfer [13]. It is the architectural style that
explains the quality attributes of the World Wide Web, seen as an open, distributed
and decentralized hypermedia application, which has scaled from a few Web pages
in 1990 up to billions of addressable Web resources today [4, 6]. Even if it is no
longer practical to take a global snapshot of the Web architecture, seen as a large set
of Web browsers, Web servers, and their collective state, it is nevertheless possible
to describe the style followed by such Web architecture. The REST architectural
style includes the design constraints which have been followed to define the HTTP
protocol [12], the fundamental standard together with URI and HTML which has
enabled to build the Web [5]. These constraints make up the REST architectural style
and have been distilled by Roy Fielding in his PhD dissertation [11].

C. Pautasso (B)

Faculty of Informatics, University of Lugano, via Buffi 13, Lugano CH-6900, Switzerland
e-mail: c.pautasso@ieee.org

A. Bouguettaya et al. (eds.), Web Services Foundations, 31
DOI: 10.1007/978-1-4614-7518-7_2,
© Springer Science+Business Media New York 2014

32 C. Pautasso

Over the last decade, the Web has grown from a large-scale hypermedia application
for publishing and discovering documents (i.e., Web pages) into a programmable
medium for sharing data and accessing remote software components delivered as a
service. As the Web became widespread, TCP/IP port 80 started to be left open by
default on most Internet firewalls, making it possible to use the HTTP protocol [12]
(which by default runs on port 80) as a universal mean for tunneling messages in
business to business integration scenarios. RESTful Web services—as opposed to
plain (or Big [22]) Web services—emphasize the correct and complete use of the
HTTP protocol to publish software systems on the Web [24]. More and more services
published on the Web are claiming to be designed using REST. As we are going to
discuss, even if all make use of the HTTP protocol natively, not all of them do so in
full compliance with the constraints of the REST architectural style [16].

In this chapter we present how the Web can be seen as a novel kind of software
connector, which enables the coordination of distributed, stateful and autonomous
software services. We summarize the main design constraints of the REST architec-
tural style and discuss how they impact the design of so-called RESTful Web service
APIs. We conclude the chapter with a critical overview of a set of emerging tech-
nologies which can be used to support the development and operation of RESTful
Web services.

2.2 Principles

Understanding the architectural principles underlying the World Wide Web can lead
to improving the design of other distributed systems, such as integrated enterprise
architectures. This is the claim of RESTful Web services, designed following the
REST architectural style [11], which emphasizes the scalability of component inter-
actions, promotes the reuse and generality of component interfaces, reduces coupling
between components, and makes use of intermediary components to reduce interac-
tion latency, enforce security, and encapsulate legacy systems.

2.2.1 Design Constraints

The main design constraints of the REST architectural style are: global address-
ability through resource identification, uniform interface shared by all resources,
stateless interactions between services, self-describing messages, and hypermedia
as a mechanism for decentralized resource discovery by referral.

1. Addressability All resources that are published by a Web service should be given a
unique and stable identifier [17]. These identifiers are globally meaningful, so that
no central authority is involved in minting them, and they can be dereferenced
independently of any context. The concept of a resource is kept very general

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 33

as REST intentionally does not make any assumptions on the corresponding
implementation. A resource can be used to publish some service capability, a view
over the internal state of a service, as well as any source of machine-processable
data, which may also include meta-data about the service.

2. Uniform Interface All resources interact through a uniform interface, which pro-
vides a small, generic and functionally sufficient set of methods to support all
possible interactions between services. Each method has a well defined seman-
tics in terms of its effect on the state of the resource. In the context of the Web
and its HTTP protocol, the uniform interface comprises the methods (e.g., GET,
PUT, DELETE, POST, HEAD, OPTIONS, etc.) that can be applied to all Web
resource identifiers (e.g., URIs which conform to the HTTP scheme). The set of
methods can be extended if necessary (e.g., PATCH has been recently proposed
as an addition to deal with partial resource updates [8]) and other protocols based
on HTTP such as WebDAV include additional methods [14].

3. Stateless Interactions Services do not establish any permanent session between
them which spans across more than a single interaction. This ensures that requests
to a resource are independent from each other. At the end of every interaction,
there is no shared state that remains between clients and servers. Requests may
result in a state change of the resource, whose new state becomes immediately
visible to all of its clients.

4. Self-Describing Messages Services interact by exchanging request and response
messages, which contain both the data (or the representations of resources) and
the corresponding meta-data. Representations can vary according to the client
context, interests and abilities. For example, a mobile client can retrieve a low-
bandwidth representation of a resource. Likewise, a Web browser can request
a representation of a Web page in a particular language, according to its user
preferences. This greatly enhances the degree of intrinsic interoperability of a
REST architecture, since a client may dynamically negotiate the most appropriate
representation format (also called media type) with the resource as opposed to
forcing all clients and all resources to use the same format. Request and response
messages also should contain explicit meta-data about the representation so that
services do not need to assume any kind of out-of-band agreement on how the
representation should be parsed, processed and understood.

5. Hypermedia Resources may be related to each other. Hypermedia is about embed-
ding references to related resources inside resource representations or in the cor-
responding meta-data. Clients can thus discover the identifiers (or hyper-links) of
related resources when processing representations and choose to follow the link as
they navigate the graph built out of relationships between resources. Hypermedia
helps to deal with decentralized resource discovery and is also used for dynamic
discovery and description of interaction protocols between services. Despite its
usefulness, it is also the constraint that has been the least used in most Web ser-
vice APIs claiming to be RESTful. Thus, sometimes Web service APIs which
also comply with this constraint are also named “Hypermedia APIs” [3].

34 C. Pautasso

2.2.2 Maturity Model

The main design constraints of the REST architectural style can also be adopted
incrementally, leading to the definition of a maturity model for RESTful Web services
as proposed by Leonard Richardson. This has led to a discussion on whether only
services that are fully mature can be actually called RESTful. In the state of the
practice, however, many services which are classified in the lower levels of maturity
already present themselves as making use of REST.

• Level 0: HTTP as a tunnel These are all services which simply exchange XML
documents (sometimes referred to as Plain-Old-XML documents as opposed to
SOAP messages) over HTTP POST request and responses, effectively following
some kind of XML-RPC protocol [28]. A similar approach is followed by services
which replace the XML payloads with JSON, YAML or other formats which are
used to serialize the input and output parameters of a remote procedure call, which
happens to be tunneled through an open HTTP endpoint. Even if such services
are not making use of SOAP messages, they are not really making full use of the
HTTP protocol according to the REST constraints either. In particular, since all
messages go to the same endpoint URL, a service can distinguish between different
operations only by parsing such information out of the XML (or JSON) payload.
• Level 1: Resources As opposed to using a single endpoint for tunneling RPC

messages through the HTTP protocol, services on maturity level 1 make use of
multiple identifiers to distinguish different resources. Each interaction is addressed
to a specific resource, which can however still be misused to identify different
operations or methods to be performed on the payload, or to identify different
instances of object of a given class, to which the request payload is addressed.
• Level 2: HTTP Verbs In addition to fine-grained resource identification, services

of maturity level 2 also make proper use of the REST uniform interface in gen-
eral and of the HTTP verbs in particular. This means that not only clients can
perform a GET, DELETE, PUT on a resource, in addition to POSTing to it, but
also do so in compliance with the semantics of such methods. For example, ser-
vice designers ensure that GET, PUT and DELETE requests to their service are
idempotent. Since we can assume that the HTTP methods are used according to
their standard semantics, we can use the corresponding safety and idempotency
properties to optimize the system by introducing intermediaries. For example, the
results of safe and side-effect free GET requests can be cached and failed PUT and
DELETE requests can be automatically retried. Additionally, services make use
of HTTP status codes correctly to, e.g., indicate whether methods are applicable
to a given resource or to assign blame between which party is responsible for a
failed interaction.
• Level 3: Hypermedia These are the fully mature RESTful Web services, which in

addition to exposing multiple addressable resources which share the same uniform
interface also make use of hypermedia to model relationship between resources.
This is achieved by embedding so-called hypermedia controls within resource
representations [19]. Depending on the chosen media type, hypermedia controls

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 35

such as links or forms can be parsed, recognized and interpreted by clients to drive
their navigation within the graph of related resources. Hypermedia controls will
be typed according to the semantics of the relationship and contain all information
necessary for a client to formulate a request to a related resource. As opposed to
knowing in advance all the addresses of the resources that will be used, a client
can thus dynamically discover with which resource it should interact by following
links of a certain type. Key to achieving this level of maturity is the choice of
media types which support hypermedia controls (e.g., XML or JSON do not,
while ATOM, XHTML or JSON-LD do.). The ability of a service to change the
set of links that are given to a client based on the current state of a resource is also
known with the ugly HATEOAS (Hypertext As The Engine Of Application State)
acronym, to which now the simpler “hypermedia” term is preferred [23].

The maturity level of a service also affects the quality attributes of the architec-
ture in which the service is embedded. Tunneling messages through an open HTTP
port (level 0) leads only to the basic ability to communicate and exchange data,
but—security issues notwithstanding—is likely to result in brittle integrated sys-
tems, which are difficult to evolve and scale. Distinguishing multiple resources helps
to apply divide and conquer techniques to the design of a service interface and enable
services to use global identifiers to address each resource that is being published.
Applying a standardized and uniform interface to each resource removes unneces-
sary variations (as there are only a few universally accepted methods applicable to
a resource) and enables all services to interact with all resources within the archi-
tecture, thus promoting interoperability and serendipitous reuse [29]. Additionally
the semantics of the methods that make up the uniform interface can be adjusted so
that the scalability and reliability of the architecture are enhanced. However, only the
dynamic discoverability of resources provided by hypermedia contributes to mini-
mize the coupling within the resulting architecture.

2.2.3 Comparing REST Versus WS-*

The maturity model can also be used to give a rough comparison between RESTful
Web services and WS-* Web Services (Fig. 2.1). A more detailed comparison can
be found in [22].

As the maturity level increases, the service will switch from using a single com-
munication endpoint to many URIs (on the resource identification axis). Likewise,
the set of possible methods (or operations) will be limited to the ones of the uniform
interface as opposed to designing each service with its own set of operations explic-
itly described in a WSDL document. From a REST perspective, all WSDL operations
are tunneled through a single HTTP verb (POST), thus reducing the expressiveness
of HTTP seen as an application protocol, which is used as a transport protocol for
tunneling messages. In WSDL several communication endpoints can be associated
with the same service although these endpoints are not intended for distinguishing

36 C. Pautasso

Fig. 2.1 Design space: RESTful web services versus WS-* web services

HTTP resources but may be used to access the same service through alternative
communication mechanisms.

The third axis is not directly reflected in the maturity model but is also important
for understanding the difference between the two technology stacks, one having a
foundation in the SOAP protocol and the XML format, while the other leaves open
the choice of which message format should be used (shown on the representations
axis) so that clients and services can negotiate the most suitable format to achieve
interoperability.

2.3 Example

As inspiration for this example we use the Doodle REST API, which gives program-
matic access to the Doodle poll Web service available at (http://www.doodle.ch).
Doodle is a very popular service, which allows to minimize the number of emails
exchanged in order to find an agreement among a set of people. The service allows to
initiate polls by configuring a set of options (which can be a set of dates for scheduling
a meeting, but can also be a set of arbitrary strings). The link to the poll is then mailed
out to the participants, who are invited to answer the poll by selecting the preferred
options. The current state of the poll can be polled at any time by the initiator, who
will typically inform the participants of the outcome with a second email message.

The Simple Doodle REST API (Fig. 2.2) publishes two kinds of resources: polls
(a set of options once can choose from) and votes (choices of people within a
given poll). There is a natural containment relationship between the two kinds
of resources, which fits naturally into the convention to use / as a path separa-
tor in URIs. Thus the service publishes a /poll root resource, which contains a
set of /poll/{id} poll instances, which include the corresponding set of votes
/poll/{id}/vote/{id}.

http://www.doodle.ch

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 37

Fig. 2.2 Simple Doodle REST API

2.3.1 Listing Active Polls

The root /poll resource is used to retrieve (with GET) the list of links to the polls
which have been instantiated:

⇒GET /poll
Accept: text/uri-list

⇐200 OK
Content-Type: text/uri-list

http://doodle.api/poll/201204301
http://doodle.api/poll/201204302
http://doodle.api/poll/201205011

2.3.2 Creating New Polls

The same /poll resource acts as factory resource which accepts POST requests to
create new poll instances. The identifier of the newly created poll is returned as a
link associated with the Location response header.

⇒POST /poll
Content-Type: application/xml
<options>A,B,C</options>

⇐201 Created
Location: /poll/201205012

38 C. Pautasso

2.3.3 Fetching the Current State of a Poll

The current state of a poll instance can be read with GET, modified with PUT
(e.g., to change the set of possible options or to close the poll). Poll instances can
also be removed with DELETE.

⇒GET /poll/201205012
Accept: application/xml

⇐200 OK
Content-Type: application/xml

<poll>
<options>A,B,C</options>
<votes href="/poll/201205012/vote"/>
</poll>

The representation of a newly created poll resource, in addition to the set of
options provided by the client, also contains a link to the resource used to cast votes.
Clients can follow the link to express their opinion and make a choice. The nested
vote resource acts as a factory resource for individual votes.

2.3.4 Casting Votes

⇒POST /poll/201205012/vote
Content-Type: application/xml
<vote>
<name>C. Pautasso</name>
<choice>B</choice>
</vote>

⇐201 Created
Location: /poll/201205012/vote/1

After the previous request has been processed a new vote has been cast and the
state of the poll has changed. Retrieving it will now return a different representation,
which includes the information about the vote.

⇒GET /poll/201205012
Accept: application/xml

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 39

⇐200 OK
Content-Type: application/xml

<poll>
<options>A,B,C</options>
<votes href="/poll/201205012/vote">
<vote id="1">
<name>C. Pautasso</name>
<choice>B</choice>
</vote>
</votes>
</poll>

2.3.5 Changing Votes

Since each vote gets its own URI it is also possible to manipulate its state with PUT
and DELETE. For example, clients may want to retract a vote (with DELETE) or
modify the choice (with PUT) as in the following example.

⇒PUT /poll/201205012/vote/1
Content-Type: application/xml
<vote>
<name>C. Pautasso</name>
<choice>C</choice>
</vote>

⇐200 OK

2.3.6 Interacting with Votes

In general, it is not always possible nor it is necessary for a resource to respond to
requests which make use of all possible methods of the uniform interface. In the con-
text of the Simple Doodle REST API, as shown in Fig. 2.2, it has been chosen not to
support PUT and DELETE on the/poll and/poll/{id}/vote resources. Also
POST requests to individual instances /poll/{id} or /poll/{id}/vote/
{id} are not supported. Such requests do not have a meaningful effect on the state
of the resource and are thus disallowed. Clients attempting to issue them will receive
an erroneous response:

⇒POST /poll/201205012/vote/1

⇐405 Method not allowed

40 C. Pautasso

Clients can also inquire which methods are allowed before attempting to perform
them on a resource making use of the OPTIONS method as follows

⇒OPTIONS /poll/201205012/vote/1

⇐204 No Content
Allow: GET, PUT, DELETE

An OPTIONS request will return a list of the methods which are currently applica-
ble to a resource in the response Allow header. The set of allowed methods may
change depending on the state of the resource.

2.3.7 Removing a Poll

Once a poll has received enough votes and a decision has been made, its state will
be kept indefinitely by the service until an explicit request to remove it is made by a
client.

⇒DELETE /poll/201205012

⇐200 OK

Subsequent requests directed to the delete poll instance will also receive an erro-
neous response.

⇒GET /poll/201205012

⇐404 Not Found

2.4 Patterns

Once the basic architectural principles for the design of RESTful Web services are
established, it remains sometimes difficult to apply them directly to the design of
specific Web service APIs. In this Section we collect a small number of design pat-
terns, which provide some guidance on how to deal with resource creation, long
running operations and concurrent updates. Additional known patterns address fea-
tures such event notifications, enhancing the reliability of interactions, atomicity and
transactions and supporting the evolution of service interfaces. In general, applying
one of these patterns requires to make use of some existing feature of the standard
HTTP protocol, which may need to be augmented with some conventions and shared
assumptions on how to interpret its status code and headers. The current understand-
ing within the REST community is that it should be possible to design fully functional
service APIs that do not require any non-standard extension to the HTTP protocol.

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 41

The example patterns included in this chapter is not intended to be complete, for
additional guidance on how to design RESTful Web services, we refer the interested
reader to [1, 7, 10, 25, 30].

2.4.1 Resource Creation

The instantiation of resources is a key feature of most RESTful Web services, which
enable clients to create new resource identifiers and set the corresponding state to an
initial value. The resource identifier can either be set by the client or by the service. It
is easier to guarantee that URIs created by the service are unique, while it is possible
that multiple clients will generate the same identifier.

When using a single HTTP interaction to create a resource, there are two possible
verbs that can be used: PUT or POST. The basic semantics of PUT requests is to
update the state of the corresponding resource with the provided payload. If no
resource is found with the given identifier, a new resource is created. This has the
advantage of using idempotent requests to create a resource, but requires clients
to avoid mixing up resource identifiers. POST on the other hand assumes that the
server will create a new resource identifier. Since POST is not idempotent, there
have been a number of patterns that have been proposed to address this limitation
and avoid the so-called “duplicated POST submission” problem. The convention is
to use some kind of “factory” resource, to which POST requests are directed for
creating new resources. However, repeating such requests in case of failure would
lead to potentially multiple, different instances to be created by the factory.

The pattern is based on the idea of splitting the centralized generation of the new
resource identifier on the service-side from the initialization of its state with the
payload provided by the client. The pattern makes combined usage of both POST
and PUT requests as follows.

⇒POST /factory
<Empty Payload>

⇐303 See Other
Location: /factory/id

⇒PUT /factory/id
<Initialization Payload>

⇐200 OK

The first POST request returns a new unique resource identifier /factory/id
but does not initialize its corresponding resource since the payload is empty. The
second request PUTs the initial state on the new resource. In the worst case, failures
during the first POST request will lead to lost resource identifiers, which however
can be garbage collected by the server since the corresponding resource has not

42 C. Pautasso

been initialized. Likewise, clients may fail between the two requests and thus could
forget to follow up with the PUT request. The designer of the service needs to make
reasonable assumptions on the maximum allowed delay between the two interactions.
If a client is too late and the resource identifier has been already garbage collected
by the server, then another one can be simply retrieved by repeating the first POST
request.

Variations of this pattern have been proposed which replace the initial POST with
a GET request, which in the same way returns a new unique identifier every time
it is invoked. Similarly, the response payload of the first request could be used to
provide the client with a representation template, i.e., a form to be completed with
the information required to initialize the new resource.

2.4.2 Long Running Operations

HTTP is a client/server protocol which does not assume that every request is followed
by a response indicating that the work has completed. For long running operations,
which may result in a timeout of the network communication, it is possible to break
the connection and avoid blocking the client for too long. This is particularly useful
to invoke service operations that—depending on the size of the input provided by
clients or by the complexity of their internal implementation—may require a long
time to complete processing it.

The pattern is based on turning the long running operation into a resource, whose
identifier can be returned immediately to the client submitting the corresponding job.

⇒POST /job
Input data payload

⇐202 Accepted
Content-Location: /job/201205019

<job>
<status>pending</status>
<message>Your job has been queued for processing</message>
<ping-time>2012-05-01T05:22:12Z</ping-time>
</job>

The 202 Accepted status code implies that the service has verified the request
input payload and has accepted it, but no immediate response can be given. The
client should follow the link given in the Content-Location header to inquire
(with GET) about the status of the pending request.

⇒GET /job/201205019

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 43

⇐200 OK
<job>
<status>processing</status>
<message>Your job is being processed</message>
<ping-time>2012-05-01T06:22:09Z</ping-time>
</job>

Clients can send GET requests to the job resource at any time to track its progress.
In addition to the status, the response also contains a hint (in the ping-time
element) on when the next poll request should be performed in order to reduce
network traffic and service load due to excessive polling.

Once the job has been completed, the response to the poll request will redirect
the client to another resource from which the final result can be retrieved.

⇒GET /job/201205019

⇐303 See Other
Location: /job/201205019/output
<job>
<status>done</status>
<message>Your job has been successfully
completed</message>
</job>

The client can then follow the link found in the Location header to retrieve
(with GET) the output of the completed job. The link could also be shared among
different clients interested in reading the output of the original POST request.

⇒GET /job/201205019/output

⇐200 OK
Output data payload

In case the client is no longer interested in retrieving the results, it is possible to
cancel the resource job and thus remove it from the queue of pending requests. The
client thus issues a DELETE request on the job resource, which will be allowed as
long as the job has not yet completed its execution.

⇒DELETE /job/201205019

⇐200 OK

After a request has completed it is no longer possible to cancel it. In this case, a
similar DELETE request can be performed on the resource representing the output
results of the job when the client has completed downloading them and it is no longer
interested in keeping the results stored on the server.

⇒DELETE /job/201205019/output

44 C. Pautasso

⇐200 OK

If clients do not remember to clean up after themselves the server can end up
storing a copy of all long running requests and potentially run out of space. Still,
a garbage collection mechanism can be implemented to automatically remove old
results through the same DELETE request.

This pattern shows how to deal with long running operations by applying a general
design principle of turning “everything into a resource” [24]. In this case the resource
represents the long running request which is managed by the client through the HTTP
uniform interface.

2.4.3 Optimistic Locking

RESTful Web services are stateful services, which associate to each resource URI
a representation which is produced based on the current state of the corresponding
resource. It is thus important to deal with concurrent state modifications without
violating the stateless constraint, which prevents clients to establish a session with
a service in which the resource is updated.The problem addressed by this pattern
is thus the one of dealing with concurrent resource updates in compliance with the
stateless constraint.The solution adopted by the HTTP protocol makes use of a form
of optimistic locking, as follows.

1. The client retrieves the current state of a resource.

⇒GET /resource

⇐200 OK
ETag: 1

Current representation

Together with the representation of the resource, the client is given through the
ETag header some meta-data which identifies the current version of the resource.

2. The client updates the state of a resource. While doing so, the client uses the
If-Match header to make the request conditional.

⇒PUT /resource
If-Match: 1

New representation

⇐200 OK
ETag: 2

Updated representation

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 45

The server will execute the PUT request only if the version of the resource (on the
server-side) matches the version provided within the client request. If there is a mis-
match, another client has already updated the resource in the meanwhile and an update
conflict has been detected. This is indicated using the standard409 Conflict sta-
tus code. To recover the client should start again from step 1. by retrieving the latest
state of the resource. After recomputing the change locally, the client can once again
attempt to update the resource.

As with most optimistic protocols, this solution works well if the ratio of updates
(PUT or POST) to reads (GET) is small. The pattern should not be used for resources
that are hotly contested between multiple clients, or in case the cost of re-trying a
failed update is expensive.

2.5 Technologies

Over the past few years, REST has evolved from the original state in which an appar-
ent lack of tooling support was limiting the adoption of the technology [27] and there
have been quite a few frameworks that have been proposed for most programming
languages and service delivery platforms (Table 2.1). Indeed, as a reaction to the com-
plexity of WS-* technology stacks, REST was initially positioned as a lightweight
alternative where no tools beyond a Web browser and some standard HTTP library
were necessary to develop RESTful Web services. The situation has changed and
with the growth in popularity of REST also a number of development frameworks
have appeared.

2.5.1 Frameworks

Most frameworks support both client-side consumption of resources as well as server-
side publishing of resources. However, some frameworks are starting to appear which
specifically target the development of loosely coupled clients (e.g., RESTAgent
or Guzzle). Some frameworks (e.g., ActiveResource, Compojure-rest, the Django
REST Framework) are built as an extension of existing Web/MVC application devel-
opment frameworks. Others (e.g., Persevere) come with a standalone HTTP server
stack. Concerning the Java language, the oldest framework is RESTlet, while others
(e.g., Jersey, RESTEasy, ApacheCXF) implement the JSR-311 [15] standard, which
defines how to publish Java code as a RESTful Web service using source code anno-
tations. With the 3.5 release of the .NET framework, also the Windows Communi-
cation Framework (WCF) technology stack supports REST. Likewise many existing
WS-* technology frameworks (e.g., ApacheCXF) have begun to offer SOAP-less
bindings to plain HTTP and started to support the use of JSON inside HTTP pay-
loads.

46 C. Pautasso

Table 2.1 Technology: Frameworks for developing and hosting RESTful web services (homepage
links verified as of 1st October 2012)

Framework Language/ Project Homepage
Platform

ActiveResource Ruby/Rails http://api.rubyonrails.org/classes/ActiveResource/Base.html
apache2rest PERL http://code.google.com/p/apache2rest/
ApacheCXF Java http://cxf.apache.org/
Bowler Scala http://bowlerframework.org/
C2Serve C++ http://www.c2serve.eu/
Compojure-rest Clojure http://github.com/ordnungswidrig/compojure-rest
Crochet Scala https://github.com/xllora/Crochet
Django REST Python/Django http://django-rest-framework.org/
Exyus .NET http://code.google.com/p/exyus/
FRAPI PHP/Zend http://getfrapi.com/
Guzzle PHP http://guzzlephp.org/
Jersey Java http://jersey.java.net/
OpenRASTA .NET https://github.com/openrasta/openrasta/wiki
Persevere JavaScript http://www.persvr.org/
Pinky Scala https://github.com/pk11/pinky/wiki
Piston Python/Django https://bitbucket.org/jespern/django-piston/wiki/Home
Prestans Python/WSGI http://prestans.googlecode.com/
Recess PHP http://www.recessframework.org/
RESTAgent Java http://restagent.codeplex.com/
RESTEasy Java http://www.jboss.org/resteasy.html
RESTfulie Ruby, Java, C# http://restfulie.caelum.com.br/
RESTify JavaScript/Node http://mcavage.github.com/node-restify/
RESTlet Java http://www.restlet.org/
RESTSharp .NET http://restsharp.org/
Scotty Haskell https://github.com/xich/scotty
Spray Scala/Akka http://spray.cc/
Taimen Java, Clojure https://bitbucket.org/kumarshantanu/taimen/
Tonic PHP http://peej.github.com/tonic/
Webmachine Erlang http://wiki.basho.com/Webmachine.html
Yesod Haskell http://www.yesodweb.com/
WCF .NET http://msdn.microsoft.com/en-us/library/vstudio/

bb412169.aspx
WebPy Python http://webpy.org/
Wink Java http://incubator.apache.org/wink/

2.5.2 Guidelines for Framework Selection

In general, it currently remains challenging to find a suitable framework which gives
simple and correct guidance [32] to the service developer according to the REST
constraints and which at the same time gives full access and control over the raw
HTTP interactions. Even if it is possible to reuse or extend existing Web applica-
tion development frameworks based on the Model-View-Controller (MVC) pattern,

http://api.rubyonrails.org/classes/ActiveResource/Base.html
http://code.google.com/p/apache2rest/
http://cxf.apache.org/
http://bowlerframework.org/
http://www.c2serve.eu/
http://github.com/ordnungswidrig/compojure-rest
https://github.com/xllora/Crochet
http://django-rest-framework.org/
http://code.google.com/p/exyus/
http://getfrapi.com/
http://guzzlephp.org/
http://jersey.java.net/
https://github.com/openrasta/openrasta/wiki
http://www.persvr.org/
https://github.com/pk11/pinky/wiki
https://bitbucket.org/jespern/django-piston/wiki/Home
http://prestans.googlecode.com/
http://www.recessframework.org/
http://restagent.codeplex.com/
http://www.jboss.org/resteasy.html
http://restfulie.caelum.com.br/
http://mcavage.github.com/node-restify/
http://www.restlet.org/
http://restsharp.org/
https://github.com/xich/scotty
http://spray.cc/
https://bitbucket.org/kumarshantanu/taimen/
http://peej.github.com/tonic/
http://wiki.basho.com/Webmachine.html
http://www.yesodweb.com/
http://msdn.microsoft.com/en-us/library/vstudio/bb412169.aspx
http://msdn.microsoft.com/en-us/library/vstudio/bb412169.aspx
http://webpy.org/
http://incubator.apache.org/wink/

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 47

these may only offer limited support for processing both incoming and outgoing
representations in customized non-HTML media types. Like in [26], we collect and
discuss here a set of basic features that should be supported by a fully featured
framework for developing RESTful Web services.

• Can requests be routed to the corresponding service logic based on both resource
identifiers and HTTP methods? Some frameworks only use resource identifiers
and ignore methods, leaving it up to the developer to run different logic based on
the request method.
• Are custom or extended HTTP verbs supported? Can the framework support differ-

ent URI schemes or is it tied to HTTP/HTTPS URIs? Even if REST does not make
any assumption about the actual uniform interface, most frameworks are tightly
coupled with the HTTP protocol and thus assume that only the HTTP methods
will be used.
• Does the framework enforce the semantics of the HTTP uniform interface

(i.e., read-only GET, idempotent PUT and DELETE)?
• What is the abstraction level required to handle content type negotiation? Can

the same service logic be easily reused for responses returned using different
representation formats? Is the developer required to manually work with HTTP
headers? Can custom media types be defined?
• Are ETags headers automatically computed and checked? How does the framework

deal with conflicting updates?
• What are the assumptions made by the framework concerning the lifecycle of

a resource? Can different business logic be invoked depending on the state of a
resource? Is the state of a resource persisted implicitly or explicitly across server
reboots?
• How easy is it to embed links to related resources in a representation being sent

back to the client?
• Are URI templates supported for request routing and link generation? Must URI

templates be embedded in the source code, or can they be read from configuration
files, or can they be dynamically discovered and remotely updated?
• Does the framework transparently handles redirects to new resource identifiers?
• How easy is it to configure caching support without rebuilding the service logic

and without relying on external caching proxies?
• How does the framework map internal exceptions of the service logic to HTTP

status codes? Can such mapping be customized?
• Does the framework present REST as an optional “transport protocol binding”

next to WS-* technology, or is REST the default, or the only option?
• How difficult is to configure the framework to use HTTPS?
• Does the framework support some notion of service interface description? Can

such description be generated automatically for documentation purposes? Can
code be generated from the description?
• Does the framework allow to automatically scale-out the service on multiple paral-

lel processing units in a multicore or a cluster environment? How does the frame-
work deal with concurrency?

48 C. Pautasso

These questions should be considered when evaluating the adoption of one of
the currently emerging frameworks for supporting the development and operation
of RESTful Web service APIs. Due to space limitations and given the current state
of flux of the technology, we have chosen not to include any assessment on how the
various frameworks listed in Table 2.1 would comply with the features mentioned in
the previous checklist. A very good survey addressing a subset of the features and
of the frameworks has recently appeared in [32].

2.6 Discussion

Service-oriented architectures promote the design of distributed and integrated sys-
tems out of the composition of reusable and autonomous services [9, 18]. The goal is
not only to reduce integration costs through the standardization of interface contracts
and the interoperability of middleware tools [2], but also to lower the efforts needed
to manage the evolution of the integrated systems thanks to the loose coupling that
is established among its constituent services. The design constraints of the REST
architectural style help to achieve such quality attributes not only in the context of
the Web but also when applied to the design of Web service APIs. In particular, reuse
[29] and loose coupling [21] are emphasized by employing a uniform interface for
all elements within the same architecture; performance and scalability are supported
by ensuring the visibility of the interactions, which are kept stateless, and introduc-
ing intermediary caching layers where appropriate; interoperability is fostered by
the wide-reaching standardization of the underlying technologies (i.e., HTTP, URIs,
SSL) as well as the opportunity for dynamic negotiation of the most understand-
able representation format; reliability is enhanced through the use of idempotent
interactions, which can be automatically retried in case of failures.

In the context of service oriented architectures, REST promotes the use of a novel
(or different) kind of software connector to coordinate the interactions between a
set of distributed services. As opposed to traditional bus connectors for services
which enable to use primitives such as synchronous remote procedure calls (RPC)
or asynchronous messaging (à la publish/subscribe), REST resources enable the
reliable transfer and sharing of state between multiple services. As illustrated in this
chapter’s example, the state of a poll resource can be shared by multiple participants
by means of its resource identifier. By initializing a new poll, one client can post
information—literally on the Web—with the intention of sharing this information
with other clients, which can then manipulate it to find an agreement. Whereas each
interaction between the client and the resource makes use of synchronous HTTP
request/response rounds, the overall end-to-end interaction between multiple clients
mediated by the resource is completely asynchronous. As long as the various clients
can discover the identifier of the shared resource, they can exchange information
through it without ever being directly in contact with one another. To this extent,
REST introduces a different interaction style between services that is more similar
to the one enabled by a blackboard or a tuple-space software connector, rather than

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 49

a messaging and publish/subscribe system used in most traditional service-oriented
architectures.

2.7 Conclusion

The Web can be seen as an existence proof that it is known how to build highly
scalable, decentralized and loosely coupled distributed systems. The architectural
principles explaining how the Web works can thus be adopted to build integrated,
service-oriented systems that could also be expected to feature similar quality
attributes. This is the claim of RESTful Web services, which advocate the correct and
complete use of the HTTP protocol for the design and the delivery of Web service
APIs. Over time a number of patterns have appeared to complement the basic guid-
ance found within the original design constraints of the REST architectural style.
These patterns describe conventional solutions for specific design problems within
the context of the existing standard HTTP protocol. From the technology perspective,
a clear need for supporting the automated development and hosting of RESTful Web
services has been addressed by the growing number of emerging frameworks with
variable degrees of stability and maturity.

2.8 More information

In addition to the original formulation of REST in Dr. Fielding’s dissertation [11],
more information about REST and RESTful Web services can be found in several
books that have been published on the subject in the past few years. Richardson
and Ruby [24] introduces the term RESTful Web services; Allamaraju [1] provides
a collection of best practices explaining how to make correct usage of the HTTP
protocol; Webber et al. [30] gives an extensive and well written discussion on how
to use the Web as an integration platform; Tilkov [25] has a similar goal but targets
the German-speaking audience; Wilde and Pautasso [31] is a collection of research-
oriented, application-oriented and practice-oriented writings on REST; Amundson
[3] promotes the term Hypermedia API, focusing on the least known aspects of REST.
Erl et al. [10] gives an in-depth discussion of the relationship between SOA and REST.
More design patterns for RESTful Web services can be found in Daigneau [7].

Acknowledgments Many thanks to Erik Wilde for all the help in preparing and running four
editions of a successful WWW and ICWE tutorial on RESTful Web Services.

50 C. Pautasso

References

1. Allamaraju, S.: RESTful Web Services Cookbook. O’Reilly and Associates Sebastopol,
California (2010)

2. Alonso, G.: Myths around web services. Bull. Tech. Committee Data Eng 25(4), 3–9 (2002)
3. Amundsen, M.: Building Hypermedia APIs with HTML5 and Node. O’Reilly, USA (2011)
4. Berners-Lee, T.: Long live the web. Sci. Am. (12) (2010)
5. Berners-Lee, T., Cailliau, R., Luotonen, A., Frystyk Nielsen, H., Secret, A.: The world wide

web. Communications of the ACM 37(8), 76–82 (1994). doi:10.1145/179606.179671
6. Berners-Lee, T., Fischetti, M., Dertouzos, M.: Weaving the Web. Harper Collins, San Francisco

(1999)
7. Daigneau, R.: Service Design Patterns: Fundamental Design Solutions for SOAP/WSDL and

RESTful Web Services. Addison Wesley, Upper Saddle River (2011)
8. Dusseault, L., Snell, J.M.: Patch method. http. Internet RFC 5789 (2010)
9. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall, Upper

Saddle River (2005)
10. Erl, T., Carlyle, B., Pautasso, C., Balasubramanian, R.: SOA with REST: Principles, Patterns

and Constraints for Building Enterprise Solutions with REST. Prentice Hall, Upper Saddle
River (2012)

11. Fielding, R.T.: Architectural styles and the design of network-based software architectures.
Ph.D. thesis, University of California, Irvine, Irvine, California (2000)

12. Fielding, R.T., Gettys, J., Mogul, J.C., Frystyk Nielsen, H., Masinter, L., Leach, P.J., Berners-
Lee, T.: Hypertext transfer protocol. http/1.1. Internet RFC 2616 (1999)

13. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans.
Internet Technol. 2(2), 115–150 (2002). doi:10.1145/337180.337228

14. Goland, Y.Y., Whitehead, E.J., Faizi, A., Carter, S., Jensen, D.: Http extensions for distributed
authoring—webdav. Internet RFC 2518 (1999)

15. Hadley, M., Sandoz, P.: JAX-RS: The java api for restful web services. Java Specification
Request (JSR) 311 (2009)

16. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web apis on the world wide web.
In: Proceedings of the 8th IEEE European Conference on Web Services (ECOWS2010), pp.
107–114 (2010). doi:10.1109/ECOWS.2010.9

17. Nielsen, J.: User interface directions for the web. Commun. ACM 42(1), 65–72 (1999). doi:10.
1145/291469.291470

18. Papazoglou, M.P., van den Heuvel, W.J.: Service oriented architectures: approaches, technolo-
gies and research issues. VLDB J. 16, 389–415 (2007)

19. Parastatidis, S., Webber, J., Silveira, G., Robinson, I.: The role of hypermedia in distributed
system development. In: Pautasso et al. [21], pp. 16–22. doi:10.1145/1798354.1798379

20. Pautasso, C., Wilde, E., Marinos, A. (eds.): First International Workshop on RESTful Design
(WS-REST 2010). Raleigh, North Carolina (2010)

21. Pautasso, C., Wilde, E.: Why is the web loosely coupled? a multi-faceted metric for service
design. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) 18th International World
Wide Web Conference, pp. 911–920. ACM Press, Madrid, Spain (2009)

22. Pautasso, C., Zimmermann, O., Leymann, F.: Restful web services vs. "big" web services:
Making the right architectural decision. In: Huai, J., Chen, R., Hon, H.W., Liu, Y., Ma, W.Y.,
Tomkins, A., Zhang X. (eds.) 17th International World Wide Web Conference, pp. 805–814.
ACM Press, Beijing, China (2008)

23. Richardson, L.: Developers like hypermedia, but they don’t like web browsers. In: Pautasso et
al. [21], pp. 4–9. doi:10.1145/1798354.1798377

24. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly & Associates, Sebastopol (2007)
25. Tilkov, S.: REST und HTTP: Einsatz der Architektur des Web für Integrationsszenarien.

dpunkt.verlag, Heidelberg, Germany (2009)
26. Tilkov, S.: REST litmus test for web frameworks (2010). http://www.innoq.com/blog/st/2010/

07/rest_litmus_test_for_web_frame.html

http://dx.doi.org/10.1145/179606.179671
http://dx.doi.org/10.1145/337180.337228
http://dx.doi.org/10.1109/ECOWS.2010.9
http://dx.doi.org/10.1145/291469.291470
http://dx.doi.org/10.1145/291469.291470
http://dx.doi.org/10.1145/1798354.1798379
http://dx.doi.org/10.1145/1798354.1798377
http://www.innoq.com/blog/st/2010/07/rest_litmus_test_for_web_frame.html
http://www.innoq.com/blog/st/2010/07/rest_litmus_test_for_web_frame.html

2 RESTful Web Services: Principles, Patterns, Emerging Technologies 51

27. Vinoski, S.: Restful web services development checklist. IEEE Internet Comput. 12(6), 94–96
(2008). doi:10.1109/MIC.2008.130

28. Vinoski, S.: Rpc and rest: Dilemma, disruption, and displacement. IEEE Internet Comput.
12(5), 92–95 (2008)

29. Vinoski, S.: Serendipitous reuse. IEEE Internet Comput. 12(1), 84–87 (2008). doi:10.1109/
MIC.2008.20

30. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and Systems
Architecture. O’Reilly & Associates, Sebastopol (2010)

31. Wilde, E., Pautasso, C. (eds.): REST: From Research to Practice. Springer, Heidelberg (2011)
32. Zuzak, I., Schreier, S.: Arrested development: guidelines for designing REST frameworks.

Internet Comput. 16(4), 26–35 (2012)

http://dx.doi.org/10.1109/MIC.2008.130
http://dx.doi.org/10.1109/MIC.2008.20
http://dx.doi.org/10.1109/MIC.2008.20

Chapter 3
Conceptual Design of Sound, Custom
Composition Languages

Stefano Soi, Florian Daniel and Fabio Casati

Abstract Service composition, web mashups, and business process modeling are
based on the composition and reuse of existing functionalities, user interfaces, or
tasks. Composition tools typically come with their own, purposely built composi-
tion languages, based on composition techniques like data flow or control flow, and
only with minor distinguishing features—besides the different syntax. Yet, all these
composition languages are developed from scratch, without reference specifications
(e.g., XML schemas), and by reasoning in terms of low-level language constructs.
That is, there is neither reuse nor design support in the development of custom com-
position languages. We propose a conceptual design technique for the construction
of custom composition languages that is based on a generic composition reference
model and that fosters reuse. The approach is based on the abstraction of common
composition techniques into high-level language features, a set of reference speci-
fications for each feature, and the assembling of features into custom languages by
guaranteeing their soundness. We specifically focus on mashup languages.

3.1 Introduction

The proliferation of composition instruments like mashup platforms or web service
composition environments, which allow one to integrate Web-accessible APIs and
data into value-adding, composite applications or services, also led to the proliferation

S. Soi (B) · F. Daniel · F. Casati
University of Trento, Via Sommarive 5, 38123 Trento, Italy
e-mail: soi@disi.unitn.it

F. Casati
e-mail: casati@disi.unitn.it

F. Daniel
Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, Povo, Trento, Italy
e-mail: daniel@disi.unitn.it

A. Bouguettaya et al. (eds.), Web Services Foundations, 53
DOI: 10.1007/978-1-4614-7518-7_3,
© Springer Science+Business Media New York 2014

54 S. Soi et al.

of respective composition languages. Depending on the type of API or data source
(we call them collectively components), the type of application or service (e.g., data
mashup vs. UI mashup vs. service composition, and similar), and the target user of
the application or service, composition languages differ in the features they offer to
the developer—not only in their syntax. While in many cases language differences
among tools actually don’t seem to be necessary, in other cases these differences
may indeed “make the difference”. This is, for instance, the case of domain-specific
mashup platforms [1], which aim to provide more effective development support
(compared to generic tools) by tailoring their composition language to a specific
domain and its very own needs. That is, despite the existence of standard languages
like BPEL, there are good reasons for having different languages for different uses
and different users.

Designing a composition language is however not an easy task. There are lots of
conceptual and technological choices to be made, such as (i) which components to
support (e.g., SOAP services, RESTful services, UI widgets, or proprietary compo-
nent technologies); (ii) which composition logic to adopt (e.g., event-based, control
flow, data flow, blackboard-like data exchange, and so on); (iii) which data integra-
tion capabilities to support (e.g., parameter mapping, template-based transforma-
tions, scripts, etc.); and (iv) which presentation features to provide, if any (e.g., UI
templates, UI widgets, single pages, multiple pages). All these choices do not only
affect the structure of the composition language, but eventually they determine the
complexity and viability of the composition platform built on top. A careless selec-
tion of features and constructs inevitably results in inconsistent languages and tools.
Even worse, oftentimes developers are not even aware of which choices need to be
made and which options are available, or they do not understand which implications
an individual choice has on another choice. For example, it does not make sense
to support both control flow and data flow based composition logics in one and a
same language, as both paradigms specify the order in which component operations
are to be invoked. The former explicitly defines this order independently of how
data is passed from one component to another; the latter defines the order implicitly
focusing instead on how data is passed among components. Having both together
could thus lead to duplicate—possibly inconsistent—definitions of the operations’
invocation order.

Recognizing this difficulty, which we experience ourselves in the development
of our mashup tools, with this paper we would like to lay the foundation for the
conceptual design of custom composition languages for mashup tools, an approach
that aims to modularize and reuse language construction knowledge. The idea is to
enable a developer to reason at a high level of abstraction about the composition
language he would like to obtain and to allow him to interactively construct his
language by specifying the set of composition features that characterize his target
language—everything by guaranteeing the soundness, i.e., consistency, of the final
result. With the help of a hosted design tool, we would like to provide custom com-
position language design as a service and equip the design tool with an according,
hosted runtime environment (an execution engine) that is able to execute composi-
tions/mashups expressed in any of the languages constructed with the tool. The final

3 Conceptual Design of Sound, Custom Composition Languages 55

objective is very ambitious. The approach is to start with a set of core functionalities
and to extend this set over time as new requirements emerge. The contributions we
provide in this paper are:

• We provide a comprehensive conceptualization of the most important composition
features that characterize todays most prominent composition languages.
• We derive a generic, extensible composition language meta-model, which expresses

how the identified features can be used together for the construction of custom
composition languages.
• We modularize the identified composition features into reusable language pat-

terns, and equip the patterns with a simple logic-based language to express feature
composition constraints and to guarantee consistency.
• We generate custom composition languages and according custom component

description languages from the developer’s selection of composition features.

The structure of the remainder of the paper is as follows. Next, we provide an
example scenario and some background knowledge on composition language fea-
tures. Then, in Sect. 3.4, we describe key requirements and our problem statement.
In Sect. 3.5, we outline our approach. In Sect. 3.6, we describe our generic composi-
tion language meta-model, and in Sect. 3.7 we describe the structure of composition
features. In Sect. 3.8 we show two composition language definition examples, in
Sect. 3.9 we discuss related works and in Sect. 3.10 we conclude.

3.2 Scenario

Let’s assume we need to develop a custom composition language with specific prop-
erties. Specifically, let’s assume we want to develop a mashup language presenting
the same characteristics of the language used by the mashArt mashup platform [5],
which we developed from scratch in the context of the mashArt project. A simple
example of a composition instance that the language must be able to support is the
one presented in Fig. 3.1: we want to allow any user to search for a given—user-
selected—object in a specific—user-selected—geographical area and to get a list of
results. Then, by selecting one of the results the user will see its location displayed
on a map and will be provided with the traffic information related to the geograph-
ical area around this location. For example, a user must be able to look for hotels
in Miami, get a list of hotels in the city and, when selecting one of them, visualize
its location on a map and have the traffic information regarding the area around the
selected hotel. This example shows the need for the integration and synchronization
of data, business logic and user interfaces.

Concretely, we need a mashup language allowing one to integrate data, application
logic (e.g., through Web services) and graphical UI components. This is what we
called universal integration in the context of the mashArt project. Moreover, as
shown in Fig. 3.1, the language has to support the presentation of the UI components
inside a single Web page, manage their synchronization (considering the event-based

56 S. Soi et al.

Fig. 3.1 Example of mashup application the mashArt language must support

nature of UIs), and allow for the explicit definition of the data flow schema enabling
components to exchange data. Propagating data among components may require
conditional execution of flows, as well as branching and merging of parallel flows.
UI components, which are implemented in JavaScript, can possibly have parameters
for their configuration and one or more operations including an arbitrary number of
input and output parameters. Web services are typically SOAP-based or RESTful.
The resulting mashups are accessible to any user in a single-user fashion; thus, no
user management or collaboration support by the language is needed.

3.3 Background: Software Composition

The scenario shows that mashup development is an intricate software integration
and composition endeavor. As highlighted in [1], next to the integration of data
and application logic, mashups also feature integration of user interface, i.e., UI
integration. Figure 3.2 graphically illustrates the situation from a conceptual point of
view and contextualizes the three integration layers in the domain of the Web with
its very own component technologies

Data level integration. When the focus is on the integration of data, we have spe-
cific needs to address. Typically, solutions for retrieving, combining, splitting and
transforming data are needed. In addition, when more than one entity is involved
in the data integration process data exchange among the involved parties may be
needed. In the context of Web mashups, we have specific conditions and constraints.

3 Conceptual Design of Sound, Custom Composition Languages 57

ApplicationApplication

Presentation

Business Logic

Data Source 2Data Source 1

Data Integration

Application

Presentation

Data Source 2Data Source 1

Business Logic Integration

Bus. Logic 1 Bus. Logic 2

Data Source 2Data Source 1

Bus. Logic 1 Bus. Logic 2
Presentation 1 Presentation 2

Presentation Integration

MashupMashup

Presentation

Business Logic

Atom FeedRSS Feed

Data Integration

Mashup

Presentation

Business Logic Integration

SAOP WS REST WS
W3C Widget

OpenSocial
Gadget

Presentation Integration

(a) (b) (c)

(d) (e) (f)

Fig. 3.2 The different levels of integration in general and in the specific context of web mashups

Data sources are typically not fully accessible, i.e., the standard way of retrieving
data on the Web is through Web services or Web APIs. This means that we can only
access the data provided by the service and we cannot make arbitrary complex, free
queries over the data source, as we could do with conventional databases. The key
problem of data integration is understanding which data items are semantically sim-
ilar to which other data items and solving possible formatting differences. Mashups
aren’t any different. They usually integrate data coming from completely independent
sources, which were not designed to work together; thus, data format and structure
mismatches must be solved. Mechanisms to address these kinds of problems span
from simple data mapping solutions, allowing one, e.g., to map part of the output of
one service onto (part of) the input of another service, to more powerful solutions
supporting data transformation languages and processors (like, e.g., XSLT). On the
other side, though, on the Web there are official and de-facto standards that are often-
times adopted (e.g., RSS and Atom feeds, XML and JSON formats), which simplify
data integration in that they standardize the syntax and partly also the semantics of
data (e.g., RSS and Atom).

In the mashup context, considering also the usual intent to keep the tools’ complex-
ity as low as possible, a well-known and widely adopted paradigm for data integration
is data flow integration. Specifying a data flow among components means explicitly
expressing (e.g., visually modeling) how data flows from one component to one or
more other components, thereby also stating an order of invocation of components
(the flow) and respective activation conditions (the availability of input data). In other
words, a data flow based composition logic implies also a control flow logic, i.e., an
execution order of components. With the term component we specifically refer to
software artifacts (e.g., Web services) exposing public functions (also called oper-
ations) providing for data provisioning or processing. Data travelling along a flow
are visible only to the component involved in the flow. Data flows allow the easy
implementation of data mappings, e.g., by creating separate data flow connections

58 S. Soi et al.

for each communicating output-input pair. Features like data aggregation, splitting or
transformation can be supported by the composition language or through dedicated
components offering these kinds of functionalities as a service.

The data flow paradigm is, for instance, the solution adopted also by Yahoo! Pipes
(http://pipes.yahoo.com/pipes/), a popular example of data mashup tool. Pipes allows
users to mash up components retrieving and processing data (typically structured as
data feeds) and to set up data flows (so-called pipes), allowing the produced data to
flow through the composition.

Business logic level integration. When the main target is instead the integration
at the business logic level, the key requirement is orchestrating the services imple-
menting the different pieces of business logic to be integrated. In concrete terms, the
developer must be able to explicitly define the order in which component operations
are to be triggered. The most suitable composition paradigm supporting these fea-
tures is the control flow paradigm. Specifying a control flow means specifying when
to enact which component inside a composition. Doing so may require the defini-
tion of conditional flows, of flow branching (i.e., parallel flows) and flow merging
(i.e., parallel flows synchronization).

Examples of pure control flow based compositions can be developed, e.g., in
BPMN, which offers many control flow related constructs including conditions,
loops, parallel flows and so forth. Although the focus of the control flow paradigm is
on the order of tasks or components, executing them usually requires complementary
data passing mechanisms to feed them with the necessary inputs. In combination with
the control flow paradigm, the blackboard approach, i.e., global variables holding
data produce and consumed at runtime, is typically used for this (note that the “data
flow” constructs of BPMN do not express a data flow based composition logic, but
rather the writing and reading of business data). This scheme is also used in the BPEL
language, where the main target is the integration of SOAP-based Web services.

Presentation level integration. As mentioned, in other cases the main focus is on
the integration of user interfaces at the presentation layer. In this case the composition
language must support the graphical representation of UI components with suitable
constructs. Also in this case, our focus on Web mashups sets specific constraints.
UI presentation takes place inside the browser, normally in standard HTML pages.
As shown by the example of Fig. 3.1, typically a Web page may contain one or
more UI components. UI components are software artifacts that have two main
functions: show a graphical user interface and provide users with a point of direct
interaction with the composition through their interfaces. UI components usually
require synchronization, in order to have them show related content. Typically the
interaction mechanism implementing UI synchronization is event-based, since UI
development is intrinsically event-based and it is just not possible to predict when
and in which order user interactions will take place (which makes asynchronous
events a good instrument to manage communication among components). Support
for data passing among UI components may also be needed and can be implemented
following either the data flow or the blackboard paradigms.

http://pipes.yahoo.com/pipes/

3 Conceptual Design of Sound, Custom Composition Languages 59

Concretely, in the mashup world, languages supporting presentation features typi-
cally include two additional concepts to lay out UI components: pages and viewports.
A viewport is a placeholder where a UI component is hosted and rendered (e.g., a div
or iframe element contained in an HTML page). A page can contain one or more
viewports, allowing for the presentation of integrated user interfaces. These concepts
are present in the models of several mashup tools, e.g., mashArt and JackBe Presto,
as well as in the W3C Widgets family of specifications (where the term viewport
itself comes from).

Having user interfaces oriented toward human users opens to the introduction of
other composition features, such as user authorization and management mechanisms
in the case of mashups with multiple pages. Individual pages may be assigned to
specific user roles, allowing for the definition of multi-user, collaborative mashup
applications where several users can work on a shared mashup instance acting on
the pages they have access to. This is, for instance, one of the main features in the
MarcoFlow platform [2].

3.4 Requirements and Problem Statement

What does it now mean to develop a custom composition language for mashup design
and to support its execution? In order to answer this question, first of all we define a
custom composition language as a composition language that is specifically tailored
to a given combination of component types and a target application/service type
(mashup type). We represent a language (we use the terms language and composition
language interchangeably) by means of its meta-model or XSD schema. Standard
languages like BPEL [7] or BPMN [8] are very focused languages that are generally
not able to satisfy the requirements of a mashup platform, since mashups typically
go much beyond the orchestration of SOAP web services or human tasks.

In order to develop a custom language, we generally have different design options
that allow us to achieve the desired expressive power:

• Development from scratch: This is the current practice that we want to prevent.
Developing a language from scratch means designing the language without any
reference by looking at the composition problem to be solved and by deriving
suitable, ad-hoc composition constructs. This task is more complex than it looks
like and often leads to poorly designed, inconsistent languages, which can only be
run by specifically tailored runtime environments.
• Selection of off-the-shelf language: This is the other, ideal extreme, in which for

each component and mashup type combination we have a pre-defined language that
supports all features of the given combination. Implementing all these languages
is not feasible, in that the number of potential languages (and execution engines)
grows combinatorially with the number of component types and features of the
target mashups. Also, the introduction of a new component type or feature would
require the update of the whole languages library.

60 S. Soi et al.

• Extension of existing language: A practice that works in many situations is to take
an existing language, e.g., BPEL, and to extend it with new constructs and seman-
tics, so as to support custom features. Starting from a known language eases the
adoption of the extended language, but it is typically hard to identify a suitable
language, and changes to the original language may involuntarily introduce incon-
sistencies into the custom extension. Even with small extensions, the language’s
own engine can usually no longer be used for execution.
• Customization of reference language: Another option is to provide a set of

reference languages with predefined extension mechanisms. For instance, we
could have reference languages for data-flow-based, control-flow-based, UI-based
mashups, and combinations thereof. Yet, it is hard to predict all possible
customization requirements and to maintain the library of reference languages
and execution engines up to date with changing technologies and applications.
• Modular composition of language: Finally, we can provide a set of basic language

features, such as control flow, data flow, UI synchronization, and the like and
allow the developer to compose his own language. Newly emerging features can
be added to the feature library without invalidating prior language specifications.
Given a library of language features, it suffices to implement only one execution
engine that is able to understand all the features, in order to be able to execute a
large set of custom mashups.

In this paper we specifically focus on the problem of developing custom languages,
while our vision is also to provide runtime support for custom languages; the modular
composition approach seems therefore most suitable. But which is a good granularity
for reusable language modules? We again have several options:

• Individual language constructs (with the term construct we generically refer to
both meta-model and XSD constructs): Constructs like components, pages, ports,
inputs, outputs, connectors, and similar are the basic ingredients for every lan-
guage. Yet, constructs represent the lowest level of granularity of a language. It is
therefore hard to encode reusable language construction knowledge, if not in the
form of a library of typical composition constructs. How to use each construct,
in which combination with other constructs, for which typical modeling situation,
and so on can however not be expressed.
• Composite constructs: Modules may express composite constructs, such as the

structured elements sequence, parallel flow, and loop, typically used for the con-
struction of well-formed models. This technique aids the development of compo-
sition languages that are sound, but it is still very syntactic and does not support
reuse of more complex language construction knowledge.
• Language patterns: Modules may also express more complex usage patterns of

constructs that represent semantically meaningful composition language proper-
ties, such as control flow, data flow, UI synchronization, component types, asyn-
chronous versus synchronous communications, etc. If such patterns are further
equipped with suitable language composition constraints, it is also possible to
guarantee their sound composition.

3 Conceptual Design of Sound, Custom Composition Languages 61

Given our experience with the reuse of modeling knowledge [3], we advocate
the use of semantically meaningful language patterns to represent reusable language
composition knowledge. We call these patterns language features, since they allow us
to represent composition features in an abstract fashion. The question that remains to
be answered is therefore which language features must be provided, so as to support
the construction of a reasonably wide set of possible languages. Looking at set of
existing mashup approaches [4–6] and standard composition languages [7, 8] and
without trying to crack the whole problem at once, we identify five key aspects
(groups of features) that influence the expressive power of a composition language:

1. Component types: First and foremost, the object of the composition, i.e., the types
of components, influences the whole logic of the language most prominently.
There are many possible component technologies to take into account, such as
SOAP web services, RESTful services, UI widgets, JavaScript classes, plain
XML or CSV data sources, and similar. Composing UI widgets is, for example,
fundamentally different from orchestrating web services.

2. Control flow logic: Next, it is important to define how the computation of a
composite application or service is enacted, that is, how and when individual
components are processed. Components may be enacted in parallel (e.g., in the
case of simple UI widgets placed in a web page), they may be executed sequen-
tially, their execution may be subject to conditions, and so on. The possibility
to integrate heterogeneous component technologies (e.g., UI widgets and web
services) further increases the number of available control flow options, if the
control flow paradigm is required at all.

3. Data passing logic: In addition to the control flow logic, the language must
be able to express how data is propagated among components. While data flow
paradigms typically bring together aspects of both control flow and data passing,
other paradigms like pure control flow or UI synchronization may rather adopt
a blackboard approach with global variables.

4. Presentation logic: One of the distinguishing features of mashups is that they
also feature integration of user interfaces, not only services and data sources.
This however asks for specific techniques to lay out and render UI elements. For
instance, we may make use of HTML templates with placeholders or we may
have automatic arrangements of UI widgets, there might be the need of special
visualization components for data sources, and so on.

5. Collaboration support: Finally, mashups can be much more than simple, one-
page applications. We can have mashups that implement collaborative business
processes with different actors per task, or we can have mashups that support the
concurrent use of individual pages by multiple users. Supporting these features
requires the possibility to express at least roles of users and to assign them to
pages, while more complex logics can be envisioned.

The problem we want to solve in this paper is to enable developers to design
custom composition languages in an abstract, conceptual fashion, supporting the
five above feature types and guaranteeing that the final languages come without

62 S. Soi et al.

internal inconsistencies, i.e., that they are sound. Our focus is on imperative mashup
languages that can be executed by a mashup engine.

3.5 Approach

Figure 3.3 graphically illustrates how we decompose the problem into artifacts and
how we finally obtain a custom language. The idea is to express a custom composition
language as a set of composition features that give the language its expressive power.
Features come with a set of feature constraints, which express feature compatibili-
ties, conflicts, and subsumptions. For each of the five types of composition features
discussed above, we provide a set of concrete features (we discuss them next). Each
feature has a reference specification, i.e., a pattern of language constructs, which
implements the feature and represents reusable language composition knowledge.
Patterns are based on a generic composition language meta-model. The meta-model
does not yet represent an executable language. It syntactically puts composition con-
structs and features in relation with each other, but it also contains constructs and
features that are not compatible with each other (e.g., control flow and data flow
constructs). The meta-model determines which features are supported and how they
are syntactically integrated; the sensible design of feature constraints provides for
soundness. Hence, given a set of non-conflicting composition features, the custom
composition language is represented by the union of the respective reference speci-
fications. Similarly, we derive a custom component description language, which can
be used as guide for the implementation of components and to describe their external
interfaces.

Fig. 3.3 Conceptual
approach to the develop-
ment of custom composition
languages

Custom composition
language

Custom component
description language

Composition
feature

Feature reference
specification

Generic composition
language meta-model

Generic component
descriptor meta-model

Feature
constraint

supports

Component feature

Control flow feature

1..N

has

0..N

1..N

integrates

1..N

supports

implemented as

1..N 1..N

derives from derives from

0..1 0..1

constrains

based on

Data passing feature

Presentation feature

0..1

Collaboration feature

3 Conceptual Design of Sound, Custom Composition Languages 63

In the following, we first construct the generic meta-model, then we describe
how we define composition features on top using patterns and constraints and how
patterns can be used and integrated for the development of custom languages.

3.6 The Generic Composition Meta-Model

Before going into the details of the language meta-model, we introduce the meta-
meta-model it complies with, as such is also the basis for the final code generation.

3.6.1 Language Meta-Meta-Model

To design the meta-model for the composition languages, we use a notation and
modeling language derived from the UML Class Diagram with some peculiarities.
Specifically, we impose some constraints on the allowed types of modeling con-
structs, tailoring them to the expressive power required by our modeling needs. As
detailed in Sect. 3.6.3, applying these constraints allows for an unambiguous trans-
lation of the meta-model into a formal—and machine-readable—language schema
definition, which is then needed for the definition of other artifacts of the system. In
addition, using this constrained modeling language also opens to future extensions
of the meta-model by third parties, making them aware of the implications of each
model extension or modification on the resulting language definition (since determin-
istic translation rules are defined). Concretely, as defined by the meta-meta-model
depicted in Fig. 3.4, the meta-model may consist of:

• Entities. Represent main constructs of the composition language. They are identi-
fied by a name.
• Attributes. Each entity can have a set of related attributes characterizing it.

Attributes have a name and a type. The type can be stated through its name or

Fig. 3.4 Composition lan-
guage meta-meta-model Name: String

Entity
Name: String
Type: String

Attribute

Association

sourcetarget

Composition
Name: String
Uni-directional

has

MinValue: Integer
MaxValue: Integer

Cardinality

source 0..1

1

0..N

1 1

target

64 S. Soi et al.

can be explicitly defined in form of enumeration of possible values. To be noticed,
each entity in our meta-model must contain an attribute named id, representing a
unique identifier for the instances of the entity used to reference them.
• Associations. Relations among the entities are expressed through associations.

Only two possible types of associations are needed: composition and uni-
directional association. The composition is used to state that an entity is contained
in another one, while the uni-directional association states that an entity simply
refers to another entity, but it is not contained in it.
• Cardinalities. Represent associations’ multiplicities. The target cardinality repre-

sents the multiplicity of the association when reading it following the specified
association direction, while the source cardinality represents the multiplicity when
reading the association in the opposite direction.

3.6.2 The Generic Meta-Model

In essence, our approach is to compose composition languages out of composi-
tion features represented as language patterns. Just like in any other composition
approach, the core problem is therefore the identification and formalization of the
“components” to work with. In our case, these components are language patterns
(e.g., XSD fragments). However, these patterns have a distinctive feature that makes
our problem very different form generic component-based development (next to the
fact that we do not handle software modules but document/model fragments): unlike,
for example, web services, language patterns are not independent. That is, the ref-
erence specifications of different composition features may overlap (e.g., interacting
with a SOAP service is very similar to interacting with a RESTful service), include
other features (e.g., the data flow paradigm generally subsumes the presence of data
source components), or exclude others (e.g., the data flow paradigm does not make
use of variables). This asks for a thorough design of the language patterns and their
mutual interaction points, a task that we achieve by mapping each composition fea-
ture into the generic composition meta-model (see Fig. 3.5), which (i) integrates all
basic language constructs syntactically, (ii) allows us to define composition features
as language fragments on top, and (iii) guarantees that fragments are compatible by
design.

We have identified several dozens of composition features that can be used to
describe the expressive power of mashup languages. In the following paragraphs, we
overview the features and provide some examples. For space reasons, however, we
refer the reader to an online resource (http://goo.gl/hfkLO) for the list of supported
features and respective details. The list of identified features comes without the claim
of completeness and is meant to grow over time; however, as we will see in Sect. 3.8,
we are already able to express a fairly complex set of mashup languages.

Component features. They specify which kinds of components—in terms of tech-
nologies and communication patterns—the language should support. For instance,

http://goo.gl/hfkLO

3 Conceptual Design of Sound, Custom Composition Languages 65

Control flow

 Component Presentation

Collaboration

Data passing

Id
Name
Type
Reference

Operation

Id
Name
ManualInput
Optional

Input
Parameter

Id
Name

Output
Parameter

Id
Name
ManualInput

Configuration
Parameter

1..N

Name
Mashup

Id
Name

Viewport

Id
Name
URL

Page

Id
Name

User Role

Id
DfConnector

Expression
Language

Condition

Id
Name
Type
DefaultValue

Global Variable

Id
Name
Type
Binding
DescriptorURL

Component

Id
Join

Id
Split

Id
CfConnector

source

0..1 feeds

 1..N

belongsTo

displays

0..1

1

0..1

1

Id
Name
Type
Value

Constant

0..Ntarget

0..N

Id
Name
Definition

Data Type

has

0..1

feeds

0..N

0..N

0..N

0..1

0..N

0..N

0..N

0..N0..N 0..N

has

0..N

1

0..N

0..N

 1..N

0..N

source

source

target

target

1

1

1

1..N

1..N

1

0..N

target

source0..1 0..N

0..1

0..1
0..N

0..N

0..N
0..1

0..1

0..1

0..N

target

source

0..N

0..N

0..N

0..N

0..N

0..N

has 0..N

1

has

1

0..N

0..N

Fig. 3.5 The generic composition meta-model for custom languages. Gray boxes group entities
into feature types. The component group is also used to derive component descriptor languages

a SOAP web service may come with message-based operations of four different
types (request-response, solicit-response, one-way, notification), custom data for-
mats for each input and output message, a service endpoint, and a protocol binding
(e.g., SOAP). We represent such a service in the meta-model as a component that has
a set of operations with different input/output parameter patterns (implementing the
four different operation types), only single input/output parameters per operation to
represent input/output messages, an own data type for each parameter, and respective
binding and endpoint attribute values. Similarly, a W3C UI widget [9] can be seen
as a component with some configuration parameters but without operations, which
can be displayed in a viewport of a page of the mashup.

Analogously, the meta-model so far conciliates the following technologies, which
are the basis of many types of mashups and, as such, widely used and accepted
(component technologies are tracked by the type attribute of the component entity):

• Data source components: RSS feeds, Atom feeds, RESTful data components,
SOAP data components, JavaScript data components.
• Web service components: Atom services, RESTful services, SOAP services,

JavaScript components.
• UI components: W3C UI widgets [9], JavaScript UI components [5] (our own).

66 S. Soi et al.

For each of these component technologies, it is then important to specify which
exact communication patterns the language should support. For instance, the lan-
guage could support only synchronous communications (operations with input and
output parameters), only asynchronous communications (operations with either input
or output parameters), or both. It might be necessary to limit the number of oper-
ations per component (e.g., in Yahoo! Pipes each component corresponds to one
operation) or the number of parameters per operation (like for SOAP services as
described above). All these options can be represented via patterns that suitably set
the relationship cardinalities in the meta-model.

Control flow features. They specify whether the language is control-flow-based
(e.g., BPMN) or not and, if yes, which control flow constructs to support. Sequential
execution can be expressed by connecting operations using control flow connectors
(CfConnetors). Parallel executions are supported via split and join constructs. Each
of these constructs can have one or more conditions, which constrain the control flow
along connectors and, for instance, allow the implementation of conditional control
flow constructs like conditions, conditional split, and conditional joins. Loops can
be implemented by means of conditions and joins. Events for event-based mashups
(e.g., our mashArt platform [5]) are operations with only outputs. Each of these
features can be added to the language by including the respective entities in the
meta-model.

Data passing features. They specify whether the language is data-flow-based or
not and how data is propagated among components. In data-flow-based languages
(e.g., Yahoo! Pipes) it suffices to connect two operations using a data flow connector
(DfConnector), in order to propagate the output of the first operation as input to
the second operation. Implicitly, data flow connectors also determine how compo-
nents are enacted and, hence, do not require any additional control flow construct.
Data flows may however be subject to conditional execution. Control-flow-based
languages, instead, require additional constructs to specify how data are passed
among components. The most common technique is to write/read global variables
(blackboard feature), which are accessible during the execution of a composition
(e.g., as in BPEL). The meta-model represents the writing/reading operations with a
data flow connector between the variable and its target/source parameter. UI-based
mashups, such as widget portals, typically run all widgets in parallel, and data is
passed via global variables or events (operation with only outputs). Configuration
parameters are instead typically set once at the startup of a component (e.g., the
background color of a UI widget); we support this by means of constants. Data pass-
ing may also require mapping output parameters to input parameters, a feature that
can be achieved by specifying data flow connectors between parameters instead of
between operations.

Presentation features. They specify whether the language is UI-based or not and
how UI widgets are laid out into web pages. Unlike service compositions, mashups
typically also come with an own user interface that renders UI components and data
from UI-less components. The minimum support required to express this capability
in the meta-model is represented by the page and viewport entities, which allow the

3 Conceptual Design of Sound, Custom Composition Languages 67

ordering of UI components into pages (HTML web pages) and their rendering in
selected areas inside these pages (typically div or iframe HTML elements). We
assume the HTML pages are given and already linked to each other as necessary.

Collaboration features. They specify whether the language describes single-user
or multi-user mashups and how user roles collaborate. Single-user mashups (the
most common type of mashups) do not require any user management. Multi-user
mashups, instead, may restrict the visibility of individual pages to selected user
roles only. Users may have different views on a mashup (e.g., via different pages) or
they may have the same view (e.g., via the concurrent use of a same page). For the
time being, we start with a simple, role-based user management logic and do not say
anything about how such is implemented, as this is a runtime choice.

The above features and examples show that developing a good generic meta-
model is a trade-off between the simplicity and usability of the final language (the
fewer individual constructs the better) and the ease of mapping features onto the
meta-model (the more constructs the better; in the extreme case, each feature could
have its own construct). The challenge we try to solve in this paper is exactly that
of identifying the right balance between the two, so as to be able to map all relevant
features and to do so in an as elegant as possible fashion from the resulting language
point of view.

3.6.3 Mapping the Generic Meta-Model to XSD

The information represented by the generic meta-model constitutes the basis for the
definition of the feature reference specifications (see Sect. 3.7.1) and is required by
the language generation algorithm (see Sect. 3.7.3). Therefore, we need to serialize
the generic meta-model in a machine-readable format. To this aim, also considering
the context where mashup languages are used (i.e., the Web), we map the meta-
model onto an equivalent XSD definition. As introduced in Sect. 3.6.1, we impose
some simple conventions and constraints to the admitted modeling constructs for the
meta-model so that we can define a set of rules which guarantees an unambiguous
translation of the model.

Figure 3.6 exemplifies how the generic meta-model is translated into an equivalent
XSD definition applying the following translation rules:

• Entities (e.g., page) are translated as XSD elements having the same name of the
entity.
• Entity attributes (e.g., a page’s URL) are translated as XSD attributes of the related

element having the same name of the entity’s attribute.
• Composition associations (e.g., the one having viewport as source and page as

target) are translated defining within the element associated to the target entity
an XSD child element (with zero or more possible occurrences depending on the
specified cardinality) having the name of the source entity (e.g., the element page

68 S. Soi et al.

1..N

Id
Name

Viewport

Id
Name
URL

Page

Id
Name

UserRole

belongsTo

0..N

0..N

Fig. 3.6 Example of translation of a meta-model fragment into XSD

has 1 to N child elements viewport). As shown in the example in the figure, the
child elements are contained and defined within the parent element.
• Uni-directional associations (e.g., the one having page as source and userRole

as target) are translated defining within the element associated to the source
entity an XSD child element (with zero or more possible occurrences depend-
ing on the specified cardinality) having the name of the form “association-
Name_targetEntityName” and including an attribute ref designed to contain
a reference (i.e., the ID) to a target entity instance (e.g., the element page may
have 0 to N child elements belongsTo_userRole). The child elements only refer to
the target entity and do not define it.

Applying the above translation rules to the meta-model presented in Fig. 3.5 we
obtain an equivalent XSD definition that we use as base for the production of the
artifacts and algorithm presented in the next section. The complete schema definition
can be inspected at http://goo.gl/hfkLO.

3.7 Representing and Assembling Composition Features

The meta-model in Fig. 3.5 solves the problem of integrating the composition lan-
guage constructs needed to specify a varied set of composition features. Designing
the meta-model required both the analysis of the features to be supported and knowl-
edge about their implementation in terms of language constructs. We aim to abstract
away from low-level language constructs and represent concrete composition fea-

http://goo.gl/hfkLO

3 Conceptual Design of Sound, Custom Composition Languages 69

tures on top of the generic meta-model so as to allow the language developer to focus
on the selection of features only, in order to design his custom language.

We define a composition feature as f = 〈name, label, desc, spec, Constr〉, where
name is a text label that uniquely identifies the feature (e.g., data_flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.

<feature name="condition" label="Conditions">

<description > Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description >

<specification >

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification >

<constraints >
(control_flow AND blackboard) OR data_flow

</constraints >

</feature>

Listing 3.1 XML reference specification of the condition composition feature

The XML code in Listing 3.1 shows an example of how we serialize, for instance,
the condition feature in our feature knowledge base of the form F = f j . The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, the reference specification
of the feature expresses which specific language constructs—out of all those repre-
sented in the generic meta-model—are needed to implement the feature. From the
XSD representation of the generic meta-model (see Sect. 3.6.3), we identify given
subsets of the schema definition representing semantically meaningful parts of it. An
ID uniquely identifies each of these fragments in the XSD. Second, the feature con-
straints state feature compatibilities or incompatibilities. They are simple Boolean
conditions. We detail these two aspects in the following.

3.7.1 Feature Specification Language

In order for feature specifications to be composable, we adopt a constructive approach
that starts with an empty language specification (we call it the base language),
which contains only the basic XSD structure (e.g., name space definitions and
types) for the language to be generated, and then incrementally adds new constructs
based on the specifications the of selected features. Since a given feature may span
multiple constructs of the meta-model, a feature reference specification generally

70 S. Soi et al.

requires multiple language fragments (identified through manually assigned IDs) to
be included in the final custom language definition. For instance, the specification
of the blackboard feature requires several fragments to be included, e.g., those
related to the specification of the Global Variable construct and those related to the
specification of the DfConnector construct used to connect variables and parameters.
The syntax to require the inclusion of the fragments referenced by a given feature is
as follows:

<include
fragments="[comma separated list of fragments IDs]"
if="[condition]" />

Each feature specification contains one or more include elements that are
composed by an attribute fragments listing the fragments needed to implement
the feature in the custom language XSD definition. The referenced IDs relate to
XSD fragments defining elements, attributes, enumerations and similar. In addi-
tion, the include element may optionally contain an attribute if that can be
used to require a conditional inclusion of the referenced fragment(s). In particu-
lar, the condition can require the selection or non-selection of other features for
the inclusion to be performed (as exemplified in Listing 3.1). The fragments come
with default values for cardinalities (i.e., values for the minOccur and maxOccur
XSD attributes), as specified in the meta-model in Figure 3.5. Some features, such
as the max_1_operation_per_component or the single_page features,
may need to modify them. In order to change cardinality values, we provide a dedi-
cated cardinality setting function with the following syntax:

<setCardinality
element="[elementID]"
minOccurs="[value]"
maxOccurs="[value]" />

The function has three attributes, which allow us to select which XSD element
in the current language specification to modify and which minOccurs and/or
maxOccurs values to assign to the element. It can be noticed that an associa-
tion’s cardinality setting involves only one XSD element. This is because, according
to our translation rules, associations are translated in one element that is nested into
the associated element and, therefore, the cardinality setting needs only to set the
number of possible occurrences of one element, i.e., the nested one.

3.7.2 Feature Constraints Language

Feature constraints are Boolean conditions that check (i) whether all features required
by a given selection of features are contained in the selection and (ii) whether the
selection contains conflicting features. Feature constraints therefore guarantee for the
semantic soundness of a selection of features. Feature constraints are of the form:
constr ::= fbool | ¬constr | constr op constr.
fbool ∈ FB is a Boolean variable representing the selection (or not) of a feature,

3 Conceptual Design of Sound, Custom Composition Languages 71

FB = {fb j |fb j = 〈name, val〉, name = f j .name, f j ∈ F, val = true|false} is the
set of Boolean variables representing all features, and op ∈ {∧,∨,⊕} is one of the
logical AND, OR, and XOR operators.

For example, in Listing 3.1 we have the constraint (control_flow AND
blackboard) OR data_flow, since for the definition of conditions it is
required the presence of some data passing mechanism in the mashup model.
This is an example of constraint assessing the presence of the features required
for the selected one. An example of constraint preventing conflicting features
is the one associated to the feature max_0_operation_per_component
(e.g., used for simple UI widget portals), which may state: NOT(data_flow OR
control_flow). It would not make sense to support any of these paradigms in a
language that by definition does not allow communication among components.

In addition to assigning constraints to individual features, we assign a set of base
constraints to the base language, in order to enforce global constraints that guarantee
the integrity of the overall language. For instance, the constraint (control_flow
XOR data_flow) OR user_interface asks for the selection of at least one
basic mashup paradigm (e.g., a simple state machine or UI widget portal).

3.7.3 Language Generation Algorithm

Algorithm 1 summarizes the language generation logic. It takes as input a set of fea-
ture names and produces as output either an according combination of composition
and component description languages or null (in case of constraint conflicts). After
initializing the variables holding the language to be generated and the constraints
to be evaluated (lines 2–3), the algorithm loads the complete feature specifica-
tions of each feature in input from the feature knowledge base (line 4) and sets
the respective Boolean variables to true and all the remaining variables (those asso-
ciated to non-selected features) to false (lines 5–6). This enables the processing of
the checkSoundness function, which checks whether all the constraints associ-
ated to the selected features are satisfied. For this purpose, the function evaluates the
Boolean formula contained in CONSTR based on the variable values assigned in lines
5–6. If the evaluation returns false, the function stops processing and returns null
(lines 7–10). Otherwise, the algorithm constructs the list of IDs of all the fragments
required by the selected features and the set of setCardinality instructions needed
to update the default cardinalities (lines 11–13). Based on these sets the algorithm
constructs the actual output composition language including all the fragments in the
FRAGMENTS set and then updates the cardinalities of the elements of the result-
ing composition language based on the instructions contained in the SETCARDINS
set (lines 14–15). Finally the algorithm returns the composition language definition
and the component description language definition, which is extracted by the former
(line 17).

Our current prototype of the language generator comes as a simple command line
tool, which takes as input a text file with the list of desired language features and,

72 S. Soi et al.

if successful, produces as output two XSD files for the composition and component
description languages. The feature knowledge base F is a plain XML file, which can
easily be extended with new features.

3.8 Examples

In the following sections, we apply the conceptual design approach introduced above
to two concrete examples with different requirements.

3.8.1 mashArt

In Sect. 3.2, we stated a set of requirements for the mashArt composition language.
In the following, starting from these requirements, we derive the set of features
(emphasized in Courier font in the following paragraphs) to be given as input to
our generation algorithm to produce a mashup language supporting our scenario.

As said, mashArt aims at integrating data, business logic and user interfaces.
Therefore, data_component, service_component and ui_component
features are required to support all the different types of needed components. All
the components must be implemented through JavaScript, therefore the features

3 Conceptual Design of Sound, Custom Composition Languages 73

Id
Name
Type
Reference

Operation

Id
Name
Optional

Input
Parameter

Id
Name

Output
Parameter

Id
Name

Configuration
Parameter

Name
Mashup

Id
DfConnectorId

Name
Type
Binding
Endpoint

Component

0..1 feeds

 1..N

1

1

Id
Name
Value

Constant

Id
Name
Definition

Data Type

has

0..1

0..N 0..N

has

0..N

1

1..N

0..N

 0..N

0..N
0..N

target

source0..1 0..N

0..1

0..N

has

1

0..N

0..N

1

has

Type = data_component
 | service_component
 | ui_component ;

Binding = javascript;

Type = request_response
 | one_way

notification;

1..N
Id
Name

Viewport
Id
Name
URL

Page
displays

0..1

1..N

Fig. 3.7 A composition language meta-model supporting the discussed features set

javascript_for_data,javascript_for_service andjavascript_
for_ui have to be included. In particular, data components must support only
request_response_for_data operations, service components both
request_response_for_service, one_way_for_service and
notification_for_serviceoperations and UI components onlyone_way_
for_ui and notification_for_ui operations. The requirements do not
include isolated UI components (i.e., widgets), so all components will have minimum
one operation, while no maximum number of operations per component is required
(max_N_operation_per_component). Also the number of input and output
parameters per operation should not be constrained to any limit (max_N_input_
param_per_oper and max_N_output_param_per_operation). Clearly,
it is also required to support the display and layout of UI components, which is ful-
filled by the user_interface feature. In particular, we require compositions to
be constituted by a single_page. The components’ intercommunication, accord-
ing to the requirements, must be supported through the data_flow mechanisms.
In addition, merge and branch features are explicitly required.

The above paragraph provides the list of features supporting our scenario (the
only design artifact to be produced) to be given as input to the language gener-
ation algorithm shown in Algorithm 1. Doing so produces an XSD specification
for the composition language that is equivalent to the meta-model illustrated in
Fig. 3.7.

For space reasons we cannot include the whole XSD specification, which can
be inspected at http://goo.gl/hfkLO. Listing 3.2, though, provides an excerpt of the
XML definition—compliant to this specification—representing the example scenario
introduced in Sect. 3.2 (i.e., geo-localized search with traffic information).

http://goo.gl/hfkLO

74 S. Soi et al.

<mashup name="GeoLocalSearchWithTraffic">
<component id="C1" name="Yahoo Local Search" type="ui" binding="

javascript"
endpoint="http: //...">

[...]
<operation id="OP2 -1" name="Item Selected"

type="notification" reference="itemSelected">
<output id="O2 -1" name="Latitude" dataType="double"/>
<output id="O3 -1" name="Longitude" dataType="double"/>
<output id="O4 -1" name="Zoom Level" dataType="int"/>
<output id="O5 -1" name="Label" dataType="string"/>

</operation>
</component>

<component id="C2" name="Google Map" type="ui" binding="javascript"
endpoint="http: //...">

[...]
<configurationParameter id="CP1 -2" name="latitude" dataType="double"

manualInput="yes"/>
<configurationParameter id="CP2 -2" name="longitude" dataType="double"

manualInput="yes"/>
<configurationParameter id="CP3 -2" name="zoomLevel" dataType="int"

manualInput="yes"/>
[...]
<operation id="OP1 -2" name="Show Point" type="one -way" reference="

showPoint">
<input id="I1 -2" name="longitude" dataType="double" optional="no"

/>
<input id="I2 -2" name="latitude" dataType="double" optional="no" /

>
</operation>

</component>

<component id="C3" name="Geo Names" type="service" binding="javascript"
endpoint="http >//...">

[...]
<operation id="OP1 -3" name="Get address" type="request -response"

reference="getAddress">
<input id="I1 -3" name="longitude" dataType="double" optional="no"

/>
<input id="I2 -3" name="latitude" dataType="double" optional="no" /

>
<output id="O1 -3" name="city" dataType="string"/>
<output id="O2 -3" name="street" dataType="string"/>

</operation>

</component>

[...]
<constant id="CNST1" name="Latitude" dataType="double" value="46.0667"

feeds_configurationParameter="CP1 -2"/>
<constant id="CNST2" name="Longitude" dataType="double" value="11.1333"

feeds_configurationParameter="CP2 -2"/>
<constant id="CNST3" name="Zoom Level" dataType="int" value="13"

feeds_configurationParameter="CP3 -2"/>
[...]

<dfConnector id="DF1" source_output="O2 -1" target_input="I1 -2" />
<dfConnector id="DF2" source_output="O3 -1" target_input="I2 -2" />
<dfConnector id="DF3" source_output="O1 -1" target_input="I1 -3" />
<dfConnector id="DF4" source_output="O2 -1" target_input="I2 -3" />

</mashup >

Listing 3.2 XML definition of the example mashup application presented in Sect. 3.2

Figure 3.8 shows how the example scenario can be modeled using the graphical
syntax we adopt in the mashArt editor. It can be noticed that all the main composition

3 Conceptual Design of Sound, Custom Composition Languages 75

5
6

4

7

3

service_component
request_respone_for_service
one_way_for_service
notification_for_service
javascript_for_service

2

ui_component
one_way_for_ui
notification_for_ui
javascript_for_ui

max_N_operation_per_component

max_N_output_param_per_operation

configuration_param

data_component
request_response_for_data
javascript_for_data

1

4

3

6

7

Selected feature names FnameSel

user_interface
single_page

8

max_N_input_param_per_operation5

data_flow9

1

29

branch
merge

8

Fig. 3.8 mashArt example composition model and the set of respective language features

features supported by the existing editor are also supported by the language produced
by our system, which are summarized on the right side of this figure.

3.8.2 Yahoo! Pipes

In the following, we derive part of the mashup language underlying the popular
mashup platform Yahoo! Pipes from an example modeled in its graphical editor. Pipes
is a data mashup tool for the retrieval and processing of web data feeds. Figure 3.9
shows an example Pipes model, which we use to analyze Pipes’ language features.

Pipes is based on the data_flow paradigm. It supports data_component
and service_component types to retrieve and process data, respectively. Specif-
ically, data source components types are RSS_for_data or atoms_for_data,
while the only supported service component type is REST_for_service. Each
component in Pipes provides exactly one function, that is, each component repre-
sents one single operation. Therefore max_1_operation_per_component.
All operations are of type request-response (request_response_for_data
and request_response_for_service). Each operation may have one or
more inputs (max_N_input_param_per_operation) but one and only one
output (max_1_output_param_per_operation). Manual inputs (manual_
input) are used to fill the values of input fields, i.e., of configuration_
parameter(s). Some inputs can be fed with both an input pipe and a manually
set constant value. Also in this example, the output of a component can be the source

76 S. Soi et al.

1

5

6 6

7

8

3

2

4

service_component
REST_for_service
request_response_for_service

2

manual_input

data_flow

max_1_operation_per_component

max_N_intput_param_per_operation

max_1_output_param_per_operation

configuration_param

data_component
RSS_for_data
atom_for_data
request_response_for_data

1

4

3

5

6

7

8

Selected feature names FnameSel

branch9

9

Fig. 3.9 Yahoo Pipes example composition and set of respective language features

Id
Name
Type
Reference

Operation

Id
Name
ManualInput
Optional

Input
Parameter

Id
Name

Output
Parameter

Id
Name

Configuration
Parameter

Name
Mashup

Id
DfConnectorId

Name
Type
Binding
Endpoint

Component

0..1 feeds

 1..N

0..1

1

1

Id
Name
Value

Constant

Id
Name
Definition

Data Type

has

0..1

feeds

0..N

0..N 0..N

has

0..N

1

1

0..N

 0..N

0..1
0..1

target

source0..1 0..N

0..1

0..N

has

1

0..N

0..N

1

has

Type = data_component |
 service_component;

Binding = rest | rss | atom;

Type = request_response;

Fig. 3.10 A composition language meta-model supporting the discussed features set

for an arbitrary number of dataflow connectors, allowing one to branch the data
flow into parallel flows. Input parameters, instead, have at most one input pipe; so,
there is not need for any merge.

The language produced by the language generation algorithm (defined in Algo-
rithm 1) giving as input to it the described features is equivalent to the meta-model
illustrated in Fig. 3.10. The respective language XSD specifications and the XML
model of the scenario can be inspected online at http://goo.gl/hfkLO.

3.9 Related Work

The problem we aim to solve in this paper, i.e., supporting the design of custom
mashup/composition languages, has not been addressed before. Most contributions
in the area of mashup and service-oriented computing focus on the design of spe-

http://goo.gl/hfkLO

3 Conceptual Design of Sound, Custom Composition Languages 77

cific languages taking into account, for example, quality of service [10], adaptiv-
ity or context-awareness [11], energy efficiency [12], and similar. We instead pro-
pose a language (the composition features) for the design of languages—a model
weaving approach (at the meta-model level) for black-box composition languages
(e.g., mashups), in the terminology of Heidenreich et al. [13]. The problem is very
complex, but our analysis of a large set of mashup tools and practices has shown that
the design space for non-mission-critical mashups (without fault handling, compen-
sations, transactions, etc.) is limited and manageable, up to the point where we can
provide mashup execution as a service for a large class of custom languages.

If we compare the meta-model in Fig. 3.5 with, for example, that of BPEL [7]
(see also http://www.ebpml.org/wsper/wsper/ws-bpel20b.png) or XPDL, we notice
a bias toward simplicity. The reason for this is that mashup platforms (our target)
aim to simplify composition, typically moving complexity from the composition to
the components. For instance, it is common practice to have a dedicated data filter
component, instead of a filter construct at language level (see, for example, Yahoo!
Pipes). The meta-model we propose in this paper shares this interpretation for both
the component model and the composition model. Also Saeed and Pautasso [14] have
a similar perspective, but they focus on the design of a generic mashup component
description language only and do not elaborate on their composition. Their model
contains technology aspects (e.g., component wrappers), which are instead a runtime
aspect. We only propose the use of component types and bindings.

A proposal toward the standardization of a generic mashup language, covering
as many different uses as possible, is represented by the Open Mashup Alliance’s
EMML (Enterprise Mashup Markup Language) specification [15]. The target of the
initiative is however different: data mashups. In our view the key novelty mashups
brought to software integration is integration at the UI layer. Hence, the focus on
data mashups only is too narrow, yet the language has already grown very complex
and has not been adopted so far by vendors outside the Alliance itself.

However, especially with the growing importance of cloud computing and com-
position as a service providers (such as mashup platforms or scientific workflows
[16]), we expect the importance of customization of composition languages—as a
means of diversification—to grow. Also Trummer and Faltings [17] work toward
composition as a service; yet, instead of focusing on custom language design, they
approach the problem from the provider side and study the optimal selection of ser-
vice composition algorithms—a task that could be eased if customers were allowed
to tailor the composition language to be executed to their very specific needs.

3.10 Conclusion and Future Work

Component-based development and composition tools, such as mashup tools, are an
increasingly important reality in today’s software development landscape. With this
paper, we aim to lower the barriers to the development of good composition tools by
approaching a relevant and central aspect of composition, i.e., the design of composi-

http://www.ebpml.org/wsper/wsper/ws-bpel20b.png

78 S. Soi et al.

tion languages. We specifically focus on the problem of developing custom mashup
languages and show that a sensible design of suitable abstractions and reference
specifications enables a conceptual development paradigm for mashup languages
that is based on the assisted selection of desired composition features and allows
developers to neglect low-level details. The paradigm improves awareness of design
choices and fosters reuse of language design knowledge.

In approaching this methodological problem, we also solve a relevant, non-
conventional composition problem per se, i.e., the composition of components (the
language patterns) that are not independent of each other and that require an integra-
tion that is much tighter than that of traditional component technologies, such as web
services, already before composing them. The key to solve this problem is mapping
composition features to a generic language meta-model, an artifact that aim to refine
and evolve collectively with the help of the scientific community.

The idea is to make the meta-model, the feature reference specifications, and the
language generator open source and to share it with the community. In this context,
we also want to equip the language design paradigm with an interactive language
design tool and a hosted execution engine that is able to run compositions developed
with any variation of language developed on top of the common meta-model. The
final goal is to provide mashup execution as a service. This will eventually lower the
barriers to the development of custom mashup platforms.

References

1. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding UI
integration: a survey of problems, technologies and opportunities. IEEE Internet Comput.
11(3)(May/June 2007), 59–66 (2007)

2. Daniel, F., Soi, S., Tranquillini, S., Casati, F., Heng, C., Yan, L.: Distributed orchestration of
user interfaces. Inf. Syst. 37(6)(September 2012, Elsevier), 539–556 (2012)

3. Daniel, F., Rodriguez, C., Roy Chowdhury, S., Motahari Nezhad, H.R., Casati, F.: Discovery and
reuse of composition knowledge for assisted mashup development. WWW 2012 Companion,
pp. 493–494

4. Daniel, F., Imran, M., Kling, F., Soi, S., Casati, F., Marchese, M.: Developing domain-specific
mashup tools for end users. WWW 2012 Companion, pp. 491–492

5. Daniel, F., Casati, F., Benatallah, B., Shan, M.C.: Hosted universal composition: models, lan-
guages and infrastructure in mashArt. ER 2009, pp. 428–443

6. Baresi, L., Guinea, S.: Mashups with mashlight. ICSOC 2010, pp. 711–712
7. OASIS: Web Services Business Process Execution Language, Version 2.0, April 2007.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
8. OMG: Business Process Model and Notation, Version 2.0, January 2011. http://www.omg.org/

spec/BPMN/2.0/
9. W3C: Widget Packaging and Configuration. W3C Working Draft, March 2011.

http://www.w3.org/TR/widgets/
10. Mohabbati, B., Gasevic, D., Hatala, M., Asadi, M., Bagheri, E., Boskovic, M.: A quality aggre-

gation model for service-oriented software product lines based on variability and composition
patterns. ICSOC 2011, pp. 436–451

11. Hermosillo, G., Seinturier, L., Duchien, L.: Creating context-adaptive business processes.
ICSOC 2010, pp. 228–242

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.w3.org/TR/widgets/

3 Conceptual Design of Sound, Custom Composition Languages 79

12. Hoesch-Klohe, K., Ghose, A.K.: Carbon-aware business process design in Abnoba. ICSOC
2010, pp. 551–556

13. Heidenreich, F., Johannes, J., Aßmann, U., Zschaler, S.: A close look at composition languages.
ACoM 2008

14. Saeed, A., Pautasso, C.: The mashup component description language. iiWAS 2011,
pp. 311–316

15. Open Mashup Alliance: Enterprise Mashup Markup Language (EMML), May 2012.
http://www.openmashup.org/omadocs/v1.0/index.html

16. Blake, M.B., Tan, W., Rosenberg, F.: Composition as a service. IEEE Internet Comput. 14(1),
78–82 (2010)

17. Trummer, I., Faltings, B.: Dynamically selecting composition algorithms for economical com-
position as a service. ICSOC 2011, pp. 513–522

http://www.openmashup.org/omadocs/v1.0/index.html

Chapter 4
Service-Oriented Programming with Jolie

Fabrizio Montesi, Claudio Guidi and Gianluigi Zavattaro

Abstract The wide adoption of service-oriented computing has led to a
heterogeneous scenario formed by different technologies and specifications. Exam-
ples can be found both at the design level—the frameworks for defining services and
those for defining their coordination feature fundamentally different primitives—and
at the implementation level—different communication technologies are used depend-
ing on the context. In this chapter we present Jolie, a fully-fledged service-oriented
programming language. Jolie addresses the aforementioned heterogeneity in two
ways. On the one hand, it combines computation and composition primitives in an
intuitive and concise syntax. On the other hand, the behaviour and deployment of a
Jolie program are orthogonal: they can be independently defined and recombined as
long as they have compatible typing.

4.1 Introduction

Service-Oriented Computing (SOC) is a design methodology that focuses on the
composition of autonomous entities in a system, called services. SOC abstracts
from the implementation details of services by imposing a standard communica-
tion mechanism between the entities in an SOA (Service-Oriented Architecture). For
instance, the Web Services specifications [1] impose the use of the SOAP protocol [2],

F. Montesi (B)
IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark
e-mail: fmontesi@itu.dk

C. Guidi
Dipartimento di Matematica, University of Padova, Via Trieste 63, 35121 Padova, Italy
e-mail: cguidi@math.unipd.it

G. Zavattaro
INRIA Focus Research Team, University of Bologna, Mura A. Zamboni 7, 40127 Bologna, Italy
e-mail: zavattar@cs.unibo.it

A. Bouguettaya et al. (eds.), Web Services Foundations, 81
DOI: 10.1007/978-1-4614-7518-7_4,
© Springer Science+Business Media New York 2014

82 F. Montesi et al.

which builds on XML as a data format and HTTP as the transport. Applying such a
restriction, it is possible to have SOAs where each service is potentially implemented
in a different technology, such as Java, C, or C#.

SOC is widely adopted in many different settings; here we list some notable exam-
ples. Web Services are widespread and supported by many industrial technologies,
such as Java and .NET; they are especially used in enterprise software development.
Applications in modern Linux distributions, e.g., hardware information services and
desktop environment components as in the KDE SC [3] and GNOME [4], commu-
nicate locally using the D-Bus technology [5]; in the Windows operating system,
DCOM was created to address the same issue. Many web applications expose REST
APIs to allow external applications to interact with them. All of the aforementioned
technologies make it possible for applications to communicate by means of loosely
coupled messaging systems. The adoption of SOC, however, has led to a problem
of fragmentation. Many different service-oriented technologies and specifications,
such as the ones listed above, target specific requirements and cannot be integrated
without ad-hoc interventions, which usually imply the writing of some adapters for
the message formats and the communication semantics. In other words, there are
many technologies and applications based on common conceptual ground that are
unable to interoperate without ad-hoc interventions, which can be very costly, hard
to maintain, and prone to breaking wrt future system modifications.

From the perspective of the methodologies and tools for composing SOAs the sit-
uation is less fragmented, but there is a marked separation between behavioural and
architectural composition. Behavioural composition deals with the specific series
of interactions (message exchanges) to be performed in order to reach a goal. For
example, an E-Commerce service supporting the purchase of some products may
offer a buy functionality implemented by composing a warehouse service for send-
ing the product to the client and a bank service for handling the payment. Services
that behaviourally compose other services are usually called orchestrators. The most
renowned technology for performing behavioural composition is WS-BPEL [6], a
language based on the Web Services specifications. Architectural composition, on
the other hand, deals with the topological structure of an SOA, managing its execu-
tion and integration. For example, an application server may manage the execution
of multiple applications in the same environment; or, a proxy may be used to bridge
two SOAs that run in separate networks. A more generic approach to bridging is
represented by mediators. These may work on different levels, e.g., by allowing a
service available on Bluetooth or a LAN to communicate with another service on the
Internet, or by performing data format conversion. Notable examples of mediators
are all the Enterprise Service Bus (ESB) technologies [7] and the aforementioned
D-Bus [5]. Differently from the case of behavioural composition, we are not aware
of programming languages supporting architectural composition: the latter is usually
obtained through tools that are specific to some architectural patterns.

To the best of our knowledge, the literature lacks proposals of languages that
enable SOA designers to deal effectively with both behavioural and architectural
aspects, by providing a satisfactory support for solving the technological fragmenta-
tion problem reported above. We argue that offering such a language would simplify

4 Service-Oriented Programming with Jolie 83

greatly the design of SOAs, since designers would have to deal with a single and
homogeneous set of concepts instead of many different tools.

In this chapter we present the Jolie programming language [8], our proposal
for filling this gap. Jolie is the result of our attempt to obtain a common denom-
inator that coherently offers the main features of SOC and their integration with
existing technologies. We aim at offering a programming language for defining the
base services, their organization in an SOA, and the behaviour of the orchestrators
responsible for the supervision of the interactions among the services, possibly using
different communication technologies. In our opinion, Jolie is the first language that
positively responds to the problems of heterogeneity of both service communication
technologies and compositional aspects.

A Jolie program defines a service and is a composition of two parts, called behav-
iour and deployment. A behaviour defines the implementation of the functionalities
offered by a service; behavioural primitives include communication and computation
constructs. However, these do not deal with how communications are supported: they
abstractly refer to communication ports, which are assumed to be correctly defined in
the deployment part. The latter deals with the actual definition of the necessary infor-
mation for supporting communications. Therefore, communication ports establish a
notion of compatibility between the behaviour and deployment parts of a program.
This separation of concerns addresses the first form of heterogeneity mentioned
above: a behaviour can be deployed using various communication media and data
protocol combinations.

The deployment part can also make use of architectural primitives for handling
the structure of an SOA. For instance, Jolie supports embedding and aggregation.
Embedding deals with the structure of the execution contexts in which services
operate, establishing a hierarchy of services. It allows a service to run another one
as a sub-service. An embedder can communicate with an embedded service through
an ordinary communication port: its behaviour abstracts from embedding, so if the
programmer decides in the future not to embed a service and instead to refer to an
external one, the behaviour does not need to be changed. Embedding has also some
performance benefits. Aggregation, on the other hand, deals with the architecture of
the connections in an SOA. It allows for the creation of proxy services that can forward
invocations to other services. Aggregation is purely related to deployment, since it
takes only communication ports as parameters and creates bridges between them.
The flexible aggregation and embedding mechanisms are examples of how Jolie
addresses the second form of heterogeneity mentioned above. Remarkably, their
design also elicits that the behavioural and architectural composition mechanisms
can abstractly interact through the shared concept of communication ports.
Structure of the chapter. Sect. 4.2 presents the basic constructs of the language;
Sect. 4.3 shows how Jolie handles complex behavioural composition by supporting
stateful sessions and error recovery; Sect. 4.4 introduces architectural composition
with embedding and aggregation; we show a practical example that uses our main
composition primitives in Sect. 4.5; Sect. 4.6 discusses related work; Sect. 4.7 reports
conclusions, references to additional resources, and future work.

84 F. Montesi et al.

4.2 Language Basics: Behaviour and Deployment

A Jolie program defines an entity in an SOA (a service). Programs are run by the Jolie
interpreter, and are usually stored inside files with the .ol extension.1 A program
is made by two parts, called behaviour and deployment.

The behavioural part defines the actions to be performed by the service, such as
internal computations and input/output communications. This part abstracts from
how communications will actually be supported. For example, a behavioural prim-
itive may express the action “ask the calculator service to add the numbers 2 and 6
and then get a result back”, without knowing exactly how to reach this calculator
service (or which kind of communication protocol it uses).

The deployment part complements the behavioural part, introducing the necessary
information for establishing communication links between services. It can also be
used to define the structure of an SOA, as we will show later.

The structure of a Jolie Program is thus given by the following syntax:

Program :: = D main {B}

where D represents the deployment part and B the behavioural part. The main
procedure is the execution entry point.

4.2.1 Behaviours

The syntax for expressing service behaviours in Jolie combines the message-passing
and the imperative programming styles. The former models composition of the
behaviours of other services, whereas the latter enables internal computation. Fig. 4.1
reports a selection of the syntax for behaviours.
Communications. Rules (input), (output), and (input choice) implement commu-
nications. An input η can either be a one-way or a request-response. Statement
(one-way) receives a message for operation o and stores its content in variable x.
(request-response) receives a message for operation o in variable x, executes behav-
iour B (called the body of the request-response input), and then sends the value of the
evaluation of expression e to the invoker. (notification) and (solicit-response) dually
implement the outputs towards the input primitives. (notification) sends a message
containing the value of the evaluation of expression e. (solicit-response) sends a mes-
sage with the evaluation of e and then waits for a response from the invoked service;
the response value will be assigned to variable y. In the output statements, OP is an
output port name. This name acts as a reference to an output port (cf. Sect. 4.2.2)
specified in the deployment definition D of the same service in which the behaviour
is defined. Output port OP will contain the information (e.g., a URL) for contacting
the target service. Finally, (input choice) implements input-guarded choice. Namely,

1 A Jolie program definition may even be retrieved from URLs or local memory.

4 Service-Oriented Programming with Jolie 85

Fig. 4.1 Jolie behavioural syntax (selected rules)

it supports the receiving of a message for any of the operations in the inputs in the
choice. When a message for an input ηi can be received, then all the other branches
are deactivated and ηi is executed. Afterwards, the related branch behaviour Bi is
also executed. A static check enforces all the ηi in an input choice to have different
operations, so to avoid ambiguity.
Statement compositions. Rules (cond) and (while) implement the standard condi-
tional and iteration constructs. In (cond), the else block is optional (denoted by
its enclosure in square brackets). Rule (seq) enables the sequential composition of
behaviours: B is executed, waited for termination, and then B ′ is executed. Rule (par)
runs B and B ′ in parallel. The sequential operator; binds tighter than the parallel
operator |. Operator precedence can be overridden using the (block) construct.
Assignments and empty behaviour. Rule (assign) evaluates expression e and
assigns its value to variable x. Term nullProcess denotes the empty behaviour.

Remark 4.1 (Sequence-Parallel interaction). Despite its C/Java-like syntax, it is
interesting to observe that the constructs for behaviour composition in Jolie fol-
low the workflow tradition. For instance, it is easy to program the fork-join pattern,
as in {B1|B2}; B3, which is not natively supported, e.g., by Java. ��
Example 4.1 (Store service). We give an implementation example of the behaviour
of a store service. The service allows for retrieving information about a product
(available quantity and price) and then placing an order for buying it.

getProductInfo(prod)(info) {
{ getQuantity@Warehouse(prod)(q) |
getPrice@PriceList(prod)(price)

}; info = "Price: " + price + "; Quantity: " + q
}; [order(orderDesc)] { /* handle order */ }

[cancel()] { nullProcess }

86 F. Montesi et al.

The behaviour starts with a request-response input on operation getProductIn
fo. When it is invoked, its body is executed. First, the latter invokes services
Warehouse and PriceList to retrieve the information about the product. Then,
it concatenates a string with the retrieved information and stores it in variable info.
After the body is executed, the original invoker of getProductInfo is sent the
content of variable info. The behaviour now enters into a choice, waiting for an
input from the same invoker for either operation order or cancel. In the first case
the behaviour will handle the order, received on variable orderDesc (we leave
the handling code unspecified); instead, if cancel is invoked the behaviour simply
terminates. ��
Handling data. Jolie supports classic basic data types such as integers, strings, and
booleans. More generally, variables and expressions can handle structured data trees
using a concise and powerful syntax.

The variable state of a Jolie program is organised as a data tree. A variable
then is simply a path for traversing the state and obtaining a subtree. Variables are
dynamically allocated at runtime. It is easy to understand how this works by making
a comparison to XML trees.2 Consider the following behaviour:

x = 5 ; y = 10

Executing the code above would yield a state with two subnodes,x and y, respectively
containing the integers 5 and 10. An XML representation would be:

<state> <x>5</x> <y>10</y> </state>

Executing now the statement z = y / x would yield the following state:

<state> <x>5</x> <y>10</y> <z>2</z> </state>

State traversing is obtained through the dot operator ., which can be used to specify
paths. For instance, we can store information on a person:

Listing 4.1 A tree with personal information

person.name = "John"; person.age = 42;
person.contact.email = "john@smith.org";
person.contact.phoneNumber[0] = "123";
person.contact.phoneNumber[1] = "456"

The code above shows two features. The first is nesting: email is a subnode of
contact which is a subnode of person. The second is vectors, obtained with the
usual square bracket notation. An XML representation would be:

<state> <person> <name>John</name> <age>42</age> <contact>
<email>john@smith.org</email>
<phoneNumber>123</phoneNumber>

2 We observe, however, that Jolie trees are different from XML trees, as they are designed for
performance. For example, Jolie tree nodes store typed values (strings, integers, …), whereas XML
does not: all XML node values are strings, and their type is just an optional annotation.

4 Service-Oriented Programming with Jolie 87

<phoneNumber>456</phoneNumber> </contact> </person>
</state>

Jolie also comes with some native operators for manipulating data trees. In the
following we show the deep copy operator « and the vector size operator #. Assume
that the following code is run with the state represented above:

x << person.contact ; numbers = #x.phoneNumber

In the resulting statexwould then contain a copy of the tree pointed byperson.con
tact and numbers the size of the vector phoneNumber inside that tree.

In the rest of the chapter, we will simply refer to paths as variables.

4.2.2 Deploying Services

We introduce now the syntax for deployment. The basic deployment primitives are
input ports and output ports, which support input and output communications with
other services. Ports are based on interfaces and data types.

A deployment D is simply a list of deployment instructions among which we can
have input and output ports, type definitions, and interfaces:

D :: = D D | I P | O P | Tdef | I | . . .

We leave this definition open with . . . as it will be extended in the next sections.
Communication ports. Communication ports define how communications with
other services are supported. There are two kinds of ports. Input ports deal with
exposing input operations to other services. Output ports, instead, define how to
invoke the operations of other services. Input and output ports are dual concepts and
their syntaxes are quite similar. Ports are based upon the three fundamental concepts
of location, protocol and interface. The former two define the concrete binding infor-
mation between a Jolie program and other services. The last, instead, defines type
information that is expected to be satisfied by the behaviour that uses the ports.

A location expresses the communication medium, along with its configuration
parameters, that a service uses for exposing its interface (in the case of an input port)
or contacting another service (in the case of an output port). A protocol defines how
data to be sent or received should be, respectively, encoded or decoded following an
isomorphism. Finally, a port must specify the interface that is accessible through it.
The syntax for input and output ports is in Fig. 4.2 where U RI is a URI (Uniform
Resource Identifier), defining the location of the port; id, p, and ifacei are identifiers
representing, respectively, the name of the port, the data protocol to use, and the
interfaces accessible through the port

A location must indicate the communication medium the port has to use and its
related parameters, in this form: medium [:parameters], where medium is a
medium identifier and the optional parameters is a medium-specific string. Jolie

88 F. Montesi et al.

Fig. 4.2 Input and output
ports syntax

I P ::= inputPort id {
Location: U RI
Protocol: p
Interfaces: iface1, …, ifacen
}

O P ::= outputPort id {
Location: U RI
Protocol: p
Interfaces: iface1, …, ifacen
}

currently supports four mediums: btl2cap (Bluetooth L2CAP), localsocket
(Unix local sockets), rmi (Java RMI), and socket (TCP/IP sockets). An example
of a valid location is: "socket://www.mysite.com:80/", where socket
is the medium and the following part represents the parameters.

Protocols are referred to by name. Examples of valid protocol names are http,
https, soap, sodep [9] (a binary protocol specifically developed for Jolie), and
xmlrpc. The HTTP protocol implementation, http, can dynamically detect client
invocations using different formats (e.g., GWT-RPC [10] and JSON [11]).
Data types and interfaces. Communication ports require interfaces to be defined.
An interface is a collection of operation types. The latter define the data types of the
values that can be communicated over each specified operation.

We start from data types. We remind that Jolie values are data trees. A data type
specifies (i) the structure of a data tree, (ii) the type of the content of its nodes, and
(iii) the allowed number of occurences of each node. Let us see an example first. We
write a type for the data tree pointed by person in Listing 4.1.

type Person:void { .name:string .age:int
.contact[0,1]:void
{ .email:string .phoneNumber*:string } }

A value of type Person must not contain anything in its root node (it is void).
It must have the subnodes name (which must contain a string) and age (an
integer). It may have a subnode contact (this is specified by the notation [0,1], to
be read as “from zero to one occurrences”). If it does, subnode contact must not
contain anything in its root node (void), but it must have an email subnode and
any number of phoneNumber subnodes (specified by the * notation).

The syntax for data types Tdef is as follows:

Tdef ::= type id T
T ::= : BT [{ .id1 R1 T1 … .idn Rn Tn}]| undefined
R ::= [min, max] |*| ? BT ::= int | string | void …

Type definitions assign a type T to a name id. Each type T comprehends a basic
type BT and (optionally) a list of named subnode types or theundefined keyword,
which makes the type accepting any subtree. Each subtype comes with a range R,

4 Service-Oriented Programming with Jolie 89

which specifies the allowed number of occurences of the subnode in a value. A range
R can be an interval from min (an integer major or equal than zero) to max (an integer
major or equal than its associated min), or *, meaning any number of occurences. ?
is a shortcut for [0,1].

The syntax for interfaces I is:

I ::= interface id { [OneWay: OW+] [RequestResponse: R R+] }
OW ::= id(OT)
R R ::= id(OTreq)(OTresp)

O PT ::= BT | type

An interface I is a list of one-way and request-response operation declarations,
respectively OW and R R. OW maps an operation id to an operation type OT , which
can be either a basic type BT or a reference to a user-defined type. R R is similar,
but it distinguishes between the type for the request OTreq and the response OTresp.

Remarkably, it is possible to define multiple input ports that expose the same
interface through different communication technologies. This way, for example, a
Jolie program may expose the same set of functionalities through a web interface
and over Bluetooth, retaining simplicity in the behaviour.

Deployment introduces runtime type checking to behaviours. Whenever a mes-
sage is sent or received through a port, its type is checked against that specified for
its operation in the port’s interface. An invoker sending a message with a wrong type
receives a TypeMismatch fault. Also, an output statement may throw the same
fault when trying to send a message with wrong type.

4.2.3 Putting it All Together

We can finally use the syntax shown so far to implement working Jolie programs,
defining their behavioural and deployment parts. The following examples are com-
plete, and therefore executable. The next listing defines a service that offers an oper-
ation for performing the summation of some numbers.

type SumRequest:void { .number[2,*]:int }
interface SumInterface { RequestResponse: sum(SumRequest)(int) }
inputPort SumInput { Location: "socket://localhost:8000/"

Protocol: soap Interfaces: SumInterface }
main {

sum(req)(result) { i = 0;
while(i < #req.number) { result = result + req.number[i++]

}
} }

The code above implements a service that exposes an operation sum that takes at
least two number nodes in its request message and then replies with the sum of the

90 F. Montesi et al.

numbers. The service is deployed accepting socket connections at TCP port 8000
and uses the soap protocol. Let us see a program that invokes the service above.
Below, we use the include primitive for importing the output port Console from
the Jolie standard library unit console.iol and print the result.

include "console.iol"
type SumRequest:void { .number[2,*]:int }
interface SumInterface { RequestResponse: sum(SumRequest)(int) }
outputPort SumServ { Location: "socket://localhost:8000/"

Protocol: soap Interfaces: SumInterface }
main {

request.number[0] = 3; request.number[1] = 5;
sum@SumServ(request)(response);
println@Console(response)() /* will print 8 */ }

We can already see how the separation between behaviour and deployment helps
in addressing the heterogeneity of communication technologies. For example, if
we want to invoke our service from a web browser it is sufficient to change its
communication protocol to http, without considering the behaviour:

inputPort SumInput { Location: "socket://localhost:8000/"
Protocol: http Interfaces: SumInterface }

Now we can sum numbers from a web browser by opening a URL such as:
http://localhost:8000/sum?number=10\&number=2\&number=4

Remark 4.2 (Automatic Type Casting) In the example above, we pass some integer
parameters to our service through a query string in an HTTP URL, which does
not carry data typing. In this case, Jolie is actually casting such string parameters to
integers, referring to the operation type. Automatic type casting for untyped data also
allows for rejecting immediately messages with a wrong type. For example, browsing
the following URL would get and display a TypeMismatch error: http://localhost:
8000/sum?number=wrong ��

4.3 Sessions and Error Recovery

Until now we have presented services that run their behaviours only once. We also
never accounted for errors in their executions. However, in service-oriented comput-
ing, services should be available multiple times and engage in sessions, i.e. stateful
conversations with other entities with a shared goal. For example, a web browser, an
E-Commerce service, and a bank service may start a session to perform a payment.
Then, they would need to handle possible errors in such an activity. In this section,
we introduce the Jolie primitives for programming sessions and error recovery.

http://localhost:8000/sum?number=10{&}number=2{&}number=4
http://localhost:8000/sum?number=wrong
http://localhost:8000/sum?number=wrong

4 Service-Oriented Programming with Jolie 91

4.3.1 Behaviour Instances

A service participates in a session by executing an instance of its behaviour. So far we
have executed behaviours a single time; e.g., the sum service in Sect. 4.2.3 supports
a single session with a client for receiving some numbers and replying with their
summation. The service must be executed again manually if it is needed again.

Jolie allows to reuse behavioural definition multiple times with the execution
modality deployment primitive [12]:

D ::= . . . | execution { M }
M ::= single | sequential | concurrent

single is the default execution modality (so the execution construct may
be omitted in this case), which runs the program behaviour once. sequential,
instead, causes the program behaviour to be made available again after the current
instance has terminated. This is useful, for instance, for modelling services that need
to guarantee exclusive access to a resource. Finally, concurrent causes a pro-
gram behaviour to be instantiated and executed whenever its first input statement
can receive a message. Jolie also supports special procedures for initialising a ser-
vice before it makes its behaviour available, omitted here. The interested reader may
refer to [13].

In the sequential and concurrent cases, the behavioural definition inside
the main procedure must be an input statement (an input η or an input choice, cf.
Sect. 4.2, Fig. 4.1); we refer to the operations in such input statements as starting
operations.
Variable state. A crucial aspect of behaviour instances is that each instance has
its own private state, determining variable scoping. This lifts programmers from
worrying about race conditions in most cases. For instance, we could simply add
the deployment instruction execution { concurrent } to the sum service
in Sect. 4.2.3 to make it supporting multiple clients at the same time. Access to
variables would be safe since each behaviour instance would have its private state.

Jolie also provides global variables to support sharing of data among different
behaviour instances. These can be accessed using the global prefix:

global.myGlobalVariable = 3; // Global variable
myLocalVariable = 1 // Local to this behaviour instance

Concurrent access to global variables can be restricted through synchronized
blocks, similarly to Java:B:: = . . . |synchronized(id){B} which allows only
one process at a time to enter any synchronized block sharing the same id.
Dynamic binding. Jolie allows output ports to be dynamically bound, i.e., their
locations and protocols (called binding information) can change at runtime. Changes
to the binding information of an output port is local to a behaviour instance: output
ports are considered part of the local state of each instance. Dynamic binding is

92 F. Montesi et al.

obtained by treating output ports as variables. For instance, the following would
print the location and protocol name of output port Printer

include "console.iol" include "Printer.iol"
outputPort Printer { Location: "socket://p:80/"

Protocol: sodep Interfaces: PrinterInterface }
main { println@Console(P.location)();

println@Console(P.protocol)() }

where the file Printer.iol contains the interface:

interface PrinterInterface { OneWay: printText(string) }

Binding information may be entered at runtime by making simple assignments:

include "Printer.iol"
outputPort P { Interfaces: PrinterInterface }
main { P.location = "socket://p:80/"; P.protocol = "sodep" }

Example 4.2 (Binding registry). We show a usage example of dynamic bind-
ing and binding transmission by implementing a binding registry, i.e., a service
that shares binding information. The registry offers a request-response operation,
getBinding, that returns the binding information for contacting a service. We
identify services by simple names. The interface of the registry is thus:

interface RIf { RequestResponse: getBinding(string)(Binding) }

where Binding is the type of port bindings defined in the standard Jolie library.
Below we implement the registry behaviour, which supplies binding information for
an inkjet printer and a laser printer (whose services we leave unspecified).

main {
getBinding(name)(b) {

if (name == "LaserPrinter") {
b.location = "socket://p1.com:80/"; b.protocol = "sodep"
} else if (name == "InkJetPrinter") {
b.location = "socket://p2.it:80/"; b.protocol = "soap"
}

}}

Finally, we define a client that calls getBinding for discovering the laser printer:

outputPort Registry { /* omitted */ }
outputPort Printer { Interfaces: PrinterInterface }
main { getBinding@Registry("LaserPrinter")(Printer);

printText@Printer("My text") }

4 Service-Oriented Programming with Jolie 93

4.3.2 Message Routing with Correlation Sets

Having multiple instances of a behaviour running in a service introduces the problem
of routing incoming messages to the right instances. Let us clarify with an example.
Assume that an E-Commerce service has two behaviour instances opened for buying
two products, respectively product A and product B. If a message for performing
a payment comes from the network, how can we determine if the payment is for
A or it is for B? Supposedly, we should require that the payment message contains
some information that allows us to relate it to the correct behaviour instance, e.g., a
serial number. In common web application frameworks this issue is covered by the
sid session identifier, a unique key usually stored as a browser cookie.

Jolie supports incoming message routing to behaviour instances by means of cor-
relation sets [14]. Correlation sets are a generalisation of session identifiers: instead
of referring to a single variable for identifying behaviour instances, a correlation
set allows the programmer to refer to the combination of multiple variables, called
correlation variables. Correlation set programming deals both with the deployment
and behavioural parts. The former must declare the correlation sets, instructing the
interpreter on how to relate incoming messages to internal behaviour instances. The
latter instead has to assign the concrete values to the correlation variables.
Correlation set declaration. Correlation sets are declared in the deployment part of
a program using the following syntax:

D ::= . . . | C C ::= cset { C+Var }
CVar ::= x : Tpath

+

A correlation set declaration C is a list of correlation variable declarations.
A correlation variable declaration CVar links a correlation variable x to a list of
aliases. A correlation alias Tpath is a path (using the same syntax for variable paths)
starting with a message type name, indicating where the value for comparing the cor-
relation variable can be retrieved within the message. Aliases ensure loose coupling
between the names of the correlation variables and the data structures of incoming
messages.

The fact that correlation aliases are defined on message types makes correlation
definitions statically strongly typed. A static checker verifies that each alias points to
a node that will surely be present in every incoming message of the referenced type;
technically, this means that the node itself and all its ancestor nodes are not optional
in the type. As an example, the following is an invalid correlation set definition:

type MyType:void { .a:int { .b?:string } }
cset { myVar: MyType.a.b }

because node b is optional under a in type MyType. Hereafter we refer to a path
such as a.b, i.e., the path that follows after the type name, as the aliasing path for
the correlation variable for the relative type (MyType above).

94 F. Montesi et al.

Jolie performs many other static checks for ensuring correctness of correlation set
declarations (see [14]). Here we highlight that, for services using sequential or
concurrent execution modalities, for each operation used in an input statement in
the behaviour there is exactly one correlation set that links all its variables to the type
of the operation. Since there is exactly one correlation set referring to an operation,
we can unambiguosly call it the correlation set for the operation. We can now define
how correlation works (see [14] for a formal definition).

Let o be an operation and C be the correlation set for o. We say that an incoming message
for o correlates with a behaviour instance if, for every variable x with y as aliasing path for
the input type of o in C , we have that the value of x in the state of the behaviour instance
is the same as the value of y in the message.

Whenever a service receives a message through an input port (and the message is
correctly typed wrt the port’s interface) there are three possibilities, defined below.

• The message correlates with a behaviour instance. In this case the message is
received and given to the behaviour instance, which will be able to consume it
through an input statement for the related operation of the message.
• The message does not correlate with any behaviour instance and its operation is

a starting operation in the behavioural definition. In this case, a new behaviour
instance is created and the message is assigned to it. If the starting operation has
an associated correlation set, all the correlation variables in the correlation set are
atomically assigned (from the values of the aliases in the message) to the behaviour
instance before starting its executing.
• The message does not correlate with any behaviour instance of its operation is

not a starting operation in the behavioural definition. In this case, the message is
rejected and a CorrelationError fault is sent back to the invoker.

Correlation values. In the behavioural part of a program, correlation variables must
be explicitly prefixed with the csets keyword. So, for instance, assigning the value
"MyValue" to the correlation variable myVar looks like:

csets.myVar = "MyValue"

It is often useful to assign a fresh value to a correlation variable, to ensure unam-
biguity between behaviour instances. The primitive new addresses this point:

csets.myVar = new

We observe that a programmer can make mistakes when programming correlation.
As an example, assume that in the following code snippet operation close (for
closing a behaviour instance) has input type CloseType:

cset { x: CloseType.closeIdentifier } main { open(); close() }

The code above is wrong because x is not instantiated before the input statement
close(). This would case a deadlock since no input message would be able to cor-
relate for that input. Jolie comes with a static checker that can detect some common
problems in correlation programming [14], such as this one.

4 Service-Oriented Programming with Jolie 95

Example 4.3 (Distributed authentication). We report an example from [14] inspired
by the OpenID Authentication specifications [15], a largely adopted decentralised
Single Sign-On protocol that allows a service, called relying party, to authenticate a
user, the client, by relying on another external service that is responsible for handling
identities, the identity provider. Therefore, OpenID specifies a multiparty session.
When the client requests access to the relying party, the latter starts an authentication
session with the identity provider and redirects the client to it. The client then sends
its authentication credentials to the identity provider, which will inform the relying
party on the result of the authentication attempt. The example can be downloaded
at [16]. Here, we show an implementation sketch for the relying party.

cset { clientToken: /* ... */ }
cset { secureToken: AuthMessage.secureToken }
interface RelyingPartyInterface {
OneWay: authSucceeded(AuthMessage), authFailed(AuthMessage)
RequestResponse: login(LoginRequest)(Redirection) }
main {

login(loginRequest)(redirection) {
openRequest.clientToken = csets.clientToken = new;
openRequest.secureToken = csets.secureToken = new;
openRequest.relyingPartyIdentifier = MY_IDENTIFIER;
openAuth@IdentityProvider(openRequest);
/* ... build redirection message for client ... */

}; [authSucceeded(message)] { /* ... */ }
[authFailed(message)] { /* ... */ } }

The service receives a request on the starting operation login from the client
for initiating the protocol. The body of login generates two fresh correlation
tokens, clientToken and secureToken, and also stores them under the
openRequest variable. We will use clientToken for receiving messages from
the client and secureToken for receiving messages from the identity provider.
The client is not informed about secureToken, preventing it to maliciously act as
the identity provider. The body of login performs a call to the identity provider,
starting an authentication session and communicating secureToken. The reply
will redirect the client to the identity provider. The relying party will then wait
for a notification about the result of the authentication attempt, hence the input
choice on authSucceeded and authFailed, which correlate through secure
Token. ��

4.3.3 Fault Handling

Fault handling in Jolie involves four basic concepts: scope, fault, termination and
compensation. We now describe the first three concepts: the reader interested in
compensation handling can refer to [17]. A scope is a behaviour container denoted
by a unique name and able to manage faults. A fault is a signal raised by a behaviour
towards the enclosing scope when an error state is reached, in order to allow for its

96 F. Montesi et al.

recovery. Termination is a mechanism used to recover from errors: it is automatically
triggered when a scope is unexpectedly terminated from a parallel behaviour and must
be smoothly stopped. We say that a scope terminates successfully if it does not raise
any fault signal; a scope obtains this by handling all the faults thrown by its internal
behaviour. Recovery mechanisms are implemented by exploiting handlers, which
contain the code to execute when faults or terminations are triggered.

We extend the syntax of behaviours with the primitives for fault handling:

B ::= . . . | scope(s) { B } (scope)
| install(h1 => B1 , …, hn => Bn) (inst)
| cH (cH)
| throw(f [, x]) (throw)

Above, (scope) defines a scope with a unique scope name s and a behaviour
B. (inst) dynamically installs the handlers Bi for their respective names hi in the
enclosing scope, where h can be either a fault name or one of the special keywords
this and default. If it is a fault name, then the handler is installed as a fault
handler; if it is this, then the handler is installed as a termination handler for the
enclosing scope; if, finally, it is default, then the handler is installed as a fallback
fault handler for all faults that do not have a specific fault handler. Installing a handler
overwrites the previous one for the same fault or scope name; however, handlers can
be composed by using the cH placeholder, which is replaced by the code of the
previously installed handler. Finally, (throw) throws a fault f with some optional
data x.
Automatic fault transmission. Uncaught fault signals in a request-response body are
automatically sent to the invoker. Hence, invokers are always notified of unhandled
faults. We update the syntax for request-response operation types (cf. Sect. 4.2.2) to
declare the faults fi that could be sent back to invokers with data of type OTi :

R R ::= id(OTreq)(OTresp) [throws f1(OT1) … fn(OTn)]

It follows from the fact that request-response operations may return a fault, that
now the solicit-response output statement may throw the received fault.
Handler composition. The cH element allows for the dynamic composition of
behavioural code. Consider the following example:

scope(s) { install(f => i = i+2); install(f => i++; cH) }

The second install usescH in its handler. At runtime,cHwill be replaced with
the previously installed handler. So the second install instruction is equivalent to:

install(f => i++; i = i + 2)

Install statement priority. An install statement may execute in parallel to other
behaviours that may throw a fault. This introduces a problem of nondeterminism:

4 Service-Oriented Programming with Jolie 97

how can the programmer ensure that the correct handlers are installed regardless of
the scheduling of the parallel activities? Jolie solves this issue by giving priority to
the install primitive wrt fault processing, making handler installation predictable. As
an example, consider the following code:

scope(s) { throw(f) | install(f => println@Console("Hi")()) }

where, inside the scope s, we have a parallel composition of a throw statement
for fault f and an installation of a handler for the same fault. The priority given to
the install primitive guarantees that the handler will be installed before the fault
signal for f reaches the scope construct and its handler is searched for.

4.4 Architectural Composition

Until now we have shown how a behaviour can compose other behaviours abstracting
from its deployment. In this section we show how composition can be obtained from
the opposite perspective. Namely, we present architectural composition, a different
kind of composition that a deployment definition can obtain abstracting from the
specific behavioural definitions of the involved services.

Architectural composition can be roughly divided in two main categories. The
first deals with the structuring of the execution contexts in which services operate.
For instance, a service may execute other sub-services in the same execution engine,
in order to gain advantages in terms of resource control. Other examples can be
the wrapping and hiding of an entity in an SOA. The second category deals with the
topology of the connections between services in an SOA. Jolie supports mechanisms
for both categories [18, 13]. Here we introduce two representatives, respectively
embedding [13] and aggregation [13, 19].

4.4.1 Embedding

Embedding is a mechanism for executing multiple services in the same virtual
machine. A service, called embedder, can embed another service, called embedded
service, by targetting it with the embedded primitive. The syntax for embedding is:

D ::= . . . | E
E ::= embedded { Etype : path [in OP] }

Etype ::= Jolie | Java | JavaScript

where E is the embedding construct, Etype specifies the type (technology) of the
service to embed, and path is a URL (possibly in simple form) pointing to the
definition of the service to embed. Jolie currently supports the embedding of Jolie,
Java, and JavaScript service definitions; this support can be modularly extended [13].

98 F. Montesi et al.

Embedding may optionally specify an output port OP; in this case, as soon as the ser-
vice is loaded, the output port OP is bound to the “local” communication input port of
the embedded service. The meaning of local communication input port is dependent
on the embedding type; we will show examples for Jolie and Java services. This
makes embedding a cross-technology mechanism: it can load services defined using
different languages. Embedding produces a hierarchy of services where the embed-
der is the parent service of the embedded ones; this hierarchy handles termination:
whenever a service terminates all its embedded services are recursively terminated.
The hierarchy is also useful for enhancing performance: services in the same virtual
machines may communicate using fast local memory communication channels.

When embedding a Jolie service, the path URL must point to a file containing
a Jolie program (provided as source code or in binary form). Command line para-
meters can also be passed. Local in-memory communication between embedder and
embedded is enabled by means of the local communication medium, which must
be specified by the embedded service. In this case no protocol definition is needed.

Example 4.4 (Embedded Jolie service). We embed the sum service from Sect. 4.2.3.
First, we add the following input port to allow for local communications:

inputPort LocalIn { Location: "local" Interfaces: SumInterface }

Now we can design a modified version of the client program in Sect. 4.2.3 to embed
the sum service (whose definition we assume to be stored in filesum_service.ol)
and call it using an output port bound by embedding. We omit interfaces.

outputPort SumService { Interfaces: SumInterface }
embedded { Jolie: "sum_service.ol" in SumService }
main { request.number[0] = 3; request.number[1] = 5;

sum@SumService(request)(response) }

��
When embedding a Java service, the path URL must unambiguously identify a

Java class, which can also be in the Java classpath of the Jolie interpreter. The class
must extend the JavaService abstract class, offered by the Jolie Java library for
supporting the automatic conversion between Java values and their Jolie representa-
tions. Each method of the embedded class is seen as an operation from the embedder,
which will instantiate an object using the class and bind it to the output port. Embed-
ding Java services is particularly useful for interacting with existing Java code, or
perform some task where computational performance is important. Many services
of the Jolie standard library (like Console) are Java services.

Example 4.5 (Java service embedding). We embed a simple Java service that offers
a lengthRequest-Response operation that takes a string as request and replies with
the length of the string. Consider the following Java code:

package example; import jolie.runtime.JavaService;
public class MyService extends JavaService {

public Integer length(String request)

4 Service-Oriented Programming with Jolie 99

{ return request.length(); } }

We can embed and use the code above from a Jolie program such as the following:

interface MyServiceIface { RequestResponse: length(string)(int)}
outputPort MyService { Interfaces: MyServiceIface }
embedded { Java: "example.MyService" in MyService }
main { length@MyService("Hi")(l) }

��
We end our presentation of embedding by showing how to use it at runtime.

Dynamic embedding can be used to implement features such as code mobility (an
important aspect in cloud computing middleware) and service adaptation.

Example 4.6 (Platform-as-a-service). We report a sketch, from [13], of a simple
platform-as-a-service solution, where customers can load services by service mobil-
ity. Each customer has a certain amount of allowed execution time: a loaded service
cannot run for more than the customer’s allowed time, and when the service termi-
nates the allowed time is decreased. We use the MetaService service from the
Jolie standard library, which can dynamically embed and unload services respec-
tively through the loadEmbeddedService and unloadEmbeddedService
operations.

execution { concurrent } csets { sid: /* ... */ }
main {
login(l)(csets.sid)

{ auth@AccountManager(l)(account); csets.sid = new };
startService(s)() { loadEmbeddedService@MetaService(s)();

setNextTimeout@Time(account.allowedTime) };
[timeout()] { nullProcess } [stop(sid)] { nullProcess };
{ unloadEmbeddedService@MetaService(s.resourceName)() |

updateAllowedTime@AccountManager(account)() } }

The service supports multiple sessions (execution{concurrent}). First,
the customer is required to login, creating a behaviour instance. An AccountMana
ger service is composed for handling authentication; if auth fails, we rely on
automatic fault transmission (cf. Sect. 4.3.3) to send the fault to the customer through
login. If auth succeeds, we assign a fresh token to the correlation variable sid
and send it back to the customer. The startService operation is then made
available, which can be called to start a new service; the latter is loaded by composing
MetaService. After the service is embedded, a Time service is used to start a
timer set to the customer’s allowed time. The timer is used in the following input
choice, where either the timeout occurs or the stop operation gets called first. In
any case the service gets unloaded and, concurrently, the account allowed time gets
updated. ��

100 F. Montesi et al.

4.4.2 Aggregation

Aggregation is a generalisation of network proxies that allows a service to expose
operations without implementing them in its behaviour, but instead delegating them
to other services. Aggregation can also be used for programming various architec-
tural patterns—such as load balancers, reverse proxies, and adapters—omitted here
(see [13, 19]). The syntax for aggregation extends that for input ports, by introducing
an Aggregates primitive that expects a list of output port names:

IP ::= inputPort id { Location: U RI Protocol: p
Interfaces: iface1, …, ifacen [Aggregates: OP+] {}

The interfaces of the output ports must not share any operation name. We can now
define how aggregation works. Let IP be an input port. Whenever a message for
operation o is received through IP we have the three following possibilities.

• o is an operation declared in one of the interfaces of IP. In this case, the message
is normally received by the program as described in Sect. 4.3.2.
• o is not declared in one of the interfaces of IP and is declared in the interface of

an output port IP aggregated by IP. In this case, the message is forwarded to OP
as an output from the aggregator.
• o is not declared in any interface of IP or of its aggregated output ports. Then, the

message is rejected and an IOException fault is sent to the caller.

From the second item above, we can observe that aggregation merges the interfaces
of the aggregated output ports and makes them accessible through a single input port.
Thus, an invoker would see all the aggregated services as a single one.

Remarkably, aggregation handles the request-response pattern seamlessly: when
forwarding a request-response invocation to an aggregated service, the aggregator
will automatically also take care of relaying the response to the original invoker.

Example 4.7 (Forwarder). Aggregation can be used for system integration, e.g.
bridging services that use different communication technologies or protocols [13].
The deployment snippet below creates a service that forwards incoming SODEP
calls on TCP port 8000 to the output port MyOP, converting the received messages
to SOAP.

outputPort MyOP { Location: "socket://someurl.ex:80/"
Protocol: soap Interfaces: MyIface }

inputPort MyInput { Location: "socket://localhost:8000/"
Protocol: sodep Aggregates: MyOP }

��
Example 4.8 (Aggregation and embedding). We give an example where three servi
ces—A, B, and C—are aggregated by a service M, which also embeds C. The code
follows, where we have an output port for each service with the same name:

4 Service-Oriented Programming with Jolie 101

Fig. 4.3 The aggregator M
exposes the union of all the
interfaces of the services it
aggregates (A, B, C). Service
C executes inside the virtual
machine of M, by embedding.
Interfaces are represented with
dotted rectangles

outputPort A { Location: "socket://someurlA.com:80/"
Protocol: soap Interfaces: InterfaceA }

outputPort B { Location: "socket://someurlC.com:80/"
Protocol: xmlrpc Interfaces: InterfaceB }

outputPort C { Interfaces: InterfaceC }
embedded { Java: "example.serviceB" in B }
inputPort M { Location:"socket://urlM.com:8000/"

Protocol: sodep Aggregates: A, B, C }

Observe that the code for aggregating service C abstracts from the fact that it is
actually embedded and not external; this abstraction is given by using output ports
for aggregating, creating a dependency only on the interface instead of the imple-
mentation and location of the target service. The obtained architecture is graphically
represented in Fig. 4.3, where we assume that the aggregated interfaces are singletons.

The grey arrows represent how the messages will be forwarded. E.g., an incoming
message for operation op3 will be forwarded to the embedded service C. ��

4.5 Example: An Automotive Case Study

We present a Jolie implementation of the automotive case study in the EU project
SENSORIA [20]. We describe the main aspects of the implementation. A complete
description and executable source code can be found at [21].

In the automotive case study a car experiments a failure during a travel. An onboard
computer helps the driver in finding and booking some services for handling the
situation: a garage for receiving the car, a tow truck for towing the car to the garage,
and a car rental for renting a replacement car. We describe the execution flow of the
system. All entities are coded in Jolie, unless otherwise stated.
Getting assistance after a failure. When the Jolie program running in the car
onboard computer (called car service) detects a failure, it sends the failure description
to the assistance service of the car manufacturer. The latter analyses the description
and sends back to the car service a Jolie program, called local assistant, that is specific
for the kind of failure. The car service now dynamically embeds the local assistant
(similarly to Example 4.6), and starts interacting with it. Both the car service and the

102 F. Montesi et al.

Fig. 4.4 (Local assistant retrieval). The car service C calls the assistance service A (1), which
selects the appropriate local assistance code LA (2) and sends it back to C (3). C can now dynamically
embed and run LA (4)

local assistant implement predefined static interfaces that define the operations they
will use to interact. The mechanism is depicted in Fig. 4.4.
Local assistant behaviour. The behaviour of the local assistant depends on the kind
of failure. For instance, we distinguish between failures that make the car unable to
move or not. Here we describe only the case in which the car is unable to move,
where we need to find a garage, a tow truck, and a car rental to handle the situation.
First, the local assistant asks the car service for the GPS coordinates of the car. The
car service actually aggregates a secondary service, the sensors service, for making
some read-only instrumentation data transparently available to the local assistant.
Then, it will use such information for building an ordered list of suitable garage, tow
truck, and car rental services, which are dynamically discovered through a registry
provided on the public network. The assistant asks now the car service to display the
list to the user, which also contains price information. The list is shown through an
embedded Java User Interface. The assistant is then notified of the user’s selection.

Bookings and payments. The local assistant has now to book and pay for the selected
garage, tow truck, and car rental services. For each service, we perform the booking
and then the payment. Here we exploit dynamic fault handling for elegantly adapting
our error recovery strategy based on the reached point of execution. Consider for
instance the following (simplified) code sketch:

scope(s) { book@Garage(gb)(gr);
install(default => cancelBook@Garage(gr));
pay@Bank(gr)(gp);
install(default => cH | cancelPay@Bank(gp));
book@TowTruck(tb)(tr);
install(default => cH | cancelBook@TowTruck(tr));
/* ... */ }

Above, scope s takes care of the bookings and payments. Whenever one of those
is successfully carried out, we update the fault handler for the scope by adding the
code for reverting it (in parallel, for efficiency). So, for example, if the booking of
the tow truck fails we would revert both booking and payment for the garage.

Bank transactions. There are different bank services that could be involved in the
payments. Here we describe the case for garage payment, depicted in Fig. 4.5. Let us

4 Service-Oriented Programming with Jolie 103

Fig. 4.5 (Payment workflow). The local assistant LA inside the car service C calls the garage G
(1), which opens a bank transaction T inside its bank BG (2) and obtains a transaction identifier (3),
forwarded to LA (4). LA then asks C to send the identifier to the user’s bank BU (5), which finally
closes the money transfer correlating with T (6)

call BU the bank service handling the user’s bank account and BG the bank service
handling the bank account of the garage. When the local assistant books the garage,
the latter opens a behaviour instance in BG for handling the bank transaction, gets
back a transaction identifier (which is a correlation value for the behaviour instance
in BG) and returns it to the assistant. The assistant now delegates the payment to the
car service, which handles the user’s private data. In order to perform the payment,
the car service contacts BU passing the user’s account data, the binding information
to BG, and the transaction identifier. BU can now close the transaction by contacting
BG, using the binding information for reaching its input port and the transaction
identifier for correlating with the right behaviour instance. All the provided bank
implementations use SQL-based DBMSs through the Jolie standard library.

4.6 Related Work

Related work can be found in orchestration languages and integration middleware for
SOAs. Our deployment language allows Jolie to apply the service-oriented paradigm
also to other domains; here we briefly consider the programming of web applications.
Table 4.1 gives a systematic overview of our discussion.

Table 4.1 Comparison of natively supported features in Jolie and related technologies

Name \Feature Behavioural
composition

Termination
handling

Architectural
composition

Formal
specifications

Web devel-
opment

Jolie Yes Yes (dynamic) Yes Yes Yes
WS-BPEL Yes Yes (static) No No No
Orc Yes No No Yes No
ESB No No Yes No No
Web frame-

works
No No No No Yes

104 F. Montesi et al.

WS-BPEL [6] is the reference orchestration language for Web Services. Jolie
takes inspiration from concepts present in WS-BPEL and WSDL, such as one-way
and request-response operations, communication ports, correlation sets, and termi-
nation handling. Nevertheless, Jolie significantly extends them. For instance, (i)
we have developed static analysis techniques for correlation-based message deliv-
ery [14], and (ii) in Jolie we consider dynamic handler installation to guarantee the
execution of the right fault recovery policy [17]. Another significant difference is
that Jolie uses a programmer-friendly C/Java-like syntax instead of the XML-based
syntax of WS-BPEL; although some of our examples (e.g., Example 4.1) may be
encoded as WS-BPEL programs, the latter would be much longer and complex due
to the verbose XML syntax and additional declarative parts. Furthermore, WS-BPEL
does not come with formal semantics, making it ambiguous in some cases and leading
to different execution behaviour in different implementations [22]. Jolie, on the other
hand, is a formally specified language (see Sect. 4.7) and offers a reference imple-
mentation. Some other orchestration languages in the literature come equipped with
a formal semantics. Blite [22] is a language that formally captures a subset of WS-
BPEL. Differently from Jolie, Blite does not have its own interpreter but compiles its
programs to WS-BPEL. HomeBPEL [23] is an extension of WS-BPEL for handling
stateful code mobility. Differently, Jolie supports stateless service mobility through
dynamic embedding (state mobility can be obtained, but it must be coded manually
by the programmer). PiDuce [24] is an implementation of a pi-like process language
equipped with powerful pattern-based primitives used to deconstruct XML docu-
ments. Finally, Orc [25] is an orchestration language that follows a data-flow oriented
approach. The pruning operator found in Orc elegantly captures the “speculative par-
allelism” pattern, which invokes several services in parallel and considers only the
first reply. An initial study of how this can be obtained in Jolie is presented in [26].

We now move to integration middlewares for SOAs, which cover architectural
composition. In this context the Enterprise Application Integration (EAI) framework
[27] is often used, along with the Enterprise Service Bus (ESB) model [7]. These
solutions cover a similar role to that of aggregation, as reported in [19] (where a
more powerful version of aggregation is also presented). Embedding, on the other
hand, is usually supported through specific application servers which can, in prac-
tice, be difficult to compose. In Jolie, instead, embedder services can be seamlessly
re-embedded by others to form a hierarchy. Finally, differently from our approach
all these tools are specific to some application domain (e.g., Web Services) and are
thus less general.

Jolie can be used as a self-contained web server through its http protocol [28],
making it an alternative to other web server technologies (e.g., Apache Tomcat) and
programming frameworks (e.g. PHP, JSP, Ruby on Rails). Noteworthingly, Jolie
natively supports structured behaviours and multiparty sessions (cf. Sect. 4.3, Exam-
ple 4.3), which are usually encoded manually with bookkeeping code in web appli-
cations.

4 Service-Oriented Programming with Jolie 105

4.7 Conclusions

We have introduced Jolie, a programming language that synthesises a coherent
programming paradigm from the technologies and practices that emerged in service-
oriented computing in the recent years. It deals with both the heterogeneity of
communication technologies and that of composition mechanisms. We addressed
the former by separating the behavioural and deployment definitions of Jolie pro-
grams and reducing their coupling to communication ports. We covered composition
mechanisms by offering behavioural composition primitives for managing complex
workflows and more high-level architectural primitives that build system topologies.

Jolie comes with formal specifications (in terms of a process calculus) of its
semantics, omitted in this chapter [13, 29, 30]. This formal approach has been instru-
mental for reasoning on the underlying model of many constructs of the language.
For instance, correlation sets and their properties are formalised in [14]. Dynamic
fault handling has been developed purposefully for Jolie; its formalisation is reported
in [17]. A formal account of aggregation can be found in [19].

Jolie has also been a source of inspiration for other work. For example, dynamic
fault handling has been proven to be more expressive than classic static fault han-
dling [31]. Montesi and Sangiorgi [32] reports some programming patterns for
component-based systems that can be implemented in Jolie [13]. Guidi and Montesi
[18] presents some engineering concepts that have been generalised from practical
experience in Jolie programming.
Applications. The design of Jolie has been validated (and influenced) by cover-
ing a broad spectrum of applications, from low-level software tightly combined with
hardware to enterprise SOAs. Jorba [33] is a framework for context-aware distributed
applications, based on dynamic embedding. Leonardo [28] is a Web Server written in
pure Jolie. Vision [34] is a push-enabled peer-to-peer application for sharing slides
during presentations. Anedda et al. [35] presents a distributed architecture for the
management of virtual machines written in Jolie. Jolie is also used in industrial
development. SAP Connector is a tool for the seamless integration of SAP ECC
installations with Jolie programs; it exploits the Jolie deployment language to inte-
grate with numerous third-party information systems. Web Catalogue is an enterprise
catalogue with web and smartphone frontends, based on Leonardo. Central Watcher
is a software for managing and monitoring phone centrals, which uses embedding
to integrate with native hardware management libraries. SAP Connector, Web Cata-
logue, and Central Watcher are some of the proprietary products of italianaSoftware
s.r.l. [36], a software development company that uses Jolie as main development
language and contributes to its code base regularly. A survey of the performance of
the Jolie interpreter goes out of the scope of this chapter (which concentrates on the
language). Roughly, it can be outlined as appropriate for many industrial deploy-
ments. For instance, stable deployments of SAP Connector have processed hundreds
of thousands of transactions. Or, Web Catalogue uses embedding and aggregation
heavily to compose a system of more than 30 SOAs, and a set of about 400 services

106 F. Montesi et al.

dynamically run for various tasks; e.g., user access, pictures, news, and localisation
are all handled by different inner SOAs.
Tool support. Jolie comes with many supporting tools (see [8]). Examples are:
joliedoc, a documentation generator; jolie2dummy, a tool for the quick prototyping
of Jolie code with “dummy” data generated from an interface; jolie2java, a con-
verter from Jolie data types to Java class definitions; jolie2wsdl, which generates
WSDL [37] documents from Jolie interfaces; vice versa, wsdl2jolie generates a
Jolie output port for calling a Web Service from its WSDL descriptor. Joliepse is a
prototype IDE for Jolie. jEye [38] is a graphical editor for Jolie programs. Finally,
QtJolie is a C++ integration library for Jolie services, developed in the KDE SC [3].
Future Work. We plan to implement a type system for dynamic binding to guarantee
that output ports are always bound to the expected interfaces. A similar study is
planned for dynamic embedding. Another future work is to develop a static analysis
for verifying the absence of “dangling bindings”, i.e., a service should never bind an
output port to a location where there is no available service.

We will investigate how Jolie can be combined with techniques for the spec-
ification of protocols such as those based on session types, contracts, and chore-
ographies [39–41]. Our aim is to produce tools for supporting the verification and
sound implementation of SOAs wrt global descriptions of system behaviour. The
granularity introduced by embedding in SOAs make it interesting to consider analy-
sis techniques where services can play multiple roles, like [42]. More generally, we
intend to explore how the architectural primitives of Jolie may influence the design
of protocol specification languages, e.g. by considering network topologies.

References

1. W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch/
2. W3C. SOAP Specifications. http://www.w3.org/TR/soap/
3. K Desktop Environment. http://www.kde.org/
4. GNOME. http://www.gnome.org/
5. D-Bus website. http://www.freedesktop.org/wiki/Software/dbus/
6. OASIS. WS-BPEL Version 2.0. http://docs.oasis-open.org/wsbpel/
7. Chappell, D.A.: Enterprise Service Bus—Theory in Practice. O’Reilly, Sebastopol (2004)
8. Jolie website. http://www.jolie-lang.org/
9. SODEP protocol. http://www.jolie-lang.org/wiki.php?page=Sodep

10. Google Web Toolkit. http://code.google.com/webtoolkit/
11. JavaScript Object Notation. http://www.json.org/
12. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: Proceedings of

ECOWS 2007, pp. 13–22 (2007)
13. Montesi, F.: Jolie: a service-oriented programming language. Master’s thesis, Department of

Computer Science, University of Bologna (2010)
14. Montesi, F., Carbone, M.: Programming services with correlation sets. In: ICSOC, pp. 125–141

(2011)
15. OpenID Specifications. http://openid.net/developers/specs/
16. OpenID implementation. http://www.jolie-lang.org/files/ws_handbook2012/openid.zip
17. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service oriented

applications. Fundamenta Informaticae 95(1), 73–102 (2009)

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/soap/
http://www.kde.org/
http://www.gnome.org/
http://www.freedesktop.org/wiki/Software/dbus/
http://docs.oasis-open.org/wsbpel/
http://www.jolie-lang.org/
http://www.jolie-lang.org/wiki.php?page=Sodep
http://code.google.com/webtoolkit/
http://www.json.org/
http://openid.net/developers/specs/
http://www.jolie-lang.org/files/ws_handbook2012/openid.zip

4 Service-Oriented Programming with Jolie 107

18. Guidi, C., Montesi, F.: Reasoning about a service-oriented programming paradigm. In: Pro-
ceedings of YR-SOC 2009, pp. 67–81 (2009)

19. Preda, M.D., Gabbrielli, M., Guidi, C., Mauro, J., Montesi, F.: Interface-based service compo-
sition with aggregation. In: ESOCC, pp. 48–63 (2012)

20. SENSORIA. Software Engineering for Service-Oriented Overlay Computers. http://www.
sensoria-ist.eu/

21. Automotive example. http://www.jolie-lang.org/files/ws_handbook2012/automotive.zip
22. Lapadula, Alessandro, Pugliese, Rosario, Tiezzi, Francesco: Using formal methods to develop

ws-bpel applications. Sci. Comput. Program. 77(3), 189–213 (2012)
23. Bundgaard, M., Glenstrup, Hildebrandt, A.J., Højsgaard, T.T., Niss, H.: Formalizing higher-

order mobile embedded business processes with binding bigraphs. In: Proceedings of COOR-
DINATION 2008, pp. 83–99 (2008)

24. Carpineti, Samuele, Laneve, Cosimo, Padovani, Luca: Piduce—a project for experimenting
web services technologies. Sci. Comput. Program. 74(10), 777–811 (2009)

25. Kitchin, D., Quark, A., Cook, W.R., Misra, J.: The Orc programming language. In: Proceedings
of FMOODS/FORTE 2009, pp. 1–25 (2009)

26. Preda, M.D., Gabbrielli, M., Lanese, I., Mauro, J., Zavattaro, G.: Graceful interruption of
request-response service interactions. In: ICSOC, pp. 590–600 (2011)

27. Sherif, M.H.: Handbook of Enterprise Integration. Auerbach Publishers, Boca Raton (2009)
28. Leonardo Web Server. http://www.sourceforge.net/projects/leonardo/
29. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: a calculus for service oriented

computing. In: Proceedings of ICSOC 2006, pp. 327–338 (2006)
30. Guidi, C.: Formalizing languages for service oriented computing. Ph.D. thesis, University of

Bologna (2007). http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf
31. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compensation

handling. In: ESOP, pp. 366–386 (2010)
32. Montesi, F., Sangiorgi, D.: A model of evolvable components. In: Proceedings of Fifth Sym-

posium on Trustworthy Global Computing (TGC 2010) (2010)
33. Ivan L., Bucchiarone, A., Montesi, F.: A framework for rule-based dynamic adaptation. In:

Proceedings of TGC, pp. 284–300 (2010)
34. Vision framework. https://jolie.svn.sourceforge.net/svnroot/jolie/trunk/playground/
35. Anedda, P., Gaggero, M., Manca, S., Schiaratura, O., Leo, S., Montesi, F., Zanetti, G.: A general

service oriented approach for managing virtual machines allocation. In: Proceedings of ACM
Symposium on Applied Computing (SAC) 2009, pp. 2154–2161 (2009)

36. italianaSoftware s.r.l. italianaSoftware. http://www.italianasoftware.com/
37. W3C. Web Services Description Language. http://www.w3.org/TR/wsdl
38. jEye. A graphical designer for Jolie. http://sourceforge.net/projects/jeye/
39. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Proceedings

of POPL’08, vol. 43(1), pp. 273–284. ACM Press (2008)
40. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. ACM Trans.

Program. Lang. Syst., 31(5), 1–61 (2009)
41. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between interaction—and

process-oriented choreographies. In: SEFM, pp. 323–332 (2008)
42. Baltazar, P., Caires, L., Vasconcelos, V.T., Vieira, H.T.: A type system for flexible role assign-

ment in multiparty communicating systems. In TGC (2012, to appear)

http://www.sensoria-ist.eu/
http://www.sensoria-ist.eu/
http://www.jolie-lang.org/files/ws_handbook2012/automotive.zip
http://www.sourceforge.net/projects/leonardo/
http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf
https://jolie.svn.sourceforge.net/svnroot/jolie/trunk/playground/
http://www.italianasoftware.com/
http://www.w3.org/TR/wsdl
http://sourceforge.net/projects/jeye/

Chapter 5
From Artifacts to Activities

Niels Lohmann and Karsten Wolf

Abstract We consider services as units in interorganizational business processes.
Following trends in the business process management community, we switch from
an activity-centric description of processes to artifact-centric descriptions. In the
interorganizational setting, unique problems arise. For instance, an artifact hub that
is crucial for present-day enactment of artifact-centric processes, can hardly be shared
between different organizations since the stored information may be subject to trade
secrets. We propose a solution that involves the translation of an artifact-centric
model into an activity-centric model. In this course, we consider artifacts as entities
that may be sent around between organizations. The location of an artifact may imply
access restrictions for one or the other organization. We propose both a formal model
and algorithms to show the effectiveness of our approach.

5.1 Introduction

Different communities are concerned with web services. Consequently, there exist
several different views on the topic. Some emphasize technical issues while oth-
ers focus on business aspects. In the area of business process management (BPM),
a web service is often understood as a substructure in an interorganizational business
process. The idea is that the service describes one party’s share in the overall process.
In this context, a service is typically a (local) business process where some tasks
are communication activities with other parties. Communication may be arbitrar-
ily complex thus distinguishing these services from the frequently advocated simple
invoke/response scheme. Furthermore, these services have a meaningful internal state

N. Lohmann (B) · K. Wolf
University of Rostock, Rostock, Germany
e-mail: niels.lohmann@uni-rostock.de

K. Wolf
e-mail: karsten.wolf@uni-rostock.de

A. Bouguettaya et al. (eds.), Web Services Foundations, 109
DOI: 10.1007/978-1-4614-7518-7_5,
© Springer Science+Business Media New York 2014

110 N. Lohmann and K. Wolf

determined by the respective state of the local business process. Hence, techniques
such as reasoning about preconditions and postconditions are less appropriate than
for simple invoke/response services. In addition, unique problems pop up such as the
deadlock freedom of the communication between organizations.

A typical business process model consists of activities that are arranged using
control flow primitives such as sequential or parallel execution, exclusive or inclu-
sive branches, and loops. We shall refer to such a process representation as an
activity-centric process. Currently, this is the dominating way of describing business
processes and most workflow engines and modeling notations rely on activity-centric
process models. However, alternative representations have been discussed as well.
One of these alternatives are so-called artifact-centric processes. Promoters claim
that artifact-centric models are better comprehendible by business analysts (which
typically have little background in computer science). An artifact-centric process
explicitly represents business-relevant artifacts such as documents, database states,
etc. together with their distinguished life cycle and certain goals (or milestones). The
actual activities remain implicit. An example for an artifact would be an application
form which may have the simple life cycle not filled/filled but not signed/signed. If
the goal is to get a signed form, we can derive the sequence of activities fill/sign.
In most proposals for enacting artifact-centric processes, the derivation of activities
is left to an AI planner that runs on the data of the actual process instance. To this
end, all process relevant data need to be stored in a single database that is called
artifact hub.

We consider this approach as quite problematic for several reasons. First, problems
of unsoundness of the overall approach are detected only at run time which may cause
severe threats for real business relations. Second, AI planning is a computationally
challenging problem, so the execution of a planner at run time may cause unaccept-
able delays in process execution. Third, and most relevant in our interorganizational
setting, trade secrets between the involved companies may inhibit a central artifact
hub. The contribution of this chapter is to address these problems. First, we propose
to automatically translate an artifact-centric process into an activity-centric process.
This way, we keep the advantages of an artifact-centric view to the business analyst
while being able to map execution to existing and mature workflow engines. Time
expenses are shifted from run time (as for the AI planner) to preparation time (for the
translation) which is less time-critical. Moreover, translation inherently includes a
check for soundness of the derived model. This part of our contribution is presented
in Sect. 5.4. Then, in Sect. 5.5, we propose techniques that allow us to abandon the
artifact hub. In our approach, an artifact may be a mobile entity; that is, one that
may be sent from one organization to another. This way, we can model artifacts that
are invisible or inaccessible to some organization for certain points in time. We can
further directly derive the necessity to perform communication activities from the
artifact model. As an example, consider the above-mentioned application form. If
filling and signing the form is performed by different business units, we observe
that both filling and signing is only possible if the form is physically present in
the respective unit. Under the assumption that the empty form is initially available
for the filling unit, we would be able to come up with the activity-centric model

5 From Artifacts to Activities 111

fill/send to other unit for the one business unit and receive filled form/sign for the
other. Consequently, we first propose a model for mobility of artifacts, cf. Sect. 5.5.1.
Then, we augment this model with other information that is useful for deriving faith-
ful activity-centric models from a given artifact-centric model. An example would
be the enforcement of compliance rules, cf. Sect. 5.5.2. Finally, we discuss related
work (Sect. 5.6) and conclude (Sect. 5.7).

All together, we thus outline an approach for an artifact-centric service collabo-
ration. This presentation is based on previous papers of the authors [37, 38, 43].

5.2 Running Example: Insurance Claim Handling

We use a simple insurance claim handling process (based on [52]) as running exam-
ple for this chapter. In this process, a customer submits a claim to an insurer who
then prepares a fraud detection check offered by an external service. Based on the
result of this check, the claim is either (1) assessed and the settlement estimated, (2)
detected fraudulent and reported, or (3) deemed incomplete. In the last case, further
information are requested from the customer before the claim is resubmitted to the
fraud detection service. In this situation, the customer can alternatively decide to
withdraw the claim. On successful assessment, a settlement case is processed by a
financial clerk. The claim is settlement paid in several rates or all at once. A single
complete payment further requires an authorization of the controlling officer. When
the settlement is finally paid, the claim is archived.

5.3 A Formal Model for Artifacts

Being concerned with an interorganizational setting, we assume that there is a set A
of agents (or roles, organizations, etc.). In our approach, agents are principals in a
role-based access control for artifacts.

Informally, an artifact consists of data fields that can be manipulated (changed) by
agents. Thereby, the change of data is constrained by the role-based access control.
Hence, we model an artifact as a state machine. States represent the possible valua-
tions of the data fields whereas transitions are the potential atomic changes that can
happen to the data fields. In this paper, we use Petri nets for implicitly representing
state machines. When data fields in an artifact evolve independently of each other,
the size of a Petri net grows much slower than the number of represented states.

Definition 1 (Petri net) A Petri net N = [P, T, F,m0] consists of two finite and
disjoint sets P (places) and T (transitions), a flow relation F ⊆ (P× T)∪ (T × P),
and an initial marking m0. A marking m : P → IN represents a state of the Petri
net and is visualized as a distribution of tokens on the places. Transition t is enabled
in marking m iff, for all [p, t] ∈ F , m(p) > 0. An enabled transition t can fire,

112 N. Lohmann and K. Wolf

claim

cus

ins

cus

cus

ins ins

ins ins

ins

submit

withdraw

requestInfo

provideInfo

prepare

estimateHighestimateLow

archive

ins

pending

withdrawn

preparedvoid

estimated archived

fraudulent

ok

reported

report

assess

assessed

submitted

incomplete

Ω = {[withdrawn] , [archived] , [reported] }

settlement

con

create
authorize

payFull

payRestpayPart

payPart

paid

authorizedunchecked

createdempty

Ω = {[empty] , [unchecked , paid] , [authorized , paid]}

(a)

(b)

Fig. 5.1 Running example process. a Claim artifact. b Settlement artifact

transforming m into the new state m′ with m′(p) = m(p) − W (p, t) + W (t, p)
where W ([x, y]) = 1 if [x, y] ∈ F , and W ([x, y]) = 0, otherwise.

Transitions are triggered by actions. The available actions form the interface to
the artifact. For modeling role based access control, each action is associated to an
agent, meaning that this agent is permitted to perform that action.

Throughout this chapter fix a set L = Lc ∪ Lu of action labels. This set is
partitioned into a set Lc of controllable actions that are executed by agents and a set
Lu of uncontrollable actions that are not controllable by any agent, but are under
the influence of the environment. Such uncontrollable actions are suitable to model
choices that are external to the business process model, such as the outcome of a
service call (e.g., to a fraud detection agency) or just choices whose decision process
is not explicitly modeled at this level of abstraction. We further define a mapping
c : L→ A representing the access control. This access control can be canonically
extended [38] to sets of agents (i.e., roles), yielding a sophisticated role-based access
control.
Running example (cont.) Figure 5.1 depicts the claim and the settlement artifacts.
Each transition is labeled by the agent that executes it (insurer, customer, controller,
and financial clerk) or is shaded gray in case of uncontrollable actions.

5 From Artifacts to Activities 113

Definition 2 (Artifact) An artifact A = [N , �,Ω] consists of

• A Petri net N = [P, T, F,m0];
• a transition labeling � : T → L associating actions with Petri net transitions;
• a set Ω of markings of N representing endpoints in the life cycle of the artifact.

Action x ∈ L is enabled in marking m iff some transition t ∈ T with l(t) = x is
enabled in m. Executing the enabled action x amounts to firing any (nondeterminis-
tically chosen) such transition.

Nondeterminism in an artifact may sound unusual at first glance but may occur
due to prior abstraction. The final markings of the claim artifact include the mark-
ings [withdrawn], [reported], and [archived] modeling the different outcomes of the
claim handling. The settlement artifact also has three final markings: [empty]
(no settlement has been created), [unchecked, paid] (unchecked payment), and
[authorized, paid] (authorized payment).

5.4 Executing Artifact-Centric Business Processes

In this section, we present the first part of our approach: the translation of an artifact-
centric model into an activity-centric one. For the moment, we ignore the interorga-
nizational aspects of our setting. These aspects are added in the next section.

At first glance, execution of an artifact-centric process amounts to a sequence of
activities that transforms all artifacts into their respective goal states. A second view,
however, shows that additional aspects need to be taken into consideration.

1. Even if every artifact reaches its local final state, the respective global state might
still model an unreasonable and undesired situation. For instance, a beer order
together with a wine-loaded cargo is reachable in the running example but cer-
tainly unwanted.

2. Even if a global sequence of activities is reasonable with respect to every artifact
in isolation, it may introduce problems such as deadlocks (nonfinal markings
without successors) or livelocks (infinite runs without reachable final marking).

3. Even if a sequence of activities is formally correct from the control flow per-
spective, it may not be meaningful from a semantic perspective. For instance, a
shipper must not load the cargo before the ordered goods have been paid although
that sequence would perfectly transform all artifacts into their final states while
avoided deadlocks or lovelocks.

In the course of this section, we address these three problems as follows. With a
specification of goal states, we restrict the set of all possible final states to a subset of
desired global final states. This addresses the first problem. To avoid deadlocks and
livelocks, the artifacts’ actions need to be controlled by the environment, resulting in
an interaction model (i.e., a choreography) which may serve as a contract between the
agents. This interaction model provides the necessary coordination to deal with the

114 N. Lohmann and K. Wolf

A3
A2

A1

Γ

artifact com
position

controller synthesis

P3
P2

P1

M

goal states

artifacts

policies

R3
R2

R1
compliance

rules

weakly terminating and
compliant activity-centric
business process model

Fig. 5.2 Overview: Artifact composition and controller synthesis (Sect. 5.4.1) derive a choreogra-
phy from artifacts, policies (Sect. 5.4.2), and compliance rules (Sect. 5.5)

second problem. Finally, we introduce policies to further refine the interdependencies
between artifacts. This tackles the third problem. Later, in Sect. 5.5 we further discuss
how compliance rules can be integrated into this approach. Figure 5.2 provides an
overview.

5.4.1 Goal States and Controller Synthesis

To simplify subsequent definitions, we first unite the artifacts. The union of a set of
artifacts is again an artifact.

Definition 3 (Artifact union) Let A1, . . . , An be artifacts with pairwise disjoint Petri
nets N1, . . . , Nn . Define the artifact union

⋃n
i=1 Ai = [N , �,Ω] to be the artifact

consisting of

• N = [⋃n
i=1 Pi ,

⋃n
i=1 Ti ,

⋃n
i=1 Fi ,m01 ⊕ · · · ⊕ m0n],

• �(t) = �i (t) iff t ∈ Ti (i ∈ {1, . . . , n}), and
• Ω = {m1 ⊕ · · · ⊕ mn | mi ∈ Ωi ∧ 1 ≤ i ≤ n}
Thereby, ⊕ denotes the composition of markings: (m1 ⊕ · · · ⊕mn)(p) = mi (p) iff
p ∈ Pi .

The previous definition is of rather technical nature. The only noteworthy property
is that the set of final markings of the union consists of all combinations of final
markings of the respective artifacts. We shall later restrict this set of final markings
to a subset of goal states.

The next definition captures the interplay between two artifacts A1 and A2 and
uses their interfaces (i.e., the labels associated to artifact transitions) to synchronize
artifacts. In the resulting composition, each pair of transitions t1 and t2 of artifact A1
and A2, respectively, with the same label (i.e., �1(t1) = �2(t2)) is replaced by a new

5 From Artifacts to Activities 115

A

Ω = {[final1], [final2]}

B

final

Ω = {[final]}

A B

final

Ω = {[final1 , final], [final2 , final]}

⊕ =
a b b ba

final 1 final 2 final 1 final 2

Fig. 5.3 Example for the composition of two artifacts.

transition [t1, t2] which models synchronous firing of t1 and t2. Consequently, the
composition of two artifacts restricts their behavior by synchronization.

Definition 4 (Artifact composition) Let A1 and A2 be artifacts. Define their shared
labels as S = Lc \ {l | ∃t1 ∈ T1, ∃t2 ∈ T2 : �(t1) = �(t2) = l}. The composition of
A1 and A2 is the artifact A1 ⊕ A2 = [N , �,Ω] consisting of:

• N = [P, T, F,m01 ⊕ m02] with

– P = P1 ∪ P2;
– T = (

T1 ∪ T2 ∪ {[t1, t2] ∈ T1 × T2 | �(t1) = �(t2)}
) \ ({t ∈ T1 | �1(t) ∈ S} ∪

{t ∈ T2 | �2(t) ∈ S}),
– F = ((F1 ∪ F2) ∩ ((P × T) ∪ (T × P))) ∪ {[[t1, t2], p] | [t1, p] ∈ F1 ∨
[t2, p] ∈ F2} ∪ {[p, [t1, t2]] | [p, t1] ∈ F1 ∨ [p, t2] ∈ F2},

• for all t ∈ T ∩ T1: �(t) = �1(t), for all t ∈ T ∩ T2: �(t) = �2(t), and for all
[t1, t2] ∈ T ∩ (T1 × T2): �([t1, t2]) = �1(t1), and
• Ω = {m1 ⊕ m2 | m1 ∈ Ω1 ∧ m2 ∈ Ω2}.
The composition A1 ⊕ A2 is complete if for all t ∈ Ti holds: if �i (t) /∈ S, then
�i (t) ∈ Lu (i ∈ {1, 2}).

Figure 5.3 depicts an example for the composition of two artifacts. Final markings
of the composition are built just like in the union. We call a composition complete if
for each transition in one artifact exists a transition in the other artifact that carries the
same label. Intuitively, a complete composition does not contain “unsynchronized”
transitions. To avoid undesired behavior, a complete composition plays an important
role.

Given an artifact A and a set Γ ⊆ Ω of goal states of A, we call another artifact
A′ a controller for A iff (1) their composition A ⊕ A′ is complete and (2) for each
reachable markings of the composition, a marking m ⊕ m′ is reachable such that
m ∈ Γ and m′ is a final marking of A′. Intuitively, this controller synchronizes with
A such that a goal state m ∈ Γ of A always remains reachable.

The existence of controllers (also called controllability [57]) is a fundamental
correctness criterion for communicating systems such as services. It can be decided
constructively [57]: If a controller for an artifact exists, it can be constructed auto-
matically.

116 N. Lohmann and K. Wolf

With the concept of controller synthesis, we are now able to reason about artifacts.
Given a set of artifacts and a set of goal states, we can synthesize a controller which
rules out any behavior that makes the goal states unreachable. At the same time, the
controller provides a global model which specifies the order in which actions are
performed on the artifacts.

For the artifacts of the running example and the set of goal states

Γ = {[withdrawn, empty], [reported, empty],
[archived, unchecked, paid], [archived, authorized, paid]}

expressing withdrawn and reported claims as well as unchecked and authorized pay-
ments. Although free of deadlocks and livelocks, it still contains undesired behavior
which we rule out with policies in the next subsection.

5.4.2 Policies

Artifact-centric approaches follow a declarative modeling style. Consequently, the
order of actions in the generated choreography is only constrained to avoid deadlocks
and livelocks with respect to goal states. As a downside of this approach, a lot of
unreasonable behavior is exposed. For instance, paying a settlement before the claim
is assessed would be possible.

To rule out this undesired behavior, we employ policies (also called behavioral
constraints [40]). For keeping notations slim, we also model policies with artifacts;
that is, labeled Petri nets with a set of final markings. These artifacts have no physical
counterpart and are only used to model dependencies between actions of different
artifacts. The application of policies then boils down to the composition of the arti-
facts with these policies. In principal, goal states can be expressed by policies as well.
We still decided to split these concepts, because the former conceptionally express
liveness properties whereas the latter express safety properties.

For the running example, we use two policies:

P1 The claim may be archived only if the settlement is paid.
P2 A settlement may only be created after the claim has been estimated.

Figures 5.4a, b depict the artifacts for the policies P1 and P2. The union with the
artifacts claim and settlement is depicted in Fig. 5.4c where the policies are high-
lighted with bold strokes. By applying more and more policies to the artifacts, we
add more dependencies between artifacts and exclude more and more unintended
behavior.

Figure 5.5 depicts the Petri net representing the final activity-centric model. Each
transition is labeled with an action (what is done), an artifact (which data are accessed;

5 From Artifacts to Activities 117

P1

ins archive

paid
P2

ins

estimateHigh estimateLow

create

ins

settlement

claim

cus

ins

cus

cus

ins ins

ins ins

ins

submit

withdraw

requestInfo

provideInfo

prepare

estimateHighestimateLow

archive

ins

pending

withdrawn

preparedvoid

archived

fraudulent

ok

reported

report

assess

assessed

con

create
authorize

payFull

payRestpayPart

payPart

paid

authorizedunchecked

empty

submitted

incomplete

created

estimated

(a)

(c)

(b)

Fig. 5.4 Application of policies to artifacts. a Policy P1. b Policy P2. c Policy P2 and P3 applied
to artifacts claim and settlement

cus

cus

ins

ins ins

ins

ins

ins

con

submit

requestInfo

provideInfo

prepare

estimateHigh

estimateLow

report

assess

archive

create

authorize

payFull

payRestpayPart

payPart

initial final

ins

ins

archive

payRest

con

authorize

Fig. 5.5 Resulting choreography between agents customer , insurer , controller and financial
clerk

118 N. Lohmann and K. Wolf

the actions on the settlement are shaded grey), and an agent (who performs the
action). This choreography has been calculated by Wendy [42] as an automaton model
which then was transformed into a Petri net model using the tool Genet [15]. With a
preprocessing tool to compose artifacts and policies, Wendy as controller synthesis
tool, and Genet as Petri net transformation, we have a continuous tool chain for the
translation from artifact-centric to activity-centric process models available. This
tool chain offers an alternative to running an artifact hub at runtime. Especially,
the approach is able to detect potential problems in an early phase of workflow
engineering. Although the running example is rather trivial, case studies with Wendy
[42] show that it is able to cope with input models with millions of states.

Note that the model is generated to realize the maximal behavior while guar-
anteeing correctness with respect to goal states, policies, and livelock freedom. Its
main purpose is to be executed on standard workflow engines. As a result, the model
is not necessarily human-readable. However, the synthesis tool Wendy also allows
to generate smaller models with more restricted behavior. These models may be
much easier to comprehend. Nevertheless, only the artifact models are meant to be
understood by the modeler.

For models that cannot be controlled, we further introduced a diagnosis algorithm
[36] that calculates a counterexample that makes the reasons for the impossibility to
control the model toward deadlock and livelock freedom explicit. More details can
be found in [38].

5.5 Extensions

Now we turn to the main contribution of this paper and approach the interorgani-
zational aspects of artifact-centric processes. These aspects include the following
issues:

• An artifact hub is even less suitable for enacting an interorganizational artifact-
centric process;
• Artifacts may circulate between organizations, and their location may influence

whether or not activities are enabled;
• In interorganizational collaborations, issues like compliance to legal requirements

have increased importance.

While we addressed the first issue already in the previous section, we propose an
explicit modeling of location as a solution for the second problem. That is, we extend
the artifact model with states that represent the possible locations of the artifacts,
and with activities that represent the transfer from one location to another one. The
additional parts of the model are then linked to other activities for modeling location
based restrictions for their activation. In the end, the extended model can be treated
in the same way as proposed in the previous section. The resulting activity-centric
model is a global business process model that provides a global view. It can serve as
a contract (or a choreography, or a protocol) for the overall activity behavior. In the
same style, we propose model extensions for coping with compliance requirements.

5 From Artifacts to Activities 119

5.5.1 Interorganizational Business Processes

5.5.1.1 Location-Aware Artifacts

If we want to derive a protocol from a set of given artifacts, we have to understand
the reasons for which messages are sent around in an artifact context. It turns out that
there exist different shapes of artifacts which cause interorganizational interaction
for different reasons. We give a few examples.

Consider first an artifact that is materialized as, say, a physical form. Actions in
this artifact correspond to filling in fields in this form. Still, some actions may be
bound to particular agents (e.g., signatures), so the artifact itself must be passed to
that agent. Passing the artifact corresponds to sending a message. The act of sending
would, at the same time, disable any actions bound to the sending agent. In another
scenario, an artifact manifests itself as a database record. In this case, the artifact is
not passed, but a message may be required to announce the existence of the artifact
and to transmit some kind of access link which then enables the other agent to perform
actions on the artifact by remote access to the data base.

Taking the artifact-centric approach seriously, we propose to include the acts of
sending a message, receiving a message, and synchronous communication steps as
specific actions of the artifact. Likewise, the current location of the artifact (at an
agent or “in transit”) becomes an additional data field. The additional data field can
be used for modeling the actual effect of the messaging activity such as enabling or
disabling other actions.
Running example (cont.) Figure 5.6 depicts an location-aware extension of the claim
artifact. Two additional places (“@insurer” and “@controller”) model the locaction
of the insurance claim file. In our example, we assume that after submitting the claim,
a physical file is created by the insurer which can be sent to the controlling officer
by executing the respective action “send to controller”. We further assume that the
settlement artifact is a data base entry that can be remotely accessed by the insurer,
the financial clerk, and the controlling officer. Hence, we do not need to extend it
with location information and keep the model in Fig. 5.1b as is.

claim

cus

ins

cus

cus

ins ins

ins ins

ins

submit

withdraw

requestInfo

provideInfo

prepare

estimateHighestimateLow

sendToController

sendToInsurer

archive

ins

pending

withdrawn

preparedvoid

estimated archived

fraudulent

ok

reported

report

assess

assessed

@insurer @controllerins

con

submitted

Ω = {[withdrawn , @insurer], [archived , @insurer], [reported , @insurer]}

incomplete

Fig. 5.6 Location-aware claim artifact. Added nodes are depicted with bold lines

120 N. Lohmann and K. Wolf

We see that the extension to the functional artifact model may vary a lot. Hence, it
is reasonable to provide this information as part of the artifact. One possible approach
is to make the modeler fully responsible for modeling location-specific information
about the artifact. Another option would be to automatically generate an extension of
the model from a more high level specification. The latter approach has the advantage
that the added information is consistent by construction (e.g., a message can only be
received after it has been sent). However, our subsequent treatment of location-aware
artifacts does not depend on the way they have been obtained.

For the sake of automatically generating location information, we observe that
the necessary extension to an artifact model can be reduced to applying a reasonably
sized set of recurring patterns. In consequence, we suppose that it is possible to auto-
matically derive the extension from a few general categories. In the next subsection,
we make a preliminary proposal for such a categorization.

5.5.1.2 Categorization of Location Information

In this subsection, we propose a two-dimensional categorization of artifacts and dis-
cuss the consequences on the derivation of a location-aware extension of an artifact.
The first dimension is concerned with the possible changes of ownership and remote
visibility of the artifact. The second dimension deals with remote accessibility to
actions.

In the first dimension, we distinguish mobile, persistent, and transient artifacts.
A mobile artifact may change its location over time. A typical example is a physical

form that is exchanged between agents, for instance for collecting information or just
signatures from different agents. The direct debit authorization discussed in previous
sections is a particular instance of a mobile artifact. Messages caused by a mobile
artifact typically correspond to a change of location of the artifact. This can be
modeled using an additional data element that records the location which may be at a
particular agent or “in transit” between two agents. Actions correspond to sending an
artifact (move the location field from “at X ” to “in transit from X to Y ” and receiving
an artifact (move the location field from “in transit from X to Y ” to “at Y ”). The
location field may then be used for constraining remote access as discussed later in
this section.

Persistent and transient artifacts are both immobile; that is, their location does
not change over time. The difference between these two categories concerns the
visibility of the artifact to other agents. An example for a persistent artifact could
be a commonly known Web front-end such as a popular book-ordering platform.
Access to actions on the artifact, including creation of an order (an actual instance
of the artifact) can happen at any time from any agent. In contrast, consider a journal
reviewing record as an example for a transient artifact. This artifact resides in the
editorial office at all time—like the ordering artifact resides with the seller. However,
the reviewer cannot access the artifact from the beginning as he or she simply does
not know of its existence. Only after having been invited to review the paper, the
reviewer can start to act on the artifact (including downloading the paper and filling in

5 From Artifacts to Activities 121

Fig. 5.7 Excerpt of a transient
artifact whose owner needs
to send a link prior to remote
access of agent B send link

accessible

...

owner
remote access
agent B

state 1

state 2

the fields in the recommendation form). In essence, the reviewer invitation contains
a link to the artifact, possibly in the form of login information thus announcing the
existence to the artifact. This link message makes the artifact remotely accessible. For
a persistent artifact, no such information is required. At least, passing the link to the
artifact to the remote (customer) agent, is typically not part of the interorganizational
business process model for book selling.

Persistent artifacts basically do not require any location-specific extension (such as
the settlement example). It is just necessary to be aware of the particular location for
the purpose of distinguishing remote from local access to the artifact. For a transient
model, we propose to add a place for each agent that is marked as soon as the artifact
is visible to that agent. An action “send link” marks that place thus modeling the fact
that the artifact can be accessed after having received the link (or login) information.
Once a place is marked, the artifact can be accessed indefinitely by the respective
agent. See Fig. 5.7 for an example.

The second dimension determines, whether and how an artifact can be accessed
by remote agents. For a mobile artifact, an agent is remote if it is not currently owning
the artifact. For a persistent or transient artifact, all agents are remote, except the one
that possesses it. Remote accessibility may differ between actions, so we suggest to
specify this information for each action separately.

We distinguish three options for remote accessibility of an action: none, synchro-
nous, and asynchronous. For a real paper form, the standard option would be none.
The form is not remote accessible. Performing an action requires physical presence of
the artifact. An exception may be a situation where two agents are actually present in
a single location such as in the case of a contract that is signed by a customer directly
at a desk which does not require passing the contract from the clerk to the customer.
Synchronous transfer is an obvious option for artifacts with interactive Web forms
as front-end. An example for an asynchronously accessible artifact can be found in
the once popular tool Majordomo1 for managing electronic mailing lists. Partici-
pants could manipulate their recorded data (like subscription and unsubscription) by
writing e-mails containing specific commands to a particular e-mail address.

Although there is a certain correlation between the dimensions, we can think of
examples for all possible combinations of values for the two discussed dimensions.
Even for a mobile artifact, asynchronous remote access may be reasonable. Think
of a product that is about to be assembled where the delivery and mounting of a part

1 http://www.greatcircle.com/majordomo/

http://www.greatcircle.com/majordomo/

122 N. Lohmann and K. Wolf

Table 5.1 Dimensions of location information with examples

No remote access Synchronous remote access Asynchronous remote access

Mobile artifact Physical form Insurance claim with delegation
Persistent artifact – Database Majordomo
Transient artifact – Online survey Review form

from a supplier may be modeled as an asynchronous access to the artifact. Thus,
there is a need to explicitly state the remote accessibility scheme for each action.

We do not claim that the above categorization (see Table 5.1 for an overview) is
complete. However, discussions subsequent to the presentation of the original article
[43] did not reveal any further categories. Further investigations of more involved
scenarios such as Enterprise Integration Patterns [27] or Service Interaction Patterns
[6] are subject of future work. It is this safe to assume for the remainder of this paper
that a location-aware artifact model be given.
Running example (cont.) Locations can be used to refine the policies of our insurance
process:

P1 The claim may be archived only if it resides at the insurer and the settlement is paid.
P2 A settlement may only be created after the claim has been estimated.
P3 To authorize the complete payment of the settlement, the claim artifact must be at hand to

the controlling officer.
P4 The claim artifact may only be sent to the controller if it has been estimated and the

settlement has not been checked.
P5 The claim artifact may only be sent back to the insurer if the settlement has been authorized.

Figure 5.8 depicts the resulting location-aware choreography. Note the highlighted
transitions modeling the required message exchange between the insurer and the
controlling officer to satisfy policy P3–P5.

5.5.2 Compliance Rules

Compliance rules are often declarative and describe what should be achieved rather
than how to achieve it. Temporal logics such as CTL [10], LTL [50] or PLTL [51] are
common ways to formalize such declarative rules. To make these logics approach-
able for nonexperts, also graphical notations have been proposed [5, 7]. Given such
rules, compliance of a business process model can be verified using model checking
techniques [16]. These checks can be classified as compliance by detection, also
called after the fact or retrospective checking [53]. Their main goal is to provide a
rigorous proof of compliance. In case of noncompliance, diagnosis information may
help to fix the business process toward compliance. This step can be very compli-
cated, because the rules may affect various parts and agents of the business process

5 From Artifacts to Activities 123

cus

cus

ins

ins

cus

ins

ins

ins

ins

ins con con

ins

ins

submit

withdraw

requestInfo

provideInfo

prepare

estimateHigh

estimateLow

archive

report

assess

archive

create

authorize

payFull

payRestpayPart

payPart

sendToController sendToInsurer

initial final

Fig. 5.8 Location-aware choreography with highlighted message exchange that satisfies policies
P1–P5

(e. g., financial staff and the press team). Furthermore, the declarative nature of the
rules does not provide recipes on how to fix the business process. To meet the previ-
ous example rule, an action “send information to press team” needs to be added to the
process and must be executed at most 2 weeks after the execution of an action “sign
financial report”. Compliance can be eventually reached after iteratively adjusting
and checking the business process model. The main advantage of this approach is
the fact that it can be applied to already running business processes.

An alternative approach focuses on the early design phases and takes a business
process model and the compliance rules as input and automatically generates a busi-
ness process model that is compliant by design [53], cf. Fig. 5.2. This has several
advantages: First, a subsequent proof and potential corrections are not required. This
may speed up the modeling process. Second, the approach is flexible as the genera-
tion can be repeated when rules are added, removed, or changed. Third, the approach
is complete in the sense that an unsuccessful model generation can be interpreted as
“the business process cannot be made compliant” rather than “the current model is
not compliant”. Fourth, compliance is not only detected, but actually enforced. That
is, noncompliant behavior becomes technically impossible.

5.5.2.1 Modeling Compliance Rules

This subsection investigates to what extend compliance rules can be integrated into
the artifact-centric approach. Before we present different shapes of compliance rules
and their formalization with Petri nets, we first discuss the difference between a
policy and a compliance rule.

124 N. Lohmann and K. Wolf

Enforcing Policies Versus Monitoring Compliance Rules

As described in Sect. 5.4.2, we use policies to express interdependencies between
artifacts and explicitly restrict behavior by making the firing of transitions impossi-
ble. Policies thereby express domain knowledge about the business process and its
artifacts and are suitable to inhibit implausible or undesired behavior. This finally
affects the subsequent controller synthesis.

In contrast, a compliance rule specifies behavior that is not under the direct control
of the business process designer. Consequently, a compliance rule must not restrict
the behavior of the process, but only monitor it to detect noncompliance. For instance,
a compliance rule must not disable external choices within the business process as
they cannot be controlled by any agent. If such a choice would be disabled to achieve
compliance, the resulting business process model would be spurious as the respective
choice could not be disabled in reality. Therefore, compliance rules must not restrict
the behavior of the artifacts, but only restrict the final states of the model. This
may classify behavior as undesired (viz. noncompliant), but this behavior remains
reachable. Only if this behavior can be circumvented by the controller synthesis, we
faithfully found a compliant business process which can be actually implemented.
We formalize this nonrestricting nature as monitor property [40, 57]. Intuitively,
this property requires that in every reachable marking of an artifact, it holds that for
each action label of that artifact a transition with that label is activated. This rules
out situations in which the firing of a transition in a composition is inhibited by a
compliance rule.

Expressiveness of Compliance Rules

Conceptually, we model compliance rules by artifacts with the monitor property.
Again, adding a compliance rule to an artifact-centric model boils down to composi-
tion, cf. Def 4. The monitor property ensures that the compliance rule’s transitions are
synchronized with the other artifacts, but without restricting (i. e., disabling) actions.
That is, the life cycle of a compliance rule model evolves together with the artifacts’
life cycles, but may only affect the final states of the composed model.

In a finite-state composition of artifacts, the set of runs reaching a final state forms
a regular language. The terminating runs of a compliance rule (i. e., sequences of
transitions that reach a final marking) describe compliant runs. This set again forms
a regular language. In the composition of the artifacts and the compliance rules,
these regular languages are synchronized—viz. intersected—yielding a subset of
terminating runs. Regular languages allow to express a variety of relevant scenarios.
In fact, we can express all patterns listed by Dwyer et al. [19], including:

• enforcement and existence of actions (e. g., “Every compliant run must contain an
action ‘archive claim’.”),
• absence/exclusion of actions (e. g., “The action ‘withdraw claim’ must not be

executed.”),

5 From Artifacts to Activities 125

• ordering (precedence and response) of actions (e. g., “The action ‘create settle-
ment’ must be executed after ‘submit claim’, but before ‘archive claim’.”), and
• numbering constraints/bounded existence of actions (e. g., “The action “partially

pay settlement” must not be executed more than three times.”).

The explicit model of data states of the artifacts further allows to express rules
concerning data flow, such as:

• enforcement/exclusion of data states (e. g., “The claim’s state ‘fraud reported’ and
the settlement’s state ‘paid’ must never coincide.”), or
• data and control flow concurrence (e.g., “The action ‘publish review’ may only be

executed if the review artifact is in state ‘reviewers blinded’.”).

Additionally, the explicit modeling of the location of the artifacts allows to express
spacial constraints:

• enforcement/exclusion of actions at specific locations (e. g., “The task ‘sign’ may
only be executed if the contract artifact is at the human resources department”),
or
• enforcement/exclusion of the transport/transfer of an artifact in a certain state (e. g.,

“iPhone prototypes must not leave the company premises after the operating system
is installed.”).

On top of that, any combinations are possible, allowing to express complex com-
pliance rules.

Limitations

Apart from the conceptual richness, the presented approach has some theoretical
limits. First, it is not applicable to nonregular languages. For instance, a rule requiring
that a compliant run must have an arbitrary large, but equal number of a and b
actions or that a and b actions must be properly balanced (Dyck languages) cannot
be expressed with a finite-state models. Second, rules that affect infinite runs (e. g.,
certain LTL formulae [50]) cannot be expressed. Infinite runs are predominantly used
to reason about reactive systems. A business process, however, is usually designed to
eventually reach a final state—this basically is the essence of the soundness property.
Therefore, we shall focus on an interpretation of LTL which only considers finite runs,
similar to a semantics described by Havelund and Roşu [26]. Third, just like Awad
et al. [8], we also do not consider the X (next state) operator of CTL∗, because
we typically discuss distributed systems in which states are not partially ordered.
Forth, we do not use timed Petri nets and hence can make no statements on temporal
properties of business processes. However, we can abstract the variation of time by
events such as “time passes” or data states such as “expired” as in [24, 46].

Conceptually, an extension toward more expressive constraints would be possible.
For instance, pushdown automata could be used to express Dyck languages, a yield-
ing context-free language as product. However, this extension would need further

126 N. Lohmann and K. Wolf

R3R1

ins

pol

estimateHigh

authorize

pol

ins

authorize

estimateHigh

final 1

final 2

Ω = {[final1], [final2]}

R2

cus

cus withdraw

withdraw

Ω = {[final]}

final
n

n n

npayPart

payPart

payPart

payPart

final 1

final 2

final 3

Ω = {[final1], [final2], [final3]}

Fig. 5.9 Compliance rules modeled as Petri nets

theoretical consideration as, for instance, controllability is undecidable in case of
infinite state systems [47].

Example Formalizations of Compliance Rules

As mentioned earlier, we again use artifacts (i. e., Petri nets with final markings and
action labels) that satisfy the monitor property to model compliance rules. As an
example, we consider the following compliance rules for our example insurance
claim process:

R1 All insurance claims with an estimated high settlement must be authorized.
R2 Customers must not be allowed to withdraw insurance claims.
R3 Settlements should be paid in at most three parts.

Figure 5.9 shows the Petri net formalizations of these compliance rules. In rule R1,
we exploited the fact that the actions “authorize” and “estimateHigh” are executed
at most once. In rule R2 and R3, the monitor property is achieved by allowing
“withdraw” and “payPart” to fire in any reachable state. Without restriction of the
behavior, the final markings classify executions as compliant or not. For instance,
executing “estimateHigh” in rule R1 without eventually executing “authorize” does
not reach the final marking [final2]. Other examples can be formalized similarly.

Discussion

We conclude this section by a discussion of the implications of using Petri nets to
formalize compliance rules.

5 From Artifacts to Activities 127

• Single formalism. We can model artifacts, policies, and compliance rules with the
same formalism. Though we do not claim that Petri nets should be used by domain
experts to model compliance regulations, using a single formalism still facilitates
the modeling and verification process. Furthermore, each rule implicitly models
compliant behavior which can be simulated. This is not possible if, for instance,
arbitrary LTL formulae are considered.
• Level of abstraction. Rules can be expressed using minimal overhead. Each rule

contains only those places and transitions that are affected by the rule and plus
some additional places to model further causalities. In particular, no placeholder
elements (e. g., anonymous activities in BPMN-Q [7]) are required. These place-
holder elements must not be confused with “wildcard” dependencies, for instance
requiring input from artifact A, B, or C . To formalize such dependencies with our
artifact model, they need to be unfolded explicitly. Of course, syntactic extensions
may be introduced to modeling languages to compact the models.
• Independent design. The rules can be formulated independently of the artifact

and policy models. That is, the modeler does not need to be confronted with the
composite model. This modular approach is more likely to scale, because the rules
can also be validated independently of the other rules.
• Reusability. The composition is defined in terms of action labels. Therefore, rules

may be reused in different business process models as long as the labels match.
This can be enforced using standard naming schemes or ontologies.
• Runtime monitoring. The monitor property ensures that the detection of noncom-

pliant behavior is transparent to the process as no behavior is restricted. Therefore,
the models of the compliance rules can be also used to check compliance during
or after runtime, for instance by inspecting execution logs.
• Rule generation. Finally, the structure of the Petri nets modeling compliance rules

is very generic. Therefore, it should be possible to automatically generate Petri nets
for standard scenarios or to provide templates to which only the names of the con-
strained actions need to be filled. Also, the monitor property can be automatically
enforced.

5.5.2.2 Compliance By Design

This section presents the second ingredient of this contribution: the construction of
business process models that are compliant by design. Beside the construction, we
also discuss the diagnosis of noncompliant business process models.

Constructing Compliant Models

None of the compliance rules discussed in the previous section hold in the example
process depicted in Fig. 5.8. This noncompliance can be detected by standard model
checking tools. They usually provide a counterexample which describes how a non-
compliant situation can be reached. For instance, the action sequence “1. submit, 2.

128 N. Lohmann and K. Wolf

cus

cus

ins

ins ins

ins

ins

ins

n

ins

con

con

n n

n

n

submit

requestInfo

provideInfo

prepare

estimateHigh

estimateLow

report

assess
archive

create

authorize

payFull

payRestpayPart

payPart

sendToInsurer

initial final

n

ins

ins

ins

archive

payRest

sendToController

sendToController

Fig. 5.10 Operational business process satisfying the compliance rules R1–R3

prepare, 3. requestInfo, 4. withdraw” is a witness that the process does not comply
with rule R2 from Sect. 5.5.2.1. To satisfy this requirement, the transition “withdraw”
can be simply removed. However, implementing the other rules is more complicated,
and each modification would require another compliance check.

We propose to synthesize a compliant model instead of verifying compliance. By
composing the Petri net models of the artifacts, the policies, and the compliance
rules and by taking the goal states into account, we derive a Petri net that models
the artifacts’ life cycles that are restricted by the policies and whose final states
are constrained by the goal states and the compliance rules. Compliant behavior
is now reduced to weak termination, and we can apply the same algorithm [57]
and tool [42] to synthesize a controller. If such a controller exists, it provides an
operational model that specifies the order in which the agents need to perform their
actions. This model is compliant by design—a subsequent verification is not required.
Beside weak termination (and hence, compliance), the synthesis algorithm further
guarantees the resulting model is most permissive [57]. That is, exactly that behavior
has been removed that would violate weak termination. Another important aspect of
the approach is its flexibility to add further compliance rules. That is, we do not need
to edit the existing model, but we can simply repeat the synthesis for the new rule
set.
Running example (cont.) Figure 5.10 depicts the resulting business process model. It
obviously contains no transition labeled with “withdraw”, but the implementation of
the other rules yielded a whole different structure of the part modeling the settlement
processing. It is important to stress that the depicted business process model has been
synthesized completely automatically using the partner synthesis tool Wendy [42] and
the Petri net synthesis tool Petrify [17]. Admittedly, it is a rather complicated model,
but any valid implementation of the compliance rules would yield the same behavior
or a subset. Though our running example is clearly a toy example, experimental
results [42] show that controller synthesis can be effectively applied to models with
millions of states.

5 From Artifacts to Activities 129

5.6 Related Work

Artifact-centric approaches have recently received broad attention from both acad-
emia and industry. This section sketches related work in the context of several cate-
gories touched by this chapter.

GSM. The guard-stage-milestone model (GSM) [28, 29] is the result of IBM’s long-
standing effort of promoting the artifact-centric view on business processes. GSM

follow a clearly declarative way which allows for greater flexibility. Milestones can
be compared to our goal states. However, GSM has a stronger focus on modeling
and further allows for elegant hierarchical models. Artifact-centric models are often
formalized using infinite state systems (cf. [28, 18, 25]) whereas our approach heavily
relies synthesis and hence on finite state models. GSM further assumes active artifacts
that may perform service calls and has no concept of locations.

Artifacts and service orientation. The idea of encapsulating functionality as services
also influenced artifact-centric approaches. Several authors investigated how services
can be used to manipulate the state of artifacts. Keeping a declarative modeling style,
services are described by preconditions and postconditions formulated in different
logics. Bhattacharya et al. [12] study several questions related to artifacts and ser-
vices, including reachability of goal states, absence of deadlocks, and redundancy of
data. Their employed logics is similar to OWL-S. Similar settings are investigated by
Calvanese et al. [14] and Fritz et al. [22] for first order logics. Gerede and Su [23] lan-
guage based on CTL to specify artifact behaviors in artifact-centric process models.
Each paper provides complexity and decidability results for the respective prob-
lems. These approaches share the idea of using service calls to manipulate artifacts.
The artifact itself, however, is assumed to be immobile, resulting in orchestrating
workflows rather than our choreography-like setting.

Artifact hosting. Hull et al. [30] introduce artifact-centric hubs as central infrastruc-
ture hosting data that can be read and written by participants. The authors motivate
that, compared to autonomous settings such as choreographies, the centralized stor-
age of data has the advantage of providing a conceptual rendezvous point to exchange
status information of the aggregate. This centralized approach can be mimicked by
our location-aware approach by remotely accessible immobile artifacts. However, to
tackle potential problems arising with the hosting of sensible data in a centralized
data hub, we propose to derive explicit message flow from an location-aware artifact
model.

Execution. For the execution of artifact-centric processes exist different
approaches: Li and Wu [34] assume that each artifact has a service interface and
propose a translation into WS-BPEL. They assume, however, an existing work-
flow that coordinates the artifact execution—such a workflow could be the result
of our partner synthesis approach. Opposed to the transformation of the artifacts,
Ngamakeur et al. [48] promote the direct execution of artifacts as a translation is less
flexible and is potentially connected with information loss. In our approach, we also

130 N. Lohmann and K. Wolf

do not change the artifacts, but only derive a workflow that coordinates the executing
agents. Finally, Liu et al. [35] translate the ECA tules of Artiflow to WS-BPEL.
Conformance. Fahland et al. [21] extend conformance checking to artifact-centric
business processes. Their approach bases on comparing recorded data base states
with a process model and can be applied similarly to our model. Yongchareon et al.
[58] study private and shared artifacts. Based on this distinction, public and private
views can be defined. To support refinement of executable process models, we rely
on existing results [2, 3, 56] which need to be extended toward an artifact-centric
model.

Proclets. Aalst et al. [1, 4] introduce proclets to specify business processes in which
object life cycles can be modeled in different levels of granularity and cardinality.
Consequently, proclets are well-suited to deal with settings in which several instances
of data objects are involved. Being introduced as workflow models, proclets have no
concept of locations.

Compliance by detection. Awad et al. [8] investigate a pattern-based compliance
check based on BPMN-Q [7]. They also cover the compliance rule classes defined
by Dwyer et al. [19] and give a CTL formalization as well as an antipattern for each
rule. These antipatterns are used to highlight the compliance violations in a BPMN

model. Such a visualization is very valuable for the process designer and it would
be interesting to see whether such antipatterns are also applicable to the artifact-
centric approach. Sadiq et al.[54] use a declarative specification of compliance rules
from which they derive compliance checks. These checks are then annotated to a
business process and monitored during its execution. These checks are similar to
the nonblocking compliance rule models that only monitor behavior rather than
constraining it. Lu et al. [46] compare business processes with compliance rules and
derive a compliance degree. This is an interesting approach, because it replaces yes/no
answers by numeric values which could help to easier diagnose noncompliance.
Knuplesch et al. [31] analyze data aspects of operational business process models.
Similar to the artifact-centric approach, data values are abstracted into compact life
cycles.

Compliance by design. Goedertier and Vanthienen [24] introduce the declarative
language PENELOPE to specify compliance rules. From these rules, a state space and
a BPMN model is generated which is compliant by design. This approach is limited
to acyclic process models. Furthermore, the purpose of the generated model is rather
the validation of the specified rules than the execution. Küster et al. [33] study the
interplay between control flow models and object life cycles. The authors present
an algorithm to automatically derive a sound process model from given object life
cycles. The framework is, however, not designed to express dependencies between
life cycles and therefore cannot specify complex policies or compliance rules.

5 From Artifacts to Activities 131

5.7 Conclusion

We extended the idea of artifact-centric process design to an interorganizational
setting where artifacts cannot be gathered in artifact hubs. We observed that in such
a setting the actual location of the artifact has a significant impact on executability
of actions and on the message flow in a corresponding activity-centric process. We
propose to enhance artifacts with explicit information on location and its impact
on remote access to actions. This information can be modeled manually or derived
systematically from a high level description. We suggest a principal two-dimensional
categorization into mobile, persistent, and transient artifacts on one hand, and no,
synchronous, or asynchronous remote access to actions on the other as an initial
proposal for a high level description. From location-aware artifacts and goal states
for the artifacts, we can derive a global interaction model that may serve as a contract
between the involved agents. The interaction model can be derived in such a way
that it respects specified policies of the involved agents. We can further appropriately
integrate compliance requirements. The whole approach relies on only one simple
formalism. Petri nets express the functional part of an artifacts, location information,
as well as policies. This way, it is possible to employ existing tools for the automated
construction of an activity-centric models and the invocation of policies. These tools
have already proven their capability to cope with nontrivial problem instances.

In our modeling approach to artifacts, we did not include mechanisms for creating
new artifact instances. If the overall number of artifacts in the system is bounded, this
is not a serious problem since the creation of a new artifact instance can be modeled
by a transition from a state “not existing” to the actual initial state of the artifact. This
approach does not work in the case of an unbounded number of artifacts. Similar
problems are known in the area of verification of parameterized programs where parts
of the program may spawn a finite but not a priori bounded number of threads which
run identical programs. There exist ways to finitely model such systems and several
verification problems turn out to be decidable [20, 9]. Future research is required to
find out whether the methodology used there extends to the problems and solutions
proposed in this paper.

Another interesting issue is the further transformation of the global activity-centric
model derived in this paper into local processes for the agents. We see two potential
directions which need to be further explored. First, we could exploit existing research
on accordance (e.g., [11, 13, 56]). In [3], we showed that it is possible for each
agent to replace its part of a contract by an accordant private process. Relying on
the accordance criterion, soundness of the original interaction model is inherited
by the collaboration of private processes. The approach requires a suitable decision
procedure for checking accordance [56, 55] or powerful transformation rules which
preserve accordance [32]. Both appear to be more advanced for establishing deadlock
freedom than for livelock freedom, so more progress needs to be made there.

A second opportunity for deriving local processes is to use the realizability
approach proposed in [44, 45]. There, local processes are constructed from a chore-
ography for the sake of proving that the choreography can be implemented (real-

132 N. Lohmann and K. Wolf

ized). To this end, the choreography is transformed into a service where the local
processes are computed as correctly interacting partners. Adding results from [57]
to this approach, we can even compute a finite representation of a set of processes
for each agent such that each combination of one process per agent yields a correct
set of realizing partners for the choreography. The concept was called autonomous
controllability in [57]. In the artifact setting, such a finite representation of a set of
processes could be used to derive, at least to some degree, a local process that not
only respects the artifacts and policies known to all involved agents, but also artifacts
and policies that are hidden from the other agents. Again, past research focused on
deadlock freedom, so further work is required to make that technology available
in the context of this paper. Nevertheless, the discussion suggests that the chosen
approach connects artifact-centric choreographies to promising methods for further
tool support.

We believe that we can further exploit ideas for bridging the gap between the global
interaction model and the local processes of the agents. It is also worth to explore
ideas known from program verification for the purpose of supporting unbounded
creation of artifact instances. Furthermore, a reverse translation from activity-centric
to artifact-centric models could be a promising direction of research. This could
promote the artifact-centric modeling style to an equitable view on the process under
investigation.

The main practical limitation is the lack of a proper modeling language, because
the presented Petri net formalization is only a conceptual modeling language. We
recently developed an extension [41] for BPMN [49] to provide a graphical notation
that is more accessible for domain experts to model artifacts, policies, and compliance
rules. A canonic next step would then be the integration of the approach into a
modeling tool and an empirical evaluation thereof. Furthermore, we concentrated on
the early design of a business process and did not consider its execution. For business
processes that are already in execution, our approach is currently not applicable
as the translations from conceptual models to industrial languages are still very
immature [39].

References

1. Aalst, WMPvd, Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: a framework for lightweight
interacting workflow processes. Int. J. Cooperative Inf. Syst. 10(4), 443–481 (2001)

2. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From public views
to private views—correctness-by-design for services. In: WS-FM 2007, LNCS 4937,
pp. 139–153. Springer (2008)

3. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty contracts: agree-
ing and implementing interorganizational processes. Comput. J. 53(1), 90–106 (2010)

4. Aalst, W.M.P.v.d., Mans, R.S., Russell, N.C.: Workflow support using proclets: divide, interact,
and conquer. IEEE Data Eng. Bull. 32(3), 16–22 (2009)

5. Aalst, W.M.P.v.d., Pesic, M.: DecSerFlow: towards a truly declarative service flow language.
In: WS-FM 2006, LNCS 4184, pp. 1–23. Springer (2006)

5 From Artifacts to Activities 133

6. Alistair Barros, M.D., ter Hofstede, A.: Service interaction patterns. In: BPM 2005, vol. LNCS
3649, pp. 302–318. Springer (2005)

7. Awad, A.: BPMN-Q: a language to query business processes. In: EMISA 2007, LNI P-119,
pp. 115–128. GI (2007)

8. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and explaining their
violations for business processes. J. Vis. Lang. Comput. 22(1), 30–55 (2011)

9. Ball, T., Chaki, S., Rajamani, S.K.: Parameterized verification of multithreaded software
libraries. In: TACAS 2001, LNCS 2031, pp. 158–173. Springer (2001)

10. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In: POPL ’81, pp.
164–176. ACM (1981)

11. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing Web service
protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

12. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: BPM 2007, LNCS 4714, pp. 288–304. Springer (2007)

13. Bravetti, M., Zavattaro, G.: Contract based multi-party service composition. In: FSEN 2007,
LNCS 4767, pp. 207–222. Springer (2007)

14. Calvanese, D., Giacomo, G.D., Hull, R., Su, J.: Artifact-centric workflow dominance. In:
ICSOC/ServiceWave 2009, LNCS 5900, pp. 130–143. Springer (2009)

15. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: A tool for the synthesis and mining of
petri nets. In: ACSD 2009, pp. 181–185. IEEE Computer Societey (2009)

16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
17. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: A tool for

manipulating concurrent specifications and synthesis of asynchronous controllers. Trans. Inf.
and Syst. E80-D(3), 315–325 (1997)

18. Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremental and fixpoint semantics
for business artifacts with guard-stage-milestone lifecycles. In: BPM 2011, LNCS 6896, pp.
396–412. Springer (2011)

19. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE 1999, pp. 411–420. IEEE (1999)

20. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In: CADE 2000,
LNCS 1831, pp. 236–254. Springer (2000)

21. Fahland, D., de Leoni, M., van Dongen, B.F., van der Aalst, W.M.P.: Behavioral conformance
of artifact-centric process models. In: BIS 2011, LNBIP 87, pp. 37–49. Springer (2011)

22. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes.
In: ICDT 2009, ACM International Conference Proceeding Series, vol. 361, pp. 225–238. ACM
(2009)

23. Gerede, C.E., Su, J.: Specification and verfication of artifact behaviors in business process
models. In: ICSOC 2007, LNCS 4749, pp. 181–192. Springer (2007)

24. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations and
permissions. In: BPM Workshops 2006, LNCS 4103, pp. 5–14. Springer (2006)

25. Hariri, B.B., Calvanese, D., Giacomo, G.D., Masellis, R.D., Felli, P.: Foundations of relational
artifacts verification. In: BPM 2011, LNCS 6896, pp. 379–395. Springer (2011)

26. Havelund, K., Roşu, G.: Testing linear temporal logic formulae on finite execution traces.
Technical Report 01.08, RIACS (2001)

27. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, New York (2003)

28. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson, S., Linehan, M.H.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculín, R.: Introducing the guard-stage-milestone
approach for specifying business entity lifecycles. In: WS-FM 2010, LNCS 6551, pp. 1–24.
Springer (2011)

29. Hull, R., Damaggio, E., Masellis, R.D., Fournier, F., Gupta, M., Heath, F.T., Hobson, S.,
Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculín, R.: Business artifacts with
guard-stage-milestone lifecycles: managing artifact interactions with conditions and events. In:
DEBS 2011, pp. 51–62 (2011)

134 N. Lohmann and K. Wolf

30. Hull, R., Narendra, N.C., Nigam, A.: Facilitating workflow interoperation using artifact-centric
hubs. In: ICSOC/ServiceWave 2009, pp. 1–18 (2009)

31. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On enabling data-aware
compliance checking of business process models. In: ER 2010, LNCS 6412, pp. 332–346.
Springer (2010)

32. König, D., Lohmann, N., Moser, S., Stahl, C., Wolf, K.: Extending the compatibility notion for
abstract WS-BPEL processes. In: WWW 2008, pp. 785–794. ACM (2008)

33. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for object life cycle
compliance. In: BPM 2007, LNCS 4714, pp. 165–181. Springer (2007)

34. Li, D., Wu, Q.: Translating artifact-based business process model to BPEL. In: CSEE (2),
Communications in Computer and Information Science, vol. 215, pp. 482–489. Springer (2011)

35. Liu, G., Liu, X., Qin, H., Su, J., Yan, Z., Zhang, L.: Automated realization of business workflow
specification. In: ICSOC/ServiceWave Workshops, LNCS 6275, pp. 96–108. Springer (2009)

36. Lohmann, N.: Why does my service have no partners? In: WS-FM 2008, LNCS 5387, pp.
191–206. Springer (2009)

37. Lohmann, N.: Compliance by design for artifact-centric business processes. In: BPM 2011,
LNCS 6896, pp. 99–115. Springer (2011)

38. Lohmann, N.: Compliance by design for artifact-centric business processes. Inf. Syst. 38, 606–
618 (2012) (Accepted for publication in March 2012)

39. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models into simple
abstract BPEL processes. In: Modellierung 2008, Lecture Notes in Informatics (LNI), vol.
P-127, pp. 57–72. GI (2008)

40. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: BPM 2007, LNCS
4714, pp. 271–287. Springer (2007)

41. Lohmann, N., Nyolt, M.: Artifact-centric modeling using BPMN. In: ICSOC 2011 Workshops,
LNCS, vol. 7221, pp. 54–65. Springer (2012)

42. Lohmann, N., Weinberg, D.: Wendy: a tool to synthesize partners for services. In: PETRI NETS
2010, LNCS 6128, pp. 297–307. Springer (2010). http://service-technology.org/wendy

43. Lohmann, N., Wolf, K.: Artifact-centric choreographies. In: ICSOC 2010, LNCS 6470, pp.
32–46. Springer (2010)

44. Lohmann, N., Wolf, K.: Realizability is controllability. In: WS-FM 2009, LNCS 6194, pp.
110–127. Springer (2010)

45. Lohmann, N., Wolf, K.: Decidability results for choreography realization. In: ICSOC 2011,
LNCS 7084, pp. 92–107. Springer (2011)

46. Lu, R., Sadiq, S.W., Governatori, G.: Compliance aware business process design. In: BPM
2007 Workshops, LNCS 4928, pp. 120–131. Springer (2007)

47. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Undecidablity of
partner existence for open nets. Inf. Process. Lett. 108(6), 374–378 (2008)

48. Ngamakeur, K., Yongchareon, S., Liu, C.: A framework for realizing artifact-centric business
processes in service-oriented architecture. In: DASFAA 2012, LNCS 7238, pp. 63–78. Springer
(2012)

49. OMG: Business Process Model and Notation (BPMN). Version 2.0, Object Management Group
(2011). http://www.omg.org/spec/BPMN/2.0

50. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE (1977)
51. Pnueli, A.: In transition from global to modular temporal reasoning about programs. In: Logics

and models of concurrent systems, volume F-13 of NATO Advanced Summer Institutes, pp.
123–144. Springer (1985)

52. Ryndina, K., Küster, J.M., Gall, H.: Consistency of business process models and object life
cycles. In: MoDELS Workshops, LNCS 4364, pp. 80–90. Springer (2006)

53. Sackmann, S., Kähmer, M., Gilliot, M., Lowis, L.: A classification model for automating
compliance. In: CEC/EEE 2008, pp. 79–86. IEEE (2008)

54. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business process
compliance. In: BPM 2007, LNCS 4714, pp. 149–164. Springer (2007)

http://service-technology.org/wendy
http://www.omg.org/spec/BPMN/2.0

5 From Artifacts to Activities 135

55. Stahl, C.: Service substitution—a behavioral approach based on Petri nets. Ph.D. thesis,
Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II; Eindhoven
University of Technology (2009)

56. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with operating
guidelines. LNCS T. Petri Nets and Other Models of Concurrency 2(5460), 172–191 (2009)

57. Wolf, K.: LNCS Trans. Petri Nets Other Models Concurr. Does my service have partners?
5460(2), 152–171 (2009)

58. Yongchareon, S., Liu, C., Zhao, X.: An artifact-centric view-based approach to modeling inter-
organizational business processes. In: WISE 2011, LNCS 6997, pp. 273–281. Springer (2011)

Chapter 6
On the Composability of Semantic Web Services

Brahim Medjahed, Zaki Malik and Salima Benbernou

Abstract In this chapter, we propose a multilevel composability model for automat-
ically checking the composability of semantic Web services. The model is defined
by a set of rules called composability rules. Each rule specifies the constraints and
requirements for checking horizontal and vertical composability. The model provides
support for partial and total composability via the notions of composability degree
and τ -composability. Then, we describe rules dealing with static semantic, dynamic
semantic, and business process composability. Finally, we discuss future research
directions in the area of service composition.

6.1 Introduction

Service computing is slated to shape modern societies in vital areas such as health,
government, science, and business [1]. It utilizes services as the building blocks for
developing and integrating applications distributed within and across organizations.
The most common realization of service-based systems relies on Web services. Web
services may wrap a wide range of resources such as programs, sensors, databases,
storage devices, and visualization facilities. A key plank of the service computing
agenda is service composition. Web service composition refers to the process of

B. Medjahed (B)
Department of Computer and Information Science, University of Michigan–Dearborn,
Dearborn, USA
e-mail: brahim@umich.edu

Z. Malik
Department of Computer Science, Wayne State University, Detroit, USA
e-mail: zaki@cs.wayne.edu

S. Benbernou
LIPADE, Université Paris Descartes, Paris, France
e-mail: salima.benbernou@parisdescartes.fr

A. Bouguettaya et al. (eds.), Web Services Foundations, 137
DOI: 10.1007/978-1-4614-7518-7_6,
© Springer Science+Business Media New York 2014

138 B. Medjahed et al.

combining several Web services to provide a value-added service. It is emerging
as the technology of choice for building cross-organizational applications on the
Web [26].

Service composition has recently taken a central stage as an emerging research
area (e.g., [4, 8, 19]). However, existing service composition techniques and stan-
dards provide little or no support for the semantics of participant services, their
messages, and interactions. Additionally, they require dealing with low level pro-
gramming details which may lead to unexpected failures at run-time. A promising
approach uses ontology to automate the tedious composition process [25]. An ontol-
ogy is a formal and explicit specification of a shared conceptualization [5, 12].
Ontologies are expected to play a central role to empower Web services with seman-
tics. The combination of these powerful concepts (i.e., Web services and ontologies)
has resulted in the emergence of a new generation of Web services called Semantic
Web services [25].

To illustrate the complexity of the composition process, let us consider the exam-
ple of users willing to translate a word from Chinese to Urdu. Assume that no
Chinese-Urdu translation service is available. One solution would be to combine
two simple services WS1 = Chinese-English and WS2 = English-Urdu.
The tasks performed by users to compose WS1 and WS2 include the following. They
first have to determines which services are relevant to their requests (i.e., WS1 and
WS2). For that purpose, they need to delve into a large space of heterogeneous ser-
vices. Those services are related to different domains of interest such as insurance,
translation, and stock market. Users then should understand the exact format, content,
and semantics of messages exchanged between WS2 and WS2. They must also “man-
ually” specify the way WS1’s and WS2’s messages are mapped to each other. Finally,
they should find out how WS2 and WS2 can together define an overall business process
(e.g., define the order of messages). As shown in this example, service composition
involves going through several complex stages. One important, yet tedious, stage is
the composability of interacting services [30]. Composability refers to the process
checking whether participant services can actually work together, hence avoiding
unexpected failure at run time. The “manual” checking of service composability
would clearly be unrealistic. What is needed is a framework where composability
would be checked automatically and transparently.

We identify three avenues in the area of service composition that could bene-
fit from checking composability: composition analysis, automatic composition, and
operation outsourcing. In the first case, composability is checked a posteriori. Com-
posers first specify their composite service (e.g., using BPEL4WS). The composition
engine then checks the “correctness” of the composite service using composability
rules. In the second case, the composition engine uses the composability rules to
generate composite service descriptions from high-level specifications of compo-
sition requests. The engine needs to determine the set of participants relevant to
the composition request while making sure that they are composable. In the third
case, composability rules are used to “replace” an operation by a “compatible” one.
This could be useful to enable the subcontracting of operations or substitutability of
a participant by another.

6 On the Composability of Semantic Web Services 139

Several techniques have been proposed to deal with service composability. LARKS
defines five techniques for service matchmaking: context matching, profile compar-
ison, similarity matching, signature matching, and constraint matching [40]. These
techniques mostly compare text descriptions, signatures (inputs and outputs), and
logical constraints about inputs and outputs. The ATLAS matchmaker defines two
methods to compare service capabilities described in DAML-S [31]. The first method
compares functional attributes to check whether advertisements support the required
type of service or deliver sufficient quality of service. The second compares the func-
tional capabilities of Web services in terms of inputs and outputs. No evaluation study
is presented to determine the effectiveness and speed of ATLAS matchmaker. In this
chapter, we propose a multilevel composability model for semantic Web service com-
position. We introduce the concepts of composability degree and τ -composability to
cater for partial and total composability. Finally, we discuss directions for future
research in Web service composition.

The remainder of this chapter is organized as follows. Section 6.2 overviews
current research in Web service composition. Section 6.3 presents our approach for
the semantic description of Web services. Section 6.4 describes the proposed com-
posability model. Sections 6.5 and 6.6 give details about static semantic and dynamic
semantic composability, respectively. Section 6.7 is devoted to business process com-
posability. Section 6.8 summarized future research directions in service composition.
Section 6.9 provides concluding remarks.

6.2 Web Service Composition: Background

Web service composition is a process that combines outsourced Web services to
offer value-added services [38]. The benefits offered by service composition lie in
four major aspects. First, it enables organizations to outsource existing Web ser-
vices, which avoids developing new applications from scratch and ensures a rapid
time-to-market. Second, it reduces the complexity, because complicated services
can be incrementally constructed out of relatively simple ones. Third, application
development based on Web services reduces business risks since reusing existing
services avoids the introduction of new errors. Finally, the possibility of outsourcing
the “best-in-their-class” services allows companies to increase their revenue.

Service composition can be conducted in three different fashions: process/pro-
gramming, interaction, and planning. In the rest of this section, we overview these
three different approaches.

6.2.1 Process-Based Composition

Most existing Web service composition techniques require programming to some
extent for constructing the orchestration model [1, 26, 27]. Composers first need to

140 B. Medjahed et al.

study the component services that are described using WSDL or some ontology
languages and understand the functionalities of the services and the supported
operations. A further step analysis requires to identify the way operations are inter-
connected, services are invoked, and messages are mapped to one another. The
process-based composition scheme makes the process of composing service demand-
ing for composers. Composers need to be domain experts who are familiar with the
service description language, the service orchestration algebra, and the correspond-
ing programming skills. Since common users cannot act as a service composer, the
programming-based scheme hinders common users from composing Web services
at large.

BPEL4WS models the behavior of a business process based on the interactions
with the involved business partners [3]. It uses WSDL to model the services in
the process flow and describe the external services that are needed by the process.
A major design goal of BPEL4WS is to separate the public aspects of business
process behavior from the internal ones. The separation helps businesses conceal
their internal decisions from their business partners. Moreover, internal changes of
the process implementation no longer affects the public business protocol. ebXML
provides a set of common business process specifications that are shared by multiple
industries [10]. These specifications, stored in the business library, can be used by
companies to build customized business processes. Interactions between business
processes are represented through choreographies. To model collaboration in which
companies can engage, ebXML defines Collaboration Protocol Agreements.

CMI’s coordination model extends the traditional workflow coordination primi-
tives with advanced primitives such as placeholder [13, 36]. The concept of place-
holder enables the dynamic establishment of trading relationships. A placeholder
activity is replaced at runtime with a concrete activity having the same input and
output as those defined as part of the placeholder. eFlow models a composite service
a graph that defines the order of execution among the nodes in the process [8]. Ser-
vice nodes represent the invocation of a basic or composite service. The definition
of a service node contains a search recipe represented in a query language. When a
service node is invoked, a search recipe is executed to select a reference to a specific
service. SELF-SERV [4] adopts state charts for composite service specification. It
also defines a peer-to-peer Web service execution model in which the responsibility
of coordinating the execution of a composite service is distributed across several peer
components called coordinators. The coordinator is a lightweight scheduler which
determines when a state within a state chart should be entered and what should be
done when the state is entered. It also determines when should a state be exited and
what should be done after the state is exited.

6.2.2 Interactive Composition

The interactive composition scheme blurs the distinction between composers and
common users. Composers are required to have a clear goal and know the tasks that

6 On the Composability of Semantic Web Services 141

need to be performed to accomplish the composition. Common users can be guided
through a set of steps to finish a composer’s task. The composition scheme will
work interactively with the common users to help them achieve the orchestration
model. The orchestration process can start from users’ goals and work backward by
chaining all related services. It can also start from some initial states and achieve the
users’ goals by adding services in the forward direction. At each step, the scheme will
choose a new service based on the task specified by the users. The interactive scheme
can also capture the constraints and preferences during the interaction process. The
constraints and preferences can serve as additional criteria to select services for the
composition.

An interactive composition approach is proposed in [39]. It adopts the OWL
ontologies to model the component services. The service model specifies the input,
output, precondition, and effects (IOPE) of services. The proposed approach also
implements a tool for automatic translation from WSDL to OWL-S, which enables
the support of WSDL-based component services. The data types are defined by
XML-schema and message exchange between component services relies on the data
flow approach. The composed service are specified using OWL-S. The interactive
composition can be performed by chaining component services in either the forward
or the backward directions. At each step, the composition scheme adds a new service
based on the users’ selection. Existing component service in the orchestration model
can serve as a criterion to filter candidate services. Only the services that match the
IOPE properties of existing services can be selected by the system and presented to
the users. Ninja [15] introduces a technique called Automatic Path creation (APC) to
cater for interactive service composition. When an APC receives requests for com-
posite service execution, the APC creates a path that includes a sequence of operators
that perform computation on data and connectors that provide data transport between
operators. Ninja mostly focuses on fault tolerance by replicating services on multi-
ple workstations. It uses a limited operator functional classification to automate the
selection of operators. It is also mainly based on input-output matching of services.

6.2.3 Planning-Based Composition

The planning-based composition scheme aims to relieve users from the composition
processes as much as possible. It relies on AI planning techniques for automatic
service composition. In this context, users are allowed to submit a declarative query
specifying the goal he/she wants the composite service to achieve together with
some the constraints and preferences that need to be satisfied. Based on the user’s
query, the composition scheme can derive a corresponding orchestration model with
all constraints and preferences satisfied. The planning scheme regards services as
actions that are applicable in states. State transitions are specified using the precon-
ditions of some actions. A transition will lead to some new states, in which the effects
of some actions are valid. Based on this, the composition scheme recursively adds
new services until users’ goals have been achieved. The states of existing service in

142 B. Medjahed et al.

the orchestration will determine the selection of the new services. For example, the
preconditions of the new services should be satisfied via the effect of some existing
services.

A representative planning-based composition approached is presented in [24]. It
is based on situation calculus to compose Web services. More specifically, it adopts
Golog, which is a logic programming language, and makes some extensions to adapt
it to Web services. The situation calculus enables software agents to reason about Web
services. Web services are modeled as actions, which is similar to the classical AI
planning problem. Web services are associated with some preconditions and generate
some effect under these preconditions. Simple Web services are categorized into two
groups. Web services in the first group perform information collection actions. Web
services in the second group perform world-altering actions. Composite Web services
perform complex actions by composing simple Web services from both groups. Users
can specify their requests and constraints, which can be transformed using situation
calculus. Users’ constraints can be used to customize the predefined generic compo-
sition templates. This helps generate the specific composition plans that fulfill users’
requirements. SWORD [32] uses a rule-base expert system to automatically deter-
mine whether a desired composite service can be achieved using existing services.
SWORD does not seem to focus on service composability and semantic description
of Web services. SHOP2 adopts the concept of HTN (Hierarchical Task Network) as
a planning methodology [42]. It decomposes tasks into smaller and smaller subtasks,
until primitive tasks are found that can be performed directly. Estimated-regression is
another planning technique for service composition [23]. The situation-space search
is guided by a heuristic estimator obtained by backward chaining in a relaxed prob-
lem space. The resulting space is so much smaller than situation space that a planner
can build complete representation of it, called a regression graph. The regression
graph reveals, for each conjunct of a goal, the minimal sequence of actions that
could achieve it.

6.3 Semantic Description of Web Services

The semantic description of Web services is an important requirement for checking
their composability. The large scale and heterogeneity of Web services may hin-
der any attempt for “understanding” their semantics and hence composing them.
We define a metadata ontology, called operation ontology, used as a template to
define Web service operations. A metadata ontology provides concepts that allow
the description of other concepts (operations in our case) [12].

Each operation is an instance of the operation ontology. It is defined by a set of non-
functional and functional attributes. Non-functional (or qualitative) attributes include
a set of metrics that measure the quality of the operation. Functional attributes
describe syntactic and semantic features of an operation. We identify three groups
of functional attributes: syntactic, static semantic, and dynamic semantic. Syntactic
attributes represent the structure of a service operation. The static semantics of an

6 On the Composability of Semantic Web Services 143

operation models “non-computational” properties of an operation, that is properties
that are independent of the execution of the operation. Static semantics is described
at two “granularities”: operation and messages. Dynamic semantics refers to the way
and constraints under which an operation is executed.

The concept of vertical ontology is key for defining the content of static semantic
attributes. It captures the knowledge valid for a particular domain (e.g., government,
medical) [12]. Service providers may adopt different vertical ontologies to specify
the content of a given parameter. The use of different ontologies requires dealing
with the issue of ontology mapping [9] which is out of the scope of this chapter.

6.3.1 Static Semantics of Operations

The static semantics at the operation granularity is defined by the following attributes:
provider and consumer types, category, and purpose.

The provider of an operation may be governmental (“federal”, “state”, “local”,
etc.) or non-governmental (“non-profit” and “business”) agencies. The consumer
type specifies the group of consumers (users or other Web services) that are eligible
to invoke the operation. For instance, certain government welfare services may be
eligible to certain citizens. In the United States, WIC (Women, Infant, and Children)
is a program for pregnant women, lactating mothers, and children.

The category Cik of an operation opik describes the area of interest of opik . It is
defined by a tuple (Domik , Synik , Specik , Overlapik). Domik gives the area of interest
of the community (e.g., “healthcare”). It takes its value from a vertical ontology
for domain names. Synik contains a set of alternative domain names for Cik . For
example “medical” is a synonym of “healthcare”. Specik is a set of specializations
of Cik’s domain. For example, “insurance” and “children” are specializations of
“healthcare”. This means that Cik provides health insurance services for children.
Overlapik contains the list of categories that overlap with Cik’s category. It is used to
provide a peer-to-peer topology for connecting operations with “related” categories.
We say that categoryik overlaps with categoryjl if composing opik with op j ’s is
“meaningful”. By meaningful, we mean that the composition provides a value-added
service (in terms of categories). For example, an operation that has healthcare as a
domain may be composed with another operation whose domain is insurance. This
would enable providing health insurance for needy families.

The purpose describes the goal of the operation. It is defined by four attributes:
Func, Syn, Spec, and Overlap. The Func describes the business functionality offered
by the operation. Examples of functions are “eligibility”, “registration”, and “men-
toring”. The Syn, Spec, and Overlap attributes work as they do for categories. The
Overlap contains the list of purposes that are related to the purpose of the current
operation.

144 B. Medjahed et al.

6.3.2 Static Semantics of Messages

Each message within an operation is semantically described via a message type
MT . The message type gives the general semantics of the message. For example,
a message may represent a “purchase order” or an “invoice”. However, message
types do not capture the semantics of parameters within a message. We define below
a set of attributes to model the semantics of message parameters: data type, business
role, unit, and language.

The data type gives the range of values that may be assigned to the parameter.
We use XML Schema’s built-in data types as the typing system. Built-in (or simple)
types are pre-defined in the XML Schema specification. They can be either primitive
or derived. Unlike primitive types, derived types are defined in terms of other types.
For example, integer is derived from the decimal primitive type. Complex data types
can also be adopted in our model but are out of the scope of this chapter [18]. The
business role gives the type of information conveyed by the message parameter. For
example, an address parameter may refer to the first (street address and unit num-
ber) or second (city and zip code) line of an address. Business roles take their values
from a pre-defined taxonomy. Every parameter would have a well-defined meaning
according to that taxonomy. An example of such taxonomy is RosettaNet’s business
dictionary [26]. It contains a common vocabulary that can be used to describe business
properties. The unit refers to the measurement unit in which the parameter’s content
is provided. For example, a weight parameter may be expressed in “Kilograms” or
“Pounds”. An eligibility period parameter may be specified in days, weeks, or months.
We use standard measurement units (length, area, weight, money code, etc.) to assign
values to parameters’ units. If a parameter does not have a unit (e.g., address), its unit
is equal to “none”. The content of a message parameter may be specified in different
languages. For example, an English-Urdu-translation operation takes as
input an English word, and returns as output its translation in Urdu. We adopt the
standard taxonomy for languages to specify the value of the language attribute.

6.3.3 Dynamic Semantics

The dynamic semantics or business logic of an operation opik refers to the outcome
expected after executing opik given a specific condition. It is defined by a set of rules
where each rule Rm

ik has the following format:

Rm
ik =

(PreParametersm
ik,PreConditionm

ik)

(PostParametersm
ik,PostConditionm

ik)

PreParametersm
ik and PostParametersm

ik are sets of parameters. Each parameter is
defined by name, data type, business role, unit, and language as stated in Sect. 6.3.2.
The elements of PreParametersm

ik and PostParametersm
ik generally refer to opik’s input

6 On the Composability of Semantic Web Services 145

and output parameters. However, they may in some cases refer to parameters that are
neither input nor output of opik . For example, assume that the address of every citizen
registered with the Department on the Aging is stored in the department’s database.
In this case, this parameter should not be required as input for the orderMeal
operation since its value could be retrieved from the database.

PreConditionm
ik and PostConditionm

ik are conditions over the parameters in PrePara
metersm

ik and PostParametersm
ik respectively. They are specified as predicates in first-

order logic. The rule Rm
ik specifies that if PreConditionm

ik holds when the operation opik
starts, then PostConditionm

ik holds after opik reaches its End state. If PreConditionm
ik

does not hold, there are no guarantees about the outcome of the operation. The
following is an example of the pre and post condition of a rule associated with the
operation registerFoodCheck (to receive food assistance from a government
welfare program):

income < 22,090 ∧ size ≥ 2 ∧ zip = 22044

approved = true ∧ duration = 6

The rule uses income (unit = {year, US dollar}), familySize, zip, approved and
duration (unit = {month}) as parameters. It states that citizens with a yearly income
less than 22,090 US dollars, a minimum household size 2, and living in area code
22044 are eligible for food checks for a 6-month period.

6.4 The Composability Model

In this section, we describe our composability model for semantic Web services. The
model is based on the semantic description of Web services presented in Sect. 6.3.

6.4.1 Composability Stack

The proposed model for composability contains rules organized into five levels
(Fig. 6.1). Each rule CRpq at a level CLp (p = 0, 4) compares a specific feature
of services within CLp.

The first level CL0 compares syntactic attributes such as the number of message
parameters (CR00). The second level CL1 compares static semantic attributes. We
define two groups of rules at this level. The first group compares the static semantics
of messages. The second group compares the static semantics of operations. The third
level CL2 compares dynamic semantic attributes. The fourth composability level CL3
focuses on quality of operation attributes. It contains three groups of rules. The first
group compares security attributes. The second group checks business attributes.
The third group deals with runtime attributes. The fifth composability level CL4
It contains rules that check the soundness of a composite service, that is, whether

146 B. Medjahed et al.

Fig. 6.1 Web service composability stack

that service provides a value-added. Our focus in this chapter is on static semantic,
dynamic semantic, and business process composability. Details about syntactic and
qualitative rules can be found in [28].

6.4.2 Operation Mode and States

Service composition involves the combination of several operations that belong to
the same or different Web services. Each operation opik has an input and output
message. Input and output messages contain parameters. The order according to
which opik’s input and output messages are sent and received defines the operation
mode. The mode indicates whether the operation initiates interactions or simply
replies to invocations from other services. We define two modes: In/Out or Out/In.

6 On the Composability of Semantic Web Services 147

In/Out operation first receives an input message by a client, processes it, and then
returns an output message to the client. Out/In first sends an output message to a
server and receives an input message as a result. As specified in WSDL standard,
some operations may be limited to an input or output message (e.g., notification
operation) [1, 28]. Such operations may be considered as In/Out or Out/In operations
where the input or output message is empty.

The execution of an operation opik generally goes through four major observable
states: Ready, Start, Active, and end. We define a precedence relationship between
states, noted −→t , as follows: S1 −→t S2 if S1 occurs before S2. The execution
states are totally ordered according to −→t as follows: Ready −→t Start −→t

Active −→t End. The execution of opik is in the Ready state if the request for
executing opik has not been made yet. The Start state means that opik execution has
been initiated. opik is in the Active state if opik has already been initiated and the
corresponding request is being processed. After processing the request, the operation
reaches the End state during which results are returned.

6.4.3 Horizontal and Vertical Composition

We define two ways of combining operations: horizontal and vertical. Each com-
posability rule may be applicable to horizontal composition, vertical composition,
or both.

Horizontal composition models a “supply chain”-like combination of operations
(Fig. 6.2). Let opik and opjl be two operations that are horizontally composed. We
call opik and opjl source and target operations respectively. opik is first executed,
followed by opjl’s execution. opik’s messages are used to feed opjl’s input message.

(a) (c)

(d)(b)

Fig. 6.2 Horizontal and vertical composition: a horizontal composition and opik is IN/OUT; b hor-
izontal composition and opik is OUT/IN; c vertical composition and opik is IN/OUT; d vertical
composition and opik is OUT/IN

148 B. Medjahed et al.

Fig. 6.3 Example of horizontal and vertical composition

Let M be a set of messages and Inputjl the input message of opjl. We say that M
feeds Inputjl if parameters in M’s messages are used as Inputjl’s parameters. As
depicted in Fig. 6.2, Inik and Outik messages feed Injl. The precedence relationships
between opik’s and opjl’s states are given below:

• Startik −→t Activeik −→t Endik ;
• Endik −→t Startjl −→t Activejl −→t Endjl.

As example of the horizontal composition (case (a)), assume that opik provides
translation from Chinese to English and opjl provides translation from English to
Urdu. The operations opik and opjl may be horizontally composed to provide trans-
lation from Chinese to Urdu. In this case, the output of opik (English translation) is
used as input by opjl. The second case of horizontal composition (case (b)) refers
to the situation where opik outsources from another operation (i.e., opik is vertically
composed with a third operation). opik is then horizontally composed with opjl. For
example, a get_directions (Out/In) operation may be executed by outsourc-
ing from other operations People_Lookup and Direction-From-Address
(Fig. 6.3). The get_directions operation is then horizontally composed with
Notify-Citizens (In/Out operation).

Vertical Composition models the “subcontracting” of an operation opjl by another
operation opik (Fig. 6.2). Let us consider the first case where opik’s mode is In/Out.
Whenever opik is invoked, it transparently sends an input message to opjl. opjl then
performs the requested function on behalf of opik and returns an output message to
opik . opik will finally send the results to its invoker. Assume now that opik’s mode is
Out/In. opik starts its execution by invoking opjl. After opjl terminates its execution,
it sends results to opik which receives them as an input message. The precedence
relationships between opik’s and opjl’s are given below:

• Startik −→t Startjl −→t Activejl −→t Endjl −→t Endik ;
• Startik −→t Activeik −→t Endik .

An example of vertical composition is that of a personal computers (PC) reseller
offering an operation Request-Quotes (case (c)). This operation allows cus-
tomers to request quotes. The execution of Request-Quotes requires the invo-
cation of another operation provided by a PC manufacturer to get the latest prices.
The second case of vertical composition (case (d)) models “request-response”
interactions.

6 On the Composability of Semantic Web Services 149

6.4.4 Composability Rules Classification

Composability rules check whether two operations opik and opjl are composable
from different perspectives. We characterize composability rules by their level,
granularity, attribute, symmetry, and composition type. Table 6.1 summarizes the
different composability rules. We organize these rules into five levels: syntactic, sta-
tic semantic, dynamic semantic, qualitative, and business process. These levels check
composability at the message and operation granularity. Each rule in a given level
compares a specific pair of attributes of opik and opjl (e.g., mode, binding, purpose,
and cost). A rule is either symmetric or asymmetric. It is symmetric if the order in
which it is checked (from opik to opjl or opjl to opik) is not important. This is in
contrast with asymmetric rules; if an asymmetric rule is satisfied from opik to opjl
then it is not necessarily satisfied from opjl to opik . Finally, a rule may be applica-
ble for horizontal composition (e.g., Plugin Prematch), vertical composition (e.g.,
Exact Postmach), both (e.g., purpose and category), or hybrid (e.g., composition
soundness).

Table 6.1 Composability rules classification

Level Granularity Attribute Symmetry Horizontal Vertical Hybrid

Syntactic Message Number of parameters
√ √ √

Operation Binding
√ √ √

Mode
√ √

Static semantics Message Data type
√ √ √

Unit
√ √ √

Language
√ √ √

Business role
√ √ √

Message type
√ √

Operation Purpose
√ √

Category
√ √

Prov. & cons. type
√ √

Dynamic semantics Operation Plugin Postmatch
√

Plugin Prematch
√

Exact Postmatch
√ √

Plugin
√

Exact
√ √

Qualitative Operation Confidentiality
√

Encryption
√ √

Reputation
√

Cost
√

Availability
√

Response time
√

Business process Composite Exact
√

Loose
√

Strong
√

150 B. Medjahed et al.

6.4.5 Composability Degree

Composers may have different views on composability rules. One may, for example,
give higher importance to syntactic composability while another may focus on seman-
tic rules. To capture this aspect, we associate a weight Wp to each level CLp. We
also define a weight Wpq for each rule CRpq in that level. A weight is an estimate
of the significance of the corresponding level or rule from the composer’s point of
view. Composers assign a weight to each level and rule. The higher is a weight, the
more important is the corresponding level or rule. Wp (≥0 and ≤1) compares CLp

to the other levels in terms of their importance. The total of weights assigned to the
different levels equals 1. Similarly, W pq (≥0 and ≤1) compares CRpq to the other
rules at level CLp. The total of weights assigned to rules within a level equals 1.
Formally, the different weights must respect the following constraints, where |CLp|
is the number of rules at level p:

1. ∀ p, q | 0 ≤ p ≤ 4 and 0 ≤ q ≤ |CLp| − 1: (0 ≤ Wp ≤ 1)∧ (0 ≤ Wpq ≤ 1);
and

2.
(∑4

p=0 Wp = 1
)
∧

(
∀ p: ∑|CLp |−1

q=0 Wpq = 1
)

.

Due to the heterogeneity of Web services, it is not always possible to find opera-
tions that are fully composable with source operations. Composers may, in this case,
select operations that are partially composable and then, adapt their operations based
on the results returned by the composability process. For example, the composer
may modify the data type of a parameter if it is not compatible with the data type of
the corresponding target’s parameter. For that purpose, we introduce the notion of
composability degree.

The degree of opik and opjl gives the ratio of composability rules that are satisfied
between opik and opjl. It takes its values from 0 to 1 (≥0 and ≤1). We define a
function satisfiedpq(opik , opjl) that returns 1 if the rule CRpq is satisfied between
opik and opjl and 0 otherwise. To reflect the composer’s view on each rule CRpq,
we adjust the value returned by the function satisfiedpq(opik, opjl) with the weight

Wpq. The degree at a given level CLp is obtained by adding the adjusted values
returned by the function satisfied applied on each CLp’s rule. Once the degree at
CLp is computed, we adjust it with the weight Wp assigned to CLk . We give below
the definition of degree(opik , opjl).

Definition 6.1. Let opik and opjl be two operations. The degree of opik and opjl is
obtained by summing composability degrees at all levels CLp(p = 0, 4):

Degree(opik, opjl) =
∑4

p=0

(

Wp ×
∑|CLp |−1

q=0

(
Wpq × satisfiedpq(opik, opjl)

)
)

where Wp is the weight of composability level CLp; Wpq is the weight of compos-
ability rule CRpq; and satisfiedpq(opik, opjl) is a boolean function that returns 1 if
the rule CRpq is satisfied between opik and opjl and 0 otherwise. ♦

6 On the Composability of Semantic Web Services 151

During a composition process, the composer assigns weights to each level and rule
by providing a vector called level weight (LW) and matrix called rule weight (RW).
The element LWp (p = 0, 4) gives the weight assigned to level CLp. The element
CWpq gives the weight assigned to rule CRpq. If a rule CRpq is undefined, then CWpq

is automatically assigned the value 0. Additionally, if the weight of a given level is
equal to 0, then the weight of each rule within that level is also equal to 0. As an
illustration, let us consider case study 1 (e-government). Let us assume that a user
provides the weights given below to his/her source operation opi :

LW = (
0.2 0.3 0.2 0.1 0.2

)

RW =

⎛

⎜
⎜
⎜
⎜
⎝

0.25 0.25 0.3 0 0 0 0 0
0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
0.1 0.1 0.1 0.1 0.6 0 0 0
0.1 0.1 0.1 0.1 0.6 0 0 0
0 0.5 0.5 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

This example shows that the composer gives more importance to static seman-
tic composability since the corresponding weight is greater than the other levels’
weights. Among dynamic semantic properties, the composer gives higher priority to
the exact behavioral rule. Assume now that opi is compared to another operation op j
using the composability model and that the composability rules for the following
rules are satisfied: CR00, CR01, CR02, CR10, CR15, CR16, CR20, CR21, CR22, CR23,
CR24, CR33, CR35, CR36. The composability degree is computed as follows:

Degree(opi , op j)

= 0.2× (0.25+ 0.25+ 0.3)+ 0.3× (0.1+ 0.1+ 0.2)

+ 0.2× (0.1+ 0.1+ 0.1+ 0.1+ 0.6)+ 0.1× (0.1) = 0.49 = 49 %.

Based on the degree of opi and op j , we can decide about the composability of
those operations. If degree = 0 then no rule is satisfied and the operations are non
composable. If degree = 1 then all composability rules (with a positive level and rule
weight) are satisfied and the operations are fully composable. Otherwise, a subset of
rules are satisfied. In this case, opi and op j are partially composable.

6.4.6 τ -Composability

Composers may have different expectations about the composability degree of their
operations. For that purpose, they provide a composability threshold τ (0 < τ ≤ 1)
which gives the minimum value allowed for a composability degree. All operations
opjl so that degree(opik, opjl) ≥ τ are candidates to be composed with opik . If the
threshold is greater than degree(opik ,opjl) then opik is not composable with opjl.

152 B. Medjahed et al.

Based on the notions of degree and threshold, we introduce a “relaxed” definition of
composability called τ -composability. τ -composability compares the composability
degree and threshold to decide whether an operation is composable with another
from composers’ perspectives. Below is the definition of τ -composability.

Definition 6.2. Let opik and opjl be two operations and let τ (0 < τ ≤ 1) be the
composability threshold. We say that opik is τ -composable with opjl if degree
(opik, opjl) ≥ τ . ♦

The composability threshold is given by composers as part of their profile. Com-
posers personalize the composability checking process via their profile. They assign
values to the level weights vector (LW), rule weights matrix (RW), and τ . Other vari-
ables such as the maximum number of target operations can also be initialized. The
way users create their profile depends on their level of expertise. We identify three
types of users: casual (i.e., with minimal expertise), expert (i.e., with high expertise),
and regular (i.e., with average expertise). Casual users may leave LW and RW unas-
signed in their profile. The system automatically distributes weights between levels
and rules in a uniform way. The composability threshold will also be set to 1. In
this case, full composability will be required. Expert users are knowledgable about
the meaning of all operation and message attributes. They may customize the com-
posability process by assigning the desired values to LW, RW, and τ . If the degree
exceeds the threshold but not equals to 1, users change the specification of their
operations based on the feedback returned by the system (e.g., which rules are not
satisfied) to increase the degree. The third type of users, called regular users, includes
those that have some knowledge about operation and message attributes. They may
assign values to parts of LW and RW. In this case, the system automatically distrib-
utes weights between unassigned levels and rules. If τ was not assigned by a user, it
is automatically set to 1 by the system.

6.5 Static Semantic Composability

For two operations opik and opjl to be “plugged” together, they must be semantically
“compliant”. In this section, we present composability rules at the static semantic
levels. We define each rule with regard to vertical and horizontal composability. We
consider composability at both operation and message granularities.

6.5.1 Operation Granularity

We define three static semantic rules at the operation granularity. The first rule com-
pares opik’s and opjl’s provider and consumer types. If the composition is vertical,
opik and opjl must have at least one common provider type and one common consumer

6 On the Composability of Semantic Web Services 153

type. For example, if opik expects to outsource from a federal agency’s operation then
opjl’s agency should include the type “federal”. Additionally, if opik provides benefits
for children and pregnant women then opjl should provide benefits for at least those
two groups. If opik is horizontally composed with opjl, then it should be viewed as
a consumer of opjl. Hence, opjl’s consumer type should include at least one value
from opik’s provider types.

The third rule compares operations’ categories. Assume that opik is vertically
composed with opjl. Since opik is meant to “replace” opjl, the following two condi-
tions should be true: (i) opik’s and opjl’s domains of interest are similar or synonyms,
and (ii) all characteristics (i.e., elements of the “spec” attribute) of opik’s category are
provided by opjl’s. For example, assume that opik’s category provides health insur-
ance for children (i.e., Domik=“healthcare” and Specik={“children”, “insurance”}).
The operation opjl should not only deal with healthcare but also at least provide
insurance for children as well. Assume now that opik is horizontally composed with
opjl. Categoryik and categoryjl should be defined so that opik and opjl “can” be com-
bined. This is captured by the Overlap attribute of a category. Hence, categoryik is
composable with categoryjl if Overlapik contains categoryjl.

The last rule compares operations’ purposes. The purpose composability rule is
defined in the same way as category composability where Dom is replaced by Func.

6.5.2 Message Granularity

We define five static semantic rules at the message granularity. The first rule compares
opik’s and opjl’s message types. This rule is applicable only to vertical composition
since horizontal composition does not involve replacing opik’s messages with opjl’s
or vice versa. Assume that opik is vertically composed with opjl. As depicted in
Fig. 6.2, we identify two cases based on the mode of opik . If opik’s mode is In/Out,
then Inik’s (resp. Outik’s) and Injl’s (Outjl’s) types should be similar. If opik’s mode
is Out/In, then Outik’s (resp. Inik’s) and Injl’s (Outjl’s) types should be similar.

The second composability rule compares parameters’ data types. It is based on
the notion of compatibility between data types (XML Schema). Two parameters are
data type compatible if they have the same built-in type. Compatibility of derived
types and complex data types can also be adopted. However, these issues are out of
the scope of this chapter. A discussion about typing in XML can be found in [18].

Data type composability depends on the composition type (horizontal or vertical)
and operations’ modes. As depicted in Fig. 6.2, we identify the following four cases.
If opik is vertically composed with opjl and Modeik = “In/Out”, then Inik is “plugged”
with Injl and Outjl is “plugged” with Outik (Fig. 6.2c). The data type of each parameter
in Injl (Outik) should be compatible with the data type of a corresponding parameter
in Inik (Outjl). If opik is vertically composed with opjl and Modeik = “Out/In”, then
Outik is “plugged” with Injl and Outjl is “plugged” with Inik (Fig. 6.2d). The data
type of each parameter in Injl (resp. Inik) should be compatible with the data type of a
corresponding parameter in Outik (Outjl). If opik is horizontally composed with opjl,

154 B. Medjahed et al.

then Inik and Outik are “plugged” with Injl independently of opik’s mode (Fig. 6.2a, b).
The data type of each parameter in Injl should be compatible with the data type of a
corresponding parameter in Inik or Outik .

The remaining three rules compare parameters’ business role, language, and unit
respectively. They are defined similarly to data type composability, except that the
data type is replaced by business role, language, and unit, respectively.

6.6 Dynamic Semantic Composability

The dynamic semantic composability (or B-Composability) compares the busi-
ness logic rules of source and target operations. Let us consider two rules Rn

ik =
(PreCn

ik,PostCn
ik) and Rm

jl = (PreCm
jl ,PostCm

jl) that belong to opi and op j respec-
tively. B-composability relates PreCn

ik to PreCm
jl and PostCn

ik to PostCm
jl . We define

several forms of B-composability depending on the relationships between post- and
pre-conditions. Each form is an instantiation of the general form of B-composability,
called generic B-composability. We say that opik is Generically B-composable with
opjl if:

∀Rn
ik ∈ Rules(opik) ∃ Rm

jl ∈ Rules(opjl)|
(˜PreCiknR1PreCm

jl) ∧ (PostCm
jl R2PostCn

ik)

The relations R1 and R2 relate preconditions and postconditions, respectively.
Each relation is either equivalence (⇔), implication (⇒), or nil (meaning that the
corresponding term is dropped). As illustrated in this section, we may need to
include information about the postcondition in the precondition clause. To allow
this flexibility, we define ˜PreCikn as either PreCn

ik or PreCn
ik ∧PostCn

ik in the generic
B-composability rule. Note that techniques for comparing pre and post-conditions
have been presented in [44]. However, these techniques deal with component-based
environments not Web services.

Figure 6.4 depicts the different forms of B-Composability rules. We first give the
strongest rule and then weaken the rules by relaxing R1 and R2 from ⇔ to ⇒,
and nil. We also vary ˜PreCikn from PreCn

ik to PreCn
ik ∧ PostCn

ik . Relaxing the rules
enables the comparison of less closely related operations.

Exact—Exact B-composability instantiates R1 and R2 to⇔ and ˜PreCikn to PreCn
ik

(Fig. 6.4a). If two operations are exactly B-composable, then their business logics
are equivalent. Hence, whenever one operation is used, it could be replaced by the
other with no change in observable business logic. This rule is suitable for vertical
composition since opik and opjl are in their active state simultaneously.

Plugin—This rule relaxes both R1 and R2 from⇔ to⇒. It also instantiates ˜PreCikn

to PreCn
ik . The rule Rn

ik is matched by any rule Rm
jl whose precondition is weaker

to allow at least all of the conditions that Rn
ik allows. The post-condition of Rm

jl is

6 On the Composability of Semantic Web Services 155

(a) (c)

(d)(b)

Fig. 6.4 B-composability rules: a Exact B-composability; b Plugin B-composability; c Exact Post
B-composability; d Plugin Pre B-composability;

stronger than Rn
ik’s to provide a condition at least as strong as Rn

ik’s. As depicted in
Fig. 6.4b, this rule is suitable for vertical composition since opik and opjl are in their
active state simultaneously.

Exact Post—In some cases, composers are concerned only with the effects of oper-
ations. For example, a composer may be interested in an operation that provides a
social benefit independently of any precondition of that operation. Thus, a useful
relaxation of the exact B-composability is to consider only the postcondition part of
the conjunction. Exact post is also an instance of the generic B-composability, with
R2 instantiated to⇔ and dropping both ˜PreCikn and PreCm

jl (Fig. 6.4c). Since only
equivalence relationship is used, the exact post is symmetric. Because opik and opjl
are in their active state simultaneously (Fig. 6.4c), this rule is suitable for vertical
composition.

Plugin Pre—Plugin Pre includes information about opi ’s postcondition in the pre-
condition and drops the relationship between postconditions. It is an instantiation
of generic B-composability where R1 is instantiated to⇒, R2 to nil, and ˜PreCikn

to PreCn
ik ∧ PostCn

ik . This rule is particularly useful to check horizontal compos-
ability that is, whether the execution of opi can be followed by the execution
of op j . Figure 6.4d shows that opik and opjl enter their active states sequentially
(Activeik −→t Activejl). Since opi is executed (according to Rn

ik) before op j , PreCn
ik

and PostCkl are by definition true. In order for op j to be executable according to Rm
jl ,

its precondition PreCm
jl should be true. One way to ensure this is to check that the

implication PreCn
ik ∧ PostCn

ik ⇒ PreCm
jl is true.

Plugin Post—Plugin Postmatch is a relaxation of exact Postmatch where the rela-
tionship between postconditions is equal to⇒. Thus, Plugin Postmatch is an instance
of the generic B-composability, with R1 and R2 instantiated to nil and⇒ respec-
tively (Fig. 6.4d). In contrast to exact Postmatch, Plugin Postmatch is asymmetric
because of the use of implication between postconditions. As stated in Fig. 6.4d, this

156 B. Medjahed et al.

rule is suitable for vertical composition since opik and opjl are in their active state
simultaneously.

6.7 Business Process Composability

Service composition involves combining a set of operations in a specific way. One
important issue to consider is whether such combination provides an added value. To
address this issue, we define a rule, called composition soundness, to check whether
a given composition of generic operations is sound. By sound, we mean that the
way operations are combined provides an added value. The definition of composition
soundness is based on the notions of composition and stored templates defined below.

Composition Template—A composition template is built for each composite service
CS and gives its general structure. It is modeled by a directed graph (V, E) where
V is a set of operation IDs and E is a set of edges. If an operation op is vertically
composed with another operation op′ in CS, then op and op′ represent the same
node in V since the execution of op is “replaced” by the execution of op′. Edges
in E model horizontal composition relationships between E’s operations. An edge
(opik, opjl) belongs to E if opik is horizontally composed with opjl.

Stored Template—Stored templates are defined by directed graphs similar to those
used for composition templates. The difference between stored and composition
templates is twofold. First, stored templates are saved in a stored template repository
(ST-repository) while composition are computed for each composite service and
then discarded. Second, the interpretation given to composition and stored templates
are different. Composition templates model actual composite services as defined by
users. Hence they may or may not provide added values. Stored template model
“potential” composite services. They are generally pre-defined by domain experts
(i.e., community providers). Hence, they inherently provide added values. Stored
templates may also be “learned” by the system. Each time a composite service is
defined by a user, the system saves the corresponding composition template in the
ST-repository if the template does not already exist in the repository.

Composition Soundness—Because stored templates intrinsically provide added val-
ues, they can prove or disprove the soundness of a composite service CS. The idea is
to compare the composition template of CS (template(CS)) with the existing stored
templates. The following four cases are then possible:

1. Case 1: If template(CS) is equal to a given stored template ST, then CS provides
exactly the same functionalities as the functionalities modeled by ST. We say
that CS is exactly sound with respect to ST.

2. Case 2: If template(CS) is a subgraph of a given stored template ST, then CS
provides a subset of the functionalities modeled by ST.

3. Case 3: If a given stored template ST is a subgraph of template(CS), then CS
provides all the functionalities modeled by ST. CS also provides functionalities
not offered by ST. We say that CS is strongly sound with respect to ST.

6 On the Composability of Semantic Web Services 157

4. Case 4: If none of the previous cases is possible, then CS is not sound.

Process templates and reference processes are defined in [8] and [37] respectively.
However, these notions are different from the notion of stored templates. Indeed,
process templates and reference processes are used as a priori “canvas” when defining
composite services. In contrast, stored templates are used a posteriori to check the
soundness of composite services.

6.8 Research Directions in Service Composition

We identify the following directions for future research in Web service composi-
tion: service mashup, autonomic composition of Web services, cloud services, and
dynamic composition of Web services.

Service Mashup—One of the goals of Web 2.0 is to make it easy to create, use,
describe, share, and reuse resources on the Web [7, 22]. Mashup is an application
development approach that allows users to aggregate multiple services (e.g., Google
Map and Amazon.com) to create a service that serves a new purpose. Unlike Web
services composition where the focus is on the composition of business (process)
services only, the mashup process goes further in that it allows more functionalities
and can compose heterogeneous resources such as data services and User Interface
services [22]. Much of the current work in service mashup involves tools and tech-
niques that instrument the mashup process and subsequently visualize the results
[17, 34]. Another issue is to define techniques for predicting or mining meaningful
mashups.

Autonomic Composition of Web Services—Autonomic computing identifies four
fundamental “self” properties: self-healing, self-configuring, self-optimizing, and
self-protecting [41]. Self-configuring compositions are composite services that are
capable of automatically discovering new participant services, selecting among avail-
able service providers, and choosing among different options available for contracts
[30]. Self-optimizing compositions automatically select participants that would max-
imize Quality of Service [33, 43]. Self-healing compositions automatically detect
that some composition requirements (e.g., regulatory or business requirements) are
no longer satisfied and react to requirement violations [2, 14]. Self-adapting compo-
sitions are able to function in spite of changes in behaviors of external services; they
reduce as much as possible the need of human intervention for adapting services to
changes.

Cloud Services—Cloud computing allows users to access applications running on
large-scale remote computing environments. Cloud computing precursors include
grid computing, which links disparate computers to form one large infrastructure; and
utility computing, a metered service in which individuals work with programs kept
on shared servers and, like a public utility, pay based on their usage level [16, 20, 29].
Tools and techniques are needed to simplify the development, debugging, testing,
change management, customization and integration of cloud services. Other research

158 B. Medjahed et al.

thrusts include complex event processing (e.g., real-time data feeds such as location
information for mobile devices) [11], cloud monitoring and management (e.g., failure
prediction) [35], and security [6, 21].

Dynamic Composition of Web Services—The support of dynamic composition will
facilitate the establishment of on demand and real-time partnerships. Services will
not statically be bound to each other. New partners with relevant features should be
dynamically discovered and assembled. Currently, relationships among component
services are mostly established at development time. While current service-oriented
technologies provide capabilities for defining Web services, they clearly are not
sufficient to facilitate the establishment of dynamic business relationships. More
research effort is needed to enable the creation of dynamic relationships.

6.9 Conclusion

In this chapter, we proposed a composability model to ascertain that Web services
can safely be combined, hence avoiding unexpected failures at run time. Compos-
ability is checked through a set of rules organized into five levels: syntactic, static
semantic, dynamic semantic, qualitative, and business process levels. We introduced
the concepts of composability degree and τ -composability to cater for partial and
total composability. Finally, we discussed four directions for future research in Web
service composition: service mashup, autonomic composition of Web services, cloud
services, and dynamic composition of Web services.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architecture, and
Applications. Springer, Berlin, ISBN: 3540440089 (2003)

2. Baresi, L., Guinea, S.: An introduction to self-healing web services. In: International Confer-
ence on Engineering of Complex Computer Systems, p. 4, June 2005

3. BEA, IBM, Microsoft: Business Process Execution Language for Web Services (BPEL4WS).
http://xml.coverpages.org/bpel4ws.html

4. Benatallah, B., Dumas, M., Shen, M., Ngu, A.H.H.: Declarative composition and peer-to-peer
provisioning of dynamic web services. In: ICDE Conference, pp. 297–308, CA, USA, Feb
2002

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)
6. Bertino, E., Paci, F., Ferrini, R., Shang, N.: Privacy-preserving digital identity management for

cloud computing. IEEE Data Eng. Bull. 32(1), 21–27 (2009)
7. Bouguettaya, A., Nepal, S., Sherchan, W., Zhou, X., Wu, J., Chen, S., Liu, D., Li, L., Wang, H.,

Liu, X.: End-to-end service support for mashups. IEEE Trans. Serv. Comput. 3(3), 250–263
(2010)

8. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and dynamic service
composition in eFlow. In: CAiSE Conference, pp. 13–31, Stockholm, Sweden, June 2000

9. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.: Learning to match ontolo-
gies on the semantic web. VLDB J. 12(4), 309–319 (2003)

http://xml.coverpages.org/bpel4ws.html

6 On the Composability of Semantic Web Services 159

10. ebXML.: http://www.ebxml.org, 2003
11. Eugster, P.Th., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of publish/sub-

scribe. ACM Comput. Surv. 35(2), 114–131 (2003)
12. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce.

Springer, Berlin, ISBN: 3540003029 (2003)
13. Georgakopoulos, D., Schuster, H., Cichocki, A., Baker, D.: Managing process and service

fusion in virtual enterprises. Inf. Syst. 24(6), 429–456 (1999)
14. Ghosh, D., Sharman, R., Rao, H.R., Upadhyaya, S.: Self-healing systems—survey and synthe-

sis. Decis. Support Syst. 42, 2164–2185 (2007)
15. Gribble, S.D., Brewer, E.A., Hellerstein, J.M., Culler, D.: Scalable, distributed data structures

for internet service construction. In: Proceedings of the Symposium on Operating Systems
Design and Implementation, pp. 319–332, San Diego, CA, USA, Oct 2000

16. Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008)
17. Jhingran, A.: Enterprise information mashups: integrating information, simply. In: VLDB, pp.

3–4, 2006
18. Kuper, G.M., Simeon, J.: Subsumption for XML types. In: ICDT Conference, pp. 331–345,

London, UK, Jan 2001
19. Lazcano, A., Alonso, G., Schuldt, H., Schuler, C.: The WISE approach to electronic commerce.

Int. J. Comput. Syst. Sci. Eng. 15(5), 343–355 (2000)
20. Leavitt, N.: Is cloud computing really ready for prime time? IEEE Comput. 42(1), 15–20 (2009)
21. Lin, D., Squicciarini, A.C.: Data protection models for service provisioning in the cloud. In:

SACMAT, pp. 183–192, 2010
22. Di Lorenzo, G., Hacid, H., Paik, H.-Y., Benatallah, B.: Data integration in mashups. SIGMOD

Rec. 38(1), 59–66 (2009)
23. McDermott, D.V.: Estimating-regression planning for interactions with web services. In: Inter-

national Conference on Artificial Intelligence Planning Systems, pp. 204–211, Toulouse,
France, Apr 2002

24. McIlraith, S.A., Son, T.C.: Adapting Golog for composition of semantic web services. In: 8th
International Conference on Principles and Knowledge Representation and Reasoning (KR-02),
pp. 482–496, Toulouse, France, 2002

25. Mclraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intell. Syst. 16(2), 46–53
(2001)

26. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., Elmagarmid, A.: Business-to-business
interactions: issues and enabling technologies. VLDB J. 12(1), 59–85 (2003)

27. Medjahed, B., Bouguettaya, A.: Service Composition for the Semantic Web. Springer, Berlin,
ISBN: 9781441984647 (2011)

28. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic
web. VLDB J. 12(4), 333–351 (2003)

29. Mika, P., Tummarello, G.: Web semantics in the clouds. IEEE Intell. Syst. 23(5), 82–87 (2008)
30. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing:

a research roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)
31. Payne, T.R., Paolucci, M., Sycara, K.: Advertising and matching DAML-S service descriptions

(position paper). In: International Semantic Web Working Symposium, pp. 76–78, CA, USA,
July 2001

32. Ponnekanti, S.R., Fox, A.: SWORD: a developer toolkit for web service composition. In:
Proceedings of the International World Wide Web Conference, pp. 83–107, Honolulu, Hawaii,
USA, May 2002

33. Rosenberg, F., Müller, M.B., Leitner, P., Michlmayr, A., Bouguettaya, A., Dustdar, S.: Meta-
heuristic optimization of large-scale QoS-aware service compositions. In: IEEE SCC, pp.
97–104, 2010

34. Sabbouh, M., Higginson, J., Semy, S., Gagne, D.: Web mashup scripting language. In: WWW,
pp. 1305–1306, 2007

35. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods. ACM Comput.
Surv. 42(3), Article 3, 1–42 (2010)

http://www.ebxml.org

160 B. Medjahed et al.

36. Schuster, H., Baker, D., Cichocki, A., Georgakopoulos, D., Rusinkiewicz, M.: The collaboration
management infrastructure. In: Proceedings of the IEEE International Conference on Data
Engineering, pp. 485–487, San Jose, CA, USA, Mar 2000

37. Schuster, H., Georgakopoulos, D., Cichocki, A., Baker, D.: Modeling and composing service-
based and reference process-based multi-enterprise processes. In: CAiSE Conference, pp. 247–
263, Stockholm, Sweden, June 2000

38. Singh, M.P.: Physics of service composition. IEEE Internet Comput. 5(3), 6 (2001)
39. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with interactive

composition techniques. IEEE Intell. Syst. 19(4), 42–49 (2004)
40. Sycara, K., Klush, M., Widoff, S.: Dynamic service matchmaking among agents in open infor-

mation environments. ACM SIGMOD Rec. 28(1), 47–53 (1999)
41. Want, R., Pering, T., Tennenhouse, D.L.: Comparing autonomic and proactive computing. IBM

Syst. J. 42(1), 129–135 (2003)
42. Wu, D., Parsia, B., Hendler, J., Nau, D.: Automating DAML-S web services composition using

SHOP2. In: International Semantic Web Conference, pp. 195–210, FL, USA, Oct 2003
43. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimization. TWEB

2(1), 1–35 (2008)
44. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM Trans.

Softw. Eng. Methodol. 6(4), 333–369 (1997)

Chapter 7
Semantic Web Service Composition: The Web
Service Challenge Perspective

Thomas Weise, M. Brian Blake and Steffen Bleul

Abstract Service-oriented architecture (SOA) is a software design paradigm for
creating highly modular, distributed applications. Web services can implement well-
defined, atomic functions which can be composed into high-level business processes.
The composition of clearly separable modules is one of the key advantages of SOAs.
This article provides an overview of research, challenges, and competitions in this
domain. We first define and discuss the general notions of syntactical and semantic
discovery/composition and the corresponding quality of service (QoS) features. One
focus of this chapter is the Web Service Challenge (WSC), which has established
an extensive body of knowledge and community of researchers in the area of web
service composition. We discuss the structure, requirements, and utilities provided
in the scope of this competition. The paper furthermore includes a detailed literature
review of the activities of the WSC event in context of the related initiatives.

7.1 Introduction

Service-oriented architectures (SOAs) [39, 79, 129] represent a promising paradigm
for realizing business processes within enterprise software systems. The modular-
ity of services that underlie SOAs enable an infrastructure that is easy to maintain,

T. Weise (B)
Nature Inspired Computation and Applications Laboratory, School of Computer Science and
Technology, University of Science and Technology of China (USTC), Hefei 230027, Anhui, China
e-mail: tweise@ustc.edu.cn

M. B. Blake
University of Miami, Graduate School, Coral Gables, FL 33124-3220, USA
e-mail: m.brian.blake@miami.edu

S. Bleul
Munich, Germany
e-mail: stbleul@gmx.de

A. Bouguettaya et al. (eds.), Web Services Foundations, 161
DOI: 10.1007/978-1-4614-7518-7_7,
© Springer Science+Business Media New York 2014

162 T. Weise et al.

extend, improve, and interconnect. To fully enable the flexibility of SOA environ-
ments, approaches must be developed that compose multiple services into higher-
level business processes. Services are building blocks in implementing business
processes in companies and to integrate heterogeneous resources and external sys-
tems [186].

The composition of services within companies implements processes such as
ordering, billing, accounting, and information dissemination. Each service within
the process realizes a specific task. The communication between services is realized
with messages, either directly or by using a middleware. Compositions of services
are normally defined in a process execution language such WS-BPEL [24, 102] and
a message choreography language like WS-CDL [106]. The automatic execution of
specifications provided in such languages is then performed by process execution
engines.

Service oriented architectures evolve by replacing services with more effective
substitutes. These substitutes may offer extended functionality or enhanced quality
of service (QoS) (i.e., reduced response time or higher throughput). When organiza-
tions collaborate on their offerings, services offer flexibility in outsourcing software
capabilities to external entities.

Consequently, service discovery and service composition [62, 186] are essential
functionalities in service oriented architectures. In this paper, we review the devel-
opments in automated web service composition during the last five years. This work
leverages the research activities and results of the Web Service Challenge (WSC) [30].
The WSC initiative was the first effort that attempts to enhance the state-of-the-art
in service composition through annual “side-by-side” community evaluation.

7.2 Automatic Web Service Composition

7.2.1 Syntactic Discovery

The syntactic description of a function in an imperative language like C, Java, or C#
contains the input and output data types, as sketched in Listing 7.1. From a simplified
perspective, a web service w can be described in the same way, by a set w.TI of input
types ti and a set w.TO of output data types to. Syntactic web service discovery means
finding web services whose input and output parameter types exactly fit to the types
TG of available input data and which produce output data exactly fitting to a set of
required types TN (Fig. 7.1).

Fig. 7.1 Example for a
syntactical interface

7 Semantic Web Service Composition: The Web Service Challenge Perspective 163

A discovery request R can be fully specified as a tuple R = (R.TG, R.TN , R.W)

of the set R.TG of types of the known data elements, the set R.TN of types which
should be found, and a web service repository R.W . Notice that in a software system,
the service repository is not part of the user’s request, but part of the data accessible
by the algorithm. From algorithmic perspective, however, it is part of the input of the
discovery procedure. The goal of solving the request R is to discover a service w ∈
R.W for which can be executed with the given parameters and produces instances
of the wanted types as output, i.e., fulfills the predicate validsynD (w, R) defined in
Eq. (7.1).

validsynD (w, R)⇔ (w ∈ R.W) ∧ (∀ti ∈ w.TI

⇒ ti ∈ R.TG) ∧ (∀to ∈ R.TN ⇒ to ∈ w.TO) (7.1)

7.2.2 Syntactical Composition

Service composition also permits combining multiple services in order to fulfill the
requirements of a user-based request. Such a composition C is a directed acyclic
graph (DAC) describing the order in which the services must be executed. It consists
of a set C.W of services and a strict partial order C.pred defined on them (where
w′ ∈ C.pred (w) means that w′ ∈ C.W must be executed before w ∈ C.W). For a
valid syntactic composition validsynC (C, R) defined in Eq. (7.2) must hold. In [165],
the authors show that the syntactical service composition is NP-complete.

validsynC (C, R)⇔ (∀w ∈ C.W ⇒ w ∈ R.W) ∧(
∀w ∈ C.W, ti ∈ w.TI ⇒ ti ∈

[
R.TG ∪⋃

∀w′∈C.pred(w) w′.TO

])
∧

(∀to ∈ R.TN ⇒ to ∈
[⋃
∀w∈C.W w.TO

])

(7.2)

7.2.3 Semantic Composition

Semantic composition takes into account that besides primitive types (such as num-
bers or Boolean values), type systems usually support hierarchical compositions
of types.1 In Eq. (7.1), the parameter type ISBN could be a class. In the pub-
lishing industry, the ISBNs are used to uniquely identify media. Because of the
shortage of remaining unused identifies the ten-digit ISBN-10 have been super-
seded by the new thirteen-digit ISBN-13s. The ISBN class could be subclassed
to ISBN-10 and ISBN-13. Instances of all three classes could be passed to the
function getBookTitle.

1 Also, formal representations of pre and post conditions may be considered during the matching
process.

164 T. Weise et al.

Semantic composition takes such type hierarchies into account by representing
the types as concepts in an ontology. This ontology can again be described as DAG.
The composition request is thus complemented with a subsumption predicate R.subs
where t ′ ∈ R.subs (t)means that type t ′ subsumes type t . In a class hierarchy known
from Object Oriented Programming, the type ISBN could subsume both, ISBN-10
and ISBN-13. ISBN-10 and ISBN-13 are then specializations of ISBN.

A service w can be executed if for each of input types t ′i ∈ w.TI , at least one
instance of either t ′i directly or any type ti with t ′i ∈ subs (ti) is available. For
simplicity, let us R.subs� (T) be the joint set of all subsumed types of the types
t ∈ T . Then, a valid solution for the semantic service composition request R fulfills
Eq. (7.3). A syntactic composer can be extended to support semantic composition
by replacing the “equals” operation applied to (syntactical) parameter names with
a subsumption check. Such a check can be performed in O(1) if all the subsumed
concepts are stored in a hash map built upon loading the type taxonomy.

validsemC (C, R)⇔ (∀w ∈ C.W ⇒ w ∈ R.W) ∧(
∀w ∈ C.W, ti ∈ w.TI ⇒ ti ∈ subs�

(
R.TG ∪⋃

∀w′∈C.pred(w) w′.TO

))
∧

(∀to ∈ R.TN ⇒ to ∈ subs�
(⋃
∀w∈C.W w.TO

))

(7.3)

7.2.4 QoS-Based Composition

Currently, discovery and composition tasks predominantly consist of AI planning
problems [190] which can be solved with informed (heuristic) or uninformed (exhaus-
tive) local search methods [50, 203]. However, in a SOA, not only the functionality
of a business process itself is of interest but also nonfunctional criteria such as qual-
ity of service (QoS) [46, 47]. This especially holds for enterprise mash-up, i.e.,
software systems which partly rely on services provided by external vendors. QoS
may be modeled with semantic conditions, but can also be considered as orthog-
onal objective—i.e., it is possible to perform syntactic composition with regard to
QoS. In usual composition scenarios, however, QoS and semantics are closely linked
together.

When QoS is considered together with functionality, service composition becomes
a (constrained combinatorial) optimization problem [200]. The validity criterion
valid now becomes a feasibility constraint whereas the QoS parameters can be
considered as objective functions. Both, the constraint and the objectives can be com-
bined to a single heuristic guiding, for example, an A∗ search. However, depending on
the size of the service repository R.W , the number of non-functional criteria, and the
expected number of involved services, optimization algorithms such as Evolutionary
Algorithms [28, 29, 70, 200], Simulated Annealing [108, 161, 200], Tabu Search
[84, 93, 200], or other metaheuristics [83, 152, 200] become feasible approaches.
Especially multi-objective Evolutionary Algorithms are promising, since they are
able to return multiple solutions in one run which can represent a trade-off between
the objectives (i.e., one composition could have a high runtime at lower costs whereas

7 Semantic Web Service Composition: The Web Service Challenge Perspective 165

another one may be more costly but also faster) from which a human operator might
pick the most suitable one(s).

7.3 History and Impact of the WSC

7.3.1 History

The Web Service Challenge (WSC) is an event for researchers investigating soft-
ware engineering concerns in the area of efficient automatic web service composi-
tion algorithms. Since 2005, this annual forum has attracted 44 contributions from
97 authors. As shown in Table 7.1, the challenges proposed in the WSC evolved from
the general concept of syntactical web service composition in 2005 to semantic com-
position involving QoS optimization in 2009. At the same time, the forum leverages
standardized data formats such as WSDL [51], OWL [35, 94], WS-BPEL [24, 102],
and WSLA [107, 136].

The first Web Service Challenge in 2005 focused on syntactic service composi-
tion. Simple XML [58] data formats were used to describe the challenge. Techniques
from Artificial Intelligence, often based on heuristic or uninformed searches, were
prevalent. In the following year, a semantic composition challenge was added. The
type taxonomy was represented as XSD schema [80]. The solutions to these chal-
lenges were sequences of services. In 2007, the WSC further developed—the type
taxonomies were represented in the OWL format and the challenge included the
ability to evaluate services that can be executed in parallel. Another major change
was that the composition systems were required to be implemented as Web Services.

Generally, semantic web service composition [186] has been achieved with hier-
achical task network planning [191, 192], Petri Nets [159], situation calculus (e.g.,
with Golog) [147, 148, 159], uninformed search [150], with planning based on rule-
based expert systems [179], via model checking [177, 196], with semi-automatic
procedures [187], and Genetic Programming [27]. As can be seen in Table 7.1, the
techniques developed within the framework of the Web Service Challenge are even
more wide spread and include, for example, agent-based methodologies [60], but
also more low-level techniques from AI such as heuristic search [48] which proved
to be especially efficient.

In 2008, the WSC event introduced challenge datasets with structured data
types. More importantly, the solutions could contain arbitrarily nested and paral-
lel processes, as well as choices between different possible processes. Therefore,
WS-BPEL was adopted as solution format. From this point on, the entries to the
WSC—composition services—could theoretically be plugged directly into existing
SOAs. Finally in 2009, QoS criteria were introduced. The goal was extended beyond
the synthesis of valid compositions to also find valid compositions with maximal
throughput and minimal response time. WSLA was chosen in order to represent
these quality dimensions in the input data. In 2010, the WSC event featured much

166 T. Weise et al.

Table 7.1 The Web Service Challenge (WS-Challenge, WSC) [41]

I. Web Service Challenge 2005 [41, 5]
Syntactical Web Service Composition
1. [98]: Hashing, Depth-limited Search
2. [162]: Bloom Filter Hash, A∗ search
3. [38]: Agents, Modal Logic, Prolog
4. [86]: Topic Map, Multi-Agent System
5. [77]: Partial Order Planning

II. Web Service Challenge 2006 [42]
Semantic Web Service Composition, Taxonomy represented as XSD
6. [20]: Hashing, Greedy Seach
7. [48]: Hashing, Tree Data Structures, Multi-Threading, Greedy Search, Interative Deepening

Depth-First Search
8. [110]: Depth-First Search, Prolog
9. [163]: AI, Planning, Breadth-First Search
10. [78]: Answer Set Programming
11. [185]: Hashing, Bi-Directional Search Depth-First Search
12. [71]: Description Logic Reasoning
13. [23]: Hashing, Metric Planning via Greedy Search
14. [207]: Inverted Table Index, Breadth-First Search
15. [219]: Trees, String Prefix Matching, Breadth-First Search
16. [140]: Syntactic Composition only, Hashing, Depth-limited Search

III.Web Service Challenge 2007 [43]
WSC’06 + OWL for Taxonomy, Concurrency, Composer as Service
17. [103]: Table-based Index, Greedy Search
18. [88]: Inverted Table Index, Breadth-First Search
19. [49]: Hashing, Tree Data Structures, Multi-Threading, Greedy Search, Genetic Algorithm,

Iterative Deepening Depth-First Search
20. [111]: Breadth-First Search, Prolog, Constraint Logic Programming over Finite Domains

(CLP(FD))
21. [220]: Breadth-First Search, Greedy Search, Indexing using B-Trees, Least Recently Used

Memory Management
22. [60]: Triple-Store, Memetic Algorithms
23. [164]: Inverted Index, AI, Planning

IV. Web Service Challenge 2008 [31]
WSC’07 + Structured Data Types, BPEL, Multi-Objective Composition
24. [157]: Tranformation to Satisfieability (SAT)Problem, Iterative Application of a SAT Solver
25. [209]: And/Or Graph, Depth-First Search
26. [208]: Breadth-First Search in a Planning Graph
27. [59]: Triple-Store, Memetic Algorithms
28. [212]: Integer Linear Programming, Non-Functional Objectives, Constraints
29. [204]: Hashing, Tree Data Structures, Multi-Threading, Greedy Search, Genetic Algorithm,

Iterative Deepening Depth-First Search
30. [21]: Greedy Depth-First Search
31. [184]: Greedy Search, Indexing using B-Trees, Least Recently Used Memory Management

7 Semantic Web Service Composition: The Web Service Challenge Perspective 167

Table 7.1 (continued)

I. Web Service Challenge 2005 [41, 5]
Syntactical Web Service Composition
V. Web Service Challenge 2009 [112]
WSC’08 + Quality of Service, WSLA
32. [22]: Greedy Search, Priority Queue
33. [33]: Depth-First Search
34. [217]: Service Classes, Indexing using B-Trees, Greedy Search, Iterative Deepening

Depth-First Search
35. [182]: Planning Domain Description Language (PDDL), Graphplan
36. [158]: Planning, Dynamic Programming, Learning Depth-First Search
37. [72]: Matrix Representation, Topological Network Analysis, Multi-Criteria Integer

Programming, Depth-First Search
38. [166]: Planning, A∗
39. [99]: Dynamic Programming, Integer Programming, Pruning, Multi-Threading
40. [210]: Service Layer Representation, Two Steps: Solution Finding, Service Number Reduction

VI. Web Service Challenge 2010 [45]
WSC’09 + Larger Scale Test Sets
41. [137]: Greedy Search
42. [75]: Greedy Search, Priority Queue
43. [138]: Service Layer Representation, Two Steps:Solution Finding, Service Number Reduction;

Dynamic Programming

larger and complex challenge tasks whereas the involved formats remained the same.
Since 2005, the scale of the challenge datasets has steadily increased, leading to rather
large-scale testsets comprising service repositories with 40000 services, ontologies
with 20000 concepts, and compositions comprising a minimum of 50 services.

7.3.2 Impact

Because of its structure, evolution, and relevance, the Web Service Challenge has
become a major reference in both, the research and the industrial service composition
community. The developers of widely-recognized systems such as ADDO [47, 49],
MOVE [97], and jUDDI+ [71] used the WSC as reference for their work.

In 2012, checking Google Scholar (and Microsoft Academic Search) for citations
of the competition lead papers and entries reveales 119 (72) references to the 2005
challenge, 119 (67) for the 2006 one, 85 (31) for 2007, 62 (23) for 2008, and 70 (20)
for 2009. Adding up these numbers, there are more than 450 (210) citations of the
WSC or works that competed in its context—which emphasizes its large influence
on the community.

168 T. Weise et al.

Table 7.2 The semantic web service challenge (SWS-Challenge) [175]

I. 1st Semantic Web Services Challenge Workshop (Stanford, USA, 2006) [6]
Phase I: Discovery, Interoperability, Mediation
1. [54]: WebL + Glue: Visual Modeling, Automatic Code Generation, WSMO Ontology, Service

Discovery
2. [68]: OWL-P: Business Processes in Open Systems, Memetic Algorithms, Business Partners =

Agents, OWL
3. [69]: WSMX: WSMO, Data Mediation, Semantic Lifting and Lowering of Messages
4. [85]: METEOR-S: Protocol and Data Mediation
5. [178]: Service Mediation
6. [115]: jABC:UML, Web Service Wrappers for Mediation, Visual Modeling
7. [124]: DIANE: Description Language (DSD), Interaction Modeling, Service Mediation, BPEL
8. [145]: Human-based Service Mediation, Data and Process Abstraction

II. 2nd Semantic Web Services Challenge Workshop (Budva, Republic of Montenegro, 2006)
[8]

Phase II: Adaptation, Changes in SOA
9. [92]: WSMX Middleware: Semantic Enriching of Schemas, Data and Process Mediation,

WSMO, WSML
10. [55]: WebML + Glue: Visual Modeling, Service Discovery
11. [125]: DIANE: Description Language (DSD), Matchmaking, Middleware
12. [114]: jABC: Web Service Wrappers for Mediation

III. 3rd Semantic Web Services Challenge Workshop (Athens, USA, 2006) [9]
Phase III: Same as Phase II
13. [53]: WebML + Glue: Entity Relationship, UML, WSMO, WebRatio, F-Logic
14. [214]: WSMX Middleware: WSMO, WSML, WSMX
15. [120]: DIANE: Description Language (DSD), Matchmaking, Middleware
16. [113]: jABC + jETI: GraphSIB, AXIS, miAamics

IV. 4th Semantic Web Services Challenge Workshop (Innsbruck, Austria, 2007) [10]
SWS Phase III + Composition
17. [123]: DIANE: Description Language (DSD), Matchmaking, Middleware, Temporal Reasoning
18. [117]: jABC + jETI: AXIS, Velocity, JAXB, Java
19. [56]: WebML + Glue: Entity Relationship, UML, WSMO, WebRatio WS
20. [155]: WSMX Middleware: WSMO, WSML, WSMX

V. Special Session at ICEIS (Madeira, Portugal, 2007) [172, 173]
21. [215]: WSMX Middleware: WSMO, WSML, Entity Relationship Model, Service Mediation
22. [142]: WebML + Webratio vs. jABC +jETI
23. [128]: DIANE (Fuzzy Sets) vs. SWE-ET (Glue + WebRatio, F-Logic); Modeling,

Matchmaking, Dynamics
24. [146]: Swashup: Ruby on Rails Mashup
25. [206]: METEOR-S: SAWSDL, GraphPlan

(contiuned)

7 Semantic Web Service Composition: The Web Service Challenge Perspective 169

Table 7.2 (contiuned)

I. 1st Semantic Web Services Challenge Workshop (Stanford, USA, 2006) [6]
Phase I: Discovery, Interoperability, Mediation
VI. 5th Semantic Web Services Challenge Workshop (Silicon Valley, USA, 2007) [44]

26. [121, 122]: DIANE Middleware: Mediation, Fuzzy Sets, Service Discovery and Composition
27. [116]: jABC + jETI: Mediation, AXIS, GeneSys, JAXB
28. [57]: WebML/WebRatio + Glue:Entity Relationship, UML, WSMO
29. [118]: jABC + miAamics: Service Discovery
30. [154]: Service Discovery, WSMO, Constraint-based Service Composition

VII. 6th Semantic Web Services Challenge Workshop (Tenerife, Spain, 2008) [82, 171]
31. [195]: Debugging of Ontologies: MUPSter, DION, RADON, Protegee, SWOOP
32. [32]: Semantic Mediation, Semantic Bridges
33. [65]: New Scenarion Proposal: Logistics, Functional/Non-Functional Properties
34. [143]: jABC: ABC/ETI, Mediator Synthesis, Semantic Linear-time Temporal Logic
35. [119]: jABC: Semantic Linear-time Temporal Logic, Abductive Logic Programming, Event

Calculus, Model Checking, SAP’s Goal-oriented Enterprise Management (GEM)
36. [216]: WSMX Middleware: WSMO, WSML, WSMX, KAON2 Reasoner, IRIS Reasoner,

Service Mediation

VIII. 7th Semantic Web Services Challenge Workshop (Karlsruhe, Germany, 2008) [14, 171]
New Discovery Scenario
37. [181]: COSMO: Model-Driven Architecture, Model Transformations
38. [130]: jABC + GEM: Service Mediation for “Purchase Order Mediation v2” and “Payment

Problem”

IX. 8th Semantic Web Services Challenge Workshop (Eindhoven, The Netherlands, 2009)
[174]

39. [26]: COSMO: Model-Driven Architecture, Model Transformation, Goal Modeling
40. [169]: Glue2: Semantic Service Discovery for the Logistics Management Scenario

Fig. 7.2 The relation between
WSC, SWS, and SC Contest

7.4 Related Events

Since the conception of the WSC approach, other derivative events have emerged:
the SWS Challenge and the SC Contest. The later events have focused on other
aspects of the service composition. In total, 293 researchers are involved in the three
challenges, but only five of them contributed to more than one family of competitions.
The relation of the challenge themes is illustrated in Fig. 7.2.

170 T. Weise et al.

Table 7.3 The IEEE International Services Computing Contest (SCContest) and Services Cup

I. First IEEE International Services Computing Contest (Chicago, USA, 2006) [66]
Theme: SOA Methodologies and Tools to Better Solve Business Issues
1. [199]: Geospatial Data, Grid Computing, Replication, Security, BPEL, SOA
2. [52]: Home Automation, OSGi, Smart Home, Ubiquitous Computing, Central Gateways
3. [189]: VIDRE: Business Rules, Rules Engine, RuleML, Supply Chain Management
4. [135]: Self-Adaptive Web Service Integration (SAWI): Personal Mobility Manager,

Self-Adaptation, WSDL
5. [104]: MIDAS: Supply Chain Management, SOA
6. [74]: SOAR: SOA for Real-Estate Industry, Trust and Security Architecture

II. Second IEEE International Services Computing Contest (Salt Lake City, USA, 2007) [218]
Theme: SOA Methodologies and Tools to Better Solve Business Issues
7. [105]: e-Healthcare, Medicin, Multimedia, Security, Speech Recognition, Atom/RSS
8. [73]: (Dynamic) Supply Chain Management, Knowledge-Driven SOA

III. Third IEEE International Services Computing Contest (Honolulu, USA, 2008) [15]
Theme: Business SOA and Services Mash-up
9. [76]: Domain-Specific Query Language (DSQL) for Services Mash-Up, OWL-D, SQL-like

language
10. [221]: Rich Internet Application, Naval Shipping and Logistics, BPEL, Web 2.0
11. [198]: Semantic Mash-Up: Bayesian Networks, Ontologies, Tourism
12. [100]: Mash-Up: News Industry, Data Augumentation for Celibrities, Text Mining, Web

Crawling
13. [25]: University-wide Web 2.0 Information/Service System, Service Mash-Ups
14. [89]: Open Service Process Platform: Web 2.0, Orchestration OSGi
15. [101]: Mash-Up: Home Library Management System, Bar Code Scanning, ISBN
16. [139]: Combination of Geographical Information Systems (GIS) and Data, BPEL, XML, AJAX
17. [91]: Mash-Up: Forest Fires, GIS, Simulation
18. [134]: Rental Advising System, GIS, Service Wrappers and Mash-Ups
19. [160]: Mash-Up of Travel Planning Services: Bus, Flight, Train, Hotel
20. [67]: E-Commerce: Illustration of Products via Second Life, HTML Wrapping, REST

IV. First Services Cup (Los Angeles, USA, 2009) [16]
No Specific Theme
21. [194]: BioCreative MetaServer, BC-VisCon, Text Mining, Bioinformatics, Genetics
22. [96]: Enterprise Mash-Up, SAP, GUI, E-Commerce, Marketplaces
23. [180]: Stream-based Event Processing in a SOA, Selling and Buying Stocks
24. [109]: Genesis: Dynamic Formulation of Abstract Business Processes, Business-OWL
25. [90]: Web-based Business Application, Behavior Model Inference, SPIN, Promela, Weka,

GraphViz
26. [19]: Posr: Automatic Generation of User Interfaces and Services Wrapping existing

Applications, Travel Planning

(continued)

7 Semantic Web Service Composition: The Web Service Challenge Perspective 171

Table 7.3 (continued)

I. First IEEE International Services Computing Contest (Chicago, USA, 2006) [66]
Theme: SOA Methodologies and Tools to Better Solve Business Issues
V. Second Services Cup (Miami, USA, 2010) [18]
Theme: Cloud Computing
27. [132]: SIR: Text Correction, Human as a Service, REST-based SOA, Cloud Computing
28. [211]: Accountability, Cloud Computing, Logging
29. [188]: Cloud Computing, Cost Approximation: Neural Networks, MapReduce
30. [197]: TAPoR: Text Mining, Digital Humanities, MapReduce
31. [151]: Service Security Lab, Model Driven Architecture, Cloud Computing

The Semantic Web Service Challenge (SWS) has attracted 40 contributions from
72 authors, as listed in Table 7.2. It propagates the interaction of services, processes,
and e-businesses in one specific scenario. Web service discovery and composition
is involved in so far that, in order to wire two SOAs with each other and to adapt
processes to changing requirements, services matching to the (new) requirements
must be discovered and, if necessary, combined. These discovery or competition
tasks are, however, of much smaller scale. Furthermore, the challenge requires the
complete implementation of an application scenario. While this, on one hand, allows
researchers to study “a system in action”, it also requires much more work and does
not allow for the research on singular, specific aspects of a SOA.

While earlier Web Service Challenges lacked rich semantics as compared to the
Semantic Web Service Challenges [126, 127], in 2007, the WSC has supported OWL
taxonomies and later, with WSC’08 , structured data types. The WSC represents a
challenge which is theoretical enough to allow researchers to construct solutions as
modules without needing to deal with the complete enterprise architecture at once. It
is, however, also realistic enough to represent the challenges in such an architecture.

The International Services Computing Contest (SCContest), renamed to Services
Cup in 2008, has attracted 31 contributions from 129 authors, as listed in Table 7.3.
The SWS is more general than the WSC as it provides a well-defined task, although
the task is less precise. The Services Cup, on the other hand, gives much more freedom
to its participants: the organizers introduce a theme such as “Services Mash-Ups”
or “Cloud Computing”, from which the participants demonstrate capabilities. This
challenge thus creates a venue for researchers from different areas in Web Services,
it also makes the comparison of systems much more subjective.

In 2004, the first workshop entirely dedicated to service composition took place
co-located with ICWS in San Diego (see Table 7.4). This workshop merged into the
conference as sessions into the following years.

172 T. Weise et al.

Table 7.4 The International Workshop on Semantic Web Services and Web Process Composition
(SWSWPC)

I. First International Workshop on Semantic Web Services and Web Process Composition
(San Diego, USA, 2004) [62]

1. [61]: Semantic Web Service Composition: Travel Industry, QoS
2. [63]: Comparison: Academic and Industrial Research on Web Service Composition
3. [37]: Semantic Service Interoperability: Content, Conversation, Policy
4. [144]: OWL-S
5. [186]: Automated Web Service Composition: Survey
6. [183]: METEOR-S: WSDL-S, Web Service Description and Discovery
7. [40]: End-User input for Compensations (Undoing) in Transactions composed of Web Services
8. [168]: Semantics for Dynamic Service Discovery, WSMO
9. [193]: Service Discovery, Matching: OWL-S/UDDI
10. [141]: Protocols for E-Businesses: Reasoning, Aggregation, Refinement/Subsumption
11. [213]: Web Portal Discovery, Semantic Web, Ontologies, UDDI, P2P
12. [167]: METEOR-S: Annotation, Machine Learning, Weka, Classification of WSDL

Descriptions

7.5 The 2010 WSC

The 2010 WSC adopts the idea of Semantic Web Services with functional and
non-functional characteristics. Web Services are specified with a semantic interface
description as well as quality of service aspects. The task is to find a composition of
services that produces a set of queried output parameters from a set of provided input
parameters which is optimal in terms of (at least) one of the two QoS dimensions
“Throughput” and “Response Time”.

7.5.1 Software Suite

The WSC software suite (implemented in Java) is not limited to the competition,
but it is also suitable for the evaluation of general web service composition systems.
This suite includes:

• A challenge generator [112, 201] which can generate composition tasks consisting
of arbitrary numbers of services, semantic concepts, QoS annotations, and solu-
tions (consisting of arbitrary numbers of services). This program creates both the
challenge as well as suitable solutions (for reference).
• A verifier/checker software [112, 201] that can check whether a given WS-BPEL

process specification fulfills a composition task as well as computes its QoS prop-
erties.

7 Semantic Web Service Composition: The Web Service Challenge Perspective 173

• Ten pre-defined composition challenges [201], ranging from small-scale to large-
scale composition problems, along with example solutions obtained from three
state-of-the art systems [75, 137, 138].
• A GUI which can communicate which a composer via a SOAP-based Web Service

Interface [153].
• A skeleton implementation of a composition system in Java including an example

competition system.
• A full specification and documentation of all formats, protocols, and processes

involved in the above.

The composer software is placed on the server side of the suite and started with
a bootstrap procedure. First, the system is provided with the locations of the service
descriptions. The WSDL file contains a set R.W of semantically annotated services
w along with annotations w.TI and w.TO of their respective input- and output para-
meters (see Sect. 7.2.3). Every service has an arbitrary number of parameters. The
annotation with semantic individuals will not only be used for message parts, but for
whole message structures specified with XSD. These structures can consist of simple
elements, SOAP-Arrays [153], Lists, Structures, and Enumerations. The number of
services ranged from 500 to 20000 in the ten challenge tasks provided.

In addition to the WSDL file, the addresses of the OWL file and the WSLA data are
also provided during the bootstrapping process. The OWL file contains the taxonomy
of concepts, in other words, holds the type subsumption relationships R.subs. The
2010 WSC features ontologies with between 5000 and 100000. Each WSLA file
contains the QoS description of a Web Service as outlined in Sect. 7.2.4. During the

Fig. 7.3 Overview on the WSC system

174 T. Weise et al.

Fig. 7.4 The blueprint of the example composition system

bootstrapping process—sketched in the upper part of Fig. 7.3—the composers load
the relevant information from these files.

The composition task will then be sent to the composer via a client-side GUI. After
the bootstrapping on the server side is finished, the GUI queries the composition
system with the challenge problem definition. The problem definition is provided in
form of a semantically annotated WSDL file holding the description of the required
functionality (R.TG and R.TN).

The composer system (Fig. 7.4) then computes a solution—one or more service
compositions—and answers in the solution format which is a subset of the WS-BPEL
schema. When the WS-BPEL document is received by the GUI, it finishes its time
measurement and afterwards evaluate the compositions themselves.

7.5.2 Suggested Composer Structure

As mentioned in the previous section, the WSC does not only provide the challenge
framework but also a composer skeleton. This example system is plugged into the
challenge framework as follows. In the bootstrap phase, the WSC Client Application
submits the URLs (A) of the OWL taxonomy, the service repository WSDL files, and
the WSLA data. The composition system then loads this data (B) with the SAX-based
Input Parser and initializes the internal Knowledge Base and the Service Registry (C).
After this bootstrapping, the WSC client submits the URL of the WSDL query docu-
ment (D). Starting from this point, the parser loads the information to the Composer

7 Semantic Web Service Composition: The Web Service Challenge Perspective 175

(E) which computes a solution (F). The solutions are passed to the SAX-based Output
Writer (G). The client UI offers an internal Web Service as a callback interface (which
is necessary to avoid communication timeouts). The composition system calls this
callback Web Service in order to stream the composition result to the Client Appli-
cation (H). The evaluation of the result is done with the verifier/checker software.

7.6 WSC-Based Survey of Semantic Web Service Composition
Techniques

As can be seen in Table 7.1, a wide variety of approaches to semantic web service
composition have been applied and tested within the framework of the WSC. They
can roughly be divided into the following categories:

7.6.1 Uninformed Search

Uninformed search algorithms [190] exhaustively search the space possible solu-
tions until a valid composition is found. Here, depth-first search [33, 110, 209],
breadth-first search [207, 208, 219], depth-limited search [98, 140], iterative deep-
ening depth-first search [48, 49, 217], and bi-directional searches [185] are most
commonly applied in Web Service Composition. In general, these methods imple-
ment the composition task as a graph search problem. Usually, the search is conducted
backwards. Initially, the set N of needed parameters, i.e., the parameters required as
output of the composition, is defined as:

N = R.TN (7.4)

Then, the set of promising services, services which can produce at least one of the
needed parameters as output, is computed as:

P = {w : (w ∈ R.W) ∧ ∃ (to ∈ N) ∧ (
to ∈ subs�(w.TO)

)} (7.5)

According to the search pattern applied, e.g., depth-first search, breadth-first search,
interative deepening depth-first search etc., service w is expanded, i.e., added to the
composition and the set N of needed parameters is modified as follows:

N ′ = N ∩ subs�(w.TO) ∪ {ti : (ti ∈ w.ti) ∧
(
ti �∈ subs∗(R.TG)

)} (7.6)

At the end of this process, all parameters which can be covered by the outputs of
the service no longer require additional processes, i.e., are not members of the new
version N ′ of the set N . At this point, the input parameters of the service which are

176 T. Weise et al.

not provided by R.TG now become members of N ′ and are processed in the same
manner as the wanted output parameters.

Breadth-first search methods first expends all services of the same depth before
transitioning to another level. Depth-first search and its derived methods always
expand the most recently discovered (unexpanded) service. This process is repeated
iteratively until all services in the composition can be executed, i.e., until N =
∅. Uninformed algorithms therefore do not make use of any priority or heuristic
information. For larger composition or problems with many alternative services that
can produce required concepts, the runtime of these methods quickly increases and
they become infeasible [202, 203].

7.6.2 Informed/Heuristic Search

Heuristic search methods, such as greedy search [20, 23, 48, 103, 184, 220] and
A∗ [162, 166] are usually applied in a way similar to the uninformed search methods.
These approaches initially find services w able to produce the wanted, user-specified
composition output. They then traverse backwards in order to find services w′ that
can produce the inputs needed for w. However, while uninformed searches process
the services in the order in which they are discovered, informed methods incor-
porate heuristics into their decision about which service should be expanded next.
A common heuristic is to give priority to services that contain the largest number of
parameters that may lead to the deletion of the most needed concepts or which lead
to the fewest new needed concepts. The utilization of such heuristics can accelerate
the search process by several orders of magnitude [202, 203].

7.6.3 Techniques from AI and Planning

A more high-level point of view is to consider Web Service Composition as a plan-
ning problem [158, 163, 164, 182, 208]. Partial order planning [77] and metric
planning [23] are two leading techniques for planning. The partial order planning
approach initially creates set of actions (which represent subsets of the overall com-
position solution) and a partial order of these actions. A metric planning approach
creates a set of states defined by a set of propositional variables (a triple of proposi-
tions create an action). The assignment of numeric values for these variables allows an
overall plan to be valuated based on a set of actions. AI planning methods require the
translation of the composition problem into a representation which can be processed
by a planning software. The advantage of this approach is that planners incorporate
efficient and optimized algorithms. The drawback is that they cannot utilize knowl-
edge like the web service composition-specific heuristics mentioned before. The
leading approaches to web service composition use heuristic approaches to prune
the search space prior to executing the planning algorithms. Strategies for increased

7 Semantic Web Service Composition: The Web Service Challenge Perspective 177

performance would include removing web services with duplicative outputs or limit
the expansion of planning graphs immediately after a proposition layer contains the
necessary goal propositions.

7.6.4 Metaheuristic and Centralized Approaches

Metaheuristics [83, 152, 200] are randomized optimization methods which try to
find solutions which are optimal according to one or multiple objective functions.
They are similar to heuristic search algorithms in that they employ functions which
evaluate and rate candidate solutions according to their utility. Different from the
algorithms discussed in Sect. 7.6.2, however, they do not construct their solutions in
a strictly iterative way.

A good example in the domain of Web Service Composition is the use of evolu-
tionary algorithms (EAs) by [49, 202–204]. EAs are population-based metaheuris-
tics which, in a cycle, refine a set (the population) of candidate solutions. [203] first
create a set of random initial compositions. Each composition is evaluated with a
heuristic. In a randomized selection step, the best candidate solutions are chosen for
further extension with a highest probability. Each composition then is either ran-
domly mutated (by, e.g., expanding one of their services in order to satisfy its input
parameters) or combined with another composition. After this reproduction step, the
next cycle (generation) of the EA begins.

Such metaheuristics tend to be one order of magnitude slower than greedy search in
the semantic composition problem [202, 203]. For QoS-based composition, however,
they may be the most attractive approaches.

Dynamic Programming [99, 138, 158] is an approach which divides a problem
into smaller sub-problems, solves these problems, and combines their solutions to
a final result [36, 131]. These approaches are quite similar to divide and conquer
strategies. Dynamic Programming can be used as programming paradigm to reduce
the runtime of uninformed search significantly and reach the effectiveness of heuristic
search methods [158].

Similar to metaheuristics, Integer (Linear) Programming (ILP) [72, 99, 212] can
be used to treat the composition problem as a constrained optimization task with
linear objective function(s). Here, a composition is represented as a vector of integer
values. There exists a variety of highly-efficient algorithms for ILP [34].

7.6.5 Multi-Agent and Decentralized Approaches

So far, all approaches discussed assume the existence of one central repository and
one central computer executing the algorithm. Multi-agent systems, in contrast, are
decentralized by nature. Agents can synthesize compositions via cooperation in par-
allel [59, 60, 86]. Decentralized systems can more effectively adapt to (dynamic)

178 T. Weise et al.

distributed environments where services enter and exit the system unpredictably,
can exploit the geographic distributions of computing resources, and are likely to
scale better. Available and high capacity systems can be used to execute search
algorithms, on-demand. However, decentralized approaches do not outperform cen-
tralized heuristic search approaches if the system is centralized and a single computer
performs the composition.

7.7 Discussion

In this article, we presented a review on the Web Service Challenge, a competition
that has had significant impact in the evolution of Service Oriented Architectures.
We compared this challenge with related competitions and provided a survey of the
works submitted to all competitions, in tabular and textual form.

The Web Service Challenge created a research community for automated semantic
service composition and implementations of fast performing composition engines.
After 2007, the focus of the challenge gradually changed from a solely scientific
service indexing competition to a comprehensive and practice-oriented solution for
Service-oriented Architectures.

As of 2009, it fosters the implementation of composers in a way that could directly
be reused in an actual SOA. It now solely adopts standardized data formats such as
WS-BPEL, WSDL, OWL, and WSLA. Its tasks are already highly practical, requiring
the compositions to fulfill both functional and non-functional constraints.

References

1. Second IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’96), IEEE (1996)

2. Eleventh International Conference on World Wide (WWW’02), ACM (2002)
3. IEEE International Conference on E-Technology, E-Commerce, and E-Service (IEEE’05),

IEEE (2005)
4. IEEE International Conference on Web Services: Bridge the Gap between Business Services

and IT Services (ICWS’05), IEEE (2005)
5. Web Service Challenge at ICEBE’05 (2005)
6. First Workshop of the Semantic Web Service Challenge: Challenge on Automating Web Ser-

vices Mediation, Choreography and Discovery, 2006. The Digital Enterprise Research Insti-
tute (DERI), Stanford (2006). http://sws-challenge.org/wiki/index.php/Workshop_Stanford

7. IEEE International Conference on Web Services (ICWS’06), IEEE (2006)
8. Second Workshop of the Semantic Web Service Challenge: Challenge on Automating Web

Services Mediation, Choreography and Discovery, 2006. DERI, Standford (2006). http://sws-
challenge.org/wiki/index.php/Workshop_Budva

9. Third Workshop of the Semantic Web Service Challenge: Challenge on Automating
Web Services Mediation, Choreography and Discovery, 2006. DERI, Standford (2006).
http://sws-challenge.org/wiki/index.php/Workshop_Athens

http://sws-challenge.org/wiki/index.php/Workshop_Stanford
http://sws-challenge.org/wiki/index.php/Workshop_Budva
http://sws-challenge.org/wiki/index.php/Workshop_Budva
http://sws-challenge.org/wiki/index.php/Workshop_Athens

7 Semantic Web Service Composition: The Web Service Challenge Perspective 179

10. Kweb, SWS Challenge Workshop, 2007. Semantic Technology Institute Innsbruck, Innsbruck
(2007). http://sws-challenge.org/wiki/index.php/Workshop_Innsbruck

11. IEEE Joint Conference on E-Commerce Technology (9th CEC) and Enterprise Computing,
E-Commerce and E-Services (4th EEE) (CEC/EEE’07), IEEE (2007)

12. Second IEEE International Services Computing Contest (SCContest’07), IEEE (2007)
13. IEEE Joint Conference on E-Commerce Technology (10th CEC) and Enterprise Computing,

E-Commerce and E-Services (5th EEE) (CEC/EEE’08), IEEE (2008)
14. Seventh Semantic Web Services Challenge Workshop (SWSC’08). Springer, Berlin (2008).

http://sws-challenge.org/wiki/index.php/Workshop_Karlsruhe
15. Third IEEE International Services Computing Contest, IEEE (2008)
16. SERVICES Cup’09, IEEE (2009)
17. IEEE International Conference on Service-Oriented Computing and Applications (SOCA’10),

IEEE (2010)
18. SERVICES Cup’10 (2010)
19. AbuJarour, M., Craculeac, M., Menge, F., Vogel, T., Schwarz, J.: Posr: a comprehensive

system for aggregating and using web services. In [16], pp. 139–146 (2009)
20. Aiello, M., Platzer, C., Rosenberg, F., Tran, H., Vasko, M., Dustdar, S.: Web service indexing

for efficient retrieval and composition. In [205], pp. 424–426 (2006)
21. Aiello, M., van Benthem, N., el Khoury, E.: Visualizing compositions of services from large

repositories. In [13], pp. 359–362 (2008)
22. Aiello, M, el Khoury, E., Lazovik, A., Ratelband, P.: Optimal QoS-aware web service com-

position. In [95], pp 491–494 (2009)
23. Akkiraju, R., Srivastava, B., Ivan, A., Goodwin, R., Syeda-Mahmood, T.: Semantic matching

to achieve web service discovery and composition. In [205], pp. 445–447 (2006)
24. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: BPEL4WS, business process execution
language for web services version 1.1. (2003). http://www.ibm.com/developerworks/library/
specification/ws-bpel/

25. Ariga, R.K.R., Akula, K., Gujjala, S.R., Karim, M., Ramesh, S., Zhang, J.: iNIU a services
portal for NIU students. In [15], pp. 144–151 (2008)

26. Asuncion, C.H., Quartel, D.A.C., Pokraev, S.: Applying goal-oriented and model-driven
approaches to solve the payment problem scenario. In [174] (2009)

27. Aversano, L., di Penta, M., Taneja, K.: A genetic programming approach to support the design
of service compositions. Int. J. Comput. Syst. Sci. Eng. (CSSE) 21(4), 247–254 (2006)

28. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

29. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation.
Oxford University Press, Oxford (1997)

30. Bansal, A., Bansal, S., Blake, M.B., Bleul, S., Weise, T.: Overview of the web services
challenge (WSC): discovery and composition of semantic web services. In: Blake, M.B.,
Cabral, L., König-Ries, B., Küster, U., Martin, D. (eds.) Semantic Web Services: Advancement
Through Evaluation. Springer, Heidelberg (2012)

31. Bansal, A., Blake, M.B., Kona, S., Bleul, S., Weise, T., Jäger, M.C.: WSC-08: Continuing the
web service challenge. In [13], pp. 351–354 (2008)

32. Barnickel, N., Weinand, R., Fluegge, M.: Semantic system integration: incorporating rule
based semantic bridges into BPEL processes. In [82] (2008)

33. Bartalos, P., Bieliková, M.: Semantic web service composition framework based on parallel
processing. In [95], pp. 495–498 (2009)

34. Beasley, J.E. (ed.): Advances in Linear and Integer Programming. Oxford University Press,
Oxford (1996)

35. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,
P.F., Stein, L.A.: OWL web ontology language reference. In: W3C recommendation, W3C
(2004). http://www.w3.org/TR/2004/REC-owl-ref-20040210/

http://sws-challenge.org/wiki/index.php/Workshop_Innsbruck
http://sws-challenge.org/wiki/index.php/Workshop_Karlsruhe
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

180 T. Weise et al.

36. Bellman, R.E.: Dynamic Programming Dover Books on Mathematics. Princeton University
Press, Princeton (1957)

37. Benatallah, B., Nezhad, H.M.: Interoperability in semantic web services. In [62], pp. 22–25
(2004)

38. Bharadwaj, R., Mukhopadhyay, S., Padh, N.: Service composition in a secure agent-based
architecture. In [3], pp. 787–790 (2005)

39. Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented Architec-
ture (SOA) Compass: Business Value, Planning, and Enterprise Roadmap. DeveloperWorks.
Pearson Education, Indianapolis (2005)

40. Biswas, D.: Compensation in the world of web services composition. In [62], pp. 69–80 (2004)
41. Blake, M.B., Tsui, K.C., Wombacher, A.: The EEE-05 challenge: a new web service discovery

and composition competition. In [3], pp. 780–783 (2005)
42. Blake, M.B., Cheung, W.K., Jäger, M.C., Wombacher, A.: WSC-06: The web service chal-

lenge. In [205], pp. 505–508 (2006)
43. Blake, M.B., Cheung, W.K., Jäger, M.C., Wombacher, A.: WSC-07: evolving the web service

challenge. In [11], pp. 505–508 (2007)
44. Blake, M.B., Petrie, C.J., Roman, D.: Workshop on service composition & SWS challenge

(SerComp & SWS challenge 2007). In [133], pp. xxi–xxii (2007)
45. Blake, M.B., Weise, T., Bleul, S.: WSC-2010: web services composition and evaluation. In

[17] (2010)
46. Bleul, S., Weise, T.: An ontology for quality-aware service discovery. In [222], vol. RC23821

(2005)
47. Bleul, S., Weise, T., Geihs, K.: An ontology for quality-aware service discovery. Int. J. Comput.

Syst. Sci. Eng. (CSSE) 21(4), 227–234 (2006)
48. Bleul, S., Weise, T., Geihs, K.: Large-scale service composition in semantic service discovery.

In [205], pp. 427–429 (2006)
49. Bleul, S., Weise, T., Geihs, K.: Making a fast semantic service composition system faster. In

[11], pp. 517–520 (2007)
50. Bleul, S., Weise, T., Geihs, K.: The web service challenge: a review on semantic web ser-

vice composition. In: Wagner, M., Hogrefe, D., Geihs, K., David, K. (eds.) Service-Oriented
Computing (SOC’2009), vol. 17. European Association of Software, Science and Technology
(2009)

51. Booth, D., Liu, C.K.: Web services description language (WSDL) version 2.0 part 0: primer.
In: W3C Recommendation, W3C (2007). http://www.w3.org/TR/2007/REC-wsdl20-primer-
20070626

52. Bourcier, J., Chazalet, A., Desertot, M., Escoffier, C., Marin, C.: A dynamic-SOA home
control gateway. In [66], pp. 463–470 (2006)

53. Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Tziviskou, C.:
Improvements and future perspectives on web engineering methods for automating web ser-
vices mediation, choreography and discovery. In [9] (2006)

54. Brambilla, M., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Fraternali, P., Tziviskou,
C., Web modeling-based approach to automating web services mediation, choreography and
discovery. In [6] (2006)

55. Brambilla, M., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Tziviskou, C.: Coping with
requirements changes: SWS-challenge phase II. In [8] (2006)

56. Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle, E., Facca, F.M., Turati, A.,
Tziviskou, C.: WebML and glue: an integrated discovery approach for the SWS challenge. In
[10] (2007)

57. Brambilla, M., Ceri, S., Facca, F.M., Tziviskou, C., Celino, I., Cerizza, D., Della Valle, E.,
Turati, A.: WebML and glue: an integrated discovery approach for the SWS challenge. In
[133], pp 148–151 (2007)

58. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible markup lan-
guage (XML) 1.0, 4th edn. In: W3C Recommendation, W3C (2007). http://www.w3.org/TR/
2006/REC-xml-20060816

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816

7 Semantic Web Service Composition: The Web Service Challenge Perspective 181

59. Buhler, P.A., Thomas, R.W.: Experiences building a standards-based service description repos-
itory. In [13], pp. 343–346 (2008)

60. Buhler, P.A., Greenwood, D., Weichhart, G.: A multiagent web service composition engine,
revisited. In [11], pp. 529–532 (2007)

61. Cardoso, J., Sheth, A.P.: Introduction to semantic web services and web process composition.
In [62], pp. 1–13 (2004)

62. Cardoso, J., Sheth, A.P. (eds.): Revised Selected Papers from the First International Workshop
on Semantic Web Services and Web Process Composition (SWSWPC’04). Springer, Berlin
(2004)

63. Cardoso, J., Miller, J.A., Su, J., Pollock, J.: Academic and industrial research: do their
approaches differ in adding semantics to web services? In [62] (2004)

64. Cardoso, J., Cordeiro, J., Filipe, J. (eds.): Nineth International Conference on Enterprise Infor-
mation Systems (ICEIS’07), vol. SAIC. Institute for Systems and Technologies of Information
Control and Communication (INSTICC) Press, Miami (2007)

65. Carenini, A., Cerizza, D., Comerio, M., Della Valle, E., De Paoli, F., Maurino, A., Palmonari,
M., Sassi, M., Turati, A.: Semantic web service discovery and selection: a test bed scenario.
In [82] (2008)

66. Chen, Z., Shoniregun, C.A., You, Y. (eds.): First IEEE international services computing contest
(SCContest’06), IEEE (2006). http://iscc.servicescomputing.org/2006/

67. Chodos, D., Stroulia, E.: Second life gift registry: bringing retail web applications into the
metaverse. In [15], pp. 199–206 (2008)

68. Chopra, A.K., Desai, N., Singh, M.P.: Business processes interoperation using OWL-P. In [6]
(2006)

69. Cimpian, E., Kotinurmi, P., Mocan, A., Moran, M., Vitvar, T., Zaremba, M.: Dynamic Roset-
taNet integration on the semantic web services. In [6] (2006)

70. Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solv-
ing Multi-Objective Problems. Springer, New York (2002)

71. Colasuonno, F., Coppi, S., Ragone, A., Scorcia, L.L.: jUDDI+: a semantic web services
registry enabling semantic discovery and composition. In [205], pp. 442–444 (2006)

72. Cui, L.Y., Kumara, S.R.T., Yoo, J.J., Cavdur, F.: Large-scale network decomposition and
mathematical programming based web service composition. In [95], pp. 511–514 (2009)

73. Dai, W., Moynihan, P., Gou, J., Zou, P., Yang, X., Chen, T., Wan, X.: Services oriented
knowledge-based supply chain application. In [12], pp. 660–667 (2007)

74. de Mello, E.R., Parastatidis, S., Reinecke, P., Smith, C., van Moorsel, A., Webber, J.: Secure
and provable service support for human-intensive real-estate processes. In [66], pp. 495–504
(2006)

75. Degeler, V., Georgievski, I., Lazovik, A., Aiello, M.: Concept mapping for faster QoS-aware
web service composition. In [17] (2010)

76. Ding, W., Cheng, J., Qi, K., Li, Y., Zhao, Z., Fang, J.: A domain-specific query language for
information services mash-up. In [15], pp. 113–119 (2008)

77. Dorn, J., Hrastnik, P., Rainer, A.: Web service discovery and composition with MOVE. In [3],
pp. 791–792 (2005)

78. Dorn, J., Rainer, A., Hrastnik, P.: Toward semantic composition of web services with MOVE.
In [205], pp. 437–438 (2006)

79. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall Inter-
national Inc Professional Technical References, Upper Saddle River (2006)

80. Fallside, D.C., Walmsley, P.: XML schema part 0: primer, 2nd edn. In: W3C Recommendation,
W3C (2004). http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

81. Fensel, D., Giunchiglia, F., McGuinness, D.L., Williams, M. (eds.): Eighth International Con-
ference on Knowledge Representation and Reasoning (KR’02). Morgan Kaufmann Publishers
(2002)

82. García-Castro, R., Gómez-Pérez, A., Petrie, C.J., Della Valle, E., Küster, U., Zaremba, M.,
Shafiq, O. (eds.): Sixth International Workshop on Evaluation of Ontology-Based Tools and
the Semantic Web Service Challenge (EON-SWSC’08), CEUR Workshop Proceedings, vol.

http://iscc.servicescomputing.org/2006/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

182 T. Weise et al.

359. RWTH Aachen, Aachen (2008). http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-359/

83. Glover, F., Kochenberger, G.A. (eds.): Handbook of Metaheuristics. Kluwer Academic,
Boston (2003)

84. Glover, F., Taillard, É.D., de Werra, D.: A user’s guide to tabu search. Ann. Oper. Res. 41(1),
3–28 (1993)

85. Gomadam, K., Lathem, J., Miller, J.A., Nagarajan, M., Pennington, C., Sheth, A.P., Verma,
K., Wu, Z.: Semantic web services challenge 2006-phase I. In [6] (2006)

86. Greenwood, D., Buhler, P.A., Reitbauer, A.: Web service discovery and composition using
the web service integration gateway. In [3], pp. 789–790 (2005)

87. Gschwind, T., Pautasso, C. (eds.): Second Workshop on Emerging Web Services Technology
(WEWST’07). Birkhäuser (2007)

88. Gu, Z., Xu, B., Li, J.: Inheritance-aware document-driven service composition. In [11], pp.
513–516 (2007)

89. Habich, D., Richly, S., Rümpel, A., Bücke, W., Preißler, S.: Open service process platform
2.0. In [15], pp. 152–159 (2008)

90. Hallal, H.H., Dury, A., Petrenko, A.: Web-FIM: automated framework for the inference of
business software models. In [16], pp. 130–138 (2009)

91. Harzallah, Y., Michel, V., Liu, Q., Wainer, G.: Distributed simulation and web map mash-up
for forest fire spread. In [15], pp. 176–183 (2008)

92. Haselwanter, T., Kotinurmi, P., Moran, M., Vitvar, T., Zaremba, M.: Dynamic B2B integration
on the semantic web services: SWS challenge phase 2. In [8] (2006)

93. Hertz, A., Taillard, É.D., de Werra, D.: A tutorial on tabu search. In [176], pp. 13–24 (1995)
94. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, G.: OWL 2 web ontol-

ogy language primer. In: W3C Recommendation, W3C (2009). http://www.w3.org/TR/2009/
REC-owl2-primer-20091027/

95. Hofreiter, B. (ed.): Eleventh IEEE Conference on Commerce and Enterprise Computing
(CEC’09), IEEE (2009)

96. Hoyer, V., Gilles, F., Janner, T., Stanoevska-Slabeva, K.: SAP research roof top market place:
putting a face on service-oriented architectures. In [16], pp. 107–114 (2009)

97. Hrastnik, P., Rainer, A.: Web service discovery and composition for virtual enterprises. Int.
J. Web Serv. Res. (IJWSR) 4(1), 23–29 (2007)

98. Huang, S., Wang, X., Zhou, A.: Efficient web service composition based on syntactical match-
ing. In [3], pp. 782–783 (2005)

99. Huang, Z., Jiang, W., Hu, S., Liu, Z.: Effective pruning algorithm for QoS-aware service
composition. In [95], pp. 519–522 (2009)

100. Jacob, M., Kuscher, A., Plauth, M., Thiele, C.: Automated data augmentation services using
text mining, data cleansing and web crawling techniques. In [15], pp. 136–143 (2008)

101. Jeyaverasingam, S., Yan, Y.: A mash up home library management system. In [15], pp. 160–
167 (2008)

102. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera,
F., Ford, M., Goland, Y., Guízar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Process
Execution Language Version 2.0: OASIS Standard, OASIS (2007). http://docs.oasis-open.
org/wsbpel/2.0/wsbpel-v2.0.pdf

103. Juszcyk, L., Michlmayer, A., Platzer, C.: Large scale web service discovery and composition
using high performance in-memory indexing. In [11], pp. 509–512 (2007)

104. Kart, F., Shen, Z., Gerede, C.E.: The MIDAS system: a service oriented architecture for
automated supply chain management. In [66], pp. 487–494 (2006)

105. Kart, F., Miao, G., Moser, L.E., Melliar-Smith, P.M.: A distributed e-healthcare system based
on the service oriented architecture. In [12], pp. 652–659 (2007)

106. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y.: Web services choreography
description language version 1.0: W3C candidate recommendation. In: W3C Recommenda-
tion, W3C (2005). http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-359/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-359/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

7 Semantic Web Service Composition: The Web Service Challenge Perspective 183

107. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service level
agreements for web services. J. Netw. Syst. Manag. 11(1), 57–81 (2003)

108. Kirkpatrick, S., Gelatt Jr, C.D.: Optimization by simulated annealing. Sci. Mag. 220(4598),
671–680 (1983)

109. Ko, R.K.L., Jusuf, A., Lee, S.G.S.: Genesis: dynamic collaborative business process formu-
lation based on business goals and criteria. In [16], pp. 123–129 (2009)

110. Kona, S., Bansal, A., Gupta, G., Hite, T.D.: Web service discovery and composition using
USDL. In [205], pp. 430–432 (2006)

111. Kona, S., Bansal, A., Gupta, G., Hite, T.D.: Semantics-based web service composition engine.
In [11], pp. 521–524 (2007)

112. Kona, S., Bansal, A., Blake, M.B., Bleul, S., Weise, T.: WSC-2009: a quality of service-
oriented web services challenge. In [95], pp. 487–490 (2009)

113. Kubczak, C., Margaria, T., Steffen, B.: Semantic web services challenge 2006: an approach
to mediation and discovery with jABC and miAamic. In [9] (2006)

114. Kubczak, C., Margaria, T., Steffen, B.: Semantic web services challenge 2006: the jABC
approach to mediation and choreography. In [8] (2006)

115. Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: The jABC approach to mediation and
choreography. In [6] (2006)

116. Kubczak, C., Margaria, T., Steffen, B., Naujokat, S.: Service-oriented mediation with
jETI/jABC: verification and export. In [133], pp. 144–147 (2007)

117. Kubczak, C., Margaria, T., Winkler, C., Steffen, B.: Semantic web services challenge 2007:
an approach to discovery with miAamics and jABC. In [10] (2007)

118. Kubczak, C., Winkler, C., Margaria, T., Steffen, B.: an approach to discovery with miAamics
and jABC. In [133], pp. 157–160 (2007)

119. Kubczak, C., Margaria, T., Kaiser, M., Lemcke, J., Knuth, B.: Abductive synthesis of the
mediator scenario with jABC and GEM. In [82] (2008)

120. Küster, U., König-Ries, B.: Discovery and mediation using the DIANE service description.
In [9] (2006)

121. Küster, U., König-Ries, B.: Semantic mediation between business partners: a SWS-challenge
solution using DIANE service descriptions. In [133], pp. 139–143 (2007)

122. Küster, U., König-Ries, B.: Semantic service discovery with DIANE service descriptions. In
[133], pp. 152–156 (2007)

123. Küster, U., König-Ries, B.: Service discovery using DIANE service descriptions: a solution
to the SWS-challenge discovery scenarios. In [10] (2007)

124. Küster, U., Klein, C., König-Ries, B.: Discovery and mediation using the DIANE service
description. In [6] (2006)

125. Küster, U., König-Ries, B., Klein, M.: Discovery and mediation using DIANE service descrip-
tions. In [8] (2006)

126. Küster, U., König-Ries, B., Klein, M., Stern, M.: DIANE: a matchmaking-centered frame-
work for automated service discovery, composition, binding and invocation. Int. J. Electron.
Commer. (IJEC) 12(2), 41–68 (2007)

127. Küster, U., Lausen, H., König-Ries, B.: Evaluation of semantic service discovery: a survey
and directions for future research. In [87], pp. 41–58 (2007)

128. Küster, U., Turati, A., Zaremba, M., König-Ries, B., Cerizza, D., Della Valle, E., Brambilla,
M., Ceri, S., Facca, F.M., Tziviskou, C.: Service discovery with SWE-ET and DIANE: a
comparative evaluation by means of solutions to a common scenario. In [64], pp. 430–437
(2007)

129. Lawler, J.P., Howell-Barber, H.: Service-Oriented Architecture: SOA Strategy, Methodology,
and Technology. Auerbach Publications, New York (2007)

130. Lemcke, J., Kaiser, M., Kubczak, C., Margaria, T., Knuth, B.: Advances in Solving the Medi-
ator Scenario with jABC and jABC/GEM. In [14, 171], Stanford Logic Group, Computer
Science Department, Stanford University, pp. 89–102 (2008)

131. Lew, A., Mauch, H.: Dynamic Programming: A Computational Tool. Springer, Berlin (2006)

184 T. Weise et al.

132. Li, W., Svärd, P.: REST-based SOA application in the cloud: a text correction service case
study. In [18], pp. 84–90 (2010)

133. Li, Y., Raghavan, V.V. (eds.): 2007 IEEE/WIC/ACM International Conferences on Web Intel-
ligence and Intelligent Agent Technology Workshops (WI/IAT Workshops’07), IEEE (2007)

134. Liang, J., Zhang, Y., Lu, J., Sathulla, S., Chen, D., Wang, S.: A rental advising system based
on service oriented architecture. In [15], pp. 184–190 (2008)

135. Lorenzoli, D., Mussino, S., Pezzé, M., Sichel, A., Tosi, D., Schilling, D.: A SOA based
self-adaptive personal mobility manager. In [66], pp. 479–486 (2006)

136. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agreement
(WSLA) Language Specification. IBM, New York (2003). http://www.research.ibm.com/
wsla/WSLASpecV1-20030128.pdf

137. Luo, S., Xu, B., Yan, Y.: An accumulated-QoS-first search approach for semantic web service
composition. In [17] (2010)

138. Ma, H., Jiang, W., Hu, S., Huang, Z., Liu, Z.: Two-phase graph search algorithm for QoS-aware
automatic service composition. In [17] (2010)

139. Ma, S., Li, M., Du, W.: Service composition for GIS. In [15], pp. 168–175 (2008)
140. Makhzan, M.A., Lin, K.: Solution to a complete web service discovery and composition. In

[205], pp. 455–457 (2006)
141. Mallya, A.U., Singh, M.P.: A semantic approach for designing e-business protocols. In [62],

pp. 111–123 (2004)
142. Margaria, T., Winkler, C., Kubczak, C., Steffen, B., Brambilla, M., Ceri, S., Cerizza, D.,

Della Valle, E., Facca, F.M., Tziviskou, C.: SWS mediator with WEBML/WEBRATIO and
JABC/JETI: a comparison. In [64], pp. 422–429 (2007)

143. Margaria, T., Bakera, M., Raffelt, H., Steffen, B.: Synthesizing the mediator with jABC/ABC.
In [82] (2008)

144. Martin, D., Paolucci, M., McIlraith, S.A., Burstein, M., McDermott, D., McGuinness, D.L.,
Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.: Bringing semantics
to web services: the OWL-S approach. In [62], pp. 26–42 (2004)

145. Maximilien, E.M.: Human-based semantic web services: phase 1. In [6] (2006)
146. Maximilien, E.M.: A partial solution to the semantic web services challenge problem using

swashup: the ruby on rails services mashup approach. In [64], pp. 438–446 (2007)
147. McIlraith, S.A., Son, T.C.: Adapting Golog for composition of semantic web services. In [81],

pp. 482–496 (2002)
148. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intell. Syst. Mag. 16(2),

46–53 (2001)
149. McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.): Third International Semantic Web

Conference (ISWC’04). Springer (2004)
150. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the semantic

web. VLDB J.: Int. J. Very Large Data Bases 12(4), 333–351 (2003)
151. Menzel, M., Warschofsky, R., Thomas, I., Willems, C., Meinel, C.: The service security lab:

a model-driven platform to compose and explore service security in the cloud. In [18], pp.
115–122 (2010)

152. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2004)
153. Mitra, N., Lafon, Y.: SOAP version 1.2 part 0: primer, 2nd edn. In: W3C Recommendation,

W3C (2007). http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
154. Moran, M., Vitvar, T., Zaremba, M.: Towards constraint-based composition with incomplete

service descriptions. In [133], pp. 161–165 (2007)
155. Moran, M., Zaremba, M., Vitvar, T.: Service discovery and composition with WSMX for

SWS challenge workshop IV. In [10] (2007)
156. Morse, J.N. (ed.) Fourth International Conference on Multiple Criteria Decision Making:

Organizations, Multiple Agents With Multiple Criteria (MCDM’80). Springer (1980)
157. Nam, W., Kil, H., Lee, D.: Type-aware web service composition using Boolean satisfiability

solver. In [13], pp. 331–334 (2008)

http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

7 Semantic Web Service Composition: The Web Service Challenge Perspective 185

158. Nam, W., Kil, H., Lee, J.: QoS-driven web service composition using learning-based depth
first search. In [95], pp. 507–510 (2009)

159. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web
services. In [2], pp. 77–88 (2002)

160. Navabpour, S., Ghoraie, L.S., Malayeri, A.A., Chen, J., Lu, J.: An intelligent traveling service
based on SOA. In [15], pp. 191–198 (2008)

161. Nolte, A., Schrader, R.: A note on the finite time behaviour of simulated annealing. Math.
Oper. Res. (MOR) 25(3), 476–484 (2000)

162. Oh, S., On, B., Larson, E.J., Lee, D.: BF*: web services discovery and composition as graph
search problem. In [3], pp. 784–786 (2005)

163. Oh, S., Kil, H., Lee, D., Kumara, S.R.T.: Algorithms for web services discovery and compo-
sition based on syntactic and semantic service descriptions. In [205], pp. 433–435 (2006)

164. Oh, S., Yoo, J.J., Kil, H., Lee, D., Kumara, S.R.T.: Semantic web-service discovery and
composition using flexible parameter matching. In [11], pp. 533–536 (2007)

165. Oh, S., Lee, D., Kumara, S.R.T.: Effective web service composition in diverse and large-scale
service networks. IEEE Trans. Serv. Comput. (TSC) 1(1), 15–16 (2008)

166. Oh, S., Lee, J., Cheong, S., Lim, S., Kim, M., Lee, S., Park, J., Noh, S., Sohn, M.M.: WSPR*:
web-service planner augmented with A* algorithm. In [95], pp. 515–518 (2009)

167. Oldham, N., Thomas, C., Sheth, A.P., Verma, K.: METEOR-S web service annotation frame-
work with machine learning classification. In [62], pp. 137–146 (2004)

168. Olmedilla, D., Lara, R., Polleres, A., Lausen, H.: Trust negotiation for semantic web services.
In [62], pp. 81–95 (2004)

169. Palmonari, M., Comerio, M., Carenini, A., Cerizza, D., Panziera, L.: A solution to the logistics
management scenario with the GLUE2 web service discovery engine. In [174] (2009)

170. Payne, T., Tamma, V. (eds.): AAAI fall symposium on agents and the semantic web, vol.
FS-05-01. AAAI Press (2005)

171. Petrie, C.J. (ed.): Semantic web services challenge workshop, LG-2009-01, Stanford Logic
Group, Computer Science Department, Stanford University (2009). http://logic.stanford.edu/
reports/LG-2009-01.pdf

172. Petrie, C.J., Lausen, H., Zaremba, M.: SWS challenge: first year overview. In [64], pp. 407–
412 (2007). http://sws-challenge.org/wiki/index.php/Special_Session_at_ICEIS2007

173. Petrie, C.J., Margaria, T., Küster, U., Lausen, H., Zaremba, M.: SWS challenge: status, per-
spectives, lessons learned so far. In [64], pp. 447–452 (2007)

174. Petrie, C.J., Küster, U., Cabral, L., Facca, F.M. (eds.): Eighth Semantic Web Services Chal-
lenge Workshop (SWSC’09). DERI, Stanford (2009). http://sws-challenge.org/wiki/index.
php/Workshop_ECOWS_2009

175. Petrie, C.J., Margaria, T., Lausen, H., Zaremba, M. (eds.): Semantic Web Services Challenge:
Results from the First Year. Semantic Web and Beyond: Computing for Human Experience.
Springer (2009)

176. Pezzella, F. (ed.): Giornate di Lavoro (Entreprise Systems: Management of Technological
and Organizational Changes, “Gestione del cambiamento tecnologico ed organizzativo nei
sistemi d’impresa”) (AIRO’95). Associazione Italiana di Ricerca Operativa (1995)

177. Pistore, M., Traverso, P.: Automated synthesis of composite BPEL4WS web services. In [4],
pp. 293–301 (2005)

178. Pokraev, S., Quartel, D.A.C., Wombacher, A.: SWS challenge. In [6] (2006)
179. Ponnekanti, S.R., Fox, A.: SWORD: a developer toolkit for web service composition. In [2]

(2002)
180. Preißler, S., Habich, D., Lehnert, W.: Standing processes in service-oriented environments.

In [16], pp. 115–122 (2009)
181. Quartel, D.A.C., Pokraev, S., Dirgahayu, T., Mantovaneli Pessoa, R., van Sinderen, M.: Model-

driven service integration using the COSMO framework. In [14, 171], Computer Science
Department, Stanford University, pp. 77–88 (2008)

182. Rainer, A., Dorn, J.: MOVE: a generic service composition framework for service oriented
architectures. In [95], pp. 503–506 (2009)

http://logic.stanford.edu/reports/LG-2009-01.pdf
http://logic.stanford.edu/reports/LG-2009-01.pdf
http://sws-challenge.org/wiki/index.php/Special_Session_at_ICEIS2007
http://sws-challenge.org/wiki/index.php/Workshop_ECOWS_2009
http://sws-challenge.org/wiki/index.php/Workshop_ECOWS_2009

186 T. Weise et al.

183. Rajasekaran, P., Miller, J.A., Verma, K., Sheth, A.P.: Enhancing web services description and
discovery to facilitate composition. In [62], pp. 55–68 (2004)

184. Raman, K., Zhang, Y., Panahi, M., Lin, K.: Customizable business process composition with
query optimization. In [13], pp. 363–366 (2008)

185. Ramasamy, V.: Syntactical & semantical web services discovery and composition. In [205],
pp. 439–441 (2006)

186. Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso,
J., Sheth, A.P. (eds.) Revised Selected Papers from the First International Workshop on Seman-
tic Web Services and Web Process Composition (SWSWPC’04), pp. 43–54. Springer (2004)

187. Rao, J., Dimitrov, D., Hofmann, P., Sadeh, N.: A mixed initiative approach to semantic web
service discovery and composition: SAP’s guided procedures framework. In [7], pp. 401–410
(2006)

188. Richly, S., Püschel, G., Habich, D., Götz, S.: MapReduce for scalable neural nets training. In
[18], pp. 99–106 (2010)

189. Rosenberg, F., Nagl, C., Dustdar, S.: Applying distributed business rules: the VIDRE approach.
In [66], pp. 471–478 (2006)

190. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (AIMA). Prentice Hall,
Upper Saddle River (2002)

191. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition
using SHOP2. Web Semant.: Sci. Serv. Agents World Wide Web 1(4), 377–396 (2004)

192. Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic web services. In
[170], pp. 85–92 (2005)

193. Srinivasan, N., Paolucci, M., Sycara, K.: An efficient algorithm for OWL-S based semantic
search in UDDI. In [62], pp. 96–110 (2004)

194. Starlinger, J., Leitner, F., Valencia, A., Leser, U.: SOA-based integration of text mining ser-
vices. In [16], pp. 99–106 (2009)

195. Stuckenschmidt, H.: Debugging OWL ontologies: a reality check. In [82] (2008)
196. Traverso, P., Pistore, M.: Automated composition of semantic web services into executable

processes. In [149], pp. 380–394 (2004)
197. Vashishtha, H., Smit, M., Stroulia, E.: Moving text analysis tools to the cloud. In [18], pp.

107–114 (2010)
198. Wang, W., Zeng, G., Zhang, D., Huang, Y., Qiu, Y., Wang, X.: An intelligent ontology and

Bayesian network based semantic mashup for tourism. In [15], pp. 128–135 (2008)
199. Wei, Y., Yue, P., Dadi, U., Min, M., Hu, C., Di, L.: Active acquisition of geospatial data

products in a collaborative grid environment. In [66], pp. 455–462 (2006)
200. Weise, T.: Global Optimization Algorithms: Theory and Application. self-published (2009).

http://www.it-weise.de/
201. Weise, T.: Web Service Challenge 2010 (2010). http://www.it-weise.de/documents/files/

W2010WSC_data.rar
202. Weise, T., Bleul, S., Geihs, K.: Web Service Composition Systems for the Web Service

Challenge: A Detailed Review. Technical Report 2007, 7, Fachbereich 16: Elektrotech-
nik/Informatik, University of Kassel (2007)

203. Weise, T., Bleul, S., Comes, D.E., Geihs, K.: Different approaches to semantic web service
composition. In: Mellouk, A., Bi, J., Ortiz, G., Chiu, D.K.W., Popescu, M. (eds.) Third Inter-
national Conference on Internet and Web Applications and Services (ICIW’08), IEEE, pp.
90–96 (2008)

204. Weise, T., Bleul, S., Kirchhoff, M., Geihs, K.: Semantic web service composition for service-
oriented architectures. In [13], pp. 355–358 (2008)

205. Wombacher, A., Huemer, C., Stolze, M. (eds.): IEEE Joint Conference on E-Commerce Tech-
nology and Enterprise Computing, E-Commerce and E-Services (CEC/EEE’06), IEEE (2006)

206. Wu, Z., Gomadam, K., Ranabahu, A., Sheth, A.P., Miller, J.A.: Automatic composition of
semantic web services using process mediation. In [64], pp. 453–462 (2007)

207. Xu, B., Li, T., Gu, Z., Wu, G.: SWSDS: quick web service discovery and composition in
SEWSIP. In [205], pp. 449–451 (2006)

http://www.it-weise.de/
http://www.it-weise.de/documents/files/W2010WSC_data.rar
http://www.it-weise.de/documents/files/W2010WSC_data.rar

7 Semantic Web Service Composition: The Web Service Challenge Perspective 187

208. Yan, Y., Zheng, X.: A planning graph based algorithm for semantic web service composition.
In [13], pp. 339–342 (2008)

209. Yan, Y., Xu, B., Gu, Z.: Automatic service composition using AND/OR graph. In [13], pp.
335–338 (2008)

210. Yan, Y., Xu, B., Gu, Z., Luo, S.: A QoS-driven approach for semantic service composition.
In [95], pp. 523–526 (2009)

211. Yao, J., Chen, S., Wang, C., Levy, D., Zic, J.: Accountability as a service for the cloud: from
concept to implementation with BPEL. In [18], pp. 91–98 (2010)

212. Yoo, J.J., Kumara, S.R.T., Lee, D.: A web service composition framework using integer
programming with non-functional objectives and constraints. In [13], pp. 347–350 (2008)

213. Yu, H., Mine, T., Amamiya, M.: Towards automatic discovery of web portals semantic descrip-
tion of web portal capabilities. In [62], pp. 124–136 (2004)

214. Zaremba, M., Vitvar, T., Moran, M., Haselwanter, T., Sirbu, A.: WSMX discovery for SWS
challenge. In [9] (2006)

215. Zaremba, M., Vitvar, T., Moran, M., Brambilla, M., Ceri, S., Cerizza, D., Della Valle,
E., Facca, F.M., Tziviskou, C.: Towards semantic interoperabilty: in-depth comparison of
two approaches to solving semantic web service challenge mediation tasks. In [64], pp. 413–
421 (2007)

216. Zaremba, M., Herold, M., Zaharia, R., Vitvar, T.: Data and process mediation support for B2B
integration. In [82] (2008)

217. Zhang, J., Nie, W., Panahi, M., Chang, Y., Lin, K.: Business process composition with QoS
optimization. In [95], pp. 499–502 (2009)

218. Zhang, L, van der Aalst, W., Hung, P.C.K. (eds.): IEEE International Conference on Services
Computing (SCC’07), IEEE (2007)

219. Zhang, Y., Yu, T., Raman, K., Lin, K.: Strategies for efficient syntactical and semantic web
services discovery and composition. In [205], pp. 452–454 (2006)

220. Zhang, Y., Raman, K., Panahi, M., Lin, K.: Heuristic-based service composition for business
processes with branching and merging. In [11], pp. 525–528 (2007)

221. Zhu, P., Zhan, D., Zhu, C., Li, D., Song, T., Huang, B.: A rich internet application based on
BPEL services composition for port logistics. In [15], pp. 120–127 (2008)

222. Zirpins, C., Ortiz, G., Lamersdorf, W., Emmerich, W.: Engineering Service Compositions:
First International, Workshop (WESC’05) (2005)

Chapter 8
Automated Service Composition Based
on Behaviors: The Roman Model

Giuseppe De Giacomo, Massimo Mecella and Fabio Patrizi

Abstract During the last years, many approaches have been proposed in order to
address the issue of automated service composition. In this chapter, we discuss the
so-called “Roman model”, in which services are abstracted as transition systems and
the objective is to obtain a composite service that preserves a desired interaction,
expressed as a (virtual) target service. We will also outline its deployment in the
challenging applications of smart houses, i.e., buildings pervasively equipped with
sensors and actuators making their functionalities available according to the service-
oriented paradigm.

8.1 Introduction

Services are software artifacts, possibly distributed and built on top of different
technologies, that export a description of themselves, are accessible to external clients
and communicate through a commonly known, standard interface which enables
interoperability. More in general, Service Oriented Computing (SOC) is a comput-
ing paradigm whose basic elements are services, that can be used as building blocks
to devise other services. A classical example of such a paradigm is provided by
Web services, i.e., applications published over the Internet and self-described, usu-
ally built by different companies and relying on different technologies, which share
a same communication protocol, namely SOAP. For instance, many online travel

G. De Giacomo ·M. Mecella (B) · F. Patrizi
Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio Ruberti,
Sapienza Università di Roma, Via Ariosto 25, 00185 Roma, Italy
e-mail: degiacomo@dis.uniroma1.it

M. Mecella
e-mail: mecella@dis.uniroma1.it

F. Patrizi
e-mail: patrizi@dis.uniroma1.it

A. Bouguettaya et al. (eds.), Web Services Foundations, 189
DOI: 10.1007/978-1-4614-7518-7_8,
© Springer Science+Business Media New York 2014

190 G. De Giacomo et al.

agencies integrate different Web services offered by hotels, airlines, restaurants,
etc., to provide final users with a complete service, combining all functionalities of
its basic components. No constraints are required over the internal structure of each
Web service, but they are all required to be published, compliant with the same com-
munication protocol and to export a description of their interface, so as to facilitate
access and communication.

Abstracting from this example, services can be thought as generic programs,
publicly available and wrapped so as to mutually interact and communicate over
a common platform. As such, the SOC paradigm makes easier code re-use and
extension, as, in a sense, each service is interpreted as a procedure/method in pro-
gramming languages and, thus, a set of services as a sort of programming library.
This similarity can be taken as the basis of service composition: as exactly as in a
programming language procedures/methods are combined to produce more complex
procedures/methods, so services can be combined to build more complex services.

This chapter focuses on automated service composition, that is, the problem of
automatically combining a set of available services, so as to meet a desired speci-
fication. To this end, we start from the classical architecture for Web services. The
parties typically involved include a client, that can be a service itself, the directory,
and a set of service providers. The directory is a central, publicly available registry
storing service descriptions which allow clients to search for some desired service;
service providers are organizations, typically companies, that publish actual running
services, advertised in registries. A typical session is as follows: (i) a client searches
for a desired service, e.g., weather forecasting, in a directory; (ii) if the service is
found, the client is redirected to the provider that deploys the service; (iii) the client
contacts the desired service and interacts with it, according to its needs. This simple
scenario is already sufficient to raises two classical questions in SOC: (i) how to
describe services? (ii) what if the desired service is not found? The first one con-
cerns service modeling, i.e., the definition of a suitable abstraction of services, able
to capture aspects that can be relevant to clients; the second one raises the problem
of finding a constructive alternative to the trivial answer: “the request cannot be ful-
filled”. As one may expect, there exist many reasonable, correct answers to them.
In this work we discuss both problems. We first present a model, sometime referred
to as the “Roman Model”, that substantially enriches existing ones, by providing
an abstraction of the conversations a service can carry on with clients; then, on top
of this model, we describe a technique for building a solution that fulfills a client
request by suitably combining the available services. In addition, we show that such
techniques is in fact best one can do, in the sense of returning the most general
solution, while being optimal with respect to worst-case time complexity.

8.1.1 Modeling Behaviors

In the literature, several approaches to service modeling have been proposed. Rather
than actual languages widely used to describe Web services, such as WSDL, we focus
on their conceptual model. A WSDL description exports a functional specification

8 Automated Service Composition Based on Behaviors: The Roman Model 191

of a service, that is, from an abstract standpoint, the set of operations provided by the
service, along with the corresponding format of messages exchanged. We can say
that WSDL has an underlying atomic conceptual model, specified in terms of input-
output requirements. For instance, a service providing stock quotes of some market
can be successfully described this way, with a single operation that returns the list of
quotes. However, when more complex specifications need to be exported, it shows
severe limitations. For instance, let us consider the same Web service for stock quotes
and assume that it provides quotations only to authenticated clients. In an input-
output approach, one would describe two operations, auth and quote, as well as
the respective data format necessary for interaction. Unfortunately, the input-output
approach does not allow for conversation specification, i.e., for putting constraints
on the order that operations should be executed in. A very natural constraint would
be, e.g., requiring clients to authenticate before requesting quotes. Observe also
that cases may exist where two services export a same set of operations but allow
different execution sequences. Since this last constraint is not captured by input-
output approaches, such services would appear to clients as the same. In a word,
atomic conceptual models export services’ interface but not their behavior.

The need for a behavioral description of services has been already recognized in
the literature, e.g., [3], yet the community suffers from a lack of standard languages
for this purpose. In this work, we present the so-called Roman Model (as named
by [23]), originally introduced in [6], and oriented to describe all conversations
supported by services, that includes (in its various variants) relevant features, such
as nondeterminism and shared memory.

In our model, services export their behavioral features by means of a language that
represents transition systems, i.e., Kripke structures whose transitions are labeled
by service’s operations, under the assumption that each legal run of the system
corresponds to a conversation supported by the service. To clarify this, consider
Fig. 8.1. The former is a graphical representation of an input–output description
of the stock quote service with authentication, which provides information about
operations that can be requested; the latter is a behavioral representation of the
same service, providing more information: indeed, it tells clients that they (i) must
authenticate before requesting a quote operation and, then, (ii) may request any
number of quotes. Of course, more sophisticated examples do exist, where several
operations, even nondeterministic, can be executed in a state, with nondeterminism
modeling partial knowledge about service’s internal logic. Also, there are settings
relying on the same approach, where operations have parameters and are able to
exchange data with other clients and even with an underlying database (cf. [5]).

Fig. 8.1 Service descriptions.
a Input–output. b Behaviors

Input-output Behaviors(a) (b)

192 G. De Giacomo et al.

A first advantage brought by such a model is its generality with respect to service
integration, in the sense that it is abstract enough to serve as conceptual model for
several classes of scenarios. As an example, it can be used to model Web service
applications as well as multi-agent system ones. As a consequence, results obtained
on this model are also relevant to areas different from SOC. Second, from the SOC
viewpoint, it provides a behavioral, stateful, service representation, which allows for
describing those inter-operation constraints that current languages, e.g., WSDL, do
not capture. We remark the importance of such a feature in a perspective of compo-
sition automatization: indeed, composition engines are intended to replace human
operators, who compose services based on their informal description, often provided
in natural language, which include behavioral information. Importantly, when dealing
with a behavioral model, we can look at services as high-level descriptions of soft-
ware artifacts. Indeed, they are characterized by states and state transitions triggered
by inputs, which, specifically, represent requested operations. This interpretation
suggests, hence, to see service (possibly finite) runs as computation fragments, that
can be suitably combined to generate more complex services.

8.1.2 Composing Services

Many works exist which deal with automated composition of services (see Sect. 8.2
for a survey). Our problem can be informally stated as follows:

Consider a set of available services, a.k.a. community, and an additional target service, all
exporting their conversational behaviors. Is it possible to coordinate the available services
so to support, at execution time, all conversations supported by the target service?

In other words, the problem amounts to realize a (virtual) target service, by resorting
only to (actual) available services. Obviously, how services are combined in the
practice depends on the exported behavioral models. To see how this can be done,
consider the following example.

Example 8.1 Figure 8.2 shows a service composition problem instance in the Roman
Model, which includes two available services, represented in subfigures (a) and (b),
and a target one, in subfigure (c). The one in subfigure (a), say Sa , provides
login/logout capabilities, allowing a client to be authenticated and to close an authen-
ticated session, whereas the one in subfigure (b), say Sb, provides market stock quotes
from all over the world. Clients willing to interact with Sb are, first, required to input
the market country of their interest and, then, are allowed to request either stock
quotes or currency rates (versus, e.g., euro and dollar) for that market. As for the
target service, say T , it provides stock quotes of a selected market only to authenti-
cated clients. Specifically, clients of such a service need first to login, then to select
a market country, then are allowed to request quotes and, finally, to logout.

As we said, target services are virtual, that is, only their specification exists,
whereas their implementation is missing. However, it is easily seen that, by resorting

8 Automated Service Composition Based on Behaviors: The Roman Model 193

Service ServiceSa
Sb

Target service

Orchestrator

(a) (b) (c)

(d)

Fig. 8.2 A service composition example in the Roman Model. a Service Sa . b Service Sa . c Target
service. d Orchestrator

to available services, this example’s target service can be built. Indeed, it is enough
delegating login/logout operations to Sa and country selection and stock requests to
Sb. Observe that the target service not only provides a set of operations, but imposes
a set of constraints over their executions, e.g., stock can be requested only after
country has been executed. Since, on their side, also available service operations
are subject to such a kind of constraints, when a target service is to be realized,
they must be met. For instance, had not T required operation country be executed
before stock, it would be not realizable, as Sb is the only service that provides
stock and it requires country to be executed first.

The composition can be realized by a machine which, on one side, receives client’s
operation requests and, on the other side, forwards them to an appropriate available
service which executes it and, consequently, changes its state, where a new set of
operations becomes available. Such a machine, similar to a Mealy machine but that
can be, in general, infinite-state, is called orchestrator. A possible orchestrator is
shown in subfigure (d). Each state of the machine corresponds to a state of the target
service and each transition is labeled by a pair of the form operation/service, with
an intuitive semantics: the requested operation is assigned to the output service. For
instance, operation login is delegated to service Sa .

The example above shows how the existence of temporal constraints among oper-
ation executions makes the problem non trivial: each time an operation is to be
delegated to some available service, one needs to check whether all constraints are
fulfilled, i.e., whether the service chosen for delegation is in a state where the oper-
ation is actually executable. This makes the orchestrator construction an hard task:

194 G. De Giacomo et al.

in the Roman Model, the service composition problem is shown to be EXPTIME-
complete [6, 32].

More complex scenarios can be considered. For instance, nondeterministic avail-
able services are also conceivable, where nondeterminism over operation execution
represents partial knowledge about service’s internal logic. Also, one could think of
services communicating through a common blackboard or even exchanging data. All
these scenarios require different notions of composition and, hence, different kind
of orchestrators.

8.1.3 The History of the Roman Model

The specific composition problem has been tackled with different techniques, starting
by exploiting a reduction to satisfiability in a well-known logic of programs, namely
PDL [6, 8, 9].1 Notably, Logics of Programs are tightly related to Description Logics,
for which highly optimized satisfiability checkers exist (e.g., RacerPro, Pellet, FACT,
etc.). This framework has been then extended to consider interesting variants, e.g.:
forms of target service loose specifications [7], trust-aware services [13], distributed
orchestrators [35], shared environments [18], data-aware services [5].

More recently, another approach has been proposed based on computing compo-
sitions by exploiting (variants of) the formal notion of simulation [10, 34]. Interest-
ingly, through this, the case where the state of services is only partially observable
has been also addressed [16]. The solution technique directly appeals to techniques
for Linear Time Logic (LTL) synthesis, to model-check a game structure represent-
ing a so-called safety-game. Since this can be realized in practice on top of symbolic
model checking technologies, the approach gained a high level of scalability, and
has been effectively realized in the context of an EU research project (see Sect. 8.4).
In the following we will focus on this latter approach.

8.2 State-of-the-art on Automated Service Composition

In order to discuss automated service composition, and compare different approaches,
we introduce here a sort of conceptual framework for “semantic service integration”,
that is constituted by the following elements2: (i) the community ontology, which rep-
resents the common understanding on an agreed upon reference semantics between

1 The reader should note that [6] has been historically one of the most cited papers in the automated
service composition field, cf. more than 390 citations according to Google Scholar—September
2012. The same for [5] (cf. more than 250 citations).
2 Such a framework is inspired by the research on “semantic data integration” [27]. Obviously that
research has dealt with data (i.e., static aspects) and not with computations (i.e., dynamic aspects)
that are of interest in composition of services. Still many notions and insights developed in that field
may have a deep impact in service composition. An example is the distinction that we make later

8 Automated Service Composition Based on Behaviors: The Roman Model 195

the services,3 concerning the meaning of the offered operations, the semantics of the
data flowing through the service operations, etc; (ii) the set of available services,
which are the actual Web services available to the community; (ii) the mapping for
the available services to the community ontology, which expresses how services
expose their behavior in terms of the community ontology; and (iv) the client service
request, to be expressed by using the community ontology.

In general, the community ontology comprises several aspects: on one side, it
describes the semantics of the information managed by the services, through appro-
priate semantic standards and languages; on the other side, it should consider also
some specification of the service behaviors, on possible constraints and dependencies
between different service operations, not limited solely to pre- and post-conditions,
but considering also the process of the service. In building such a “semantic service
integration” system, two general approaches can be followed. (i) In the service-
tailored approach, the community ontology is built mainly taking into account the
available services, by suitably reconciling them; indeed the available services are
directly mapped as elements of the community ontology, and the service request is
composed by directly applying the mappings for accessing concrete computations.
(ii) Conversely in the client-tailored one, the community ontology is built mainly
taking into account the client, independently from the services available; they are
described (i.e., mapped) by using the community ontology, and the service request
is composed by reversing these mappings for accessing concrete computations.

In fact, most of the research on automated service composition has adopted a
service-tailored approach. For example, the works based on Planning in AI (e.g., [38,
40, 33]) consider services as atomic actions—only I/O behavior is modeled, and the
community ontology is constituted by propositions/formulas (facts that are known
to be true) and actions (which change the truth-value of the propositions); available
services are mapped into the community ontology as atomic actions with pre- and
post-conditions. In order to render a service as an atomic action, the atomic actions,
as well as the propositions for pre- and post-conditions, must be carefully chosen by
analyzing the available services, thus resulting in a service-tailored approach.

Other works (e.g., Papazoglou’s et al. [39], Bouguettaya et al. [30], Sheth
et al. [12]) have essentially considered available services as atomic actions charac-
terized by the I/O behavior and possibly effects. But differently from those based on
planning, instead of concentrating on the automatic composition, they have focused
more on modeling issues and automated discovery of services described making use
of rich ontologies.

Also the work of McIlraith et al. [29] can be classified as service-tailored: services
are seen as (possibly infinite) transition systems, the common ontology is a Situation
Calculus Theory (therefore is semantically very rich) and service names, and each

between “service-tailored” and “client-tailored” service integration systems, which roughly mimic
the distinction between Global As View (GAV) and Local As View (LAV) in data integration.
3 Note that many scenarios of cooperative information systems, e.g., e-Government or e-Business,
consider preliminary agreements on underlying ontologies, yet yielding a high degree of dynamism
and flexibility.

196 G. De Giacomo et al.

service name in the common ontology is mapped to a service seen as a procedure in
Golog/Congolog Situation Calculus; the client service request is a Golog/Congolog
program having service names as atomic actions with the understatement that it
specifies acceptable sequences of actions for the client (as in planning) and not a
transition system that the client wants to realize.

Finally, the work by Hull et al. [11] describes a setting where services are expressed
in terms of atomic actions (communications) that they can perform, and channels
linking them with other services. The aim of the composition is to refine the behavior
of each service so that the conversations realized by the overall system satisfy a given
goal (dynamic property) expressed as a formula in LTL. Although possibly more on
choreography synthesis than on composition of the form discussed here, we can still
consider it a service-tailored approach, since there is no effort in hiding the service
details from the client that specifies the goal formula.

Much less research has been done following a client-tailored approach, but some
remarkable exceptions should be mentioned: the work of Knoblock et al. [31] is
basically a data integration approach, i.e., the community ontology is the global
schema of an integrated data system, the available services are essentially data sources
whose contents is mapped as views over the global schema, and the client request
is basically a parameterized query over such a schema; therefore the approach is
client-tailored, but neither the ontology nor mappings consider service behavior at
all.

The work of Traverso et al. [33] can be classified also as client-tailored: services
are seen as (finite) transition systems, the common ontology is a set of atomic actions
and propositions, as in Planning; a service is mapped to the community ontology as a
transition system using the alphabet of the community and defining how transitions
affect the propositions, and the client service request asks for a sequence of actions
to achieve goal1 (main computation), with guarantees that upon failure goal2 is
reached (exception handling).

Finally, the line of research taken in [6–9], but also in [21], has the dynamic behav-
ior of services at the center of its investigation. In order to study the impact of such
dynamics on automatic composition, all these works make simplifying assumptions
on the community ontology, which essentially becomes an alphabet of actions. Still
the notion of community ontology is present, and in fact all these works adopt a client-
tailored approach. A fundamental issue that arises is whether such rich descriptions
of the dynamic behavior of the services can be combined with rich (non proposi-
tional) descriptions of the information exchanged by the services, while keeping
automated composition feasible. The first results on this issue were reported in [5],
where available services that operate on a shared world description (in a form of
a database) are considered. Such services can either operate on the world through
some atomic processes as in OWL-S, or exchange information through messages.
While the available services themselves are with finite states, the world description
is not. Under suitable assumptions on how the world can be queried and modified,
decidability of service composition is shown. Interestingly [5] shows that even if the
available services can be modeled as deterministic transition systems, the presence

8 Automated Service Composition Based on Behaviors: The Roman Model 197

Fig. 8.3 Comparison of the various approaches

of a world description whose state is not known at composition time, requires dealing
with nondeterminism.

Figure 8.3 summarizes, on the basis of the previous discussion, the considered
works. The three axis represent the levels of detail according to which the community
ontology and the mappings and the client request can be modeled. Namely, (i) statics
in the system represents how fine grained is the modeling of the static semantics
(i.e., ontologies of data and/or services, inputs and outputs, alphabet of actions, etc.);
(ii) dynamics in component services represents how fine grained is the modeling of
the processes and behavioral features of the services (only atomic actions, transition
systems, etc.); and (iii) dynamics in client service request represents how fine grained
is the modeling of the process required by the client, varying from a single step (as in
the case of services consisting essentially of queries over a data integration system)
to a (set of) sequential steps, to a (set of) conditional steps, to including loops, up to
running under the full control of the client (as in our approach). Black/white lollipops
represent service-tailored (white) versus client-tailored (black) approaches.

Finally, in the last years, many works (e.g., [1, 19, 26, 36] consider how to per-
form composition by taking into account Quality-of-Service (QoS) of the composite
and component services. Moreover, some works consider non classical techniques
(e.g., [37] adopts learning approaches) for solving the composition problem.

8.3 The Roman Approach

The approach to service composition described here falls into the client-tailored
class. Its distinguishing features can be summarized as follows:

• The available services are grouped together into a so-called community (many
other approaches, e.g., [4], consider the notion of community as central in the
composition process).

198 G. De Giacomo et al.

• Services in a community share a common set of actions Σ , the actions of the
community.
• Actions inΣ denote (possibly complex) interactions between service and clients.

As a result of an interaction the client may acquire new information (not necessarily
modeled in the description) that may affect the next interaction.
• The behavior of each available service is described in terms of a finite transition

system that uses only actions from Σ .
• The desired service, called the target service, is itself described as a finite, deter-

ministic transition system that uses actions from Σ . Determinism here captures
the absence of uncertainty over the desired behavior.
• The orchestrator has the ability of scheduling services on a step-by-step basis.

In this approach, the composition synthesis task consists in synthesizing an orches-
trator able to coordinate the community services so as to mimic the behavior of the
target service. Differently put, the behavior obtained by coordinating the services
should present no differences, from the client perspective, with the target service.

To describe this setting in terms of the framework previously discussed, we iden-
tify the following correspondences:

• the community ontology is simply Σ ;
• the available services are the actual services in the community;
• the mapping from the available services to the community ontology is represented

by the transition systems that describe the available services (built from community
actions);
• the client request is the target service (again, built from community actions).

In [6, 8], the simple case where available services are modeled as deterministic
finite transition systems is addressed, while in [9], (diabolic) nondeterminism has
been introduced, to account for those situations where the orchestrator cannot control
the outcome of interactions. The presence of nondeterministic conversations stems
naturally when services offer interactions with an unforeseeable result. For instance
consider a service that allows one to purchase items with a credit card. After obtain-
ing the credit card details, the service interacts with the bank, to request payment
authorization. If it is granted, the service offers the client the option to confirm the
payment, while in case of denial the service offers the possibility of entering the
details again. As it can be seen, the next options made available to clients depend
on the outcome of the authorization request, which, from the outside perspective, is
nondeterministic. As a result, the service itself is nondeterministic, from the perspec-
tive of its clients. Notice that after an interaction has taken place, its result becomes
observable, that is, clients can know the state that the service has moved to. This
feature can thus be exploited by the orchestrator (which is in fact a particular client),
that can observe the current state of the available services and choose how to carry
on a certain task.4

4 The reader should observe that also the standard proposal WSDL 2.0 adopts a similar approach:
an operation can have multiple output messages (the out message and various outfault

8 Automated Service Composition Based on Behaviors: The Roman Model 199

t0 t1 t2 t3 t4

t5 t6 t7 t8 t9

Fig. 8.4 Target service for the smart-house scenario

In the following, we present some technical details of the Roman approach, by
considering non-deterministic services and the presence of data. In doing so, we
use a running example from the context of smart houses, an interesting application
scenario that our approach has been fully implemented in, proving effective. In
this context, the composition goal is to generate an orchestrator that realizes some
desired routines requested by the user, i.e., predefined sequences of operations that
the house is intended to execute by suitably exploiting some devices (considered as
services). For instance, a typical request issued in the morning could require heating
the bathroom, lifting the shutters, and preparing a coffee, while at night, a user might
request closing the shutters, locking the door, and switching the lights off.

8.3.1 The Framework

Technically, the behavior of services and the state of the house, called environment,
are abstracted as finite-state transition systems. In details: each service is represented
as a nondeterministic transition system (to model partial controllability); the user
request, called target, is represented as a deterministic transition system (to model full
controllability); and the environment is represented as a nondeterministic transition
system (to model partial predictability). The state of the environment is assumed fully
observable by all services, including the target. Our ultimate goal is to simulate the
target by suitably delegating actions to the available services, as they are requested
by the client.

For an example consider Fig. 8.4, which shows a fragment of a target behavior
for the smart house scenario. It captures some requests typically issued by a user in

messages), and the client observes how the service behaved only after receiving a specific output
message.

200 G. De Giacomo et al.

Bathroom heating device Bathtub device Door device

Kitchen exhaust fan
device

s0 s1

s2s3

User behavior

(a) (b) (c)

(e)(d)

Fig. 8.5 Service community for the smart-house scenario. a Bathroom heating device. b Bathtub
device. c Door device. d Kitchen exhaust fan device. e User behavior

the morning: having a shower and breakfast. States t1, t2, and t3 contain the requests
for heating the bathroom (“hot air on”), filling up the bathtub, opening the bathroom
door, etc., that is, all the actions necessary to have a shower; the remaining states
correspond to the actions to execute in order to have a breakfast ready. Checking
whether these requests can be fulfilled in the proper order and, if so, which devices
can be used to perform the actions, is exactly the objective of the synthesis task.

Figure 8.5 shows the set of available services, i.e., the community, for the same
scenario. Notice that also the user is represented as a service. This is because users
can in general execute actions that contribute to the realization of a target. Obviously,
when this is not desired, a user can be simply excluded themselves from the commu-
nity. For the environment, we consider the following state variables, with respective
domain:

• temp_bathroom : {warm, hot, cold};
• user_posi tion : {bedroom, bathroom, ki tchen};
• door_bathroom : {closed, open};
• door_ki tchen : {closed, open};
• smell_ki tchen : boolean;

in which every state variable assignment corresponds to a different environment state.

8.3.1.1 Environment and Behaviors

Formally, we have a shared nondeterministic, fully observable environment, which
provides an abstract account of action preconditions and effects, and a mean of com-
munication among services. In details, an environment is a tuple E = 〈A, E, e0, ρ〉,
where:

8 Automated Service Composition Based on Behaviors: The Roman Model 201

• A is a finite set of shared actions;
• E is the finite set of environment states;
• e0 ∈ E is the initial state;
• ρ ⊆ E ×A× E is the transition relation among states: 〈e, a, e′〉 ∈ ρ, or e

a−→ e′
in E , denotes that action a performed in state e may lead the environment to a
successor state e′.

Services stand for the interface that available devices expose. At each step, a
service offers a set of executable actions that can be chosen by the client. The client
selects one, the service executes it, and a new step starts. In general service executions
affect the environment (cf. above), hence they are equipped with the ability to test
conditions (i.e., guards) on the environment, when needed. A (service) behavior over
an environment E = 〈A, E, e0, ρ〉 is a tuple B = 〈B, b0,G, �〉, where:

• B is the finite set of behavior states;
• b0 ∈ B is the initial state;
• G is a set of guards, that is, boolean functions g : E �→{true, false};
• δ ⊆ B × G × A × B is the behavior transition relation, where 〈b, g, a, b′〉 ∈ �,

or b
g,a−→ b′ in B, denotes that action a executed in state b, when the environment

is in a state e such that g(e) = true, may lead the behavior to state b′.

The target in Fig. 8.4 has guarded actions, e.g., temp_bathroom ! = hot :
hot air on, meaning that action hot air on can be requested only if the envi-
ronment is in a state where temp_bathroom ! = hot holds. We then decouple the
state of physical device from that of the house, coping with unpredictable situations.
Suppose the plan is running and the orchestration module instructs the bath heating
device to switch the hot air on, while a tenant is switching the air off when leaving
the bathroom: thanks to guards, the plan does not progress until hot temperature is
reached. In other words, the fact that the bath heating device is in state hot air on
does not yield that the bathroom temperature is actually hot.

As discussed, behaviors are nondeterministic. That is, given a state and an action,
there may be several transitions whose guards evaluate to true. We say that a
behavior B over E is deterministic if for no behavior state b ∈ B and no environment
state e ∈ E there exist two transitions b

g1,a−→ b′ and b
g2,a−→ b′′ in B such that b′ 	= b′′

and g1(e) = g2(e) = true. Obviously, given a state of a deterministic behavior
and a legal action, we know exactly the next behavior state, while this is not the case
for nondeterministic behaviors. Thus, we say that the former are fully controllable
while the latter are only partially controllable.

Finally, we define a system S = 〈B1, . . . ,Bn, E〉 as an environment E and n pre-
defined available behaviors Bi over E . A target behavior is a deterministic behavior
over E that represents the fully controllable desired behavior to be obtained through
the available behaviors.

Let us analyze the target of Fig. 8.4. The transition system represents the actions
that a user may ask at each moment in time. In state t0, the initial one, the user can make
a choice: either to have a shower and then to have breakfast, or to have a breakfast only.
In the first case he asks for action hot air on, otherwise, he can move to ki tchen

202 G. De Giacomo et al.

only if the kitchen door is open, or, if not, ask for open door ki tchen. Let us
suppose he decides to have a shower. In state t1 he may request to f illup bathtub
(guarded action) only if the bathroom temperature is reasonably hot. Then he may
ask to open door bathroom (guarded) and only when it is opened he can move to
the bathroom, wash and go back to the bedroom. Unless the system is sure that the
user is back in the bedroom, the bathtub cannot be emptied, and the hot air cannot
be switched off in the bathroom. After having a shower, the user is supposed to have
breakfast. So, when the kitchen door is open, he can decide to either prepare a tea
or cook eggs. In the latter case, the house system should vent the kitchen until the
smell is gone. After these activities, the target returns in its starting state, allowing
the tenants to repeat infinitely many times the same sequences of actions.

8.3.2 Enacted Behaviors

To show how the composition task is automatically carried out, we introduce some
intermediate notions. Given a behavior B over E , the enacted behavior of B over E
is the tuple TB = 〈S,A, s0, δ〉, where:

• S = B × E is the (finite) set of TB states—given a state s = 〈b, e〉, we denote b
by beh(s) and e by env(s);
• A is the set of actions in E ;
• s0 ∈ S, with beh(s0) = b0 and env(s0) = e0, is the initial state of TB;
• δ ⊆ S ×A× S is the enacted transition relation, where 〈s, a, s′〉 ∈ δ, or s

a−→ s′

in TB, iff: (i) env(s)
a−→ env(s′) in E ; and (ii) beh(s)

g,a−→ beh(s′) in B, with
g(env(s)) = true for some g ∈ G.

Technically, TB is the synchronous product of the behavior and the environment,
and represents all the possible executions obtainable by executing B, once guards are
evaluated and actions are performed on E . Observe that both the environment and
the behavior are possible sources of nondeterminism for an enacted behavior.

All available behaviors in a system act concurrently, in an interleaved fashion, in
the same environment. For simplicity, we assume that behaviors are asynchronous,
that is, exactly one moves at each step.5 The behavior emerging from the joint
execution of all the available behaviors on an environment is referred to as the enacted
system behavior. Let S = 〈B1, . . . ,Bn, E〉 be a system, where E = 〈A, E, e0, ρ〉
and Bi = 〈Bi , bi0,Gi , �i 〉 (i ∈ {1, . . . , n}). The enacted system behavior of S is
the tuple TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉, where:

• SS = B1× · · · × Bn × E is the finite set of TS states; when sS = 〈b1, . . . , bn, e〉,
we denote bi by behi (sS), for i ∈ {1, . . . , n}, and e by env(sS);

5 In fact, it is possible to extend the approach and results presented here, to the case in which at
each step more than one available behaviors acts as in [35].

8 Automated Service Composition Based on Behaviors: The Roman Model 203

• sS0 ∈ SS with behi (sS0) = bi0, for i ∈ {1, . . . , n}, and env(sS0) = e0, is the
initial state of TS ;
• δS ⊆ SS×A×{1, . . . , n}×SS is the TS transition relation, where 〈sS , a, k, s′S 〉 ∈
δS , or sS

a,k−→ s′S in TS , iff:

– env(sS)
a−→ env(s′S) in E ;

– behk(sS)
g,a−→ behk(s′S) in Bk , with g(env(sS)) = true, for some g ∈ Gk ;

and
– behi (sS) = behi (s′S), for i ∈ {1, . . . , n} \ {k}.

Note that the enacted system behavior TS is the synchronous product of the environ-
ment with the asynchronous product of the available behaviors. It is essentially the
same form as any other enacted behavior, except for the presence of the index k in
transitions. This makes explicit which behavior is the one that performs the action
in the transition (while all other remain still).

8.3.3 Orchestrator and Composition

We can now introduce the notion of orchestrator, and define when it is a compo-
sition of the desired target service. The orchestrator is a component intended to
activate, stop, and resume the available services (behaviors), and to instruct them to
execute an action among those allowed in the current state. The orchestrator has full
observability on the available behaviors and the environment, that is, it can keep
track (at runtime) of their current states.

To formally define orchestrators, some technical notions are needed. A trace for

an enacted behavior TB is a possibly infinite sequence of the form s0 a1−→ s1 a2−→ · · ·
such that (i) s0 = s0 and (ii) s j a j+1−→ s j+1 in TB, for all j > 0. A history is a finite

prefix h = s0 a1−→ · · · a�−→ s� of a trace. We denote s� by last(h), and � by length(h).
The notions of trace and history extend immediately to enacted system behaviors:

system traces have the form s0 a1,k1−→ s1 a2,k2−→ · · · , and system histories have the form

s0 a1,k1−→ · · · a�,k�−→ s�.
Let S be a system and H the set of its histories (i.e., histories of TS). An

orchestrator for S is a function P : H × A �→ {1, . . . , n, u} that, given a history
h ∈ H and an action a ∈ A, selects a behavior, by returning its index, to delegate a
to for execution. For technical convenience, a special value u (“undefined”) can be
returned, to make P a total function defined also on irrelevant histories or actions
that no behavior can perform after a given history.

The problem we are interested in is the following: given a system S = 〈B1, . . . ,

Bn, E〉 and a deterministic target behavior Bt over E , synthesize an orchestrator P
that realizes the target behavior Bt by suitably delegating each action requsted by

204 G. De Giacomo et al.

Bt to one of the available behaviors Bi in S. A solution to such problem is called a
composition.

Intuitively, the orchestrator realizes a target if for every trace of the enacted target
and a requested action, the orchestrator returns the index of an available behavior
able to perform the requested action. Observe that these orchestrators are somewhat
akin to an advanced form of conditional plans and, in fact, the problem itself is related
to planning, being both synthesis tasks. Here, though, plans do not select the next
action, but who shall execute the next action.

One can formally define when an orchestrator realizes the target behavior, as
in [18]. To this end, one first needs to define when an orchestrator P realizes a trace
of the target Bt . Then, since the target behavior is a deterministic transition system,
and thus its behavior is completely characterized by the set of its traces, we can define
that an orchestrator P realizes the target behavior Bt iff it realizes all of its traces.

8.3.4 Composition via Simulation

Let us next present our approach for synthesizing a composition, based on the notion
of simulation [22]. Intuitively, a transition system S1 “simulates” a system S2 if S1 is
able to match all of S2 moves. Due to the (devilish) nondeterminism of the available
behaviors and the environment, we cannot use the off-the-shelf notion of simulation,
but we need a variant, here called ND-simulation.

Let S = 〈B1, . . . ,Bn, E〉 be a system, Bt a target behavior over E , and let
TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉 and Tt = 〈St ,A, st0, δt 〉 the enacted system
and enacted target behaviors corresponding to S and Bt , respectively.

An ND-simulation relation of Tt by TS is a relation R ⊆ St × SS , such that
〈st , sS〉 ∈ R implies:

1. env(st) = env(sS);

2. for all a ∈ A, there exists a k ∈ {1, . . . , n} such that for all transitions st
a−→ s′t in Tt :

• there exists a transition sS
a,k−→ s′S in TS with env(s′S) = env(s′t); and

• for all transitions sS
a,k−→ s′S in TS with env(s′S) = env(s′t), we have 〈s′t , s′S〉 ∈ R.

In words, if a pair is in the ND-simulation, then (i) the component states share the
same environment and (ii) for any possible move of the target from its state in the pair,
there exists a behavior Bk able to match the move, while guaranteeing preservation
of the ND-simulation.

We say that a state st ∈ St is ND-simulated by a state sS ∈ SS (or sS ND-
simulates st), denoted st
 sS , iff there exists an ND-simulation R of Tt by TS such
that 〈st , sS〉 ∈ R. Observe that this is a coinductive definition, thus the relation

is itself an ND-simulation, and in fact the largest ND-simulation relation w.r.t. set
containment. Such a relation can be computed by the following NDS algorithm.
Roughly speaking, the algorithm works by iteratively removing those tuples for

which the conditions of the ND-simulation definition do not apply.

8 Automated Service Composition Based on Behaviors: The Roman Model 205

Algorithm 1 NDS(Tt , TS) – Largest ND-Simulation
R := St × SS \ {〈st , sS〉 | env(st) 	= env(sS)}
repeat

R := (R \ C), where C is the set of 〈st , sS〉 ∈ R such that there exists a ∈ A for which for each

k there is a transition st
a−→ s′t in Tt such that either:

(a) there is no transition sS
a,k−→ s′S in TS such that env(s′t) = env(s′S); or

(b) there exists a transition sS
a,k−→ s′S in TS such that env(s′t) = env(s′S) but 〈s′t , s′S〉 	∈ R.

until (C = ∅)
return R

The next result shows that checking for the existence of a composition can be
reduced to checking whether there exists an ND-simulation between the enacted
target and the enacted system that includes their respective initial states.

Theorem 8.1 Let S = 〈B1, . . . ,Bn, E〉 be a system and Bt a target behavior over E .
Let Tt = 〈St ,A, st0, δt 〉 and TS = 〈SS ,A, {1, . . . , n}, sS0, δS〉 be the enacted target
behavior and the enacted system behavior for Bt and S, respectively. An orchestrator
P for a system S that is a composition of the target behavior Bt over E exists iff
st0
 sS0.

Theorem 8.1 provides us with a straightforward procedure to check the existence
of a composition. Namely, (i) compute the largest ND-simulation relation of Tt by
TS and (ii) check whether 〈st0, sS0〉 occurs in the relation.

From the computational point of view, the algorithm NDS above computes the
largest ND-simulation relation
 between Tt and TS in polynomial time in the size of
Tt and TS . Since in our case the number of states of TS is exponential in the number
of available behaviors B1, . . . ,Bn , we get that
 can be computed in exponential
time in the number of available behaviors.

Theorem 8.2 The existence of compositions can be checked in polynomial time in
the number of states of the available behaviors, of the environment, and of the target
behavior, and in exponential time in the number of available behaviors.

Since the composition problem is EXPTIME-hard [32], the obtained bound is
tight.

With the ND-simulation at hand we can synthesize an orchestrator. In fact, there is
a well-defined procedure that, given an ND-simulation, builds a finite-state program
that returns, at each point, the set of available behaviors capable of performing a
target-conformant action, and guarantee the preservation of the ND-simulation. We
call such a program orchestrator generator. Let S be a system, Bt a target behavior
over E , and let TS and Tt be the enacted system behavior and the enacted target
behavior corresponding, respectively, to S and Bt . The orchestrator generator of S
for Bt is a tuple OG = 〈Σ,A, {1, . . . , n}, ∂, ω〉, where:

206 G. De Giacomo et al.

1. Σ = {〈st , sS〉 ∈ St × SS | st
 sS} is the set of states of OG, formed by those
pairs of Tt and TS states that are in the largest ND-simulation relation; given a
state σ = 〈st , sS〉 we denote st by comt (σ) and sS by comS(σ).

2. A is the finite set of shared actions.
3. {1, . . . , n} is the finite set of available behavior indexes.
4. ∂ ⊆ Σ ×A× {1, . . . , n} ×Σ is the transition relation, where 〈σ, a, k, σ ′〉 ∈ ∂ ,

or σ
a,k−→ σ ′ in OG, iff

• comt (σ)
a−→ comt (σ

′) in Tt ;

• comS(σ)
a,k−→ comS(σ ′) in TS ;

• for all comS(σ)
a,k−→ s′S in TS , 〈comt (σ

′), s′S〉 ∈ Σ .

5. ω : Σ×A �→ 2{1,...,n} is the output function, whereω(σ, a) = {k | ∃σ ′ s.t. σ
a,k−→

σ ′ in OG}.
Thus, OG is a finite state transducer that, given an action a (compliant with

the target behavior, and according to the system state corresponding to the current
OG state), outputs, through ω, the set of all available behaviors that can perform a
next while preserving the ND-simulation
. Observe that computing OG from the
relation
 is easy, as it involves checking local conditions only.

Coming back to our example, when the user asks for action hot air on, the OG
outputs the index that represents the bathroom heating device, which is the only one
that can perform the requested action. If many bathrooms are available, thanks to
the guards and to function ω, the composition layer can instruct one bathroom or
another to perform the action, depending on realtime conditions, such as availability
of a particular bathroom or device.

If there exists a composition of Bt by S, then st0
 sS0 and OG does include
the state σ0 = 〈st0, sS0〉. In such cases, we get actual orchestrators, called gener-
ated orchestrators, which are compositions of Bt by S, by picking up, at each step,
one available behavior among those returned by ω. More precisely, we proceed as

follows. A trace for OG starting from σ 0 is a finite or infinite sequence σ 0 a1,k1−→
σ 1 a2,k2−→ · · · , such that σ j

a j+1,k j+1−→ σ j+1 in OG, for all j . A history for OG start-

ing from state σ 0 is a prefix of a trace starting from σ 0. By using histories, one
can introduce OG -orchestrators, which are functions CGPchoose : HOG × A �→
{1, . . . , n, u}, where HOG is the set of OG histories starting from any state in Σ ,
and defined as follows: CGPchoose(hOG, a) = choose(ω(last(hOG), a)), for all
hOG ∈ HOG, where choose stands for a choice function that chooses one element
among those returned by ω(last(hOG), a)). Assuming that OG (of S for Bt) includes

σ0 = 〈st0, sS0〉, for any OG history hOG = σ 0 a1,k1−→ · · · a�,k�−→ σ� starting from
σ 0 = σ0, we can obtain the corresponding system history projS(hOG), called the
projected system history, as follows:

8 Automated Service Composition Based on Behaviors: The Roman Model 207

projS(hOG) = comS(σ 0)
a1,k1−→ · · · a�,k�−→ comS(σ �), i.e., we take the “system”

component of each OG state σ i in the history.
Moreover, from a OG-orchestrator CGPchoose, we obtain the corresponding

generated orchestrator as the function Pchoose : H × A �→ {1, . . . , n, u}, where
H is the set of system histories starting from sS0, defined as follows. For each sys-
tem history h and action a: (i) if h = projS(hOG) for some OG history hOG, then
Pchoose(h, a) = CGPchoose(hOG, a); else (ii) Pchoose(h, a) = u.

Through generated orchestrators, we can relate OGs to compositions and show that
one gets all orchestrators that are compositions by considering all choice functions for
choose. Notably, while each specific composition may be an infinite state program,
the orchestrator generator OG, which includes all of them, is always finite.

We have the following central result, which states soundness and completeness
of the orchestrator generation defined above.

Theorem 8.3 If OG includes the state σ0 = 〈st0, sS0〉, then every orchestrator
generated by OG is a composition of the target behavior Bt by system S. Moreover,
every orchestrator that is a composition of the target behavior Bt by system S can
be generated by OG.

8.4 A Practical Application in Smart Homes

As previously stated, a concrete case of application of automated service composition
with the Roman Model has been performed in the SM4All EU research project,
recently and successfully concluded.6

8.4.1 Software Architecture, Service and Data Models

The goal of SM4All is to seamlessly integrate devices, in order to simplify the
access to the services that they expose, and dynamically compose such services
in order to offer the end users more complex functionalities and a richer experience
with the domotic environment. In SM4All, all the devices make their functionalities
available as SOAP-based Web services, according to a rich service model7 consisting

6 SM4All—Smart hoMes for All, is an FP7 project running from 1 September 2008 to 31
August 2011. Cf. the WWW site http://www.sm4all-project.eu/ and news on major interna-
tional televisions: Globo TV—http://video.globo.com/Videos/Player/Noticias/0,,GIM1751401-
7823-CASA+INTELIGENTE+E+MOVIDA+A+PENSAMENTO+NA+ITALIA,00.html, Chan-
nel 1 Russia—http://www.1tv.ru/news/other/191509, Italian Rai3—http://www.youtube.com/
watch?v=a9F72_E4mT0 and http://rai.it/dl/tg3/rubriche/PublishingBlock-79554b45-1e4c-41a8-
a474-ad3e22ab750f.html#, Ability Channel—http://www.abilitychannel.tv/video/casa-domotica-
sm4all/ .
7 Cf. http://www.dis.uniroma1.it/~cdc/sm4all/proposals/servicemodel/latest.

http://www.sm4all-project.eu/
http://video.globo.com/Videos/Player/Noticias/0,,GIM1751401-7823-CASA+INTELIGENTE+E+MOVIDA+A+PENSAMENTO+NA+ITALIA,00.html
http://video.globo.com/Videos/Player/Noticias/0,,GIM1751401-7823-CASA+INTELIGENTE+E+MOVIDA+A+PENSAMENTO+NA+ITALIA,00.html
http://www.1tv.ru/news/other/191509
http://www.youtube.com/watch?v=a9F72_E4mT0
http://www.youtube.com/watch?v=a9F72_E4mT0
http://rai.it/dl/tg3/rubriche/PublishingBlock-79554b45-1e4c-41a8-a474-ad3e22ab750f.html#
http://rai.it/dl/tg3/rubriche/PublishingBlock-79554b45-1e4c-41a8-a474-ad3e22ab750f.html#
http://www.abilitychannel.tv/video/casa-domotica-sm4all/
http://www.abilitychannel.tv/video/casa-domotica-sm4all/
http://www.dis.uniroma1.it/~cdc/sm4all/proposals/servicemodel/latest

208 G. De Giacomo et al.

not only of the service interface specification, but also, e.g., of its conversational
description and of the related graphical widgets (i.e., icons) to be presented in the
user layer. Proxies are indeed the software components offering such services by
“wrapping” and abstracting the real devices offering the functionalities. Services are
not necessarily offered by hardware devices, but could be also realized through a
human intervention; in this case, the proxy exposes a SOAP-based service to the
platform, whereas it interacts with the service provider (i.e., the human) by means
of a dedicated GUI, when executing the requested operations.

During their run time, services continuously change their status, both in terms of
values of sensed/actuating variables (e.g., a service wrapping a temperature sensor
reports the current detected temperature, a service wrapping windows blinds report
whether the blinds are open, closed, half-way, etc.) and in terms of their conversa-
tional state. The definition of the sensed/actuating variables, representing the “state”
of the domotic environment, is performed in accordance with the data model.8

The SM4All architecture, described in details in [20], consists of a Pervasive
Controller and a Discovery Framework, which are in charge, when a new device
joins the system, to dynamically load and deploy the appropriate service, and to
register all the relevant information into the Service Semantic Repository. All of the
status information, both in terms of (i) service conversational states and (ii) values
of the environmental variables, are kept available in the Context Awareness Man-
ager, through a publish&subscribe mechanism. On the basis of the service descrip-
tions, Composition Engines are in charge of providing complex services by suitably
composing the available ones. In SM4All, three different types of approaches are
provided, each providing different functionalities and therefore complementing one
another, in order to provide a rich and novel environment to the users:

• Off-line synthesis (provided through the Off-line Synthesis Engine). In the off-
line mode, at design/deployment time of the house, a desiderata (i.e., not really
existing) target service is defined, as a kind of complex routine, and the synthesis
engine synthesizes a suitable orchestration of the available services realizing the
target one. Such an orchestration specification is used at execution-time (i.e., when
the user chooses to invoke the composite/desiderata service) by the Orchestration
Engine in order to coordinate the available services (i.e., to interact with the user on
one hand and to schedule service invocations on the other hand). In this approach,
the orchestration specification is synthesized off-line (i.e., not triggered by user
requests, at run time) and executed on-line as if it were a real service of the home.
The off-line mode is based on the Roman Model. The Off-line Synthesis Engine
produces what in SM4All is referred to as a routine.
• On-line planning (provided through the On-line Planning Engine). The user,

during its interaction with the home, may decide not to invoke a specific ser-
vice (either available/real or composite), but rather to ask the home to realize a
goal; in such a case, the engine, on the basis of specific planning techniques [25],

8 Cf. http://www.dis.uniroma1.it/~cdc/sm4all/proposals/datamodel/latest.

http://www.dis.uniroma1.it/~cdc/sm4all/proposals/datamodel/latest

8 Automated Service Composition Based on Behaviors: The Roman Model 209

synthesizes and executes available service invocations in order to reach such a
goal.
• Visual design of complex services (provided through the Compound Service Work-

bench). A skilled user may want to define a compound service, by visually com-
posing services offered by proxies, in a way similar to what currently happen in
technologies like WS-BPEL. The compound service offers an aggregated opera-
tion, which is the result of the proper orchestration of operations offered by other
services. Also in this case, the synthesis is performed off-line, but differently from
the previous case, it is not supported by automatic techniques, but by a visual work-
bench. Both routines and compound services fall under the category of “composite
services”.

The Orchestration Engine interprets the specification of a composite service
(either synthesized automatically, through the Off-line Synthesis Engine, or visually
by the user, through the Compound Service Workbench) and consequently orches-
trates the set of component services. In the case of the On-line Planning Engine, due
to the need of continuously planning and monitoring services during plan executions,
the Orchestration Engine is bypassed and services are directly invoked by the planner
itself.

Users are able to interact with the home and the platform through different kinds
of user interfaces, e.g., a home control station accessible through a touchscreen in the
living room. In particular, Brain Computer Interfaces (BCIs, [28]) allow also people
with disabilities to interact with the system. Of course, users can still control the
home equipment as if there were not the SM4All platform, e.g., a user is obviously
allowed to switch the living room light on directly from the manual switcher on the
wall, without using any BCI and/or touchscreen; in such a case, the platform, through
the specific proxy wrapping the light/switcher as a service, is notified of the specific
variable value change. De facto, the event is equivalent, due to the engineering of the
platform, to the one of clicking a specific button on the touchscreen and/or selecting
the icon on the BCI. Users are able, trough the interfaces, to invoke actions offered
by services (either simple of composite) and to achieve goals, in order to reach
specific situations that they would like to be realized in the home. Moreover, through
the interfaces, they receive the feedback about state changes in the home, as well as
requests for further inputs (in case additional parameters are needed for some actions
to be executed), notifications about action/service completions, etc.

Going into implementation details of the Off-line Synthesis and Orchestration
Engines, they have been realized as Java modules, realizing the techniques presented
in Sect. 8.3. In particular, the Off-line Synthesis Engine is built around TLV (Temporal
Logic Verifier),9 an environment for verification of finite state systems; we defined
a set of modules that make TLV compute the orchestration generator. Starting from
XML descriptions of services (according to the service model), target service and
variables, we had to devise a suitable translation into the TLV input language. After
the orchestrator generator (see Sect. 8.3) has been computed, it is converted into our

9 http://www.wisdom.weizmann.ac.il/~verify/tlv/

http://www.wisdom.weizmann.ac.il/~verify/tlv/

210 G. De Giacomo et al.

XML orchestration language (we named CBL—Composition Behavioral Language)
which is interpreted by the Orchestration Engine, thus really executing at runtime
the automatically synthesized composition. Further technical details can be found in
[24].

As discussed in Sect. 8.3, the service model focuses on the behavior of services, in
terms of conversational states that they traverse during the execution of the exposed
actions, as well as on the way they (i) affect the environment and (ii) are inhibited
(allowed) in the execution by the environment (respectively, by the expression of
post-conditions and pre-conditions on top of the variables). The smart home environ-
ment is populated by many deployed service instances, which are actual occurrences
of given service types (also services for sake of brevity). Indeed a developer can
produce many instances showing the same behavior: e.g., many lamps of the same
product series, installed in different rooms, are different instances of the same service
type. Therefore, every service instance can be identified by one or more properties,
which are deployment characteristics (such as the location in the house, the power
consumption, etc.).

The data model is an extensible framework of variable types. They concern the
specific environmental information used by reasoning engines only. I.e., free parame-
ters such as, e.g., name in an operation cheers(name: string): string
may not adhere to the data model. Nevertheless, in case the developer wants (i)
to describe the effects on the environment once a service action is invoked (post-
condition), or (ii) to express the conditions that must hold in the context for an
action to take place (pre-condition), she has to write statements formulated on top
of variables whose type is coherent with the data model.

This is due to the fact that the platform should be able to cope with a predefined
uniform set of common data types, so that the interaction with the environment is
clear, despite of the service developer. We call variable types (or simply types) the
types, and variables are the entities whose type is a variable type. The data model
is an XML standard, i.e., it is based on XML Schemata to define value spaces. Each
service developer can define her own types, provided that (i) they are described in
XML Schema documents identified by a unique namespace, and (i) they extend,
directly or indirectly, the SM4All base types.10 Indeed, types in the data model are
derived by XML Schema native ones, and are designed to be extended by SM4All
system service designers. The data model allows XML Schema simple types only as
SM4All variable types, according to the XML Schema definition: complex types
are not considered. Common variable types are enumerations on top of the numeric
type. This allows the ordering over the possible values, as inherited from the basic
integer type. In such cases, the insertion of a documentation tag for each enumerated
value, provides also a human-readable form. The documentation node is intended to
contain the information to (possibly) show the users. That is to say: if, e.g., a variable
of type temperatureLevel reaches the value 3, the reasoning engines are informed
of it, whereas the users are notified of a new “warm” status. Having enumerations
over variables with finite sets of possible values makes feasible and effective the

10 Base types are identified by the http://www.sm4all-project.eu/datamodel/base namespace.

http://www.sm4all-project.eu/datamodel/base

8 Automated Service Composition Based on Behaviors: The Roman Model 211

reasoning tasks of the composition engines (as discussed in Sect. 8.3, the approach
requires that the set of environmental states is finite).

8.4.2 Discussion and Lessons Learned

Applying automated composition in practice allowed to gain interesting lessons
learned, about the performances and the acceptability of the approach by users.
As stated in Sect. 8.3, computing an orchestrator generator is EXPTIME-complete,
so an interesting question is which are the real dimensions of problems that can be
practically solved by the approach. In the SM4All project, a testbed/showcase has
been realized in a real domotic house located in Roma, Italy, equipped with about 20
sensors, some human-based services (e.g., a nurse assisting a disabled person) and
some routines computed with the proposed approach. Table 8.1 reports the average
times (over 20 runs) for computing such routines used in the testbed, by using the
Off-line Synthesis Engine on a Intel Pentium 4 M, 512 Mb RAM, Ubuntu 10.04 32
bit. The available services amount to 18, whereas the column “services” reports how
many services (over the 18 available) are effectively given as input of the problem.
The reader should note the low features of the machine, as in a real smart home
scenario, a platform like SM4All should run on a low-end hardware of type “set-
top-box” (e.g., a multimedia player, an EEEBox, etc.) and not on an high-end server.
Such times are appropriate, as the reader should remind that the routines are com-
puted off-line, i.e., at design/deployment time of the smart home, and not during
run-time, i.e., while living inhabitants exploit the platform.

In order to keep the number of variables and of services (effectively consid-
ered in the community given as input to the problem) as low as possible, a careful
decomposition approach should be undertaken when defining service descriptions.
The reader should note that if a variable should be considered in a composition,
then also all possible services affecting such a variable should be considered as
input to the problem. Indeed in our testbed, naively the nurse service was affecting

Table 8.1 Average times for synthesis

Target Transitions States Variables Services Avrg. time (millis)

WakeUp 332 84 3 5 1240.9
CheckIngredients 2704 352 5 3 3340.8
SetAlarm 48 29 1 3 305.3
WakeUpLite 101 41 2 4 487.75
EscapeRoutine 597 93 3 4 1126
RestoreFromWakeUp 85 25 2 3 320.5
RelaxModeSetup 4437 357 4 5 7806.3
FootbalMatchSetupN 2263 215 4 5 3257.75
FootbalMatchSetupW 301 53 3 4 643.95

212 G. De Giacomo et al.

7 variables, with the result that all routines require, during the composition, to con-
sider as input community all the 18 available services, finally making the computation
not practically feasible (after 3 days of running, no composition has been computed
yet). Conversely, considering nurse4bedroom, nurse4kitchen and nurse4livingRoom
distinct services, each one affecting different variables, we were finally able to keep
the number of input services and of variables low, obtaining the above results.

As far as user acceptability, assuming that a designer is willing to provide a target
service as input for the composition revealed difficult in many cases, especially if
the target is quite complex; on the other side, defining goals is widely accepted,
even if in many cases a more fine-grained control over possible intermediate goals
is desiderated. To this aim, we started investigating a novel model, which in some
sense merges the conversational approach of the Roman model with the “goal-based”
approach typical of automated composition based on planning; preliminary results
can be found in [14, 15, 17].

Acknowledgments The authors would like to thank all the persons who contributed over the
years to the Roman model: Daniela Berardi, Diego Calvanese, Maurizio Lenzerini, Richard Hull,
Alessandro Iuliani, Damiano Pozzi, Fahima Cheikh, Valerio Colaianni, Sebastian Sardiña, Claudio
Di Ciccio, Riccardo De Masellis, Paolo Felli, Ettore Iacomussi, Vincenzo Forte, Mario Caruso.
We also would like to acknowledge the support of the projects MAIS and Brindisys (Italian),
SemanticGov and TONES (EU FP6), SM4All, GreenerBuildings and ACSI (EU FP7).

References

1. Baligand, F., Rivierre, N., Ledoux, T.: A declarative approach for QoS-aware web service
compositions. In: Proceedings of ICSOC (2007)

2. Beauche, S., Poizat, P.: Automated service composition with adaptive planning. In: Proceedings
of ICSOC (2008)

3. Benatallah, B., Casati, F., Toumani, F.: Web service conversation modeling: a cornerstone for
e-business automation. IEEE Internet Comput. 8(1), 46–54 (2004)

4. Benatallah, B., Sheng, Q.Z., Dumas, M.: The Self-Serv environment for web services compo-
sition. IEEE Internet Comput. 7(1), 40–48 (2003)

5. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic composition of
transition-based semantic web services with messaging. In: Proceedings of VLDB (2005)

6. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic composi-
tion of e-Services that export their behavior. In: Proceedings of ICSOC (2003)

7. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Synthesis of under-
specified composite e-Services based on automated reasoning. In: Proceedings of ICSOC
(2004)

8. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic service
composition based on behavioural descriptions. Int. J. Coop. Inf. Syst. 14(4), 333–376 (2005)

9. Berardi, D., Calvanese, D., De Giacomo, G., Mecella, M.: Composition of services with non-
deterministic observable behavior. In: Proceedings of ICSOC (2005)

10. Berardi, D., Cheikh, F., De Giacomo, G., Patrizi, F.: Automatic service composition via simu-
lation. Int. J. Found. Comput. Sci. 19(2), 429–451 (2008)

11. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-Service composition. In: Proceedings of WWW (2003)

8 Automated Service Composition Based on Behaviors: The Roman Model 213

12. Cardoso, J., Sheth, A.: Introduction to semantic web services and web process composition.
In: Proceedings of 1st International Workshop on Semantic Web Services and Web Process
Composition (SWSWPC 2004) (2004)

13. Cheikh, F., De Giacomo, G., Mecella, M.: Automatic web services composition in trustaware
communities. In: Proceedings of 3rd ACM Workshop On Secure Web Services (SWS 2006)
(2006)

14. De Giacomo, G., Di Ciccio, C., Felli, P., Hu, Y., Mecella, M.: Goal-based composition of
stateful services for smart homes. In: Proceedings of CoopIS (2012)

15. De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player game structures for generalized
planning and agent composition. In: Proceedings of AAAI (2010)

16. De Giacomo, G., De Masellis, R., Patrizi, F.: Composition of partially observable services
exporting their behaviour. In: Proceedings of ICAPS (2009)

17. De Giacomo, G., Patrizi, F., Sardiña, S.: Agent programming via planning programs. In: Pro-
ceedings of AAMAS (2010)

18. De Giacomo, G., Sardiña, S.: Automatic synthesis of new behaviors from a library of available
behaviors. In: Proceedings of IJCAI (2007)

19. De Paoli, F., Lulli, G., Maurino, A.: Design of quality-based composite web services. In:
Proceedings of ICSOC (2006)

20. Di Ciccio, C., Mecella, M., Caruso, M., Forte, V., Iacomussi, E., Rasch, K., Querzoni, L., San-
tucci, G., Tino, G.: The homes of tomorrow: service composition and advanced user interfaces.
ICST Trans. Ambient Syst. 11(10–12), e2 (2011)

21. Gerede, C., Hull, R., Ibarra, O.H., Su, J.: Automated composition of e-Services: Lookaheads.
In: Proceedings of ICSOC (2004)

22. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proceedings of FOCS (1995)

23. Hull, R.: Web services composition: a story of models, automata, and logics. In: Proceedings
of SCC (2005)

24. Iacomussi, E.: Service-based architectures for smart homes and the SM4All project. The com-
ponent for the automatic synthesis of conversational services. Master thesis, Sapienza Univer-
sità di Roma (2011). A copy can be obtained by writing an email to authors

25. Kaldeli, E., Lazovik, A., Aiello, M.: Extended goals for composing services. In: Proceedings
of ICAPS (2009)

26. Klein, A., Ishikawa, F., Honiden, S.: Efficient QoS-aware service composition with a proba-
bilistic service selection policy. In: Proceedings of ICSOC (2010)

27. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of PODS (2002)
28. McFarland, D.J., Wolpaw, J.R.: Brain-computer interfaces for communication and control.

Commun. ACM 54(5), 60–66 (2011)
29. McIlraith, S., Son, T.: Adapting golog for composition of semantic web services. In: Proceed-

ings of KR (2002)
30. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic

web. Very Large Data Base J. 12(4), 333–351 (2003)
31. Michalowski, M., Ambite, J., Thakkar, S., Tuchinda, R., Knoblock, C., Minton, S.: Retrieving

and semantically integrating heterogeneous data from the web. IEEE Int. Syst. 19(3), 72–79
(2004)

32. Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. Logical Meth-
ods Comput. Sci. 4(5), 1–14 (2008). doi:10.2168/LMCS-4, http://www.lmcs-online.org/ojs/
viewarticle.php?id=359

33. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services by
planning at the knowledge level. In: Proceedings of IJCAI (2005)

34. Sardiña, S., De Giacomo, G., Patrizi, F.: Behavior composition in the presence of failure. In:
Proceedings of KR (2008)

35. Sardiña, S., Patrizi, F., De Giacomo, G.: Automatic synthesis of a global behavior from multiple
distributed behaviors. In: Proceedings of AAAI (2007)

http://dx.doi.org/10.2168/LMCS-4
http://www.lmcs-online.org/ojs/viewarticle.php?id=359
http://www.lmcs-online.org/ojs/viewarticle.php?id=359

214 G. De Giacomo et al.

36. Schuller, D., Miede, A., Eckert, J., Lampe, U., Papageorgiou, A., Steinmetz, R.: Qos-based
optimization of service compositions for complex workflows. In: Proceedings of ICSOC (2010)

37. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive service composition
based on reinforcement learning. In: Proceedings of ICSOC (2010)

38. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S web services compo-
sition using SHOP2. In: Proceedings of ISWC (2003)

39. Yang, J., Papazoglou, M.: Service components for managing the life-cycle of service compo-
sitions. Inf. Syst. 29(2), 97–125 (2004)

40. Zhao, H., Doshi, P.: A hierarchical framework for composing nested web processes. In: Pro-
ceedings of ICSOC (2006)

Chapter 9
Behavioral Service Substitution

Christian Stahl and Wil M. P. van der Aalst

Abstract Service-oriented design supports system evolution and encourages reuse
and modularization. A key ingredient of service orientation is the ability to substitute
one service by another without reconfiguring the overall system. This chapter aims
to give an overview of the state of the art and open challenges in the area of service
substitution. Thereby, we restrict ourselves to changes of the service behavior. We
present a formal model of service behavior, formalize service substitution, study
algorithms to decide service substitution, and provide rules to construct services
that are correct by design. Beside analysis at design time, we also investigate analy-
sis at runtime, where we measure the deviation of a running service (or collection
of services) from its specification based on recorded event data (e.g., message or
transaction logs).

9.1 Introduction

Today’s enterprises are challenged to continuously change their systems to address
changes in their environment. On the one hand, systems are highly complex, run
in heterogeneous environments, and are often distributed over several enterprises.
On the other hand, because of the extensively growing acceptance of the Internet
and Internet-related technologies, enterprises consider themselves to be exposed to
intense competition and, therefore, have to act dynamically and to change and adapt
their systems whenever necessary. For example, when some new functionality is
added or some quality parameter of some functionality is improved, this causes a

C. Stahl (B) ·W. M. P. van der Aalst
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven,
PO Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: c.stahl@tue.nl

W. M. P. van der Aalst
e-mail: w.m.p.v.d.aalst@tue.nl

A. Bouguettaya et al. (eds.), Web Services Foundations, 215
DOI: 10.1007/978-1-4614-7518-7_9,
© Springer Science+Business Media New York 2014

216 C. Stahl and W.M.P. van der Aalst

activity

channel channel

interface
service definition service definition

service definition

interface

activity
message

Fig. 9.1 An illustration showing the main terms used to describe services

change in system development. Instead of designing a system from scratch, existing
systems need to be redesigned and improved iteratively.

Service orientation [40] is a paradigm to design a complex distributed system
by composing it from smaller building blocks called services. A service is an
autonomous system that has an interface to interact with other services via mes-
sage passing. As services are composed into more complex services, a service is
usually stateful. The behavior of a service is described by a set of activities. An
activity is the atomic unit of work in a service. The execution of an activity is either
internal to the service or yields the sending or the receiving of a message. A service
can be executed; that is, an instance of this service is created. An instance can execute
activities. Figure 9.1 illustrates these terms.

An important property of a service composition is compositionality; that is, the
composition is again a service. To achieve compositionality, a service composition
must be compatible. The modular design of services enables enterprises to substitute
one service by another one rather than changing the entire system. Substituting
one service by another one should preserve compatibility of the overall system.
Verification of compatibility is challenging, as one wants to derive correctness of
the overall system from the correctness of the correctness of its services. Service
substitution—that is, deciding whether a service can substitute another service—is
considered to be one of the grand challenges [42].

In this chapter, we give an overview of the state of the art and open challenges
in the area of service substitution. We thereby restrict ourselves to changes of the
service behavior, which are also known as business protocol changes [41]. This
restriction implies that we assume that nonfunctional and semantical properties are
not violated when changing a service to another service; that is, we abstract from
resources and consider only data and message types and not their content. Figure 9.2
illustrates how we approach this topic.

First, in Sect. 9.2, we formalize service behavior according to the illustration in
Fig. 9.1. We introduce open nets, Petri nets extended with an interface, as a service
model and formalize terms such as compatibility. Suitability of this model has been
demonstrated by feature-complete open-net semantics for various languages such as
BPMN and WS-BPEL [29].

In Sect. 9.3, we present two variants of service substitution and formalize them
using a refinement relation between the specified (i.e., the old) service Spec and the

9 Behavioral Service Substitution 217

open net Spec open net Imp

Representation
of all controllers

of Spec

Representation
of all controllers

of Imp

Refinement

Decide
Substitution

 e.g., BPEL

service composition
specification

service composition
implementation

 e.g., BPMN

Measure
Runtime

Conformance

event
logs

Software
system

Fig. 9.2 Illustration of the proposed approach

implemented (i.e., the new) service Impl. A naive way to ensure correctness during
service substitution is to compare the sets of all controllers (i.e., admissible contexts)
of Spec and Impl. Only if all controllers of Spec are included in the set of controllers
of Impl, compatibility is ensured. As these sets of controllers may be infinite, we
introduce a finite representation of these sets to decide substitution. We also consider
service substitution in a setting where a running instance of the old service has to be
migrated to the new service.

Besides checking whether a service can actually be substituted by another one, one
can also guide the construction of services that are correct by design. This approach
can then be integrated in design tools and helps to speed up the design process. We
investigate such techniques in Sect. 9.4.

Compatibility and substitutability can be studied at design time under the assump-
tion that services behave as modeled. However, organizations may—deliberately or
accidently—implement a different service or services may evolve over time. As a
result, the real service behavior deviates from the modeled behavior. The availability
of event logs of the actually implemented service Impl and the existence of the spec-
ified service Spec enables us to check conformance at runtime; that is, we investigate
to what extent “the real Impl” deviates from Spec. In Sect. 9.5, we present techniques
for offline conformance checking (diagnosis of deviations based on historic event
data) and online conformance checking (generating alerts the moment a deviation
occurs).

Section 9.6 concludes the chapter by summarizing our main findings and by dis-
cussing open research challenges.

218 C. Stahl and W.M.P. van der Aalst

9.2 Formalizing Service Behavior

Petri nets have proven to be successful for the modeling of business processes and
workflows [8, 11]. In this section, we introduce our modeling formalism for ser-
vices, open nets. We focus on service behavior, and abstract from nonfunctional
properties, semantical information, and data. As the formalism of open nets refines
place/transition Petri nets, we first provide the basic definitions on Petri nets.

9.2.1 Basic Definition on Petri Nets

A Petri net [46] consists of two kinds of nodes, places and transitions, and a flow rela-
tion on nodes. Whilst transitions represent dynamic elements, for example an activity
in a service, places represent static elements, such as causality between activities or
an interface port. Graphically, a circle represents a place, a box represents a transi-
tion, and the directed arcs between places and transitions represent the flow relation.
A state of the Petri net is represented by a marking. A marking is a distribution of
tokens over the places. Graphically, a black dot represents a token.

Definition 9.1 (Net). A net N = (P, T, F,m N ,Ω) consists of

• a finite set P of places,
• a finite set T of transitions such that P and T are disjoint,
• a flow relation F ⊆ (P × T) ∪ (T × P),
• an initial marking m N , where a marking m ∈ B(P) is a multiset over P , and
• a set Ω of final markings.

A labeled net is a net N together with an alphabet A of actions and a labeling
function l ∈ T → A ∪ {τ }, where τ /∈ A represents an invisible, internal action.

Let x ∈ P ∪ T be a node of a net N . As usual, •x = {y | (y, x) ∈ F} denotes
the preset of x and x• = {y | (x, y) ∈ F} the postset of x . We interpret presets and
postsets as multisets when used in operations also involving multisets.

A marking m ∈ B(P) is a multiset over the set P of places; for example, [p1, 2p2]
denotes a marking m with m(p1) = 1, m(p2) = 2, and m(p) = 0 for p ∈ P \
{p1, p2}. We define + and − for the sum and the difference of two markings and
=,<,>,≤,≥ for comparison of markings in the standard way. If m1 ∈ B(P1) and
m2 ∈ B(P2), then m1 + m2 ∈ B(P1 ∪ P2) (i.e., the underlying set of elements is
adjusted when needed).

The behavior of a net N relies on changing the markings of N by firing transitions

of N . A transition t ∈ T is enabled at a marking m, denoted by m
t−→ , if for all

p ∈ •t , m(p) > 0. If t is enabled at m, it can fire, thereby changing the marking m

to a marking m′ = m − •t + t•. The firing of t is denoted by m
t−→ m′; that is, t is

enabled at m and firing it results in m′.

9 Behavioral Service Substitution 219

The behavior of N can be extended to sequences: m1
t1−→ . . .

tk−1−−→ mk is a run

of N if for all 0 < i < k, mi
ti−→ mi+1. A marking m′ is reachable from a marking

m if there exists a (possibly empty) run m1
t1−→ . . .

tk−1−−→ mk with m = m1 and
m′ = mk ; for w = 〈t1 . . . tk−1〉, we also write m

w−→ m′. Marking m′ is reachable
if m N = m. The set MN represents the set of all reachable markings of N , and the
set of runs of N from the initial marking to a final marking is Ru(N) = {w ∈ T ∗ |
∃mf ∈ Ω : m N

w−→ mf }.
In the case of labeled nets, we lift runs to traces: If m

w−→ m′ and v is obtained
from w by replacing each transition by its label and removing all τ -labels, we write
m

v⇒m′. For example, if w = 〈t1, t1, t2, t1, t2, t3〉, l(t1) = a, l(t2) = τ , and l(t3) = b,
and m

w−→ m′, then m
v⇒m′ with v = 〈a, a, a, b〉. We refer to v as a trace whenever

m N
v⇒mf with mf ∈ Ω and Tr(N) = {σ ∈ A∗ | ∃mf ∈ Ω : m N

σ⇒mf } is the set
of all traces of N .

A net N is bounded if there exists a bound b ∈ IN such that for all reachable
markings m ∈ MN and p ∈ P , m(p) ≤ b. A reachable marking m /∈ Ω of N is a
deadlock if no transition t ∈ T of N is enabled at m. Net N is deadlock free if at
least one transition of N is enabled at every reachable non-final marking.

9.2.2 Open Nets

A service consists of a control structure describing its behavior and an interface to
communicate asynchronously with other services. Thereby an interface consists of a
set of input and output ports. In order that two services can interact with each other,
an input port of the one service has to be connected with an output port of the other
service. These connected ports then form a channel.

The control structure of a service can be adequately modeled as a net. We use the
set of final markings of a net to model the states, in which a service may successfully
terminate. In addition, it is necessary to model ports. To this end, we add an interface
to our model. The service interface is reflected by two disjoint sets of input and
output places. Thereby, each interface place corresponds to a port. An input place
has an empty preset and is used for receiving messages from a distinguished channel,
whereas an output place has an empty postset and is used for sending messages
via a distinguished channel. In the model, we abstract from data and identify each
message by the label of its message channel. The resulting service models are open
nets [28, 53].

Definition 9.2 (Open net). An open net N is a tuple (P, T, F,m N , I, O,Ω) with

• (P ∪ I ∪ O, T, F,m N ,Ω) is a net such that P , I , O are pairwise disjoint;
• for all p ∈ I ∪ O , m N (p) = 0, and for all m ∈ Ω and p ∈ I ∪ O , m(p) = 0;
• the set I of input places satisfies for all p ∈ I , • p = ∅; and
• the set O of output places satisfies for all p ∈ O , p• = ∅.

220 C. Stahl and W.M.P. van der Aalst

t1

p1

s

b

e

c

n

t2

p2

t3

t4
t5 t6

p3

t7

p4

t8

p5

t9

p6

t10

p8

s

b

e

c

n

t11 t12

t13

p7

t14

p9

t15

p10 p11

p13

s

b

e

c

n

t16 t17

t18
p12

t19

t20

(a) (c)(b)

Fig. 9.3 Open nets modeling a customer (ΩC = {[p1], [p4]}) and two translation services
(ΩT = {[p5], [p8]} and ΩB = {[p9], [p13]}). a Customer NC . b Translator NT . c Translator NB

If I = O = ∅, then N is a closed net. The net inner(N) results from removing
the interface places and their adjacent arcs from N . Two open nets are interface
equivalent if they have the same sets of input and output places.

A closed net can be used to model a service choreography, whereas the inner of
an open net reflects the interior of a service. Graphically, we represent an open net
like a net with a dashed frame around it. The interface places are depicted on the
frame.

Figure 9.3 depicts our running example. It is a simplified (behavioral) model of a
translation service. The example is inspired by the translation APIs offered by Bing
and Google. The service in Fig. 9.3b receives a text file that must be translated. Our
example allows customers to send a small or a large file, modeled by messages s
and b, respectively. Depending on the pricing model used, the service asks for a
cheap or a normal price (messages c and n). Sometimes the service may not work
properly, for example, if too many requests are sent. In this case, the service sends
an error message e. After having successfully translated a text file, the service enters
a final state. In addition, also the initial state is a final state to allow customers to
stop at any time if the translation service does not work properly. Figure 9.3a depicts
the open net of a customer who may send small and large file and, in the case of an
error, may send the file again or terminate (final marking [p1]).

Communication between two services takes place by connecting pairs of ports
using a channel and exchanging messages via these channels. We model this by
composing the respective open nets, thereby merging shared interface places and turn
these places into internal places. Such a merged interface place models a channel and
a token on such a place corresponds to a pending message in the respective channel.

For the composition of open nets, we assume that the sets of transitions are pairwise
disjoint and that no internal place of an open net is a place of any other open net. In
contrast, the interfaces intentionally overlap. We require that all communication is

9 Behavioral Service Substitution 221

Fig. 9.4 Open net modeling
a contract

t8

p5

t9

p6

t10

p8

s

b

e

c

n

t11 t12

t13

t1

p1

t2

p2

t3

t4
t5 t6

p3

t7

p4

p7

bilateral and directed; that is, every shared place p has only one open net that sends
into p and one open net that receives from p. We refer to open nets that fulfill these
properties as composable.

Definition 9.3 (Open net composition). Open nets N1 and N2 are composable
if (P1 ∪ T1 ∪ I1 ∪ O1)∩ (P2 ∪ T2 ∪ I2 ∪ O2) = (I1 ∩ O2)∪ (I2 ∩ O1). The com-
position of two composable open nets N1 and N2 is the open net N1 ⊕ N2 =
(P, T, F,m N , I, O,Ω) where

• P = P1 ∪ P2 ∪ (I1 ∩ O2) ∪ (I2 ∩ O1);
• T = T1 ∪ T2;
• F = F1 ∪ F2;
• m N = m N1 + m N2 ;
• I = (I1 ∪ I2) \ (O1 ∪ O2);
• O = (O1 ∪ O2) \ (I1 ∪ I2); and
• Ω = {m1 + m2 | m1 ∈ Ω1 ∧ m2 ∈ Ω2}.

Ignoring the dotted line along the former interface places, Fig. 9.4 shows the
composition of the two open nets NC and NT of Fig. 9.3.

Open net composition models asynchronous message passing. Asynchronous
message passing means that communication is nonblocking; that is, after a service
has sent a message it can continue its execution and does not have to wait until this
message is received. Furthermore, messages can ‘overtake’ each other; that is, the
order in which the messages are sent is not necessarily the order in which they are
received.

We want the composition of a set of services to be compatible. There exist a
multitude of compatibility notions in the literature, making it is impossible to list
them all. However, almost all of these notions can be classified into three dimensions:

• the composition terminates (e.g., deadlock freedom or the possibility to always
reach a final marking, i.e., weak termination);
• the composition fulfills a scenario (e.g., a client must always pay by credit card);

and

222 C. Stahl and W.M.P. van der Aalst

• the communication schema used by the composition (beside asynchronous
communication following the idea of SOA, in practice also synchronous, queued,
or mixed communications are implemented).

Throughout this chapter, compatibility refers deadlock freedom or weak termina-
tion. It will always be clear from the context, which of the two notions we consider.
Compatibility is only of interest for a service choreography, which is modeled by a
closed net. A user that communicates with a service, such that the composition is
compatible, can also be seen as a controller of the service. In addition, we restrict
ourselves to finite state services—more precisely, a composition with a controller
must be bounded. The motivation for this restriction is that we model the control
flow of service compositions and assume finitely many control states and a (finite)
capacity of the message channels. For a reasonable concept of a service, we assume
the inner of an open net, modeling the service interior, to be finite state. To ensure
boundedness in the composition, controllers must not send a message if there the
bound in the respective message channel has been reached already. Technically, this
enforces that the composition has a finite number of reachable states. Pragmatically,
it could either represent a reasonable buffer size in the middleware—for example, the
result of a static analysis of the communication behavior of a service—or be chosen
sufficiently large.

Definition 9.4 (Controllability). An open net C is a controller of an open net N if
the composition N ⊕ C is closed, compatible (i.e., deadlock free or weakly termi-
nating), and bounded. If such a C exists, then N is controllable.

If N is not controllable, then N is obviously ill-designed because it cannot properly
interact with any other open net.

The contract in Fig. 9.4 is closed, 1-bounded, and weakly terminating (i.e., it
is always possible to reach a final marking). As a consequence, open net NC is a
controller of open net NT , and vice versa.

Later in this chapter, we want to analyze the behavior of a service modeled as
an open net. The behavior of an open net is basically the reachability graph of its
inner. To highlight which transitions are sending and receiving actions and which
are only internal actions, we label each transition of an open net. The idea is to
add to each transition adjacent to an interface place the respective place label and
to all other transitions the label τ (denoting the internal action). To simplify the
labeling, we restrict ourselves to open nets where each transition is connected to at
most one interface place. We refer to those open nets as elementary communicating.
That way, a transition is labeled by a single label rather than a set. This restriction is
not significant as every open net can be transformed into an equivalent elementary
communicating open net [28]. The respective inner is a labeled net to which we refer
as the synchronous environment.

The behavior of an open net N can now be defined by the reachability graph
RG(envs(N)) of its synchronous environment. This graph has reachable markings

Menvs (N) as its nodes and a l(t)-labeled edge from m to m′ whenever m
t−→ m′.

9 Behavioral Service Substitution 223

Fig. 9.5 Synchronous envi-
ronment of the customer and
its reachability graph. Symbol
“?” denotes a receiving and
“!” a sending event of NC .
a envs(NC). b RG(envs(NC))

t1

p1

sb

e

cn

t2

p2

t3

t4
t5 t6

p3

t7

p4

τ

τ
?n ?c?e

[p1]

[p2]

[p3] [p4]τ

!s !b

τ

(a) (b)

Figure 9.5 depicts the synchronous environment envs(NC) of the customer service
and its behavior described by the reachability graph of envs(NC).

We introduced open nets as a formal model for service behavior. Open nets can
be used to model service compositions, asynchronous communication, and proper
termination. Open nets abstract from data and identify each message by the label of
its message channel. This abstraction is necessary, because the analysis techniques
that shall be introduced in the forthcoming sections are only applicable for finite
state models. However, our approach allows to deal with finite data domains as those
domains can be unfolded—for example, if a message returns a Boolean, then we
could unfold this domain yielding two channels, one for exchanging value true and
the other for value false. There also exist techniques to derive a finite abstraction from
an infinite data domain, but they are out of scope for this chapter. To simplify our
analysis techniques, open nets also abstract from time information. Moreover, open
nets are a well-suited model for service behavior due to their link to workflows [8].
Nevertheless, also other modeling techniques have been successfully applied, for
example, transition systems, finite automata, process algebra, and session types.

9.3 Service Substitution

In this section, we formalize multiparty contracts, introduce two substitutability
notions and algorithms to decide these notions, and present variants of service sub-
stitution.

9.3.1 Multiparty Contracts and Accordance of Services

The service-oriented paradigm enables enterprises to publish their services via
the Internet. These services can then be automatically found and used by other
enterprises. However, this approach has not become accepted in practice, mainly
because enterprises usually cooperate only with enterprises they already know. There-

224 C. Stahl and W.M.P. van der Aalst

fore, in practice, a more pragmatic approach is used instead. The parties that will par-
ticipate in an interorganizational cooperation specify together an abstract description
of the overall service. This description is a choreography. The choreography consists
of a set of activities. Each activity is assigned to one party. A connection between
two activities is either internal—that is, both activities belong to the same party—or
external—that is, both activities belong to different parties. A party’s share of the
choreography (i.e., its public view) is then the projection of the choreography to the
party’s activities. The choreography serves as a common contract among the parties
involved in the cooperation.

The challenge of the contract approach is to balance the following two conflicting
requirements: On the one hand, there is a strong need for coordination to optimize
the flow of work in and among the different parties. On the other hand, the parties
involved in the cooperation are essentially autonomous and have the freedom to
create or modify their services at any point in time. Furthermore, the parties do not
want to reveal their trade secrets. Therefore, it has been proposed to use a contract
that defines “rules of engagement” without describing the internal services executed
within each party [2, 13].

After the parties have specified the contract, each party will implement its public
view on its own. The implementation, the private view, will usually deviate signif-
icantly from its public view. Obviously, these local modifications have to conform
to the agreed contract. This is, in fact, a nontrivial task, because it may cause global
errors, such as deadlocks. As all parties are autonomous, none of them owns the
overall service (i.e., the implemented contract). Therefore, none of the parties can
verify the overall service. As a result, an approach is needed such that each party can
check locally whether its private view guarantees global correctness of the overall
service.

The basic idea of the contract approach can be seen in Fig. 9.2. The starting point
is the specification on the top left which serves as a contract. It is partitioned into
four parties, each illustrated as a fragment of the specification. By substituting each
fragment by its implementation, we obtain the implementation on the top right.

Basically, we see a contract as a closed net N , where every transition is assigned to
one of the involved parties X1, . . . , Xk . We impose only one restriction: If a place is
accessed by more than one party, it should act as a directed bilateral communication
place. This restriction reflects the fact that a party’s public view of the contract is a
service again. A contract N can be cut into parts N1, . . . , Nk , each representing the
agreed public view of a single party Xi (1 ≤ i ≤ k). Hence, we define a contract as
the composition of the open nets N1, . . . , Nk .

Definition 9.5 (Multiparty contract). Let X = {X1, . . . , Xk} be a set of parties.
Let {N1, . . . , Nk} be a set of pairwise interface compatible open nets such that
N = N1 ⊕ · · · ⊕ Nk is a closed net. Then, N is a contract for X . For i = 1, . . . , k,
open net Ni is the public view of Xi in N .

9 Behavioral Service Substitution 225

Figure 9.4 shows a multiparty contract involving only two parties: a customer and
a translation service. The dotted line is used to divide the composition into the two
shares, open nets NC and NT .

As previously mentioned, we want that every party involved in the contract can
independently substitute its public view Ni with a private view N ′i . Clearly, this
substitution should not violate compatibility of the contact. Informally spoken, all
the other services forming the environment of Ni must not distinguish between Ni

and N ′i . This can be achieved if every controller of Ni is also a controller of N ′i . This
relation between the two open nets forms a refinement relation to which we refer as
accordance.

Definition 9.6 (Accordance). Let Spec and Impl be interface equivalent open nets.
Open net Impl accords with open net Spec, denoted by Impl �acc Spec, if every
controller C of Spec is also a controller of Impl.

The main result for multiparty contracts is that each party can substitute its public
view by a private view independently. If each of the private views accords with
the corresponding public view, then compatibility (here deadlock freedom) of the
implemented contract is guaranteed.

Theorem 9.7 (Implementation of a contract). Let N be a contract between parties
{X1, . . . , Xk} where N is compatible. If, for all i ∈ {1, . . . , k}, N ′i accords with Ni ,
then N ′ = N ′1 ⊕ · · · ⊕ N ′k is compatible.

Figure 9.3c depicts a private view NB of the translation service NT . This service
implements a more concrete pricing model compared to NT : Translating a small file
is cheap whereas for large files a normal price is asked for. If we consider deadlock
freedom as a compatibility notion, then NB accords with NT . With Theorem 9.7, we
conclude that substituting NT by NB preserves deadlock freedom. Next we show,
how we can decide accordance for two open nets.

9.3.2 Deciding Accordance Using Operating Guidelines

An algorithm to decide accordance for two open nets Spec and Impl must decide
whether every controller of Spec is also a controller of Impl. As an open net has
potentially infinitely many controllers, we must check inclusion of two infinite sets.
For deadlock freedom, we can overcome this problem, because the set of all con-
trollers of open nets can be represented in a finite manner using a data structure called
operating guideline [28].

An operating guideline OG(N)of a service N describes how a user should success-
fully communicate with N ; technically, it characterizes the behavior of the possibly
infinite set of controllers of N in a finite manner. It is based on the observation that
there exists a behavior that has the least restrictions, the most permissive behavior.
The most permissive behavior is a deterministic transition system TS∗ and serves as

226 C. Stahl and W.M.P. van der Aalst

(a) (b)

Fig. 9.6 Operating guidelines for the two translator services. Symbol ∗ is a short hand for every
element of the alphabet. a OG(NT). b OG(NB)

the first ingredient for our operating guideline. Every behavior of any controller is
then just a restriction of TS∗. We can specify those restrictions by annotating every
state of TS∗ with a Boolean formula, specifying which of the outgoing transitions
must be present. Thus, a literal of such a Boolean formula is a transition label of N
or the literal final, specifying that N is in a final state. The Boolean formula are the
second ingredient of an operating guideline. Technically, an operating guideline is
an annotated automaton.

Figure 9.6a shows the operating guideline of open net NT . It is a finite automaton
with five annotated states and can be read as follows. Initially, a controller of NT

either sends a (small or large) file or is in a final state. After sending for example,
a small file (state q2), the controller must be able to receive messages e, c, and n.
The conjunction thereby emphasizes that any of these three messages can be sent
and hence has to be received. Receiving e yields the initial state; receiving any of the
other messages yields state q4, where the controller must terminate. State q∅ denotes
a nonreachable state: It does not harm if a controller can receive more messages than
the service will send. For example, initially NT will not send the translated file but
it is not wrong if a controller can receive such a message.

To determine whether an open net C is a controller of an open net N , we check
whether the behavior TSC = RG(envs(C)) of C matches with the operating guide-
line of N . Matching consists of two steps. First, we check whether TSC is a potential
restriction of TS∗ by applying a procedure similar to a weak simulation relation—
the difference is, whenever a τ -labeled transition can be performed in TSC , then TS∗
remains in the same state. Second, for each pair (qC , q∗) of states in the relation, we
verify whether the outgoing transitions of qC and the information whether qC is a
final state or not evaluate the Boolean formula φ assigned to q∗ to true. That way,
we check whether TSC is a valid restriction of TS∗.

Matching the behavior of the customer NC with the operating guideline of NT

yields relation {([p1], q1), ([p2], q2), ([p2], q3), ([p3], q1), ([p4], q1), ([p4], q4)}.
For example, in ([p1], q1), [p1] assigns true to all three literals of φ(q1), thereby
evaluating this formula to true. Similar, in ([p2], q2), [p2] assigns true to all three
literals of φ(q2), thereby evaluating this formula to true. The same holds for all
other elements of this relation, and therefore we conclude that NC matches with
OG(NT)—which must be the case because NC is a controller of NT .

9 Behavioral Service Substitution 227

An operating guideline OG(N) of an open net N is the annotated automaton
that represents all controllers of N [28]. With the operating guidelines OG(Spec)
and OG(Impl) of two open nets Spec and Impl, we can decide whether Impl accords
with Spec.

Theorem 9.8 (Deciding accordance [50]). For open nets Spec and Impl, with oper-
ating guidelines OG(Spec) and OG(Impl), we have that Impl �acc Spec iff there
exists a minimal simulation � of OG(Spec) by OG(Impl) and, for each pair of nodes
(qSpec, qImpl) ∈ �, φ(qSpec) implies φ(qImpl) is a tautology.

Intuitively, the existence of the minimal simulation relation [33] guarantees that
OG(Impl) simulates the behavior of every controller of Spec, and the implication of
the formulae ensures that whenever a service deadlocks with Impl it does so with
Spec. The operating guideline algorithm has been implemented in the tool Wendy [30]
and the accordance check in the tool Cosme [31].

Consider the operating guidelines OG(NT) and OG(NC). The minimal simulation
relation is � = {(q1, r1), (q2, r2), (q3, r3), (q4, r4), (q∅, r∅)}. For each element of �,
the tautology holds; for example, for (q2, r2) we have ?c∧ ?n ∧ ?e implies ?c∧ ?e
is a tautology. Thus, NB accords with NT .

9.3.3 Substitution in a Less Restrictive Setting

One of the main drivers for service evolution is that organizations have to increase
their profit and therefore continuously improve their services. Service improvement
includes figuring out bottlenecks and unprofitable lines of business. On the level of the
service behavior, service improvement leads to restructuring the process. Restructur-
ing may also result in excluding some business functionality. For example, the trans-
lation service may stop offering the translation of large files if this is not profitable.
As a consequence, the improved service may have fewer controllers than the current
service. Thus, another refinement notion than accordance is necessary to cope with
this scenario. To this end, we introduce preservation, a refinement relation in which
the implementation preserves only a subset of the controllers of the specification.

Definition 9.9 (Preservation). Let Spec and Impl be interface equivalent open nets
and C be a set of controllers of Spec. Open net Impl accords with open net Spec
under preservation of C, denoted by Impl �acc,C Spec, if every controller C ∈ C is
also a controller of Impl.

If Impl �acc,C Spec then Impl controls every C ∈ C. This, however, is equivalent
to Impl matches with the operating guideline for any C . For a finite set C, we can rep-
resent the intersection of the individual sets of services represented by these operating
guidelines as one operating guideline. Technically, this operating guideline has the
synchronous product of the underlying transition systems as its structure and to every

228 C. Stahl and W.M.P. van der Aalst

synchronized state we assign the conjunction of the respective Boolean formulae.
The following theorem formalizes the informally sketched decision procedure.

Theorem 9.10 (Deciding preservation [50]). Let Spec and Impl be interface equiv-
alent open nets and C = {C1, . . . ,Ck} be a set of controllers of Spec. Let OG(Ci),
1 ≤ i ≤ k, be the operating guideline of Ci , and let OG⊗ denote the product of all
OG(Ci). Then, Impl �acc,C Spec iff Impl matches with OG⊗.

The limitation of this result is that set C must be finite. However, it is also possible
to constrain the set of controllers of a service by excluding or enforcing certain sce-
narios. The idea is similar: A constraint can be modeled as an (annotated) automaton.
By constructing the product of this automaton and the operating guideline of Spec, we
can constrain the controllers of Spec; see [27, 50]. In addition, [52] shows how certain
activities of a service (i.e., transitions in the respective open net) can be covered.

9.3.4 Accordance in a Purely Service-Oriented Setting

In this section, we investigate service substitution in a purely service-oriented setting
where services are composed from other published services. We want to decide when
a service Spec published by some party can be substituted by a modified version Impl.
Clearly, service Impl must accord with Spec. The actual challenge is that the party
(i.e., a service provider) does not even know in which environment its service is exe-
cuted. To illustrate that this fact matters, consider a closed net N ⊕ N1 ⊕ Spec with
N shares interface places with N1 and Spec but N1 and Spec do not share interface
places. In the contract setting, the provider of Spec knows the public views of N1
and N and hence can substitute Spec by an accordant Impl. In the current setting, the
provider of Spec does not know N nor N1, but the refinement of Spec must be compo-
sitional in the sense that an accordant Impl must guarantee that also the composition
Impl⊕ N accords with Spec⊕ N . This argumentation is more difficult, because the
two latter open nets are not closed. A refinement relation, such as accordance, that
satisfies this property is a precongruence. A precongruence is a preorder such that
if two open nets Spec and Impl are related by the precongruence so are Impl ⊕ N
and Spec ⊕ N for any composable open net N . In contrast, the refinement relation
necessary for ensuring Theorem 9.7, does not need to be a precongruence but only a
preorder. For more details on this setting and a precongruence result for accordance,
we refer to [51].

9.3.5 Service Instance Migration

So far, we have considered service substitution on the level of the service definition.
However, running services may have long running instances. An example is the
service of a life insurance company. A new legal regulation may cause a service to

9 Behavioral Service Substitution 229

change, while instances of this service have been running for decades. In this case,
each running instance of the old service has to be migrated to an instance of the new
service. This problem is known as service instance migration.

Given a running instance in a state qSpec of Spec, instance migration is the task of
finding some state qImpl of Impl such that resuming the execution in state qImpl does
not affect any controller of Spec. We call the transition from qSpec to qImpl a jumper
transition. Clearly, there may be states qSpec for which there does not exist a jumper
transition to a state qImpl. Sometimes it might be necessary to continue the instance
on Spec until a state is reached, where a migration is then possible.

In [26], an algorithm based on operating guidelines has been proposed to calcu-
late jumper transitions for accordance in the case of deadlock freedom. The algo-
rithm has been implemented in the tool Mia. For the translation services NT and
NB , the following pairs (mT ,m B) would be calculated: ([p5], [p9]), ([p6], [p10]),
([p6], [p11]), ([p7], [p12]), and ([p8], [p13]). For example, if the old instance is in
marking [p7], then it can be migrated to marking [p12], thereby ensuring that no
controller of NT is affected by this migration.

9.3.6 Discussion and Related Work

We introduced two refinement relations, accordance and preservation, and a data
structure to decide these relations. The algorithmic solutions are tailored to deadlock
freedom, but in recent (yet unpublished) work the procedure has been lifted to weak
termination. Case studies in [26, 30] show that our approach is applicable for service
models of industrial size. To improve the efficiency of the accordance check, a more
compact operating guideline representation has been proposed in [31]. An operating
guideline can also be encoded as an automaton without annotations, called the max-
imal controller in [34]. This allows for another decision procedure for accordance:
the composition of the maximal controller of service Spec and service Impl must be
deadlock free. Kaschner and Wolf [23] showed that all noncontrollers of a service
can be represented in a finite manner. This result (i.e., controller negation) together
with the product of operating guidelines (i.e, intersection of sets of controllers) and
an emptiness check yields an algebra on sets of controllers that generalizes the tech-
niques for deciding preservation [23]. An approach to tackle preservation for more
general properties has been proposed in [39, 43].

Closest to our work is the work of Vogler [53] who considers a more general notion
of composition. Different refinement relations in a process-algebraic setting have
been investigated, for example, in [17, 20, 25]. The termination criterion is usually
stronger than deadlock freedom but the communication schema is mostly synchro-
nous. Bravetti and Zavattaro [18] consider different communications schemes for
weak termination. Benatallah et al. [16] investigate accordance and preservation in a
synchronous setting and in [44], results for a timed model are presented. Dumas et al.
[19] investigate accordance and preservation using the more expressive π-calculus.

230 C. Stahl and W.M.P. van der Aalst

Instance migration has been studied by many researchers, in particular, in the field
of workflows; see [5, 45, 47] for an overview. For services, several variants of this
problem have been investigated in [49].

9.4 Constructing Substitutable Services

In the previous section, we presented an algorithm to decide for two given open
nets Spec and Impl whether Impl accords with Spec and thus can substitute Spec
without violating any controller of Spec. However, designing Impl is a nontrivial and
error-prone task even for experienced service designers. In order to support service
designers, we introduce an approach to construct open nets that are correct by design.

9.4.1 Approach

Given an open net Spec, we want to incrementally transform Spec to an open net
Impl such that every transformation step preserves accordance by construction. To
this end, fragments of Spec are incrementally substituted by other fragments. In this
approach, a fragment Z of Spec is substituted by another fragment Z ′ yielding the
open net Impl. We prove that if Z ′ accords with Z , then Impl accords with Spec.

An open net Z is a fragment of an open net N if there is an open net Nrest and
the composition of Z and Nrest is the open net N . The set of interface places of Z
is divided into two sets: some interface places of N and some internal places R ∪ S
of N . We use R to denote these input places and S to denote these output places. For
technical reasons, we require that the initial marking of Z is the empty marking and
the set of final markings is the singleton set with the empty marking.

Definition 9.11 (Fragment). Let Z be an open net with m Z = 0 and Ω = {[]}.
Open net Z is a fragment of an open net N if there exists an open net Nrest such that
N = Z ⊕ Nrest.

If an open net N has a fragment Z and there is another fragment Z ′ that accords
with Z , then we can substitute Z by Z ′ without affecting any controller of N . Such
transformations can be applied incrementally and thus refine a service specification to
an implementation by applying transformation steps. The resulting implementation
is correct by construction; that is, it preserves all controllers of the specification.

Theorem 9.12 (Justification [9]). Let N1 ⊕ N2 be a weakly terminating open net
composition. Let Z be a fragment of N1, and let Nrest be an open net such that N1 =
Z⊕Nrest. For any open net Z ′ that accords with Z, the composition (Z ′⊕Nrest)⊕N2
is weakly terminating.

9 Behavioral Service Substitution 231

9.4.2 Transformation Rules

The first three rules correspond to design patterns for extending a service to incorpo-
rate new behavior: (1) adding an internal loop, (2) putting a new internal transition in
parallel with existing transitions, and (3) inserting an internal transition in-between
existing transitions. These rules have been introduced in [5].

We exemplify these rules in Fig. 9.7. Figure 9.7a represents a fragment Z0 of an
open net N . Z0 contains transitions a, b, and c. By Definition 9.11, there are no
other connections of a, b, c, p1 and p2 than those shown in Fig. 9.7a. Each transition
is connected to an input and an output place. However, as indicated by the capital
letters, each interface place may correspond to a set of places. Further, Ai , Ao, Bi , Bo,
Ci , Co do not need to be disjoint. Places R and S denote the input and output places
to N . Again, R and S may be sets of places. Similar remarks hold for the other three
fragments Z1, Z2, and Z3. For example, Z1 is obtained by adding transition d to Z0.

The three transformation rules only add (or remove if applied in reverse direction)
internal transitions of an open net. However, there are also transformation rules that
directly impact the interface behavior. We present four example transformation rules
that affect transitions that are adjacent to an interface place.

Rule 4 is depicted in Fig. 9.8a and specifies that a sequence of receiving transitions
can be merged, and the messages can be sent simultaneously. It is also possible
to reorder a sequence of receiving transitions or to execute them concurrently (not
shown). The same rule holds for a sequence of sending transitions. Rule 5 in Fig. 9.8b
combines sending and receiving transitions. A receiving transition followed by a
sending transition can be executed simultaneously. Due to Rule 4, Rule 5 can be
generalized to a sequence of receiving transitions followed by a sequence of sending
transitions. Rule 6, depicted in Fig. 9.8c, specifies that first sending and then receiving
a message can also be executed concurrently, and vice versa. Rules 4–6 preserve
accordance in both directions.

Ai

Ao

Bi

Bo

Co

Ci

i

o

i

o

o

i

S

R

p2

p1

c

b

a
A

A

B

B

C

C

S

R

p2

p1

c

b

a

d

(b)(a)

p4

p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(c)

p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(d)

Fig. 9.7 Transformation rules to change internal transitions: transition d is added (when applied
left to right) or removed (when applied right to left). a Z0. b Z1: Adding a loop to Z0. c Z2: Putting
transition d in parallel to b. d Z3: Inserting transition d in-between a and b

232 C. Stahl and W.M.P. van der Aalst

a

b

S

R

p

t2

t1 a

b

S

R

t12=

Z4 Z5

a

b

S

R

p

t2

t1 a

b

S

R

t12=

Z6 Z7

p1

p3

t4

a

b

S

R

p

t2

t1

=

Z8

a

b

S

R

p2

t3

t1

Z9

t2

p4

p4

b

d

p2

t4

t2

S

at1

p1

p3

t3

R

c

t5

e

b

d

p2

t4

t2

S

at1

p1

p3

t3

R

c

t5

e

t6

⊆

Z10 Z11

f

t7

f

(a) (b)

(c) (d)

Fig. 9.8 Transformation rules to change interface transitions. a Rule 4: Con(Z4) = Con(Z5).
b Rule 5: Con(Z6) = Con(Z7). c Rule 6: Con(Z8) = Con(Z9). d Rule 7: Con(Z10) ⊆ Con(Z11)

This is in contrast to Rule 7 which specifies a way to add an alternative branch
to a fragment Z10 depicted on the left hand side of Fig. 9.8d. The fragment Z10 first
receives a and then enters either the left or the right branch. In the left (right) branch,
message b(c) is sent, and then message d(e) is received. The fragment M10 can be
transformed into M11 by adding an alternative branch. In this branch, d is received,
and then a message f is sent. Rule 7 preserves accordance in one direction only. The
intuition behind this rule is that a controller of Z10 has to wait for the decision of Z10
which branch it will enter. Otherwise, it could happen that an environment sends d,
but Z10 enters the left branch and waits for message e.

For an overview of all these rules and additional antipatterns, we refer to [9, 10].

9.4.3 Discussion and Related Work

We presented seven accordance-preserving transformation rules. Six of these rules
preserve accordance in both directions and one rule preserves accordance only
in one direction. Although these transformation rules are sound (i.e., correctness

9 Behavioral Service Substitution 233

preserving), they are not complete, meaning they do not cover all possible service
implementations. This is actually the weak point when dealing with transformations.

Refinement of Petri nets has been addressed by many researchers. However, most
of the results require restricted Petri net classes or Petri nets without interfaces. The
Murata rules [38] also maintain accordance, if we consider every input place as a
place with some additional incoming arcs, and every output place as a place with
some additional outgoing arcs. Refinement of places and transitions in Petri nets that
preserves compatibility of the whole net is studied in [53]. These results could be
applied in our setting. Soundness preserving transformation rules have been proposed
in [1, 5, 54]. The rules proposed by Van Hee et al. [22] refine sets of places in service
compositions, but they require additional reachability checks. In [24], the authors
show how the presented rules can be translated into BPEL. That way, BPEL processes
can directly be refined without transforming them into a formal service model.

9.5 Conformance Checking of Services Based on Observed
Behavior

Thus far, we only considered modeled service behavior. For example, we described
requirements linking the public view of one party in the multiparty contract to the
corresponding private view (implementation view). The analysis techniques did not
consider actually observed behavior. However, in the context of services it is often
not realistic to assume that all parties will indeed execute their processes as agreed
upon at design time. Services may have been implemented incorrectly or change
over time. Therefore, we now focus on conformance checking based on events logs
(i.e., recorded behavior).

Process mining is a relatively young research discipline that sits between com-
putational intelligence and data mining on the one hand, and process modeling and
analysis on the other hand. Process mining research resulted in mature conformance
checking techniques and tools that are able to align observed and modeled behavior
[3, 4]. As a result it is possible to detect and quantify deviations.

In the remainder, we first introduce some basic process mining terminology. Then,
we show how event log and model can be aligned. Based on this, we show how
conformance checking techniques can be used to compare observed behavior (i.e.,
event data) with the public view of one or more parties in the multiparty contract.
We also define conformance checking problems in a less restrictive setting where,
from a behavioral point of view, parties may deviate from the contract as long as it
does not harm the overall choreography.

Initially, we focus on conformance checking based on historic data (“offline”
conformance checking). However, all techniques can be applied on-the-fly (“online”
conformance checking); that is, streaming event data can be monitored at runtime
and deviations can be detected immediately.

234 C. Stahl and W.M.P. van der Aalst

9.5.1 Process Mining

Process mining aims to discover, monitor and improve real processes by extracting
knowledge from event logs readily available in today’s information systems [3]. Start-
ing point for process mining is an event log. Each event in such a log refers to an
activity (i.e., a well-defined step in some process) and is related to a particular case
(i.e., a process instance). The events belonging to a case are ordered and can be seen
as one “run” of the process. An event log contains only example behavior; that is, we
cannot assume that all possible runs have been observed. In fact, an event log often
contains only a fraction of the possible behavior.

In this chapter, we define an event log as a multiset of traces. Each trace describes
the life-cycle of a particular case in terms of the activities executed.

Definition 9.13 (Event, Trace, Event log). Let A be a set of activities. σ ∈ A∗ is a
trace, i.e., a sequence of events. L ∈ B(A∗) is an event log, i.e., a multiset of traces.

In this simple definition of an event log, an event refers to just an activity. Often
event logs may store additional information about events. For example, many process
mining techniques use extra information, such as the resource (i.e., person or device)
executing or initiating the activity, the timestamp of the event, or data elements
recorded with the event (e.g., the size of an order). In this paper, we abstract from such
information. An example log is L = [〈b, c〉10, 〈s, e, s, c〉5, 〈s, e, b, n〉5]. L contains
information about 20 cases, e.g., 10 cases followed trace 〈b, c〉. There are 10× 2+
5× 4+ 5× 4 = 60 events in total.

To relate event logs to process models, we use labeled nets. The behavior of such
a model is described by the set Tr(N) of traces which is computed from the set
Ru(N) of runs leading from the initial marking to a final marking; see Sect. 9.2.1 for
a definition.

Figure 9.9c shows the labeled Petri net envs(NB). The set of runs of envs(NB) is the
set Ru(envs(NB))={〈t14, t18〉, 〈t15, t20〉, 〈t14, t16, t19, t15, t20〉, 〈t15, t17, t19, t14, t18〉,
. . .}. Every of these runs starts in [p9] and ends in [p13]. The labeled net in
Fig. 9.9c is weakly terminating, because all partial runs can be extended into a run
in Ru(envs(NB)). If the labeled net has deadlocks or livelocks, then the problematic
traces are simply discarded by Ru(envs(NB)).

Each trace in Tr(envs(NB)) corresponds to one or more runs in Ru(envs(NB)).
A transition t is removed from the sequence if l(t) = τ , otherwise it is replaced by
l(t). Therefore, Tr(envs(NB)) = {〈s, c〉, 〈b, n〉, 〈s, e, b, n〉, 〈b, e, s, c〉, . . .} for the
labeled net in Fig. 9.9c. In Tr(envs(NB)), transitions are mapped onto their corre-
sponding labels and τ transitions are not recorded; that is, t16 and t17 do not leave a
trail in Tr(envs(NB)).

Event logs can be used to discover, monitor and improve services based on obser-
vations rather than hand-made models. There are three main types of process mining:

• Discovery: Take an event log and produce a model without using any other a-priori
information. There are dozens of techniques to extract a process model from raw
event data. For example, the classical α algorithm can discover a labeled net by

9 Behavioral Service Substitution 235

t8

p5

t9

p6

t10

p8

s b

e

c n
t11 t12

t13

p7

τ

(a)

t8

p5

t9

p6

t10

p8

e

t11 t12

t13

p7

τ τ

τ

τ τ

τ

s

b

e

c

n

s

b

c

n

si

bi

eo

co

no

(b)

t14

p9

t15

p10 p11

p13

s b

ec

n

t16 t17

t18
p12

t19

t20

τ τ

(c)

Fig. 9.9 Synchronous and asynchronous environment for open net NT in Fig. 9.3b (Ω =
{[p5], [p8]}) and synchronous environment for open net NB in Fig. 9.3c (Ω = {[p9], [p13]}).
a envs(NT). b enva(NT). c envs(NB)

identifying basic process patterns in an event log [12]. This algorithm takes an
event log L ∈ B(A∗) and produces a labeled net N . For many organizations it is
surprising to see that existing techniques are indeed able to discover real processes
based on merely example executions recorded in event logs. Process discovery is
often used as a starting point for other types of analysis.
• Conformance: An existing process model is compared with an event log of the same

process. For example, an event log L ∈ B(A∗) is compared with the traces of some
labeled net N . Ideally, any trace in L also appears in Tr(N). Conformance checking
reveals where the real process deviates from the modeled process. Moreover, it is
possible to quantify the level of conformance and differences can be diagnosed.
Conformance checking can be used to check if reality, as recorded in the log,
conforms to the model, and vice versa.
• Enhancement: Take an event log and process model and extend or improve the

model using the observed events. Whereas conformance checking measures the
alignment between model and reality, this third type of process mining aims at
changing or extending the a-priori model. For instance, by using timestamps in the
event log one can extend the model to show bottlenecks, service levels, throughput
times, and frequencies [3].

In the remainder, we focus on the second type of process mining: conformance
checking.

9.5.2 Conformance Checking Approaches

Conformance checking techniques investigate how well an event log L ∈ B(A∗) and
a model—in our case a labeled net—fit together. Conformance checking can be done
for various reasons; for example, it may be used to audit processes to see whether
reality conforms to some normative or descriptive model [4, 6, 7, 48]. Deviations

236 C. Stahl and W.M.P. van der Aalst

may point to fraud, inefficiencies, and poorly designed or outdated procedures. In the
services setting, the different parties should operate in accordance with their public
views. Therefore, we elaborate on conformance checking techniques and show how
they can be used to check the conformance of running services.

There are four quality dimensions for comparing model and log: (1) fitness, (2)
simplicity, (3) precision, and (4) generalization [3, 4]. A model with good fitness
allows for most of the behavior seen in the event log. A model has a perfect fitness if
all traces in the log can be replayed by the model from beginning to end. The simplest
model that can explain the behavior seen in the log is the best model. This principle
is known as Occam’s Razor. Fitness and simplicity alone are not sufficient to judge
the quality of a discovered process model. For example, it is very easy to construct an
extremely simple labeled net (“flower model”) that can replay all traces in an event
log (but also any other event log referring to the same set of activities). Similarly,
it is undesirable to have a model that only allows for the exact behavior seen in the
event log. Remember that the log contains only example behavior and that many
traces that are possible may not have been seen yet. A model is precise if it does not
allow for “too much” behavior. Clearly, the “flower model” lacks precision. A model
that is not precise is “underfitting”. Underfitting is the problem that the model over-
generalizes the example behavior in the log (i.e., the model allows for behaviors
very different from what was seen in the log). At the same time, the model should
generalize and not restrict behavior to just the examples seen in the log. A model that
does not generalize is “overfitting”. Overfitting is the problem that a very specific
model is generated whereas it is obvious that the log only holds example behavior
(i.e., the model explains the particular sample log, but there is a high probability that
the model is unable to explain the next batch of cases).

In the remainder, we will focus on fitness. Ideally, all traces in the log correspond
to a possible run of the model.

Definition 9.14 (Perfectly fitting log). Let L ∈ B(A∗) be an event log and let N
be a labeled net. L is perfectly fitting N if {σ ∈ L} ⊆ Tr(N).

Consider the event log L = [〈b, c〉20, 〈s, e, s, c〉10, 〈s, e, b, n〉10]. Clearly, L is
perfectly fitting the labeled net envs(NT) in Fig. 9.9a but it is not perfectly fitting the
labeled net envs(NB) in Fig. 9.9c.

There are various ways to quantify fitness [3, 4, 15, 21, 32, 36, 37, 48], typically
on a scale from 0 to 1, where 1 means perfect fitness. A naive approach would be to
simply count the fraction of fitting traces. However, such an approach is too simplistic
for two reasons:

• Whether traces in the log “almost” fit the model or not is irrelevant for such a
metric. Traces σ1 = 〈e, b, c〉 and σ2 = 〈e, e, e, b, c〉 both do not fit the model in
Fig. 9.9. However, it is obvious that σ1 fits “better” than σ2.
• It is important to also map the non-fitting behavior onto the model in order to do

further analysis (performance analysis, predictions, etc.).

To address these issues, we need to align traces in the event log to traces of the
process model. Some example alignments for L and the labeled net envs(NB) are:

9 Behavioral Service Substitution 237

γ1 =
b c �
b � n

t15 t20

γ2 =
b � � � c
b τ e s c

t15 t17 t19 t14 t18

γ3 =
s � e s c
s τ e s c

t14 t16 t19 t14 t18

γ4 =
s � e b n
s τ e b n

t14 t16 t19 t15 t20

The top row of each alignment corresponds to “moves in the log” and the bottom
two rows correspond to “moves in the model”. There are two bottom rows because
there may be multiple transitions having the same label. If a move in the log cannot
be mimicked by a move in the model, then a “�” (“no move”) appears in the bottom
row. For example, in γ1 the model cannot do the c move. If a move in the model
cannot be mimicked by a move in the log, then a “�” (“no move”) appears in the
top row. For example, all “silent steps” in the model (occurrences of τ transitions)
cannot be mimicked by the event log. Moreover, in γ2 the log did not do an “e move”
whereas the model has to make this move to reach the end. Given a trace in the event
log there may be many possible alignments. The goal is to find an alignment with
the least number of� elements, e.g., γ1 is better than γ2.

To establish an alignment between process model and event log, we need to relate
“moves” in the log to “moves” in the model. However, as shown, there may be
some moves in the log that cannot be mimicked by the model, and vice versa. For
convenience, we introduce the set AL = A ∪ {�} where x ∈ AL \ {�} refers to
“move x in log” and�∈ AL refers to “no move in log”. Similarly, we introduce the
set AM = {(a, t) ∈ A× T | l(t) = a} ∪ {�} where (a, t) ∈ AM refers to “move a
in model” and�∈ AM refers to “no move in model”.

One step in an alignment is represented by a pair (x, y) ∈ AL × AM such that

• (x, y) is a move in log if x ∈ A and y =�,
• (x, y) is a move in model if x =� and y ∈ AM \ {�},
• (x, y) is a move in both if x ∈ A and y ∈ AM \ {�}, and
• (x, y) is an illegal move x =� and y =�.

AL M = {(x, y) ∈ AL × AM | x �=� ∨ y �=�} is the set of all legal moves.
Let σL ∈ L be a trace in the event log and let σM ∈ Ru(N) be a run from the

initial to a final marking of labeled net N . An alignment of σL and σM is a sequence
γ ∈ AL M

∗ such that the projection on the first element (ignoring �) yields σL

and the projection on the second element (again ignoring � and only considering
transitions and not the corresponding labels) yields σM . Consider again the four
example alignments based on the labeled net envs(NB). We represent the moves
vertically, e.g., the first move of γ1 is (b, (b, t15)) indicating that both the log and the
model make a b move. γ1 is an alignment of σL = 〈b, c〉 and σM = 〈t15, t20〉. γ2 is
an alignment of σL = 〈b, c〉 and σM = 〈t15, t17, t19, t14, t18〉.

To qualify the quality of an alignment, one can define a distance function on
legal moves: δ ∈ ALM → IN . The distance function associates costs to moves in an
alignment:

238 C. Stahl and W.M.P. van der Aalst

• δ(a,�) is the cost of “move a in log” (with a ∈ A),
• δ(�, (b, t)) is the cost of “move b in model” (with t ∈ T and l(t) = b), and
• δ(a, (b, t)) is the cost of “move a in log and move b in model” (with a ∈ A, t ∈ T

and l(t) = b).

Distance function δ can be generalized to alignments by taking the sum of the costs
of all individual moves: δ(γ) =∑

(x,y)∈γ δ(x, y).1

We define a standard distance function δS . For a ∈ A, t ∈ T , and b = l(t):
δS(a,�) = 1, δS(�, (b, t)) = 1 if b �= τ , δS(�, (b, t)) = 0 if b = τ ,
δS(a, (b, t)) = 0 if a = b, and δS(a, (b, t)) = ∞ if a �= b. Only moves where
log and model agree on the activity or internal τ moves of the model have no asso-
ciated costs. Moves in just the log or model have cost 1. δS associates high costs
to moves where both log and model make a move but disagree on the activity. In
“δS(a, (b, t)) = ∞”,∞ should be read as a number large enough to discard the align-
ment (see below). Using the standard distance function δS : δS(γ1) = 2, δS(γ2) = 2
(note that the move in model involves a τ transition), δS(γ3) = 0, and δS(γ4) = 0.
So the sum of the costs is δS(γ) = 4 for envs(NB) and δS(γ) = 0 for envs(NT)

(because L is a perfectly fitting log for envs(NT)). Note that δS is just an example;
various cost functions can be defined.

Thus far we considered a specific run (from the initial to a final marking) in the
model. However, our goal is to relate traces in the model to the best matching run in the
model. Therefore, we define the notion of an optimal alignment. Let σL ∈ L be a trace
in event log L and let N be a labeled net. �σL ,N = {γ ∈ AL M

∗ | ∃σM∈Ru(N) γ is an
aligment of σL and σM }. An alignment γ ∈ �σL ,N is optimal for log trace σL ∈ L
and model N if for any γ′ ∈ �σL ,N : δ(γ′) ≥ δ(γ).

If R(N) is not empty, there is at least one (optimal) alignment for any given
log trace σL . However, there may be multiple optimal alignments for σL . Since our
goal is to align traces in the event log to traces of the model, we deterministically
select an arbitrary optimal alignment. Therefore, we can construct a function λM that
provides an “oracle”: Given a log trace σL , λM produces one best matching run from
the initial to a final marking and hence to a best matching trace λM (σL) ∈ Tr(N). In
[14, 15], various approaches are given to create an optimal alignment with respect to
some predefined distance function. These approaches are based on the A∗ algorithm;
that is, an algorithm originally invented to find the shortest path between two nodes
in a directed graph. The A∗ algorithm can be adapted to find an optimal alignment
between model and log. The process mining framework ProM supports various
techniques to create such an alignment and use this for conformance checking and
other types of log-based analysis [4].

The alignments produced by the “oracle” λM can be used to quantify fitness
(typically a number between 0 and 1). If a trace appears multiple times in the event
log, the associated costs are also counted multiple times. Moreover, once an optimal
alignment has been established for every trace in the event log, these alignments can

1 Summation is generalized to sequences; that is, if the same step occurs k times in γ its costs are
counted k times.

9 Behavioral Service Substitution 239

be used as a basis to quantify precision and generalization [4, 37]. Such alignments
are also a prerequisite for other types of analysis (e.g., performance analysis) [3].

In the remainder, we assume a function conf that computes the fitness of an event
log and a model based on an optimal alignment; that is, conf (L,N) yields a number
between 0 (poor fitness) and 1 (perfect fitness).

9.5.3 Conformance Checking of the Public View

Earlier we defined a multiparty contract as a set of pairwise interface compatible open
nets {N1, . . . , Nk} such that N = N1⊕· · ·⊕Nk is a closed net. Each of the open nets
Ni represents the public view of one of the parties. Party i can substitute its public
view Ni by a private view N ′i . N ′i may refine Ni but may also change the ordering of
some of the activities (see Fig. 9.8). However, ideally, the environment of Ni must
not distinguish between Ni and N ′i .

For conformance checking, we need to compare observed behavior (i.e., recorded
events in some log L) with modeled behavior (Ni or N ′i). In order to align observed
behavior and modeled behavior, we need as input an event log L ∈ B(A∗) and a
labeled net N = (P, T, F,m N ,Ω, l). We cannot simply take some public view Ni

as input for conformance checking. The public view is an open net with input places
I and output places O . Transitions consuming from I are dead when checking the pri-
vate view Ni in isolation. Tokens produced on places in O cannot be removed by Ni .
Hence, Tr(Ni) cannot contain sequences involving interface transitions. Moreover,
events need to be related to transitions rather than places.

This triggers the question “What kinds of events can be observed?”. Obviously,
relevant events are related to the interface places I ∪ O . However, given the asyn-
chronous nature of open nets, we can take two viewpoints depending on what/when
events are actually recorded.

If events are recorded when party i consumes a message from I or produces a
message for O , then we can use the synchronous environment envs(Ni) of Ni . As
before, we assume (without loss of generality) that a transition is connected to at
most one interface place.

However, the environment of party i may be unable to see when a message is
consumed from I or produced for O . For example, the environment can put a token
in input place p ∈ I , but this does not imply that the token is immediately consumed
by party i . Hence, we can only record the event of producing a token for input
place p, but not the actual consumption. To this end, we construct the asynchronous
environment enva(N) of an open net N by adding to each interface place p of N a
p-labeled transition in enva(N) and renaming the place p to pI (pO) if p is an input
(output) place in N . Figure 9.9b illustrates this construction for open net NT .

To illustrate the difference between both types of environments, consider Fig. 9.9
showing the synchronous environment envs(NT) and the asynchronous environment
enva(NT) for public view NT in Fig. 9.3b. Which of the two labeled nets is most
suitable, depends on the events that are recorded. Consider for example a message

240 C. Stahl and W.M.P. van der Aalst

passed via input place s. If the event of consuming a message from interface place s
is recorded, then envs(NT) is more suitable. If the event of producing a message for
interface place s is recorded, then enva(NT) is more suitable.

The choice of environment matters. Consider for example trace 〈s, b, e, c〉 which
is impossible according to envs(NT) but allowed by enva(NT). For any labeled net N :
Tr(envs(N)) ⊆ Tr(enva(N)); that is, the asynchronous environment allows for more
behavior and will be more “forgiving” under conformance checking. However, the
proper choice of environment depends on what is actually logged. In the remainder,
we will often abstract from these subtle differences and simply write env(N).

Definition 9.15 (Public view conformance). Let N = N1⊕· · ·⊕Nk be a multiparty
contract and i ∈ {1, . . . , k} is one of the parties with public view Ni and event log
Li . con f (Li , env(Ni)) is the public view conformance for party i .

This discussion thus far assumed that the environment of party i wants to check
whether i conforms to its public view Ni . However, it is also possible to reverse roles
in the multiparty contract N = N1 ⊕ · · · ⊕ Nk and check whether the partners of i
conform to N−1

i = ⊕
j �=i N j . Depending what is actually logged on the interface

between i and the other parties, one can use synchronous environment envs(N−1
i)

or asynchronous environment enva(N−1
i).

Once an event log L and suitably labeled net N (e.g., envs(Ni), enva(Ni),
envs(N−1

i), or enva(N−1
i)) have been determined, we can align each trace in the

log with the best fitting execution path of the service(s) under investigation. As
discussed earlier, such an alignment can be used to compute a conformance value
con f (L , N).

9.5.4 Conformance Checking of the Private View

In the previous section, we showed that it is possible to check whether the observed
behavior of party i (or its collaborators) is consistent with the behavior specified in
the multiparty contract. However, such a check may be too strict in a services setting.

Theorem 9.7 shows that each party can substitute its public view Ni by a private
view N ′i as long as N ′i accords to Ni . Rules 4, 5 and 6 in Fig. 9.8 illustrate that the
notion of accordance is different from classical equivalence notions (e.g., trace equiv-
alence). Parties may reorder activities without necessarily jeopardizing accordance.
Therefore, it may be inappropriate to directly compare the observed behavior with
the contract composed of public views. One party may have changed its behavior
without jeopardizing compatibility. Therefore, we can also try to check conformance
using some private view N ′i rather than the public view Ni .

Definition 9.16 (Private view conformance). Let N = N1 ⊕ · · · ⊕ Nk be a
multiparty contract and i ∈ {1, . . . , k} is one of the parties with public view Ni

and event log Li .

9 Behavioral Service Substitution 241

• P(Ni) = {N | N �acc Ni } is the set of all private views that accord with Ni ,
• N ∈ P(Ni) is a best matching private view for Ni and Li if for any N ′ ∈ P(Ni):

con f (Li , env(N)) ≥ con f (Li , env(N ′)),
• con f (Li , env(N)) is the private view conformance for party i where N ∈ P(Ni)

is a best matching private view for Ni and Li .

Definition 9.16 cannot easily be transformed into an algorithm. The process min-
ing tool ProM provides excellent support for computing optimal alignments between
log and model while allowing a variety of distance functions [4, 15]. However, there
may be many (if not infinitely many) private views that accord with Ni . Definition
9.16 provides a well-defined conformance notation that can be parameterized with
different compatibility notions (e.g., deadlock freedom versus weak termination)
and different environments (e.g., envs(N) or enva(N)). First results to select a best
matching private view have been presented in [35].

9.5.5 Beyond Conformance Checking

Conformance can computed by establishing an optimal alignment between an event
log and a service model (public view or best matching private view). Moreover, such
an alignment can also be used for various other purposes. If conformance is good,
alignments will have a high proportion of “move in both” steps. This means that
attributes of events can be mapped onto model elements. For example, in most event
logs each event has a timestamp. These timestamps can be mapped onto transitions
in the corresponding Petri net and can be used to compute how much time tokens
spend in places. Since log and model are aligned, waiting times, response times,
and service times can be measured easily. This may be used to discover bottlenecks,
analyze service-level-agreements, etc. Some logs also contain information about
costs, resource usage, errors, etc. Attributes at the level of individual events—just
like timestamps—can be associated to model elements using the “move in both” steps.

In this section, we focused on offline conformance checking. For example, we
assume a model Ni and an event log Li containing historic data. However, align-
ments can be computed on-the-fly; that is, even partially executed traces can be
aligned with a model (partial alignments do not need to end in a final marking, but
a final marking should remain reachable). This enables online conformance check-
ing; that is, streaming event data can be monitored at runtime and deviations can be
detected immediately. Similarly, partially aligned traces can be used for predictions
and recommendations at runtime. For example, for a partially handled case we can
predict the remaining flow time, predict the probability of a deviation, or recommend
a next activity that minimizes costs [3].

242 C. Stahl and W.M.P. van der Aalst

9.6 Conclusion

The shift toward service-oriented systems enables enterprises to decompose their
systems into several smaller services. That way, service orientation enables for faster
changes, because an individual service can be substituted by another service rather
than changing the overall system. Service substitution, however, also imposes new
challenges as it should not effect compatibility of the overall system. As systems may
be distributed over several enterprises, system correctness has to be derived from the
correctness of its parts, which is nontrivial.

In this chapter, we have surveyed service substitution at design time and at run-
time, thereby restricting ourselves to the service behavior. We have investigated this
problem on the level of service models. For design-time support, we introduced sev-
eral variants of service substitution and illustrated that the problem is parameterized
w.r.t. the compatibility notion used. To decide that a service Impl can substitute a
service Spec, we must compare the infinitely many admissible contexts of Spec and
Impl. We proposed decision algorithms based on a finite representation of these sets.
In addition, we proposed rules to construct substitutable services that are correct by
design. Research challenges are to generalize these techniques to other compatibility
notions and, in addition, to incorporate data, time, and resources. Other directions
are diagnosing why a service cannot serve as a substitute and ideally propose how it
can be repaired.

In this chapter, we did not limit ourselves to comparing models of services but also
considered the actual behavior recorded in message and transaction logs. The actual
service implementation may deviate from its model or the behavior of a service may
change over time. We showed that conformance checking techniques can be used to
detect and diagnose deviations between observed service behavior (i.e., event logs)
and modeled service behavior. As shown, we can define conformance at the level of
the public view (contractual level) and at the level of the private view (implementation
level). For the public view, we can apply existing conformance checking techniques.
However, checking conformance with respect to some unknown implementation is
more challenging and requires further research. Moreover, the lion’s share of attention
has gone to fitness analysis whereas the analysis of “underfitting” and “overfitting”
of services is equally important.

References

1. Aalst, W.M.P.v.d.: Workflow verification: finding control-flow errors using Petri-net-based
techniques. In: Business Process Management: Models, Techniques, and Empirical Studies,
LNCS, vol. 1806, pp. 161–183. Springer (2000)

2. Aalst, W.M.P.v.d.: Inheritance of interorganizational workflows: How to agree to disagree
without loosing control? Inf. Technol. Manage. J. 4(4), 345–389 (2003)

3. Aalst, W.M.P.v.d.: Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer, Berlin (2011)

9 Behavioral Service Substitution 243

4. Aalst, W.M.P.v.d., Adriansyah, A., Dongen, B.v.: Replaying History on Process Models for
Conformance Checking and Performance Analysis. WIREs Data Min. Knowl. Disc. 2(2),
182–192 (2012)

5. Aalst, W.M.P.v.d., Basten, T.: Inheritance of workflows: an approach to tackling problems
related to change. Theoret. Comput. Sci. 270(1–2), 125–203 (2002)

6. Aalst, W.M.P.v.d., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.: Conformance checking
of service behavior. ACM Trans. Internet Technol. 8(3), 29–59 (2008)

7. Aalst, W.M.P.v.d., Hee, K., Werf, J.v.d., Verdonk, M.: Auditing 2.0: using process mining to
support tomorrow’s auditor. IEEE Comput. 43(3), 90–93 (2010)

8. Aalst, W.M.P.v.d., Hee, K.M.v.: Workflow Management: Models, Methods, and Systems. The
MIT Press, Cambridge, MA (2004)

9. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From public views to private
views—correctness-by-design for services. In: WS-FM 2007, LNCS, vol. 4937, pp. 139–153.
Springer (2008)

10. Aalst, W.M.P.v.d., Mooij, A.J., Stahl, C., Wolf, K.: Service interaction: patterns, formalization,
and analysis. In: SFM 2009, LNCS, vol. 5569, pp. 42–88. Springer (2009)

11. Aalst, W.M.P.v.d., Stahl, C.: Modeling Business Processes—A Petri Net-Oriented Approach.
The MIT Press, Cambridge, MA (2011)

12. Aalst, W.M.P.v.d., Weijters, A., Maruster, L.: Workflow mining: discovering process models
from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

13. Aalst, W.M.P.v.d., Weske, M.: The P2P approach to interorganizational workflows. In: CAiSE
2001, LNCS, vol. 2068, pp. 140–156. Springer (2001)

14. Adriansyah, A., Dongen, B.F.v., Aalst, W.M.P.v.d.: Towards Robust conformance checking.
In: BPI 2010, LNBIP, vol. 66, pp. 122–133. Springer (2011)

15. Adriansyah, A., Dongen, B.v., Aalst, W.M.P.v.d.: Conformance checking using cost-based
fitness analysis. In: EDOC 2011, pp. 55–64. IEEE Computer Society (2011)

16. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing Web service
protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

17. Bravetti, M., Zavattaro, G.: Contract based multi-party service composition. In: FSEN 2007,
LNCS, vol. 4767, pp. 207–222. Springer (2007)

18. Bravetti, M., Zavattaro, G.: Contract-based discovery and composition of web services. In:
SFM 2009, LNCS, vol. 5569, pp. 261–295. Springer (2009)

19. Dumas, M., Yang, Y., Zhang, L.: Towards a formalization of contracts for service substitution.
In: SERVICES 2010, pp. 423–430. IEEE Computer Society (2010)

20. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-free conformance. In: CAV 2004,
LNCS, vol. 3114, pp. 242–254. Springer (2004)

21. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with artificial
negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

22. Hee, K.M.v., Sidorova, N., Werf, J.M.E.M.v.d.: Refinement of synchronizable places with
multi-workflow nets—weak termination preserved! In: PETRI NETS 2011, LNCS, vol. 6709,
pp. 149–168. Springer (2011)

23. Kaschner, K., Wolf, K.: Set algebra for service behavior: applications and constructions. In:
BPM 2009, LNCS, vol. 5701, pp. 193–210. Springer (2009)

24. König, D., Lohmann, N., Moser, S., Stahl, C., Wolf, K.: Extending the compatibility notion for
abstract ws-bpel processes. In: WWW 2008, pp. 785–794. ACM (2008)

25. Laneve, C., Padovani, L.: The must preorder revisited. In: CONCUR 2007, LNCS, vol. 4703,
pp. 212–225. Springer (2007)

26. Liske, N., Lohmann, N., Stahl, C., Wolf, K.: Another approach to service instance migration.
In: ICSOC 2009, LNCS, vol. 5900, pp. 607–621. Springer (2009)

27. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: BPM 2007,
LNCS, vol. 4714, pp. 271–287. Springer (2007)

28. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services. In: ICATPN
2007, LNCS, vol. 4546, pp. 321–341. Springer (2007)

244 C. Stahl and W.M.P. van der Aalst

29. Lohmann, N., Verbeek, H.M.W., Dijkman, R.: Petri net transformations for business
processes—a survey. In: ToPNoC II, LNCS 5460, pp. 46–63. Springer (2009)

30. Lohmann, N., Weinberg, D.: Wendy: a tool to synthesize partners for services. Fundam. Inform.
113, 1–17 (2011)

31. Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for operating guide-
lines. Fundam. Inform. 108(1–2), 43–62 (2011)

32. Medeiros, A.K.A.d., Weijters, A., Aalst, W.M.P.v.d.: Genetic process mining: an experimental
evaluation. Data Min. Knowl. Disc. 14(2), 245–304 (2007)

33. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)
34. Mooij, A.J., Parnjai, J., Stahl, C., Voorhoeve, M.: Constructing replaceable services using

operating guidelines and maximal controllers. In: WS-FM 2010, LNCS, vol. 6551, pp. 116–
130. Springer (2011)

35. Müller, R., Aalst, W.M.P.v.d., Stahl, C.: Conformance checking of services using the best
matching private view. In: WSFM 2012, LNCS, vol. 7843, pp. 49–68 Springer (2013)

36. Munoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: BPM
2010, LNCS, vol. 6336, pp. 211–226. Springer (2010)

37. Munoz-Gama, J., Carmona, J.: Enhancing precision in process conformance: stability, confi-
dence and severity. In: CIDM 2011, IEEE (2011)

38. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)
39. Oster, Z.J., Basu, S.: Extending substitutability in composite services by allowing asynchronous

communication with message buffers. In: ICTAI 2009, pp. 572–575. IEEE Computer Society
(2009)

40. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice Hall, Essex
(2007)

41. Papazoglou, M.P.: The challenges of service evolution. In: CAiSE 2008, LNCS, vol. 5074, pp.
1–15. Springer (2008)

42. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a
research roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)

43. Pathak, J., Basu, S., Honavar, V.: On Context-Specific Substitutability of Web Services. In:
ICWS 2007, pp. 192–199. IEEE Computer Society (2007)

44. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of timed service
protocols. ACM Trans. Softw. Eng. Methodol. 19(4), 1–38 (2010)

45. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems.
In: ToPNoC II, LNCS 5460, pp. 115–135. Springer (2009)

46. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, LNCS, vol. 1491. Springer (1998)

47. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in workflow
systems—a survey. Data Knowl. Eng. 50(1), 9–34 (2004)

48. Rozinat, A., Aalst, W.M.P.v.d.: Conformance checking of processes based on monitoring real
behavior. Inf. Syst. 33(1), 64–95 (2008)

49. Ryu, S.H., Casati, F., Skogsrud, H., Benatallah, B., Saint-Paul, R.: Supporting the dynamic
evolution of web service protocols in service-oriented architectures. TWEB 2(2), 1–46 (2008)

50. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with operating
guidelines. In: ToPNoC II, LNCS 5460, pp. 172–191. Springer (2009)

51. Stahl, C., Vogler, W.: A trace-based service semantics guaranteeing deadlock freedom. Acta
Inf. 49(2), 69–103 (2012)

52. Stahl, C., Wolf, K.: Deciding service composition and substitutability using extended operating
guidelines. Data Knowl. Eng. 68(9), 819–833 (2009)

53. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets, LNCS, vol. 625.
Springer (1992)

54. Wynn, M.T., Verbeek, H.M.W., Aalst, W.M.P.v.d., Hofstede, A.H.M.t., Edmond, D.:
Soundness-preserving reduction rules for reset workflow nets. Inf. Sci. 179(6), 769–790 (2009)

Chapter 10
Web Service Adaptation: Mismatch Patterns
and Semi-Automated Approach to Mismatch
Identification and Adapter Development

Woralak Kongdenfha, Hamid R. Motahari-Nezhad, Boualem Benatallah
and Regis Saint-Paul

Abstract The rapid growth of online Web services has led to the proliferation
of functionality-wise equivalent services with differences in their descriptions and
behaviors, and therefore has given rise to the need for service adaptation. In this
chapter, we discuss key challenges for Web service interoperability and adapta-
tion. We present a consolidated framework including a methodology, methods and
tools for identifying and tackling service adaptation challenges by characterizing
service adaptation issues, their semi-automated identification and resolution for
adapter development. The innovative contributions of the our work consist in (i)
a taxonomy of common mismatches at the service interfaces and business protocols
whose definitions and resolutions are captured in mismatch patterns, (ii) a busi-
ness protocol-aware matching of service specifications, and (iii) methods and tools
for instantiating mismatch patterns with two different architectural approaches, i.e.,
standalone adapters and aspect-oriented adaptation. The combination of mismatch
patterns, semi-automated mismatch identification, and tools for adapter development
presents the foundation for rapid adaptation of Web services.

W. Kongdenfha (B)

ECPE, Naresuan University, Phitsanulok, Thailand
e-mail: woralakk@gmail.com

H. R. Motahari-Nezhad
HP Labs, Paolo Alto, USA
e-mail: hamid-reza.motahari-nezhad@hp.com

B. Benatallah
CSE, University of New South Wales, Sydney, Australia
e-mail: boualem@cse.unsw.edu.au

R. Saint-Paul
Oceanet Technology, Nantes, France
e-mail: regis.saintpaul@gmail.com

A. Bouguettaya et al. (eds.), Web Services Foundations, 245
DOI: 10.1007/978-1-4614-7518-7_10,
© Springer Science+Business Media New York 2014

246 W. Kongdenfha et al.

10.1 Introduction

The popularity of Web services has resulted in a rapid growth in the number of Web
services available on the Internet. Many Web services are functionally equivalent
and therefore are interchangeable in principle. However, services with equivalent
functionality are often offered using different interface and business protocol spec-
ifications. Service interface defines the set of operations that the service provides
along with message formats and data types. Business protocol specifies the order
in which operations of a service can be invoked [4]. While there exist standard
languages (e.g., WSDL and BPEL) to describe service interfaces and business pro-
tocols, service specifications may still be different. This is because those languages
only provide generic constructs, which may be used differently by independent teams
to define functionally equivalent services. This results in the interface- and protocol-
level mismatches [8, 30]. Service matching and adapters are therefore necessary for
identification and resolution of service mismatches at the level of business interfaces
and protocols.

Service adaptation can be considered as a three-step process: service matching,
service mapping and adaptation code generation. In the service matching step, the
mismatches between web service specifications (i.e., interface and business protocol)
are identified, which are differences in terms of operation specification, messages
and data types (XML schema) as well as the sequences in which messages need
to be exchanged. The service mapping creates a transformation script for resolving
mismatches between involving services. Transformations are typically expressed
in languages such as XQuery and XSLT, or even general purpose programming
language such as Java, C#. Finally, adapters are generated to hide the differences
between the two services, incorporating the transformation scripts generated in the
mapping phase.

In this chapter, we first characterize the problem of adaptation in Web services
and identify challenges in each step of service adaptation process mentioned above
(in Sect. 10.2). We then present our contributions in the area of service adaptation [3,
22, 23, 31, 32] as a consolidated framework that helps addressing the identified
challenges. Our work consists in a methodology, methods and software platform that
help characterizing common mismatches between Web services and, starting from
Web service interface and protocol specifications, assist in the identification of mis-
matches between Web service interface and protocol specifications, and also help
programmers in developing service adapters. In particular, in this chapter we present
an integrated services adaptation framework, seamlessly integrating various adapta-
tion techniques and tools, developed over the last years and described independently
in our previous work.

• We introduce mismatch patterns as a systematic method to capture and formalize
common differences between Web service specifications. Patterns help develop-
ers in identifying the actual differences between interface and protocol specifi-
cations and resolving them. Among other information, patterns include template
of mapping logic for resolving the captured mismatch. This enables the semi-

10 Web Service Adaptation 247

automated code development in which developers can instantiate the template to
create adaptation logic rather than developing them from scratch [3, 23].
• We present a business protocol-aware matching method for the semi-automated

identification of mismatches between Web service specifications. It incorporates
the ordering constraints imposed by business protocol definitions on service oper-
ations during service interface matching [31, 32].
• We present two approaches for adapter development, i.e., standalone and aspect-

oriented approaches. We also provide a comparative study about the two adapter
development approaches. This study can also be used as a guideline for adapter
developers when deciding on the adapter development approaches [3, 22, 23].

The chapter is organized as follows. In Sect. 10.2, we characterize the problem of
adaptation in Web services, discuss service adaptation challenges and review the state
of the art in this space. In Sect. 10.3, we present mismatch patterns. We describe the
protocol-aware mismatch identification approach in Sect. 10.4. Section 10.5 review
our approaches for adaptation code generation, i.e., standalone and aspect-oriented
approaches, as well as a comparative study between them. We conclude this chapter
in Sect. 10.6.

10.2 Service Adaptation: Requirements, State of the Art
and Gaps

In this section, we discuss the requirements of service adaptation. Then we briefly
discuss related work in the area, and describe the gaps and how our work address
such challenges.

10.2.1 Service Adaptation Requirements

We classify the need for adaptation in Web services into two categories: adaptation for
compatibility and adaptation for replaceability. The first category refers to wrapping
a service S so that it can interact with another service Sc. For example, consider a
service S allowing companies to order office supplies. If the provider of this service
wants to be able to do business with a certain retailer (say, Wal-Mart or Target)
having a service Sc, then it needs to adapt its service S so that it can interact with
such a retailer service. On the other hand, adaptation for replaceability refers to the
modification of a Web service so that it complies with (i.e., can be used to replace)
another service. This is important especially in the business environment where the
interaction has been standardized either de jure or de facto (e.g. due to the presence
of a dominant player in the market). For example, the RosettaNet [1] consortium
standardizes the external behavior of services in the IT supply chain space. In these
cases, service providers may have to adapt their services so that they follow the

248 W. Kongdenfha et al.

guidelines prescribed by the standards. Adaptation for replaceability is also needed
when a new version of a service is developed, possibly with a different external
behavior, but we want to preserve backward compatibility (i.e., an adapter should be
provided so that the service is also offered in a version that behaves like the old one).

Replaceability may be partial or total [4]. Total replaceability occurs when a
service Sr behaves externally like another service S. This means that any service that
interacts correctly (i.e., without generating runtime faults) with S will also be able
to interact correctly with Sr (note that the opposite is not necessarily true). Partial
replaceability occurs when a service Sr can behave like S only in certain interactions
(i.e., Sr behaves like S in some but not all conversations). We refer the reader to [4]
for a detailed definition of compatibility and replaceability among services. In this
chapter, we mainly focus on the service interoperability at the business interface-
and protocol-layer.

10.2.2 State of the Art

The problem of service interface and protocol adaptation has received significant
attention recently [3, 5, 15, 16, 22, 34]. In this section, we review existing work
in each step of service interface and protocol adaptation process, i.e., matching,
mapping and adapter development. We then identify the challenges in each step and
present our contributions in addressing such challenges.

10.2.2.1 Service Matching

In the service matching, several approaches have been proposed to find the simi-
larities between function (operation) signatures in a repository of software compo-
nents [41, 42] or Web services [14, 39] specifications. In the software engineering,
these approaches aim for retrieving components similar to a given one from a repos-
itory. The work in [41] identifies a measure of similarities between functional signa-
tures considering the parameter name, parameter type, parameter order, etc. In [42],
the authors consider the behavior of software components encoded in terms of pre-
and post-conditions of functions to identify the matching between them. However,
due to the richer interface definitions of Web services comparing to software compo-
nents, specific approaches for service interface matching are required. In the area of
Web services, approaches such as [14, 39] find service similarity based on informa-
tion retrieval techniques which typically require a collection of service descriptions
in finding a measure of similarity. Particularly, Woogle [14] uses a clustering-based
approach to measure service similarity. The approach in [39] extends the work in [41]
to find an overall measure of similarity not the exact matching as in [41]. In summary,
the existing approaches focus on identifying a measure of similarity rather than the
identification and resolution of mismatches between service specifications for the
purpose of adapter development.

10 Web Service Adaptation 249

From the literature in service matching, we found that existing automated
approaches for service matching focus either on the interface-level (e.g., [14, 34, 39])
or the protocol-level (e.g., [3, 5, 31]). However, we argue that when matching service
specifications, interface and business protocols should not be treated independently.
Matching protocol specifications in isolation ignores mismatches at the interface
level. And correct matchings at the interface level could be specified more effectively
considering the ordering constraints that business protocol definitions impose. Con-
sider a given correspondence between messages m and m′may be plausible according
to the information available in the (WSDL) interfaces, the protocol specifications may
make it clear that it is not a plausible match, e.g., because message m does not arrive
in the expected order to enable sending m′ to the partner at the required time. In such
cases, it may be possible to choose an alternative matching for message m or, even,
the required mapping function can be provided by the developer to make the inter-
operation possible. As another issue, existing automated service interface matching
methods (including our previous work [31]) consider only one-to-one matching of
messages. However, a common class of mismatch between service interfaces is one-
to-many matches (also called message merge/split mismatch) where one message
in an interface is matched to more than one in the other [3, 15]. In this chapter, we
therefore, present a protocol-aware semi-automated interface matching approach
that consider both interface definitions and also the interactions between services
according to their business protocols. Moreover, the proposed method supports the
identification of the message merge/split class of interface-level mismatches.

10.2.2.2 Service Mapping

After the mismatches between service specifications are identified, the next step that
developers need to do is to create mapping to resolve the identified mismatches. Sev-
eral commercial mapping tools are offered to assist developers in mapping creation
tasks such as Microsoft BizTalk Mapper,1 Stylus Studio XML Mapping Tools,2 and
SAP XI Mapping Editor.3 However, these mapping tools focus mainly on service
interfaces, while business protocols are ignored. Therefore, to address the protocol-
level mismatches, developers need to create mapping logic using either procedural
programming language (Java, C#, BPEL, etc.) or transformation language (such as
XSLT or XQuery). However, the ad-hoc mapping specifications make it difficult to
guarantee that they are correctly implemented the adaptation logic for resolving the
identified mismatches. Furthermore, the implementation of adaptation logic not only
distract developers from their tasks of application development but also delay time-
to-market of the intended applications. We therefore introduce mismatch patterns
as a systematic method to capture and formalize common differences between Web

1 http://www.biztalk.org
2 http://www.stylusstudio.com
3 http://www.sap.com/platform/netweaver/components/xi

http://www.biztalk.org
http://www.stylusstudio.com
http://www.sap.com/platform/netweaver/components/xi

250 W. Kongdenfha et al.

service specifications. Patterns can help developers in identifying the differences
between service interface and protocol specifications and resolving them.

To the best of our knowledge, our work [3] was the first to characterize the problem
of Web services adaptation and to propose the concept of mismatch patterns for
standalone adapter development. This is a pioneer work that has built the foundation
for other recent work in this area. In particular, in addition to the proposed patterns
presented in [3], Dumas et al. [15] have identified two other mismatch patterns and
Li et al. [24] adopt the mismatch patterns framework to identify five extra mismatch
patterns at the interface- and protocol-level in the context of heterogeneous services
composition. However, these work only identify mismatches among service interface
and protocol specifications, but they did not provide assistance to developers in
their adapter development tasks. In contrast, among other information, our mismatch
patterns include template of mapping logic for resolving the captured mismatch.
Our proposed mismatch pattern thus enables the semi-automated code generation in
which developers can instantiate the template to create adaptation logic rather than
developing them from scratch.

10.2.2.3 Adapter Development

Once mismatches are identified and mapping logic are created, developers need to
generate adapters to hide the differences between interacting services, by incorpo-
rating the adaptation logic created in the mapping phase. In this chapter, we con-
sider two adapter development approaches, i.e., by developing standalone adapters
and via service modification. For the latter, we propose the notion of adaptation
aspects that, following aspect-oriented programming paradigm and service modifi-
cation approach, enable the rapid development of service adapters. A large amount
of work has been done in integrating AOP in software components [6, 10, 12, 37].
In many of these work (e.g., [10, 12, 37]), aspects are used to adapt the component
to a changing environment at the configuration-level and in the case of component
evolution. A more recent work in this area [6] also uses aspects to dynamically adapt
software components at the interface and protocol-level in the context of compo-
nent composition and evolution, focusing on the provision of an implementation
framework for aspect-oriented adaptation.

The use of AOP in Web services has also been extensively explored. In particular,
non-functional properties of services find a natural appeal in AOP programming [25].
The work in [11, 33], aspects are used to adapt services to changing environments.
However, in such approaches, aspect weaving is done at compile time thus require the
engine (or running process instances) to be restarted for reflecting changes. In [7],
Charfi and Mezini propose to use AOP to modularize cross-cutting concerns of
BPEL processes. From the literature, we found that existing approaches mainly
focus on non-functional properties and do not consider the mismatch identification
and resolution. The work in [40] is the only work that we know of that applies AOP to
service interoperability issues. They use AOP to transform the content of messages
exchanged between services and thus to resolve mismatches at the interface-level.

10 Web Service Adaptation 251

They however did not consider mismatches at the protocol level. Our work, on the
other hand, proposes the use of AOP to assist the service adaptation at both interface-
and protocol-level. We also provide a framework that allows developers to semi-
automated generate adaptation aspects from the mismatch template. Moreover, our
extension to aspect-enable ActiveBPEL engine allows dynamic weaving of aspects at
runtime. Finally, to assist service developers in choosing which adapter development
approaches, we provide a comparative study between the two of them. The study
shows that the standalone adapters are costly to develop and maintain, while the
aspect-based approach allows dynamic plug-and-unplug of adaptation logic with the
service implementation, it is thus a preferable approach in many cases.

10.3 Mismatch Patterns for Service Mismatch
Characterization and Resolution

In this section, we classify common mismatches between service interfaces and busi-
ness protocols, and then introduce the mismatch patterns for capturing such common
mismatches and generic resolutions for resolving them. Particularly, adaptation logic
identified in mismatch patterns aims to achieve total replaceability as mentioned in
Sect. 10.2.1, i.e., making a service Sr , characterized by interface Ir and protocol Pr ,
“looks like” another service S that has interface I and protocol P , so that Sr can
interact with any clients that S can interact with.

10.3.1 Common Mismatches Between Web Service
Specifications

We summarize the mismatches commonly occur between Web services as identified
in prior adaptation work (e.g., [3, 23] by the authors, and also some later work by
Dumas et al. [15]). The mismatches presented here are classified into interface- and
protocol-level mismatches.

Interface-level Mismatches. To characterize mismatches at the interface-level,
we use a concrete example of the Mappoint4 (S) and Arcweb5 (Sr) route Web ser-
vices. They offer similar functionalities (i.e., finding driving routes between two
points), but use different WSDL interfaces (operations CalculateRoute and find-
Route, respectively). From their specifications, the names, numbers, and types of
the input/output parameters of the operations CalculateRoute and findRoute differ.
The operation CalculateRoute requires one input parameter called Specification
whose type is SegmentSpecification. The operation findRoute requires two para-
meters: routeStops and routeFinderOptions whose types are RouteStops and

4 www.microsoft.com/mappoint/
5 www.esri.com/software/arcwebservices/

www.microsoft.com/mappoint/
www.esri.com/software/arcwebservices/

252 W. Kongdenfha et al.

RouteFinderOptions, respectively. The values of both parameters routeStops and
routeFinderOptions can be computed from the value of the parameter Specifica-
tion.

• Signature Mismatch: This type of mismatch occurs when two services with inter-
faces I and Ir of functionally equivalent operations differ in their operation names,
numbers, order or types of input/output parameters. In the above example, the
operation CalculateRoute of Mappoint requires one input parameter Specifica-
tion whose type is SegmentSpecification. The operation findRoute of ArcWeb
requires two parameters: routeStops and routeFinderOptions whose types are
RouteStops and RouteFinderOptions, respectively. These two services there-
fore have a signature mismatch between them.
• Parameter Constraint Mismatch: This mismatch occurs when the operation O of

interface I imposes constraints on input parameters, which are less restrictive than
those of Or in Ir (e.g., differences in value ranges). For instance, suppose that
element Preference (a sub-element of the parameter Specification of operation
CalculateRoute) accepts “quickest”, “shortest” and “least toll” as possible val-
ues, while element RouteType (an element of parameter routeFinderOptions
of operation findRoute) accepts only “quickest” and “shortest”. Hence, the find-
Route operation cannot replace the CalculateRoute in this case.

Protocol-level Mismatches. To describe common mismatches at the protocol-
level, we use a supply chain example. Assume that protocol Pr of service Sr expects
messages to be exchanged in the following order: clients invoke login, then getCat-
alogue to receive the catalogue of products including shipping options and prefer-
ences (e.g., delivery dates), followed by submitOrder, sendShippingPreferences,
issueInvoice, and makePayment operations. In contrast, protocol P of the client
allows the following sequence of operations: login, getCatalogue, submitOrder,
issueInvoice, makePayment and sendShippingPreferences. As service Sr does
not charge differently even the shipping preferences differ, clients can specify their
shipping preferences at the final step. We classify protocol-level mismatches as fol-
lows.

• Ordering Mismatch: This mismatch occurs when protocols P and Pr support the
same set of messages but in different orders, as shown in the above example.
• Extra Message Mismatch: This mismatch occurs when one or more messages

specified in Pr do not have any correspondence in P . In the above supply chain
example, assume that protocol Pr sends an acknowledgment after receiving mes-
sage issueInvoiceIn, but protocol P does not produce it.
• Missing Message Mismatch: This mismatch is the opposite case of the Extra

Message Mismatch, i.e., one or more message specified in P do not have any
correspondence in Pr .
• One-to-Many Message Mismatch: This mismatch occurs when protocol P spec-

ifies a single message m to achieve a functionality, while protocol Pr requires a
sequence of messages m1, . . . , mn for achieving the same function. Suppose pro-
tocol P expects purchase order together with shipping preferences in one message

10 Web Service Adaptation 253

called submitOrderIn, while protocol Pr needs two separate messages for the
same purpose, namely, sendShippingPreferencesIn and submitOrderIn.
• Many-to-One message Mismatch: This mismatch occurs when protocol P specifies

a sequence of messages m1, . . . , mn to achieve a functionality, while protocol Pr

requires only a single message m (which can be created by combining messages
m1, . . . , mn) for the same function. In this type of mismatch, an assumption is
required in which all the messages to be aggregated need to be issued consecutively,
i.e., there is no other actions waiting for other messages to be sent during this
message aggregation. This assumption is required in order to avoid deadlock.
• Stream-to-Single message Mismatch: This mismatch occurs when protocol Pr

issues a stream of messages until a condition is satisfied, while the protocol P
only requires one message to be sent. In the example, assumed protocol Pr sends
shipment notification incrementally until the products are delivered, while protocol
P only sends a single shipment notification.
• Single-to-Stream message Mismatch: This mismatch is the opposite case of the

Stream-to-Single message mismatch, in which protocol Pr issues a single
message, while protocol P sends a stream of messages until a condition is satisfied.

10.3.2 Mismatch Patterns

In the following, we present the concept of mismatch patterns, which is a similar
notion to that of design pattern in software engineering [17]. Mismatch patterns
provide an abstraction for capturing and formalizing common service differences.
Besides capturing differences, a mismatch pattern contains parameterized adapta-
tion logic (called adapter template) that can be instantiated to resolve the captured
mismatch instead of developing them from scratch. Mismatch patterns can therefore
be used as a guideline for mismatch identification and adapter development.

Table 10.1 summarizes the structure of a mismatch pattern, which consists of a
name, a mismatch type that provides a description of the mismatch that is captured,

Table 10.1 The structure of a mismatch pattern

Part Description

Name Name of the pattern
Mismatch type A description of the type of difference captured by the pattern
Template parameters Information that needs to be provided by the user when instantiating

an adapter template to derive the adapter code
Adapter template Code or pseudo-code that describes the implementation of an

adapter that can resolve the difference captured by the pattern
Sample usage The sample usage section contains information that guides the

developer in customizing (or manually generating) the adapter,
by providing examples on how to instantiate the template

254 W. Kongdenfha et al.

adapter template, template parameters, and sample usage. The adapter template is
parametric, in which the parameters specified in the template parameters part needs
to be provided by developers when instantiating it. Developers can just directly use
the generated adaptation skeleton to deploy the adapter or may want to customize
the resulting logic skeleton to add some custom business logic as needed.

The exact specification of adapter templates depends on the adapter development
approach. In Sect. 10.5, we discuss two different approaches for adapter develop-
ment, and present formalisms for the specification of adapter templates. We use the
proposed mismatch pattern framework and the adapter template specification to rep-
resent the common mismatches identified in Sect. 10.3.1 as a set of built-in patterns.
The developers can also add to the built-in patterns if there are specific mismatches
that they would like to handle differently or if there are mismatches that are not
captured in the built-in set. Patterns can be shared between adapter developers and
evolved, especially with the new trend of user-centric sharing of content fostered by
Web 2.0 [29]. By provision of adapter templates and the support for adapter template
instantiation in prototype tool, our approach offers a platform for rapid development
of adapters. Readers may refer to [3, 22] for detailed descriptions of all mismatch
patterns and our prototyped tool.

10.4 Semi-Automated Identification and Resolution
of Mismatches

In this section, we present the protocol-aware interface matching approach that con-
sider both interface definitions and also the interactions between services according
to their business protocols when identifying mismatches between two services.

Motivating example. As a motivating example, we consider an adaptation task
for services in the management of shopping carts, i.e., XWebCheckOut6 and Google
Checkout.7 They provide similar APIs for order creation and management, payment
processing, and order cancellation. However, there are differences in the interface
definition (message names, number, and types) and how they exchange messages to
fulfill a functionality. For example, Fig. 10.1 shows the protocols of the two services
for placing an order.8 One of the main issues to be addressed for the purpose of
adapter development is finding the matching between the interfaces of the two Web
services, e.g., to find out that AddOrderRequest is the corresponding message
to Place-Order in Fig. 10.1. For this purpose, considering only the XML schema
definitions of these two services is not enough, as in this case AddOrderRequest
would be better matched to New-Order-Notification. Indeed, we need to consider

6 http://www.xwebservices.com/Web_Services/XWebCheckOut/
7 http://code.google.com/apis/checkout/
8 Note: we only considered XML messages and ignored HTTP messages, as they constitute imple-
mentation details. The protocols have been simplified for presentation purposes.

http://www.xwebservices.com/Web_Services/XWebCheckOut/
http://code.google.com/apis/checkout/

10 Web Service Adaptation 255

Fig. 10.1 The operations and the corresponding protocols of CO_Client (XWebCheckout) and
Google checkout APIs for placing an order

the operation definition information in the WSDL document as well as constraints
defined on operation invocation (and directions) at the protocol level.

10.4.1 Protocol-Aware Interface Matching

Interface matching refers to the identification of correspondences between messages
in Is and Ic. Its purpose is to find the set X of parameters of the function f unc(X) for
generating messages m in the two interfaces Is and Ic. In the interface mapping step,
the interface mapping functions m ← f unc(X) are implemented. The identification
of the set X , (interface matching) is the most important step in specifying f unc(X).

In this section, we propose three interface matching algorithms: the first one, called
static interface matching, only considers the information in the WSDL documents
including both operation and message definitions and also XML data type defin-
itions. The other two approaches, i.e., depth-based and iterative reference-based,
demonstrate different levels of considering the protocol definitions, on top of the
static approach, during interface matching. In particular, the depth-based approach
improves the static matching score for messages with a same/close depth (the dis-
tance of the transition labeled with the message from the initial state of the protocol)
in a protocol, while the reference-based approach propagates the matching score
into those of their neighbor messages in the protocols, and also uses already matched
message pairs as references to reinforce or penalize the matching scores of messages
before and after a given pair of matched messages in the protocol.

256 W. Kongdenfha et al.

10.4.1.1 Static Interface Matching

WSDL interface definitions are XML documents, and the type of data exchanged by
messages are defined using XML schema [9, 38]. Like approaches in schema match-
ing, in this chapter, we are interested in finding the matching between elements in the
schemas of two services (Is and Ic). Hence, we base our (WSDL) interface matching
on approaches in schema matching [13, 35, 36]. Schema matching, in general, is a
hard problem and the results on large and arbitrary schemas, which usually we have
in services, are not always of a high quality [36]. Fortunately, WSDL documents
are richer than XML schema as they provide message and operation definitions.
This brings two advantages: (i) we can break down the (large) service schemas into
smaller ones (which is a challenge in schema matching approaches [36]), by follow-
ing the schema of individual message data types. This significantly reduces the size
of schemas to be matched, (ii) the association of messages to operation definitions
allow to reduce the number of pair-wise matching of schema of messages. Indeed,
depending on the type of adaptation (for replaceability, or compatibility) we need to
only match input-output messages (compatibility), or input-input and output-output
messages together (replaceability) but not all messages. We use these two properties
in the presentation of the static interface matching approach as follows: (i) incor-
porating message name into the schema, and (ii) considering the message direction
and adaptation type.

Algorithm 1 Static Interface Matching Algorithm
Input: Is , Ic
Output: Message correspondences between Is , Ic
1: X SDm ← XML schema of message m in Is (Ic)

2: for message m ∈ Is do
3: for message m′ ∈ Ic do
4: match(X SDm , X SDm′), considering m and m′ directions and adaptation type
5: end for
6: end for
7: for each message m1 ∈ Is (Ic) do
8: for each message m2 ∈ Ic(Is) do
9: if S(m1, m2) ≥ t1 && matchingElements(m1, m2) ≥ c1 ∗ num Elements(m2) then
10: m2 is a component of m1
11: end if
12: end for

13: end for

Algorithm 1 summarizes the interface matching approach, in which Is and Ic

denote WSDL interfaces. We consider messages matching in a pair-wise manner,
and S(m1, m2) specifies the matching score of message m1 and m2.

10.4.1.2 Depth-Based Approach

The essence of the depth-based approach is incorporating the notion that messages
with similar depth in the two protocols P1 and P2 are more likely to match. Figure 10.2

10 Web Service Adaptation 257

Fig. 10.2 The simplified protocol specifications of CO_Client and Google checkout APIs associ-
ated with respective depth numbering

shows simplified protocols of CO_Client and Google Checkout APIs. In this exam-
ple, messages AddOrder and PlaceOrder which are in the same depth of 1 are more
likely to be a correct match. It is useful to consider the direction of messages, i.e.,
incoming (+) or outgoing (−) in identification of depth, as well.

To avoid going into infinite loops for identifying the depth of a message associ-
ated to such transitions, we normalize the protocol into a tree (only self-loops are
allowed in this new representation). The normalization process involves traversing
each transition and checking whether the outgoing transitions for the target state of
the current transitions are already labeled with a smaller depth number. If any of
the outgoing transitions meet this criterion, then the normalization process does not
continue this path of the protocol. The depth of a message is specified by the number
of transitions to be traversed from the initial state s0 to the message m in this tree-like
representation of the protocol.

In this process, messages of each direction are numbered separately. For instance,
the message −Place-Order gets the number 1−, and the message + New-Order-
Notification the number 1+. So, as can be seen these numbers are relative but does
not show the absolute number of transitions form the initial state. If the protocol P
has self-loop, i.e., the source and target states of the transition with the message is the
same state (e.g., see message+UpdateOrder in Fig. 10.2), we associate the number
1.5+ to show that it is a self-loop (but not the depth of 2).

Once the depth of transitions are identified, we update the static matching scores of
messages, computed using the static matching approach (Sect. 10.4.1.1). In fact this
process improves the score of each matching considering the depth information as
follows. Let m1 ∈ I1 and m2 ∈ I2, and S(m1, m2) be the matching score of messages
m1 and m2 computed by the schema matching algorithms.9 The improvement weight
for the score in the depth-based approach is shown in Eq. 10.1.

9 Note that I1 = Is(Ic) and I2 = Ic(Is)

258 W. Kongdenfha et al.

scale← maxdepth − |depth(m1)− depth(m2)|
maxdepth

(10.1)

The new score S′(m1, m2) is computed as S′(m1, m2) = S(m1, m2)×scale. This
ensures that messages with closer depth will be scaled higher in comparison with
messages that are further apart from each other. Note that maxdepth is a constant
that defines the maximum depth obtainable in the protocol for each direction. This
approach enhances the accuracy of the matching compared to the static approach.

10.4.1.3 Iterative Reference-Based Approach

The iterative reference-based approach advances the previous two interface matching
approaches by taking into account the following additional protocol-related infor-
mation.

• Depth-based score improvement. Messages with similar depth in protocols P1 and
P2 are more likely to match, as defined in the depth-based approach.
• Propagation of similarities to neighbors of a matching pair. If a pair of messages

m1 ∈ I1 and m2 ∈ I2 matches, then their neighbors are more likely to match
too. Neighbor messages are those which are either before or after the message m1
(respectively, m2) in the path(s). To incorporate this property, we use the philos-
ophy of similarity flooding algorithm [28] to introduce a reinforcement function.
When a pair of messages m1 and m2 matches, we reinforce the matching scores
of their neighbors. The reinforcement is done using a rate that controls the pace at
which the reinforcement decays that depends on how far the matching messages
are from the reference message pair.
• Penalizing matching pairs leading to deadlock cases. If the pair of messages
−m1 ∈ I1 and +m2 ∈ I2 match, we observe that, in some cases, if an outgo-
ing (with “−” sign) message that has a bigger depth number than m1 are allowed
to match with an incoming (with “+” sign) message that has a smaller depth num-
ber than m2, this leads to a deadlock in the interaction between services. Such
matching should be identified and their matching score should be penalized. We
refer reader to [32] for more details on this topic.

Reference message pair selection. We introduce two methods for selection of
reference matching pair: (i) intuitively, the pair with the highest matching score
between the two interfaces in each iteration can be selected as the reference, and (ii)
in general it is a better approach to start the matching from the messages with small
depth and later to the ones, which are deeper. This later approach allows applying the
penalization approach more effectively, as messages before a reference pair are more
likely to have been matched with messages in the other interface. This approach take
messages close to the initial states to find their matching and then proceed to higher
depth messages. Nevertheless, if the developer can interfere (approve or refine) in
the reference selection process, the accuracy and effectiveness of other steps will
be much higher. In general, the success of this approach depends on the quality of
selection of reference pairs in each iteration.

10 Web Service Adaptation 259

Algorithm 2 summarizes the iterative reference-based approach. First, static match
scores are computed and reinforced using depth-based approach (line 1). Then, a
reference point is specified using one of the approaches explained above (line 2).
Next, the message pairs that result in deadlock, based on the selected reference pair,
are penalized by multiplying the matching score by the inverse of scale (line 11),
which is computed according to Eq. 10.1. Otherwise, if the pair of messages are
neighbors of reference pairs, their score is reinforced proportional to the difference
of their depth with those of messages in the reference pair (line 13). This is done
by multiplying their matching score by the reinforcement rate (computed in line 9).
Afterwards, we look for the next reference pair, if exist. The algorithm will terminate
when there are no further reference pairs to be selected.

Algorithm 2 Iterative Reference-based Interface Matching
Input: mList1, mList2
Output: mr List
1: mr List ← depth-basedMatching(mList1, mList2)
2: mp← selectReferencePoint(mList1, mList2, mr List)
3: while mp �= ∅ do
4: mref 1 ← mp.m1, mref 2 ← mp.m2
5: for each m1 ∈ mList1 do
6: for each m2 ∈ mList2 do
7: mr ← getMatchResult(m1, m2, mr List)
8: di f f ← max(abs(mre f 1.depth-m1.depth),abs(mre f 2.depth- m2.depth))

9: rate← 1+ (maxdepth − di f f)/maxdepth
10: if [(m1, m2) cross (mref 1, mref 2)] and deadlock then
11: mr.score← mr.score × 1/scale
12: else if m1 (m2) neighbor of mre f 1(mref 1) then
13: mr.score← mr.score × rate
14: end if
15: end for
16: end for
17: mp← selectReferencePoint(I1, I2, mr List)

18: end while

In this algorithm, the short forms of mList refer to list of messages (e.g., mList1
refers to the list of messages in I1), mr List refers to match result list, mp stands for
message pair, and mr stands for match result.

10.4.2 Identification of Protocol-Level Mismatches Through
Adapter Simulation

The proposed approaches for interface matching in the previous section allow to
perform the matching of two interfaces Is and Ic using WSDL information (static
approach), and also by encoding the protocol information in terms of depth (depth-
based approach), and propagation of similarities to neighbor messages, and also dis-
allowing matchings leading to deadlock cases (iterative reference-based approach).
While considering protocol information during interface matching increases the

260 W. Kongdenfha et al.

Fig. 10.3 The correspondences between messages of two protocols (shown by dash lines) are valid
using the protocol-aware interface matching

accuracy of the matching does not completely remove the need for considering
the interactions between protocols. A closer look at correspondences between the
protocols Ps and Pc in Fig. 10.3, shows that the message −b can be considered as
an extra message in its path. In general, extra messages are received by the adapter,
but never sent to the other partners, as part of adaptation logic. However, there is a
risk for information loss that should be considered [20, 26, 27].

Therefore, we propose protocol-level analysis through simulating the interactions
between Ps and Pc. In this process, we explore all possible message exchanges
between the two services according to Ps and Pc and identify the mismatches between
them. This is akin to the adapter generation process, and that is why we refer to it
as adapter simulation process. The purpose of this process is three folds: (i) identify
plausibility of interface matching results by considering the full interactions between
protocols, (ii) generating adapter rules for mismatches that do not result in deadlock,
and (iii) identification and analyzing mismatches that result in deadlock to examine

10 Web Service Adaptation 261

if it is possible to provide the required interface mappings, and rules, that resolve the
deadlocks. For more details in this topic, please refer to [31].

10.5 Adapter Specification, Generation and Deployment

In this section, we describe two approaches for adapter template specification in
mismatch patterns, i.e., standalone and aspect-oriented approaches. The adaptation
logic typically involves activities such as receiving messages, storing messages, trans-
forming message data, and invoking service operations. These tasks can be very well
modeled by process-centric service composition languages such as BPEL. Therefore,
we choose BPEL for defining the adapter templates in both approaches. Hereafter, we
discuss the two adapter template specification approaches and present a comparative
study between them.

10.5.1 Standalone Service Adaptation

In this approach, an adapter A (referred to as a standal one adapter) is placed in
between a service S implementing protocol P and another service Sr implementing
protocol Pr to enable their interactions, as illustrated in Fig. 10.4. In this approach,
all messages sent from service S pass through the adapter A, which performs the
adaptation logic and invokes operations of protocol Pr from Sr , and vice versa.

We use the Ordering Constraint Pattern (OCP) introduced in Sect. 10.3.2 to illus-
trate how the adaptation logic is specified and implemented in the standalone adapter
approach. OCP is associated with an adapter template, shown in Table 10.2, which
consists of a set of actions to resolve the ordering mismatch. In particular, OCP takes
as its parameters the protocol specifications of two services that have a mismatch,
and a message msgO p to be re-ordered. Once instantiated, OCP generates an adapter
that resolves an ordering mismatch by receiving message msgO p of protocol P and
storing it for later use. When message msgOsr is expected by service Sr , the adapter
creates it from the value of message msgO p. The adapter invokes service Sr with
message msgOsr .

… …

Interacting based
on protocol P

Interacting based
on protocol PR

Fig. 10.4 A standalone adapter A for enabling service interoperability

262 W. Kongdenfha et al.

Table 10.2 Ordering constraint mismatch pattern (OCP)

Template parameters Protocols P (of service S) and Pr (of service Sr), message msgO P to be
re-ordered

Adapter template – Passing messages to activities, as prescribed by P , that do not need adap-
tation (BPEL receive, invoke, reply activities);
– Receive msgO p;
– Assign msgOa ←− msgO p;
– Assign msgOsr ←− msgOa , when msgOsr expected;
– Invoke Osr with msgOsr

Receive sendShippingPreferences <ShippingPrefIn>

Client Service Sr
… other activities (the operations issueInvoice and

makePayment in this example)…

sendShippingPreferencesIn

Other messages

sendShippingPreferencesIn

Assign ShippingPref ShippingPrefIn

Invoke sendShippingPreferences <ShippingPref>

Other messages

Fig. 10.5 Sample usage of the adapter template specified in the OCP

Figure 10.5 shows the usage of OCP to resolve the ordering constraints of message
sendShippingPreferencesIn. In particular, the adapter temporarily stores message
sendShippingPreferencesIn sent by the client according to protocol P and for-
wards it to service Sr according to protocol Pr . Hence, from the client perspective,
service Sr looks like service S in this case.

10.5.2 Aspect Oriented Service Adaptation

Aspect-Oriented Programming (AOP) is a technique that allows the separation of
concerns in software development, making it possible to modularize cross-cutting
concerns of a system [21, 25]. We consider the adaptation logic as a cross-cutting
concern, i.e., from the developer point of view it is transversal to the other functional
concerns of the service. We therefore propose an aspect-oriented approach for Web
service adaptation. In our framework, each mismatch pattern consists of a template,
called aspect template, which is specified by a collection of 〈query, advice〉 pairs.
When instantiated, the aspect template generates a collection of adaptation aspects
that will be woven into the service at runtime. This approach is illustrated in Fig. 10.6,
in which adaptation aspects AS1, AS2, and AS3 are integrated as extensions to a
running instance of service Sr to enable its interaction with service S. In the following,

10 Web Service Adaptation 263

AS2

AS3

AS1Interacting based
on protocol P

Fig. 10.6 Adaptation aspects AS1,AS2, and AS3 for enabling service interoperability

we discuss the advice and query part of the aspect template, as well as the deployment
of adaptation aspects for resolving mismatches at runtime.

10.5.2.1 Advice

An advice defines the adaptation logic for resolving the difference captured by a
mismatch pattern. It requires parameters (e.g., a transformation function to mediate
the difference between operation signatures) that are used to generate an adaptation
code skeleton from the template. As mentioned before, BPEL provides notations and
concepts that are appropriate for the adaptation specification and implementation.
We hence chose it as the language to express adaptation advices.

To describe how adaptation logic can be modeled and implemented using aspect-
oriented approach, we present the Ordering Constraint Pattern (OCP) in Table 10.3.
This pattern is accompanied with an aspect template consisting of two 〈query, advice〉
pairs. The first advice, namely OCPStore, comprises of two actions that are used to
resolve a mismatch occurs when a message msgO p is sent from service S, but
service Sr does not expect it at this state. OCPStore therefore receives and stores
message msgO p for later use. When the process execution reaches operation Osr

j ,
OCPForward assigns the value of message msgO p to message msgOsr

j to enable the
execution of the operation Osr

j . The exact locations, where these adaptation advices
need to be executed, are defined in the query section of the template, and is discussed
in Sect. 10.5.2.2.

10.5.2.2 Query

A query expresses a process execution point, also known as joinpoint in the context of
AOP [21, 25], where a set of actions defined in the advice section of the template will
be executed to mediate the differences between services (e.g. when such a message
is received, when a message comes from a business partner, etc.) In general, there
are two main approaches for joinpoint expression in the context of AOP [25]. A first
approach consists in the expression of joinpoints only on the service code constructs.

264 W. Kongdenfha et al.

A second approach consists in directly expressing joinpoints using not only service
code but also runtime execution context.

In the context of service adaptation, we have observed that the requirement of the
query language for expressing joinpoints is not only limited to the identification of
service code, but also on the actual messages exchanged with the client, and in general
by the runtime execution context. To illustrate this requirement, consider the example
of the supply chain scenario in Sect. 10.3.2. Assume that the service Sr allows two
different interaction paths with either unregistered or registered clients. The inter-
action path for registered clients is as follows: after submitting an order, process Sr

allows registered clients to send messages issueInvoice and makePayment respec-
tively. The clients do not need to resend message sendShippingPreferences as it
has already been provided and stored in the system when the clients made registra-
tions the first time. In this example, an ordering mismatch between service Sr and
its clients only happens when the client takes the unregistered interaction path,
otherwise the two services are compatible. Thus it is the choice of interaction path
that triggers the adaptation need. This example shows that, for service adaptation,
the query language needs to be able to express conditions on the runtime context,
i.e., how the service is actually used by a client or how it is executed.

Intuitively, for the purpose of service adaptation, we expect the query language to
be able to identify (i) operations (with or without a certain signature) to enable the
resolution of interface-level mismatches, and (ii) interaction paths (that are or are not
presented in a protocol) to enable the handling of protocol-level mismatches. The
latter means that the query language must be able to discriminate between the various
execution paths that lead to or follow an activity of the service. In both cases, what
is done is the identification of a BPEL activity where adaptation is needed, e.g., the
activity where a signature mismatch occurs, or the first activity of a sequence that
does not have any correspondence at the protocol level in the client.

Since we assume that services are implemented in BPEL, a query language that
operate on BPEL code such as BPQL [2] could be a choice. However, using a
query language that focuses on the identification of code constructs would force
us to include, as part of the advice, some code to evaluate those runtime conditions.
Hence, the approach that expresses runtime conditions directly in the query language

Table 10.3 Ordering Constraint mismatch Pattern (OCP)

Query Generic adaptation advice

query(〈operation〉,〈sequence〉) OCPStore() {
executes around receive Receive msgO p;
when Osr

i = 〈operation〉 Assign msgOtmp ←− msgO p;
AND Si = 〈sequence〉 }

query(〈operation〉,〈sequence〉) OCPForward() {
executes around receive Assign msgOsr

j ←− msgOtmp;
when Osr

j = 〈operation〉 Reply msgOsr
j

AND S j = 〈sequence〉 }

10 Web Service Adaptation 265

<query > ::= query ([<param>[,< param>]*])

executes < location> < activity>

when<condition>

<param > ::= id[;id]*

< location > ::= before|after |around

<activity > ::= receive|reply|invoke

<condition > ::= <pred>[AND <pred>]

<pred > ::= <context object >=<param>

|<context object >!=<param>

<context object > ::= partnerLink |portType |operation |inputVariable

|outputVariable |inPara|outPara |executionPath

Fig. 10.7 Semi-formal syntax for query language

has been preferred. This is because it groups together all advice execution conditions
in the query and frees the advice code from any runtime conditions, and thus results
in a more readable code and advices that are more generic.

We therefore propose a joinpoint query language that can express the need of
adaptation advices on the service code, as well as runtime execution context. We
assume that services are implemented in BPEL, though the concepts and requirements
are independent of the specific process language adopted. The query language is
therefore designed specifically to BPEL constructs. Figure 10.7 presents the syntax
of our query language that satisfies the above requirements. It allows the definition
of joinpoints on the BPEL code constructs, such as operation, portType, etc.

While it shares some common characteristics with query languages that operate at
the code level such as BPQL, the main differences are: (i) our language can express
conditions on service interaction paths, and (ii) our language includes keywords for
specifying the relative location of the joinpoint to the BPEL activity that matched the
specified conditions (i.e. the before, after or around keywords). These concepts are
needed to achieve a self contained query language able to express all the conditions
necessary for identifying joinpoints in the service adaptation context.

As shown in Fig. 10.7, the query takes parameters (param) that correspond to
BPEL constructs (i.e. operation, input variable, output variable, partnerLink and
portType), or an execution path (i.e. a sequence of previously exchanged messages).
These parameters are matched against some conditions (context object) at runtime
to identify joinpoints where adaptation advices should be executed. The executes

statement specifies whether adaptation advice should be executed before, after or
around (i.e. in place of) a BPEL activity that matches the joinpoint query.

Consider again the supply chain example, in which the OCP shown in Table 10.3
is used to solve its ordering mismatch. In this case, the OCPStore needs to be
executed around (instead of) the receive activity of operation sendShippingPref-
erence to receive and store the message issueInvoiceIn, which is not expected
at this state. As mentioned before that the ordering mismatch only occurs when
a specific interaction path (unregistered) is taken, hence the query parameters

266 W. Kongdenfha et al.

Client Service Sr

Assign Invoice <- issueInvoiceIn

Assign issueInvoiceIn <- Invoice

sendShippingPrefIn

Perform other
activities

Receive
sendShippingPreferences

OCPStore

OCPForward

issueInvoiceIn

Perform other
activities

Receive
issueInvoice

Receive issueInvoiceIn

Reply issueInvoice
issueInvocieIn

Fig. 10.8 Sample usage of the aspect template specified in the OCP

of the OCPStore in this example are <operation>=sendShippingPreferences
and <sequence>=unregistered. These parameters will be evaluated, at runtime,
against currently executing operation (Osr

i) and execution path (Si) of the adapting
service.

Figure 10.8 shows a sample usage of OCP at runtime. When the process executes
the receive activity of operation sendShippingPreferences, OCPStore receives
message issueInvoice and stores it in a temporary variable Invoice. After the com-
pletion of OCPStore, the process continues to execute the receive activity of operation
sendShippingPreferences. When the message issueInvoice is required by the Sr ,
the OCPForward creates it using the value of variable Invoice. OCPForward is exe-
cuted around (instead of) the receive activity of operation issueInvoice. Hence,
after the completion of OCPForward, the process continues other activities without
performing the receive activity of operation issueInvoice. This is because the mes-
sage issueInvoiceIn has already been received by the execution of the OCPForward
aspect.

10.5.2.3 Deployment of Adaptation Aspects

The above discussion considers only the query language syntax, not the actual deploy-
ment of the solution. Choosing a query language that incorporates runtime condi-
tions also allows for aspect weaving done either at compile-time or at runtime. In
the compile-time deployment model, a new BPEL code would be generated with
advices preceded by runtime conditions. In a runtime deployment model, a specially
modified query engine is required to evaluate runtime conditions based on the execu-
tion context it maintains, leaving the original code unmodified. While both models
are viable, the first one (compile-time) imposes to incorporate in the advices some
additional logic. This logic is not part of adaptation logic but it is required to main-
tain information regarding the service’s execution context (e.g., the interaction path

10 Web Service Adaptation 267

taken by the client). We therefore chose the second (runtime) deployment model
which, in addition to its greater simplicity, also allows to dynamically plugging and
unplugging adaptation aspects. We refer readers to [22] for the details of the query
engine supporting this deployment model.

10.5.3 Aspect-Oriented Versus Standalone Service Adaptation

Figure 10.9 presents a schematic comparison of the standalone and aspect-oriented
approaches for adapter development, in cases where a service Sr with protocol Pr has
to be adapted to n client services, with heterogeneous protocols P1, . . . , Pn . In the
standalone adapter approach, n adapters, one per each client, have to be developed
to make the interactions possible according to protocol Pr . On the other hand, in
aspect-oriented approach, the runtime instance that is formed for interacting with
each client has to be modified with respective adaptation aspects. Each of these two
approaches has characteristics that make them suitable for certain situations.

10.5.3.1 Aspect-Oriented Service Adaptation

Aspect-oriented approach presents several characteristics that make it preferable for
the development of adaptation code compared to standalone adapters. In particular,
using aspect-oriented approach to realize adapter templates for mismatch patterns
further expedites rapid adapter development. This is because there is no need for a
new service (i.e., standalone adapter) to be developed, rather instances of the existing
service are updated at runtime. Other characteristics are discussed as follows:

• Possibility of mismatch resolution: The intertwining of adaptation aspects inside a
service allows the aspects to access internal state and variables of the service. This
increases the possibility of service adaptations that require contextual information

1

2

n

Service Sr

…

Adapter1

Adapter n

Client 1

Client n

……

P1

Pn

Pr

Pr

Service Sr

…

Client 1

Client n

…

n

2

1
P1

Pn

(a) (b)

Fig. 10.9 Schematic comparison of adaptation in standalone and aspect-oriented approaches: (a)
service instances 1,…,n are the same, (b) service instances 1,…,n are modified with respective
adaptation aspects

268 W. Kongdenfha et al.

of the service, e.g. a message generation that requires internal variables of the
service. Note that the patterns are generic and reusable and instantiation of patterns
is specific and allows the user to incorporate context information as the input
parameters of the pattern.
• Recovery: The adaptation aspects share execution context of the adapting service.

When an error occurs, the recovery can be performed by analysing the internal state
of the service. This is easier than handling exceptions of two separate processes
(i.e. adapter and service), which would require correlation of log entries.
• Reusability: Aspect-oriented approach promotes reusability of adaptation code

when many execution points require the same adaptation logic, e.g., any operations
whose messages involve a specific data type can reuse the same aspect for message
transformations. There is no need to generate individual adaptation logic for each
single message as is the case of the standalone adapter. Consequently, the number
of adaptation logic needed to be generated is reduced.
• Separation of concerns: The aspect-oriented approach cleanly separates the adap-

tation concern from the service functionality. The service developers are oblivious
to the adaptation concern since they do not need to write gluecode between adap-
tation logic and service implementation (as is the case in the standalone adapter
in which gluecode appear in several places in the service code). The study in
[18, 19] also shows that implementing adapters using AOP can better separate the
adaptation concern from the functionality of the base programs.
One may argue that whether it is simpler to modify the business logic of the service
(e.g., to re-write the BPEL code) for each new incompatible business partner rather
than using the aspect-oriented approach. The former approach translates in creating
specialized versions of the service for different (incompatible) partners, which is
difficult and expensive to maintain. We can modify the service business logic
(BPEL) if we have to cope with only one partner. However, if we have to enable
the interactions with many incompatible partners, it would mean creating many
versions of the service implementation. The drawback of this approach is that each
time that we change the business logic, we would have to replicate the changes in
all versions. Nevertheless, in some cases, e.g., for business reasons, it may make
sense to create and maintain a customized version of a service for a specific client.
Note that using aspects, we can separate the service business logic/implementation
from the adaptation logic and service interface.

10.5.3.2 Standalone Service Adaptation

In the following, we discuss the characteristic and the situation in which standalone
adapters offer a preferable option for adapter development:

• Understandability: A standalone adapter is implemented as a complete single
business process comprising of a set of adaptation activities. The interdependencies
between these activities are well-defined (comparing to aspect-oriented approach),
and thus simplify the understandability.

10 Web Service Adaptation 269

10.5.3.3 Tradeoffs

In some cases, the intended adaptation scenarios need to be taken into account when
selecting the adapter development approaches. These characteristics and situations
are discussed as follows:

• Overhead: We consider overhead as the time spent by the adapters in performing
activities that are not part of the adaptation logic. This characteristic depends
on the intended adaptation scenarios, specifically the number of messages that
requires adaptation. When such a number is small, the aspect-oriented approach
is preferable. This is because the adaptation aspects will be invoked only for
those messages that require adaptation, while all messages need to pass through
the standalone adapter even if no adaptation is needed. However, aspect-oriented
approach introduces overhead for every single message to check if an adaptation
is required. Hence, when the number of mismatches is large relative to the total
number of messages, the standalone adapter approach might be reasonable.
• Maintainability: In the context of service adaptation, we consider maintainability

as the impact of changes in the service implementation on the adaptation logic.
The impact of changes is spread over multiple aspects comprising the adaptation
logic, while it is in one place in the case of standalone adapters. However, in
the aspect-oriented approach, the developer can update the adaptation logic by
dynamically plug/unplug the aspects, without interrupting the service interactions
(as is the case of standalone adapters that need to be suspended and updated).

Table 10.4 provides a high-level comparison of the aspect-oriented and standalone
adapter development approaches. It can be used as a guideline for an adapter devel-
oper to decide about which adapter development approach to take. It shows that the
aspect-oriented adaptation is preferable when developers consider the importance
of reusability, relative possible number of mismatches to be resolved, recovery and
separation of concerns. On the other hand, when considering the understandability
of adaptation logic, developers may consider the use of standalone adapters. In other
case, the intended adaptation scenarios need to be taken into consideration. In cases,
when we have accesses to service implementation and runtime environment, and
the relative number of mismatch is small, the aspect-oriented approach is preferable
approach for service adaptation development.

Table 10.4 Comparison of adapter code generation approaches

Adaptation aspects Standalone adapters

Possibility of mismatch resolution + −
Recovery + −
Reusability + −
Separation of concern + −
Understandability − +
Overhead +/− +/−
Maintainability +/− +/−

270 W. Kongdenfha et al.

10.6 Concluding Remarks and Future Work

This chapter discusses a significant problem in SOA, i.e., service adaptation. We
first reviewed the problem of and the state of the art in service adaptation and iden-
tified the gaps in each step of service adaptation process, i.e., matching, mapping
and adapter development. We found that while functional description of services
includes interface, data and behavioral descriptions, existing work on service match-
ing and adaptation often focus only on one of these aspects. However, in reality all
these differences are present at the same time, which makes service matching and
adaptation more complicated. We presented an integrated framework consisting of
a methodology for characterization of service adaptation problem, and approaches
that starting from Web service interface and protocol specifications assists in the
identification of service mismatches as well as helps developers in adapter code
development. We described mismatch patterns which capture and formalize com-
mon differences between service specifications and parameterized adaptation logic
that can be instantiated for resolving the identified mismatch. We then presented
a protocol-aware interface matching approach for the identification of service mis-
matches. Finally, we provided an overview of a software platform that enables service
developers in leveraging mismatch patterns for rapid development of service adapters
with two approaches: standalone and aspect-oriented. We also discussed the benefits
of each adapter development approach and provided a comparative study between
them.

Future work in this area consists of using the proposed framework to identify
possible mismatches at other high-level specifications of services, e.g., service poli-
cies. We also consider the development of semi-automated mismatch identification
of other mismatches in addition to split/merge presented in this chapter. Another area
of future work we are considering is to incorporate interface and protocol matching
approaches in the composition of Web services as current approaches often do not
consider heterogeneities of service specifications while composing services.

References

1. RosettaNet, http://www.rosettanet.org
2. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with BP-QL. In:

Proceedings of VLDB’05 (2005)
3. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing adapters

for web services integration. In: Proceedings of 17th International Conference on Advanced
Information Systems Engineering (CAiSE’05), pp. 415–429 (2005)

4. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web service
protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

5. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Proceedings of 4th Inter-
national Conference on Service-Oriented Computing (ICSOC 2006), pp. 27–39 (2006)

6. Cámara, J., Canal, C., Cubo, J., Murillo, J.M.: An aspect-oriented adaptation framework for
dynamic component evolution. Electron. Notes Theor. Comput. Sci. 189, 21–34 (2007)

http://www.rosettanet.org

10 Web Service Adaptation 271

7. Charfi, A., Mezini, M.: Aspect-oriented web service composition with AO4BPEL. In: Pro-
ceedings of ECOWS’04, pp. 168–182 (2004)

8. Chari, K., Seshadri, S.: Demystifying integration. Commun. ACM 47(7), 58–63 (2004)
9. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S. (eds.): Web Service Description Lan-

guage (WSDL) Version 2.0. W3C Working draft. http://www.w3.org/TR/wsdl20 (2007)
10. Colyer, A., Clement, A., Bodkin, R., Hugunin, J.: Using AspectJ for component integration in

middleware. In: Proceedings of OOPSLA’03, pp. 339–344 (2003)
11. Courbis, C., Finkelstein, A.: Towards aspect weaving applications. In: Proceedings of ICSE’05,

pp. 69–77 (2005)
12. Dantas, A., Yoder, J.W., Borba, P., Johnson, R.: Using aspects to make adaptive object-models

adaptable. In: Proceedings of RAM-SE’04, pp. 9–19 (2004)
13. Do, H.H., Rahm, E.: COMA—a system for flexible combination of schema matching

approaches. In: Proceedings of 28th Conference on Very Large Data, Bases (VLDB’02), pp.
610–621 (2002)

14. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for web services.
In: Proceedings of 30th Conference on Very Large Data, Bases (VLDB’04), pp. 372–383 (2004)

15. Dumas, M., Spork, M., Wang, K.: Adapt or perish: algebra and visual notation for service inter-
face adaptation. In: Proceedings of International Conference on Business Process Management
(BPM 2006), pp. 65–80 (2006)

16. Fuchs, M.: Adapting web services in a heterogeneous environment. In: Proceedings of Inter-
national Conference on Web Services (ICWS’04), p. 656. IEEE CS Press, Washington (2004)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns. Addison-Wesley, Boston
(1995)

18. Garcia, A., et al.: Modularizing design patterns with aspects: a quantitative study. In: Proceed-
ings of AOSD ’05, pp. 3–14 (2005)

19. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ. SIGPLAN
Not. 37(11), 161–173 (2002)

20. Kazhamiakin, R., Pistore, M.: Choreography conformance analysis: asynchronous communi-
cations and information alignment. In: Proceedings of 3rd International Workshop on Web
Services and Formal Methods (WS-FM). Lecture Notes in Computer Science, vol. 4184, pp.
227–241. Springer, Berlin (2006)

21. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An overview of
AspectJ. In: Proceedings of ECOOP’01, pp. 327–353 (2001)

22. Kongdenfha, W., Motahari-Nezhad, H.R., Benatallah, B., Casati, F., Saint-Paul, R.: Mismatch
patterns and adaptation aspects: a foundation for rapid development of web service adapters.
IEEE Trans. Serv. Comput. 2(2), 94–107 (2009)

23. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented framework for
service adaptation. In: Proceedings of 4th International Conference on Service-Oriented Com-
puting (ICSOC 2006), pp. 15–26 (2006)

24. Li, X., Fan, Y., Jiang, F.: A classification of service composition mismatches to support service
mediation. In: Proceedings of GCC’07, pp. 315–321 (2007)

25. Loughran, N.: Survey of aspect-oriented middleware research. Technical report, Lancaster
University, AOSD-Europe-ULANC-10 (2005)

26. Massuthe, P., Wolf, K.: An algorithm for matching non-deterministic services with operating
guidelines. Int. J. Bus. Process Integr. Manag. (IJBPIM) 2(2), 81–90 (2007)

27. McNeile, A.: Dynamic choreography. http://www.metamaxim.com/download/documents/
DynChor.pdf (2005)

28. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching algo-
rithm and its application to schema matching. In: Proceedings of 18th International Conference
on Data Engineering (ICDE’02), pp. 117–128 (2002)

29. Murugesan, S.: Understanding Web 2.0. IEEE IT Prof. 9(4), 34–41 (2007)
30. Nezhad, H.R.M., Benatallah, B., Casati, F., Toumani, F.: Web services interoperability speci-

fications. Computer 39(5), 24–32 (2006). doi:10.1109/MC.2006.181

http://www.w3.org/TR/wsdl20
http://www.metamaxim.com/download/documents/DynChor.pdf
http://www.metamaxim.com/download/documents/DynChor.pdf
http://dx.doi.org/10.1109/MC.2006.181

272 W. Kongdenfha et al.

31. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-automated adap-
tation of service interactions. In: Proceedings of 16th World Wide Web Conference (WWW
2007), pp. 993–1002. ACM Press, New York (2007)

32. Nezhad, H.R.M., Xu, G.Y., Benatallah, B.: Protocol-aware matching of web service interfaces
for adapter development. In: Proceedings of WWW, pp. 731–740 (2010)

33. Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. In: Proceedings of CAiSE’05, pp. 125–
138 (2005)

34. Ponnekanti, S.R., Fox, A.: Interoperability among independently evolving web services. In:
Proceedings of 5th ACM/IFIP/USENIX International Conference on Middleware (Middle-
ware’04), pp. 331–351. Springer, New York (2004)

35. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J.
10(4), 334–350 (2001)

36. Rahm, E., Do, H.H., Massmann, S.: Matching large XML schemas. SIGMOD Rec. 33(4),
26–31 (2004)

37. Soria, C.C., Pérez, J., Carsí, J.A.: Dynamic adaptation of aspect-oriented components. In:
Proceedings of CBSE’07, pp. 49–65 (2007)

38. W3C: XML Schema 1.1. W3C recommendation. http://www.w3.org/XML/Schema (2004)
39. Wang, Y., Stroulia, E.: Flexible interface matching for web-service discovery. In: Proceedings

of 4th International Conference on Web Information Systems Engineering (WISE 2003), pp.
147–156. IEEE Computer Society, Washington (2003)

40. Wohlstadter, E., Volder, K.: Doxpects: aspects supporting XML transformation interfaces. In:
Proceedings of AOSD’06, pp. 99–108 (2006)

41. Zaremski, A.M., Wing, J.M.: Signature matching: a tool for using software libraries. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 4(2), 146–170 (1995)

42. Zaremski, A.M., Wing, J.M.: Specification matching of software components. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 6(4), 333–369 (1997)

http://www.w3.org/XML/Schema

Chapter 11
Transformation Framework for Consistent
Evolution of UML Behavioral Elements
into BPMN Design Element

Jayeeta Chanda, Ananya Kanjilal, Sabnam Sengupta
and Swapan Bhattacharya

Abstract There are many software products that have been developed in the
object-oriented paradigm. To incorporate the positive aspects of service-oriented
paradigm (SOA) and address the issues related to increasing size and complexity
of software products, they need to be evolved to service-oriented domain. There are
some proven Object Oriented (OO) Design Tools that can be used for Service Ori-
ented Application design incorporating both the behavioral and structural aspects in
a seamless, consistent evolution that can be made from object oriented to service ori-
ented domain. In this chapter, we concentrate on the evolution process of behavioral
aspect of design from OO to SOA. Business Process Modeling Notation (BPMN) has
become the de-facto standard for modeling business process on a conceptual level.
Business processes are an integral part of service-oriented architecture. In service-
oriented applications Use cases needs to be ordered along business processes. Busi-
ness Processes visualize global control-flow across Use cases. Therefore, use of a
business process language to visualize the dependencies among different use cases
is of high importance. Use case diagram along with activity diagrams represents the
behavioral aspect of a system in the analysis phase of an object-oriented system.
To enable modeling the relationship among different behavioral aspects and evolve
from object oriented domain to service oriented domain, a formal approach would
help in establishing the foundation. In order to do that, in this work, we propose a
formal framework, FAM (Formalized analysis model), which is a set of grammar

J. Chanda (B) · A. Kanjilal · S. Sengupta
BPPIMT, 137, VIP Road, Kolkata, India
e-mail: jayeeta.chanda@gmail.com

A. Kanjilal
e-mail: ag_k@rediffmail.com

S. Sengupta
e-mail: sabnamsg@gmail.com

S. Bhattacharya
National Institute of Technology Karnataka , Surathkal, India
e-mail: bswapan2000@yahoo.co.in

A. Bouguettaya et al. (eds.), Web Services Foundations, 273
DOI: 10.1007/978-1-4614-7518-7_11,
© Springer Science+Business Media New York 2014

274 J. Chanda et al

based formalized Use case and Activity diagram elements of UML and a framework
for verification of the diagrams, which includes syntactic correctness and require-
ment traceability. Along with that, we also propose FAM2BP (Formalized Analysis
Model to Business Process) for transformation of Formalized Analysis Model (FAM)
of object-oriented systems into BPMN process for SOA application using a set of
rules that will help in generating business processes for SOA application directly
from object oriented analysis models. This model would help in a consistent evolu-
tion of software development paradigms from Object Oriented to Service Oriented
systems.

11.1 Introduction

Design and development of software has become much more complex in the last
decade, resulting in the evolution of design and development paradigms. Object ori-
ented systems have thus become an integral part of more complex Service Oriented
Architecture (SOA) to address complex issues like Separation of Concerns, reusabil-
ity, granularity, modularity, componentization and interoperability. Evolution of soft-
ware design and development from OO to SOA domain has become the necessity
in this evolving scenario. There are some proven OO design tools that can be used
for SOA application design. In object-oriented systems, UML is a widely accepted
industry standard for modeling of different aspects of the system under construction.
Use case diagrams and activity diagrams are used to model the business functional
requirements in the analysis phase. These correlate to the business processes of SOA
architecture. In service-oriented architecture, BPMN processes play an important role
in the development of services. It is the dynamic behavioral diagrams that are often
used for modeling business processes, such as the UML Activity diagram and Use
Case diagram . BPMN is related to UML in the sense that it defines a visual notation
for business processes that is similar to UML behavioral diagrams. However, BPMN
and UML have very different approaches to business process modeling. UML offers
an object-oriented approach to the modeling of applications, while BPMN takes a
process-centric approach that is more natural and intuitive for the business analyst to
use. BPMN also offers the option of explicitly modeling business objects that may
be exposed through business services in the process flows. Automatic translation of
UML use case and activity models to BPMN design elements is thus necessary to
ensure consistent evolution of Object oriented systems to Service oriented paradigm.

In this work, we propose a grammar based framework FAM (Formalized analysis
Model) for syntactic and semantic verification of UML diagrams in the analysis
phase and a relational model based framework FAM2BP (Formalized Analysis Model
to Business Processes) for automated translation of elements of FAM to elements
of Business Processes, preserving the use case relationship and dependencies and
maintaining the control flow of the Business processes. Our framework would enable
a consistent evolution of software systems from object oriented paradigm to service
oriented paradigm.

11 Transformation Framework for Consistent Evolution 275

11.2 Related Work

Lots of research work are undertaken presently to address various issues in design-
ing and developing software in service oriented paradigm. We discuss some of the
significant contributions and present it in the following two subsections. In the first
subsection, we discuss the existing works in the domain of formalization of object
oriented design modeled by UML diagrams which forms the basis of automated trans-
lation and verification. Our proposed framework FAM is presented subsequently in
the context of these existing works. In the second subsection, we discuss the work in
the domain of relationship between UML use case model and BPMN process model.
This forms the basis of our proposed framework FAM2BP for automated evolution
of BPMN process models from UML models.

11.2.1 Formalization Approaches

Formalization of UML has become a prominent domain of research for the last few
years. Achievement of automated consistency checking and execution has led the
software engineers and researchers to focus in this domain. In this section we will
discuss a few works done in this domain related to formalization of UML static
and dynamic models. To reduce the risks associated with software development and
to increase the safety and the reliability by formalizing the syntax of (a sub-set of
the popular UML diagrams (Use Case diagram, Class diagram, and State Machine
diagram) using Z specifications has been proposed in [1].

The class diagram being the reference point of the notation, any formalization must
start with this diagram. To make it possible to provide computer aided support during
the application design phase in order to automatically detect relevant properties, such
as inconsistencies and redundancies, in [2], UML class diagram is formalized in terms
of a logic belonging to Description Logics, which are subsets of First-Order Logic. An
algebraic approach is chosen in [3] because it is more abstract than state-based style
languages. UML’s class diagram (including type definitions, attributes, operations,
aggregation and association) and OCL constraints (syntax and semantics), have been
formalized using theorem prover Isabelle using one of its built-in logics, HOL.

RSL (RAISE (Rigorous Approach to Industrial Software) Specification Lan-
guage) has been used in [4] as a syntactic and semantic reference for UML. An
automated tool that implements the translation and the abstract syntax in RSL for the
RSL-translatable class diagrams are also presented. The integration of the domain
modeling method for analyzing and modeling families of software systems with
the SOFL formal specification language is discussed in [5]. A UML 1.5 profile
named TURTLE (Timed UML and RT-LOTOS Environment) endowed with a for-
mal semantics given in terms of RT-LOTOS is proposed in [6]. Preliminary results
on an approach to formally define UML class diagrams using hierarchical predicate

276 J. Chanda et al

transition nets (HPrTNs) have been presented in [7]. The authors show how to define
the main concepts related to class diagrams using HPrTN elements.

The semantics presented in [8] captures the consistency between sequence dia-
gram with class diagram and state diagram. This approach may be useful to develop
the model consistent checking functions in UML CASE tools and also to reason
about the correctness of a design model with respect to a requirement model. The
transformation rules for formalizing UML statechart diagrams have been proposed
in [9]. The target language for the transformation is Concurrent Regular Expressions
(CREs), which are extensions of regular expression. In [10], the alternative approach
of using -calculus to formalize UML activity diagrams is presented to get rich process
semantics for activity diagrams. This process model can be automatically verified
with the help of -calculus analytical tools. Hoare’s CSP (communicating sequential
processes) has been used in [1] to formalize the behaviors of UML activity diagrams
and provides an approach to model checking during software analysis or design stage.
The operational semantics of UML sequence diagrams is specified and this specifi-
cation is extended to include features for modeling multimedia applications as a case
study in [11]. Dynamic Meta modeling has been proposed for specifying operational
semantics of UML behavioral diagrams based on UML collaboration diagrams that
are interpreted as graph transformation rules. The authors in [12] have defined a tem-
plate to formalize the structured control constructs of sequence diagram, introduced
in UML 2.0.

In all these research works, UML diagrams have been formalized using other
formal languages. Our earlier work [13] also used Z to propose a formal model for
six UML diagrams. However, Z is a non-executable language and hence automated
verification is not possible unless translated or mapped to executable models like
XML using ZML. In this work, we use context free grammar to formally define
the very widely used UML diagrams namely Use case, Activity and Class. This
approach is executable unlike the existing approaches like Z-notation etc and hence
can be validated using LEX and YACC.

11.2.2 UML Model and BPMN Model Mapping

There exist some works related to the relationship between use case models and
BPMN process model. In [14], Cockburn mentions the possibility of applying Use
cases for deriving business processes but no rules are proposed. The field of model-
driven development has tried to integrate the concept of Use cases within its UML
models. Instead of tabular and textual descriptions, UML sequence diagrams or simi-
lar models are used in [15]. In [16], an UML based development of business processes
is discussed. Expression of control flow between use cases is missing in this approach.

In [17], it is possible to define control-flow dependencies between Use cases with
the introduction of Use case Charts and their formalizations. Use cases are called
scenarios that may not have extensions and that are modeled as UML sequence
diagrams. However, dependencies between Use cases cannot be derived from the
Use Case themselves but have to be modeled explicitly.

11 Transformation Framework for Consistent Evolution 277

In [18], synthesis of state transition graphs from Use Cases is addressing the
visualization aspect in a better way. A tabular Use case can be converted to a state
transition graph similar to graphical business process languages. In [19], the state
transition graphs can be used for simulating one Use case but are not suited for
visualizing dependencies between Use Cases. The generation of EPC models from
Use Cases is addressed in [20]. EPC models consist of fewer graphical symbol types
but are not as powerful as BPMN. BPMN has become the standard business process
modeling language in SOA. Therefore, the transformation of Use cases should have
BPMN as the target notation and our framework is developed upon this concept.

In [21], an algorithm is proposed that restores the overview of the Use cases and
visualizes the control flow of the resulting business process. This approach automati-
cally assembles Use cases to business process. But this work is unable to keep the rela-
tionship (includes and extends) among use cases and treated as the flat use case model.

Our work is closely related to these works but improves upon them in several
aspects. We capture the use case scenarios as a formalized analysis model (FAM)
that is a grammar based representation of UML Use case and Activity models. A for-
mal definition of semantics for the subset of BPMN that is applied here has been
presented in [22]. Then, a set of rules are proposed that automatically transforms the
FAM to BPMN elements (FAM2BP) maintaining the control flow of scenarios as
well as preserving all relationships between the use cases.

11.3 Scope of Work

In this chapter, we propose an integrated framework for automatic evolution of UML
analysis models to BPMN design elements of service oriented paradigm. The UML
use case and activity diagrams that capture the business functional requirements
and their flow of events are formally represented as Formal Analysis Model (FAM)
which is the grammar based representation of these artifacts. The elements of UML
correspond and correlate to the BPMN elements based on which we have designed
the transformation framework FAM2BP. The framework consists of a set of rules
to map the UML elements like events and flow of events into BPMN elements
like start/stop/intermediate events, parallel/exclusive-OR Gateway, etc. A relational
model is proposed to represent the relationship among the artifacts. Finally, an algo-
rithm is presented to automatically transform the UML elements into BPMN ele-
ments. The block diagram in Fig. 11.1 depicts our approach.

Fig. 11.1 Our integrated
framework

278 J. Chanda et al

11.4 Formalized Analysis Model

UML, being visual in nature, is easy to understand and communicate, but, it lacks the
rigor of formal modeling languages and hence verification of a model specified in
UML and ensuring requirement traceability within these models becomes difficult.
Formalization of UML diagrams is now a dominant area of research. This section
is a work in that direction. We have proposed a formal grammar for the Use case,
Activity and Class diagrams. We have considered OMG UML 2.0 standard and
proposed formal models for some of its constituent diagrams. The production rules,
terminals, non-terminals for the grammars are chosen and proposed accordingly. We
have also proposed a set of verification criteria that comprises of syntactic correctness
rules and traceability rules.

The consistency rules have been proposed by analyzing the inter-relationships
among the diagrams so that they together represent a coherent design. Verification
of all the rules has been presented based on the proposed grammar. We have used
regular expression features (eg. +, *) in the production rules for simplicity and easy
understanding. However, for Lex/YACC implementation, we have used a recursive
definition of the grammar. Let, the grammar be G = {S, N, T, P}
where S, N, T, P represent start symbol, non-terminals, terminals and production
rules
T= {char, digit, +, -, #, association, generalization, aggregation, (,) , .. ,:, basic,
alternate, include, extend}
All other symbols used in the production rule P are non-terminals (N).

Grammar for use case Diagram
P:S→ usecase_diagram
usecase_diagram→ usecase+ actor* UC_relation* actor_relation*
usecase→ UC_id UC_name event+
event→ event_ID event_name event_type
event_type→ basic | alternate
UC_relation→ UC_id UC_reltype UC_id
UC_reltype→�include� | �extend� | �generalization�
actor_relation→ actor actor_reltype actor
actor_reltype→�include� | �extend�
event_ID→ char
event_name→ char
UC_id→ char
UC_name→ char
actor→ char
char→ [a-z A-Z 0-9]+
digit→ [0 9]

11 Transformation Framework for Consistent Evolution 279

Grammar for activity diagram
activity_diagram→ activity_state+ transition+ objectflow*
activity_state→ act_ID event_ID activity_node act_desc

className pre_element post_element
activity_node→ start | end | join | fork | action | decision | merge
pre_element→ className prenode
post_element→ className postnode
prenode→ start | join | fork | action | decision | merge
postnode→ end | join | fork | action | decision | merge
transition→ tran_ID prenode postnode objectfl_ID

| tran_ID prenode postnode
objectflow→ objectfl_ID objName className preState poststate
preState→ objName = statename
postState→ objName = statename
act_ID→ char
className→ char
objName→ char
act_desc→ char
tran_ID→ char
objectfl_ID→ char
statename→ char

The syntactic rules and traceability rules for the use case diagram and activity diagram
are stated as given in the following subsections.

11.4.1 Syntactic Rules

1) The usecase diagram consists of

a. One or many use cases
b. Zero or many actors
c. Zero or many use case relationships
d. Zero or many actor relationships

2) An usecase consists of One or many events
3) An event has to be of the type basic or alternate.
4) The Use case relationship can be of the type include, extend and generalization.
5) The actor relationship can be of the type include and extend.
6) An activity diagram consists of

a. A start state
b. An end state
c. One or many activity states
d. Two or many transitions.

280 J. Chanda et al

7) Zero or many object flows (change in state of an object)
8) Zero or many swimlanes (Transition of state is between two different class)

11.4.2 Traceability Rules

An action/activity state in activity diagram has a one-to-one mapping with an event
of a use case in use case diagram.

This traceability rule can be validated using the grammar of use case diagram and
activity diagram as stated in the earlier sections.

In this section, we have formalized the analysis phase of OO design elements.
These formalized analysis model (FAM) elements are input to the transformation
framework FAM2BP. The proposed FAM will establish traceability among the dif-
ferent elements of analysis model. We are establishing traceability in this stage before
the transformation because the consistent elements of OO system will generate more
robust design elements of the SOA paradigm.

11.5 FAM2BP: Proposed Transformation Model

This section discusses the relational model which maps the artifacts of the two
paradigms. The transformation rules and the algorithms for automatic transformation
are presented in the following sections.

Fig. 11.2 Relational model

11 Transformation Framework for Consistent Evolution 281

11.5.1 Relational Model

The elements of Formalized Analysis Model (FAM) are mapped with the BPMN
node. For example, the Use case and Event entity are related to each other. Similarly
all other elements of the FAM are related as shown in Fig. 11.2. These elements of
FAM model are mapped with the BPMN nodes to ensure automatic transformation
from Formalized Analysis Model to Business process. The tables corresponding to
this model are generated as follows-
Table Event

(UC_id, event_id, event_name, event_type)
Table ActivityState

(UC_id, event_id, Act_id, activity_node, act_desc, preElement, postElement)
Table ActUCRelation

(Act_ID, UC_id, Rel_type)
Table BPMN_node

(Name, activity_node, Graphical_notation)
The events of the OO behavioral domain are mapped with the BPMN nodes.The
SOA behavioral elements BPMN nodes are given below:

• Start Event
• End Event
• Intermediate Event
• Parallel Gateway
• Exclusive-OR Gateway

11.5.2 Transformation Rules

We propose a set of rules to transform Formalized Analysis model into BPMN
notation.
Rule 1
The use case activity whose node is marked as start will be assigned as the Start
Event of the BPMN node. The BPMN node will be labeled as Activity ID (act_ID)
of the activity node.
Rule 2
The use case activity whose node is marked as end will be assigned as the End Event
of the BPMN node. The BPMN node will be labeled as Activity ID (act_ID) of the
activity node.
Rule 3
The use case activity whose node is marked as action / decision will be assigned
as the Intermediate Event of the BPMN node. The BPMN node will be labeled as
Activity ID (act_ID) of the activity node.
Rule 4
The use case activity whose node is marked as fork will be assigned as the Parallel

282 J. Chanda et al

Gateway of the BPMN node if both the postElement of the activity node are of the
type basic. The BPMN node will be labeled as Activity ID (act_ID) of the activity
node.
Rule 5
The use case activity whose node is marked as fork will be assigned as the Exclusive-
OR Gateway of the BPMN node if one the postElement of the activity node are of
the type basic and the other is of the type alternate. The BPMN node will be labeled
as Activity ID(act_ID) of the activity node.

These rules are realized in the next section to automate the transformation of
Formalized Analysis Model into BPMN nodes.

11.5.3 Algorithm for Automated Transformation

The rules cited in the previous section are realized using two algorithms namely
NodeGeneration and FlowGeneration. The flow of the algorithm is as follow:

The elements of Formalized Analysis Model (FAM) in the form of different table
schema are used as input to the first algorithm named NodeGeneration The out-
puts of this algorithm are different BPMN nodes. This output along with the Array
FAM_Flow are fed as input to the second algorithm named FlowGeneration. The
Array FAM_Flow is formal method of storing the flow information of events of
FAM. The FlowGeneration algorithm will generate the BPMN design elements.

11.5.3.1 Algorithm NodeGeneration to Generate BPMN Node

The algorithm NodeGeneration as proposed below will generate the BPMN nodes.
We define the algorithm using the tuple relational calculus. The algorithm is proposed
as follows-
Query 1:
The following query is the realization of rule 1 of Sect. 11.5.2.It generates the Start
of the BPMN node. It selects the Graphical_notation from BPMN_node and map
that with the start event of the activity_node.
{t.Graphical_notation| BPMN_node(t) ∧ t.ID =1 ∧
∃ d (d.act_ID | ActivityState (d) ∧ d.activity_node = t.activity_node ∧
t.label = d.act_ID ∧ d.activity_node = start)}

Query 2:
The following query is the realization of rule 2 of Sect. 11.5.2. It generates the End
of the BPMN node. It selects the Graphical_notation from BPMN_node and map
that with the end event of the activity_node.

{t. Graphical_notation | BPMN_node(t) ∧ t.ID = 2 ∧
∃ d(d.act_ID | ActivityState(d) ∧ d.activity_node =

11 Transformation Framework for Consistent Evolution 283

t.activity_node ∧ t.label = d.act_ID ∧ d.activity_node = end)}

Query 3:
The following query is the realization of rule 3 of Sect. 11.5.2. It generates the
Intermediate Event of the BPMN node. It selects the Graphical_notation from
BPMN_node and map that with the action or decision event of the activity_node
{t.Graphical_notation | BPMN_node(t) ∧ t.ID = 3 ∧
∧ d(d.act_ID | ActivityState(d) ∧ d.activity_node =
t.activity_node ∧ t.label = d.act_ID ∧ (d.activity_node = action
∨ d.activity_node = decision)) }

Query 4:
The following query is the realization of rule 4 of Sect. 11.5.2. It generates the
graphical notation for Parallel Gateway. It selects the particular graphical notation
and map this with that activity_node of ActivityState where activity_node is fork and
the event_type of all the postElement of that activity node is basic.
{t.Graphical_notation | BPMN_node(t) ∧ t.ID = 4 ∧
∃ q (q.act_ID | ActivityState(q) ∧ q.activity_node = t.activity_node ∧
t.label = q.act_ID ∧ q.activity_node = fork
∃ r(r.postElement | ActivityState (t) ∧ r.act_ID = q.act_ID ∧
∃ s(s.event_ID | ActivityState(s) ∧ s.act_ID = r.postElement ∧
∃ p(p.event_ID | Usecase(p) ∧ p.event_ID = s.event_ID ∧
s.event_type = basic))))}

Query 5:
The following query is the realization of rule 5 of Sect. 11.5.2. It generates the graph-
ical notation for Exclusive_OR Gateway. It selects the particular Graphical notation
and map this with that activity_node of ActivityState where activity_node is fork
and the event_type of the one of postElement of that activity node is basic and the
event_type of the other postElement of that activity node is alternate.

{t.Graphical_notation | BPMN_node(t) ∧ t.ID = 5 ∧
∃ q(q.act_ID | ActivityState(q) ∧ q.activity_node = t.activity_node ∧
t.label = q.act_ID ∧ q.activity_node = fork ∧
∃ r (r.postElement | ActivityState (t) ∧ r.act_ID = q.act_ID ∧
∃ s(s.event_ID | ActivityState(s) ∧ s.act_ID = r.postElement ∧
∃p(p.event_ID | Usecase(p) ∧ p.event_ID = s. event_ID

In this way, the algorithm NodeGeneration described in this section will map the
different nodes of the OO design elements with that of the BPMN design elements.
The algorithm FlowGeneration as proposed in the following section will generate
the flows between these nodes that are generated by the algorithm NodeGeneration.

284 J. Chanda et al

11.5.3.2 Algorithm FlowGeneration to Generate the Flow Between
BPMN Nodes

We use an array representation FAM_flow to represent the flow between different
activity nodes. FAM_flow is a part of our Formalized Analysis Model to depict the
flow between different events of use cases of objects oriented systems.
The array FAM_Flow is an [n] [3] array where n is the number of flows in the
formalized analysis model.

FAM_Flow [0] [i] lists the source activity node of the flow for i=0 to n
FAM_Flow [1] [i] lists the destination activity node of the flow i= 0 to n
FAM_Flow [2] [i] lists the types of flow between A(0,i) and A(1,i) for i= 0 to n

Entries in FAM_Flow [2, i] are of the following types:

1) S indicates sequential flow
2) D indicates Default Flow
3) C indicates Conditional Flow
4) I indicate Iterative flow

Table BPMN_Flow stores different graphical notations of BPMN flows and are
assigned with unique IDs.
Table BPMN_Flow will have the following kind of flows:

1) Sequential Flow (ID is 1)
2) Default Flow (ID is 2)
3) Conditional Flow (ID is 3)
4) Iterative flow (ID is 4)

The algorithm FlowGeneration is proposed as follow:
Input:

Output of Nodegeneration algorithm, FAM_Flow[n] [3], Table BPMN_Flow.

Algorithm:
for(m=0 ; m<=n-1;m++)
{
flow. from = FAM_flow[m] [0] ;
flow. to = FAM_flow[m] [1] ;
If FAM_flow [m] [2] = S
Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=1
If FAM_flow [m] [2] = D
Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=2
If FAM_flow [m] [2] = C
Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=3
If FAM_flow [m] [2] = I
Flow.type = Select BPMN_Flow.Graphical_notation where BPMN_Flow.ID=4
}

11 Transformation Framework for Consistent Evolution 285

Output:
Different flows of the BPMN design elements.

In this section, we have proposed and described the transformation framework
FAM2BP which is BPMN design elements from the elements of the formalized
analysis model. As we have ensured the consistency at the OO level before transfor-
mation, this transformation will generate consistent design elements at this stage.

11.6 Case Study

Our proposed Automatic Transformation Model FAM2BP is explained with the help
of the case study of a Banking System. We have taken four use cases where use case
2 (UC2) is the primary use case that includes use case (UC1) and use case 3 (UC3)
and is extended in specialized case like housing loan by use case 4 (UC4).

These use cases are tabulated in Table 11.1 in the form of Use case Schema as
defined in Sect. 11.4.2. The events of individual use cases are stored in Table 11.2 as
Event schema which is defined in Sect. 11.4.2. These events will be mapped with the
ActivityState. The information regarding ActivityState, will be stored in Table 11.3 as
ActivityState schema. Table ActivityState contains the information regarding activity
node. The entry in the table will have new activity like fork or join or decision etc
apart from normal activity (start/action/end) which are mapped from the events of
the Event table. The normal activity will carry the same event_ID as in the table
Event. And new event_ID will be generated for the new activity. All the activities
will be assigned an unique identifier.

Table 11.4 (Table ActUCRelation) which keeps information regarding any activity
that includes any use cases. Table 11.4 can be used for extends relation, as well. Here,
UC4 extends UC2 and we can replace this with the relation UC4 includes UC2, which
implies that UC4 has all the functionalities of UC2, along with its own functionalities.
Henceforth, UC4 will have an activity which will include UC2. The Reuse field in
Table 11.3 is used to incorporate reusability (include, extend in terms of include
relationship) of use cases. If the Reuse field is Y, then Table 11.4 has to be checked
to find which usecase has to be included by checking the UC_id field.

Table activitystate (Table 11.3) contains the information regarding activity node.
The entry in the table will have new activity like fork or join or decision etc apart
from normal activity (start or action or end) which are mapped from the events of

Table 11.1 Table use case UC_id UC_name

UC1 Verify customer
UC2 Sanction loan
UC3 Determine the maximum limit of loan amount
UC4 Sanction home Loan

286 J. Chanda et al

Table 11.2 Table event

UC_id Event_id Event_name Event_type

UC1 EV1 A customer has called the bank or visit the bank Basic
UC1 EV2 The customer will be asked the requisite set of

questions
Basic

UC1 EV3 Customer is able answer all verification questions
successfully

Basic

UC1 EV4 Customer is unable answer verification questions Alternate
UC1 EV5 Verification is complete Basic
UC2 EV1 A customer has called the bank Basic
UC2 EV2 Includes UC1 Basic
UC2 EV3 Includes UC3 Basic
UC2 EV4 Verify address Basic
UC2 EV5 Finalization of interest rate Basic
UC2 EV6 Calculation of EMI Basic
UC2 EV7 Loan is sanctioned Basic
UC3 EV1 Customer has applied for loan Basic
UC3 EV2 Income and other factor are taken as input Basic
UC3 EV3 The maximum loan limit of the customer is calcu-

lated
Basic

UC3 EV4 The maximum calculated limit is less than the
requested loan limit

Basic

UC3 EV5 Customer loan amount is sanctioned Basic
UC4 EV1 Customer has applied for home loan Basic
UC4 EV2 Customer submit property details etc Basic
UC4 EV3 The searching of property is done and searching

result is satisfactory
Basic

UC4 EV4 The searching of property is done and searching
result is not satisfactory

Alternate

the Event table (Table 11.2). The normal activity will carry the same event_ID as
in the table Event and new event_ID will be generated for the new activity. All the
activities will be assigned an unique identifier. As a result , the different BPMN nodes
and flows are generated using Tables 11.1, 11.2, 11.3, 11.4 and the array FAM_flow
(defined in the previous section). The Table ActUCRelation (Table 11.4) which keeps
information regarding any activity that includes any use cases. Table 11.4 can be used
for extends relation as well. Here, UC4 extends UC2 and we can replace this with the
relation UC4 that includes UC2, which implies that UC4 has all the functionalities
of UC2, along with its own functionalities. Henceforth, UC4 will have an activity
which will include UC2.

11 Transformation Framework for Consistent Evolution 287

Table 11.3 Table activity state

UC_id Event_id Act_id Activity_node preElement postElement Reuse

UC1 EV1 AC1 start —— AC2 N
UC1 EV2 AC2 action AC1 AC3 N
UC1 F AC3 fork AC2 AC4,AC5 N
UC1 EV3 AC4 action AC3 AC6 N
UC1 EV4 AC5 action AC3 AC2 N
UC1 J AC6 join AC4,AC5 AC7 N
UC1 EV5 AC7 end AC6 —— N
UC2 EV1 AC8 start —— AC8 N
UC2 F AC9 fork AC8 AC10,AC11 N
UC2 EV2 AC10 action AC9 AC12 Y
UC2 EV3 AC11 action AC9 AC12 Y
UC2 J AC12 join AC10,AC11 AC13 N
UC2 EV4 AC13 action AC12 AC14 N
UC2 EV5 AC14 action AC13 AC15 N
UC2 EV6 AC15 action AC14 AC16 N
UC2 EV7 AC16 end AC15 —— N

Table 11.4 Table
ActUCRelation

Act_id UC_id

AC10 UC1
AC11 UC3

11.7 Implementation

In this section, we will discuss the implementation details in the direction of evolution
from the OO to the SOA domain. We develop a tool that generates the BPMN
design elements of the SOA paradigm from the use case design elements of the OO
paradigm. The technical environment for this evolution tool comprises of J2SE 1.6.
The Integrated Development Environment (IDE) that is used for developing the tool
is Net Beans. The tool is developed as a Multi Document Interface (MDI) desktop
application using the Java Swing framework (Fig. 11.3).

The program uses a text file as an input. The text file contains the grammatical
constructs that define the pre and post elements for each behavioral artifacts, its
type etc of OO domain. The grammatical constructs used in the input file are given
below:
Usecase name, Element Name, Event Name, Type, Pre Element, Post Element,
Reuse

Example:
UC1,AC1,EV1,START,-,AC2,N
UC1,AC7,EV7,ACTION,AC1,AC2,N
UC1,AC2,EV2,FORK,AC7,AC3,N
UC1,AC2,EV2,FORK,AC7,AC4,Y

288 J. Chanda et al

Fig. 11.3 BPMN as generated by our tool

UC1,AC3,EV3,ACTION,AC2,AC5,N
UC1,AC6,EV6,ACTION,AC2,AC4,N
UC1,AC4,EV4,END,AC6,-,N
UC1,AC5,EV5,END,AC3,-,N

11.8 Conclusion

In this chapter, we have proposed an approach for automated translation of Formal-
ized Analysis Models that consists of a formal grammar based description of UML
models to Business Processes in the analysis phase. Design and development of
software has become much more complex in the last decade resulting in evolution
of design and development paradigms. Object oriented systems have thus become
an integral part of more complex Service Oriented Architecture (SOA). Evolution
of software design and development from the object oriented to the SOA domain
has become the necessity in this evolving scenario. This approach would help us in
seamless evolution of object oriented systems to the service oriented domain. As this
model is based on a formal grammar, this approach can be automated resulting in
correct and consistent transformations.

References

1. Mostafa, A.M., Ismail, M.A,. El-Bolok, H., Saad, E.M.: Toward a formalization of UML2.0
metamodel using Z specifications, In: Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007.

11 Transformation Framework for Consistent Evolution 289

SNPD 2007, vol. 1, pp 694–701, July 30–August 1, 2007
2. Cal, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: A formal framework for reasoning on

UML Class diagrams. In: Proceedings of the 13th International Symposium on Methodologies
for Intelligent Systems (ISMIS 2002), pp. 503–513 (2002)

3. Andre, P., Romanczuk, A., Royer, J.-C.: Checking the consistency of UML class diagrams
using Larch prover. In: Rigorous Object Oriented Method (ROOM) (2000)

4. Meng, S., Zhang, N., Aichernig, B.K.: The formal foundations in RSL for UML statechart
diagram. Technical Report 299. UNU/IIST, July (2004)

5. Gomaa, H., Liu, S., Shin, M.E.: Integration of the domain modeling method for families of
systems with the SOFL formal specification language. In: 6th IEEE International Conference
on Complex Computer Systems (ICECCS’00), September 11–15, Tokyo, Japan, pp. 61–71
(2000)

6. Apvrille, L., Courtiat, J.-P., Lohr, C., de Saqui-Sannes, P.: TURTLE: a real-time UML profile
supported by a formal validation toolkit. IEEE Trans. Softw. Eng. 30(7), 473–487 (2004)

7. He, X.: Formalizing UML class diagrams: a hierarchical predicate transition net approach. In:
The Twenty-Fourth Annual International Computer Software and Applications Conference,
Taipei, Taiwan, 25–28 October 2000

8. Li, X., Liu, Z., He J.: A formal semantics of UML sequence diagram. In: 2004 Australian
Software Engineering Conference (ASWEC’04), Melbourne, Australia, 13–16 April 2004

9. Jansamak, S., Surarerks, A.: Formalization of UML statechart models using concurrent regular
expressions. In: 27th Australasian Computer Science Conference, The University of Otago,
Dunedin, NZ, January (2004)

10. Yang, D., Zhang, s.: Using p - calculus to formalize UML activity diagram. In: 10th IEEE
International Conference and Workshop on the Engineering of Computer-Based Systems
(ECBS’03), Huntsville, Alabama, 7–10 April 2003

11. Hausmann, J.H., Heckel, R., Sauer, S.: Towards dynamic meta modeling of uml extensions: an
extensible semantics for UML sequence diagrams. In: IEEE 2001 Symposia on Human Centric
Computing Languages and Environments (HCC’01), Stresa, Italy, 5–7 September 2001

12. Shen, H., Virani, A., Niu, J.: Formalize UML 2 sequence diagrams. In: 11th IEEE High Assur-
ance Systems Engineering Symposium, HASE 2008, pp. 437–440, 3–5 December 2008

13. Sengupta, S., Bhattacharya, S.: Formalization of functional requirements of software develop-
ment process, In: In the Journal of Foundations of Computing and Decision Sciences (FCDS).
Institute of Computing Science, Poznan University of Technology, Poland 33(1), 83–115 (2008)

14. Cockburn, A.: Writing Effective Use Cases, 14th edn. Addison-Wesley, New York (2005)
15. Object Management Group (2004). Unified Modeling Language: Superstructure. http://www.

omg.org/cgibin/doc?formal/05-07-04. Accessed 1 Sept 2007
16. Oestereich, B., Weiss, C., Schroder, C., Weilkiens, T., Lenhard, A.: Objektorientierte Geschft-

sprozessmodellierungmit der UML. d.punkt Verlag (2003)
17. Whittle, J.: A formal semantics of Use Case charts, Technical Report ISE Dept, George Mason

University, ISE-. TR-06-02. http://www.ise.gmu.edu/techrep
18. Some, S.: An approach for the synthesis of State transition graphs from Use Cases. In: Pro-

ceedings of the International Conference on Software Engineering Research and Practice, Las
Vegas, Nevada, USA, 23–26 June 2003

19. Some, S.: Supporting Use Cases based requirements simulation. In: Proceedings of the Interna-
tional Conference on Software Engineering and Practice (SERP04), Las Vegas, Nevada, USA,
21–24 June 2004

20. Lbke, D.: Transformation of use cases to EPC models. In: Proceedings of the EPK 2006
Workshop (2006)

21. Lubke, D., Schneider, K., Weidlich, M.: Visualizing Use Case sets as BPMN processes. In:
Requirements Engineering Visualization (REV’08), Barcelona, Spain, 8–12 September 2008

22. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in
BPMN. In: Information and Software Technology (IST) (2008)

http://www.omg.org/cgibin/doc?formal/05-07-04
http://www.omg.org/cgibin/doc?formal/05-07-04
http://www.ise.gmu.edu/techrep

Chapter 12
Context-Aware Services Engineering
for Service-Oriented Architectures

Dhaminda B. Abeywickrama

Abstract With the proliferation of ubiquitous computing devices and the Internet,
context-aware Web services continue to evolve from simple proof of concept
implementations created in the laboratory to large and complex real-world services
developed in industry. Context-awareness capabilities in service interfaces introduce
additional challenges to the software engineer. In order to handle the additional
complexities associated with these special services, solid software engineering
methodologies are needed during their development and execution. This chapter
proposes a novel software engineering-based approach, which leverages the benefits
of model-driven architecture, aspect-oriented modeling, and formal model check-
ing, for engineering context-aware services for service-oriented architectures. The
approach has been validated using a real-world case study in intelligent transport.
An evaluation framework has been established to validate the main methods and
tools employed. We also present two key research directions, extending this work to
further benefit the wider service engineering and pervasive computing communities.

12.1 Introduction

Web services are software components that can be distributed over standard internet
technologies. They are designed to add interoperability between diverse, distributed
and heterogeneous applications. A context-aware Web service is a special type of
Web service that adapts its behavior or the content it processes to the context of one

The work reported here was performed during the author’s Ph.D. studies. The author is currently
affiliated with the University of Modena and Reggio Emilia, Italy.

D. B. Abeywickrama (B)

Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
e-mail: dhaminda.abeywickrama@gmail.com

A. Bouguettaya et al. (eds.), Web Services Foundations, 291
DOI: 10.1007/978-1-4614-7518-7_12,
© Springer Science+Business Media New York 2014

292 D. B. Abeywickrama

or several parameters of a target entity in a transparent way (e.g., restaurant finder
services) [20]. Context has been defined by Dey and Abowd ([16], p.3) as:

any information that can be used to characterize the situation of an entity: an entity is a
person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and application themselves.

Context information is characterized by several qualities that make the develop-
ment of context-aware services challenging compared to conventional Web services,
such as a highly dynamic nature, real-time requirements, quality of context infor-
mation and automation. The additional complexities associated with these special
services necessitate the use of solid software engineering methodologies during their
development and execution. Most state-of-the-art approaches to context-aware ser-
vices relate to the detailed design or implementation stages [21, 27, 29] of the soft-
ware life-cycle, such as context-aware Web services. Little work focuses on the early
phase of design such as the software architectural level, thus providing motivation
for our work.

This novel approach effectively leverages benefits of several software engineering
principles such as model-driven architecture, separation of concerns through aspect-
oriented modeling, and formal verification using model checking, for engineering
context-aware software services. This research adopts model-driven development
to represent complex crosscutting context-dependent functionality in service inter-
faces in a modular manner, and to automate the generation of state machine-based
adaptive behavior. The crosscutting context-dependent information of the interact-
ing pervasive services is modeled as aspect-oriented models in UML. Using auto-
mated model transformations, we ensure the correct separation of concerns of the
crosscutting context-dependent functionality at both semi-formal UML modeling
and formal behavioral specification levels. A prototype tool—Aspectual FSP
Generation—applying an effective pipeline of model-to-model and model-to-
text transformations has been built.

The generated context-dependent adaptive behavior and the core service behavior
for the pervasive services are rigorously verified using formal model checking against
specified system properties. Model checking is applied, first to check the behavior
of the individual pervasive aspects and components, and second to verify the overall
behavior of the woven model even if no errors are found in the individual aspects
and components. These verification stages can be used to gain confidence before
the complex pervasive services are actually implemented. The approach is explored
using a real-world case study in intelligent transport. An evaluation framework is
established to validate the main methods and tools developed.

This chapter discusses the key features of our overall research work [1, 6] for
engineering context-aware services. Also, it presents two key research extensions
extending this work to further benefit the wider service engineering and pervasive
computing communities. Section 12.2 establishes the motivation for the current study.
The case study used to validate our approach is presented in Sect. 12.3. In Sect. 12.4,
a high-level description of the methodology proposed for engineering context-
aware services is provided. Section 12.5 (models and transformations) and Sect. 12.6

12 Context-Aware Services Engineering for Service-Oriented Architectures 293

(verification using model checking) address this process in detail. An evaluation
framework to validate our work is provided in Sect. 12.7, and Sect. 12.8 discusses
two key research extensions to this work. Section 12.9 concludes this chapter.

12.2 Related Work

Previous approaches to the development of context-aware services have largely been
at the detailed design or implementation stages [21, 27, 29] of the software life-cycle.
In [21], the authors have discussed an approach for the context-aware development
of Web applications consisting of Web services. Application modeling has been
performed in UML, and a composite Web application targeting different implemen-
tation platforms has been generated. Context adaptation takes place on top of the
Web application business functionality. Serral et al. [27] introduced a model-driven
development method for developing context-aware pervasive systems. A context-
aware pervasive system has been specified using a set of models, and automated
code generation has been used to generate system Java code. Service adaptation has
been performed using an Web Ontology Language specification.

Two main limitations can be identified on state-of-the-art approaches on context-
aware services development. First, most existing approaches to representing context-
aware services focus on the detailed design or implementation phases of the software
life-cycle such as context-aware Web services. Little attention has been given to the
early phase of design such as the software architectural level. Building software
architectural models of pervasive services provides engineers with a better under-
standing of how these complex services interoperate and helps uncover any errors
during the early stages of the software life-cycle. Second, most of the existing work
applies the software engineering techniques of model-driven architecture [7, 9, 28],
aspect-oriented modeling [17, 32], and formal model checking [12] in isolation and
does not explore the combination of these technologies in the same approach. For
example, Sheng and Benatallah [28] have taken no account of any formal verification
aspects through techniques such as model checking nor have they applied aspect-
oriented modeling in their UML profile. The integration or the synergy of these
sound software engineering techniques would mutually complement and augment
each other if used in a single approach. While the application of these techniques
in isolation can be found in existing work in service engineering, however, an inte-
grated architecture-centric solution aimed at managing the complexities associated
with context-aware services is novel, as proposed in this chapter.

12.3 Case Study: Intelligent Transport

This section describes the case study that is used to validate our approach, and the
notion of context applied in our work.

The research approach is explored using a real-world case study in intelligent
tagging for transport known as the ParcelCall project [14]. The case study describes

294 D. B. Abeywickrama

a scalable, real-time, intelligent, end-to-end tracking and tracing system using radio
frequency identification (RFID), sensor networks, and services for transport and
logistics. This case study is particularly appealing to the current research as it provides
several scenarios for representing software services that interoperate in a pervasive,
mobile and distributed environment. A significant subset of the ParcelCall case study
is exception handling that needs to be enforced when a transport item’s context
information violates acceptable threshold values. The reference scenario used in
this research describes an awareness monitoring and notification
pervasive service, which alerts with regards to any exceptional situations that
may arise on transport items, primarily to the vehicle driver of the transport unit. The
threshold values for environment status (e.g., temperature, pressure, acceleration) of
transport items and route (location) for the vehicle are set by the carrier organization in
advance. The service alerts if items’ environment status exceeds acceptable levels or
if an item is lost or stolen during transport. The primary context parameters modeled
in the study include item identity, location, temperature, pressure and acceleration.

The notion of context used in our work is based on a definition provided in [8]
for context in information modeling. The authors in [8] describe context as a set of
objects, each of which is associated with a set of names and another context called its
reference. Furthermore, they enhance the definition for context by stating that each
object of a context is either a simple object or a link object (attribute, instance-of,
ISA) and each object can be related to other objects through attribute, instance-of or
ISA links. They use traditional object-oriented abstraction mechanisms of attribution,
classification, generalization and encapsulation to structure the contents of a context.

12.4 Context-Aware Services Engineering Process

In this section, we introduce the software engineering process followed for gen-
erating context-dependent adaptive behavior for pervasive services (see Fig. 12.1)
[3]. Sections 12.5 (models and transformations) and 12.6 (verification) address this
further.

The current approach is particularly based on (i) the model-driven development
techniques provided by the IBM Rational Software Architect [15], (ii) the formal
verification techniques provided by the model checker Labeled Transition System
Analyzer (LTSA) [23] and its process calculus Finite State Processes (FSP), and
(iii) the LTSA tool’s message sequence charts extension (LTSA-MSC). Java Emitter
Templates (JET) is an open-source technology developed by IBM. JET is included in
IBM Rational Software Architect and it is typically used in the implementation of a
code generator [15]. One of the main objectives of the current research is to perform
rigorous verification of the pervasive specification using formal model checking.
Therefore, we use finite state machines as opposed to other formalisms such as
petri-net based models.

The model transformation tool created in this study for adaptive behavior gen-
eration is called the Aspectual FSP Generation tool. The crosscutting

12 Context-Aware Services Engineering for Service-Oriented Architectures 295

Fig. 12.1 Context-aware services engineering process [3]

context-dependent information of the interacting pervasive services is modeled
as aspect-oriented models in UML (contextual-FSP aspects or c-FSP
aspects). Research works related to the aspect-oriented paradigm include
composition filters, subject-oriented programming, adaptive programming, multi-
dimensional separation of concerns and generative programming. However, com-
pared to these approaches the aspect-oriented paradigm provides better language
and tool support, and thus it is widely used in the software engineering community.

We use model transformations to automate the application of design patterns and
generate infrastructure code for the c-FSP aspects using FSP semantics. The
current study explores the strengths of both semi-formal UML meta-level extensions
and formal finite state machines for representing the context-dependent behavior
of software services, and model transformation techniques are applied as a bridge
to enforce correct separation of concerns between these two design abstractions.
The main benefits of this approach are: improving the quality and productivity of
service development; easing system maintenance and evolution; and increasing the
portability of the service design for the pervasive services engineer.

This approach focuses on the application of model-driven development for
engineering pervasive services at finite state machine level. An aspect in FSP can
be identified as an independent finite state machine that executes concurrently
and synchronizes with its base state machine. In general, an aspect in FSP needs
to contain synchronization events (transitions) to coordinate with its base state
machine and other aspects. Also, each aspect type (e.g., context, trigger
and recovery) contains its unique constructs which can be generated automat-
ically using model transformation techniques. For example, a trigger aspect
requires constructs to alert and send notifications while a recovery aspect
needs constructs to recover from exception-handling situations. On the other hand, a

296 D. B. Abeywickrama

context aspect has attribution, instance-of, ISA and reference constructs from
the notion of context applied in this research.

In Fig. 12.1, the models and activities of the engineering process are represented as
ellipses and square boxes respectively. The overall engineering process is structured
into three main flows of activities. Both Flow 1 and Flow 2 originate from the
c-FSP-UML profile. This profile effectively describes our conceptual model for
context-dependent adaptive behavior using the aspect-oriented modeling paradigm.
Using the profile we derive a UML model template and a UML class model to be used
in the transformations, which are elaborated in Sect. 12.5.1. Two variations of the
Aspectual FSP Generation tool have been built, which are represented
using Flow 1 and Flow 2 in Fig. 12.1. Initially, a model-to-text JET transforma-
tion (Flow 1) was implemented with XPath expressions to navigate the UML class
model for the c-FSP aspects and extract model information dynamically to the
transformation. However, JET’s support for UML models has several limitations.
Therefore, a more effective solution was implemented as shown by Flow 2, which
contains an effective pipeline of model-to-model and model-to-text JET transforma-
tions. The details of this transformation and its benefits are discussed in Sect. 12.5.2.
The LTSA-MSC tool has been used to generate the architecture model in FSP for
the service specification from which the core service model was extracted. Flow 3
contains activities for rigorously verifying the models generated for the core service
behavior and the context-dependent adaptive behavior using formal model checking
(see Sect. 12.6).

12.5 Models and Transformations

12.5.1 Models: c-FSP-UML Profile and c-FSP Aspects

This subsection elaborates on the c-FSP-UML profile and the UML class
model created with c-FSP aspects to modularize the service architecture (see
Figs. 12.2, 12.3) [3].

Using the c-FSP-UML profile, we model the core service logic and the
context-dependent behavior of a service as two separate concerns within the same
model, allowing the modification of the context-dependent behavior without affect-
ing the main functionality. The core service logic of a service is represented by
the State, Transition, FiniteStateProcess, Service and Service
Specification classes while the rest of the classes represent the context-
dependent functionality. The c-FSP-UML profile encompasses constructs of
both aspect-orientation and object-orientation aimed at modularizing and reducing
the complexity of context-dependent behavior at the service interface level. The use
of aspect-oriented modeling in the profile further extends the UML model [2] created
previously, which was originally motivated by the ContextUML metamodel [28].

12 Context-Aware Services Engineering for Service-Oriented Architectures 297

Fig. 12.2 c-FSP-UML profile [3]

The aspect-oriented UML class model provided (see Fig. 12.3) contains several
classes on the case study with stereotypes applied from thec-FSP-UML profile.
As in the profile, this UML class model contains several constructs for representing
the core service behavior, the context-dependent adaptive behavior, and the depen-
dencies between the core service model and the context-dependent model. The core
service behavior of the model is represented by classes, such as ParcelCall,
InterpretContext, Broadcast, Recovery, ObserveEvents, the
FiniteStateProcess classes, and the Transition classes. The
c-FSP aspects of the UML class model are represented by several classes,

Fig. 12.3 UML class model derived from the profile with c-FSP aspects

298 D. B. Abeywickrama

such as Temperature, Pressure, IsAdverseStatus, AdverseStatus
Trigger and AdverseStatusRecovery. The different constructs of the pro-
file and the UML class model are described next with examples from the case study.

• The Aspect class encapsulates several advices and pointcuts. The Advice
specifies the crosscutting behavior of the aspect while thePointcut encapsulates
a set of joinpoints. A joinpoint is the location (transition) where the crosscutting
behavior emerges in the service model. Three types of c-FSP aspects are
identified: context, trigger and recovery.

• Two types of context aspects are identified: atomic and composite.
AtomicContextAspect class models low-level context readings from
the context sources (e.g., Location or Temperature in Fig. 12.3) while
CompositeContextAspect class encapsulates high-level derived
context information (e.g., IsAdverseStatus or RouteStatus). Also, the
notions of attribution, classification, generalization and
encapsulation from the context definition are applied to structure and link
the objects defined in the aspects. Thus, both object-oriented and aspect-oriented
notions are used to represent the complex context-dependent functionality of the
services.

• TheContextSource class represents the resource from which context infor-
mation is obtained, for example, RFID Tag or GPS.

• The TriggerAspect class models the contextual adaptation where the ser-
vice is automatically executed or modified based on context information. For
example, if isAdverseStatus is true then send an SMS to vehicle driver
(AdverseStatusTrigger).

• The RecoveryAspect class models recovery actions that follow after an
exception situation is raised by the trigger aspect. For example, control the
refrigerator’s temperature in the vehicle unit (AdverseStatusRecovery in
Fig. 12.3).

• Dependency Relationships classes essentially associate the core
service classes (service elements of the profile) with the context elements of
the profile, or the context elements with their respective context sources. There
are three types of dependency relationships. SourceAssignment associates
the context attributes of a ContextAspect class with their respective
context sources, which provide values for these attributes. For example, the
SourceAssignment relationship associates the Location aspect and
the GPS, which provides GPS coordinates to the aspect (Fig. 12.3). Context-
Bindingmodels the automatic binding of service elements with context attributes
of the ContextAspect class. ContextTriggering provides an asso-
ciation between service elements and triggering operations that may affect the
service elements depending on context. In the case study this can be, for example,
the association between the NewRoute transition of the core service model
and the RouteStatusRecovery aspect of the context model (Fig. 12.3).
Both ContextBinding and ContextTriggering dependency relation-
ships essentially represent the binding of an aspect to its base class.

12 Context-Aware Services Engineering for Service-Oriented Architectures 299

• Precedence Relationships classes explicitly specify how aspect
precedence can be enforced at the modeling level to reduce the aspect inter-
ference problem. There are two types of precedence relationships. Precedes
is used to indicate the precedence order for the aspects at a single joinpoint
while DependentOn is used to specify that an aspect will only be matched
on the existence of both aspects at the joinpoint. For example, as shown in
Fig. 12.3, the AdverseStatusRecovery aspect is executed following the
AdverseStatusTrigger aspect (Precedes), and the existence of both
these aspects are required at the joinpoint (DependentOn).

12.5.2 Model Transformations

The previous subsection discussed the c-FSP-UML profile and aspect-oriented
models in UML (c-FSP aspects) derived to modularize the service architecture.
The current subsection provides the model transformations created to automate the
transformation of those UML models to formal behavioral specifications in FSP.

This multi-stage transformation chain describes an effective pipeline of model-
to-model and model-to-text JET transformations (see Fig. 12.1, Flow 2) [3]. In this
solution, first a model-to-model mapping transformation is created which extracts
relevant information from the UML model elements and stereotypes, and then a
code generator specific Eclipse Modeling Framework (EMF) intermediate model is
built which contains only information required for the back-end model-to-text JET
transformation. The front-end model-to-model transformation automatically invokes
the back-end JET transformation. The benefits of this transformation are:

• As the JET transformation is independent of UML, UML expertise is no longer
a requirement for the transformations [15]. This effective multi-stage transforma-
tions approach permits the development and validation of pattern implementations
independent of any complexities associated with the UML metamodel.

• The JET transformation can be automatically invoked by the front-end model-to-
model transformation. Therefore, the software engineer does not have to see or be
aware of the back-end JET transformation.

The above factors can make the pattern implementation process a more acces-
sible solution to the software engineer. As a result, this multi-stage transforma-
tions approach has been employed in the current research to transform the c-FSP
aspects into formal FSP code, which has several steps.

• Build an Intermediate EMF Model. In this study, an EMF project is created as the
intermediate model to be used in the transformations. The intermediate model can
be based on EMF or XML. However, EMF has a rich metamodel and with EMF
a Java API for the model can be generated [15].

• Build a UML Profile. The c-FSP-UML profile discussed earlier is used to
augment the standard UML with information that is necessary for generation of

300 D. B. Abeywickrama

aspects in FSP. This profile defines stereotypes identifying core service elements,
context-dependent information and dependencies for the pervasive software ser-
vices. Stereotypes provide an efficient mechanism for extending the information
that is stored on UML model elements. As any changes to the stereotypes in the
profile affect the underlying UML model elements, it is important to track the
profile version. To this effect, the c-FSP-UML profile is released. The pro-
file can be distributed by creating an Eclipse plug-in that publishes the profile. To
this end, the existing c-FSP-UML profile project is converted into a plug-in
project. By publishing the profile as an Eclipse plug-in, any Eclipse-based product
that installs this plug-in has access to the c-FSP-UML profile and its stereotypes.

• Build a Model-to-Model Mapping Transformation. After creating the c-FSP-
UML profile and the intermediate EMF model, next we create a model-
to-model mapping transformation (aspectsFrontendMap) that effectively
maps the profile applied UML class model for the c-FSP aspects with the
EMF intermediate model. This mapping transformation essentially associates
elements of the input model (UML class model with the c-FSP aspects)
with elements of the output model, which is the EMF intermediate model
(aspectsEMFModel). To this end, several types of maps have been created.
A map defines how data from an input type (e.g., a UML class) are copied to
an output model type (e.g., an aspect). A map can move data from a source
element to a target element using three methods: move transformations, cus-
tom transformations and submap transformations. This study uses a combination
of move and submap transformations to associate elements of the UML class
model created for c-FSP aspects with the elements of the EMF intermedi-
ate model (aspectsEMFModel). In this study, the following maps have been
created: (i) UML Model elements to Root elements; (ii) UML Package elements
to AspectPackage elements; (iii) UML Class elements to Aspect elements;
(iv) UML Operation elements to aspect’s Operation elements; and (v) UML
Property elements to aspect’s Property elements. After creating the mappings,
the transformation source code is generated and customized to invoke the back-
end model-to-text JET transformation automatically from the front-end model-to-
model transformation. To link the model-to-model transformation’s output to the
back-end model-to-text JET transformation, the TransformationProvider Java file
needs to be edited with the ID of the transformation to invoke.

• Debug and Test. Finally, we test the transformations created to verify that they
are correct and function as required. This involves setting up a test environment
called a run-time workbench, in which the plug-ins created are installed. Testing
using a run-time workbench effectively launches a second copy of the Eclipse-
based product. Testing the transformations involves: build the UML class model
with c-FSP aspects and apply the c-FSP-UML profile to it; create a
transformation configuration and execute the transformation configuration. In the
transformations created in this study, the aspect name in UML becomes the process
(state machine) name in FSP while operations and properties for the aspect in UML
are used for generating states and transitions of the aspectual state machine in FSP.
This represents the variable nature (point of variability) of the transformations.

12 Context-Aware Services Engineering for Service-Oriented Architectures 301

Other than that, as stated previously, the transformations generate infrastructure
(skeleton) code for the aspects.

Next the generated context-dependent adaptive behavior and the core service behav-
ior for the pervasive services are rigorously verified using formal model checking
against specified system properties.

12.6 Formal Verification

As discussed in Sect. 12.5.1, the crosscutting context-dependent behavior in service
interfaces has been modeled using aspect-oriented UML models. To this effect, a
custom UML profile (c-FSP-UML profile), a UML model template and UML
class models (c-FSP aspects) have been created to modularize context informa-
tion with several stereotypes. UML has been a widely applied technique for modeling
object-oriented design or core design of a software specification. Also, exploring the
meta-level notation of UML or extending the UML notation has been a popular
approach used by many researchers for specifying crosscutting concerns. However,
one of the main limitations of UML is its lack of support for rigorous verification
due to its informal or semi-formal nature.

The expressive power of aspects in design specifications can be potentially harm-
ful. The crosscutting nature and the obliviousness principle of aspects are two main
issues that can introduce an additional correctness problem in an aspect-oriented
design specification. These can create several problems or risks such as partial
weaving, unknown aspect assumptions, unintended aspect effects, arbitrary aspect
precedence, failure to preserve state invariants, and incorrect changes in control
dependencies [24, 25]. Therefore, in order to address the main challenges associ-
ated with aspect-oriented modeling in software specifications (i.e., the semi-formal
nature of UML notations and the expressive power of aspects), tool support such
as automatic model checking is highly desirable to ensure the correctness of the
specification.

12.6.1 Model Checking Aspectual Pervasive Software Services

In this subsection, we provide an overview of our approach for rigorously verifying
the models generated for the context-dependent adaptive behavior and the core ser-
vice behavior using formal model checking [5] (see Fig. 12.1 (Flow 3), and Fig. 12.4).

The model checking process can be divided into three main tasks: modeling
(Sects. 12.6.2–12.6.3), specification and verification (Sect. 12.6.4). Modeling is the
task of converting the design into a formalism accepted by a model checking tool
[11]. Specification is the stating of the properties that the design needs to satisfy, and
verification is the actual validation of the models.

302 D. B. Abeywickrama

• Modeling. The modeling step involves two main tasks that are performed to obtain
the context-dependent adaptive behavior and the core service model of the software
services. In this study, the Aspectual FSP Generation tool is used to
generate the context-dependent behavioral code in formal FSP. The LTSA-MSC
tool is used to generate the architecture model for the service specification in
FSP, which is used to extract the core service model of the services (see Figs. 12.1,
12.4). All service components and aspects are modeled as processes represented as
finite state machines in FSP. To verify the pervasive service specification, first the
aspects are woven into their base state machines in FSP using an explicit weaving
mechanism. Then concurrency and distributed notions (see Sect. 12.6.3) are added
to the service specification to facilitate reasoning by the LTSA tool. Abstraction
mechanisms are introduced to reduce the size of the woven model.

• Specification. Properties provide a way of formalizing and verifying system
requirements. Here the properties focus on the required effects of the pervasive
aspects, service components and the woven model. Rigorous modeling and spec-
ification of properties are very important to identify any defects in the pervasive
services early in the software life-cycle before these complex services are actually
implemented. According to the system requirements from the case study subset,
more than 30 properties have been formalized focusing on the required behavior

Fig. 12.4 Model checking aspectual pervasive software services [5]

12 Context-Aware Services Engineering for Service-Oriented Architectures 303

from both service components and aspects. These properties have been expressed
as property processes (safety and progress) and fluent linear temporal logic (FLTL)
assertions.

• Verification. Finally, all behavior and property processes are composed into a
system-level process and this process is fed to the LTSA. The LTSA verifies
whether any properties are violated and if so it reports a trace to the property
violation known as a counterexample. Also, the use of FLTL assertions provides
the opportunity to generate examples of traces (witness executions) which satisfy
the property. The use of counterexamples and witness executions is exploited to
identify and track any errors and their sources in the specification, which consists of
several distributed service components and aspects collaborating with each other.
Thus, this helps to iteratively improve the state models or the system properties
for the aspectual pervasive software services.

12.6.2 Weaving of Pervasive Aspects and Components

Weaving of an aspect to its base state machine is important in order to analyze the
overall system behavior. An explicit weaving mechanism is used here, where an
aspect is woven into its base state machine using the parallel composition operator
and shared actions in FSP. The main elements of the weaving process are the base
program and an aspectual state machine (aspect). In general, the base program is
not a single process but it is a combination of several processes. The base program
(core service model) is specified as the parallel composition of the constituent base
state machines. In order to support explicit parallel composition, the current study
injects synchronization events in both the aspectual and base state machines. These
events provide an effective mechanism to control the coordination between these state
machines. The advice of an aspect contains three logical parts: before advice
events, proceed events and after advice events. By using synchronization
events the correct execution of these three sequences of actions with the base program
can be ensured. Also, weaving of more than one aspect at the same joinpoint is
possible using these explicit synchronization events.

The crosscutting elements of the joinpoint model and the weaving process
are discussed next using a case study example. Figure 12.5a shows LTSs for
three processes. The RFID Tag (RFID_TAG) and the Context Interpreter
(CONTEXT_INTERPRETER) components are the base state machines while the
Atomic Context Aspect Temperature (ACA_TEMP) is an aspectual state
machine. The joinpoints of the base program are specified using the following syn-
chronization events:bf_a (before advice),pr_s (proceed start),pr_e
(proceed end), af_a (after advice). A pointcut is a sequence of joinpoints
(i.e., the sequence of bf_a, pr_s, pr_e and af_a).

The execution and coordination of the base program and the aspect can be
explained as follows (see Fig. 12.5b). The base program (RFID_TAG) emits the
bf_a event to the aspect. The aspect performs an initialization operation

304 D. B. Abeywickrama

Fig. 12.5 Weaving per-
formed. a Weaving illustrated
using LTSs. b Synchroniza-
tion events

(a)

(b)

(initializeACATEMP), which is a before advice event. The base program waits
for a control event from the aspect, which is a proceed event (pr_s) in this exam-
ple. The base program performs the measureTemperature event and then emits
pr_e to return the control back to the aspect. The aspect performs receiving of tem-
perature readings using message passing, which is its after advice events. Finally,
the base program (Context_Interpreter) waits for the end of advice event
(af_a) from the aspect, and performs the storeContextInformation action.
The woven program is modeled as the parallel composition of the base state machines
and the aspect.

12 Context-Aware Services Engineering for Service-Oriented Architectures 305

12.6.3 Concurrency Modeling

After weaving aspects into their base state machines the concurrency and distrib-
uted notions of the interacting pervasive software services are modeled to facilitate
reasoning by the LTSA tool, such as message passing, shared objects and mutual
exclusion (see Fig. 12.6).

The pervasive service specification includes several distributed service compo-
nents and aspects collaborating with each other. These components and aspects
encompass the active entities of the specification. It also includes shared objects
and semaphores, which act as passive entities. All active and passive entities of the
specification have been modeled as processes represented as finite state machines in
FSP. In the specification, concurrency has been modeled using action interleaving.

This study models the awareness monitoring and notification
service as a process-oriented context value chain (see Fig. 12.6). This value chain
contains several stages: sensing, refinement, aggregation and contextualization. The
context procurement and contextualization tasks of the pervasive service are driven
by the c-FSP aspects. The communication between the distributed service com-
ponents and aspects (e.g., between RFID Tag and Atomic Context Aspect
Temperature) has been modeled using the synchronous message passing tech-
nique. The environmental readings (e.g., temperature, pressure) from theRFID Tag
are sent using a single channel to the receiver (e.g., Atomic Context Aspect
Temperature, Atomic Context Aspect Pressure) and the communi-
cation is one to one. In addition to using the message passing technique, shared objects
have been used to model inter-process communication between the service compo-
nents and the aspects. The problem of interference has been solved by enforcing
mutually exclusive access to the shared objects. This has been modeled using binary
semaphores, which are mechanisms for dealing with inter-process synchronization
problems. For example, theAtomic Context Aspect Temperature aspect
and the Context Interpreter component interact using a shared object for
communicating temperature values used in the refinement stage of the context value
chain of the pervasive service. The mutually exclusive access to this shared object has
been enforced using a semaphore, thus only one process can access it at a given time.
The Context Database process has been modeled as a shared resource where
the Context Interpreter and the Context Aggregator service com-
ponents write to it (writers) and the Composite Context Aspect Route
Status and the Composite Context Aspect Adverse Environment
Status aspects read from it (readers). This scenario has been modeled as a readers-
writers problem with writers priority. The readers are denied access if there are writers
waiting to acquire access and if a writer is not accessing the database any number of
readers can access the database concurrently.

306 D. B. Abeywickrama

Fig. 12.6 Concurrency modeling between aspects and components [5]

12 Context-Aware Services Engineering for Service-Oriented Architectures 307

12.6.3.1 Abstraction Mechanisms Applied

These are needed as a woven program may have too many states to be analyzed by
the LTSA. One of the main challenges associated with model checking is the state
space explosion problem. We use action hiding and minimization features available
in FSP to reduce the size of the woven model before analyzing using the LTSA tool.
For example, the actions modeled in the Context Interpreter and Context
Aggregator components for enforcing mutually exclusive access to their shared
variables are not required when modeling the readers-writers problem with writers
priority, which involves the same components collaborating with aspects. Also, when
executing the entire specification model, the partial order reduction feature has been
used to reduce the size of the state space searched by the LTSA.

12.6.4 Properties Specification and Verification

Having discussed the modeling stage of the model checking process, the properties
specification and verification stages are briefly addressed next (see [6, 5] for details).
Properties have been expressed as property processes (safety and progress) and FLTL
assertions.

Safety properties are used in a concurrent program to assert that nothing bad
happens during the execution of the program [23]. In the case study subset, several
safety properties have been specified for verifying (i) the behavior of the individual
aspects and the components, and (ii) the overall behavior of the woven model even
if no errors are found in the individual aspects and components. At the individual
aspect or component level, a safety property has been defined for the Trigger
Aspect Adverse Environment Status aspect to verify whether a notifi-
cation is sent only when environment status is adverse. Another safety property has
been defined for the Context Interpreter component to verify whether the
refinement stage of the pervasive service is performed as expected. At the woven
model level, safety properties have been defined to ensure the correct weaving of the
base state machines and the aspectual state machines. These properties ensure that
the ordering of the synchronization events is correct in the components and aspects
of the woven models, thus ensuring the correct weaving of the components and the
aspects at the joinpoints in the specification. For example, a safety property has
been defined to ensure the correct weaving between the following components and
aspects: RFID Tag, Atomic Context Aspect Temperature, Atomic
Context Aspect Pressure and Context Interpreter. This property
is composed with the woven process before performing analysis using the LTSA.
LTSA analysis shows that there are no deadlocks or safety violations. Also at the
woven model level, safety properties have been created to verify whether the mutually
exclusive access to the shared variables is enforced properly.

Unlike safety properties, which are concerned with a program not reaching a
bad state, liveness properties are concerned with a program eventually reaching

308 D. B. Abeywickrama

a good state [23]. For example, in the case study subset, progress properties have been
specified for the readers-writers problem. To this end, two progress properties have
been defined to ensure that both readers (i.e., Composite Context Aspect
Adverse Environment Status, Composite Context Aspect
Route Status aspects) and writers (i.e.,Context Interpreter,Context
Aggregator service components) will eventually gain access to the lock to access
the Context Database component. A progress analysis for this problem using
the LTSA shows no errors.

In addition to safety and progress property processes, properties can be defined as
state-based logical propositions in FSP. Fluents in FSP allow the expression of prop-
erties about the abstract state of a system at a particular point in time [23]. The current
study employs FLTL assertions as a method for specifying system requirements of
the case study subset. For example, two FLTL assertions have been defined to ensure
mutually exclusive access to the shared variables by the Context Interpreter
and the Context Aggregator service components. These properties ensure
the required mutual exclusion safety property, and an additional liveness prop-
erty, which asserts that if a process (i.e., Context Interpreter or Context
Aggregator) enters the critical section that process should eventually exit before
another process can enter. Verification performed for this logical property shows that
there are no violations.

The use of FLTL assertions provides the opportunity to generate examples of
traces (witness executions), which satisfy the property. This research applies witness
executions as a means of identifying potential errors in the specification. For example,
a FLTL property has been defined to verify the weaving of the base state machines
and aspectual state machines in the specification. The negation of this assertion
generates a counterexample. By using counterexamples and witness executions, the
state models and system properties for the aspectual pervasive services are iteratively
improved.

12.7 Evaluation Framework

This section provides the evaluation framework established to validate the research
approach.

This evaluation framework [4] mainly validates the main contributions or deliv-
erables of this study against several key evaluation criteria. The main tools used
in this study include the Aspectual FSP Generation tool created in this
research, the LTSA model checker and the LTSA-MSC tool. The method of evalua-
tion is based on key feature comparison. Key feature comparison is used as a credible
method for evaluating software engineering-based approaches [30]. The evaluation
framework developed here does not produce additions to the research methodology
but instead validates the methods and tools used in the research as a whole. The
framework comprises a set of detailed criteria for two dimensions or views: vertical

12 Context-Aware Services Engineering for Service-Oriented Architectures 309

Fig. 12.7 Evaluation frame-
work: vertical and horizontal
views

and horizontal (see Fig. 12.7). The notions of vertical and horizontal views were
motivated by [30] (p. 14), which also uses a two-dimensional evaluation approach.

12.7.1 Vertical Evaluation of the Research

This evaluation focuses on comparing four tools across the modeling layers of
platform-independent model (PIM) and platform-specific model (PSM) against the
Aspectual FSP Generation tool. The compared tools are Groher and
Schulze [19] approach, Whittle and Jayaraman [31] approach, Motorola WEAVR
[13] and Fuentes et al. [18] approach (see [4] for details). Like the Aspectual
FSP Generation tool, these tools have been developed using commercially
available toolchains of similar area of application such as IBM Rational Software
Modeler, Borland Together, Telelogic Modeller and Topcased [30]. This evaluation
is based on the following criteria: context-dependent behavioral modeling at the PIM
level, explicit joinpoint model of aspect-oriented modeling at the PIM level, weaving
performed at the PIM or PSM level, and context-dependent behavioral code genera-
tion from the PIM to PSM level. A particular evaluation criterion can be fully satisfied
(complete cover), partly satisfied (partial cover), or not supported at all.

The results of the vertical evaluation are assuring (see Table 12.1). Like the
Aspectual FSP Generation tool, [13, 18, 19] support an explicit join-
point model of aspect-oriented modeling at PIM level. Also, all the compared
approaches support PIM or PSM level weaving of aspects. The vertical evaluation
has demonstrated that the Aspectual FSP Generation tool has unique
features on context-dependent behavioral modeling and context-dependent behav-
ioral code generation. Table 12.1 shows that the Aspectual FSP Generation
tool satisfies all the criteria as opposed to the other tools which satisfy only some
criteria.

310 D. B. Abeywickrama

Table 12.1 Comparison matrix for vertical evaluation [4]

Evaluation criteria Groher and
Schulze

Whittle and
Jayaraman

Cottenier
et al.

Fuentes
et al.

Aspectual
FSP
generation
tool

PIM level support for
context-dependent
behavioral modeling

− − − * +

PIM level support for
explicit joinpoint model
of aspect-oriented
modeling

+ − + + +

PIM or PSM level support
for weaving

+ + + + +

PIM and PSM level support
for context-dependent
behavioral code
generation

− − − − +

+ Complete cover of a criterion; * partial cover of a criterion; − no cover of a criterion

12.7.2 Horizontal Evaluation of the Research

In contrast to the vertical evaluation discussed above, the horizontal evaluation is
aimed at investigating particular features of our approach at a single modeling level
(i.e., the PSM level). These evaluation criteria cover two aspects of the study: the
formal methods and tools employed in the study, and the context and adaptation
dimensions of the customization approach used in the services.

12.7.2.1 Formal Methods and Tools Used in the Approach

Clarke et al. [10] provide several criteria that formal methods-based approaches and
tools need to support. According to [10], although some of these criteria are ideals, it
is still considered good to aim for them. The criteria are: early payback, incremental
gain for incremental effort, multiple use, integrated use, ease of use, efficiency, ease
of learning, orientation toward error detection, focused analysis and evolutionary
development. The research methodology of the current study contains three stages:
service specification, architecture definition and architecture modularization. In the
present study, formal methods and tools (LTSA tool and LTSA-MSC tool) have
been applied during the service specification and architecture definition stages of
the research methodology, and finally for model checking the aspectual pervasive
software services specification. This evaluates the application of the aforementioned
formal methods and tools used in the current research against the criteria provided
in [10]. Our approach has been evaluated using all the criteria provided by them (see
[4]). However, due to space limitations this chapter discusses one key criterion. Early

12 Context-Aware Services Engineering for Service-Oriented Architectures 311

payback: this study is focused on the architectural level of the software life-cycle.
This architecture-centric approach builds models of pervasive software services and
their compositions and verifies their behavior against specified system properties.
Building architectural models of pervasive software services allows the software
engineers to validate the actual correctness of the services before the services are
implemented later in the software life-cycle. Thus, it provides early payback or
feedback to the service engineer on the validity of the services.

12.7.2.2 Context and Adaptation of the Customization Approach

Kappel et al. [22] and Schwinger et al. [26] present a comprehensive and uniform
evaluation framework, which can be used to compare customization capabilities of
approaches originating from the mobile computing and the personalization domains.
The notion of customization refers to the adaptation of an applications services
toward the current context. Their framework has two orthogonal dimensions, which
are context and adaptation, and the mapping between context and adaptation has
been represented by the notion of customization. They provide detailed criteria for
both the context and adaptation dimensions of the framework. The context and adap-
tation dimensions of the customization approach used in the pervasive services of
the current research are evaluated using those criteria. The results of this evaluation
are summarized in two tables respectively: Tables 12.2 and 12.3. See [4] for a more
detailed analysis of these results.

The horizontal evaluation of the approach has shown that the formal methods and
tools employed in the research, and the customization approach used in the services,
are effective toward the overall objectives of this research.

12.8 Research Extensions

In this section, we discuss two key research directions, extending this work to benefit
the broader service engineering and pervasive computing communities.

12.8.1 Aspectual FSP Generation as an Integrated Eclipse Plug-in

The Aspectual FSP Generation tool developed in the current research
can be extended as an integrated plug-in to the Eclipse development environment.
This will be beneficial as it will allow our tool to be used in conjunction with other
plug-ins for engineering context-aware services. Also, it can be leveraged by inter-
ested researchers in the wider service engineering community. To the best of our
knowledge, such an integrated Eclipse-based plug-in for facilitating the engineering
of context-aware software services has not been addressed in existing work.

312 D. B. Abeywickrama

Ta
bl

e
12

.2
C

ur
re

nt
st

ud
y’

s
co

nt
ex

tc
ha

ra
ct

er
is

tic
s

[4
]

Sc
op

e
of

co
nt

ex
t

R
ep

re
se

nt
at

io
n

of
C

on
te

xt
A

cq
ui

si
tio

n
of

co
nt

ex
t

A
cc

es
s

of
co

nt
ex

t

Pr
op

er
ty

(C
.P

.)
E

xt
en

si
bi

lit
y

C
hr

on
ol

og
y

V
al

id
ity

R
eu

sa
bi

lit
y

A
bs

tr
ac

tio
n

A
ut

om
at

io
n

D
yn

am
ic

ity
M

ec
ha

ni
sm

(C
.E

.)
(C

.C
.)

(C
.V

.)
(C

.R
.)

(C
.A

b.
)

(C
.A

u.
)

(C
.D

.)
(C

.M
.)

L
oc

at
io

n
Te

m
pe

ra
tu

re
Pr

es
su

re
T

im
e

D
ev

ic
e

N
et

w
or

k
U

se
r

A
pp

lic
at

io
n

H
is

to
ry

Fu
tu

re
M

an
ua

l
Se

m
i-

A
ut

om
at

ic
St

at
ic

D
yn

am
ic

Pu
sh

Pu
ll

au
to

m
at

ic

+
+

+
*

*
*

*
*

+
*

*
*

+
+

*
*

+
*

+
+

*

+
E

xp
lic

itl
y

su
pp

or
te

d;
*

no
te

xp
lic

itl
y

su
pp

or
te

d;
−

no
ta

pp
lic

ab
le

12 Context-Aware Services Engineering for Service-Oriented Architectures 313

Ta
bl

e
12

.3
C

ur
re

nt
st

ud
y’

s
ad

ap
ta

tio
n

ch
ar

ac
te

ri
st

ic
s

[4
]

K
in

d
of

ad
ap

ta
tio

n
Su

bj
ec

to
f

ad
ap

ta
tio

n
Pr

oc
es

s
of

ad
ap

ta
tio

n

O
pe

ra
tio

n
E

xt
en

si
bi

lit
y

E
ff

ec
t

C
om

pl
ex

ity
L

ev
el

E
le

m
en

t
G

ra
nu

la
ri

ty
Ta

sk
s

A
ut

om
at

io
n

D
yn

am
ic

ity
In

cr
em

en
ta

lit
y

(A
.O

.)
(A

.E
x.

)
(A

.E
f.

)
(A

.C
.)

(A
.L

.)
(A

.E
l.)

(A
.G

.)
(A

.T
.)

(A
.A

.)
(A

.D
.)

(A
.I

.)

A
dd

R
em

ov
e

T
ra

ns
fo

rm
Si

m
pl

e
C

om
pl

ex
C

on
te

nt
H

yp
er

ba
se

Pr
es

en
ta

tio
n

O
th

er
s

Te
xt

A
ud

io
Im

ag
e

V
id

eo
L

in
k

O
th

er
s

M
ic

ro
M

ac
ro

A
ut

om
at

ic
Se

m
i-

au
to

m
at

ic
M

an
ua

lS
ta

tic
D

yn
am

ic

+
+

+
*

+
*

+
−

−
−

+
−

−
−

−
−

+
+

*
+

+
*

*
*

+
+

314 D. B. Abeywickrama

Eclipse is a multi-language software development platform, which comprises an
integrated development environment and a plug-in system to extend it. LTSA tool
[23], which was originally created as a stand-alone tool, has now been extended
to the Eclipse platform. LTSA Eclipse has an extensible architecture which allows
extra features to be added by means of extended plug-ins. At present, the follow-
ing plug-ins are supported which are available from the Eclipse install site: Mes-
sage Sequence Chart, Architecture, WS-Engineer and SceneBeans. Similarly, the
Aspectual FSP Generation tool can be integrated as an editor of the
existing Eclipse-based LTSA tool. With this solution, service engineers can use a sin-
gle integrated development environment to design and verify the pervasive software
services specification for any property violations with much ease and confidence. At
present, the current research performs the service engineering process using three
stand-alone tools: LTSA-MSC tool, Aspectual FSP Generation tool and
LTSA tool. In the integrated environment, the Message Sequence Chart plug-in can
be used to specify the software services, generate and extract the core service model
of the architecture while the Aspectual FSP Generation plug-in can be
used to model the context-dependent adaptive behavior of the services using UML
models and transform them into behavioral FSP. Finally, the LTSA can be used to
perform model checking of the aspectual pervasive software services specification.

The extension of the Aspectual FSP Generation tool as an integrated
plug-in to the Eclipse platform can be performed as follows. IBM Rational Software
Architect [15], which is the development environment used to create theAspectual
FSP Generation tool, allows exporting of plug-in projects using an export
wizard or a mechanism called the Plug-in Development Environment build. The
Eclipse platform provides several notions to facilitate extension, which are plug-
in, feature and update site [15]. A plug-in is the unit of new function contribution
while a feature, which can include one or more plug-ins, is the unit of new function
installation. An update site is a mechanism for finding and installing features. An
update site can distribute one or more features. The multi-stage transformation chain
developed in the current study includes several plug-ins, such as the back-end model-
to-text JET transformation, the model-to-model mapping project, the c-FSP-UML
profile project, and the EMF project. In order to export these plug-ins, first, a
feature project that references those plug-ins needs to be created. Second, an update
site needs to be created to distribute the feature created. The created update site can
be deployed by copying the required files of the update site to a local or network
folder, or to a Web server. Finally, the Eclipse Update Manager can be used to scan
update sites for the newly created feature and install it.

12.8.2 Implementing the Model Checked Aspectual Pervasive
Services

Service development is considered a very complex process that involves several
stages of the software life-cycle, such as requirements analysis, design, imple-
mentation, testing and maintenance. In general, a service is validated during the

12 Context-Aware Services Engineering for Service-Oriented Architectures 315

testing phase, which is performed late in the software life-cycle. Testing the service
code is considered costly, as any erroneous situations identified during the testing
phase essentially require to reperform the design and implementation phases until
the expected result is obtained. However, if service implementation can be generated
automatically on an already-validated service specification using model transforma-
tion techniques, then it reduces or minimizes the need for testing the service code.
This essentially reduces implementation time as the code is automatically generated,
and the verified design and implementation levels of services are synchronized. Thus,
reducing the need for any maintenance by the service engineer. The application of
model transformations on an already-verified service design is also appropriate in
the context of the current study.

This study has employed rigorous model checking to check whether individual
aspects or components, and the woven model, contain any undesired behavior. This
model checked pervasive software services specification, which is free of any erro-
neous behavior, can be fed into a custom model-to-code transformation tool created
to automate the generation of executable service code or service implementation.
Model-to-text transformations can be employed to generate both core and adaptable
code of a service implementation. The core service code is the unchanging or static
portion of the service while context handling or the adaptable code is the dynamic
portion of the service, which can evolve based on available contextual information.
In the current study, at the behavioral modeling level of FSP, the core service behav-
ior and context-dependent information have been treated as separate concerns using
the aspect-oriented modeling paradigm (c-FSP aspects). The same separation
of concerns can be effectively enforced at the source code level with aspect-oriented
programming. Model-to-text transformations can be employed to ensure the correct
separation of concerns at both FSP and aspect-oriented programming levels. The
service code can be provided using the aspect-oriented version of Java known as
AspectJ of aspect-oriented programming and can target readily available software
platforms such as Apache Tomcat Web Server and the Axis Simple Object Access
Protocol engine. However, one of the main limitations of AspectJ is that it only sup-
ports compile time aspect weaving. In this regard, AspectWerkz can be a solution,
which is a dynamic, lightweight and high-performing aspect-oriented programming
framework for Java.

12.9 Conclusion

In summary, the primary contribution of this chapter is a novel, systematic
architecture-centric approach for engineering context-aware services at the software
architectural level. Context-awareness capabilities in service interfaces introduce
additional challenges to the software engineer. The additional complexities associ-
ated with these special services necessitate the use of solid software engineering
methodologies during their development and execution. To this end, this chapter has
proposed a novel approach which integrates the benefits of solid software engineering

316 D. B. Abeywickrama

principles of model-driven architecture, aspect-oriented modeling and formal model
checking for engineering context-aware services. A prototype tool—Aspectual
FSP Generation—applying an effective pipeline of model-to-model and model-
to-text transformations has been built. The generated formal behavioral models for
context-dependent behavior and the core service behavior have been rigorously veri-
fied using model checking against desired system properties. The approach has been
explored using a real-world case study in intelligent transport, and an evaluation
framework has been developed to validate the main methods and tools employed in
the study. We have also discussed two key research directions, extending this work
to benefit the broader service engineering and pervasive computing communities.

References

1. Abeywickrama, D.B.: Pervasive services engineering for SOAs. Ph.D. thesis, Faculty of IT,
Clayton Campus, Monash University, Australia (2010)

2. Abeywickrama, D.B., Ramakrishnan, S.: A model-based approach for engineering pervasive
services in SOAs. In: 5th International Conference on Pervasive Services (ICPS’08), Sorrento,
Italy, pp. 57–60. ACM (2008)

3. Abeywickrama, D.B., Ramakrishnan, S.: Model-driven development of aspectual pervasive
software services. In: 14th IEEE International Enterprise Distributed Object Computing Con-
ference Workshops, Vitoria, Brazil, pp. 49–59. IEEE (2010)

4. Abeywickrama, D.B., Ramakrishnan, S.: An evaluation framework for validating aspectual per-
vasive software services. In: 6th International Conference on Evaluation of Novel Approaches
to Software Engineering conference (ENASE’11), pp. 80–91. SciTePress (2011)

5. Abeywickrama, D.B., Ramakrishnan, S.: Model checking aspectual pervasive software ser-
vices. In: 35th Annual IEEE International Computer Software and Applications Conference
(COMPSAC’11), pp. 253–262. IEEE Computer Society (2011)

6. Abeywickrama, D.B., Ramakrishnan, S.: Context-aware services engineering: models, trans-
formations, and verification. ACM Trans. Internet Technol. J. 11(3), Article 10. ACM (2012)

7. Achilleos, A., Yang, K., Georgalas, N., Azmoodech, M.: Pervasive service creation using a
model-driven petri net based approach. In: International Wireless Communications and Mobile
Computing Conference, pp. 309–314 (2008)

8. Analyti, A., Theodorakis, M., Spyratos, N., Constantopoulos, P.: Contextualization as an inde-
pendent abstraction mechanism for conceptual modeling. Inf. Syst. J. 32(1), 24–60. Elsevier
Science Ltd., Oxford, UK (2007)

9. Autili, M., Berardinelli, L., Cortellessa, V., Marco, A.D., Ruscio, D.D., Inverardi, P., Tivoli,
M.: A development process for self-adapting service-oriented applications. In: International
Conference on Service-Oriented Computing, LNCS, vol. 4749, pp. 442–448. Springer (2009)

10. Clarke, E.M., Wing, J.M., Alur, R.: Formal methods: state of the art and future directions. ACM
Comput. Surv. 28(4), 626–643. ACM (1996)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (1999)
12. Colombo, E., Mylopoulos, J., Spoletini, P.: Modeling and analyzing context-aware composition

of services. In: International Conference on Service-Oriented Computing, LNCS, vol. 3826,
pp. 198–213. Springer (2005)

13. Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: aspect orientation and model-
driven engineering. J. Object Technol. 6(7), 51–88. Chair of Software Engineering, ETH Zurich,
Switzerland (2007)

14. Davie, A.: Intelligent tagging for transport and logistics: the ParcelCall approach. Electron.
Commun. Eng. J. 14(3), 122–128. Institution of Electrical Engineers, London, UK (2002)

12 Context-Aware Services Engineering for Service-Oriented Architectures 317

15. DeCarlo, J., Ackerman, L., Elder, P., Busch, C., Lopez-Mancisidor, A., Kimura, J., Balaji. R.S.:
Strategic reuse with asset-based development. IBM Corporation (2008)

16. Dey, A.K., Abowd G.D.: Towards a better understanding of context and context-awareness. In:
CHI 2000 Workshop on The What, Who, Where, When, Why and How of Context-Awareness
(2000)

17. Douence, R., Botlan, D.L., Noye, J., Sudholt, M.: Concurrent aspects. In: 5th International
Conference on Generative Programming and Component, Engineering, pp. 79–88 (2006)

18. Fuentes, L., Gamez, N., Sanchez, P.: Aspect-oriented executable UML models for context-
aware pervasive applications. In: 2008 5th International Workshop on Model-Based Method-
ologies for Pervasive and Embedded Software, pp. 34–43, Budapest. IEEE (2008)

19. Groher, I., Schulze, S.: Generating aspect code from UML models. In: 3rd International Work-
shop on Aspect-Oriented Modeling Co-located with 2nd International Conference on Aspect-
Oriented Software Development (AOSD’03), Boston, USA (2003)

20. Hegering, H.-G., Küpper, A., Linnhoff-Popien, C., Reiser, H.: Management challenges of
context-aware services in ubiquitous environments. In: Brunner, M., Keller, K. (eds.) Self-
Managing Distributed Systems, LNCS, vol. 2867, pp. 321–339. Springer (2003)

21. Kapitsaki, G.M., Kateros, D.A., Prezerakos, G.N., Venieris, I.S.: Model-driven development
of composite context-aware web applications. Inf. Softw. Technol. J. 51(8), 1244–1260.
Butterworth-Heinemann (2009)

22. Kappel, G., Pröll, B., Retschitzegger, W., Schwinger, W.: Customisation for ubiquitous web
applications: a comparison of approaches. Int. J. Web Eng. Technol. 1(1), 79–111. Inderscience
Publishers, Geneva, Switzerland (2003)

23. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs, 2nd edn. Wiley, New
York (2006)

24. Mceachen, N., Alexander, R.T.: Distributing classes with woven concerns: an exploration
of potential fault scenarios. In: 4th International Conference on Aspect-Oriented Software
Development, pp. 192–200. ACM (2005)

25. Perez-Toledano, M.A., Navasa, A., Murillo, J.M., Canal, C.: TITAN: a framework for aspect-
oriented system evolution. In: International Conference on Software, Engineering Advances,
pp. 23–30 (2007)

26. Schwinger, W., Grün, C., Pröll, B., Retschitzegger, W., Schauerhuber, A.: Context-awareness in
mobile tourism guides—a comprehensive survey.Technical report, Johannes Kepler University,
Linz, Austria (2005)

27. Serral, E., Valderas, P., Pelechano, V.: Towards the model-driven development of context-aware
pervasive systems. Pervasive Mobile Comput. J. 6(2), 254–280. Elsevier (2010)

28. Sheng, Q. Z., Benatallah, B.: ContextUML: a UML-based modeling language for model-driven
development of context-aware web services. In: International Conference on Mobile, Business,
pp. 206–212 (2005)

29. Truong, H., Dustdar, S.: A survey on context-aware web service systems. Int. J. Web Inf. Syst.
5(1), 5–31 (2009)

30. VIsualize all moDel drivEn programming (VIDE), WP 11: Deliverable number D11.3,
Supported by the European Commission within Sixth Framework Programme. Polish-
Japanese Institute of Information Technology. http://www.vide-ist.eu/download/VIDE_D11.
3.pdf. Accessed 16 Sept 2012

31. Whittle, J., Jayaraman, P.: MATA: A tool for aspect-oriented modeling based on graph trans-
formation. In: Giese, H. (ed.) Models in Software Engineering, LNCS, vol. 5002, pp. 16–27.
Springer, Berlin(2008)

32. Xu, D., Alsmadi, I., Xu, W.: Model checking aspect-oriented design specification. In: 31st
Annual IEEE International Computer Software and Applications Conference, pp. 491–500
(2007)

http://www.vide-ist.eu/download/VIDE_D11.3.pdf
http://www.vide-ist.eu/download/VIDE_D11.3.pdf

Part II
Service Selection and Assisted Composition

Chapter 13
Service Selection in Web Service
Composition: A Comparative Review
of Existing Approaches

Mahboobeh Moghaddam and Joseph G. Davis

Abstract Web service composition (WSC) offers a range of solutions for rapid
creation of complex applications in advanced service-oriented systems by facilitating
the composition of already existing concrete web services. One critical challenge
in WSC is the dynamic selection of concrete services to be bound to the abstract
composite service. In this paper, we provide a comprehensive review of the existing
proposals for service selection, and a comparative analysis of the optimization and
automated negotiation-based approaches.

13.1 Introduction

Service-Oriented Computing (SOC) has emerged as an important computing
paradigm in recent years. Its main feature is that it utilizes one or more inter-
operable services (software components which implement specific functionalities) as
fundamental building blocks to support rapid, low-cost development of distributed
applications in heterogeneous environments [23]. SOC represents a new genera-
tion of distributed computing platforms which builds on past distributed computing
approaches. It is distinguished by the addition of new design layers, governance
considerations, and a set of preferred implementation technologies [18].

M. Moghaddam (B) · J. G. Davis
School of Information Technologies, University of Sydney,
Sydney, NSW 2006, Australia
e-mail: mahboobe@it.usyd.edu.au

M. Moghaddam
National ICT Australia (NICTA), Australian Technology Park,
Eveleigh, NSW 2015, Australia

J.G. Davis
e-mail: joseph.davis@sydney.edu.au

A. Bouguettaya et al. (eds.), Web Services Foundations, 321
DOI: 10.1007/978-1-4614-7518-7_13,
© Springer Science+Business Media New York 2014

322 M. Moghaddam and J. G. Davis

More recently, web services have been advanced as the technology of choice for
realizing service oriented computing and its associated set of strategic goals. Web
services are self-contained, modular business applications with open, Internet-
oriented, standards-based interfaces [52]. The communication between web services
is via standards-based technologies which give users the opportunity to access differ-
ent web services, independent of their hardware, operating system, or even program-
ming environment. This supports organizations with a technology to create services
which can be easily discovered and consumed by external users.

One of the critical research challenges in realizing the vision of agile and
collaborative software development using web services is Web Service Composi-
tion (WSC) which involves creating a composite service by combining different web
services to provide a new value added service [5]. Service selection, as the problem
of selecting the most appropriate web services from the pool of available ones that
best match the functional and non-functional requirements and constraints specified
by the requester has been researched extensively. The primary goal of this paper is
to provide a comprehensive review of a range of proposals for service selection in
WSC. A comparative analysis of the two dominant approaches based on optimization
and automated negotiation is also included.

The remainder of this paper is organized as follows: Sect. 13.2 introduces web ser-
vice composition lifecycle to provide a common ground on WSC definition. A brief
overview of service discovery approaches is presented in Sect. 13.3. In Sect. 13.4,
we discuss the main challenges involved in arriving at a service selection solution. A
comprehensive review of the existing service selection approaches, optimization-
based, negotiation-based, and the hybrid approaches is presented in Sect. 13.5.
Section 13.6 includes a comparative analysis of the two main approaches. The paper
concludes with a brief summary and an outlook for future research in Sect. 13.7.

13.2 Web Service Composition

Although a single web service has its own value for its users, the functionality offered
by the individual web services is limited. The true potential of web services can only
be realized through assembling multiple web services into more powerful applica-
tions with more sophisticated functionalities; i.e. Web Service Composition (WSC).
Manual composition of web services is time consuming, error-prone, generally hard
and not scalable [5]. Hence, a family of approaches to web service composition aims
to fully or partially automate the composition process.

The two main streams in the automatic WSC approaches are: workflow-based
approaches and AI planning-based approaches [5, 47]. Workflow-based approaches
are inspired by the similarity of an abstract composite service to an abstract business
process, and the similarity of a concrete composite service to a running workflow
system. This similarity has helped web service research community to build on the
accumulated knowledge that has emerged in the workflow and business process

13 Service Selection in Web Service Composition 323

Fig. 13.1 Web service composition lifecycle

design research area [5]. We will discuss this approach in more detail by developing
a model of Web Service Composition Lifecycle (Fig. 13.1).

In the AI planning-based approaches, service composition is viewed as a planning
problem. Generally, a planning problem has the following elements: description of
the initial state of the world, definition of the desired goal state(s), and a description
of the set of possible actions which can transform world’s state from one to another.
The planner agent aims at finding the sequence of actions that will transform the
world’s state from the initial state to the goal state. In the WSC realm, a composite
service is represented as a goal state to be achieved and the available web services are
represented as the set of actions that can transform the world (or agent’s) states. At
the end of a successful planning exercise, a plan is generated. This plan constitutes
the chosen web services and the order of their execution in such a way that they, in
combination, will deliver the required functionality.

The main difference between the two approaches is that AI planning-based tech-
niques generally do not make any assumption relating an abstract view of the com-
posite service.1 In contrast, this abstract view is a key element in the workflow-based
approaches. In this paper, our focus is on the workflow-based approaches as the
research in the business process and workflow-related areas have proven applica-
tions in industry, which has, in turn, helped to improve the academic research.

The lifecycle of a typical workflow-based WSC solution is illustrated in Fig. 13.1.
In this lifecycle, the first stage is the goal specification, where the service requester’s
goal and preferences are defined. Following this, the goal is decomposed
(semi)automatically into an abstract business process (BP) comprising a set of tasks,

1 There are exceptions to this generalization, such as the work of McIlraith and Son [39]. They have
a similar concept to an abstract business process, refered to as the high-level generic procedure.

324 M. Moghaddam and J. G. Davis

each with clear functionality, along with the control and data flow among them. The
Quality of Service (QoS) requirements for the BP (end-to-end quality) as well as for
each participating task are also specified.

During the next stage, service discovery, concrete web services that match the
tasks’ functional and non-functional requirements are located by searching a ser-
vice registry that holds information about available concrete web services. Service
discovery is performed to find a match for each of the participating tasks. At this
stage, it is very likely that more than one candidate will be found for each task that,
while satisfying the basic required functionality, may be offered with different QoS
attributes values, i.e. different levels of availability, price, etc.

Service selection is the stage following service discovery. At this stage, a variety
of techniques is proposed by the research community that helps the service requester
to select the web services that best match the specified requirements of the individual
tasks and the business process. After finding the matches for all tasks and binding
each task to its chosen web service, the concrete composite service is created. During
service execution stage, a process instance is created by executing the composite
service. The process instance would be continuously monitored for further responses
toward any failure or change in its status at the final stage of WSC, i.e. service
maintenance and monitoring.

Service discovery and selection, as two fundamental steps in the web service com-
position lifecycle, have been a major focus of service-oriented computing research.
Before any interaction happens between service requester and provider, the former
needs to locate the web service that best matches her task description. Researchers
have mainly focused on service discovery techniques for a single task. In contrast,
service selection has been addressed at two levels: for a single task, and for the com-
plex BP. This second level is specifically required during WSC and the complexity
level is exacerbated by the fact that service selection is performed for a set of depen-
dent tasks. Hence, many researchers have considered service discovery and service
selection as two separate stages to break down the complexity.

Following this approach, service discovery and service selection are treated as
two distinct stages in our discussion of WSC lifecycle (Fig. 13.1), where the output
of the former is the input to the latter stage. Even though our primary focus is service
selection, we present a brief overview of the approaches to service discovery in the
next section, before discussing a range of service selection approaches. This will
help clarify the expected output of service discovery which is used as the input to
service selection.

13.3 Service Discovery Approaches

In WSC, service discovery (also referred to as matchmaking) is the process of finding
a concrete service match for each task in the BP. WSC solutions need to define the
precise and specific search criteria to be executed against the web service registry
to find the match for each task.

13 Service Selection in Web Service Composition 325

What to include in this search criteria varies among different solutions. The
matchmaking algorithm proposed in [15] ranks functionally equivalent services on
the basis of their ability to fulfill the service requester’s functional and non-functional
requirements while maintaining the price below a specified budget. The proposed
matchmaking framework in [40] is based on the web service context where context
is defined as all the information needed for enabling interactions between the service
requester and providers. Semantic and behavioural information are used in [8, 9] for
service matchmaking during WSC. Web service behaviour is the order of execution
of the service operations or the order of message exchange with a service and the con-
straints governing the operations’ execution sequence [17]. The selection algorithm
proposed in [17] takes into account not only the functional requirements but also the
transactional properties, and QoS characteristics of web services. Transactional prop-
erties guarantee consistent outcome and correct execution of the composite service.
An information retrieval approach is suggested in [26] for discovering and ranking
web services automatically, given a textual description of the desired services.

The variation in what to include in the search criteria arises from the fact that
a web service can be defined from different perpectives, including: functionality,
QoS attributes, interface, semantics, behaviour, and context. Web service interface
is an essential aspect in the web service description (W3C working group note on
Web Service Architecture [7]). However, what additional aspects to be included in
the service definition is largely dependent on the application domain specificities.
Service discovery proposals, including the ones mentioned above, have each added
one or more aspects to the web service description, in addition to the interface.
Elements of service specification affect the criteria included in the search request
from the demand side, and the type of information to be stored in the service registry
from the supply side.

Based on the search query criteria, service registry returns a number of candidate
services. At this point, WSC enters the next stage, namely composite service selec-
tion. The input to the composite service selection stage is a set of classes of services.
Each class contains services that can perform the same functionality, but they may
differ on other aspects, such as QoS attributes.

13.4 Service Selection Challenges

In this section, we discuss the main challenges involved in the service selection
problem. These challenges are: the NP-hardness of this problem for a composite
service and the resulting scalability concern, the need to distinguish the abstract
business process from its possible set of execution paths, defining the aggregation
functions for the QoS attributes, and elicitation of the service user’s preferences about
different QoS attributes for the trade-off analysis of the candidate services.

326 M. Moghaddam and J. G. Davis

NP-Hardness and Scalability

Composite service selection can be modelled as a multi-dimension multi-choice
knapsack problem (MMKP), which is known to be an NP-hard problem in the strong
sense [46]. This means that for large problems, it is unlikely that an optimal solu-
tion can be found given a reasonable amount of computational effort. Hence, there
is a need for heuristic approaches when the problem size is too large to be solved
by optimization procedures [46]. A number of heuristic algorithms for the service
selection problem have been proposed in the literature; good exemplars include
[6, 41, 60]. Some researchers have proposed a Genetic Algorithm approach to solve
the scalability problem [10, 29, 37]. An alternative proposal to reduce the compu-
tational time of the service selection search algorithm is to shrink the search space.
For instance, Alrifai et al. [2] has proposed pruning the service candidates that are
not likely to be part of the optimal solution, by computing the service skyline for
each service class.2

From Business Process to Execution Path

The assumption in workflow-based service composition approaches is that the
required composite service is described at an abstract level as a high-level busi-
ness process [4]. The business process is a collection of generic service tasks with
defined control-flow and data-flow dependencies among them. Different languages
and models have been used for describing the composite service, or more precisely
its equivalent business process, such as UML activity diagram [4], statechart [62],
extended BPEL [1], or YAWL [17].

Regardless of the modelling notation, different control-flow constructs are allowed
in the existing process modelling languages such as sequence, loop, parallel execu-
tion, and conditional branching. Some control structures such as loop and conditional
branching need special consideration. For these, the runtime structure is different
from the abstract structure. For instance, only one of the tasks in the conditional
branching would be selected for execution. This means that a BP might be executed
along different paths, based on the control-flow at runtime. Each possible path of BP
execution is called an execution path. During service selection, an execution plan is
created by assigning web services to the tasks of an execution path.

Researchers have used different techniques to translate a BP to its corresponding
execution paths, such as loop peeling [4], or loop unfolding [60, 62] to treat loop
structures. In the former approach, every loop is annotated with the expected maxi-

2 For a set of d-dimensional data points, the skyline is a subset of the points where no point in
it is dominated by any other member. If −→p (p1, ..., pd) and −→q (q1, ..., qd) are two points in the
d-dimensional data set, p dominates q iff ∀i ∈ [1, d], pi � qi and ∃ j ∈ [1, d], p j � q j [59]. The
notation � is defined as being better than or equal, and � as better than. In the service domain,
a service skyline is the set of providers where no provider is dominated by any other, in terms of
the offered values for QoS attributes.

13 Service Selection in Web Service Composition 327

mum number of its iterations, considering a probability distribution for the number
of loop iterations. In the latter case, the loop is unfolded by cloning the functions
in the loop for a number of times such as the maximal loop count, which can be
obtained from process execution history or the process designer.

Aggregation Functions

A critical challenge in service selection is how to measure the end-to-end quality
of the composite service. The aggregated value of a QoS attribute should take into
account the QoS attribute value of the individual services participating in the com-
posite service, and the business process structure. For example, the overall price of
a composite service can be defined as the sum of the prices of all the participating
services. However, for execution time, we need a more complex aggregation func-
tion, e.g. one that returns the maximum execution time among the parallel services,
adds up the execution times of sequential services, and combines these two values if
there are both parallel and sequential structures in the BP.

In [30] and its extension [31], Jaeger et al. have proposed aggregation functions
for some QoS attributes such as execution time, cost and throughput, supporting
a comprehensive set of structural patterns that can be found in workflows. Zeng
et al. [62] has proposed aggregation functions for attributes such as execution price,
execution duration, and reputation, supporting basic workflow patterns such as loop,
sequence, conditional branching, and concurrent threads. Other aggregation func-
tions have been also developed [4, 10, 48, 62].

Defining the Weights of QoS Attributes

There is a general assumption in the literature that the service requester has a clear
idea of the importance of a QoS attribute which let her assign a scalar weight to
each QoS criterion. But this may not be realistic, especially as the number of QoS
attributes involved in the selection criteria increases. Some researchers have chal-
lenged this assumption. Wang [54] has proposed a resolution process for determining
the linguistic weights of QoS criteria based on a group of participants’ preferences.
Yu and Bouguettaya [59] has proposed two algorithms for calculating the service
skyline. Determining the skyline of a set of data requires pair-wise comparison of all
the members of the data set which can be very expensive in terms of computational
time and memory usage. The proposed algorithms in [59] exploit the indices of the
service operations to compute the skyline more efficiently. The computed skylines
guarantee the inclusion of the best user desired service providers without any user
intervention.

328 M. Moghaddam and J. G. Davis

13.5 Service Selection Spectrum

The input to the service selection stage is a set of classes of web services. The can-
didate web services in one class provide the same functionality, but they may vary
according to other aspects such as QoS attribute values. QoS attributes
(or non-functional properties) are the constraints defined over service functional-
ity [45]. They can be categorized as:

• Technical domain-independent attributes,3 such as: response time, availability,
reliability, robustness (the ability of the service to continue its work in the presence
of invalid, incomplete or conflicting inputs),
• Non-technical domain-independent attributes, such as: execution price, penalty,

discount, reputation,
• Domain-dependent attributes which are only meaningful in a specific application

domain, such as: refresh time for a traffic monitoring service [15].

Service QoS profile, provider’s offered values for service QoS attributes, plays a
central role in service selection research. Different providers may offer the same
service at different levels of quality to maintain their competitive advantage over
each other [40]. As well, a single provider might offer the same functionality with
ranging quality levels to cover a wider range of customers. Moreover, at the composite
service level, the QoS of the final composite service is the key factor to ensure service
requester’s satisfaction [62].

We have surveyed the range of service selection approaches discussed in the liter-
ature, based on the underlying assumptions regarding the QoS profile. The variation
in the assumptions is illustrated as a spectrum in Fig. 13.2. Corresponding to the two
extremes of the spectrum are the two important trends in the service selection lit-
erature: Optimization-based approaches which typically assume a predetermined
not-customizable QoS profiles and, negotiation-based approaches which permit
QoS profiles to be flexible and negotiable. In the following sections, we provide a

Fig. 13.2 Service selection spectrum based on QoS profile assumptions

3 Due to space limitations, attributes such as privacy, security, and trust are not included in this
paper.

13 Service Selection in Web Service Composition 329

comprehensive review of the important contributions on service selection for a
composite service (or composite service selection).

13.5.1 Optimization-Based Approaches

Service selection can be modelled as an optimization problem. The optimization
approach has appeared under different names such as QoS-driven or QoS-aware
web service composition, web service composition optimization, and optimum con-
cretization. Optimization can be performed at two levels: local optimization for an
individual task, approaches such as [1, 17, 44] and global optimization for the BP,
followed by for example [4, 60, 62].

Local Optimization

At the local level, the best service for individual tasks is chosen, one task at a time,
regardless of the task dependencies with other tasks in the BP or the end-to-end
quality requirements of the composite service. In this approach, services are ranked
based on some criteria, including all service QoS attributes. The dominant technique
to rank services is to assign a score to each web service, using utility theory. In utility
theory (from microeconomics), the service requester or provider preferences can be
mapped to values of utility, where higher utility means greater preferences [56]. To
avoid the complexities of multi-dimensional utility function elicitation, each QoS
attribute and the price have an independent utility function, based on the assumption
of the independence of the outcomes of utility functions originating from Multi-
attribute Utility Theory (MAUT) [34].

The offered value for the j th QoS attribute, q j , (j ∈ J : set of all QoS attributes),
by web service s, is mapped to a value between 0 and 1 using a single attribute linear
utility function, denoted as U j in Eq. (13.1). In this equation, qmax

j and qmin
j are the

maximum and minimum values offered for q j by all the candidate web services of
the same functionality class.

U j (q j) =

⎧
⎪⎪⎨

⎪⎪⎩

q j−qmin
j

qmax
j −qmin

j
if larger q j more desirable

qmax
j −q j

qmax
j −qmin

j
if smaller q j more desirable

(13.1)

To get the aggregated utility of all the QoS attributes offered by service s (denoted
as U (s) in Eq. (13.2)), the weighted sum of the individual utility functions is cal-
culated using a normalized weight (w j) for each attribute specifying its impor-
tance. The sum of the normalized weights assigned to different QoS attributes
(by service requester) should add up to 1, Eq. (13.3).

330 M. Moghaddam and J. G. Davis

U (s) =
∑

j∈J

w j ×U j (q j) (13.2)

∑

j∈J

w j = 1 (13.3)

Global Optimization

Even though the local optimization approach optimizes local service selection, it may
not lead to a global optimality for the end-to-end QoS of the BP. Besides, it is not
possible to set global constraints for the composite service in the local approach. To
overcome these limitations, global optimization approaches have been proposed. In
one such approach, optimization is carried out for the overall BP, and the requester
can define end-to-end requirements and constraints for the overall BP. It is still
possible to have a local selection strategy, beside the global optimization process,
to address service requester’s concerns about individual task quality. This can be
achieved by applying the local QoS constraints as filters to the list of the candidate
services returned by the service registry. The realization of the optimization problem’s
elements for composite service selection is as follows:

• Objective Function: The general objective function illustrated by research commu-
nity for service selection is to maximize service requester’s satisfaction from the
execution of the composite service. To measure such satisfaction, researchers again
draw on utility theory. The objective function is constructed by the weighted sum
of the end-to-end QoS attributes’ utility functions. An example objective function
is presented in Eq. (13.4) below, where the service requester wants to minimize
the price (or maximize the price utility, UP) of the composite service, at the same
time, maximizing the availability’s utility, UA.

Maximize wP ·UP + wA ·UA (13.4)

Subject to: UP =
∑

i

P M AX −∑
j pi j · xi j

P M AX − P M I N
(13.5)

UA =
∑

i

∏
j ai j · xi j − AM I N

AM AX − AM I N
(13.6)

m j∑

i=1

xi j = 1, xi j ∈ 0, 1 (13.7)

The price offered by servicei j for executing task j in the BP is denoted as pi j ,
the aggregation of all the offeres for the tasks in the BP as

∑
j pi j · xi j , and

the maximum and minimum price offers for the business process as P M AX and
P M I N . A similar explanation applies to Eq. (13.6) for availability. Given a BP

13 Service Selection in Web Service Composition 331

with J number of tasks, there will be J classes of candidate services where all
the m j candidate services in the j th class, can execute j th task (j ∈ J). Then,
the decision variable xi j is defined to be equal to 1 if the candidate web servicei j ,
in service class j , is assigned to execute task j or zero otherwise. Equation (13.7)
ensures that only one service is selected from each class to execute the related
task.
• Constraints: Service requester may have some constraints over the value of the

QoS attributes which affects the choice of services for the BP. For example,
a maximum budget is available to get the composite service, or the execution
time might not exceed a maximum for the composite service to be useful.
• Decision Variables: The choice of what will represent the decision variables deter-

mines the type of optimization problem. The dominant approaches are modelling
the problem as Integer Linear Programming (ILP), Genetic Algorithm (GA), Con-
straint Satisfaction, and Stochastic Programming.

Integer Linear Programming (ILP)

One way of solving this optimization problem is to model it as an integer linear
programming problem [4, 62]. In the ILP approach, decision variables are integers
representing whether a particular service is selected for executing a specific task or
not, similar to xi j in Eq. (13.7).

This approach helps researchers utilize any of the many available ILP solvers
today. However, these solvers are effective when the size of the problem is small. An
increase in the number of candidate web services leads to the increase of the number
of decision variables, which in turn results in the explosion of the search space, and
the number of the conditions to be checked. Thus, the ILP approach is limited by how
large the BP (number of the tasks) is and how many candidate services exist. Another
limitation of the linear programming approach is that both the objective function and
the constraints should be linear, regardless of the complexity of the QoS attributes
and different structures that can be found in the BP.

Genetic Algorithm (GA)

To overcome the limitations of ILP approaches, researchers such as [10, 29, 37]
have proposed to apply genetic algorithm for the service selection problem. Any GA
starts with encoding the candidate solution in a computer processable manner, called
genome. The GA creates a population of generally random solutions which will be
evaluated according to a fitness function. Then, based on some selection criteria,
some individuals are selected for reproduction. The motive to the reproduction is
that the new generation will contain better solutions than the old one. Near optimal
solutions can be found by repeating these steps. The algorithm stops when some
conditions are met, e.g. a specific number of generations.

In the service selection domain, Canfora et al. [10] and Jaeger and Muehl [29]
applied a simple one-dimensional coding schema for the problem representation,

332 M. Moghaddam and J. G. Davis

while others, including Ma and Zhang [37], have used more complex representations
such as a relation matrix coding schema. In the former case, each individual repre-
sents the assignment of the candidates to the tasks. In the latter one, the matrix can
represent all the execution paths of the BP at the same time. The GA’s fitness func-
tion is designed to maximize some QoS attributes and minimize some others. When
dealing with end-to-end QoS attributes, the aggregation function for each QoS
attribute needs to be defined. Evidently, there is no need to build “linear” aggre-
gation functions (in contrast to the ILP approach).

GA is an unconstrained search technique [21], making it necessary to find ways
for integrating service selection constraints into the search process. The widely used
technique is the additive penalty method where a penalty cost that is proportional
to the total violation of each of the constraints is added to the fitness function [27].
Other techniques to incorporate constraints into the GA search, such as [11] and [42],
have not found application in service selection literature.

Constraint Satisfaction

One variant of the optimization approach is presented by Lecue and Mehandjiev
[36]. They argue that future semantic web will cater for millions of services, making
scalability (in terms of the time required for WSC) the main objective to achieve.
They proposed a fast selection approach which might not lead to an optimal com-
position. Modelling service selection as a constraint satisfaction problem, they use a
stochastic search method (more precisely, a hill-climbing algorithm) to find the first
set of services that satisfy the set of defined constrains (both in terms of functional
and non-functional requirements).

Rosenberg et al. [50] has proposed to model the service selection problem as
a Constraint Optimization Problem (COP). COP is a generalization of the con-
straint satisfaction problem where constraints are weighted and the goal is to find a
solution maximizing a function of weighted constraints. The main idea in their pro-
posal is that instead of having all the constraints as hard ones, i.e. must be satisfied,
there can be defined soft constraints which are optional and it would be “nice” to
have them. This will lead to a more flexible composition process. Based on this idea,
the proposed CO algorithm does not find the best solution that exists in the search
space (in terms of the utility gained by service requester). Rather it searches for the
best solution within the boundaries of constraints. They add up all soft constraints to
form an objective function, trying to maximize it. However, as they have mentioned,
this approach has scalability problem, not suitable for large problems.

Stochastic Programming

Stochastic Programming is another optimization approach to solve the service
selection problem in the presence of uncertainty. For example Wiesemann et al.
[55] argues that the nature of QoS attributes such as response time and price is
non-deterministic, and hence the WSC should be treated as a decision problem under

13 Service Selection in Web Service Composition 333

uncertainty. To incorporate the uncertainty, they assume that the decision maker
(the service requester) uses a particular quantile-based risk measure called average
value-at-risk (AVaR) to quantify the risks associated with time and cost uncertainties.
In the optimization objective function, they minimize the AVaR of the random vari-
ables defined for the service response time, and invocation cost. More precisely, they
build the worst-case risk functions corresponding to execution time and price, using
the associated AVaR measures. These two criterion functions constitute the opti-
mization’s objective function. In their experiment, they compared their risk-aware
formulation of WSC in terms of the execution time and the price of the resulted com-
posite services, with those of the deterministic formulation of the problem. According
to their findings, for every deterministic composite service, there exists a risk-aware
composition with smaller cost and execution time.

13.5.2 Negotiation-Based Approaches

Negotiation-based approaches constitute an important stream of contributions to
the composite service selection problem. Negotiation is a process of reaching an
agreement that is beneficial to the involved parties through information exchange and
compromises [35]. Negotiating parties usually have different preferences over the
negotiation issues and they seek to reconcile these differences through negotiation.

In computer science and related research, negotiation as distributed search through
a space of potential agreements [32], has been used for many years to solve a variety of
problems, e.g. resource allocation in grid computing, and getting agents to cooperate
or compete over a common goal in multi-agent systems. In the context of computer
science research, we should make it clear that what we mean by negotiation here
is an automated process where negotiation is performed automatically by a piece
of software such as an agent, a web service, or a third-party broker system. The
automated negotiator replaces the human negotiator and performs negotiation on
negotiator’s behalf.

In the web service domain, researchers have employed negotiation mainly for
(semi)automatic creation of Service Level Agreement (SLA). In general terms, SLA
is an agreement between the service consumer and the provider. It may also be
referred to as contract, policy, or license. In service oriented infrastructure, SLA is
an automatically processable contract between a service and its client, where the
client can be an organization, a person, or another service [53]. In SLA negotiation,
service provider and requester negotiate over SLA terms such as QoS attributes,
rewards, penalties, and deliverables, in order to come up with a formal SLA at the
end of the process [63]. SLA negotiation solutions are divided by the assumption
that the service provider is predetermined before the negotiation or not. The two
corresponding approaches are called pre-contractual SLA negotiation, and dynamic
provider selection.

334 M. Moghaddam and J. G. Davis

• Per-contractual SLA Negotiation [25]: In this case, the negotiation is performed
after service discovery and selection, meaning that the service provider is already
determined. Service parameters are negotiated and fixed in order to define the
concrete service which will be carried out. This is a one-to-one negotiation process
between service requester and the selected service provider. Proposals in this area
include, but not limited to [14, 24, 64].
• Dynamic Provider Selection: Here, the negotiation is performed after the service

discovery and as a service selection mechanism, aiming at dynamically select-
ing the service provider that best matches the service requester’s non-functional
requirements. This is a one-to-many negotiation process between the service
requester and the candidate service providers. A successful negotiation output
can be used for contract specification.

Basically in the dynamic provider selection approach, a high-level negotiation
process (overall negotiation process) is conceptualized that negotiates for the over-
all BP. It consists of multiple negotiation sub-processes (briefly negotiation process)
each associated with one task in the BP. Each negotiation process, in turn, may include
multiple negotiation threads, one thread for each candidate provider, to choose the
best service for the specific task.

When building an automated negotiation solution, several key components com-
prising the general negotiation framework [19, 43] should be addressed. These critical
components are:

1. Negotiation Object: the set of issues that the parties negotiate to reach an agree-
ment over their values,

2. Negotiation Protocol: the communication and message exchange rules among
negotiation parties,

3. Decision-making Model: the rules that the interacting parties follow to decide
when to start negotiation, how to prepare an offer, acceptable agreement range,
and the time to abandon negotiation.

Meanwhile, when dealing with negotiation at the BP level, negotiation by itself may
not be enough for achieving the end-to-end QoS requirement and ensuring a success-
ful overall negotiation. A further management layer, referred to in the literature as
coordination [12], becomes necessary. In Fig. 13.3 below, we present a WSC negoti-
ation framework. This extends the general negotiation framework with an additional
component i.e. coordination model which includes aspects of coordination strategy
and architecture as explained below:

Coordination Strategy: involves decisions on (a) time to initiate negotiation
processes for each task: All parallel? Sequential? With what priority?, (b) the type
of information to collect from ongoing negotiation processes and/or finished ones to
improve the negotiation result, and (c) actions to take for improving the negotiation
result or prevent its failure, based on the collected information.

Coordination Architecture: involves how many and what type of negotiators are
involved in negotiation (agents, web services, broker systems), and the required
number of coordination layers and their configuration.

13 Service Selection in Web Service Composition 335

Fig. 13.3 WSC Negotiation framework adapted from the general negotiation framework [19, 43]

Fig. 13.4 The realization of the WSC negotiation framework based on the current literature

We discuss below the realizations of the key elements of the framework in extant
research. A summary of this discussion is included in Fig. 13.4.

Negotiation Object

In service selection, the negotiation object has already been fixed: the service
requester negotiates over the value of QoS attributes with different service providers.
QoS attributes can be negotiable or non-negotiable. Negotiable attributes are those
whose values can be determined at run-time, during service invocation [15]. Nego-
tiation is performed over a range of values for each term; i.e. the service requester
and the provider each has a minimum and a maximum admissible value for a QoS
attribute. Price, availability, and response time are the more commonly included
terms in recent service selection experimental investigations [48, 58, 64]. When
the negotiation object includes more than one issue (or attribute), the negotiator
needs to know the relative importance of each issue. This is usually realized through
a normalized weight for each negotiation issue.

336 M. Moghaddam and J. G. Davis

Negotiation Protocol

Although an overall negotiation process is conceptualized for the composite ser-
vice, the actual negotiation processes that ultimately occur are bilateral negotia-
tion between service requester’s and candidate provider’s agents. Some researchers
have used a general bilateral protocol [4, 14, 24, 49], also called as bilateral mes-
sage exchange or bargaining. This general protocol consists of a series of message
exchanges between the two parties in terms of offers and counter-offers, until one
of them accepts an offer or withdraws from the negotiation, e.g. due to reaching the
maximum negotiation time. Some researchers, including [12, 57, 64], have followed
a standard protocol such as FIPA ICN IP [22]. This protocol allows multi-round
bidding, supporting one-to-many negotiation. Under this protocol, the negotiation
initiator issues the initial call for proposals (CFP). The other parties in negotiation
(contractors) answer by sending an offer or by refusing to participate in the nego-
tiation. The initiator may accept or reject an offer or reply with a revised CFP. The
negotiation terminates when the initiator accepts one or more offers, or refuses all
the bids without issuing a new bid, or if all the contractors refuse to bid.

Some researcher proposes generic negotiation protocols. The idea is not to bind
the negotiation solution to a particular protocol at design time. Rather, delaying
the determination of the suitable negotiation protocol until the actual execution of
the negotiation process to make a flexible solution. For example, by extending the
current WS-Agreement specification [3], Hudert et al. [28] defines a separate stage
for protocol determination, during which the negotiating parties agree on a common
negotiation protocol before the actual negotiation process starts.

Decision Making Model

The two important parts of a negotiation decision model are: how to evaluate
a received offer as to whether accept it or not (utility function) and how to prepare a
counter-offer (tactic/strategy).

(a) Utility Function

Each negotiator needs to specify its preferences about the negotiation object. These
preferences guide its decisions during negotiation. In service selection, the dominant
approach to express them is through utility theory; referred to in the previous section.
Many researchers addressing SLA negotiation have employed single attribute linear
utility function to evaluate the value of an individual issue [4, 57, 64]. This utility
function is similar to the Eq. (13.1) mentioned in the foregoing. Here, qmax

j and

qmin
j are defined as the maximum and minimum admissible values for j th QoS

attribute according to the negotiator’s preferences and constraints. The parametric
single attribute utility function [14], and multi-attribute utility function representing
the relative preference with respect to each pair of attributes [24] have also been
discussed in the literature.

13 Service Selection in Web Service Composition 337

As QoS profile typically involves more than one attribute, the more commonly
used technique to measure the utility of a profile with multiple attributes is to assign a
normalized weight to each attribute and calculate the overall utility using a weighted
linear additive function; similar to the aforementioned Eqs. (13.2) and (13.3).

(b) Negotiation Tactics

The two main approaches discussed in the literature to generate a counter-offer are
concession and trade-off. In the concessionary approach, with every new offer the
negotiator concedes to the other side of negotiation (opponent) by preparing an offer
that has a lower utility value for itself, and apparently a higher utility value for the
opponent. How much concession to make, and the pace of offering concessions to
progress the negotiation process are determined by the negotiation influential factors.
Time, resource, and opponent behaviour are three factors proposed by Faratin et al.
[19], leading to three families of tactics: time-dependent, resource-dependent, and
behaviour-dependent (or imitative).

In contrast, a negotiator with the trade-off approach tries to keep its utility value
stable at a desirable level (the aspiration level) throughout the negotiation, while
generating an offer that has more utility value for the opponent. This can be achieved
by trading-off between the values of different issues [20], i.e. lowering the values
of some QoS attributes while demanding more on some others. Such a strategy
maximizes the chance of the offer to be accepted. Considering the fact that the
negotiator usually has no information about the opponent preferences and utility
function, the main challenge is how to determine which offer increases the opponent’s
utility value. The trade-off strategy proposed by Faratin et al. [20] uses the concept of
fuzzy similarity [61] to approximate the preferences of the opponent. Assuming that
the opponent’s last offer reflects its preferences, the negotiator uses it as a reference
point and prepares a counter-offer that is most similar to it. In the Yan et al. [57]
proposal, the authors take advantage of the one-to-many negotiations occurring for
a composite service. The utility value of all the received offers is calculated, and the
one with the best utility is used as a reference point for preparing the counter-offer.

Faratin et al. [19, 20] and Comuzzi et al. [13, 14] have proposed heuristic
approaches to define the counter offer for bilateral negotiation. Faratin’s heuristic
functions [19] are widely adopted by researchers, e.g. by [4, 49, 64] due to the clear
distinction of tactic families (based on time, resource, and opponent behaviour), the
clear mathematical representation, and the analysis of negotiation convergence for
different parameters of the model.

The tactics in the Faratin model consider the influential factors in any negotiation.
However, negotiation in WSC is a special case of negotiation consisting of multiple
one-to-many negotiation processes. This introduces the opportunity for considering
other influential factors to define new tactics. For example the Global Negotiation
States factor proposed in [33] reduces the need for unnecessary negotiations in a
one-to-many negotiation. The received counter-offers are compared to each other,
and if all the counter-offers are far from the initial offer, the negotiator should be

338 M. Moghaddam and J. G. Davis

ready to make bigger compromise. Otherwise, if any counter-offer is more desirable
than the negotiator’s own offer, negotiator will raise its expectations and prepares
the next offer based on the value of this desirable counter-offer.

(c) Negotiation Strategy

Negotiation strategy is another part of the decision model. Conceptualized at a higher
level of abstraction than the negotiation tactics, it aims to maximize the utility func-
tion of the negotiator for a contract [19], by determining when to use which tactic
to prepare the counter-offer, or what combination of tactics to use. More precisely,
strategy can be thought of as the pattern of change in the weight of different tactics
over time [63]. Taking it to one step further, Di Nitto et al. [16] states that strategy
is not just about how to weight different tactics over time, but it can also address the
following factors: (a) Changing the importance of negotiation issues over time, e.g.
prefer availability over the response time if the latter cannot be improved so far, (b)
Changing the severity of the constraint, e.g. relaxing some constraints on the values
of some negotiation issues to reflect more concession when the negotiation time is
about to expire.

Deciding on the best strategy for a negotiator involves the challenges addressed
mostly in game-theory, microeconomics, and multi-agent systems and is outside the
scope of this paper.

Coordination Model

To avoid the complexity of dependent negotiation processes, researchers including
[33, 48, 57] assume negotiation processes to be independent and concurrent. For the
same reason, no information is collected during an ongoing negotiation process.

In the Yan et al. proposal [57], the coordinator takes part only at the end of the
process to either confirm or reject the negotiation result. Extending [57], Richter
et al. [48, 49] attempted to make the coordinator more actively involved in the nego-
tiation. Thus the coordinator does not wait for all the negotiation processes to finish.
Rather, when a negotiation process finishes successfully, the surplus of the negoti-
ation issue is calculated. Surplus is the difference between the actual agreed value
and the least desired value (e.g. maximum payable price from the service requester
point of view) of the negotiation attribute. Subsequently, it is distributed over failed
or unfinished negotiation processes of those tasks which have dependencies to the
task producing the surplus. The dependency is determined based on the QoS attribute
under negotiation, and the task’s position in the process, and is maintained in a tree-
format. However, redistributing surplus may prevent the failure of the negotiation
process when service requester has severe QoS requirements. It is not helpful in
situations where negotiation fails due to the limited negotiation time available.

13 Service Selection in Web Service Composition 339

13.5.3 Hybrid Approach

There are service selection approaches which are not based on pure optimization or
negotiation. In this section, we summarize two of the more important contributions.

Optimization + Configuration Approach

One attempt to proceed from a totally predetermined QoS profile to a more flexible
one is the work by Comuzzi and Pernici [15]. In their approach, rather than providing
a single value for each QoS attribute, the service provider publishes the set of values
that they can support for each QoS attribute. For example, a provider offering a
Traffic Monitoring Service can publish the offered quality for the refresh time (the
time interval between the updates of the traffic information) as {2 h, 1.5 h, 1 h, 0.5 h}.
This means that refresh time can be offered with any of the intervals of 0.5, 1, 1.5,
or 2 hours. Additionally, instead of assuming a single value for the price, they have
proposed a pricing model, including a set of pricing functions for the QoS attributes.
Each attribute’s pricing function determines how much it will cost for the service
requester to select a specific level of quality. The web service total price is calculated
as the sum of its constituting pricing functions.

The proposed service selection technique is in fact a local optimization where
the web service with the lowest price for the minimum quality profile is selected.
Minimum quality profile of a service consists of the lowest level of quality for each
QoS attribute which still satisfies service requester’s quality demand. When service
selection is completed, a subsequent agreement configuration step is performed.
During the configuration step, the difference between the price of the low quality
profile of the selected service and the service requester’s budget is used to improve
upon the offered service quality for requester.

This research does not assume a pre-determined QoS profile for neither the service
offer nor the service request. Instead, the service provider is able to publish the quality
profile in the form of different quality levels that he supports. Besides, a higher level
of flexibility is supported for the service price offering with the proposed pricing
model. Thus, service requester can receive a personally-configured service, based
on her preferences and constraints. However, the flexibility of the QoS profile in
negotiation-based approach does not exist here, as no negotiation actually takes place.
Rather, a configuration process tailors the service quality based on the requester’s
preferences and budget.

Optimization + Negotiation Approach

The research by Ardagna and Pernici [4] is another attempt to relax the assump-
tion about a fully pre-determined QoS profile to a more flexible one, by combining
optimization with negotiation. They start service selection as a MILP optimization

340 M. Moghaddam and J. G. Davis

Fig. 13.5 Different perspectives on applying negotiation for service selection during WSC

problem. But if the optimization process fails to find a feasible solution due to sever
QoS constraints for example, a negotiation process would initiate.

At the beginning of the negotiation process, first the execution plan that satisfies
the maximum number of constraints is identified. Then, negotiation starts with any
service provider that contributes to violating the global constraints of this execution
plan. After the negotiation is completed, the providers who have agreed to improve
their offered quality of service, in return for a higher price, will be added to the
optimization space. In other words, negotiation is only used to find new QoS attribute
values for web service invocations and it expands the optimization solution domain.
As the last step of service selection, optimization is repeated with the new solution
domain to find a feasible solution.

As mentioned in their paper, identifying the maximum number of constraints
that can be satisfied is an NP-hard problem. Thus, they have assumed the global con-
straints are limited which allows to find the maximum number of violated constraints
through an exhaustive search. Comparing their approach with pure negotiation-based
approaches, coordination is not required here (Fig. 13.5). In fact, provider selection
is performed through optimization, and not negotiation. However, in contrast to
optimization-based approaches, the providers have a chance to improve their offered
quality if their existing offers do not satisfy service requester’s requirement.

13.6 Comparison

We present a comparison of the optimization and automated negotiation-based
approaches to the service selection problem. The bases that we have used for the
comparison are the following: the key elements of the proposed solutions, the nature
of the QoS profiles in each approach, the reference disciplines that have influenced
the literature, the ways in which the methods from the reference disciplines have
been applied, the experimental strategies employed to validate the models, and some
of the better-known tools.

13 Service Selection in Web Service Composition 341

The key elements in the optimization approach are a range of optimization mod-
els which specify one or more objective functions, a set of constraints and decision
variables. For automated negotiation, the focus typically is on a set of negotiation
objects or issues, a negotiation protocol, a complex decision model required for
automated agents to conduct negotiation, and models for coordinating the negotiation
process that unfolds over time and for arriving at a final decision on the concrete web
services for the composite application.

The use of optimization techniques is generally restricted to situations in which
the QoS profiles are pre-determined and fixed. This is somewhat unrealistic in light of
the relatively dynamic environments that characterize the selection and composition
of web services. Furthermore, it is not clear whether the web service providers will
be willing to always create and publish static QoS profiles. The negotiation approach
is suited for situations in which, at the very least, the price is negotiable. In many
cases, price and at least a subset of the QoS attribute values are flexible which allow
for more complex negotiation scenarios.

Automated negotiation approaches for service selection have drawn extensively
on the more general agent-based negotiation literature for concepts, functions, and
frameworks. These have the potential to address more realistic scenarios in the con-
text of service selection. In particular, the relaxation of the assumption regarding static
QoS profiles is an improvement over the less flexible optimization-based approaches.
However, the dynamic aspects of negotiation approaches, including the need for a
complex decision model and a cordination model, complicate the problem of finding
globally optimum solutions. The hybrid models and proposals may offer potentially
useful research directions in this regard.

The disciplinary influences that inform the former arise in mathematical and
computing sciences whereas the negotiation approach draws on a broader, inter-
disciplinary body of knowledge. The contributing disciplines to negotiation
approaches include computer science and artificial intelligence, behavioral sciences,
economics and game theory, and mathematics, to name a few. Synthesizing robust
negotiation models poses significant challenges and the results to-date on their appli-
cations in web service selection are still in their infancy. Much work still remains to
be done on creating effective coordination models for automated negotiation to lead
to useful outcomes for composite service selection.

The experiments that have been reported using both optimization and negotiation-
based solutions cannot be described as convincing in that they typically incorporate
very few QoS attributes to be considered representative of real-world scenarios. While
the availability and maturity of available tools for optimization-based approach are
very good, the tool space for negotiation is sparse. Though a range of optimization
tools are widely available, scaling to larger problem size (in terms of number of tasks
involved in BP, number of candidate services for each task, number of QoS attributes
involved, number of global constraints etc), will often involve having to settle for
feasible solutions, if any.

In general, optimization based approaches tend be more applicable under rela-
tively static conditions in which the QoS profiles are fixed and the attribute values are
pre-determined. However, if there is flexibility in the attribute values and tradeoffs

342 M. Moghaddam and J. G. Davis

Table 13.1 The comparison of optimization- and negotiation-based approaches

Comparison bases Optimization-based Automated
negotiation-based

Basic elements of the
solution

Objective function, decision
variables, constraints

Negotiation object (issues),
negotiation protocol,
decision model,
coordination model

Web service QoS profile Pre-determined,
non-negotiable,
not-customizable

Two types of QoS attributes
in the profile: negotiable
(flexible value),
non-negotiable
(pre-determined, fixed
value)

Disciplinary influences Well-developed body of
knowledge available in
optimization area

Automated negotiation
approaches still in their
infancy; very complex,
and multi-disciplinary
research area

Application of the original
disciplines for
compposite service
selection

Optimization techniques
have been specifically
applied for composite
service selection,
considering the
particular constraints
and challenges involved
in the WSC domain

Need for more
inter-disciplinary
approaches drawing on
game theory, economics
(auctions), and
coordination theory.

Performed experiments Typically include four to
five QoS attributes in
the scenarios.

Fewer QoS attributes
included in the
experiments. Generally
not more than two, in
order to manage
complexity.

Facilitating tools (M)ILP :available solvers,
GA: well known
algorithms, easy to
implement

Automated negotiation
support tools lacking.
Domain-specific tools
exist that assist human
negotiators, e.g. Kasbah
[38], Negoisst [51],
CyberSettlea

a http://www.cybersettle.com/

are possible, a negotiation-based approach involving two or more agents engaging
in an iterative communication and decision making process can become feasible.
A summary of the comparison of optimization and negotiation-based approaches is
presented in Table 13.1.

http://www.cybersettle.com/

13 Service Selection in Web Service Composition 343

13.7 Conclusion

As the number of available web services with similar functionality but varying
QoS attribute values increases, the problem of discovering and selecting the best
web services for composing enterprise applications becomes more challenging. We
have presented a comprehensive review of some of the important optimization- and
negotiation-based approaches to the service selection problem in WSC. A brief
overview of two of the hybrid models is also provided. In conclusion, optimization-
based approaches assumption about a pre-determined profile is a hindrance in apply-
ing them for real service selection scenarios, considering the dynamic execution
environment of web services. While in negotiation-based approaches this assump-
tion is relaxed, the need for a complex decision model that guides the software agents
in conducting fully automated negotiation makes their application unrealistic at least
for the near future. There is a need for service selection techniques with more realistic
assumptions in their service specification, discovery and selection models to make
them relevant and useful for the emerging real world service selection scenarios.

References

1. Agarwal, V., Jalote, P.: From specification to adaptation: an integrated QoS-driven approach
for dynamic adaptation of web service compositions. In: IEEE International Conference on
Web Services (ICWS), pp. 275–282 (2010)

2. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service com-
position (2010). doi:10.1145/1772690.1772693

3. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J., Rofrano,
J., Tuecke, S., Xu, M., (2004c/ 2007), O.G.F.O.: Web services agreement specification (WS-
Agreement). Technical report (2007)

4. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans.
Softw. Eng. 33(6), 369–384 (2007)

5. Baryannis, G., Danylevych, O., Karastoyanova, D., Kritikos, K., Leitner, P., Rosenberg, F., Wet-
zstein, B.: Service Composition (2010). www.s-cube-network.eu/results/books/Bookv0.4.pdf

6. Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for QoS-aware
web service composition. In: International Conference on Web Services (ICWS ’06), pp. 72–
82 (2006)

7. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Orchard, D.: Web
Services Architecture (2004). http://www.w3.org/TR/ws-arch/

8. Brogi, A., Corfini, S.: Behaviour-aware discovery of Web service compositions. Int J Web Serv
Res 4(3), 1–25 (2007)

9. Brogi, A., Corfini, S., Popescu, R.: Semantics-based composition-oriented discovery of web
services. ACM Trans. Internet Technol. 8(4), 1–39 (2008). doi:10.1145/1391949.1391953

10. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware service com-
position based on genetic algorithms (2005). doi:http://doi.acm.org/10.1145/1068009.1068189

11. Carlson, S.E.: A general method for handling constraints in genetic algorithms. In: Proceedings
of the Joint Conference on Information Science, Citeseer, pp. 663–667 (1995)

12. Chhetri, M.B., Lin, J., Goh, S.K., Yan, J., Zhang, J.Y., Kowalczyk, R.: A coordinated architec-
ture for the agent-based service level agreement negotiation of Web service composition. In:
Australian Software Engineering Conference (ASWEC), p. 10 (2006)

http://dx.doi.org/10.1145/1772690.1772693
http://www.w3.org/TR/ws-arch/
http://dx.doi.org/10.1145/1391949.1391953
http://doi.acm.org/10.1145/1068009.1068189

344 M. Moghaddam and J. G. Davis

13. Comuzzi, M., Francalanci, C., Giacomazzi, P.: Trade-Off Based Negotiation of Traffic Condi-
tioning and Service Level Agreements in DiffServ Networks. In: Chiara, F., Paolo, G. (eds.)
International Conference on Advanced Information Networking and Applications, vol. 1, pp.
189–194. Taipei, Taiwan (2005)

14. Comuzzi, M., Pernici, B.: An architecture for flexible Web service QoS negotiation. In: IEEE
International Enterprise Computing Conference (EDOC), pp. 70–79 (2005)

15. Comuzzi, M., Pernici, B.: A framework for QoS-based web service contracting. ACM Trans.
Web 3(3), 1–52 (2009). doi:10.1145/1541822.1541825

16. Di Nitto, E., Di Penta, M., Gambi, A., Ripa, G., Villani, M.: Negotiation of Service Level Agree-
ments: An Architecture and a Search-Based Approach. In: Krämer, B., Lin, K.J., Narasimhan
P (eds.) Service-Oriented Computing c/ ICSOC 2007, vol. 4749, pp. 295–306. Springer, Berlin
(2007). doi:10.1007/978-3-540-74974-5_24

17. El Haddad, J., Manouvrier, M., Rukoz, M.: TQoS: transactional and QoS-aware selection
algorithm for automatic web service composition. IEEE Trans Serv Comput 3(1), 73–85 (2010)

18. Erl, T.: SOA: Principles of Service Design. Prentice Hall, USA (2008)
19. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents.

Int. Journal of, Robot Auton Syst 24(3–4), 159–182 (1998)
20. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in auto-

mated negotiations. Artif Intell 142(2), 205–237 (2002). doi:10.1016/s0004-3702(02)00290-
4

21. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling
with evolutionary algorithms. I. A unified formulation. IEEE Trans Syst Man Cybernetics Part
A: Systems and Humans 28(1), 26–37 (1998)

22. Foundation for Intelligent Physical Agents: FIPA contract net interaction protocol (2000).
http://www.fipa.org/specs/fipa00029/SC00029H.pdf

23. Georgakopoulos, D., Papazoglou, M.P.: Service-Oriented Computing. MIT Press, Cambridge
(2009)

24. Gimpel, H., Ludwig, H., Dan, A., Kearney, B.: PANDA: Specifying Policies for Automated
Negotiations of Service Contracts. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P.,
Yang J. (eds.) Service-Oriented Computing—ICSOC 2003, vol. 2910, pp. 287–302. Springer,
Berlin (2003). doi:10.1007/978-3-540-24593-3_20

25. Grimm, S.: Discovery, Identifying Relevant Services. In: Semantic Web Services: Concepts,
Technologies, and Applications. Springer, New York (2007)

26. Hao, Y., Zhang, Y., Cao, J.: Web services discovery and rank: an information retrieval approach.
Future Gener Comput Syst 26(8), 1053–1062 (2010). doi:10.1016/j.future.2010.04.012

27. Hilton, A.B.C., Culver, T.B.: Constraint handling for genetic algorithms in optimal remediation
design. J.Water Resour. Planning Manag 126(3), 128–137 (2000)

28. Hudert, S., Ludwig, H., Wirtz, G.: Negotiating SLAs-An approach for a generic negotia-
tion framework for WS-agreement. Journal Grid Comput 7(2), 225–246 (2009). doi:10.1007/
s10723-009-9118-3

29. Jaeger, M.C., Muehl, G.: QoS-based selection of services: the implementation of a genetic
algorithm. In: Communication in Distributed Systems (KiVS), 2007 ITG-GI Conference pp.
1–12 (2007)

30. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation for Web service composition
using workflow patterns. In: Eighth IEEE International Enterprise Distributed Object Comput-
ing Conference (EDOC), pp. 149–159 (2004)

31. Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: QoS aggregation in web service compositions.
In: IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE ’05),
pp. 181–185 (2005)

32. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M.J., Sierra, C.: Auto-
mated negotiation: prospects, methods and challenges. Group Decis Negot 10(2), 199–215
(2001)

33. Jiuxin, C., Yongsheng, L., Junzhou, L., Bo, M.: Efficient multi-QoS attributes negotiation for
service composition in dynamically changeable environments. In: IEEE International Confer-
ence on Systems Man and Cybernetics (SMC), pp. 3118–3124 (2010)

http://dx.doi.org/10.1145/1541822.1541825
http://dx.doi.org/10.1007/978-3-540-74974-5_24
http://dx.doi.org/10.1016/s0004-3702(02)00290-4
http://dx.doi.org/10.1016/s0004-3702(02)00290-4
http://www.fipa.org/specs/fipa00029/SC00029H.pdf
http://dx.doi.org/10.1007/978-3-540-24593-3_20
http://dx.doi.org/10.1016/j.future.2010.04.012
http://dx.doi.org/10.1007/s10723-009-9118-3
http://dx.doi.org/10.1007/s10723-009-9118-3

13 Service Selection in Web Service Composition 345

34. Keeney, R.L., Raïffa, H.: Decisions with multiple objectives: preferences and value tradeoffs.
Cambridge University Press, Cambridge (1993)

35. Kim, J.B., Segev, A., Patankar, A., Cho, M.G.: Web services and bpel4ws for dynamic ebusiness
negotiation processes. In: Conference on Web Services, ICWS, vol. 3, pp. 111–117. Citeseer
(2003)

36. Lecue, F., Mehandjiev, N.: Towards scalability of quality driven semantic web service compo-
sition. In: IEEE Int Conf Web Serv (ICWS), pp. 469–476 (2009)

37. Ma, Y., Zhang, C.: Quick convergence of genetic algorithm for QoS-driven web service selec-
tion. Comput Netw 52(5), 1093–1104 (2008). doi:10.1016/j.comnet.2007.12.003

38. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that buy and sell. Commun. ACM 42(3), 81-ff
(1999). doi:10.1145/295685.295716

39. McIlraith, S., Son, T.C.: Adapting golog for composition of semantic web services. In: Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning, pp. 482–496.
Citeseer (2002)

40. Medjahed, B., Atif, Y.: Context-based matching for Web service composition. Distrib Parallel
Databases 21(1), 5–37 (2007). doi:10.1007/s10619-006-7003-7

41. Menasce, D.A., Casalicchio, E., Dubey, V.: On optimal service selection in service oriented
architectures. Perform. Eval. 67(8), 659–675 (2010). doi:10.1016/j.peva.2009.07.001

42. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary computation
methods. In: Proceedings of the 4th Annual Conference on Evolutionary Programming, pp.
135–155. The MIT Press, Cambridge (1995)

43. Mueller, H.J.: Negotiation principles. In: O’Hare, G.M.P., Jennings, N.R. (eds.) Foundations
of Distributed Artificial Intelligence, pp. 211–229. Wiley, New York (1996)

44. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-Aware service composition in Dino.
In: Fifth European Conference on Web Services, pp. 3–12 (2007)

45. O’Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a service? Distrib Parallel Datab 12(2),
117–133 (2002). doi:10.1023/a:1016547000822

46. Parra-Hernandez, R., Dimopoulos, N.J.: A new heuristic for solving the multichoice multidi-
mensional Knapsack problem. IEEE Trans Syst Man Cybernetics A 35(5), 708–717 (2005)

47. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods (2005). doi:10.
1007/978-3-540-30581-1_5

48. Richter, J., Baruwal Chhetri, M., Kowalczyk, R., Bao Vo, Q.: Establishing composite SLAs
through concurrent QoS negotiation with surplus redistribution. Concurrency Comput Prac
Experience (2011). doi:10.1002/cpe.1727

49. Richter, J., Chhetri, M.B., Kowalczyk, R., Bao Quoc, V., Talib, M.A., Colman, A.: Utility
decomposition and surplus redistribution in composite SLA negotiation. In: IEEE International
Conference on Services Computing (SCC), pp. 627–630 (2010)

50. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An End-to-End approach
for QoS-Aware service composition. In: IEEE International Enterprise Distributed Object Com-
puting Conference (EDOC ’09), pp. 151–160 (2009)

51. Schoop, M., Jertila, A., List, T.: Negoisst: a negotiation support system for electronic business-
to-business negotiations in e-commerce. Data Knowl Eng 47(3), 371–401 (2003). doi:10.1016/
s0169-023x(03)00065-x

52. UDDI Consortium: UDDI executive white paper (2001). www.uddi.org/pubs/UDDI_
Executive_White_Paper.pdf.

53. Ul Haq, I., Paschke, A., Schikuta, E., Boley, H.: Rule-based validation of SLA choreographies.
J Supercomput, pp. 1–22 (2010). doi:10.1007/s11227-010-0492-1

54. Wang, P.: QoS-aware web services selection with intuitionistic fuzzy set under
consumerc/c/s vague perception. Expert Syst Appl 36(3, Part 1), 4460–4466 (2009).
doi:10.1016/j.eswa.2008.05.007

55. Wiesemann, W., Hochreiter, R., Kuhn, D.: A stochastic programming approach for QoS-aware
service composition. In: IEEE International Symposium on Cluster Computing and the Grid
(CCGRID ’08), pp. 226–233 (2008)

http://dx.doi.org/10.1016/j.comnet.2007.12.003
http://dx.doi.org/10.1007/s10619-006-7003-7
http://dx.doi.org/10.1016/j.peva.2009.07.001
http://dx.doi.org/10.1023/a:1016547000822
http://dx.doi.org/10.1007/978-3-540-30581-1_5
http://dx.doi.org/10.1007/978-3-540-30581-1_5
http://dx.doi.org/10.1016/s0169-023x(03)00065-x
http://dx.doi.org/10.1016/s0169-023x(03)00065-x
www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf.
www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf.

346 M. Moghaddam and J. G. Davis

56. Wilkes, J.: Utility Functions, Prices, and Negotiation. In: Buyya, R., Bubendorfer, K. (eds.)
Market-Oriented Grid and Utility Computing. Wiley, Hoboken (2009)

57. Yan, J., Kowalczyk, R., Lin, J., Chhetri, M.B., Goh, S.K., Zhang, J.: Autonomous service level
agreement negotiation for service composition provision. Future Gener Comput Syst 23(6),
748–759 (2007). doi:10.1016/j.future.2007.02.004

58. Yan, J., Zhang, J., Lin, J., Chhetri, M.B., Goh, S.K., Kowalczyk, R.: Towards autonomous
service level agreement negotiation for adaptive service composition. In: 10th International
Conference on Computer Supported Cooperative Work in Design (CSCWD ’06), pp. 1–6
(2006)

59. Yu, Q., Bouguettaya, A.: Multi-attribute optimization in service selection. World Wide Web
15(1), 1–31 (2012). doi:10.1007/s11280-011-0121-9

60. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with end-to-end
QoS constraints. ACM Trans. Web (TWEB) 1(1), 6 (2007)

61. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf Sci 3(2), 177–200 (1971). doi:10.
1016/s0020-0255(71)80005-1

62. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004).
doi:10.1109/tse.2004.11

63. Zulkernine, F., Martin, P., Craddock, C., Wilson, K.: A policy-based middleware for web
services SLA negotiation. In: IEEE International Conference on Web Services ICWS, pp.
1043–1050 (2009)

64. Zulkernine, F.H., Martin, P.: An adaptive and intelligent SLA negotiation system for web
services. IEEE Trans. Serv. Comput. 4(1), 31–43 (2011)

http://dx.doi.org/10.1016/j.future.2007.02.004
http://dx.doi.org/10.1007/s11280-011-0121-9
http://dx.doi.org/10.1016/s0020-0255(71)80005-1
http://dx.doi.org/10.1016/s0020-0255(71)80005-1
http://dx.doi.org/10.1109/tse.2004.11

Chapter 14
QoS Analysis in Service Oriented Computing

Huiyuan Zheng, Jian Yang and Weiliang Zhao

Abstract Quality of Service (QoS) is a major concern in the design and management
of a composite service. QoS analysis becomes increasingly challenging and impor-
tant when complex and mission critical applications are built upon services with
different QoS. Thus solid models and methods to support for QoS predication in
service composition become crucial and will lay a foundation for further analysis
of complexity and reliability in developing service oriented distributed applications.
In this chapter, we introduce a framework for QoS aggregation in service composi-
tion. The QoS of the component services can be single values, discrete values with
frequencies, or probability distributions. Experiments are carried out to demonstrate
the effectiveness and efficiency of the introduced method.

14.1 Introduction

Service-Oriented Computing (SOC) is a computing paradigm that supports the devel-
opment of applications in distributed and heterogeneous environments [15]. Tech-
niques of Web services create the opportunity for building composite services by
combining existing elementary or complex services (i.e. the component services)
from different enterprises and in turn offering them as high-level services or processes
(i.e. the composite services) [24]. With more Web services available, QoS is an impor-
tant selling and differentiating point of Web services [11]. QoS analysis becomes

H. Zheng (B) · J. Yang
Macquarie University, Sydney, NSW 2109, Australia
e-mail: huiyuan.zheng@mq.edu.au

J. Yang
e-mail: jian.yang@mq.edu.au

W. Zhao
University of Wollongong, Wollongong, NSW 2522, Australia
e-mail: wzhao@uow.edu.au

A. Bouguettaya et al. (eds.), Web Services Foundations, 347
DOI: 10.1007/978-1-4614-7518-7_14,
© Springer Science+Business Media New York 2014

348 H. Zheng et al.

increasingly challenging and important when complex and mission critical applica-
tions are built upon services with different QoS. Thus solid model and method support
for QoS prediction in service composition will lay a foundation for further analysis
of complexity and reliability in developing service oriented distributed applications.

When a QoS metric, such as cost, execution time, of a component service is rep-
resented by single or discrete values, aggregation approach is adopted to calculate
the QoS for the composite service [4, 8, 9]. When the QoS of component services
are represented by standard statistical distributions, simulation approach is applied
to compute the distribution of the composite service [5, 17]. The existing aggrega-
tion approaches can not handle QoS that are represented as probability distributions.
Since simulation approach uses the standard statistical distributions to replace the
real QoS distributions for component services, the calculation result can not be accu-
rate by nature. Besides, simulation approach is time consuming. It can only be used
in design time when the architecture and component Web services of a service com-
position are determined. However, the service environment can be highly dynamic
[7]. New services coming into market or old ones becoming unavailable happens.
Service-based processes should dynamically change to adapt to their environment.
Composition engines, such as SELF-SERV [2], are designed for the purpose of run
time composition. In these composition engines, QoS of the composite service needs
to be estimated in real-time. Simulation method of QoS estimation will become a
bottle-neck in real-time scenarios.

In order to overcome the problems mentioned above, we propose a systematic
approach to estimate the QoS for composite services. A composite service is built up
with four basic composition patterns, which are Sequential Pattern, Parallel Pattern,
Conditional Pattern, and Loop Pattern. By recursively replacing patterns with single
nodes with the same QoS as the composition patterns, a composite service will finally
be represented by one node and the QoS of this node is the QoS of the composite
service. Based on the QoS estimation method described above, it can be seen that
three techniques are needed to compute the QoS for a Web service composition:

1. Web service compositions and composition patterns modelling, which will be
discussed in Sect. 14.3;

2. A QoS calculation method for the four basic composition patterns, which will be
discussed in Sect. 14.4;

3. An algorithm to explore the model of a composite service, identify composition
patterns, calculate the QoS for the patterns, and get the QoS for the composite
service, which will be described in Sect. 14.5.

In the rest of this chapter we will use the term component QoS and composite QoS
to refer to QoS of component service and QoS of composite service respectively. We
will also use QoS and QoS metric interchangeably.

This chapter is organised as follows: Sect. 14.2 discusses the work related to
QoS estimation. In Sect. 14.3, the methods on modelling a Web service composition
and composition patterns are introduced. In Sect. 14.4, QoS calculation methods
for composition patterns are designed. In Sect. 14.5, an algorithm is developed to

14 QoS Analysis in Service Oriented Computing 349

implement QoS estimation for Web service composition. Unstructured or nested
composition patterns can be handled by the algorithm. In Sect. 14.6, experiments
are carried out and the correctness and performances of the proposed methods are
evaluated. Section 14.7 concludes the chapter.

14.2 Related Work

We will first review QoS modeling methods for Web services. Then, QoS monitor-
ing methods for Web services will be summarized. Through these QoS monitoring
methods, history QoS, i.e. QoS sample data, of a Web service can be obtained. The
QoS sample data is a source of generating probability distributions for Web services.
Finally, current QoS estimation methods for service compositions will be discussed.

14.2.1 QoS Models

Existing research in service QoS representation can be categorized as: single values
representation, multiple values representation, and standard statistical distributions.
In most work, each QoS metric is represented as a constant value [9, 25]. As the
QoS of a Web service changes with time and environment settings, single value-
modeled QoS does not reflect this variation. Standard statistical distributions are
adopted to model QoS to solve the problem [4, 17]. Cardoso et al. [4] mentions
that a QoS metric can be specified as a distribution function, such as Exponential,
Normal, Weibull, and Uniform. Rosario et al. [17] argues that the contracts between
Web service provider and client can be expressed as QoS probability distributions.
T location-scale distribution is adopted to fit the original monitored QoS data of
Web services. However, the reality is that an actual QoS probability distribution can
come in any shape, which may not be able to fit into any well known statistical
distributions. A more precise and general QoS modeling method has been proposed
in our previous work [27], which is basically a free shaped probability distribution.

14.2.2 QoS Monitoring

The QoS of a Web service can be obtained through QoS monitoring. There are three
strategies for QoS monitoring depending on where the measurement takes place:

(1) Client-side monitoring: the measurement of QoS is on the client side. QoS metric
that depends on user experience, such as response time, needs to be measured on
the client side. Mani and Nagarajan [12] measure response time through record-
ing the time difference between a client receiving and sending out a SOAP

350 H. Zheng et al.

message. Wickramage and Weerawarana [23] illustrate 15 factors that affect
response time. By testing the response time of SOAP messages with different
complexities and payloads, the performances of different Web service frame-
works are compared. Rosenberg et al. [18] develop a client side based method
to measure QoS metrics such as response time, latency, etc. A QoS monitoring
mechanism is introduced in [10] based on feedback provided by clients. The
clients run the monitoring code and periodically report feedback to a trusted
centre where the QoS for each provider is gathered and estimated.

(2) Server-side monitoring: the measurement of QoS is on the server side [1]. This
technique requires access to the actual Web service implementation, which is not
always possible in practice. Michlmayr et al. [13] measure QoS such as payloads
of a Web service through their server side based method.

(3) Third party based monitoring: the measurement of QoS is carried out by a third
party [28]. Third parties will periodically probes the service from different geo-
graphic locations under various network conditions and generate the QoS.

14.2.3 Composite QoS Aggregation

For single values represented QoS, aggregation method [4, 9] is proposed to calculate
the composite QoS. A composition can be regarded as being composed of different
composition patterns. Formulae to calculate QoS for these patterns are given. But
these formulae can only be applied to single values.

For multiple values represented QoS [8], the calculation method is pretty much
the same as it is for single values, except that the probability of each QoS value of
the composite service are taken into account.

For standard distribution represented QoS [4, 17], simulation approaches are
applied to estimate the composite QoS. A simulation needs to be run for thousands
of times before a QoS sample for the composite service can be obtained. Simulation
method is time consuming. An efficient method is necessary for estimating the QoS
probability distributions of composite services, which is the focus of this paper.

14.2.4 Service Modelling and Processing

Aggregation methods [4, 9] are based on the assumption that the process of a Web ser-
vice composition is well structured so that the composition patterns can be removed
out one after another. One node will be left in the process finally, the QoS of which
is the QoS of the Web service composition.

The QoS aggregation method [6] extends [4, 9] by handling unstructured patterns
including unstructured conditional patterns and some types of loops with single entry

14 QoS Analysis in Service Oriented Computing 351

and multiple exits. Dumas et al. [6] make use of the Refined Process Structure Tree
(RPST) [21] to handle the process of a Web service composition. Specifically, Single
Entry Single Exit (SESE) structures in a process can be decomposed recursively
from a graph at a complexity of O(|A|) (|A| is the number of arcs in a graph) and a
hierarchical tree structure (i.e., the RPST) is generated with the tree root representing
the process and the children representing SESE regions. By aggregating the QoS
recursively, the QoS of the root of the RPST can be computed, i.e., the QoS of a Web
service composition is obtained. Restricted by the fact that the nodes of the RPST
have to be SESE regions, the loop handled in [6] has to be in the form that it has
only one entry, each exit of the loop goes to a SESE region, and all the SESE regions
succeeding the exits of the loop join the same point, i.e., the single-entry-multi-exit
loop together with its succeeding exit SESE regions form an SESE region.

An activity graph is proposed in [14] to model the control flows and activities in
a WS-BPEL process. Nodes in an activity graph represent activities/scopes/handlers
of the WS-BPEL process and the root of the activity graph is the process scope. The
QoS is calculated from the leaf nodes to the root, the QoS of which is the QoS of
the WS-BPEL process. By doing so, unstructured conditional patterns are handled
but still leaving unstructured loop patterns an open problem. A directed solid arc in
an activity graph represents the target node being an activity/scope/handler within
the source node represented activity/scope/handler. A directed dashed arc represents
the target node is an activity/scope/handler succeeding the source node represented
activity/scope/handler.

The QoS analysis methods in [4, 6, 9, 14] are not able to compute the QoS and
probability for each execution path of the Web service composition.

The approach proposed in [29, 26] does not put any constraint on the forms
of the loop patterns and is able to handle general loop patterns including MEME
loops.

14.3 Composite Service Modelling

Workflow control patterns in real-life business scenarios have been identified in
[20]. We choose from [20] the basic patterns that are supported by business process
execution language for Web services (BPEL4WS) [3]. These basic patterns include
sequential pattern, parallel pattern, conditional pattern, and loop pattern. The process
of a Web service composition is assumed to be built upon these four patterns.

We use a service graph to represent the process of a Web service composition
to compute the QoS. This service graph can be generated from the commonly used
process model, such as BPEL and BPMN, with additional information, such as QoS
of the component services and transition probabilities. In the following subsections,
we will introduce how composite services and composition patterns can be specified
by the service graph.

352 H. Zheng et al.

14.3.1 Service Graph

In the graph, vertices represent component services and arcs denote the transitions
from one component service to another. Formally:

Definition 14.1 Service Graph: Let S be the set of component services, T be the set
of transitions in a composite service, P be the set of transition probabilities between
two services linked by a transition, and Q be the set of QoS values of component
services. A Service Graph is G = (V, A), where

• V = S are the vertices of the graph;
• A = T ⊆ V × �× V × P × Q are the arcs of the graph;
• � = {−, ||spli t , ||syn− join, ||sng− join

}
are connection methods in the graph with

– ‘−’ denoting a sequential connection;
– ‘||spli t ’ denoting a concurrent split connection;
– ‘||syn− join’ denoting a synchronised merge connection, i.e., the merge is trig-

gered by the termination of all the concurrent running branches;
– ‘||sng− join’ denoting a single merge connection, i.e., the merge is triggered by

the first finished branch and all the other branches that are still running will be
ignored.

• ∀a ∈ A, a = (vxΦvy, p) (where Φ ∈ � and p ∈ P) denotes that the arc from
vertex vx to vy is a Φ (sequential, concurrent split, synchronised merge, or single
merge connection) arc and the transition probability is p.
• ∀v ∈ V , q (∈ Q) denotes the QoS of vertex v; and if vx is not the end vertex of G,

there is
∑Ns

is=1 piS +
∑Np

i p=1 pi p = 1 where pis is the probability of a sequential
outgoing arc of v, Ns is the number of sequential outgoing arcs of v, pi p is the
probability of a Parallel Pattern splitting from v, and Np is the number of Parallel
Patterns splitting from v.

The method of deriving the transition probabilities in a composite service has
been introduced in [4, 19]. For simplicity, we will not depict the QoS information of
the service graph in figures.

14.3.2 Sequential Pattern

In a sequential pattern, one service runs after the completion of another one. Formally,

Definition 14.2 Sequential Pattern (see Fig. 14.1): In G = (V, A), G ′ = (V ′, A′)
is a Sequential Pattern where V ′ = {vx , vy |deg−(vy) = 1} and A′ = {(vx − vy, 1)}.
A Sequential Pattern composed of vertices vx and vy will be recorded as ‘vx − vy’ in
its replacing vertex with the symbol ‘−’ representing the sequential relation between
vertex vx and vy .

14 QoS Analysis in Service Oriented Computing 353

Fig. 14.1 Sequential pattern

1

1yp

nyp

1xp

mxp

Vx Vy

14.3.3 Parallel Pattern

In a composite service, if two or more services split from the same service, execute
simultaneously, and converge into a service in synchronisation (referred to as Parallel
Pattern with a synchronised merge) or the first finished branch triggers the following
service (referred to as Parallel Pattern with a single merge), then this kind of structure
is named as Parallel Pattern. Formally,

Definition 14.3 Parallel Pattern (see Fig. 14.2): In G = (V, A), G ′ = (V ′, A′)
is a Parallel Pattern with n concurrently executing vertices where V ′ = {vyi |i ∈
[1, n]} and A′ = {(vx ||spli t vyi , p)|i ∈ [1, n]}⋃{(vyi ||syn− joinvz, 1)|i ∈ [1, n]}
for Parallel Pattern with a synchronised merge or A′ = {(vx ||spli t vyi , p)|i ∈
[1, n]}⋃{(vyi ||sng− joinvz, 1)|i ∈ [1, n]} for Parallel Pattern with a single merge.
vx is the start point of the Parallel Pattern and vz is the end point of the Par-
allel Pattern (vx and vz are not included in the Parallel Pattern). A Parallel Pat-
tern composed of vertices vyi (i ∈ [1, n]) will be recorded in its replacing vertex
as ‘vy1 ||syn− join . . . ||syn− joinvyn ’ for synchronised merge or as ’vy1 ||sng− join . . .

||sng− joinvyn ’ for single merge with the symbols ‘||syn− join’ and ‘||sng− join’ repre-
senting the parallel relation among vertices vyi (i ∈ [1, n]).

It can be seen from Definition 14.3 that the probability values of the arcs
(vx ||spli t vyi , p) of the Parallel Pattern splitting from the start vertex vx are the same
which is p. p is the probability that the Parallel Pattern will be executed. If there is
only one Parallel Pattern at vertex vx , p = 1. If there are multiple Parallel Patterns
starting at vertex vx , we assume the execution probabilities for these patterns are
different so that different parallel patterns can be distinguished.

For a Parallel Pattern without a start and end points (this could happen in the flow
activities of WS-BPEL), i.e. there are only concurrent running Web services vyi in
the pattern, empty actions need to be added as the start and end points for the Parallel

Fig. 14.2 Parallel pattern
Vy

Vx Vz

1

Vyn
split

split p

p⎜⎜

⎜⎜ ⎜⎜syn-join ⎜⎜sng-joinor

⎜⎜syn-join ⎜⎜sng-joinor

354 H. Zheng et al.

Fig. 14.3 A structured condi-
tional pattern 1p

np

Vy1

Vy

Vx

n

Pattern. The QoS, such as cost and execution time, of the empty action is zero. The
QoS, such as reliability, of the empty action is one.

In Fig. 14.2, the Parallel Pattern is composed of vertices vy1 , . . . , vyn . The con-
nections between the start point vx and vyi is concurrent split ‘||spli t ’ and between vyi

and the end point vz is synchronised merge for symbol ‘||syn− join’ or single merge
for symbol ‘||sng− join’.

14.3.4 Structured Conditional Pattern

In structured conditional patterns, exclusive tasks split from the same task and merge
into another task.

Definition 14.4 Structured Conditional Pattern (see Fig. 14.3): In G = (V, A),
G ′ = (V ′, A′) is a Structured Conditional Pattern with n exclusively executing
paths (i.e. only one path can be run at a time) where V ′ = {vyi |i ∈ [1, n]} and
A′ = {(vx − vyi , pi)|i ∈ [1, n]}.

14.3.5 Loop Pattern

Definition 14.5 Loop Pattern (see Fig. 14.4): In G = (V, A), G ′ = (V ′, A′) is
an arbitrary Loop Pattern with n vertices in the Loop where V ′ = {vi |i ∈ [1, n]},
A′ = {(vi−vi modn+1, pi)|i ∈ [1, n]}, and P = {pi , pIik , pOi j |pi+∑mi

j=1 pOi j = 1}
(pi is the transition probability for an arc within the Loop Pattern, pIik is the transition

Fig. 14.4 Loop pattern

2p

11Op

1 1mOp

1p

ip

1ip −

1np −

21Ip
2 2l

Ip

11Ip

1 1l
Ip

np

21Op
2 2mOp

1nIp
nln

Ip
1iIp

ili
Ip

1iOp

imi
Op

1nOp
nmn

Op

v2

v1

vn

vi

14 QoS Analysis in Service Oriented Computing 355

probability for an incoming arc of the Loop Pattern, pOi j is the transition probability
for an outgoing arc of the Loop Pattern). A Loop Pattern composed of n vertices v1,
…, and vn starting at v1 will be recorded as ‘v1!v2 − · · · − vi − · · · − vn !v1’ in its
replacing vertex.

Definition 14.5 defines a general loop, i.e. a loop with any number of entry and
exit points.

Symbol ‘!’ helps distinguish the label of a Loop Pattern from the label of a Sequen-
tial Pattern. For example, ‘v1!v2− · · ·− vi − · · ·− vn !v1’ is for a Loop Pattern while
‘v1 − v2 − · · · − vi − · · · − vn’ is for a Sequential Pattern.

So far, four symbols have been introduced to record the relations between the
vertices in a pattern. They are: ‘−’, ‘||syn− join’, ‘||sng− join’, and ‘!’. Symbol ‘−’
has the lowest priority level. Symbols ‘||syn− join’, ‘||sng− join’, and ‘!’ have the same
priority level which are higher than ‘−’.

14.4 QoS Computation for Basic Composition Patterns

QoS aggregation formulae are developed in this section to calculate the QoS for
composition patterns.

14.4.1 Approach Overview and Underlying Assumptions

The following assumptions have been made:

(1) The QoS (i.e., the same QoS metric) of different component services are mutually
independent, i.e., the QoS of one service has no effect on the QoS of other
services.

(2) QoS control is out of the scope of this paper. We only consider the case that the
developer of a composite service makes use of the component services but has no
control of the QoS of the component services. The QoS probability distributions
of a component service are statistically estimated and have already taken into
account different QoS influencing factors such as workload.

(3) The transition probabilities from one service to another in a composite service
can either be provided according to the experience of the service developer at
design time or be statistically estimated based on the execution history of the
service. Detailed method of obtaining the transition probabilities in a composite
service can be found in [4].

(4) QoS are represented as histograms with the same start point and width of inter-
vals. There is more accurate method of getting the QoS probability distribution
based on a QoS sample, which is out of the scope of this paper and can be found
in [27].

356 H. Zheng et al.

14.4.2 QoS Probability Distribution Computation
for Composition Patterns

14.4.2.1 Classification of QoS Metrics

The QoS metrics are classified into five categories according to their characteristics
in different composition patterns, which are: additive, multiplicative, concave (i.e.
minimum), convex (i.e. maximum), and weighted additive. For example, the QoS
metric execution time reflects an additive behavior in a Sequential Pattern and convex
behavior in a Parallel Pattern with synchronized merge. In this paper, the discussion
of QoS analysis is based on these categories instead of individual QoS metrics, which
makes the QoS analysis approach more general and fits more QoS metrics.

Examples of additive, multiplicative, concave, and convex QoS metrics are cost,
reliability, execution time of a parallel pattern with a single merge, and execution
time of a parallel pattern with a synchronised merge, respectively.

It is worth mentioning that multiplicative QoS metrics such as availability, relia-
bility, and accessibility, are represented as a statistical percentage value (e.g., 90 %)
rather than a distribution. Therefore, only four types of QoS metrics: additive, con-
cave, convex, and weighted additive will be discussed for composite QoS calculation.

14.4.2.2 QoS Calculation Operations

We define four operations on QoS distributions, including QoSSum, QoSMin, QoS-
Max, and QoSWeightedSum.

• QoSSum (denoted as �): operates on the component QoS distributions by tak-
ing into consideration of the addition of their QoS values;
• QoSMin (denoted as �): operates on the component QoS distributions by taking

into consideration of the minimum of their QoS values;
• QoSMax (denoted as �): operates on the component QoS distributions by tak-

ing into consideration of the maximum of their QoS values;
• QoSWeightedSum (denoted as�): operates on the component QoS distributions by

taking into consideration of the addition of their QoS values with path probabilities
as weights. It is mainly used in the Conditional and Loop Patterns.

These operations and their relationships with composition patterns and QoS met-
rics are summarised in Table 14.1.

Formulae are developed for these operations. We introduce the following naming
conventions:

• q is a variable representing a QoS metric;
• f (q) denotes the density function of the probability distribution (PDF);
• F(q) denotes the cumulative distribution function (CDF); F(q) and f (q) has the

following cumulative relationship: F(q) = ∫ q
−∞ f (x)dx for continuous distribu-

tions or F(q) = ∑

qi<=q
f (qi) for discrete distributions.

14 QoS Analysis in Service Oriented Computing 357

Table 14.1 Operations for
QoS Aggregation

Pattern Operation QoS Metric

Sequential QoSSum Additive
QoSMin Concave

Parallel QoSSum Additive
QoSMin(single-merge) Concave
QoSMax(synchronised-merge) Convex

Conditional QoSWeightedSum Any
Loop QoSSum&QoSWeightedSum Additive

QoSMin&QoSWeightedSum Concave

It should be noted that although the discussion is based on distributions, the
developed formulae are also applied to single values. This is because single val-
ues can also be represented as distributions with the help of Dirac delta function.1

For example, if the cost of a Web service is M , then f (q) = δ(q − M). If the
cost of a Web service is N1 with a probability of p1 and N2 with a probability of
p2 (p1 + p2 = 1), then the distribution of this Web service can be expressed as
f (q) = p1δ(q − N1)+ p2δ(q − N2).

QoSSum Computing the PDF of the QoSSum of two component QoS distribu-
tions is a problem of deducing the PDF of the sum of independent variables, which
is the convolution of each of their density functions [16],

f (q) = f1(q)� f2(q) = (f1 ∗ f2)(q) =
∫ q

η=0
f1(η) f2(q − η)dη (14.1)

where f (q) is the PDF of the QoS of a composition pattern, f1(q) and f2(q) are the
PDFs of the component services.

Let us take a simple example of execution time for a Sequential Pattern. Let the
PDFs of the execution time of the two vertices be f1(t) and f2(t), respectively. The
probability for the execution time of the first one being τ (τ ∈ (0, t)) and the second
one being t − τ (t ∈ (0,+∞)) is f1(τ) f2(t − τ). Therefore, the probability for the
Sequential Pattern being finished at time t is the integral of f1(τ) f2(t−τ) over (0, t)
where τ is the variable, i.e., f (t) = ∫ t

τ=0 f1(τ) f2(t − τ)dτ . The result is the same
as what we get from Formula (14.1).

QoSMin The probability distribution of the QoSMin of n component QoS distri-
butions is the distribution of the minimum of n independent variables which can be
calculated as [16]:

F(q) = F1(q)� · · ·� Fi (q)� · · ·� Fn(q) = 1−
n∏

i=1

[1− Fi (q)] (14.2)

1 δ(x) is the Dirac delta function. δ(x) = +∞ when x = 0 and δ(x) = 0 when x 	= 0.

358 H. Zheng et al.

where F(q) is the CDF of the QoS of a composition pattern; n is the number of
component services within this pattern; and Fi (q) is the CDF of the QoS of the
component service i .

Then the PDF can be obtained by differentiating both sides of Formula (14.2)
with respect to q:

f (q) = f1(q)� · · ·� fi (q)� · · ·� fn(q) =
n∑

i=1

fi (q)
∏

j=1,··· ,n& j 	=i

[1− Fj (q)]
(14.3)

where f (q) is the PDF of a composition pattern; n is the number of component
services within this pattern; fi (q) is the PDF of the component service i ; and Fj (q)
is the CDF of the component service j .

Let us take a QoS metric, response time as an example. Assume that X and Y
are two Web services in a parallel pattern with a single merge. The probabilities for
them to be finished within time t are FX (t) and FY (t), respectively. The probability
for neither of them being able to finish within time t is (1 − FX (t))(1 − FY (t)),
therefore, the probability for either of them being able to finish within time t is
1 − (1 − FX (t))(1 − FY (t)). The fact that at least one of the Web services can be
finished within t means that t is the shorter execution time of the two Web services.

QoSMax The distribution of the QoSMax of n component QoS distributions is
the distribution of the maximum of n independent variables which can be calculated
as [16]:

F(q) = F1(q)� · · ·� Fi (q)� · · ·� Fn(q) =
n∏

i=1

Fi (q) (14.4)

where F(q) is the CDF of the QoS of a composition pattern; n is the number of
component services within this pattern; and Fi (q) is the CDF of the QoS of the
component service i .

The PDF can be obtained by differentiating both sides of Formula (14.4) with
respect to q:

f(q) = f1(q)� · · ·� fi (q)� · · ·� fn(q) =
n∑

i=1

fi (q)
∏

j=1,...,n& j 	=i

Fj (q) (14.5)

where f (q) is the PDF of a composition pattern; n is the number of component
services within this pattern; fi (q) is the PDF of the component service i ; and Fj (q)
is the CDF of the component service j .

Let us take execution time as an example. Assume that X and Y are two concur-
rently running Web services in a parallel pattern with a synchronised merge. The
probability for X and Y to be finished within time t is FX (t) and FY (t), respectively.
Therefore, the probability for both of them to be finished within time t is FX (t)FY (t).

14 QoS Analysis in Service Oriented Computing 359

The fact that both Web services can be finished within t means that t is the longer
execution time of the two Web services.

QoSWeightedSum The QoS distribution for the QoSWeightedSum of component
QoS distributions can be calculated as

f (q) = f1(q)� · · · � fi (q)� · · · � fn(q) =
n∑

i=1

pi fi (q) (14.6)

where f (q) is the PDF of a composition pattern; n is the number of component
services within this pattern; fi (q) is the PDF of the component service i ; and pi is
the execution probability for the component service i .

Here we can take execution time as an example. Assume X and Y are two Web
services within a Conditional Pattern with the execution probabilities being p1 and
p2, respectively. The probabilities for X and Y to be finished at time t are fX (t)
and fY (t), respectively. Therefore, the probability for the path of X to be finished
at time t is p1 fX (t) and for the path of Y to be finished at time t is p2 fY (t).
Therefore, the probability for the Conditional Pattern to be finished at time t is
f (t) = p1 fX (t)+ p2 fY (t).

14.4.3 QoS Probability Distribution Calculation for Composition
Patterns

So far, we have discussed the operations and formulae involved in computing com-
posite QoS distributions. In this section, we will explain how component QoS dis-
tributions are aggregated for different composition patterns. Here, QoS metrics cost
and time (execution time or response time) will be discussed as examples.

For a composition pattern with two component services, assume the probability
distribution of composite QoS is c(q) for cost, t (q) for time, and the probability
distributions of two component QoS are c1(q) and c2(q) for cost, t1(q) and t2(q) for
time. According to Table 14.1, there are:

• the QoS distribution of a Sequential Pattern is the QoSSum of the QoS distributions
of its component services, i.e.,

c(q) = c1(q)� c2(q) (14.7)

t (q) = t1(q)� t2(q) (14.8)

• the QoS distribution of a parallel pattern with a synchronised merge is the QoSMax
of the QoS distributions of its component services, i.e.,

c(q) = c1(q)� c2(q) (14.9)

t (q) = t1(q)� t2(q) (14.10)

360 H. Zheng et al.

• the QoS distribution of a parallel pattern with a single merge is the QoSMin of the
QoS distributions of its component services, i.e.,

c(q) = c1(q)� c2(q) (14.11)

t (q) = t1(q)� t2(q) (14.12)

• the QoS distribution of a Conditional Pattern is the QoSWeightedSum of the QoS
distributions of its component services, i.e.,

c(q) = c1(q)� c2(q) (14.13)

t (q) = t1(q)� t2(q) (14.14)

• in a Loop Pattern:
The QoS computation for Loop Patterns is more complicated than other patterns.
Next, we will discuss it in detail.

An arbitrary loop has been defined in Definition 14.5 and shown in Fig. 14.4. We
will study the QoS computation method for the Loop Pattern when vertex v1 is the
entry point. The QoS calculation method is the same when other vertices are the entry
points. We only use one incoming arc to indicate the entry point of the Loop and
ignore all the other incoming arcs. Doing this does not affect the QoS computation
result. This is because the QoS of a Loop Pattern is affected by the position of an
entry point, i.e., the point where a Loop starts, but not by the transition probabilities
of the incoming arcs of the entry point, i.e., pI , which indicates the possibility of
entering the Loop and has nothing to do with the repeating of the Loop (which is
determined by pi) or the jumping out of the Loop (which is determined by pO).
That is also to say, only the transition probabilities within a Loop (i.e., pi) and the
transition probabilities of jumping out of a Loop (i.e., pO) are needed to compute
the probability for each possible execution branch of a Loop Pattern.

Based on the discussion above, the Loop Pattern in Fig. 14.5 is QoS equivalent to
the Loop Pattern in Fig. 14.4 when vertex v1 is the entry point. Next, we will discuss
the QoS calculation method for it.

A Loop can be seen as a Conditional Pattern with infinite number of branches.
Figure 14.5 can be transformed into a structure shown in Fig. 14.6a. Each branch
pathli represents the Loop being executed for l times and left from the i th node

Fig. 14.5 Loop pattern with
v1 as the entry point

2p

11Op

1 1mOp

nmn
Op

1nOp

1p

ip

1ip −

1np −
np

21Op
2 2mOp

1iOp

imi
Op

Entry
point

v1

v2

vi

vn

14 QoS Analysis in Service Oriented Computing 361

: ()loopExecutionTimes l l Z∈

1p

ip

1i
p −

1np −

np1np −1pnpnp1np −1p

11Op

1 1mOp

nmn
Op

1iOp

imi
Op

1nOp

11
'Op

1 1
'

mOp

'
nmn

Op

1
'
iOp

'
imi

Op

1
'
nOp

V1 Vn V1 V1

Vi

Vn

V

V

n

,

(a) (b)

Fig. 14.6 Loop replacement a Equivalent Graph. b Equivalent Vertex

where l = 0, 1, . . . ,+∞ and i = 1, 2, . . . , n (n is the number of vertices in the
Loop).

The probability of each execution path pathli can be calculated based on the
transition probability information of each arc of the Loop:

ppathli =
(

n∏

k=1

pk

)l (
i−1∏

k=0

pk

)

(1− pi) (14.15)

where pk is the transition probability from vertex vk to vk+1 and pk = 1 when k = 0,
l is the number of times that the Loop is executed, n is the number of vertices in the
Loop, and i is the index of the vertex which the Loop is jumped out of.

For both cost and time related QoS metrics, operation QoSSum will be used to
calculate the the QoS distribution for each execution path since the vertices in each
execution path compose a Sequential Pattern. There is:

f pathli (q) = ((f1 ∗ . . . ∗ fn) ∗ . . . ∗ (f1 ∗ . . . ∗ fn)︸ ︷︷ ︸
l

∗ f1 ∗ . . . ∗ fi)(q) (14.16)

where fk(q) is the QoS distribution of vertex k, l is the number of times that the
Loop is executed, i is the index of the vertex where the Loop is jumped out of, and
n is the number of vertices in the Loop.

Then the QoS distribution of the Loop is the QoSWeightedSum of the QoS of
each execution path, i.e.,

floop(q) =
+∞∑

l=0

n∑

i=1

ppathli f pathli (q) (14.17)

362 H. Zheng et al.

where ppathli is calculated by Formula (14.15), f pathli (q) is calculated by Formula
(14.16).

To compute the QoS distribution for a Loop Pattern, we can set a threshold value,
T H , for ppathli

. When ppathli
< T H , the probability for the loop still being run

is quite small. Therefore, the execution path with a probability smaller than T H
can be ignored. It means that l = L times of looping is enough if L satisfies
(

n∏

k=1
pk

)L (
i−1∏

k=0
pk

)

(1− pi) < T H .

After the QoS distributions for a Loop Pattern are computed, the Loop Pattern
can be replaced by one vertex (see Fig. 14.6b). The outgoing arcs of the Loop Pattern
become the outgoing arcs for this vertex. The transition probability for each outgoing
arc has to be changed accordingly. The outgoing transition probabilities for the vertex
in Fig. 14.6b are calculated as:

p′Oi j
=
+∞∑

l=0

(
n∏

k=1

pk

)l (
i−1∏

k=0

pk

)

pOi j =

(
i−1∏

k=0
pk

)

pOi j

1−
n∏

k=1
pk

(14.18)

where j ∈ [1,mi] and pOi j is the transition probability for the j th outgoing arc of
vertex i in the Loop Pattern in Fig. 14.4 and p′Oi j

is the transition probability for the
corresponding outgoing arc of the vertex that replaces the Loop Pattern, and other
parameters have the same meaning as indicated in Formula (14.15).

14.5 Algorithm to Estimate QoS for Web Service Compositions

To calculate the QoS for a composite service, we need a mechanism which can
identify composition patterns in a composite service even if they are nested in each
other or there are unstructured conditional patterns. By recursively identifying the
composition patterns from a composite service, calculating the QoS for the patterns,
removing these patterns, and aggregating the QoS, the QoS of the composite service
can be obtained.

14.5.1 Algorithm Overview

The input of the algorithm is the Service Graph of a composite service as well as
the probabilistic QoS of the component services. The output is the QoS probability
distribution for the composite service. Because of the existence of unstructured pat-
terns, we will first transform the Service Graph from a cyclic graph into an acyclic

14 QoS Analysis in Service Oriented Computing 363

graph by removing Sequential, Parallel, and Loop Patterns. Then we will transform
the acyclic graph into a rooted tree structure.

One way to explore a graph is depth first search (DFS), the time complexity of
which is O(|V | + |E |) [22]. We extend the recursive DFS algorithm by a postorder
traversal method to handle nested composition patterns. ‘Postorder’ means that the
processing for a composition pattern does not start immediately after this pattern
is identified. Instead, it will be conducted after all the direct successors of the start
point2 of the pattern are fully explored. The pattern in the innermost will be identified
and processed first while the pattern in the outermost will be identified and processed
last. In this way, the problem of the existence of nested patterns is handled.

Three information are needed to identify composition patterns from a Service
Graph:

• the status of a vertex, i.e. UNVISITED for a vertex that has not been visited,
VISITING for a vertex that is being visited, or VISITED for a vertex that has
been visited (i.e. all its successors have been visited);
• the connection way of an arc (see Definition 14.1), i.e. ‘-’ for sequential, ‘||spli t ’ for

concurrent split, ‘||syn− join’ for synchronized merge, and ‘||sng− join’ for single
merge;
• the transition probability of an arc.

Specifically: let vertex nxtV be the direct successor of vertex curr V , then nxtV
belongs to a

• Sequential Pattern: if there is only one outgoing arc for curr V and one incoming
arc for nxtV (i.e. the outdegree of curr V is 1 and the indegree of nxtV is 1), then
curr V and nxtV compose a Sequential Pattern.
• Parallel Pattern: if the arc from curr V to nxtV is ‘||spli t ’, then nxtV is a vertex in

one branch of a Parallel Pattern; if the arc from curr V to nxtV is ‘||syn− join’ or
‘||sng− join’, then nxtV is the vertex to which all the branches of a Parallel Pattern
join.
• Conditional Pattern: if the arc from curr V to nxtV is ‘-’ and the probability is

not 1, then nxtV is a vertex in one branch of a Conditional Pattern.
• Join Point for Two Paths: if the status of nxtV is visited, then nxtV is the join

point for two paths of a graph, i.e. two paths merge to the same path at nxtV .
• Loop Pattern: if the status of nxtV is visiting, then nxtV is the start point of

a Loop Pattern and curr V is its predecessor in the loop.

14.5.2 Algorithm for the Process of QoS Aggregation

Algorithm 5 gives the solution to calculate the QoS for composite services with arbi-
trarily combined patterns. The input Service Graph is initialized through function

2 The start point of a Sequential Pattern is the foremost vertex; of a Parallel Pattern is the vertex
from which all the branches split; of a Loop Pattern is the entry point of the loop.

364 H. Zheng et al.

Algorithm 1: Algorithm of the Calculation Approach for QoS Analysis
1 headT = Root of Tree T;
2 headV = Head of Graph G;
3 IniGraph(G); % initialize cyclic graph G;
4 DfsVstGrph(headV); % G is turned into acyclic;
5 IniGraph(G); % initialize acyclic graph G;
6 QoS = DfsVstAcyclcGrph(headV, headT); % calculate the QoS for the composite service;
7 function IniGraph(Grph G)

foreach vertex currV in Graph G do
vertex_status[currV] = UNVISITED ;
loop[currV] = FALSE;

function DfsVstGrph(GrphNd currV)
8 vertex_status[currV] = VISITING ;
9 EXPLORE1:

10 foreach unvisited outgoing arc of currV do
Visit the tail vertex of the arc (i.e. nxtV);

11 if vertex_status[nxtV] == UNVISITED then
DfsVstGrph(nxtV);

12 else if vertex_status[nxtV] == VISITING then
loop(nxtV) = TRUE;

13 if edge(currV, nxtV) == ’||spli t ’ AND edge(nxtV, successor[nxtV]) == ’||syn− join ’ then

QoS calculation for Parallel Pattern with synchronized merge according to Formulas 14.9 and 14.10;
Replace pattern by one vertex;

14 if edge(currV, nxtV) == ’||spli t ’ AND edge(nxtV, successor[nxtV]) == ’||sng− join ’ then

QoS calculation for Parallel Pattern with single merge according to Formulas 14.11 and 14.12;
Replace pattern by one vertex;

15 if loop(currV) == true then
QoS calculation for Loop Pattern according to Formulas 17 and 18;
Replace pattern by one vertex;

16 while outdegree(currV) == 1 AND indegree(nxtV) == 1 do
QoS calculation for Sequential Pattern according to Formulas 14.7 and 14.8;
Replace pattern by one vertex (i.e. newV);
Set currV as newV;
Set nxtV as sucessor[currV];

17 vertex_status[currV] = VISITED ;
18 if indegree(currV) != 0 then

Visit the most recently explored predecessor (i.e. preV) of currV;
Set currV as preV;
GOTO EXPLORE1;

function DfsVstAcyclcGrph(GrphNd currV, TrNd fatherT)
19 sonT = Generate a tree node for currV;
20 Add sonT to tree T as the child of fatherT;
21 EXPLORE2:
22 foreach unvisited outgoing arc of currV do

Visit the tail vertex of the arc (i.e. nxtV);
23 if vertex_status[nxtV] == UNVISITED then

DfsVstAcyclcGrph(nxtV, sonT);
24 else if vertex_status[nxtV] == VISITED then

Copy the subtree rooted at the tree node of nxtV as the subtree of sonT;
Obtain one branch of the tree and calculate its QoS and probability;

25 if outdegree(currV) == 0 then
Obtain one branch of the tree and calculate its QoS and probability;

26 vertex_status[currV] = VISITED ;
27 if indegree(currV) ! = 0 then

Visit the most recently explored predecessor (i.e. preV) of currV;
Set currV as preV;
GOTO EXPLORE2;

28 calculate and return the QoS for the rooted tree;

IniGraph (line 16.3). Then, function DfsVstGrph removes all the Sequen-
tial, Parallel, and Loop Patterns from the input Service Graph and turns the Ser-
vice Graph into an acyclic graph with only conditional structures (line 16.4). Next,
the acyclic graph is initialized by function IniGraph (line 5). Finally, function
DfsVstAcyclcGrph transforms this acyclic graph into a rooted tree and calcu-
lates the QoS (line 6). Function IniGraph initializes a graph by setting the statuses
of all vertices toUNVISITED and the loop indicator at each vertex toFALSE (line 7).

14 QoS Analysis in Service Oriented Computing 365

Function DfsVstGrph performs a recursive depth-first search starting at curr V
and transforms a Service Graph into an acyclic graph. First, the status of curr V will
be marked as VISITING (line 8). If curr V still has any outgoing arc that has
never been explored before, the tail vertex (i.e. nxtV) of the outgoing arc will be
explored (lines 10–12). If the status of nxtV is UNVISITED, a depth-first search
starting at nxtV will be performed by function DfsVstGrph (line 11); else if the
status of nxtV is VISITING, the status of the loop indicator at nxtV is changed
to TRUE (line 12), which means nxtV is the start point of a Loop Pattern. After
all the successors of curr V have been visited, the processing of the composition
patterns starting at curr V begins (lines 13–16). First, the QoS of any Parallel Pat-
tern or Loop Pattern starting at curr V will be calculated and the pattern will be
replaced by a single vertex with the same QoS (lines 13–15). Then, any direct suc-
cessor of curr V (i.e. nxtV) composes a Sequential Pattern with curr V will be
removed until there is no Sequential Pattern left at curr V (line 16). After pattern
processing, the status of curr V is changed to VISITED (line 17). If curr V has
incoming arc, the algorithm will backtrack to the most recently explored predeces-
sor of curr V (i.e. preV), set curr V as preV , and jump to EXPLORE1 (at line 9) to
explore other successors of curr V (line 18). The exploration of the Service Graph
ends if curr V has no incoming arc, i.e. curr V is the start vertex of the Service
Graph.

Function DfsVstAcyclcGrph performs recursive depth-first search starting
at vertex curr V of an acyclic graph and generates a tree rooted at f atherT . To
distinguish nodes in a graph with nodes in a tree, node is referred as vertex in a graph
and is stilled called node in a tree. First, a child node of f atherT , i.e. sonT , will be
generated for curr V (lines 19–20). If curr V still has any outgoing arc that has never
been explored before, the tail vertex (i.e. nxtV) of the outgoing arc will be explored
(lines 22–24). If the status of nxtV is UNVISITED, a depth-first search starting at
nxtV will be performed by function DfsVstAcyclicGrph (line 23); else if the
status of nxtV is VISITED, the following will be done: find the tree node for nxtV ;
create the copy of the subtree rooted at this tree node; add the copy to node sonT as
the subtree of sonT ; find the leaf nodes of the subtree of sonT , i.e. nodes that have
no child; obtain one branch of the rooted tree by backtracking from a leaf node to the
root; calculate the QoS and probability for each branch (line 24). If curr V is the last
vertex of a graph (i.e. outdegree of curr V is 1), one branch of the tree can be obtained
by backtracking from sonT (which is the tree node for curr V) to the root of the tree
and the QoS and probability of the branch will be calculated (line 25). When all the
successors of curr V have been visited, the status of curr V is changed to VISITED
(line 26). If curr V is not the start vertex of a graph (i.e. indegree of curr V is not
0), the algorithm will backtrack to the most recently explored predecessor of curr V
(i.e. preV), set curr V as preV , and jump to EXPLORE2 (at line 21) to explore
other successors of curr V (line 27). If curr V is the start vertex, the QoS of the
rooted tree, i.e. the QoS of the composite service, will be calculated and returned
(line 28).

366 H. Zheng et al.

14.6 Experiments

In this section, experiments have been done to compare the performance of the
proposed QoS calculation method (referred to as calculation method) with simulation
method. In a simulation method, the execution of a composite service is simulated
by exploring the Service Graph of the composite service. One single value for per
QoS metric of the composite service is obtained for each run of a simulation by
aggregating the QoS of each vertex that has been visited during the exploration of
the Service Graph. After running the simulation for a number of times, a QoS sample
(containing all the simulated QoS) for the composite service can be obtained. This
QoS sample can be used to generate the QoS probability distribution for a composite
service.

14.6.1 Validation

First, we shall test the accuracy of the calculation method and the simulation method
mentioned earlier.

A composite service and its component services (see Fig. 14.7) are deployed.
Experiments have been done to monitor the QoS of the deployed composite service.
The monitored QoS are referred to as experimental result. By comparing the com-
posite QoS obtained by the simulation method and the calculation method (referred
to as simulation result and calculation result, respectively) with experimental result,
the accuracy of the simulation method and the calculation method can be verified.
We only consider the QoS metric execution time in the experiments.

The seven component Web services in Fig. 14.7 are developed and deployed on
Apache Tomcat 5.5 server. Their execution time distributions follow the distributions
in Fig. 14.8.3 The BPEL process executing the composite service in Fig. 14.7 is
developed and deployed on an Active BPEL engine. The detailed information on
service deployment is as follows:

(1) The simulation of the QoS probability distribution for a component Web ser-
vice: An array containing 10,000 values whose distribution conforms to the

Fig. 14.7 An example of a
service graph

3 These distributions are generated manually.

14 QoS Analysis in Service Oriented Computing 367

(a)

(e) (f) (g)

(b) (c) (d)

Fig. 14.8 Probability distributions of execution time a WS1 b WS2 c WS3 d WS4 e WS5 f WS6
g WS7

0 1 2 3 4 5 6 7
x 10

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

execution time

de
ns

ity

Histogram of Experimental Result
Plot of Simulation Result

0 1 2 3 4 5 6 7

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

execution time

de
ns

ity

Histogram of Experimental Result
Plot of Calculation Result

(b)(a)

Fig. 14.9 Results of validation a Experimental and Simulation Results b Experimental and Calcu-
lation Results

probability distribution of the Web service is generated and stored in a file. For
each execution, the Web service will randomly read one value from the file and
suspend for the indicated amount of time before it sends out a response.

(2) The simulation of the transition probabilities within a composite service: A ran-
dom number generator conforming to a uniform distribution is used. At compo-
nent service 1 Place Order, a random number is generated and compared with
0.8. If it is smaller than 0.8, the output of service 1 is “Credit Card”; other-
wise, the output is “Cash”. At service 3 Check Credit, if the generated number
is smaller than 0.7, the output is “Approved”; otherwise, it is “Disapproved”.

368 H. Zheng et al.

(3) Experimental result: The developed composite service is invoked for 10,000
times. For each invocation, an execution time is recorded. A histogram, shown
in Fig. 14.9, is generated based on the recorded data sample.

(4) Simulation result: Simulation result is in the form of a sample. To distinguish
the simulation result from the histogram of experimental result, the simulated
QoS are shown as dot-dashed curves in Fig. 14.9a, i.e. we plot the probability
densities at different execution time in Fig. 14.9a instead of histogram bars.

(5) Calculation result: The calculation result is shown as dashed curves in Fig. 14.9b
by plotting the probability densities at different execution time.

It can be seen from Fig. 14.9 that both the simulation result and the calculation
result fit the experimental result very well. The accuracy of both methods has been
verified.

14.6.2 Efficiency

Next, the efficiency of using calculation method and simulation method will be
compared.

We perform tests on Mac OS X 10.6.6 with 1.86 GHz Intel Core 2 Duo processor
and 2 GB memory. Both the proposed QoS calculation and simulation methods are
implemented using C/C++ language. We test the time spent on QoS estimation by
calculation and simulation methods for Sequential Patterns, Parallel Patterns, Condi-
tional Patterns, and Loop Patterns, respectively. The results are plotted by Matlab and
shown in Figs. 14.10, 14.11, 14.12, and 14.13, respectively. The x-axis represents the
number of component services in a composite service and the y-axis represents the
time (in μs) spent on estimating the QoS distribution for a composite service. As
the time spent on calculation method is significantly shorter than simulation method,

10 110 210 310 410 510 610 710 810 910 1010
103

104

105

106

107

number of component services

lo
g

tim
e(

μs
)

times of simulation=5000
times of simulation=10000
times of simulation=15000
times of simulation=20000
distribution size in calculation=1024
distribution size in calculation=512

Fig. 14.10 Performance comparison—sequential pattern

14 QoS Analysis in Service Oriented Computing 369

10 110 210 310 410 510 610 710 810 910 1010
10

3

10
4

10
5

10
6

number of component services

lo
g

tim
e(

μs
)

times of simulation=5000
times of simulation=10000
times of simulation=15000
times of simulation=20000
distribution size in calculation=1024
distribution size in calculation=512

Fig. 14.11 Performance comparison—parallel pattern

10 110 210 310 410 510 610 710 810 910 1010
10

2

10
3

10
4

10
5

number of component services

lo
g

tim
e(

μ s
)

times of simulation=5000
times of simulation=10000
times of simulation=15000
times of simulation=20000
distribution size in calculation=1024
distribution size in calculation=512

Fig. 14.12 Performance comparison—conditional pattern

10 110 210 310 410 510 610 710 810 910 1010
10

3

10
4

10
5

10
6

10
7

10
8

number of component services

lo
g

tim
e(

μs
)

times of simulation=5000
times of simulation=10000
times of simulation=15000
times of simulation=20000
distribution size in calculation=1024
distribution size in calculation=512

Fig. 14.13 Performance comparison—loop pattern

370 H. Zheng et al.

we present the computation time of different methods in logarithmic scale. In each
of Figs. 14.10, 14.11, 14.12, and 14.13, there are four dashed lines and two solid
lines. The four dashed lines represent the time spent on simulation method when
the simulation is run for 5,000, 10,000, 15,000, and 20,000 times, respectively. The
two solid lines represent the time spent on calculation method when the probabil-
ity distribution of each component QoS has 512 and 1024 bins, respectively. One
thing is to be noted: the time spent by simulation method changes irregularly for any
Loop Patterns. This is because in the experiment, the transition probabilities in the
Loop Pattern, the number of component services that can jump out of the Loop Pat-
tern, the component services that jump out of the Loop Pattern, and the jumping out
probabilities all change randomly when the number of component services changes.

Based on the performance comparison between calculation and simulation meth-
ods, it can be seen that the proposed QoS calculation method is far more efficient
and outperforms simulation method in terms of computing QoS for all the basic
composition patterns.

14.6.3 Scalability

We perform tests on Mac OS X 10.6.6 with1.86 GHz Intel Core 2 Duo processor
and 2 GB memory. The algorithm of QoS calculation is implemented using C/C++
language and the result is plotted by Matlab. We first test the computation time
spent on QoS calculation with the number of component services in a composite
service varying from 0 to 10000 in increments of 1000 and the number of bins for

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5 x 10
6

number of component services in a composite service

tim
e(

μs
)

distribution size=2048
distribution size=1024
distribution size=512
distribution size=256
distribution size=128

Fig. 14.14 Test of scalability

14 QoS Analysis in Service Oriented Computing 371

the probability distribution of each component service (i.e. distribution size) ranging
from 128 to 2048 with a common ratio of 2. The result is shown in Fig. 14.14. In
Fig. 14.14, there are five lines. For each line, the distribution size is a constant and
the number of component services is from 0 to 10000 in increments of 1000. It can
be seen that when the distribution size is fixed, computation time increases linearly
with the number of component services. Moreover, computation time increases with
distribution size when the number of component services is fixed.

It can also be seen from the experimental results that the performance of the
proposed QoS calculation method is competent for real-time application since the
computation time is less than 0.5 s for a composite service with 10000 component
services when the distribution size is 512 or less. In fact, having 512 bins per com-
ponent QoS distribution is more than enough to evaluate a composite QoS. If we use
simulation methods for the same task (simulating QoS for a composite service with
10000 component services and each component QoS with 512 bins), it will take at
least 51210000 times for the simulation method to get a result at the same precision
as the calculation method.

14.7 Conclusions and Future Work

In this chapter, we present a general and systematic QoS analysis framework that
is able to provide comprehensive QoS information for a composite service with the
existence of complex composition structures. The problems dealt with in the existing
methods for QoS aggregation become special cases in the proposed method. Most
importantly, the proposed approach is much more efficient compared with existing
approaches on estimating QoS based on probabilistic QoS. QoS solution is provided
for loop patterns with any number of entry and exit points which has not been touched
by existing work in terms of QoS analysis.

The approach introduced in this chapter is based on the following assumptions:

• The QoS of component services and the transition probabilities need to be given
as input. This can be derived either from past executions or from domain expert
knowledge.
• A composite service is built up upon four basic composition patterns: sequential,

parallel, conditional, and loop patterns;
• There are some unstructured patterns that cannot be covered by the proposed

method, such as loops containing AND-logic;
• The QoS of the component services are mutually independent and out of the control

the composite service;
• The service graph that models the service composition has a single start and a

single end node.

Future work needs to be done to relax or remove the restrictive assumptions.

372 H. Zheng et al.

References

1. Artaiam, N., Senivongse, T.: Enhancing service-side qos monitoring for web services. In: ACIS,
pp. 765–770 (2008)

2. Benatallah, B., Sheng, Q.Z., Dumas, M.: The self-serv environment for web services compo-
sition. IEEE Internet Comput 7(1), 40–48 (2003)

3. Business process execution language for web services version 1.1. Technical Report, IBM,
BEA Systems, Microsoft, SAP AG, Siebel Systems (2003)

4. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Quality of service for workflows and web service
processes. J Web Semant 1, 281–308 (2004)

5. Chandrasekaran, S., Silver, G., Miller, J.A., Cardoso, J., Sheth, A.P.: Web service technologies
and their synergy with simulation. In: Proceedings of the 2002 Winter Simulation Conference
(WSC ’02), pp. 606–615. San Diego, California, USA (2002)

6. Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate quality of
service computation for composite services. In: ICSOC, pp. 213–227 (2010)

7. Dustdar, S., Schreiner, W.: A survey on web services composition. Int J Web Grid Serv 1(1),
1–30 (2005)

8. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and
estimating the qos of web-services-based workflows. Inf Sci 177, 5484–5503 (2007)

9. Jaeger, M., Rojec-Goldmann, G., Muhl, G.: Qos aggregation for web service composition
using workflow patterns. In: Proceedings of the 8th International Enterprise Distributed Object
Computing Conference (EDOC ’04), pp. 149–159. Monterey, California, USA (2004)

10. Jurca, R., Faltings, B., Binder, W.: Reliable qos monitoring based on client feedback. In:
Proceedings of the 16th International World Wide Web Conference (WWW ’07), pp. 1003–
1012. Banff, Alberta, Canada (2007)

11. Lee, K., Jeon, J., Lee, W., Jeong, S.H., Park, S.W.: Qos for web services: requirements and
possible approaches. Technical report, W3C Working, Group (2003)

12. Mani, A., Nagarajan, A.: Understanding Quality of Service for Web Services. IBM Software
labs, India. www.ibm.com/developerworks/library/ws-quality.html

13. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive qos monitoring of web
services and event-based sla violation detection. In: Proceedings of the 4th International Work-
shop on Middleware for Service Oriented Computing, pp. 1–6. Urbana Champaign, Illinois,
USA (2009)

14. Mukherjee, D., Jalote, P., Nanda, M.G.: Determining qos of ws-bpel compositions. In: ICSOC
2008, pp. 378–393 (2008)

15. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a
research roadmap. Int J Coop Inf Syst 17(2), 223–255 (2008)

16. Papoulis, A.: Probability, random variables, and stochastic processes. McGraw-Hill, New York
(1965)

17. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic qos and soft contracts for
transaction-based web services orchestrations. IEEE Trans. Serv. Comput. 1(4), 187–200
(2008)

18. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and dependability attributes
ofweb services. In: Proceedings of the IEEE International Conference on Web Services, pp.
205–212. IEEE Computer Society, Washington, DC, USA (2006). Doi:10.1109/ICWS.2006.
39. http://portal.acm.org/citation.cfm?id=1172963.1173044

19. Sheth, A., Sheth, A., Cardoso, J., Miller, J., Kochut, K.: Qos for service-oriented middleware.
In: Proceedings of the 6th World Multi-Conference on Systemics, Cybernetics and Informatics
(WMSCI 2002). Orlando, Florida, USA (2002)

20. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distrib Parallel Databases 14(1), 5–51 (2003)

21. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: BPM, pp. 100–115
(2008)

http://dx.doi.org/10.1109/ICWS.2006.39.
http://dx.doi.org/10.1109/ICWS.2006.39.
http://portal.acm.org/citation.cfm?id=1172963.1173044

14 QoS Analysis in Service Oriented Computing 373

22. Weiss, M.A.: Data structures and algorithm analysis in C, 2nd edn. Addison-Wesley Longman
Publishing Co., Inc., USA (1997)

23. Wickramage, N., Weerawarana, S.: A benchmark for web service frameworks. In: Proceedings
of the 2005 IEEE International Conference on Services Computing (SCC ’05), pp. 233–242.
Orlando, Florida, USA (2005)

24. Yang, J., Papazoglou, M.P.: Service components for managing the life-cycle of service com-
positions. J. Inf. Syst. 29, 97–125 (2004)

25. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middle-
ware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)

26. Zheng, H., Zhao, W., Yang, J., Bouguettaya, A.: Qos analysis for web service composition. In:
Proceedings of the 2009 IEEE International Conference on Services Computing (SCC ’09),
pp. 235–242. Bangalore, India (2009)

27. Zheng, H., Yang, J., Zhao, W.: Qos probability distribution estimation for web services and
service compositions. In: Proceedings of the 2010 IEEE International Conference on Service-
Oriented Computing and Applications (SOCA ’10), pp. 1–8. Perth, Australia (2010)

28. Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed qos evaluation for real-world web services. In:
Proceedings of the 2010 IEEE International Conference on Web Services (ICWS ’10), pp.
83–90. Miami, Florida, USA (2010)

29. Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: Qos analysis for web service compositions
based on probabilistic qos. In: The 9th International Conference on Service-Oriented Comput-
ing (ICSOC ’11), pp. 47–61. Paphos, Cyprus (2011)

Chapter 15
QoS-based Service Selection

Fuyuki Ishikawa

Abstract As web services have become widespread, it is essential to ensure not
only a service can provide the expected function (e.g., output) but also it can provide
it in a “good” way. QoS (Quality of Service) refers to such non-functional aspects
of services, including cost, response time, availability, reputation, and so on. QoS
is significant for providers to differentiate their services from other functionally-
similar services. On the other hand, it is necessary for clients, composers or brokers
to assess services in terms of QoS and examine which services they should use. It
is often necessary to select multiple services to compose a meaningful workflow or
composite service, while balancing different QoS criteria according to preferences
and constraints. This chapter introduces foundations for QoS modeling and QoS-
based service selection. The foundations have been commonly discussed in recent
research literatures, and can work as a basis to deal with specific foundations and to
investigate further complex situations and attractive algorithms.

15.1 Introduction

Interoperation of web services has been facilitated through development of (de facto)
standard specifications as well as libraries and frameworks to implement the speci-
fications. Thus it is quite common and somewhat easy to run software systems that
access functionality provided by remote services. Functionality can be explained in
terms of IOPEs: obtain designated Output and Effect for given Input and Precondi-
tion.

On the other hand, functionality is not the only concern in software systems. For
example, it may matter how quickly we can obtain the output after we make a request.
Quality is the term that comprehensively explains such concerns other than IOPEs,

F. Ishikawa (B)

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: f-ishikawa@nii.ac.jp

A. Bouguettaya et al. (eds.), Web Services Foundations, 375
DOI: 10.1007/978-1-4614-7518-7_15,
© Springer Science+Business Media New York 2014

376 F. Ishikawa

involving performance, reliability, and so on. In traditional software engineering,
requirements about quality aspects are also called as Non-Functional Requirements
(NFR) in contrast with Functional Requirements.

The term QoS (Quality of Service) has been used to refer to quality aspects of
web services, given specific characteristics of web services. Web services are usually
considered as “black boxes,” whose implementation and operation are encapsulated.
It is because they are under control of other parties, or because even in a single party
it is desirable to avoid complexity in understanding and managing the whole details
of large complex systems. Due to this characteristic, there have been typical criteria
such as availability and price. In addition, the characteristic also affects how QoS is
analyzed for what kinds of tasks. Specifically, it is not possible to freely determine
QoS of a web service provided by another party to meet quality (non-functional)
requirements. Instead, it is possible only to select an “adequate” or “best” service
from functionally-similar ones, possibly accompanying negotiation with the service
providers (QoS-based service selection).

As the term refers to a wide range of aspects other than IOPEs, it is significant
to clarify what specific aspects, or criteria, are discussed in actual analysis. For
example, one may focus on three criteria of price, availability, and response time of
services. Moreover, it is necessary to define metrics and models for each criterion.
For example, one may want to discuss the worst case or upper bound of response
time in milliseconds, instead of modeling continuous changes. Modeling of QoS
criteria should be defined according to the purpose and the computational method
for intended analysis.

As one of the most significant analyses, QoS-based service selection has been
actively investigated in the research community. The problem has been considered
significant as the number of published web services has been increasing, implying
competition between providers of functionally-similar services [16]. On the other
hand, the problem is technically challenging. First, it is necessary to consider multiple
criteria of QoS (availability, price, etc.). This fact requires consideration of specific
preferences and constraints by a client as well as evaluation of combinations of
different QoS criteria. Secondly, an application is composed of multiple activities,
and a service to use is selected for each of them. As quality of the whole application
matters, it is necessary to evaluate composite or end-to-end QoS, such as the total
price for the involved services. This fact leads to a large search space with different
combinations of services. It is not adequate to select a service to use for each activity
one by one, because such a greedy decision for local optimization may miss global
optimization or satisfaction of global constraints (e.g., total budget).

This chapter provides introduction to technical foundations for QoS-based service
selection together with underlying QoS modeling. There are two directions in which
QoS is modeled as single values or as probability distributions. This chapter focuses
on the former, QoS modeling as single values, to give introduction of QoS-based
service selection.

In the remainder of the chapter, Sect. 15.2 introduces essential concepts and
defines the terminology in this chapter. Section 15.3 describes different criteria of
QoS and their expressions. Section 15.4 formalizes the problem of QoS-based service

15 QoS-based Service Selection 377

selection, and Sect. 15.5 discusses approaches to tackle the problem. Section 15.6
discusses variations of problem settings, before concluding remarks in Sect. 15.7.

15.2 Terminology

This section clarifies the terminology used in this chapter. Figure 15.1 illustrates
the structure of QoS-based service selection. A workflow is specified to define a
composite service through a meaningful combination of service functions, or service
types. A service that implements each type can be selected according to QoS (values
for a certain set of attributes). Details are described below.

15.2.1 Service Type

Suppose we are discussing use of web services in a certain system. It means we believe
part of functional requirements for the system can be satisfied by web services that are
available publicly or through partnerships. Examples of such functional requirements
are “search for available rooms at hotels in a certain city” and “get current stock price
for a certain company”. In this chapter, the term service type is used refer to a specific
function satisfied by web services. Other literatures may use different terms, such
as service interface, service class, or abstract service (against service instance or
concrete service).

This chapter will not provide a comprehensive discussion on how service type
is described or how a web service is judged to or not to belong to a service type.
For example, WSDL (Web Services Description Language) allows for description of
web services [24]. We can consider the “interface” element in WSDL 2.0 defines the

...
$2
99%
5msec

$1
90%
5msec

$2
96%
2msec

Workflow for
Composite Service

Services for
each Service Type

QoS (values for attributes)

Fig. 15.1 Overview of QoS-based service selection

378 F. Ishikawa

service type, which only defines provided operations and data types of their inputs
and outputs. There can be multiple endpoints that has the equivalent interface with
different access points (URLs and protocols). We can further leverage Semantic Web
Service technology, to deal with synonyms and homonyms in data types as well as
subtype relationships [21].

15.2.2 Service and Service Selection

There can be multiple providers (companies or other kinds of parties) that offer web
services satisfactory in terms of the functionality or the service type. To compare the
web services with each other, we therefore examine QoS aspects, considering our
non-functional requirements. For example, each web service may require fee accord-
ing to the number of invocations. Then we compare required fees per invocation. As
another example, each web service may differ in how it ensures its availability. Then
we compare values of ensured availability, or ratio of time periods where the service
is available to the total time period.

The above discussion has mentioned different providers of web services satis-
factory in terms of the functionality. Actually, each provider may offer a choice
regarding what quality is ensured. For example, one provider may offer two plans:
“Economy” for lower price with lower availability, and “Advanced” for higher price
with higher availability. Another provider may offer a larger choice by allowing for
selecting or negotiating detailed options (parameters).

Anyway, we want to distinguish different “ways of implementation” to select
from, regardless of what they actually refer to in a specific scenario (provider, plan, or
option). In this chapter, the term service is used to distinguish a specific QoS setting
for a specific function. For example, suppose there are two providers of a certain
service type. Company A offers two QoS plans, and Company B does not offer any
choice. As a matter of convenience, this situation can be captured as a problem of
selection from three services, even if people do not feel there are two distinct services
by Company A. Thus the remainder of this chapter uniformly discusses a problem
to “select a service”.

15.2.3 QoS

The above discussion involved two aspects of price and availability. In this chapter,
the term QoS attribute is used to refer to each specific aspect or criterion of QoS.
Each service has a specific evaluation for each QoS attribute, which is described in a
specific way, such as “1 US dollar per invocation” and “availability equal to or more
than 95 % when measured for each year.” Each evaluation is called as QoS value,
and a set of evaluations for each service is called as QoS vector or merely QoS. The
way of describing a QoS value is called as QoS metric, e.g., cost per invocation in

15 QoS-based Service Selection 379

US dollar. A QoS metric defines how complex states of the real world are abstracted.
The term QoS model is used to refer to a set of QoS attributes and their metrics,
which defines the whole criteria used for comparing services.

This chapter does not rely on specific mechanisms to measure and collect QoS
values. Providers often declare QoS values to attract clients by clarifying what they
ensure or by offering a possible choice (plans and options). The term Service Level
Agreement (SLA) is often used for clear specification of QoS to be ensured. The
information on SLAs can be used for service selection. In addition, QoS values may
be collected or validated through monitoring by clients as well as third-party brokers
and rating agencies. Monitoring is significant for clients to be sure that the declared
SLA is actually satisfied or to measure values of QoS attributes not included in
the SLA. For example, management components are attached with the client and
service to exchange SLA and check it by monitoring service invocation requests
and responses [15, 22]. For automation and rigor, concrete and machine-processable
descriptions are used for QoS metrics (when to measure, in what unit, etc.). A trusted
third party may work to evaluate QoS values in place of each client. Such a party may
also collect monitoring results from multiple clients to assess “trustworthiness” of the
services (one of typical QoS attributes, described as reputation in Sect. 15.3.1.6) [12].

It is notable that the term QoS has been widely used in other communities such
as network optimization [5]. Those communities have focused on computational
execution and defined attributes such as throughput and availability. QoS for web
services include similar attributes as significant aspects, but also consider a wider
range of attributes. This is because services usually provide less granular functions,
e.g., search for hotels, which are directly related to human personal or business
activities. User-oriented attributes (e.g., reputation) appear as well as domain-specific
attributes (e.g., the number of hotels the service deals with). In addition, QoS for web
services is evaluated typically in the context of service combinations or workflows,
which also makes computational difficulties (detailed in the following sections).

15.2.4 Composite Service

It is attractive to compose new services by using existing services, especially by
combining functionality of multiple service types. For example, composition of a
travel planning service involves a hotel search service, a flight search service, and
so on. In this chapter, it is assumed a workflow or business process is defined to
describe how services of multiple types are invoked to realize the composite service.
The workflow defines activities that interact with services of specific types as well
as control and data flow among the activities. The workflow definition is abstract in
a sense it specifies only the service types involved. When services are selected for
all the service types, a workflow becomes an executable composite service.

A composite service has a QoS vector that results from QoS vectors of the involved
services. A simple example is the price of the composite service, which is total of
prices for the involved services. The term composite QoS or end-to-end QoS is used

380 F. Ishikawa

to refer to QoS of a composite service. The composite QoS depends on QoS of the
involved services, thus depending on a proper method for selection of these services.

There have been many languages to define a workflow, such as the WS-BPEL
standard (Web Services Business Process Execution Language) [19]. A composite
service is realized by allocating specific services to the workflow defined in WS-
BPEL. The resulting composite service acts in the same way as an atomic (non-
composite) service, which receives a request and returns a response. Thus the clients
or brokers do not need to care about the fact it is a composite service. This chapter
does not discuss such specific languages. Basic workflow patterns are discussed in
terms of QoS, which provide a basis to deal with practical, complex languages such
as WS-BPEL.

15.3 QoS Model

This section describes a variety of QoS attributes and their metrics through common
examples.

15.3.1 Common Attributes and Metrics

There are a variety of viewpoints, or QoS attributes, for evaluating web services in
terms of quality, or other than IOPEs. Sometimes domain-specific QoS attributes
are considered. For example, users of a hotel search service may be interested in
how many hotels the service deals with in which cities. Nevertheless, there have
been several QoS attributes that are considered typical and common for general web
services. In this chapter, representative QoS attributes and metrics are introduced
from existing literatures, primarily on the basis of [2, 28]. Further QoS models
(attributes and metrics) can be defined in a similar way when necessary. Many other
literatures have discussed further QoS models [17, 20, 23].

15.3.1.1 Price (Cost)

As web services are often provided by other parties with specific expertise, use of
a service often requires fee, especially when QoS is ensured. The attribute price
describes how much it costs to use the service. An example metric is “fee per invo-
cation in US dollar.” Metrics may change depending on the pricing mechanism as
well as the currency. For example, when pricing mechanisms are different between
providers, a client may estimate his usage amount and consider a “fee for a certain
expected amount of requests.”

15 QoS-based Service Selection 381

15.3.1.2 Response Time (Execution Duration)

Performance has been considered one of the significant non-functional requirements.
The attribute response time describes how quickly the response can be obtained
from the service after the request is sent. An example metric is “average delay in
milliseconds between the moment when a request is sent and the moment when the
response is received, in a certain set of trials.”

Values of the example metric actually depend on not only QoS of the target service
but also quality of the intermediate network. Providers may want to use another metric
that refers to the time required for which they are responsible, e.g., delay between the
moment when a request is received in their servers and the moment when the response
is sent out from them. Each client may then additionally consider the global network
latency [14]. Another notable point is response time requires modeling or abstraction
of variable experiences about the delay for a certain method of measurement or
estimation. The above example mentioned the average, though some clients are
concerned about the worst or the variance. In any case, such accumulating metrics
are useful to clearly compare complex experiences with different services.

15.3.1.3 Throughput

In actual implementation, it is impossible to ensure a certain response time for any
number of requests. The attribute throughput describes how highly-frequent requests
the service can deal with. An example metric is “the maximum number of requests
that can be processed by the service in a certain time period.” This metric mentions
how the service can bears a burst of requests, possibly from multiple clients.

15.3.1.4 Reliability

When realization of a certain function is delegated to a web service, we want to
be sure about its success. The attribute reliability describes how it is likely that
the service makes the expected response. An example metric is “probability that
a successful response for a request is received within a certain time period”. This
metric mentions a time period suggesting the deadline, because it is nonsense to
discuss the possibility that a successful response is made eventually in the far future.
In addition, it is practically impossible to distinguish whether the service is taking
long time under successful processing or it is freezing.

15.3.1.5 Availability

As operation and maintenance is delegated to a web service, we want to be sure we
can use it almost whenever we want. The attribute availability describes how it is
likely that the service can be accessed. An example metric is “ratio of the time period

382 F. Ishikawa

where the service is available to the total period.” Practically, it may be measured by
making a periodic request for the service state.

15.3.1.6 Reputation (Trust)

It is difficult to clearly distinguish and separately define all the quality aspects about
which clients are concerned. The attribute reputation describes how much a service
is preferred or trusted by human users. An example metric is “average of ratings
given by human users in the range [0, 5].” Such ratings can reflect a variety of
aspects, such as integrated evaluation of the QoS vector, evaluation of considerate or
poor technical support, and subjective evaluation of provided results (e.g., “natural”
translation results).

15.3.1.7 Variations and Other Attributes

The above discussed only representative attributes and metrics for QoS. Different
attributes and metrics can be discussed and introduced in a similar way. For example,
the above discussion considered a metric for a fixed pricing mechanism. If a dynamic
pricing mechanism is considered, as in Spot Instances of Amazon EC2 [1], a metric
such as average or worst may be defined (as discussed for response time).

There are significant QoS attributes that have binary or enumeration metrics.
For example, an attribute privacy may use a metric “certified for satisfaction of
a certain guideline.” Possible values are binary, “yes” or “no.” As another exam-
ple, an attribute security authentication may use a metric “supported authentication
protocols.” Possible values are enumeration such as “OpenID” or “Kerberos and
RADIUS.” Enumeration metrics can be decomposed into a set of binary metrics.

QoS attributes presented so far measure positive aspects of services. There are
attributes that measure negative aspects of services. Examples include the number
of administrative advices received for inadequate operations, the number of specifi-
cation or SLA changes without prior notice, and reported SLA violations.

15.3.2 Composite QoS

QoS attributes and metrics described in Sect. 15.3.1 can be used for QoS description
of composite services as well as atomic services. When we are going to construct a
composite service, we want to evaluate a variety of possible combinations of services
in complying with the service types involved in the workflow. For this purpose, QoS
aggregation functions are defined to calculate composite QoS of a composite service
by aggregating QoS of involved services.

15 QoS-based Service Selection 383

Suppose a simple workflow consists of sequential execution of n services. Below
examples of QoS aggregation functions are shown for each QoS attribute described
in Sect. 15.3.1.

• Price: Sum of the values (total fee of all the involved services).
• Response Time: Sum of the values (average of total time required for execution

of all the involved services).
• Throughput: Minimum of the values (bottleneck of the involved services).
• Reliability: Product of the values (probability that all the involved services

succeed).
• Availability: Product of the values (probability that all the involved services are

available).
• Trust: Average of the values (one way to estimate the rating of the composite

service).

As another example, suppose a workflow consists of parallel (split-join) execution
of n services, where requests are sent to all the services simultaneously and all the
responses are waited for. In this case, the aggregation function of response time
is the maximum of the values (the workflow needs to wait for the latest service
response). The aggregation functions for the other attributes are the same as the ones
for sequential execution.

Let’s consider a very simple workflow language that only uses two constructs
of sequential execution and parallel execution, which can be nested arbitrarily.
Figure 15.2 shows an example of a workflow in this language. Suppose services
s1, s2, s3, s4 are selected to be used for the activities invoke1, invoke2, invoke3,

invoke4 in the workflow, respectively. In this case, s1 is first invoked, then parallely
s2 and s3 are invoked. When both of s2 and s3 are completed, s4 is invoked. In this
example, the response time of the composite service is calculated as

rt(s1)+ max(rt(s2), rt(s3))+ rt(s4)

where rt(si) is the response time of each service si. The aggregation function for
sequential execution (sum) is applied to three services, in which the second one is a
composite service and the aggregation function for parallel execution (maximum) is
used. In this way, QoS values for a composite service can be calculated by recursively

Fig. 15.2 Simple example of
workflow

sequence1

invoke1

parallel1

invoke2 invoke3

invoke4

384 F. Ishikawa

applying aggregation functions for each pattern of execution control (in this example
sequential and parallel), and for each attribute.

Practical workflow languages such as WS-BPEL are much more expressive.
Below briefly describes how QoS aggregation functions can be defined for other
workflow patterns.

• Complex concurrent execution is sometimes described as a control graph, not in
the structured way as in the example (e.g., the flow activity in WS-BPEL). In a
control graph, each directed edge means that one activity can be executed when
after another one is completed (restricted to be acyclic). In this case, aggregation
functions may be defined over the graph structure. Specifically, the response time
is calculated by identifying the longest execution path (the path whose sum of
response time for the services on the path is the maximum among the paths in the
graph).
• When conditional branches are included, aggregation functions become proba-

bilistic and calculate expected values. For example, aggregation functions for a
typical IF-THEN-ELSE control often use the following form.

Probability the condition holds ∗ QoS value of the THEN sub-workflow
+ Probability the condition does not hold ∗ QoS value of the ELSE sub-workflow

Loop execution (while) considers expected values with probabilities of how many
times the execution is iterated.
• Workflows are often defined to be tolerant of service failures. For example, a fault

handler is often defined for invocation failure of a service to continue the workflow
execution (not a fault handler that only gives error logs and exits). In that case, the
availability of the service is excluded from the aggregation function for availability
(the workflow is available even if the service is not available). Instead, a service
invocation with a fault hander is considered as a conditional branch and the aggre-
gation function uses the availability of the service as the probability. As another
example, join conditions are often defined to denote conditions such as “execu-
tion can be continued if at least two of the three services in parallel execution are
succeeded.” When a join condition is attached with a parallel execution, the aggre-
gation function for availability is changed to reflect it. With the example join con-
dition, the availability of the parallel execution becomes the following (the prob-
ability it does not happen that all of the three services s1, s2, s3 are not available).

1− (1− avai(s1)) ∗ (1− avai(s2)) ∗ (1− avai(s3))

Detailed discussion is found in literatures such as [7, 18].

15.4 Service Selection Problem

This section introduces notations for the concepts introduced in the previous sections,
and then formalizes the problem of QoS-based service selection.

15 QoS-based Service Selection 385

15.4.1 Notations

Below defines notations for the concepts introduced in the previous sections, which
defines part of the selection problem.

• Service types in a workflow: Service types involved in the target workflow are
denoted by S1, S2, . . . , Sn .
• Service candidates for a service type: Services in complying with the service type

Si are denoted by services(Si) = si1, si2, . . . , simi

• Services involved in a composite service: A set of selected services cs =
{s1, s2, . . . , sn} denotes a composite service obtained by selecting a service for
each service type: si ∈ services(Si).
• Possible composite services: The set of possible composite services is denoted as

CS = services(S1)× services(S2)× · · · × services(Sn).
• QoS attributes: QoS attributes under consideration are denoted by q1, q2, . . . , ql .

When specific attributes are significant, attribute names are used in subscript e.g.,
qprice and qavailability. It is assumed the metric for each qk is defined.
• QoS: The QoS value of the service s about the attribute qk is denoted as qk(s).

Thus a service s has QoS, or QoS vector, QoS(s) = {q1(s), q2(s), . . . , ql(s)}.
• Composite QoS: Composite QoS for a composite service cs = {s1, s2, . . . , sn} is

denoted by QoS(cs) = {q1(cs), q2(cs), . . . , ql(cs)}. Each QoS value is calculated
by the aggregation function: qk(cs) = aggk(qk(s1), qk(s2), . . . , qk(sn)), which is
defined by considering the QoS metric and the workflow structure.

We want to select a service for each service type (si ∈ services(Si), for i =
1, 2, . . . , n) “properly” by considering the composite QoS QoS(cs). Section 15.4.2
defines “acceptable” solutions, and Sect. 15.4.3 defines “best” solutions among
“acceptable” ones.

To simplify the following discussion, it is assumed QoS metrics are defined so that
higher numeric values mean better quality. This assumptions hold for some of the
metrics in Sect. 15.3.1, namely, throughput, reliability, availability, and reputation.
The other metrics, price and response time, can be easily converted, for example, by
the form A − bq where q is a value in the original metric. Binary metrics can be
converted to numeric values, e.g., 1 and 0 (1 means presence of a good option). If
this assumption is not introduced, each of the following definitions accompany the
different version for the case lower values mean better quality.

15.4.2 Global Constraints

First, constraints are introduced to eliminate clearly unacceptable solutions. For
example, there may be a limitation in a total budget, which puts the lower bound
for the inverse price metric (converted to mean “the higher is the better”). In this
way, all the constraints are denoted by lower bounds, given the assumption in
Sect. refssec:notation.

386 F. Ishikawa

Constraints C = {c1, c2, . . . , cl} denote lower bounds for acceptable composite
QoS, where each ck is the lower bound for the metric of qk . A composite service cs
is called as an acceptable solution if qk(cs) ≥ ck holds for all quality attributes qk .

The term global constraints or end-to-end constraints may be used to clearly
state the fact that the constraints are on composite QoS, not QoS for each involved
service. This fact implies it is not sufficient to have a local selection for each of the
involved service types as such a greedy selection may miss the possibilities to satisfy
the global constraints. This point is later illustrated in Sect. 15.4.4.1.

15.4.3 Utility Function

In addition to constraints, an utility function is introduced as a criterion for evaluating
and comparing the whole QoS. The criterion reflects preferences of the evaluator,
who is going to construct and provide a composite service based on the workflow.
One of the popular definitions is described below.

15.4.3.1 Normalization

First of all, QoS values for different attributes, in different metrics, are converted into
values in a uniform metric. It is already assumed that QoS metrics are all numeric
and mean the higher is the better. Therefore only ranges of the values are adjusted,
or normalized into the range [0, 1] for comparison.

In general, given a set of values vs = {v1, v2, . . . , vn}, the normalized value
vi(nml+) of each vi is defined as follows.

vi(nml+) = vi −minv∈vsv

maxv∈vsv −minv∈vsv

This definition is for the case higher values are appreciated. In the other case, the
numerator changes as follows.

vi(nml−) = maxv∈vsv − vi

maxv∈vsv −minv∈vsv

Following the assumption made in Sect. 15.4.1, this chapter only uses the nml+
version.

The normalized QoS value can then be defined for each involved service si j , for
each attribute qk . This case focuses on (uses the maximum and minimum in) the set
of QoS values by services of the same type si1, . . . , sim j .

qk(sij)nml+ = qk(si j)−minh∈{1,...,mi }qk(sih)

maxh∈{1,...,mi }qk(sih)−minh∈{1,...,mi }qk(sih)

15 QoS-based Service Selection 387

The normalized QoS value can be similarly defined for a composite service cs.
In this case, it is necessary to consider the maximum and minimum values in the
set of all the possible composite services. For the aggregation functions described in
Sect. 15.3.2, the maximum (minimum) values of possible composite services can be
obtained by simply selecting the maximum (minimum) value for each service type.
For example, the composite service with the maximum price can be obtained by
selecting the most expensive service for each service type. Finally, the normalized
QoS value is defined for a composite service cs as follows.

qk(cs)nml+ = qk(cs)−minqk(CS)

maxqk(CS)−minqk(CS)

where

maxqk(CS) = aggk(maxh∈{1,...,m1}qk(s1h), . . . , maxh∈{1,...,mn}qk(snh))

minqk(CS) = aggk(minh∈{1,...,m1}qk(s1h), . . . , minh∈{1,...,mn}qk(snh))

15.4.3.2 Utility

For the normalized values, weights can be used to denote preferences on QoS
attributes. Weights w = {w1, w2, . . . , wl} denote that each attribute ck is weighted
by wk where 0 ≤ wk ≤ 1 and

∑
wk = 1.

A utility for a service si j and that for a composite service cs can be defined.

U (si j) =
∑

k

wk · qk(si j)nml+

U (cs) =
∑

k

wk · qk(cs)nml+

As wk and qk(s)nml+ are defined in [0, 1], the value of U (s) is equal to or less than
the number of QoS attributes.

15.4.4 Service Selection Problem

With these definitions, a composite service cs is called as an optimal solution if it is
an acceptable solution and it maximizes U (cs). QoS-based service selection refers
to a problem to find the optimal solution, or near-optimal solutions as it is practically
hard to find the optimal solution.

388 F. Ishikawa

15.4.4.1 Computational Difficulty

One simple approach may come to one’s mind, to select the best service for each
service type. However, such a solution may not lead to an acceptable solution.

As a very simple example, consider a workflow that consists of two service types,
and two QoS attributes are focused on.

• For the service type S1, there are two services: s11 (price: $2, availability: 90 %),
and s12 (price: $3, availability: 95 %).
• For the service type S2, there are two services: s21 (price: $4, availability: 95 %),

and s22 (price: $3, availability: 90 %).

Conversion of the price metric (to be “the higher is the better”), as well as normal-
ization, is omitted in the following intuitive discussion.

Suppose a constraint is given that the availability of the composite service must
be equal to or more than 85 %. This constraints filters out the cheapest combination,
s11 and s22, as its aggregated availability is 81 %. It is already clear greedy and local
selection based on the utility fuction can fail in some situations. Specifically, suppose
the utility function is defined with higher weight on price. It may choose s11 and s22,
respectively, if a service is selected one by one for each type only by considering the
utilify function. However, in that case the (global) constraint is not satisfied.

In this way, the problem requires exploration of all the possible combinations,
which are practically unfeasible when the number of services increase as well as that
of service types and that of QoS attributes.

15.4.4.2 Service Selection Problem and Well-Known Problems

It should be useful to review a mapping of the selection problem to a well-known
mathematical problem, which has been investigated for long time.

For example, knapsack problems are a well-known class of problems to select
some items so that their total value is maximized while their total weight is under the
constraint. The weight can be considered to denote the amount of a resource required
by the item. The service selection problem resembles knapsack problems in a sense
items are sleeted by considering maximization under constraint.

Specifically, the service selection problem only with sequential execution can be
mapped to multi-dimension multi-choice zero-one knapsack problem (MMKP) [27].
In MMKP, there are groups of items and one item is selected from each of the groups
(as a service is selected from the services in complying with each service type). In
addition, multiple resources required by each item are considered for constraints (as
multiple QoS attributes are considered for constraints). MMKP has been proved to
be NP-complete.

Introduction of different settings, e.g., workflow patterns, may change the problem
structure. Nevertheless, the service selection problem is often solved by leveraging
existing optimization algorithms. On the other hand, specific heuristics are often used
to obtain near-optimal solutions efficiently (later discussed in Sect. 15.5.3).

15 QoS-based Service Selection 389

15.5 Approaches to Computation for Service Selection

This section discusses approaches to the problem of QoS-based service selection.
Two preliminary approaches are discussed before algorithms to solve the service
selection problem. First, some assumptions are discussed to avoid unrealistically
complex situations (Sect. 15.5.1). Second, a useful method called skyline is intro-
duced to reduce the problem space (Sect. 15.5.2). Finally, several algorithms for the
service selection problem are discussed (Sect. 15.5.3).

15.5.1 Assumptions in Definitions

The definitions in Sect. 15.3 and Sect. 15.4 can be and should be modified or extended
if necessary. Nevertheless, it is necessary to notice useful assumptions introduced
there.

• Aggregation functions for composite QoS were monotonic for example QoS met-
rics (Sect. 15.3.2). The higher a QoS value for a component service is, the higher
the composite QoS value is for a composite service including the component ser-
vice. This property was already used to derive the maximum and minimum values
of composite QoS (Sect. 15.4.3). Without this property, we may encounter a situ-
ation like “when we select a service with higher availability, the decision leads to
a composite service with lower availability.” With this property, we can be sure it
is good to have higher values for component services, as they will lead to higher
values for the resulting composite services.
• Similarly, the utility function is defined to be monotonic. We can be sure it is good

to have higher values for each QoS attribute, and higher values for each service
type, to have higher utility.
• Constraints are defined only in the form of lower bounds. As a counter-example,

constraints without apparent rules are difficult to handle efficiently, like “the values
1, 3, 6, 8 are acceptable but the other are not.” It seems natural to only consider
“better than (no worse than)” constraints. This assumption allows for use of sort
of services by QoS values so that a set of services can be found efficiently that are
likely to contribute to satisfaction of constraints.

As some algorithms assume and leverage such properties to be efficient, it is signif-
icant to be aware of them when modifying or extending the definitions.

15.5.2 Skyline Services

Before exploring the combinations of services, it is useful to filter out as many services
as possible, if they are obviously not attractive. This means it is necessary to distin-
guish services that can be attractive for a certain setting of preferences and constraints.

390 F. Ishikawa

For example, consider the following 4 services for the same service type.

• si1: price $3, availability 90 %, reputation 3.5
• si2: price $5, availability 99 %, reputation 3.1
• si3: price $4, availability 95 %, reputation 2.5
• si4: price $3, availability 85 %, reputation 3.1

In this case, there is no reason to select si4, as it has the same price as si1, but worse
availability and worse reputation. For any utility function, selecting si1 is better than
selecting si4. There is no situation where si4 satisfies constraints while si1 does not.
On the other hand, si1 is better in price than si2 and si3. Therefore, si1 can be selected
in some situations where price is thought significant. This discussion relies on the
properties discussed in Sect. 15.5.1.

In this way, it is possible to filter out some unattractive services, before examining
specific sets of preferences and constraints. A similar idea has been discussed in the
data engineering area, and has been introduced to the service selection problem in
[3, 6, 26]. Below outlines the fundamental concepts.

In general, s is said to dominate s′ if s is equal to or better than s′ in all QoS
attributes and better in at least one attribute. Under the assumption that the higher is
the better for any QoS attributes (Sect. 15.4.1), s dominates s′ if ∀k(qk(s) ≥ qk(s′))∧
∃k(qk(s) > qk(s′)). From the viewpoint of filtering, it is useful to find services that
are dominated by any other service. In the above example, si4 is dominated by si1,
thus not attractive. On the other hand, si1 is not dominated by any other service, thus
attractive.

Attractive services in the above sense are called skyline services, derived for each
service type. In services(Si), services in complying with a service type, skyline
services refers to the set of services each of which is not dominated by any other
service in services(Si).

Figure 15.3 illustrates skyline services in the case there are only two QoS attributes
q1 and q2. The points denote QoS vectors of services, and ones at right or upper
sides have better quality. Filled points denote skyline services, not dominated by any
others, i.e., no other services in its left or upper side. Any of the other services is
dominated by another service.

15.5.3 Service Selection Algorithms

As the service selection problem is NP-complete, there have been a lot of studies
for algorithms that explores near-optimal solutions. It is very difficult to compare
these competing algorithms with other. On one hand, as heuristics are explored in
most cases with different focuses, theoretical comparisons are difficult in the form of
complexity. On the other hand, empirical evaluations for the algorithms have different
purposes and thus different parameters and settings. Existence of various parameters
makes both theoretical and empirical comparisons difficult, as each algorithm is
evaluated using a specific set of them. Input (setting) parameters for experiments

15 QoS-based Service Selection 391

q1

q2
Skyline Services (not dominated by any other)

Fig. 15.3 Skyline services

include not only the number of services and that of service types, but also the number
of constraints, the number of attributes, shapes of workflows, and distribution of QoS
values. Output (compared) parameters are utility values (or their ratios to the optimal
solutions) and success rates of constraints satisfaction as well as computation time,
memory used, and bandwidth used (in distributed algorithms). Output (compared)
parameters are often specific to the algorithm, to evaluate its own ideas.

Nevertheless, this section aims at providing the following intuitions by presenting
some of the large number of studies (shown in Table 15.1).

• How the specific focuses of algorithms are different with each other.
• How many services and service types have been considered as experimental set-

tings by existing studies.
• How long time the algorithms take for calculation.

15.5.3.1 Foundations

First, representative initial studies are presented that give solution algorithms for the
problem by using algorithms for general optimization problems and often extending
them with heuristics.

Table 15.1 Comparison of service selection algorithms

Type Literature Base algorithm

Foundational Zeng, L. 2003 [28] Linear Programming
Yu, T. 2007 [27] Heuristics
Yu, Q. 2008 [25] Dynamic Programming

Clustering Alrifai, M, 2009 [2] QoS Levels and Distribution
Alrifai, M. 2010 [3] Skyline

Meta-Heuristics Zhang, C. 2007 [29] Genetic Algorithm
Dubey, V. K. 2010 [8] Hill Climbing

392 F. Ishikawa

In [28], QoS-based service selection problem is defined and discussed intensively
for the first time. Specifically, the global utility and constraints are discussed, together
with QoS attributes, as described in this chapter. The problem is solved by mapping
it to Linear Programming. It is notable response time is handled in a different way,
as its values have some distributions, not single fixed values.

In [27], the service selection problem only with sequential execution is first dis-
cussed. The problem is mapped to MMKP, as briefly discussed in Sect. 15.4.4.2.
A heuristic algorithm is proposed for near-optimal solution with the polynomial
time complexity. Roughly speaking, the heuristic starts with searching for a feasible
solution with low QoS values. Then it tries to improve the QoS while keeping the
solution feasible. To avoid local optima, it also tries to generate infeasible solutions
and then to make the QoS lower.

In [27], more complex workflows are also discussed. In this case, possible execu-
tion routes (paths) are probabilistically considered, which denote different choices
at the branches included in the workflow. The problem is solved by heuristics, after
the problem is mapped to Integer Programming.

In [25], a query algebra is defined to formally model and run queries on service
types, workflows and QoS (in the terminology of this chapter). It includes the QoS-
based service selection problem that optimizes QoS of a composite service. Dynamic
Programming is used as the basic approach to the problem, which is extended with
a divide-and-conquer strategy.

The initial study in [28] shows a result for good understanding, which used a
general solver by IBM. When the number of services in each service type (N) is
fixed as 40, computation time increases as the number of service types in a workflow
(T) increases: a few hundreds milliseconds (T = 10), less than 1 s (T < 25), about
3.5 s (T = 60) and about 7.5 s (T = 80). The solver on established knowledge on
Linear Programming can solve the problem somewhat fast, given the fact the full
exploration for optimization requires (O(N T)). We can see it can be used for online
selection (blocking end users) for N = 40 and T < 25 (if we consider 1 s is the
upper limit).

Following studies often have specific focuses, such as dealing with general work-
flows in [27]. Then the input parameter changes from T to K , which denotes dif-
ferent execution paths in a workflow (each of them occurs in different probabilities
due to conditional branch and other control constructs). Because various algorithms
are compared with each other, evaluation of absolute computation time is limited.
A similar time range and time increase appear in the evaluation result: less than 1 s
for N = 10, K = 10 but about 9 s for N = 30, K = 30. Many studies consider
smaller numbers for T , e.g., T = 3 in [25] with which the algorithm runs within 1 s
even with N = 5000.

15.5.3.2 Clustering

In [2], the service selection problem is solved in a distributed manner. Global
constraints are decomposed into a set of local constraints, which can be then solved

15 QoS-based Service Selection 393

efficiently by multiple nodes. For example, the global constraint on the total price is
decomposed to range constraints of local prices (“price level” for each service type).
It is ensured satisfaction of local constraints lead to satisfaction of global constraints.
The constraint decomposition is solved as Mixed Integer Program, whose problem
setting is small enough to be solved quickly.

In [3], the notion of skyline services is explored to filter out service candidates.
Section 15.5.2 introduced the minimum usage of skyline services. In [3], the service
candidates are further reduced through hierarchical clustering. Skyline services can
be still large, as a result of a variety of the competitive ways to balance multiple QoS
attributes. In addition, an analysis method is presented for identifying improvement
required for a service provider to be competitive.

These studies have different purposes from the ones presented in Sect. 15.5.3.1.
They use some kind of clustering and filtering so that it does not actually con-
sider all the services. As a result, the computation can be less than 1 s with
N = 2000, T = 5 and less than 10 s with N = 500, T = 100, in [2]. In [3], these
pairs of numbers are outstanding. Use of (extended) skylines also shows 10–100 ms
with N = 1000, T = 5, as N does not matter so much because of the clustering and
filtering process.

15.5.3.3 Meta-Heuristics

There have been many other studies, including use of meta-heuristics such as genetic
algorithms and Hill-Climbing [8, 29]. Meta-heuristics algorithms define very gen-
eral ways of exploration for solutions of complex optimization problems, which often
work well to some extent. Domain-specific customization is sometimes used to fit
more with a specific problem. Due to the nature of meta-heuristics, which relies on
iterated exploration with some randomness, it is very difficult to give general charac-
teristics of performance. For example, several variations of algorithms are evaluated
in [29], however, the results are somewhat diverse and difficult to compare with
other algorithms as in presented in Sect. 15.5.3.1. More experiments seem necessary
to discuss the potentials of these algorithms.

15.5.3.4 Notes

As seen in the studies described above, N and T have been considered as important
factors, however, there has not been a common agreement on requirements about how
large N or T should be handled. Almost all of the data sets in the studies have been
generated randomly or by following some distributions. The authors of [2] and [3]
have used a data set on (only) QoS with a few thousands of real web services,1 but
the exact values of N or T are unknown. While we need to wait for further analysis
on what the real web services are, further directions have been explored for setting
or modeling of the problem itself (discussed in the following Sect. 15.6).
1 http://www.uoguelph.ca/~qmahmoud/qws/index.html

http://www.uoguelph.ca/~qmahmoud/qws/index.html

394 F. Ishikawa

15.6 Directions for Future Research

This section discusses some examples of further extensions in problem settings from
existing literatures.

15.6.1 Handling Failures and Runtime Adaptation

The problem discussed in this chapter focused on optimization before execution.
Actually, consideration of runtime failures (in advance or at runtime) is necessary,
as well as further optimization given runtime situations.

In [11], combination of services for the same service type is discussed. It is
often necessary to consider backup services or alternatives for the case the selected
service is unavailable or the case it execution fails. Sometimes it may be useful to
use multiple services in parallel to obtain merged or selected result. In [11], different
ways (workflows) of such combinations of services in the same type are referred to
as virtual services. Virtual services can be used in the selection process as if they
were atomic services. Composite QoS of virtual services are evaluated in advance,
and meaningful ones are left as skyline services.

In [10], proactive adaptation is discussed to improve QoS at runtime. If the exe-
cution takes long time, as in logistics, the current status can be monitored and the
remaining execution plan (i.e., services to use) can be reconstructed accordingly.
Specifically, QoS values for the completed part of the workflow are fixed, and can
be compared with the values estimated before execution. For example, the actual
response time may be much shorter than the declared one as the worst or the average.
Service re-selection in such a situation may be attractive for the remaining part of
the workflow, e.g., using cheaper services as it turned out constraints on response
time can be loosen.

15.6.2 Refining QoS Models

The problem discussed in this chapter focused on simple metrics with single values.
Actual situations can be more complex with changes in quality values, which are
conditionally planned, probabilistic, or uncertain.

In [13], QoS metrics refined to express conditional SLAs, e.g., different pricing
on peak time. As the QoS values are distributions rather than one numeric value,
service selection involves probabilistic simulations. Usage patterns of clients are
also considered to examine how they match with the conditional SLAs. The simu-
lation approach also allows for dealing with distributions of response time, without
rounding into average or worst.

In [26], the domination relationship is further discussed taking uncertainty into
consideration. Specifically, even if a QoS value of a service in an average or worst

15 QoS-based Service Selection 395

metric is more than that of another, it does not mean the former always shows a better
value than the latter in every instance of execution. Focusing on this point leads to
probabilistic modeling of the domination relationships, and an efficient algorithm is
proposed for its efficient calculation.

15.6.3 Examining Incentives

The problem discussed in chapter focused on service selection given all reliable
information on QoS of each service. Actually, it is necessary to consider incentives
of providers or clients for ensuring some kinds of optimality such as social welfare.

In [9], a mechanism is designed to give providers incentives for offering their true
cost and capabilities. Roughly speaking without mathematical discussion, such kinds
of honesty is promoted by introducing a mechanism to ensure profits of providers,
when its offer is attractive and selected. This discourage a provider to declare less
attractive QoS by embedding its profits (e.g., setting higher price), as it decreases
the possibility the provider is selected.

15.7 Summary

This chapter has described foundations for QoS modeling and QoS-based service
selection. The following topics are included.

• How typical aspects of QoS are expressed.
• How QoS of a workflow or composite service is assessed from QoS of involved

component services.
• How objective of optimization with multiple QoS attributes is expressed as a utility

function.
• How the service selection problem is defined for a workflow or composite service.
• How global constraints make the service selection problem computationally diffi-

cult.
• What are exemplary approaches to tackle the difficulty of the service selection

problem.

After emergence of web services around 2000, a variety of services are emerging,
especially in the paradigm of cloud computing (XaaS: X-as-a-Service) [4]. QoS will
continue to be very significant aspects in service-oriented systems. On the other
hand, services only allow us to select, not allowing us to determine the quality freely.
Further investigation of QoS and service selection methods will be one of the keys
to tackle difficulties for quality-assured service-oriented systems.

396 F. Ishikawa

References

1. Amazon web services. http://aws.amazon.com/
2. Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient QoS-

aware service composition. In: The 18th International Conference on World Wide Web (WWW
2009), pp. 881–890 (2009)

3. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service com-
position. In: The 19th International Conference on World Wide Web (WWW’10), pp. 11–20
(2010)

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson,
D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud. Technical
Report UCB/EECS-2009-28, University of California at Berkeley (2009)

5. Aurrecoechea, C., Campbell, A.T., Hauw, L.: A survey of QoS architectures. Multimed. Syst. 6,
138–151 (1998)

6. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: International Conference
on Data Engineering (ICDE 2001), pp. 421–430 (2001)

7. Cardoso, J., Miller, J., Sheth, A., Arnold, J.: Quality of service for workflows and web service
processes. J. Web Semant. 1, 281–308 (2004)

8. Dubey, V.K., Menascé, D.A.: Utility-based optimal service selection for business processes
in service oriented architectures. In: The 8th IEEE International Conference on Web Services
(ICWS 2010), pp. 542–550 (2010)

9. Gerding, E., Stein, S., Larson, K., Rogers, A., Jennings, N.R.: Scalable mechanism design for
the procurement of services with uncertain durations. In: The 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’10), pp. 649–656 (2010)

10. He, Q., Yan, J., Jin, H., Yang, Y.: Adaptation of web service composition based on workflow
patterns. In: The 6th International Conference on Service-Oriented Computing (ICSOC 2008),
pp. 22–37 (2008)

11. Hiratsuka, N., Ishikawa, F., Honiden, S.: Service selection with combinational use of
functionally-equivalent services. In: The 9th IEEE International Conference on Web Services
(ICWS 2011), pp. 89–96 (2011)

12. Jurca, R., Faltings, B., Binder, W.: Reliable QoS monitoring based on client feedback. In: The
16th International Conference on World Wide Web (WWW 2007), pp. 1003–1012 (2007)

13. Klein, A., Ishikawa, F., Bauer, B.: A probabilistic approach to service selection with condi-
tional contracts and usage patterns. In: The 7th International Conference on Service-Oriented
Computing (ICSOC 2009), pp. 253–268 (2009)

14. Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition in the cloud.
In: The 21th International World Wide Web Conference (WWW 2012) (2012)

15. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for creation and
monitoring of WS-agreements. In: The 2nd International Conference on Service Oriented
Computing (ICSOC 2004), pp. 65–74 (2004)

16. Masri, E.A., Mahmoud, Q.H.: Investigating web services on the World Wide Web. In: The 17th
International World Wide Web Conference (WWW 2008), pp. 795–804 (2008)

17. van Moorsel, A.: Metrics for the internet age: Quality of experience and quality of business.
Technical Report HPL-2001-179, HP Labs (2001)

18. Mukherjee, D., Jalote, P., Nanda, M.G.: Determining QoS of WS-BPEL compositions. In: The
6th International Conference on Service-Oriented Computing (ICSOC 2008), pp. 378–393
(2008)

19. OASIS: Web Services Business Process Execution Language Version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (2007)

20. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: What’s in a service? Distrib. Parallel Data-
bases 12(2–3), 117–133 (2002)

21. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web services
capabilities. In: The 1st International Semantic Web Conference (ISWC 2002), pp. 333–347
(2002)

http://aws.amazon.com/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

15 QoS-based Service Selection 397

22. Sahai, A., Machiraju, V., Sayal, M., Jin, L.J., Casati, F.: Automated SLA monitoring for web
services. Technical Report HPL-2002-191, HP Labs (2002)

23. Vinek, E., Beran, P.P., Schikuta, E.: Classification and composition of QoS attributes in distrib-
uted, heterogeneous systems. In: The 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2011), pp. 424–433 (2011)

24. W3C: Web Services Description Language (WSDL) Version 2.0, Part 1: Core Language. http://
www.w3.org/TR/wsdl20/ (2007)

25. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimization. ACM
Trans. Web 2(1), 6 (2008)

26. Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain QoWS. IEEE Trans. Serv.
Comput. 3(1), 16–29 (2010)

27. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with end-to-end
QoS constraints. ACM Trans. Web 1(1), 1–25 (2007)

28. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web services
composition. In: The 12th International Conference on World Wide Web (WWW’03), pp. 411–
421 (2003)

29. Zhang, C., Su, S., Chen, J.: DiGA: population diversity handling genetic algorithm for QoS-
aware web services selection. Comput. Commun. 30(5), 1082–1090 (2007)

http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/

Chapter 16
Composition of Web Services: From Qualitative
to Quantitative Timed Properties

Nawal Guermouche and Claude Godart

Abstract Dealing with service composition is an important and challenging issue of
distributed systems. Existing works investigate mechanisms for analyzing and syn-
thesizing a composition based on qualitative properties which characterize operations
and/or messages choreography constraints. Apart from these qualitative properties,
quantitative properties such as time related features are a crucial setting to consider.
Augmenting service’s behavior with timed properties increases the expressiveness
and brings new difficult problems. This requires defining rigorous verification and
composition primitives for taking into account such properties. In this chapter, we
present a formal composition and verification approach which considers quantitative
timed properties assigned to qualitative properties. The chapter starts with a general
introduction. Then, it introduces the concepts related to timed Web services, timed
conversations and protocols. The following section introduces the notion of com-
position of Web services with emphasis on the temporal dimension, and defines a
formal composition approach. This approach relies on the generation of a mediator
which aims surpassing timed conflicts. The next section presents validation primi-
tives based on model checking techniques to verify and validate timed compositions.
An implementation of the concepts previously introduced is then described. Before
concluding with a larger consideration of time implication in Web services definition
and composition, and with open issues, we present a study of the state of the art.

N. Guermouche (B)
CNRS, LAAS, 7 avenue du colonel Roche, Toulouse F-31400, France
e-mail: nawal.guermouche@laas.fr

N. Guermouche
Univ de Toulouse, INSA, LAAS, Toulouse F-31400, France

C. Godart
LORIA-INRIA-UMR 7503, Vandoeuvre-les-Nancy F-54506, France
e-mail: nawal.guermouche@laas.fr

A. Bouguettaya et al. (eds.), Web Services Foundations, 399
DOI: 10.1007/978-1-4614-7518-7_16,
© Springer Science+Business Media New York 2014

400 N. Guermouche and C. Godart

16.1 Introduction

Service Oriented Architecture (SOA) is gaining acceptance as a promising
architecture for organizations to integrate their business applications. In SOA, appli-
cation’s business logic can be modularized and outsourced as Web services so that
these services can be mutually used. Based on standards, Web services promote the
composition of loosely coupled applications to integrate them into complex business
systems. In this field, many industrial and academic efforts have been done to provide
specifications and techniques to allow verification and composition of heterogeneous
Web services [4].

Web service description is one of the important ingredients for Web service com-
position. In fact, selecting, using, and composing services in efficient and correct
manner, requires to provide rich specifications for describing various kind of impor-
tant service properties. Indeed, in real life scenarios, Web services and more par-
ticularly Web service composition depends on several properties, such as those
related to messages choreography constraints [4], security [15], and timed prope
rties [13, 25].

In this chapter, we focus on the Web service composition synthesis problem where
we consider qualitative properties associated with quantitative properties. Qualita-
tive properties define messages choreography constraints and quantitative properties
relate to timed properties which specify the necessary delays to exchange messages
(e.g., in an e-government application a prefecture must send its final decision to grant
an handicapped pension to a requester after 7 days and within 14 days). Thus, we
consider that building correct compositions requires managing message choreog-
raphy constraints augmented with timed properties. Few recent works have shown
the importance to deal with such timed properties in the compatibility analysis of
synchronous [27], asynchronous Web services [14], in checking requirements satis-
faction [18], and in calculating temporal thresholds for process activities [25].

Since services are developed autonomously, mismatches can arise and a compo-
sition can fail. Mainly, we distinguish two kind of problems: non-timed and timed
mismatches. Non-timed problems concern interfaces and sequence messages con-
flicts which happen when: (1) awaited messages are not produced by other services,
(2) awaited and sent messages are not adequate (i.e., they have different names or
different data types), and (3) there is a mutual services blocking (e.g., a service Q1
waits for a message m that must be sent by another service Q2, which also waits for
a message m′ from Q1 to send the awaited message m). Detecting and preventing
such composition timed problems is a difficult and challenging problem [13]. In
fact, when composing services, dependencies between timed properties can be cre-
ated and some dependencies can generate timed conflicts. In the context of service
composition, it is important to detect and prevent such timed conflicts to anticipate
composition failures. To do so, a possible solution, is to build a third party service,
called mediator. The notion of a mediator has been already used to solve many prob-
lems as data integration [28, 33], Web semantic heterogeneities [30], adaptation of
services interfaces (namely adaptators) [2], for discovering appropriate services to
satisfy client’s preferences [10], and as an interface between Web services [4].

16 Composition of Web Services 401

To summarize, the problem we are interested in can be defined as follows: given
a timed description of a given need, called client service in the following, and a set
of discovered timed services, how to build a composition of discovered services to
satisfy this client service. Note that we focus on correct interactions of services and
we do not consider exception handling which are out of the scope of this chapter.
The main contributions of our framework are as follows:

1. Unlike existing composition synthesis models, we propose a formal model of
asynchronous Web services that takes into account qualitative timed properties
associated to messages, data, and data constraints.

2. As we deal with timed properties, when synthesizing a composition, timed con-
flicts can arise. We propose a mechanism to discover these conflicts.

3. In addition, we propose the use of a mediator based process to anticipate and
prevent, when possible, the problem of timed (and non timed) conflicts.

4. We propose a model checking based verification process which can be used to
validate Web service compositions.

5. Finally, the primitives described in this chapter have been implemented in a
prototype that we have used to perform preliminary tests.

The reminder of the chapter is organized as follows: in Sect. 16.2 we present a
global overview of our framework. Section 16.3 describes the model we propose in
order to specify the Web services properties we consider. Section 16.4 describes our
composition approach steps. Section 16.5 presents a concrete example of composition
to illustrate our approach. In Sect. 16.6, we present a verification process which aims
at verifying compositions of Web services and an experimental setup. Related work
is introduced in Sect. 16.7, and finally Sect. 16.8 concludes.

16.2 Global Overview

In this section, we present an overview of our timed composition framework which
relies on the following elements:

• A client Service: the first element of our framework is the timed description of the
client service. This service specifies timed properties associated to the data flow
the client provides and to the data flow he expects without any reference to the
operations of available services.
• A set of discovered services: we assume that a set of timed Web services can be

discovered to answer the client service request.
• A mediator: it can access the data yet exchanged by the different services and use

them to generate any missing messages.

402 N. Guermouche and C. Godart

Case Study: e-government Application

Let us present a part of an e-government application inspired from [21] to illustrate the
related issues of the problem we handle. The goal of the e-government application
we consider is to manage handicapped pension requests. Such a request involves
three organizations: (1) a prefecture, (2) a health authority, and (3) a town hall.
We suppose that theses organizations are managed by, respectively, the prefecture
service (PS), the health authority service (HAS), and the town hall service (THS).

A high level choreography model of the process is depicted in Fig. 16.1. A citizen
can apply for a pension. Once applied, the prefecture solicits the medical entity
to deliver an examination report of the requester, and the town hall to deliver the
domiciliation attestation. After studying the received files, the prefecture sends the
notification of the final decision to the citizen. The interaction between these partners
is constrained by timed requirements:

• Once the health authority service proposes meeting dates to the citizen, this one
must confirm the meeting within 24 h.
• The prefecture requires at least 48 h and at most 96 h from receiving the file from

the requester to notifying the citizen with the final decision.
• The medical report must be sent to the prefecture after at least 120 h and at most

168 h after receiving the request of the medical report.

Notion of Timed Conflicts

Given this set of timed Web services and the client service, our aim is to build a
timed composition that satisfies this client service. When building a composition, it

Fig. 16.1 Global view of the e-government application

16 Composition of Web Services 403

is mandatory to ensure that data and timed constraints of the involved services are not
conflicting. In the context of our work, we do not focus on data type and semantics
related analysis problems. We consider simple data which can be simply checked:
two data constraints are said to be not conflicting if their solution set is not disjoint.
For example, the prefecture studies the pension request only if the requester is at
least 16 years old. If we want to create a connection between the requester and the
prefecture service to exchange the pension request while the requester is for example
at least 18 old, this is possible (i.e., the set of solution of age≥16∩ the set of solution
of age≥18 �= ∅).

While the data constraints we consider can be checked by verifying their set of
solutions, timed constraints validation needs more complex investigations. In fact,
in a collaboration, timed properties of Web services cannot be checked like simple
constraints. In other words, to assert that an interaction is timed deadlock free, it is
not sufficient to check timed constraints assigned to sending a message with timed
constraints associated to its reception. For example, the prefecture must send its final
decision after 48 h and within 96 h from receiving the pension request. On the other
side, the requester must receive it within 120 h from sending the request. If we check
these two timed constraints as simple constraints, we can conclude that the prefecture
and the requester can collaborate together. However, if we examine the progress of
the interaction, we can remark that the prefecture can send its final decision only after
the medical report has been received. This report must be sent by the medical entity
after 120 h and within 168 h from receiving the report request. Since the prefecture
must wait for the medical report to send its final decision, i.e., after 120 h, the final
decision cannot be sent within 96 h from receiving the pension request. Figure 16.2,
illustrates this conflicting interaction. The prefecture sends its decision after 48 h
and within 96 h from receiving the pension request. But during this execution, the
prefecture must wait for at least 120 h to get the medical report. This presents a
simple timed conflict. More complex timed conflicts can arise and can make fail the

Fig. 16.2 Example of impact of timed properties on web services interaction

404 N. Guermouche and C. Godart

composition. As said previously, to succeed the composition, an alternative consists
in generating a mediator whose role is to try to prevent these conflicts.

Now, let us check the scenario depicted in Fig. 16.1. We can remark that the town
hall has to wait for a medical report of the medical entity before to, for example,
deliver an handicapped card. The town hall must receive the report within 144 h,
but the medical entity can send its report only after 168 h. So, the town hall cannot
receive the report in time and the composition will fail.

But, if we examine the situation in details, we can remark that the medical entity
sends its report to the prefecture after 120 h. As a consequence, intuitively, to succeed
the collaboration, we can build an indirect connection between the medical entity
and the town hall to deliver the medical report within 144 h. This indirect connection
can be built by the mediator that generates the message for transmitting the medical
report to the town hall in advance. Note that the mediator fails when a required data
(i.e., the data involved in the required message) is not available (i.e., the data is
not accessible).

To summarize, in this section we have intuitively discussed the impact and the
importance to consider timed properties in a composition framework. During a com-
position, different services with different timed constraints can be involved. Timed
properties can give rise to timed conflicts which can make fail the composition. In
the following, we propose a formal approach which aims at composing services so
that their timed properties are respected.

16.3 Modeling the Timed Behavior of Web Services

As introduced above, one of the important ingredients in a composition framework
is the timed conversational protocol of Web services which we assume deterministic
and able to support synchronous and asynchronous communications. In our frame-
work, the timed conversational protocol specifies the sequences of messages a service
supports, the involved data flow, and the associated timed properties to exchange mes-
sages. We have adopted a deterministic timed automata based formalism to model
the timed behavior of Web services (i.e., the timed conversational protocol). Intu-
itively, the states represent the different phases a service may go through during its
interaction. Transitions enable sending or receiving a message. An output message
is denoted by !m, whilst an input one is denoted by ?m. A message involving a list
of data is denoted by m(d1, . . . , dn), or m(d̄) for short. In an asynchronous com-
munication, when a message is sent, it is inserted into a bounded message queue,
and the receiver can consume (i.e. receives) the message when it is available in the
queue. To capture the timed properties when modelling Web services, we use stan-
dard timed automata clocks [1]. The automata are equipped with a set of clocks. The
values of these clocks increase with the passing of time. Transitions are labelled by
timed constraints, called guards, and resets of clocks. The former represent simple
conditions over clocks, and the latter are used to reset values of certain clocks to

16 Composition of Web Services 405

zero. The guards specify that a transition can be fired if the corresponding guards
are satisfiable.

Let X be a set of clocks. The set of constraints over X , denoted �(X), is defined
as follows:

true | x �� c | ψ1 ∧ ψ2, where ��∈ {≤,<,=, �=,>,≥}, x ∈ X , ψ1, ψ2 ∈ �(X),
and c is a constant. With that:

Definition 16.1. A timed conversational protocol Q is a tuple (S, s0, F,M,C, X, T)
where S is a set of states, s0 is the initial state, F is a set of final states (F ⊆ S), M
is a set of messages, C is a set of constraints over data, X is a set of clocks, and T is
a set of transitions such that T ⊆ S × M × C × Ψ (X) × 2X × S with an element
of the alphabet (exchanged message (M)), a constraint over data (C), a guard over
clocks (Ψ (X)), and the clocks to be reset (2X).

The conversational protocols we consider are deterministic. A conversational pro-
tocol is said to be deterministic if for each two transitions (s, α1, c1, ψ1, s′1) and
(s, α2, c2, ψ2, s′2), the following conditions are satisfied:
α1 �= α2, or c1 ∧ c2 = false, or ψ1 ∧ ψ2 = false

Example 16.1 Figure 16.3 illustrates the timed conversational protocol of the P S,
T H S, H AS services of our use case study, and the client service. In this figure, the ini-
tial state of the PS service is p0, the set of states is {p0, p1, p2, p3, p4, p5, p6, p7, p9,

p10, p11, p12, p13, p14, p15, p16} and the set of final states is {p7, p9, p16}. This
service can send and receive messages. For example, it can send the message
examination−request (sn, handicap), denoted !examination−request (sn, han
dicap). This message has as parameters the security number (sn), and the handi-
cap (handicap) of the requester. Analogously, this service can consume a mes-
sage, for example, the message pension−request (sn, age, handicap), denoted
?pension−request (sn, age, handicap). This message has as parameters the secu-
rity number (sn), the age (age), and the handicap (handicap) of the requester. This
service achieves correctly its execution if for each interaction it reaches a final state.

To specify that the prefecture must send its final decision within a delay of 48–96 h
after receiving the pension request, we associate to the reception of the request of
the pension a reset of a clock t1 (t1 := 0) and we assign the constraint 48 ≤ t1 ≤ 96
to the sending of the final decision.

16.4 Analyzing the Timed Composition Problem

In this section, we present the algorithm that allows to synthesize a composition
of timed Web services. Our framework gathers three steps: (1) creating timed P2P
connections between the client service and the discovered services (see Sect. 16.4.1),
(2) discovering timed conflicts (see Sect. 16.4.2), (3) generating a mediator that tries
to step in to succeed a connection (see Sect. 16.4.3).

406 N. Guermouche and C. Godart

Fig. 16.3 Services of the e-government scenario

16 Composition of Web Services 407

16.4.1 Building Timed P2P Connections

Given a set of conversational protocols of the services and a client service, our aim is
to build a timed global automaton that characterizes the timed composition schema
(the global automaton is called Timed Composition Schema Automaton TCSA).

To build this TCSA, we introduce the concept of configuration that represents the
states of the TCSA at a given time. A configuration defines the evolution of services
states when they are interacting together (i.e., connected via channels). In the initial
configuration, all the services are in their initial states. Given a source configuration,
the TCSA reaches a new configuration when there exists two services that change
their states by exchanging a message so that no timed conflict arises.

Definition 16.2. (A Timed Composition Schema Automaton)
A timed composition schema automaton TCSA is a tuple (S, Q,M, X, L , T) such
that S is a set of configurations, Q is a set of services, M is a set of messages, L is
a set of channels, X is a set of clocks, and T is a set of TCSA transitions such that
T ⊆ S× L×Ψ (X)× S. A transition specifies that, from a source configuration, the
TCSA reaches a new configuration when a channel can be created to interconnect
two services so that the associated (ordered) timed constraints are satisfied. The set
of channels L is defined as a set of (ps, pr ,m(d)), with ps, pr ∈ Q, and the tuple
(ps, pr ,m(d)) specifies that the service ps sends the message m(d), that involves
the set of data types (d), to the service pr . In our composition framework, a mediator
can be generated, hence the set of considered services is Q = {R, A,Med}, such
that R is the client service, A is the set of the available services, and Med is the
generated mediator.

Among the transitions of the different services, we distinguish two kinds of tran-
sitions: passive transitions and non-passive transitions.

• A passive transition is a timed (resp. non-timed) transition that has timed con-
straints of the form x ≤ v (resp. x < v). In fact, these transitions are considered
passive because they do not give rise to timed conflicts.
• A non-passive transition is a timed transition that has timed constraints of the

form x ≥ v (resp. x > v). In fact, timed conflicts can arise when these transitions
precede transitions that have constraints of the form x ≤ v (resp. x < v).

The approach of composition is based on the Algorithm 1. This algorithm aims
to build connections between the different services to try to satisfy the client service.
The steps of this algorithm can be described as follows:

From the set of transitions T , it isolates passive transitions Tp and non-passive
transitions Tnp. Initially, it tries to connect each transition of the client service with
the transitions of the different services. Note that this algortihm tries to connect pas-
sive transitions before non-passive transitions. In fact, the study we have performed
shows that timed conflicts can arise when non-passive transitions precede passive
transitions. When the connection fails, this algorithm calls the Algorithm 3 that aims
at generating the mediator. When a connection is created, the Algorithm 2 checks
if the created connection does not give rise to timed conflict. In the following, we
present the process of discovering timed conflicts.

408 N. Guermouche and C. Godart

16.4.2 Making Explicit the Implicit Timed Constraints
Dependencies

As said previously, when creating TCSA transitions, implicit timed dependencies
can be created. In that case, timed conflicts can arise. In order to discover timed
conflicts when combining services, we need mechanisms for making explicit the
implicit timed dependencies. To do so, we propose the clock ordering process. The
idea behind the clock ordering process is to define an order between the different
clocks of the services for each new TCSA transition.

To explain why simple checking of timed constraints as simple constraints (called
local checking) is not sufficient to detect conflicts, we consider the following example
depicted in Fig. 16.4.

Example 16.2 Let us consider the two timed conversational protocols P and P ′. We
start by building the TCSA of the two conversational protocols by considering the
timed constraints as simple constraints, i.e., we check locally the timed constraints
of the transitions.

As we can see, the service P sends the message m0 and resets the clock x .
The service P ′ can receive this message. So we can build the TCSA transition
(s0s′0,m0, x1 = 0, s1s′1). Then the service P ′ sends the message m1 and resets
the clock y. The service P can receive the message m1. We build the TCSA tran-
sition (s1s′1,m1, y = 0, s2s′2). Later, the service P sends the message m2, the ser-
vice P ′ can receive it after 20 units of time. Hence, we build the TCSA transi-
tion (s2s′2,m2, y ≥ 20, s3s′3). After that, the service P ′ sends the message m3, the
service P must receive it within 10 units of time. We build the TCSA transition
(s3s′3,m3, x < 10, s4s′4). As we can see in Fig. 16.4a, by simply checking timed
constraints of transitions, we could build a TCSA.

(a) (b)

Fig. 16.4 Make explicit the implicit timed constraints dependency. a Local checking of the con-
straints of the transitions. b Clock ordering

16 Composition of Web Services 409

However, the message m2 can be exchanged after 20 units of time and m3 can be
exchanged within 10 units of time. As m3 can be exchanged after exchanging the
message m2, it can be exchanged only after 20 units of time. However, the message
m3 should be exchanged within 10 (i.e., [0, 10]) units of time and after 20 (i.e., [20,
∞)) units of time, which is a contradiction and represents a timed conflict. To cater
for such implicit timed properties, we propose to perform a clock ordering process.
This process allows to define an order between the clocks of the TCSA transitions.
Below, we show how we define the clock order.

The two services can exchange the message m0 via the TCSA transition (s0s′0,m0,

x = 0, s1s′1). Then when building the TCSA transition (s1s′1,m1, y = 0, s2s′2)

410 N. Guermouche and C. Godart

we can define the order y ≤ x since y is reset after x . So we associate this order to
the TCSA transition as follows (s1s′1,m1, 0 ≤ y ≤ x, s2s′2). Then, the service P can
send the message m2 to the service P ′ which can receive it after 20 units of time. So
when the two services exchange the message m2, (0 ≤ y ≤ x) ∧ (y ≥ 20) must be
satisfied. We build the TCSA transition (s2s′2,m2, 0 ≤ y ≤ x, y ≥ 20, s3s′3). Until
now, there is no timed conflict. Note that we propagate the constraint y ≥ 20 over the
successor transitions. When the service P ′ sends the message m3, the service P can
receive it within 10 units of time, i.e., 20 ≤ y ≤ x ≤ 10 must be satisfied. However,
this latter induces to a timed conflict (20 ≤ 10). As we can see in Fig. 16.4b, by
defining a clock ordering when combining services, implicit timed conflicts can be
discovered.

The Algorithm 2 allows to define an order between the different clocks of ser-
vices. Based on the computed order, it detects timed conflicts. This algorithm has as
input a candidate TCSA transition ti = (si ,mi (d), ci , ψi ,Yi , s′i). To discover timed
conflicts, it proceeds as follows.

• It propagates timed constraints, of the form x > v (resp. x ≥ v), from a predecessor
transition ti−1 to the transition ti .
• A clock z which is reset in a predecessor transition ti−1, has a value bigger than a

clock y which is reset in the current transition ti . Hence, it defines the order y ≤ z.
• In addition, it propagates the order z1 ≤ · · · ≤ zn of the predecessor transition

ti−1.
• If in the transition ti there exists a constraint of the form x ≤ v (resp. x ≥ v)

and at the same time, a clock y is reset, then it defines the order x − y ≤ v (resp.
x − y ≥ v). That means, the difference between the two clocks x and y is always
less (resp. bigger) than v.
• If among the set of constraints and defined orders, there exists two constraints

x ≥ v and x ′ ≥ v′, and at the same time, there is an order of the form x − x ′ ≥ v,
it implies the order x ≥ v + v′. In fact, this order allows to consider the clocks
value accumulation.

By applying theses steps when building TCSA transitions, timed conflicts are
discovered if at least one of the following conditions is satisfied.

• There exists an order of the form v ≤ x1 ≤ · · · ≤ xn ≤ v′ where v′ ≤ v.
• There exists three constraints x ≥ v′ and y ≤ v′′ and x − y ≤ v with v′ − v′′ > v

(i.e., following the constraints x ≥ v′ and y ≥ v′′, the difference x − y ≤ v is
violated).
• There exists three constraints x ≤ v′, y ≤ v′′ and x − y ≥ v with v′ < v (i.e., the

constraint x − y ≥ v is violated),
• There exists three constraints x ≤ v′, y ≥ v′′, and x − y ≥ v with v′ − v′′ < v

(i.e., the constraint x − y ≥ v is violated).

16 Composition of Web Services 411

The clock ordering process is very important as it allows to predict timed conflicts.
A simple technique such as using only a mediator, whose aim is to provide messages
without a clock ordering process, will be insufficient and cannot resolve a problem
when it arises (i.e., when a timed conflict occurs it means that timed properties are
violated). Indeed, our goal is to predict and prevent timed conflicts before they arise.
To do so, we use the clock ordering process in association with a mediator.

16.4.3 Generation of a Timed Mediator

As said previously, because of timed (and non-timed) conflicts, a timed P2P con-
nection process can fail. The mediator aims to prevent these conflicts by creating
the required messages. In our approach, a required message is created taking the

412 N. Guermouche and C. Godart

involved data from the history of past exchanged messages, i.e., the current available
data (we assume here that data having the same name, have also the same value).

In order to produce the required messages, we check if the involved data are
available, i.e, they have been already exchanged. In other terms, the mediator reuses
the data historic to produce the required messages.

The mediator is defined using the computed TCSA, by adding input, output and
empty messages. As long as the TCSA can be executed, the mediator does nothing.
When two services can exchange a message and there are clocks which are reset,
the mediator resets the same clocks via an empty transition. In fact, these clocks can
be used later by the mediator to consume messages within a defined time window,
whilst, when a deadlock can arise, the mediator generates the required message to
prevent this deadlock.

16.5 Back to the Case Study

In order to illustrate the approach presented in this chapter, we propose to show a con-
crete composition example using the P S, H AS, T H S services, and the client service
introduced in Sect. 16.2. We first try to build a TCSA (Sect. 5.1, Fig. 16.5a without
the timed involvement of a mediator. Then we introduce the mediator (Sect. 5.2,
Fig 16.5b to resolve timed problems.

16.5.1 Composition Without the Timed Involvement of the Mediator

As in our framework, a mediator can be involved, we generate an empty media-
tor that has initially only one state m0. The initial configuration of the TCSA is

http://dx.doi.org/10.1007/978-1-4614-7518-7_5
http://dx.doi.org/10.1007/978-1-4614-7518-7_5

16 Composition of Web Services 413

(a)

(b)

Fig. 16.5 Composition without the timed involvement of the mediator. a A conflicted TCSA. b The
associated mediator

s0 p0r0d0m0 (respectively the client service, PS, HAS, THS, and the mediator are
in their initial states). From the current state of the client service s0, the message
!pension−request (sn, age, handicap) can be sent. As we can remark, the P S ser-
vice waits for this message. Since, the constraints over data (age ≥ 18 and age ≥ 16)
are not disjoint, we can connect the two transitions (s0, !pension−request (sn, age,
handicap), age ≥ 18, t5 = 0, s1) and (p0, ?pension−request (sn, age, handic
ap), age ≥ 16, t1 = 0, p1). When the two transitions are fired, the two clocks
t1 and t5 are reset. So, we generate an empty mediator transition that allows to reset
the same clocks. In fact, theses clocks can be used later to specify constraints to
produce or consume messages. We build a global TCSA transition that connects
the two transitions of the client and P S services with the transition of the mediator
(s0 p0r0d0m0, pension−request (sn, age, handicap), t1 = t5 = 0, s1 p1r0d0m1).
The new configuration becomes s1 p1r0d0m1 and the new current state of the client
service becomes s1. From this new configuration, the current transition of the client
service is (s1, ?medical−examination(reason), s2). There is no transition that
enables sending the message medical−examination(reason). So we check if the
mediator can produce this message. Since the data reason has not been already
exchanged, the mediator cannot generate the message medical−examination(reas
on). Among the services transitions, we choose the transition (p1, !noti f ication(pre
f Code), t2 = 0, p2). Since, the H AS service can consume it, we can connect them.
As the clocks t2 and t3 are reset, we generate an empty mediator transition that reset
the same clocks. We build the TCSA transition (s1 p1r0d0m1, noti f ication(pre f Co
de), t2 ≤ t5, t2 = t3, s1 p2r0d1m2). From the new configuration, the HAS ser-
vice waits for the message examination−request (sn, handicap) that must be
consumed within 24 h from receiving the message noti f ication(codePre f). The
message examination−request (sn, handicap) can be sent by the P S after 36 h
from sending the message noti f ication(codePre f). We build the TCSA transition
(s1 p2r0d1m2, examination−request (sn, handicap), t2 = t3, t2 ≤ t5,
t3 ≤ 24, t2 ≥ 36, s1 p3r0d2m2). This transition is conflicting, since t2 = t3, t3 ≤ 24
et t2 ≥ 36. Thus, we can see that without involving the mediator to handle timed
conflicts, the compositions fails.

414 N. Guermouche and C. Godart

16.5.2 Involving the Mediator

We show here how the mediator can be involved to handle timed conflicts.
To generate the TCSA (Fig. 16.6a) and the associated timed mediator (Fig. 16.6b),

we use the following steps. We apply the same steps described above to reach the con-
figuration s1 p2r0d1m2. From this configuration, the HAS service can fire the passive
transition (d1, ?examination−request (sn, handicap), t3 ≤ 24, d2). Since the cor-
responding transition of the PS service (p2, !examination−request (sn, handicap),
t2 ≥ 36, p3) is a non-passive transition, we check if the mediator can generate the
message examination−request (sn, handicap). The data sn, and handicap have
been already exchanged. Hence, the mediator can generate the required message
examination−request (sn, handicap)via the transitions (m2, !examination−req
uest (sn, handicap), t3 ≤ 24,m3). When the message is generated, we build the
global transition (s1 p2r0d1m2, examination−request (sn, handicap),
t2 = t3, t2 ≤ t5, t3 ≤ 24, s1 p2r0 d2m3). From the new configuration s1 p2r0d2m3, we
choose the passive transition (d2, ! f orm−to− f ill(medical Form, reason), d3) of
the HAS service. As there is no service that waits for the message f orm−to− f ill
(medical Form, reason), we generate the mediator transition to consume this
message, i.e., (m3, ? f orm−to− f ill(medical Form, reason),m4), and then we
build the global transition (s1 p2r0d2m3, f orm−to− f ill(medical Form, reason),
s1 p2r0d3m4). From the new configuration, the current client transition is (s1, ?medic
al−examination(reason), s2). There is no transition that enables sending the
message medical−examination(reason). The mediator can produce the message
medical−examination(reason), via the transition (m4, !medicalexamination
(reason),m5), and then we build the TCSA transition (s1 p2r0d3m4, medical−
examination(reason), s2 p2r0d3m5). The current transition of the client service
is (s2, ?medical− f orm(medical Form), s3). The data medical Form has been
already sent by the HAS service. So, the mediator can generate the missing message

%

4

*

6

% % *+

7

%

*

% *

%

(a)

(b)

Fig. 16.6 The timed composition schema automaton (TCSA). a A part of the generated TCSA. b
A part of the associated mediator

16 Composition of Web Services 415

medical− f orm(medical Form) via the transition (m5, !medical− f orm(medical
Form),m6). Once the transition of the mediator is generated, we build the global
transition (s2 p2r0d3m5,medical− f orm(medical Form), s3 p2r0d3m6). From the
new configuration, we connect respectively the two transitions of the client and H AS
services (s3, ! f orm(f illed Form), s4) and (d3, ! f orm(f illed Form), d4) via the
TCSA transition (s3 p2r0d3m6, f orm(f illed Form), s4 p2r0d4m6).

By applying the same steps, either we build the TCSA, or we detect a conflict that
cannot be avoided.

16.6 Formal Verification and Validation of the Built Composition

As presented previously, when the composition succeeds, the algorithm generates
a mediator and produces a global timed composition schema TCSA. Such a built
TCSA is an optimized product built on the fly: indeed, we build progressively the
product of timed protocols rather than building the whole product.

The built TCSA is correct if it is deadlock free and it satisfies the client service.
Checking that the TCSA is deadlock free can be reduced to checking reachability
properties. This problem is PSPACE-complete in general. The problem of client
service satisfaction checking can be reduced to the inclusion problem, which is
decidable [1]. In fact, the formal model of timed conversational protocol that we have
defined relies on a deterministic timed automata for which closure and decidability
properties have been proved [1].

In the following, we present a formal verification process which aims to validate
the built composition. We note that this verification process is generic and can be used
to verify atomic and composite services built automatically or manually. This process
relies on a model checking approach inspired from [14] and using the UPPAAL model
checker.

16.6.1 UPPAAL Overview

UPPAAL is a model checker for the verification and simulation of real time sys-
tems [19]. An UPPAAL model is a set of timed automata, clocks, channels for systems
(automata) synchronization, variables and additional elements [19].

Each automaton has one initial state. Synchronization between different processes
can take place using channels. A channel can be written into (denoted as channel_na
me !), and can be read (denoted as channel_name ?). A channel can be defined as
urgent to specify that the corresponding transition must be fired as soon as possible,
i.e. immediately and without a delay. Variables and clocks can be associated to
processes (automaton). Conditions on these clocks and variables can be associated
to transitions and states of the process. The conditions associated to transitions,
called guards, specify that a transition can be fired if the corresponding guards are

416 N. Guermouche and C. Godart

satisfiable. The conditions associated to states, called invariants, specify that the
system can stay in the state while the invariant is satisfiable.

The UPPAAL properties query language is a subset of Computation Tree Logic
(CTL) [16]. The properties that can be analyzed by UPPAAL are:

• A[]ψ : for all the automata’ paths, the property ψ is always satisfiable, i.e., for
each transition (or a state) of each path, the property ψ is satisfiable.
• A <> ψ : for all the automata’ paths, the property ψ is eventually satisfiable, i.e.,

for each path , there is at least one transition (or a state) in which the property ψ
is satisfiable.
• E[]ψ : there is at least a path in the automata such that the property ψ is always

satisfiable, i.e., there is at least one path such that for each transition (or a state),
the property ψ is satisfiable.
• E <> ψ : there is at least a path in the automata such that the property ψ is

eventually satisfiable, i.e., there is at least one transition (or a state) of at least one
path in which the property ψ is satisfiable.
• ψ � φ: when ψ holds, φ must hold.

In the following, we present the formal primitives we propose for composition
checking.

16.6.2 Verification of Web service Compositions

In this section, we present the verification process we propose using the model
checker UPPAAL. The purpose of this verification process is to check if the built
composition holds deadlocks. In this context, we define three composition classes:
(1) fully correct composition , (2) partially correct composition, (3) incorrect com-
position.

16.6.2.1 Fully Correct Composition

We say that a composition is correct if it is (timed and non-timed) deadlock free. This
is equivalent to check that its corresponding TCSA does not hold timed and non-
timed conflicts. Formally, checking that a composition is fully correct is equivalent
to check that all the paths of the TCSA lead to a final state.

Let Q be a TCSA and s f its final state. Q is said to be fully correct, if the following
CTL formula is correct:

A <> Q.s f (16.1)

16 Composition of Web Services 417

16.6.2.2 Partially Correct Composition

A composition is said to be incorrect if its TCSA is not deadlock free. Formally, a
composition is not fully correct if there exists at least a path of the TCSA which does
not lead to a final state. This latter can be specified as the following CTL formula:

E[] not Q.s f (16.2)

When the composition is not fully correct, we check if it can achieve at least one
correct execution. Formally, a composition can terminate at least one execution if its
final state can be reached via at least one path. The former property can be specified
as follows.

E <> Q.s f (16.3)

A composition is said to be partially correct if it is not fully correct (i.e., the
property 16.2 is satisfiable) but at the same time it can fulfil at least one execution
(i.e., the property 16.3 is satisfiable).

16.6.2.3 Incorrect Composition

When the composition is not even partially correct, we say that the composition is
fully incorrect. As specified by the following CTL formula, a composition is said to
be fully incorrect if all its TCSA paths do not lead to a final state.

A[] not Q.s f (16.4)

In order to experiment the proposed approach, a prototype has been imple-
mented [12]. Its underlying architecture is depicted in Fig. 16.7. The tool inputs the
description of services and the client service as XML documents. The P2P coordi-

Fig. 16.7 Underlying archi-
tecture of the prototype.

418 N. Guermouche and C. Godart

nation component tries to build P2P connections (channels) among the services and
updates the TCSA description thanks to the Algorithm 1. A third component, the
timed mediator component, steps in to consume extras messages or to produce, if
possible, the required messages using the Algorithm 3. We note that the data historic
repository is a database in which we store the involved exchanged data.

16.7 Related Work and Discussion

The research field about how to synthesize automatically a composition is very
active. Several research works have been published on automatic service compo-
sition, using techniques based on situation calculus [24, 29], transition based sys-
tems [9, 23, 11], or symbolic model-checking applied to planning [26]. Unlike the
proposed approaches, in our framework we cater for timed properties when compos-
ing services.

In [31, 32] the authors consider services as views over data sources. They build on
the idea that heterogeneity of data sources may be overcome by exploiting services
as wrappers of different information sources, thus providing uniform access to them,
exploiting standard protocols such as SOAP and XML. Each data source, i.e., service,
is described in terms of input and output parameters (the latter provided by the
source), binding patterns and additional constraints on the source. The latter allow to
characterize the output data. Analogously, these works consider only atomic services.
However, the control flow between data is a crucial aspect. Furthermore, the authors
do not consider timed properties.

Like the above works in [20, 22], the considered Web services are atomic. The
behavioral aspect is not considered and the timed aspects are not taken into account.

In [6], Web services are described by their BPEL specification. The authors pro-
posed to translate the BPEL specifications into a finite state machine (FSM) spec-
ification. As this composition approach is not oriented by the client need (there is
no client need notion), the composition consists in performing the product of the
whole FSM specification. The composition problem consists then to find paths in the
computed cartesian product that satisfies reachability properties. According to our
work, this work does not cater for timed properties when building a composition.
Moreover, in [6], the authors do not deal with the problem of missing messages, since
they do not consider data and communications capabilities as in our framework. In
addition, our composition approach is oriented by the client need, defined upon the
required data flow, that allows to optimize the cartesian product: we compose only
the relevant parts of the services and not the whole services.

In [9], Web services exchange asynchronous messages and they are modelled as
Mealy machines. The authors investigate an approach dealing with the unexpected
interactions between the local and global behavior of composite Web services. How-
ever, only messages without parameters are considered. Moreover, the authors are
not concerned with how composing services but they are interested in analyzing the

16 Composition of Web Services 419

local and global behavior of Web services in a composition. Furthermore, the authors
do not deal with timed properties.

An other remark is that, works that consider the control flow, address the compo-
sition problem at process level, i.e., they consider the operations the services perform
[4, 5, 8, 17]. For example, in [4], one of the important assumptions is that the client
need (called goal service) is specified upon the operations of the services. The pre-
cise specification of the goal service allows for precise matching with available, more
elementary services. Nevertheless, in real life scenarios, it is not always possible for
a client to precisely specify his need according to the operations of the services.
A simple client does not have any preliminary knowledge about the service opera-
tions.

Whilst, in our framework, the client need (client service) is specified by the (input
and output) data the client expects. Moreover, in [4], the authors do not deal with
timed properties when composing services.

The few frameworks that deal with timed properties in Web services specification,
focus on compatibility and replaceability analysis [27] and timed model checking
a given composition [18]. In both works, the authors consider synchronous Web
services. While, in our work, we deal with asynchronous Web services. Furthermore,
these works do not deal with the composition synthesis problem of asynchronous
timed services. For instance, in [18], the authors assume that the composition is
already built.

In [7], the authors focus on the interoperability problem of networked systems
where they consider non-functional properties such as the response time (e.g., a
consumer who asks for photos must get a list of photos in less than x ms). This work is
part of the Connect Integrated Project which aims at enabling continuous composition
of networked systems [3]. The non functional properties the author consider are
simple and are associated to atomic systems (analogously simple services) which
must be connected (analogously composed). Moreover, the approach proposed in [7]
aims at monitoring the connected system to check that the non-functional properties
such as response time are respected. In our work, we consider timed properties
associated to complex services and we handle the problem of building compositions
so that timed properties of the involved services are analysed to detect and prevent
timed conflicts.

16.8 Conclusion and Perspectives

In this chapter, we present a formal approach to handle timed properties in asynchro-
nous Web services composition. Our framework is oriented by the client data flow.
To reach this goal, we first propose a timed automata based formal model of timed
conversational protocols. This model provides an operational semantic to consider
timed properties of asynchronous communicating Web services. This model gathers:
(1) supported messages, (2) data, (3) constraints over data, (4) timed constraints, and
(5) the asynchronous conversational aspect of Web services. Based on this model,

420 N. Guermouche and C. Godart

we provide an algorithm which aims at building a composition so that no timed con-
flict arises. In this context, we use the clock ordering process that allows to discover
implicit timed conflicts that can arise when composing services.

Unfortunately, due to the heterogeneous nature of Web services, timed P2P con-
nections can fail, and the composition too. To tackle this problem, we propose to
generate a third party service, called mediator. The role of this latter is to avoid
conflicts. Obviously, the mediator has a crucial role when composing services, since
it contributes to connect the required services by producing the expected messages.

The proposed approach has been implemented in a prototype, which has been
used to perform preliminary experiments. Currently, we are trying to carry out fine
grained experimentations on a set of richer services.

The framework we presented in this chapter focuses on the composition of timed
asynchronous services and considers correct interactions of services. Our ongoing
work studies the problem of exceptions handling within the timed composition frame-
work. Moreover, we plan to extend our approach with semantic capabilities in order
to support more complex timed properties. This will allow us to construct a com-
position not only by considering timed properties associated to message exchanges,
but also more global constraints.

Another interesting research direction consists in studying dynamic substitution
in order to resolve timed conflicts which can be complementary with a mediator
based approach. In addition, we plan to extend our approach to support dynamic
instantiation when composing timed Web services. In this chapter, we assume that
only one instance of each service is required. However, in real scenarios, we can need
one or several instances of each service. So, it is interesting to extend the proposed
approach to handle such features.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
2. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing adapters for

web services integration. In: CAiSE, pp. 415–429 (2005)
3. Bennaceur, A., Cavallaro, L., Inverardi, P., Issarny, V., Romina Spalazzese Daniel Sykes, M.T.:

Dynamic connector synthesis: revised prototype implementation. In: Deliverable D3.3 ICT
FET IP Project (2012)

4. Berardi, D., Calvanese, D., Giacomo, G.D., Hull, R., Mecella, M.: Automatic composition of
transition-based semantic web services with messaging. In: Proceedings of the 31st Interna-
tional Conference on Very Large Data Bases, pp. 613–624. ACM, 30 August 2005–2 September
2005

5. Berardi, D., Calvanese, D., Giacomo, G.D., Mecella, M.: Composition of services with nonde-
terministic observable behavior. In: Service-Oriented Computing—ICSOC 2005, Third Inter-
national Conference (ICSOC), pp. 520–526 (2005)

6. Bertoli, P., Pistore, M., Traverso, P.: Automated web service composition by on-the-fly belief
space search. In: Proceedings of the Sixteenth International Conference on Automated Planning
and Scheduling, ICAPS 2006, pp. 358–361 (2006)

16 Composition of Web Services 421

7. Bertolino, A., Inverardi, P., Issarny, V., Sabetta, A., Spalazzese, R.: On-the-fly interoperability
through automated mediator synthesis and monitoring? In: 4th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA’10) (2010)

8. Brogi, A., Popescu, R.: Towards semi-automated workflow-based aggregation of web services.
In: Service-Oriented Computing—ICSOC 2005, Third International Conference (ICSOC), pp.
214–227 (2005)

9. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and
analysis of e-service composition. In: Proceedings of the international conference on World
Wide Web, WWW 2003, pp. 403–410 (2003)

10. Charif, Y., Sabouret, N.: An overview of semantic web services composition approaches. Electr.
Notes Theor. Comput. Sci. 146(1), 33–41 (2006)

11. Díaz, G., Cambronero, M.E., Pardo, J.J., Valero, V., Cuartero, F.: Automatic generation of
correct web services choreographies and orchestrations with model checking techniques. In:
Advanced International Conference on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT/ICIW’06), p. 186, 19–25 February 2006

12. Guermouche, N.: Timed interation-aware web service composition (wrtiten in french: Etude des
interactions temporises dans la composition de services web). Ph.D. thesis, Nancy university,
France (2010)

13. Guermouche, N., Godart, C.: Timed properties-aware asynchronous web service composition.
In: Proceedings of the 16th International Conference on Cooperative, Information Systems
(CoopIS’08) pp. 44–61, 9–14 November 2008

14. Guermouche, N., Godart, C.: Timed model checking based approach for web services analysis.
In: IEEE International Conference on Web Services (ICWS’09) (2009)

15. Guermouche, N., Benbernou, S., Coquery, E., Hacid, M.S.: Privacy-aware web service protocol
replaceability. In: IEEE International Conference on Web Services (ICWS’07), pp. 1048–1055,
9–13 July 2007

16. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. Inf. Comput. 111(2), 193–244 (1994)

17. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the curtain. In: Pro-
ceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pp. 1–14 (2003)

18. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, verification, and computation
of timed properties in web service compositions. In: Proceedings of the IEEE International
Conference on Web Services (ICWS), pp. 497–504 (2006)

19. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf.
1, 134–152 (1997)

20. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services. In:
Proceedings of the 8th International Conference on Principles and Knowledge Representation
and Reasoning (KR’02), pp. 482–496, 22–25 April 2002

21. Mecella, M., Batini, C.: Enabling italian e-government through a cooperative architecture.
IEEE Comput. 34(2), 40–45 (2001)

22. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the semantic
web. VLDB J. 12, 333–351 (2003)

23. Muscholl, A., Walukiewicz, I.: A lower bound on web services composition. In: Proceedings
of Foundations of Software Science and Computation Structures (FOSSACS), vol. 4423, pp.
274–287. LNCS (2007)

24. Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web
services. In: Proceedings of the International Conference on World Wide Web, WWW 2002,
pp. 77–88 (2002)

25. Pichler, H., Wenger, M., Eder, J.: Composing time-aware web service orchestrations. In: Pro-
ceedings of the 21st International Conference on Advanced Information, Systems Engineering
(CAiSE’09), pp. 349–363, 8–12 June 2009

26. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web services by
planning at the knowledge level. In: IJCAI, pp. 1252–1259 (2005)

422 N. Guermouche and C. Godart

27. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Fine-grained compatibility and replaceability
analysis of timed web service protocols. In: The 26th International Conference on Conceptual
Modeling (ER) (2007)

28. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed, heterogeneous,
and autonomous databases. ACM Comput. Surv. 22(3), 183–236 (1990)

29. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via generic procedures
and customizing user preferences. In: International Semantic Web Conference, pp. 597–611
(2006)

30. Stollberg, M., Cimpian, E., Mocan, A., Fensel, D.: A semantic web mediation architecture. In:
Canadian, Semantic Web, pp. 3–22 (2006)

31. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A view integration approach to dynamic composi-
tion of web services. In: Proceeding of 2003 ICAPS Workshop on Planning for Web Services
(2003)

32. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A data integration approach to automatically com-
posing and optimizing web services. In: Proceedings of the 2nd ICAPS International Workshop
on Planning and Scheduling for Web and Grid Services (2004)

33. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Comput.
25(3), 38–49 (1992)

Chapter 17
Adaptive Composition and QoS Optimization
of Conversational Services Through Graph
Planning Encoding

Min Chen, Pascal Poizat and Yuhong Yan

Abstract Service-Oriented Computing supports description, publication, discov-
ery, composition of services as well as QoS optimization of service composition
to fulfil end-user needs. Yet, service composition processes commonly assume that
service descriptions and user needs share the same abstraction level, and that ser-
vices have been pre-designed to integrate. To release these strong assumptions and
to augment the possibilities of composition, we add adaptation features into the ser-
vice composition process using semantic structures for exchanged data, for service
functionalities, and for user needs. Graph planning encodings enable us to retrieve
service compositions efficiently. Our composition technique supports conversations
for both services and user needs, and it is fully automated and can interact with
state-of-the-art graph planning tools. In addition to service composition, QoS opti-
mization aims at satisfying end-user needs about quality requirements. However,
most existing work on QoS optimization is studied on the assumption that services
are stateless. To obtain a solution with the best QoS value, we propose a QoS-aware
service composition method to achieve QoS optimization during the adaptive com-
position over conversational services. An example is given as a preliminary proof of
our QoS-aware service composition method.

M. Chen (B) · Y. Yan
Concordia University, Montreal, Canada
e-mail: minchen2008halifax@yahoo.com

Y. Yan
e-mail: yuhong@encs.concordia.ca

P. Poizat
Université Nanterre Paris Ouest La Défense, Nanterre, France
e-mail: pascal.poizat@lri.fr

P. Poizat
LIP6 UMR 7606 CNRS, Orsay, France

A. Bouguettaya et al. (eds.), Web Services Foundations, 423
DOI: 10.1007/978-1-4614-7518-7_17,
© Springer Science+Business Media New York 2014

424 M. Chen et al.

17.1 Introduction

Task-Oriented Computing envisions a user-friendly pervasive world where user tasks
corresponding to a (potentially mobile) user would be achieved by the automatic
assembly of resources available in her/his environment. Service-Oriented Comput-
ing [28] (SOC) is a cornerstone towards the realization of this vision, through the
abstraction of heterogeneous resources as services and automated composition tech-
niques [17, 22, 30]. However, services being elements of composition developed
by different third-parties, their reuse and assembly naturally raises composition mis-
match issues [2, 13]. Moreover, Task-Oriented Computing yields a higher description
level for the composition requirements, i.e., the user task(s), as the user only has an
abstract vision of her/his needs which are usually not described at the service level.
These two dimensions of interoperability, namely horizontal (communication proto-
col and data flow between services) and vertical matching (correspondence between
an abstract user task and concrete service capabilities) should be supported in the
composition process.

Software adaptation is a promising technique to augment component reusability
and composition possibilities, thanks to the automatic generation of software pieces,
called adaptors, solving mismatch out in a non-intrusive way [31]. More recently,
adaptation has been applied in SOC to solve mismatch between services and clients
(e.g., orchestrators) [12, 23, 27]. In this article we propose to add adaptation features
in the service composition process itself. More precisely, we propose an automatic
composition technique based on planning, a technique which is increasingly applied
in SOC [15, 29] as it supports automatic service composition from underspecified
requirements, e.g., the data one requires and the data one agrees to give for this, or
a set of capabilities one is searching for. Such requirements do not refer to service
operations or to the order in which they should be called, which would be ill-suited
to end-user composition.

In addition to service composition, QoS optimization aims at satisfying end-user
needs about quality requirements. To obtain the solution with the best QoS values for
a service composition process, we propose a QoS-aware service composition method
to realize QoS optimization during the adaptive service composition.
Outline. Preliminaries on planning are given in Sect. 17.2. After introducing our
formal models in Sect. 17.3, Sect. 17.4 presents our encoding of service composition
into a planning problem, and Sect. 17.5 proposes a QoS-aware service composition
method over conversational services through planning graph as an extension work.
Related work is discussed in Sect. 17.6 and we end with conclusions and perspectives.

17.2 Preliminaries

In this section we give a short introduction to AI planning [18].

17 Adaptive Composition and QoS Optimization of Conversational Services 425

Definition 17.1. Given a finite set L = {p1, . . . , pn} of proposition symbols, a
planning problem [18] is a triple P = ((S, A, γ), s0, g), where:

• S ⊆ 2L is a set of states.
• A is a set of actions, an action a being a triple (pre, e f f ect−, e f f ect+) where

pre(a) denotes the preconditions of a, and e f f ect−(a) and e f f ect+(a), with
e f f ect−(a) ∩ e f f ect+(a) = ∅, denote respectively the negative and the positive
effects of a.
• γ is a state transition function such that, for any state s where pre(a) ⊆ s,
γ (s, a) = (s − e f f ect−(a)) ∪ e f f ect+(a).
• s0 ∈ S and g ⊆ L are respectively the initial state and the goal.

Two actions a and b are independent iff e f f ect−(a)∩ [pre(b)∪ e f f ect+(b)] = ∅
and e f f ect−(b) ∩ [pre(a) ∪ e f f ect+(a)] = ∅. An action set is independent when
its actions are pairwise independent. A plan is a sequence of actions π = a1; . . . ; ak

such that ∃s1, . . . , sk ∈ S, s1 = s0, ∀i ∈ [1, k], pre(ai) ∈ si−1 ∧ γ (si−1, ai) = si .
The definition in [18] takes into account predicates and constant symbols which are
then used to define states (ground atoms made with predicates and constants). We
directly use propositions here.

Graph Planning [7] is a technique that yields a compact representation of rela-
tions between actions and represent the whole problem world. A planning graph
G = (V, E) is a directed acyclic leveled graph. It has two kinds of vertices V =
VA ∪ VP where VA is the vertices representing actions and VP representing propo-
sitions. And edges E = (VP × VA) ∪ (VA × VP) connect the vertices. The levels
alternate proposition levels Pi and action levels Ai . The initial proposition level P0
contains the initial propositions (s0). The planning graph is constructed from P0
using a polynomial algorithm. An action a is put in layer Ai iff pre(a) ⊆ Pi−1 and
then e f f ect+(a) ⊆ Pi . Specific actions (no-ops) are used to keep data from one
layer to the next one, and arcs to relate actions with used data and produced effects.
Graph planning also introduces the concept of mutual exclusion (mutex) between
non independent actions. Mutual exclusion is reported from a layer to the next one
while building the graph. The planning graph actually explores multiple search paths
at the same time when expanding the graph, which stops at a layer Ak iff the goal is
reached (g ⊆ Ak) or in case of a fixpoint (Ak = Ak−1). In the former case there exists
at least a solution, while in the later there is not. Solution(s) can be obtained using
backward search from the goal. Planning graphs whose computation has stopped at
level k enable to retrieve all solutions up to this level. Additionally, planning graphs
enable to retrieve solutions in a concise form, taking benefit of actions that can be
done in parallel (denoted ||).

An example is given in Fig. 17.1 where we suppose the initial state is {a} and the
objective is {e}. Applying U in the first action layer, for example, is possible because
a is present; and this produces b and c. The extraction of plans from the graph is
performed using a backward chaining technique over action layers, from the final
state (objective) back to the initial one. In the example, plans U;Y, Z;Y, (U||Z);Y
and (U||Z);S can be obtained (see bold arcs in Fig. 17.1 for U;Y). However, U and Z
are in mutual exclusion. Accordingly, since there is no other way to obtain c and d

426 M. Chen et al.

a

b

e

U

YZ

d

c

a U

Z

S x

c

a

b

d

P0 A1 P1 P2A2
layers

Z: pre={a},

effect -={a},

effect +={b,d}

U: pre={a},

effect -={a},

effect +={b,c}

Y: pre={b},

effect -={ },

effect +={e}

S: pre={c,d},

effect -={ },

effect +={e}

U c

c U

U x

c U

U c

U

a proposition

action

invalid action

precondition

negative effect

positive effect

backtrack
to solution

Fig. 17.1 Graphplan example

than with exclusive actions, these two facts are in exclusion in the next (fact) layer,
making S impossible. Note that other nodes are indeed in mutual exclusion (such as
U and Z in A1, or two no-ops in A2 but we have not represented this for clarity).

17.3 Modeling

In this section, we present our formal models, grounding service composition. Table
17.1 lists the symbols used in this section. Both services and composition require-
ments support conversations. Therefore, we begin with their definition. We then
present the structures supporting the definition of semantic data and capabilities.
Finally, we present models for services and service composition requirement.

17.3.1 Conversation Modeling

Different models have been proposed to support service discovery, verification, test-
ing, composition or adaptation in presence of service conversations [3, 9, 23]. They

Table 17.1 Summary of symbols

Symbol Definition Symbol Definition

WF X A Workflow (WF) over a set of names X PA Activities
Pso XOR-Splits Psa AND-Splits
Pjo OR-Joins Pja AND-Joins
D Data Semantic Structure (DSS) K Capability Semantic Structure (CSS)
O A set of operations W A set of services

17 Adaptive Composition and QoS Optimization of Conversational Services 427

initial activity final activity
parallel

(split/join AND)
choice

(split/join XOR)

workflow notation

activity diagram
notation

Name

activity

Name

Fig. 17.2 Workflow notation and relation to the UML activity diagrams

mainly differ in their formal grounding (Petri nets, transition systems, or process
algebra), and the subset of service languages being supported. Since we target central-
ized composition (orchestration) with possible parallel service invocation, we choose
the workflow model from [19]. An important benefit of workflow models is that they
can be related via model transformation to graphical notations that are well-known
by the software engineers, e.g., UML activity diagrams (Fig. 17.2) or BPMN. Addi-
tionally, workflows are more easily mastered by a non-specialist through pre-defined
patterns (sequence, alternative choice, parallel tasks). Transition systems models
could yield a simpler encoding as a planning problem but raise issues when it comes
to implement the composition models, requiring model filtering to remove parts in
the composition models which are not implementable in the target language [23].

Definition 17.2. Given a set of activity names N , a Workflow (WF) [19] is a tuple
W F N = (P,→, Name). P is a set of process elements (or workflow nodes) which
can be further divided into disjoint sets P = PA∪Pso∪Psa∪Pjo∪Pja , where PA are
activities, Pso are XOR-Splits, Psa are AND-splits, Pjo are OR-Joins, and Pja are
AND-Joins.→⊆ P× P denotes the control flow between nodes. Name : PA → N
is a function assigning activity names to activity nodes.

We note •x = {y ∈ P|y → x} and x• = {y ∈ P|x → y}. We require that WF
are well-structured [19] and without loop. A significant feature of well-structured
workflows is that the XOR-splits and the OR-Joins, and the AND-splits and the
AND-splits appear in pairs (Fig. 17.2). Moreover, we require | • x | ≤ 1 for each x in
PA ∪ Psa ∪ Pso and |x • | ≤ 1 for each x in PA ∪ Pja ∪ Pjo.

17.3.2 Semantic Structures

In our work we use semantic information to enrich the service composition process
and its automation. We have two kinds of semantic information. Capabilities rep-
resent the functionalities that are either requested by the end-users or provided by
services. They are modelled using a Capability Semantic Structure (CSS). Further,
service inputs and outputs are annotated using a Data Semantic Structure (DSS).

428 M. Chen et al.

Table 17.2 eTablet buying—DSS relations: d1 � d2 (left), d1 �x d2 (right)

d1 d2

etablet pear_product
etelephone pear_product
pear_product product
product_price order_amount
user_address shipping_addr
user_address billing_addr
user_address address

d1 x d2

pear_product_info price product_price
pear_product_info details product_technical_information
user_info name user_name
user_info address user_address
user_info cc credit_card_info
user_info pim pim_wallet
pim_wallet paypal paypal_info
pim_wallet amazon amazon_info
paypal_info login paypal_login
paypal_info pwd paypal_pwd
amazon_info login amazon_login
amazon_info pwd amazon_pwd
credit_card_info number credit_card_number
credit_card_info name credit_card_holder_name

We define a Data Semantic Structure (DSS) as a tuple (D,�,�) where D is a set
of concepts (or semantic data type1) that represent the semantics of some data, � is
a composition relation ((d1, x, d2) ∈ �, also noted d1 �x d2 or simply d1 � d2 when
x is not relevant for the context, means a d1 is composed of an x of type d2), and �
is a subtyping relation (d1 � d2 means d1 can be used as a d2). We require there is
no circular composition. DSSs are the support for the automatic decomposition (of
d into D if D = {di | d � di }), composition (of D into d if D = {di | d � di })
and casting (of d1 into d2 if d1 � d2) of data types exchanged between services
and orchestrator. We also define a Capability Semantic Structure (CSS) as a set K of
concepts that correspond to capabilities.
Application. We will illustrate our composition technique on a simple, yet realistic,
case study: the online buying of an eTablet. A DSS describes concepts and relations
for this case study. For place matters, we only give the relations here (Table 17.2)
since concepts can be inferred from these and from the service operation signatures,
below.

1 In this paper, the concepts of semantics and type of data are unified.

17 Adaptive Composition and QoS Optimization of Conversational Services 429

Table 17.3 eTablet buying—services’ operations

Service Operation Profile

w_1 order pear_product→ pear_product_info, as_sessionid :: product_selection : 20
w_1 cancel as_sessionid→ ∅ :: nil:2
w_1 ship shipping_addr, as_sessionid→ ∅ :: shipping_setup:10
w_1 bill billing_addr, as_sessionid→ ∅ :: billing_setup:25
w_1 charge credit_card_info, as_sessionid→ ∅ :: payment:10
w_1 gift_wrapper giftcode, as_sessionid→ ∅ :: payment:20
w_1 ack as_sessionid→ tracking_num :: order_finalization:5
w_2 order product→ e_sessionid :: product_selection:5
w_2 ship shipping_addr, e_sessionid→ order_amount :: shipping_setup:7
w_2 charge_pp paypal_trans_id, e_sessionid→ ∅ :: nil:12
w_2 charge_cc credit_card_info, e_sessionid→ ∅ :: payment:15
w_2 bill billing_addr, e_sessionid→ ∅ :: billing_setup:8
w_2 finalize e_sessionid→ tracking_num :: order_finalization:6
w_3 login paypal_login, paypal_pwd→ p_sessionid :: nil:10
w_3 get_credit order_amount, p_sessionid→ paypal_trans_id :: payment:20
w_3 ask_bill address, p_sessionid→ ∅ :: billing_setup:8
w_3 logout p_sessionid→ ∅ :: nil:4

17.3.3 Services

A service is a set of operations described in terms of capabilities, inputs, outputs and
quality. Additionally, services have a conversation.

Definition 17.3. Given a CSS K and a DSS D = (D,�,�), a service is a tuple w =
(O,W F O), where O is a set of operations, an operation being a tuple (in, out, k, n)
with in ⊆ D, out ⊆ D, k ∈ K, n is the quality value, and W F O is a workflow built
over O .

For a simple service (without a conversation) w, a trivial conversation can be
obtained with a workflow where PA = O(w) (one activity for each operation),
Pso = {⊗}, Pjo = {⊗}, Psa = Pja = ∅, and ∀o ∈ PA, {(⊗, o), (o,⊗)} ⊆→. This
corresponds to a generalized choice between all possible operations. An operation
may not have a capability and the quality of the operation may not be given (we
then let k = nil). o = (in, out, k, n) is also noted o : in → out :: k : n. If several
quality values are given for operation o, we calculate the aggregated QoS value n
as an overall quality for o. How to calculate the aggregated quality value will be
introduced in Sect. 17.5.1.

Application. To fulfill the user need, we have three services: pear_store (w1, online
store for pear products), ebay (w2, general online shop) and paypal (w3, online
payment facilities). Their operations are given in Table 17.3 and their workflows are
given in Fig. 17.3. The QoS of each operation in services is supposed to be throughput.

430 M. Chen et al.

order ship bill

cancel

charge ack

gift_wrapper

order ship

charge_pp

finalizecharge_cc bill

login get_credit

logout

logoutask_bill

Fig. 17.3 eTablet buying—services’ workflows

17.3.4 Composition Requirements

A service composition requirement is given in terms of the inputs the user is ready
to provide and the outputs this user is expecting. Additionally, the capabilities that
are expected from the composition are specified, and their expected ordering given
under the form of a workflow.

Definition 17.4. Given a CSS K and a DSS D = (D,�,�), a composition require-
ment is a tuple (Din, Dout,WFK)where Din ⊆ D, Dout ⊆ D, and WFK is a workflow
build over K.

Application. The user requirement in our case study is ({etablet, user_in f o},
{tracking_num}, w f c). As far as the w f c requirement workflow is concerned,
we have two alternatives for it. The first one (Fig. 17.4, left) requires that payment
is done after shipping and billing have been set up (which can be done in parallel).
The second one (Fig. 17.4, right) is less strict and enables the payment to be done in
parallel to shipping and billing setup.

17.4 Encoding Composition as a Planning Problem

In this section we present how service composition can be encoded as a graph plan-
ning problem. We will first explain how DSS can be encoded (to solve out horizontal
adaptation). Then we will present how a generic workflow can be encoded. Based on

17 Adaptive Composition and QoS Optimization of Conversational Services 431

Fig. 17.4 eTablet buying—
requirement workflows

product_selection

shipping_setup

billing_setup

payment

order_finalization order_finalization

product_selection

shipping_setup

billing_setup

payment

this, we will then explain how services and composition requirements are encoded
(the workflow of the later solving out vertical adaptation).

17.4.1 DSS Encoding

For each d � {xi : di } in the DSS we have an action compd(
⋃

i {di },∅, {d}) and an
action decd({d},∅,⋃i {di }) to model possible (de)composition. Moreover, for each
d � d ′ in the DSS we have an action castd,d ′({d},∅, {d ′}) to model possible casting
from d to d ′.

17.4.2 Workflow Encoding

We reuse here a transformation from workflows to Petri net defined in [19]. Instead of
mapping a workflow (P,→, Name) to a Petri net, we map it to a planning problem.
Let us first define the set of propositions that are used. The behavioral constraints
underlying the workflow semantics (e.g., an action being before/after another one)
are supported through two kinds to propositions: rx,y and cx,y . We also have a
proposition I for initial states, and a proposition F for correct termination states.
F will be used both for final states and for initial states (in this case to denote that a
service can be unused). We may then define the actions that are used (Fig. 17.5):

• for each x ∈ Psa , we have an action a = ⊕x (Fig. 17.5a), for each x ∈ Pja , we
have an action a = ⊕̄x (Fig. 17.5b), and for each x ∈ PA, we have an action
a = [Name(x)]x (Fig. 17.5c). In all three cases, we set pre(a) = e f f ect−(a) =⋃

y∈•x {rx,y}, and e f f ect+(a) =⋃
y∈x•{cx,y}.

• for each x ∈ Pso, for each y ∈ x•, we have an action a = ⊗x, y (Fig. 17.5d) and
we set pre(a) = e f f ect−(a) =⋃

z∈•x {rx,z}, and e f f ect+(a) = {cx,y}.

432 M. Chen et al.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 17.5 Workflow encoding

• for each x ∈ Pjo, for each y ∈ •x , we have an action a = ⊗̄x, y (Fig. 17.5e), and
we set pre(a) = e f f ect−(a) = rx,y , and e f f ect+(a) =⋃

z∈•x {cx,z}.
• for each x → y, we have an action a = ⊗̄x, y (Fig. 17.5f) and we set pre(a) =

e f f ect−(a) = {cx,y}, and e f f ect+(a) = {ry,x }.
• additionally, for any initial action a we add {I, F} in pre(a) and e f f ect−(a).
• additionally, for any final action a we add {F} in e f f ect+(a).

17.4.3 Composition Requirements Encoding

A composition requirement (Din, Dout,WFK) is encoded as follows. First we com-
pute the set of actions resulting from the encoding of WFK (see 17.4.2). Then we
have to encode the fact that capabilities in the composition requirement encoding
should interoperate with operations in service encodings. The idea is the following.
Taking a service w, when a capability k is enabled at the current state of execution
by WFK then we should invoke an operation of capability k that is enabled at the
current state by WF O(w) before any one of the capability possibly following k could
be enabled. Moreover, an operation o with capability k of w can be invoked only iff
this is enabled by the current state of execution in WF O(w) and k is enabled in WFK.
To achieve this, we replace any action a = [k]x in the encoding of WFK by two
actions, a′ = [k]x and a′ = [k]x , and we set:

• pre(a′) = pre(a), e f f ect−(a′) = e f f ect−(a), e f f ect+(a) = {ek, linkx }.
• pre(a′) = e f f ect−(a′) = {linkx , dk}, e f f ect+(a′) = e f f ect+(a).

17 Adaptive Composition and QoS Optimization of Conversational Services 433

Fig. 17.6 Principle of interaction between service and requirement encodings

ek and dk enforce the synchronizing rules between capability workflow (defining
when a capability k can be done) and service workflows (defining when an operation
with capability k can be done) as presented in Fig. 17.6. linkk ensure that two actions
a1 = [k]x1 and a2 = [k]x2 with the same capability will not interact incorrectly when
x1 and x2 are in parallel in a workflow.

17.4.4 Service Encoding

Each service w = (O,W F O) is encoded as follows. First we encode the workflow
W F O as presented in 17.4.2. Then, for each action a = [o]x in this encoding we
add:

• in(o) in pre(a) to model the inputs required by operation o and out (o) in
e f f ect+(a) to model the outputs provided by operation o.
• ek(o) in pre(a) and in e f f ect−(a) and dk(o) in e f f ect+(a) to implement the

interaction with capabilities presented in 17.4.3 and in Fig. 17.6.

17.4.5 Overall Encoding

Given a DSS D, a set of services W , and a composition requirement (Din, Dout,

W FK), we obtain the planning problem ((S, A, γ), s0, g) as follows:

434 M. Chen et al.

• s0 = Din ∪ {w f c : I,w f c : F}⋃w∈W {w : I,w : F}.
• g = Dout ∪ {w f c : F}⋃w?∈W {w : F}.
• A = dss : ||D|| ∪ w f c : ||W FK||⋃w∈W w : ||W F O(w)||.
• S and γ are built with the rules in Definition 17.1.

where ||x || means the set of actions resulting from the encoding of x . Prefixing
(denoted with pre f i x :) operates on actions and on workflow propositions (I , F ,
rx,y , and cx,y) coming from encodings. It is used to avoid name clashes between
different subproblems. We suppose that, up to renaming, there is no service identified
as dss or w f c.

17.4.6 Plan Implementation

Solving the planning problem, we may get a failure when there is no solution sat-
isfying both that (i) a service composition exists to get Dout from Din, (ii) using
operations/capabilities in an ordering satisfying both used service conversations and
capability conversation, (iii) leaving used services in their final state. In other cases,
we obtain (see Sect. 17.2) a plan π = L1; . . . ; Li ; . . . ; Ln where ; is the sequence
operator and each Li is of the form (Pi,1|| . . . ||Pi, j || . . . ||Pi,mi) where || is the par-
allel operator and each Pi, j is a workflow process element. First of all, we begin by
filtering outπ by removing from it all Pi, j that is not of the form dss : . . . or w : [o]x ,
i.e., that is a purely structuring item, not corresponding to data transformation or ser-
vice invocation. Given the filtered plan, we can generate a WS-BPEL implementation
for it as done for transitions systems in [23]. Still, we may benefit here from the fact
that actions that can be done in parallel are explicited in a graph planning plan (using
operation ||), while in transition systems we only have interleaving semantics (find-
ing out which actions can be done in parallel is much more complex). Therefore, for
the main structure of the<process>…< /process> element we replace the [23]
state machine encoding by a more efficient version using sequence and flows. For π
we get:

〈sequence〉modeltrans(L1) . . .modeltrans(Li) . . .modeltrans(L − n)〈/sequence〉
and for each Li = (Pi,1|| . . . ||Pi, j || . . . ||Pi,mi) we have:

〈flow〉 modeltrans(Pi,1) . . .modeltrans(Pi, j) . . .modeltrans(Pi,mi)) 〈/flow〉
where modeltrans is the transformation of basic assignment/communication activ-
ities defined in [23].

17.4.7 Tool Support

Our composition approach is supported with a tool, pycompose (Fig. 17.7), written
in the Python language. This tool takes as input a DSS file, several service descrip-
tion files (list of operations and workflow), and the composition requirement (input

17 Adaptive Composition and QoS Optimization of Conversational Services 435

Semantic Service
Registry

Services
(operations + operation wo ow)

Parser

Encoder

Problem
Fusion

Parser

Parser

Planning
Problem

Planning
Solution

Planner
Interface

Planner
(external)

DSS

Composition Requirement
(capability wo ow)

DSS model

capability
wor ow m odel

operations
wor ow m odel

problem m odel

Encoder

problem m odel

Encoder

problem m odel problem m odel

composition
wor ow m odelComposition Implementation

(WS-BPEL)

Model
Trans.

WF
Generator

plan m odel

Fig. 17.7 Architecture of the pycompose tool

list, output list, and a workflow file). It then generates the encoding of this com-
position problem. pycompose supports through a command-line option the use of
several planners: the original C implementation of graph planning, graphplan,2 a
Java implementation of it, PDDLGraphPlan,3 and Blackbox,4 a planner combining
graphplan building and the use of SAT solvers to retrieve plans. The pycompose
architecture enables to support other planners through the implementation of a class
with two methods: problemToString and run, respectively to output a problem in
planner format and to run and parse planner results.

Application. If we run pycompose on our composition problem with the first
requirement workflow (Fig. 17.4, left), we get one solution (computed in 0.11 s
on a 2.53 GHz Mac Book Pro, including 0.03 s for the planner to retrieve the plan):

(pear_product:=cast(etablet) || {user_name,user_address,credit_card_info,pim_wallet}
:=dec(user_info)) ;

(shipping_addr:=cast(user_address) || billing_addr:=cast(user_address) || w1:order) ;
w1:ship ; w1:bill ; w1:charge ; w1:ack

The workflow representation of this solution is presented in Fig. 17.8.
However, let us now suppose that the user does not want to give his credit card

(user_info �cc credit_card_info is removed from DSS, or the user input is replaced
with {etablet,user_name,user_address,pim_wallet}). There is no longer any possible
composition: w1 cannot proceed with payment (no credit card information), more-
over, w2 and w3 cannot interact since this would yield that capability payment is

2 http://www.cs.cmu.edu/avrim/graphplan.html
3 http://www.cs.bham.ac.uk/zas/software/graphplanner.html
4 http://www.cs.rochester.edu/kautz/satplan/blackbox/

http://www.cs.cmu.edu/avrim/graphplan.html
http://www.cs.bham.ac.uk/zas/software/graphplanner.html
http://www.cs.rochester.edu/kautz/satplan/blackbox/

436 M. Chen et al.

cast

dec

cast

cast

w1.order

w1.ship w1.bill w1.charge w1.ack

Fig. 17.8 eTablet buying—composition solution

dec

cast cast

cast

dec

w2.order

dec

w3.login w2.ship

w3.get_credit

w2.charge_ppw3.ask_billw3.logoutw2.finalize

Fig. 17.9 eTablet buying—alternative composition solution

done before capability billing_setup (see w3 workflow in Fig. 17.3 and its opera-
tions in Table 17.3) while the requirement workflow forbids it. However, if we let a
more permissive requirement workflow (Fig. 17.4, right) then we get a composition
(computed in 0.11 s on a 2.53 GHz Mac Book Pro, including 0.04 s for the planner
to retrieve the plan) where w2 and w3 interact:

(pear_product := cast(etablet) || {user_name,user_address,credit_card_info,pim_wallet}
:= dec(user_info)) ;

(product := cast(pear_product) || shipping_addr := cast(user_address)
|| {paypal_info,amazon_info} := dec(pim_wallet)) ;

(w2:order || {paypal_login,paypal_pwd} := dec(paypal_info)) ;
w3:login ; w2:ship ; w3:get_credit ; w2:charge_pp ; w3:ask_bill ; w3:logout ; w2:finalize

The workflow representation of this second solution is given in Fig. 17.9.

17.5 QoS Optimization of Conversational Service Composition
as an Extension

In this section we first introduce how to calculate the aggregation of Quality of
Services (QoS). Then we extend the developed composition method to include QoS
optimization as a non-functional goal.

17 Adaptive Composition and QoS Optimization of Conversational Services 437

17.5.1 Aggregation of Quality of Services

A conversational service is composed of a set of operations over which a workflow
is specified. Each operation o can be regarded as an elementary service w with
certain qualities. For a network of conversational services, we can calculate the
QoS of the network as if we have a network of elementary services. Suppose we use
σ = w1,w2, . . . ,wn to represent a network of connected elementary services. If they
are connected in sequence,σ = w1;w2; . . . ;wn , or in parallel,σ = w1||w2|| . . . ||wn .
For an elementary service w, a finite set of quality criteria of w is denoted as Q(w).
Since our work focuses on throughput and execution price, the two quality criteria
for an elementary service w and the aggregated value over σ :

• Throughput Q1(w): the average rate of successful message delivery over a com-
munication channel, e.g., 10 successful invocations per second.

Q1(w1; . . . ;wn) = min Q1(wi) (17.1)

Q1(w1|| . . . ||wn) = min Q1(wi) (17.2)

• Execution price Q2(w): the fee to invoke w.

Q2(w1, . . . ,wn) =
∑

Q2(wi) (17.3)

Some of the above criteria are negative, i.e., the higher the value, the lower the
quality. Execution price and response time are in this category. The other criteria,
such as throughput, are positive, i.e., the higher the value, the higher the quality. We
want to have a uniform way to compare the qualities, especially with the multiple
criteria. We apply a Multiple Criteria Decision Making (MCDM) technique [33]
to aggregate QoS value Q(w). Similar to [8] and [36], we first scale the value of
a quality i for a service w j . For negative criteria, e.g., execution price, values are
scaled according to Eq. 17.4. For positive criteria, e.g., throughput, values are scaled
according to Eq. 17.5. For all the criteria, the higher the quality value, the lower
the utility value Ui (w j). This is because the classic Dijkstra’s algorithm finds the
“shortest distance”(lowest cost) over a graph.

Ui (w j) =
⎧
⎨

⎩

Qi (w j)−Qmin
i

Qmax
i −Qmin

i
if Qmax

i − Qmin
i �= 0

1 if Qmax
i − Qmin

i = 0
(17.4)

Ui (w j) =
{ Qmax

i −Qi (w j)

Qmax
i −Qmin

i
if Qmax

i − Qmin
i �= 0

1 if Qmax
i − Qmin

i = 0
(17.5)

The overall quality score for a Web service w j is defined in Eq. 17.6:

U (w j) =
∑

Ui (w j)×Wi (17.6)

438 M. Chen et al.

where Wi ∈ [0, 1] and
∑

Wi = 1. Wi represents the weight of criterion i .
For a network of services σ , we would like to do the same conversion. The

following equations for defining Ui (σ) are the same as those defining Qi (σ), just
changing Qi (wi) to Ui (wi), except in Eqs. 17.9 and 17.10, max replaces min, it is
because U2 decreases when Q1 increases. Thus, the max value of U1 corresponds
to the min value of Q2.

U1(w1; . . . ;wn) =
∑

U1(wi) (17.7)

U1(w1|| . . . ||wn) = max U1(wi) (17.8)

U2(w1; . . . ;wn) = max U2(wi) (17.9)

U2(w1|| . . . ||wn) = max U2(wi) (17.10)

The aggregated utility value for σ is:

U (w1, . . . ,wn) =
∑

Ui (w1, . . . ,wn)×Wi (17.11)

With Eqs. 17.7–17.11, we could compare two networks of services by the indi-
vidual utility values Ui or by the overall score U . The lower the value, the higher
the quality of service. We uniform the increasing and decreasing sense of the qual-
ity criteria. But the calculation of the precise values are still different for different
criteria.

17.5.2 Encoding QoS-Aware Composition as a QoS-Aware
Planning Problem

When QoS is given, people expect a solution with the best quality. A QoS-aware
service composition is to generate a business process that fulfills the functional
goals and optimizes the QoS value simultaneously. We first explain the intuition
behind the QoS-aware planning technique. Then we present how to solve QoS-aware
composition using QoS-aware planning technique.

17.5.2.1 Motivations

When service composition is encoded as a graph planning problem, the planning
graph built by the graph planning technique records all the functional elements, i.e.,
all the execution paths, to achieve functional goals. If the planning graph can be
extended into a QoS-aware planning graph that not only records functional elements
but also includes the QoS information, it is possible to solve QoS-aware service
composition problem using planning graph technique.

17 Adaptive Composition and QoS Optimization of Conversational Services 439

We discover that combining Dijkstra’s algorithm with the planning graph tech-
nique provides a good way to associate the QoS value with each vertex in a planning
graph. Firstly, a planning graph is a compact representation of the whole problem
space. All the execution paths that achieve goals can be extracted from the planning
graph. We could use a systematic search algorithm like Dijkstra’s algorithm to tra-
verse the planning graph from the initial layer to the goals. Secondly, the principle
of Dijkstra’s algorithm is to calculate the best cost-to-come value for a vertex. Since
a proposition can be regarded as a vertex of the planning graph, we could use the
same principle to calculate the best cost-to-come value which is the best QoS value
for each proposition. Then, we could get the overall cost-to-come for all the goal
propositions. And during the search, we could record the best path which is the best
plan.

17.5.2.2 QoS-Aware Graph Planning Technique

Our QoS-aware Graph Planning technique builds a Tagged Planning Graph (TPG)
instead of a normal planning graph. This technique is firstly developed in our paper
[34] for QoS-aware composition problems without negative effects. In this paper we
extend it to work with negative effects. A TPG is an extension of a planning graph in
the sense that each vertex in the planning graph is assigned with a tag. The affiliated
tag records the related QoS information for each vertex. In the following, we present
the way to calculate the tag values for action vertices and for proposition vertices
respectively.

Actions

When service composition is encoded as a Graph Planning problem, actions in the
planning graph come from DSS encoding, workflow encoding, service encoding and
composition requirement encoding. The tag for each action vertex is the QoS value
of the action. Except the actions encoded from the operations of the conversational
services, the other actions, such as decomposition, composition and casting from
DSS encoding, Pso, Psa , Pjo and Pja from service encoding, etc., do not have QoS
values. We need to assign a default QoS value to an action vertex which does not
have a QoS value in order to facilitate QoS aggregation.

For negative criteria, e.g., execution price, the default QoS value is zero. For
position criteria, e.g., throughput, the default QoS value is the maximal value of
all actions encoded from operations. These assignments make sense, because these
values do not affect the calculation of the aggregated QoS of the resulting composite
service.

440 M. Chen et al.

Propositions

The tag Tp for a proposition vertex p is a set {t p
1 , . . . , t p

k } (k = ||Tp||), which repre-
sents all possible execution paths leading to the proposition p. Each tag member t p

j
(j = 1, . . . , k) in Tp is a tuple (QoSV alue, executionpath) and corresponds to an
execution path executionpath with its QoS value QoSV alue. An executionpath
is actually a plan Π = π1; . . . ;πn to achieve p, where π j (j = 1, . . . , n) is a set of
actions that can be executed in parallel. When we search a plan for p, we exclude
the invalid plans that contain mutex pairs of actions due to the negative effects of
actions. Also, we calculate the QoS values for these valid plans at the same time.

For a proposition p at layer P0, Tp = {(U, {})} where U is a default QoS value.
The assignment of the default QoS value for a proposition at P0 is similar to the
assignment of the default QoS value for actions. For negative criteria, such as response
time or execution price, the default QoS value is zero. For position criteria, such as
throughput, the default QoS value is the maximal value of all actions encoded from
operations. These values do not affect the calculation of the aggregated QoS of the
resulting composite service. The executionpath is {} since p is provided by service
composition query.

Inspired by the Dijkstra’s algorithm, we calculate the tag for a p at layer Pi (i ≥ 1)
when the planning graph is constructed. If an action a at layer Ai (i ≥ 1) produces
p at layer Pi (i ≥ 1), we calculate the tag for p as the following.

• Calculate the execution paths. If action a produces p, the combinations of the
execution paths of pre(a) (in parallel) appended by a are the execution paths of
p. If there are several actions produce p, the execution paths calculated from these
actions are all execution paths for p. If these actions are mutex, the execution paths
are mutex too.
• Calculate the QoS value for each execution path. The calculation of the QoS

value for each execution path follows the QoS aggregation formulas. One execution
path leading to p is consist of one combination of the execution paths of pre(a) and
a. For example, if throughput is the QoS criterion, the throughput of an execution
path leading to p is the minimum of the throughput of the combined execution
paths and the throughput of a. If execution price is the QoS criterion, that the total
execution price of all the combined execution paths plus the execution price of a
is the execution price of the execution path leading to p.

After the TPG is constructed, we extract an optimal plan by backtracking the
execution path for each goal proposition. An optimal plan is consist of the optimal
plans to achieve each individually goal simultaneously. Since a plan cannot contain
any mutex pair of actions, we need to consider all the possibilities.

17.5.2.3 QoS-Aware Graph Planning

QoS-aware Graph Planning extends the standard Graph Planning technique. In the
construction phase, the QoS tag is calculated and the graph is constructed until a fixed-

17 Adaptive Composition and QoS Optimization of Conversational Services 441

point layer, because a longer plan may have a better QoS value. In the backtracking
phase, a solution with the best QoS value is extracted. For simplicity, we present
our algorithms using throughput as the single quality criterion and the calculation of
throughput follows Eqs. 17.1 and 17.2. The calculation of the other QoS criteria is
discussed in Sect. 17.5.3.

Algorithm 1 called QoSGraph Plan is the main algorithm QoS-aware Planning
Graph. Line 1 sets U as the the maximum throughput of actions. At layer P0, the
multiple tags Tp only contains a tuple of U and an empty set (line 2). Starting from
layer 0 (line 3), the algorithm calls ExpandGraph (Algorithm 2) to construct a TPG
layer by layer until it reaches Fixedpoint (line 4–7). If the fixed-point layer Pn con-
tains all goal propositions without mutex (line 8), the algorithm calls Extract Plan
(Algorithm 4) (line 9) to extract an optimal plan from the TPG. Otherwise, there is
no plan exist (line 11).

Algorithm 1: QoSGraph Plan(A, s0, g)
Data: G = 〈P0, A1, μA1, ..., An, μAn, Pi , μPn〉 is a planning graph;

1: U ← max{cost (a)|a ∈ A};
2: P0 ← {(p, Tp)|p ∈ s0, Tp is a multiple-tag set of p where Tp ← {(U, {})}};
3: i ← 0;
4: repeat
5: i ← i + 1;
6: G ← ExpandGraph(G);
7: until Fixedpoint (G)
8: if g ⊆ Pn and g2 ∩ μPn = ∅ then
9: print Extract Plan(G, g);
10: else
11: print ∅;
12: end if

Algorithm 2 called ExpandGraph expands the TPG by one layer. Ai gets all the
enabled actions at layer i and each actions has a tag t (line 1). The tag t is the QoS
value, i.e., throughput, of the action. The enabled actions are those whose inputs are
in the previous layer i − 1 and there is no mutual exclusion between propositions
belonging to the inputs. μAi is the set of mutex pairs of actions in Ai (line 2). Pi

contains positive effects of actions in Ai (line 3). We assign a tag Tp to each p ∈ Pi .
Tp is actually a multiple-tag set. Each element t p

j ∈ Tp (j = 1, . . . , ||Tp||) is a tuple

(t p
j .v, t p

j .Π), where t p
j .Π is a execution path that leads to p and t p

j .v is the QoS

value of t p
j .Π . It calls Cal MultiT ag (Algorithm 3) to calculate Tp for p. Line 4

gets the set of mutex pairs of propositions in Pi , denoted asμPi . Line 5–line 9 create
the arcs between actions and propositions.

442 M. Chen et al.

Algorithm 2: ExpandGraph(G)
Data: G = 〈P0, A1, μA1, ..., An, μAn, Pi , μPn〉;
1: Ai ← {(a, t)|pre(a) ⊆ Pi−1, pre2(a) ∩ μPi−1, t = cost (a)};
2: μAi ← {(a, b) ∈ A2

i , a �= b|e f f ects−(a) ∩ [pre(b) ∪ e f f ects+(b)] �= ∅ or
e f f ects−(b) ∩ [pre(a) ∪ e f f ects+(a)] �= ∅ or ∃(p, q) ∈ μPi−1 : p ∈ pre(a), q ∈
pre(b)};

3: Pi ← {(p, Tp)|∃a ∈ Ai : p ∈ e f f ects+(a), Tp = Cal MultiT ag(G, p, i) is a multiple-
tag set of p where Tp is represented as {t p

j | j = 1, . . . , ||Tp|| and t p
j = (t p

j .v, t p
j .Π)}};

4: μPi ← {(p, q) ∈ P2
i , p �= q|∀a, b ∈ A, a �= b : p ∈ e f f ects+(a), q ∈ e f f ects+(b)⇒

(a, b) ∈ μAi };
5: for each a ∈ Ai do
6: link a with precondition arcs to pre(a) in Pi−1;
7: link a with positive arcs to each of its e f f ects+(a) in Pi ;
8: link a with negative arcs to each of its e f f ects−(a) in Pi ;
9: end for
10: return (〈P0, A1, μA1..., An, μAn, Pn, μPn〉);

Algorithm 3 calculates the tag value for each proposition p. Initially, T is an
empty set (line 1). S is a subset of Ai and each action in S produces p as one of its
positive effects (line 2). For each pair (a, t) ∈ S, we get a subset of Pi−1, denoted
as PT . Each element (p, Tp) in PT satisfies p ∈ pre(a) (line 4). Tp is a multiple-
tag set for p where Tp = {t p

j |t p
j = (t p

j .v, t p
j .Π) is the j-th element of Tp and

j = {1, . . . , ||Tp||}. For each element t p
j of Tp, t p

j .Π is a execution path that leads to

p and t p
j .v is the cost, i.e., throughput, of the execution path t p

j .Π . Q is the product

of all elements in PT (line 5). For a set of execution paths {t p1
m , . . . , t pk

h } ∈ Q (line
6), a new execution path Π ′ is obtained by combining all the execution paths (line
7). Check Mutex(G,Π ′) is a function to check whether there exists a mutex pair
of actions at the same layer Π ′.π j (j = 1, . . . , ||Π ′||). If Check Mutex(G,Π ′)
returns true, it means there exists at least a mutex pair of actions in Π ′ (line 8). In
this case, Π ′ becomes the execution path Π without mutex pairs of actions (line 9).
Accordingly, the cost v (line 10) and the multiple-tag set T (line 11) are updated.

Algorithm 4 extracts a plan with optimal QoS value. First, the optimal plan Π is
set to be 〈〉 (line 1). In line 2, all goal propositions obtained from layer Pn are added
into S. Line 3 calculates the direct product of all multiple-tag sets in S. The set of
possible plans T is initially an empty set (line 4). For each element {t p1

m , . . . , t pk
h } ∈ Q

(line 5), a new possible execution pathΠ ′ is obtained by combining all the execution
paths (line 6). The cost v is the minimum cost of all sub-execution paths that construct
Π ′ (line 7). Line 8 adds (v′,Π ′) into T . The algorithm starts to find an optimal
plan from T until T becomes an empty set (lines 10–20). Select Opt Plan(T) is
a function to find the current optimal plan with the maximum throughput from T .
For every possible optimal plan with the current maximum throughput returned by
Select Opt Plan(T) (line 11), Check Mutex(G,Π) is to filter out the plans that
contain any mutual exclusion pairs of actions.

17 Adaptive Composition and QoS Optimization of Conversational Services 443

Algorithm 3: Cal MultiT ag(G, p, i)
Data: G = 〈P0, A1, μA1, ..., Ai , μAi 〉;
1: T ← {};
2: S← {(a, t)|(a, t) ∈ Ai andp ∈ e f f ects+(a)};
3: for (a, t) ∈ S do
4: PT ← {(p, Tp)|(p, Tp) ∈ Pi−1 and p ∈ pre(a)};
5: Q ← Tp1 × Tp2 , . . . ,×Tpk where (p j , Tp j) ∈ PT and j = 1, . . . , ||PT ||;
6: for {t p1

m , . . . , t pk
h } ∈ Q do

7: Π ′ ← t p1
m .Π.π1|| . . . ||t pk

h .Π.π1; . . . ; t p1
m .Π.πi−1|| . . . ||t pk

h .Π.πi−1;
8: if Check Mutex(G,Π ′) = true then
9: Π = Π ′;
10: v← min{t p1

j .v|m ≤ j ≤ n};
11: T ← T ∪ {(min{v, t},Π; a)};
12: end if
13: end for
14: end for
15: return T ;

Algorithm 4: Extract Plan(G, g)
Data:G = 〈P0, A1, μA1, ..., An, μAn, Pn, μPn〉 is a planning graph.

1: Π ← 〈〉;
2: S← {(p, Tp)|(p, Tp) ∈ Pn and p ∈ g};
3: Q ← Tp1 × Tp2 , . . . ,×Tpk where (p j , Tp j) ∈ S and j = 1, . . . , ||S||;
4: T = {};
5: for {t p1

m , . . . , t pk
h } ∈ Q do

6: Π ′ ← t p1
m .Π.π1|| . . . ||t pk

h .Π.π1; . . . ; t p1
m .Π.πi−1|| . . . ||t pk

h .Π.πi−1;
7: v′ = min{t p1

m .v, . . . , t pk
h .v};

8: T ← T ∪ {(v′,Π ′)};
9: end for
10: repeat
11: t ← Select Opt Plan(T);
12: Π ← t.Π ;
13: v← t.v;
14: if Check Mutex(G,Π) = true then
15: return (Π);
16: else
17: Π ← 〈〉;
18: end if
19: T ← T − {(v,Π)}
20: until ||T || = 0
21: return Π ;

Application. We have a new service Dangdang (w4, online store). Suppose
Dangdang shares the same workflow and operations with ebay service. The oper-
ations “order”, “ship”, “charge_pp”, “charge_cc”, “bill”, and “finalize”of w4 have
the throughput of 4, 6, 26, 13, 10, and 5 repectively. The requirement in our case

444 M. Chen et al.

wfc: 1’

wfc:I

wfc:F

p

p

p

p

wfc: 1’

wfc: 1s2

wfc: s2

26

26

26
26

{(26,{wfc: 1’;no-op})}

p

s2

s3

s4

p

2 12

1

2

2

2: 1

4: 12

2

wfc: 1s

26

4 12

2

2: 12

4: 12

2 21

4 21

3

2

s1 1s

5

4

26

26

26

P3 P4P2 A3 A4

{(26,{no-op;no-op})}

{(26,{no-op;no-op})}

{(26,{cast;cast})}

{(26,{no-op;no-op})}

{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1}),

(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1})}

{(26,{wfc: 1’;no-op})}
{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1})}

{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1}),

(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1})}

{(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1})}

{(26,{dec;cast;
no-op;no-op})}

{(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1;w4: 12})}

{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1;no-op}),

(4,{no-op||wfc: 1’||cast;

no-op||cast;w 4: 1;no-op})}

{(5,{no-op||wfc: 1’||cast;

no-op||cast;w 2: 1})}

W
F

O
(w

)
K

W
F

W
F

Fig. 17.10 Part of the tagged planning graph

study are ({etablet, user_in f o}, {tracking_num}, w f c,) and optimization of the
throughput of the plan. w f c requires that the payment to be done in parallel to
shipping and billing setup as shown in Fig. 17.4 (right). Figure 17.10 presents how
to calculate the tag values for each action node in the planning graph. Because
the maximum throughput of operations is 26, the tag values of no-op actions and
actions that are not encoded from operations are set to be 26. Due to the page limit,
we only list part of actions in the planing graph as shown in Table 17.4. Because
e f f ects−(w2 : a1) ∩ [pre(w4 : a1) ∪ e f f ects+(w4 : a1)] = {ep} �= ∅. The pair
(w2 : a1,w4 : a1) is an element of μA3. For the proposition dp in P3, there are two
execution paths without mutex pairs of actions that produce dp as one of their positive
effects. Finally, we remove useless actions from the plan obtained by Extract Plan
algorithm such that the plan only contains operation-derived actions. The workflow
of the optimal plan is similar to the one in Fig. 17.9 by replacing w2 with w4. The
throughput of the optimal plan is 4.

17 Adaptive Composition and QoS Optimization of Conversational Services 445

Ta
bl

e
17

.4
Pa

rt
of

ac
tio

ns
en

co
de

d
fr

om
w

2
,w

4
an

d
w

fc

A
ct

io
n

N
ot

at
io

n
C

os
t

pr
e(

a)
e

ff
ec

t−
(a
)

e
ff

ec
t+
(a
)

or
de

r
w

2
:a

1
5

w
2
:I

,w
2
:F

,e
p
,p

ro
du

ct
(d

ss
:d

1
)

w
2
:I

,w
2
:F

,e
p

e_
se

ss
io

ni
d(

d
ss

:d
2
),

d
p
,w

2
:c

12

w
2

or
de

r→
sh

ip
w

2
:a

12
26

w
2
:c

12
w

2
:c

12
w

2
:r

21

sh
ip

w
2
:a

2
7

sh
ip

pi
ng

_a
dd

r(
d

ss
:d

3
),

e_
se

ss
io

ni
d(

d
ss

:d
2
),

e s
,w

2
:r

21
e s

,w
2
:r

21
d s

,w
2
:c

2s
,o

rd
er

_a
m

ou
nt

(d
ss

:d
4
)

or
de

r
w

4
:a

1
4

w
4
:I

,w
4
:F

,e
p
,d

p
,w

4
:c

12
w

4
:I

,w
4
:F

,e
p

e_
se

ss
io

ni
d(

d
ss

:d
2
),

d
p
,w

4
:c

12

w
4

or
de

r→
sh

ip
w

4
:a

12
26

w
4
:c

12
w

4
:c

12
w

4
:r

21

sh
ip

w
4
:a

2
6

sh
ip

pi
ng

_a
dd

r(
d

ss
:d

3
),

e_
se

ss
io

ni
d(

d
ss

:d
2
),

e s
,w

4
:r

21
e s

,w
4
:r

21
d s

,w
4
:c

2s
,o

rd
er

_a
m

ou
nt

(d
ss

:d
4
)

pr
od

uc
t_

se
le

ct
io

n
w

fc
:a
′ 1

26
w

fc
:I

,w
fc

:F
w

fc
:I

,w
fc

:F
e p

,l
in

k 1
w

fc
:ā
′ 1

26
li

nk
1
,d

p
li

nk
1
,d

p
w

fc
:c

1s

w
fc

pr
od

uc
t_

se
le

ct
io

n→
⊕

w
fc

:a
1s

26
w

fc
:c

1s
w

fc
:c

1s
w

fc
:r

s1

⊕
w

fc
:a

1s
2

26
w

fc
:r

s1
w

fc
:r

s1
w

fc
:c

s2
,w

fc
:c

s3
,w

fc
:c

s4

⊕
→

sh
ip

pi
ng

_s
et

up
w

fc
:a

s2
26

w
fc

:c
s2

w
fc

:c
s2

w
fc

:r
25

..
.

446 M. Chen et al.

17.5.3 Other QoS Criteria

Up to now, we use throughput as the quality criterion to develop our method. We can
also consider how to calculate the other criteria.

For execution price (Eq. 17.3), min() function is used. The tag values for the
actions encoded from operations are their corresponding execution price. The tag
values of other actions are set to be 0. Then, the cost v of a execution path Π is
the total execution prices of the plan. Finally, the optimal plan is the plan with the
minimum overall execution price.

For successful execution rate and availability, each service contributes the QoS
value in the same way, no matter how they are connected (i.e., sequential or parallel).
Here, we focus on throughput and execution price as quality criteria.

17.6 Related Work

Our work is at the intersection of two domains: service composition and software
adaptation. Automatic composition is an important issue in Service-Oriented Com-
puting and numerous works have addressed this over the last years [17, 22, 30].
Planning-based approaches have particularly been studied due to their support for
underspecified requirements [15, 29]. Automatic composition has also been achieved
using matching and graph/automata-based algorithms [4, 11, 25] or logic reasoning
[5]. Various criteria could be used to differentiate these approaches, yet, due to our
Task-Oriented Computing motivation, we will focus on issues related to service and
composition requirement models, and to adaptation.

While both data input/output and capability requirements should be supported,
as in our approach, to ensure composition is correct wrt. the user needs, only [6,
25] do, while [4, 11, 16, 20, 21, 37] support data only and [5] supports capabilities
only. As far as adaptation is concerned, [4, 16, 21, 25] support a form of horizontal
(data) adaptation, using semantics associated to data; and [20] a form of vertical
(capability abstraction) adaptation, due to its hierarchical planning inheritance. We
combined both techniques to achieve both adaptation kinds. Few approaches support
expressive models in which protocols can be described over capabilities—either for
the composition requirement [5] or for both composition and services [6, 25] like us.
[4, 11, 20, 16, 21] only support conversations over operations (for a given capability).

As opposed to the aforementioned works dealing with orchestration, in [24], the
authors present a technique with adaptation features for automatic service choreog-
raphy. It supports a simple form of horizontal adaptation, however their objective
is to maximize data exchange between services but they are not able to compose
services depending on an abstract user task.

Most software adaptation works, e.g., [10, 14, 32] are pure model-based approa-
ches whose objective is to solve protocol mismatch between a fixed set of compo-
nents, and that do not tackle service discovery, composition requirements, or ser-

17 Adaptive Composition and QoS Optimization of Conversational Services 447

vice composition implementation. Few works explicitly add adaptation features to
Service-Oriented Computing [12, 23, 27]. They adopt a different and complementary
view wrt. ours since their objective is not to integrate adaptation within composition
in order to increase the orchestration possibilities, but to tackle protocol adaptation
between clients and services, e.g., to react to service replacement.

In an earlier work [1] we already used graph planning to perform service composi-
tion with both vertical and horizontal adaptation. With reference to this work, we add
support for conversations in both service descriptions and composition requirements.
Moreover, adaptation was supported in an ad-hoc fashion, yielding complexity issues
when backtracking to get composition solutions. Using encodings, we are able in
our work to support adaptation with regular graph planning which enables us to use
state-of-the-art graph planning tools.

17.7 Conclusion

Software adaptation is a promising approach to augment service interoperability and
composition possibilities. In this paper we have proposed a technique to integrate
adaptation features in the service composition process. With reference to related
work, we support both horizontal (data exchange between services and orchestra-
tor) and vertical adaptation (abstraction level mismatch between user need and ser-
vice capabilities). This has been achieved combining semantic descriptions (for data
and capabilities) and graph planning. We also support conversations in both service
descriptions and composition requirements.

The approach at hand is dedicated to deployment time, where services are discov-
ered and then composed out of a set of services that may change. Yet, in a pervasive
environment, services may appear and disappear also during composition execution,
e.g., due to the user mobility, yielding broken service compositions. We made a first
step towards repairing them in [35], still with a simpler service and composition
requirement model (no conversations). A first perspective concerns extending this
approach to our new model. Further, we plan to study the integration of our com-
position and repair algorithms as an optional module in existing runtime monitoring
and adaptation frameworks for services composition such as [26].

Acknowledgments This work is supported by project “Service Oriented Systems Integration”
(RGPIN/298362-2012) of Canada NSERC Discovery Grant, and by project “Personal Informa-
tion Management through Internet” (ANR-2010-VERS-0014-03, PIMI) of the French National
Agency for Research.

References

1. Beauche, S., Poizat, P.: Automated service composition with adaptive planning, pp. 530–537.
In: Proceedings of the ICSOC (2008)

448 M. Chen et al.

2. Becker, S., Brogi, A., Gorton, I., Overhage, S., Romanovsky, A., Tivoli, M.: Towards an Engi-
neering Approach to Component Adaptation. In: Architecting Systems with Trustworthy Com-
ponents, vol. 3939. LNCS (2006)

3. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal methods for service composition. Ann.
Math. Comput. Teleinf. 1(5), 1–10 (2007)

4. Benigni, F., Brogi, A., Corfini, S.: Discovering service compositions that feature a desired
behaviour. In: Proceedings of the ICSOC (2007)

5. Berardi, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Calvanese, D.: Synthesis of under-
specified composite e-services based on automated reasoning. In: Proceedings of the ICSOC
(2004)

6. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via planning in
asynchronous domains. Artif. Intell. 174(3–4), 316–361 (2010)

7. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. J. 90(1–2),
225–279 (1997)

8. Bouguettaya, A., Yu, Q., Liu, X., Malik, Z.: Service-centric framework for a digital government
application. IEEE Trans. Serv. Comput. 4(1), 3–16 (2011)

9. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: a survey. Technical Report TR-
10-01, Centre for Research on Evolution, Search & Testing, King’s College London (2010)

10. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation. J. Syst. Softw.
74(1), 45–54 (2005)

11. Brogi, A., Popescu, R.: Towards semi-automated workflow-based aggregation of web services.
In: Proceedings of the ICSOC (2005)

12. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Proceedings of the
ICSOC (2006)

13. Canal, C., Murillo, J.M., Poizat, P.: Software adaptation. L’Objet 12, 9–31 (2006)
14. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioural mismatching compo-

nents. IEEE Trans. Softw. Eng. 34(4), 546–563 (2008)
15. Chan, K.S.M., Bishop, J., Baresi, L.: Survey and comparison of planning techniques for web

service composition. Technical report, Dept Computer Science, University of Pretoria (2007)
16. Constantinescu, I., Binder, W., Faltings, B.: Service composition with directories. In: Proceed-

ings of the SC (2006)
17. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Serv. 1(1),

1–30 (2005)
18. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kauf-

mann Publishers, Amsterdam (2004)
19. Kiepuszewski, B.: Expressiveness and suitability of languages for control flow modelling in

workflow. PhD thesis, Queensland University of Technology, Brisbane, Australia (2003)
20. Klush, M., Gerber, A., Schmidt, M.: Semantic web service composition planning with OWLS-

Xplan. In: Proceedings of the AAAI Fall Symposium on Agents and the Semantic Web (2005)
21. Liu, Z., Ranganathan, A., Riabov, A.: Modeling web services using semantic graph transfor-

mation to aid automatic composition. In: Proceedings of the ICWS (2007)
22. Marconi, A., Pistore, M.: Synthesis and composition of web services. In: Proceedings of the

9th International School on Formal Methods for the Design of Computer, Communications
and Software Systems: Web Services (SFM)

23. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process algebra and
on-the-fly reduction techniques, pp. 84–99. In: Proceedings of the ICSOC (2008)

24. Melliti, T., Poizat, P., Ben Mokhtar, S.: Distributed behavioural adaptation for the automatic
composition of semantic services. In: Proceedings of the FASE (2008)

25. Mokhtar, B.S., Georgantas, N., Issarny, V.: COCOA: conversation-based service composition
in pervasive computing environments with QoS support. J. Syst. Softw. 80(12), 1941–1955
(2007)

26. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
ws-bpel, pp. 815–824. In: Proceedings of the WWW (2008)

17 Adaptive Composition and QoS Optimization of Conversational Services 449

27. Nezhad, H.R.M., Xu, G.Y., Benatallah, B.: Protocol-aware matching of web service interfaces
for adapter development, pp 731–740. In: Proceedings of the WWW (2010)

28. Papazoglou, M.P., Georgakopoulos, D.: Special issue on service-oriented computing. Commun.
ACM 46(10), 25–28 (2003)

29. Peer, J.: Web service composition as AI lanning—a survey. Technical report, University of
St.Gallen (2005)

30. Rao, J., Su, X.: A survey of automated web service composition methods. In: Proceedings of
the SWSWPC (2004)

31. Seguel, R., Eshuis, R., Grefen, P.: An Overview on Protocol Adaptors for Service Component
Integration. Technical report, Eindhoven University of Technology (2008) BETA Working
Paper Series WP 265

32. Tivoli, M., Inverardi, P.: Failure-free coordinators synthesis for component-based architectures.
Sci. Comput. Program 71(3), 181–212 (2008)

33. Triantaphyllou, E.: Multi-Criteria Decision Making: A Comparative Study. Springer, New York
(2000)

34. Yan, Y., Chen, M.: Anytime QoS optimization over the planGraph for web service composition.
In: Proceedings of the ACM SAC, Italy (2012)

35. Yan, Y., Poizat, P., Zhao, L.: Repairing service compositions in a changing world. In: Proceed-
ings of the SERA (2010)

36. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web services
composition, pp. 411–421. In: Proceedings of the WWW (2003)

37. Zheng, X., Yan, Y.: An efficient web service composition algorithm based on planning graph,
pp 691–699. In: Proceedings of the ICWS (2008)

Chapter 18
Automated Negotiation Among Web services

Khayyam Hashmi, Amal Alhosban, Zaki Malik, Brahim Medjahed
and Salima Benbernou

Abstract Automated negotiation among Web services not only provides an
effective way for the services to bargain for their optimal customizations, but also
allows the discovery of overlooked potential solutions. A number of negotiation
supporting techniques have been used to find solutions that are acceptable to all
parties in the negotiation. However, employing these solutions for automated nego-
tiations among Web services has its own challenges. In this chapter, we present the
design of a Negotiation Web service that would be used by both the consumers
and providers of Web services for conducting negotiations. This negotiation service
uses a genetic algorithm (GA) based approach for finding acceptable solutions in
multi-party and multi-objective negotiations. In addition to the traditional genetic
operators of crossover and mutation, the search is enhanced using a new operator
called the Norm. Norm operator represents the cumulative knowledge of all the parties
involved in the negotiation process. GA performance with the new Norm operator is
compared to the traditional GA, hill-climber and random search techniques. Experi-
mental results indicate the practicality of the approach in facilitating the negotiations
involved in a Web service composition process. Specifically, the proposed GA with
Norm operator performs better than other approaches.

K. Hashmi (B) · A. Alhosban · Z. Malik
Wayne State University, Detroit, Michigan, USA
e-mail: eh2304@wayne.edu

Z. Malik
e-mail: zaki@wayne.edu

A. Alhosban
e-mail: ea1179@wayne.edu

B. Medjahed
The University of Michigan - Dearborn, Dearborn, Michigan, USA
e-mail: brahim@umd.umich.edu

S. Benbernou
Universite Paris Descartes, Paris, France
e-mail: salima.benbernou@parisdescartes.fr

A. Bouguettaya et al. (eds.), Web Services Foundations, 451
DOI: 10.1007/978-1-4614-7518-7_18,
© Springer Science+Business Media New York 2014

452 K. Hashmi et al.

18.1 Introduction

A Web service is defined as an autonomous and self-contained unit of application
that is accessible over a network [83]. In recent years, the number of available Web
services has increased, and it is believed that in the near future, we may find multiple
services offering the same functionalities [57]. Moreover, with maturing standards
(e.g., BPEL [79]) it is now possible to combine several services to formulate a
composite solution (selecting the most suitable service for the composite solution
from among a pool of competing services). However, this selection process is not
straightforward as many inter-related variables of the different services may affect
the performance of the service composition. To help facilitate this process we can
use automated negotiation to provide an effective way for clients to bargain for an
optimal customization of their required variables and to discover any overlooked
potential solutions. In this chapter, the research problem of automated negotiation of
Quality of Service (QoS) components among Web services is analyzed. The chapter
is divided into four sections. The first section serves as an introduction to the service
oriented paradigm and the concept of Web services, their underlying QoS specifi-
cations, and the process of negotiation. Section two focuses on the communication
protocols for automated negotiation, while the third section discusses the different
techniques/agents used in the negotiation process. In Sect. 18.4, we discuss the over-
all service negotiation requirements, show how existing solutions perform in the light
of these requirements, and define an approach for solving the automated negotiation
problem.

18.1.1 Service Oriented Architecture

Service Oriented Architecture (SOA) is defined as a paradigm for organizing and
utilizing distributed capabilities that may be under the control of different owner-
ship domains [57]. In other words, boundaries of SOAs are usually explicit, i.e., the
services need to communicate across boundaries of different geographical zones,
ownerships, trust domains, and operating environments. Moreover, explicit message
passing is applied in SOAs instead of implicit method invocations. The services
in SOAs are autonomous, i.e., they are independently deployed, the topology is
dynamic, i.e., new services may be introduced without advanced acknowledgment,
and the applications consuming a service can leave the system or fail without noti-
fication [1]. Services in SOAs share schema and contracts. The message passing
structures are specified by the schema, and message-exchange behaviors are speci-
fied by contracts (both implicit or explicit) for each SOA transaction.

Two major entities are involved in any SOA transaction: service customers and
service providers. Figure 18.1 represents a typical Web service interaction model.
Service providers offer their services by publishing their information (WSDL) in
public registries (UDDI) [46, 54]. Customers then query these registries to find the

18 Automated Negotiation Among Web services 453

Request Matching
Service Information

Register as
a Provider

Registry

Customer Provider

Acknowledge
Registration

Return matched
WSDL

Bind and
Invoke Service

Fig. 18.1 Service-oriented interaction model

required services and then bind to the most suitable service, where input parameters
are sent to the service provider and output is returned to the customer [2]. Web ser-
vice registries thus serve as place holders and provide minimal functional information
about a service. Service providers may use t Models [21] to provide any additional
information. Since t Models are static place holders for information (service provider
may provide a single value or a range for QoS attribute(s)), hence they have limited
usability when it comes to negotiating non-functional requirements of the customers
(e.g., availability, reliability etc.). A customer looking for a Web service could ben-
efit from a service which if given both functional and non-functional requirements,
could provide the most effective solution by simultaneously negotiating with multiple
providers.

18.1.2 QoS Specification

The Quality of Service (QoS) is defined as a set of non-functional service attributes
that indicate the service’s ability to satisfy a stated or implied requirement in an end-
to-end fashion [41]. This set of quality attributes not only characterize the service
but also any entity used in the path between the service and its client. In a Service
Oriented Architecture (SOA), service providers may characterize their services to
define both the offered functionalities and the offered quality. Similarly the users
may not only express their requirements by listing the desired functionalities, but
also define a minimum level of quality that the service must ensure. The main issue
here is the subjectiveness of ‘quality’: the quality of a service from the provider’s
perspective may be different than the quality experienced by the user. At the same
time, the same quality level might be sufficient for a given user and not enough
for another one. Hence, QoS parameters consist of both quantitative (availability
99.9 %) and qualitative (privacy, security) parts. Most of the quantitative attributes
are not directly proportional in their cost/benefit curve e.g., 99.999 % uptime versus
99.0 % uptime. Hence this non-linear curve naturally generates a disparity among
the provided values for these QoS attributes and opens them to negotiation.

454 K. Hashmi et al.

18.1.3 Negotiation

Negotiation is a process that can be defined as the interplay of offers and counter-
offers between two entities, with different criteria and goals, working to reach a
mutually acceptable solution. A negotiation process enhances acquisition opportu-
nities and enables flexible communication that can lead to a better solution [10, 92].

However, negotiation are usually uncertain (due to incomplete information of both
parties) and knowledge intensive. Performing negotiations manually is thus ad-hoc
and time-consuming. Automated component negotiations (e.g., on the web) are thus
valuable not only for the customers and the providers to continuously customize
their needs and tailor their offerings, but also to discover overlooked solutions and
to maintain documented rationales for future references and reuse.

An automated negotiation mechanism requires at least three components; a high-
level protocol, objectives and strategies [47]. The high-level protocol controls the
negotiation process depending on types of negotiations (e.g., auction). The objectives
of all parties are based on a set of criteria, representing various parameters along with
their respective domain values (e.g., price range). Negotiation strategies include
mechanisms (rules and knowledge base) that the agent employs to generate and
evaluate offers.

Figure 18.2 depicts the state diagram of an automated negotiation process. Typi-
cally, negotiation starts when the customer requests for proposals for a component
service. After receiving the initial offers from service providers, it would then select
some providers to engage in bi-lateral negotiations. This would start a round of offers
and counter offers among the customer and selected service providers. Once both the
provider and the customer agree on a certain attributes (e.g., price) for the services

Start

Proposal

End

Response

Accept
Offer

Create
SLA

Approved
SLA

Terminate Negotiation [C, P]
(No contract)

Start Negotiation[C]

Propose a Solution

Counter Offer

Accept [P]

SLA Policies

Reject [C]

SLA Rejected [C, P]
Non-Functional issues

Accept SLA [C, P]

SLA Rejected [C, P]
Functional Issues

Terminate Negotiation
Contract Accepted

C = Customer
P = Provider Accepted

Offer
[P]

Accepted
Offer
[C]

Accept [C]

Reject [P]

Accept [C]

Accept [P]

Fig. 18.2 Negotiation state chart

18 Automated Negotiation Among Web services 455

to be provided, they enter into the formal Service Level Agreement (SLA) formation
phase. At this point, both parties agree on the terms and conditions of the agreement.
These usually include both the functional (service to be provided, cost, etc) and non-
functional (QoS parameters, violation terms, penalties, etc). This process could also
be modeled as the exchange of offers and counter offers (for SLA terms) among
the customer and the selected provider. Once agreed, the parties create/contract an
agreement and the services are rendered. If both the parties could not agree on the
terms of an SLA the current negotiation session is terminated and a new round of
negotiation is started.

18.2 Communication Protocols for Negotiation

A communication protocol defines the syntax, semantics, rules and synchronization
of messages exchanged between the partied involved. There are many communication
protocols that have been defined to conduct negotiations. This section discusses some
of the widely used negotiation protocols applied in the service’s domain.

18.2.1 WS-Agreement

WS-Agreement [28] is a protocol for establishing agreements between two parties,
such as between a service provider and customer. It uses XML for specifying the
nature of the agreement, and agreement templates to facilitate discovery of compat-
ible agreement parties. The specification consists of three parts which may be used
in a composable manner: a schema for specifying an agreement, a schema for spec-
ifying an agreement template, and a set of port types and operations for managing
agreement life-cycle, including creation, expiration, and monitoring of agreement
states.

There are two layers of WS-Agreement. The agreement layer provides a Web
service-based interface that can be used to create, represent and monitor agreements
with respect to provisioning of services implemented in the service layer. The ser-
vice layer represents the application-specific layer of the service being provided.
Although WS-Agreement does not have any negotiation specific structure but there
had been discussions for using it in negotiating agreements among parties [5, 87].
An implementation of WS-Agreement to negotiate SLA’s for resource orchestration
in grids have been presented in [66]. A bilateral WS-Agreement based negotiation
process is used to dynamically negotiate SLA templates. One option is for the origi-
nating agent to negotiate separately with each Autonomous System (AS) along each
potential path to ensure that an end-to-end path is available. The dominant choice,
however is to use a cascaded approach where each AS is responsible for the entire
path downstream of itself. To rely on WS-Agreement and minimize the extensions
to the proposed standard, the idea is not to negotiate SLAs but to negotiate and refine

456 K. Hashmi et al.

the templates that can be used to create an SLA. An agreement template defines
one or more services that are specified by their Service Description Terms (SDT),
their Service Property Terms (SPT), and their Guarantee Terms (GT). Additionally
an agreement provider can constrain the possible values within the SDTs, SPTs, and
GTs by defining appropriate creation constraints within the templates.

Cremona [48] is an agreement management architecture that facilitates (agree-
ment-based) service binding for a variety of services. It uses WS-Agreement as the
communication infrastructure. The Cremona architecture separates multiple layers
of agreement management, orthogonal to the agreement management functions: the
functions associated with an agreement protocol role, initiator or provider, is the
Agreement Protocol Role Management (APRM). It comprises, on the agreement
provider side, the agreement factory, the agreement instance implementations, the
Web services container in which factory and instances are located and interfaces to an
agreement template repository, decision-making functionality for createAgreement
requests and the current state of terms. On the agreement customer side, it comprises
proxy functions to interact with an agreement factory and created agreements, tem-
plate processing functions to create agreement instance document from templates,
and interfaces to components initiating agreement establishment, to functions decid-
ing on how to fill an agreement template, and to guarantee monitors. The Agreement
Service Role Management (ASRM) is the collection of functions that deals with a
party’s role in the service relationship, provider or customer, and connects it to the
service system. On the service provider’s side, this includes the mapping of agree-
ments to provisioning specifications and other input to the service-implementing
system—the agreement implementation plan [44].

OpenCCS [35], AgentScape [58] and VIOLA MetaScheduling Service MSS [87]
also use negotiation to refine offers and requests in order to create SLAs. As WS-
Agreement does not include a protocol for negotiating the terms of an SLA (but an
“accept/reject” protocol for the whole SLA), these three approaches currently use
proprietary extensions of WS-Agreement for the negotiation.

18.2.2 Contract Net

Contract Net [78] is a generic negotiation protocol. It is viewed as a task having four
components (1) it is a local process that does not involve centralized control, (2)
there is two-way exchange of information, (3) each party to the negotiation evaluates
the information from its own perspective, and (4) the final agreement is achieved by
mutual selection.

A contract is established by a process of local mutual selection based on a two-way
transfer of information. In brief, available contractors evaluate task announcements
made by several managers and submit bids on those for which they are suited. The
managers evaluate the bids and award contracts to the nodes they determine to be
most appropriate. The negotiation process may then recur. A contractor may further
partition a task and award contracts to other nodes. It is then the manager for those

18 Automated Negotiation Among Web services 457

contracts. This leads to the hierarchical control structure that is typical of task-sharing.
Control is distributed because processing and communication are not focused at
particular nodes, but rather every node is capable of accepting and assigning tasks.
The basic message constructs of contract protocol are Task Announcement, Task
Announcement Processing, Bidding, Bid Processing, Contract Processing, Reporting
Results, Termination, and Negotiation Tradeoffs.

A variation of Contract Net protocol for Semantic Web service composition is
discussed in [43]. The issue of aligning data flow in semantic web service composition
is to ensure the robustness when executing the composed service by preventing any
cases when the wrong type of data is passed on from one service to the next is
tackled by proposing a unique solution that ensures the robustness of data flow when
automatically composing web services through the use of agent-based negotiation
between web service providers.

Another variation of Iterative model of Contract Net Protocol (CNP) for negotia-
tion is discussed in [65], where the manager initiates the negotiation process through
a call for proposals (CFP) announcing the task specification to the contractors. A con-
tractor receiving the CFP evaluates it and decides whether to answer with a refusal or
a proposal to execute the task. The manager receives the contractor’s proposals and
in turn decides which proposals to accept and which proposals to reject. Rejected
contractors consider that the negotiation has terminated, while accepted contractors
must expedite the task and send back the results of their work to the manager.

Multiple strategies are implemented using the Iterative model of Contract Net
Protocol in [64]. The most basic of them i.e., truth telling strategy, relies on the
fact that both the manager and contractors reveal their true preferences. Thus, each
CFP is constructed with its preferred value for each issue. A service replies with a
proposal where each issue is given its own preferred value for each issue. If the CFP
lies outside the reserve values for negotiable issues, then the service’s proposal is
grounded with the service’s reserve values.

18.2.3 WS-Policy

WS-Policy [86] provides a grammar for expressing Web services policies. WS-Policy
is used to specify policy information on a broad range of service requirements, pref-
erences, and capabilities. The WS-Policy is represented by a policy expression that
is an XML Infoset representation of one or more policy statements. The WS-Policy
includes a set of general messaging-related assertions defined in WSPolicyAsser-
tions and a set of security policy assertions related to supporting the WS-Security
specification defined in WS-SecurityPolicy.

A framework based on WS-Policy for negotiation of Quality of Service attributes
between Web services is proposed in [20]. The approach relies on the definition
of an extended SOA in which a service index with QoS information is available.
Service provider publishes the non-functional attributes, that may be negotiated by
the customer, in the WSDL. This QoS registry could be stored along with WSDL

458 K. Hashmi et al.

using WSOL, which is a WSDL-compatible language for specifying different service
offerings for the same service identified by the different values or constraints on the
service QoS attributes [82]. It can include different domain schemas on which the
QoS could be defined.

18.2.4 WS-Negotiation

WS-Negotiation [30] is an independent declarative XML language for Web service’s
providers and customers. In general, WS-Negotiation contains three parts: Negoti-
ation Message, Negotiation Protocol and Decision Making. The Negotiation Mes-
sage part describes the format of the messages exchanged. Some suggested message
types are: Offer, Counter-Offer, Rejected, Accepted, etc. This part of WS-Negotiation
tackles the “Initial Contact” and “Offer and Counter-Offer” tasks. Negotiation Pro-
tocol describes the mechanism and the rules that the negotiation parties should fol-
low to exchange messages. Messages contain offers and counter-offers and can be
exchanged between customer and provider as well as a third-party negotiation ser-
vice (Negotiation Support System-NSS). Negotiation primitives are also defined in
order to coordinate and execute the tasks and events. A negotiation primitive sets the
pre and post conditions that should hold as well as rules and constraints that should
be applied during the negotiation. Example of negotiation primitives are the “Pro-
pose” primitive for proposing an offer/counter-offer to the other party, the “Modify”
primitive to modify the sent offer/counter-offer before receiving the other party’s
reply etc. The Negotiation Decision-making component takes the decisions. It is pri-
vate and is based on the negotiation strategy each party has chosen (e.g., cost-benefit
strategy) and the agreement template. This part of WS-Negotiation tackles the “Eval-
uation”. Negotiation issues vary from one business domain to another but there are
some issues that are common or fixed in a domain. Hence, there are several Service
Level Agreement (SLA) template models, with domain specific vocabularies, for
supporting different types of business negotiations.

WS-AgreementNegotiation [89] describes the re-negotiation of agreements
between two parties. It specifies a set of messages and resources that can be used
to model several re-negotiation scenarios. WS-AgreementNegotiation sits on top
of WS-Agreement, which makes it possible to switch between different negotia-
tion protocol. However, this requires WS-AgreementNegotiation to express nego-
tiation offers in terms of WS-Agreement constructs. This adds a dependency to
WS-Agreement. Moreover, it only allows the re-negotiation of existing agreements
among two parties and could be initiated by either the provider or the customer.

18 Automated Negotiation Among Web services 459

18.2.5 Xplore

Xplore [4] provides a lightweight co-ordination platform focused at multi-party,
multi-attribute negotiation. It acts as a “middleware” which aims at addressing gen-
eral, domain independent requirements on the interaction infrastructure to support
negotiation. It is based on the negotiation mechanism which is an extension of the
Contract Net protocol [78] with transactional facilities, enabling the coordinated
execution of a collection of concurrent, interdependent Contract Nets. It exploits the
coordination mechanism provided by CLFMekano [3], a coordination middleware
platform designed to integrate negotiation and transaction aspects in distributed sys-
tems. CLF contains primitives enabling negotiation and transaction at the lowest
level. The primitives are expressed as a set of eight “interaction verbs” a la KQML,
similar to speech acts [38]. Xplore extends the unidirectional “announce/collect/
decide” paradigm of CLF to incorporate counter offers by providing a multi-
directional “announce/refine/decide” paradigm allowing flexible refinement of the
negotiation terms. Xplore’s protocol consists of the following negotiation verbs.
Open, it creates a new node in the negotiation tree i.e., creating a new negotiation
branch. Close, prevents any further development from the current negotiation branch,
effectively closing the negotiation on the current options. Request, requests informa-
tion on an aspect of the parameter passed at the current node of the negotiation tree,
retrieving information for making informed proposals along a negotiation branch.
Assert, is used the describe the aspects of a parameter i.e., refining the negotiation
term. Ready states that the component is ready to enter in the enactment phase in the
condition expressed by the passed node. The Reserve, Confirm verbs allow to first
reserve and then consume a resource previously returned as an offer. Split in two
phases, the operation of resource consumption (Reserve, then Confirm) allows the
customer to perform atomic consumption of resources coming from different offers
(possibly by different servers), thus realizing the most basic form of transaction. In
addition, the Cancel verb allows to cancel a reservation, in case other resources in
a transaction become unavailable. Finally, the Insert verb requests an extension of a
service capability by insertion of a new resource.

An example of using Xplore to describe a NegotiAuction is presented in [12].
NegotiAuction [81] is an algorithmic Internet-based auction procedure. It combines
various elements from negotiation and auction protocols, supports multiple attributes
of the auctioned good and allows both fully automated negotiation as well as semi-
automated negotiation process. Each NegotiAuction takes place in a one-to-many
market environment. Auction owner sets up the auction and defines the form of
auction i.e., reverse or forward and describes the goods and the quantity to be bought
(or to be sold) and decides whether the potential bidders should be explicitly invited
(closed format), or everybody could qualify for bidding (open format).

Another infrastructure based on Xplore for supporting negotiations in inter-
organizational alliances in a flexible way with respect to the autonomy of the partners
involved is defined as e-Alliance in [15]. It focuses on how to represent decentral-
ized organizations, modeling the coordination of different concurrent interactions,

460 K. Hashmi et al.

formalization of negotiations, deploying and maintaining an alliance during its life
cycle and creating administrative contracts. Similarly, the negotiation middleware
CooF supports processes provided by the facilities in the second layer. CooF is the
coordinator that supports multi-party, multi-directional, multi-attribute negotiation.
This process is modeled by a negotiation graph. This structure captures the dependen-
cies between the negotiation interactions. CooF’s job is to coordinate/synchronize
these different copies of negotiation graphs. The negotiation process can be consid-
ered as a Distributed Constraint Satisfaction Problem [40]. The “distribution” part
deals with constraint propagation between nodes, while the “satisfaction” part deals
with constraint based reasoning and strategic reasoning at each node.

18.3 Negotiation Agents

A negotiation agent can be termed as the brains behind the negotiation process. This
component interacts with the domain knowledge and the system rules to calculate
the usefulness of an offer and then generate counter offers against it. Hence, it is
responsible for the decision making process. There are different types of negotiation
agents that adhere to different types of negotiation (e.g., auction, reverse auction,
bilateral negotiation). A brief overview of these follows.

18.3.1 Auction Based Agents

An auction can be described as the simplest form of negotiation where a customer
bids on the price of an item and the provider has the option of either accepting the
offer or rejecting it. There are multiple types of auctions such as English, Dutch,
first-price and Vickery [52]. A service composition agent that both buys components
and sells services through auctions has been discussed in [67]. It buys component
services by participating in many English auctions. It sells composite services by
participating in Request-for-Quotes reverse auctions. Because it does not hold a
long-term inventory of component services, it takes risks. It makes offers in reverse
auctions prior to purchasing all the components needed, and bids in English auctions
prior to having a guaranteed customer for the composite good. The algorithms used
are able to manage this risk, by appropriately bidding/offering in many auctions and
reverse auctions simultaneously. The algorithms withdraws from one set of possible
auctions and moves to another set if this produces a better-expected outcome, but will
effectively manage the risk of accidentally winning outstanding bids/offers during
the withdrawal process. However only the scenarios with English auction type of
negotiation with no one-on-one negotiation are handled. It is assumed that the agent
maintains a probabilistic model of expected outcomes of each auction based on
past performance of similar auctions. The agent initially identifies the set of options
which maximize its a-priori expected utility. These options will consist of a reverse
auction for a given composite service, together with a set of English auctions for

18 Automated Negotiation Among Web services 461

the required components. It then places bids in these forward/reverse auctions and
continues to compete in these auctions, placing more bids when outbid. However,
if sufficient competing bids are placed to reduce the expected utility of this set of
auctions, then it may change to another set of auctions which can generate the same
composite service. It will do this if the expected gain from changing to this new bundle
outweighs the expected cost of currently held bids which appear in the old bundle
but not in the new bundle. If competing bids are placed in one of the reverse auctions
it is participating in, and the expected value of that auction decreases sufficiently it
may withdraw from that reverse auction. It may use the associated forward auctions
in another option, or may withdraw from them as well. Moreover, the problems of
not committing and evaluating each option are solved by limiting the search space
to promising offers only.

18.3.2 Trade-Off Based Negotiation Agents

In trade-off based negotiations the concerned parties make tradeoffs on different
negotiation parameters based on their respective importance (weights) to the nego-
tiator. Normally each round of negotiation has a slightly different feature vector based
on the counter offer generated in the previous negotiation round. This cumulative
information is used to generate future offers and hence reach a mutual agreement.
A tradeoff based negotiation mechanism for web service procurement using a bilat-
eral protocol to govern interactions between the negotiation parties is used in [63].
Each party can define its own set of evaluation function, utility function and offer
generating algorithm. For simplicity both parties share the same generic tradeoff
mechanism for automated offer generation while each party can have its own set
of objectives and evaluation function. The multi-round negotiation algorithm used
contains strategies that focus on generating a set of offers that have the same utility
as the current offers and is based on the offers generated by the opponent agent in
the previous round. The idea is to exploit the current utility as much as possible.
The generated set of offers is presented to opponent agent that chooses the offer that
is most suitable to its preferences based on its evaluation function. The negotiation
continues until the opponent presents an offer that is of an equal or greater utility
than the agent’s previous offer. A deadlock condition may be reached if no offer that
is of a higher utility to the opponent than the previous offer is being generated. In
such a situation the agent reduces its utility expecting to find, in the lower level an
offer that satisfies both agents. This strategy ensures that the agent concedes utility
in a more rational way.

A trade-offs based agent for multi-dimensional goods for the problem of dis-
tributed resource allocation has been presented in [25]. It uses a fuzzy similarity to
approximate the preference structure of the other negotiator and then uses a hill-
climbing technique to explore the space of possible trade-offs for the one that is
most likely to be acceptable. Similar approaches have been discussed in [26] and
[51]. Trade-off based agents have also been studied in [17, 50, 97].

462 K. Hashmi et al.

18.3.3 Negotiation with Uncertain Data

Having as much information as possible about the other parties is important to
strengthen one’s negotiation capabilities [60]. Unfortunately, more often than not,
we only have partial information about the negotiation context [50]. Hence it is very
important to be able to manage different types of unknown parameters about the
negotiation. An approach for bilateral negotiation under uncertainty, where a nego-
tiator is uncertain as to what offer or counteroffer to make, at a particular step in the
negotiation is presented in [59] and [93]. This uncertainty is resolved by making use
of the negotiation experience of reputable parties in [93]. The idea is similar to the
scenario where suppose, one has been offered a new employment and it is time to
negotiate benefits, including salary. The negotiating parties are yourself and the hir-
ing manager. The fact that mostly salaries are negotiable and often vary with specific
job responsibilities, a new hire may not have all the information needed to make a
good decision. In this case, a natural course of action, is to seek out others who are
trustworthy and who may have negotiated salaries with this company in the past, for
similar types of jobs and use their data to make an informed decision. So the main
idea is of using the negotiation experiences of trusted parties with matching interests
as aids in deciding which negotiating alternatives and offers should be employed.

A model for bilateral negotiations that considers the uncertain and dynamic outside
options is defined in [45]. Outside options affect the negotiation strategies via their
impact on the reservation price. The model is composed of three modules: single-
threaded negotiations, synchronized multi-threaded negotiations, and dynamic multi-
threaded negotiations. The single-threaded negotiation model provides negotiation
strategies without specifically considering outside options. The model of synchro-
nized multi-threaded negotiations builds on the single-threaded negotiation model
and considers the presence of concurrently existing outside options. The model
of dynamic multi-threaded negotiations expands the synchronized multi-threaded
model by considering the uncertain outside options that may come dynamically in
the future. A Poison Process is used to simulate the arrival process of uncertain
(dynamic) options.

18.3.4 Genetic Algorithm Based Negotiations

Negotiations are a special class of group decision making problems. Multi-party and
multi-objective negotiations add a lot of complexity to the already hard problem of
negotiation. Such negotiation problems can thus be formulated as constrained multi-
objective optimization problems. The main idea is to optimize a series of objectives
simultaneously while considering constraints on the system. The Genetic Algorithm
(GA) approach is consistent with the complex nature of real-world negotiations
and is, therefore, capable of addressing more realistic negotiation scenarios. Since
genetic algorithms and evolutionary algorithms in general search for entire popu-

18 Automated Negotiation Among Web services 463

lations of solutions, they are well suited for multi-criterion problems. A weighted
sum based genetic algorithm to support multiple-party multiple-objective negotia-
tions have been presented in [71]. The weighted sum approach is used to handle
multiple objectives of each participant. Since all the participant start negotiation
from a different position hence they will also have different preference for those
objectives and are described by how far their current position is from the objective.
Hence the objective is to minimize this distance. The genetic algorithm solution is
represented as a 2-Dimensional matrix, representing the participants and objectives.
Similar approaches have been discussed in [22, 62, 96]. A genetic algorithms based
approach that evolve Finite State Machines has been presented in [85]. Each individ-
ual in the population of FSMs represents a negotiation strategy that competes against
other strategies and is modified over time using traditional operators of mutation and
cross over. To mutate an FSM, several different operators are used which include
changing the target or source of an edge, changing the output or input symbol of an
edge and adding or deleting a state or an edge. A repair algorithm ensures that all
the FSMs are valid after mutation or crossover operation. A GA based negotiation
model using the traditional operators of mutilation and crossover has been presented
in [18]. A special penalty based evaluation function is used that measures the prior
concessionary behavior of the opponent agent. A negotiation time aware GA based
approach has been presented in [9]. The pace of concession of the agent is propor-
tional to the elapsed negotiation time while considering the opponent’s payoff gains
and the principal of Pareto optimality. Machine learning and bayesian learning have
also been used in conjunction with genetic algorithms to achieve satisfactory results
[56, 76].

18.3.5 Combinatorial Negotiations

A combinatorial negotiation is the type of negotiation where entities can negotiate on
a combination of items, rather than negotiating independently on each item from a
set of items. Combinatorial negotiation stemmed from the traditional combinatorial
auctions. In a combinatorial auction, a set M of items, |M | = m, is sold to n bidders.
The combinatorial character of the auction comes from the fact that each bidder
values bundles of items, rather than valuing items directly. The idea is to find such a
partition of the items so that the return is maximized for the auctioneer.

A Combinatorial Negotiation based decision-support service (iBundler) for highly
constrained negotiation scenarios has been proposed in [69]. iBundler acts as a combi-
natorial negotiation solver for both multi-item, multi-unit negotiations and auctions.
The service can be employed by both negotiating agents and auctioneers in combi-
natorial auctions. It consists of three main components. The Manager agent takes
care of all the communication. It provides brokering services of RFQ, collection of
bids, winner determination and contracting services. The Translator agent perform
the necessary XML translations for the Solver and FIPA-compliant descriptions for
the Manager agent. The Solver component extends the iBundler with the offering

464 K. Hashmi et al.

of an XML language for expressing offers, constraints and requirements. The win-
ner determination is modeled as a mixed integer problem similar to the the binary
multi-unit combinatorial reverse auction winner determination problem in [75] with
side constraints in [73].

18.4 Discussion

As mentioned earlier an automated negotiation mechanism consists of three main
components, namely, a high-level protocol, negotiation objectives, and decision
strategies; while the negotiation context dictates the selection and integration of
these components [33]. In existing literature, this has usually been accomplished in an
ad-hoc manner, which is of minimal interest in SOAs due to the high developmental
costs of such solutions, lack of ubiquity, and dynamic participants. Consequently, the
prime requirements for developing comprehensive negotiation mechanisms include:

• Multi-attribute negotiation. A typical SLA negotiation involves QoS attributes
such as reliability, availability, accessibility and response time [94, 95]. These
QoS attributes (and others) influence the negotiation protocol and the customer
preferences articulation that the negotiation system must support. Hence there
may be more than one combination of these attributes that may be suitable under
a specified negotiation context. User preferences could be expressed in a variety
of ways, e.g., utility functions [25], combination of attributes [23], or fuzzy con-
straints [50] etc. The negotiation system should not restrict its user to a single
negotiable attribute (e.g., price) rather it should allow the users to express multiple
attributes for the negotiation process (REQ 1).
• Support for heterogeneous negotiation protocols. In a service oriented system

it is very much expected that all the participants using the system may not be
similar. They may implement heterogeneous (probably incompatible) negotiation
protocols. Thus, there is a need for supporting multiple negotiation protocols (REQ
2), or be able to consent on the negotiation protocol for cases where a participant
supports multiple ones.
• Heterogeneous decision model articulation. Different participants prefer different

negotiation strategies (auction, bargaining etc.) based on their decision models,
domains, preferences and history. There are usually two types of decisions that an
automated negotiation system has to make. First, it has to generate counter offers
in the negotiation by implementing an appropriate algorithm [24, 25, 39, 50].
Second, it has to handle commitment to the new SLA i.e., deciding if the agree-
ment is acceptable and convenient to commit, and in some cases decommitment
from previously created SLA [61]. This decision is mostly protocol independent.
However, depending upon the negotiation strategy the counter offer generation
could be totally different. For instance, in case of a bargaining strategy, there has
to be a response for each negotiation message that is received, where as in an auc-
tion strategy, bids could be placed at any time. Hence, an automated negotiation

18 Automated Negotiation Among Web services 465

system must implement multiple decision models (REQ 3) so that it could support
protocol specific negotiations.
• Dynamic user preferences. Unlike traditional software environments, SOAs enable

delivery of the same service to different customers with varied quality of service
(QoS) requirements [23]. Moreover, since negotiation is a dynamic and interactive
process, the user preferences could change over time. The user may change the
required value of a QoS attribute during the negotiation process, (as it learns new
information during the negotiation) or may even add or remove new QoS attributes.
Thus, the negotiation system should allow the user preference about the negotiation
process to be changed over time (REQ 4).
• Simultaneous negotiations. Since services are not stored or downloadable, the

market environment tends to be very dynamic [27]. The ability to create on-the-fly
dynamic solutions emphasizes the need of conducting simultaneous negotiation
(REQ 5) with multiple component services, owned by different parties, at the same
time. On one hand, it is necessary for the system to have a global view of all these
negotiations to support them properly. However since the preferences of the parties
involved in the negotiation could potentially change, it is beneficial for the system
to guide the behavior of each negotiation based on the responses generated by
other (simultaneous) negotiations. This allows the system to choose the party that
would result in the most profitable agreement.
• Support for dynamic selection of decision making models. Simultaneous nego-

tiations are desirable in volatile service markets to allow selection of the most
profitable agreements for the participants [27]. This entails that the participants
are equipped to change their strategies/decisions at runtime (REQ 6), based on
market dynamics and changing contexts [70]. The underlying strategy should be
robust enough so that it can adapt to different behaviors of participants, and utilize
“peripheral knowledge”. For instance, information relating to whether the par-
ticipant tends to concede, participant reputation, etc. may be used to strengthen
one’s negotiation capabilities [60, 61]. Similarly, in some contexts if a more prof-
itable offer is found, there should be a provision to decommit from the current
agreement [74].

Table 18.1 summarizes how the current negotiation systems in the literature per-
form on the above mentioned requirements. An ‘✓’ in a cell means that the cor-
responding proposal provides explicit support for the corresponding requirement,
whereas a ‘✗’ indicates that the feature is not supported and ‘n/a’ means that there
is no information available. The table shows that most of the existing solutions do
not do well when it comes to supporting multiple negotiations at the same time or
dynamic selection of decision making models. Moreover, none of the solutions pro-
vide any dependency modeling among different QoS components. Howsoever this
is is an extended requirement in composite solutions that often have dependent QoS
objectives. For example, if we were to have a composite solution consisting of taskA
and taskB and one of the objective was to have services that could handle a load of
1 million transactions per minute. What if we have multiple services offering such a
solution for taskA but could not find any service for taskB that could meet our current

466 K. Hashmi et al.

Table 18.1 Summary of automated negotiation systems

Authors REQ 1 REQ 2 REQ 3 REQ 4 REQ 5 REQ 6

Ashri et al. [6] ✓ ✓ n/a n/a n/a n/a
AuctionBot [91] ✗ ✗ ✓ ✓ ✗ ✗

Bartolini et al. [8] ✓ ✓ ✗ ✗ ✗ ✗

Benyoucef et al. [11] n/a ✓ ✓ n/a ✗ ✗

Bruns et al. [13] ✓ ✗ ✓ n/a ✓ ✗

Comuzzi et al. [19] ✗ ✓ ✓ ✗ ✗ ✗

Cremona [48] ✓ ✗ ✓ ✓ ✗ n/a
DynamiCS [84] ✓ ✓ ✓ ✗ ✗ ✗

Inspire [36] ✓ ✗ ✓ ✗ n/a ✗

Jonker et al. [34] ✓ n/a ✓ ✓ ✗ ✗

Kasbah [16] ✓ ✓ ✓ ✗ ✗ ✗

Kim et al. [37] ✓ ✓ ✗ ✗ ✗ ✗

Lecue et al. [43] ✗ ✓ ✗ ✗ ✗ ✓

Ludwig et al. [49] ✓ ✓ ✓ ✗ ✗ ✗

MAGNET [31] ✓ ✗ ✓ ✓ ✗ ✗

Marco et al. [20] ✓ ✓ ✗ ✓ ✗ ✗

NegoPlan [72] ✓ ✗ ✓ ✗ ✗ ✗

Negotiator [14] ✓ ✗ ✓ ✗ ✗ ✗

PANDA [27] ✓ ✓ ✓ ✓ ✗ ✗

Paurobally et al. [65] ✓ ✗ ✗ ✗ ✗ ✗

Rinderle et al. [68] ✓ ✓ ✗ ✗ ✗ ✗

Skogsrud et al. [77] ✗ ✓ ✓ ✓ ✗ ✓

Strobel [80] ✓ ✓ ✗ ✗ ✗ ✗

Tete-a-Tete [42] ✓ ✓ ✓ ✗ ✗ ✗

objective. It would then be more economical for the composite solution to downgrade
taskA to the level of taskB’s solution (since throughput of a system is a composite
function of its constituent services). Continuing with this hypothetical scenario, we
need the negotiation service to be able to simultaneously negotiate multiple services
having multiple objectives with multiple providers. Existing communication proto-
cols [4, 28, 43, 78, 86] lack such capabilities, and a new standard language that
could be used to pass on all these constraints and decision model to the negotiation
system is required. This leads us to look for a new solution that not only fairs better
in comparison with the existing solutions, but also supports all the requirements of
a SOA based negotiation system.

18.4.1 A framework for Web Service Negotiation

In this section, we provide an overview of our solution for the service negotia-
tion problem. Figure 18.3 presents a high level architecture of a negotiation system

18 Automated Negotiation Among Web services 467

Negotiation Service

Policy and Protocol Preprocessor

Policy and
Protocol DB

Negotiation
History/

Community DB

Negotiation Manager

Negotiation
Component

Manager

Negotiation
Strategy
Manager

Consumer/Provider Policy and Negotiation Attributes

Consumer
Negotiation
Component

Provider
Negotiation
Component

Contract Manager

Communication
Manager

Fig. 18.3 WebNeg system architecture

(defined as WebNeg) that is very flexible in terms of its functionality and the ser-
vices provided. It is primarily targeted to be invoked by the customer searching for a
compatible service from a list of service providers providing similar functionalities.
The client does not need to implement any negotiation specific component to use the
proposed service. The WebNeg architecture is compatible with both the negotiation
scenarios i.e., the negotiating participants could either provide their own negotiation
component or send all the necessary information to the service, that would handle
all the negotiation process. A brief overview of the major modules of the proposed
negotiation architecture is as follows:

18.4.1.1 Negotiation Service

The negotiation service layer acts as the interface of the whole system. This layer is
responsible for any and all external communication of the system. All the internal
components use this service to communicate with both the customer and provider
as well as with the community (to be discussed later). Customer invokes the service
providing its negotiation attributes, negotiation policy as well its decision model.
The service then communicates with potential providers and request their decision
model and policy attributes for the negotiation process.

468 K. Hashmi et al.

18.4.1.2 Policy and Protocol Preprocessor

This component is responsible for standardizing the inputs from the communicating
participants. Different participants may use different protocols for describing their
decision models and policy attributes. A generic component would ensure that these
heterogeneous participants could communicate with the negotiation service. After
receiving this data from the negotiation service this component then translates it
into a standard form which is used for the internal information exchange among
different components of the system. It then stores these participant communication
preference in the Policy and Protocol database. Negotiation service would then use
this information for any future communication with the participants. This generic
module would ensure that the system is compatible with any future communication
protocol and ensures that customer and providers using different communication
protocols could still negotiate service attributes and form service level agreements
(SLA).

18.4.1.3 Negotiation Manager

Once the service receives a request for negotiation from the customer along with
all the necessary data, it then proceeds to the negotiation step. Negotiation manager
would then query the Web service directory e.g., UDDI to search for the matching
service providers. The customer also has the option of providing its own list of
possible providers. Once it has the list of service providers providing similar services,
it then ranks these providers based on their ratings, trust and reputation values.

It uses the trust model based on the concept of community [53] where the reputa-
tion represents the perception of the users in that community regarding a service. So,
the rating of a service represents the average of all the rating provided to the commu-
nity for that individual service. For the newly starting service that does not have any
history, it uses the reputation bootstrapping mechanism defined in [55]. Community
is a centralized knowledge base that would be responsible for storing all the data
regarding different providers, including reputation, trust and past negotiations. The
community ensures that no private information is released to its users but could pub-
lish non identifiable data e.g., It does not give out any information about systems that
are using lets say ServiceA, but could tell the total number of the systems currently
running ServiceA. These pieces of information combined with the above mentioned
methods of trust and reputation assessment, help the negotiation manger in selecting
appropriate services, from a number of services providing similar functionalities.

18.4.1.4 Negotiation Component Manager

Since negotiation is a multi-party mechanism, the WebNeg system needs to spawn
separate components for each customer and provider. In the most basic scenario
at any given instance, the systems would have one customer and multiple provider

18 Automated Negotiation Among Web services 469

components. These components operate in their separate context and communicate
with their original service through the communication manager. The communication
manager is responsible for creating and manging these components.

18.4.1.5 Negotiation Strategy Manager

There are multiple strategies available for conducting efficient negotiations. One such
strategy is defined below in Sect. 18.4.2 (defined as WebNeg). Our system architecture
does not restrict the components to any one negotiation strategy. It has multiple
strategies for the components to choose from. Participants could opt for using any
strategy and could pass on this information as a policy to the system. If none is chosen
the system selects one or a combination of strategies for the negotiation process. The
negotiation strategy manager selects and binds each component with the appropriate
strategy and is responsible for implementing the component policies and decision
model in the context of the selected strategy as well as monitoring and storing any
transient data related to the negotiation process.

18.4.1.6 Communication Manager

All the external pre-contract communications are handled by this manager. The com-
ponent may communicate with their respective services for any decision model or
policy/guidance queries. Communication manager ensures that all the communica-
tion is related to the current negotiation and adheres to the negotiation service’s
policies.

18.4.1.7 Contract Manager

Once the system identifies perspective negotiation solution(s), it is presented to the
respective services, if they agree, contract manager then handles all the formal SLA
creation process. If the current selected provider does not agree on the solution, the
system would then try the next best available solution, until either an agreement is
achieved or the system has ran out of options. If the system could not find a mutually
agreeable solution, then the process would be termed as a failure and the customer
would be asked to revise its negotiation model.

18.4.2 WebNeg

We present a GA based approach to solving the Web service negotiation problem
[29]. We enhance the traditional GA with a new operator called Norm. Our proposed
approach complements the proposed negotiation framework that is designed towards

470 K. Hashmi et al.

Table 18.2 Definition of symbols

Symbol Definition

f j Fitness of the solution s for participant j
Fs Fitness of the solution s (for all participants)
C j The value of j th component of Customer’s vector
C j (min) The minimum allowed value of j th component of customer’s vector as provided

by the customer
C j (max) The maximum allowed value of j th component of customer’s vector as provided

by the customer
WC j The weight of j th component of customer’s vector as provided by the customer
Pi j The value of j th component of i th Provider’s vector
Pi j (min) The minimum allowed value of j th component of i th Provider’s vector as

provided by the provider
Pi j (max) The maximum allowed value of j th component of i th Provider’s vector as

provided by the provider
W Pi j The weight of j th component of i th Provider’s vector as provided by the provider
R j Rank for solution j in the system
Ni Value of Norm i in the system
Ei j The willingness of participant j to exchange objective i
Ai j Amount of resource i exchanged by Web service j
G Total number of generations
Cross Pj Cross over probability for service j
AugV ali j The value of i th objective to be added or subtracted for Web service j

a scenario where a customer is involved in simultaneous negotiations with multiple
providers. Each instance of communication among the customer and service provider
is private and holds a lot of information. The proposed Norm operator makes it
possible to share this private information among all the participants without revealing
the source of any of such information. This in turn helps all the agents to adapt quickly
and significantly reduces the search space by guiding the negotiation process toward
a mutually agreeable solution.

We propose a weighted sum genetic algorithm to support multi-party multi-
objective negotiation. All the Web services provide their respective QoS parameters
to be negotiated. These are called the component vector of a Web service. Each vec-
tor is accompanied by a decision model, i.e., ranges of all the QoS parameters as
well as their respective priorities also known as the weights. We assume that all the
participating Web services are able to articulate their objectives and prioritize them.
Table 18.2 lists the definition of symbols used henceforth.

Since all the Web services (participants) start negotiation from a different position,
they have different preferences for those objectives, and are described by how far
their current position is from the customer’s objective. All the Web services conform
to some constraints in the solution. For instance, any QoS vector cannot have a
negative value (as shown by Eq. 18.1). The QoS values lie between the maximum
and minimum allowable values set by the Web service (as shown by Eq. 18.2). A

18 Automated Negotiation Among Web services 471

repair algorithm is applied to GA after each operator, to ensure all these constraints
are met.

C j ≥ 0 , Pi j ≥ 0 (18.1)

C j (min) ≤ C j ≤ C j (max) and Pi j (min) ≤ Pi j ≤ Pi j (max) (18.2)

Each gene is a combination of customer and provider chromosomes. If we have
n objectives to be negotiated then each gene will have 2n chromosomes. The fitness
function is a multi-step calculation that evaluates the level of disagreement between
the negotiating Web services. A weighted sum approach is used to combine these
multiple QoS parameters (objectives). We use a distance function to measure the
difference among the proposed solutions of both the customer and provider Web
services. Thus, lower fitness values are desired as they translate to lesser disagreement
among the participants. Similarly, lower values translate to higher ranks for the
solutions among the solution space. Ranks are then used for selection of subsequent
steps of the GA [88]. Each solution represents a probable distribution of values that
may be agreed upon by the other Web service in the negotiation. The fitness value
of a solution is calculated as follows.

Δi j = |C j − Pi j |
C j

(18.3)

f j =
n∑

j=0

(WC j ∗Δi j +W Pi j ∗Δi j) (18.4)

Fs = min
G∑

j=0

(f j) (18.5)

Pareto optimality is not enforced after each generation as it is possible for a Web
service to accept a less favorable solution for the time being (in the negotiation
process) for a better solution in the long run. However, a secondary population of
solutions is kept which is updated after each iteration. This secondary population
or Elitism is a an important concept in genetic searches [7, 98]. The probabilistic
nature of GA does not guarantee that the best solutions would be preserved in the
final generation. Hence a secondary population of best solutions is kept through all
generations. Below is the algorithm used to determine the optimal solution. Details
follow.

472 K. Hashmi et al.

Set generation number g equal to zero (g = 0)
Generate initial population
Calculate fitness for each member
Store the most fit solution in the secondary population
Rank the solutions
Apply Norm
Select members for crossover using Roulette-Wheel selection method
Perform crossover
Perform random mutations
IF g = G (last generation)

Ensure Pareto optimality
exit

ELSE
Set g = g + 1
Set Go to step 3

End Algorithm

18.4.2.1 Norm Operator

A new operator Norm is implemented to improve the performance of GA and to
simulate the exchange of resources based on the common knowledge of the society
in a negotiation scenario. The Norm operator is based on the observation that in each
society people follow certain trends or norms to conduct negotiations. These norms
are either informed by the environment or are discovered by the population based on
the prior experiences. These norms are transfered through generations and different
people follow different norms. Often people are inclined to abandon or follow a new
norm on the basis of the facts if they think they are being better off following or
deviating from them. Most helpful norms tend to accumulate more followers, which
in turn re-enforces that norm. People tend to abandon less useful norms in the favor
of useful ones. Once in a while people just hop around trying to find out what works
the best for them. These norms serve as a guide for achieving their desired goals.
Figure 18.4 shows a scenario that depicts the concept of norm. Assume we have
n norms (information sources) in the society and k population subsets. Set 1 may
follow Norm 1, Set 2 may follow Norm n and Set m may choose to follow Norm
2 while others may not choose to follow any Norm. The selection of subsets and
Norm selections are random. Population in Set 1 is effected by the values of Norm 1
and they in turn effect the values of the Norm. This cycle makes sure that beneficial
values are prevailed in the Norms.

We have the Norm operator behavior defined above in the GA, so that it takes
less time to find the solution and to reduce the search space. Each QoS negotiation
criteria is represented as a norm and certain members of the population follow a
certain norm. After each generation, the followers update the impact factor of their
respective norm. If increasing the value of the norm resulted in a better overall fitness
value for the member of population, it would influence the norm into increasing its

18 Automated Negotiation Among Web services 473

Norm 1 Norm 2 Norm n

Set 1

Set 2

Set m

Set k

Set j

Total Population
Subset of Population

Fig. 18.4 Norm operator in relation to population sets

value. The increase is dependent on the difference of current and previous values
of that objective of the reporting individual and the current absolute value of that
objective. Both customers and providers share the same influence values of norms.
This is an indirect information source for the customer about providers decision
model and vice versa. Ideally, we will have one customer and n providers, hence
sharing these impact factors does not reveal any trade secrets. These values have the
bias of n+1 agents and are averaged out.

Norm is implemented for the exchange of recourses among different participant.
Exchange must occur between two distinct objectives, participants can trade some
or all of their available objectives and there is at most one exchange per pair per
generation. Exchange is implemented probabilistically. Each member of population
is reviewed for possible exchange. The participants and objectives involved in the
exchange are selected randomly. Then it is decided if an exchange will actually occur
based on the willingness of participants. The exchange only occurs if both randomly
selected participants are willing to make an exchange. Essentially, willingness to
exchange is higher if a participant has more of an objective than he ideally wants
and if the information source that he is following is influencing a lower value of
that specific objective. If the current Web service is following Normm then the
willingness to exchange is calculated as

Ei j = | Ci

Nm
| (18.6)

and the amount exchanged would be

Ai j = (1−WCi)|1− Ci

Nm
| (18.7)

474 K. Hashmi et al.

If the current Web service is not following any Norm then the willingness to
exchange is calculated as

Ei j = | Ci

Pi j
| (18.8)

and the amount exchanged would be

Ai j = (1−WCi)|1− Ci

Pi j
| (18.9)

18.4.2.2 Crossover and Mutation

The crossover operator is invoked after applying the Norm operator. Roulette-wheel
selection is used for selecting solution pairs for crossover. Roulette-wheel selection
is analogous to a roulette wheel where the probability an individual is selected is
proportional to its fitness [32].

Solution rankings are used to implement selection. The population is augmented
so that solutions with better ranks are more prevalent in the population. We use
both ranks and fitness values for our selection technique because ranking indicates
the performance of solutions relative to others in the population and minimizes the
effect of large disparities in fitness values within the population [88]. Augmentation
of the population for roulette-wheel selection is performed as follows:

Cross Pj = 1− 1

R j
(R j − 1) (18.10)

Crossover rate is used to determine if crossover will actually occur or if the selected
solution will simply be copied over to the next generation. If it is determined that
crossover will occur, uniform crossover is implemented on the pair. It has been proved
that custom operators provide superior performance for real-valued problems [90].

Mutation is the last operator to act on the population of solutions and is also applied
randomly to the elements of the solution, in accordance with the experimentally
predetermined mutation rate. A random number is generated for each member in the
population and compared to the mutation rate. If the random number is less than or
equal to the mutation rate, mutation will occur in that solution. Mutation here involves
arbitrarily changing one element of the negotiation vector and then implementing a
repair algorithm to ensure that objective values lies within the valid range for that
agent.

18.4.2.3 Study and Results

To determine the efficiency to GA with the Norm operator we performed experiments
covering different scenarios. We compared the performance of GA with Norm with

18 Automated Negotiation Among Web services 475

other methods of solving similar problems. We used (1) a traditional GA with only
mutation and crossover operator, (2) a random search and (3) a hill-climber. We used
experiments to determine the GA parameters such as population size, number of
generations, crossover rate and mutation rate.

Traditional GA: A traditional GA was implemented by removing the Norm oper-
ator. It only uses the simple GA operators of crossover and mutation. All the GA
parameters are same as that of GA with Norm operator.

Random Search: Random search simulates the behavior of arbitrarily exploring
the search space in the hope of finding a solution. It is applied on one half of the gene at
a time. Either the customer’s Web service gene or provider’s Web service gene para-
meters are augmented. This augmentation likelihood is determined randomly. Once
selected, a random number is generated for each QoS parameter that lies between
the allowable range for that participant. Then all the numbers are aggregated by sub-
tracting their respective minimum values. This summation is then averaged out and
either added or subtracted randomly to all the parameters. Then the repair algorithm
is applied to ensure that all the constraints from Eqs. 18.1–18.3 are held. Then we
add this new solution of our population. The population is then ranked according
to their fitness values and members with higher fitness values are taken to the next
generation.

Hill-Climber: Hill-climber uses the concept of randomly exchanging the QoS
values. It is somewhat similar to the Norm operator as both use Eq. 18.10 to determine
the amount of the objective to be exchanged. However, the GA with Norm uses either
Eq. 18.7 or Eq. 18.9 to determine if the exchange will occur, while in hill-climber
it is done randomly. Once a gene is randomly selected, the exchange takes place.
However, it is guaranteed that only one objective per gene is exchanged and that once
selected, that gene does not participate in any other exchange for that generation.
We create the initial population and rank them according to their fitness values.
We then perform crossover using Roulette-Wheel selection method. Then we apply
the mutation operator. After we are done with the basic GA operators we apply
the Hill Climbing operator on the population. The repair algorithm ensures that all
the constraints from Eqs. 18.1–18.3 are held. All the GA parameters are same as that
of GA with Norm operator.

Experiment Environment

Our development environment consisted of a Windows server 2008 (SP2) based
Quad core machine with 8.0 GB of ram. We developed 1 client and 50 provider Web
services running on Microsoft .Net version 3.5 to simulate multi-party negotiations.
A large number of similar providers are chosen to show the applicability/scalability
of the proposed solution. The client negotiated four QoS components of reliability,
availability, throughput and accessibility with the providers. We performed 200 iter-
ations consisting of 500 generations each, for all the four algorithms and analyzed
the results for efficiency and completeness.

476 K. Hashmi et al.

Fig. 18.5 Sample representation of multi-party negotiation

Results

Figure 18.5 shows results of a representative run of the four algorithms after each
generation. Note that these are the actual output values without Elitism [7, 98]. We
have plotted the output of 500 generations (X-axis) against the degree of disagreement
(Y-axis) among the client and provider Web services. Lower values of degree of
disagreement are desired as they show a higher chance of reaching an agreement
e.g., Assume that Web service A wants a solution that has an Availability value of
98 % and the provider B presents a solution that has an Availability value of 95 %.
The degree of disagreement among the A and B is small and hence they are more
likely to reach a solution. Note that both the customer and provider must have some
overlapping search space values for the algorithm to identify a solution. If both
the customer and provider have mutually exclusive ranges of QoS parameters, the
algorithm fails and no solution is returned.

The graph confirms the assumption that the probabilistic nature of GA does not
guarantee that the best solution will be passed on to the next generation. Hence, using
Elitism to ensure Pareto optimality is an important factor. Our proposed technique
(GA with Norm) takes almost 1/4th the time to reach an agreeable solution. We can
see in the graph that Norm found a mutually agreeable solution after 100 generations,
where as Hill Climber took 475 generations, Traditional GA took 450 generations
and Random Search took 375 generations to find their respective best solutions.
Hence, we can find the solution faster with our proposed approach. Similarly our
proposed approach finds a lot better solution than any of the other techniques.

The probabilistic nature of GA does not guarantee the same solution every time.
Hence, it is appropriate to analyze the performance of GA over multiple rounds.
Table 18.3 shows that average of 200 runs for all four algorithms.

We can see that the best solution of 0.00002 returned by Norm is far better that
best solution returned by any other technique. Similarly Traditional GA performed
better than the Hill Climber in finding a more agreeable solution. As far as the worst
solution is concerned, Norm still performed better than any of the other techniques.

18 Automated Negotiation Among Web services 477

Table 18.3 Average results over 200 iterations

Random search Traditional GA Hill climber Norm

Min 0.00568 0.00027 0.00041 0.00002
Max 0.06153 0.08547 0.05171 0.03163
Mean 0.02718 0.02192 0.01461 0.00925
Std. dev 0.01663 0.02177 0.01668 0.01157

The worst solution of 0.03163 returned by Norm is almost twice as good as that of Hill
Climber, the second best technique. The average solution returned by Norm shows a
remarkable improvement from the next best i.e., Hill Climber technique, depicting
that the Norm also has the best average case performance among the compared
techniques. Similarly our proposed technique has the lowest standard deviation of
0.01157. Lowest mean value combined with the lowest standard deviation indicates
that our technique performs consistently better than other techniques.

These results suggest that our approach outperforms other compared methods
in terms of finding the optimal solution in the amount of time it takes to find that
solution.

18.5 Conclusion and Future Directions

Designing an automated, flexible and efficient negotiation system that facilitates the
Web service selection process, is challenging. None of the existing solutions meet all
the requirements for a completely automated solution for Web service negotiation.
One of the limitations of the presented techniques involve the assumption of a static
environment, where the Web service procurement time window is so small that the
user preferences do not change during the course of negotiations. Secondly, most
of the solutions use a priori decision model articulation, which requires that all the
negotiating participants can identify and share their preferences at the beginning of
the negotiation. However, some of these limitations involved with the static envi-
ronment assumption could be overcome, if participants decide to provide their own
negotiating component rather than only articulating their preferences. However, this
limits the effectiveness of sharing private information. Therefore, we need to design
a negotiation system that can support multiple communication protocols for enabling
interactions among different customers and providers as well as supporting multiple
negotiation strategies for an optimized solution. The solution should support mul-
tiple simultaneous negotiations and provide mechanisms to model the dependency
relationships among different component services to achieve an optimal solution.

In this chapter we have presented the framework for Web services negotiation
to enable customers and providers negotiating QoS parameters in SLA’s. The pre-
sented architecture uses a GA based approach to conduct multi-party multi-objective
negotiations. Our approach integrates the concepts of Pareto optimality and multiple
decision making preferences of the participants. We have enhanced the traditional

478 K. Hashmi et al.

GA with a new operator called Norm. This operator is based on the concept of cumu-
lative knowledge of the society over a period of time. This accumulated knowledge
influences the decision making process of negotiating participants. Furthermore,
Norm provides a platform for sharing private information of all the participants of
the negotiation in such a manner that allows for using this shared knowledge for the
overall gain of the society, without revealing the identity of information providers.
We have compared Norm’s performance with similar optimization techniques i.e.,
Traditional GA, Hill-Climbing and Random Search. The results show that our pro-
posed technique performs better than any of the above mentioned techniques, and
that applying a genetic algorithm based approach to complex negotiation for Web
service composition problems is a viable option.

We are currently investigating on enhancing the effectiveness of private informa-
tion sharing by exploring the possibilities of having people follow multiple infor-
mation sources rather than following just one source. This is motivated by the fact
that composite solutions often have dependent objectives. We want to further extend
our approach to incorporate these dependencies among the different QoS parameters
of multiple services to formulate optimized solutions. We need to be able to use
the information sources of Norm operator to share such information. We need the
negotiation service to be able to simultaneously negotiate multiple service having
multiple objectives with multiple providers. Existing communication protocols [4,
28, 43, 78, 86] lack such capabilities. This requires a new standard language that
could be used to pass on all these dependency constraints and decision model to
WebNeg. We are exploring the options of extending WS-Negotiation [30] and WS-
AgreementNegotiation [89] by adding the support of complex logical functions for
articulating these and similar complex decision models. We are also working on
a solution that moves away from the centralized approach in the favor of a more
adaptive distributed model.

References

1. Alhosban, A., Hashmi, K., Malik, Z., Medjahed, B.: Assessing fault occurrence likelihood
for service-oriented systems. In: Proceedings of the 11th International Conference on Web,
Engineering, pp. 59–73 (2011)

2. Alhosban, A., Hashmi, K., Malik, Z., Medjahed, B.: S2r: a semantic web service similarity and
ranking approach. Int. J. Next-Gener. Comput. 3(2) (2012). http://perpetualinnovation.net/ojs/
index.php/ijngc/article/view/145

3. Andreoli, J., Arregui, D., Pacull, F., Rivire, M., Vion-dury, J., Willamowski, J.: Clfmekano: a
framework for building virtual-enterprise applications. In: Proceedings of the EDOC’99 (1999)

4. Andreoli, J.M., Castellani, S.: Towards a flexible middleware negotiation facility for distributed
components. In: International Workshop on Database and Expert Systems Applications 0732
(2001)

5. Andrieux, A., Dan, A., Keahy, K., Ludwig, H., Rofrano, J.: From ws-agreement to sla
negotiation (2004). http://www.mcs.anl.gov/keahey/Meetings/GRAAP/WS-AgreementNegot-
iabilityConstrains.pdf

6. Ashri, R., Rahwan, I., Luck, M.: Architectures for negotiating agents. In: Proceedings of the
3rd Central and Eastern European conference on Multi-agent systems, pp. 136–146 (2003)

http://perpetualinnovation.net/ojs/index.php/ijngc/article/view/145
http://perpetualinnovation.net/ojs/index.php/ijngc/article/view/145

18 Automated Negotiation Among Web services 479

7. Baker, J.E.: Adaptive selection methods for genetic algorithms. In: Proceedings of the 1st
International Conference on Genetic Algorithms, pp. 101–111 (1985)

8. Bartolini, C., Preist, C., Jennings, N.R.: A software framework for automated negotiation. In:
SELMAS, Lecture Notes in Computer Science, vol. 3390, pp. 213–235. Springer (2004)

9. Beheshti, R., Rahmani, A.T.: A multi-objective genetic algorithm method to support multi-
agent negotiations. In: Second International Conference on Future Information Technology
and Management Engineering, 2009. FITME ’09, pp. 596–599 (2009). doi:10.1109/FITME.
2009.154

10. Benbernou, S., Brandic, I., Cappiello, C., Carro, M., Comuzzi, M., Kertész, A., Kritikos, K.,
Parkin, M., Pernici, B., Plebani, P.: Modeling and negotiating service quality, in service research
challenges and solutions for the future internet—s-cube—towards engineering, managing and
adapting service-based systems. In: Papazoglou, M.P., Pohl, K., Parkin, M., Metzger A. (eds.)
S-CUBE Book, Lecture Notes in Computer Science, vol. 6500, pp. 157–208. Springer (2010)

11. Benyoucef, M., Verrons, M.H.: Configurable enegotiation systems for large scale and trans-
parent decision making. Group Decis Negot 17(3), 211–224 (2008)

12. Brandl, R., Andreoli, J., Castellani, S.: Ubiquitous negotiation games: a case study. In: Pro-
ceedings of the DEXA e-negotiations, Workshop (2003)

13. Bruns, G., Cortes, M.: A hierarchical approach to service negotiation. In: IEEE International
Conference on Web Services, pp. 460–467 (2011)

14. Bui, T.X., Shakun, M.F.: Negotiation processes, evolutionary systems design, and negotiator.
Group Decis Negot 5(10), 339–353 (1996)

15. Castellani, S., Andreoli, J., Bratu, M., Boissier, O., Alloui, I., Megzari, K.: E-alliance: a nego-
tiation infrastructure for virtual alliances (2002)

16. Chavez, A., Maes, P.: Kasbah: an agent marketplace for buying and selling goods. In: Proceed-
ings of the First International Conference on the Practical Application of Intelligent Agents
and Multi-Agent Technology, pp. 75–90 (1996)

17. Cheung, S.C., Hung, P.C.K., Chiu, D.K.: On the e-negotiation of unmatched logrolling views.
In: Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS-36)
(2003)

18. Choi, S.P.M., Liu, J., Chan, S.: A genetic agent-based negotiation system. Comput. Netw. 37(2),
195–204 (2001)

19. Comuzzi, M., Pernici, B.: Negotiation support for web service selection. In: TES (2004)
20. Comuzzi, M., Pernici, B.: An architecture for flexible web service qos negotiation. In: Pro-

ceedings of the Ninth IEEE International EDOC Enterprise Computing Conference, pp. 70–82
(2005)

21. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the
web services web: an introduction to soap, wsdl, and uddi. Internet Comput. IEEE 6(2), 86–93
(2002)

22. Deng, M.D., Li, J.: An agent negotiation system based on adaptive genetic algorithm. In: 2009
5th International Conference on Wireless Communications Networking and Mobile Comput-
ing, vol. 18, pp. 5307–5310 (2009)

23. Elfatatry, A., Layzell, P.J.: A negotiation description language. Softw. Pract. Exp. 35(4), 323–
343 (2005)

24. Faratin, P., Sierra, C., Jennings, R.: Negotiation decision functions for autonomous agents.
Robot. Auton. Syst. 24(3–4), 159–182 (1998). http://eprints.ecs.soton.ac.uk/2117/

25. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-offs in
automated negotiations. Artif. Intell. 142, 205–237 (2002)

26. Freuder, E.C., O’Sullivan, B.: Modeling and generating tradeoffs for constraint-based config-
uration (2001)

27. Gimpel, H., Ludwig, H., Dan, A., Kearney, B.: Panda: specifying policies for automated nego-
tiations of service contracts, pp. 287–302 (2003)

28. (GRAAP) G.R.A.A.P.: Wsagreement (2007). http://www.ogf.org/documents/GFD.107.pdf
29. Hashmi, K., Alhosban, A., Malik, Z., Medjahed, B.: Webneg: A genetic algorithm based

approach for service negotiation. In: Proceedings of the 2011 IEEE International Conference

http://dx.doi.org/10.1109/FITME.2009.154
http://dx.doi.org/10.1109/FITME.2009.154
http://eprints.ecs.soton.ac.uk/2117/
http://www.ogf.org/documents/GFD.107.pdf

480 K. Hashmi et al.

on Web Services, ICWS ’11, pp. 105–112. IEEE Computer Society, Washington, DC, USA
(2011). doi:10.1109/ICWS.2011.55.http://dx.doi.org/10.1109/ICWS.2011.55

30. Hung, P.C.K., Li, H., Jeng, J.: Ws-negotiation: an overview of research issues. In: Proceedings
of the 37th Hawaii International Conference on System Sciences (2004)

31. Jaiswal, A., Kim, Y., Gini, M.L.: Design and implementation of a secure multi-agent market-
place. Electron. Commer. Res. Appl. 3(4), 355–368 (2004)

32. James, E.B.: Reducing bias and inefficiency in the selection algorithm. In: Proceedings of
the Second International Conference on Genetic Algorithms and their application, pp. 14–21
(1987)

33. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Sierra, C., Wooldridge, M.: Automated
negotiation: prospects, methods and challenges. Int. J. Group Decis. Negot. 10(2), 199–215
(2001). http://eprints.ecs.soton.ac.uk/4231/

34. Jonker, C., Robu, V., Treur, J.: An agent architecture for multi-attribute negotiation using
incomplete preference information. Auton. Agents MultiAgent Syst. 15, 221–252 (2007)

35. Keller, A.: openccs: Computing center software. Technical report, Aderborn Center for Parallel
Computing (2007)

36. Kersten, G.E., Noronha, S.J.: Www based negotiation support: design, implementation and
use. Decis. Support Syst. 25(2), 135–154 (1999)

37. Kim, J., Segev, A.: A web services-enabled marketplace architecture for negotiation process
management. Decis. Support Syst. 40, 71–87 (2005)

38. Kit, C.M., Woo, C.C.: A speech-act-based negotiation protocol: design, implementation, and
test use. ACM Trans. Inf. Syst. 12(4), 360–382 (1994)

39. Kowalczyk, R.: Fuzzy e-negotiation agents. Soft Computing—a fusion of foundations, method-
ologies and applications 6, 337–347 (2002). doi:10.1007/s00500-002-0187-5

40. Kowalczyk, R., Bui, V.: Jfsolver: a tool for modeling and solving fuzzy constraint satisfaction
problems. In: FUZZ-IEEE, pp. 304–307 (2001)

41. Kritikos, K., Plexousakis, D.: Requirements for qos-based web service description and discov-
ery. IEEE Trans. Serv. Comput. 2(4), 320–337 (2009). doi:10.1109/TSC.2009.26

42. Lab, M.M.: Teteatete (2000). Online: ecommerce.media.mit.edu.
43. Lecue, F., Wajid, U., Mehandjiev, N.: Negotiating robustness in semanticweb service compo-

sition. In: Seventh IEEE European Conference on Web Services (2009)
44. Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., N.Tantawi, A., Youssef, A.: Performance

management for cluster based web services. In: IFIP/IEEE 8th International Symposium on
Integrated Network Management (2003)

45. Li, C., Giampapa, J., Sycara, K.: Bilateral negotiation decisions with uncertain dynamic outside
options. IEEE Trans. Syst. Man Cybern. 36(1), 45–55 (2006)

46. Lin, C., Lu, S., Lai, Z., Chebotko, A., Fei, X., Hua, J., Fotouhi, F.: Service-oriented architecture
for view: a visual scientific workflow management system. In: SCC ’08, Proceedings of the
2008 IEEE International Conference on Services Computing, pp. 335–342. IEEE Computer
Society, Washington, DC, USA (2008). http://dx.doi.org/10.1109/SCC.2008.118

47. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in
electronic commerce. Group Decis. Negot. 12(1), 31–56 (2004)

48. Ludwig, H., Dan, A., Kearney, R.: Cremona: an architecture and library for creation and
monitoring of ws-agreements. In: 2nd International Conference on Service Oriented Computing
(2004)

49. Ludwig, A., Braun, P., Kowalczyk, R., Franczyk, B.: A framework for automated negotiation
of service level agreements in services grids. In: Bussler, C., Haller, A. (eds.) Business Process
Management Workshops 2005, vol. 3812, pp. 89–101 (2005)

50. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H., Lee, J.: A fuzzy constraint based model for
bilateral multi-issue negotiations in semi-competitive environments. Artif. Intell. J. 148(1–2),
53–102 (2003)

51. Luo, X., Jennings, N.R., Shadbolt, N.: Acquiring user strategies and preferences for negotiating
agents: a default then adjust method. Int. J. Human Comput. Stud. 64(4), 304–321 (2006)

http://dx.doi.org/10.1109/ICWS.2011.55.
http://dx.doi.org/10.1109/ICWS.2011.55
http://eprints.ecs.soton.ac.uk/4231/
http://dx.doi.org/10.1007/s00500-002-0187-5
http://dx.doi.org/10.1109/TSC.2009.26
http://dx.doi.org/10.1109/SCC.2008.118

18 Automated Negotiation Among Web services 481

52. Maasland, E., Onderstal, S.: Going, going, gone! a swift tour of auction theory and its appli-
cations. De Economist 154, 197–249 (2006). http://dx.doi.org/10.1007/s10645-006-9002-5.
doi:10.1007/s10645-006-9002-5

53. Malik, Z., Bouguettaya, A.: Evaluating rater credibility for reputation assessment of web ser-
vices. In: WISE’07: Proceedings of the 8th International Conference on Web Information
Systems Engineering, pp. 38–49. Springer (2007)

54. Malik, Z., Bouguettaya, A.: Rateweb: reputation assessment for trust establishment among web
services. VLDB J. 18(4), 885–911 (2009). doi:dx.doi.org/10.1007/s00778-009-0138-1

55. Malik, Z., Bouguettaya, A.: Reputation bootstrapping for trust establishment among web ser-
vices. Internet Comput. IEEE 13(1), 40–47 (2009)

56. Matwin, S., Szapiro, T., Haigh, K.: Genetic algorithms approach to a negotiation support
system. IEEE Trans. Syst. Man Cybern 21(1), 102–114 (1991)

57. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-end support for qos-aware service
selection, binding, and mediation in vresco. IEEE Trans. Serv. Comput. 3(3), 193–205 (2010)

58. Mobach, D., Overeinder, B., Brazier, F.: A ws-agreement based resource negotiation framework
for mobile agents. Scalable Comput. Pract. Exp. 7(1), pp. 23–26 (2006)

59. Mudgal, C., Vassileva, J.: Bilateral negotiation with incomplete and uncertain information: a
decision-theoretic approach using a model of the opponent. In: Klusch, M., Kerschberg, L.
(Eds.) Cooperative Information Agents IV, LNAI, pp. 107–118. Springer-Verlag (2000)

60. Nguyen, T.D., Jennings, N.R.: Bayesian learning in negotiation. Int. J. Hum.-Comput. Stud.
48(1), pp. 125–141 (1998)

61. Nguyen, T.D., Jennings, N.R.: Managing commitments in multiple concurrent negotiations.
Electron. Commer. Res. Appl. 4(4), 362–376 (2005)

62. Niu, X., Wang, S.: Genetic algorithm for automatic negotiation based on agent. In: 7th World
Congress on Intelligent Control and Automation, 2008. WCICA 2008, pp. 3834–3838 (2008)

63. Patankar, V., Hewett, R.: Automated negotiation in web service procurement. In: Proceedings
of the Third International Conference on Internet and Web Applications and Services (2008)

64. Paurobally, S., Aart, C.V., Tamma, V., Wooldridge, M., Hapert, P.V.: Web services negotiation
in an insurance grid. In: Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems (2007)

65. Paurobally, S., Tamma, V., Wooldrdige, M.: A framework for web service negotiation. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 2(4) (2007)

66. Pichot, A., Waldrich, O., Ziegler, W., Wieder, P.: Towards dynamic service level agreement
negotiation: an approach based on ws-agreement. In: 4th International Conference on Web
Information Systems and Technologies, WEBIST 2008, Funchal, Madeira, Portugal (2008)

67. Preist, C., Bartolini, C., Byde, A.: Agentbased service composition through simultaneous nego-
tiation in forward and reverse auctions. In: Proceedings of the 4th ACM conference on Elec-
tronic commerce, pp. 55–63. ACM (2003)

68. Rinderle, S., Benyoucef, M.: Towards the automation of e-negotiation processes based on web
services a modeling approach. In: WISE 05, pp. 443–453 (2005)

69. Rodrguez-Aguilar, J.A., Giovanucci, A., Reyes-Moro, A., Noria, F.X., Cerquides, J.: Agent-
based decision support for actual-world procurement scenarios. In: Proceedings of the
IEEE/WIC International Conference on Intelligent Agent Technology (2003)

70. Ros, R., Sierra, C.: A negotiation meta strategy combining trade-off and concession moves. J.
Auton. Agent Multiagent Syst. 12, 163–181 (2006)

71. Rubenstein-Montano, B., Malaga, R.A.: A weighted sum genetic algorithm to support multiple-
party multiple-objective negotiations. IEEE Trans. Evol. Comput. 6(4), 366–377 (2002)

72. Matwin, S., Szpakowicz, S., Koperczak, Z.: Negoplan: an expert system shell for negotiation
support. IEEE Expert 4(4), 50–62 (1996)

73. Sandholm, T., Suri, S.: Side constraints and non-price attributes in markets. In: International
Joint Conference on Artificial Intelligence (IJCAI), (2001)

74. Sandholm, T.W., Lesser, V.R.: Leveled commitment contracts and strategic breach. Games
Econ. Behav. 35, 212–270 (2001)

http://dx.doi.org/10.1007/s10645-006-9002-5
http://dx.doi.org/10.1007/s10645-006-9002-5
http://dx.doi.org/dx.doi.org/10.1007/s00778-009-0138-1

482 K. Hashmi et al.

75. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Winner determination in combinatorial auction
generalizations. In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (2002)

76. Sim, K.M., Guo, Y., Shi, B.: Blgan: Bayesian learning and genetic algorithm for supporting
negotiation with incomplete information. IEEE Trans. Syst. Man Cybern. B 39(1), 198–211
(2009)

77. Skogsrud, H., Motahari-Nezhad, H., Benatallah, B., Casati, F.: Modeling trust negotiation for
web services. Computer 42(2), 54–61 (2009). doi:10.1109/MC.2009.56

78. Smith, R.G.: The contract net protocol: high-level communication and control in a distributed
problem solver. IEEE Trans. Comput. C-29(12), 1104-1113 (1980)

79. Standard, O.: Wsbpel (2005). http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
80. Strobel, M.: Design of roles and protocols for electronic negotiations. Electron. Commer. Res.

1, 335–353 (2001)
81. Teich, J., Wallenius, H., Wallenius, J., Zaitsev, A.: An internet-based procedure for reverse

auctions combining aspects of negotiations and auctions. In: DEXA ’00: Proceedings of the
11th International Workshop on Database and Expert Systems Applications (2000)

82. Tosic, V., Bernard, P., Kruti, P., Babak, E., Wei, M.: Management applications of the web
service offerings language (wsol). Inf. Syst. 30(7), 564–586 (2005)

83. Treiber, M., Andrikopoulos, V., Dustdar, S.: Calculating service fitness in service networks.
In: ICSOC/ServiceWave Workshops, pp. 283–292 (2009)

84. Tu, M., Seebode, C., Griffel, F., Lamersdorf, W.: Dynamics: an actor-based framework for
negotiating mobile agents 1, 101–117 (2001)

85. Tu, M.T., Wolff, E., Lamersdorf, W.: Genetic algorithms for automated negotiations: a fsm-
based application approach. In: Proceedings of the 11th International Workshop on Database
and Expert Systems Applications, pp. 1029–1033 (2000)

86. (W3C) W.W.W.C.: Wspolicy (2006). http://www.w3.org/Submission/WS-Policy/.
87. Waldrich, O., Wieder, P., Ziegler, W.: A meta-scheduling service for co-allocating arbitrary

types of resources. In: Parallel Processing and Applied Mathematics. Lecture Notes in Com-
puter Science, vol. 3911/2006. Springer, Berlin (2006)

88. Whitley, D.: The genitor algorithm and selection pressure: why rank-based allocation of repro-
ductive trials is best. In: Proceedings of the third international conference on Genetic algorithms,
pp. 116–121. Morgan Kaufmann Publishers Inc., San Francisco (1989)

89. Wieder, P.: Ws-agreementnegotiation (2010). http://forge.gridforum.org/sf/go/doc15831
90. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1(1), 67–82 (1997)
91. Wurman, P.R., Wellman, M.P., Walsh, W.E.: The michigan internet auctionbot: a configurable

auction. In: Second International Conference On Autonomous Agents, pp. 301–308 (1998)
92. Yao, Y., Yang, F., Su, S.: Evaluating proposals in web services negotiation. In: Computer and

Information Sciences ISCIS 2006, pp. 613–621. Springer, Berlin (2006)
93. Yee, G., Korba, L.: Bilateral e-services negotiation under uncertainty. In: Proceedings of the

2003 Symposium on Applications and the Internet (2003)
94. Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web services: issues,

solutions, and directions. VLDB J. 17(3), 537–572 (2008). doi:dx.doi.org/10.1007/s00778-
006-0020-3

95. Zarras, A., Vassiliadis, P., Issarny, V.: Model-driven dependability analysis of webservices. In:
Web Services, International Symposium on Distributed Objects and Applications, pp. 69–79
(2004)

96. Zhai, D., Wu, Y., Lu, J., Yan, F.: A fuzzy negotiation model with genetic algorithms. In: I3E
(1)’07, pp. 35–43 (2007)

97. Zhu, J.: A buyer-seller game model for selection and negotiation of purchasing bids: exten-
sions and new models. Eur. J. Oper. Res. 154(1), 150–156 (2004). http://EconPapers.repec.
org/RePEc:eee:ejores:v:154:y:2004:i:1:p:150--156

98. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empir-
ical results. Evol. Comput. 8, 173–195 (2000)

http://dx.doi.org/10.1109/MC.2009.56
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
http://www.w3.org/Submission/WS-Policy/.
http://forge.gridforum.org/sf/go/doc15831
http://dx.doi.org/dx.doi.org/10.1007/s00778-006-0020-3
http://dx.doi.org/dx.doi.org/10.1007/s00778-006-0020-3
http://EconPapers.repec.org/RePEc:eee:ejores:v:154:y:2004:i:1:p:150--156
http://EconPapers.repec.org/RePEc:eee:ejores:v:154:y:2004:i:1:p:150--156

Chapter 19
DRAAS: Dynamically Reconfigurable
Architecture for Autonomic Services

Emna Mezghani, Riadh Ben Halima and Khalil Drira

Abstract The development and the provisioning of autonomic networked services
are essential for enterprises and factories of the future. Endowing services with auto-
nomic properties allows one to maintain at runtime the Quality of Service (QoS)
including different parameters related to performance, availability and reputation
such as response time and successful execution rate. Handling the autonomic prop-
erties requires the ability to deal with permanent requirement evolving and constraint
changes. For instance, managing QoS degradation requires the capacity of identi-
fying its possible or actual sources and the capacity of reconfiguration planning
and execution. Dealing with these issues is especially challenging for web services
since the autonomic solution has to be seamless for the service requesters, ensur-
ing that web services are always usable under the different deployment constraints.
To implement such autonomic systems, the literature provides different approaches,
varying from the design to the full implementation of autonomic primitives. In this
chapter, we present DRAAS: a Dynamically Reconfigurable Architecture for Auto-
nomic Services able to provide autonomic properties for QoS management in web
service-based distributed applications. DRAAS has been implemented and experi-
mented successfully with different use cases. It covers the whole cycle of autonomic
management including monitoring and analysis of QoS parameters, planning and
execution.

E. Mezghani (B) · K. Drira
CNRS, LAAS, 7 avenue du colonel Roche, Toulouse F-31400, France
e-mail: emna.mezghani@laas.fr

K. Drira
e-mail: khalil.drira@laas.fr

E. Mezghani · R. Ben Halima
ReDCAD, University of Sfax, B.P.W, 3038 Sfax, Tunisia
e-mail: riadh.benhalima@enis.rnu.tn

A. Bouguettaya et al. (eds.), Web Services Foundations, 483
DOI: 10.1007/978-1-4614-7518-7_19,
© Springer Science+Business Media New York 2014

484 E. Mezghani et al.

19.1 Introduction

The important data flows, the frequent interactivity, the increasing number of
connected devices, and the network unpredictability make critical the management
of the new distributed software systems. In one hand, although the reform of verifi-
cation and validation of software models has not ceased improving, components of
the systems may still hide design faults resulting in system failures or come across
deadlock that freezes the system. In the other hand, user’s requirements are evolving
following the end-user technologies evolution as mobile phone emergence (Multi-
media mobile and group-enabled application). In the same time, systems constraints
are variable as unstable bandwidth and decreasing energy.

Meeting and taking into account these constraints and requirements at runtime is
a challenge especially for web service applications which are dynamic and heteroge-
neous by nature. Indeed, if a web service does not satisfy the user requests in terms
of expected QoS, it is considered degraded. So, it becomes necessary to remedy to
such QoS degradation, for example, by substituting the degraded service by one or
more other services performing equivalent functions or sharing requests on the avail-
able services in order to maintain the QoS. More specifically, self-control systems
such as elevator control systems or critical systems such as spacecraft navigational
systems need robustness to detect anomalies and avoid them by reconfiguring the
systems at runtime [48]. For these reasons, research actors are accelerating the work
on autonomic systems. Such systems are capable to detect the problems and con-
tinue to operate by managing malfunctions without human intervention. Autonomic
computing technology does not only reduce potential catastrophic errors, in criti-
cal systems for example, but it also minimizes the human intervention. It is applied
when reliability and QoS are required. An autonomic system inspects and changes
its own architecture and behavior when the evaluation indicates that the intended
QoS is not achieved, or when a better functionality or performance is required. As
a result, autonomic computing paradigm is crucial for current systems in order to
ensure QoS-aware execution.

The autonomic computing architecture is based on the MAPE-K control loop
[30]. This loop is composed of four modules (MAPE) that have access to a common
knowledge. Monitoring which monitors the data exchanged between the managed
elements, Analysis which detects possible QoS or performance degradations, Plan-
ning that implements algorithms for selecting and scheduling appropriate elementary
reconfiguration actions and Execution which performs them.

This autonomic computing paradigm includes the design and implementation
of computer systems, as shown in Fig. 19.1. The first step focuses on establishing
a detailed design from which results a framework or an architecture. Frameworks
present the skeleton of an application that can be customized by the developer. We
distinguish two types of framework [12, 14]: black box that does not need a deep
understanding of the framework’s implementation in order to use it and white box
that requires the internal understanding of the framework to use it effectively. Archi-
tectures provide high-level abstraction of system components, while enabling easier

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 485

Fig. 19.1 Autonomic computing scope

understanding and interpretation. Furthermore, the architectural approach constraints
can be expressed explicitly. The second step concentrates on implementing the archi-
tecture or the framework through various techniques. The implementation may be
classified into three categories: model-based, middleware-based and platform-based
(see Fig. 19.1). Model-based solutions [8, 24, 56] provide explicit implementation
of all necessary actions for monitoring, analysis, planning and execution. In this
category (model-based), we focus particularly on architectural approaches. Monitor-
ing and analysis are made by testing if the running system conforms to a given archi-
tectural style or model. Middlewares, like Bionet [52], AgFlow [58], and OpenORB
[4], support dynamic reconfiguration process by offering primitives (like intercep-
tion) for all autonomic computing modules. Platforms [6, 11, 51] provide developers
with already developed autonomic entities.

In this chapter, we propose our DRAAS architecture implementing the autonomic
computing to ensure the dynamic reconfiguration of web service-based applications.
Then, we evaluate and classify a set of autonomic solutions for web service based
application including DRAAS according to criteria such as provided functionalities,
managed autonomic steps, applied techniques, programming languages, etc. We aim
to provide features which help and guide users to select a suitable solution for imple-
menting autonomic services. However, it is usually difficult to select the appropriate
approach to implement an application. We think that this choice depends on the
size of the problem to solve, the architecture type (decentralized or centralized), the
programming language, the application area (Server or Client, etc.), etc.

This chapter is organized as follows. Section 19.2 presents a survey of the auto-
nomic computing techniques and capabilities. Section 19.3 details our proposed
architecture DRAAS for the dynamic reconfiguration and illustrates it by the data load
use case. Section 19.4 describes a taxonomy of dynamic reconfiguration implemen-
tation approaches focusing on the “model”, “middleware” and “platform” categories
and gives conclude remarks helping on choosing the appropriate approach. Finally,
Sect. 19.5 concludes this chapter and presents our future work.

486 E. Mezghani et al.

19.2 Autonomic Computing Survey

Autonomic computing constitutes an active research area in computer systems [42].
This paradigm, inspired from the human autonomic nervous system [30], has a mech-
anism that can trigger changes in the computing system structures and behaviors in
order to bypass or correct them. Furthermore, it is a collection of autonomic com-
ponents that the overarching goal is to manage themselves, so that systems will be
dynamically reconfigured at run time, with minimum human intervention.

19.2.1 Self-* Capabilities

The principles that govern all autonomic computing systems, according to IBM, have
been summarized in eight properties [41]:

• Self-Configuring: the ability to dynamically configure components/services
following high-policies in order to adjust the system. Such configurations can
include the deployment of new components/services or the removal of existing
ones [21, 27, 50].
• Self-Healing: the ability of the system to perceive if it does not work correctly. It

ensures the necessary adjustments of service properties to restitute it towards its
normal state without human intervention [27, 29]. By knowing about the system, it
analyzes information, detects service degradations and initiates corrective actions
without disrupting its execution.
• Self-Optimizing: the ability of the system to continually enhance its performance.

It is a proactive mechanism that detects performance degradation and acts intelli-
gently such as in reallocating resources/services with minimal human intervention
[27].
• Self-Protecting: the ability of the system to detect and protect its resources/services

from internal and external attacks and maintain its security [27, 30].
• Self-Awareness: the ability of the system to know itself and to be aware of its state

and behaviors [41].
• Context Awareness: the ability of the system to know its execution environment

and be able to react to its changes [41].
• Open: the ability of the system to work in a heterogeneous world and implement

open standards. It should be portable across multiple hardware and software archi-
tectures [41].
• Anticipatory: the ability of the system to anticipate its needs and behaviors and to

manage itself proactively [41].

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 487

19.2.2 Autonomic Computing Techniques

Autonomic computing is based on four main functions [28]: Monitoring, Analysis,
Plan and Execution.

Monitoring is usually defined as the act of listening, carrying out supervision
on, and/or recording the activity of a software entity for the purpose of maintaining
system reliability and QoS. Monitoring can be ensured using the following techniques
as listed in Table 19.1:

• Interception represents a hook into exchanged data between a client and a server
allowing requests/responses supervision.
• Assertion is a set of code lines, introduced in a program, which enables to control

and to constrain a program.
• AOP (Aspect Oriented Programming) aims to verify system properties and also

to configure scope/constraints of each function and discover even a tiny abnormal
state.
• Reflection enables to discover and to operate on fields and methods of an object at

runtime.

Analysis is the process of detecting possible degradation of the system through
the evaluation and the examination of monitored data. Analysis compares current
system behavior and architecture with a reference model. The following techniques
are used by the Analysis (see Table 19.1):

• Architectural Differentiation refers to compare the obtained architectural model
to the architectural style of the system in order to detect non-compliance.
• Behavioral Differentiation refers to map the behavior of an implementation to

model behavior.
• QoS Contract represents explicitly the system requirements under contract between

clients and providers.
• QoS Aware is based on the historic of the system state. It compares the current

state with previous system states.

Table 19.1 MAPE-k loop techniques

Monitoring techniques Analysis techniques Plan and Execution techniques

Interception [7, 54] Architectural differen-
tiation [9, 35]

Substitution [4, 46]

Assertion [23, 39] Behavioral differentia-
tion [45]

Wrapping [5, 49]

AOP [34, 32, 57] QoS- contract (SLA) [38] Load Balancing[17, 40]
Reflection [4, 22] QoS- aware (QoS

historic) [3, 55]
Rollback [59]

Redundancy and
Duplication [16, 20, 37]

488 E. Mezghani et al.

Plan and Execution are complementary. In fact, the plan presents a set of
algorithms which refer to concrete reconfiguration actions enforced in the Execution
module. The Execution refers to the act/the process of repairing or the condition of
being repaired. Also, it may be defined as changes applied to a software entity so
that it reaches a desirable state. In distributed systems, several techniques are used
to achieve the repair process (see Table 19.1):

• Substitution allows replacing a system component by another.
• Wrapping consists in substituting a system component by another enveloped which

presents the same business logic.
• Load Balancing consists in distributing load on available components.
• Rollback allows the system to come back to the last stable state.
• Redundancy which repeats an action more than one time in order to achieve it.
• Duplication (replication) which involves addition of components representing sim-

ilar functionalities.

19.3 DRAAS: Dynamically Reconfigurable Architecture
for Autonomic Services

Based on the previous survey of autonomic computing techniques and capabili-
ties, in this section, we propose to detail our dynamic reconfigurable architecture
namely DRAAS, which manages the QoS of web service-based applications at run-
time. Firstly, we detail the architecture and describe the different entities composing
DRAAS. Then, we illustrate our dynamic reconfigurable architecture with the data
load use case.

19.3.1 DRAAS Architecture

DRAAS provides the management of QoS by implementing the virtualization and
the autonomic control loop. As shown in Fig. 19.2, DRAAS includes the different
autonomic computing functions. The first one is the Monitoring. It corresponds to
the supervision of the application. In our work, it refers to the supervision of both
requesters and providers inflows/outflows and stores the value of the monitored data
in the log. Second, the Analysis detects the time related QoS degradation. If detected,
an alarm signal will be sent to the planning module. Third, the Planning identifies
the origin of the QoS degradation and calculates the new reconfiguration. Fourth,
the Execution module executes the reconfiguration actions. In our study, we consider
the load balancing as a reconfiguration action. It refers to add/remove connections
or activate/deactivate web services in order to reach a QoS objective.

The Fig. 19.2 presents an overview of DRAAS deployed between two Requesters
and two Providers. We assume in our work that “Provider2 is equivalent to Provider1”

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 489

Fig. 19.2 DRAAS architecture

since it offers the same functionalities “business logic” as Provider1. Moreover,
Providers are web services, and they are considered as black boxes. The only infor-
mation provided is their WSDL describing the functional properties. To enable the
dynamic reconfiguration, DRAAS defines a set of software entities. In the following,
we detail the different entities according to the MAPE loop and we present the used
techniques:

• The Monitoring module is based on the interception technique. Monitors are able
to extend SOAP messages exchanged between the service requester and the service
provider (Web Service). It is composed of:

– Requester Side Monitor (RSM) is associated to each requester. It is responsible
of intercepting inflow/outflow (Request/Response) of the requester.

– Provider Side Monitor (PSM), is associated to all providers. It is responsible of
intercepting inflow/outflow (Request/Response) of the providers.

• Analysis is based on the QoS-aware technique. It implements a proactive algorithm
for the detection time related QoS degradation.
• Planning calculates the new reconfiguration: selecting the web service(s) that will

be invoked for the next incoming requests.
• The Execution module implements the Load Balancing technique. It is composed

of:

– VirtualProvider, is the initial destination of requester requests. It is automatically
generated from the concrete providers by parsing their WSDL.

490 E. Mezghani et al.

– ServiceManagement, executes the new reconfiguration.
– Dynamic Connector, redirects/binds requests to concrete providers according

to the reconfiguration plan.

19.3.2 Illustration: Data Load Use Case

We illustrate the DRAAS architecture within the Data Load use case which consists
in transferring files from the client side to a Load Repository. Transferring files is
ensured by providers (Web Services) which offer the LoadTransfer service. Each file
is associated to a request.

A prototype of DRAAS is implemented enabling the load balancing among avail-
able providers in order to manage QoS such as response time which corresponds
to minimizing the transfer time. Balancing requests is the task of the dynamic con-
nector. According to the DRAAS architecture, presented in Fig. 19.2, we distinguish
these actors:

• Requester −→ Client
• Provider1 −→ LoadTransferWS1
• Provider2 −→ LoadTransferWS2
• VirtualProvider −→ LoadTransferVirtualWS

Initially, (1) the client sends files to the LoadTransferVirtualWS. Each one is
encapsulated in a request. (2) Each request is intercepted twice, first by the RSM
and second by the PSM. The Dynamic Connector, associated to the LoadTransfer-
VirtualWS, (3) balances the load (requests) by redirecting them to LoadTransferWS1
and LoadTransferWS2. Each web service provider (LoadTransfer) transfers a file
per request. (4, 4′) If the transfer of each file is successfully done, (5) each response
is also intercepted twice as the request but inversely: first by the PSM and second
by the RSM. (3′, 6′) All monitored data are stored in the log. If (8, 7) the Analysis
detects an increase of the transfer time, (9) it sends an alarm to the Planning in order
to calculate a new reconfiguration. In this case, the Planning decides to activate an
available LoadTransferWS3 to participate in the next transfer. (10) It sends this deci-
sion to the ServiceManagement to perform it (11). The execution of this decision
will be caught by the Dynamic Connector. It will be taken into account for the next
load transfer.

19.3.3 Experimentation

To show the effeciency of DRAAS, we have carried out experiments on the
Data Load. We present in the sequel hardware architecture and tools used for these
experiments.

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 491

19.3.3.1 Hardware Architecture and Tools

All test scenarios are assessed under this configuration:

• Operating system: Windows 7, 32 bits
• Processor: Intel Core(TM)2 Duo CPU T5800
• RAM: 2Go

Our implementation is built on the Web Service technology. Analysis, Planning
and ServiceManagement are Web Services, while monitors and Dynamic Connector
are based on Axis2 handlers. In the following, we cite the technical choices for our
implementation:

• Communication level: SOAP
• Web service container/ SOAP Engine: Axis2 1.5
• Web server: Tomcat 6.0.30
• Programming language: Java 1.6
• Monitors and Connectors: Axis2 Handlers
• Logging: MySQL DBMS

19.3.3.2 Assessment

To assess DRAAS performance, we have fixed the global size of the files to be
transferred (T=32Mo) and we have prepared six scenarios for testing. All scenarios
focused on varying the number of files while maintaining the global size. We present
in Table 19.2 the different scenarios used to evaluate DRAAS performance.

In order to show the benefits of DRAAS, we have distinguished two cases for the
Data Load use case: first, the transfer of files is accomplished without load balancing
(only one web service). Second, deploying DRAAS in order to maintain the QoS
management, such the transfer time, at runtime.

Without applying DRAAS to the DataLoad, the client is connected only to
the LoadTransferWS1 web service and all files are transferred through it, even if
there is another Web Service providing the same business logic which is available.

Table 19.2 Load transfer scenarios

Number of files File Size

Scenario 1 1 {32Mo}
Scenario 2 2 {17Mo; 15Mo}
Scenario 3 3 {10Mo; 11Mo; 11Mo}
Scenario 4 4 {9Mo; 8Mo; 8Mo; 7Mo}
Scenario 5 8 {3,7Mo; 4,3Mo; 3Mo; 5Mo; 4Mo; 4Mo; 4,2Mo; 3,8Mo}
Scenario 6 10 {3,2Mo; 2,8Mo; 3Mo; 2,8Mo; 3,2Mo; 3,2Mo; 3,2Mo;

3,2Mo; 3,7Mo; 3,7Mo;}

492 E. Mezghani et al.

Table 19.3 Performance measurement

Response time (ms)
Single web service Two web services (DRAAS)
Minimum Maximum Average Minimum Maximum Average

Scenario 1 4565 5141 4812,6 3748 5168 4700,6
Scenario 2 6210 7669 6717,44 4067 5357 4918
Scenario 3 7780 8228 7920 4520 5583 5039,4
Scenario 4 8790 9609 9153,6 4090 5362 4600
Scenario 5 14592 16326 15451,6 7611 9631 8324,6
Scenario 6 18313 25147 20113,8 8123 8500 8510,4

If the LoadTransferWS1 Web Service shows a QoS degradation, expressed by an
increase of the transfer time, this degradation affects the Data Load application.

However, when we integrate our DRAAS prototype as described in the previews
section, the load will be balanced on available web services offering the load transfer
service.

We have carried out each scenario experiments at least 5 times. According to
obtained values, results are shown in Table 19.3. The average of the response time
(transfer time) is equal to the sum of values obtained by tests divided by the number
of tests.

Our experiments provided the curves shown in Fig. 19.3. The blue curve describes
the average response time related to transferring a variable number of files with a
single web service where the global size is maintained constant and equal to 32Mo.
However, the red curve describes the same parameters but while using two web
services and enabling the load balancing.

It is obvious that transferring files within our DRAAS prototype, using two web
services, is more efficient in terms of transfer time than using a single web service. We

Fig. 19.3 Average response time of DRAAS prototype

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 493

noticed that the transfer time (response time) depends on the number of files. In fact,
without DRAAS, increasing the number of files while maintaining the overall size
leads to increase the response time. However, the DRAAS curve presents a critical
point having the following coordinates (4, 4600) for which the average response
time is optimal. Moreover, the deployment of DRAAS with a single provider causes
the increase of the response time due to an added delay ε, epsilon, caused by the
virtualization and the communication time between the MAPE modules. This ε has
no impacts on response time since both the number of requests and the number of
providers have exceed two.

Therefore, the deployment of DRAAS is based on a necessary and sufficient
assumption which is the presence of at least two providers offering the same busi-
ness logic. Indeed the presence of a single provider does not allow the dynamic
reconfiguration, which is currently based on load balancing. Endowing web-service
applications with DRAAS allows the management of the QoS at runtime without
human intervention. Applications will run autonomously and will be characterized
with the self-healing, self-configuration and self-adaptive capabilities.

19.4 Related Work: Implementation Approaches

In this section, we propose to classify the different existing work including DRAAS
into three categories of solutions that can be used to implement autonomic systems:
the model-based, the middleware-based and the platform-based categories. For the
model-based implementations [10, 56], developers start from the scratch and should
implement all actions related to autonomic computing modules. For the middleware-
based implementations [26, 52, 58], developers build their solutions by adapting
basic primitives to their application context. The provided APIs include primitives
for monitoring, analysis, planning and possible reconfiguration actions. The plat-
form category provides reusable components to implement autonomic computing
strategies [6, 11, 51].

19.4.1 Model-Based Implementation Approaches

Model-based solutions implement all actions starting from the scratch. No primi-
tives are offered. In this category, we focus particularly on architectural approaches
in which constraints can be expressed explicitly. Management modules are gener-
ally proposed to ensure the dynamic reconfiguration process. These entities enable
monitoring, implement analysis and planning, and enforce reconfiguration actions.

The work described in [25] presents a self-monitoring approach for the manage-
ment of autonomic systems. This approach is not limited to the monitoring func-
tion, it includes also the self-diagnostic aspects. In this approach, two models of
the self-managed system are distinguished: a structural model and a behavioural

494 E. Mezghani et al.

model. (i) The structural model describes the software architecture of the distributed
object-oriented system. Form the application viewpoint, the structural model refers
to runnables, (software) components, classes, and methods. It offers a decomposition
of the distributed system that provides a granularity level concerning the monitoring
information for the model-based diagnostic. So, a complex web service composed of
two or more web services is modelled as a composite managed runnable containing
two or more managed runnables, and each web service operation is modelled as a
managed method. (ii) The behavioural model consists of the following concepts: jobs,
tasks, states, and events. This model refers to a collect of the various use case of the
system (the different response to a given request). The dynamic behaviour of a web
service can be directly described in OWL as jobs and tasks. These two models help
the system to decide where to place sensors. Also, they provide information related
to the classification, the moment and the localization of the observation. However,
this approach monitors only the state of the web services and does not take into
consideration the non-functional requirements such the response of time. Moreover,
it does not tackle the reconfiguration of the system if an anomaly is detected.

The work of [1] describes the dynamic and autonomic composition of Grid/ web
services. The authors present the Accord Composition Model which is able to to
autonomically synthesize composition plans (when possible) from the pool of avail-
able services to satisfy dynamically defined composition objectives, policies and
constraints. The Accord Composition (ACE) Engine is mainly composed of four
modules: ACE translator, Graph Generator, Constraint Analyzer, Plan Generator
and Evaluator. Starting from the WSDL describing each service from the pool ser-
vice, the ACE generates plans according to the request and to constraints. This work
tackles the plan function of the autonomic computing paradigm. However, in case
of more than one plan, the ACE ranks them according to service and link cots rather
than performance.

Rainbow [8, 10] is a reusable framework for self-adaptive systems. It is com-
posed of two layers. First, the system layer, which collects information about the
system (that can be composed of web services) and enforces reconfiguration plans.
Second, the architecture layer, which reflects the current architecture model, checks
constraint violations, and determines the required adaptation. The architecture and
system layers interact through a translation infrastructure. However, experimental
work [18] has shown that this externalized approach for self-adaptation causes a
significant slowdown of the system behavior. Also, this approach supposes that the
target system contains hooks for monitoring and management. The reconfiguration
plan is built manually and integrated in the code. No evaluation or validation of this
plan is provided.

Other model-based approaches [36] use architectural styles designed to enable
autonomic computing. In fact, an architectural style represents a collection of design
decisions that have already been made and can be reused. It consists in a few key
features and rules for combining these features so that architectural integrity is
preserved.

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 495

19.4.2 Middleware-Based Implementation Approaches

The middleware-based approaches provide primitives helping developers to imple-
ment autonomic computing system. In the following, we present middleware-based
implementations. Details about each middleware are presented in Table 19.4.

DynamicTAO [31] is a reflective ORB (an extension of the TAO ORB). It enables
detecting changes in environment and reloading new component/service implemen-
tations which may be bound to the system at runtime. These features are achieved by
the use of a collection of entities known as component configurators. These config-
urators maintain information about the dependencies between the components they
manage. The DynamicConfigurator inspects implementations and reconfigures sys-
tem on the fly while loading or removing implementations stored in a Repository. The
scalability of DynamicTAO is not improved. However, it is only tested with a simple
example (getHello()). The DynamicTAO infrastructure includes two management
security services. The first is used to crypt/decrypt message contents and the second
authenticates communication peers to control access. The security strategy can be
loaded and bound dynamically to the system at runtime. This allows the use of a
large range of security models.

The work of [2] presents a distributed reflective middleware for service oriented
applications. This middleware aimed at proposing solutions to cope with fault toler-
ance problems in the context of web services composition and choreography based
on the Autonomic Computing Architecture. This middleware is divided into two
levels: Base Level and Meta Level. The Base level knows the iterations that occur
in the choreography and the definitions and rules that govern these iterations. It
observes both SOA system (WSDL, OWL-S, etc.) and the SOA application (ser-
vice consumer, web services providers). The Meta level provides the capacity for
reflection, it is instantiated for each service of the choreography. It implements the
autonomic control loop in order to dynamically reconfigure the SOA system by
changing service properties.

MiniMASC+MiniZinc [33] is a middleware that implements new autonomic busi-
ness driven decision algorithms for cases when there are multiple running instances
of the Web service composition to be adapted. Based on the monitored data from the
managed system and WS-Policy4MASC policy assertions, MiniMASC+MiniZinc
middleware makes the decision on what assertions to be used. Then according to busi-
ness metrics, it selects the appropriate one to adapt. It is the role of the Adaptation
execution (3rd party module) to perform the chosen adaptation action. The strength
of this middleware focuses on its ability to resolve policy conflicts. However, despite
using autonomic computing, models in MiniZinc are currently developed by hand
which implies human intervention.

Work of [2] and MiniMASC+MiniZinc are developed as an external layer to
manage autonomic systems at runtime. However, DynamicTAO can be external or
internal. External, in which the monitoring component is supported by applications
as an external service. Internal, in which the monitoring component is injected into
the application components to provide such service. DynamicTAO does not provide

496 E. Mezghani et al.

Ta
bl

e
19

.4
M

id
dl

ew
ar

e
fe

at
ur

es

M
id

dl
ew

ar
e

D
yn

am
ic

TA
O

W
or

k
of

[2
]

M
in

iM
A

SC
+

M
in

iZ
in

c

M
on

ito
ri

ng
E

ve
nt

co
ll

ec
to

r:
O

bs
er

ve
s

be
ha

vi
or

of
co

m
po

ne
nt

s
an

d
ge

ne
ra

te
s

re
le

va
nt

Q
oS

ev
en

ts
C

ol
le

ct
s

Q
oS

ev
en

ts
an

d
re

po
rt

s
ab

no
rm

al
be

ha
vi

or
s

C
om

po
ne

nt
s

m
on

it
or

in
g:

In
sp

ec
tt

he
co

m
m

un
ic

at
io

n
se

rv
ic

es
.

Q
oS

pa
ra

m
et

er
s

of
se

rv
ic

es
:T

he
co

m
po

si
tio

n
re

sp
on

se
tim

e,
th

ro
ug

hp
ut

,a
va

ila
bi

lit
y

an
d

co
ns

is
te

nc
y

of
da

ta
ex

ch
an

ge
d.

D
at

ab
as

e
of

m
on

it
or

ed
da

ta
te

ch
ni

ca
l

m
et

ri
cs

(m
ea

su
re

d
re

sp
on

se
tim

e,
ca

lc
ul

at
ed

av
ai

la
bi

lit
y)

,b
us

in
es

s
m

et
ri

cs
(p

ai
d

pr
ic

es
an

d
pe

na
lti

es
),

an
d

ev
en

ts

A
na

ly
si

s
M

on
it

or
:N

o
gi

ve
n

de
ta

ils
C

om
po

ne
nt

s
be

ha
vi

or
an

al
ys

is
:S

L
A

vi
ol

at
io

n
(w

eb
se

rv
ic

e
fa

ul
t)

N
o

gi
ve

n
de

ta
ils

Pl
an

ni
ng

St
ra

te
gy

se
le

ct
or

s:
Se

le
ct

s
an

ap
pr

op
ri

at
e

ad
ap

ta
tio

n
st

ra
te

gy
ba

se
d

on
fe

ed
ba

ck
fr

om
m

on
ito

rs

N
o

gi
ve

n
de

ta
ils

D
et

er
m

in
in

g
tr

ig
ge

re
d

po
li

ci
es

an
d

M
in

iZ
in

c
so

lv
er

:D
ec

id
es

w
hi

ch
W

S-
Po

lic
y4

M
A

SC
po

lic
y

as
se

rt
io

ns
ca

n
be

ex
ec

ut
ed

ne
xt

an
d

se
le

ct
th

e
ap

pr
op

ri
at

e
on

e
ac

co
rd

in
g

to
bu

si
ne

ss
va

lu
es

E
xe

cu
tio

n
St

ra
te

gy
ac

ti
va

to
rs

:I
m

pl
em

en
ts

a
pa

rt
ic

ul
ar

st
ra

te
gy

,e
.g

.b
y

m
an

ip
ul

at
in

g
co

m
po

ne
nt

gr
ap

h
w

hi
le

pr
es

er
vi

ng
th

e
ar

ch
ite

ct
ur

al
st

yl
e

R
ep

ar
at

io
n

pl
an

an
d

ex
ec

ut
io

n:
M

ec
ha

ni
sm

s
fo

r
th

e
re

so
lu

tio
n

of
fa

ul
ts

pr
es

en
ti

n
th

e
co

m
po

si
tio

n
of

se
rv

ic
es

re
pa

ir

A
da

pt
at

io
n

ex
ec

ut
io

n:
T

ra
ns

fe
rs

th
e

sy
st

em
st

at
e

to
w

ar
ds

a
re

pl
ic

a

E
xt

er
na

l/I
nt

er
na

l
E

xt
er

na
lo

r
In

te
rn

al
E

xt
er

na
l

E
xt

er
na

l
Pr

og
ra

m
m

in
g

la
ng

ua
ge

Py
th

on
Ja

va
Ja

va
,t

he
Po

st
gr

eS
Q

L
da

ta
ba

se
,a

nd
th

e
M

in
iZ

in
c

so
lv

er
A

pp
lic

at
io

n
do

m
ai

n
C

om
po

ne
nt

/W
eb

se
rv

ic
e

SO
A

ap
pl

ic
at

io
ns

W
eb

se
rv

ic
e/

W
S

co
m

po
si

tio
n

sy
st

em
s

R
ec

on
fig

ur
at

io
n

st
ra

te
gy

St
ru

ct
ur

al
:M

od
ifi

es
th

e
ar

ch
ite

ct
ur

e
B

eh
av

io
ra

l:
A

dj
us

tin
g

w
eb

se
rv

ic
e

pr
op

er
tie

s
St

ru
ct

ur
al

:S
er

vi
ce

co
m

po
si

tio
n

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 497

entities for fault detections and analysis. The user has to inquire about the application
health and to choose the suitable reconfiguration plan. While the Work of [2] does
not give any details related to the planning module. Meanwhile, all the steps are
automated.

19.4.3 Platform-Based Implementation Approaches

In this section, we present the main suggested platforms employed for developing
autonomic applications. The evaluation is based on criteria including provided self-
aware, used components and the architecture types supported by these platforms.

Unity [11, 53]: The Unity project is looking for how component behaviors and
relationships can support self-management of computing systems. The Unity project
implements a prototype of autonomic systems, designed to show the feasibility and
to validate the dynamic reconfiguration of the environment. During runtime it real-
locates and reconfigures resources/services to optimize its behavior according to
specified policies. In this approach, every component incorporates an autonomic
part in a way that it becomes autonomic. The different components of Unity are:

• “Application environment manager”: which is responsible for the management,
communication between components, and predicting the resource/service avail-
ability.
• “Resource arbiter”: which manages sharing and allocation of resources/services.
• “Registry”: which allows locating components/services.
• “Policy repository”: which represents administration interfaces.
• “Sentinel”: which is used by a component to monitor the functioning of another.
• “Solution manager”: which is responsible for the reconfiguration and the mainte-

nance.

The monitoring is enabled by all components, including defective components
(if they exist) which can cause system damages. They have to be sure about monitored
Data. They should add policies in order to filter gathered data.

SAFDIS [19]: Self-Adaptation For DIstributed Services, enables the dynamic
management of service-based architectures. The implementation is built for the OSGi
platform, using iPOJO to manage the life-cycle which exposes its functionalities as
services . The different components are:

• Adaptation Manager: its role concentrates on ensuring the communication between
the different components and services responsible of the adaptation of the system.
• Event Manager: it collects events from monitors, composes them and keeps a local

view of the system. It is the supervisor of the whole system.
• Analyst: it is a distributed and a decentralized process. It identifies, analyzes the

system changes and decides if an adaptation is needed. Then, it makes an adaptation
decision when a need arises. Furthermore, this component is composed of:

498 E. Mezghani et al.

– Decision Maker: it listens to events coming from the event manager and sends
them to the reasoners for analysis.

– Negotiator: it is composed of a back end and a front end connected to a remote
negotiator of another SAFDIS instance.

– Negotiation Manager: it is responsible of managing the multiple negotiations
that can happen at the same time.

• Planner: it is composed of a set of Planning Algorithms and a Manager
component. According to objectives and constraints, the Manager produces simple
orderings of actions to reconfigure system.
• Execution Engine: it is called to perform planned actions. In SAFDIS, the recon-

figuration action moves a service from an execution node to another, which is
called the migration of services.

However, SAFDIS does not consider the overload issues of services. It implements
only the migration of services as a reconfiguration action.

CAPPUCINO [47] is a platform for executing context-aware Web Services in
ubiquitous environments. It combines the strengths of both SCA and COSMOS [13]
models to provide a versatile infrastructure for supporting context-aware adaptations
in SOA environments. It implements the MAPE control loop distributed in ubiquitous
environments as SCA components. Although this work deals with Web Services, it
remains restricted to the ubiquitous environments. The reconfiguration is based on
deploying new communication protocols and new context collectors.

CODA [44]: Complex Organic Distributed Architecture: CODA applies con-
cepts such as self-organization, self-regulation and viability to derive an intelligent
architecture that can be composed of web services. It reacts to operation failures and
proactively searches for successful patterns of behavior. CODA is a layered approach.
It contains five layers:

• “Operations”: which represents business operations of a system.
• “Monitor Operations”: which performs internal monitoring.
• “Monitor of the Monitors”: which performs external monitoring.
• “Control”: which learns about faults and predicts reconfiguration actions.
• “Command”: which recognizes threats and makes decisions.

MAIS [6]: Mobile Adaptive Information Systems: The MAIS project studies
adaptability at all levels in information systems, from application level to network
and device levels (PCs, laptops, cellular phones, and so on). Several levels of adapt-
ability are considered: the upper level (Application level), the middle level (web
service level) and the bottom level (Infrastructure & Middleware level). MAIS pro-
vides an environment to run composite, multi-channel, mobile, and context-aware
web services in an adaptive way. The MAIS architecture implements a runtime
service-oriented fault analysis and recovery actions. It detects faults by inspecting
request and response messages and analyzing them through a diagnoser component.
This architecture provides four modules to handle reconfiguration actions, namely:
“reallocation”, “substitution”, “wrapper generator” and “quality modules”.

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 499

Jade [15]: Jade is an autonomous administration platform for software infrastruc-
ture. It provides an abstract view of the application and acts when a failure occurs
on a part of the system. It uses duplication to maintain the service availability and
to handle the resource allocation according to the load variation in order to manage
scalability. Jade is composed of two parts:

• Managed Element: which wraps each software (web service) and provides an
administration interface;
• Autonomic Manager: which implements the administration management policies

(repair and optimization). It monitors and acts on system through the Managed
Elements interfaces.

DRAAS, Dynamically Reconfigurable Architecture for Autonomic Services, as
detailed in Sect. 19.3, is a reusable architecture for the dynamic reconfiguration of
web-service application. DRAAS is based on the autonomic computing and the vir-
tualization for the management of the time related QoS. It implements the structural
reconfiguration by ensuring the load balancing.

In Table 19.5, we summarize properties of each platform. Most platforms do
not allow any interaction between human or administrator and application except
for Unity and MAIS. The programming language supported by all platforms is
Java. CODA, Unity, CAPPUCINO, MAIS and DRAAS support web services based
dynamic reconfiguration. The others may investigate to support them by encapsu-
lating web services in components. The originality of DRAAS, compared to the
previous solutions, focuses on its ability to dynamically reconfigure distributed web
services applications without modifying the providers sides (e.g. by adding compo-
nents). Moreover, DRAAS can be easily integrated to existing applications, the only
information required is the interface of providers WSDL.

19.4.4 Concluding Remarks

19.4.4.1 Internal Versus External Autonomic Computing

All cited implementations have as goal the dynamic reconfiguration of the system
which allows it to evolve incrementally from one state to another at run-time in
order to accommodate to changes. The dynamic reconfiguration activities, based
on autonomic computing, can be carried out either internally or externally to the
application. In internal, codes responsible of the reconfiguration are merged with
the application codes, while in external, they are separated from the application
codes [43].

In an internal autonomic mechanism, it is difficult to add a new code or a new
strategy to a black-box component; we must know about the component design in
order to govern it. The Unity [11], CODA [44] and DynamicTAO [31] projects present
a prototype enabling dynamic reconfiguration, based on internal mechanisms.

500 E. Mezghani et al.

Ta
bl

e
19

.5
Pl

at
fo

rm
fe

at
ur

es

Pl
at

fo
rm

na
m

es
U

ni
ty

C
A

PP
U

C
IN

O
C

O
D

A
M

A
IS

Ja
de

SA
FD

IS
D

R
A

A
S

C
en

tr
al

iz
ed

/
D

ec
en

tr
al

iz
ed

D
ec

en
tr

al
iz

ed
D

ec
en

tr
al

iz
ed

C
en

tr
al

iz
ed

C
en

tr
al

iz
ed

C
en

tr
al

iz
ed

D
ec

en
tr

al
iz

ed
D

ec
en

tr
al

iz
ed

H
um

an
in

te
rv

en
tio

n
M

in
im

al
N

o
N

o
In

te
ra

ct
io

n
N

o
N

o
N

o

Se
lf

-a
w

ar
e

Se
lf

-c
on

fig
ur

at
io

n,
se

lf
-o

pt
im

iz
in

g,
se

lf
-p

ro
te

ct
in

g,
se

lf
-h

ea
lin

g

Se
lf

-a
w

ar
en

es
s,

se
lf

-m
an

ag
in

g,
se

lf
-a

da
pt

iv
e,

se
lf

-c
on

fig
ur

at
io

n

Se
lf

-o
rg

an
iz

at
io

n,
se

lf
-r

eg
ul

at
io

n,
se

lf
-m

on
ito

ri
ng

Se
lf

-a
da

pt
at

io
n,

se
lf

-o
pt

im
iz

in
g

Se
lf

-a
da

pt
at

io
n,

se
lf

-o
pt

im
iz

in
g

Se
lf

-a
da

pt
at

io
n,

se
lf

-o
pt

im
iz

in
g

Se
lf

-h
ea

lin
g,

se
lf

-
co

nfi
gu

ra
tio

n,
se

lf
-a

da
pt

iv
e

E
xt

er
na

l/
In

te
rn

al
In

te
rn

al
E

xt
er

na
l

In
te

rn
al

,e
xt

er
na

l
In

te
rn

al
,e

xt
er

na
l

E
xt

er
na

l
E

xt
er

na
l

E
xt

er
na

l
Pr

og
ra

m
m

in
g

la
ng

ua
ge

Ja
va

V
ar

io
us

pr
og

ra
m

m
in

g
la

ng
ua

ge
Ja

va
Ja

va
Ja

va
Ja

va
Ja

va

Pr
es

en
ta

tio
n

G
U

I
N

o
N

o
N

o
M

on
ito

ri
ng

vi
su

al
iz

at
or

N
o

N
o T

ra
ns

pa
re

nt
fo

r
re

qu
es

te
rs

an
d

pr
ov

id
er

s
M

on
ito

ri
ng

Se
nt

in
el

N
o

gi
ve

n
de

ta
ils

M
on

ito
r

op
er

at
io

ns
,

m
on

ito
r

of
th

e
m

on
ito

rs

D
ia

gn
os

er
an

d
in

sp
ec

to
r

M
on

ito
r

E
ve

nt
m

an
ag

er
R

eq
ue

st
er

si
de

m
on

it
or

an
d

pr
ov

id
er

si
de

m
on

it
or

:
In

te
rc

ep
tio

n
of

tim
e

re
la

te
d

Q
oS

E
xe

cu
tio

n
So

lu
tio

n
m

an
ag

er
C

A
P

P
U

C
IN

O
ad

ap
ta

ti
on

ru
nt

im
e:

Fr
aS

C
A

ti
ke

rn
el

C
om

m
an

d
R

ec
ov

er
y

ac
tio

ns
C

on
ne

ct
or

:
D

up
lic

at
io

n
of

se
rv

ic
es

M
ig

ra
tio

n
of

se
rv

ic
es

D
yn

am
ic

C
on

ne
ct

or
:

R
eq

ue
st

re
di

re
ct

io
n

(l
oa

d
ba

la
nc

in
g)

L
ev

el
A

pp
lic

at
io

n
A

pp
lic

at
io

n
(c

lie
nt

/
se

rv
er

)
A

pp
lic

at
io

n
A

pp
lic

at
io

n,
ne

tw
or

k
an

d
de

vi
ce

A
pp

lic
at

io
n

A
pp

lic
at

io
n

A
pp

lic
at

io
n

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 501

External mechanism is appropriate when it is so difficult to modify application
codes. We generally deploy components in heterogeneous context; therefore, if we
use an internal strategy, we have to develop a new component version (with specific
self-healing mechanism) for each context. Also, externalized mechanisms allow the
reuse of autonomic components and make easy their update, since they are localized.
In addition, external mechanism allows us to divide the task of the application imple-
mentation between the component developers and managers. DRAAS, Rainbow [8],
the work of [2] and MiniMASC+MiniZinc [33] built their systems based on external
mechanisms.

Each component may include autonomic mechanisms in order to heal itself.
Designed systems have to inquire into problems and ask components to reconfigure
their structure or behavior. Furthermore, dynamic reconfiguration strategy must not
cause significant slowdown to the execution process and especially for the real time
application. It must react in order to repair crashes while the variance of global sys-
tem response time is kept in limited bounds. In order to reach a suitable and adaptable
system which makes system resilient to faults, we have to apply autonomic comput-
ing techniques which cover all levels: hardware and software. But this solution may
be very expensive and it requires combination of various mechanisms.

19.4.4.2 Behavioral Versus Structural Autonomic Computing

We can distinguish two strategies of the dynamic reconfiguration in the Execution
level. In fact, reconfiguration actions act on the system either behaviorally or struc-
turally.

Following the first strategy , it is related to the behavioral dimension of the system
in general; otherwise, it focuses on its internal behavior. Indeed, we speak about such
approach when service behavior is customizable or modifiable. So, when degradation
is detected, the installed reconfiguration infrastructure is brought to repair the process
at runtime, by applying the reconfiguration actions to the concerned services. This
reconfiguration is considered as a direct adjustment, because its actions are supposed
to modify at once the internal composition of system services in order to correct it
further to a problem. The work of [2] adjusts the service properties in order to
dynamically reconfigure the web service choreography.

Following the second one, it is related to the structural dimension of the system.
So that systems services are observed during the execution of this later. Several symp-
toms are stored before taking the decision of activating or not reconfiguration actions.
In this case, the reconfiguration is done by applying basis actions such as adding or
removing services or their connections. The structural adaption refers to “run-time”
when the reconfiguration is scheduled during execution. DRAAS, DynamicTAO [31]
and MiniMASC+MiniZinc [33] implement the structural reconfiguration.

502 E. Mezghani et al.

19.5 Conclusion

In this chapter, we mainly focused on the dynamic reconfiguration supported by the
autonomic computing paradigm. We presented our DRAAS architecture to bring
dynamic reconfiguration capabilities to distributed web service-based applications.
A prototype of DRAAS has been implemented to assess the applicability of the
monitoring and reconfiguration within the designed architecture. The repair action is
based on the structural reconfiguration providing load balancing for web services at
the origin of the QoS degradation. Then, we presented a classification and a compara-
tive study of existing approaches including DRAAS. The classification follows three
categories of implementation a model-based, middleware-based and platform-based
solution. We conclude that the model-based is usually suitable for a small system and
platform-based solutions are appropriated for systems in which only generic QoS
properties are required. The new objectives are oriented towards the deployment
and the execution of distributed applications on heterogeneous platforms (PC, smart
devices, Smart card, etc).

We aim to improve our DRAAS architecture’s to support the service composition
(orchestration/choreography)and adding new reconfiguration actions such as sub-
stitution. Moreover, we target to manage dynamically MAPE-K loop components
while enabling flexibility by changing their behaviors at runtime in order to include
new features, such as new monitors or new analysis algorithms.

References

1. Agarwal, M., Parashar, M.: Enabling autonomic compositions in grid environments. In: Pro-
ceedings of Fourth International Workshop on Grid Computing, pp. 34–41, Nov. 2003

2. Aguilar, J., Vizcarrondo, J., Ernesto Exposito.: Reflective middleware for automatic manage-
ment of service-oriented applications using the theory of signatures of failure. In: 14th WSEAS
International Conference on Mathematical Methods, Computational Techniques and Intelligent
Systems (MAMECTIS ’12), pp. 183–188. July 2012

3. Ben-Halima, R., Drira, K., Guennoun, K., Jmaiel, M.: Non-intrusive qos monitoring and analy-
sis for self-healing web services. In: First IEEE International Conference on the Applications
of Digital Information and Web Technologies (ICADIWT 2008), IEEE Computer Society,
Ostrava, 4–6 Aug 2008

4. Blair, G.S., Coulson, G., Blair, L., Duran-Limon, H., Grace, P., Moreira, R., Parlavantzas, N.:
Reflection, self-awareness and self-healing in openorb. In: WOSS ’02 Proceedings of the First
Workshop on Self-Healing systems, pp. 9–14. ACM Press, New York (2002)

5. Bouchenak, S., Boyer, F., Krakowiak, S., Hagimont, D., Mos, A., Jean-Bernard, S., de Palma,
N., Quema, V.: Architecture-based autonomous repair management: an application to J2EE
clusters. In: SRDS ’05 Proceedings of the 24th IEEE Symposium on Reliable Distributed
Systems, pp. 13–24. IEEE Computer Society, Orlando (2005)

6. Cappiello, C., Missier, P., Pernici, B., Plebani, P., Batini, C.: Qos in multichannel is: the mais
approach. In: Engineering Advanced Web Applications, Proceedings of Workshops in Connec-
tion with the 4th International Conference on Web Engineering (ICWE 2004), pp. 255–268.
Munich, 28–30 July 2004

7. Chang, F., Karamcheti, V., Automatic configuration and run-time adaptation of distributed
applications. In HPDC ’00 Proceedings of the Ninth IEEE International Symposium on High

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 503

Performance Distributed Computing (HPDC’00), pp. 11. IEEE Computer Society, Washington,
DC, USA (2000)

8. Cheng, S.-W., Garlan, D., Schmerl, BR.: Making self-adaptation an engineering reality. In:
Self-Star Properties in Complex Information Systems, Conceptual and Practical Foundations
[the book is a result from a workshop at Bertinoro, Italy, Summer 2004], vol. 3460, pp. 158–173.
Lecture Notes in Computer Science, Springer (2005)

9. Cheng, S.-W., Garlan, D., Schmerl, B.R., Sousa, J.P., Spitnagel, B., Steenkiste, P.: Using archi-
tectural style as a basis for system self-repair. In: WICAS3 Proceedings of the IFIP 17th World
Computer Congress—TC2 Stream/3rd IEEE/IFIP Conference on Software Architecture, pp.
45–59. Kluwer, B.V., Deventer (2002)

10. Cheng, S.-W., Huang, A.-C., Garlan, D., Schmerl, B.R., Steenkiste, P.: An architecture for
coordinating multiple self-management systems. In: 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA 2004), pp. 243–254. Oslo. IEEE Computer Society, Washing-
ton, DC, USA, 12–15 June 2004

11. Chess, D.M., Segal, A., Whalley, I., White, S.R.: Unity: experiences with a prototype autonomic
computing system. In: 1st International Conference on Autonomic Computing (ICAC 2004),
pp. 140–147. IEEE Computer Society, New York, 17–19 May 2004

12. Ciupa, I.: Study on whitebox frameworks in java (2003)
13. Conan, D., Rouvoy, R., Seinturier, L., Projet Jacquard Lifl.: Scalable processing of context

information with cosmos (2007)
14. Conte, A., Anquetil, L.-P.: A black box framework for an application protocol stack. In: Pro-

ceedings of the 3rd IEEE Symposium on, Application-Specific Systems and Software Engi-
neering Technology, pp. 96–101. IEEE Computer Society, 2000

15. de Palma, N., Bouchenak, S., Hagimont, D., Sicard, S., Taton, C.: Jade : Un Environnement
d’Administration Autonome. Techniques et Sciences Informatiques 27(9–10), 1225–1252
(2008)

16. Diaconescu, A.: A framework for using component redundancy for self-adapting and self-
optimising component-based enterprise systems. In: OOPSLA ’03 Companion of the 18th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pp. 390–391. ACM Press, New York (2003)

17. Ewing, J.M., Menascea, D.A.: Business-oriented autonomic load balancing for multitiered
web sites. In: Modeling, Analysis Simulation of Computer and Telecommunication Systems,
MASCOTS ’09. IEEE International Symposium, pp. 1–10, Sept 2009

18. Garlan, D., Cheng, S.-W., Schmerl, B.R.: Increasing system dependability through architecture-
based self-repair. In: WADS, vol. 2677, pp. 61–89. Lecture Notes in Computer Science, Springer
(2002)

19. Gauvrit, G., Daubert, E., Safdis, F.A.: A framework to bring self-adaptability to service-based
distributed applications. In: SEAA’10 Proceedings of the 2010 36th EUROMICRO Conference
on, Software Engineering and Advanced Applications, pp. 211–218. IEEE Computer Society,
2010

20. George, S., Evans, D., Marchette, S.: A biological programming model for self-healing. In:
SSRS ’03 Proceedings of the 2003 ACM Workshop on Survivable and Self-Regenerative
Systems, pp. 72–81. ACM Press, New York (2003)

21. Giroux, S., Gouin-Vallerand, C., Abdulrazak, B.: Toward a self-configuration middleware for
smart spaces. In: FGCN ’08 Proceedings of the 2008 Second International Conference on
Future Generation Communication and Networking, vol. 2, pp. 463–468. IEEE Computer
Society, 2008

22. Grace, P., Blair, G.S., Samuel, S.: Remmoc: a reflective middleware to support mobile client
interoperability. In: On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE—OTM Confederated International Conferences, CoopIS, DOA, and ODBASE
2003, vol. 2888, pp. 1170–1187. Lecture Notes in Computer Science, Springer, Catania, 3–7
Nov 2003

23. Guinea, S.: Self-healing web service compositions. In: ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering, pp. 655–655. ACM Press.... 1q, New York
(2005)

504 E. Mezghani et al.

24. Gurguis S.A., Zeid A.: Towards autonomic web services: Achieving self-healing using web
services. In: DEAS ’05: Proceedings of the 2005 Workshop on Design and Evolution of Auto-
nomic Application Software, pp. 1–5. ACM Press, New York (2005)

25. Haydarlou, A.R., Oey, M.A., Overeinder, B.J., Brazier, F.M.T.: Use case driven approach to self-
monitoring in autonomic systems. In: Autonomic and Autonomous Systems, 2007. ICAS07.
Third International Conference on, p. 50. (2007)

26. Huebscher M.C., McCann J.A., Adaptive middleware for context-aware applications in smart-
homes. In: Proceedings of the 2nd workshop on Middleware for pervasive and ad-hoc comput-
ing, pp. 111–116. ACM Press, New York (2004)

27. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing -degrees, models, and
applications. ACM Comput. Surv. 40(3), 7:1–7:28 (2008)

28. IBM Corp.: An architectural blueprint for autonomic computing. IBM Corp., USA (2004)
29. Jmaiel, M., Ben-Halima, R., Drira, K.: Survey a qos-oriented reconfigurable middleware for

self-healing web services. In: ICWS ’08: Proceedings of the 2008 IEEE International Confer-
ence on Web Services, vol. 1. pp. 104–111. IEEE Computer Society, 2008

30. Kephart, J.O., Chess, DM.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)
31. Kon, F., Román, M., Liu, P., Mao J., Yamame T., Magalhaes, L.C.: Monitoring, security, and

dynamic configuration with the dynamictao reflective orb. In: Middleware 2000, Proceedings
of the IFIP/ACM International Conference on Distributed Systems Platforms, New York, April
2000. Lecture Notes in Computer Science. vol. 1795, pp. 121–143. Springer (2000)

32. Lee, K.S., Lee C.-G., Model-driven monitoring of time-critical systems based on aspect-
oriented programming. In: Secure Software Integration and Reliability Improvement (SSIRI),
2011 Fifth International Conference on, pp. 80–87. IEEE Computer Society, 2011

33. Lu, Q., Tosic, V.: Minimasc+minizinc: An autonomic business-driven decision making mid-
dleware for adaptation of web service compositions. In: Proceedings of the 2010 Symposia and
Workshops on Ubiquitous, Autonomic and Trusted Computing (UIC-ATC ’10). pp. 474–477.
IEEE Computer Society, Washington (2010)

34. Mdhaffar, A., Ben-Halima, R., Juhnke, E., Jmaiel, M., Freisleben, B.: An Aspect-Oriented
Programming Approach for Cloud Service Monitoring (AOP4CSM). In: Proceedings of the
11th IEEE International Conference on Computer and Information Technology. pp. 363–370.
IEEE Press (2011)

35. Medvidovic, N., Mikic-Rakic, M.: Programming-in-the-many: a software engineering par-
adigm for the 21st century. Research and Applications. In: Workshop on New Visions for
Software Design and Productivity, Nashville (2001)

36. Mikic-Rakic, M., Mehta, N., Medvidovic, N.: Architectural style requirements for self-healing
systems. In: Proceedings of the first workshop on Self-healing systems (WOSS ’02), pp. 49–54.
ACM Press, New York (2002)

37. Moo-Mena, F., Drira, K.: Reconfiguration of web services architectures: A model-based
approach. In: 12th IEEE Symposium on Computers and Communications, (ISCC 2007), pp.
357–362. IEEE Computer Society, 2007

38. Mostafaei, F.S., Amani, N., Hajipour, P.: Proposing a new qos/sla management model by
regulatory authority. In: Telecommunications (IST), 2010 5th International Symposium on,
pp. 508–512. IEEE Computer Society, 2010

39. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici,
A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-adaptive software.
IEEE Intell Syst 14(3), 54–62 (1999)

40. Orleans, L.F., Furtado, P.N.: Optimization for qos on web-service-based systems with tasks
deadlines. In: Autonomic and Autonomous Systems, ICAS07. Third International Conference
on, p. 6 (2007)

41. Parashar, M., Hariri, S.: Autonomic computing : An overview. pp. 247–259 (2005)
42. Paulson, L.D.: Computer system, heal thyself. Computer 35(8), 20–22 (2002)
43. Qun, Y., Xian-Chun, Y., Man-Wu, X.: A framework for dynamic software architecture-based

self-healing. SIGSOFT Softw. Eng. Notes 30(4), 1–4 (2005)

19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services 505

44. Ribeiro-Justo, G.R., Karran, T.: Modelling organic adaptable service-oriented enterprise archi-
tectures. In: On The Move to Meaningful Internet Systems 2003: OTM 2003 Workshops,
OTM Confederated International Workshops, HCI-SWWA, IPW, JTRES, WORM, WMS, and
WRSM 2003, Catania, Sicily, Italy, 3–7 Nov 2003, Proceedings, Vol. 2889 of Lecture Notes
in Computer Science, pp. 123–136. Springer (2003)

45. Richters, M., Gogolla, M.: Aspect-oriented monitoring of uml and ocl constraints. In: AOSD
Modeling With UML Workshop, 6th International Conference on the Unified Modeling Lan-
guage (UML, 2003)

46. Schmidt, H.: Trustworthy components-compositionality and prediction. J. Syst. Softw. 65(3),
215–225 (2003)

47. Sheng, Q.Z., Yu, J., Dustdar, S.: Enabling Context-Aware Web Services: Methods, Architec-
tures, and Technologies. Chapman & Hall/CRC, 1st edn. (2010)

48. Shin, M.E.: Self-healing components in robust software architecture for concurrent and dis-
tributed systems. J. Sci. Comput. Program. 57(1), 27–44 (July 2005)

49. Sridhar, N., Pike, S.M., Weide, B.W.: Dynamic module replacement in distributed protocols. In:
Distributed Computing Systems. Proceedings 23rd International Conference on, pp. 620–627.
IEEE Computer Society, 2003

50. Srivastava, P.K., Sahu, S.: Secured remote tracking of critical autonomic computing applica-
tions. published in IEEE E-Tech, Karachi, Pakistan (2004)

51. Sterritt, R., Bantz, D.F.: Pac-men: Personal autonomic computing monitoring environment. In
15th International Workshop on Database and Expert Systems Applications (DEXA 2004),
Zaragoza, Spain, pp. 737–741. IEEE Computer Society, 2004

52. Suzuki, J., Suda, T.: A middleware platform for a biologically inspired network architecture
supporting autonomous and adaptive applications. IEEE J. Select. Areas Commun. 23(2), 249–
260 (February 2005)

53. Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart, J.O., White,
S.R.: A multi-agent systems approach to autonomic computing. In: 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), 19–23 Aug
2004, New York, pp. 464–471. IEEE Computer Society, 2004

54. Tosic, V., Pagurek, B., Patel, K., Esfandiari, B., Ma, W.: Management applications of the
web service offerings language (wsol). In: Advanced Information Systems Engineering, 15th
International Conference, CAiSE 2003, Klagenfurt, Austria, 16–18 June 2003, Proceedings,
Vol. 2681 of Lecture Notes in Computer Science, pp. 468–484. Springer (2003)

55. Truong, H.-L., Samborski, R., Fahringer, T.: Towards a framework for monitoring and analyzing
qos metrics of grid services. In: e-Science and Grid Computing. e-Science ’06. Second IEEE
International Conference on, pp. 65–73. IEEE Computer Society, 2006

56. Wile, D.S., Egyed, A.: An externalized infrastructure for self-healing systems. In: WICSA
’04: Proceedings of the Fourth Working IEEE/IFIP Conference on Software Architecture
(WICSA’04), p. 285, Washington. IEEE Computer Society, 2004

57. Yoo, G., Lee, E.: Monitoring methodology using aspect oriented programming in functional
based system. In: Advanced Communication Technology (ICACT), 2010 The 12th International
Conference on, Vol. 1, pp. 783–786. IEEE Computer Society, 2010

58. Zeng, L., Benatallah, B.: Anne H.H. Ngu, Marlon Dumas, Jayant Kalagnanam, and Henry
Chang. Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

59. Zhang, H., Urtado, C., Vauttier, S.: Connector-driven process for the gradual evolution of
component-based software. In: Software Engineering Conference, ASWEC ’09. Australian,
pp. 246–255. IEEE Computer Society, 2009

Chapter 20
Comprehensive Variability Modeling
and Management for Customizable
Process-Based Service Compositions

Tuan Nguyen, Alan Colman and Jun Han

Abstract Variability in process-based service compositions needs to be explicitly
modeled and managed in order to facilitate service/process customization and
increase reuse in service/process development. While related work has been able
to capture variability and variability dependencies within a composition, these
approaches fail to capture variability dependencies between the composition and
partner services. Consequently, these approaches cannot address the situation when
a customizable composite service is orchestrated from partner services which them-
selves are customizable. In this article, we describe a feature-based approach that is
able to effectively model variability within and across compositions. The approach is
supported by a process development methodology that enables the systematic reuse
and management of variability. A prototype system supporting extended BPMN 2.0
is used to demonstrate the feasibility of the approach.

20.1 Introduction

Process-based service compositions are prevalent approaches for developing com-
posite services using process modeling techniques. The two widely used standards
for this purpose are Business Process Model and Notation (BPMN) [24] for modeling
purposes and Business Process Execution Language (BPEL) [23] for execution pur-
poses. In general, in both techniques, a composite service is described by a business

T. Nguyen (B) · A. Colman · J. Han
Faculty of Information and Communication Technology,
Swinburne University of Technology, Melbourne, Australia
e-mail: tmnguyen@swin.edu.au

A. Colman
e-mail: acolman@swin.edu.au

J. Han
e-mail: jhan@swin.edu.au

A. Bouguettaya et al. (eds.), Web Services Foundations, 507
DOI: 10.1007/978-1-4614-7518-7_20,
© Springer Science+Business Media New York 2014

508 T. Nguyen et al.

process capturing the flow of activities (i.e. control flow), the interaction between
the process and partner services (i.e. message flow), and the way data is manipulated
throughout the process (i.e. data flow).

Due to the diversity in service consumption, service variability has become an
important factor in the lifecycle of service development [1, 10, 30]. Service vari-
ability is defined as the ability of a service or process to be efficiently extended,
changed, customized or configured for use in a particular context [31]. Such vari-
ability originates either from service providers wishing to provide different versions
of the same service for different market segments, or from service consumers wishing
to customize a service to match their particular business requirements.

Service variability brings about a new type of services, namely customizable ser-
vices, in service ecosystems. A customizable service is a service whose runtime
customization by a consumer will result in a particular service variant matching the
consumer’s requirements [17, 20, 29]. For services with a large number of service
variants, the use of customizable services, instead of conventional services, delivers
much benefit to service consumers. This is because there are disadvantages with
either deploying an all-in-one non-customizable service or deploying all service
variants separately. In the first case, the non-customizable service has a large service
description most of which is not relevant to one particular consumer. Such redun-
dancy in service description hinders the efficient consumption of services. In the
second case, it is difficult for service consumers to recognize the similarities and the
differences among those service variants in order to select the most appropriate one.

While a customizable service might be either a composite service or an atomic
service, we focus on customizable composite services in this article. In particular, the
focal point is on customizable process-based service compositions. For this reason,
throughout the article, the term “customizable services” is used interchangeably to
the term “customizable composite services” unless otherwise stated.

To facilitate the development and consumption of customizable services, their
variability needs to be explicitly modeled and managed. To this end, there are two
key concerns [27]. Firstly, how to model variation points and variants? Secondly,
how to capture dependencies among those variants? A variation point represents
any place in a business process where variation may occur. Each variation point
is associated with a set of variants from which one or several will be bound to
the variation point when variability is resolved. And variability dependencies are
restrictions on variant selections of one or more variation points. These dependencies
are often specified in terms of requires and excludes relations and expressed as “the
binding of variant A1 to variation point A requires/excludes the binding of variant
B1 to variation point B”.

There are two types of variability dependencies in service computing: variabil-
ity intra-dependencies and variability inter-dependencies [21]. Variability intra-
dependencies represent dependencies within a service composition, while variability
inter-dependencies represent dependencies between the composition and its
customizable partner services. Variability inter-dependencies reflect the situation
when the runtime resolution of variability in the composition requires the runtime

20 Comprehensive Variability Modeling and Management 509

resolution of variability at partner services. And these dependencies may have ripple
effect in service ecosystems since service composition is recursive.

Software Product Line (SPL) is a successful paradigm for systematic identifi-
cation and management of variability [25]. Therefore, many works have exploited
concepts and techniques from SPL in addressing variability in process-based service
compositions, e.g. [9, 16, 19, 26]. These approaches are able to capture variability
and variability dependencies within the control flow and the data flow of a process
model. However, all these efforts fail to capture variability inter-dependencies. Con-
sequently, these approaches are not capable of managing variability in such service
compositions that are aggregations of customizable partner services.

In this article, we describe an approach for the comprehensive modeling and man-
agement of variability in customizable process-based service compositions. With
regard to variability modeling, we present our extension to BPMN 2.0 for incorpo-
rating variation points and variants in all three aspects of service composition: control
flow, data flow, and message flow. We then describe our extension of a feature mod-
eling technique from SPL for capturing variability dependencies within and across
service compositions. Based on these extensions, we specify a process development
methodology that enables the systematic reuse of service variability.

With regard to variability management, we exploit our extension of WSDL,
namely Web Service Variability description Language (WSVL) [22], to describe
the service interface of customizable composite services. A WSVL description is
generated from modeling elements to facilitate service consumers in consuming the
composite service (e.g. requesting service customization). In addition, we explain
how process variants are derived from composite services as a result of customization
processes. While the previous work considers the application of WSVL to customiz-
able atomic services [22], this work focuses on the use of WSVL in supporting
customizable composite services. In addition, our variability modeling technique
requires that each customizable partner service is accompanied with a WSVL descrip-
tion no matter whether the partner service is atomic or composite. This requirement
enables the recursive consumption of customizable services.

This article is structured as follows. Section 20.2 presents a discussion of related
work. The description of a motivating example and feature-level service variabil-
ity modeling is the topic of Sect. 20.3. Section 20.4 explains the techniques under-
pinning our approach. Section 20.5 presents our approach for modeling variability
and variability dependencies. We describe the development and customization of
process-based service compositions in Sect. 20.6. The prototype system is described
in Sect. 20.7 before our conclusion of the article in Sect. 20.8.

20.2 Related Work

There have been many approaches to modeling and managing variability in process-
based service composition [4, 9–12, 16, 18, 19, 26, 28, 30, 32]. Due to the wide-
spread adoption of BPMN and BPEL as, respectively, languages for modeling and

510 T. Nguyen et al.

executing business processes, most of these works are extensions of these languages.
UML activity diagrams have also been extended to model variable processes in a
similar fashion to BPMN although they lack the rich set of constructs of BPMN.

There are various ways to extend BPEL. For instance, some approaches extend
the BPEL XML schema in order to incorporate information about variation points
and variants [4, 11, 16]. The selection of variants will be driven by configuration
parameters [16], a decision model [4], or context data collected from runtime events
[11]. In contrast, the approach in [19] uses a separate variability descriptor to define
the location of variation points in a BPEL definition and possible variants. From the
variability descriptor, a separate BPEL process is generated to facilitate consumers
in deciding variants to be bound. In addition, the approach in [12] defines notations
based on Eclipse Modeling Framework (EMF) [7] for representing BPEL process
models with modifiable elements. Separate context model and linkage model help
to decide what, when, and how to modify the process (e.g. adding new process
elements or deleting existing elements) to generate a particular process variant. In
general, the advantage of extending BPEL is that an executable process variant can
be automatically derived by resolving all variation points. However, the modeling of
variability at the process implementation level results in the complexity issue due to
the large number of variation points and their dependencies.

In contrast to BPEL, BPMN and UML Activity diagrams enable the capturing
of business processes at the modeling level. At this high-level of abstraction, the
number of variation points is much fewer than the one at the process definition level.
A number of works have focused on extending BPMN or UML Activity diagrams
for supporting variability [9, 10, 18, 26, 28, 30, 32]. In these approaches, various
ways are defined for extending BPMN/UML. For instance, some approaches mark
variability-related nodes with stereotypes [26, 28, 30], some define operations that
can be applied to modify process models [9, 10, 18], while others introduce new
variability elements into the BPMN metamodel [32]. However, with the exception
of [26, 28], these works focus only on variation of control flow of process models.
To derive executable process variants, variation in data flow needs to be modelled as
well, as in [26, 28].

Although variability intra-dependencies have been considered, e.g. [10, 16], a
major shortcoming of works in both categories is that they are not able to capture
variability inter-dependencies. All previous approaches assume that partner services
are non-customizable. Consequently, those approaches are not applicable to com-
posite services orchestrated from customizable partner services.

20.3 Motivating Example and Feature-Level Variability
Modeling

Swinsure Insurance is a wholesale insurance company that provides building insur-
ance business to various insurance brokers. These insurance brokers will be respon-
sible for selling insurance services to end-users. This article considers the claim

20 Comprehensive Variability Modeling and Management 511

handling process that brokers use to handle insurance claims from end-users. Insur-
ance brokers have different requirements on the process. Therefore, each broker
requires a variant of the process for its own business. As described in the Introduc-
tion, to increase efficiency in process development and consumption, the Swinsure
Insurance will develop a customizable process from which brokers are able to derive
their needed variants. To this end, the Swinsure Insurance needs to capture and man-
age variability in the process.

20.3.1 Feature Modeling

To capture variability in broker requirements, Swinsure Insurance uses a feature
model (cf. Fig. 20.1). Feature models are used in SPL for capturing at high level of
abstraction the commonalities and the differences among a family of related soft-
ware products [25]. In our case, a feature model defines a family of claim handling
processes each of which serves one broker. While there are many variations of feature
modeling techniques (e.g. [2, 8, 14, 15]), we utilize the Cardinality-Based Feature
Modeling (CBFM) technique which provides a complete semantics for capturing
service variability [5]. The key characteristics of these feature models are:

• Features—represents a business functionality encapsulating broker requirements.
• Feature hierarchy—denotes a tree of features with composed-of relationships.

For instance, the feature “Claim handling process” is composed of four features:
“Cover type”, “Bill payer”, “Extra cover”, and ‘‘Excess”.

Fig. 20.1 A feature model representing variability of the claim handling process

512 T. Nguyen et al.

• Feature cardinality—determines the lower and upper bounds for the feature to
appear in one feature configuration. For instance, the cardinality [0-1] annotation
above the feature “Extra cover” implies an optional feature, while the cardinality
[1-1] for the feature “Cover type” defines a mandatory feature.

• Feature configuration—is derived from a feature model by resolving all variability
within the feature model. For instance, a feature configuration might disable the
optional feature “Extra cover”. A feature configuration represents the requirement
set of one broker.

• Group cardinality—limits the number of child features in one feature configura-
tion when the parent feature is selected. For instance, the group cardinality [1-1]
annotation below the parent feature “Bill payer” implies that only one feature
among “Broker” and “End-user” will be selected in one feature configuration.

• Feature constraints—describe the inclusive and exclusive dependencies among
features across the tree (cf. the constraint box).

To model and manage variability in process-based service compositions, we
exploit concepts of variability management in SPL as follows:

1. We use feature models to capture variability in broker requirements.
2. Feature models are used to manage variability in process models. In particular,

variant features (i.e. features with cardinality different from [1-1] or features
belonging to a feature group) and their constraints will help to identify, capture
and manage variability as well as variability dependencies in process models.

Compared to variability management techniques which have been proposed in
the SPL research, our approach has two key contributions. Firstly, we define a
novel way for introducing variation points and variants into process models. Sec-
ondly, we extend the feature modeling technique to capture not only variability
intra-dependencies, but also variability inter-dependencies.

20.3.2 Example Explained and Variability Inter-Dependencies

We first describe variability in broker requirements as captured in Fig. 20.1.

• Regarding types of insurance cover, all brokers support repairing (i.e. feature
“Repair”) while only some brokers also support rebuilding the damaged build-
ing. In addition, brokers might choose to specify a repairer (i.e. feature “Broker
specified”) or allow end-users to nominate a repairer.

• Some brokers wish to be responsible for paying repairing/rebuilding bills (i.e.
feature “Broker”) while others allow end-users to pay bills and refund the cost.
However, when brokers specify repairers, end-users are not allowed to pay bills
(cf. the first constraint in the constraint box).

• Brokers are able to add an extra cover (i.e. feature “Temporary accommodation”)
for arranging a temporary property while the insured one is being repaired.

20 Comprehensive Variability Modeling and Management 513

Fig. 20.2 A feature model
representing variability of the
Swinpay WS

• Since an insured building is at greater risk of damage if it is not occupied for a
lengthy period, some brokers want to enforce additional unoccupied excess (i.e.
feature “Unoccupied excess”).

• Some brokers ask end-users to pay an excess fee in advance (i.e. feature “Pay in
advance”) which might be through the use of credit card, BPAY (i.e. a bill payment
service) or bank transfer. In contrast, others allow the deduction of the fee from
bills paid by end-users, but if the end-user pays the bill (i.e. feature “End-user”)
(cf. the second constraint in the constraint box)

There are many services available that the Swinsure Insurance may reuse in imple-
menting its process. In this example, the Swinsure Insurance utilizes a customizable
partner service, namely Swinpay service (aka Swinpay WS), for dealing with end-
user payments. Figure 20.2 presents a feature model capturing the variability of the
Swinpay WS. To implement variability in its own process (i.e. realizing different
options for “Pay in advance”), Swinsure uses three different variants from Swinpay
WS. Two variants facilitate payment confirmation through bank transfer and BPAY
without notifying end-user of the transaction (i.e. the feature “User notification” is
disabled). The third variant supports payment execution through Credit card with
end-user notification. For the last variant, the feature “User notification” is auto-
matically selected due to the “require” dependency between “Execution” and “User
notification”. Reusing the Swinpay WS frees the Swinsure Insurance from the over-
head of implementing variability in its own process. However, variability in the claim
handling process will depend on the variability in the Swinpay WS. In other words,
depending on the type of payment a broker prefers, the process needs to invoke a
corresponding variant of the Swinpay WS.

514 T. Nguyen et al.

20.4 Service Customization and Customizable Service
Description

In this section, we explain the techniques that underpin our approach. In particular,
we briefly describe a feature-based service customization framework and our solution
for describing customizable services based on the concept of features.

20.4.1 Feature-Based Service Customization Framework

Given the complexity in customizing services, we have proposed a feature-based
service customization framework [20]. In particular, service providers use feature
models to capture service variability in consumer requirements. Based on feature
models, service consumers select features they need and disable features they do not
need. Feature selection has to conform to feature cardinality, group cardinality and
constraints described in the feature model to generate a valid feature configuration.
The feature configuration is then communicated back to the service provider so
that the service provider can derive and dynamically deploy a service variant that
the consumer can invoke. The use of feature models helps to reduce the number of
customization options, as well as formally capture dependencies among such options.
In addition, it helps consumers to focus on what a variant can achieve, rather than
how to technically invoke the capability.

In previous work [20], we have focused on how to model, manage and instantiate
variability at the service interface level. The work in this article complements that
work in addressing the issues of how to model and manage variability in the service
implementation (i.e. business process), and then generating a variant based on a
particular feature configuration. In addition, the work in this article also exploits that
technique for customizing partner services.

20.4.2 Customizable Service Description

A customizable service needs to be described so that consumers know its variabil-
ity and how to customize it. To this end, we have defined Web Service Variability
description Language (WSVL) as an extension of WSDL for describing customizable
services [22]. The language builds upon the concept of the feature-based service cus-
tomization framework. WSVL helps to formalize the customization interface using
the XML technology. In addition, it loosens the coupling between service providers
and service consumers in the provisioning and consumption of customizable ser-
vices. In this subsection, we describe the key information captured by WSVL using
an excerpt of the WSVL description for the Swinpay WS (Fig. 20.3).

20 Comprehensive Variability Modeling and Management 515

Fig. 20.3 An excerpt of the WSVL description for the Swinpay WS

WSVL defines XML notations for capturing four pieces of information: ser-
vice variability, service capability, feature mapping, and customization endpoint.
Firstly, the description of service variability specifies “What customization options
are”. It is actually the XML representation of the feature model. The element
“wsvl:featureHierarchy” defines the hierarchical organization of features, while the
element “wsvl:featureConstraint” denotes cross-tree constraints. The service vari-
ability description in Fig. 20.3 represents a part of the feature model demonstrated
in Fig. 20.2. In this example, all extended XML notations use the prefix “wsvl:” to
separate themselves from XML notations defined by the WSDL XML schema.

Secondly, the description of service capability defines in standard WSDL the
superset of abstract capability (i.e. portType, operations, and data types) of all ser-

516 T. Nguyen et al.

vice variants. This description contains both common capabilities shared among
all service variants and variant capabilities specific to only some service vari-
ants. Due to limited space, we only show a brief description of two operations
in Fig. 20.3.

Thirdly, the description of feature mapping captures the correspondences between
variant features and variant capabilities. This description and the service capability
description collectively define what variant capability is available for a given feature
configuration. The availability of a variant capability is collectively decided by two
sets of variant features. In particular, the inclusion of features in the first set and the
exclusion of features in the second set decide the availability. Therefore, a corre-
spondence is represented by a set of links and one link specifies mapping between a
variant feature and a variant capability. A link has an additional attribute “presence”
specifying whether the inclusion or exclusion of the feature decides the availability.
In Fig. 20.3, the first two links collectively define that the operation “confirmBank-
Payment” is available when the feature “BankTransfer” is selected and the feature
“UserNotification” is disabled. In contrast, the next two links define that when both
features are selected, the operation “confirmBankPaymentWithNotification” is avail-
able instead.

Fourthly, the description of customization endpoint defines two things: “how
to construct customization messages” and “where to exchange those messages”.
The description specifies a set of customization operations defining what kind of
customization requests are accepted by the providers and what will be the cor-
responding customization responses. In addition, the description contains infor-
mation about mapping customization messages to transport and messaging pro-
tocols, and endpoints for exchanging customization messages. Figure 20.3 defines
one customization operation “customizationOperation”. This operation accepts a
set of enabled features and a set of disabled features, and returns the WSDL of
a service variant. Due to limited space, we omit details of message definitions.
The element “wsvl:binding” specifies that the input and output messages will be
formatted as SOAP messages and transported using HTTP protocol. In addition,
the element “wsvl:port” defines the endpoint at which customization messages are
exchanged.

Given this description, a service consumer, for instance the Swinsure Insurance,
is able to comprehend the variability of the Swinpay WS and request a particular
variant by deciding a feature configuration and sending it to the Swinpay WS.

20.5 Modeling Variability and Variability Dependencies in
Process-Based Service Compositions

In our approach, we extend the BPMN 2.0 metamodel with new elements for repre-
senting variation points and variants within process models. BPMN has the advan-
tage of providing a language rich, business-level description of processes that can be
readily translated to an executable BPEL definition.

20 Comprehensive Variability Modeling and Management 517

Fig. 20.4 Variability
metamodel

20.5.1 Extending BPMN for Representing Variation Points
and Variants

Figure 20.4 presents the variability metamodel which captures the general concept of
variability in process models. A VariationPoint represents any place in the process
model where variability can occur. Each VariationPoint is associated with a set
of Variants from which one or several will be bound to VariationPoint when the
variability is resolved. The attributes minCardinality and maxCardinality define how
many Variants should be bound to one VariationPoint. These attributes have the
same semantics as the cardinality concept in the feature modeling technique adopted.
Note that in the variability metamodel, we do not specify when a variant is bound to
the variation point. In our approach, such conditions (aka. presence condition) are
managed in a separate model.

In the following sub-sections, we explain the specialization of this metamodel
to represent variability in control flow, data flow, and message flow. As such, our
approach supports the comprehensive modeling of variability in all three aspects
of service compositions while related work only focuses on control flow and data
flow. The comprehensive modeling of variability not only enables the capturing
of variability inter-dependencies, but also facilitates the derivation of executable
process variants based on consumers’ customization (i.e. consumers’ selected fea-
ture configurations). Note that while new modeling elements are introduced to
capture variability, a process variant resulted from resolving variability in our
extended process model is a conventional BPMN model without extended ele-
ments. This property enables the use of mapping between BPMN elements and
BPEL elements defined in the BPMN 2.0 specification to generate executable process
variants.

20.5.1.1 Modeling Variability in Control Flow

Figure 20.5 presents our metamodel extension for modeling variability in control
flow. In this metamodel, BPMN elements are written in italic bold font, while our
extended elements are written in regular bold font. We also use this convention
when describing BPMN elements and extended elements throughout this article.

A control flow (represented by Process element) is a FlowElementsContainer
which is composed of FlowElement. A FlowElement can be either a FlowNode or a
SequenceFlow connecting two FlowNodes. Three types of FlowNode are Activity,
Gateway, and Event. An Activity can be further specialized to a Task or a SubProcess.
While a Task represents an atomic activity, a SubProcess denotes a composite activity

518 T. Nguyen et al.

Fig. 20.5 Metamodel extension for variability in control flow

whose details are modeled using Activities, Gateways, Events and SequenceFlows.
That is, a SubProcess is also a FlowElementsContainer.

To model variability in control flow, we need to consider how to represent control
flow variation points and variants. To this end, we observe that any variability in
control flow can be interpreted as a location in the process model at which different
process fragments (i.e. variants) can be used. Therefore, we define two new elements,
namely ControlFlowVPStart and ControlFlowVPEnd, as a pair for representing
the starting point and the ending point of a control flow variation point. Both elements
inherit properties of FlowNode (through ControlFlowVariant) so that they can be
used within a BPMN model. A control flow variant might be a Task, a SubProcess,
or a general fragment which begins and ends with FlowNodes. Therefore, we make
all existing FlowNodes (i.e. Activity, Gateway, Event) inherit ControlFlowVariant
so that they can be used as control flow variants. Another consideration is related to
embedding one control flow variation point within another. In this regard, it is required
to use ControlFlowVPStart and ControlFlowVPEnd as control flow variants. To
this end, we also make these two elements inherit from ControlFlowVariant. Lastly,
control flow variation points and variants are specialized from previously defined
VariationPoint and Variant (cf. Fig. 20.4).

Figure 20.6 presents an example of modeling variability in the control flow. This
is an excerpt of the sub-process for finalizing repairing cost. This screenshot is
taken from our process modeling tool (detailed later). VPS6 and VPE6 are Con-
trolFlowVPStart and ControlFlowVPEnd respectively. They represent a control
flow variation point which has two variants. In our process modeling tool, dashed
lines are used to connect variation points to associated variants. By this, the first vari-
ant is the upper process fragment after VPS6 while the second variant is the lower
fragment. The first variant is selected when a broker selects the feature “End-user”,
while the second variant is used when the feature “Broker” is selected. We use anno-

20 Comprehensive Variability Modeling and Management 519

Fig. 20.6 Example of modeling variability in control flow

Fig. 20.7 Metamodel extension for variability in data flow

tation in the process model to denote this information. Within the first variant, there is
one optional control flow variation point represented as VPS7 and VPE7. The variant
is present when the feature “Deducted” is selected. This example demonstrates how
one control flow variation point can be embedded within another.

20.5.1.2 Modeling Variability in Data Flow

Figure 20.7 presents our metamodel extension for modeling variability in data flow.
Capturing data flow involves the modeling of information items that are created,
manipulated, and consumed during the execution of a process. In general, it refers to
the use of DataObject for storing data and DataAssociation for moving data from
one or many source ItemElements to one target ItemElement. In this way, data can
be instantiated and moved between Activity (i.e. Task, SubProcess) and DataObject.

Variability in data flow can be considered as different information (i.e. DataOb-
ject) to be stored or different ways for moving data around (i.e. DataAssociation). In
addition, variants in data flow are alternatives. Therefore, we model both variation
points and variants as elements inherited from the same element type. That is, for

520 T. Nguyen et al.

Fig. 20.8 Example of model-
ing variability in data flow

variability of DataObject, both variation points, i.e. DataObjectVP, and variants,
i.e. DataObjectVariant, are inherited from DataObject. A similar approach applies
with DataAssociation, DataAssociationVP, and DataAssociationVariant.

Figure 20.8 presents an example of modeling variability in data flow. This is an
excerpt of a sub-process for collecting excess fee from end-users. As explained
earlier, VPS4 and VPE4 collectively represent an optional control flow variation
point for calculating unoccupied excess which will be added to the final excess fee.
There is data dependency between this optional control flow variant (i.e. sub-process
“Calculate occupied excess”) and the task “Calculate excess”. To model this, we
use DataObjectVariant, namely “unoccupied excess”, to store this data and two
DataAssociationVariants (i.e. dashed lines with arrow) to associate this data with
the relevant sub-process and task. These DataObjectVariant and DataAssociation-
Variants are optional and are included in a process variant only when the feature
“Unoccupied excess” is selected (as denoted by the annotation).

20.5.1.3 Modeling Variability in Message Flow

Figure 20.9 presents the extension for modeling variability in message flow. In
BPMN, message flow is used to capture interactions between a process and partner
processes/services. Each interaction is modeled as a Conversation which is com-
posed of either one or two MessageFlows depending on whether the interaction is
one- or two-way. Each MessageFlow carries a Message from one InteractionNode
(e.g. Task) in one process to another InteractionNode in another process.

Variability in message flow can be seen as alternative Conversations between
two parties, i.e. the process and a partner service (or a consumer). Therefore, in a
similar fashion to modeling variability in data flow, we model both variation points,
i.e. ConversationVP, and variants, i.e. ConversationVariant, as elements inherited
from Conversation. In addition, we introduce new elements, namely PartnerTask
and AbstractPartnerTask. A PartnerTask models a task performed by a part-
ner service. An AbstractPartnerTask is a variation point associated with a set of
alternative PartnerTasks from the same partner service. AbstractPartnerTask rep-
resents a variable capability provided by a partner service. The introduction of

20 Comprehensive Variability Modeling and Management 521

Fig. 20.9 Metamodel extension for variability in message flow

Fig. 20.10 Example of modeling variability in message flow

PartnerTask and AbstractPartnerTask facilitates the modeling of variability inter-
dependencies as described in the following subsection. Similarly, we introduce Con-
sumerTask and AbstractConsumerTask for the interaction between the business
process and its consumers. These elements facilitate the generation of the service
variability description (i.e. WSVL description) for this service composition.

Figure 20.10 presents an excerpt of the sub-process for collecting excess fee.
The left figure shows a ConversationVP, namely CVP2, which associates three
ConversationVariants, namely CV2_1, CV2_2, CV2_3 respectively. Each Coversa-
tionVariant represents an interaction between the same task “Get end-user payment
detail” with a ConsumerTask. They correspond to three alternative features (“Credit
Card”, “BPAY” and “Bank transfer”) and collectively describe variability in message
flow between the process and end-users. In addition, the right figure shows another

522 T. Nguyen et al.

ConversationVP, namely CVP3, which associates the task “Confirm payment” with
three alternative PartnerTasks. This variation point describes variability in message
flow between the process and the partner service Swinpay WS since each Partner-
Task belongs to one variant of Swinpay WS.

20.5.2 Modeling Variability Intra-Dependencies

Variability intra-dependencies represent dependencies among variation points and
variants within a process model. For instance, in Fig. 20.8, when the sub-process
“Calculate unoccupied excess” is not included in one process variant, the data object
variant “unoccupied excess” should be excluded. To model these dependencies, we
observe that all variabilities in the process model are the realization of variability in
the feature model of the service composition. In other words, the identification and
modeling of variation points and variants in a process are driven by variant features
in the feature model. And variability intra-dependencies among different variants
exist purely because of constraints among variant features. In particular:

• All variant process elements realizing one variant feature form “require” depen-
dencies (e.g. both sub-process “Calculate unoccupied excess” and data object
variant “unoccupied excess” realizes the optional feature “Unoccupied excess”
and they require each other).

• All variants associated to one variation point for realizing alternative features are
mutually excluded (e.g. two variants of VPS6 and VPE6 in Fig. 20.6).

• Among any two variant process elements realizing mutually excluded features,
there exists an “exclude” dependency.

To model variability intra-dependencies, we exploit a model mapping technique
to capture the correspondence between variability in a feature model and variability
in a process model. Figure 20.11 shows the mapping metamodel for this purpose.
A MappingModel relates variant features in a feature model, referenced by Feature-

Fig. 20.11 Mapping metamodel

20 Comprehensive Variability Modeling and Management 523

Fig. 20.12 Capturing variability intra-dependencies

ModelRef, with variants in a process model, referenced by ProcessModelRef. It is
composed of Links and each Link consists of a Feature and at least one ProcessEle-
ment. Feature and ProcessElement reference elements in the feature model and the
process model respectively. In addition, a Feature has a boolean property “presence”
to define whether the selection or un-selection of the Feature is associated with a
ProcessElement. Each Link enables a feature to be mapped to one or several variant
process elements in the process model. In addition, by defining multiple links asso-
ciating multiple features with the same process element, it is possible to specify the
presence condition of the process element as a logical expression of features.

Figure 20.12 depicts a mapping model capturing variability intra-dependencies
within the sub-process for collecting excess fee. This screenshot is taken from our
model mapping tool. The left panel shows the feature model. The right panel displays
the process model. And the middle panel presents the mapping model. There are four
links in this mapping model. The first link associates feature “Unoccupied excess”
with two variants (one control flow variant and one data object variant) shown in
Fig. 20.8. As the result, the link captures the “require” dependency between the
two variants. The other three links associate each child feature of the feature group
“Pay in advance” with one PartnerTask. Consequently, the links represent mutually
exclusive dependencies among the three PartnerTasks.

This mapping model is referred to as FeatureTask mapping model. Due to the
realization relationships, the mapping along with feature constraints in the feature
model accounts for all variability intra-dependencies. In addition, the use of mapping
models has the following advantages in comparison with embedding constraints in
the process definition. On the one hand, it helps to separate variability constraint
information from the process model, thus simplifies the definition. On the other
hand, the validation of process configuration is led to the validation of a feature
configuration, which is well-studied in SPL [3].

524 T. Nguyen et al.

Fig. 20.13 Capturing variability inter-dependencies

20.5.3 Modeling Variability Inter-Dependencies

Variability inter-dependencies represent dependencies between variability in the
process model and variability in partner services. For instance, in Fig. 20.10, each
PartnerTask associated with the AbstractPartnerTask “Payment service” is per-
formed by one variant of the Swinpay WS. Since the variability of partner services is
described using their feature models (cf. Fig. 20.3), in a similar fashion to modeling
variability intra-dependencies, we exploit the model mapping technique to model
variability inter-dependencies. The main difference between the mapping model for
variability intra-dependencies and the one for variability inter-dependencies is the ori-
gin of variant features. While variability intra-dependencies is modeled with respect
to variant features in the feature model of the service composition, variability inter-
dependencies is modeled with respect to variant partner features.

In particular, a mapping model for variability inter-dependencies captures the cor-
respondence between PartnerTasks within the process model and variant partner
features. We refer to this mapping model as PartnerTaskFeature mapping model.
Figure 20.13 presents an example of this mapping model in which the PartnerTask
“Bank payment confirmation” in Fig. 20.10 is mapped to two features of the Swin-
pay WS using two links. The first link refers to the feature “Bank transfer” with
“presence=true”, while the second refers to the feature “User notification” with
“presence=false”. Consequently, this PartnerTask is performed by the variant of
the Swinpay WS for which the feature “Bank transfer” is selected and “User noti-
fication” is disabled. Comparing to the WSVL description of the Swinpay WS in
Fig. 20.3, it means that the PartnerTask “Bank payment confirmation” is equivalent
to the operation “confirmBankPayment” provided by the Swinpay WS.

Note that the positions of the feature model and the process model are swapped in
the mapping tool for variability inter-dependencies (Fig. 20.13) compared to the one
for variability intra-dependencies (Fig. 20.12). This swapping reflects the difference
in the origin of features as discussed above. In addition, when reading from the left
to the right, one is able to recognise the realization relationships (i.e. variability at
the feature level is further refined to variability at the process model level) in the
mapping tool for variability intra-dependencies. Similarly, when reading from the

20 Comprehensive Variability Modeling and Management 525

left to the right in the mapping tool for variability inter-dependencies, one is able to
see the common arrangement between a service composition and a partner service.

It should be noted that between PartnerTasks and variant partner features, there
does not exist a “natural realization relationship” as the ones for variability intra-
dependencies. If the identification and modeling of PartnerTasks and Abstract-
PartnerTasks are driven by the variant partner features, such realization relation-
ships exist. Otherwise, realization relationships may not exist and variability inter-
dependencies exist by chance. Therefore, the higher the inter-dependency between
a composition and partner services is, the better the reuse of service variability from
partner services toward the composition will be. In a later section, we describe a
process development methodology that systematically increases the reusability of
service variability.

Since variability in the feature model of the business process is mapped to variabil-
ity in the process model, i.e. FeatureTask mapping model, and a part of variability in
the process model, i.e. PartnerTasks, is mapped to variability in partner feature mod-
els, i.e. PartnerTaskFeature mapping model, it is possible to generate the mapping
from variant features in the feature model of the service composition to variant part-
ner features. This mapping model conforms to a mapping metamodel that is similar to
the one shown in Fig. 20.11 and allows us to capture variability inter-dependencies at
the highest level of abstraction, i.e. the feature level. We refer to this type of mapping
model as FeatureFeature mapping model. In summary, there are two types of feature
mapping models for representing variability inter-dependencies: PartnerTaskFeature
and FeatureFeature mapping models.

20.6 The Development and Customization of Process-Based
Service Compositions

In this section, we describe a methodology for developing service compositions with
systematic management and reuse of variability. The methodology explicitly uti-
lizes variability information from partner services in driving the identification and
modeling of variability within business processes. Consequently, it facilitates the
reuse of service variability provided by partner services. In addition, we elaborate
how WSVL descriptions for customizable composite services are generated from
process modeling elements. The description facilitates service consumers in cus-
tomizing composite services. To demonstrate this, we describe how process
variants are derived from composite services as a result of a customization process.

20.6.1 Process Development Methodology

Figure 20.14 presents the overview of our development methodology. In the first
activity, the capability of the service composition is modeled using the feature mod-
eling technique. The result of this activity is a feature model capturing commonalities

526 T. Nguyen et al.

Fig. 20.14 Overview of developing process-based service compositions

and variabilities of the composite service to be. Given a model of desired features,
the next activity will be the selection of partner services that can be used for the ser-
vice composition. For instance, the Swinsure Insurance selects the Swinpay WS for
processing end-user payment. There are two types of partner services: (conventional)
non-customizable partner services and customizable partner services. The explicit
selection of customizable partner services helps to reduce overhead of addressing
variability within the service composition. Customizable partner services come with
WSVL-based service descriptions.

During the second activity, both non-customizable partner services and customiz-
able partner services are transformed into a set of partner tasks that will be selectable
for modeling the process. As explained, a partner task is an operation provided by
a partner service that is responsible for an atomic message flow between the part-
ner service and the service composition. While non-customizable partner services
are transformed to a set of non-customizable partner tasks, results of transforming
customizable partner services are sets of alternative partner tasks. For each set of
alternative partner tasks, we also generate an abstract partner task representing all
partner tasks in the set. Since the variability of customizable partner services are
expressed as feature models with mapping to variant capabilities, we also derive
mapping models that represent the correspondence between alternative partner tasks
and variant partner features, i.e. PartnerTaskFeature mapping models. Consequently,
results of the service selection activity are a repository of (alternative) partner tasks,
abstract partner tasks and PartnerTaskFeature mapping models. It should be noted
that in this methodology, the PartnerTaskFeature mapping models are intentionally
generated before modeling the process.

In the third activity, the business process for the service composition is modeled
using the extended metamodel. The identification of variation points and variants
are based on the feature model identified in the first activity. Tasks from the partner
task repository will be used to model the message flow between the service compo-
sition and partner services. The selection of (alternative) partner tasks and abstract
partner tasks from the partner task repository will not only facilitate the reuse of
variability provided by partner services in the process modeling, but also enable the
use of already generated PartnerTaskFeature mapping model in capturing variability
inter-dependencies. In addition, variability in the message flow between the service

20 Comprehensive Variability Modeling and Management 527

composition and consumers is captured by means of consumer tasks. The result of
this activity is a process model with variability.

In the next activity, the model mapping technique is exploited to first model
variability intra-dependencies. That is, all variation points and variants in a process
model are mapped to variant features in the feature model of the business process. The
result is a FeatureTask mapping model. Since the PartnerTaskFeature mapping model
is already produced, model transformation techniques are utilized to automatically
generate FeatureFeature mapping model as described in Sect. 20.5.3.

The resulting software artifacts of the first four activities will be used in two
different ways. Firstly, they are used to generate the variability description of the
resulting service composition (i.e. Variability Description Generation activity) which
can contribute to other service compositions. Secondly, those software artifacts are
used for the derivation of process variants given a particular feature configuration
as the result of a customization (i.e. Variant Derivation activity). We elaborate the
details of these two activities in the next two sections.

20.6.2 Deriving WSVL Description

As explained in Sect. 20.4.2, the WSVL description of a process facilitates brokers in
customizing the process. To derive the WSVL description from modeling elements,
we define the following derivation rules:

1. The description of service variability is an XML representation of the feature
model for the process (cf. Fig. 20.1) following the WSVL XML schema.

2. The description of service capability is generated from ConsumerTasks. In par-
ticular, the description contains all ConsumerTasks defined in the process model
as service capability. ConsumerTasks associated with AbstractConsumerTasks
will become variant capabilities, while other ConsumerTasks are common capa-
bilities among all variants.

3. The description of feature mapping is an XML representation of all links associ-
ating variant features with ConsumerTasks in the FeatureTask mapping model.

4. The description of customization endpoint is specific to the process engine and the
service platform that the composite service provider uses. Therefore, it is out of
the scope of these derivation rules. However its general semantics (i.e. accepting
a set of variant features and returning information related to one customized
process) is specified in the WSVL XML schema.

Figure 20.15 presents an excerpt of the WSVL description for the claim handling
process. The service capability description contains 4 variant operations. The fea-
ture mapping description defines that the first two operations are available when
the feature “Bank transfer” is selected while the following two operations depends
on the feature “BPAY”. This description is based on modeled ConsumerTasks (as
shown in Fig. 20.10 and complemented by Fig. 20.18), as well as links between these
ConsumerTasks and variant features in the FeatureTask mapping model.

528 T. Nguyen et al.

Fig. 20.15 An excerpt of the WSVL description for the claim handling process

20.6.3 Deriving Executable Process Variants

While the modeling of variability and variability dependencies is a design time
process, the derivation of an executable process variant happens at either design
time or runtime. This is triggered when the service composition is customized by
brokers or the provider itself. As explained, the customization is performed using the
feature model of the service composition (cf. Sect. 20.4.1) and generally requires the
runtime customization of respective partner services. For instance, Fig. 20.16 presents
a possible feature configuration which is the result of a broker’s customization.

Given a feature configuration, we exploit model transformation techniques as
follows to derive a particular executable process variant:

1. The FeatureTask mapping model is referenced for specializing the process model.
The process model is actually a model template which is the superset of all process
variants. Therefore, each variant process element is evaluated against the set of
features associated with the element. If the evaluation is true, the process element
is kept. Otherwise, the process element is purged from the process model. The
result of this task is an abstract process variant which does not have variability but
still contains partner tasks and consumer tasks. Figure 20.17 presents a variant
of the sub-process for collecting excess fee which corresponds to the feature
configuration in Fig. 20.16.

2. The FeatureFeature mapping model is referenced for generating a feature con-
figuration for each customizable partner service. These feature configurations are
used to customize partner services and produce partner service variants. Given the
feature configuration in Fig. 20.16, Swinpay WS will be customized with selected
features as “Confirmation”, “Bank transfer”, and disabled features as “BPAY”,
“Execution”, “Credit card”, “Cheque”, and “User notification”.

20 Comprehensive Variability Modeling and Management 529

Fig. 20.16 A feature configuration for the claim handling process

Fig. 20.17 A variant of the sub-process for collecting excess fee

530 T. Nguyen et al.

3. From the abstract process variant and partner service variants, an executable
process variant is generated. We presume the use of BPEL for the executable
process. It is important to note that the abstract process variant is a conventional
BPMN 2.0 process model since all variabilities have been resolved.1 Therefore,
the generation of the BPEL definition from the abstract process variant follows
the exact mapping between BPMN elements and BPEL elements defined in the
BPMN 2.0 specification. Another important remark is that the existence of partner
tasks in the abstract process variant will help to create partner links and accurate
service invocation between the process variant and partner service variants.

4. Finally, based on the information of consumer tasks in the abstract process variant,
a WSDL description of this process variant is generated.

At the end of this activity, a fully executable process variant that matches the
given feature configuration is generated along with a service interface descrip-
tion. The process variant will invoke a set of automatically customized partner
service variants. Note that the essence of this derivation process is the associa-
tion of relevant variants (i.e. control flow variants, data flow variants, and mes-
sage flow variants) to form one process variant for one service consumer based
on the concepts of “feature” and “feature mapping”. It is analogous to the use
of “Correlation Set” to associate relevant artefacts (e.g. Message or Process)
to produce a complete business process with respect to one particular service
consumer.

20.7 Prototype Implementation

We have developed a prototype system for modeling and managing variability in
process-based service compositions. The prototype system has been used through-
out the article to demonstrate different aspects of our approach. In this section, we
summarize and provide additional information about it.

Figure 20.18 is a screenshot of the process modeling tool developed as an Eclipse
plugin. The tool enables the modeling of any process conforming to our extended
BPMN. Users are able to select existing and new process elements from the right
Palette tool while modeling processes. In particular, the section “Variation Points and
Variants” contains extended elements for modeling variation points and variants,
while the section “Connections” contains link elements for connecting variation
points and variants. Other sections in the Pallette tool contain BPMN elements.

The screenshot shows the sub-process for collecting excess fee. Some excerpts
of this sub-process have been shown in Figs. 20.8 and 20.10 respectively. The sub-
process demonstrates two control flow variation points, namely VPS4/VPE4 and

1 Strictly speaking, abstract process variants still contain new modeling elements such as DataOb-
jectVariant, ConversationVariant, or PartnerTask. However, these elements are inherited from
BPMN elements without additional properties. They are regarded as BPMN elements in generating
BPEL definition

20 Comprehensive Variability Modeling and Management 531

Fig. 20.18 A screenshot of the process modeling tool

VPS5/VPE5, one data flow variation point, namely “Unoccupied excess”, and three
message flow variation points, namely CVP1, CVP2, and CVP3. CVP1 and CVP2
model the message flow between the process and end-users, while CVP3 models
the message flow between the process and the partner service Swinpay WS. The
elements PartnerTasks and AbstractPartnerTask, as well as the PartnerTaskFea-
ture mapping model for CVP3 are derived from Swinpay WSVL as explained in the
process development methodology section. Modeling variability in this way enables
the capturing of variability inter-dependencies between the process and Swinpay
WS.

The tools for capturing variability intra-dependencies and inter-dependencies (cf.
Figs. 20.12, 20.13) are implemented as extensions to Atlas Model Weaver (AMW)
[6]. Model transformations are performed using Atlas Tranformation
Language (ATL) [13] to derive the FeatureFeature mapping model for variability
inter-dependencies. In addition, there is a tool for initiating process customization
(cf. Fig. 20.16).

20.8 Conclusion

In this paper, we have described a feature-oriented approach to modeling and manag-
ing variability in process-based service compositions. We have extended the BPMN
2.0 metamodel for introducing variation points and variants in all three aspects of
service compositions, i.e. control flow, data flow, and message flow. These exten-
sions enable not only comprehensive modeling of variability, but also the generation
of executable process variants as the result of a service customization. In addition,
we have introduced a feature mapping technique for capturing not only variability
intra-dependencies among variants within a process model, but also variability inter-
dependencies between variants in a process model and variants in partner services.

532 T. Nguyen et al.

Consequently, our approach is able to address the situation where a customizable
composition is orchestrated using partner services which may be customizable. This
is not achievable using existing approaches.

We have also described a methodology that facilitates the development of business
processes conforming to the extended process metamodel with systematic variability
management. The key advantage of the methodology is the systematic exploitation of
variabilities provided by partner services to increase reusability of service variability.
The methodology exploits MDE techniques for automating most parts, especially the
generation of executable process variants. In addition, we have presented a prototype
system for demonstrating the feasibility of our approach.

Acknowledgments This research was carried out as part of the activities of, and funded by, the
Smart Services Cooperative Research Centre (CRC) through the Australian Government’s CRC
Programme (Department of Innovation, Industry, Science and Research).

References

1. Barros, A., Allgaier, M., Charfi, A., et al.: Diversified service provisioning in global business
networks. In: Annual SRII Global Conference, pp. 716–728 (2011)

2. Batory, D.: Feature models, grammars, and propositional formulas. In: Proceedings of the 9th
International Software Product Line Conference, SPLC ’05, vol. 3714, pp. 7–20 (2005)

3. Benavides, D., Segura, S., Ruiz-Corts, A.: Automated analysis of feature models 20 years later:
a literature review. Inf. Syst. 35(6), 615–636 (2010)

4. Chang, S.H., et al.: A variability modeling method for adaptable services in service-oriented
computing. In: 11th International Software Product Line Conference, pp. 261–268 (2007)

5. Czarnecki, K., et al.: Formalizing cardinality-based feature models and their specialization.
Softw. Process Improv. Pract. 10(1), 7–29 (2005)

6. Didonet, M., Fabro, D., Bzivin, J., Valduriez, P.: Weaving models with the eclipse amw plugin.
In: Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

7. Eclipse Project: Eclipse Modeling Framework (EMF). http://eclipse.org/modeling/emf/
(2012). Accessed 30 April 2012

8. Griss, M., Favaro, J., d’Alessandro, M.: Integrating feature modeling with the rseb. In: Pro-
ceedings of the Fifth International Conference on Software Reuse, pp. 76–85 (1998)

9. Hadaytullah, H., et al.: Using model customization for variability management in service com-
positions. In: 7th IEEE International Conference on Web Services (ICWS), pp. 687–694 (2009)

10. Hallerbach, A., et al.: Capturing variability in business process models: the provop approach.
Soft. Maintenance Evol. Res. Pract. 22(6–7), 519–546 (2010)

11. Hermosillo, G., et al.: Creating Context-Adaptive Business Processes. In: Maglio, P., et al.
(eds.) Service-Oriented Computing, LNCS, vol. 6470, pp. 228–242. Springer (2010)

12. Jaroucheh, Z., et al.: Apto: A mdd-based generic framework for context-aware deeply adaptive
service-based processes. In: IEEE International Conference on Web Services (ICWS), pp.
219–226 (2010)

13. Jouault, F., Allilaire, F., Bzivin, J., Kurtev, I.: Atl: a model transformation tool. Sci. Comput.
Program. 72(12), 31–39 (2008)

14. Kang, K.C., et al.: Feature-oriented domain analysis (foda) feasibility study. Carnegie-Mellon
University Software Engineering Institute, Technical report (1990)

15. Kang, K., et al.: Form: a feature-oriented reuse method with domain-specific reference archi-
tectures. Ann. Softw. Eng. 5, 143–168 (1998)

http://eclipse.org/modeling/emf/

20 Comprehensive Variability Modeling and Management 533

16. Koning, M., ai Sun, C., Sinnema, M., Avgeriou, P.: Vxbpel: supporting variability for web
services in bpel. Inf. Softw. Technol. 51(2), 258–269 (2009)

17. Liang, H., Sun, W., Zhang, X., et al.: A policy framework for collaborative web service cus-
tomization. In: IEEE International Symposium on Service-Oriented System, Engineering, pp.
197–204 (2006)

18. Machado, I., et al.: Managing variability in business processes: an aspect-oriented approach.
In: International Workshop on Early Aspects, pp. 25–30 (2011)

19. Mietzner, R., et al.: Generation of bpel customization processes for saas applications from
variability descriptors. In: 5th IEEE International Conference on Services, Computing, pp.
359–366 (2008)

20. Nguyen, T., Colman, A.: A feature-oriented approach for web service customization. In: The
8th IEEE International Conference on Web Services (ICWS), pp. 393–400 (2010)

21. Nguyen, T., Colman, A., Talib, M.A., Han, J.: Managing service variability: state of the art and
open issues. In: The 5th International Workshop on Variability Modeling of Software-Intensive
Systems (VaMoS), pp. 165–173 (2011)

22. Nguyen, T., Colman, A., Han, J.: Enabling the delivery of customizable web services. In: IEEE
19th International Conference on Web Services (ICWS), pp. 138–145 (2012)

23. OASIS: Web Services Business Process Execution Language (BPEL) Version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html (2007). Accessed 30 April 2012

24. Object Management Group (OMG): Business Process Model and Notation (BPMN) Version
2.0. http://www.omg.org/spec/BPMN/2.0/ (2011). Accessed 30 April 2012

25. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,
Principles and Techniques, 1st edn. Springer, New York (2005)

26. Razavian, M., et al.: Modeling variability in business process models using uml. In: 5th Inter-
national Conference on Information Technology: New Generations (ITNG), pp. 82–87 (2008)

27. Schmid, K., John, I.: A customizable approach to full lifecycle variability management. Sci.
Comput. Program. 53(3), 259–284 (2004)

28. Schnieders, A., et al.: Variability mechanisms in e-business process families. In: International
Conference on Business Information Systems (BIS), pp. 583–601 (2006)

29. Stollberg, M., Muth, M.: Efficient business service consumption by customization with vari-
ability modelling. J. Syst. Integr. 1(3), 17–32 (2010)

30. ai Sun, C., Rossing, R., Sinnema, M., et al.: Modeling and managing the variability of web
service-based systems. J. Syst. Softw. 83(3), 502–516 (2010)

31. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques. Softw.
Pract. Exp. 35(8), 705–754 (2005)

32. Weidmann, M., et al.: Adaptive business process modeling in the internet of services (abis). In:
International Conference on Internet and Web Applications and Services, pp. 29–34 (2011)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/BPMN/2.0/

Chapter 21
Software Product Line Engineering to Develop
Variant-Rich Web Services

Bardia Mohabbati, Mohsen Asadi, Dragan Gašević and Jaejoon Lee

Abstract Service-Oriented Architecture (SOA) enables enterprise for distributed
and flexible software development. SOA aims at promoting effective software asset
reuse by means of encapsulating functionalities as reusable services accessible
through well-defined interfaces. However, one of the challenging problems for the
realization of this vision is an need for design and management of variants of SOA-
based solutions. Such SOA-based solutions require customization to meet stake-
holders’ individual functional and non-functional requirements. In this chapter, a
methodological foundation for modeling and developing variant-rich SOA-solutions
by incorporating the principles of Software Product Line Engineering (SPLE) into
the SOA development life cycle.

21.1 Introduction

Nowadays enterprises and companies deal with several challenges for developing
SOA-based solutions. To stay relevant with the global competition, they need to
rapidly and cost effectively develop and deploy stockholder-tailored services. On
the other hand, enterprises often have to design and develop services which fit to a
wide variety of stakeholders (i.e., consumers) within a particular domain or targeted

B. Mohabbati (B) ·M. Asadi · D. Gašević
Simon Fraser University, Burnaby, Canada
e-mail: mohabbati@sfu.ca

M. Asadi
e-mail: masadi@sfu.ca

D. Gašević
Athabasca University, Burnaby, Canada
e-mail: dgasevic@acm.org

J. Lee
Lancaster University, Lancaster, UK
e-mail: j.lee@comp.lancs.ac.uk

A. Bouguettaya et al. (eds.), Web Services Foundations, 535
DOI: 10.1007/978-1-4614-7518-7_21,
© Springer Science+Business Media New York 2014

536 B. Mohabbati et al.

market sectors. These challenges motivate enterprises to shift from mass software
production to mass software customization. A trend inclines towards developing soft-
ware applications composed from reusable software assets that can be re-targeted for
different requirement sets. To enable mass customization in the context of Service-
Oriented Architectures (SOAs), innovative software engineering methods and mod-
els need :(1) to capture the knowledge of variable requirements and reflect variability
in services (2) support reuse not only reuse of service, but also in all other software
development assets (3) enable service customization and management according to
different stakeholders’ functional and non-functional requirements [2, 13, 36].

Software Product Line Engineering (SPLE) is one of the most promising and well-
established paradigms, focusing on the development of software product lines [12,
49] based on the principles of variability modeling and mass-customization. SPLE
research has proposed numerous approaches and techniques for the efficient produc-
tion of similar software systems (i.e., also known as software families). Hence, the
adaptation of SPLE approaches for mass-customization have received much practi-
cal attention and have already been applied successfully in many enterprises [39].
Employing SPLE techniques results in the reduction of costs, efforts, and time-to-
market and the improvement of quality. This is done by decreasing the complexity of
the design and by alleviating customization, maintenance, and evolution of software
products [12, 44, 49].

Adopting SPLE offers promising prospects to provide scalable solutions to the
current challenges of the development, management and customization of Web ser-
vices and generally SOA-based systems [13, 14, 35, 36]. to which we refer as
Service-Oriented Software Product Lines (SOSPLs). In this chapter, we firstly pro-
vide a comparison of SPL and SOA from different perspectives. We then present a
method for a systematic development of a family of SOA-based applications (i.e.,
SOSPL). The underlying idea of the described method is to guide the development
process of an SOSPL and which extends the conventional SPLE life-cycle to support
modeling, developing and managing variant-rich service-oriented applications.

This chapter is organized as follows: Section 21.2 introduces the basic concepts of
SPLE and outlines some of the main SPLE activities. Section 21.3 presents a holistic
comparison of SPL and SOA, which focuses on reuse, architectural and variabil-
ity aspects of the two paradigms. Section 21.4 introduces the end-to-end method-
ology for SOSPL development by focusing on the main engineering activities of
the approach. Before concluding the paper in Section 21.6, we provide a detailed
discussion of the proposed approach in Section. 21.5.

21.2 Software Product Line Engineering (SPLE)

SPLE addresses the issues of software reuse and mass-customization. An SPL or a
software product family is defined as: “a set of software-intensive systems, sharing
a common, managed set of features that satisfy the specific needs of a particular
market segment or mission and are developed from a common set of core assets in

21 Software Product Line Engineering to Develop Variant-Rich Web Services 537

a prescribed way” [12]. The ‘particular market segment’ refers to a domain (i.e.,
a business area) and the business strategies of an enterprise or organization whose
objectives of the business area are determined based on changes in its stakeholders’
requirements.

A key idea in SPLE is to capture the essential concepts of ’commonality’ and
’variability’ among a set of similar software products belonging to the same domain.
Therefore, rather than describing a single software system, the model of software
product lines describes the set of products in the same domain. A product line includes
predicted variations that are introduced by tailoring the core assets using variation
mechanisms. Variability introduced in SPLE is an abstraction that enables and facil-
itates customization. It empowers product derivation of different applications by
explicit modeling and management of variation points [49, 57]. which define deci-
sion points determining how the product family members may differ from each other.
Variations along with their possible choices, functions or qualities, can be defined at
each level of abstraction (e.g., requirements, architecture, or components).

SPLE relies on a fundamental distinction of development for reuse and develop-
ment with reuse with aims at maximizing reusability and eliminating wasteful generic
development of components used only once. This insight can be leveraged to improve
software development life-cycle [12, 49] that SPLE shifts from the development of a
specific application or individual system to a domain, in turn, leads to two character-
ized development processes commonly referred to as domain engineering and appli-
cation engineering. Domain engineering models variability among product family
members and develops the reusable software platform by focusing on developing-
for-reuse. The software platform encompasses all software development artifacts
that are liable to be recycle. On the other hand, application engineering adopts the
developing-with-reuse approach, where products are customized and derived from
product family and reference platform which is constructed and developed in the
domain engineering phase. Reuse of the software platform and binding variability
for different applications are then enacted in application engineering. Differentiat-
ing these two development lifecycles allows for establishing the software platform,
application customization, and product derivation.

Approaches to the analysis and construction of SPLs can be classified into three
strategies: (i) proactive, (ii) reactive, and (iii) extractive [22]. A proactive strategy
is similar to the waterfall approach in conventional software engineering, where
all product variations on the foreseeable horizon are analyzed and designed, while
architectures for the target domain are defined and implemented upfront. This
approach is suited for enterprises that to foresee and plan ahead of their product
line requirements well and that have available resource and time for a long develop-
ment cycle. A reactive strategy is an incremental approach where only the product-
line reusable assets needed in immediate terms are developed and built. Hence, this
approach typically requires less upfront efforts than proactive. In a reactive strat-
egy, one or several variations of software products can be analyzed, designed and
implemented in each development spiral. Such an approach is suitable where the
upfront requirements for product variations cannot be predicted well in advance or
where enterprises have to maintain an aggressive product schedule, which is usu-

538 B. Mohabbati et al.

ally limited in time and resources, through the transition to an SPLE approach. An
extractive strategy is between proactive and reactive ones and reuses existing software
products as the product line initial baseline.

21.3 Comparison of SPL and SOA

SPL and conventional SOA-based approaches to software development share com-
mon goals. With both promoting the concepts of reuse and foster organizations to
reuse existing assets and capabilities rather than repeatedly redeveloping them for
new software systems. Recent years have witnessed growth of research in the explo-
ration of the synergies of the combination of SPL and SOA in recent years [9, 13,
14, 23, 26, 36, 59]. Even though two paradigms support software reuse there are
different perspectives and outlooks [37]. In this section, commonalities and differ-
ences corresponding to the two paradigms are discussed, helping to enlighten how
SPLE can be adopted and leveraged for the development and customization of a fam-
ily of SOA-based applications. To compare SPL and SOA, we consider four main
aspects including development processes, reusability notions, architectural styles,
and variability modeling and management.

21.3.1 Development Processes

SPL and SOA follow different engineering goals. Therefor, the activities associated
with their software development life-cycles are different. One of the main objec-
tives of SPLs is to reduce the overall engineering efforts required to produce a set
of similar software applications by capitalizing on the commonality and by manag-
ing the knowledge of variability and customization. Therefore, the engineering goal
of SPL is remarked as the systematic development and management of core assets
and software platform in order to achieve the high level of reusability [12, 22, 44,
49]. In contrast, service-oriented approaches set the goal of achieving system agility
and of enabling automation to cope with integration, inteoperability and dynamic
execution in heterogeneous environments, and providing runtime flexibility [6, 20,
48]. Table 21.1 shows a summary of major life-cycle phases of two paradigms essen-
tially including requirement and domain analysis, design and implementation, and
deployment.

• Requirement and Domain Analysis: Service-oriented design and development
are basically based on an iterative and incremental process. The process is initiated
with planning proportional to the requirements which, for a new application, are
investigated through the analysis phase. This process comprises of reviewing busi-
ness goals and objectives that derive the modeling and development of business
processes. In the analysis phase, business processes and services are identified
and specified in a stepwise manner [20, 47] with the main objective of it to facil-

21 Software Product Line Engineering to Develop Variant-Rich Web Services 539

Ta
bl

e
21

.1
C

om
pa

ri
so

n
of

th
e

m
aj

or
en

gi
ne

er
in

g
ac

tiv
iti

es
of

so
ft

w
ar

e
pr

od
uc

tl
in

e
en

gi
ne

er
in

g
an

d
se

rv
ic

e
or

ie
nt

at
io

n

E
ng

in
ee

ri
ng

pa
ra

di
gm

R
eq

ui
re

m
en

ta
na

ly
si

s
D

es
ig

n
an

d
im

pl
em

en
ta

tio
n

D
ep

lo
ym

en
ta

nd
m

ai
nt

en
an

ce
M

ai
n

en
gi

ne
er

in
g

go
al

s

Se
rv

ic
e-

or
ie

nt
ed

en
gi

ne
er

in
g

•P
la

nn
in

g
an

d
re

qu
ir

em
en

t
an

al
ys

is

•B
us

in
es

s
pr

oc
es

s
sp

ec
ifi

ca
tio

ns
•S

er
vi

ce
pu

bl
is

hi
ng

•I
nt

eg
ra

tio
n

an
d

In
te

ro
pe

ra
bi

lit
y

•B
us

in
es

s
pr

oc
es

s
m

od
el

s
•S

er
vi

ce
co

ns
tr

uc
tio

n
•S

er
vi

ce
m

at
ch

in
g

•S
ys

te
m

ag
ili

ty
th

ro
ug

h
ru

n-
tim

e
fle

xi
bi

lit
y

•S
er

vi
ce

id
en

tifi
ca

tio
n

•E
xe

cu
tio

n
an

d
m

on
ito

ri
ng

•D
yn

am
ic

ex
ec

ut
io

n

So
ft

w
ar

e
pr

od
uc

t
lin

e
en

gi
ne

er
in

g

D
om

ai
n

en
gi

ne
er

in
g:

D
ev

el
op

m
en

t
fo

r
re

us
e

•P
ro

du
ct

lin
e

sc
op

in
g

•D
om

ai
n

de
si

gn
•P

ro
du

ct
lin

e
m

ai
nt

en
an

ce
ev

ol
ut

io
n

•V
ar

ia
bi

lit
y

m
od

el
in

g

•P
ro

du
ct

lin
e

re
qu

ir
em

en
t

an
al

ys
is

•D
om

ai
n

re
al

iz
at

io
n

•V
ar

ia
bi

lit
y

m
an

ag
em

en
t

•V
ar

ia
bi

lit
y

an
al

ys
is

•D
om

ai
n

te
st

in
g

•S
ys

te
m

at
ic

re
us

e
of

as
se

ts
fo

r
de

ve
lo

pm
en

to
f

a
so

ft
w

ar
e

pr
od

uc
t

fa
m

ily
A

pp
lic

at
io

n
en

gi
ne

er
in

g:
D

ev
el

op
m

en
t

w
it

h
re

us
e

•A
pp

lic
at

io
n

re
qu

ir
em

en
t

an
al

ys
is

•A
pp

lic
at

io
n

de
si

gn
•A

pp
lic

at
io

n
de

pl
oy

m
en

t
•M

as
s

cu
st

om
iz

at
io

n

•A
pp

lic
at

io
n

re
al

iz
at

io
n

•A
pp

lic
at

io
n

te
st

in
g

540 B. Mohabbati et al.

itate the reuse (or reproposing) of the business process functionality through the
identification and orchestration of services when constructing new applications.
The requirement-analysis phase in SPLE also consists of determining the require-
ments and using domain information. Nonetheless , SPLE focuses on the analysis
and specification of requirements for the entire product family (i.e., product line).
To this end, domain engineering of SPLE mainly concentrates on a systematic
analysis and the settlement of the variability of both functional and non-functional
(quality) prerequisites performed by scoping the product line, by analysing product
line requirements, and identifying commonalities and variabilities among prod-
uct line members. Requirement analysis in the application engineering life-cycle
further focuses on the analysis and determination of prerequisites of individual
stakeholders. In the application engineering life-cycle, requirement analysis is
established for configuring reusable software assets developed and produced in
the domain engineering life-cycle.
• Design and Implementation: Service-oriented design and implementation is fol-

lowed by the design and specification of business processes and service com-
ponents corresponding to the requirements. Service implementation and testing
involves discovery of existing available services through local or remote service
repositories; and development of services by using the specifications developed in
the design phase.
In SPL, domain design and implementation involve the detailed design and real-
izing the reusable software components for the entire product family. It starts with
the domain design sub-process which consists of (1) defining and modeling the
commonality and variability based on the domain-specific requirements identified
in the requirement engineering phase; (2) specifying the reference architecture of
the product family; the reference architecture provides a common, high-level struc-
ture for all product line applications. Furthermore, the domain design incorporates
configuration mechanisms into the reference architecture for supporting variability
management in order to enable further product customization and derivation. The
domain realization sub-process focuses on the implementation and testing of each
component which is planned and designed for the reuse in different contexts (i.e.,
the applications of the product line). The application design sub-process in the
application engineering life-cycle employs the reference architecture to refine and
instantiate the application architecture and incorporates application specific adap-
tations. Afterward, the application realization sub-process focuses on the selection
and configuration of reusable software components and testing for specific appli-
cation, which are already contained product line architecture developed in domain
engineering phase.
• Deployment and Maintenance: In this phase, service-oriented development

deals with packaging, provisioning, publishing services, service-matching based
on requirements of stakeholders, executing stakeholders-acceptance testing, and
monitoring performance in the production environment. TheSPLE development
phase including the configuration and deployment of a final product is associated
with application engineering with activities for building and customizing systems
according to the result of domain engineering.

21 Software Product Line Engineering to Develop Variant-Rich Web Services 541

21.3.2 Reuse in SPL Versus SOA

Software reuse, as one of the important goals in software engineering, can improve
the quality and productivity of software development. For this purpose, several soft-
ware reuse approaches have been devised. Component-based software engineering
(CBSE) facilitates software reuse and promotes quality and productivity. The aims
of CBSE are to achieve interoperability, reusability, and extensibility. These objec-
tives are intended to facilitate fast-paced delivery of scalable evolving software sys-
tems [33]. Research on SOA is a modern instance of this vision [6, 46]. SOA lever-
ages a logical framework by decoupling several logical units of functionality (i.e.,
services), which facilitate reuse by eliminating the recreation of common services.
Thereby, business goals are achieved through loosely connected services with their
variability is guided by SOA policies.

Reuse in SPL versus services in SOA have different characteristics (cf. Table 21.2).
As mentioned, reusable assets in SPL encompass all the reusable software artifacts.
A core asset is the most essential element of SPL since it is a common asset which is
reused within multiple products and the reusability of which will largely determine
the success of the whole product line [49]. For instance, the most distinguishable
reusable assets in SPL context are as follows [12]:

• Analysis and design models: including the requirements and variability models,
which describe the common and variable features for all family members
• Domain models: describing and representing all the entities and concepts that can

be utilized in the context of software product families
• Architectures: specifying and determining which of the reusable components are

needed for configuring executable applications and how to configure software
families that best satisfy non-functional requirements
• Design decision models: specifying the family configuration model and determin-

ing how to derive software products based on specific requirements
• Software components: supporting variation points and implementing the required

functionalities of software families
• Interfaces: enabling different implementation of the same functionality
• Test artifacts: reusing test plans, test cases and scenarios, and test data

Table 21.2 Reuse in SPL and SOA

Reuse characteristic Reuse in SPL Reuse in SOA

Reuse units Analysis and design models
(requirement models), domain
models, architectures, decision
models, software components,
composition models, interfaces,
test cases, documentations

Service, business processes or col-
laboration templates, application
templates, data schema and data
provenance, policies and business
rules, test scripts, interfaces

Reuse context Software family members Various contexts
Coupling with reuse Tightly coupled Loosely coupled
Reuse method Instantiation Service invocation composition

542 B. Mohabbati et al.

In SOA, service, on the other hand, are intended to be reusable building blocks and
units of sharable software assets for different applications which implement different
business processes. As a consequence, services can be orchestrated to construct
composite services through business processes.

Core assets in SPL including a generic architecture and components are used to
develop applications, whereas services are basic building blocks in SOA to support
software development by composition. In SOA, business processes or application
templates specify entire applications through the definition of execution sequences
of valid workflows. Services can be reusable artifacts which enable rapid SOA appli-
cation development [56].

Assets and applications are generally tightly coupled in SPL, while services are
loosely coupled which is one of the most pronounced properties of services in SOA
research [48]. Services maintain a relationship that minimizes the decency to the
context or state of other services.

Software components often operate within a context defined by a generic archi-
tecture for product family members in SPLs. SOA is grounded on the idea of open
integration of business processes by means of shared services where services are
described through standard-interface and are intended for reuse in different con-
texts. Nevertheless, services can also be developed and reused for internal processes
within organizations. In essence, SOA basically envisages and focuses on large scale
reuse [28] because SOA promotes services to be seamlessly consumed by diverse
applications where they can be published, discovered and invoked through standard-
ized specifications [6].

Unlike core assets are reused in application development time which is often
static, while services can be reused at design time but reconfigured at run-time [9].

21.3.3 Architectural Aspects of SPL Versus SOA

Both SPL and SOA require defining the architectural context and composition rules
with SPL architecture is often characterized as centralized, static, and specialized into
concrete products, but SOA is characterized as decentralized. Composition rules are
predefined in SPL, which describe common and variable behavioral characteristics
of architecture, while in SOA composition or business rules are generally defined
to govern the way in which a composition is constructed. SPL basically aims at
providing a common architecture for reuse, whereas SOA lacks enough support for
large grained software reuse at the architectural level.

Gomaa et al. [24, 53] discuss software architectural issues in SOA and describe
various practices to develop reusable services in order compose systems from ser-
vices efficiently. They draw attention that the architectural solution space offered
by SOA promises to provide potentially significant benefits for reutilization. How-
ever, achieving SOA’s benefits may not be guaranteed just by implementing based on
the SOA solution. Accordingly, the important software architecture and reuse issues
should be addressed prior to creating a SOA [53]. Tsai et al. propose a classifica-

21 Software Product Line Engineering to Develop Variant-Rich Web Services 543

tion schema of architectures for SOA-based applications in order to evaluate variety
of architectures [56]. The slackly coupling characteristic and platform-independent
view inherited in SOA may address many architectural issues that are open-design
and integration problems. Furthermore, architecture style offered by SOA is potential
to maximize reuse beside interoperability and flexibility; however, SOA lacks sup-
port to manage variability at the architectural level [13, 36]. Whereas SPL enables
managing variability to improve reutilization reuse at such level.

21.3.4 Variability in SPL and SOA

The concept of variability refers to the ability of software systems or artifacts to be
efficiently extended, modified, specialized, or configured (customized) for (re)use
in the specific context for a particular application [57]. This characteristic enables
for applying changes at different levels ranging from software architecture to imple-
mentation. Two important concepts related to variability discussed in the literature
are variation points and variants [49, 57] with the former being placed in the design
or implementation at which variants occur. Variants are the alternatives that can
be selected at those variation points. Therefore, variability can specify a part of an
architecture which remains variable, as variation points, or what is not completed
at design time. Variability can be implemented at design time or run-time [54]. It
is noteworthy that variability and flexibility are closely interconnected. Flexibility
offers adaptation and changes of architecture, while variability deals with various
version of architecture.

Variability in SPL encompasses all software artifacts from requirements to
code [12, 57]. Therefore, there are numerous modeling methods proposed that with
the objective of modeling variability within software artifacts and at different levels of
abstraction. Van Gurp et al. discuss about the notion of variability in SPL [57], where
variability is exposed at different levels: platform technologies and user expectations,
requirements specifications, designs, component source code, compiled code, linked
code, and running code. Variability in this context refers to the ability to select among
these artifacts at various stages during product derivations.

Effective management of variability is essential for the success of SPLs [57]. It
determines how flexibly new members of a given SPL can be obtained and defines
SPL boundaries. The distinction between variability modeling and other techniques
is based on the diversity between variability modeling and variability mechanism.
Variability modeling techniques model the variability provided by the product line
artifacts while variability mechanisms are commonly considered ways to introduce
or implement variability in those artifacts. Several of these mechanisms have been
proposed in the literature such as conditional compilation, patterns, generative pro-
gramming, macro programming, and aspect-oriented programming.

Accordingly, variability in SPL is an essential concern in all phases of devel-
opment life-cycle. Variability identification, modeling and management is rather
a large field of research in SPL [11]. Most current works address identification

544 B. Mohabbati et al.

and management of variability by modeling the concepts as features which consid-
ered as the first-class representation of variability and in terms of which the major
advantages of discussing a software system in terms of features is that the concept
of feature bridges the gap between the requirements and technical design decisions
because software components rarely address a single requirement but rather an entire
set of essentials (details are given in Sect. 21.5). There are number of well-studied
feature-oriented approaches for domain analysis and modeling common and variable
requirements in SPLE such as FODA (Feature-Oriented Domain Analysis) [29] and
its extension FORM (Feature-Oriented Reuse Method) [30], RSEB (Reuse-Driven
Software Engineering Business) [25], GPM (Generative Programming Methods) [16]
and PLUSS (Product Line Use case modeling for Systems and Software engineer-
ing) [19]. Every method generally shares feature as the common concept used in the
analyses of commonality and variability. Some approaches are architecture-centric
such as Hoek [27], Koalish [4], and Thiel [55] some of which are configuration-
based, e.g., COVAMOF [50] and Koalish [4]. Some of the approaches extend UML
to model variability like VPM [58]. Some proposed approaches focus on separating
variability representation from the representation of various SPL artifacts such as
Bachmann [5].

The development of SOA-based applications is accomplished through different
abstraction layers: business process or orchestration layer, service interface layer,
and service implementation or component layer [47] with the business process layer
or orchestration layer consists of composite services implementing coarse-grained
business activities, or even an entire business process. The service layer is com-
posed of self-contained and business-aligned services, which provide the imple-
mentation for fine-grained business activities. The service interface layer comprises
the interface of services published by a service provider. Finally, the component
layer (i.e., implementation layer) consists of a set of components that realize service
interfaces and provide the implementation for services. Variability in SOA affects
these different layers thoroughly. Chang and Kim [9] discuss four types of variation
points which occur in a general four-layered SOA architecture: workflow variability,
composition variability, interface variability, and business logic variability. Work-
flow variability is identified as variation of the control flow of a business process,
i.e., tasks can be alternatively and optionally completed in a workflow depending
on the individual service user. Composition variability is identified as variability
when there is more than one possible service interfaces for activity construct in
the business process which implement the service with either different logic or
quality attributes. Interface variability occurs when the candidate services interfaces
are different. Finally, components which realize and implement service interfaces by
different logic impose logic variability.

Granularity Levels: Granularity in SPL refers to the degree of detail and precision
of variability as produced by design or implementation artifacts. SPL variability may
exist at different levels of granularity ranging from entire components to single lines
of code [16, 31]. SPLE takes a top-down approach and decomposes artifacts into
fine grained artifacts, whereas a bottom-up compositional approach is often adopted
in SOA to combine artifacts into larger entities-service into composite services (i.e.,

21 Software Product Line Engineering to Develop Variant-Rich Web Services 545

business processes) that finally form the application. Decomposition or top-down
modeling means that an SPL architecture specifies the decomposition of a family
into architectural components. However, there are also hybrid approaches, such as
product populations modeled using Koala [45], where the mixture of bottom-up
and top-down approaches are leveraged. In SOA, generally there is no particular
architecture specifying the decomposition.

In SOA, granularity specifies the scope of variability in functionality exposed by
a service. A component which provides an implementation for a service interface
can be of various granularity levels that software developers can always encapsu-
late the entire functionality of a solution into a single service is possible due to
the well-known ‘fractal’ nature of services, where a higher-level service can encap-
sulate lower-level services to any level of granularity [8]. However, a fine-grained
service is more easily reused; in distinction, coarse-grained service is more difficult
to be reused [47, 53]. Nevertheless, services with high-level interfaces increase the
reusability because providing interfaces with a coarse-grained granularity masks spe-
cialized or implementation-specific methods, thereby, this enables a service adaptable
and reusable by multiple applications. Moreover, from the perspective of service-
oriented design and development, creating and designing high-level, coarse grained
interfaces that implement a complete business process is desirable [47, 20]. However,
there is a trade-off between fine-grained and coarse-grained.

Services at different levels of granularity can be generally classified into differ-
ent categories [34]: basic services, intermediary services, process-centric services
and public enterprise services. Basic services that represent the elements of a ver-
tical domain are simple logic-centric or data-centric services. Data-centric services
handle persistent data and logic-centric services encapsulate algorithms for com-
plex calculations or business rules. Intermediary services are designed to bridge
a technical gasp in architecture. They provide service links with other services or
application front-ends and services in gateways, adapters (mapping message formats
to enable interoperability), facades (providing a different view on one or more ser-
vices), and other functionality-adding services (extending functionality of existing
services without altering them internally). In SOA, process-centric services to con-
trol and maintain the state of the enterprises business processes which uses basic
or intermediary services to perform task and deal with business data. These ser-
vices separate process logic from representation layer and encapsulate the process
complexity for a single point of administration. A common example is an online
shopping process, which includes filling the shopping cart, ordering products, and
executing billing. Public enterprise services offered to partner companies as an in-
house-system interface which, in turn, have the granularity of business documents
and are coarse-grained integrate enterprises (B2B).

546 B. Mohabbati et al.

21.4 Running Example

To illustrate the concepts and the approach presented in the following sections, we
select a part of case study of a family of online marketplace portals providing appli-
cations for online trading like eBay.1 The portal, as an SOSPL, can be customized
and deployed based on different business requirements of targeted stakeholders.
Figure 21.1a presents a service scenario of e-payment processes-part of a large prod-
uct family that defines a common framework for online payment provided in online
marketplace. For the simplicity, a high-level view of the payment process is repre-
sented, and the details are omitted.

Different methods of online payment can be considered for different instances
of products from a family. Therefore, the number of possible payment method vari-
ations of a reference payment process, as a catalog and template, can be derived
and customized according to the stakeholders’ requirements and business objec-
tives. Some services are indispensable and prerequisite of the payment process (e.g.,
Credit Card payment feature as the dominant online payment), which should be
included for all the stakeholders’ service product instance where as, some func-
tional services (e.g., Smart Card e-Check and Debit Card) or extra-functional
services (e.g., Logging and Monitoring) can be determined as optional that can
be included or excluded based on stakeholders’ needs (see Fig. 21.1b). As a case
in point, Stakeholder A may require additional features for having highly-secured
payment transactions by including a fraud protection service, whereas this service
is not required to be included in the payment process of the final customized portal
for Stakeholder B. In another scenario, Stakeholder C could ask the payment
process to be supported by a Mobile-based Notification service in addition to
the common payment notification services such as the Mail-based Notification

<
<

In
st

an
tia

te
s>

>

Payment Methods
Notifications

s1

s2

s3 s4

s5

s6

s7

s8

s9

Payment Service
Customization

(a) (b)

s10

s11

Payment Process

Fig. 21.1 a) A holistic view of e-Payment process family. b) e-Payment process variants example

1 http://www.ebayinc.com/

http://www.ebayinc.com/

21 Software Product Line Engineering to Develop Variant-Rich Web Services 547

service. Therefore, in the context of a product family, a business process should be
imposed inevitably by variants (optional and mandatory services) which are required
to be managed, specialized and customized in order to meet different stakeholders’
functional or quality requirements.

21.5 Applying SPLE for Development of Service-Oriented
Software Product Lines

It is already mentioned that even though SOA has been widely adopted, there are
still no systematic methods to support modeling and managing variability during the
development of SOA-based applications and further service management, which calls
for a well-defined development process and understanding variability in functional
and non-functional requirements in the course of development.

This section outlines the activities of a proactive methodology. The proposed
method is an extension of a traditional software product-line life-cycle in order to
support development and customization of a family of SOA-based applications. The
proposed top-down method follows a two-life-cycle approach that separates two core
activities related to Service-Domain Engineering and Service-Application Engineer-
ing (see Figs. 21.2 and 21.6). Service-domain engineering constructs and evolves the
reuse infrastructure by analyzing the requirements and scoping the product line as
a whole and producing any common , reusable business processes and services. On
the other hand, service-application engineering derives individual services (i.e., cus-
tomized services) from the reference architecture. Domain and application engineer-
ing life-cycles can rely on fundamentally different processes, namely, plan-driven
and agile methods. In the following, we describe the major activities and their arti-
facts for three major development phases: (1) analysis (requirement engineering),
(2) design, and (3) implementation and testing.

21.5.1 Service-Domain Engineering

The overall service-domain engineering processes of an SOSPL is depicted in
Fig. 21.2. These activities (D1–D6 in Fig. 21.2) are performed iteratively. Domain
analysis in SOSPL mainly encompasses product-line requirements engineering stage
(D1) along with the analysis of variability by using feature modeling (D2). A feature
model, as a software artifact outcome of the feature modeling process, includes the
knowledge of variability associated to the functional and non-functional requirements
and describes the permissible configuration space further guiding the customization
process and determining how the reference business process model should be tai-
lored according to the stakeholders’ requirements in the application engineering
life-cycle. During the domain design phase (D3), a reference business process model

548 B. Mohabbati et al.

Variability
Modeling

Feature
Resolution

(Mapping Schema)

Reference
Business Process
(Business Process Family

Template)

Reference
Business Process

Model
Implementation

Non-
Functional

Specifications

Product Line
Requirements

Analysis

Requirements
Models

Feature
Model

Reference
Business Process

Model
&

Specification

Service Discovery/
Implementation

Binding

Mapping Model

Feature Model
enriched by
Supporting

Quality Ranges
Domain

Implementation

Domain
Design

Domain
Analysis

D1

D2

D3

D4

D5

D6

Fig. 21.2 Service-Domain Engineering of an Service-Oriented Software Product Line

(also known as business process family) is designed and constructed for the prod-
uct line architecture based upon the outcomes of the requirement engineering phase
(D1). The model mapping (D4) establishes the mapping relationships between the
features within the feature model and the corresponding activities specified within
the reference business process model. The activities of the reference business process
are delegated to the service(s) in SOSPLs. In as much as non-functional (quality)
requirements may also vary for different stakeholders, variability in the quality prop-
erties of services should also be captured and specified during the construction of
an SOSPL (D5). To this end, features in the feature model are annotated by quality
ranges which are supported by the entire product line architecture [40], progressively
helping service engineer and developers to evaluate the impact of variant features
selected according to the quality characteristics that services provide. In the final
phase, the reference business process model is realized and implemented either by
binding to the existing services or by developing new services. In the following, we
detail these activities.

21 Software Product Line Engineering to Develop Variant-Rich Web Services 549

21.5.1.1 Product Line Requirements Analysis

Similar to traditional requirements engineering, domain requirements engineering
should at least include the following activities [52]: (1) elicitation in which the prod-
uct line business goals and stakeholders’ requirements are discovered and scoped;
(2) specifications in which the requirements are analyzed in detail; (3) validation in
which the requirements are validated and consistency and completeness are checked,
and (4) management in which the requirements can be managed in terms of changes
or refinements. In addition to these activities, domain requirements engineering cap-
tures commonality and variability between the requirements of several stakeholders.
Moreover, an important activity of the requirements analysis of an SOSPL is to define
the product line scope [13, 49, 44] and decide on the boundary of the product line.

A successful scoping which is determined by factors such as the knowledge of
similar domain services and future stakeholders’ demands is required to be performed
carefully because a scope-either too large or too small-will impair the capability
of a SOSPL in achieving the goals of stakeholders [12]. A goal-oriented domain
analysis can be employed at the early stage of the requirement analysis in order to
capture the product line goals for requirement elicitation and to further align the final
service products with the business goals and intentions of both the stakeholders and
service providers. This is accomplished at the different levels of abstraction by goal
modeling about which interested readers can further read in [3]. The outcome of this
phase is the requirements models which can be described by goal models, use-cases,
documentations and details, which are used subsequently for the variability analysis
of the product line under development.

21.5.1.2 Variability Analysis and Modeling

The product line requirement engineering activity follows the variability analysis
and modeling of the entire family in order to identify common and variable features.
A feature is commonly defined as a visible incremental functionality and quality
in software system(s) [29]. Nevertheless, depending on the stage of development
it may also refer to a requirement or a coarse-grained or fine-grained component
in the system(s) which provide the required functionality from different technical
views. The emphasis in the variability (i.e., feature) analysis is on optional features,
because optional features substantially differentiating one member of the family from
the others.

In SOA, services constituting the orthogonal concept to the components notion,
are characterized as the loosely coupled building blocks of software. A services
encapsulates functionality and provides individual non-functional properties (i.e.,
QoS) through a well-described and published interfaces. From this view in the context
of SOSPL, we define a feature as an increment in service functionality [1], which
reflects stakeholders’ both functional and non-functional requirements; wherefore,
a feature, based on the granularity levels, a feature can be realized and associated to

550 B. Mohabbati et al.

a composite service at the high-level business processes, or associated and realized
by an atomic service at the lower-level.

Feature-oriented development [16, 29, 30] is widely employed as a means for
analysis, management, and visualization of commonality and variability in SPLE in
terms of features at different abstraction levels. In essence, feature modeling orga-
nizes features of a software product family into a model called feature residing
between the requirement model and the design specification model (i.e., the refer-
ence business process model described in Sect. 21.5.1.3). Figure 21.3 shows a part
of a feature model representing the variants (e.g., optional and alternative features)
that characterize a requirements model. These features are selected to derive ser-
vice products during the application engineering. Moreover, this model serves as
a catalog of the variability space offered by a product family to accommodate the
idiosyncrasies of the stakeholder enterprise or company.

Feature Model: A feature model consists of both formal semantics and graphical
representation (e.g., feature diagram) and encompasses the knowledge of config-
uration (i.e., customization) for a product line. A feature model is a hierarchical
decomposition of features in terms of parent-child relations on different levels of
abstraction. As some of the features are not assumed to be present in every product
during the application engineering, this differentiation is expressed by the indication
of feature types and their relationships. Contrary to a mandatory feature is always
selected if their parent is selected , an optional feature may or may not be selected.
For instance, in Fig. 21.3, all the products should include the Credit Card feature
as a mandatory feature. Other payment methods Fig. 21.3 are specified as optional
features.

A feature cardinality and group cardinality can also be determined in cardinality-
based feature modeling [17]. A cardinality associated to a feature determines the
lower and upper bound of the number of features required in any product in a product
family. In the SOSPL context, this attribute specifies the number of service instances
that should be linked to a given service at run time. Cardinality can be defined as an
interval, from zero to a given value.

< − >

< − >Fraud
Detection

Payment
Notification

Debit
Card

Smart
Card

Payment
Method

Credit
Card

Verification

Payment

Credit
Card

Email
Notification

Phone/
Fax

Notification

Mobile-based
Notification

Identity
Federation

2 3

f

...

And

Or

Alternative

Optional

Mandatory

Cardinality

Legend

Require

Exclude

Electronic
Checks

Monitoring

fi

fj fn

k k

< − >k k

′

fmfl fsfp
...

...Customer
Profile

Order
Management

Coupon
Management

Shipment

...

()R
niq f

R
iq Quality range

Mappingn

1

3, 4

2

3, 3 3, 5

3, 2, 2 3, 2, 1

43 5

3, 1

3, 2, 3

3, 2

3, 2, 4 3, 2, 5 3, 5, 1 3, 5, 2 3, 5, 3

...

Fig. 21.3 Feature model of e-Payment (conforming stakeholders’ requirements model)

21 Software Product Line Engineering to Develop Variant-Rich Web Services 551

Or feature groups with defined cardinality indicate that at least k and at most
k′ features that can be included out of the n features (k ≤ k′ ≤ n) in a group
if the parent is selected. Moreover, Alternative feature groups with specified the
cardinality indicate that that only k out of n features in the group must be included if
the parent is selected. Back to the simplified feature model example from Fig. 21.3,
all the products should include the Payment Notification features. Also, all the
final derived service products should include at least two methods of notification
according to the feature model.

Furthermore, because features are not always independent integrity constraints
(i.e., the includes and excludes) can be defined over features of a feature model to
model dependencies and relations among them. They are the means to describe that
the presence of a certain feature in the product imposes the presence or exclusion of
another feature (see Fig. 21.3).

Feature models are an efficient abstraction of variability derived from the domain
and stakeholders’ requirements. They also help to derive the design and the devel-
opment of variability through all the stages of the development including service
identification and design, and further customization [13, 41].

In the feature-oriented analysis phase, which subsequently guides the identifica-
tion of candidate services with right granularity, we organize feature based on the
following criteria:

• Features supporting a particular business process can be grouped and abstracted
as a higher-level feature on a coarse-grained level (e.g., Payment)
• Features supporting specific functional or non-functional services can be grouped

and abstracted as a higher-level feature (e.g., Payment Notification and Logg

ing services)
• A feature which incrementally realize a feature at the upper-level, then becomes

as a sub-feature at the lower-level
• Features at the leaf-level are realized by fine-grained services

21.5.1.3 Reference Business Process Model

The previous activities, domain decomposition, top-down variability analysis and
modeling provide an insight into a target domain in terms of product features. A
feature model is generated as an output of the domain analysis. This model is then
used to derive reference architecture and develop reusable components (business
processes and services) in the course of the domain design. The activities of the design
phase produce an architecture-independent model that defines reference architecture
as the behavioural model of features for the entire family and specifies how features
are composed at run-time.

A template-based approach has been widely adopted in SPLE for creating refer-
ence models. In the case of SOSPLs, such a reference model is designed as a tem-
plate for the entire service products family in a superimposed way [15]. A reference
business process model, as a model template, describes and specifies the execution

552 B. Mohabbati et al.

Payment Management Service
+

Customer Account Management Service
+

AND
Mapping

(feature realization)XOR OR

1

2

3

4
5

:n FM BP⇒

3, 3

3, 4

3, 5

3, 2, 1

3, 1

3, 2, 2

3, 2, 3

3, 2, 4

3, 2, 5

3, 5, 1

3, 5, 2

3, 5, 3

Fig. 21.4 A part of reference business process model

sequence of services for all instances of the product line. That is, a reference business
process model is a union of all the business processes of the product line. It provides
the common business logic for orchestration and choreography of services, which
implement features. The reference model comprises functional interfaces specifying
services capabilities, pre and post conditions of the services, and configuration prop-
erties representing the data needed to configure a service before its use, and service
bindings. The reference business process model can be modeled by using process-
oriented modeling languages (e.g., BPMN, EPC, and/or YAWL), and incrementally
refined and optimized. For example, Fig. 21.4 illustrates a part of reference business
process model, where variability and configuration knowledge have been modeled
and encapsulated in given feature model in Fig. 21.3.

The reference business process model configured through the selection/elimination
of features from the feature model during the application engineering and executive
instances are derived (see Fig. 21.1b). In other words, due to the fact that architec-
tural variations in the reference model are encoded as features, various parts of the
reference business process model are organized in variation points. These variation
points are managed and configured by means of feature models. It should be noted that
we distinguish between design and runtime variability. Feature models capture and
encapsulate only architectural variability at design time. In contrast, business process
models describe behavioral variability, i.e., how features are composed, which drives
runtime variability through composition patterns (discussed in the next section).

Furthermore, feature model configuration (i.e., specialization and customiza-
tion) is performed during the build-time. The configuration can be done through
the process of staged-configuration [18] where features further are prioritized and
selected according to the (non-)functional requirements of the stakeholders [41]. All
configured service products, which are instances of the family, have to conform to
the reference architecture.

21.5.1.4 Feature Resolution and Mapping Model

During the design phase, feature resolution is the activity of analysing and connecting
the feature model and the reference business process model in order to specify explicit
mapping links between the two models: feature and reference business process mod-

21 Software Product Line Engineering to Develop Variant-Rich Web Services 553

els. The outcome of this activity constitutes a mapping model including links between
features in the feature model activities in the reference business process model. This
mapping model enables the configuration of the reference business process model
through feature section during application engineering. From one point of view, this
mapping model also provides the traceability links between the requirements and
implementation [15, 51].

A mapping model can simply consist of boolean expressions specifying presence
or removal of a modeling element (e.g., activity (abstract service)) in a model tem-
plate (i.e., a reference business process model in our case) based on the selection
of features in the feature model [15]. In our approach, we consider a boolean vari-
able ψ i corresponding to each feature fi . This approach uses presence conditions
(PC) as annotation properties for each activity within the reference business process
model. The PC of an activity is formulated as a boolean expression of ψ i variables
corresponding to the features mapped to the activity (see Fig. 21.3 and 21.4). Both
the feature and activity constructs refer to model elements of feature models and ref-
erence business process models. Thereby, when domain engineers map features to
activities, the activities’ PCs are defined. In application engineering, when a feature
fi are removed from the configuration, their corresponding ψ variables are set to
false.

Feature resolution also helps to identify cross-cutting concerns related to general
non-functional requirements. For example, feature Monitoring with given mapping
annotation ψ i in Fig. 21.3 is mapped to activity Monitoring as an extra-functional
abstract service in the reference business process model (see Fig. 21.4). Based on the
selection of features from the feature model in application engineering, the reference
business process model is configured (Fig. 21.1b).

21.5.1.5 Non-functional Specifications

The domain design phase is also followed by the specification of non-functional
properties based on the non-functional requirements (NFRs) analysis. This is due
to the fact that NFRs are interlaced and related to functional requirements. Vari-
ability in NFRs influences the SOSPL design and implementation. Non-functional
variations often exhibit different types and levels of quality properties (e.g., normal
and strong authentication or security). For instance, NFRs for feature Credit Card

can include cost, security, availability and reliability or they can also entail defined
domain-specific non-functional aspects such as usability and convenience of use. Fur-
thermore, in application engineering, non-functional variations directly impact the
selection of appropriate services from candidate services, all of which provide equiv-
alent functionalities but with different degree of non-functional properties related to
the service quality specification. To this end, there are a number of proposals [7], in
which feature models are extended to support feature attributes. Such attributes can
comprise non-functional properties which can be measured (e.g., cost, availability,
latency, bandwidth, etc).

554 B. Mohabbati et al.

In the context of SOSPL, these non-functional properties can be viewed as QoS
properties, which are associated to each feature. Mapping models interconnecting
feature and business process models enable for propagation of quality property values
of concrete service sets, which are bounded to activities (abstract services) within in
the process model. Based on the underlying implementation of a set of functionally
equivalent services, which may be available for each feature, ranges of values of
quality properties can be further specified and aggregated for each feature. Particu-
larly, during the domain engineering lifecycle, determining the implied QoS ranges
q R for individual features fn helps domain engineers ensure that the product line
architecture will fulfill and deliver the upper and lower bounds of the values of the
quality requirements requested by the stakeholders. Moreover, quality range com-
putation enables for keeping track of the product line quality ranges even after the
specification of the service quality has changed. For example, in Fig. 21.5, sets of
candidate services provide different range of quality q R for each features. The range
of the kth quality property for feature fn can be hierarchically computed. In [40],
we introduce a generic evaluation model and method for aggregation and compu-
tation of ranges of quantified values of quality properties defined for product line
architectures.

21.5.1.6 Reference Business Process Model Implementation

The domain design phase produces a reference business process model and architec-
ture for a family of service products (i.e, SOSPL). In the domain implementation and
realization, the reference business process model is realized and implemented. This
activity involves implementing and testing the detailed architecture of the family
modeled by reference model. Abstract services specified by the reference business
process model are implemented by using component models such as Java class,
Enterprise Java Beans, or .Net components. However, some of the services needed

Payment

Email
Notification

Phone/
Fax

Notification

Mobile-based
Notification

2 3< − >

f

ψ3, 5

3ψ

fi
...

3,5,1()R
kq f

S3(1)

S3(2)
...

S3(10)

S1(1)

S1(2)
...

S1(5)

S2(1)

S2(2)
...

S2(8)

3,5,2()R
kq f 3,5,3()R

kq f

Cost = [A-B]
Availability = [%C-%D]
Reliability = [%E-%F)
Security = [%G-%H]

...

3,5,3() ,R LB UB
k k kq f q q⎡ ⎤= ⎢ ⎥⎣ ⎦

()R
ikq f

ψi

3,5()R
kq f

Payment
Notification

...

...

Feature Model Business Process Model

ψ3 , 5

() ,R LB UB
k k kq f q q⎡ ⎤= ⎢ ⎥⎣ ⎦

Fig. 21.5 Non-functional specification and aggregation for evaluating quality range supports by
product line architecture

21 Software Product Line Engineering to Develop Variant-Rich Web Services 555

for the implementation might already be available; for instance, can be either found
in a service catalog or retrieved through a service discovery process, and some of the
services could potentially be built by partly reusing or modifying existing solutions.

21.5.2 Service-Application Engineering

This section describes a holistic view to the application engineering life-cycle. This
lifecycle includes the major phases of service customization and derivation from the
business process family. Regardless of the chosen variability modeling approach, the
ultimate of in-service-application engineering is to employ the variability defined in
domain engineering by selecting shared assets similarly developed in domain engi-
neering. Figure 21.6 depicts a high-level application engineering process which starts
with the elicitation and capturing of both the functional and non-functional require-
ments of an individual stakeholder through the application-requirement-analysis
phase (A1). In the application design phase (A2), features are prioritized based on the
stakeholder’s captured preferences and business objectives concerning the optional
features and quality needs. There after, the feature model is specialized through the

Feature
Prioritization

Application
Integration

Deployment

Stakeholder’s
Requirement

Analysis

Service Application
Requirement
Specifications

Configured
Feature Model

Service ProductApplication
Deployment

Application
Design

&
Implementation

Application
Analysis

A1

A2

A3

Service
Selection

Customized
Reference

Business Process

Fig. 21.6 Application Engineering of an Service-Oriented Product Line

556 B. Mohabbati et al.

decision-making process of selecting optional features. Subsequently, the reference
business process model is configured and corresponding services are selected and
bound in the deployment and integration phase (A3). The details of these application
engineering phases can be found in [41].

21.5.2.1 Application Analysis

This phase focuses on the elicitation of requirements of a particular stakeholder for
deriving customized process variants, which can be deployed as the final product. The
preferences of the stakeholder are captured and later utilized for feature prioritization
and selection. Similar to the requirements engineering phase in service engineering
methodologies like SOMA [2], activities in the application analysis phase capture
requirements for a single service (application). However, the application analysis
activities reuse the family requirements models to develop requirements models of a
target service. For example, assuming a family requirement model is represented in
a goal model, the service goal model is developed through reasoning on the family
goal model based on the inputs of current stakeholders [3]. Validation and verifica-
tion of the application requirements model with respect to the stakeholder’s needs
and product line constraints are performed. In the context of marketplace portals,
stakeholders of a target service application may request payment, shipment, order
management, and manage customer functionalities as well as high security and low
cost. The detail of stakeholders requirements can be achieved by applying label
propagation algorithms on the marketplace family goal model.

21.5.2.2 Application Design and Implementation

During this phase, the feature model is utilized to manage and select variants that
constitute service product instances. This is accomplished through the feature pri-
oritization and selection of sub-processes. This activity includes the selection of the
best and at the same time permissible combination of optional features along with
the selection of the corresponding services that would optimally satisfy the stake-
holder’s functional and non-functional requirements. Several (semi-) automatic and
manual feature model configuration techniques have been proposed to guide the
final product configuration (i.e., customization) according to the requirements and
preferences of stakeholders. Automatic configuration approaches employ AI opti-
mization techniques such as Genetic Algorithms (GAs), Bayesian Belief Networks,
and Constraint Satisfaction Optimization Problem (CSOP) to create the final cus-
tomized product [7]. On the other hand, manual configuration techniques through
staged-configuration [18] provide specialization steps for service engineers helping
them resolve variability in the process of family customization (see Sect. 21.6). After
configuring the feature model, due to the established mappings between the feature
model and the reference business process model, a concrete business process for a
target service-oriented application and its realizations are derived from the family

21 Software Product Line Engineering to Develop Variant-Rich Web Services 557

design and implementation models. However, since there may be some requirements
which could not be satisfied by existing assets (i.e., services) contained in the devel-
oped SOSPL architecture, further refinement of instantiated service products from the
reference model can be performed, and new required services can be implemented.
In our running example, according to the requirements of the current application
derived in the previous stage, application engineers can configure marketplace fea-
ture model and derive a business process model for the service-oriented application
under development. Also, proper services based on the requested quality of services
(e.g. high security and low cost) are selected.

21.5.2.3 Application Deployment

This phase focuses on creating an executable business process and deployment of the
customized services in the production environment after validating the customized
services against the application requirement specification. After the deployment of
the final service product on to the stakeholders’ environment, the execution of the
customized services is monitored to ensure the compliance of the service execution
to stakeholders’ requirements and any service level agreements.

21.6 Discussion

The development, management and evolution of many modern software systems rely
on the notion of variability and suitable design techniques. SPLE research has devoted
a considerable amount of resources to the development of various approaches to
dealing with variability analysis, modeling, management, customization and related
challenges over the last decade. These approaches can be employed in the design and
development of variant-rich service-oriented applications (referred to as SOSPLs in
this chapter).

Feature-oriented analysis enables for capturing variability in services at different
levels of abstraction in order to support managing variability and leverage it for cus-
tomization. Variability can be considered in terms of four different general levels of
abstractions in service-oriented development [47]: requirements, business process
models, service interface model and service component. In that sense, variability
at a lower-level of abstraction realizes variability at a higher level. As described
earlier in the chapter, we leveraged feature modeling for managing variability by
focusing on the requirements and business processes at the higher levels of abstrac-
tion. However, feature models also can be employed for modeling, representing and
managing variability at the levels of service components, service interface to support
efficient service management. For instance, in [21], Fantinato et al. employed feature
modeling to manage and enable customization in service contracts.

Nguyen and Colman [42] propose a feature-based service customization frame-
work for modeling and managing variability of complex Web service specifications.

558 B. Mohabbati et al.

The proposed approach employed feature models as an extension to service descrip-
tion artifacts in order to facilitate the customization of service interfaces. In [43], the
same authors adopt a feature-oriented approach to modelling variability in process-
based service compositions and to enabling process customization. The approach
extends the BPMN 2.0 metamodel to allow for defining variation points and variants
within business process models. The extension is focused on modeling variabil-
ity of three aspect of business process: control flow, data flow, and message flow.
A variation point in a control flow is interpreted as any location in a process model
at which different execution paths can be take place, and variants can be arbitrary
process fragments. Variability in data flow is considered as a different way for stor-
ing data objects. Variability in message flow is identified as alternative conversations
and interactions between two parties, i.e. the process and a partner service (or a
consumer).

Koning et al. [32] investigate how variability can be incorporated into service-
based systems in order to enable variability modeling and management. They
describe how variability management helps to support run-time reconfiguration of
systems by service replacement corresponding to the non-functional requirements of
stakeholders. VxBPEL is proposed as an extension of Business Process Execution
Language (BPEL) for to the process description and definition. VxBPEL allows for
run-time variability and variability management in Web service-based systems. Vari-
ability information is defined in-line with the process definition. VxBPEL builds upon
COVAMOF [50], a framework for modeling variability. Koning et al. note that the
architectural modeling and management of variability in Web service-based systems
provides the following advantages: enhances the extensibility of systems through
service replacement; improves run-time flexibility for reconfiguration and rebinding
of services (e.g., being able to optimize quality attributes through reconfiguration).

As already mentioned, improving reusability in service-oriented development is
an often-stated goal in the literature. There are a number of important concerns that
can influence highly-important analysis and design decision for the quality of service
design. The major concerns include analysis and design for service reuse, service
granularity management, and design of composable service [47]. Hence, several
challenges have been unveiled for the development of service-oriented systems such
as how to identify reusable services at the right level of granularity in order to facilitate
service composition. Hence, the identification of service candidates is a challenging
task in services engineering [2, 47]. SPL approaches can be adopted to consolidate
design principles and service identification during the course of service engineering.

Lee et al. [38] present a feature-oriented approach to the analysis, identification
and development in order to improve reusability of service-based systems. The pro-
posed approach provides guidelines about how to address the key issue of granularity
and orchestration of services by using feature models. They show how reusable ser-
vice can be identified and specified based on software features. The proposed method
is based on analysis of features that may vary from a user’s point of view and will be
subject to reconfigurations at runtime. Another approach to using feature-oriented
analysis for service identification during the analysis and design phases is proposed by
Chen et al. [10] whose main focus is re-engineering towards service-oriented systems

21 Software Product Line Engineering to Develop Variant-Rich Web Services 559

and the remark of whom that feature-oriented analysis bridges the gap between the
abstract architectural and source code level, whereas business processes are excluded.

Service-Oriented Modeling and Architecture (SOMA) proposed by IBM [2]
has been developed as a generic development method for SOA-based applications.
SOMA provides the guidelines for identification and specialization of services that
realize and implement business processes through service composition. The authors
of SOMA remarks that variability analysis in the practical SOA solution design
is crucial for the initial finding-binding relationships between a service consumer
(i.e., stakeholder) and a service provider. Moreover, it was noted that the publishing
and discovery of relationships are often affected by variations, which are identified
later in the design process. Hence, such variations may cause expensive fundamental
re-design of SOA-based solutions [2]. To address this problem, the authors remark
that a development life-cycle for SOA-based solutions should be extended by a
variation-oriented analysis as an extra dimension that should be performed.

21.7 Conclusion

We can observe that the convergence of service-oriented and software product line
engineering is gaining a considerable amount of attention and rapidly emerging
as a viable and important software development paradigm. As we have discussed
in this chapter, they both share common goals and promises to collaborate in the
development of flexible, cost-effective software systems and to support a high level of
reuse. Yet, their main goals are somewhat different. In this chapter, we discussed that
how service-oriented development can benefit from SPLE approaches for variability
modeling and management in the process of identification and design of variant-rich
service-oriented applications.

By combining ideas of service-oriented development and SPLE, we expect to
derive new software engineering approaches to make use of the best from both
paradigms: (a) development of generic software architectures for highly adaptive
Web services that can respond effectively to fluctuations in stakeholders’ (non-)
functional requirements, and (b) development of shared architectures that could be
reused in different instances (benefits from the SPLE principles).

References

1. Apel, S., Kaestner, C., Lengauer, C.: Research challenges in the tension between features and
services. In: Proceedings of the 2nd International Workshop on Systems Development in SOA
Environments, pp. 53–58. ACM (2008)

2. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA: a method
for developing service-oriented solutions. IBM Syst. J. 47(3), 377–396 (2008)

3. Asadi, M., Bagheri, E., Gašević, D., Hatala, M., Mohabbati, B.: Goal-driven software product
line engineering. In: SAC ’11, pp. 691–698. ACM, NY, USA (2011)

560 B. Mohabbati et al.

4. Asikainen, T., Soininen, T., Männistö, T.: A Koala-based approach for modelling and deploying
configurable software product families, pp. 225–249. Software Product-Family Engineering
(2004)

5. Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl, K., Ramesh, B., Vilbig, A.: A meta-model
for representing variability in product family development, pp. 66–80. Software Product-Family
Engineering (2004)

6. Benatallah, B., Nezhad, H.M.: Service oriented architecture: overview and directions. In:
Advances in Software Engineering, Lecture Notes in Computer Science, vol. 5316, pp. 116–
130. Springer, Berlin (2008)

7. Benavides, D., Segura, S., Cortés, A.R.: Automated analysis of feature models 20 years later:
a literature review. Inf. Syst. 35(6), 615–636 (2010)

8. Bussler, C.: The fractal nature of web services. Computer 40, 93–95 (2007)
9. Chang, S.H., Kim, S.D.: A variability modeling method for adaptable services in service-

oriented computing. In: SPLC ’07: Proceedings of the 11th International Software Product
Line Conference, pp. 261–268. IEEE Computer Society, DC, USA (2007)

10. Chen, F., Li, S., Chu, W.C.C.: Feature analysis for service-oriented reengineering. In: APSEC
’05: Proceedings of the 12th Asia-Pacific Software Engineering Conference, pp. 201–208.
IEEE Computer Society (2005)

11. Chen, L., Ali Babar, M., Ali, N.: Variability management in software product lines: a systematic
review. In: Proceedings of the 13th International Software Product Line Conference, pp. 81–90.
CMU (2009)

12. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley,
Reading (2001)

13. Cohen, S.G., Krut, R.: Managing variation in services in a software product line context.
Technical Report SEI-2010-TN-007, CMU (2010)

14. Cohen, S.G.S., Krut, R.W.: Proceedings of the 1st workshop on service-oriented architectures
and product lines: what is the connection? Technical Report CMU/SEI-2008-SR-006 (2008)

15. Czarnecki, K.: Mapping features to models: a template approach based on superimposed vari-
ants. In: GPCE 2005, pp. 422–437. Springer (2005)

16. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley Professional, Reading (2000)

17. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models and
their specialization. Softw. Process: Improve. Pract. 10(1), 7–29 (2005)

18. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through specialization and
multilevel configuration of feature models. Softw. Process: Improve. Pract. 10(2), 143–169
(2005)

19. Eriksson, M., Börstler, J., Borg, K.: The PLUSS approach—domain modeling with features,
use cases and use case realizations, pp. 33–44. SPLC (2005)

20. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,
Upper Saddle River (2005)

21. Fantinato, M., de Toledo, M.B.F., de Souza Gimenes, I.M.: Ws-contract establishment with
QoS: an approach based on feature modeling. Int. J. Cooperative Inf. Syst. 17(3), 373–407
(2008)

22. Frakes, W.B., Kang, K.: Software reuse research: status and future. IEEE Trans. Softw. Eng.
31, 529–536 (2005)

23. Galster, M.: Describing variability in service-oriented software product lines. In: Proceedings of
the Fourth European Conference on Software Architecture: Companion Volume, pp. 344–350
(2010)

24. Gomaa, H.: Advances in software design methods for concurrent, real-time and distributed
applications. In: Software Engineering Advances, 2008. ICSEA’08. The 3rd International Con-
ference on, pp. 451–456. IEEE (2008)

25. Griss, M.L., Favaro, J., Alessandro, M.d.: Integrating feature modeling with the RSEB. In:
Proceedings of the 5th International Conference on Software Reuse, ICSR ’98, p. 76. IEEE
Computer Society, Washington, DC, USA (1998)

21 Software Product Line Engineering to Develop Variant-Rich Web Services 561

26. Helferich, A., Herzwurm, G., Jesse, S., Mikusz, M.: Software product lines, service-oriented
architecture and frameworks: worlds apart or ideal partners? In: Trends in Enterprise Applica-
tion Architecture, pp. 187–201. IEEE Computer Society (2007)

27. van der Hoek, A.: Design-time product line architectures for any-time variability. Sci. Comput.
Program. 53(3), 285–304 (2004)

28. Huhns, M., Singh, M.: Service-oriented computing: key concepts and principles. IEEE Internet
Comput. 9(1), 75–81 (2005)

29. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
(FODA) feasibility study (1990)

30. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: a feature-oriented reuse method
with domain-specific reference architectures. Ann. Softw. Eng. 5, 143–168 (1998)

31. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In: Proceedings
of the 30th International Conference on Software Engineering, pp. 311–320. ACM (2008)

32. Koning, M., Sun, C., Sinnema, M., Avgeriou, P.: VxBPEL: supporting variability for Web
services in BPEL. Inf. Softw. Technol. 51(2), 258–269 (2009)

33. Kozaczynski, W., Booch, G.: Component-based software engineering. IEEE Softw. 15(5), 34–
36 (1998)

34. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture Best Prac-
tices. Prentice Hall PTR, Englewood Cliffs (2005)

35. Krut, R.W., Cohen, S.G.: 2nd Workshop on Service-Oriented Architectures and Software Prod-
uct Lines: Putting Both Together, pp. 115–147. CMU (2009)

36. Krut, R.W., Cohen, S.G.: 3rd Workshop on Service-Oriented Architectures and Software Prod-
uct Lines: Enhancing Variation, pp. 301–302. CMU (2009)

37. Lee, J., Kotonya, G.: Combining service-orientation with product line engineering. IEEE Softw.
27, 35–41 (2010)

38. Lee, J., Muthig, D., Naab, M.: A feature-oriented approach for developing reusable product
line assets of service-based systems. J. Syst. Softw. 83(7), 1123–1136 (2010)

39. McGregor, J., Muthig, D., Yoshimura, K., Jensen, P.: Guest editors’ introduction: successful
software product line practices. IEEE Softw. 27(3), 16–21 (2010)

40. Mohabbati, B., Gašević, D., Hatala, M., Asadi, M., Bagheri, E., Bošković, M.: A quality aggre-
gation model for service-oriented software product lines based on variability and composition
patterns. In: ICSOC, pp. 436–451 (2011)

41. Mohabbati, B., Hatala, M., Gašević, D., Asadi, M., Bošković, M.: Development and configu-
ration of service-oriented systems families. SAC ’11, pp. 1606–1613, NY, USA (2011)

42. Nguyen, T., Colman, A.: A feature-oriented approach for Web service customization. In: 2010
IEEE International Conference on Web Services, pp. 393–400. IEEE (2010)

43. Nguyen, T., Colman, A., Han, J.: Modeling and managing variability in process-based ser-
vice compositions. In: Proceedings of the 9th International Conference on Service-Oriented
Computing, ICSOC’11, pp. 404–420. Springer, Berlin (2011)

44. Northrop, L.: Sei’s software product line tenets. IEEE Softw. 19(4), 32–40 (2002)
45. van Ommering, R.: Building product populations with software components. In: ICSE ’02, pp.

255–265. ACM (2002)
46. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: a research

roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)
47. Papazoglou, M., Van Den Heuvel, W.: Service-oriented design and development methodology.

Int. J. Web Eng. Technol. 2(4), 412–442 (2006)
48. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and directions. Web

Information Systems Engineering, International Conference on, vol. 0, p. 3 (2003)
49. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations,

Principles and Techniques. Springer, New York (2005)
50. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A framework for modeling

variability in software product families. SPLC’04 pp. 25–27 (2004)
51. Sochos, P., Riebisch, M.: Feature-oriented development of software product lines: mapping

feature models to the architecture. In: Object-Oriented and Internet-Based Technologies, pp.
138–152. Springer (2004)

562 B. Mohabbati et al.

52. Sommerville, I., Sawyer, P.: Requirements Engineering. Wiley, London (1997)
53. Street, J., Gomaa, H.: Software architectural reuse issues in service-oriented architectures. In:

HICSS, p. 316. IEEE Computer Society (2008)
54. Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.

Softw.: Pract. Exp. 35(8), 705–754 (2005)
55. Thiel, S., Hein, A.: Systematic integration of variability into product line architecture design.

Software Product Lines, pp. 67–102 (2002)
56. Tsai, W., Jin, Z., Wang, P., Wu, B.: Requirement engineering in service-oriented system engi-

neering. In: e-Business Engineering, 2007. ICEBE 2007. IEEE International Conference on,
pp. 661–668. IEEE (2007)

57. Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product lines.
In: Proceedings of the Working IEEE/IFIP Conference on Software Architecture, p. 45 (2001)

58. Webber, D.L., Gomaa, H.: Modeling variability in software product lines with the variation
point model. Sci. Comput. Program. 53(3), 305–331 (2004)

59. Ye, E., Moon, M., Kim, Y., Yeom, K.: An approach to designing service-oriented product-line
architecture for business process families. In: Advanced Communication Technology, The 9th
International Conference on, vol. 2, pp. 1002, 999 (2007)

Chapter 22
QoS-Aware Web Service Recommendation
via Collaborative Filtering

Xi Chen, Zibin Zheng and Michael R. Lyu

Abstract With the increasing number of Web services on the Internet, selecting
appropriate services to build one’s application becomes a nontrivial issue. When
searching Web services, users are often overwhelmed by a bunch of candidates with
similar functionalities. Quality-of-Service (QoS), the non-functional characteristics
of Web services, has become an important factor to distinguish the functionally
equivalent ones. In this paper, we introduce two collaborative filtering based Web
service recommendation approaches to help users select Web service with optimal
QoS performance. The basic idea is to leverage user experience provided by similar
users and generate recommendation for the target user. Experiments with large scale
real world Web services show the effectiveness and efficiency of the two approaches.

22.1 Introduction

Web service, a method of communication between two machines over a network, has
been widely adopted as a delivery mode in both industry and academia. This adoption
has fostered a new paradigm shift from development of monolithic application to
the dynamic set-up of business process. The increasing usage of Web services on
the World Wide Web calls for effective recommendation techniques, which help end

X. Chen
Schlumberger Technologies (Beijing) Ltd., Beijing, China
e-mail: bargittachen@gmail.com

Z. Zheng (B) ·M. R. Lyu
Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, Hong Kong, China
e-mail: zbzheng@cse.cuhk.edu.hk

M. R. Lyu
e-mail: lyu@cse.cuhk.edu.hk

A. Bouguettaya et al. (eds.), Web Services Foundations, 563
DOI: 10.1007/978-1-4614-7518-7_22,
© Springer Science+Business Media New York 2014

564 X. Chen et al.

users choose the optimal Web service from a large number of functionally equivalent
candidates.

In services computing, QoS is a set of properties describing the non-functional
characteristics of Web services, such as price, response time, reliability, etc. Some
QoS properties have relatively constant value, e.g., the published pricing model
of Amazon Web Service (AWS), while other properties like response time vary
seriously from user to user, influenced by the unpredictable Internet connections and
heterogeneous environments. In this chapter, we focus on the QoS properties that are
prone to change and can be easily obtained and objectively measured by individual
users, such as response time and availability.

QoS plays an important role in service selection and recommendation [37, 36].
However, it is impractical for users to acquire QoS information by evaluating all the
service candidates by themselves. Conducting real world Web service invocation is
time-consuming and resource-consuming. Moreover, measuring some QoS proper-
ties (e.g., reliability) requires long time observation and large number of invocations.
Besides client-side evaluation, acquiring QoS information from service providers
may not be applicable, because QoS performance is susceptible to the uncertain
Internet environment and user context (e.g., user location, user network condition,
etc.). Therefore, QoS values evaluated by one user cannot be used directly by another
in service selection and recommendation.

To make personalized QoS-aware service recommendation to different users, we
introduce two collaborative filtering (CF) based Web service recommendation algo-
rithms in this chapter. Our Web service recommender system collects user observed
QoS records and matches together users who share the same information needs
or same tastes [10]. Users of our recommender system share their observed QoS
performance of Web services, and in return, the system provides accurate person-
alized service recommendations for them. Section 22.2 and Sect. 22.3 present our
proposed recommendation approaches; Sect. 22.4 shows our large scale real world
experiments; Sect. 22.5 discusses related work, and Sect. 22.6 concludes our work.

22.2 WSRec: A Neighborhood-Based Web Service
Recommendation Algorithm

WSRec employs the concept of user-collaboration for Web service QoS information
sharing between service users. Similar to sharing videos on YouTube or knowledge
on Wikipedia, service users are encouraged to contribute their past Web service user
experience to the system. We assume that users are trustworthy, and all submitted
records are correct. The more QoS records users contribute, the more accurate the
recommendation will be. Figure 22.1 shows the architecture of WSRec system, which
includes the following procedures:

• A service user submits Web service QoS data to the centralized server of WSRec.
Users who submit QoS records to WSRec are called training users. Users who

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 565

Fig. 22.1 Procedures of QoS value prediction

Table 22.1 An illustration of response time dataset

User Service 1 Service 2 Service 3 Service 4 Service 5 Service 6 Service 7

Amy 5000 ms ? 2000 ms ? ? ? 2800 ms
Bob 600 ms 3300 ms ? 3300 ms 2000 ms ? ?

Carol 650 ms 2600 ms 200 ms ? ? ? ?
David 600 ms 2500 ms 2000 ms 5000 ms ? 2000 ms ?

require Web service recommendation are called active users. Table 22.1 shows an
example of the recommendation system data set. There are four users and seven
services in the data set. Each user provides some QoS values (response time) they
observed, and ? indicates that the user does not use the service.
• WSRec matches the active user with existing training users to find similar users

and Web services with similar QoS (details will be introduced in Sect. 22.2.1).
• WSRec predicts QoS values of candidate Web services for the active user (details

will be introduced in Sect. 22.2.2).
• WSRec makes Web service recommendation based on the predicted QoS values

of Web services (details will be discussed in Sect. 22.2.3).
• The active user receives the predicted QoS values as well as the recommendation

results, which can be employed to assist decision making (e.g., service selection,
service composition, service ranking, etc.).

22.2.1 Similarity Computation

Similarity computation is used to find users with similar experience as well as Web
services with similar QoS in the WSRec system.

566 X. Chen et al.

22.2.1.1 Pearson Correlation Coefficient

Given a recommender system consisting of m training users and n Web services, the
relationship between users and Web services can be denoted by an m × n user-item
matrix. An entry in this matrix ru,i represents a vector of QoS values (e.g., response
time, failure rate, etc.) observed by user u of Web service i . If user u has never used
Web service i before, ru,i = null.

Pearson Correlation Coefficient (PCC) is widely used to measure user similarity
in recommender systems [21]. PCC measures the similarity between two service
users a and u based on the Web services they both invoked:

Sim(a, u) =

∑

i∈I

(ra,i − ra)(ru,i − ru)

√∑

i∈I

(ra,i − ra)2
√∑

i∈I

(ru,i − ru)2
, (22.1)

where I = Ia ∩ Iu is the set of Web services invoked by both user a and user
u, ra,i is the QoS values of Web service i observed by service user a, ra and ru

represent the average QoS values observed by service user a and u respectively. The
PCC similarity of two service users, Sim(a, u) ranges from −1 to 1. Positive PCC
value indicates that the two users have similar preferences, while negative PCC value
means that the two user preferences are opposite. Sim(a, u) = null when two users
have no Web service intersection.

PCC is used to measure the similarity between Web services in WSRec as well.
The similarity computation of two Web services i and j can be calculated by:

Sim(i, j) =

∑

u∈U

(ru,i − r i)(ru, j − r j)

√∑

u∈U

(ru,i − r i)2
√∑

u∈U

(ru, j − r j)2
, (22.2)

where Sim(i, j) is the similarity between Web services i and j , U = Ui ∩U j is the
set of users who have invoked both Web services i and j , r i represents the average
QoS values of Web service i submitted by all users. The range of Sim(i, j) is [−1,1].
Sim(i, j) = null when there is no user who have used both services.

22.2.1.2 Significance Weight

PCC only considers the QoS difference between services invoked by both users. It
can overestimate the similarity of two users that are not similar, but happen to have
a few services with very similar QoS records [21]. To devalue the overestimated
similarity, we add a correlation significance weight to PCC. An adjusted PCC for

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 567

user similarity is defined as:

Sim′(a, u) = 2× |Ia ∩ Iu |
|Ia | + |Iu | Sim(a, u), (22.3)

where Sim′(a, u) is the adjusted similarity value, |Ia ∩ Iu | is the number of services
invoked by both users (co-invoked services), |Ia | and |Iu | are the number of Web
services invoked by user a and user u, respectively. When the number of co-invoked
Web service |Ia ∩ Iu | is small, the significance weight 2×|Ia∩Iu ||Ia |+|Iu | will decrease the

similarity estimation between users a and u. Since the value of 2×|Ia∩Iu |
|Ia |+|Iu | is in the

interval of [0, 1], Sim(a, u) is in the interval of [−1, 1], the value of Sim′(a, u) is
in the interval of [−1, 1].

Similar to Eq. (22.3), an adjusted PCC for the Web service similarity is defined
as:

Sim′(i, j) = 2× |Ui ∩U j |
|Ui | + |U j | Sim(i, j), (22.4)

where |Ui ∩U j | is the number of service users who invoked both Web services i and
j . The range of Sim′(i, j) is [−1, 1].

22.2.2 QoS Value Prediction

In reality, the user-item matrix is usually very sparse, since service users usually
have QoS values on a small number of services. Predicting missing values for the
user-item matrix can improve the prediction accuracy of active users. In this section,
we present a missing value prediction approach to tackle this problem by making the
matrix denser.

22.2.2.1 Neighbor Selection

To predict missing values, we first need to find the underlying relationship between
the missing values and the existing ones, and then use this information to predict the
missing ones. In the user-item matrix of WSRec system, each missing entry ru,i is
associated with two sets of neighbors: a set of similar users S(u) and a set of similar
items (services) S(i), which can be found by the following equations:

S(u) = {ua |ua ∈ T (u), Sim′(ua, u) > 0, ua �= u}, (22.5)

S(i) = {ik |ik ∈ T (i), Sim′(ik, i) > 0, ik �= i}, (22.6)

where T (u) is a set of similar users to the user u, and T (i) is a set of similar items
to the item i . Both T (u) and T (i) are selected using enhanced PCC (Eq. (22.3) and

568 X. Chen et al.

Eq. (22.4)). Neighbors without correlations or with negative ones are discarded from
the neighbor sets.

22.2.2.2 Missing Value Prediction

For each missing entry, we use both its user neighbors and item neighbors to predict
the missing value. User-based CF methods (UPCC) employ similar users to predict
the missing QoS values:

r̂u,i = u +

∑

ua∈S(u)

Sim′(ua, u)(rua ,i − ua)

∑

ua∈S(u)

Sim′(ua, u)
, (22.7)

where r̂u,i is the predicted QoS vector of service i for user u, u and ua are vectors
of average QoS values of all Web services observed by active user u and neighbor
user ua respectively.

Item-based CF methods (IPCC) [8, 17, 27] apply similar Web services to predict
the missing value:

r̂u,i = i +

∑

ik∈S(i)

Sim′(ik, i)(ru,ik − i k)

∑

ik∈S(i)

Sim′(ik, i)
, (22.8)

where i is a vector of average QoS values of Web service i observed by all service
users.

When a missing entry only has user neighbors or item neighbors, we will employ
either Eqs. (22.7) or (22.8) to predict the value. When it has both type of neighbors,
we combine the two methods to make prediction. We will not predict the value if it
has no neighbors.

User-based method and item-based method may have different prediction accu-
racy, we use confidence weights, conu and coni , to reflect our confidence in the
two prediction methods. For example, assuming a missing entry has three similar
users with PCC similarities {1,1,1} and three similar items with {0.1, 0.1, 0.1}. Intu-
itively, we have more confidence in the prediction by user-based method rather than
item-based one. We define conu as:

conu =
∑

ua∈S(u)

Sim′(ua, u)
∑

ua∈S(u) Sim′(ua, u)
× Sim′(ua, u), (22.9)

and coni as:

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 569

coni =
∑

ik∈S(i)

Sim′(ik, i)
∑

ik∈S(i) Sim′(ik, i)
× Sim′(ik, i), (22.10)

where conu and coni are the prediction confidences of the user-based method and
item-based method respectively. The higher the value, the more confidence we have
in the predicted value r̂u,i .

Since different datasets may inherit their own data distribution and correlation
natures, a parameter λ (0 ≤ λ ≤ 1) is employed to tune the the final result combining
both user-based method and item-based method. When S(u) �= ∅ ∧ S(i) �= ∅, our
method predicts the missing QoS value ru,i by employing the following equation:

r̂u,i = wu ×

⎛

⎜
⎜
⎜
⎝

u +

∑

ua∈S(u)

Sim′(ua, u)(rua ,i − ua)

∑

ua∈S(u)

Sim′(ua, u)

⎞

⎟
⎟
⎟
⎠

+ wi ×

⎛

⎜
⎜
⎜
⎝

i +

∑

ik∈S(i)

Sim′(ik, i)(ru,ik − i k)

∑

ik∈S(i)

Sim′(ik, i)

⎞

⎟
⎟
⎟
⎠
, (22.11)

wherewu andwi are the weights of the user-based method and the item-based method
respectively (wu + wi = 1). wu is defined as:

wu = conu × λ
conu × λ+ coni × (1− λ) , (22.12)

and wi is defined as:

wi = coni × (1− λ)
conu × λ+ coni × (1− λ) . (22.13)

The prediction confidence of the missing value r̂u,i by our approach using
Eq. (22.11) can be calculated by equation:

con = wu × conu + wi × coni . (22.14)

22.2.3 Recommendation for Active Users

We use the matrix with predicted missing values to generate recommendations for
active users. We first predict Web service QoS values for the active user, which is
similar to the missing value prediction in Sect. 22.2.2.2. The only difference is that
when S(u) = ∅ ∧ S(i) = ∅, we predict the QoS values with user-mean (UMEAN)

570 X. Chen et al.

and item-mean (IMEAN). UMEAN is a vector of average QoS values of all the Web
services observed by the active user a and IMEAN is a vector of average QoS values
of Web service i observed by all service users. The prediction formula is defined as:

r̂a,i = wu × ra + wi × r i , (22.15)

where ra is the average QoS submitted by user a, and r i is the average QoS of
service i . In this case, the confidence of the predicted value is con = 0.

The predicted QoS values can be used in the following ways: (1) For a set of
functionally equivalent Web services, the one with optimal predicted QoS values is
recommended to the active user. (2) For Web services with different functionalities,
the top k best performing ones will be recommended to service users to help them
discover potential Web services.

22.2.4 Time Complexity Analysis

Worst-case analysis of the QoS value prediction algorithm is presented in this section.
The input is a full user-item matrix with m users and n Web services.

22.2.4.1 Time Complexity of Similarity Computation

In Sect. 22.2.1, the time complexity of user similarity Sim(a, u) is O(n), since there
are at most n intersected services between user a and u. The time complexity of
service similarity Sim(i, j) is O(m) with at most m users who used both Web
service i and j .

22.2.4.2 Time Complexity of UPCC

To predict missing values with UPCC (Eq. 22.7), we need to first compute similarities
of the active user with all users in the matrix (totally m similarity computations). As
discussed in Sect. 22.2.4.1, the time complexity of each similarity computation is
O(n). Therefore, the complexity of similarity computation is O(mn).

The time complexity of each missing value prediction is O(m), since at most m
similar users are employed in the prediction. The complexity of the value prediction
for an active user is O(mn)with at most n missing values. Thus the time complexity
of UPCC (including similarity computation and value prediction) is O(mn).

22.2.4.3 Time Complexity of IPCC

To predict missing values with IPCC (Eq. (22.8)), we need to compute similarities
of the current Web service with all Web services in the matrix (totally n similarity
computations). As discussed in Sect. 22.2.4.1, the time complexity of each similarity
computation is O(m). Therefore, the complexity of similarity computation is O(mn).

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 571

The missing value prediction computational complexity is O(n), since at most
n similar Web services are employed for prediction. The complexity of the value
prediction for a Web service is O(mn) with at most m users. Therefore, the time
complexity of IPCC is O(mn).

22.2.4.4 Time Complexity of Training Matrix Prediction

Training matrix prediction is an offline process, which helps reduce the sparseness of
the training matrix and improve the prediction accuracy (Sect. 22.2.2.2). This process
is a linear combination of UPCC and IPCC. For UPCC approach, the computational
complexity is O(m2n), since there are at most m rows (users) need prediction. For
IPCC approach, the complexity is O(mn2), because there are at most n columns
(Web services) to be predicted. Therefore, the time complexity of matrix prediction
is O(m2n + mn2).

22.2.4.5 Time Complexity of Active User Prediction

As discussed in Sect. 22.2.4.2, the computational complexity of UPCC for predicting
values of an active user is O(mn). When employing IPCC, the similarities of different
columns (Web services) can be computed offline, and there are at most n missing
values in the active user. For the prediction of each missing value, the computational
complexity is O(n), since at most n similar Web services will be employed for the
prediction. Therefore, the computational complexity of IPCC for an active user is
O(n2). Since our online QoS value prediction approach is a linear combination of
UPCC and IPCC, the complexity of our approach for an active user is O(mn + n2).

22.3 A Region-Based Web Service Recommendation Algorithm

We present a region-based Web service recommendation algorithm in this section.
The main hypothesis is that some QoS properties vary according to users’ physical
locations. Through the analysis of a real world Web service data set (see Sect. 22.4),
which contains 1.5 millions service invocation records evaluated by users from more
than twenty countries, we discover that some QoS properties like response time
highly relate to users’ physical locations. For example, the response time of a service
observed by users who are closely located with each other usually fluctuates mildly
around a certain value, while it sometimes varies significantly between users far away
from each other.

572 X. Chen et al.

Fig. 22.2 A motivating scenario

22.3.1 A Motivating Scenario

Alice is a software engineer working in India. She needs an email validation service
to filter emails. By querying a registry in U.S, she gets a list of service candidates and
sorts the services in ascending order of the response time. Alice then tries the first
two services provided by a Canadian company. However, she finds that the response
time is much higher than her expectation. She then realizes that the response time is
based on the evaluation conducted by servers in U.S., and it can vary greatly due to
different user contexts, such as user location, user network conditions, etc. Alice then
turns to her colleagues for suggestion. They suggest a local service though ranked
lower in the previous search result. After trying it, Alice finds that that service has
good performance and meets her requirements.

Intuitively, users closely located with each other are more likely to have simi-
lar service experience than those who are far away from each other. Our recom-
mendation approach is designed as a two-phase process. In the first phase, we divide
users into different regions based on their physical locations and historical Web ser-
vice QoS experience. In the second phase, we find similar users for the active user,
make QoS predictions for the unused services, and finally recommend the one with
best predicted value to the user.

22.3.2 Phase One: Region Creation

A region is defined as a group of users who are closely located with each other and
likely to have similar QoS profiles. Each user is a member of exactly one region.
Regions need to be internally coherent, but clearly different from each other. To
create regions, we first form small regions by putting users with similar locations

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 573

together and extract region features. Then we aggregate highly correlated regions
to form a certain number of large regions. Steps to create regions are presented in
Sect. 22.3.2.1–22.3.2.2 respectively.

22.3.2.1 Region Features

Region center is used to reflect the average performance of Web services observed
by users of one region. Region center is defined as the median vector of all QoS
vectors associated with the region users. The element i of the center is the median
QoS value of service i observed by users from the region. Median is the numeric
value separating the higher half of a sample from the lower half. Besides the average
Web service QoS performance, QoS fluctuation is another feature deserves our atten-
tion. From large real data analysis, we discover that user-dependent QoS properties
(e.g., response time) usually varies from region to region. Some services have unex-
pected long response time, and some are even inaccessible to a few regions. Inspired
by the three-sigma rule which is often used to test outliers, we use similar method to
distinguish services with unstable performance and regard them as region-sensitive
services.

We pick one QoS property r (response time) to simplify the description of this
approach. The set of non-zero QoS values of service s, r.s = {r1,s, r2,s, . . . , rk,s},
1 ≤ k ≤ m, collected from users of all regions is a sample from the population of
service s QoS property R. To estimate the mean μ and the standard deviation σ of
the population, we use two robust measures: median and Median Absolute Deviation
(MAD). MAD is defined as the median of the absolute deviations from the sample’s
median.

M AD = mediani (|ri,s − median j (r j,s)|), i = 1, . . . , k, j = 1, . . . , k (22.16)

Based on median and MAD, the two estimators can be calculated by:

μ̂ = mediani (ri,s), i = 1, . . . , k (22.17)

σ̂ = M ADi (ri,s), i = 1, . . . , k (22.18)

Definition 22.1 Let r.s = {r1,s, r2,s, . . . , rk,s}, 1 ≤ k ≤ m be the set of Web service
s QoS values provided by all users. Service s is a sensitive service to region M
iff ∃r j,s ∈ r.s((r j,s > μ̂ + 3σ̂) ∧ region(j) = M), where μ̂ = median(r.s),
σ̂ = M AD(r.s) and region(u) function defines the region of user u.

Definition 22.2 The sensitivity of region rm is the fraction between the number of
sensitive services in region rm over the total number of services.

Definition 22.3 Region rm is a sensitive region iff its region sensitivity exceeds the
sensitivity threshold λ.

574 X. Chen et al.

22.3.2.2 Region Aggregation

Each region formed by users’ physical locations at the outset always has a very sparse
QoS dataset, since the amounts of users and QoS records are relatively small. In this
case, it is difficult to find similar users and predict missing QoS records. To solve this
problem, we aggregate these small regions based on the similarity of their features.
The similarity of two regions rm and rn is measured by the similarity of their region
centers crm and crn using Eq. (22.3).

We use a bottom-up hierarchical clustering algorithm to aggregate regions [20].
The input is a set of small regions r1, . . . , rl . Each region consists of users with
similar locations. The algorithm successively aggregates pairs of the most similar
non-sensitive regions until the stopping criterion is met. The result is stored as a list
of aggregates in A.

Step one: Initialization

1. Compute the similarity between each two regions with Eq. (22.3), store the sim-
ilarity and the similar region index in the similarity matrix C .

2. Calculate the sensitivity of each region and identify whether it can be aggregated.
Store the result in the indicator vector I . I [k].sensi tivi t y indicates whether
region k is sensitive, and I [k].aggregate indicates whether region k can be aggre-
gated.

3. Use a set of priority queues P to sort the rows of C in decreasing order of the
similarity. Function P[k].M AX () returns the index of the region that is most
similar to region k.

Step two: Aggregation

1. In each iteration, select the two most similar and non-sensitive regions from the
priority queues if their similarity exceeds threshold μ, otherwise return A.

2. Aggregate the selected two regions and store their region index in result list A.
Use the smaller region index of the two as the new region index and compute the
new region center. Mark the indicator vector I of the aggregated region.

3. Calculate the sensitivity of the new region and set indicator I . If it is sensitive and
cannot be aggregated, remove this region from other regions’ priority queues.
Otherwise, update the elements of both priority queues and similarity matrix
related to the aggregated two regions. Repeat the above three steps.

22.3.3 Phase Two: QoS Prediction and Recommendation

The region aggregation step clusters thousands of users into a certain number of
regions based on their physical locations and historical QoS similarities. With the
compressed QoS data, searching neighbors and making predictions for an active user
can be computed faster than the conventional methods. Instead of computing the sim-
ilarity between the active user and each existing user, we only compute the similarity

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 575

Algorithm 1: Region Aggregation Algorithm
Input: a list of regions r1, . . . rl
Output: result list A
foreach n← 1 to l − 1 do

foreach i ← n + 1 to N do
C[n][i].sim ← SI M(rn, ri);
C[n][i].index ← i ;

I [n].sensi tivi t y ← I SSE N SI T I V E(rn);
if I [n].sensi tivi t y = 0 then

I [n].aggregate← 1;
I [n].aggregate← 0;
P[n] ← priority queue for C[n] sorted on sim;

calculate the sensitivity and aggregate of I [l] ;
A← [];
while true do

k1 ← argmaxk:I [k].aggregate=1 P[k].M AX ().sim;
if k1 = null or sim < μ then

return A;
k2 ← P[k1].M AX ().index ;
A.APPEND(< k1, k2 >) and compute k1 center;
I [k2].aggregate← 0;
P[k1] ← [];
I [k1].sensi tivi t y← I SSE N SI T I V E(k1);
if I [k1].sensi tivi t y = 1 then

I [k1].aggregate← 0;
foreach i with I [i].aggregate = 1 do

P[i].DE L ET E(C[i][k1]);
P[i].DE L ET E(C[i][k2]);

else

foreach i with I [i].aggregate = 1 ∧ i �= k1 do
P[i].DE L ET E(C[i][k1]);
P[i].DE L ET E(C[i][k2]);
C[i][k1].sim ← SI M(i, k1);
P[i].I N SE RT (C[i][k1]);
C[k1][i].sim ← SI M(i, k1);
P[k1].I N SE RT (C[k1][i]);

between the active user and each region center. Moreover, it is more reasonable to
predict the QoS value based on one’s region, for users in the same region are more
likely to have similar QoS experience on the same Web service, especially on those
region-sensitive ones. To predict the unused Web service s’s QoS value for an active
user a, we take the following steps:

• Find the region of the active user a by IP address. If no appropriate region is found,
the active user will be treated as a member of a new region.
• Identify whether service s is sensitive to user a’s region. If region-sensitive, then the

prediction is generated from the region center, because QoS of service s observed
by users from this region is significantly different from others.

576 X. Chen et al.

r̂a,s = rc,s (22.19)

• Otherwise, use Eq. (22.3) to compute the similarity between the active user and
each region center that has evaluated service s, and find up to k most similar centers
c1, c2, . . . , ck . We discuss how to choose k (also called top k) in Sect. 22.4.
• If the active user’s region center has QoS value of s, the prediction is computed

using the following equation:

r̂a,s = rc,s +
∑k

j=1 Sim′(a, c j)(rc j ,s − rc j .)
∑k

j=1 Sim′(a, c j)
(22.20)

where rc j ,s is the QoS of service s provided by center c j , and rc j . is the average
QoS of center c j . The prediction is composed of two parts. One is the QoS value
of the active user’s region center rc,s ,which denotes the average QoS of service s
observed by this region users. The other part is the normalized weighted sum of
the deviations of the k most similar neighbors.
• Otherwise, we use the service QoS observed by the k neighbors to compute the

prediction. The more similar the active user a and the neighbor c j are, the more
weights the QoS of c j will carry in the prediction.

r̂a,s =

k∑

j=1

Sim′(a, c j)rc j ,s

k∑

j=1

Sim′(a, c j)

(22.21)

22.3.4 Time Complexity Analysis

We discuss the worst-case time complexity of the region-based Web service recom-
mendation algorithm. We analyze the two phases, region creation and QoS value
prediction respectively in Sect. 22.3.4.1 and 22.3.4.2. We assume the input is a full
matrix with n users and m Web services.

22.3.4.1 Time Complexity of Region Creation

Time complexity of calculating the median and MAD of each service is O(n log n).
For m services, the time complexity is O(mn log n). With MAD and median, we
identify the region-sensitive services from the service perspective. Since there are
at most n records for each service, the time complexity of each service is O(n)

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 577

using Definition 22.1. Therefore, the total time complexity of region-sensitive service
identification is O(mn log n + mn) = O(mn log n).

In terms of the region aggregation part, we assume there are l0 regions in the
beginning. Since there are at most m services used by both regions, the time com-
plexity of the region similarity is O(m) using Eq. (22.3), and the complexity for
computing similarity matrix C is O(l2

0m).
The aggregation of two regions will execute at most l0 − 1 times, in case that

all regions are non-sensitive, extremely correlate to each other and finally aggregate
into one region. In each iteration, we first compare at most l0 − 1 heads of the
priority queues to find the most similar pairs. Since the number of regions that can be
aggregated decreases with iteration, the real search time will be less than l0 − 1 the
following iterations. For the selected pair of regions, we calculate the new center and
update their similar regions. Because the number of users involved in the two regions
are uncertain, we use the number of all users as the upper bound and the complexity
is O(mn log n). The insertion and deletion of a similar region is O(log -l0), since
we employ the priority queue to sort similar regions. Thus, the time complexity is
O(l2

0(log l0 + mn log n)) = O(l2
0mn log n).

As the above steps are linearly combined, the total time complexity of the offline
part is O(l2

0mn log n).

22.3.4.2 Time Complexity of QoS Prediction

Let l1 be the number of regions after the region creation. To predict QoS value
for an active user, O(l1) similarity calculations between the active user and region
centers are needed, each of which takes O(m) time. Therefore the time complexity
of similarity computation is O(l1m).

For each service the active user has not evaluated, the QoS value prediction
complexity is O(l1), because at most l1 centers are employed in the prediction as
Eqs. (22.20) and (22.21) state. There are at most m services without QoS values, so
the time complexity of the prediction for an active user is O(l1m). Thus the time
complexity for online phase including similarity computation and missing value pre-
diction is O(l1m) ≈ O(m) (l1 is rather small compared to m or n). Compared to
the memory-based CF algorithm used in previous work with O(mn) online time-
complexity, our approach is more efficient and well suited for large dataset.

22.4 Experiments

22.4.1 Experiment Setup

In this experiment, 21,197 publicly available Web services are crawled from three
sources (1) well-known companies (e.g., Google, Amazon, etc.); (2) portals listing
publicly available Web services (e.g., xmethods.net, webservicex.net, etc.); and (3)

578 X. Chen et al.

Web service searching engines (e.g., seekda.com, esynaps.com, etc.). 18,102 Web
services stubs with 343,917 Java classes are generated using WSDL2Java tool of
Axis2 package. Failures to generate client stub are mainly caused by network con-
nection problems (e.g., connection timeout, HTTP 400, 401, 403, 500, 502 and 503),
FileNotFoundException and InvalidWSDLFiles.

To monitor Web service performance, we randomly select 100 Web services
located in 22 countries for our experiments. 150 computers in 24 countries from
Planet-Lab [7] are employed to monitor and collect QoS information of the selected
Web services. The result set contains about 1.5 millions Web service invocation
records.

By processing the experimental results, we obtain a 150× 100 user-item matrix,
where each entry in the matrix is a vector including two QoS values, i.e., response
time and failure rate. Response time represents the time duration between the client
sending a request and receiving a response, while failure rate represents the ratio
between the number of invocation failures and the total number of invocations. In our
experiments, each service user invokes each Web service for 100 times. Figure 22.3a,
b show the value distributions of response time and failure rate of the 15,000 entries
in the matrix, respectively. Figure 22.3a shows that the means of response times of
most entries are smaller than 5000 milliseconds and different Web service invoca-
tions contain large variances in real environment. Figure 22.3b shows that failure
probabilities of most entries (85.68 %) are less than 1 %, while failure probabilities
of a small part of entries (8.34 %) are larger than 16 %. We divide the 150 service
users into two parts, one part as training users and the other part as active users.
For the training matrix, we randomly remove entries to generate a series of sparse
matrices (e.g., with density 10, 20 %, ect.). For an active user, we also randomly
remove several entries and name the number of remaining entries as given number,
which denotes the number of entries (QoS values) provided by the active user. The
original values of the removed entries are used as the expected values to study the
prediction accuracy.

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2
x 10

4

Mean of Response Time

S
ta

nd
ar

d
D

ev
ia

tio
n

<0.01 0.01−0.02 0.02−0.04 0.04−0.08 0.08−0.16 >0.16
0

2000

4000

6000

8000

10000

12000

14000

Values of Failure Probabilities

N
um

be
rs

 o
f I

nv
oc

at
io

ns
 85.68% values are smaller than 0.01

8.34% values are larger than 0.16

(a) (b)

Fig. 22.3 Value distributions of the user-item matrix

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 579

We use Mean Absolute Error (MAE) to measure the prediction quality of the
recommendation algorithms. MAE is the average absolute deviation of predictions
to the ground truth data. Smaller MAE indicates better prediction accuracy.

M AE =
∑

i, j |ri, j − r̂i, j |
N

, (22.22)

where ri, j denotes the expected QoS value of Web service j observed by user i , r̂i, j is
the predicted QoS value, and N is the number of predicted values. MAE reflects how
close predictions are to the eventual outcomes on average, which gives an overview
of the prediction quality.

22.4.2 WSRec Performance Evaluation

To study the prediction performance, we compare our approach (WSRec) with user-
based prediction algorithm using PCC (UPCC) [3], and item-based algorithm using
PCC (IPCC) [27]. UPCC employs similar users for QoS performance prediction
(Eqs. (22.1) and (22.7)), while IPCC employs similar Web services for prediction
(Eqs. (22.2) and (22.8)).

Table 22.2 shows the MAE result of different prediction methods on response
time and failure rate employing matrices with 10, 20, and 30 % density. We vary the
number of QoS values (given number) provided by the active user from 10, 20 to 30
(named as G10, G20, and G30 in Table 22.2). We also vary the number of training
users as 100 and 140. We set λ = 0.1, since the item-based approach achieves
better prediction accuracy than the user-based approach in our Web service QoS
dataset. The detailed investigation of λ value setting will be shown in Sect. 22.4.2.2.

Table 22.2 MAE performance comparison (smaller MAE value means better prediction accuracy)

Training users = 100 Training users = 140

Response time Failure rate Response time Failure rate
Den % Method G10 G20 G30 G10 % G20 % G30 % G10 G20 G30 G10 % G20 % G30 %

UPCC 1148 877 810 4.85 4.20 3.86 968 782 684 4.11 3.47 3.28
IPCC 768 736 736 2.24 2.16 2.21 585 596 605 1.39 1.33 1.42

10 WSRec 758 700 672 2.21 2.08 2.08 560 533 500 1.36 1.26 1.24
UPCC 904 722 626 4.40 3.43 2.85 794 626 540 3.93 2.96 2.43
IPCC 606 610 639 2.01 1.98 1.98 479 509 538 1.17 1.22 1.28

20 WSRec 586 551 546 1.93 1.80 1.70 445 428 416 1.10 1.08 1.07
UPCC 915 671 572 4.25 3.25 2.58 803 576 491 3.76 2.86 2.06
IPCC 563 566 602 1.84 1.83 1.86 439 467 507 1.10 1.12 1.17

30 WSRec 538 504 499 1.78 1.69 1.63 405 385 378 1.05 1.00 0.98

580 X. Chen et al.

Each experiment is run for 50 times and the average MAE value is reported. The
experimental results of Table 22.2 shows that:

• WSRec method consistently outperforms other algorithms under all experimental
settings.
• The performance of all approaches enhances significantly with the increase of

matrix density, the number of training users as well as the number of QoS values
provided by active users.
• The item-based approach (IPCC) outperforms the user-based approach (UPCC).

This observation indicates that similar Web services provide more information to
the prediction than similar users do.

22.4.2.1 Impact of Missing Value Prediction

The missing value prediction in Sect. 22.2.2.2 makes use of the similar users and
similar items to predict the missing values of the training matrix to make it denser.
To study the impact of the missing value prediction, we implement two versions of
WSRec. One version employs missing value prediction (WSRec*), while the other
version does not (WSRec). We vary the given number of the active users from 5 to
50 with a step of 5 and vary the values of training users from 20 to 140 with a step
value of 20. We set densi ty = 10 % and T opK = 10, which means that the top 10
neighbors will be employed for value prediction.

Figure 22.4 shows the experimental results, where Fig. 22.4a–b show the exper-
imental results of response time and Fig. 22.4c–d show the experimental results of
failure rate. Figure 22.4 shows that predicting the missing values of the training
matrix will improve the overall prediction accuracy.

22.4.2.2 Impact of λ

Different datasets have different data characteristics. Parameter λmakes our predic-
tion method feasible and adaptable to different datasets. If λ = 1, we only extract
information from similar users, and if λ = 0, we only consider valuable information
from similar services. In other cases, we leverage both similar users and services to
predict missing values for active users.

To study the impact of λ on our collaborative filtering method, we set Top K = 10
and training users = 140. We vary the value of λ from 0 to 1 with a step of 0.1.
Figure 22.5a, c show the results of given number = 10, given number = 20 and
given number = 30 with 20 % density training matrix of response time and failure
rate, respectively. Figure 22.5b, d show the results of densi ty = 10 %, densi ty =
20 % and densi ty = 30 % with given number = 20 of response time and failure
rate, respectively.

The experiment shows that λ impacts the recommendation results significantly,
and a proper λ value will provide better prediction accuracy. For both the response

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 581

5 10 15 20 25 30 35 4045 50
600

650

700

750

800

850

900

Given Number

M
A

E
Response Time

WSRec Without Missing Value Predction
WSRec With Missing Value Prediction

20 40 60 80 100 120 140
400

600

800

1000

1200

1400

Train User Number

M
A

E

Response Time

WSRec Without Missing Value Predction
WSRec With Missing Value Prediction

5 10 15 20 25 30 35 40 45 50
0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

Given Number

M
A

E

Failure−rate

WSRec Without Missing Value Predction
WSRec With Missing Value Prediction

20 40 60 80 100 120 140
0.015

0.02

0.025

0.03

0.035

0.04

0.045

Train User Number

M
A

E

Failure−rate

WSRec Without Missing Value Predction
WSRec With Missing Value Prediction

(a) (b)

(d)(c)

Fig. 22.4 Impact of the training matrix prediction

time and failure rate, similar Web services are more important than similar users
in prediction QoS when limited QoS values are given by active users, while the
similar users become more important when more QoS values are available from
active users. As shown in Fig. 22.5b, d, with the given number of 20, all the three
curves (Density 10, 20, and 30 %) of response time and failure rate obtain the
best prediction performance with the same λ value (λ = 0.2 for response time and
λ = 0 for failure rate), indicating that the optimal λ value is not influenced by the
training matrix density.

22.4.3 Region-Based Recommender System Performance
Evaluation

As mentioned in Sect. 22.4.1, QoS records are collected by 150 nodes from the Planet-
Lab. For each node, there are more than 100 QoS profiles, and each profile contains

582 X. Chen et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
400

450

500

550

600

650

700

750

800
Response Time

Lambda

M
A

E

Given 10
Given 20
Given 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
350

400

450

500

550

600

650

700

750
Response Time

Lambda

M
A

E

Density 10%
Density 20%
Density 30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.016

0.018

0.02

0.022

0.024

0.026

0.028
Failure−rate

Lambda

M
A

E

Given 10%
Given 20%
Given 30%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.015

0.02

0.025

0.03
Failure−rate

Lambda

M
A

E
Density 10%
Density 20%
Density 30%

(a) (b)

(d)(c)

Fig. 22.5 Impact of the lambda

the response time (also called Round Trip Time, RTT) records of 100 services. We
randomly extract 20 profiles from each node, and obtain 3000 users with RTTs
ranging from 2 to 31407 milliseconds.

We randomly remove 90 and 80 % RTTs of the initial training matrix to generate
two sparse matrices with density 10 and 20 % respectively. We vary the number of
RTT values given by active users from 10, 20 to 30. The removed records of active
users are used to study the prediction accuracy. In this experiment, we set μ = 0.3,
λ = 0.8, and top− k = 10. To get a reliable error estimate, we use 10 times 10-fold
cross-validation [32] to evaluate the prediction accuracy and report the average MAE
value.

Table 22.3 shows the prediction performance of different methods employing the
10 and 20 % density training matrix. It shows that our method (RBCF) significantly
improves the prediction accuracy, and outperforms others consistently. The perfor-
mance of UPCC, WSRec and our approach enhances significantly with the increase
of matrix density as well as the number of QoS values provided by active users (given
number).

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 583

Table 22.3 MAE comparison on response time (smaller value means better performance)

Density = 10% Density = 20%

Method G10 G20 G30 G10 G20 G30
IPCC 1179.32 1170.73 1160.45 1104.02 1094.63 1086.08
UPCC 1280.95 1145.80 1085.85 1167.84 846.54 674.32
WSRec 976.01 805.60 772.34 968.69 788.37 742.15
RBCF 638.21 624.51 623.90 573.85 560.13 556.75

0

0.5

1

00.51
0

10

20

30

40

50

60

miulambda

N
um

be
r

of
 r

eg
io

ns

10

15

20

25

30

35

40

45

50

(a)

0

0.5

1

0
0.5

1

400

500

600

700

800

900

1000

lambda
miu

M
A

E

500

550

600

650

700

750

800

850

900

(b)

Fig. 22.6 Impact of thresholds λ and μ. a Impact on the number of regions. b Impact on the
prediction performance (MAE)

22.4.3.1 Impact of λ and μ

In region creation phase, the two thresholds λ and μ play a very important role
in determining the number of regions and can impact the final performance of the
prediction. As mentioned in Sect. 22.3.2.2, only regions with similarity higher than
μ and sensitivity less than λ can be aggregated into one region. We test the impact
of λ and μ on a sparse matrix with 2700 training users and 300 active users. We
set densi ty = 0.2, given = 10 and employ all the neighbors with positive PCC
for QoS prediction. We vary the two thresholds λ and μ both from 0.1 to 0.9 with a
step of 0.1. Figure 22.6 shows how the two thresholds affect the number of regions
and the final prediction accuracy. It shows that lower μ and higher λ result in fewer
regions, but fewer regions does not necessarily mean better prediction accuracy.
For this dataset, better prediction accuracy is achieved with higher λ and μ. Note
that the optimal value of λ is related to the sensitivity of the original regions at the
outset. Figure 22.7 shows the distribution of the region sensitivity before aggregation.
It shows that the sensitivity of most regions (81.3 %) is less than 0.1, while the
sensitivity of a few regions (4.67 %) is around 0.8. Higher λ and μ allow very
similar regions with high sensitivity to be aggregated and achieve good performance
in this experiment. Figure 22.8 shows the relation betweenμ and prediction accuracy
with training matrix density 0.2, 0.5 and 1. We employ all the neighbors with positive
PCC values for QoS prediction and set λ = 1, so that we do not consider the factor

584 X. Chen et al.

Fig. 22.7 The distribution of
region sensitivity

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Region sensitivity

N
um

be
r

of
 r

eg
io

ns

Fig. 22.8 The distribution of
region sensitivity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
350

400

450

500

550

600

Region similarity

M
A

E

density 0.2
density 0.5
density 1.0

of sensitivity in region aggregation. Similarity becomes the single factor. Obviously,
for denser matrix, with higher μ we obtain a set of coherent regions, and better
prediction accuracy.

22.5 Related Work

22.5.1 Collaborative Filtering

Collaborative Filtering is firstly proposed by Rich [25] and widely used in commercial
recommender systems, such as Amazon.com [4, 17, 19, 24]. The basic idea of CF is to
predict and recommend the potential favorite items for a particular user by leveraging
rating data collected from similar users. Essentially, CF is based on processing the

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 585

user-item matrix. Breese et al. [3] divide the CF algorithms into two broad classes:
memory-based algorithms and model-based algorithms. The most analyzed examples
of memory-based collaborative filtering include user-based approaches [3, 10, 14],
item-based approaches [8, 17, 27], and their fusion [37, 31]. User-based approaches
predict the ratings of active users based on the ratings of their similar users, and
item-based approaches predict the ratings of active users based on the computed
information of items similar to those chosen by the active users. These algorithms
are easy to implement, require little or no training cost, and can easily take new
users’s ratings into account. However, memory-based algorithms cannot cope well
with large number of users and items, since their online performance is often slow.

Model-based CF algorithms learn the model from the dataset using statistical and
machine learning techniques. Examples include clustering model [33], latent seman-
tic models [11, 12] and latent factor model [5]. These algorithms can quickly generate
recommendations and achieve good online performance. However, the model must
be performed anew when new users or items are added to the system.

22.5.2 Web Service Selection and Recommendation

Web service selection and recommendation has been extensively studied to facilitate
Web service composition in recent years. El Hadad et al. [9] propose a selection
method considering both the transactional properties and QoS characteristics of a
Web service. Hwang et al. [13] find that both composite and individual web ser-
vices constrain the sequences of invoking operations. They use finite state machine
to model the permitted invocation sequences of Web service operations, and propose
two strategies to select Web services that are likely to successfully complete the
execution of a given sequence of operations. Kang et al. [15] propose AWSR sys-
tem to recommend services based on users’ historical functional interests and QoS
preferences. Barakat [2] models the quality dependencies among services and pro-
pose a Web service selection method for Web service composition. Alrifai and Risse
[1] propose a method to meet a user’s end-to-end QoS requirement. Their method
consists of two steps: first, they use mixed integer programming (MIP) to find the
optimal decomposition of global QoS constraints into local constraints. After that
they use distributed local selection to find the best web services that satisfy the local
constraints. This approach achieves suboptimal results, but it is more efficient than
solutions based on global optimization.

A large amount of work has been done to apply CF to Web service recommenda-
tion. Shao et al. [28] use a user-based CF algorithm to predict QoS values. Work [16,
29] apply the idea of CF in their systems, and use MovieLens data for experimental
analysis. Combination of different type of CF algorithms are also used in Web ser-
vice recommendation. Zheng et al. [40] combine the user-based and item-based CF
algorithms to recommend Web services; They also integrate Neighborhood approach
with Matrix Factorization in work [39]. Qi [23] presents a strategy that integrates
matrix factorization with decision tree learning to bootstrap service recommenda-

586 X. Chen et al.

tion systems. Meanwhile, several work employs location information to Web service
recommendation. Chen et al. [6] first use a region-based CF algorithm to make
Web service recommendations. To help users know more about Web service perfor-
mance, they also propose a visualization method showing recommendation results
on a map . Lo et al. [18] employs the user location in matrix factorization model to
predict QoS values. Tang et al. [30] consider the impact of both user location and
Web service location on QoS values and propose a CF recommendation approach
based on that.

22.6 Conclusion and Future Work

We have presented two Web service recommendation approaches in this chapter. The
basic ideas of the two are the same: to predict Web service future QoS performance
and recommend the best one for active users by using historical QoS data from similar
users. The difference is how the two approaches find similar users. Neighborhood-
based approach searches users and Web services in the entire data set to find similar
ones. It is straightforward and easy to implement. Moreover, this approach can easily
handle new data (new users, Web services and submitted QoS values) by adding new
rows or columns to the data set. On the other hand, region-based approach leverages
location information to find similar users and achieves better online performance.
The drawback of this approach is that we need to recompute the region model when a
certain amount of new data coming in. For example, when one normal region becomes
sensitive or when a lot of new users go to one region and make it not coherent, we
will regenerate all the regions.

In our future work, we will consider several aspects to further improve the pro-
posed Web service recommendation approaches. In terms of the recommendation
accuracy, we find that contextual information can greatly influence Web service
QoS performance, such as server workload, network condition and the tasks that
users carry out with Web services (e.g., computation-intensive or I/O-intensive task).
Besides physical location, we will take these factors into account and refine the
steps of similarity computation and region aggregation. In terms of the experiment,
we use MAE to measure the overall recommendation accuracy currently. Simi-
lar to web page search results, users may only consider and try the top three or
five recommended services. Thus improving the accuracy of top-k recommended
services is another task to investigate. Our future work also includes the study
of QoS characteristic. We plan to investigate the distribution of response time
and the correlation between different QoS properties such as response time and
reliability.

22 QoS-Aware Web Service Recommendation via Collaborative Filtering 587

References

1. Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient QoS-
aware service composition. In: Proceedings of the 18th International Conference on World
Wide Web (WWW’09), pp. 881–890 (2009)

2. Barakat, L.: Efficient correlation-aware service selection. In: Proceedings of the 19th Interna-
tional Conference on Web Services (ICWS’12), pp. 1–8 (2012)

3. Breese, J.S., Heckerman, D., Kadie C.: Empirical analysis of predictive algorithms for col-
laborative filtering. In: Proceedings of the 14th Annual Conference Uncertainty in Artificial
Intelligence (UAI’98), pp. 43–52 (1998)

4. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap.
Inter. 12(4), 331–370 (2002)

5. Canny J.: Collaborative filtering with privacy via factor analysis. In: Proceedings of the 25th
International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’02), pp. 238–245 (2002)

6. Chen, X., Zheng, Z., Liu, X., Huang, Z., Sun, H.: Personalized QoS-aware web service recom-
mendation and visualization. IEEE Trans. Serv Comput. 6(1), 35–47(2013)

7. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: Plan-
etlab: an overlay testbed for broad-coverage services. ACM SIGCOMM Comput. Commun.
Rev. 33(3), 3–12 (2003)

8. Deshpande, M., Karypis, G.: Item-based top-n recommendation. ACM Trans. Inf. Syst. 22(1),
143–177 (2004)

9. El Hadad, J., Manouvrier, M., Rukoz, M.: TQoS: transactional and QoS-aware selection algo-
rithm for automatic Web service composition. IEEE Trans. Serv. Comput. 3(1), 73–85 (2010)

10. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing
collaborative filtering. In: Proceedings of the 22nd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’99), pp. 230–237 (1999)

11. Hofmann, T.: Collaborative filtering via gaussian probabilistic latent semantic analysis. In:
Proceedings of the 26th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’03), pp. 259–266 (2003)

12. Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22(1),
89–115 (2004)

13. Hwang, S., Lim, E., Lee, C., Chen, C.: Dynamic web service selection for reliable web service
composition. IEEE Trans. Serv. Comput. 1(2), 104–116 (2008)

14. Jin, R., Chai, J.Y., Si, L.: An automatic weighting scheme for collaborative filtering. In: Pro-
ceedings of the 27th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’04), pp. 337–344 (2004)

15. Kang, G., Liu, J., Tang, M., Liu, X., Cao, B., Xu, Y.: AWSR: active web service recommendation
based on usage history. In: Proceedings of the 19th International Conference on Web Services
(ICWS’12), pp. 186–193 (2012)

16. Karta, K.: An investigation on personalized collaborative filtering for web service selection.
Honours Programme thesis, University of Western Australia, Brisbane (2005)

17. Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative
filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

18. Lo, W., Yin, J., Deng, S., Li, Y., Wu, Z.: Collaborative web service QoS prediction with location-
based regularization. In: Proceedings of the 19th International Conference on Web Services
(ICWS’12), pp. 464–471 (2012)

19. Ma, H., King, I., Lyu, M.R.: Effective missing data prediction for collaborative filtering. In:
Proceedings of the 30th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR’07), pp. 39–46 (2007)

20. Manning, C.D., Raghavan, P., Schtze H.: An Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2009)

588 X. Chen et al.

21. McLaughlin M.R., Herlocker J. L.: A collaborative filtering algorithm and evaluation metric
that accurately model the user experience. In: Proceedings of the 27th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR’04), pp.
329–336 (2004)

22. Ouzzani, M., Bouguettaya, A.: Efficient access to web services. IEEE Internet Comput. 8(2),
34–44 (2004)

23. Qi, Y.: Decision tree learning from incomplete QoS to bootstrap service recommendation. In:
Proceedings of the 19th International Conference on Web Services (ICWS’12), pp. 194–201
(2012)

24. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architec-
ture for collaborative filtering of netnews. In: Proceedings of ACM Conference on Computer
Supported Cooperative, Work, pp. 175–186 (1994)

25. Rich, E.: User modeling via stereotypes. Cognitive Sci. 3(4), 329–354 (1979)
26. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic Qos and soft contracts for

transaction-based web services orchestrations. IEEE Trans. Serv. Comput. 1(4), 187–200
(2008)

27. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommen-
dation algorithms. In: Proceedings of the 10th International Conference on World Wide Web
(WWW’01), pp. 285–295 (2001)

28. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized qos prediction for web
services via collaborative filtering. In: Proceedings of the 5th International Conference on Web
Services (ICWS’07), pp. 439–446 (2007)

29. Sreenath, R.M., Singh, M.P.: Agent-based service selection. J. Web Seman 1(3), 261–279
(2003)

30. Tang, M., Jin, Y., Liu, J., Liu, X.: Location-aware collaborative filtering for QoS-based ser-
vice recommendation. In: Proceedings of the 19th International Conference on Web Services
(ICWS’12), pp. 202–209 (2012)

31. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying user-based and item-based collaborative
filtering approaches by similarity fusion. In: Proceedings of the 29th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’06), pp. 501–508
(2006)

32. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, vol.
2. Elsevier, Amsterdam (2005)

33. Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yu, Y., Chen, Z.: Scalable collaborative fil-
tering using cluster-based smoothing. In: Proceedings of the 28th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’05), pp. 114–121
(2005)

34. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with end-to-end
qos constraints. ACM Trans. Web 1(1), 1–26 (2007)

35. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware
middleware for web services composition. IEEE Trans. Softw Eng 30(5), 311–327 (2004)

36. Zhang, L.-J., Zhang, J., Cai, H.: Services Computing. Springer and Tsinghua University Press,
New York and Beijing (2007)

37. Zheng, Z., Ma, H., Lyu, M.R., King I.: Wsrec: a collaborative filtering based web service recom-
mender system. In: Proceedings of the 7th International Conference Web Services (ICWS’09),
pp. 437–444 (2009)

38. Zheng, Z., Zhang, Y., Lyu, M.: CloudRank: A QoS-Driven component ranking framework
for cloud computing. In: Proceedings of the International Symposium Reliable Distributed
Systems (SRDS’10), pp. 184–193 (2010)

39. Zheng, Z., Ma, H., Lyu, M., King, I.: Collaborative web service QoS prediction via neighbor-
hood integrated matrix factorization. IEEE Trans. Serv. Comput. (2011)

40. Zheng, Z., Ma, H., Lyu, M., King, I.: Qos-aware web service recommendation by collaborative
filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

Chapter 23
On Bootstrapping Web Service
Recommendation

Qi Yu

Abstract We present a novel framework to bootstrap Web Service recommendation.
Service recommendation has become an effective means to achieve personalized
service selection. It leverages past user-service interaction information to accu-
rately predict user preference on previously unknown services. However, one key
impediment has been the incompetence of current service recommendation systems
in dealing with new users and services. Since a recommendation system has no
knowledge about new users and services, it may completely fail to provide any
recommendation or provide very poor ones. The proposed framework uses an agile
interview process to quickly profile new users and services. The interview is struc-
tured by a decision tree that enables adaptive, intuitive, and rapid querying of users
or services. We propose to exploit Non-negative Matrix Tri-Factorization (NMTF)
to simultaneously partition users and services into a set of user and service groups.
The group structure helps estimate the missing interaction information and also pro-
vides class labels to construct decision trees for both users and services, which will
be used in the interview process. We conduct extensive experiments to assess the
effectiveness of the proposed framework for bootstrapping service recommendation.

23.1 Introduction

Service Oriented Computing (SOC) offers an attractive paradigm for the provisioning
and consuming of computing resources across a wide spectrum of domains. The large
number of applications expected to heavily take advantage of SOC will lead to the
deployment of substantial software services on the Web. Many Web services may
also offer similar functionalities but vary from each other in terms of the Quality of
Service (QoS) they deliver [16]. The QoS is mainly made of user centered quality

Q. Yu (B)
Rochester Institute of Technology, Rochester, USA
e-mail: qi.yu@rit.edu

A. Bouguettaya et al. (eds.), Web Services Foundations, 589
DOI: 10.1007/978-1-4614-7518-7_23,
© Springer Science+Business Media New York 2014

590 Q. Yu

parameters and examples include availability, response time, throughput, and so on.
As the number of Web services is expected to grow far beyond the reach of any
manual effort, a key challenge is to automatically assess the QoS of large-scale Web
services. This will enable casual service users to easily select the Web service that
best fulfills their QoS requirements [17].

The distributed and dynamic SOC environment leads to very diverse QoS expe-
rience for service users. Users may locate in different network environments and
have different physical distances with the Web services they access. These discrep-
ancies imply that different users may receive significantly different QoS from the
same Web service. Service recommendation systems explicitly consider user dis-
crepancies by leveraging a Collaborative Filtering (CF) scheme [5, 11, 15, 18, 19].
CF assumes that users who have common QoS experiences with some services may
share similar experiences with other services. It exploits similar users’ QoS experi-
ence to accurately predict the QoS that an active user may receive from previously
unknown services. In this way, personalized service selection can be achieved that
enables users to conveniently choose the most suitable services from a large number
of previously unknown candidates.

Service recommendation systems rely on the historical user-service interaction
to make QoS predictions. The similarity between two users is measured based on
the QoS of their commonly invoked services. Similarly, the similarity between two
services is evaluated by the QoS received by the set of users that invoke both ser-
vices. Sufficient historical QoS information increases the chance to identify similar
users or services, which is central to the effectiveness of CF based recommendation
systems. Therefore, the more knowledge the system has on the users and services,
the more accurate QoS prediction can it provide. Existing service recommendation
systems perform reasonably well on warm-start users for which they possess ade-
quate information. One key impediment has been their incompetence in dealing with
new users and services, which is usually referred to as the cold start issue. As the
system possesses very little or no historical QoS information from new users and
services, it may fail to provide any recommendation or provide very poor ones.

Due to the wide adoption of SOC in both industry and government, new ser-
vices are being increasingly deployed and new users keep entering the SOC market.
Hence, effectively dealing with the cold-start issue is critical in attracting new users
and service providers, which is instrumental for SOC to reach its full potential. An
initial interview process is commonly used to elicit user’s information in many rec-
ommendation systems. User profiles are constructed based on the interview results,
which will then be used for recommendation. The initial interview process should be
both short and intuitive so that a new user won’t get bored or lost. Another desirable
feature of the interview process is to adaptively query the user based on the results
of prior interview questions [3, 9].

Decision trees have been employed to conduct initial interviews to bootstrap
e-commerce recommendation systems (e.g., Amazon and Netflix) [4, 21]. A ternary
tree is recursively constructed by selecting an item to split existing users assigned
to a tree node into its three child nodes along branches, labeled as “like”, “dislike”,
and “unknown”, respectively. During the interview, the new user is expected to rate

23 On Bootstrapping Web Service Recommendation 591

an item chosen by the decision tree at each given step. Based on the rating, she will
be directed to one of the child nodes. The interview continues until the new user is
assigned to a leaf node, which represents a homogeneous group of existing users.
These users are considered to be as the similar users and will be used to predict the
new user’s preferences on different items.

Bootstrapping service recommendation poses some new challenges, which hin-
der a direct application of ternary decision trees. In e-commerce recommendation
systems, users’ preferences on items are typically represented by few categorical
rating values, (e.g., 1–5). This enables a straightforward way to assign users into
different groups based on their ratings on an item. For example, the ternary tree
assigns a user into the “like” group if her rating is no less than a predefined threshold
(e.g., 3) and “dislike” group if otherwise. In contrast, the QoS data used in service
recommendation is described by continuous attributes (e.g., 1.2 s response time and
0.95 availability). Therefore, dividing users into groups is less intuitive and demands
some principled criterion.

Dealing with incomplete QoS data gives rise to the second key challenge. Since
an existing user may only invoke a limited number of services, only a small subset
of QoS data is observed. The ternary tree introduces the “unknown” tree node to
group together users with no ratings on the selected item. Users in this node share a
similar opinion on the item, which may be interpreted as either “not know” or “no
interest”. Correspondingly, no response is also allowed during the interview process,
which directs the new user into the “unknown” node. When bootstrapping service
recommendation, a new user is expected to invoke a small number of selected services
during the interview.1 Invoking a service always generates a response. Even when
the service is down, a “time out” message is returned, indicating that the service
is not available. This is different from rating an item (e.g., a product or a movie),
which may result in no response when the user does not know or has no interest
in the item. In contrast, no response is no longer an option during the interview for
service recommendation. If a ternary tree is used, the “unknown” nodes will never
be visited during the interview. This in essence ignores a large number of users that
are assigned into these nodes and hence dramatically reduces the chance to locate
similar users.

We develop a novel framework to bootstrap Web service recommendation. In a
preliminary version of this paper, we developed a strategy to provide high-quality
service recommendations for new service users [14]. One key extension of the pro-
posed framework has been the ability to deal with new services. In this way, it provides
a complete solution to the cold-start issue in service recommendation by tackling
both new users and services. In particular, we propose to exploit Non-negative Matrix
Tri-Factorization (NMTF) to simultaneously partition users and services into a set
of user and service groups. The group structure helps estimate the missing interac-
tion information and also provides class labels to construct decision trees for both
users and services. The decision tree is used to structure an initial interview that

1 The service invocation code can be wrapped as a small software toolkit that is easily accessed by
end users.

592 Q. Yu

enables adaptive, intuitive, and rapid querying of users or services. At the end of
the interview, a new user or service will be classified into one of the user or service
groups obtained by NMTF. Since the group is deemed to be comprised of users or
services that are similar to the new user or service, the QoS of the new user or service
can be predicted based on the QoS of its similar users or services. One challenging
issue that is particular to profiling new services is that the interview process requires
to query existing users. However, a selected user may not want to participate in the
interview process. The user groups resulted from NMTF enable us to choose alter-
native users that are similar to the selected users to work as surrogates in the decision
tree. Experimental results clearly demonstrate the effectiveness of the surrogate user
strategy in profiling new services.

The remainder of the paper is organized as follows. We review some existing
works that are most relevant to ours in Sect. 23.2. We describe in detail the pro-
posed framework for bootstrapping service recommendation systems in Sect. 23.3.
We assess the effectiveness of the proposed framework via a set of experiments in
Sect. 23.4. We conclude in Sect. 23.5.

23.2 Related Work

The ever increasing number of Web services demands systematic approaches to facil-
itate service users in efficiently and accurately retrieving services that match both
their functional and non-functional requirements. Collaborative Filtering (CF) based
techniques have been recently adopted to provide personalized service recommenda-
tion to users [5, 11, 18, 19]. Shao et. al. present a service recommendation system by
assuming that similar users tend to receive similar QoS from similar services [11].
This is in essence a standard user-based CF algorithm. Zheng et. al. enhance the
user-based approach by integrating item-based CF, which results in a hybrid algo-
rithm with better prediction accuracy [19]. Complementary information, such as
users’ locations [1, 2], invocation frequencies of services [10], and query histories
of users [18], has also been leveraged to improve the quality of recommendation.

Both user- and item-based approaches follow the neighborhood centric strategy
in CF, which explores the local neighborhood to identify similar users or items for
recommendation. Zheng et. al. recently proposed a model based CF algorithm that
achieves higher prediction accuracy [20]. The proposed algorithm uses the user-
based approach as a precursor to identify top-k similar users. Based on the user
neighborhood information, matrix factorization is employed to construct a global
model, which can be used to predict unobserved QoS data. Different from our strat-
egy, an unconstrained version of matrix factorization is used, which does not discover
the user groups.

All existing service recommendation approaches focus on predicting QoS for
warm-start users. To our best knowledge, there is no existing work that provides a
systematic approach for cold-start service recommendation. Dealing with cold-start
users has received considerable attention in e-commerce recommendation systems.

23 On Bootstrapping Web Service Recommendation 593

An initial interview has been suggested as an effective way to quickly build new
users’ profiles. Based on how the seed questions are selected, there are two types of
interviews. The first type of interview chooses a static seed set based on some princi-
pled criteria, such as coverage [3], popularity [8], and discriminative power [9]. Users
always answer a fixed set of questions, which does not fully leverage the interactive
nature of the interview process. Recent works propose to adaptively query users based
on their responses to the prior interview questions [9, 4, 21]. Decision trees appear
as an ideal vehicle to carry out the adaptive initial interview. A ternary tree suits
perfectly for the rating-based recommendation systems, which are commonly used
in e-commerce. As discussed in Sect. 23.1, service recommendation poses some new
challenges that make a ternary tree inapplicable. In particular, since the “unknown”
nodes in a ternary tree will never be visited during the interview, valuable infor-
mation carried by existing users cannot be fully leveraged to provide high quality
recommendations.

23.3 Cold-start Service Recommendation

We present the framework for bootstrapping service recommendation in this section.
The proposed framework simultaneously deals with both new users and services. It
exploits Non-negative Matrix Tri-Factorization (NMTF) to discover the user and ser-
vice group structures from a set of incomplete QoS data that captures the historical
user-service interactions. The tree learning algorithm then constructs two decision
trees to partition the users and services, respectively, to fit the group structure dis-
covered by NMTF. The simple structure and interpretability of the decision tree
serve ideally for an initial interview process, which adaptively queries new users and
services for rapid profiling.

23.3.1 NMTF for User and Service Group Discovery

Before delving into the technical details, we first describe the symbols and notations
that are used throughout the paper. Assume that there are n existing users and m Web
services. The QoS attribute (e.g., response time, reliability, and availability) under
consideration takes positive real values. We use a matrix A ∈ R

m×n+ to denote the
QoS data, where Ai j represents the QoS that service i delivered to user j . In this
regard, the i-th row of A represents service si while the j-th column of A represents
user u j . This essentially models user u j as an m-dimensional feature vector, in which
each element u jq signifies u j ’s interaction with sq .

NMTF computes three low-rank matrices, the service coefficient matrix F ∈ R
m×k+ ,

the prototype matrix B ∈ R
k×l+ , and the service coefficient matrix G ∈ R

n×l+ to
approximate the original QoS matrix A, i.e., A ≈ F BG ′. In particular, the k× l pro-

594 Q. Yu

totype matrix B is deemed to provide a compact representation for the original QoS
matrix A with a k× l block structure. In this regard, the columns of B, {b1, ..., bl},
correspond to the l different types of users and the rows of B, {b′1, ..., b′k}, correspond
to the k different types of services.

Let vq = Fbq denote the q-th column vector of V = F B, where q = 1, ..., l. The
m dimensional vector vq ∈ R

m reflects how each service interacts with the q-th type
of users. Therefore, the columns of V are considered to form a new basis, where each
basis vector captures the QoS related latent feature of one (out of l) type of users.
Consequently, the user coefficient matrix G is the new representation of the users
under this new basis. G can also be regarded as a projection of A onto the latent user
feature space V . More specifically,

a j ≈
l∑

q=1

G jqvq (23.1)

where a j is the j-th column vector in A, representing user u j . Equation (23.1) shows
that each user vector a j is approximated by a linear combination of the column
vectors in V weighted by the components of G. Similarly, the service coefficient
matrix F is a projection of A′ onto the latent service feature space R′ = G B ′,2 i.e.,
a′i ≈

∑k
p=1 Fipr ′p.

The latent user feature space V together with the new representation matrix G
should provide a good approximation of the original QoS data matrix A. Since only
a small subset of QoS data is observed, we introduce a weight matrix W , where
Wi j = 1 if Ai j is observable and Wi j = 0 otherwise. Therefore, we compute F, B,
and G by solving the following optimization problem:

min
F ≥ 0,G ≥ 0

J = ∥
∥W ; (A − F BG ′)

∥
∥2 (23.2)

=
m∑

i=1

n∑

j=1

Wi j

(
Ai j −

(
F BG ′

)
i j

)2
(23.3)

where ; is component-wise matrix product and || · || is matrix norm. Since all the
components of A take non-negative values, we also enforce a non-negative constraint
on matrices F, B, and G. As can be seen from Eq. (23.1), the nonnegative constraint
ensures that a user vector is an additive linear combination of the new basis vectors.
This allows a more intuitive interpretation than other matrix factorization approaches,
such as Singular Value Decomposition (SVD), where negative values are allowed in
the matrix components.

2 Along the same lines, a′i , the i-th row vector in A, representing service si , is approximated by a

linear combination of the row vectors in BG ′ weighted by the components of F : a′i ≈
∑k

p=1 Fipr ′p .
r ′p = b′pG ′ is the p-th row of BG ′, which reflects how each user interacts with the p-th type of
services

23 On Bootstrapping Web Service Recommendation 595

23.3.2 Decision Tree Learning for User and Service Profiling

Due to its simplicity, interpretability, and the ability to adaptively query users,
decision tree becomes an ideal tool to perform the initial interview via which a new
user’s profile can be constructed. As motivated in Sect. 23.1, the continuous nature of
the QoS attributes and the limited observable QoS data pose key challenges to build
a decision tree. The latent feature space discovered via matrix factorization carries
rich information that is instrumental to understand the interaction patterns between
users and services. It plays a critical role in learning a decision tree from a set of
incomplete QoS data. More specifically, the latent feature space enables us to:

• discover homogeneous user and service groups that contain similar users and
services;
• estimate the unobserved entries in the QoS matrix A.

Since the matrix G (or F) is a projection onto the latent user (or service) feature
space, it naturally captures the user (or service) group structure. More intuitively,
users (or services) that share similar latent features should have similar representa-
tions in the latent feature space. To make sure that each user (or service) is assigned
to only one user (or service) group (i.e., hard group membership), we enforce con-
straints GG ′ = diag(|U1|, ..., |Ul |) and F F ′ = diag(|S1|, ..., |Sk |). This makes G
(or F) a user (or service) group indicator matrix:

G jq =
{

1 if u j ∈ Uq

0 otherwise
(23.4)

Fip =
{

1 if si ∈ Sp

0 otherwise
(23.5)

where Uq is the q-th user group and |Uq | denotes the number of users assigned to
the group. Similarly, Sp is the p-th service group and |Sp| denotes the number of
services assigned to the group. These constraints ensure that each row of G (or F)
has only one non-zero element, which denotes the group that the user (or service) is
assigned to.

The second key usage of the latent feature space is to estimate the missing QoS
entries. If the latent features indeed capture the interaction patterns between users
and services, they are expected to provide a good estimation of the unobserved QoS
data. More specifically, the QoS that an unknown service si will deliver to a user u j

can be estimated as:

Ai j ≈ Âi j =
k∑

p=1

k∑

q=1

VipG jq (23.6)

The j-th column vector of the completed matrix Â corresponds to user u j and
the j-th row vector of matrix G encodes the class (or group) label for the user. The
class labels from G allow us to exploit the classical information gain as the principled

596 Q. Yu

criterion to select services to be used as the tree nodes. Using the completed matrix Â
avoids the generation of “unknown” nodes, which are never visited during the initial
interview for service recommendation. Instead of a ternary tree, our tree learning
algorithm generates a binary decision tree, via which all existing user information
can be leveraged to construct a new user’s profile. To ensure a concise interview
process, we employ two strategies to control the depth of the tree. First, we stop
splitting the a node if the number users assigned to it is less than a predefined
threshold value. Second, we exploit a standard pruning process to merge and join
leaf nodes after the tree is fully grown.

Figure 23.1 shows an example decision tree constructed from a real-world QoS
dataset obtained from [19]. Each internal node of the tree represents a service. Based
on the QoS value, users are directed to one of its child nodes. For example, if the
response time that a user received from service s53 is less than 0.74 s, she will be
directed to child node s59. At this node, the response time of the user will be evaluated
against the service in the node. This process continues until the user reaches one of
the leaf nodes, which corresponds to one of the user groups.

In what follows, we present an important property of the binary decision tree as
constructed by following the above procedure. This helps justify why it can provide
high-quality service recommendations for cold-start users and services.

Theorem 23.1 A decision tree that exploits class labels provided by matrix G parti-
tions users into cohesive user groups, where G is computed by minimizing objective
function J with constraint in Eq. (23.4).

Proof Since each column vector of A corresponds to a user, we reformulate the
objective function J using column vectors of A.

Fig. 23.1 An example decision tree for new user interview

23 On Bootstrapping Web Service Recommendation 597

J =
n∑

j=1

∥
∥
∥
∥
∥
∥

w j ; [a j −
k∑

q=1

G jqvq]
∥
∥
∥
∥
∥
∥

2

(23.7)

=
n∑

j=1

∥
∥
∥
∥
∥
∥

k∑

q=1

G jq [w j ; (a j − vq)]
∥
∥
∥
∥
∥
∥

2

(23.8)

=
n∑

j=1

k∑

q=1

G jq
∥
∥w j ; (a j − vq)

∥
∥2 (23.9)

=
k∑

q=1

∑

u j ∈Uq

∥
∥w j ; (a j − vq)

∥
∥2 (23.10)

where w j is the j-th column of W and ◦ is element-wise vector product. Due
to Eq. (23.4) and the fact that one user is assigned to only one group, we have∑k

q=1 G jq = 1, which leads Eqs. (23.7) – (23.8). From Eqs. (23.8) – (23.9), we use

the fact G2
jq = G jq since G jq = 1 or 0. Finally, G jq = 1 only when u j ∈ Uq gives

Eq. (23.10).
Minimizing objective function J is equivalent to find the optimal set {(Uq , vq)|q ∈

(1, k)} that minimizes Eq. (23.10). We know that Uq denotes the q-th user group and
the group membership is encoded by G. If we can find out what the latent feature
vector vd denotes, we are able to interpret what matrix factorization actually achieves
under constraint specified in Eq. (23.4). Since the optimal V minimizes J , in order
to find out V , we take the partial derivative of J with respect to V :

∂ J

∂V
= −2(W ; A)G + 2(W ; (V G ′))G (23.11)

= −2(W ; (−A + V G ′))G (23.12)

Setting ∂ J
∂V = 0 gives −A + V G ′ = 0. Multiplying both sides by G gives

V G ′G = AG. Using the fact GG ′ = diag(|U1|, ..., |Uk |), we get

|Uq |vq =
n∑

j=1

G jqa j (23.13)

vq = 1

|Uq |
n∑

j=1

G jqa j (23.14)

= 1

|Uq |
∑

u j ∈Uq

G jqa j (23.15)

We exploit Eq. (23.4) in the last step of derivation.

598 Q. Yu

Equation (23.13) reveals that vq is actually the centroid of the q-th user group.
Hence, we conclude that minimizing J with constraint in (23.4) is equivalent to per-
forming k-means clustering on the existing users. The result is a set of cohesive user
groups with minimal total squared deviation from their group means (or centroids).
As G encodes the group memberships, our tree learning algorithm aims to construct
a decision tree that partitions users into the same set of cohesive user groups.

Theorem 23.2 A decision tree that exploits class labels provided by matrix F par-
titions services into cohesive service groups, where F is computed by minimizing
objective function J with constraint in Eq. (23.5).

23.3.2.1 Profiling New Users and Services

Profiling a new user is straightforward by following an initial interview structured
by a decision tree like the one in Fig. 23.1. During the interview, the user invokes
the services on the tree nodes until being directed into one of the leaf nodes, which
represents a user group. The new user hence is expected to share similar QoS expe-
rience with other users in the same group. To make the interview process painless,
the service invocation code can be wrapped as a small software toolkit that is easily
accessed by end users.

Profiling a new service, on the other hand, is a little bit more complicated. In the
decision tree for new service interview, each internal tree node represents a user.
During the interview process, the users on the tree nodes need to invoke the new
service and report their QoS. Since a number of users are involved in the interview
process, it will take longer than interviewing new users, which just invokes a set of
services. In fact, rapidness of the interview process is not critical for profiling new
services as it makes sense that introducing a new service into the market may take
some time. However, the key issue is that there might be some users that do not
want to participate in the interview. One possible solution is to adopt some bonus
mechanism to stimulate users. In addition, we propose to use a surrogate user strategy
to improve the response rate of service users. The surrogate user strategy benefits
from the co-clustering nature of NMTF, which simultaneously clusters both users
and services. While the goal of new service profiling is to classify a new service
into one of the service groups obtained by NMTF, the user groups provide options
to choose alternative users when a selected user is not willing to participate in the
interview. More specifically, when a user ui fails to provide QoS information on
the new service st , we randomly choose another user u j from user group Uq , where
ui ∈ Uq , to replace ui . Since u j and ui are from the same user group, they are
expected to receive similar QoS from st . Therefore, it is highly probable that st

will be directed to the same path in the decision tree when u j is queried instead of
ui . This will have the effect of leading st to the same service group as when ui is
queried during the interview. Our experimental results in Sect. 23.4 demonstrate the
effectiveness of the surrogate user strategy.

23 On Bootstrapping Web Service Recommendation 599

23.3.3 Computing G, B, and F

Matrices G, B and F play key roles in both decision tree learning and cold-start
service recommendation. G, B and F can be derived by solving the optimiza-
tion problem in Eq. (23.2). However, minimizing J under constraints specified by
Eq. (23.4) and Eq. (23.5) is non-trivial. Since there is no analytical solution for that,
we develop an iterative algorithm to efficiently compute G, B and F .

The constraints in Eq. (23.4) and Eq. (23.5) require binary values on the compo-
nents of G and F , which makes the optimization problem unsolvable [12]. To resolve
this issue, we instead enforce the following constraints: G1 = 1 and F1 = 1. This
is equivalent to enforcing a soft group membership. Take the user group as an exam-
ple and the same idea is applied to the service group. From G1 = 1, we have
∑k

q=1 G jq = 1,∀ j ∈ [1, n]. Hence, G jq can be interpreted as the probability that

u j belongs to group Uq . User u j will be assigned to group Uq̂ , where

q̂ = arg max
q
{G jq |1 ≤ q ≤ k}

We incorporate these new constraints into objective function J as penalty terms,
which lead to the following objective function:

min
F ≥ 0,B ≥ 0,G ≥ 0

J (G, B, F) = ∥
∥W ; (A − F BG ′)

∥
∥2 + α||G1− 1||2 + β||F1− 1||2

(23.16)
In order to minimize J (G, B, F), the proposed iterative algorithm updates G, B and
F alternatively. That is, while J (G, B, F) is minimized with respect to G, B and
F will be fixed and vice versa. The update of G, B and F is performed by using a
set of update rules, which guarantee the convergence of the iterative algorithm. The
update rules are derived based on a set of auxiliary functions of objective function
J (G, B, F), which are formally defined as follows.

Definition 23.1 Z(G, G̃) is an auxiliary function of function J (G) if it satisfies the
following conditions for any G and G̃: Z(G, G̃) ≥ J (G); Z(G,G) = J (G) [6].

Now, let’s plug the auxiliary function into our iterative algorithm and see how we
can exploit it to derive the update rules. Let J (G) denote the part of J (G, F) that is
only relevant to G. Assume that {G(1), ...,G(t), ...} is a set of matrices obtained by
the iterative algorithm, where (t) denotes the t-th iteration. Assume that G is updated
using the following update rule:

G(t+1) = arg min
G

Z(G,G(t)) (23.17)

where G(t) and G(t+1) are matrix G at the t-th and (t +1)-th iterations, respectively.
It is straightforward to show that J (G) monotonically decreases under update rule
in Eq. (23.17):

600 Q. Yu

J (G(t)) = Z(G(t),G(t)) ≥ Z(G(t),G(t+1)) ≥ J (G(t+1))

Following the same lines, we can use similar update rules for B and F . Since the
iterative algorithm updates G, B and F in turn, we have

J (F (t), B(t),G(t)) ≥ J (F (t+1), B(t),G(t)) ≥ J (F (t+1), B(t+1),G(t))

≥ J (F (t+1), B(t+1),G(t+1))

As J (G, B, F) is apparently lower bounded, it is guaranteed to converge under the
above update rules. What remains is to derive the update rules, which requires to find
suitable auxiliary functions for J (G, B, F) and compute their global minima.

Theorem 23.3 Let

J (G) = ∥
∥W ; (A − F BG ′)

∥
∥2 + α||G1− 1||2 (23.18)

The auxiliary function of J (G) is given by

Z(G, G̃) = Z1(G, G̃)+ Z2(G, G̃) (23.19)

where,

Z1(G, G̃) =
∑

i j

Wi j

[

A2
i j − 2

∑

pq

Ai j Fip Bpq G̃ jq

(

1+ log
G jq

G̃ jq

)

+
∑

pq

[F BG̃ ′]i j Fip Bpq
G2

jq

G̃ jq

]

(23.20)

Z2(G, G̃) = α
∑

jq

(

[G̃1] j
G2

jq

G̃ jq

)

− α
∑

jq

2G̃ jq

(

1+ log
G jq

G̃ jq

)

+ nα (23.21)

The global minimum of Z(G, G̃) is

G jq = G̃ jq

[
[(W ; A)′F B] jq + α

[(W ; (F BG̃ ′))′F B + αG̃ E] jq

] 1
2

(23.22)

Proof Sketch It is straightforward to show that Z(G,G) = J (G). Furthermore,
J (G) has two quadratic terms. Applying Jensen’s inequality and inequality
x ≥ 1+ log x,∀x > 0 when expanding both terms, we get

23 On Bootstrapping Web Service Recommendation 601

∥
∥W ; (A − F BG ′)

∥
∥2 ≤ Z1(G, G̃) (23.23)

α||G1− 1||2 ≤ Z2(G, G̃) (23.24)

From Eqs. (23.23) and (23.24), we have Z(G, G̃) ≥ J (G). Hence, we prove that
Z(G, G̃) is an auxiliary function of J (G).

To show that Eq. (23.22) gives the global minimum of Z(G, G̃), we need to first
prove that Z(G, G̃) indeed has a global minimum. This can be achieved by showing
that Z(G, G̃) is a convex function on G. We compute the second order derivative of
Z(G, G̃) with respect to G, which gives the Hessian matrix of Z(G, G̃):

∂2 Z(G, G̃)

∂G jq∂G pr
= δ j pδqr

(
2[W ; AF B] jq G̃ jq + 2αG̃ jq

G2
jq

+ 2[W ; (F BG̃ ′)F B] jq + 2α[G̃ E] jq
G̃ jq

)

where δab = 1 when a = b and 0 otherwise. Hence, the Hessian is a diagonal
matrix with positive diagonal elements, which makes it positive definite. Therefore,
Z(G, G̃) is a convex function on G. To compute the global minimum, it is sufficient

to compute its local minimum. We set ∂Z(G,G̃)
∂G jq

= 0 and through some algebra, we
get Eq. (23.22).

Following the same lines, we can derive the update rules for F and B:

Fiq = F̃iq

[
[W ; ABG ′]i p + β

[W ; (F̃ BG ′)BG ′ + β F̃ E]i p

] 1
2

(23.25)

Bpq = B̃pq

[
[F ′(W ; A)G]pq

[F ′(W ; (F B̃G ′))G]pq

] 1
2

(23.26)

Having update rules (23.22), (23.25), and (23.26), the iterative algorithm essen-
tially updates F, B and G alternatively in each iteration. The algorithm continues
until it converges or a predefined number of iterations is reached.

23.4 Experiments

We carry out a set of experiments to evaluate the effectiveness of the proposed frame-
work for boostrapping service recommendation. The experiments are conduced on
a real-world QoS dataset that consists of 1.5 million service invocation records. 150
computer nodes from the Planet-Lab,3 which are located in over twenty countries, are

3 http://www.planet-lab.org

602 Q. Yu

leveraged to automatically invoke a hundred selected Web services. These services
are distributed across more than twenty countries. Each computer node invokes each
service for 100 times and the average Round-Trip Time (RTT) is used as the QoS
dataset in our experiments.

23.4.1 Experiment Design

We organize the QoS data into a 100× 150 matrix A, in which entry Ai j denotes the
averaged RTT that user j used to invoke service i . We randomly remove a certain
percentage (80–96 %) of entries from A to simulate a real-world QoS dataset, where
only a small subset of entries are observed. To assess the proposed bootstrapping
strategy, we follow a similar design as in [21], which splits users (or services) into
two disjoint subsets: the training set and the test set, consisting of 80 and 20 % users
(or services), respectively. We apply NMTF to the training set to discover the user and
service groups and estimate the missing QoS entires. We then construct the decision
tree for the initial interview. The actual RTT records of the test users are used to
simulate the results of invoking the services in the decision tree.

We employ Mean Absolute Error (MAE), one of the most widely used metric in
recommendation systems, to assess the quality of recommendation:

M AE =
∑

i, j

|Ai j − Âi j |
N

(23.27)

where Ai j and Âi j denote the actual and estimated RTT respectively. N is the total
number of estimated QoS entries. Since the RTT entries are randomly removed, all
the results reported below are obtained by computing the average over 20 runs. The
numbers of user and service groups are 30 and 20, respectively. The default value
for the penalty terms α and β are both set to 10. These default values will be used in
all the experiments unless specified otherwise.

23.4.2 Quality of Cold-start Recommendation

To our best knowledge, there is no existing work on providing service recommen-
dation for cold-start users. As discussed in Sect. 23.1, the ternary tree approach pre-
sented in [4, 21] is not suitable for the initial interview of service recommendation,
either. To demonstrate the effectiveness of the proposed bootstrapping strategy, we
implemented four representative collaborative filtering methods, including:

• the user based algorithms using both Pearson Correlation Coefficient (UPCC) and
cosine similarity (referred to as UCOS) as similarity measures [11];

23 On Bootstrapping Web Service Recommendation 603

• the item based algorithm using Pearson Correlation Coefficient (IPCC) as similarity
measure;
• the hybrid collaborative algorithm that combines both user and item based

approaches using their prediction accuracy as the aggregation weights (referred to
as WSRec) [19].
• the constrained matrix factorization model (referred to as NMTF), as discussed in

Sect. 23.3, in which Eq. (23.6) is utilized to make the prediction after the model is
constructed.

We apply the above methods to the warm-start users and use the obtained result
as the baseline to assess our cold-start performance. As indicated in [21], using a
ternary tree model, the cold-start performance is always worse than the warm-start
performance considering that more information is available for the warm-start users.
Therefore, the relative warm/cold start performance is a good indicator about the
effectiveness of the bootstrapping process.

Figure 23.2 compares the warm-start MAE performance from the four representa-
tive CF algorithms with the MAE performance for cold-start users from the proposed
bootstrapping framework (referred to as NMTF-DT). We vary the sparsity ratio of
the QoS matrix A from 80 to 96 % and achieve two important observations. First,
the cold-start performance of NMTF-DT outperforms the warm-start performance
of other algorithms in all cases. This clearly demonstrates the effectiveness of the
bootstrapping strategy. As can be seen later in Fig. 23.6, a new user only needs to
invoke few services (3–6 on average) during the interview process. This is usually
much smaller than the number of services invoked by a warm-start user. For example,
if the sparsity of A is 80 %, since we have 100 services in total, each existing user
invoked 20 services on average. The fundamental reason for this is that the integra-
tion of MF with decision tree learning identifies the most important few services
to invoke for the new user. The QoS collected from these services captures the key

Fig. 23.2 Cold-start user
MAE performance compari-
son

0.8 0.84 0.88 0.92 0.96
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sparsity ratio

M
A

E

MAE on Real QoS Data [New User]

NMTF−DT
NMTF
WSRec
UPCC
IPCC
UCOS

604 Q. Yu

(latent) features of the user. This is critical to discover the most similar user group,
which is used to predict the QoS from other services that are unknown to the new
user.

Second, as the sparsity of A increases, the performance advantage of NMTF-
DT becomes more significant. This is because the warm-start performance drops
quickly when less information is available for users. For a very sparse QoS dataset,
most users may invoke very few or even zero services. In fact, these algorithms
essentially suffer from the cold-start problem, which we aim to resolve in this
paper. The MAE performance of NMTF-DF also drops as sparsity increases because
it relies on the similar user groups to make the prediction. However, the performance
goes down much slower than other algorithms. It is also interesting to note that NMTF
suffers less than other algorithms for the cold-start issue. This also contributes to the
good performance of NMTF-DT, in which NMTF serves as a precursor of the entire
bootstrapping process.

Figure 23.3 shows the results on cold-start services. In this set of experiments, we
randomly choose 80 % rows from matrix A, which represent 80 % of the services,
and use these services as the training set. The remaining rows are used as the test
set. The results show a very similar trend as in Fig. 23.2. The MAE performance on
cold-start services is a little bit worse than the performance on cold-start users but it is
still comparable with the warm-start performance achieved by NMTF. Furthermore,
it outperforms NMTF when the data becomes very sparse.

Figure 23.4 demonstrates the effectiveness of the proposed surrogate user mecha-
nism for profiling new services. In this set of experiments, we randomly choose a user
from the query path and replace it with a user that is randomly chosen from the user
group where the original user belongs to. As can be seen, using the surrogate user
delivers a MAE performance, which is almost identical to using the original user. It
is also interesting to see that using the surrogate user sometimes even achieves better
MAE performance. This may be due to some noises that affect the QoS delivery

Fig. 23.3 Cold-start service
MAE performance compari-
son

0.8 0.84 0.88 0.92 0.96
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sparsity ratio

M
A

E

MAE on Real QoS Data [New Service]

NMTF−DT
NMTF
WSRec
UPCC
IPCC
UCOS

23 On Bootstrapping Web Service Recommendation 605

0.8 0.84 0.88 0.92 0.96
0.0395

0.04

0.0405

0.041

0.0415

0.042

0.0425

0.043

0.0435

Sparsity ratio

M
A

E

Effect of Surrogate Users

Original User
Surrogate User

Fig. 23.4 Effectiveness of surrogate users

to the original user. The surrogate user may not be affected by these noises, which
contributes to a better estimation of the QoS of the new service.

23.4.3 Impact of Parameters

We investigate the impact of two important parameters in this section, including the
height of the decision tree and the number of user groups. The sparsity ratio of A is
kept as 80 %.

We control the height of the decision tree by restricting the minimum num-
ber of services per leaf node, referred to as min_ leaf_ size. As shown in the left
chart of Fig. 23.5, when we vary min_ leaf_ size from 1 to 10, the average tree
height decreases from 13.36 to 6.16. The MAE performance on cold-start users also
decreases slowly as tree height decreases although there are some small fluctuations

13.36 13.32 10.96 10.18 8.72 8.4 7.76 7 6.36 6.16
0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

Average Height of the Tree

M
A

E

MAE Vs. Decison Tree Height

MAE on New Users

10.08 9.14 7.78 6.88 6.1 5.8 5.14 4.92 4.38 4.16
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Average Height of the Tree

M
A

E

MAE Vs. Decison Tree Height

MAE on New Services

Fig. 23.5 Impact of decision tree height

606 Q. Yu

due to the randomness in removing entries from A and the initialization of F, B and
G. A very similar trend is shown in the right chart of the figure, which gives the
result on cold-start services.

A service (or user) may appear multiple times in the decision tree. For example,
in Fig. 23.1, services S53, S59 and S54 all appear more than one times in the example
decision tree. Therefore, the number of services (or users) that need to be queried
by a new user (or service) during the interview is actually much smaller than the
tree height. Figure 23.6 reports the average number of service invocations versus the
min_ leaf_ size, which confirms our hypothesis. It is obvious only very small number
(3–6 on average) of services (or users) need to be queried to achieve good cold-start
recommendation performance.

Figure 23.7 shows the impact of the number of user and service groups. An optimal
MAE performance is reached when the number of groups is 20 for both new users
and new services. As the number of groups further increases, many smaller groups
will be generated. Restricted by the group size, similar users or services may be
spitted into different groups, which will lower the prediction accuracy.

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

Min Leaf Size

N
u

m
b

er
 o

f
S

er
vi

ce
s

Number of Service Invocations [New User]

Tree Height
Service Invocations

1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

9

10

11

Min Leaf Size

N
u

m
b

er
 o

f
S

er
vi

ce
s

Number of Service Invocations [New Service]

Tree Height
Service Invocations

Fig. 23.6 Number of service invocations

10 20 30 40 50 60 70 80
0.029

0.03

0.031

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

Number of User Groups

M
A

E

MAE Vs. Number of User Groups

MAE on New Users

10 20 30 40 50 60
0.038

0.039

0.04

0.041

0.042

0.043

0.044

0.045

0.046

Number of Service Groups

M
A

E

MAE Vs. Number of Service Groups

MAE on New Services

Fig. 23.7 Impact of number of user and service groups

23 On Bootstrapping Web Service Recommendation 607

23.5 Conclusion and Future Work

We develop a novel framework for bootstrapping service recommendation. The
proposed framework offers a complete solution that tackles both new users and
services. The framework is underpinned by Non-negative Matrix Tri-Factorization
(NMTF) that simultaneously clusters users and services into a set of user and service
groups. The group structure helps estimate the missing interaction information and
also provides class labels to construct decision trees for both users and services.
An initial interview is conducted to adaptively query users or services for rapid
profiling. We propose to exploit surrogate users obtained from the user groups to
improve the user response rate for profiling new services. The effectiveness of the
proposed framework has been demonstrated via experiments on a real-world QoS
dataset and through comparison with competitive collaborative filtering algorithms.
An interesting future direction is to exploit existing work on reputation and trust
management [7, 13] in service computing to get high-quality QoS data from users
to further improve the quality of the recommendation result.

References

1. Chen, X., Liu, X., Huang, Z., Sun, H.: Regionknn: A scalable hybrid collaborative filtering
algorithm for personalized web service recommendation. In: ICWS, pp. 9–16 (2010)

2. Chen, X., Zheng, Z., Liu, X., Huang, Z., Sun, H.: Personalized qos-aware web service rec-
ommendation and visualization. IEEE Trans. Serv. Comput. 99(PrePrints) (2011). http://doi.
ieeecomputersociety.org/10.1109/TSC.2011.35

3. Golbandi, N., Koren, Y., Lempel, R.: On bootstrapping recommender systems. In: Proceedings
of the 19th ACM International Conference on Information and Knowledge Management, CIKM
’10, pp. 1805–1808. ACM, New York (2010). doi:doi.acm.org/10.1145/1871437.1871734

4. Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender systems using
decision trees. In: Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining, WSDM ’11, pp. 595–604. ACM, New York (2011). doi:doi.acm.org/10.
1145/1935826.1935910

5. Jiang, Y., Liu, J., Tang, M., Liu, X.F.: An effective web service recommendation method based
on personalized collaborative filtering. In: ICWS, pp. 211–218 (2011)

6. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–
562 (2000). http://citeseer.ist.psu.edu/lee01algorithms

7. Malik, Z., Bouguettaya, A.: Rateweb: Reputation assessment for trust establishment among
web services. VLDB J. 18(4), 885–911 (2009)

8. Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., Riedl, J.: Getting
to know you: learning new user preferences in recommender systems. In: Proceedings of the
7th International Conference on Intelligent User Interfaces, IUI ’02, pp. 127–134. ACM, New
York (2002). doi:doi.acm.org/10.1145/502716.502737

9. Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recommender sys-
tems: an information theoretic approach. SIGKDD Explor. Newsl. 10, 90–100 (2008). doi:doi.
acm.org/10.1145/1540276.1540302

10. Rong, W., Liu, K., Liang, L.: Personalized web service ranking via user group combining
association rule. IEEE Int. Conf. Web Serv. 0, 445–452 (2009). doi:doi.ieeecomputersociety.
org/10.1109/ICWS.2009.113

http://doi.ieeecomputersociety.org/10.1109/TSC.2011.35
http://doi.ieeecomputersociety.org/10.1109/TSC.2011.35
http://dx.doi.org/doi.acm.org/10.1145/1871437.1871734
http://dx.doi.org/doi.acm.org/10.1145/1935826.1935910
http://dx.doi.org/doi.acm.org/10.1145/1935826.1935910
http://citeseer.ist.psu.edu/lee01algorithms
http://dx.doi.org/doi.acm.org/10.1145/502716.502737
http://dx.doi.org/doi.acm.org/10.1145/1540276.1540302
http://dx.doi.org/doi.acm.org/10.1145/1540276.1540302
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/ICWS.2009.113
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/ICWS.2009.113

608 Q. Yu

11. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized qos prediction forweb
services via collaborative filtering. In: ICWS, pp. 439–446 (2007)

12. Wang, F., Li, T., Zhang, C.: Semi-supervised clustering via matrix factorization. In: SDM, pp.
1–12 (2008)

13. Yahyaoui, H., Zhioua, S.: Bootstrapping trust of web services through behavior observation.
In: Auer, S., Díaz, O., Papadopoulos G.A. (eds.) ICWE, Lecture Notes in Computer Science,
vol. 6757, pp. 319–330. Springer (2011)

14. Yu, Q.: Decision tree learning from incomplete qos to bootstrap service recommendation. In:
ICWS ’12: Proceedings of the 2012 IEEE International Conference on Web Services (2012)

15. Yu, Q.: Qos-aware service selection via collaborative qos evaluation (accepted to appear).
The World Wide Web Journal (WWWJ) (2012) http://link.springer.com/article/10.1007%
2Fs11280-012-0186-0

16. Yu, Q., Bouguettaya, A.: Framework for web service query algebra and optimization. TWEB
2(1), 1–35 (2008)

17. Yu, Q., Rege, M., Bouguettaya, A., Medjahed, B., Ouzzani, M.: A two-phase framework for
quality-awareweb service selection. Serv. Oriented Comput. Appl. 4(2), 63–79 (2010)

18. Zhang, Q., Ding, C., Chi, C.H.: Collaborative filtering based service ranking using invocation
histories. In: ICWS, pp. 195–202 (2011)

19. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Wsrec: A collaborative filtering based web service
recommender system. In: ICWS, pp. 437–444 (2009)

20. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service qos prediction via neighbor-
hood integrated matrix factorization. IEEE Trans. Serv. Comput. 99(PrePrints) (2011). doi:doi.
ieeecomputersociety.org/10.1109/TSC.2011.35

21. Zhou, K., Yang, S.H., Zha, H.: Functional matrix factorizations for cold-start recommendation.
In: Proceedings of the 34th International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’11, pp. 315–324. ACM, New York (2011). doi:doi.acm.
org/10.1145/2009916.2009961

http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs11280-012-0186-0
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs11280-012-0186-0
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TSC.2011.35
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TSC.2011.35
http://dx.doi.org/doi.acm.org/10.1145/2009916.2009961
http://dx.doi.org/doi.acm.org/10.1145/2009916.2009961

Chapter 24
An Approach for Service Discovery
and Recommendation Using Contexts

Hua Xiao and Ying Zou

Abstract Given the large amount of existing Web services nowadays, it is
time-consuming for users to find appropriate Web services to satisfy their diver-
sity requirements. Context-aware techniques provide a promising way to help users
obtain their desired services by automatically analyzing a user’s context and rec-
ommending services for the user. Most existing context-aware techniques require
system designers to manually define reactions to contexts based on context types
(e.g., location) and context values (e.g., Toronto). Those context-aware techniques
have limited support for dynamic adaptation to new context types and values. Due to
the diversity of user’s environments, the available context types and potential context
values are changing overtime. It is challenging to anticipate a complete set of context
types with various potential context values to provide corresponding reactions. In this
chapter, we present an approach which analyzes dynamic changing context types and
values, and formulates search criteria to discover desired services for users. More
specifically, we use ontologies to enhance the meaning of a user’s context values
and automatically identify the relations among different context values. Based on
the relations among context values, we infer the potential tasks that a user might be
interested in, then recommend related services. A case study is conducted to eval-
uate the effectiveness of our approach. The results show that our approach can use
contexts to automatically detect a user’s requirements in given context scenarios and
recommend desired services with high precision and recall.

H. Xiao (B)

IBM Canada Laboratory, Markham, ON, Canada
e-mail: huaxiao@ca.ibm.com

Y. Zou
Department of Electrical and Computer Engineering, Queen’s University,
Kingston, ON, Canada
e-mail: ying.zou@queensu.ca

A. Bouguettaya et al. (eds.), Web Services Foundations, 609
DOI: 10.1007/978-1-4614-7518-7_24,
© Springer Science+Business Media New York 2014

610 H. Xiao and Y. Zou

24.1 Introduction

With the growing prevalence of Service Oriented Architecture (SOA), more Web
services become available for users to enrich their daily online experience. It is time
consuming for users to find appropriate services to satisfy their various requirements.
Context-aware techniques provide a promising way to help users obtain their desired
services by automatically analyzing a user’s context and recommending services for
the user. Specifically, a context characterizes the situation of a person, place or the
interactions between humans, applications and the environment [13]. One way to
model contexts is to use pairs of context types and context values. A context type
describes a characteristic of the context. A context type is associated with a specific
context value. For example, “location”, “identity”, and “time” are context types of
a user. “New York” is a context value of the context type “location”. Furthermore,
a context scenario is the combination of different context types with specific values
to reflect a user’s situation. To manage different context types and values captured
by a context-aware system, a context model is used to specify the relations and the
storage structure of various context types and values.

Context-aware systems are designed to react to a user’s context without their inter-
vention. A context aware system generally consists of two parts: sensing a context
scenario, and adapting the system to the changing context scenario. Most context-
aware systems require the designer of context-aware systems to predict the context
types. Moreover, the designer needs to manually establish the relation between the
sensed context scenario and the corresponding reactions in the form of IF-THEN
rules which specify how a system should respond to context changes. However, due
to the diversity of user’s environments, the available context types and potential con-
text values are changing overtime. For example, if a user travels from her home to
another city “Los Angeles”. The user’s environment changes accordingly. The loca-
tion is changed from “home” which is a context value of context type “location” to
“Los Angeles”. And the activity of the user in the new location is “driving”, whereas
the context-aware system may not detect the activity of the user when she was at
home. It is challenging to anticipate a complete set of context types with various
potential context values to provide corresponding reactions. Moreover, fixed rules
are not flexible enough to accommodate the changing environment and various per-
sonal interests. To recommend services for a context scenario, this chapter presents
an approach which analyzes dynamic changing context types and values, and for-
mulates search criteria to discover desired services for users. Different from existing
approaches which depend on static context models to know the relations among con-
text types (or values) and use predefined rules to infer user’s requirements, we seek
an automatic approach to recognize the relations between context values and a user’s
requirements. For example, luxury hotel and limited budget are two context values in
conflict. Therefore, the services for booking luxury hotels are automatically filtered
when a user has limited budget. We expect that such relations can be used to express
more accurate searching criteria that better reflect a user’s context. When a new value
of a user is detected, our approach can automatically compute the relations between

24 An Approach for Service Discovery and Recommendation Using Contexts 611

the new context value with existing context values. Instead of manually defining
IF-THEN rules using specific context values as the traditional context-aware systems
[10], our approach automatically identifies the semantic relations among context val-
ues to infer user’s requirements. Then we generate service searching criteria based on
user’s requirements to discover and recommend services. This book chapter extends
our earlier work [27] published in the International Conference on Web Services
(ICWS) 2010. We enhance our earlier publication at ICWS 2010 in the following
aspects:

1. Improve the algorithm for identifying the relations among different context val-
ues by considering domain knowledge and semantics of phrases used to describe
the meaning of context values;

2. Extend the approach for generating service searching criteria to search for desired
services; and

3. Conduct a larger case study to evaluate our extended approach.

To facilitate the presentation of this chapter, we use the following travel scenario
as an illustrative example throughout this chapter. Tom is a graduate student living
in Toronto. Tom is interested in watching Hollywood movies and National Basket-
ball Association (NBA) games. Especially, Tom is a fan of Kobe Bryant who is an
American professional basketball player and plays for the NBA team, Los Angeles
Lakers. Tom plans to travel to Los Angeles and spend his vacation in Los Angeles
next month. When examining the context in this scenario, we find that some contex-
tual information can be helpful for Tom to plan his trip. For example, as a graduate
student who has low income, Tom might prefer budget hotel for the trip. As a fan of
NBA, Tom might be glad to know the NBA game schedules of “Los Angeles Lakers”
when he is in Los Angeles.

The remainder of this chapter is organized as follows. Section 24.2 gives an
overview of our approach. Section 24.3 introduces the background of ontologies.
Section 24.4 presents our approach to find matching ontologies from ontologies data-
bases. Section 24.5 discusses the details of inferring relations among different con-
text values. Section 24.6 presents our approach that identifies user’s requirements
in a given context scenario and generates searching criteria to search for services.
Sections 24.7 and 24.8 present an overview of our prototype and discuss the case
study. In Sect. 24.9, we present the related work. Finally, Sect. 24.10 concludes the
chapter and presents the future work.

24.2 Overview of Our Approach

Figure 24.1 gives an overview of our approach. Context types and context values
can be dynamically added and removed to reflect a user’s situation. The value of
a context type can also be changed over time. To correctly model relations among
context values, it is critical to understand the semantic meanings of each context
value. Ontologies capture the information related to a particular concept using expert

612 H. Xiao and Y. Zou

Detect
Context

Search for
Ontologies

Ontologies

Identify
Context

Relations

Generate Service
searching Criteria

Search for
Services

Services

Services

Context
Types &
Values

Fig. 24.1 Steps for context-aware service recommendation

Los Angeles

Semantic
Extension

Hollywood Woodland Hills Venice

Los Angeles
Lakers

Hollywood Walk of
Fame

USA : Country Los Angeles County
Museum of Art

Los Angeles
Clippers

Los Angeles:City

City

<<Instance>>

<<Instance>>

<<Instance>>

Sports TeamGeolocation Tourist Attraction

0..*

<<Instance>>

District

Fig. 24.2 An example of extending context value using ontology

knowledge. To identify the semantics of a context value, we search for publicly avail-
able ontologies to extend the meaning of the context value. Figure 24.2 illustrates
an example ontology for defining the concept “Los Angeles”. In particular, “Los
Angeles” is a context value for the context type “Location”. The ontology of “Los
Angeles” shown in Fig. 24.2 expands the semantic meaning of “Los Angeles” with
additional information, such as “Geographic Location”, “Sports Team”, and “Tourist
Attraction”. When a new context value for a user is detected, our approach automat-
ically searches for ontologies that expand the semantic meanings of the new value
and computes the relations with other context types and values.

We use the identified context relations to discover user’s requirements for a given
context scenario and generate the corresponding service searching criteria. For exam-
ple, when the semantics (i.e. ontologies) of several context values share a same con-
cept, the common concept might reflect the potential requirements of the user. In
the travel scenario, Tom is going to travel to “Los Angeles”, and he is interested in
watching NBA games. The ontologies of “Los Angeles” and “NBA” have a same
concept “Los Angeles Lakers”. It indicates a high likelihood that Tom would be
interested in watching the basketball game played by “Los Angeles Lakers”. Finally,
we use the generated service searching criteria to discover and recommend services
to the user.

24 An Approach for Service Discovery and Recommendation Using Contexts 613

24.3 Background of Ontology

Ontologies are described using ontology specification languages, such as Web
Ontology Language (OWL) [24], Resource Description Framework (RDF) [20] and
DAML+OIL [17]. We use ontologies to understand the meanings of context values.
The ontologies found for context values can be described in different ontology spec-
ification languages. To ease the inference of the relations among context values, we
define a simplified model which summarizes the structures and concepts of ontolo-
gies needed for our context analysis. Figure 24.3 illustrates the major entities in our
ontology definition model. Essentially, our ontology definition model contains the
following four major components.

• Class is an abstract description of a group of concepts with similar characteristics.
A class has a name and a set of properties that describe the characteristics of the
class. For example shown in Fig. 24.2, “Tourist Attraction” as a class contains
the common characteristics of tourist attractions. Class is also called “concept”,
“type”, “category” or “kind” in ontology specification languages.
• Individual refers to an instance of a class. For example, “Hollywood Walk of

Fame” in Fig. 24.2 is an instance of class “Tourist Attraction” and therefore it is
an individual.
• Property describes an attribute of a class or an individual. A property can also be

composed by other properties. Atomic properties are the lowest level of properties
without other properties. Atomic properties include property name and property
value. In our ontology definition model, we use properties to express specific
relations among classes and among individuals. For instance, to express that “Los
Angeles” is in “USA”, we define a property “isIn” for “Los Angeles” and assign
it with the value “USA”. Property is also referred to as “attribute”, “feature” or
“characteristic” in ontology specification languages.
• Relation defines ways in which classes or individuals can be associated with each

other. In our ontology definition model, the types of relations are predefined. Four
types of relations are defined to connect classes and individuals: (1) Subclass
extends an abstract class to convey more concrete knowledge; (2) PartOf means a

InstanceOf <<use>>
Individual Class Relation

<<use>>

Property

0…* 1

0…* 1

has

has

Ontology

Fig. 24.3 Major entities defined in ontologies

614 H. Xiao and Y. Zou

class or an individual is a part of another class or individual. For example, class
“Tourist Attractions” is a part of the class “Location”; (3) Complement expresses
that the instances of a class do not belong to another class; and the two classes
together contain all the instances in a given domain; and (4) Equivalence means that
two classes, individuals or properties are the same. For example, class “Nation”
could have an equivalence relation with “Country”. To express specific relations
(e.g., isIn) other than the four types of relations between classes or individuals, we
use properties.

24.4 Searching for Matching Ontologies

There are few ontologies named using long phrases, such as “Plan a trip to Los
Angeles” which is the context value for context type “activity”. We use the following
steps to find an annotated ontology for each context value.

1. We treat the context value as a searching string, and use the entire searching
string to search for ontologies from ontology databases, such as Freebase [2].
Freebase is an ontology database which extracts structured information from
Wikipedia [8]. If we can find a matching ontology, we annotate this ontology to
this context value. Otherwise, we go to step 2.

2. We use an adjective and adverb dictionary to identify and remove the first adjec-
tive or adverb in the searching string. Adjectives and adverbs are constraints for
the describing entity. Therefore, we can keep the important information in the
searching string without the adjectives and adverbs. Meanwhile, if the phrase of
a context value contains another context value, we remove the repeated words
from the long phrase. Thus, in our example, we can remove “Los Angeles” from
the context value “plan a trip to Los Angeles”. If the removed word is followed
by a stop word, we also remove the stop word. A stop word is a commonly
used word (such as “by”, “the”, and “about”) that does not contain important
significance and some search engines have been set to ignore. Then we use the
remainder part of the searching string to search for ontologies.

3. If we can find a matching ontology, we annotate this ontology to the context
value. For example, if we cannot find ontology for the context value “luxurious
travel” but an ontology of “travel” is available, we annotate the ontology “travel”
to the context value “luxurious travel”.

4. If we cannot find a matching ontology, repeat (2) and (3) until we find a matching
ontology or the string is empty.

Finally, if we cannot find any relevant ontology using the context value, we use
synonyms of the context value to search for ontologies and repeat above steps. In our
research, we use WordNet [5] to identify the synonyms of the context value. WordNet
is a lexical database which groups words into sets of synonyms and connects words
to each other via semantic relations. After trying above steps, if we still cannot find

24 An Approach for Service Discovery and Recommendation Using Contexts 615

...

Los Angeles
Lakers

Travel

Los Angeles County
Museum of Art

Hollywood
Walk of Fame

......

Have similar entities

Tourist Attractions

City: Los Angeles

District

Hollywood Woodland
Hills

Venice

Los Angeles
Lakers

The Los Angeles
Galaxy

NBA : sports

: Teams

...

Domain specific relation

Travel

Accormmodation ...
11

-

BudgetHotel

HiltonHotelComfortInn

<<Instance>> <<Instance>>

1

PriceRange:highEnd

LuxuryHotel

...
AnnualIncome: low

:Income

Link low income to
Budget Item

Tom : Graduate Student

 PriceRange: budget

1

0..*

City

Tourist Attraction

<<Instance>>

1

0..*

1

0..*

<<Instance>>

City: Los Angeles

City

<<Instance>>

1

0..*

<<Instance>>

Geolocation Sports Team

<<Instance>>

1

0..*

Sports

<<Instance>>

1

0..*

Fig. 24.4 Examples of relations between two context values

any matching ontologies for a context value, we create an empty ontology and set
the context value as the only entity of the new ontology.

24.5 Identifying Context Relations

Our approach uses the relations among context values to identify a user’s require-
ments in the given context scenarios. We use two steps to identify the relations among
multiple context values.

1. Identifying the relations between two context values. We compare the corre-
sponding ontologies which represent the semantics of context values to identify
the relations between two context values.

2. Integrating all the relations of two context values. To get the relations among
multiple context values, we integrate the relations between two context values to
construct a relation map that describes the relations of multiple context values.

616 H. Xiao and Y. Zou

24.5.1 Identifying Relations of Two Context Values

24.5.1.1 Similarity of Entities in Ontologies

Ontologies may be defined by various people from different perspectives. The entities
(i.e. classes, individuals or properties) defined in two different ontologies may have
different names for the same concept. Moreover, the entities of two ontologies can be
defined in different granularities, even though both ontologies refer to the same thing.
For example, “United States”, “USA” and “America” are different names for a same
entity. As shown in Fig. 24.2, the class “Tourist Attraction(s)” defined in ontologies
“Los Angeles” and “Travel” contains different levels of details although both classes
of “Tourist Attraction(s)” refer to places of interest where tourists visit. To identify
the same entities defined in different ontologies, we define the term similarity. We
describe the similarity between two entities in ontologies as follows:

1. Two phrases (e.g., entity names, property values) are similar, when the words
are identical, synonyms or originated from the same stem. In this case, we use
WordNet to identify synonyms and stems of words. For the example shown
in Fig. 24.4, phrases “Tourist Attractions” and “Tourist Attraction” are similar
since both are stemmed from the phrase “Tourist Attraction”.

2. E1 and E2 are atomic properties. E1 and E2 are similar if and only if the prop-
erty names and property values of E1 and E2 are similar. For example, atomic
properties “Price Range: budget” and “Price Range: cheap” are similar since
both properties have the same property name “Price Range” and have similar
properties values “budget” and “cheap”.

3. E1 and E2 are classes, individuals or non-atomic properties. E1 and E2 are
similar if and only if

a. The names of E1 and E2 are similar; and
b. All the properties defined in entity E1 exist in entity E2, or all the properties

defined in entity E2 exist in E1.

For example, class “Tourist Attractions” with properties “location: Los Angeles”
and another class “Tourist Attraction” which does not have properties are similar,
since the class name “Tourist Attractions” and “Tourist Attraction” are similar,
and the properties defined in the latter class (i.e. no properties) belong to the
former class.

We use WordNet [5] to identify the synonyms and stem of words. WordNet is a
lexical database which groups words into sets of synonyms and connects words to
each other via semantic relations. By considering the synonyms and stems of words,
we can discover that two entities are similar even if the entities are not described using
the same words. In (3), E1 and E2 might have different numbers of properties. When
describing the same entity, some ontologies may provide more detailed information
than others due to the different levels of granularity in ontologies. If the properties
of E1 (i.e. class or individual) are a subset of the properties of E2, E1 and E2 are
treated as similar entities.

24 An Approach for Service Discovery and Recommendation Using Contexts 617

24.5.1.2 User-Defined Relations Using Domain Knowledge

By comparing the similarity of entities, we can discover the semantic relations
between context values. However, the similarity of entities cannot identify the rela-
tions which require domain knowledge. For example, in the travel scenario, Tom is
a graduate student with low income. We can infer that he might prefer budget hotel
instead of luxury hotel while he is traveling. From the ontology of graduate students,
we may know that graduate students have low income, but the ontology of graduate
students would not specify that he prefers budget hotels. To overcome this problem,
we use LinQL language [18] to specify links between entities. LinQL is an extension
of SQL and defines the conditions that two given entities must satisfy before a link
of two entities can be established.

Linkspec_stmt = CREATE LINKSPEC linkspec_name

AS link_method opt_args opt_limit. (24.1)

Equation (24.1) shows the main structure of defining a link specification statement
(linkspec for short) using LinQL. As shown in Eq. (24.1), a CREATE LINKSPEC
statement defines a new linkspec which specifies the name of the linkspec and a
method to establish the link. For example, Eq. (24.2) defines that if a person’s income
is low, then the person would prefer economical consumption style.

CREATE LINKSPEC consumption_style
AS LINK low_income WITH target
WHERE synonym(term, economy)

AND
target LIKE ′%term%′

(24.2)

The economical consumption style is defined as terms with a property of econ-
omy. The details of defining LinQL are described in the publication of Hassanzadeh
et al. [18]. In our approach, the administrator of the context-aware system can use
LinQL to provide the domain knowledge. Meanwhile, we could develop a graphic
user interface to visualize LinQL and enable users to create some simple relations
using their knowledge.

24.5.1.3 Relations Between Two Context Values

Based on the definitions of similarity and user-defined relations, we identify the
following 5 types of relations between two context values extended by ontologies:

1. Intersection: refers to the fact that the ontologies of two context values contain
similar entities (i.e. classes or individuals). Figure 24.4 shows three examples
of intersection relations. In Fig. 24.4, the context value “travel” (i.e. its relevant
context type is “activity”) and context value “Los Angeles” share the same

618 H. Xiao and Y. Zou

entity “Tourist Attraction”. Context values, “Los Angeles” and “NBA”, contain
a common entity, “Los Angeles Lakers”. When a context value is a part of another
context value, such context values are in an intersection relation. In the travel
example, ontology “Los Angeles” contains an entity “Hollywood”. Therefore,
“Hollywood” is a part of “Los Angeles”. The context values “Hollywood” and
“Los Angeles” have an intersection relation.
We use entity names, properties and individuals to describe the common entities
among two ontologies. The children entities (e.g., sub-classes, and individuals
of sub-classes) of the common entities are ignored if the children entities are
not defined in one of the ontologies. This can make the description of common
classes simple, since children entities contain too many details and could become
noises of the common entities.

2. Complement: indicates that all members (i.e. classes or individuals) defined in
one ontology do not belong to another; and both context ontologies define all the
elements in a given domain. The complement relations can be directly derived
from the ontology definitions. For example, context values “Economy Hotel”
and “Luxury Hotel” have a complement relation as defined in the ontology of
“Travel”.

3. Equivalence: defines that two context values describe the same concept. Equiv-
alence relations should be explicitly defined in one of the ontologies. Explicit
defined equal entities are treated as similar entities when we compare the entities
from two different ontologies.

4. Domain Specific relation: means that the corresponding ontologies of two con-
text values contain entities which are linked by user-defined relations. As shown
in Fig. 24.4 (3), the domain specific relation is identified by a user-defined rela-
tion which links the low income to budget items, i.e. budget hotel in the travel
scenario.

5. Independence: means that two context values do not have any connection.

24.5.2 Inferring Relations Among Multiple Context Values

We use entity-relationship (E-R) diagrams [16] to create a global view of relations
among multiple context values. E-R diagrams provide a formal description for a set
of entities and relationships among entities.

For each relation of two context values, we convert the two context values into
two entities in the E-R diagrams. The relation type (e.g., intersection and comple-
ment) is converted into a relationship node in the E-R diagrams. A relationship node
connects its relevant entities. If the relation type is intersection, the common enti-
ties are converted into attributes of the intersection relationship in the E-R diagram.
Equivalence relations are used to combine entities in the E-R diagram. To simplify an
E-R diagram, independence relations are not explicitly described in an E-R diagram.

24 An Approach for Service Discovery and Recommendation Using Contexts 619

If two entities are not connected by a relation node in the E-R diagram, it indicates
that the entities are independent.

We integrate the relations of two context values into an integrated E-R diagram
in the following steps:

1. Initialize the integrated E-R diagram as empty.
2. For each relation in the relation list, we repeat the following steps:

a. Convert a relation of two context values into an E-R diagram.
b. Add the E-R diagram created in step 2.a to the integrated E-R diagram. If

there exist similarity or equivalence entities, we merge the similarity and
equivalence entities by keeping the one with the richer information in the E-R
diagram. If there exist subset or complement relations, we add a relationship
node in the integrated E-R diagram to indicate the corresponding relation.
If two relationship nodes contain the same relation type and relationship
attributes, we merge them into one relationship node.

Following the aforementioned steps, all the context values are converted into
entities in the integrated E-R diagram and the entities which are associated to relations
of context values are transformed into properties in the E-R diagram. Figure 24.5
shows an example of an integrated E-R diagram for the context values in the travel
scenario. In Fig. 24.5, context ontologies “Student” and “Travel” have an domain
specific relation due to a user-defined relation which links “Income: Low” to “Budget
Hotel”. The NBA team “Los Angeles Lakers” is shared by three context values “Los
Angeles”, “Kobe Bryant” and “NBA”. Context ontology “travel” shares the same
class “Tourist Attractions” with ontology “Los Angeles”. Class “Tourist Attractions”
contains a set of individuals such as “Hollywood Walk of Fame” and “Los Angeles
County Museum of Art”. We can use the individuals to recommend specific tourist
attractions (i.e. services) in Los Angeles.

Travel
Los

Angeles
Has

Intersection
with

Tourist
Attractions

Has
Intersection

with

Hollywood

1 1

1

1

Has domain
specific relation

1 1Student

BudgetHotel
(Income: Low)

Has
intersection

with

NBA

1

1

Los Angeles
Lakers

Entity Property
Relation Attribute (i.e.,
shared or linked entity)

Hollywood

Relation

Kobe
Bryant

1 1

Fig. 24.5 An example integrated E-R diagram

620 H. Xiao and Y. Zou

24.6 Generating Service Searching Criteria

To recommend services, we need to identify user’s requirements, and then generate
searching criteria to search for services. A user’s requirements describe the potential
tasks to perform in a given context scenario. We define generic rules to infer user’s
requirements from the E-R diagram. Then we extract service searching criteria from
the description of user’s requirements to search for services.

24.6.1 Identify User’s Requirements in Given Context Scenarios

In our approach, the requirements of a user in a context scenario are identified based
on the relations among different context values. However, some relations among
context values generally exist in all the scenarios of a user due to the long-term
existence of certain context values or the inherent relations of context types. For
instance, in the travel scenario, Tom’s preferences involve “NBA” and “Kobe Bryant”.
These preferences can be explicitly specified by Tom and generally exist for a long
time. Our approach might always need to recommend the service of “Los Angeles
Lakers” since the ontologies of “NBA” and “Kobe Bryant” share the same entity
“Los Angeles Lakers”. Another example is a case where, the current “city” (e.g.,
Toronto) always belongs to the current “country” (e.g., Canada). To avoid repeated
recommendations, we ignore the relations among context values when the relations
are derived from the context values that exist for a long time or inherently exist in
the associated context types.

We design 3 generic rules to derive user’s requirements from the integrated
E-R diagram as shown in Table 24.1. Suppose Ec1, Ec2, . . . , Ecn are entities in the
integrated E-R diagram. Potential Task Set represents a set of a user’s requirements.

Rule 1 collects the common entities and properties from the E-R diagram. The
entities in the Potential Task Set are contained in two or more ontologies corre-
sponding to the context values. Each entity in the Potential Task Set indicates a part
of a user’s requirements. For example, the context value “Los Angeles” and context
value “NBA” have a common entity “Los Angeles Lakers”. The common entity “Los
Angeles Lakers” is a NBA team in Los Angeles, and there is a high chance that the
user would be interested in the services related to this team.

A user-defined relation connects two entities from two different ontologies. The
linked entities are represented as pairs (e.g., e1i → e2i) in Table 24.1. If two entities
from different context values are linked by a user-defined relation, it means these two
entities are different from other entities in the ontologies of context values and the
information in these two entities might be interesting for the end-users. Therefore,
in rule 2, we extract the linked entities and add them to Potential Task Set. In the
example of planning a trip, “Budget Hotel” has a high chance to be of interest to
Tom since the entity “Budget Hotel” is linked by an attribute of the occupation of
the user.

24 An Approach for Service Discovery and Recommendation Using Contexts 621

Table 24.1 Generic rules to derive user’s requirements

Rule
number

Relations Potential Task Set Description

1 Intersection relations:
EC1

⋂
EC2 . . .

⋂
ECm=

{e1, e2, . . . , ek} �= ∅

{e1, e2, . . . , ek} Ec1, Ec2, . . . , Ecm are entities
in the integrated E-R diagram.
e1, e2, . . . , ek are entities or
relationship attributes in the
integrated E-R diagram

2 Domain specific relations:
EC1 is linked to EC2 by
user-defined
relations {(e11 → e21)

, . . . , (e1k → e2k)}

{(e11 → e21), . . . ,

(e1k → e2k)}
Ec1, Ec2, . . . , Ecn are entities
in the integrated E-R diagram,
and (e1i → e2i) are a pair of
linked entities between entity
Ec1 and entity Ec2. In the E-R
diagram, (e1i → e2i)

represents a property of the
user-defined relation

3 Complement relations:
Ēci = Ecj , e1 ∈ Eci ,

e2 ∈ Ecj and
e1, e2 ∈ potential Task Set

e1 and e2 have an
OR relation

Eci and Ecj are entities in the
integrated E-R diagram. e1 and
e2 are entities or relationship
attributes in the integrated E-R
diagram; and Ē represents the
complement of entity E

Complement relations show that two entities cannot co-exist at the same time.
In Rule 3, we use complement relations to split the entities in Potential Task Set
and identify them as “OR” relation. For example, if a Potential Task Set contains
both the entities “Budget Hotel” and “Luxury Hotel”, we can use the complement
relations to identify them as a “OR” relations. Therefore, when an end-user choose
one recommendation (e.g., Budget Hotel), we stop to recommend the complement
recommendation (e.g., Luxury Hotel) since the user has made a decision between
these two types of hotels.

Once the rules are applied on the E-R diagram, we obtain a Potential Task Set
which contains a set of entities and properties of the entities in the E-R diagram.
Some entities in the Potential Task Set may describe the same concept at different
levels of details. For example, one entity can be a subclass of another entity. To reduce
the redundancy of service recommendations, we classify the entities in a Potential
Task Set t into different groups to merge similar user’s needs. Each group maps to a
specific service searching criterion.

24.6.2 Generate Service Searching Criteria

The entities and properties in a user’s requirements (e.g., Potential Task Set) are
described using structured data defined in ontologies. We use the mapping rules

622 H. Xiao and Y. Zou

specified in Table 24.2 to convert structured data to service searching criteria. A class
name in Table 24.2 refers to the name of a class defined in an ontology. Furthermore,
the generated searching criteria are submitted to existing search engines, such as
Google [3].

In Table 24.2, the first column contains the entities from the extracted user’s
requirements (i.e. Potential Task Set). The second column lists the associated query
to find matching Web services described in WSDL. The third column shows the
generated query submitted to a Web search engine. As shown in Table 24.2, a class
contains a class name and prosperities. In a WSDL query, a class name is used to
match a service name or operation name in a WSDL document since the class name
is the major object name involved in a Web service and it is generally used to describe
service names and operation names in WSDL. In most cases, a service name and an
operation name are not identical to the class name defined in ontologies. For example,
an operation used to search for budget hotels can be named as “GetBudgetHotel”
or “BookBudgetHotel”. The operation names contain the class name “BudgetHotel”
with additional verbs (i.e. “Get” or “Book”). Therefore, in the generated WSDL
query, instead of specifying that we need to find a WSDL having the service name
or operation exactly matching with the class name, we check if a class name appears
in the service name or the operation name. We apply the same requirements to other
ontology entities in the conversion process.

Properties of a class specify the detailed attributes of the class. There is a high
chance that the properties of classes are required input for performing an operation or
are the output data after executing an operation in WSDL services. For example, in our
travel scenario, the property “price” in class “Budget Hotel” becomes a parameter of
the operation “BookBudgetHotel”. As listed in Table 24.2, the names of the properties
are used to match parameters of operations in WSDL service. However, a service
may not need to use all the properties defined in the class. Therefore, we use the OR
relation to connect all the properties. The searching criteria for Web search engines
are focused on keywords. In column 3, we convert the class name into a keyword and
the properties of classes to the optional (i.e. OR relations) keywords in the query. For
the individuals in the Potential Task Set, we use the same way as classes of ontologies
to convert them to two different queries.

When we specify user-defined relations, entities with more generic meanings
are generally used to search for specific entities. For example, we use the generic
entity “low income” to find all the budget (or economic, cheap) items. The entity
with relevantly more specific meanings plays a more important role in identifying a
potential task since the specific entity contains more concrete information. Therefore,
we convert the specific entity instead of the general entity to search query as shown
in the fourth row of Table 24.2.

24 An Approach for Service Discovery and Recommendation Using Contexts 623

Ta
bl

e
24

.2
M

ap
pi

ng
on

to
lo

gy
en

tit
ie

s
in

po
te

nt
ia

lt
as

k
se

tt
o

W
SD

L
qu

er
y

an
d

ge
ne

ra
lq

ue
ry

E
nt

iti
es

in
th

e
Po

te
nt

ia
lT

as
k

Se
t

W
SD

L
qu

er
y

G
en

er
al

qu
er

y
fo

r
W

eb
Pa

ge
s

Ty
pe

In
vo

lv
ed

da
ta

C
la

ss
C

la
ss

na
m

e:
na

m
e c

la
ss

(n
am

e c
la

ss
⊆

in
vo

lv
ed

C
on

te
xt

Va
lu

e
A

N
D

(n
am

e o
pe

ra
ti

on
⋃

na
m

e s
er

vi
ce

))
na

m
e c

la
ss

A
N

D
&

&
(n

am
e p

ro
pe

rt
y i
⊆

(p
ro

pe
rt

y 1
O

R
pr

op
er

ty
2

(n
am

e i
np

ut
Pa

r
⋃

na
m

e o
ut

pu
tP

ar
))

..
.

O
R

pr
op

er
ty

k
)

Pr
op

er
ty

na
m

es
of

th
e

cl
as

s:
∪n

am
e p

ro
pe

rt
y

w
he

re
na

m
e p

ro
pe

rt
y i
∈(

⋃
na

m
e p

ro
pe

rt
y)

In
di

vi
du

al
In

di
vi

du
al

na
m

e:
na

m
e i

nd
iv

id
ua

l
(n

am
e i

nd
iv

id
ua

l
⊆

in
vo

lv
ed

C
on

te
xt

Va
lu

e
A

N
D

(n
am

e o
pe

ra
ti

on
⋃

na
m

e s
er

vi
ce

))
na

m
e i

nd
iv

id
ua

l
A

N
D

&
&

(n
am

e p
ro

pe
rt

y i
⊆

(p
ro

pe
rt

y 1
O

R
pr

op
er

ty
2

(n
am

e i
np

ut
Pa

r
⋃

na
m

e o
ut

pu
tP

ar
))

..
.

O
R

pr
op

er
ty

k
)

Pr
op

er
ty

na
m

es
of

th
e

cl
as

s:
∪n

am
e p

ro
pe

rt
y

w
he

re
na

m
e p

ro
pe

rt
y i
∈(

⋃
na

m
e p

ro
pe

rt
y)

U
se

r-
de

fin
ed

re
la

ti
on

(e
1
→

e 2
)

N
am

e
of

th
e

cl
as

s
th

at
en

tit
y

e 2
be

lo
ng

s
to

:
na

m
e c

la
ss

(n
am

e c
la

ss
⊆

in
vo

lv
ed

C
on

te
xt

Va
lu

e
A

N
D

(n
am

e o
pe

ra
ti

on
⋃

na
m

e s
er

vi
ce

))
na

m
e i

nd
iv

id
ua

l
A

N
D

&
&

(n
am

e p
ro

pe
rt

y i
⊆

(p
ro

pe
rt

y 1
O

R
pr

op
er

ty
2

(n
am

e i
np

ut
Pa

r
⋃

na
m

e o
ut

pu
tP

ar
))

..
.

O
R

pr
op

er
ty

k
)

Pr
op

er
tie

s
of

en
tit

y
e 2

:
∪n

am
e p

ro
pe

rt
y

624 H. Xiao and Y. Zou

Fig. 24.6 An annotated screenshot for our service recommendation page

24.7 Implementation

A prototype of the proposed approach was implemented. The prototype is devel-
oped in Java and uses OWL API [4] as the ontology/RDF parser. To evaluate the
WSDL query generated by our approach, we implemented a component to support
advanced search based on elements of WSDL (i.e. service name, operation name and
input/output parameters). Figure 24.6 shows an annotated screenshot of our service
recommendation page. A list of services of potential interest to the user is provided in
the services recommendation table. A service in the services recommendation table
can be associated with one or more concrete services as shown in Fig. 24.6. Once a
user selects the “Tourist Attractions” in the service recommendation table, the asso-
ciated services (e.g., a list of tourist attractions in Los Angeles) are automatically
displayed in the service selection panel on the right side of the Web page. The user
can select the services the best fit its requirements.

We use Freebase [2] as the ontology database. In Freebase, there are common
entities shared by most of the ontologies, such as “type.object.key”, “namespace”,
and “common.topic”. Those entities are used to organize the resources in the database,
but are not useful for identifying user’s requirements. To increase the accuracy of
relation identification, we manually analyze the schema of ontologies defined in
Freebase to identify and filter out those meaningless entities.

24 An Approach for Service Discovery and Recommendation Using Contexts 625

24.8 Case Study

The objective of our case study is to evaluate the effectiveness of our approach. In
particular, we want to examine: (1) whether our approach can effectively recommend
useful tasks represented as classes, individuals and properties in the set Potential Task
Set; and (2) whether the generated searching criteria can find the desired services.

24.8.1 Setup

Table 24.3 lists the context types used in our case study. By providing different
context values for each context type, we can create different user scenarios. Each
scenario is composed of the context types listed in Table 24.3 with assigned context
values. For each scenario, our approach automatically detects various potential tasks
for the user and recommends different services. In our case study, we provide 5
different context values for each context type. Using different combinations of these
context values, we generate 600 different context scenarios for our case study.

Due to the limitation of time and resources, we cannot evaluate all the 600 sce-
narios. In our case study, we randomly select 2 % (i.e., 12) context scenarios from
the 600 context scenarios to evaluate our approach. To evaluate the identified poten-
tial tasks and the service searching criteria generated by our approach in different
scenarios, we recruited 6 graduate students to participate in our case study. These
graduate students have many years of experiences using online services and possess
basic knowledge on the context values that appeared in the context scenarios.

24.8.2 Evaluation Criteria

Precision and recall are widely used in information retrieval. We use precision and
recall to measure our approach. Precision and recall are defined as follows.

Table 24.3 Context types used in our case study

Context types

Previous environment Location (city and county)
Current environment Location (city and country)

Activity (described by keywords)
Future environment Location (city and country)

Activity (provided by calendar, described using keywords)
User’s preferences and background Favorite sports

Favorite food
Favorite celebrities
Major
Other preferences
Income

626 H. Xiao and Y. Zou

Precision = |{relevant items}⋂ {retrieved items}|
|{retrieved items}| , (24.3)

Recall = |{relevant items}⋂ {retrieved items}|
|{relevant items}| (24.4)

Precision and recall are defined in terms of a set of retrieved items (e.g. the set
of potential tasks found by our prototype for a given context scenario) and a set
of relevant items (e.g. the set of potential tasks existing in the context scenario).
Precision is the ratio of the number of returned relevant items to the total number of
returned items of a query. Recall is the ratio of the number of returned relevant items
to the total number of existing relevant items.

24.8.3 Experiment Procedure

To evaluate the potential tasks identified by our approach, we assign 2 context sce-
narios to each subject described in the previous section. For each scenario, a subject
manually examines the context values and uses her knowledge to identify the poten-
tial tasks that she would like to perform. Independent from the manual evaluation,
we also use our prototype to automatically identify the potential tasks by analyzing
the context values and the relations among context values. We compare the task sets
produced by the subjects and the ones generated by our prototype tool to calculate
the precision and recall of each scenario.

To evaluate the service searching criteria generated by our approach, we use the
approach described in Sect. 24.6 to generate the service searching criteria, then we
submit the searching criteria to search engines Google [3] and Seekda [6] to search
for online services. Seekda is a search engine to search for Web services described
using WSDL. One of the authors manually examined the available services in Seekda
for each scenario. If there are available Web services in Seekda for a given topic,
we use Seekda. Otherwise, we use Google to search for services. We use the key-
words in the generated searching criteria to search for services. In both cases, we
use the generated WSDL query to check the top 20 returned services to identify
the matching services. For each query, our prototype chooses the top two returned
services to recommend to the subject. The 6 aforementioned subjects manually pro-
vided the description of desired services based on the given context scenarios. One of
the authors manually compared the services recommended by our prototype with the
desired services described by the subjects to evaluate if our prototype can correctly
recommend services to a subject for a given context scenario.

24.8.4 Result Analysis

In the 12 context scenarios, 2 scenarios do not have any tasks recommended according
to the results from the subjects as well as the results of our prototype. We manually
examined both scenarios. We found that the context values in both scenarios do not

24 An Approach for Service Discovery and Recommendation Using Contexts 627

Table 24.4 Recall and precision for detecting potential tasks

Scenarios # of retrieved
tasks

of retrieved
relevant tasks

of relevant tasks Recall (%) Precision (%)

1 2 2 2 100 100
2 1 1 1 100 100
3 3 2 3 67 67
4 3 3 4 75 100
5 2 2 2 100 100
6 3 1 1 100 33
7 3 3 3 100 100
8 3 2 2 100 67
9 4 4 4 100 100
10 1 1 1 100 100
Average 94 87

have any relations. Table 24.4 shows the results for detecting potential tasks from
the remainder 10 scenarios. We notice that some tasks in certain scenarios are not
included in the result from the subjects due to the limitation of subject’s knowledge.
However, such tasks are identified by our prototype. For example, in a travel scenario,
“Michael Jordan” is a favorite celebrity of a subject, and one of the context values is
the city “New York”. Our prototype can identify that “New York” is the birth place
of “Michael Jordan”. As a fan of Michael Jordan, the subject would be interested to
know this information and purchase the related souvenirs using an on line shopping
service. However, such information is overlooked by the subject. When calculating
recall and precision, we add the missed tasks into the relevant items set and treat the
missed tasks as desired potential tasks. The 94 % of recall reveals that our approach
can identify most of the potential tasks based on the semantics of context values.
Moreover, our prototype can identify the tasks that are overlooked by the subjects.

Table 24.5 lists the evaluation results of service recommendation. The results show
that our approach can recommend most of the needed services desired by subjects.
However, as listed in Table 24.5, the recall and precision are not very high in some
context scenarios. Here are some reasons which we plan to address in our future work:

1. Some ontologies do not describe all the aspects of a context value. The incom-
plete ontologies cause incomplete service recommendation. Meanwhile, we only
define one user-defined relation which is Eq. (24.2) to capture the domain knowl-
edge of “Income: low”. If we add more domain knowledge using user-defined
relations, it could increase the recall and precision. For example, one subject in
our case study lists “Tickets for Museums at Miami” as a potential task for a
context scenario which specifies that the subject majors in “Art” and will attend
a conference in “Miami”. Due to the lack of domain knowledge of “Art”, it is
difficult for our prototype to automatically establish the relations between “Art”
and “Museums”.

628 H. Xiao and Y. Zou

Table 24.5 Evaluation Results of service recommendation

Scenarios Total # of retrieved
services

Total # of retrieved
relevant services

Total # of relevant
services

Recall
(%)

Precision
(%)

1 4 4 4 100 100
2 2 2 2 100 100
3 6 4 6 67 67
4 6 6 8 75 100
5 4 3 4 75 75
6 6 2 2 100 33
7 6 5 6 83 83
8 6 4 4 100 67
9 8 8 8 100 100
10 2 2 2 100 100
Average 90 83

2. Although WordNet can provide stems and synonyms for a single word, it cannot
give the synonyms of phrases (i.e. two or more words in sequences to represent a
specific meaning) which are the most common expressions of entities in ontolo-
gies. The lack of phrases in our semantic analysis database (i.e. WordNet) makes
it challenging for our prototype to identify the similarity of phrases defined in
ontologies.

3. When the number of keywords increases, the results returned by Google or
Seekda are likely to diminish. Especially, we may extract general terms from
ontologies, such as “people”, “person”, and “location”. Such terms in the search-
ing keywords often result in drastically reduction of the quality of searching
results.

24.8.5 Threats to Validity

Construct validity is the degree to which the independent and dependent variables
accurately measure the concepts which they are intended to measure. We have care-
fully designed our case study to avoid the threats of construct validity. To evaluate the
effectiveness of identified context relations and recommended services, we use recall
and precision which are well adopted evaluation criteria in literature. However, the
potential tasks and relevant services of context scenarios contain subjective issues.
For example, one subject may be satisfied by a recommended task while another user
may not like the recommended task at all. In our case study, we ask the 6 subjects
to provide the potential tasks and evaluate the returned services according to the
relations among context values and their understanding of the context scenario. The
identified potential tasks and relevant services recommended by the 6 objects may
not reflect the potential tasks of all the users in practices. Especially, in our case

24 An Approach for Service Discovery and Recommendation Using Contexts 629

study, all the 6 subjects are graduate students. In the future, we plan to hire more
subjects with different backgrounds to participate in our case study.

External validity refers to the generalization of the results. In our case study,
we automatically generated 600 different context scenarios and randomly selected
12 scenarios out of the 600 context scenarios. We believe that the automated gener-
ation and random selection of context scenarios can reflect the practical situations.
However, there are various context types and many variations of context values in
a context-aware system. Our case study only evaluates a limited number of context
types and values. In the future, we plan to expand our context scenarios with more
context types and values. When the number of context types and values increases in
our case study, we expect that the precision and recall is likely to be lower than the
result of our current experiment.

Internal validity is concerned with the cause-effect relationship between inde-
pendent and dependent variables. In our case study, the retrieved tasks are automat-
ically identified by our prototype, and the relevant potential tasks are identified by
subjects who did not observe the results of our prototype. Therefore, we can rule out
a learning effect of subjects that may impact the results of our case study.

24.9 Related Work

24.9.1 Context Modeling and Context-Aware Systems

Several context models and context-aware systems are proposed in the literature
[10, 14, 19, 23, 24]. Strang and Linnhoff-Popien [25] survey existing context models
and classify them into different types based on the data structures. The context models
are classified into 6 types: key-value models, markup scheme models, graphical
models, object oriented models, logic based models, and ontology based models.
The context models are evaluated using six requirements. Ontologies are the most
expressive model that can fulfill most of the requirements. Sakurai et al. [23] propose
a methodology to interpret and combine sensor outputs with contexts as sets of
annotated business rules. Chen and Kotz [14] investigate the research on context-
aware mobile computing. Chen and Kotz discuss the types of context used, the ways
of using context, the system level support on collecting context, and approaches
to adapt to the changing context. Baldauf et al. [10] present a layered conceptual
design framework to describe the common architecture principles of context-aware
systems. Based on their proposed design framework, Baldauf et al. compare different
context-aware systems on various issues: the context sensing, context models, context
processing, resource discovery, historical context data, security and privacy. In the
aforementioned approaches, the context models are predefined and are not flexible
to address the dynamical changing environment. In our approach, we can generate
and adjust the context relation model automatically according to different available
context values.

630 H. Xiao and Y. Zou

24.9.2 Discovering and Recommending Services Using Context

Applying context-aware techniques to discover and recommend services has gained
lots of attentions. Yang et al. [15, 28] design an event-driven rule based system to rec-
ommend services according to people’s context. Yang et al. define an ontology-based
context model to represent a context. Requester ontology and service ontology are
developed for specifying the context of requesters and services respectively. Using
rules, further contextual information can be inferred from the current contextual
information. For example, a user’s activity at a given time can be derived by examin-
ing the time and calendar. When searching for Web services, Yang et al. identify the
similarities of inputs/outputs between requests and published services using capa-
bility matching. If there are no matched services, a semantic matching component
would decompose the request into sub-requests based on requester’s contextual infor-
mation and search for services for each sub-request. Balke and Wagner [11] propose
an algorithm to select a Web service based on user’s preferences. The algorithm
starts with a general query. If there are too many results, it expands the service query
using user’s preferences. The algorithm expands the query with loose constraints
extracted from user’s preferences. If there are too many results, it extends the query
with restricted constraints and searches for Web services again. By adding constraints
step by step, the algorithm narrows down the number of service searching results to
a small value. However, aforementioned approaches need to predefine the specific
reactions on context scenarios using rules which are hard to provide in practice due
to the diversity of context types and values in the real world. Our approach can auto-
matically recommend services based on the semantics of context scenarios without
requiring the designer of context-aware systems to provide specific rules.

Xi et al. [26] use a collaborative filtering technique to recommend services based
on the Quality of services. Qi et al. [22] combine UDDI and OWL-S to describe
semantic Web services. In OWL-S, class “process: local” allows users to define
some local parameters. Qi et al. use “process: local” to describe context information.
Qi et al. define 6 types of contexts: load of server, performance of server, response
time of service, geographical position of client, geographical position of server, and
distance between client end and server. Dynamic context can be updated on time.
After finding services using semantic matching, Qi et al. use context data to evaluate
the quality of services and rank the matching services. Mostefaoui et al. [21] present
a CB-SeC (Context-Based Service Composition) service description model. In the
CB-SeC service description model, Mostefaoui et al. define an optional part called the
context function. The context function represents the context of the service (e.g. the
current workload of the service) and is shipped with other service description. The
context function is used to select the best services from the matching Web service
list if there is more than one matching Web service. The value of context function is
not known in advance. It needs to be calculated during run time when it is needed.
Different from Chen, Qi and Mostefaoui’s approaches which use contexts to select
services with high Quality of Service (QoS), our approach is intended to detect the
requirements of users and recommend services with desired functions.

24 An Approach for Service Discovery and Recommendation Using Contexts 631

Abbar et al. [9] provide an approach to recommend services using the logs of a user
and the current context of the user. To select and recommend services, the proposed
approach requires historical data which are usually not available in the practice. Our
approach only needs the context types and values to recommend services. Blake et al.
[12] use an agent to detect the execution of applications and the behavior of human
users, such as browsing the Internet. Then the agent extracts the context data from
applications and users’ behaviors. Based on the contextual data, the agent generates
a query to search for available Web services. The agents recommend services by
matching the similarity of input/output and the operation name of Web services with
the contextual information extracted by the agent. The approach by Blake et al. only
analyzes the data that the user is currently processing. Their approach cannot combine
and analyze two or more context values to recommend services. Our approach can
analyze the relations of multiple context types and values and recommend services
based on such relations.

24.10 Conclusion and Future Work

In this chapter, we present an approach to dynamically derive context relations from
ontologies and automatically recommend services based on specific context values.
By discovering the semantic relations among context values, our approach can iden-
tify user’s tasks hidden behind the context values and generate searching criteria for
service discovery. The case study shows that our approach can identify the context
relations and user’s potential tasks in different context scenarios with high precision
and recall.

Context types and context values are interpreted from the outputs of sensors. For
example, a GPS signal is mapped to abstract location such as at home or at work. Our
current approach is based on the context types and context values which are provided
by third part. In our next step, we plan to extend our approach to use or directly
interpret the data from the outputs of different sensors. Meanwhile, we observe that
some ontologies in FreeBase are not very suitable for extending the context values.
As a result, it reduces the accuracy of service recommendation in our approach. To
enhance our approach, we could try to use the ontologies from different ontology
databases, such as DBpedia [1] and Swoogle [7]. There may have several matching
ontologies for the same context value. Currently, there are no effective criteria to help
us select the appropriate ontologies for the purpose of extending the context values.
A further study can be conducted to evaluate the effectiveness of different criteria
for ontology selection and identify the effective criteria for our work.

Acknowledgments This work is financially supported by NSERC and the IBM Toronto Cen-
tre for Advanced Studies (CAS). We would like to thank Mr. Alex Lau, Ms. Joanna Ng and
Mr. Leho Nigul at IBM Canada Toronto Laboratory and Dr. Foutse Khomh at Queen’s University
for their suggestions on this work. IBM and WebSphere are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both. Other
company, product, and service names may be trademarks or service marks of others.

632 H. Xiao and Y. Zou

References

1. Dbpedia. http://dbpedia.org/ (2012)
2. Freebase. http://www.freebase.com/ (2012)
3. Google. http://www.google.com (2012)
4. Owl api. http://owlapi.sourceforge.net/ (2012)
5. Princeton University: Wordnet, 2010. http://wordnet.princeton.edu (2012)
6. Seekda. http://webservices.seekda.com/ (2012)
7. Swoogle. http://swoogle.umbc.edu/ (2012)
8. Wikipedia. http://en.wikipedia.org/wiki/Wikipedia:About (2012)
9. Abbar, S., Bouzeghoub, M., Lopez, S.: Context-aware recommendation systems: a service-

oriented approach. In: Proceedings of the International Conference on Very Large Data Bases
(VLDB) Proflie Management and Context Awareness (PersDB) Workshop, Lyon, France
(2009)

10. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc
Ubiquitous Comput. 2(4), 263–277 (2007)

11. Balke, W.T., Wagner, M.: Towards personalized selection of web services. In: WWW (Alternate
Paper Tracks) (2003). http://dblp.uni-trier.de/db/conf/www/www2003at.html#BalkeW03

12. Blake, M.B., Kahan, D.R., Nowlan, M.F.: Context-aware agents for user-oriented web services
discovery and execution. Distrib. Parallel Databases 21(1), 39–58 (2007). doi:10.1007/s10619-
006-7001-9. http://dx.doi.org/10.1007/s10619-006-7001-9

13. Brézillon, P.: Focusing on context in human-centered computing. IEEE Intell. Syst. 18(3), 62–
66 (2003). doi:10.1109/MIS.2003.1200731. http://dx.doi.org/10.1109/MIS.2003.1200731

14. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Technical Report,
Hanover, NH, USA (2000)

15. Chen, I., Yang, S., Jia, Z.: Ubiquitous provision of context aware web services. In: Services
Computing, 2006. SCC ’06. IEEE International Conference on, pp. 60–68 (2006). doi:10.1109/
SCC.2006.110

16. Chen, P.P.S.: The entity-relationship model toward a unified view of data. ACM Trans.
Database Syst. 1(1), 9–36 (1976). doi:10.1145/320434.320440. http://doi.acm.org/10.1145/
320434.320440

17. Connolly, D., Harmelen, F., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.:
DAML+OIL (March 2001) Reference Description, W3C Note 18 December 2001. http://www.
w3.org/TR/daml+oil-reference (2011)

18. Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R.J., Wang, M.: A framework for seman-
tic link discovery over relational data. In: Proceedings of the 18th ACM Conference on Infor-
mation and Knowledge Management, CIKM ’09, pp. 1027–1036. ACM, New York, NY, USA
(2009). doi:10.1145/1645953.1646084. http://doi.acm.org/10.1145/1645953.1646084

19. Hesselman, C., Tokmakoff, A., Pawar, P., Iacob, S.: Discovery and composition of services for
context-aware systems. In: Proceedings of the 1st European Conference on Smart Sensing and
Context (EuroSCC’06) (2006)

20. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and Abstract Syn-
tax. W3C Recommendation (2004)

21. Mostefaoui, S., Hirsbrunner, B.: Context aware service provisioning. In: Pervasive Services,
2004. ICPS 2004. IEEE/ACS International Conference on, pp. 71–80 (2004). doi:10.1109/
PERSER.2004.13

22. Qi, Y., Qi, S., Zhu, P., Shen, L.: Context-aware semantic web service discovery. In: Semantics,
Knowledge and Grid, Third International Conference on, pp. 499–502 (2007). doi:10.1109/
SKG.2007.127

23. Sakurai, Y., Takada, K., Anisetti, M., Bellandi, V., Ceravolo, P., Damiani, E., Tsuruta, S.:
Toward sensor-based context aware systems. Sensors 12(1), 632–649 (2012). doi:10.3390/
s120100632. http://www.mdpi.com/1424-8220/12/1/632

24. Smith, M.K., Welty, C., McGuinness, D.L. (eds.) : Owl Web Ontology Language Guide. W3C
Recommendation (2004). http://www.w3.org/TR/owl-guide/ (2012)

http://dbpedia.org/
http://www.freebase.com/
http://www.google.com
http://owlapi.sourceforge.net/
http://wordnet.princeton.edu
http://webservices.seekda.com/
http://swoogle.umbc.edu/
http://en.wikipedia.org/wiki/Wikipedia:About
http://dblp.uni-trier.de/db/conf/www/www2003at.html#BalkeW03
http://dx.doi.org/10.1007/s10619-006-7001-9
http://dx.doi.org/10.1007/s10619-006-7001-9
http://dx.doi.org/10.1007/s10619-006-7001-9
http://dx.doi.org/10.1109/MIS.2003.1200731
http://dx.doi.org/10.1109/MIS.2003.1200731
http://dx.doi.org/10.1109/SCC.2006.110
http://dx.doi.org/10.1109/SCC.2006.110
http://dx.doi.org/10.1145/320434.320440
http://doi.acm.org/10.1145/320434.320440
http://doi.acm.org/10.1145/320434.320440
http://www.w3.org/TR/daml+oil-reference
http://www.w3.org/TR/daml+oil-reference
http://dx.doi.org/10.1145/1645953.1646084
http://doi.acm.org/10.1145/1645953.1646084
http://dx.doi.org/10.1109/PERSER.2004.13
http://dx.doi.org/10.1109/PERSER.2004.13
http://dx.doi.org/10.1109/SKG.2007.127
http://dx.doi.org/10.1109/SKG.2007.127
http://dx.doi.org/10.3390/s120100632
http://dx.doi.org/10.3390/s120100632
http://www.mdpi.com/1424-8220/12/1/632
http://www.w3.org/TR/owl-guide/

24 An Approach for Service Discovery and Recommendation Using Contexts 633

25. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Workshop on Advanced Context
Modelling, Reasoning and Management, UbiComp 2004—The Sixth International Conference
on Ubiquitous Computing, Nottingham/England (2004)

26. Xi, C., Xudong, L., Zicheng, H., Hailong, S.: Regionknn: a scalable hybrid collaborative
filtering algorithm for personalized web service recommendation. In: Web Services (ICWS),
2010 IEEE International Conference on, pp. 9–16 (2010). doi:10.1109/ICWS.2010.27

27. Xiao, H., Zou, Y., Ng, J., Nigul, L.: An approach for context-aware service discovery and
recommendation. In: Web Services (ICWS), 2010 IEEE International Conference on, pp. 163–
170 (2010). doi:10.1109/ICWS.2010.95

28. Yang, S.J.H., Zhang, J., Chen, I.Y.L.: A JESS-enabled context elicitation system for providing
context-aware web services. Expert Syst. Appl. 34(4), 2254–2266 (2008). doi:10.1016/j.eswa.
2007.03.008. http://dx.doi.org/10.1016/j.eswa.2007.03.008

http://dx.doi.org/10.1109/ICWS.2010.27
http://dx.doi.org/10.1109/ICWS.2010.95
http://dx.doi.org/10.1016/j.eswa.2007.03.008
http://dx.doi.org/10.1016/j.eswa.2007.03.008
http://dx.doi.org/10.1016/j.eswa.2007.03.008

Chapter 25
Data Transformation Knowledge Reuse
in Spreadsheet-Based Mashup
Development Platform

Vu Hung, Boualem Benatallah and Angel Lagares Lemos

Abstract Data transformation is a key task in mashup development (e.g., access to
heterogeneous services, data flow). It is considered as a labour-intensive and error-
prone process. The possibility of reusing previously specified mappings promises a
significant reduction in manual and time-consuming transformation tasks, neverthe-
less its potential has not been fully realized in current approaches and systems. In this
chapter, we study the problem of data transformation logic reuse in mashup develop-
ment platforms. We formulate the problem and propose a solution that features novel
reuse abstractions and techniques including spreadsheet templates, mapping gener-
alization, and similarity join. Given a spreadsheet instance that is being mapped to
the target schema, we recommend a list of mapping formulas that can be potentially
reused for the instance. We implemented a prototype of the proposed solution and
evaluated its performance via synthetic datasets.

25.1 Introduction

Mashups are valued-added applications developed by aggregating existing services
[1, 2]. Recently, “mashup” has become one of the hottest buzzword in the area of
web applications. Several solutions have been proposed to simplify mashups develop-
ments by providing both textual and visual development environments, thus avoiding
users from writing complex scripts (e.g., Yahoo! Pipes [3], Intel Mash Maker [4]).

V. Hung (B) · B. Benatallah · A.L. Lemos
University of New South Wales, Sydney, Australia
e-mail: vthung@gmail.com

B. Benatallah
e-mail: boualem@cse.unsw.edu.au

A.L. Lemos
e-mail: angell@cse.unsw.edu.au

A. Bouguettaya et al. (eds.), Web Services Foundations, 635
DOI: 10.1007/978-1-4614-7518-7_25,
© Springer Science+Business Media New York 2014

636 V. Hung et al.

When developing a mashup, developers face several difficult integration chal-
lenges. First, there is a need to specify interactions (i.e., request/response messages)
with external services. These external services may use heterogeneous data repre-
sentation models (i.e., JSON, XML, Relational, …) and access methods (e.g., SOAP,
REST protocols). It is, therefore, necessary to specify data transformations to bridge
the heterogeneity between data representation models used by the mashup tools
and those used by external services. Second, data flow among services in a mashup
may require specifying data transformation logic to bridges semantic heterogene-
ity between these services. Typical data flow requires reading outputs of a service,
transforming the data and using it as input of another service [5].

In our previous work [6, 7], we built a mashup development platform over data
services. This platform relies on spreadsheets to specify data flow and data transfor-
mations, when interacting with external services. Spreadsheets are ubiquitous tools
used for the storage, analysis and manipulation of data [8]. There are several reasons
for their popularity. Spreadsheet-based data management offers important flexibility
in data formatting over a tabular grid [9]. Spreadsheets do not impose many con-
straints regarding the data layout. Data can be organized according to subjective
importance, preferences, and styles (e.g., by placing important data in the top-left
corner or placing related elements of data next to each other). Furthermore, spread-
sheets offer a simple, but effective formula language using spatial relationships that
shield users from the low-level details of traditional programming [10]. To use the
language, a user only needs to master two concepts, namely cells as variables and
functions for expressing relations between cells.

The first contribution of the proposed mashup platform was a language that allows
users to employ familiar spreadsheet concepts to explore, manipulate, and analyze
complex data with a data flow; as well as build fairly sophisticated mashups, involv-
ing joining data from multiple Web data services [6]. The second contribution was a
language that specifies transformations between spreadsheet data and data formats
used by external services [7]. This data transformation language provides an expres-
sive spreadsheet-like formula mapping language. Spreadsheets were used to specify
transformations as well because of the following reasons: (i) leveraging existing
users’ experience in spreadsheet programming and preserve important characteris-
tics of spreadsheet programming; (ii) exploiting frequently used formatting features
of spreadsheets to generalize a mapping from instance level to template level; (iii)
avoiding cluttering spreadsheet documents with transformations by embedding trans-
formation logic into the language.

As mentioned before, data transformation is a labour-intensive and error-prone
process, which includes various non-trivial steps, namely schema matching, map-
ping specification, code generation, and transformation execution [11, 12]. In exist-
ing work, data transformation logic is developed using special transformation and
query languages, such as XSLT or XQuery, or even general purpose programming
languages, such as Java. Specific data transformation tools (e.g., Clio [13], Clip
[14], Altova MapForce [15], IBM Relational Data Architect [16], Microsoft BizTalk
Mapper [17]) use textual or visual languages to specify transformations and generate
executable code (e.g., XSLT, XQuery, Java transformation logic).

25 Data Transformation Knowledge Reuse 637

In this chapter, we present our work on extending the data flow and transformation
features of the mashup development platform to cater for reuse of previously specified
mapping as much as possible, improving the productivity in mashup development.
More specifically, we consider the problem of reuse in transforming spreadsheet
data to structured formats. The problem is challenging because: (i) Spreadsheet
systems do not impose many constraints on spatial layout of data, and users can
organize same data according to their own preferences and styles, not in a pre-defined
way. Therefore, given two spreadsheet instances, it is programmatically difficult to
uncover if they are similar in terms of structure. Mapping a spreadsheet instance to
a target schema typically depends on the spatial layout of the instance; (ii) Given a
spreadsheet instance and a target schema, there may have multiple ways of mapping
the instance to the schema. For instance, an optional attribute of the target schema
can be mapped or not mapped to spreadsheet data; (iii) A mapping of a spreadsheet
instance to the target schema is only applied exactly to this instance, not to other
instances with similar structure that also need to be mapped to the target schema;
(iv) Since a mapping repository may contain a large number of mappings (up to
a few hundred thousand mappings), the reuse recommendation mechanism should
suggest previously specified mappings in an effective and efficient way. To the best
of our knowledge, the problem of spreadsheet-based transformation reuse has not
been addressed before in the setting we consider here. To address the above issues,
we make the following main contributions:

• We formulate the problem of spreadsheet-based transformation reuse as a variant
of similarity join [18–20], which is a well-known similarity search problem that
finds all pairs of objects whose similarity is above a given threshold (Sect. 25.3).
• We define spreadsheet templates that are used to characterize spreadsheet struc-

tures. We propose techniques to infer a template from an existing spreadsheet based
on common spreadsheet presentation patterns. We then generate the string-based
representation of an inferred template (Sect. 25.4).
• We propose an algorithm to recommend previously specified mappings for a

new spreadsheet instance that needs to be mapped to the target schema. This
relies on computing similarity between string-based representations of templates
(Sect. 25.5).
• We design a repository to organize mapping information. We implemented a proto-

type of the proposed solution. We then evaluated the performance and effectiveness
of the solution. The experimental results show the viability and usefulness of our
approach (Sects. 25.6, 25.7).

The rest of this chapter is organized as follows. A motivating example is illustrated
in Sect. 25.2. Section 25.3 formulate the spreadsheet-based data transformation reuse
problem. Next, Sect. 25.4 formally defines spreadsheet templates and infers tem-
plates from existing spreadsheets. The reuse recommendation algorithm is described
in Sect. 25.5. Section 25.6 presents the prototype implementation. Section 25.7 eval-
uates the performance of the proposed solution. We discuss related work in Sect. 25.8
and conclude in Sect. 25.9.

638 V. Hung et al.

25.2 Motivating Example

Figure 25.1 shows the transformation scenario used throughout the whole chapter
for illustration purpose. We consider three spreadsheets (in Fig. 25.1a–c) containing
similar data that must be mapped to the target schema (Fig. 25.1d). The instance
in Fig. 25.1a is a table presentation [6] with headers in the first row and data in
subsequent rows. The instance in Fig. 25.1b is a vertical repeater presentation [6]
where different values of tuples (Dept,ID,Name) are presented vertically, each of
which is separated by two empty rows. The instance in Fig. 25.1c is also a vertical
repeater presentation where different values of tuples (Dept,ID,Address,Name)
are presented vertically, each of which is separated by one empty row. Note that
spreadsheet data in Fig. 25.1b is similar to the one in Fig. 25.1c in terms of structure,
but it does not include address information of employees.

Suppose that the two spreadsheets in Fig. 25.1a, b are already mapped to the target
schema. Now the user wants to map the spreadsheet in Fig. 25.1c to this schema. The
important question to ask is whether previous mapping efforts can be reused for this
new mapping or not. The structure of the spreadsheet in Fig. 25.1b is similar to the
one of the spreadsheet in Fig. 25.1c so it is desirable that we can reuse the mapping
used to transform the instance in Fig. 25.1b to the target format for the new mapping.

(a)

(c)

(b)

Target
Emp [1..*]

Dept =B1 {IT }
EmployeeID =B2 {1111}
EmployeeName =B3 {Ann}
Address?

(d)

Fig. 25.1 Motivating example: a employees organized in a table presentation; b employees orga-
nized in a vertical repeater presentation without address information; c employees organized in a
vertical repeater presentation with address information; d the target schema

25 Data Transformation Knowledge Reuse 639

In what follows, we review two related state-of-the-art approaches for dealing with
this scenario.

The first approach, namely schema-based, helps users specify a schema of a
spreadsheet [21]. Then, either low-level transformation languages (e.g., XSLT,
XQuery) or visual mapping tools (e.g., Clio [13], Clip [14], +Spicy [22], Altova
MapForce [15]) is used for specifying transformation at schema level. Finally, the
spreadsheet instance is translated into an instance of the target schema. However,
users must learn a new language, e.g., by creating correspondences between the
source and target elements and annotating these correspondences with one or more
unfamiliar functions (e.g., functions of XSLT/XQuery or .NET Framework) in the
case of mapping tools [12]. This flowchart-like mapping interface is typically clut-
tered when schemas are large and mappings are complex [23]. In contrast, spreadsheet
users are familiar with formulas and an incremental approach to building applications
with instant feedback at each step [10].

The second approach, namely column-based, allows users to specify mappings
between target elements and spreadsheet columns via drag-and-drop operations [24,
25]. The user can select a target atomic element and drag it onto a source column to
specify a mapping. However, this approach offers no reuse support. For example, to
map the spreadsheet in Fig. 25.1a, the user can select target atomic elements: Dept,
EmployeeID, EmployeeName, Address, and drag them onto source columns:
A1:A5, B1:B5, C1:C5, D1:D5, respectively. To map the spreadsheet in Fig. 25.1b,
the user must modify the presentation of this spreadsheet in order to conform to
the structure shown in Fig. 25.1a (i.e., table presentation) and then repeat the steps
described in the case of the spreadsheet in Fig. 25.1a. Regarding the spreadsheet in
Fig. 25.1c, again, the user must modify this spreadsheet as in the case of the instance
in Fig. 25.1b. It is a tedious and time-consuming process with no reuse support.

25.3 Problem Definition

Given a schema T and a spreadsheet instance I , the corresponding specified mapping
MI from I to T is stored as a tuple (MI , I, PI , T) in the mapping repository; PI is a
template of I ; MI consists of template-level mappings that are specified to transform
I to a target instance conforming to T . We denote ΓT as a collection of all tuples
containing previously specified mappings from past spreadsheet instances to T . The
main technical problem can be formally stated as follows.

Definition 25.3.1 Given an instance J conforming to template PJ that is currently
being mapped to schema T , find in ΓT all tuples (MI , I, PI , T) such that similarity
between PI and PJ is greater than or equal θ where θ is a predefined normalized
threshold (0 < θ ≤ 1).

As presented later, a template is represented as a string generated from a context-
free grammar. Therefore, similarity between PI and PJ can be characterized by a

640 V. Hung et al.

string similarity function sim: sim(PI , PJ) ≥ θ . It is also worth noting that the
size of ΓT (|ΓT |) may be large (e.g., a few hundred thousand mappings) so we need
a more efficient approach, rather than directly comparing PJ with all templates in
ΓT using a similarity function (i.e., pair-wise comparison), which is costly when
template lengths are large.

Given two sets of strings R and R′, similarity join [18–20] finds in all pairs (x, y)
(x ∈ R and y ∈ R′) such that sim(x, y) ≥ θ . Self-join is a special case of similar-
ity join when R = R′. Instead, given a new string x , we find all y ∈ R (R′) such
that sim(x, y) ≥ θ . The efficient approach to similarity join is a filtering (probe the
inverted lists and use the filtering methods to eliminate as much as possible false
candidates) and verification (check each candidate to find out if the threshold is sat-
isfied) process [20], which is also applicable to the spreadsheet-based transformation
reuse problem.

A spreadsheet S may contain multiple instances, not only one: S = {I1, . . . , In}.
For example, the user can put three instances shown in Fig. 25.1a–c in one spread-
sheet, instead of three separate spreadsheets. We assume the existence of procedures
to identify and separate Ii (1 ≤ i ≤ n) from S (See [9] for an example). Map-
ping from S to the target schema T can be, therefore, divided into individual map-
pings: (I1, T), . . . , (In, T). Thus, in this chapter, we assume that S contains only
one instance.

25.4 Spreadsheet Template

In Sect. 25.4.1, we formally define the template description language. Section 25.4.2
presents template inference techniques and how to generate the string-based repre-
sentation of an inferred template.

25.4.1 Template Description Language

In many cases, spreadsheets evolve in a number of predictable ways and various
spreadsheets tend to emerge from a common pattern. Structure of spreadsheets can
be characterized via the notion of template. We use a variation of the language VITSL
developed in [26] with the following context-free grammar to describe templates:

1. Temp ::= C | C→ | T emp � T emp
2. C ::= B | B↓ | C � C
3. B ::= F | B − B
4. F ::= ε | const | β | Φ(F, ..., F)

N is a set of non-terminal symbols: N = {Temp, B,C, F}. Σ is a set of terminal
symbols:Σ = ε ∪ const ∪ β ∪Φ and ε ∩ const ∩ β ∩Φ = ∅. S is the start symbol:
S = Temp.

25 Data Transformation Knowledge Reuse 641

Template Temp is a table given by a horizontal composition (�) of fixed columns
(C) or expandable groups of columns (C→). A column (C) is given by a vertical
composition (−) of fixed cells (B) or expandable groups of cells (B↓). A cell (B)
is given by a formula (F), which consists of an empty value (ε), a constant label
(const), a basic type (β) (e.g., int, string) of a data cell, or a function (Φ(F, . . . , F)).
Note that cells of a template can be basically classified according to their content
into four types: empty cell, label cell (e.g., headers), data cell, and formula cell (i.e.,
computation cell) [9].

All columns of a template have to vertically align (i.e., same height and same
expandable groups of cells). An expandable group of columns is called a horizontal
expandable group or hex group for short. An expandable group of cells is called
a vertical expandable group or vex group for short. For comparison purpose, we
replace the hex group symbol C→ and the vex group symbol B↓ by [C] and ,
respectively. Let us consider some examples on using this language to describe
spreadsheet templates.

For example, the template: Dept − <string> � ID − <int> � Name −
<string> � Address − <string>, describes a class of tabular spreadsheet
instances with four fixed columns, each of which consists of a description label (i.e.,
header, such as Dept,ID,Name,Address) at the top and a set of subsequent
text/numeric data cells (represented by types string, int, …). The spreadsheet in
Fig. 25.1a is an instance of this template.

The template:<Dept−ID−Name−ε−ε> � <string−int−string−
ε − ε>, describes a class of spreadsheet instances with two fixed columns; the first
column contains groups of labels, each of which contains three labels and two empty
cells; the second column contains groups of data cells adjacent to labels, each of
which contains three data cells and two empty cells. The spreadsheet in Fig. 25.1b
is an instance of this template. Similarly, the spreadsheet in Fig. 25.1c is an instance
of the template: <Dept− ID− Address− Name− ε> � <string− int−
string− string− ε>.

25.4.2 Inferring Templates

Given a spreadsheet, it is desirable to infer a template that characterizes its struc-
ture. The problem is challenging since spreadsheets may not impose any restrictions
on how to organize data over a tabular grid. In fact, the spreadsheet may not have
enough information for inferring a template. Therefore, template inference is typ-
ically ambiguous and users generally need to provide input to resolve ambiguities
during inference process [27].

Abraham and Erwig [27] presents an inference technique based on the cells con-
taining similar formulas to identify hex and vex groups. However, there are numer-
ous spreadsheets in which formula cells are not available [28] (e.g., spreadsheets in
Fig. 25.1a–c). As a result, in addition to that technique, we also provide an infer-
ence technique based on the common spreadsheet presentation patterns we proposed

642 V. Hung et al.

Fig. 25.2 Inferred template
of the instance in Fig. 25.1b in
a new worksheet

in [6], including the table, repeater, and hierarchical presentations. For instance, the
inference algorithm for a repeater presentation in the vertical direction is shown
in Algorithm 1. Recall that a vertical repeater presentation contains two columns,
each of which contains instances of a vex group. Algorithm 1 extracts the two first
instances, which characterize these vex groups, based on identifying the last empty
row of the two instances. By using this algorithm, the template of the instance in
Fig. 25.1b is inferred as shown in Fig. 25.2 in a new worksheet (table A1:B5), where
the two vex groups with some default values are shaded light orange (vex groups
A1:A5 and B1:B5).

Algorithm 1: Template inference for a vertical repeater presentation.
Input: Start and end coordinates of the instance: (x, y) and (x + 1, y′)
Output: Start and end coordinates of the inferred template
begin

i ←− 0 ;
repeat

i ←− i + 1;
until (x, y + i) = ε and (x, y + i + 1) �= ε;
return (x, y) and (x + 1, y + i)

To generate a string-based representation of an inferred template (e.g., the template
in Fig. 25.2), the following main steps are performed:

• First, stand at the start coordinate (i.e., top-left cell) of the inferred template (e.g.,
cell A1 in Fig. 25.2).
• Then, traverse all columns of the template from left to right. If meet a hex group,

generate a pair of (“[”,“]”) and put the result of traversing each column in the
hex group in this pair. Between two columns (e.g., columns A1:A5 and B1:B5 in
Fig. 25.2), a column and a hex group, or two hex groups, generate “�”.

25 Data Transformation Knowledge Reuse 643

• For each column, traverse all cells of the column from top to bottom. If meet a vex
group, then generate a pair of (“<”, “>”) and put the result of traversing each cell
in the vex group in this pair. Between two cells (e.g., cells A1 and A2 in Fig. 25.2),
a cell and a vex group, or two vex groups, generate “−”.
• For each cell : (i) If the cell contains a formula f , generate “ f ”; (ii) If the cell is an

empty cell, generate “ε”; (iii) If the cell contains a label l, generate “l”; (iv) If the
cell is a data cell, generate its type. To decide whether a cell inside a hex group/vex
group is a data cell or a label, we rely on the observation: If the cell is referenced
by a formula or values of the cell are changed in instances of the hex group/vex
group in the original spreadsheet (i.e., the spreadsheet from which the template
is inferred), it is a data cell; otherwise, it is a label. For example, in Fig. 25.2,
cell B1 is a data cell (since its values are changed in vex group instances in the
original spreadsheet in Fig. 25.1b), while cell A1 is a label. For a cell outside vex
groups/hex groups, if the cell is referenced by a formula, it is a data cell; otherwise,
it is a label.

Note that each generated token is separated from the other tokens by a single
whitespace that is convenient for tokenizing later. By applying the above steps, the
string-based representation of the template in Fig. 25.2 is generated as “<Dept −
ID − Name − ε − ε> � <string − int − string − ε − ε>”. This string is
then shown up to the user for validation and editing.

25.5 Reuse Recommendation Algorithm

There are numerous similarity functions for measuring similarities, but no single
function is known to be the best one, basically depending on the application domain.
There are mainly two relevant approaches, namely character-based and token-based
similarity metrics [29]. Character-based approach relies on the notion of edit distance
which measures the minimum number of edit operations needed to transform one
string to the other. Edit operation is an insertion, deletion, or substitution of a single
character.

For example, the edit distance between “microsoft” and “mcrosoft” is 1, with
one delete operation. Edit distance captures well typographical errors (words with
alternative spellings). However, when there is a rearrangement of words in a string,
character-based metrics fail to capture the similarity (e.g., “Bill Gates” and “Gates,
Bill”). Token-based approach is designed to solve this problem, in which strings are
tokenized according to word boundaries and popular set-based similarity measures
(e.g., Jaccard and Cosine) are then used to compute similarity.

Regarding algorithm illustration, we specifically focus on the Jaccard similarity, a
commonly used function for defining similarity between sets. It has been shown that
supporting Jaccard similarity efficiently leads to sound implementations of other
similarity functions (e.g., edit distance and Cosine similarities) [18–20]. As men-
tioned earlier (Sect. 25.3), we find in ΓT all templates that are similar to PJ , instead

644 V. Hung et al.

of looking for all similar template pairs in the set of templates ΓT ∪ {PJ } as in the
case of similarity join. Therefore, our algorithm is designed based on modifying the
recently proposed algorithm PPJoin+ [20, 30], which has been shown to outper-
form previous ones on similarity join. The main steps of the algorithm are sketched
in Algorithm 2.

We will intuitively illustrate these steps in via the motivating example. Suppose
that ΓT already contains the mappings of the instance I0 (Fig. 25.1a) and the instance
I1 (Fig. 25.1b) to the target schema (Fig. 25.1d). The specified template-level map-
ping formulas are:

• Emp = A2:D(value = empty) (for I0)
• Dept = B1:B(next = bottom(Dept)+ 5) (for I1)
• EmployeeID = B2:B(next = bottom(EmployeeID)+ 5) (for I1)
• EmployeeName = B3:B(next = bottom(EmployeeName)+ 5) (for I1)

The user now wants to map instance J in Fig. 25.1c to the target schema.
The templates of the three instances are described in Sect. 25.4:

1. PI0 = “Dept − <string> � ID − <int> � Name − <string> �

Address−<string>”
2. PI1 = “<Dept−ID−Name−ε−ε> � <string−int−string−ε−ε>”
3. PJ = “<Dept−ID−Address−Name−ε> � <string−int−string−

string− ε>”

The threshold to be set is 0.8: θ = 0.8.

Algorithm 2: The algorithm for reuse recommendation.
Input: A collection of specified mappings ΓT ;
A new instance J conforming to template PJ ;
Jaccard similarity function f and threshold θ
Output: All pairs (PI , PJ), PI ∈ ΓT such that f (PI , PJ) ≥ θ
begin

1. Tokenize templates in ΓT and template PJ into sets of tokens (i.e., records).
2. Records are canonicalized according to the document frequency ordering Od f
3. Create inverted lists on tokens that appear in templates in ΓT and generate
candidates for PJ by probing these inverted lists.
4. Reduce candidate size for PJ using size filtering and positional filtering.
5. Verify final candidates using similarity function f such that f ≥ θ .

At first step, we transform each template into a set of tokens according to the
delimiter whitespace. Since tokens may occur multiple times in a string, we will
convert a multiset of tokens into a set of tokens by treating each subsequent occurrence
of the same token as a new token [19]. Such a set of tokens is called a record. For
example:

25 Data Transformation Knowledge Reuse 645

1. PI0 = {Dept0,−0,<0,string0,>0, �0,ID0,−1,<1,int0,>1, �1,

Name0,−2,<2,string1,>2, �2,Address0,−3,<3,string2,>3}
2. PI1 = {<0,Dept0,−0,ID0,−1,Name0,−2, ε0,−3, ε1,>0, �0,<1,

string0,−4,int0,−5,string1,−6, ε2,−7, ε3,>1}
3. PJ = {<0,Dept0,−0,ID0,−1,Address0,−2,Name0,−3, ε0,>0, �0,

<1,string0,−4,int0,−5,string1,−6,string2,−7, ε1,>1}
In the second step, to compare records, a record is canonicalized by sorting its

tokens according to a certain global ordering O defined on the token universe U .
The document frequency of a token is the number of records containing the token. A
document frequency ordering Od f arranges the tokens of a record according to the
increasing order of tokens’ document frequencies. Od f favors rare tokens in prefixes
and hence produces a small candidate size as presented in next steps. For example,
the token universe, the tokens’ document frequencies, and token’s orders of PI0 , PI1 ,
and PJ are presented in Tables 25.1 and 25.2 (DF is the abbreviation for “Document
Frequency”).

Consequently, PI0 , PI1 , and PJ are canonicalized according to Od f with the
following results:

1. PI0 = {�1,<2,>2, �2,<3,>3,Address0,string2,Dept0,−0,<0,

string0,>0, �0,ID0,−1,<1,int0,>1,Name0,−2,string1,−3}
2. PI1 = {ε2, ε3, ε0, ε1,−4,−5,−6,−7,Dept0,−0,<0,string0,>0, �0,

ID0,−1,<1,int0,>1,Name0,−2,string1,−3}
3. PJ = {Address0,string2, ε0, ε1,−4,−5,−6,−7,Dept0,−0,<0,

string0,>0, �0,ID0,−1,<1,int0,>1,Name0,−2, string1,−3}
In the third step, given two canonicalized records x and y with O(x, y) = |x ∩ y|,

by using the transformation |x ∪ y| = |x | + |y| − |x ∩ y|, we have:

Jaccard(x, y) = |x ∩ y|
|x ∪ y| ≥ θ ⇔ O(x, y) ≥ α = θ

θ + 1
∗ (|x | + |y|) (25.1)

Jaccard(x, y) ≥ θ ⇒ θ ∗ |x | ≤ |y|, θ ∗ |y| ≤ |x | (25.2)

Table 25.1 Tokens’ document frequencies and token’s orders of PI0 , PI1 , and PJ (Part 1)

Token Dept0 −0 <0 string0 >0 �0 ID0 −1 <1 int0 >1 �1 Name0 −2 <2

DF 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1
Order 17 18 19 20 21 22 23 24 25 26 27 1 28 29 2

Table 25.2 Tokens’ document frequencies and token’s orders of PI0 , PI1 , and PJ (Part 2)

Token string1 >2 �2 Address0 −3 <3 string2 >3 −4 −5 −6 −7 ε0 ε1 ε2 ε3

DF 3 1 1 2 3 1 2 1 2 2 2 2 2 2 1 1
Order 30 3 4 9 31 5 10 6 13 14 15 16 11 12 7 8

646 V. Hung et al.

Let p-prefix of a record x be the first p tokens of x . Prefix-filtering principle [19]
states that (|x | − α + 1)-prefix of x and (|y| − α + 1)-prefix of y must share at
least one token if (x, y) are a candidate pair. The prefix-filtering principle is used
in building inverted lists (i.e., inverted indices). In terms of information retrieval,
input template PJ can be seen as a query and the templates in ΓT can be considered
as the set of matching documents. The key idea is that we create inverted lists for
each token of existing templates in ΓT and we index prefixes with certain lengths,
instead of the whole records. Obviously, if two records x, y are a candidate pair
(x, y), then they share at least one token. Given a candidate pair (x, y), the prefix
of length |x | − �θ ∗ |x |� + 1 of x and the prefix of length |y| − �θ ∗ |y|� + 1 of y
must share at least one token. This is because |x | − �θ ∗ |x |� + 1 ≥ |x | − α + 1 and
|y| − �θ ∗ |y|� + 1 ≥ |y| − α + 1 (based on Eq. 25.2).

Therefore, given a template PI in ΓT , we only need to index a prefix of length
|PI |−�θ ∗ |PI |�+1. We index both tokens and their positions in the prefixes so that
positional filtering can be applied later. Then, with respect to the input template PJ ,
we match each token of the (|PJ | − �θ ∗ |PJ |�+ 1)-prefix of PJ against the inverted
lists and generate candidates for PJ by union the matched lists.

For example, the 5-prefix of PI0 to be indexed is {�1,<2,>2, �2,<3} with the fol-
lowing lists: list(�1) = {(PI0 , 1)}; list(<2) = {(PI0 , 2)}; list(>2) =
{(PI0 , 3)}; list(�2) = {(PI0 , 4)}; list(<3) = {(PI0 , 5)}. Also, 5-prefix of PI1 to be
indexed is {ε2, ε3, ε0, ε1,−4} with the following lists: list(ε2) = {(PI1, 1)}; list(ε3) =
{(PI1 , 2)}; list(ε0) = {(PI1 , 3)}; list(ε1) = {(PI1 , 4)}; list(−4) = {(PI1 , 5)}. Next,
each token in the 5-prefix of PJ = {Address0, string2, ε0, ε1,−4} is matched against
the above lists. Finally, the candidate set is created by applying the union operation
on the matched lists: list(ε0)∪ list(ε1)∪ list(−4) = {(PI1, 3), (PI1 , 4), (PI1 , 5)}. As
can be seen, PI0 is filtered out and only PI1 is passed to the next step.

In the fourth step, given a candidate pair (x, y), we reduce the candidate size
based on size filtering (see Eq. 25.2) and positional filtering. The positional filtering
is stated as follows:

• Let token ω = x[i], ω partitions the record x into the left partition xl(ω) = x[1..i]
and the right partition xr (ω) = x[i + 1..|x |]. If O(x, y) ≥ α, then for every token
ω ∈ x ∩ y, O(xl(ω), yl(ω))+ min(|xr (ω)|, |yr (ω)|) ≥ α.

We have |PI1 | = |PJ | = 23 so size filtering is satisfied. For the common token
‘ε0’, O(PI1l(ε0), PJl(ε0))+ min(|PI1r (ε0)|, |PJr (ε0)|) = 1+ min(20, 20) = 21 >
α = 20.44. Similarly, positional filtering is also valid for the other common tokens
‘ε1’ and ‘−4’ since:

• O(PI1l(ε1), PJl(ε1)) + min(|PI1r (ε1)|, |PJr (ε1)|) = 2 + min(19, 19) = 21 >

α = 20.44
• O(PI1l(−4), PJl(−4))+min(|PI1r (−4)|, |PJr (−4)|) = 3+min(18, 18) = 21 >
α = 20.44

Hence, the pair (PI1 , PJ) can be passed to the final step for verification. Note that
for really large datasets, suffix filtering [20] can also be used to prune more candidates.
This filtering method is a generalization of the positional filtering to the suffixes of

25 Data Transformation Knowledge Reuse 647

the records by converting the overlap constraint to the equivalent Hamming distance
constraint.

Our example has |PI1 | = |PJ | = 23 so size filtering is satisfied. For the common
token ‘ε0’, O(PI1l(ε0), PJl(ε0))+min(|PI1r (ε0)|, |PJr (ε0)|) = 1+min(20, 20) =
21 > α = 20.44. Positional filtering is also valid for the other common tokens
‘ε1’ and ‘−4’ because: min(|PI1r (ε1)|, |PJr (ε1)|) = 2 + min(19, 19) = 21 and
min(|PI1r (−4)|, |PJr (−4)|) = 3+min(18, 18) = 21. As a result, the pair (PI1 , PJ)

can be passed to the final step for verification.
In the final step, Jaccard similarity function is computed to verify the candidate

pair (PI1 , PJ). Recall that threshold θ can be equivalently converted to the overlap

threshold α according to Eq. (25.1). Jaccard(PI1 , PJ) = |PI1

⋂
PJ |

|PI1

⋃
PJ | = 21

25 = 0.84 >

θ ⇔ O(PI1 , PJ) = 21 > α. Thus, MI1 can be potentially reused for MJ . In
particular, the two following mapping formulas are reused completely:

• Dept = B1:B(next = bottom(Dept)+ 5)
• EmployeeID = B2:B(next = bottom(EmployeeID)+ 5).

The mapping formula EmployeeName = B3:B(next = bottom(EmployeeName)
+ 5) needs to be modified to EmployeeName = B4:B(next = bottom(Employee
Name)+ 5). In addition to that, the user needs to write a new mapping formula for
the optional label Address: Address = B3:B(next = bottom(Address) + 5). MJ is
then stored in the mapping repository for future reuse.

It is worth noting that the start coordinate (i.e., top-left cell) of an instance is
important in reuse. In the above example, starting coordinates of PI1 and PJ are both
(1, 1) so we do not need to change mapping formulas in a recommendation. Suppose
that the starting coordinate of PJ is now (2, 2), then mapping formulas of PI1 should
be offset based on the row and column differences between two start coordinates. For
example, two mappings that can be reused completely are offset as follows: Dept =
C2:C(next = bottom(Dept)+ 5) and I D = C3 : C(next = bottom(I D)+ 5).

The algorithm we presented above can be easily switched to other similarity
metrics [20]. In the case of cosine similarity, the length of prefix to be indexed for a
string x is |x |−[θ ∗|x |]+1; the size filtering threshold is [θ2∗|x |]; overlap threshold
for positional filtering is α = [θ ∗ √|x | ∗ |y|]. The algorithm is also applicable to
the edit distance with threshold δ if we tokenize strings to q-grams. The necessary
condition for two strings (x, y) satisfying the threshold δ is their corresponding
q-gram sets must have overlap no less than α = (max(|x |, |y|)+q−1)−q ∗ δ [31].
Hence, prefix to be indexed for a string x is q ∗ δ + 1; the filtering size threshold is
|x | − δ; threshold for positional filtering is x − q ∗ δ.

25.6 Implementation

TranSheet has been implemented as an Excel plug-in using C# 3.0 and Visual Studio
2008.

648 V. Hung et al.

GUI
(Spreadsheet-based Interface)

Executable Code
Generation Engine

Transformation
Execution Engine

(Saxon)

Target
Instance

Mapping Repository

Reuse
Recommendation

Engine

Mapping
Generation

Engine

Mapping Specification

Template
Inference

Engine

Formulas

Tgds

XQuery

Fig. 25.3 TranSheet architecture for spreadsheet-based data transformation reuse

Architecture. The architecture (Fig. 25.3) contains several components that we
developed previously: (i) GUI enables users to specify mappings via formulas. While
spreadsheet data is imported using the built-in functionality of Excel, target schemas
are imported using TranSheet functionality; (ii) Mapping generation engine takes
input mapping formulas from GUI and generates corresponding tuple generating
dependencies (tgds); (iii) Query generation engine generates XQuery from input
tgds; (iv) Execution engine is responsible for executing input XQuery and then
returning the transformation result to GUI for validation. For the work presented
in this chapter, the architecture was extended by adding the following components:
(i) Template inference engine infers the template of an existing spreadsheet and gen-
erates the corresponding string (Sect. 25.4); (ii) Mapping repository stores specified
mapping information (presented below); (iii) Reuse recommendation engine uses
information stored in the mapping repository and recommends specified mapping
formulas for reuse (Sect. 25.5).

Mapping Repository Organization. The main tables that form the basis for design-
ing the mapping repository are as follows:

• Mappings(MId, InstanceId, TemplateId, SchemaId)
• MappingFormulas(MEId, MId, EId, MappingFormula)
• Schemas(SchemaId, SchemaName)
• Elements(EId, Name, Type, Parent, SchemaId)

25 Data Transformation Knowledge Reuse 649

Mappings Schemas

Elements MappingFormulas

Cells Instances

Templates

Fig. 25.4 Mapping Repository Organization

• Instances(InstanceId, StartCoordinate, EndCoordinate)
• Cells(CellId, Coordinate, Value, Formula, InstanceId)
• Templates(TemplateId, Representation)

TableMappings encodes mappings from spreadsheet instances to target schemas
where attributes MId, InstanceId, TemplateId, and SchemaId are a map-
ping identifier, an instance identifier, a template identifier, and a target schema iden-
tifier, respectively. Each mapping in table Mappings consists of a set of mapping
formulas stored in tableMappingFormulas, in which attributesMEId,MId,EId,
and MappingFormula are a mapping formula identifier, a mapping identifier, a
schema element identifier, and a mapping formula, respectively.

Tables Schemas and Elements encode the target schemas and their corre-
sponding elements, respectively. Table Schemas stores a schema identifier
SchemaId and a schema name SchemaName. Table Elements represents the
graph representation of a target schema. Each tuple of this table corresponds to a
node of the graph where attributes Name, Type, Parent, and SchemaId specify
a node’s label, a node’s type, a node’s parent, and an identifier of a target schema,
respectively.

Tables Instances and Cells are used to model a spreadsheet instance and its
non-empty cells. Table Templates stores a template identifier TemplateId and
its corresponding string representation Representation. For example, tables in
Fig. 25.4 are created for mapping instances I0 in Fig. 25.1a and I1 in Fig. 25.1b to
the target schema in Fig. 25.1d.

650 V. Hung et al.

25.7 Evaluation

For the evaluation we have put the focus on the performance and the effectiveness
of the system. We use the EUSES spreadsheet corpus [28], which consists of 4498
spreadsheets collected from various sources (e.g., teaching courses, personal data-
bases, and financial data), for evaluation. This corpus was widely used by many
works on spreadsheet research and spreadsheet template inference(e.g., [27]).

25.7.1 Performance

The performance is to be evaluated for Jaccard and Cosine similarities with different
thresholds and variants of the template.

Experimental setup. We select 10 spreadsheets in the corpus whose templates can
be inferred using techniques presented in Sect. 25.4. The average length of these
templates is 104. For each spreadsheet S, the corresponding template TempS is mod-
ified based on small incremental changes to generate 25000, 50000, 100000, and
200000 variants of it. The following operations are applied: (i) Insert a new column
(row) inside a hex group (vex group) of TempS at an arbitrary position; (ii) Insert
a new column (row) outside the hex groups (vex groups) of TempS at an arbitrary
position; (iii) Delete an existing column (row) inside a hex group (vex group) of
TempS ; (iv) Delete an existing column (row) outside the hex groups (vex groups)
of TempS . Then, apply these operations again to the newly generated templates and
so on. All experiments were performed on a laptop with Intel Core 2 Duo 2.1 GHz,
3 GB RAM, and Windows Vista Home Premium SP2.

Methodology. Template TempS of spreadsheet S is matched against its generated
variants stored in the mapping repository. We measure the running time of this match-
ing for each fixed threshold. We use four thresholds, namely 0.9, 0.85, 0.8, and 0.75.
Each experiment covers two similarity measures, namely Jaccard and Cosine. We
then average the results of the 10 above selected spreadsheets.

Observations. The experimental results on performance are shown in Figs. 25.5 and
25.6. There was no problem with the amount of available memory during experi-
mentation (e.g., out of memory error). Consider the performance graph for Jaccard
similarity in Fig. 25.5. As can be seen, the running time increases when the threshold
decreases and this trend is clearer when the number of variants is larger. This can
be explained by two main reasons: (i) the number of inverted lists is larger for a
small threshold so it takes more time to build and probe them; (ii) the candidate size
increases for a smaller threshold. Basically, the running time grows almost linearly
with the increase of the number of variants for each threshold.

Regarding Cosine similarity (Fig. 25.6), the findings are essentially similar to
those of Jaccard similarity. However, for each threshold, the running time is gener-
ally longer since the constraints of Cosine (e.g., length of the prefix, size filtering

25 Data Transformation Knowledge Reuse 651

Fig. 25.5 Performance graph
of Jaccard similarity

Fig. 25.6 Performance graph
of Cosine similarity

threshold and overlap threshold) are looser than those of Jaccard. Furthermore, the
running time increases considerably when changing from threshold 0.8 to 0.75 due
to a surge of the candidate size at threshold 0.75, while it is a modest growth for
other threshold changes, namely from 0.9 to 0.85 and from 0.85 to 0.8.

25.7.2 Effectiveness

The objective of the experiment to evaluate the effectiveness is to contrast the capa-
bility of the system of producing the desired result with different configurations.

Experimental setup. Since the size of the above repository (See Sect. 25.7.1) is
quite big, to properly evaluate the reuse effectiveness, we create a smaller reposi-
tory as the following. We select 10 spreadsheets from the EUSES corpus. For each
spreadsheet, we represent it using table, repeater (separated by one blank column),

652 V. Hung et al.

Fig. 25.7 Reuse effectiveness
of Jaccard similarity

and hierarchical (separated by one blank column) presentations. We then modify the
table presentation by inserting a new column at an arbitrary position, deleting an
existing column, or exchanging the orders of two existing columns. Afterwards, the
modified table presentation is represented using corresponding repeater and hierar-
chical presentations with one separated blank column. Based on this procedure, for
each spreadsheet S, we generate 50 variants of it. We also design the target schema
TS based on data of S. For each variant VS of S, we manually write the mappings
from VS to TS and save these mappings into the repository along with the template
of VS .

Methodology. To evaluate the effectiveness of our algorithm in the repository, we
map S to TS by reusing previously specified mappings of the variants of S stored in
the repository, if any. We compared the real reusable mappings R (found manually)
and the recommended mappings P found by our algorithm at four thresholds, namely
0.9, 0.8, 0.7, and 0.6. Let I = R ∩ P , we use the quality measures employed by
popular information retrieval studies [32, 33]:

• precision =|I |/|P|
• recall =|I |/|R|

Similar to the performance experiments, each experiment covers the Jaccard and
Cosine similarities. The results of the 10 selected spreadsheets are averaged.

Observations. The experimental results on reuse effectiveness are shown in Figs. 25.7
and 25.8 for Jaccard and Cosine similarities, respectively. Consider the reuse effec-
tiveness graph for Jaccard similarity shown in Fig. 25.7. Precisions for all thresholds
are all 100 %. Meanwhile, the recall is higher when the threshold is smaller; at
threshold 0.6, recall is 100 %. This is because for a larger threshold, more reusable
mappings are filtered out.

Since the constraints of Cosine similarity are looser, the reuse effectiveness results
of Cosine (Fig. 25.8) are slightly different from those of Jaccard. Precisions for all
thresholds, except threshold 0.6 (recall is nearly 40 %), are 100 %. Some unusable
recommended mappings appear at threshold 0.6. Except threshold 0.9 (recall is more
than 80 %), recalls for all thresholds are 100 %.

25 Data Transformation Knowledge Reuse 653

Fig. 25.8 Reuse effectiveness
of Cosine similarity

25.8 Related Work

Reusing mapping information is first discussed in the survey of Rahm and Bernstein
[34] on schema matching (i.e., find semantic correspondences between the elements
of two schemas). It is expected that in many cases schemas being matched can be
very similar. Therefore, when matching different but similar schemas to the same
destination schema (e.g., integrating new data sources into a data warehouse), it is
possible to reuse existing mappings for entire schema structures, which results in
significant savings of manual effort.

Inspired by that, COMA [32] proposes the MatchCompose operation for perform-
ing a join-like operation on a mapping path consisting of two or more mappings to
deduce a new mapping (e.g., combine A–B, B–C, and C–D to derive a new mapping
between A and D). COMA++ [35] extends COMA to deal with the cases where such
mapping paths are unnecessary (i.e., one or multiple existing mappings can be reused
for the given match problem) or not available(i.e., searching for mapping paths which
are not available yet, but may be computed with less effort than a direct matching).
To handle large and complex schemas, COMA++ also introduces the fragment-based
matching approach, in which the source and target schemas are divided into frag-
ments and each pair of source and target fragments are then compared to detect the
best matching pairs.

Madhavan et al. [33] leverage the knowledge in a corpus of schemas and mappings
to improve schema matching results, in addition to the evidence that is available in
the two schemas being matched. The corpus is used to augment the evidence about
elements in the schemas being matched. Statistics gleaned from the corpus is used to
infer domain constraints, which are crucial in achieving high matching accuracy. The
reuse, however, is limited to element-to-element match, rather than larger concepts.

Recent work by Saha et al. [36] introduces the schema covering problem as a
first step towards transformation reuse, which is an extension of Clio project [11,
37]. Given a complex schema, schema covering identifies a collection of common
concepts (i.e., business objects) in a repository and creates a cover of the schema by
these concepts. When a complex schema can be divided into smaller concepts, simple

654 V. Hung et al.

transformations defined among these concepts can be reused to define transforma-
tions among the complex schemas (e.g., by composing these simple transformations).
This work assumes the existence of a concept repository and transformations among
concepts. Building such repository is a challenging task including selection, cleaning,
and unification of objects.

Mapping tool Altova MapForce [15] (MapForce for short) allows mapping an
Excel 2007+ (XLSX) file to a target schema. This is done by first helping users
specify the schema of the Excel file based on analyzing the file’s OpenXML [38]
format and then using the GUI of MapForce to specify mappings. Once users have
finished defining mappings and processing functions, MapForce can automatically
generate the program code (e.g., Java or C#) for transforming Excel data to the
format required by an external application. The generated code can be reused for
future mappings. However, this kind of reuse must be performed manually by users.

Our work focuses on reusing transformations from spreadsheet data to XML. We
have extended the spreadsheet-like formula mapping language we presented in our
previous work [7] to solve this problem. With respect to the aforementioned reuse
approaches, the main difference is that we allow users to specify mappings using
spreadsheet-like formulas and then reuse previously specified mapping formulas for
a new spreadsheet instance that needs to be mapped to the target schema. Note that our
work basically transforms data located on the tabular grid of a spreadsheet to XML,
instead of extracting data from the spreadsheet, including macros and formulas. The
recently proposed file format, namely OpenXML [38], allows external applications
to easily extract data from Excel 2007 files (XLSX).

25.9 Summary

Transformation reuse is an important topic in information integration for both data
integration and data exchange. In this chapter, we have considered the problem of
reuse in transforming spreadsheet data to XML. We formulated the problem and
proposed a solution based on the notions of spreadsheet template, mapping general-
ization, and similarity join. We extended the formula mapping language developed
in our previous work. Given a spreadsheet instance, our algorithm recommended a
list of previously specified mappings that can be reused for the instance. We imple-
mented a prototype and evaluated the efficiency and effectiveness of the proposed
solution via synthetic datasets. The experimental results confirmed the usefulness and
viability of our approach. We truly believe the work presented within this chapter is
an important step in building a simple and reusable data transformation framework
(as outlined in the Clio project [11, 36]) in the context of spreadsheet-based data
transformation.

25 Data Transformation Knowledge Reuse 655

References

1. Merrill, D.: Mashups: The new breed of web app. IBM Web Architecture Technical Library,
pp. 1–13 (2006)

2. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development. IEEE Internet
Comput. 12(5), 44–52 (2008)

3. Y. Corp. Yahoo! pipes. http://pipes.yahoo.com/pipes. Accessed 03 July 2012
4. Intel Mash Maker. http://mashmaker.intel.com. Accessed 15 June 2012
5. Kovanovic, V., Djuric, D.: Highway: a domain specific language for enterprise application

integration. In: Proceedings of the 5th India Software Engineering Conference, pp. 33–36.
ACM (2012)

6. Kongdenfha, W., Benatallah, B., Vayssière, J., Saint-Paul, R., Casati, F.: Rapid development
of spreadsheet-based web mashups. In: Proceedings of the 18th International Conference on
World Wide Web, pp. 851–860. ACM (2009)

7. Hung, V., Benatallah, B., Saint-Paul, R.: Spreadsheet-based complex data transformation. In:
Proceedings of the 20th ACM International Conference on Information and Knowledge Man-
agement (CIKM), pp. 1749–1754. ACM (2011)

8. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users and end user pro-
grammers. In: VLHCC ’05: Proceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 207–214. IEEE Computer Society, Washington, DC, USA
(2005)

9. Abraham, R., Erwig, M.: Header and unit inference for spreadsheets through spatial analyses.
In: VLHCC ’04: Proceedings of the 2004 IEEE Symposium on Visual Languages—Human
Centric Computing, pp. 165–172. IEEE Computer Society, Washington, DC, USA (2004)

10. Jones, S., Blackwell, A., Burnett, M.: A user-centered approach to functions in excel. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming,
pp. 165–176. ACM Press (2003)

11. Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: from research proto-
type to industrial tool. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pp. 805–810. ACM, New York, NY, USA (2005)

12. Roth, M., Hernandez, M.A., Coulthard, P., Yan, L., Popa, L., Ho, H.C.-T., Salter, C.C.: Xml
mapping technology: making connections in an xml-centric world. IBM Syst. J. 45(2), 389–409
(2006)

13. Hernandez, M., Miller, R., Haas, L.: Clio: a semi-automatic tool for schema mapping. In: SIG-
MOD ’01: Proceedings of the 2001 ACM SIGMOD International Conference on Management
of Data. Association for Computing Machinery, Inc., One Astor Plaza, 1515 Broadway, New
York, NY, 10036-5701, USA (2001)

14. Raffio, A., Braga, D., Ceri, S., Papotti, P., Hernandez, M.: Clip: a visual language for explicit
schema mappings. In: 24th International Conference on Data Engineering (2008)

15. Altova. Mapforce—graphical data mapping, conversion, and integration tool. http://www.
altova.com/mapforce.html. Accessed 25 May 2011

16. IBM. Infosphere Data Architect. http://www-01.ibm.com/software/data/optim/data-
architect/. Accessed 25 Oct 2010

17. Microsoft. Creating Maps Using Biztalk Mapper. http://msdn.microsoft.com/en-us/library/
aa559261(v=BTS.70).aspx. Accessed 13 Apr 2011

18. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: Proceedings of the
32nd International Conference on Very Large Data Bases, pp. 918–929. VLDB Endowment
(2006)

19. Chaudhuri, S., Ganti, V., Kaushik, R., A primitive operator for similarity joins in data cleaning.
In: Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International Conference on,
p. 5. IEEE (2006)

20. Xiao, C., Wang, W., Lin, X., Yu, J., Wang, G.: Efficient similarity joins for near-duplicate
detection. ACM Trans. Database Syst. 36(3), 15 (2011)

http://pipes.yahoo.com/pipes
http://mashmaker.intel.com
http://www.altova.com/mapforce.html
http://www.altova.com/mapforce.html
http://www-01.ibm.com/software/data/optim/data-architect/
http://www-01.ibm.com/software/data/optim/data-architect/
http://msdn.microsoft.com/en-us/library/aa559261(v=BTS.70).aspx
http://msdn.microsoft.com/en-us/library/aa559261(v=BTS.70).aspx

656 V. Hung et al.

21. Lakshmanan, L.V.S., Subramanian, S.N., Goyal, N., Krishnamurthy, R.: On query spreadsheets.
In: ICDE ’98: Proceedings of the Fourteenth International Conference on Data Engineering,
pp. 134–141. IEEE Computer Society, Washington, DC, USA (1998)

22. Mecca, G., Papotti, P., Raunich, S.: Core schema mappings. In: SIGMOD (2009)
23. Robertson, G.G., Czerwinski, M.P., Churchill, J.E.: Visualization of mappings between

schemas. In: CHI ’05: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 431–439. ACM, New York, NY, USA (2005)

24. Rice, F.: Creating xml mappings in excel 2003. Technical Report, Microsoft Corporation (2005)
25. Brauer, B.: Next evolution of data integration into microsoft excel. Technical Report, StrikeIron

(2005)
26. Erwig, M., Abraham, R., Cooperstein, I., Kollmansberger, S.: Automatic generation and main-

tenance of correct spreadsheets. In: ICSE ’05: Proceedings of the 27th International Conference
on Software Engineering, pp. 136–145. ACM, New York, NY, USA (2005)

27. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: ICSE ’06: Proceedings of
the 28th International Conference on Software Engineering, pp. 182–191. ACM, New York,
NY, USA (2006)

28. Fisher, M., Rothermel, G.: The EUSES spreadsheet corpus: a shared resource for supporting
experimentation with spreadsheet dependability mechanisms. In: ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 4, pp. 1–5. ACM (2005)

29. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a survey. IEEE
Trans. Knowl. Data Eng. 19, 1–16 (2007)

30. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on real-world
match problems. Proc. VLDB Endow. 3, 484–493 (2010)

31. Gravano, L., Ipeirotis, P., Jagadish, H., Koudas, N., Muthukrishnan, S., Srivastava, D.: Approxi-
mate string joins in a database (almost) for free. In: Proceedings of the International Conference
on Very Large Data Bases, pp. 491–500 (2001)

32. Do, H.-H., Rahm, E.: COMA: a system for flexible combination of schema matching
approaches. In: VLDB ’02: Proceedings of the 28th International Conference on Very Large
Data Bases, pp. 610–621. VLDB Endowment (2002)

33. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.: Corpus-based schema matching. In: ICDE
’05: Proceedings of the 21st International Conference on Data Engineering, pp. 57–68. IEEE
Computer Society, Washington, DC, USA (2005)

34. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J.:
Very Large Data Bases 10(4), 334–350 (2001)

35. Aumueller, D., Do, H.-H., Massmann, S., Rahm, E.: Schema and ontology matching with
COMA++. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International Confer-
ence on Management of Data, pp. 906–908. ACM, New York, NY, USA (2005)

36. Saha, B., Stanoi, I., Clarkson, K.L.: Schema covering: a step towards enabling reuse in infor-
mation integration. In: ICDE, pp. 285–296 (2010)

37. Fuxman, A., Hernandez, M.A., Ho, H., Miller, R.J., Papotti, P., Popa, L.: Nested mappings:
schema mapping reloaded. In: VLDB ’06: Proceedings of the 32nd International Conference
on Very Large Data Bases, pp. 67–78. VLDB Endowment (2006)

38. Rice, F.: Introducing the office (2007) open xml file formats. Technical Report, Microsoft
Corporation (2006)

Chapter 26
A Unified RGPS-Based Approach Supporting
Service-Oriented Process Customization

Jian Wang, Zaiwen Feng, Jia Zhang, Patrick C. K. Hung, Keqing He
and Liang-Jie Zhang

Abstract Software as a Service (SaaS) aims to provide utility-oriented software
delivery and provisioning. While software being published as reusable Web APIs,
users can quickly compose multiple services into a new value-added process: a
mashup. However, various users may have different requirements, thus preferring
to compose the same set of services in different ways. Therefore, there is a need
to provide a unified way for users to configure and compose services. RGPS (Role,
Goal, Process, and Service) is an ongoing ISO-standard meta-model framework
for describing service usage requirements. This chapter presents an approach of
leveraging RGPS to help users configure a personalized service-based mashup. Based
on users’ requirements, a hierarchical goal tree is generated for users to further refine
their business goals. According to mappings between goals and variation points in
business process templates, a personalized business process will be created. One
task in a business process may be realized by an external service. Corresponding

J. Wang (B) · Z. Feng · K. He
State Key Laboratory of Software Engineering, School of Computer,
Wuhan University, Wuhan, China
e-mail: jianwang@whu.edu.cn

Z. Feng
e-mail: fengzaiwen@whu.edu.cn

K. He
e-mail: hekeqing@whu.edu.cn

J. Zhang
Carnegie Mellon University—Silicon Valley, Silicon Valley, CA, USA
e-mail: jia.zhang@sv.cmu.edu

P. C. K. Hung
University of Ontario Institute of Technology, Oshawa, ON, Canada
e-mail: patrick.hung@uoit.ca

L.-J. Zhang
Kingdee International Software Group Co. Ltd., Shenzhen, China
e-mail: zhanglj@ieee.org

A. Bouguettaya et al. (eds.), Web Services Foundations, 657
DOI: 10.1007/978-1-4614-7518-7_26,
© Springer Science+Business Media New York 2014

658 J. Wang et al.

visualization tools are introduced to assist users. This chapter also describes a case
study of customizing a mashup over an established service supermarket.

26.1 Introduction

Cloud computing is defined as a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources [16].
This has created significant improvements in terms of software development. Soft-
ware as a Service (SaaS) is a core objective of cloud computing, aiming to provide
utility-oriented software delivery and provisioning. Increasing amounts of software
have been published as reusable Web APIs or Web services (e.g., over 28,000 services
and 7,000 APIs have been published in Seekda!1 and ProgrammableWeb2 by Sep-
tember 2012, respectively), allowing users to quickly compose multiple services into
a new value-added process, also known as a composite service or a mashup. How-
ever, various users may have personalized requirements, thus preferring to compose
the same set of software services in different ways. Meanwhile, the large amount of
available services makes it difficult for end-users to select suitable services. There-
fore, there is a need to provide a unified way for users to configure and compose
software services according to their personalized requirements.

WS-BPEL [19] is the most widely adopted standard for building business
processes using Web services. Many works have extended WS-BPEL to achieve more
flexible and customizable process modeling. For example, Mietzner et al. transform
variability descriptors into a WS-BPEL process model to guide a customer through
the customization of an SaaS application [17]; Lazovik et al. define a formal model to
guide obtaining customer-specific process instantiations by a series of customization
steps over reference processes [12]; Van der Aalst et al. investigate the workflow
variants within the context of configurable workflow models [21]. However, these
works do not consider service-oriented process customization in terms of various
end users’ requirements. The works [4, 10] establish relationships between process
models and requirements models such as KAOS and i*, followed by generating,
validating and configuring process models. Compared with these works, our work
will focus on customizing service-based processes in a holistic way by connecting
the requirements models (role and goal models), process models, and services.

The RGPS (Role-Goal-Process-Service) meta-model framework [6, 22] has been
proposed for describing personalized requirements involving domain-related ser-
vices, toward an ultimate goal of enabling on-demand service provisioning. RGPS is
an integral part of the ISO Meta-model Framework for Interoperability (MFI3). This
chapter presents an approach that leverages RGPS to help users dynamically config-
ure a personalized service-based mashup. RGPS-based domain modeling is used to

1 http://webservices.seekda.com/
2 http://www.programmableweb.com
3 http://metadata-stds.org/19763/index.html

http://webservices.seekda.com/
http://www.programmableweb.com
http://metadata-stds.org/19763/index.html

26 A Unified RGPS-Based Approach 659

create domain models that will be reused in the subsequent process customization.
Faced with users’ specified requirements, a hierarchical goal tree can be generated
for users to refine their specific business goals. According to mappings between goals
and variation points in business process templates, a personalized business process
model will be created. Afterwards, each task in the process model may be realized
by an external service.

Based on the proposed approach, corresponding visualization prototypes includ-
ing a domain modeling tool and a service supermarket are introduced to assist users
in such a RGPS-based service-oriented process configuration. This chapter also
describes a case study of customizing a mashup over an established service super-
market consisting of a set of Web services, including a contact service, Delivery-100
API, Check RFID service, Baidu map API, and Yahoo! weather API.

The remainder of the chapter is organized as follows. Section 26.2 introduces our
motivation followed by an overview of our approach. Section 26.3 gives an intro-
duction of the RGPS meta-model framework. The RGPS-based service-oriented
process customization approach is presented in Sect. 26.4. Section 26.5 shows the
visualization prototypes that support the proposed approach. A case study is given
in Sect. 26.6. Section 26.7 concludes the chapter.

26.2 Motivation and Overall Approach

In this section, a motivating example will be given, followed by an overview of our
approach.

26.2.1 A Motivating Example

The following scenario in the Customer Relationship Management (CRM) domain
shows a motivating example of our work. Suppose a salesman in a company plans
to deliver goods to his customer. First, he needs to acquire the recipient’s shipping
information such as address, phone, and postcode. He then will select a shipping
company to send these goods and generate a shipping order. After that, he will use a
payment service to pay for the order. Finally, after the goods is sent to the shipping
company, he can track the shipping status of his goods. Usually, the user can query
the order to get the status of the goods in text. However, many salesmen may have
additional requirements in tracking the order. For example, some people may want
to view the current location of the goods on a map during the shipping process,
while some people may hope to know the current weather information of the cities in
the shipping route, which can be used to judge whether their goods can arrive at the
destination in time. In addition, if the goods are expensive and brittle, some salesmen
may hope to check the integrity of these goods during the shipping process.

660 J. Wang et al.

From this simple scenario, we can see that different users’ requirements may
be different towards the same goal of “delivering goods to customers”. Moreover,
initial requirements may be incomplete, and additional requirements may be added
or refined during the process of requirements analysis. So it is almost impossible to
find a single service that can satisfy the salesman’s requirements. Automatic service
composition will also be hard to work due to the variability and incompleteness of
users’ personalized requirements. Therefore, there is a need to provide a unified way
for users to configure and compose services according to users’ requirements.

26.2.2 Overall Approach

Towards the above-mentioned problem, we propose a RGPS-based service-oriented
process customization solution. The RGPS meta-model framework describes require-
ments and service-based solution in a holistic way using four key elements: Role,
Goal, Process, and Service, which provides a guideline for our approach. Our
approach is a domain-oriented solution, since domain knowledge can be used to sup-
plement the incomplete requirements and serve as a communication bridge between
users and developers to avoid ambiguity. Moreover, many researchers have shown
that it is more suitable to reuse software assets in a specific domain [18], and services
as important software assets are no exception. Therefore, domain modeling will play
an important role during process customization.

As shown in Fig. 26.1, the RGPS meta-model framework will provide a guide-
line for our approach. Based on users’ common requirements in a specific domain,
domain models can be created by identifying the commonality and variability of
domain knowledge. Then, faced with a user’ personalized requirements, RGPS-
based service-oriented process customization process can be conducted to provide
solutions based on domain models. The result of customization process will in turn

Fig. 26.1 Our overall
approach

26 A Unified RGPS-Based Approach 661

contribute to the evolution of domain models. Note that in this chapter, we mainly
describe how to customize service-oriented processes, and do not introduce the detail
of the evolution of domain models. We will explain our approach using the motivating
example in Sect. 26.2.1 throughout the chapter.

26.3 The RGPS Meta-Model Framework

To support service-oriented software development, we have proposed a meta-model
framework named RGPS (Role-Goal-Process-Service) [22]. The role represents the
abstract characterization of user behaviors and responsibilities within specified orga-
nizational context or domain, which can be used to distinguish different user groups.
The goal denotes a descriptive statement of intent of a user or an organization, and
can be viewed as an objective that the solution under consideration should achieve.
The process is defined as a collection of related, structured activities or tasks that
achieve a particular business goal. The service is used to denote a kind of Web-based
application such as Web service or Web API, which encapsulates certain computing
module and can be accessed by certain interface.

The relations among the four elements are shown in Fig. 26.2. Roles undertake
their corresponding role goals, and actors prefer their respective personal goals.

Fig. 26.2 Relations among
RGPS

Service

0..*

Role

Goal

RoleGoal PersonalGoal

Process

undertakes

Actor

plays

662 J. Wang et al.

Processes can directly or collaboratively achieve goals. Services can realize certain
processes. Roles can be involved in the processes and services. In this way, RGPS can
be viewed as a hierarchical modeling framework that can contribute to describe and
analyze users’ requirements, and provide service-based solutions for requirements.

Here, we will briefly introduce the meta-models in RGPS, shown in UML class
diagrams. Since roles and goals are closely related, we prefer to model them together.
Then, we will introduce the RGPS-based domain modeling, which can be used to
created domain models in a specific domain.

26.3.1 The Role and Goal Meta-Model

The role and goal meta-model is shown in Fig. 26.3. In [15], the definition of roles was
described as: (1) a role is a property assigned to humans that can change dynamically,
and (2) humans can have multiple roles simultaneously. In [3], a role was used as a
definitive factor in task or service selection, and two kinds of roles were presented, i.e.,
social role and task role. In RGPS, the roles are mainly used to distinguish different
user groups. Users who play the same role are likely to share similar business goals
and behavior patterns. Once a user’s role in a certain context is recognized, the
services closely related to the role may be considered to be recommended to the
user.

A role can be played by different actors. In an organizational context, role goals
are the goals that a role is in charge of. Actors also have their personal preferences,

FunctionalGoal

Decomposition

Operation

Object

Manner

1..1 0..*

0..1

NonfunctionalGoal

Goal

hasObject

RoleGoal

PersonalGoal

OperationalGoal

hasOperation

hasManner

Constraint

0..* 0..*

QuantitativeGoal

QualitativeGoal

upper lower

source target

1..1

Optional Alternative ORMandatory

Actor

Role
1..1

1..*

1..*0..*

0..*

0..*

prefers

plays

undertakes

interacts

Social_Profile

hasProfile
1..*

1..1

Organization

consistsOf
0..*

1..*

1..*

0..*

ExcludeDepend Equal Contribute

1..1

1..11..1

relatedFG

Fig. 26.3 The role and goal meta-model

26 A Unified RGPS-Based Approach 663

and these personal preferences are modeled as personal goals. An organization is
composed of a collection of related roles.

Goals can be either functional or nonfunctional. Functional goals describe the
functions that a system or a solution must achieve, and nonfunctional goals are
used to describe how well the functional goals are exercised. The description of a
functional goal consists of three parts: a verb that indicates the operation, a noun
that indicates the object dealt with by the operation, and the manner that is either
a prefix or a suffix to indicate how the operation affects the object. Each operation
can be annotated by a verb concept of domain ontology. Similarly, each object can
be annotated by a noun concept of domain ontology. Nonfunctional goals can be
classified into quantitative goals and qualitative goals according to their description
manner.

Usually, a goal is a high-level statement when it is first proposed, and needs
to be decomposed in order to get a concrete and operational description [7, 11].
Goal decomposition or refinement depicts how an upper goal can be decomposed
into lower goals, and the process will not stop until all the leaf-level sub-goals are
operational goals. Each operational goal is the goal that can be directly achieved
by an atomic process in the process model. The feature decomposition strategy in
FODA (Feature-Oriented Domain Analysis) [8] is adopted during the goal refinement
process to support the variability modeling. The decomposition relations between an
upper goal and a lower goal set can be classified into four types: mandatory, optional,
alternative, and OR. When an upper goal g is selected by a user, the lower goal set
that has the mandatory relation with g must also be selected; the lower goal set that
has the optional relation with g may be or not be selected; exactly one goal from the
lower goal set that has the alternative relation with g must be selected; and at least
one goal from the lower goal set that has the OR relation with g must be selected.

In addition, the constraint relation between goals can be classified into depend,
exclude, equal, and contribute relations. The depend relation means that the realiza-
tion of a goal depends on the realization of another one; the exclude relation means
that two goals cannot be satisfied simultaneously; the equal relation means that two
goals are the same in semantics; and the contribute relation means that the realization
of a goal can contribute to the realization of another one.

Figure 26.4 shows an example of how the role and goal meta-model can be used
to describe a role and goal model. The model comes from the motivating example
in Sect. 26.2.1. The role goal of the role “Salesman” is “Deliver Goods”, which
is composed of a mandatory sub-goal “Send Goods” and an optional sub-goal
“Track Goods”. “Send Goods” can be further refined into four mandatory sub-goals:
“Acquire Recipient Info”, “Select Express Company”, “Generate Order”, and “Pay
Order”. “Track Goods” can be refined into two mandatory sub-goals: “Inquire Order”
and “Display Order”. The goal “Display Order” can be further decomposed into four
OR sub-goals: “Display Order by Text”, “Display Order by Map”, “Display Integrity
of Goods”, and “Display Weather”. Note that all the leaf-level goals are opera-
tional goals, while other goals are functional goals. Moreover, five dependences
exist between five pairs of goals: between “Select Express Company” and “Acquire
Recipient Info”, between “Generate Order” and “Select Express Company”, between

664 J. Wang et al.

mandatory optional

OR

depend undertakes

Fig. 26.4 A role and goal model

“Pay Order” and “Generate Order”, between “Track Goods” and “Send Goods”, and
between “Display Order” and “Inquire Order”.

26.3.2 The Process Meta-Model

The process meta-model is shown in Fig. 26.5. A process can be either an atomic
process or a composite process. The difference between them is that the composite
process consists of at least one control structure. Five typical control structures are
defined: sequence, loop, choice, split-join and any order.

A process can achieve certain functional goals, and contribute to some nonfunc-
tional goals. A process has four basic attributes: input, output, precondition and effect.
Input and output represent the data flow transformed by the process. Precondition
and effect indicate the constraints to be held before the process starts and after the
process is normally finished, respectively.

In addition, a process may have nonfunctional expectations including quality
expectation and contextual expectation. The former describes the quality require-
ments (e.g., the range of the response time); the latter describes contextual require-
ments (e.g., the range of the distance to the office) of the process.

Figure 26.6 illustrates how the process meta-model can be used to describe a
process model. We use the modeling notations adapted from [2] to represent the
process model. The process model consists of two composite processes “SendGoods”
and “TrackGoods”, connected by a control structure sequence. The details of these
composite processes are shown in the dashed ellipses. “SendGoods” consists of four

26 A Unified RGPS-Based Approach 665

Fig. 26.5 The process meta-model

Sequence Split-Join Start End

Fig. 26.6 A process model

atomic processes connected by a control structure sequence. “TrackGoods” con-
sists of an atomic process “InquireOrder” and a composite process “DisplayOrder”
connected by a control structure sequence. The composite process “DisplayOrder”
consists of four atomic processes connected by a control structure split-join.

666 J. Wang et al.

26.3.3 The Service Meta-Model

As shown in Fig. 26.7, the service meta-model is used to capture the common seman-
tics of services. Typical services description languages include WSDL [1], OWL-
S [14], and WSMO [9].

A service has input message and output message, which can be constrained by
precondition and postcondition, respectively. Precondition is used to specify the state
that have to be satisfied before a service is invoked, while postcondition is used to
specify the state that will be satisfied after a service is invoked successfully. In order
to add semantic information for a service, the input message and output message
can be annotated by concepts of domain ontology. The nonfunctional semantics of
a service is depicted by quality property and contextual property, which can be used
to represent the value of service in certain aspects such as response time, cost, and
contextual restriction. These two kinds of properties can be used to match against
the quality expectation and contextual expectation of processes, respectively.

As an embodiment of Web 2.0, a service can be annotated by comments or social
tags, which are created by the people using the service. The goal that shows the
objectives of the service, the role that denotes the beneficiary of the service, as well
as the usage patterns and constraints, can be provided by service providers.

We will use an example of payment service mentioned in Sect. 26.2.1 to illustrate
how the service meta-model can be used to describe a service model. The input
messages of the service are card_ID, card_PIN, and transaction_amount, while the
output message is a boolean variable transaction_result. The precondition of the ser-
vice is that the input card_ID and card_PIN have to be valid and the balance of the
card is greater than the value of the input transaction_amount. The postcondition is
that the payment is charged and the balance of the card is decreased after the trans-
action is completed. The constraint of the service is that if no operation is received

Fig. 26.7 The service meta-model

26 A Unified RGPS-Based Approach 667

from users for 15 min during the execution process of the service, the connection
will be expired for security reasons. The usage pattern indicates that the service is
usually used followed by a shipping service if a merchandize is involved. The qual-
ity property denotes that the security of the service is guaranteed. The contextual
property denotes that the service is only available in China. The comments can be
ad hoc fragmental documents such as social tags and user comments (e.g., good user
experience and free of charge).

26.3.4 Domain Modeling

Based on the RGPS meta-model framework, we propose an ontology-based domain
modeling approach named O-RGPS. O-RGPS aims to provide a method to construct
and manage domain models according to common requirements in a specific domain,
which can be reused in requirements analysis and process customization.

In O-RGPS, domain ontologies including domain entity ontology and domain
operation ontology are the basis for domain modeling, which can provide semantic
annotation for domain models. Based on the domain ontologies, domain models can
be created following the RGPS meta-models. More specifically, this approach can
be generalized as the following steps:

1. Construct domain entity ontology and domain operation ontology. The domain
entity ontology describes entity (noun) concepts and relationships among them,
while domain operation ontology describes the operation (verb) concepts and
relationships among them.

2. Construct role and goal models and annotate the models using domain ontologies.
A role and goal model can be described in OWL and stored into domain model
repository.

3. Construct process models and annotate the models using domain ontologies.
A process model can be described in extended OWL-S and stored into domain
model repository.

4. Construct service models and annotate the models using domain ontologies.
Besides the information extracted from service description files such as WSDL,
some other information will be modeled as attributes of the service including
the role that closely related to the service, the goal that the service can achieve,
and the process that the service can realize. A service model can be described in
extended OWL-S and stored into domain model repository.

5. Classify and group all the domain models according to different domain problems
they are related to, and create the relations among domain models in a group so
as to improve the efficiency of searching models.

668 J. Wang et al.

26.4 RGPS-Based Process Customization Approach

The approach of requirements driven process customization will be introduced in
detail in this section.

26.4.1 Procedure of Customization

Based on the domain models created according to the common requirements in a
specific domain, users’ personalized requirements can be analyzed and corresponding
customized service-oriented solutions will be constructed. As shown in Fig. 26.8,
the following steps are used to complete the procedure: (1) elicit and parse users’
requirements; (2) match the requirements with domain goals; (3) supplement and
refine goals; (4) configure processes; and (5) discover services.

Users’ requirements can be expressed in two ways. In the first way, the require-
ments can be represented in SORL, a pseudo natural language to be introduced in
Sect. 26.4.2. Then users’ requirements can be elicited and parsed, and the output
will become the initial goals. The other way is to define some domain requirements
templates for users to select from. That is, users can browse all domain models in
templates and manually choose the domain, role, and goal information that they
prefer step by step. For the initial goals, we need to match them with domain goals
in Step 2. If the goals can be matched, it will go to Step 3 for further supplement

Fig. 26.8 Procedure of RGPS-based process customization

26 A Unified RGPS-Based Approach 669

and refinement. Otherwise, the unmatched goals will be returned to users to revise
their requirements. Once the goal model is refined, we will go to Step 4 to configure
processes by leveraging the mapping between the goal model and process model. It
is worth noting that the process configuration in this chapter mainly refers to remov-
ing, adding or modifying process model elements to meet the given requirements.
When the process models are customized, we need to discover services from our
service supermarket or publicly accessible service registries based on the process
models. Finally, the selected services will be returned to users. Note that users will
be involved in Steps 3, 4, and 5.

26.4.2 Elicit Users’ Requirements

Based on the natural language patterns and RGPS, a requirements elicitation language
named Service Oriented Requirements Language (SORL) [13] has been designed for
eliciting users’ requirements. In SORL, two kinds of sentence patterns are defined:
domain-independent sentence pattern and domain-specific sentence pattern. We have
defined 16 domain-independent sentence patterns that cover the description of func-
tional goals, nonfunctional goals, and so on. For example, the sentence “the salesman
will deliver goods to his customer” belongs to the functional pattern. Here, we just
list part of them.
Domain-independent Pattern : := Functional Pattern | NonFunctional Pattern;

Functional Pattern : := [Role] Verb Noun;

NonFunctional Pattern : := Qualitative Description Pattern | Quantitative Description Pattern;

Qualitative Description Pattern : := Noun be Adjective;

Quantitative Description Pattern : := Noun Comparison-Operator Number [Unit]; · · ·
The domain-independent sentence patterns are defined according to the role and

goal meta-model. The domain-specific sentence pattern is summarized from the
characteristics of the domain-specific expressions, which are varied among different
domains.

Following these sentence patterns in SORL, users’ requirements can be expressed.
Firstly, some natural language processing techniques, such as segmentation and stem-
ming, are applied to normalize the requirements text. Next, several steps are taken
to parse the normalized requirements text: the requirements text will be tagged by
the grammatical item in SORL; the sentence patterns can be recognized based on the
finite state automata; and the roles and goals can be extracted based on the mapping
between SORL grammatical item and elements in the role and goal meta-model. In
this way, an initial goal list can be identified.

Another candidate way is for users to manually select related elements from
domain models according to a series of requirements templates. Providing a series
of requirements elicitation templates, users can select a domain from the first template
that lists all domains. Afterwards, the user can select a role that he hopes to play in the
domain from the second template that lists all possible roles in the selected domain.
The goals related to the role will then be listed in the third template, and the user can

670 J. Wang et al.

select the goals from the goal list. With selected specific domain goals, the analysis
procedure can move to the goal refinement (Step 3).

26.4.3 Match with Domain Goals

In this step, the goals in the initial goal list will be matched with the goals in domain
goal models. The goal-matching problem can be solved by calculating the semantic
similarity of the two goals.

The similarity between two goals is calculated based on ontology-based concept
similarity, which has been widely investigated [20]. Recall that a goal consists of two
mandatory attributes: operation and entity (object). The similarity between two goals
thus consists of two parts: the similarity of two operation concepts and the similarity
of two entity concepts. The similarity of two operation concepts can be calculated
using Formula (1). Depth(O1) means the length of the path from concept O1 to
the root of the ontology. C(O1) denotes the number of descendants or hyponymy
concepts of concept O1. C(O1) ∩ C(O2) denotes the number of the intersection
of descendants of concepts O1 and O2. Distance(O1, O2) denotes the number of
edges that link concepts O1 and O2 in the domain ontology hierarchy. The principles
in Formula (26.1) are as follows: if the semantic overlap between two concepts is
higher, then the two concepts are more similar; if the distance of two concepts is
larger, then the two concepts are less similar; if the difference between the depth of
two concepts is larger, then the two concepts are less similar. Similarly, the similarity
of two entity concepts E1 and E2 can be calculated in Formula (26.2).

OperationSim(O1, O2) = C(O1) ∩ C(O2)

(Distance(O1, O2)+ 1)
×(|Depth(O1)− Depth(O2)| + 1)

(26.1)

Enti t ySim(E1, E2) = C(E1) ∩ C(E2)

(Distance(E1, E2)+ 1)
×(|Depth(E1)− Depth(E2)| + 1)

(26.2)

To calculate the similarity of an initial goal Gig and a domain goal Gdg , the
similarity of operation concepts and the similarity of entity concepts should be
combined. Formulas (26.3) and (26.4) show how to calculate the proportions of the
operation part and the entity part, respectively. Note that Odg and Edg denote the
operation concept and entity concept of the domain goal Gdg , respectively. The prin-
ciple in Formula (26.3) is that if a concept lies in a deeper layer of an ontology,
then it will have more specific semantics, and is closer to the meaning of users’
requirements.

26 A Unified RGPS-Based Approach 671

O Proportion = Depth(Odg)

Depth(Odg)+ Depth(Edg)
(26.3)

E Proportion = Depth(Edg)

Depth(Odg)+ Depth(Edg)
(26.4)

To sum up, the goal similarity of Gig and Gdg can be calculated in Formula (26.5).
Considering the range of the goal similarity should be within (0, 1), Formula (26.6)
is used to normalize the result of Formula (26.5), where β is a factor whose value is
between 0 and 1.

GoalSim(Gig,Gdg)
′ = O Proportion × OperationSim(Oig, Odg)

+ E Proportion × Enti t ySim(Eig, Edg) (26.5)

GoalSim(Gig,Gdg) = 1− βGoalSim(Gig,Gdg)
′

(26.6)

In this way, the initial goals can be matched with the goals in domain goal models
according to their similarity. For the unmatched initial goals, two actions will be
taken. First, the user can manually browse domain goals according to Step 1s. Second,
the unmatched goals will be marked and recorded for further analysis by domain
engineers to check whether the domain models should evolve.

26.4.4 Supplement and Refine Goals

According to the RGPS meta-model framework, each goal is associated with a role.
Therefore, based on the goals that have matched with domain models, we can deter-
mine the role that the user plays. Since users’ requirements are usually incomplete,
all the goals related to the specific role will be listed for users to select. In this way,
more complete relative goals may be identified.

As mentioned before, a goal can be decomposed into more concrete sub-goals
according to the hierarchical structure in domain goal model. When a goal list is
obtained, we need to check whether the decomposition and constraint relations are
satisfied towards their semantics in domain goal models. Examples are alternative,
mandatory, depend, and exclude. For the mandatory relation, we need to check
whether all goals in the lower goal set have been selected. For the alternative relation,
we need to check whether one and only one goal from the lower goal set is selected.
For the depend relation, the goals depended by the selected goals will also be added
to supplement users’ requirements. For example, if a user has selected a goal “book
airline ticket by credit card” that has the depend relation with the goal “validate
credit card”, then the latter must be selected. If two goals that have the exclude
relation exist in users’ selected goal list, then one of them must be removed. Since an
operation might cause a new problem, the checking process should be iterated until
the semantics of all decomposition and constraint relations are satisfied.

672 J. Wang et al.

26.4.5 Configure Processes

The configuration of processes will be based on users’ operations on the refined goal
model. Here we discuss the mapping between the goal model and process model.
Three kinds of mappings are defined as shown in Table 26.1: mapping between goals
and processes (Row 1 and 2), mapping between the relations in the goal model and
the control structures in the process model (Row 3–7), as well as the nonfunctional
properties between goals and processes (Row 8).

The operational goal cannot be further decomposed, which is similar to the atomic
process in the process model. Therefore, the operational goal can be mapped into the
atomic process, while the functional goals can be mapped into the composite process.
The goal decomposition relations are used to connect an upper goal and a lower goal
set. Since the relations mandatory and optional can coexist in the decomposition of
an upper goal, the related goals in the lower goal set are independent with each other,
which indicate that their corresponding processes can be achieved in any order. In
other words, the two relations can be both mapped into the control structure any
order. For the relation alternative, one and only one lower goal can be selected,
which is similar to the control structure choice. For the relation OR, at least one
lower goal should be selected into the resulting goal set, which is comparable to
the control structure split-join. In addition, the relation depend means that achieving
a goal should depend on the achievement of another one, which is similar to the
control structure sequence. As discussed earlier, a nonfunctional goal can take effect
on functional goals, which is similar to the process’s constraints defined by the
expectations.

The relations mandatory, optional, alternative, and OR belong to the vertical
decomposition relations, while the relation depend belongs to the horizontal relation.
When there is a crossover between a vertical relation and a horizontal relation, the
horizontal relation has a higher priority. For example, assume both goals A and B
are mandatory goals, and B depends on A. According to the mapping rule in Row 3
of Table 26.1, their corresponding processes will be connected by control structure
any order. However, according to the mapping rule in Row 7 of Table 26.1, their

Table 26.1 Mapping between the goal model and process model

Elements in goal model Elements in process model

Functional goal Composite process
Operational goal Atomic process
Mandatory Any order
Optional Any order
Alternative Choice
OR Split-join
Depend Sequence
Related FG Expectation of a process

26 A Unified RGPS-Based Approach 673

Table 26.2 Mapping between the operations on the goal model and process model

Users’ operations on goal model Configuration of process model

Select or deselect optional sub-goals Add or delete sub-processes within the control
structure any order

Select or deselect OR sub-goals Add or delete sub-processes within the control
structure split-join

Reselect an alternative sub-goal Delete sub-processes within the control structure
choice or modify the condition of choice

Add a functional goal that has depend
relation with existing goals

Add a process connected with an existing process
using the control structure sequence

Add a functional goal that does not have
depend relation with existing goals

Add a process connected with existing processes
using the control structure any order

Delete functional goals Delete corresponding processes
Add or delete nonfunctional goals Add or delete the expectation properties of a

process

Fig. 26.9 Process customiza-
tion for optional sub-goals

Pi

Pj

P1

Pn

Pi

...

...

(a)

Pi

(b)

(c)

corresponding processes will be connected by sequence. In this case, the control
structure sequence will be selected since the relation depend has a higher priority.

Following the mapping between the goal model and process model, we discuss the
configuration of process models based on the operations on goal models, as shown
in Table 26.2.

1. Select or deselect optional sub-goals.
As shown in Fig. 26.9a, the optional sub-goals can correspond to the processes

P1, . . . ,Pn, within the control structure any order. If a user only selects the sub-goals
that correspond to Pi and Pj, then the result is shown in Fig. 26.9b. If only one goal is
selected, then the control structure any order will be deleted, and only one process
is left, as shown in Fig. 26.9c.

2. Select or deselect OR sub-goals.
As shown in Fig. 26.10a, the OR sub-goals can correspond to the processes

P1, . . . ,Pn, within the control structure split-join. If a user only selects the sub-
goals that correspond to Pi and Pj, then the result is shown in Fig. 26.10b. If only
one goal is selected, then the control structure split-join will be deleted and only one
process is left, as shown in Fig. 26.10c.

3. Reselect an alternative sub-goal.
As shown in Fig. 26.11a, the alternative sub-goals can correspond to the processes

P1, . . . ,Pn, within the control structure choice. If a user selects the sub-goal that
corresponds to Pi, then the other sub-processes within the control structure choice
as well as the choice itself should be deleted, as shown in Fig. 26.11b.

674 J. Wang et al.

Fig. 26.10 Process cus-
tomization for OR sub-goals

Pi

Pj

P1

Pn

Pi

...

...

Pi

(a) (b)

(c)

Fig. 26.11 Process cus-
tomization for an alternative
sub-goal

P1

Pn

Pi

...

...
Pi

(a) (b)

4. Add a functional goal with the depend relation.
According to Table 26.1, the relation depend in the goal model corresponds to the

control structure sequence in the process model. Figure 26.12a shows the original
process Pi. If the added functional goal Gj depends on the goal that Pi can achieve,
then the process Pj that achieves Gj will be connected with Pi using the control
structure sequence, as shown in Fig. 26.12b. Note that in this example, we use the
operation goal to represent the functional goal.

5. Add a functional goal without the depend relation.
Figure 26.13a shows the original process Pi, which might be an atomic process

or a composite process. If the added functional goal Gj does not depend on any goal
that Pi can achieve, then the process Pj that can achieve Gj will be connected with
Pi using the control structure any order, as shown in Fig. 26.13b. Note that in this
example, we use the operation goal to represent the functional goal.

6. Delete functional goals.
When the functional goals are deleted, we just need to delete the corresponding

processes that can achieve the functional goals.
7. Add or delete nonfunctional goals.
According to Table 26.1, nonfunctional goals correspond to the nonfunctional

expectations of a process. When nonfunctional goals are added or deleted, the non-
functional expectations of the corresponding process will be added or deleted accord-
ingly.

26.4.6 Discover Services

After the process models are configured according to users’ requirements, the final
step is to discover services that can collaboratively realize the processes. During ser-
vice discovery, two kinds of service registries are considered: our service supermarket
and publicly accessible service registries.

26 A Unified RGPS-Based Approach 675

PiPi Pj
(a) (b)

Fig. 26.12 Process customization for adding a functional goal with depend relation

Fig. 26.13 Process cus-
tomization for adding a func-
tional goal without depend
relation

Pi

Pj

(a) (b)

Pi

We have developed a service supermarket based on the service meta-model in
RGPS. When a service is registered in the service supermarket, besides the informa-
tion extracted from the WSDL files such as input message and output message, other
information can also be registered. Examples include the role that is closely related to
the service, the goal that the service can achieve, and the process that the service can
realize. Since such additional information is not a mandatory property of services, if
they are available, we could use role matching, goal matching or process matching
to find corresponding services. Otherwise, we have to make a matchmaking based
on the input and output information, as well as the nonfunctional expectations to find
corresponding services.

For the publicly accessible service registries such as ProgrammableWeb, we
have developed a service categorization method enhanced by incrementally enriched
domain knowledge [23]. Using this method, the services in the registry can be classi-
fied into different domains. Therefore, the services belonging to the same domain with
the proposed requirements will be matched with the processes, which can shorten the
searching space of services. The matching is conducted by comparing the similarity
between the description of a service and a process based on domain ontology. The
services whose similarity with the process is above a given threshold can be selected
for further consideration.

In this way, the selected services can be orchestrated according to the customized
process model.

26.5 The Visualization Prototypes

To support our approach, we have developed two visualization prototypes: a domain
modeling tool and a service supermarket.

676 J. Wang et al.

Fig. 26.14 Snapshot of goal modeling interface

26.5.1 O-RGPS Domain Modeling Tool

The O-RGPS domain modeling tool is a plug-in tool, which is similar to the UML
modeling tool in Eclipse. It is developed using GEF4 (Graphical Editor Framework)
and EMF5 (Eclipse Modeling Framework).

By using the tool, three kinds of domain models can be created including role and
goal models, process models, and service models. Figure26.14 shows a snapshot of
goal modeling. By dragging the icons listed in the palette into the editing area, domain
engineers can create the goal nodes and their relations. They can also set the properties
of the goals by editing the “Properties” tab in the part below. The tool also provides
a function of flexible reusing goal models in different granularities. Furthermore, if
a goal model is properly created, a process model can be automatically transformed,
which can greatly alleviate the modeling burden of domain engineers. Our tool can
provide semantic support for domain models by importing specific domain ontologies
and annotating certain elements of domain models using the concepts of domain
ontology.

4 http://www.eclipse.org/gef/
5 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/gef/
http://www.eclipse.org/modeling/emf/

26 A Unified RGPS-Based Approach 677

26.5.2 The Service Supermarket CloudCRM

The service supermarket we have developed is named as CloudCRM6 since the orig-
inal services are encapsulated from an open-source software called SugarCRM in the
CRM domain. The basic idea of the service supermarket is similar to a supermarket
where users can select their goods and receive some recommended products. The
service supermarket is more than a service registry that acts as a centralized yellow
page to help users find related services [24], since a multi-tenancy architecture is
also designed to support users in different tenants using mashups in the supermarket.

26.5.2.1 Services Encapsulation in Service Supermarket

As mentioned before, the original services are encapsulated from SugarCRM that
is composed of 14 functional modules. Since SugarCRM is developed using PHP,
we firstly create a .php file for each functional module by using SugarCRM API or
extracting codes directly from the open-source codes; and then we leverage a tool
named Zend Studio for Eclipse to create a .wsdl file from a .php file. Using such
a procedure, we have encapsulated some CRM services, such as accounts service,
targetLists service, and contact service.

During service encapsulation, multi-tenancy design of these services is also sup-
ported. Multi-tenancy is defined as the ability of an application to provide the same
service to different tenants [5]. In CloudCRM, separated database is chosen as the
solution of data isolation, which means that each tenant will have their separate
databases.

Besides the services encapsulated from SugarCRM, we have also registered many
Web services into our service supermarket, such as weather forecast service, map
service, and flight query service. The services are registered in CloudCRM according
to the RGPS meta-model framework, which help improve the precision and efficiency
of service query.

26.5.2.2 Users in the Service Supermarket

Since multi-tenancy is an important feature in CloudCRM, users can play three kinds
of roles according to their assigned permissions: system administrator, tenant admin-
istrator, and end user. The system administrator can manage tenant administrators,
while the tenant administrator can manage end users.

For tenant administrators who are the representatives of each organization in
CloudCRM, they are responsible for managing the end users in their organizations
as well as their subscribed services. More specifically, they can select appropriate
services for their organizations; they can allocate available services for each user

6 http://cloud.whu.edu.cn:8080/CloudCrm/login.jsp

http://cloud.whu.edu.cn:8080/CloudCrm/login.jsp

678 J. Wang et al.

according to the business role that the user will play; they can also pause, cancel,
and restore the right of an end user to use certain services.

For end users, they are allowed to use the authorized services allocated by the
tenant administrators; they can also propose their requirements to use more services.
CloudCRM provides a collection of requirements templates to help elicit users’
requirements and recommend proper services.

26.6 A Case Study

In this section, we will use the motivating example introduced in Sect. 26.2.1 to show
how it can be resolved by our approach on top of the CloudCRM service supermarket.

In our approach, a user’s requirements can be defined in two ways. One way is to
define the requirements in Service Oriented Requirements Language (SORL). The
other way is to configure user requirements templates (i.e., domain, role and goal)
created based on domain models. Figure 26.15 is generated by our system based
on the domain role and goal model shown in Fig. 26.4. It shows a goal refinement
scenario when a user selects the goal “Deliver Goods” as a salesman. During the goal
refinement process, the semantics of the decomposition relations have to be satisfied,
which will be judged and verified in real time by our system. After the user finishes
goal refinement, the constraint relations will be checked.

After the goal refinement process, our system will move forward to the process
configuration phase. Based on the configured goals, a mapping between the goal
model and the available process models will lead to a recommended template as
shown in the left picture of Fig. 26.16. Five atomic processes “Acquire Recipient
Info”, “Select Express Company”, “Generate Order”, “Pay Order”, and “Inquire

Fig. 26.15 Goal refinement in CloudCRM

26 A Unified RGPS-Based Approach 679

Fig. 26.16 Process configuration in CloudCRM

Order” are connected by a control structure sequence, followed by the control struc-
ture split-join that connects two atomic processes “Display Order by Text” and “Dis-
play Order by Map”. If the user selects the other two OR sub-goals “Display Integrity
of Goods” and “Display Weather” during the goal refinement, the corresponding
atomic processes will be added in the control structure split-join, as shown in the
right picture of Fig. 26.16.

Based on the configured process model, some services can be identified from the
service supermarket, such as a contact service, Delivery 100 API, Baidu map API,7

Check RFID service, and Yahoo! weather API.8 The contact service is extracted from
SugarCRM, which can support browsing and searching a recipient’s information.
The Delivery 100 API is an open Web API that can support querying orders of most
shipping companies in China. The Check RFID service is a Web service to query
the integrity of expensive goods. If all RFID raw data of the goods collected from
the RFID readers in every transit station is identical, then the goods is considered
to be well maintained during the shipping process. Otherwise, the goods might be
destroyed before reaching a certain station. The Baidu Map API can be used to
display a shipping route in the map. The Yahoo! Weather API can be used to show
weather information of the cities in a shipping route.

7 http://openapi.baidu.com/map/
8 http://developer.yahoo.com/weather/

http://openapi.baidu.com/map/
http://developer.yahoo.com/weather/

680 J. Wang et al.

Fig. 26.17 Created mashup

In summary, such services from the service supermarket can be mashed up with
other services developed in house (such as “shipping company query service”) based
on the configured process model. The upper picture in Fig. 26.17 shows a query of
a shipping order in China and its results represented in text. Each line in the query
result records a shipping status of the goods in a chronological order. For example,
the first line shows that the goods arrived at the shipping office on August 25, 2011.
The bottom left picture shows the shipping route of the goods as well as the integrity
of the order, which alerts the user that the goods might be destroyed before reaching
the city “FuZhou”, since the RFID raw data in “FuZhou” and that in its previous site
are not identical. The bottom right picture lists the current weather information of
all cities in the shipping route.

26.7 Conclusions

Service-oriented process customization is a key issue in SaaS. In this chapter, based
on the RGPS meta-model framework, we propose a service-oriented process cus-
tomization approach that can help end-users configure a personalized mashup in
design time. Corresponding visualization prototypes are introduced, and a case study

26 A Unified RGPS-Based Approach 681

illustrates how to follow our approach to customize a shipping mashup. Our approach
depends on the quality of domain models to a large extent. If users’ requirements
cannot be satisfied, their unmatched goals will be recorded, which will in turn con-
tribute to the evolution of domain models. So our approach is an iterative method in
essence.

The RGPS meta-models introduced in this chapter have been accepted as several
parts of ISO/IEC 19763, that is, ISO/IEC 19763-8 “Metamodel for role and goal reg-
istration”, ISO/IEC 19763-5 “Metamodel for process model registration”, ISO/IEC
19763-7 “Metamodel for service registration”, and ISO/IEC 19763-9 “On demand
model selection based on RGPS”. Currently, these standards are under development.

Our future research will focus on the following directions. First, we will enrich
the service supermarket. Second, we will integrate business rules in process cus-
tomization. Finally, the multi-tenancy architecture and the scalability of the service
supermarket will be further explored.

Acknowledgments The work is partially supported by the National Natural Science Foundation
of China under Grant No. 61202031, 60970017, 61100017, the National Science and Technology
Pillar Program of China under grant No.2012BAH07B01, the central grant funded Cloud Computing
demonstration project of China undertaken by Kingdee Software (China).

References

1. Chinnici, R., Moreau, J.-J., Ryman A., et al.: Web Services Description Language (WSDL)
Version 2.0, W3C Recommendation. http://www.w3.org/TR/wsdl20/ (2007)

2. Eriksson, H.-E., Penker, M.: Business Modeling with UML: Business Patterns at Work. Wiley,
New York (2000)

3. Fukazawa, Y., Naganuma, T., Kurakake, S.: Construction and use of role-ontology for task based
service navigation system. In: Proceedings of 2006 International Semantic Web Conference,
pp. 806–819 (2006)

4. Ghose, A., Koliadis, G.: Actor eco-systems: from high-level agent models to executable
processes via semantic annotations. In: Proceedings of the IEEE International Computer Soft-
ware and Applications Conference 2007, pp. 177–184 (2007)

5. Grund, M., Schapranow, M., Krueger, J. et al.: Shared table access pattern analysis for multi-
tenant applications. In: Proceedings of 2008 Advanced Management of Information for Glob-
alized Enterprises, pp. 1–5 (2008)

6. He, K., Wang, J., Liang, P.: Towards semantic interoperability aggregation in service require-
ments refinement. J. Comput. Sci. Technol. 25(6), 1103–1117 (2010)

7. Jureta, I., Faulkner S.: An agent-oriented meta-model for enterprise modeling. In: Proceedings
of the ER workshop 2005, LNCS 3770, pp. 151–161. Springer, Heidelberg (2005)

8. Kang, K., Cohen, S., Hess, J., et al.: Feature-oriented domain analysis (FODA): feasibility study.
Technical Report: CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon
University (1990)

9. Klusch, M., Kaufer, F.: WSMO-MX: a hybrid semantic web service matchmaker. Web Intell.
Agent Syst. 7(1), 23–42 (2009)

10. Koliadis, G., Ghose, A.: Relating business process models to goal-oriented requirements models
in KAOS. In: Advances in Knowledge Acquisition and Management, vol. 4303, pp. 25–39.
Springer, Heidelberg (2006)

http://www.w3.org/TR/wsdl20/

682 J. Wang et al.

11. Lamsweerde, A. V.: Goal-oriented requirements engineering: a guided tour. In: Proceedings of
the 5th IEEE International Symposium on Requirements Engineering (ER’01), pp. 249–263,
Toronto, Canada (2001)

12. Lazovik, A., Ludwig, H.: Managing process customizability and customization: model, lan-
guage and process. In: Proceedings of the 8th International Conference on Web Information
Systems Engineering (WISE). Springer, Heidelberg (2007)

13. Liu, W., He, K., Wang, J., et al.: Heavyweight semantic inducement for requirement elicitation
and analysis. In: Proceedings of the 3rd International Conference on Semantics, Knowledge
and Grid, pp. 206–211, Xi’an, China (2007)

14. Martin, D., Ankolekar, A., Burstein, M., et al. OWL-S: semantic markup for web services—
W3C candidate recommendation. http://www.daml.org/services/owl-s/ (2006)

15. Masolo, C., Vieu, L., Bottazzi, E., et al.: Social roles and their descriptions. In: Proceedings of
the 9th International Conference on the Principles of Knowledge Representation and Reasoning,
pp. 267–277 (2004)

16. Mell, P., Grance, T.: The NIST definition of cloud computing. National Institute of Science
and Technology. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (2009)

17. Mietzner, R., Leymann, F.: Generation of BPEL customization processes for SaaS applications
from variability descriptors. In: Proceedings of 2008 IEEE International Conference on Services
Computing (SCC), pp. 359–366, Hawaii, U.S. (2008)

18. Mili, H., Mili, F., Mili, A.: Reusing software: issues and research directions. IEEE Trans. Softw.
Eng. 21, 528–562 (1995)

19. OASIS: Web services business process execution language version 2.0, OASIS standard. http://
docs.oasis-open.org/wsbpel/2.0/ (2007)

20. Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from
different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)

21. Van der Aalst, W.M.P., Dreiling, A., Gottschalk, F., et al.: Configurable process models as a
basis for reference modeling. In: Proceedings of the Business Process Management Workshops,
pp. 512–518. Springer, Heidelberg (2005)

22. Wang, J., He, K., Gong, P., et al.: RGPS: a unified requirements meta-modeling frame for
net-worked software. In: Proceedings of the 3rd International Workshop on Advances and
Applications of Problem Frames at 30th ICSE, pp. 29–35. Leipzig, Germany (2008)

23. Wang, J., Zhang, J., Hung, P.C.K., et al.: Leveraging fragmental semantic data to enhance
services discovery. In: Proceedings of the 13th IEEE International Conference on High Perfor-
mance Computing and Communications, pp. 687–694, Banff, Canada (2011)

24. Zhang, L.-J., Zhang, J., Cai, H.: Services Computing. Springer, New York (2007)

http://www.daml.org/services/owl-s/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://docs.oasis-open.org/wsbpel/2.0/
http://docs.oasis-open.org/wsbpel/2.0/

Chapter 27
Assisted Mashup Development:
On the Discovery and Recommendation
of Mashup Composition Knowledge

Carlos Rodríguez, Soudip Roy Chowdhury, Florian Daniel, Hamid
R. Motahari Nezhad and Fabio Casati

Abstract Over the past few years, mashup development has been made more
accessible with tools such as Yahoo! Pipes that help in making the development
task simpler through simplifying technologies. However, mashup development is
still a difficult task that requires knowledge about the functionality of web APIs,
parameter settings, data mappings, among other development efforts. In this work,
we aim at assisting users in the mashup process by recommending development
knowledge that comes in the form of reusable composition knowledge. This com-
position knowledge is harvested from a repository of existing mashup models by
mining a set of composition patterns, which are then used for interactively providing
composition recommendations while developing the mashup. When the user accepts
a recommendation, it is automatically woven into the partial mashup model by apply-
ing modeling actions as if they were performed by the user. In order to demonstrate
our approach we have implemented Baya, a Firefox plugin for Yahoo! Pipes that
shows that it is indeed possible to harvest useful composition patterns from existing
mashups, and that we are able to provide complex recommendations that can be
automatically woven inside Yahoo! Pipes’ web-based mashup editor.

C. Rodríguez (B) · S. R. Chowdhury · F. Daniel · F. Casati
University of Trento, Via Sommarive 5, 38123 Povo, TN, Italy
e-mail: crodriguez@disi.unitn.it

S. R. Chowdhury
e-mail: rchowdhury@disi.unitn.it

F. Daniel
Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, Povo, Trento, Italy
e-mail: daniel@disi.unitn.it

F. Casati
e-mail: casati@disi.unitn.it

Hamid R. Motahari Nezhad
Hewlett Packard Labs, Palo Alto, CA, USA
e-mail: hamid.motahari@hp.com

A. Bouguettaya et al. (eds.), Web Services Foundations, 683
DOI: 10.1007/978-1-4614-7518-7_27,
© Springer Science+Business Media New York 2014

684 C. Rodríguez et al.

27.1 Introduction

Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.com/pipes/) or JackBe
Presto Wires (http://www.jackbe.com), generally promise easy development tools
and lightweight runtime environments, both typically running inside the client
browser. By now, mashup tools undoubtedly simplified some complex composition
tasks, such as the integration of web services or user interfaces. Yet, despite these
advances in simplifying technology, mashup development is still a complex task that
can only be managed by skilled developers.

People without the necessary programming experience may not be able to prof-
itably use mashup tools like Pipes—to their dissatisfaction. For instance, we think
of tech-savvy people, who like exploring software features, authoring and sharing
own content on the Web, that would like to mash up other contents in new ways,
but that don’t have programming skills. They might lack appropriate awareness of
which composable elements a tool provides, of their specific functionality, of how to
combine them, of how to propagate data, and so on. In short, these are people that do
not have software development knowledge. The problem is analogous in the context
of web service composition (e.g., with BPEL) or business process modeling (e.g.,
with BPMN), where modelers are typically more skilled, but still may not know all
the features or typical modeling patterns of their tools.

What people (also programmers) typically do when they don’t know how to solve
a tricky modeling problem is searching for help, e.g., by asking more skilled friends
or by querying the Web for solutions to analogous problems. In this latter case, exam-
ples of ready mashup models are one of the most effective pieces of information—
provided that suitable examples can be found, i.e., examples that have an analogy
with the modeling situation faced by the modeler. Yet, searching for help does not
always lead to success, and retrieved information is only seldom immediately usable
as is, since the retrieved pieces of information are not contextual, i.e., immediately
applicable to the given modeling problem.

For instance, Fig. 27.1 illustrates a Yahoo! Pipes model that encodes how to plot
news items on a map. Besides showing how to connect components and fill para-
meters, the key lesson that can be learned from this pipe is that plotting news onto
a map requires first enriching the news feed with geo-coordinates, then fetching the
actual news items, and only then handing the items over to the map. Understanding
this logic is neither trivial nor intuitive.

Driven by a user study on how end users imagine assistance during mashup devel-
opment [4], we aim to automatically offer them help pro-actively and interactively.
Specifically, we are working toward the interactive, contextual recommendation of
reusable composition knowledge, in order to assist the modeler in each step of his
development task, e.g., by suggesting a candidate next component or a whole chain
of tasks. The knowledge we want to recommend is re-usable composition patterns,
i.e., model fragments that bear knowledge about how to compose mashups, such
as the pattern in Fig. 27.1. Such knowledge may come from a variety of possible

http://pipes.yahoo.com/pipes/
http://www.jackbe.com

27 Assisted Mashup Development 685

Fig. 27.1 A typical pattern in yahoo! Pipes

sources. In this work, we specifically focus on community composition knowledge
and mine recurrent model fragments from a repository of given mashup models.

The vision is that of enabling the development of assisted, web-based mashup
environments that deliver composition knowledge much like Google’s Instant feature
delivers search results already while still typing keywords into the search field.

In this chapter, we approach two core challenges of this vision, i.e., the discovery
of reusable composition knowledge from a repository of ready mashup models and
the reuse of such knowledge inside mashup tools, a feature that we call weaving.
Together with the ability to search and retrieve composition patterns contextually
when modeling a new mashup, a problem we approached in [10] and that we sum-
marize in this chapter, these two features represent the key enablers of the vision of
assisted development. We specifically provide the following contributions:

• We describe a canonical mashup model that is able to represent in a single modeling
formalism a variety of data flow mashup languages. The goal is to mine compo-
sition knowledge from multiple source languages by implementing the necessary
algorithms only once.
• Based on our canonical mashup model, we define a set of mashup pattern types

that resemble the modeling actions of typical mashup environments.
• We describe an architecture of our knowledge recommender that can be used to

equip any mashup environment with interactive assistance for its developers.
• We develop a set of data mining algorithms that discover composition knowledge

in the form of reusable mashup patterns from a repository of mashup models.
• We present our pattern recommendation and pattern weaving algorithms. The

former aims at recommending composition patterns based on the user actions on
the design canvas. The later aims at automatically appying patterns to mashup
models, allowing the developer to progress in his development task.

686 C. Rodríguez et al.

In the next section, we start by introducing the canonical mashup model, which
will help us to formulate our problem statement, define mashup pattern types and
describe our pattern mining algorithms. Section 27.3 is where we describe the types
of mashup patterns we are interested in and the architecture of our recommendation
platform. In Sects. 27.4, 27.5 and 27.6 we, respectively, describe in details the mining,
recommendation, and weaving algorithms. Section 27.7 presents the details of the
implementation of our approach. In Sect. 27.8 we overview related work. Then, with
Sect. 27.9, we conclude the chapter.

27.2 Preliminaries and Problem

The development of a data mining algorithm strongly depends on the data to be mined.
The data in our case are the mashup models. Since in our work we do not only aim
at the reuse of knowledge but also at the reuse of our algorithms across different
platforms, we strive for the development of algorithms that are able to accommodate
different mashup models in input. Next, we therefore describe a canonical mashup
model that allows us to concisely express multiple data mashup models and to imple-
ment mining algorithms that intrinsically support multiple mashup platforms. The
canonical model is not meant to be executed; it rather serves as description format.

As a first step toward generic modeling environments, in this chapter we focus
on data flow based mashup models. Although relatively simple, they are the basis
of a significant number of mashup environments, and the approach can easily be
extended toward other mashup environments.

27.2.1 A Canonical Mashup Model

Let CT be a set of component types of the form ctype = 〈type, IP, IN, OP, OUT ,

is_embedding〉, where type identifies the type of component (e.g., RSS feed, filter,
or similar), IP is the set of input ports of the component type (for the specification
of data flows), IN is the set of input parameters of the component type, OP is the set
of output ports, OUT is the set of output attributes,1 and is_embedding ∈ {yes, no}
tells whether the component type allows the embedding of components or not (e.g.,
to model a loop). We distinguish three types of components:

• Source components fetch data from the web (e.g., from an RSS feed) or the local
machine (e.g., from a spreadsheet), or they collect user inputs at runtime. They
don’t have input ports, i.e., IP = ∅.
• Data processing components consume data in input and produce processed data

in output. Therefore: IP, OP �= ∅. Filter components, operators, and data trans-
formers are examples of data processing components.

1 We use the term attribute to denote data attributes produced as output by a component or flowing
through a data flow connector and the term parameter to denote input parameters of a component.

27 Assisted Mashup Development 687

• Sink components publish the output of a mashup, e.g., by printing it onto the
screen (e.g., a pie chart) or providing an API toward it, such as an RSS or RESTful
resource. Sinks don’t have outputs, i.e., OP = ∅.
Given a set of component types, we are able to instantiate components in a

modeling canvas and to compose mashups. We express the respective canonical
mashup model as a tuple m = 〈name, id, src, C, GP, DF, RES〉, where name is
the name of the mashup in the canonical representation, id a unique identifier,
src ∈ {“Pipes”,“Wires”,“myCocktail”, ...} keeps track of the source platform of
the mashup, C is the set of components, GP is a set of global parameters, DF is a
set of data flow connectors propagating data among components, and RES is a set of
result parameters of the mashup. Specifically:

• GP = {gpi|gpi = 〈namei, valuei〉} is a set of global parameters that can be
consumed by components, namei is the name of a given parameter, valuei ∈
(STR ∪ NUM ∪ {null}) is its value, with STR and NUM representing the sets of
possible string or numeric values, respectively. The use of global parameters inside
data flow languages is not very common, yet tools like Presto Wires or myCocktail
(http://www.ict-romulus.eu/web/mycocktail) support the design-time definition
of globally reusable variables.
• DF = {dfj|dfj = 〈srccidj, srcopj, tgtcidj, tgtipj〉} is a set of data flow connectors

that, each, assign the output port srcopj of a source component with identifier
srccidj to an input port tgtipj of a target component identified by tgtcidj, such
that srccid �= tgtcid. Source components don’t have connectors in input; sink
components don’t have connectors in output.
• C = {ck|ck = 〈namek, idk, typek, IPk, INk, DMk, VAk,

OPk, OUTk, Ek〉} is the set of components, such that ck = instanceOf (ctype),2

ctype ∈ CT and namek is the name of the component in the mashup (e.g., its label),
idk uniquely identifies the component, typek = ctype.type,3 IPk = ctype.IP,
INk = ctype.IN , OPk = ctype.OP, OUTk = ctype.OUT , and:

– DMk ⊆ INk × (
⋃

ip∈IPk
ip.source.OUT) is the set of data mappings that map

attributes of the input data flows of ck to input parameters of ck .
– VAk ⊆ INk × (STR ∪ NUM ∪ GP) is the set of value assignments for the

input parameters of ck ; values are either filled manually or taken from global
parameters.

– Ek = {cidkl} is the set of identifiers of the embedded components. If the com-
ponent does not support embedded components, Ek = ∅.

• RES ⊆⋃
c∈C c.OUT is the set of mashup outputs computed by the mashup.

2 To keep models and algorithms simple, we opt for a self-describing instance model for components,
which presents both type and instance properties.
3 We use a dot notation to refer to sub-elements of structured elements; ctype.type therefore refers
to the type attribute of the component type ctype.

http://www.ict-romulus.eu/web/mycocktail

688 C. Rodríguez et al.

Without loss of generality, throughout this chapter we exemplify our ideas and
solutions in the context of Yahoo! Pipes, which is well known and comes with a large
body of readily available mashup models that we can analyze. Pipes is very similar
to our canonical mashup model, with two key differences: it does not have global
parameters, and the outputs of the mashup are specified by using a dedicated Pipe
Output component (see Fig. 27.1). Hence, GP, RES = ∅ and a pipe corresponds to a
restricted canonical mashup of the form m = 〈name, id, “Pipes”, C,∅, DF,∅〉 with
the attributes as specified above. In general, we refer to the generic canonical model;
we explicitly state where instead we use the restricted Pipes model.

27.2.2 Problem Statement

Given the above canonical mashup model, the problem we want to address in this
chapter is understanding (i) which kind of knowledge can be extracted from the canon-
ical mashup model so as to automatically assist users in developing their mashups,
(ii) what algorithms we need to develop in order to be able to discover such knowl-
edge from existing mashup models, (iii) how to interactively recommend discovered
patterns inside mashup tools in order to guide users with the next modeling step/s
and (iv) how to automatically apply (weave) the selected recommendation inside the
current mashup design.

27.3 Approach

The current trend in modeling environments in general, and in mashup tools in
particular, is toward intuitive, web-based solutions. The key principles of our work
are therefore to conceive solutions that resemble the modeling paradigm of graphical
modeling tools, to develop them so that they can run inside the client browser, and
to specifically tune their performance so that they do not annoy the developer while
modeling. These principles affect the nature of the knowledge we are interested in and
the architecture and implementation of the respective recommendation infrastructure.

27.3.1 Composition Knowledge Patterns

Starting from the canonical mashup model, we define composition knowledge as
reusable composition patterns for mashups of type m, i.e., model fragments that
provide insight into how to solve specific modeling problems, such as the one illus-
trated in Fig. 27.1. In general, we are in the presence of a set of composition pattern
types PT , where each pattern type is of the form ptype = 〈C, GP, DF, RES〉, where
C, GP, DF, RES are as defined for m.

27 Assisted Mashup Development 689

The size of a pattern may vary from a single component with a value assignment
for one input parameter to an entire, executable mashup. The most basic patterns
are those that represent a co-occurrence of two elements out of C, GP, DF or RES.
For instance, two components that recur often together form a basic pattern; given
one of the components, we are able to recommend the other component. Similarly,
an input parameter plus its value form a basic pattern, given the parameter, we can
recommend a possible value for it. As such, the most basic patterns are similar to
association rules, which, given one piece of information, are able to suggest another
piece of information.

Aiming, however, to help a developer refine his mashup model step by step with
as less own effort as possible, we are able to identify a set of pattern types that
allow the developer to obtain more practical and meaningful composition knowledge.
Such knowledge is represented by sensible combinations of basic patterns, i.e., by
composite patterns.

Considering the typical modeling steps performed by a developer (e.g., filling
input fields, connecting components, copying/pasting model fragments), we specif-
ically identify the following set PT of pattern types:

Parameter value pattern. The parameter value pattern represents a set of recurrent
value assignments VA for the input fields IN of a component c:

ptypepar = 〈{c}, GP,∅,∅〉;
c = 〈name, 0, type,∅, IN,∅,∅, VA,∅,∅〉4;
GP �= ∅ if VA also assigns global parameters to IN ;
GP = ∅ if VA assigns only strings or numeric constants.

This pattern helps filling input fields of a component that require explicit user
input.

Connector pattern. The connector pattern represents a recurrent connector dfxy, given
two components cx and cy, along with the respective data mapping DMy of the output
attributes OUTx to the input parameters INy:

ptypecon = 〈{cx, cy},∅, {dfxy},∅〉;
cx = 〈namex, 0, typex,∅,∅,∅,∅, {opx}, OUTx,∅〉;
cy = 〈namey, 1, typey, {ipy}, INy, DMy,∅,∅,∅,∅〉.
This pattern helps connecting a newly placed component to the partial mashup

model in the canvas.

Connector co-occurrence pattern. The connector co-occurrence pattern captures
which connectors dfxy and dfyz occur together, also including their data mappings:

ptypecoo = 〈{cx, cy, cz},∅, {dfxy, dfyz},∅〉;
cx = 〈namex, 0, typex,∅,∅,∅,∅, {opx}, OUTx,∅〉;

4 The identifier c.id = 0 does not represent recurrent information. Identifiers in patterns rather
represent internal, system-generated information that is necessary to correctly maintain the structure
of patterns. When mining patterns, the actual identifiers are lost; when weaving patterns, they need
to be re-generated in the target mashup model.

690 C. Rodríguez et al.

cy = 〈namey, 1, typey, {ipy}, INy, DMy,∅, {opy},
OUTy,∅〉
cz = 〈namez, 2, typez, {ipz}, INz, DMz,∅,∅,∅,∅〉.
This pattern helps connecting components. It is particularly valuable in those

cases where people, rather than developing their mashup model in an incremen-
tal but connected fashion, proceed by first selecting the desired functionalities (the
components) and only then by connecting them.

Component co-occurrence pattern. Similarly, the component co-occurrence pattern
captures couples of components that occur together. It comes with two components
cx and cy as well as with their connector, global parameters, parameter values, and
cy’s data mapping logic:

ptypecom = 〈{cx, cy}, GP, {dfxy},∅〉;
cx = 〈namex, 0, typex,∅, INx, {opx}, OUTx, VAx,∅,∅〉;
cy = 〈namey, 1, typey, {ipy}, INy, DMy, VAy,∅,∅,∅〉.
This pattern helps developing a mashup model incrementally, producing at each

step a connected mashup model.

Component embedding pattern. The component embedding pattern captures which
component cz is typically embedded into a component cy preceded by a component
cx . The pattern has three components, in that both the embedded and the embedding
component have access to the outputs of the preceding component. How these out-
puts are jointly used is valuable information. The pattern, hence, contains the three
components with their connectors, data mappings, global parameters, and parameter
values:

ptypeemb = 〈{cx, cy, cz}, GP, {dfxy, dfxz, dfzy},∅〉;
cx = 〈namex, 0, typex,∅,∅, {opx}, OUTx,∅,∅,∅〉;
cy = 〈namey, 1, typey, {ipy}, INy, DMy, VAy,∅,∅,∅〉;
cz = 〈namez, 2, typez, {ipz}, INz, DMz, VAz, {opz},
OUTz,∅〉.
This pattern helps, for instance, modeling cycles, a task that is usually not trivial

to non-experts.

Multi-component pattern. The multi-component pattern represents recurrent model
fragments that are generically composed of multiple components. It represents more
complex patterns, such as the one in Fig. 27.1, that are not yet captured by the other
pattern types alone. It allows us to obtain a full model fragment, given any of its
sub-elements, typically, a set of components or connectors:

ptypemul = 〈C, GP, DF, RES〉;
C = {ci|ci.id = i; i = 0, 1, 2, ...}.
Besides providing significant modeling support, this pattern helps understanding

domain knowledge and best practices as well as keeping agreed-upon modeling
conventions.

27 Assisted Mashup Development 691

This list of pattern types is extensible, and what actually matters is the way we
specify and process them. However, this set of pattern types, at the same time, lever-
ages on the interactive modeling paradigm of the mashup tools (the patterns represent
modeling actions that could also be performed by the developer) and provides as
much information as possible (we do not only tell simple associations of constructs,
but also show how these are used together in terms of connectors, parameter values,
and data mappings).

Given a set of pattern types, an actual pattern can therefore be seen as an instance
of any of these types. We model a composition pattern as cp = instanceOf (ptype),
ptype ∈ PT , where cp = 〈type, src, C, GP, DF, RES, usage, date〉, type ∈ {“Par”,
“Con”,“Coo”,“Com”,“Emb”,“Mul”}, src ∈ {“Pipes”, “Wires”,“myCockail”, ...}
specifies the target platform of the pattern, C, GP, DF, RES, src are as defined for
the pattern’s ptype, usage counts how many times the pattern has been used (e.g., to
compute rankings), and date is the creation date of the pattern.

27.3.2 Architecture

Figure 27.2 details the internals of our knowledge discovery and recommendation
prototype. We distinguish between client and server side, where the discovery logic is
located in the server and the recommendation and weaving logic resides in the client.

Interactive modeling environment in client browser

Recom-
menda-
tions R

HTML rendering window

Modeling canvas

R
ec

om
en

da
tio

n
pa

ne
l

C
om

po
ne

nt
 to

ol
 b

ar

Partial mashup model

Recommendation server

Pattern
miner

Model
adapter

(native to canonical)

Native models

<mashup>
...
</mashup>

Canonical models

<mashup>
...
</mashup>

Persistent KB

Data

Meta
data

Model
adapter

(canonical to native)

Canonical patterns

<mashup>
...
</mashup>

Recommendation
engine

KB access API

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

Partial
mashup
model pm

Query q

Patterns {cpi}

Pattern weaver

KB access API

P
at

te
rn

 c
p

D
et

ai
ls

Event bus

Selection
<cp,intent>

Instruction
instr

Modeling action
<object,action>

Modeling action
<object,action>

Instruction
instr

Selection
<cp,intent> C

om
po

si
tio

n
pa

tte
rn

 K
B

P
at

te
rn

 u
sa

ge
 s

ta
tis

tic
s

KB loader

KB access API

query
Patterns
{cpi}

Patterns {cpi}

Fig. 27.2 Functional architecture of the composition knowledge discovery and recommendation
approach

692 C. Rodríguez et al.

In the recommendation server, a model adapter imports the native mashup models
into the canonical format. The pattern miner then extracts reusable composition
knowledge in the form of composition patterns, which is then handed to a second
model adapter to convert the canonical patterns into native patterns and load them
into a knowledge base (KB). This KB is structured to maximize the performance of
pattern retrieval at runtime.

In the client, we have the interactive modeling environment, in which the devel-
oper can visually compose components (in the modeling canvas) taken from the
component tool bar. It is here where patterns are queried for and delivered in
response to modeling actions performed by the modeler in the modeling canvas.
In visual modeling environments, we typically have action ∈ {“select”, “drag”,
“drop”,“connect”,“delete”, “fill”, “map”,...}, where the action is performed on a
modeling construct in the canvas; we call this construct the object of the action.
For instance, we can drop a component onto the canvas, or we can select a para-
meter to fill it with a value, we can connect a data flow with a target component,
or we can select a set of components and connectors. Upon each interaction, the
action and its object are published on a browser-internal event bus, which forwards
them to the recommendation engine. Given a modeling action, the object it has been
applied to, and the partial mashup model pm, the engine queries the client-side pat-
tern KB via the KB access API for recommendations (pattern representations). An
object-action-recommendation mapping (OAR) tells the engine which types of rec-
ommendations are to be retrieved for each modeling action on a given object (for
example, when selecting an input field, only recommending possible values makes
sense). The client-side KB is filled at startup by the KB loader, which loads the avail-
able patterns into the client environment, decoupling the knowledge recommender
from the server side.

The list of patterns retrieved from the KB (either via regular queries or by apply-
ing dedicated similarity criteria) are then ranked by the engine and rendered in the
recommendation panel, which renders the recommendations to the developer for
inspection. Selecting a recommendation enacts the pattern weaver, which queries
the KB for the usage details of the pattern (data mappings and value assignments)
and generates a set of modeling instructions that emulate user interactions inside the
modeling canvas and thereby weave the pattern into the partial mashup model.

27.4 Discovering Patterns

The first step in the information flow described in the above architecture is the
discovery of mashup patterns from canonical mashup models. To this end, we look
into the details of each individual pattern and implement dedicated mining algorithms
for each of them, which allow us to fine-tune each mashup-specific characteristic
(e.g., to treat threshold values for parameter value assignments and data mappings
differently). The pattern mining algorithms make use of standard statistics as well
as frequent itemset and subgraph mining algorithms [13].

27 Assisted Mashup Development 693

27.4.1 Mining Algorithms

For each of the pattern types identified in Sect. 27.3.1, we have implemented a respec-
tive pattern mining algorithm, the details of which we provide in the following.

Parameter value pattern. In the case of the parameter value pattern, we are interested
in finding suitable values for the input fields in a given component. Most of the com-
ponents in mashup compositions contain more than one parameter and more often
than not the values of these parameters are related to one another and therefore we
need take into account the co-occurrence of parameter values. In order to discover
such co-occurrences, we map this problem to the well-known problem of itemset
mining [13]. Algorithm 1 outlines the approach for finding parameter value patterns.
Here, we first get all component instances from the mashups in the mashup reposi-
tory (line 2) and group them together by their type (line 5–6) and then perform the
parameter value pattern mining by component type (line 7). Finally, we construct the
actual set of patterns that consists in tuples 〈ct, VA〉, where ct represents a component
type and VA represents the value assignment for its parameters.

Algorithm 1: mineParameterValues
Data: repository of mashup compositions M and minimun support (minsupppar) for the frequent itemset mining
Result: set of parameter value patterns 〈ct, VA〉.

1 Patterns = set();
2 C = set of component instances in M;
3 CT = array();
4 Patterns = set();
5 foreach type of component ct in C do
6 CT [ct] = cx .VA with cx ∈ C such that cx .type = ct ; // get all the parameter value

assignments of component instances of type ct
7 FI = mineFrequentItemsets(CT [ct], minsupppar);
8 foreach VA ∈ FI do
9 Patterns = Patterns ∪ {〈ct, VA〉};

10 return Patterns;

Connector pattern. A connector pattern is composed of two components, the source
component cx and the target component cy, their data flow connector dfxy, and the
data mapping DMy of the target component. Given a repository of mashup models
M = {mi} and the minimum support levels for the data flow connectors and data
mappings, the pseudo-code in Algorithm 2 shows how we mine connector patterns.

We start the mining task by getting the list of all recurrent connectors in M
(line 1). The respective function getRecurrentConnectors is explained in Algorithm
3; in essence, it computes a recurrence distribution for all connectors and returns
only those that exceed the threshold minsuppdf . The function returns a set of con-
nector types without repetitions and without information about the instances that
generated them. Given this set, we construct a database of concrete instances of each
connector type (using the getConnectorInstances function in line 5 and described in
Algorithm 4) and, for each connector type, derive a database of the data mappings for

694 C. Rodríguez et al.

Algorithm 2: mineConnectors
Data: repository of mashup models M, minimum support of data flow connectors (minsuppdf) and data

mappings (minsuppdm)
Result: set of connectors with their corresponding data mappings {〈dfxy,i, DMy,i〉}

1 Fdf = getRecurrentConnectors(M, minsuppdf);

2 DB = array(); // database of recurrent connector instances
3 Patterns = set(); // set of connector patterns

4 foreach dfxy ∈ Fdf do
5 DB[dfxy] = getConnectorInstances(M, dfxy);

// create database for frequent itemset mining
6 DBDMy = array():
7 foreach dfixy ∈ DB[dfxy] do
8 cy = target component of dfixy;
9 append(DBDMy , cy .DM);

10 FIdy = mineFrequentItemsets(DBDMy , minsuppdm);

// construct the connector patterns
11 foreach DMy ∈ FIdy do
12 Patterns = Patterns ∪ {〈dfxy, DMy〉};

13 return Patterns;

Algorithm 3: getRecurrentConnectors
Data: repository of mashup models M, minimum support of data flow connectors (minsuppdf)
Result: set of recurrent connectors Fdf

1 DBdf = array(); // database of data flow connector instances

2 foreach mi ∈ M do
3 append(DBdf , mi .DF) ; // fill with instances

4 Fdf = set(); // set of recurrent data flow connectors

5 foreach dfxy ∈ DBdf do
6 if computeSupport(dfxy, DBdf) ≥ minsuppdf then
7 Fdf = Fdf ∪ {dfxy};

8 return Fdf ;

the connectors’ target component cy (lines 7–9). We feed the so constructed database
into a standard mineFrequentItemsets function [13], in order to obtain a set of recur-
rent data mappings for each connector type. Finally, for each identified data mapping
DMy, we construct a tuple 〈dfxy, DMy〉 (lines 11–12), which concisely represents the
connector pattern structure introduced in Sect. 27.3.1; the rest of the pattern comes
from the component definitions.

Connector co-occurrence pattern. The connector pattern introduced previously is
about how pairs of components are connected together. The connector co-occurrence
pattern goes a step further: it tells how connectors between different pairs of compo-
nents co-occur together in compositions and how data mappings are defined for them.
Algorithm 5 presents the logic for computing connector co-occurrence patterns. The
main difference with respect to Algorithm 2 is that, instead of computing the fre-
quency of individual dataflow connectors between pairs of components, we compute
frequent itemsets of dataflow connectors (lines 2–4).

27 Assisted Mashup Development 695

Algorithm 4: getConnectorInstances
Data: repository of mashup models M, reference connector dfxy
Result: array of connector instances DBxy

1 DBxy = array(); // database of data flow connector instances

2 foreach mi ∈ M do
3 append(DBxy], mi .DF ∩ {dfxy}) ; // fill with instances of the reference connector

type

4 return DBxy;

Algorithm 5: mineConnectorCooccurrences
Data: repository of mashup compositions M, minimun support for dataflow connectors (minsuppdf) and data

mappings (minsuppdm)
Result: list of connector patterns with their corresponding data mappings 〈DFxy, DMy〉
// find the co-occurrence of dataflow connectors

1 DBdf = array();
2 foreach mi ∈ M do
3 append(DBdf , mi .DF);

4 Fdf = mineFrequentItemsets(DBdf , minsuppdf);

5 DBci = array();
6 foreach mi ∈ M do
7 foreach DFxy ∈ Fdf do
8 if DFxy ∩ mi .DF = DFxy then
9 foreach dfixy ∈ DFxy do

10 append(DBci[DFxy], getConnectorInstances({mi}, dfixy);

// find data mappings for the frequent dataflow connectors obtained above
11 DBDMy = array();
12 foreach DFxy ∈ DBci do
13 foreach dfixy ∈ DFxy do
14 cy = target component of dfixy;
15 append(DBDMy , cy .DM);

16 FIdy = mineFrequentItemsets(DBDMy , minsuppdm);

// construct the connector patterns
17 Patterns = set();
18 foreach DMy ∈ FIdy do
19 Patterns = Patterns ∪ {〈DFxy, DMy〉};
20 return Patterns;

Component co-occurrence pattern. The component co-occurrence pattern is an
extension of the connector pattern; in addition to the connectors and data mappings, it
also contains the parameter value assignments of the two components involved in the
connector. As shown in Algorithm 6, the respective mining logic is similar to the one
of the connector pattern, with two major differences: in lines 6–17 we also mine the
recurrent parameter value assignments of cx and cy, and in lines 18–21 we consider
only those combinations of VAx , VAy and DMy that co-occur in mashup instances
for the given connector. Notice that, for the purpose of explaining this algorithm,
we perform a cartesian product of VAx , VAy and DMy in line 22. Doing this can be
computational expensive if implemented as-is. In practice, the implementation of
this algorithm is performed in such a way that we do not have to explore the whole

696 C. Rodríguez et al.

Algorithm 6: mineComponentCooccurrences
Data: repository of mashup models M, minimum support of data flow connectors (minsuppdf), data mappings

(minsuppdm), parameter value assignments (minsuppva) and pattern co-occurrence (minsupppc).
Result: set of component co-occurrence patterns with their corresponding dataflow connectors, data mappings

and parameter values {〈dfxy,i, VAx,i, VAy,i, DMy,i〉}
1 Fdf = getRecurrentConnectors(M, minsuppdf);

2 DB = array(); // database of recurrent connector instances
3 Patterns = set(); // set of component co-occurrence patterns

4 foreach dfxy ∈ Fdf do
5 DB[dfxy] = getConnectorInstances(M, dfxy);

// create databases for frequent itemset mining
6 DBVAx = array();
7 DBVAy = array();
8 DBDMy = array();
9 foreach dfixy in DB[dfxy] do

10 cx = source component of dfixy;
11 cy = target component of dfixy;
12 append(DBVAx , cx .VA);
13 append(DBVAy , cy .VA);
14 append(DBDMy , cy .DM);

15 FIvx = mineFrequentItemsets(DBVAx , minsupppar);
16 FIvy = mineFrequentItemsets(DBVAy , minsupppar);
17 FIdy = mineFrequentItemsets(DBDMy , minsuppdm);

// keep only those combinations of value assignments and data mappings
that occur together in mashup instances

18 Coo = set();
19 foreach 〈VAx , VAy, DMy〉 ∈ FIvx × FIvy × FIdy do
20 if computeSupport(〈VAx , VAy, DMy〉, DB[dfxy]) ≥ minsupppc then
21 Coo = Coo ∪ {〈VAx , VAy, DMy〉};

// construct the component co-occurrence patterns
22 foreach 〈VAx , VAy, DMy〉 ∈ Coo do
23 Patterns = Patterns ∪ {〈dfxy, VAx , VAy, DMy〉};

24 return Patterns;

search space. This comment also applies to the rest of the algorithms presented in
this section.

Component embedding pattern. Mashup composition tools typically allow for the
embedding of components inside other components. However, not all components
present this capability. A common example is the loop component: it takes as input
a set of data items and then loops over them executing the operations provided
by the embedded component (e.g., a filter component). Embedding one compo-
nent into another is not a trivial task, as there may be complex dataflow connectors
and data mappings between the outer and inner component as well as between the
last two and the component that proceeds the outer component in the composition
flow. Algorithm 7 shows the logic for mining component embedding patterns. First,
we get the instances of component embeddings from the mashup repository and
then we keep only those that have a support greater or equal to minsuppem (lines
2–10). Using these frequent embeddings, we look for frequent dataflows that involve
these embeddings (lines 11–17). For these patterns, we are also interested in finding

27 Assisted Mashup Development 697

Algorithm 7: mineComponentEmbeddings
Data: repository of mashup compositions M, minimum supports for component embeddings (minsuppem), data

flows (minsuppdf), data mappings (minsuppdm), parameter value (minsupppar) and pattern co-occurrence
(minsupppc)

Result: list of component embedding patterns with their corresponding components, dataflow connectors, data
mappings and parameter value assignments 〈{cx , cy, cz}, DF, DM, VA〉

// get the list of component embeddings
1 DBem = array();
2 foreach mi ∈ M do
3 foreach 〈cx , cy, cz〉 ∈ mi .C × mi .C do
4 if (cx preceeds cy) and (cy embeds cz) then
5 emxyz = 〈cx , cy, cz〉;
6 append(DBem, emxyz);

// find the frequent component embeddings
7 Fem = set();
8 foreach emxyz ∈ DBem do
9 if computeSupport(emxyz, DBem) ≥ minsuppem then

10 append(Fem, emxyz);

// get dataflows involving the frequent component embeddings
11 DBdf = array();
12 Fdf = array();
13 foreach mi ∈ M do
14 foreach emxyz ∈ Fem do
15 if emxyz ∈ mi then
16 append(DBdf [emxyz], 〈mi .dfxy, mi .dfxz, mi .dfyz〉);

17 Fdf = mineFrequentItemsets(DBdf , minsuppdf);

// get parameter value and data mapping instances and compute the
corresponding frequent itemsets

18 DBva = array(); DBdm = array();
19 foreach mi ∈ M do
20 foreach 〈dfxy, dfxz, dfyz〉 ∈ Fdf do
21 if 〈dfxy, dfxz, dfyz〉 ∈ mi then
22 cx = component instance cx ∈ mi corresponding to dfxy;
23 cy = component instance cy ∈ mi corresponding to dfxy;
24 cz = component instance cz ∈ mi corresponding to dfyz ;
25 VAx = cx .VA; DMx = cx .DM;
26 VAy = cy .VA; DMy = cy .DM;
27 VAz = cz .VA; DMz = cz .DM;
28 append(DBva, VAx ∪ VAy ∪ VAz);
29 append(DBdm, DMx ∪ DMy ∪ DMz);

30 Fva = mineFrequentItemsets(DBva, minsupppar);
31 Fdm = mineFrequentItemsets(DBdm, minsuppdm);

// construct the component embedding pattern
32 Patterns = set();
33 foreach 〈EM, DF, DM, VA〉 ∈ Fem × Fdf × Fdm × Fva do
34 if computeSupport(〈EM, DF, DM, VA〉, M) ≥ minsupppc then
35 cx , cy, cz = components corresponding to the dataflows df ∈ DF;
36 Patterns = Patterns ∪ {〈{cx , cy, cz}, DF, DM, VA〉};

37 return Patterns;

data mapping and parameter value patterns and thus we proceed as in the previous
algorithms to mine them (lines 18–31). In the last part of the algorithm (lines 32–37),
we proceed with building the actual patterns with tuples 〈{cx, cy, cz}, DF, DM, VA〉

698 C. Rodríguez et al.

that include information about the components involved in the pattern as well as the
dataflow connectors, data mappings and parameter value assignments.

Multi-component pattern. The multi-component pattern represents recurrent model
fragments that are composed of multiple components. It represents more complex
patterns, which are not yet captured by the other pattern types alone. This pattern
helps understanding domain knowledge and best practices as well as keeping model-
ing conventions. Multi-component patterns consists in a combination of the patterns
we have introduced before. Algorithm 8 provides the details of the mining algorithm.
We start by obtaining the graph representation of the mashups in the repository and
mining frequent sub-graphs out of them (lines 2–5). For the sub-graph mining we can
choose among the state of the art sub-graph mining algorithms [13]. Then, we get
from the mashup repository the list of mashup fragments that match the frequent sub-
graphs mined in the previous step (lines 6–11). We do this, so that next we can mine
both the parameter value and data mapping patterns using again standard itemset
mining algorithms (lines 13–21). Finally, we build the actual multicomponent pat-
terns by going through the mashup repository and keeping only those combinations
of patterns that co-occur in the mashup instances (lines 22–25).

27.5 Recommending Patterns

Recommending patterns is non-trivial, in that the size of the knowledge base may be
large, and the search for composition patterns may be complex; yet, recommenda-
tions are to be delivered at high speed, without slowing down the modeler’s composi-
tion pace. Recommending patterns is platform-specific. The following explanations
therefore refer to the specific case of Pipes-like mashup models. In [10], we show
all the details of our approach; in the following we summarize its key aspects.

27.5.1 Pattern Knowledge Base

The core of the interactive recommender is the pattern KB. In order to enable the
incremental and fast recommendation of patterns, we decompose them into their
constituent parts and focus only on those aspects that are necessary to convey the
meaning of a pattern. That is, we leverage on the observation that, in order to convey
the structure of a pattern, already its components and connectors enable the developer
to choose in an informed fashion. Data mappings and value assignments, unless
explicitly requested by the developer, are then delivered only during the weaving
phase upon the selection of a specific pattern by the developer.

This strategy leads us to the KB illustrated in Fig. 27.3, whose structure enables
the retrieval of each of the patterns introduced in Sect. 27.3.1 with a one-shot
query over a single table. For instance, let’s focus on the component co-occurrence

27 Assisted Mashup Development 699

Algorithm 8: mineMulticomponentPatterns
Data: repository of mashup compositions M and minimun support for multi-components (minsuppmc),

parameter value (minsupppar) and data mapping (minsuppdm) patterns.
Result: set of multi-component patterns 〈mf .C, mf .DF, VA, DM〉.

1 DBg = array() ; // database of graph representations of mashups
2 foreach mi ∈ M do

// get a graph representation of mashup mi where the nodes represent
components and arcs represent dataflows; here, the arcs are labeled
with the output and input ports involved in the dataflow

3 gi = getGraphRepresentation(mi);
4 append(DBg, gi);

5 FG = mineFrequentSubraphs(DBg, minsuppmc);
6 DBmc = array();
7 foreach mi ∈ M do
8 foreach fgi ∈ FG do
9 if getGraphRepresentation(mi) contains fgi then

// get the fragment mf from mashup instance mi that matches fgi;
notice that mf is represented as a canonical mashup model

10 mf = getSubgraphInstance(mi, fgi);
11 append(DBmc[fgi], mf)

12 Patterns = set();
13 foreach MC ∈ DBmc do

// get parameter values and data mappings and compute the corresponding
frequent itemsets

14 DBVA = array();
15 DBDM = array();
16 foreach mf ∈ MC do
17 foreach cx ∈ mf .C do
18 append(DBVA, cx .VA);
19 append(DBDM, cx .DM);

20 FIva = mineFrequentItemsets(DBVA, minsupppar);
21 FIdm = mineFrequentItemsets(DBDM, minsuppdm);

// construct the multi-component pattern
22 foreach 〈VA, DM〉 ∈ FIva × FIdm do
23 foreach mf ∈ MC do
24 if 〈VA, DM〉 ∈ mf then
25 Patterns = Patterns ∪ {〈mf .C, mf .DF, VA, DM〉} ; // using mf, build the

patterns with its components (mf .C), dataflows (mf .DF), value
assignments (mf .VA) and data mappings (mf .DM)

26 return Patterns;

pattern: to retrieve its representation, it is enough to query the ComponentCooccur
entity for the SourceComponent and the TargetComponent attributes. The query
is assembled automatically upon interactions in the modeling canvas and is of
the form q = 〈object, action, pm〉. Only weaving the pattern into the mashup
model requires querying ComponentCooccur �� Connectors �� DataMapping and
ComponentCooccur �� ParameterValues.

700 C. Rodríguez et al.

1..N

DataMapping
ID
SourceAttribute
TargetParameter
Usage
Date

Connectors
ID
SourceComponent
TargetComponent
Usage
Date

0..1

ParameterValues

ID
Component
Parameter
Value
Usage
Date

MultiComponent
ID
C
DF
DF'
Usage
Date

ComponentCooccur
ID
SourceComponent
TargetComponent
Usage
Date

ConnectorCooccur

ID
FirstComponent
SecondComponent
ThirdComponent
Usage
Date

Embedding

ID
SourceComponent
EmbeddingComponent
EmbeddedComponent
Usage
Date

0..1

1..N

0..1

1..N

1..N

1..N

0..1

0..1 1..N 0..1

0..1
1..N

1..N

1..N
0..1

0..1

Fig. 27.3 KB structure optimized for pipes

27.5.2 Exact and Approximate Pattern Matching

The described KB supports both exact queries for the patterns with pre-defined
structure and approximate matching for multi-component patterns whose structure
is not known a priori. Patterns are queried for or matched against the object of the
query, i.e., the last modeling construct manipulated by the developer. Conceptually,
all recommendations could be retrieved via similarity search, but for performance
reasons we apply it only when strictly necessary.

Algorithm 9 details this strategy and summarizes the logic implemented by the
recommendation engine. In line 3, we retrieve the types of recommendations that
can be given (getSuitableRecTypes function), given an object-action combination.
Then, for each recommendation type, we either query for patterns (the queryPatterns
function can be seen like a traditional SQL query) or we do a similarity search (get-
SimilarPatterns function). For each retrieved pattern, we compute a rank, e.g., based
on the pattern description (e.g., containing usage and date), the computed similarity,
and the usefulness of the pattern inside the partial mashup, order and group the rec-
ommendations by type, and filter out the best n patterns for each recommendation
type.

As for the retrieval of similar patterns, we give preference to exact matches
of components and connectors in object and allow candidate patterns to differ for
the insertion, deletion, or substitution of at most one component in a given path in
object. Among the non-matching components, we give preference to functionally

27 Assisted Mashup Development 701

Algorithm 9: getRecommendations
Data: query q = 〈object, action, pm〉, knowledge base KB, object-action-recommendation mapping OAR,

component similarity matrix CompSim, similarity threshold Tsim , ranking threshold Trank , number n of
recommendations per recommendation type

Result: recommendations R = [〈cpi, ranki〉]
1 R = array();
2 Patterns = set();
3 recTypeToBeGiven = getRecTypes(object, action, OAR);
4 foreach recType ∈ recTypeToBeGiven do
5 if recType �= “Mul” then
6 Patterns = Patterns∪ queryPatterns(object, KB, recType) ; // exact query
7 else
8 Patterns = Patterns∪ getSimilarPatterns(object,

KB, CompSim, Tsim) ; // similarity search

9 foreach pat ∈ Patterns do
10 if rank(pat.cp, pat.sim, pm) ≥ Trank then
11 append(R, 〈pat.cp, rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember

12 orderByRank(R);
13 groupByType(R);
14 truncateByGroup(R, n);
15 return R;

similar components (e.g., it may be reasonable to allow a Yahoo! Map instead of
a Google Map); we track this similarity in a dedicated CompSim matrix. For the
detailed explanation of the approximate matching logic we refer the reader to [10].

27.6 Weaving Patterns

Weaving a given composition pattern cp into a partial mashup model pm is not
straightforward and requires a thorough analysis of both cp and pm, in order to
understand how to connect the pattern to the constructs already present in pm. In
essence, weaving a pattern means emulating developer interactions inside the mod-
eling canvas, so as to connect a pattern to the partial mashup. The problem is not as
simple as just copying and pasting the pattern, in that new identifiers of all constructs
of cp need to be generated, connectors must be rewritten based on the new identifiers,
and connections with existing constructs may be required.

We approach the problem of pattern weaving by first defining a basic weaving
strategy that is independent of pm and then deriving a contextual weaving strategy
that instead takes into account the structure of pm.

27.6.1 Basic Weaving Strategy

Given an object and a pattern cp of a recommendation, the basic weaving strategy
BS provides the sequence of mashup operations that are necessary to weave cp into

702 C. Rodríguez et al.

the object. The basic weaving strategy does not use pm; it tells how to expand object
into cp (object being a part of cp). This basic strategy is static for each pattern type
and it consists a set of mashup operations that resemble the operations a developer
can typically perform manually in the modeling canvas. Typical examples of mashup
operations are addComponent that corresponds to adding a new component to pm,
addConnector that corresponds to adding a connector between two selected com-
ponents in pm, assignValues that corresponds to assigning values to configuration
parameters of a component, and similar. Mashup operations are applied on the partial
mashup pm and result in an updated pm′. All operations assume that the pm is glob-
ally accessible. The internal logic of these operations are highly platform-specific,
in that they need to operate inside the target modeling environment.

For instance, the basic weaving strategy for a component co-occurrence pattern of
type ptypecomp is as follows (we assume object = comp with comp.type = cx.type,
cx being one of the components of the pattern):

1 $newcid5=addComponent(cy.type);
2 addConnector(〈comp.id, cx .op, $newcid, cy.ip〉);
3 assignDataMapping($newcid, cy.DM);
4 assignValues(comp.id, cx.VA);
5 assignValues($newcid, cy.VA);

That is, given a component cx , we add the other component cy (line 1) as mentioned
in the selected pattern to the pm, connect cx and cy together (line 2) and then apply the
respective data mappings (line 3) and value assignments (line 4 and line 5). Note that,
the basic strategy is not yet applied to pm; it represents an array of basic modeling
operations to be further processed before being able to weave the pattern.

27.6.2 Contextual Weaving Strategy

Given an object object, a pattern cp, and a partial mashup pm, the contextual weaving
strategy WS is derived by applying the mashup operations in the basic weaving
strategy to the current partial mashup model and thus by weaving the selected cp
into pm. The WS is dynamically built at runtime by taking into consideration the
structure of the partial mashup (the context).

Applying the mashup operations in the basic weaving strategy may require the
resolution of possible conflicts among the constructs of pm and those of cp. For
instance, if we want to add a new component of type ctype to pm but pm already
contains an instance of type ctype, say comp, we are in the presence of a conflict:
either we decide that we reuse comp, which is already there, or we decide to create a
new instance of ctype. In the former case, we say we apply a soft conflict resolution
policy, in the latter case a hard policy:

5 We highlight identifier place holders (variables) that can only be resolved when executing the
operation with a “$” prefix.

27 Assisted Mashup Development 703

Algorithm 10: getWeavingStrategy
Data: partial mashup model pm, composition pattern cp, object object that triggered the recommendation
Result: weaving strategy WS, i.e., a sequence of abstract mashup operations; updated mashup model pm′

1 WS = array();
2 BS = getBasicStrategy(cp, object);
3 foreach instr ∈ BS do
4 CtxInstr = resolveConflict(pm, instr);
5 pm = apply(pm, CtxInstr);
6 append(WS, CtxInstr);

7 return 〈WS, pm〉;

Soft: substitute(“$var=addComponent(ctype)”) with “$var = comp.id”
Hard: substitute(“$var=addComponent(ctype)”) with “$var=addComponent

(ctype)”

Formally, the conflict resolution policy corresponds to a function resolveCon-
flict(pm, instr)→ CtxInstr, where instr is the mashup operation to be applied to pm
and CtxInstr is the set of instructions that replace instr. Only in the case of a conflict,
instr is replaced; otherwise the function returns instr again.

In Algorithm 10 we describe the logic of our pattern weaver. First, it derives a basic
strategy BS for the given composition pattern cp and the object from pm (line 2).
Then, for each of the mashup operations instr in the basic strategy, it checks for
possible conflicts with the current modeling context pm (line 4). In case of a conflict,
the function resolveConflict(pm, instr) derives the corresponding contextual weaving
instructions CtxInstr replacing the conflicting, basic operation instr. CtxInstr is then
applied to the current pm to compute the updated mashup model pm′ (line 5), which is
then used as basis for weaving the next instr of BS. The contextual weaving structure
WS is constructed as concatenation of all conflict-free instructions CtxInstr.

Note that Algorithm 10 returns both the list of contextual weaving instructions
WS and the final updated mashup model pm′. The former can be used to interactively
weave cp into pm, the latter to convert pm′ into native formats.

27.7 Implementation and Evaluation

We have implemented our prototype system, Baya [11], as Mozilla Firefox (http://
mozilla.com/firefox) extension for Yahoo! Pipes to demonstrate the viability of our
interactive recommendation approach. The design goals behind Baya can be sum-
marized as follows: We didn’t want to develop yet another mashup environment; so
we opted for an extension of existing and working solutions (so far, we focused on
Yahoo! Pipes; other tools will follow). Modelers should not be required to ask for
help; we therefore pro-actively and interactively recommend contextual composition
patterns. We did not want the reuse to be limited to simple copy/paste of patterns, but
knowledge should be actionable, and therefore, Baya automatically weaves patterns.

http://mozilla.com/firefox
http://mozilla.com/firefox

704 C. Rodríguez et al.

In Baya we have implemented the model adapters (see Fig. 27.2) in Java (1.6),
which are able to convert Yahoo! Pipes’s JSON representation into our canonical
mashup model and back. All the mining algorithms are also implemented in Java.
For the frequent itemset mining we used the tool Carpenter (http://www.borgelt.net/
carpenter.html), while for graph mining we used the tool MoSS (http://www.borgelt.
net/moss.html). The resulting patterns are expressed in terms of canonical mashup
models, which are then converted to native models (in this case, Yahoo! Pipes JSON
representations) by our canonical-to-native model adapter and loaded into the pattern
KB.

For testing our mining algorithms, we used a dataset of 970 pipes definitions from
Yahoo! Pipes that were retrieved using YQL Console (http://developer.yahoo.com/
yql/console/). We selected pipes from the list of “most popular” pipes, as popular
pipes are more likely to be functioning and useful. The average numbers of compo-
nents, connectors and input parameters are 11.1, 11.0 and 4.1, respectively, which is
an indication that we are dealing with fairly complex pipes.

The results obtained from running our algorithms on the selected dataset show
that we are able to discover recurrent practices for building mashups. Table 27.1
reports on the list of pattern types and their Upper Threshold for minsupp (UTm).
The UTm tells us what is the upper threshold for the minsupp values at which we
start finding patterns of a given type and for a given dataset. In the cases where we
use more than one type of minsupp (such as in the component co-occurrence pattern
where we use minsuppdf , minsuppdm and minsupppar), the minsupp we consider is
the one corresponding to the pattern that is first computed in the algorithm. For our
dataset, in Table 27.1 we can see that we are always able to find parameter value
patterns for some component types. For example, this is the case of Yahoo! Pipes’
component YQL that has the parameter raw with a default value Results only that is
always kept as-is by the users. From the table we can also notice that the connector and
component co-occurrence patterns have the same UTm value. This is because in both
cases their corresponding algorithms compute first the frequent dataflow connectors
and thus the reference minimum support for the UTm is minsuppdf . Finally, for the
Multi-component pattern we have a UTm of 0.021, a relatively low value, when we
consider patterns with at least 4 components. However, considering that here we are
talking about complex patterns with at least 4 components that, furthermore, include
dataflow connectors, data mappings and parameter value assignments, we can say
that, even with a relatively low support value, these patterns still captures recurrent
modeling practices for fairly complex settings.

The discovered patterns are transformed and stored in a knowledge base that is
optimized for fast pattern retrieval at runtime. The implementation of the persistent
pattern KB at server side, is based on MySQL (http://www.mysql.com/). Via a ded-
icated Java RESTful API, at startup of the recommendation panel the KB loader
synchronizes the server-side KB with the client-side KB, which instead is based on
SQLite (http://www.sqlite.org). The pattern matching and retrieval algorithms are
implemented in JavaScript and triggered by events generated by the event listeners
monitoring the DOM changes related to the mashup model.

http://www.borgelt.net/carpenter.html
http://www.borgelt.net/carpenter.html
http://www.borgelt.net/moss.html
http://www.borgelt.net/moss.html
http://developer.yahoo.com/yql/console/
http://developer.yahoo.com/yql/console/
http://www.mysql.com/
http://www.sqlite.org

27 Assisted Mashup Development 705

Table 27.1 Summary of
pattern types with their
corresponding UTm

Pattern type UTm

Parameter value pattern 1
Connector pattern 0.257
Connector co-occurrence pattern 0.072
Component co-occurrence pattern 0.257
Component embedding pattern 0.124
Multi-component pattern 0.021

0

100

200

300

400

500

600

700

10 100 1000

R
et

ri
ev

al
 t

im
e

[m
s]

Number of multi-component patterns in KB

Connector

Par value

Component Co-occurrence

Multi-component

Total

Fig. 27.4 Recommendation types and times in response to a new component added to the canvas

The weaving algorithms are also implemented in JavaScript. Upon the selection
of a recommendation from the panel, they derive the contextual weaving strategy that
is necessary to weave the respective pattern into the partial mashup model. Each of
the instructions in the weaving strategy refers to a modeling action, where modeling
actions are implemented as JavaScript manipulations of the mashup model’s JSON
represenation. Both the weaving strategies (basic and contextual) are encoded as
JSON arrays, which enables us to use the native eval() command for fast and easy
parsing of the weaving logic.

Figure 27.4 illustrates the performance of the interactive recommendation algo-
rithm of Baya as described in Algorithm 9 in response to the user placing a new
component into the canvas, a typical modeling situation. Based on the object-
action-recommendation mapping, the algorithm retrieves parameter value, con-
nector, component co-occurrence, and multi-component patterns. As expected,
the response times of the simple queries can be neglected compared to the one
of the similarity search for multi-component patterns, which basically dominates
the whole recommendation performance. During the performance evaluation for
Baya, we have also observed that the time required for weaving a pattern is neg-
ligible with respect to the total time required for the pattern recommendation
and weaving.

706 C. Rodríguez et al.

27.8 Related Work

Traditionally, recommender systems focus on the retrieval of information of likely
interest to a given user, e.g., newspaper articles or books. The likelihood of interest
is typically computed based on a user profile containing the user’s areas of interest,
and retrieved results may be further refined with collaborative filtering techniques.
In our work, as for now we focus less on the user and more on the partial mashup
under development (we will take user preferences into account in a later stage), that
is, recommendations must match the partial mashup model and the object the user
is focusing on, not his interests. The approach is related to the one followed by
research on automatic service selection, e.g., in the context of QoS- or reputation-
aware service selection, or adaptive or self-healing service compositions. Yet, while
these techniques typically approach the problem of selecting a concrete service for
an abstract activity at runtime, we aim at interactively assisting developers at design
time with domain knowledge in the form of modeling patterns.

In the context of web mashups, Carlson et al. [2], for instance, react to a user’s
selection of a component with a recommendation for the next component to be used;
the approach is based on semantic annotations of component descriptors and makes
use of WordNet for disambiguation. Greenshpan et al. [6] propose an auto-completion
approach that recommends components and connectors (so-called glue patterns) in
response to the user providing a set of desired components; the approach computes
top-k recommendations out of a graph-structured knowledge base containing com-
ponents and glue patterns (the nodes) and their relationships (the arcs). While in this
approach the actual structure (the graph) of the knowledge base is hidden to the user,
Chen et al. [3] allow the user to mashup components by navigating a graph of compo-
nents and connectors; the graph is generated in response to the user’s query in form
of descriptive keywords. Riabov et al. [9] also follow a keyword-based approach
to express user goals, which they use to feed an automated planner that derives
candidate mashups; according to the authors, obtaining a plan may require several
seconds. Elmeleegy et al. [5] propose MashupAdvisor, a system that, starting from
a component placed by the user, recommends a set of related components (based on
conditional co-occurrence probabilities and semantic matching); upon selection of a
component, MashupAdvisor uses automatic planning to derive how to connect the
selected component with the partial mashup, a process that may also take more than
one minute. Beauche and Poizat [1] use automatic planning in service composition.
The planner generates a candidate composition starting from a user task and a set of
user-specified services.

The business process management (BPM) community more strongly focuses on
patterns as a means of knowledge reuse. For instance, Smirnov et al. [12] provide
so-called co-occurrence action patterns in response to action/task specifications by
the user; recommendations are provided based on label similarity, and also come
with the necessary control flow logic to connect the suggested action. Hornung et al.
[8] provide users with a keyword search facility that allows them to retrieve process
models whose labels are related to the provided keywords; the algorithm applies the

27 Assisted Mashup Development 707

traditional TF-IDF technique from information retrieval to process models, turning
the repository of process models into a keyword vector space. Gschwind et al. [7]
allow users to use the control flow patterns introduced by Van der Aalst et al. [14],
just like other modeling elements. The system does not provide interactive recom-
mendations and rather focuses on the correct insertion of patterns.

In summary, assisted mashup and service composition approaches either focus on
single components or connectors, or they aim to auto-complete compositions starting
from user goals by using AI Planning techniques. The BPM approaches do focus
on patterns, but most of the times pattern similarity is based on label/text similarity,
not on structural compatibility. In our work, we consider that if components have
been used together successfully multiple times, very likely their joint use is both
syntactically and semantically meaningful. Hence, there is no need to further model
complex ontologies or composition rules. Another key difference is that we leverage
on the interactive recommendation of composition patterns to assists users step-
by-step based on their actions on the design canvas. We do not only tell users which
patterns may be applied to progress in the mashup composition process, but we also
automatically weave recommended patterns on behalf of the users.

27.9 Conclusions

With this work, we aim to pave the road for assisted development in web-based
composition environments. We represent reusable knowledge as patterns, explain
how to automatically discover patterns from existing mashup models, describe how
to recommend patterns fast, and how to weave them into partial mashup models. We
therefore provide the basic technology for assisted development, demonstrating that
the solutions proposed indeed work in practice.

As for the discovery of patterns, it is important to note that even patterns with very
low support carry valuable information. Of course, they do not represent generally
valid solutions or complex best practices in a given domain, but still they show how
its constructs have been used in the past. This property is a positive side-effect of
the sensible, a-priori design of the pattern structures we are looking for. Without
that, discovered patterns would require much higher support values, so as to provide
evidence that also their pattern structure is meaningful. Our analysis of the patterns
discovered by our algorithms shows that, in order to get the best out them, domain
knowledge inside the mashup models is crucial. Domain-specific mashups, in which
composition elements and constructs have specific domain semantics, are a thread of
research we are already following. As a next step, we will also extend the canonical
model toward more generic mashup languages, e.g., including UI synchronization.

The results of our tests of the pattern recommendation approach even outper-
form our own expectations, also for large numbers of patterns. In practice, however,
the number of really meaningful patterns in a given modeling domain will only
unlikely grow beyond several dozens. The described recommending approach will
therefore work well also in the context of other browser-based modeling tools, e.g.,

708 C. Rodríguez et al.

business process or service composition instruments (which are also model-based
and of similar complexity), while very likely it will perform even better in desktop-
based modeling tools like the various Eclipse-based visual editors. Recommendation
retrieval times of fractions of seconds and negligible pattern weaving times will def-
initely allow us—and others—to develop more sophisticated, assisted composition
environments. This is, of course, our goal for the future—next to going back to the
users of our initial study and testing the effectiveness of assisted development in
practice.

Acknowledgments This work was supported by the European Commission (project OMELETTE,
contract 257635).

References

1. Beauche, S., Poizat, P.: Automated service composition with adaptive planning. In: ICSOC’08,
pp. 530–537. Springer (2008). doi:10.1007/978-3-540-89652-4_42

2. Carlson, M.P., Ngu, A.H., Podorozhny, R., Zeng, L.: Automatic mash up of composite appli-
cations. In: ICSOC’08, pp. 317–330, Springer (2008). doi:10.1007/978-3-540-89652-4_25

3. Chen, H., Lu, B., Ni, Y., Xie, G., Zhou, C., Mi, J., Wu, Z.: Mashup by surfing a web of data apis.
In: VLDB’09, vol. 2, pp. 1602–1605 (2009). http://portal.acm.org/citation.cfm?id=1687553.
1687602

4. De Angeli, A., Battocchi, A., Roy Chowdhury, S., Rodríguez, C., Daniel, F., Casati, F.: End-user
requirements for wisdom-aware eud. In: IS-EUD’11. Springer (2011)

5. Elmeleegy, H., Ivan, A., Akkiraju, R., Goodwin, R.: Mashup advisor: A recommendation tool
for mashup development. In: ICWS’08, pp. 337–344. IEEE Computer Society (2008). doi:10.
1109/ICWS.2008.128. http://portal.acm.org/citation.cfm?id=1474549.1474748

6. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for mashups. In: VLDB’09, vol. 2,
pp. 538–549 (2009). http://portal.acm.org/citation.cfm?id=1687627.1687689

7. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In:
BPM’08, pp. 4–19. Springer (2008). doi:10.1007/978-3-540-85758-7_4

8. Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process modeling support:
method and user experience. In: ER’08, pp. 265–278. Springer (2008)

9. Riabov, A.V., Boillet, E., Feblowitz, M.D., Liu, Z., Ranganathan, A.: Wishful search: interactive
composition of data mashups. In: WWW’08, pp. 775–784. ACM (2008). doi:10.1145/1367497.
1367602

10. Roy Chowdhury, S., Daniel, F., Casati, F.: Efficient, interactive recommendation of mashup
composition knowledge. In: ICSOC’11, pp. 374–388. Springer (2011)

11. Roy Chowdhury, S., Rodríguez, C., Daniel, F., Casati, F.: Baya: assisted mashup development
as a service. In: WWW’12 (2012)

12. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in busi-
ness process models. In: ICSOC-ServiceWave’09, pp. 115–129. Springer (2009).
doi:10.1007/978-3-642-10383-4_8

13. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)
14. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow

patterns. Distrib. Parallel Databases 14, 5–51 (2003)

http://dx.doi.org/10.1007/978-3-540-89652-4_42
http://dx.doi.org/10.1007/978-3-540-89652-4_25
http://portal.acm.org/citation.cfm?id=1687553.1687602
http://portal.acm.org/citation.cfm?id=1687553.1687602
http://dx.doi.org/10.1109/ICWS.2008.128
http://dx.doi.org/10.1109/ICWS.2008.128
http://portal.acm.org/citation.cfm?id=1474549.1474748
http://portal.acm.org/citation.cfm?id=1687627.1687689
http://dx.doi.org/10.1007/978-3-540-85758-7_4
http://dx.doi.org/10.1145/1367497.1367602
http://dx.doi.org/10.1145/1367497.1367602
http://dx.doi.org/10.1007/978-3-642-10383-4_8

Chapter 28
End Users Developing Mashups

Nikolay Mehandjiev, Abdallah Namoun, Freddy Lécué, Usman Wajid
and Georgia Kleanthous

Abstract Mashups can open up access to the wealth of on-line information, allowing
information-providing services to be discovered, integrated and presented in a man-
ner tuned to current user needs. Their uptake is hindered by the fact that most informa-
tion consumers do not have programming background and thus find it difficult to work
with the current systems which are technology-driven. Many researchers attempt to
help such non-programmers by replacing programming scripts with interactive visual
representations to connect different information-providing service components into
an assembly. However, the underlying programming techniques such as event-driven
processing still shape the visual interface and make it difficult to understand for
non-programmers. In contrast, we did not start with the technology but with the
users—service producers and consumers, and studied the core issues which should
be resolved before non-programmers can assemble meaningful mashups, over and
above the presentation-level integration offered by current mashup environments.
The result is an approach to assisted service composition designed for end users,
which uses semantic technologies to shield users from the irrelevant complexity of
service technology, from the heterogeneity of the information and from the need to

N. Mehandjiev (B) · A. Namoun · U. Wajid · G. Kleanthous
Manchester Centre for Service Research,
University of Manchester,
Manchester M60 1QD, UK
e-mail: n.mehandjiev@manchester.ac.uk

A. Namoun
e-mail: abdallah.namoune@mbs.ac.uk

U. Wajid
e-mail: usman.wajid@manchester.ac.uk

G. Kleanthous
e-mail: georgia.kleanthous@gmail.com

F. Lécué
IBM Research, Dublin, Ireland
e-mail: freddy.lecue@ie.ibm.com

A. Bouguettaya et al. (eds.), Web Services Foundations, 709
DOI: 10.1007/978-1-4614-7518-7_28,
© Springer Science+Business Media New York 2014

710 N. Mehandjiev et al.

manually resolve dependencies between services. A tool has been developed to help
us validate the approach through two observational studies of non-programmers. The
studies confirmed the enabling effect of the approach, and generated suggestions for
further work at the levels of both the approach and the tool.

28.1 Introduction

The empowering influence of the World Wide Web in terms of fast and convenient
access to information and services from all areas of human knowledge and culture,
and from any corner of the globe, is universally accepted. This is taken a step fur-
ther with the idea of mashups, allowing users to combine information from different
sources, process it and present it in a finely-tuned manner by composing information-
providing services. These have developed from simple web pages aggregating
information from different sources and presenting it side-by-side without any integra-
tion, such as iGoogle and myYahoo!, to sophisticated mashups where information is
passed through a number of processing steps in a workflow-type fashion, for example
Gravity1 and MarcoFlow [11].

Given the clear potential for benefiting from such activities in terms of unleash-
ing creativity and providing services at the point of need, the limited uptake of
mashup environments is somehow puzzling. A closer look at the currently available
commercial environments and research systems reveals one potential reason—the
technology-driven approach underpinning them. The design of such systems would
typically start from an integration technique such as event-driven processing, and a
visual front-end would be constructed to present this technique to the users through
a (hopefully) easy-to-understand metaphor.

However, people trained in programming and able to manage the complexity of
contemporary software technologies are a small fraction of all the users who can
benefit from mashup technology. Mashup environments constructed around an inte-
gration technique such as event-driven processing would not be easily accessible for
the latter type of general users, despite the visual front-ends. Indeed, from the existing
mashup systems (a selection of which is reviewed in Sect. 28.2), the successful ones
(such as iGogle and myYahoo!) are the simplest, presenting information side-by-side
in separate panels without any integration between different information sources.

In contrast to the majority of existing mashup approaches, we started from a
user-driven perspective, and studied the mental models of general users with regards
to mashup activities, and the issues which prevent them from assembling services
into meaningful compositions processing information in a non-trivial manner. The
results, reported in Sect. 28.3 of this paper, suggest we need to reduce learning costs
by making the composition as transparent as possible, hide any technical details
which are not relevant to the task of the user, and provide immediate feedback in

1 Available from http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/17826.

http://www.sdn.sap.com/irj/scn/weblogs?blog=/pub/wlg/17826

28 End Users Developing Mashups 711

respect to any design decisions by end users. We also gained insight into our users’
mental models regarding software services and their composition.

These activities helped us to create a novel task-oriented approach to composing
services into mashups, where users are shielded from the underlying technology and
from the heterogeneity of the information processed, and only asked to select from
a number of alternative information-providing or processing services for different
parts of the composition. Semantic reasoning takes over mundane technical details
such as aligning service inputs and outputs and resolving inter-service dependencies,
and composition templates allow “best-practice” sharing of mashups specific to the
application domain and to the tasks which are to be supported by the mashup.

The approach, called assisted service composition for end users and described in
detail in Sect. 28.4, comprises the following two contributions:

1. A template-based process with three stages: assisted composition, template adap-
tation and learning (generalising user-adapted innovative applications into tem-
plates). Here we focus on the stage of assisted composition since it targets the
widest audience of general users.

2. A semantic technique of service alignment, alleviating the need for data integra-
tion between constituent services, and shielding users from inter-service depen-
dencies and from the technical complexity of service technology.

To validate the approach, we have developed a prototype tool which supports the
approach and allows users to compose mashups by using “point and click” to select
services. The tool uses semantic (monotonic) reasoning to resolve the dependencies
between services, and advises the user regarding compatability between services. We
used this tool in two observational studies with non-programmers. The observational
studies, reported in Sect. 28.5, confirmed the enabling effect of the approach, and
generated suggestions for further work at the levels of both the approach and the
tool.

28.2 Related Research

28.2.1 Mashups and Service Composition Environments

A number of environments exist which allow the composition of information-
provision services in some form of a mashup. The simplest are from presentation-
level mashups which display information from different services side-by-side in
widgets. The widgets support uniform user interface framework and allow the cre-
ation of personalised portal pages. These environments are mainlstream and enjoy a
large number of users, for example iGoogle and myYahoo.

The next level of sophistication supports the exchange of data between differ-
ent components of the mashup such as RSS data sources, information process-
ing services, search services and display components, allowing the creation of

712 N. Mehandjiev et al.

functionality over and above the capabilities of the individual reusable compo-
nents. Some researchers start their mashup classifications from this category of data
mashups, omitting the previous presentation-level maships, for example Daniel et al.
consider them in the “Simple Mashups” category [10], where we have a single page, a
single user and no support for processing workflow. Often cited examples here are the
commercial environments Yahoo!Pipes2 and MashMaker [13]). Yahoo!Pipes uses
pipe-and-filter-style composition where information sources and processing compo-
nents are linked with dataflow pipes, and focuses on facilitating reuse of composition
templates by allowing users to publish the pipes they have created and to adapt the
pipes of others. Intel’s MashMaker takes a more direct approach, analysing the web
sites visited by users to extract data which are being displayed, and suggesting how
this data can be combined to achieve new output. There are also some research sys-
tems of varying degrees of maturity in this space, for example MashArt [9] uses
event-based mechanisms and dataflow between different types of components to
allow the construction of complex applications. Other systems using dataflow-based
integration include [26, 47, 49] and others, including systems advising on appropri-
ate next steps for the composition [18], and supporting navigation through complex
mashups [12].

In contrast to the first two groups, the third group of process mashups focus on the
flow of control between the different components of the mashup, using visual repre-
sentation of BPEL or BPMN-style constructs linking these components. Examples
of such systems are [11, 27]. At the process composition level, bpmn.org reports
62 tools for wiring services together using the Business Process Modelling Notation
(BPMN). The approach reported here belongs to this group, yet the process repre-
sentations used are hidden from the naive users. In common with other approaches
in this group, we focus on the way mashup components interact in the course of a
business process, and presume that the presentation integration will be handled using
another existing approach.

Inspired by the underlying implementation technology and often validated by case
study implementations, only a few of these systems have been evaluated in terms of
usability and cognitive effectiveness. We focus on these criteria in the next section.

28.2.2 User-Centric Approaches to Service Composition

The academic field of End User Development (EUD) [25, 44] takes a user-centric
approach to creating tools which can enable non-technical users to develop sophisti-
cated applications. Main EUD results include theoretical models such as the tradeoff-
based “Attention Investment Model” [4] and the lifecycle model of Meta-Design [16].
There are also a number of well-known practical successes such as spreadsheets and
database form painters.

2 http://pipes.yahoo.com/pipes/

http://pipes.yahoo.com/pipes/

28 End Users Developing Mashups 713

Service-focused work in this field, however, is focused on professional program-
mers [2], or on web mashups rather than fully fledged service composition [51].
An exemplary user-driven design process is reported in [41], yet it is focused on
conventional web applications rather than web services.

Interesting conclusions in this field include the need for supporting end users
by hiding irrelevant technical details and complexity from them, providing them
instead with task-oriented languages [37]; and the view of end user environments as
a medium of continuous collaboration between end users and developers, resulting
in the evolution of the environment itself to reflect evolving user skills and require-
ments [33]. The concept of “Power Users” (technology-savvy end users) as a third
side to this collaboration is also important since they are often leaders of user-driven
application innovation. Our studies, reported in Sect. 28.3, confirmed the validity of
some of these conclusions for the domain of user-driven service composition.

28.2.3 Automating Service Composition

Taken to its extreme, the idea of supporting end users in service composition would
translate into the aim of fully automating the composition. Indeed, many AI-inspired
approaches [3, 20, 28, 40] address the issue of automated web service composition.
Full automation, however, even if it were feasible, would miss the chance for user-led
innovation and fine-tuning services to user needs.

Only a handful of approaches have the users in the driving seat and support them
by resolving technical details such as data integration and other service dependen-
cies. For example, Carlson et al. [7] introduce an approach where users can drag a
service onto a canvas, and this narrows down all discovered services to only those
which have compatible inputs and outputs with the service thus selected by the user.
A more structured support of the composition process is provided by the composi-
tion tool reported in [42], where the process is step-by-step, guided by the tool. Both
approaches use semantic tagging of services, and limited semantic reasoning with
the data thus available. However, neither of them uses templates and thus cannot
support reuse of composition knowledge.

Semantic reasoning underpins such selection of compatible services. This can use
basic semantic matching types [24, 39], the difference operator [5, 45] or Concept
Abduction [8]. Different approaches differ in performance and scalability, and we
need to consider the correct approach based on the expected scale of compositions
and number of candidate services. This paper does not address research challenges
related to ontology matching [14], which is out of the scope of this paper.

714 N. Mehandjiev et al.

28.3 Challenges to Users Attempting to Compose Services

Our user-centric approach to enabling mashup composition by general users necessi-
tated gaining insight into the mental models of services and service composition held
by our target user groups, and understanding the main issues which may impede their
uptake of service composition. This was achieved through a number of focus groups
involving 64 users of mixed background—technical and non-technical. Whilst details
of the full study are published elsewhere [30, 36], here we focus on the main chal-
lenges faced by users from non-programming background when attempting service
composition into mashups.

28.3.1 Realistic Complexity is Overwhelming

Participants quickly extrapolated the simplistic examples used to ones of realistic
complexity, which may involve up to “2000 services for each task”, and a sizeable
number of tasks involved. Our target end users did not consider themselves able (or
indeed interested) to handle such complexity, and to manage the complex dependen-
cies existing between different tasks. Some users also did not consider themselves
at ease with having to “think in sequence”.

The use of “best practice” applications and composition templates was suggested
to address some of the complexity issues and allow the sharing of process knowledge
between users. A further challenge associated with this approach would be to manage
the evolution of both the task and the available services, indeed a successful mashup
tool should be able to accommodate frequent new tasks and services.

28.3.2 Heterogeneous Data and Dependencies Between Serviecs

When participants were presented with diagrams showing the flow of data between
services in a mashup, a number of them pointed out that the high number of con-
nections linking services makes the interactions “difficult to understand” and hard
to figure out “what is going on”. The “spaghetti”-like nature of such diagrams made
it diffucult to work out where “to put a new service”. Also some participants com-
mented on data dependencies as being not “natural”.

The alternative of control-flow-based diagram connecting services was felt to
“lack the level of detail that is required to make it work”. Abstracting away data
from these diagrams was felt by the technical users to introduce potential for errors
in terms of data mismatch between services. Indeed, a number of users pointed
out the different standards and formats of data (XML versus text for example),
and the potential for error this would create. These problems were not foreseen by

28 End Users Developing Mashups 715

non-technical users who ranked control flow very high and disliked the complexity
which stems from explicitly representing data flow between services.

Related discussion points covered the need to specify the semantics of the services
using standard semantic notations. This, however, was expected to bring complexity
to service descriptions, so we also need to have different ways of representing the
composition to people with different skill levels. We need the tool to be “flexible
enough to allow composition without worrying about low-level details”, whilst we
need some “expert mode” for people with technical skills. The tool should support
the users by validating the services chosen, ensuring there are no mistakes.

28.4 The Assisted Composition Approach

The approach we have developed can support non-technical end users in creating
actual service compositions starting from abstract descriptions of the composition in
a template. Those “power users” who are happier to engage with software are then
enabled to further customise such compositions by changing the abstract templates
and creating innovative variations of standard service composition tasks, customised
to specific application domain or social context. In the third stage, a number of
similar innovative variations would be generalised into a new reusable template by
software developers, thus ensuring the growth of the overall system, allowing inno-
vative compositions to be reused by non-technical users. This three-stage lifecycle
of user-driven composition is shown in Fig. 28.1. Here we focus on the left side of
the cycle, which involves end users binding concrete services to reusable templates.

Our work with end users (see Sect. 28.3) asserts that users should be shielded from
technical details of service assembly such as data dependencies between services. We
therefore hide from end users both control flow dependencies and data dependencies
between tasks within the template processes. These aspects of the composition are
instead considered behind the scene using semantic reasoning.

This section describes in further detail these aspects of our approach, using a
formal model of semantic connections between services. The process of assisted
composition is then presented. But first we describe a short motivating example.

Fig. 28.1 Lifecycle of user-
developed service applications

716 N. Mehandjiev et al.

28.4.1 Motivating Scenario

The following scenario is one of the several we used within SOA4All. It targets the
arrival of an overseas student to the UK. Students search for suitable universities
and register for a course upon arrival. They use the acceptance letter to open a bank
account and submit tax exemption letters. The bank account is then used to set up
payment for University fees.

There are dependencies between the different registration tasks, often unknown
to the arrivals, which cause delays and repeated visits, leading to frustration. A
composite reusable service can alleviate this by guiding the process and passing the
relevant data through.

Here is a list of tasks required to achieve student registration:

• SearchForAUniversity that returns some Universities and their
descriptions (e.g., UniversityID, Name, Postcode, Course and their
Fees) given a PostCode as a location and some subjects of courses Subject;
• RegisterForACourseInUK that returns an AcceptanceLetter and a
StudentID given a Person and an UKUniversity;
• OpenBankAccount that returns a BankAccount given a Person and an
AcceptanceLetter;

All input and output parameters above refer to concepts from a domain ontology, an
example portion of which is shown in Fig. 28.2. The particular ontology, which is
based on the Description Logics DLs ALE—Attributive language with Atomic nega-

Fig. 28.2 Part of an ALE TBox

28 End Users Developing Mashups 717

Fig. 28.3 Template-based composition view of the motivating scenario

tion, Concept intersection, Universal restrictions and Existential quantification [1],
is part from a larger pair 〈T ,A〉. T and A refer respectively to a Terminological Box
(or TBox i.e., intentional knowledge) and an Assertional Box (or ABox i.e., exten-
sional knowledge) in DL systems. In the following, we will focus on the TBox T that
supports inference on service parameters by means of DL reasoning. An example of
inference models concept is subsumption (i.e., concept-based hierarchy checking)
for evaluating specialization and generalization of services parameters.

This scenario illustrates the need for user involvement at the level of service cus-
tomisation. Even if the mashup application was developed by software professionals,
each student will have different requirements in terms of need to register with the
police, desire to obtain work permit, children to enroll in local schools, etc. This
variability motivates direct user control of the composition in terms of user tailoring
of the tasks included and which services should be used for each task.

28.4.2 Template-Based Service Composition

An intuitive view to service composition would see it as aiming to satisfy the need
for a (non-existing) service by bringing together existing ones. This integration can
be done manually, yet this would involve the alignment of numerious inputs and
outputs, considering a number of pre- and post-conditions, and dealing with other
technical issues of grounding, etc, which are clearly outside of the skills and interests
of our end users. Since we allow end users to tune a composition to their own needs,
we do not need to have complete automation “from scratch” using program synthesis
and AI planning techniques [28].

Instead we opt to reuse composition knowledge and provide a starting template for
the users. This composition knowledge can be based on past successful compositions,
and can be seeded by formalising domain-specific knowledge about how the problem
addressed by the sought service would decompose into sub-problems [46], and task-
specific knowledge about the core types of information processing activities [43].

Example 1 (Template-Based Service Composition)

718 N. Mehandjiev et al.

Figure 28.3 presents the template-based composition view of the motivating sce-
nario in Sect. 28.4.1. Tasks (or “service slots”) are designed along rectangles while
simple arrows are used to model a partial order on these services (i.e., its control
flow). Dashed arrows refer to data flow description as possible interdependencies
between tasks.

Here we focus on the stage of template instantiation [34, 48], where we need to
allocate a specific service for each of the generic “service slots” in the template, using
knowledge about the data connections and pre- and post-conditions of services. This
is the ‘Assisted Composition’ arrow in Fig. 28.1. Note that the overall approach also
includes the stages of template adaptation, where power users can create innovative
solutions; and generalisation, or converting the useful innovative adaptations into
new templates, helping the library of templates grow. The last stage addresses the
issue of feasibility of providing a realistic library of templates—once the library is
seeded for a particular domain using generic task scripts, user community will “fill
the gaps” by creating numerious innovative applications, mirroring the processes
currently underway on Facebook and Yahoo!Pipes.

The focus of supporting end users means that, contrary to existing work in the area
(e.g. [22, 29]), we leave control in the hands of our users, and aim to provide expert
guidance regarding three parts of the process: selecting suitable services for each
task, ranking them according to user profile and working out compatibilities between
services in terms of data flow, pre- and post-conditions. The users are involved in
selecting one or more services from the shortlist for each task, according to their
preferences and knowledge. Because we ensure that users have chosen compatible
services, and because these services are tagged semantically, we can automate the
mapping of data from one service to the other at execution time behind the scenes,
without having to involve users in this.

In this paper we focus only on the aspects of selecting a set of appropriate service
candidates for each task, and on working out compatibilities between services in
terms of data flow in order to show to the end user the consequences of them selecting
a given instance. We use semantic reasoning for both aspects, for example once a
user selects a service s j

i for task Ti , we use semantic reasoning to tag as eligible
for further selection only those service candidates for the other tasks in the template
which are compatible with si

j . Before providing further details in Sect. 28.4.4, we
need to describe the semantic reasoning taking place behind the scene.

28.4.3 Semantic Connections of Services

Using tasks specifications of inputs, outputs, pre- and post-conditions of templates,
we should be able to infer additional dependencies between tasks, for example we
can infer data flow dependencies between tasks using their input and output specifica-
tions. In the following we present such dependencies as semantic links [22] between
services. Then we describe our semantic-link-based composition model.

28 End Users Developing Mashups 719

Fig. 28.4 A semantic link sli, j and its illustration on the motivating scenario

28.4.3.1 Semantic Links

Since input and output parameters of semantic web services are specified using
concepts from a common ontology3 or Terminology T (an example of such is given
in Fig. 28.2), retrieving links between output parameters Out_si ∈ T of services si

and input parameters I n_s j ∈ T of other services s j could be achieved by using a
DL reasoner such as Fact++4 [19]. Such a link, also known as semantic link [22]
sli, j (Fig. 28.4) between two functional parameters of si and s j is formalized as

〈si , SimT (Out_si , I n_s j), s j 〉 (28.1)

Thereby si and s j are partially linked according to a matching function SimT . This
function expresses which matching type is employed to chain services. The range of
SimT is reduced to the four well known matching type introduced by [39] and the
extra type Intersection [24]:

• Exact If the output parameter Out_si of si and the input parameter I n_s j of s j

are equivalent; formally, T |= Out_si ≡ I n_s j .
• PlugIn If Out_si is sub-concept of I n_s j ; formally, T |= Out_si � I n_s j .
• Subsume If Out_si is super-concept of I n_s j ; formally, T |= I n_s j � Out_si .
• Intersection If the intersection of Out_si and I n_s j is satisfiable; formally, T �|=

Out_si � I n_s j � ⊥.
• Disjoint If Out_si and I n_s j are incompatible i.e., T |= Out_si � I n_s j � ⊥.

Following the definition of semantic links sli, j between web service instances si

and s j , we also define abstract semantic links sl A
i, j between tasks Ti and Tj .

Example 2 (Semantic Link and Subsume Matching Type) Suppose T1 and T2
are respectively tasks related to SearchForAUniversity and RegisterFor
ACourseInUK in Fig. 28.4 (right part) of the motivating scenarion in Sect. 28.4.1.
In such a case, the output parameter University of T1 is semantically linked to

3 Distributed ontologies are not considered here but are largely independent of the problem addressed
in this work.
4 http://owl.man.ac.uk/factplusplus/

http://owl.man.ac.uk/factplusplus/

720 N. Mehandjiev et al.

the input parameter UniversityUK of T2. According to the example ontology in
Fig. 28.2, this abstract semantic link sl A

1,2 is valued by a Subsume matching type
since Universi t y � U KUniversi t y.

28.4.3.2 Semantic Link Composition Model

When composing services in mashups, we need to be able to reason about the quality
of composition, using aggregation from the quality of individual semantic links. We
conceptualise the process model of web service composition as a directed graph
which has the web service specifications si as its nodes, and the semantic links sli, j

(data dependencies) as its edges.
We can generalise this model to template-based compositions, pre-computed for

instance by template-based and parametric-design-based approaches [34, 48]. The
composition graph there has the tasks specifications Ti as its nodes, and abstract
semantic links sl A

i, j as its edges.

28.4.4 Helping Users Choose Services Through Semantic
Reasoning

Given a template-based composition, semantic descriptions of the tasks in the tem-
plate and of the candidate services, our approach can help users to instantiate tem-
plates with candidate services to optimise the quality of the composition. This is done
using the semantic link composition models, where the data flow in the composition
is automatically inferred from the DL descriptions of services parameters and from
the template of how the composition breaks down into tasks. Optimising the com-
position models is done at the background and remains hidden from the end users,
following [23]. However existing state-of-the-art approaches can be employed for
performing optimization using different techniques [6, 52] on different parameters
e.g., QoS only [50]. The quality estimate generated is used to provide feedback to
users about their selection decisions as follows:

Once a user selects a service, the tool will grey out all service candidates which
are incompatible (have a low quality of the semantic links with the selected service
instance), and highlight the compatible ones (the instances for which the quality
model computes high values). As illustrated in Fig. 28.5, our abstract visualisation
hides all details related to control and data flow in the composition, and deals with
them in the background.

Example 3 (Abstract Visualisation of Composition) Figure 28.5 illustrates a tem-
plate-based composition where the user has selected a goal from the taxonomy on
the left panel. All related details to data and control flow are abstracted away, and
end-users could simply interpret compositions as a list of tasks (first row in Fig. 28.5)
wherein each tasks could be instantiated by services (columns in Fig. 28.5). This is a

28 End Users Developing Mashups 721

Fig. 28.5 Abstract visualisation of composition

snapshot from a low-tech mock-up we developed early on to test the idea with users,
a snapshot of the actual tool is provided in Fig. 28.8.

The overall approach is descibed from two different perspectives: end users inter-
acting with our tool, and actual back-end reasoning.

28.4.4.1 From the End-User Perspective

First of all, the user is responsible for selecting a template from a set of available
ones, all organised in a domain taxonomy. The abstract visualisation of the template is
then automatically generated by simply extracting its tasks and discovering relevant
candidate services for each of them.

The user will proceed to select any service in any column. This selection step
assigns the selected service(s) for the considered task. The system reduces the list
of candidate services for each task to those which are compatible with the selection
and gets back to the users with (only) services that could be assigned to other tasks.
This reduction is based on both the previous selection and how the selected services
can be semantically linked to candidate services of other tasks. This is repeated until
each task is assigned to a service.

Example 4 (Assisted Composition from the End-User Perspective) Figure 28.5
illustrates the instantiation procedure of template after the selection of service s1
for task SearchForAUniversity. Services CollegeApps and s2 of task
RegisterForACourseInUK are highlighted (in blue) because of (semantic)
compatible data flow (Sect. 28.4.3) between them and s1, while GradeSavers
(in grey) is not because of its incompability with s1.

During each step of the template instantiation, the end-user can backtrack and
even manually remove some services from any candidates’ list.

722 N. Mehandjiev et al.

28.4.4.2 From the Back-End Perspective

Once the template is selected by the end-user, our system aims to discover candidate
services that could be assigned to tasks of the template. Note that all services and
templates are annotated with goals, pre- and post-conditions, and input- and output-
parameter types. The addition of goals as a separate tagging element allows us to
estimate their semantic proximity and differentiate between tasks and services having
same inputs and outputs but achieving different things.

A task T of a template can be instantiated by a service s if and only if:

1. The service s achieves the same goal as T , assuming an ontology of goals [15].
2. The pre-conditions of s are implied by the pre-conditions of T .
3. The post-conditions of s imply the post-conditions of T .
4. The matching type between the input specification I n_T of T and the input

specification I n_s of s i.e., SimT (I n_T, I n_s) is PlugIn.
5. The matching type between the output specification Out_s of s and the output

specification Out_T of T i.e., SimT (Out_s, Out_T) is PlugIn.

Conditions (1)–(3) above ensure the candidate service s has the desired effect of
the target task T , whilst conditions (4) and (5) ensure the semantic (functional) fit
between the candidate service and the target task. Condition (4) ensures that all the
data which can be passed onto T can be procesed by s. Condition (5) ensures that
the output of s fits within the output specifications of T .

Once a service is selected by the user, our system retrieves its semantic descriptions
and computes all its potential incoming and outgoing semantic links with services of
other tasks. The computation is based on the abstract semantic links in the template
and the actual service descriptions. Services can be then linked with many services
depending on the data flow description of the composition. As previously mentioned,
only services linked with a semantic link of value Exact or PlugIn are consided for
robustness reasons. Therefore, these services are highlighted, others are greyed out
in the abstract visualisation of the composition.

Example 5 (Assisted Composition from the Back-end Perspective) According to
Example 4 and Fig. 28.5, s1 has been selected to achieved task Search-For
AUniversity. Our system dynamically reduces the candidates’ list of other tasks
such as RegisterForACourseInUK or OpenBankAccount depending on
quality of semantic links between services. For instance, the service GradeSavers
(for RegisterForACourseInUK task) is discarded because T �|= Out_Search
For AUniversi t y � I n_Register For ACourseI nU K � ⊥ while the service s2
is highlighted because T |= Out_SearchFor AUniversi t y � I n_Register For
ACour -seI nU K .

In our approach, the user can assign more than one service to a task, implying
parallel execution of services from the back-end perspective. Therefore, the control
flow of the template can be even modified on the fly, by adding new parallel branches.
Such a modification is transparent to the end user, who are not interested in interacting
with real control flow model of composition.

28 End Users Developing Mashups 723

Fig. 28.6 Final composition

In case of parallel branches in the composition, the back-end tool is able to filter
and merge data from these branches and connect them to the correct services. The
latter is supported by the semantic link presented in (1).

Once the user has assigned services to every task of the template-based compo-
sition, the instantiation procedure is complete. Then, the composition is ready to
be deployed and executed according to the the control and data flow information
automatically elaborated respectively by the template description and the semantic
links. Figure 28.6 depicts the final composition we obtain in our motivating scenario
i.e., services in black are used to achieve the composition in Fig. 28.3.

Once the template is instantiated by the services selected by the user, the final
process is ready to be deployed and then executed. In our approach the process is
generated in BPEL4SWS [38] for subsequent analysis and processing by the service
orchestrator. The orchestrator is responsible for scheduling, initiating, and monitoring
the invocations to the tasks of the composite service during its execution, and for
routing events and data items between these components.

28.5 Summative Evaluation of User Assisted
Composition Tool

We have implemented a proof-of-concept implementation of the approach pre-
sented in the previous section as a module within the EC-funded integrated project
SOA4All.5 Following the technical development, we opted to test the usability and
suitability of the User Assisted Composition tool (for short, UAC tool) for our target
end users, non-programmers. These are people whose primary function in their jobs
is not writing programming code; nonetheless, they might be involved in customising
a software application to serve their personal or professional needs.

5 More information on http://www.servicedesign.org.uk, last accessed on 30th Sept 2012.

http://www.servicedesign.org.uk

724 N. Mehandjiev et al.

Our selection of the participants was driven by (a) their profile which should match
closely the target group of non-programmers developing process-oriented mashups,
and (b) their familiarity with the applicaton domains of University enrollment and
shopping. We have therefore aimed to recruit students from the Manchester Business
School ensuring their IT competences are minimal. We hypothesise that with the
sufficient domain knowledge and expertise other non-programmers will also be able
to operate the tool comfortably, yet this requires further testing for which we need
to develop specialised scenarios and services that fit with these settings.

Once we recruited participants, we have conducted two consecutive evaluation
studies with the following objectives in mind:

• Assess the effectiveness of the User-Assisted Composition approach by analysing
composition performance.
• Test the applicability and suitability of the tool in two differing scenarios, a shop-

ping scenario and a university scenario.
• Gauge users positive views and negative views following direct interaction with

the UAC tool; thus identifying the merits of user-assisted composition approach
on the one hand and the limitations and problems on the other hand.
• Capture user impressions, satisfaction and acceptance of the UAC tool through a

usability questionnaire.

The UAC approach provides a number of unique features as follows:

• The composition uses activity-based templates.
• Only simple user interface interaction skills, such as clicking, selecting etc, are

required to operate the tool.
• The composition is mainly system-driven using semantic reasoning.
• Services are represented via boxes. No user interface is attached to them.
• No data flow or process flow connections are required. Instead the user can

re-arrange the order of activities, and assign services for each activity through
“point-and-click” interaction.
• User friendly error messages are displayed in case of mistakes.

28.5.1 Evaluation Tasks

Each evaluation session in both studies took approximately 50 min, and participants
went through the same steps with the only variation to the evaluation scenario, where
the first study focused on a shopping context and the second study focused on an
education context. In our evaluation strategy, we selected scenarios that suit the
profile of our target end users by recruiting participants who have sufficient knowl-
edge about the tasks composing the shopping and university scenarios but who have
no software programming or development experience. Our participant sample con-
tained students from Manchester Business School enrolled for undergraduate and
postgraduate courses. It is worth noting that for each study we recruited a different

28 End Users Developing Mashups 725

set of participants to ensure no learning effects are carried over to the second study.
All studies were moderated by the same researcher.

The evaluation studies consisted of three common phases: training, task-underta-
king, and debriefing interview phase.

• Training phase: in 10 min the moderator demonstrated the UAC tool, explained its
various features, and encouraged participants to ask questions in case of ambiguity.
• Task-undertaking phase: in this phase participants read the scenario and per-

formed the designed tasks. During the interaction with the tool, participants com-
municated their mental thoughts using the think-aloud protocol [21]. Think-aloud
protocol is a research technique used to capture users inner thinking about the way
they undertake tasks and the type of problems they encounter. Participants spent
around 30 min to complete the designated tasks.
• Debriefing interview phase: in this phase participants reported their individual

views and opinions about the UAC tool, and rated their satisfaction toward numer-
ous aspects of the UAC tool by scoring a set of questions on a 5-point Likert
scale.

28.5.2 Analysis Methods

Throughout the two studies we recorded participants opinions and interaction using
SnagIt software, a screen capturing program, and their ratings using a paper ques-
tionnaire. The video recordings were reviewed and transcribed into Microsoft Word
for follow-up thematic analysis [17], whilst rating scores were inserted into SPSS
(i.e. a statistical software package) for calculating descriptive statistics such as the
mean and standard deviation.

28.5.3 Evaluation Study One

In the first study, we recruited a total of six students who included five males and
one female (mean age = 26.5). These participants were enrolled for a postgraduate
degree in Manchester Business School. This study aimed to gauge initial qualitative
impressions and reactions from potential end users which justifies the small sample.
A pre-test questionnaire to capture participants software development background
showed that our sample fits well the definition of non-programmers as depicted in
Fig. 28.7. Five participants had no or basic software development background whilst
one participant had a strong software development background. Participants rated
pre-test questions on a 5-point Likert scale where ‘1’ signifies ‘none’, and ‘5’ signifies
‘expert’. Average scores for all programming and software development experience
questions were less than 2.33.

726 N. Mehandjiev et al.

Fig. 28.7 Average scores of pre-test questionnaire

Next, each participant was instructed to go through two scenarios of varying
complexity and perform the subsequent tasks:

1. Scenario One: suppose you own a reseller business/web shop. Your aim is to
create a composition which gets the updated catalogues from clothing suppliers,
aggregates the catalogues and publishes them in social networks and/or web
shops. Your task is to compose a simple application which allows you to do the
following:

• Select the clothing suppliers whose catalogues you want to update.
• Select the social networks(s)/web shop(s) where you want to aggregate and

publish the desired catalogues.

2. Scenario Two: this time you want to build a composition which allows you to
retrieve product descriptions and prices from specific suppliers and aggregate
updated catalogues accordingly. Your task is to compose an application which
allows you to achieve the following activities:

• Update and aggregate catalogues from various clothing suppliers.
• Get list of products from the desired footwear suppliers.
• For each product get the product data and product price.
• Aggregate the footwear products to the catalogue.
• Retrieve list of product descriptions and prices and aggregate them to the

catalogue.

In both scenarios, concurrent think-aloud protocol [21] was followed to get rich
insights into the mental models of our users.

28.5.4 Results of Study One

In respect to user performance, all participants successfully completed the two sce-
narios using the UAC tool. It is worthwhile to note that in this study we were not

28 End Users Developing Mashups 727

Fig. 28.8 User-assisted composition tool showing aggregate catalog products template

too concerned about the time taken to complete the tasks of the two scenarios but
rather focused on user comments in relation to the composition approach and specific
problems and ways to improve the tool.

Participants’ feedback praised the ease by which they could operate the tool and
navigate through the different sections. Also of increasing interest is the ability to
compose service using the tool with no need to master programming concepts and
paradigms, thus saving money and time. Instead participants were able to manage
the composition with only a small number of clicks.

On the negative side participants were confused about the names of the services
and activities, and found it difficult to match that to the requirements of the tasks.
They also were unsure about why certain incompatible services can still be selected.

Following the composition, participants provided recommendations to help improve
the tool. Among which were:

• Add a rating and description to services to empower end users to make an educated
selection.
• Sort services alphabetically to facilitate search.
• Use self-explanatory names for the activities of templates to clarify their purpose.
• Enable end users to customise templates by re-arranging the sequence of activities.
• Use clear and distinct colours for selecting and de-selecting incompatible services.

Finally, participants rated their agreement with a number of statements to assess
the usability of the UAC tool and their overall experience with service composition
on a 5-point Likert scale, where ‘1’ signifies disagree, ‘3’ signifies neutral and ‘5’
signifies agree. Indeed participants perceived the UAC tool as easy to use (with a
mean m = 3.83) and navigate (m = 3.66), and did not find the notations used

728 N. Mehandjiev et al.

Fig. 28.9 Average rating scores of UAC tool

within the tool difficult to use. This experience improved user confidence that the
tool allows end users to create composite applications which facilitate job functions
(m = 3.83). However, participants expressed uncertainty in regard to the look and
feel, and behaviour of the final application as depicted in Fig. 28.9. Similarly it was
difficult for participants to evaluate how rewarding service composition is for they
did not see the final application.

28.5.5 Evaluation Study Two

In the second study, we recruited a total of 12 Manchester University students by
sending a screening questionnaire to the University student mailing list. The ques-
tionnaire collected information about programming and development experience,
service modelling experience, background knowledge of software development envi-
ronments and modelling tools, and general demographic information. We purpose-
fully selected participants whose questionnaire scores match our requirements. Our
sample included seven males and five females who study for non-Computer Science
degrees such as: Business and Management, International Human Resource Man-
agement, Marketing, and Managerial Psychology. Participants rated their experience
in respect to seven software development questions of the screening questionnaire on
a 5-point Likert scale where ‘1’ signifies Extremely poor, ‘3’ signifies Average, and

28 End Users Developing Mashups 729

Fig. 28.10 Average scores of software development background questionnaire

‘5’ signifies Excellent. All scores averaged less than 1.9 as depicted in Fig. 28.10,
indicating that our selected participants truly represent people who are not program-
mers.

We created a scenario with which our participants are familiar as it envisages the
process they go through when applying to study at a particular UK university. The test
scenario details the registration process overseas students go through while getting
admission in UK universities as follows: Your goal is to complete an overseas student
registration process. For this you need to develop a software application which allows
you to search for a UK university, register for a course in the university and find an
accommodation. There are two ways for paying the university fee, the first way is to
open a bank account and get funds transferred into that account. The bank account
can be used to make payment for the university fee. In the second way you can request
a letter from a sponsor and submit that letter to the university. You must choose only
one way to pay the university fee. After paying the university fee you will register
with the NHS.

To accomplish the above scenario, participants were instructed to complete three
primary tasks:

• Task One: Navigate to and load the appropriate activity-based template.
• Task Two: Remove the police registration activity from the template.
• Task Three: Select relevant services for each activity in the template according

to the requirements of the test scenario.

During these development tasks, participants were continuously encouraged to
express their views.

28.5.6 Results of Study Two

The objective evaluation of the UAC tool focused on measuring the average time taken
to complete each task, along with the number of participants who have successfully

730 N. Mehandjiev et al.

Table 28.1 Task completion time in seconds and number of participants who completed the task

Task Average completion time (s) # of users who
completed the task

Finding and navigating to the
right activity-based
template Student
Registration

21.25 (std = 12.99) 12

Removing ‘Police Registration’
activity from template

47.33 (std = 39.29) 11

Selecting appropriate services
for activities

192.75 (std = 88.29) 12

Table 28.2 Average number
of problems, positive
comments and suggestions
for the user assisted
composition tool (STD:
Standard Deviation)

Task Average STD

Positive comments 3.25 2.22
Overall problems 1.83 1.70
Conceptual problems 0.92 1.24
Usability problems 0.92 1.24
Suggestions 1.25 1.86

completed the tasks. The descriptive statistics revealed that participants spent the
longest time inspecting the available services and selecting a relevant service for each
template activity. However, participants were quicker to find the relevant template,
and remove the police registration activity as summarised in Table 28.1. Of major
interest is the ability of all of our participants to successfully complete the three tasks
apart from one participant who did not manage to perform task 2 primarily due to
the location of the remove button which was encapsulated within a pop-up menu.
This high task completion rate reflects the effectiveness of the tool.

In regard to self-reported data, participants feedback and comments were analysed
using thematic analysis [17], and classified into four categories; conceptual problems,
usability problems, positive comments, and suggestions. Thematic analysis technique
is qualitative in nature as a researcher goes through textual representation of an
interaction, codes data segments, and creates general themes for the specific codes
[17]. The results showed that, on average, participants were positive about the UAC
tool, with 3.25 positive comments per participant as summarised in Table 28.2. As
for problems, participants reported the same number of conceptual and usability
problems, with an average of 0.92 negative comment per participant. Each participant
provided at least one comment for ameliorating the UAC tool.

The positive feedback appreciated the presence of a ‘how to use’ section within
the tool to help novice users grasp an understanding of the user assisted composition
approach. They also found the tool intuitive, e.g. “it is easy to follow the logical steps”,
and easy to operate, e.g. “I just need to select the right services”. The clickable nature
of services and the ability to remove activities as well as services were appreciated

28 End Users Developing Mashups 731

by our end users. Finally, participants praised the structure and the way services are
laid out within the tool.

Among the conceptual problems that emerged was the ambiguity of how to start
the composition process which could be attributed to participants unfamiliarity with
the tool, e.g. “What should I do now? I do not know”. A total of 5 participants
read the how-to-use section to help them get started with the tool. Another issue
participants brought up was the inability to view the outcome of their development
efforts and test the developed application, e.g. “I can not see the results”, “It was
easy but I wish I could see the end result so I could understand what I have done”.
This is aligned with the findings of [35] where users emphasised the need to see
runtime results as the development process unfolds. It is quite important to inspect the
behaviour of the application and debug any unapparent problems. Some participants
proclaimed that the terminology and language used in the ‘help and how to use the
tool’ sections were somewhat technical and complex, for instance: “press execute to
deploy composition”. Finally, participants highlighted that the tool does not provide
any explanation as to why certain services get excluded upon selecting others.

In respect to usability problems, participants complained about the lack of text
to describe the purpose of each service. This could greatly enhance their choice
of target services and allocation of those to template activities. Some participants
were uncertain as to why some services were greyed out upon selecting a particular
service. However, this confusion diminished as soon as the experimenter explained
that the greying out feature is used to highlight any incompatible services. The
context menu for removing activities from the template was not apparent to one
participant, and it proved to be cumbersome to find its location. Another aspect that
worried our participants is the inconvenience that could be caused by the presence
of many activities and their associated services in which case they would have to
scroll horizontally and vertically to view them. Table 28.3 summarises the issues
participants encountered when using the UAC tool.

To resolve the aforementioned issues and improve the overall composition expe-
rience using the UAC tool, participants recommended and discussed a number of
potential solutions as follows:

R1 Supplement the activities and services with further details (e.g. service proper-
ties and provider information) to allow users to differentiate between services
and make an educated selection of services. These details could be shown, for
example, in the form of tool tips when mouse hovering upon services. Indeed

Table 28.3 Conceptual and
usability issues emerging
from UAC tool

Conceptual Usability

Runtime effect Lack of text description
Terminology and Invisible options (e.g. removal

language of activities)
Compatibility of services Scalability of the service template

Unclear use of colour codes

732 N. Mehandjiev et al.

Fig. 28.11 Average rating scores of user-assisted composition tool

the composition process is highly-reliant on the careful selection of relevant ser-
vices which, in turn, necessitates direct comparison of the features of multiple
services accomplishing the same activity.

R2 Simplify the terminology used in the how to use section, and make it as close as
possible to end user language.

R3 Provide explanation as to why certain services are incompatible, and couple this
with distinct and clear use of colours.

R4 Provide a wizard to guide developers through the selection process of services
and activities, especially at the start of the composition.

R5 Add a quick option (e.g. x in windows or a removal button) on the right corner
of each activity column to allow fast removal of activities.

R6 Include runtime effects in the composition to empower end users to debug and
test their application on the go.

Finally, participants concluded their user-assisted composition interaction tasks
by rating a number of usability questions to assess ease of use, ease of learning, ease
of navigation, user interface, help and documentation, and overall satisfaction with
the tool on a 5-point Likert scale, where ‘1’ signifies disagree, ‘3’ signifies neutral,
and ‘5’ signifies agree.

There was a common consensus among our participants that the User Assisted
Composition tool is easy to learn (m = 4.27, std = 0.90) and easy to use (m = 4.16,
std = 0.93) as shown in Fig. 28.11. Similarly, participants agreed that the UAC tool is
easy to navigate (m = 4.25, std = 0.96) and did not think that support from technical
people is required to operate the tool (m = 3.00, std = 1.04). These scores confirm
that end users can exploit the advantages of user-assisted composition approach
without the need to master the underlying technical details of service composition
and process modelling. Our participants also expressed strong willingness to use the

28 End Users Developing Mashups 733

UAC tool more frequently in the future (m = 3.75, std = 1.28), and overall were
satisfied with the tool (m = 3.75, std = 0.86).

28.6 Conclusion

We have established, through two summative evaluation studies, the effectiveness
and suitability of the user assisted composition approach for non-programmers. The
simplicity of point and click approach enabled our participants to complete the com-
position tasks with no major issues despite the short training they received. A number
of interesting points emerged, including R1 to R6 listed above and especially the vis-
ibility of runtime operation. These will shape our future research directions. Every
time participants were to select a service for an activity of the template, they expressed
uncertainty and indicated that more service information should be displayed to assist
them. In our view, text description of what the service does alone is not sufficient
to overcome this issue, but rather more quality characteristics and criteria, such as
reliability, reputation, and usability, should be exposed to enable informed service
selection.

Our studies including the findings, however, have some limitations. First, it was
not possible to demonstrate and test the final composite application which we believe
would have strongly influenced user perception in regard to the overall composition
experience. Indeed our participants found the composition process easy to perform
and straight forward using the UAC tool; however, participants primary concern
focused on showing runtime effects and ability to examine the final application.

Secondly, it is quite challenging for the moment to achieve a meaningful compar-
ison between the UAC tool and other existing mashup and service development tools
due to a number of qualifying reasons. First experimental design necessitates chang-
ing one variable whilst keeping the rest constant to study the influence of the variable.
This means creating two similar versions of the UAC tool and varying one feature
to test its influence. Testing the UAC tool against another totally different service
development tool would not allow us to establish causal relationships but instead
inspect mainly user interface issues. Moreover, the selected tools for comparison
should be able to accomplish the same scenario and employ the same services for the
comparison to be valid, or at least recruit scenarios of similar complexity. In addi-
tion, the purpose of this paper was to detail the approach and validate its feasibility
with representative end users as an initial step rather than to compare the proposed
tool against other tools. We argue that comparing different tools which support the
same type of composition (e.g. service composition using service frond-ends) would
not yield interesting results, but rather shed light on only usability issues. For the
comparison to be scientific and valid, the plan is to extend the current UAC tool
with other composition approaches. Thus, we intend in the future to conduct a series
of comparative studies where we contrast overall service development experience
using differing service development paradigms within a single tool. In particular we
aim to investigate user interface based composition, process based composition, and

734 N. Mehandjiev et al.

dataflow based composition. The concepts behind these paradigms and how they
support the service development process are indeed interesting and worthwhile to
explore.

In light of these limitations, we plan to undertake various steps to improve and
qualify our research in the future in addition to these comparative studies. To start
with, we will recruit participants who are domain experts and practitioners in vari-
ous sectors such as the public and health sector, and increase our sample size to a
satisfactory number. Moreover, in the next evaluations we will empower end users
to see and test the final application of their composition, interact with it, and debug
it throughout the composition.

In summary, the qualitative and the quantitative feedback obtained demonstrate
that our end users understood the principles of the assisted composition approach,
were positive about it and were able to accomplish the tasks set to them. Following
our earlier work [31, 32], we believe that this is partially due to the benefits expected
from service composition in terms of producing mashups which are finely tuned to
the user needs, and partially due to the reduction of the learning costs as perceived by
the user. The reduction in learning costs is attributed to our two main contributions
presented in this paper: the approach of hiding technical complexity using semantic
reasoning, and the reuse possible by the template-based development process.

References

1. Baader, F., Nutt, W.: In: The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, Cambridge (2003)

2. Beaton, J.K., Myers, B.A., Stylos, J., Jeong, S.Y.S., Xie, Y.C.: Usability evaluation for enter-
prise SOA APIs. In: SDSOA ’08: Proceedings of the 2nd International Workshop on Sys-
tems Development in SOA Environments, pp. 29–34. ACM, New York (2008). doi:10.1145/
1370916.1370924

3. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic composition
of e-services that export their behavior. In: Proceedings of the 1st International Conference on
Service Oriented Computing (ICSOC), pp. 43–58 (2003)

4. Blackwell, A.F.: First steps in programming: a rationale for attention investment models. In:
Proceedings of HCC ’02, p. 2. IEEE CS, Washington (2002)

5. Brandt, S., Kusters, R., Turhan, A.: Approximation and difference in description logics. In: Pro-
ceedings of KR, pp. 203–214 (2002). http://www.citeseer.ist.psu.edu/brandt02approximation.
html

6. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for qos-aware service
composition based on genetic algorithms. In: Proceedings of GECCO, pp. 1069–1075 (2005)

7. Carlson, M.P., Ngu, A.H., Podorozhny, R., Zeng, L.: Automatic mash up of composite appli-
cations. In: Proceedings of the 6th International Conference on Service-Oriented Computing,
ICSOC ’08, pp. 317–330. Springer, Berlin (2008). doi:10.1007/978-3-540-89652-4_25

8. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Concept abduction
and contraction for semantic-based discovery of matches and negotiation spaces in an
e-marketplace. Electron. Commer. Res. Appl. 4(4), 345–361 (2005)

9. Daniel, F., Casati, F., Benatallah, B., Shan, M.C.: Hosted universal composition: models, lan-
guages and infrastructure in mashart. In: Laender, A., Castano, S., Dayal, U., Casati, F., de
Oliveira, J. (eds.) Conceptual Modeling—ER 2009. Lecture Notes in Computer Science, vol.

http://dx.doi.org/10.1145/1370916.1370924
http://dx.doi.org/10.1145/1370916.1370924
http://www.citeseer.ist.psu.edu/brandt02approximation.html
http://www.citeseer.ist.psu.edu/brandt02approximation.html
http://dx.doi.org/10.1007/978-3-540-89652-4_25

28 End Users Developing Mashups 735

5829, pp. 428–443. Springer, Berlin (2009). http://dx.doi.org/10.1007/978-3-642-04840-1_
32. doi:10.1007/978-3-642-04840-1_32

10. Daniel, F., Koschmider, A., Nestler, T., Roy, M., Namoun, A.: Toward process mashups: key
ingredients and open research challenges. In: Proceedings of the 3rd and 4th International
Workshop on Web APIs and Services Mashups, Mashups ’09/’10, pp. 9:1–9:8. ACM, New
York (2010). doi:10.1145/1944999.1945008. http://doi.acm.org/10.1145/1944999.1945008

11. Daniel, F., Soi, S., Casati, F.: Distributed user interface orchestration: on the composition of
multi-user (search) applications. In: Ceri, S., Brambilla, M. (eds.) Search Computing, Lecture
Notes in Computer Science, vol. 6585, pp. 182–191. Springer, Berlin (2011). http://dx.doi.org/
10.1007/978-3-642-19668-3_17. doi:10.1007/978-3-642-19668-3_17

12. Deutch, D., Greenshpan, O., Milo, T.: Navigating in complex mashed-up applications. Proc.
VLDB Endow. 3(1–2), 320–329 (2010). http://dl.acm.org/citation.cfm?id=1920841.1920885

13. Ennals, R.J., Garofalakis, M.N.: Mashmaker: mashups for the masses. In: Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data, SIGMOD ’07, pp.
1116–1118. ACM, New York (2007). doi:10.1145/1247480.1247626

14. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2007)
15. Fensel, D., Kifer, M., de Bruijn, J., Domingue, J.: Web service modeling ontology submission,

w3c submission (2005)
16. Fischer, G., Nakakoji, K., Ye, Y.: Metadesign: guidelines for supporting domain experts in

software development. IEEE Softw. 26(5), 37–44 (2009). doi:10.1109/MS.2009.134
17. Guest, G., MacQueen, M.K., Namey, E.: Applied Thematic Analysis. SAGE Publications Inc,

New Delhi (2012)
18. Han, J., Han, Y., Jin, Y., Wang, J., Yu, J.: Personalized active service spaces for end-user service

composition. In: IEEE International Conference on Services Computing, 2006, SCC ’06, pp.
198–205 (2006). doi:10.1109/SCC.2006.80

19. Horrocks, I.: Using an expressive description logic: Fact or fiction? In: Proceedings of KR, pp.
636–649 (1998)

20. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the curtain. In: Pro-
ceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’03, pp. 1–14. ACM, New York (2003). doi:10.1145/773153.773154

21. Kuusela, H., Paul, P.: A comparison of concurrent and retrospective verbal protocal analysis.
Am. J. Psychol. 113(3), 387–404 (2000)

22. Lécué, F., Léger, A.: A formal model for semantic web service composition. In: Proceedings
of ISWC, pp. 385–398 (2006)

23. Lécué, F., Mehandjiev, N.: Seeking quality of web service composition in a semantic dimension.
IEEE Trans. Knowl. Data Eng. 23(6), 942–959 (2011)

24. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web technology.
In: Proceedings of WWW, pp. 331–339 (2003)

25. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An Emerging Para-
digm, Human-Computer Interaction Series, vol. 9. Springer, Netherlands (2006). doi:10.1007/
1-4020-5386-X_1. http://dx.doi.org/10.1007/1-4020-5386-X_1

26. Liu, X., Hui, Y., Sun, W., Liang, H.: Towards service composition based on mashup. In:
Proceedings of IEEE Congress on Services, pp. 332–339 (2007). doi:10.1109/SERVICES.
2007.67

27. Martinez, A., Patino-Martinez, M., Jimenez-Peris, R., Perez-Sorrosal, F.: Zenflow: a visual
web service composition tool for BPEL4WS. In: Proceedings of VLHCC’05, pp. 181–188.
IEEE Computer Society, Washington, (2005). doi:10.1109/VLHCC.2005.74

28. McIlraith, S.A., Son, T.C.: Adapting Golog for composition of semantic web services. In:
Proceedings of KR, pp. 482–496 (2002)

29. Mehandjiev, N., Lécué, F., Wajid, U.: Provider-composer negotiations for semantic robustness
in service compositions. In: Proceedings of ICSOC/ServiceWave, pp. 205–220 (2009)

30. Mehandjiev, N., Namoun, A., Wajid, U., Macaulay, L., Sutcliffe, A.: End user service
composition—perceptions and requirements. In: Proceedings of 8th IEEE European Confer-
ence on Web Services ECOWS’2010 (2010, to appear)

http://dx.doi.org/10.1007/978-3-642-04840-1_32
http://dx.doi.org/10.1007/978-3-642-04840-1_32
http://dx.doi.org/10.1007/978-3-642-04840-1_32
http://dx.doi.org/10.1145/1944999.1945008
http://doi.acm.org/10.1145/1944999.1945008
http://dx.doi.org/10.1007/978-3-642-19668-3_17
http://dx.doi.org/10.1007/978-3-642-19668-3_17
http://dx.doi.org/10.1007/978-3-642-19668-3_17
http://dl.acm.org/citation.cfm?id=1920841.1920885
http://dx.doi.org/10.1145/1247480.1247626
http://dx.doi.org/10.1109/MS.2009.134
http://dx.doi.org/10.1109/SCC.2006.80
http://dx.doi.org/10.1145/773153.773154
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1109/SERVICES.2007.67
http://dx.doi.org/10.1109/SERVICES.2007.67
http://dx.doi.org/10.1109/VLHCC.2005.74

736 N. Mehandjiev et al.

31. Mehandjiev, N., Stoitsev, T., Grebner, O., Scheidl, S., Riss, U.: End-user development for task
management: Survey of attitudes and practices. In: Proceedings of VLHCC ’08, pp. 166–174.
IEEE Computer Society, Washington (2008). doi:10.1109/VLHCC.2008.4639079

32. Mehandjiev, N., Sutcliffe, A., Lee, D.: Organizational view of end-user development. In: Lieber-
man, H., Paternò, F., Wulf, V. (eds.) End User Development, Human-Computer Interaction
Series, vol. 9, chap. 17, pp. 371–399. Springer, Netherlands (2006). doi:10.1007/1-4020-5386-
X_17. http://dx.doi.org/10.1007/1-4020-5386-X_17

33. Mørch, A.I., Mehandjiev, N.D.: Tailoring as collaboration: the mediating role of multiple
representations and applicationunits. Comput. Support. Coop. Work 9(1), 75–100 (2000).
doi:10.1023/A:1008713826637

34. Motta, E.: Parametric Design Problem Solving—Reusable Components for Knowledge Mod-
elling Case Studies. IOS Press, Amsterdam (1999)

35. Namoun, A., Nestler, T., De Angeli, A.: Service composition for non-programmers: prospects,
problems, and design recommendations. In: Proceedings of IEEE 8th European Conference on
Web Services (ECOWS), pp. 123–130 (2010). doi:10.1109/ECOWS.2010.17

36. Namoun, A., Wajid, U., Mehandjiev, N.: A comparative study: application development by
ordinary internet users and it-professionals. In: Proceedings of ServiceWave’2010. Springer,
Berlin (2010, to appear)

37. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Computing. MIT
Press, Cambridge (1993)

38. Nitzsche, J., Norton, B.: Ontology Based Data Mediation in BPEL (for Semantic Web Services).
Springer, New York (2008)

39. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services capa-
bilities. In: Proceedings of ISWC, pp. 333–347 (2002)

40. Pistore, M., Roberti, P., Traverso, P.: Process-level composition of executable web services:
“on-the-fly” versus “once-for-all” composition. In: Proceedings of ESWC, pp. 62–77 (2005)

41. Rode, J., Rosson, M.B., Pérez-Qui nones, M.A.: End-users’ mental models of concepts critical
to web application development. In: Proceedings of VLHCC ’04, pp. 215–222. IEEE Computer
Society, Washington (2004). doi:10.1109/VLHCC.2004.25

42. Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatic composition of web services using semantic
descriptions. In: Proceedings of WSMAI, pp. 17–24 (2003)

43. Sutcliffe, A.: Domain Theory: Patterns for Knowledge and Software Reuse. L. Erlbaum Asso-
ciates Inc., Hillsdale (2002)

44. Sutcliffe, A., Mehandjiev, N.: Introduction. Commun. ACM 47(9), 31–32 (2004). doi:10.1145/
1015864.1015883

45. Teege, G.: Making the difference: a subtraction operation for description logics. In: Proceedings
of KR, pp. 540–550 (1994). http://www.citeseer.ist.psu.edu/teege94making.html

46. ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of web services as parametric
design. In: Motta, E., et al. (ed.) Proceedings of EKAW-2004, LNAI, vol. 3257, pp. 321–336.
Springer, Heidelberg (2004). ISBN 3-540-23340-7

47. Westerski, A.: Integrated environment for visual data-level mashup development. In: Proceed-
ings of WISE ’09, pp. 481–487. Springer, Berlin (2009). doi:10.1007/978-3-642-04409-0_47

48. Wielinga, B., Schreiber, G.: Configuration-design problem solving. IEEE Expert Intell. Syst.
Appl. 12(2), 49–56 (1997)

49. Wong, J., Hong, J.I.: Making mashups with Marmite: towards end-user programming for the
web. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’07, pp. 1435–1444. ACM, New York (2007). doi:10.1145/1240624.1240842

50. Yu, T., Lin, K.J.: Service selection algorithms for composing complex services with multiple
QoS constraints. In: Proceedings of ICSOC, pp. 130–143 (2005)

51. Zang, N., Beth, R.M.: What’s in a mashup? And why? Studying the perceptions of web-active
end users. In: Proceedings of VLHCC’08, pp. 31–38. IEEE Computer Society, Washington
(2008). doi:10.1109/VLHCC.2008.4639055

52. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web services
composition. In: Proceedings of WWW, pp. 411–421 (2003)

http://dx.doi.org/10.1109/VLHCC.2008.4639079
http://dx.doi.org/10.1007/1-4020-5386-X_17
http://dx.doi.org/10.1007/1-4020-5386-X_17
http://dx.doi.org/10.1007/1-4020-5386-X_17
http://dx.doi.org/10.1023/A:1008713826637
http://dx.doi.org/10.1109/ECOWS.2010.17
http://dx.doi.org/10.1109/VLHCC.2004.25
http://dx.doi.org/10.1145/1015864.1015883
http://dx.doi.org/10.1145/1015864.1015883
http://www.citeseer.ist.psu.edu/teege94making.html
http://dx.doi.org/10.1007/978-3-642-04409-0_47
http://dx.doi.org/10.1145/1240624.1240842
http://dx.doi.org/10.1109/VLHCC.2008.4639055

Index

A
Adaptation, 246
Adapters, 246, 261
Adaptive composition, 424
Artifact-centric processes

compliance, 112
execution, 113
policies, 116

Artifacts
composition, 115
formal model, 111, 113
location-aware artifacts, 119
union, 114

Assisted composition tool, 723
Automated negotiation, 451
Automated Web Service Composition, 162,

189, 194
Autonomic computing, 481
Autonomic services

middleware-based implementation, 495
model-based implementation, 493
platform-based implementation, 497

B
Behavior

conformance checking, 233
formalization, 218
modeling, 190

Behavior-based composition, 189
Behavioral profiles

extended profiles, 7
global profiles, 15, 17

Behavioral service substitution, 215
BPMN, 273
Business process composability, 156
Business processes

business process knowledge, 6
interorganizational processes, 119

C
c-FSP aspects, 296
c-FSP-UML profile, 296
Composition languages

custom languages, 53
features, 68
generic meta-model, 63, 64

Conformance checking, 235
Context-aware services

engineering process, 294
models, 296
transformations, 296

Contract Net, 456
Control flow paradigm, 58

D
Data flow paradigm, 57
Data transformations, 635
DRAAS, 483, 488
Dynamic semantic composability, 154

E
End user development, 710

F
FAM2BP, 280
Feature modeling, 511
Formalized Analysis Model, 278

I
Integration

business logic, 58
data, 56
presentation, 58

Interface matching, 255
Interorganizational business processes, 119

A. Bouguettaya et al. (eds.), Web Services Foundations,
DOI: 10.1007/978-1-4614-7518-7,
� Springer Science+Business Media New York 2014

737

J
Jolie

basics, 84
behavior, 84
deployment, 87
error recovery, 90
fault handling, 95
message routing, 93
sessions, 90

K
Knowledge reuse

recommendation algorithm, 643

M
Mashups

assisted composition, 715
assisted development, 683
canonical model, 686
composition patterns, 688
end user development, 710
knowledge recommendation, 698
pattern discovery, 692
pattern recommendation, 698
pattern weaving, 701
semantic reasoning, 720
spreadsheet template, 640
spreadsheet-based, 635
templates, 717
user study, 723

Mismatches
identification, 246
identification and resolution, 254
patterns, 251

N
Negotiation

agents, 460
auction-based agents, 460
combinatorial algorithms, 463
communication protocols, 455
contract Net, 456
genetic algorithms, 462
QoS, 453
trade-off based agents, 461
under uncertainty, 462
WebNeg, 469
WS-Agreement, 455
WS-Negotiation, 58
WS-Policy, 457
Xplore, 459

O
O-RGPS, 676

P
Pervasive software services, 301
Process customization

domain goals, 670
process configuration, 672
RGPS-based, 668
user requirements, 669

Process mining, 234
Product line engineering, 535
Protocol-aware interface matching, 255

Q
QoS, 347

aggregation, 350, 437
composite services, 351, 382
computation, 355, 389
estimation, 362
metrics, 356
models, 349, 380
monitoring, 349
optimization, 424, 436
service selection, 375
utility function, 386

QoS-based composition, 164
Qualitative properties, 399
Quality of Service (QoS). See QoS
Quantitative properties, 399

R
Recommendation

bootstrapping, 589
cold start, 593
collaborative filtering, 563
complexity, 576
context-based, 610
mashup composition knowledge, 683
QoS prediction, 576
QoS-aware recommendation, 563
service profiling, 595
similarity, 565
user profiling, 595

Re-configuration, 483
Representational State Transfer (REST), 31
RESTful web services

design constraints, 31
frameworks, 45
maturity model, 34
patterns, 40

738 Index

principles, 32
technologies, 45

RGPS meta-model, 661
Roman Model, 189, 197

S
Semantic composition, 163
Semantic Web services

composability model, 145
composition, 137, 161
description, 142
dynamic semantics, 144
static semantics of messages, 144
static semantics of operations, 143

Service application engineering, 555
Service customization, 514
Service discovery, 324, 610
Service domain engineering, 547
Service orientation, 216
Service selection

hybrid approaches, 339
negotiation-based approaches, 333
as optimization problem, 329

Service substitution
accordance, 225
constructing services, 230
contract implementation, 225
instance migration, 228
multiparty contract, 224
preservation, 227

Service variability
modeling, 516

Service-Oriented Architecture (SOA), 3, 452
Service-oriented programming, 81
Software product line engineering, 535, 536
Static semantic composability, 152
Syntactic composition, 163
Syntactic discovery, 162

T
Time, 402
Timed behavior, 404
Timed composition problem, 405
Timed conversation protocol, 405
Timed properties, 399

U
UML behavioral elements, 273
UPPAAL, 415

V
Variability modeling, 507
Verification, 416

W
Web service adaptation, 246, 247
Web Service Challenge (WSC), 165
Web service composition

adaptive composition, 423
as planning problem, 431
customization, 525
interactive composition, 140
planning, 141
process-based, 139
user-centric approaches, 712

Web services
semantic description, 142

WebNeg, 469
WS-Agreement, 455
WS-Negotiation, 458
WS-Policy, 457
WSRec, 564
WSVL, 527

X
Xplore, 459

Index 739

	Foreword
	Preface
	Contents
	Contributors
	Part I Foundations of Web Services
	1 Web Services and Business Processes: A Round Trip
	1.1 The Relation Between Business Processes and Web Services
	1.2 Overview of Our Approach
	1.3 Fundamentals: Business Process Knowledge
	1.4 Annotating Web Services Using Business Process Knowledge
	1.5 Fine-Grained Linkage Patterns Among Web Services
	1.5.1 Types of Linkage Patterns
	1.5.2 Weights of Linkage Patterns
	1.5.3 Example: Linkage Patterns of Purchase Order Processing

	1.6 Global Behavioral Profiles
	1.6.1 Extending Behavioral Profiles
	1.6.2 Deriving Global Behavioral Profiles
	1.6.3 Predicting Unknown Relations (a?b)

	1.7 Implementation and Evaluation
	1.7.1 Implementation: Integrating Depot and Oryx
	1.7.2 Experiments

	1.8 Related Work
	1.9 Summary
	References

	2 RESTful Web Services: Principles, Patterns, Emerging Technologies
	2.1 Introduction
	2.2 Principles
	2.2.1 Design Constraints
	2.2.2 Maturity Model
	2.2.3 Comparing REST Versus WS-*

	2.3 Example
	2.3.1 Listing Active Polls
	2.3.2 Creating New Polls
	2.3.3 Fetching the Current State of a Poll
	2.3.4 Casting Votes
	2.3.5 Changing Votes
	2.3.6 Interacting with Votes
	2.3.7 Removing a Poll

	2.4 Patterns
	2.4.1 Resource Creation
	2.4.2 Long Running Operations
	2.4.3 Optimistic Locking

	2.5 Technologies
	2.5.1 Frameworks
	2.5.2 Guidelines for Framework Selection

	2.6 Discussion
	2.7 Conclusion
	2.8 More information
	References

	3 Conceptual Design of Sound, Custom Composition Languages
	3.1 Introduction
	3.2 Scenario
	3.3 Background: Software Composition
	3.4 Requirements and Problem Statement
	3.5 Approach
	3.6 The Generic Composition Meta-Model
	3.6.1 Language Meta-Meta-Model
	3.6.2 The Generic Meta-Model
	3.6.3 Mapping the Generic Meta-Model to XSD

	3.7 Representing and Assembling Composition Features
	3.7.1 Feature Specification Language
	3.7.2 Feature Constraints Language
	3.7.3 Language Generation Algorithm

	3.8 Examples
	3.8.1 mashArt
	3.8.2 Yahoo! Pipes

	3.9 Related Work
	3.10 Conclusion and Future Work
	References

	4 Service-Oriented Programming with Jolie
	4.1 Introduction
	4.2 Language Basics: Behaviour and Deployment
	4.2.1 Behaviours
	4.2.2 Deploying Services
	4.2.3 Putting it All Together

	4.3 Sessions and Error Recovery
	4.3.1 Behaviour Instances
	4.3.2 Message Routing with Correlation Sets
	4.3.3 Fault Handling

	4.4 Architectural Composition
	4.4.1 Embedding
	4.4.2 Aggregation

	4.5 Example: An Automotive Case Study
	4.6 Related Work
	4.7 Conclusions
	References

	5 From Artifacts to Activities
	5.1 Introduction
	5.2 Running Example: Insurance Claim Handling
	5.3 A Formal Model for Artifacts
	5.4 Executing Artifact-Centric Business Processes
	5.4.1 Goal States and Controller Synthesis
	5.4.2 Policies

	5.5 Extensions
	5.5.1 Interorganizational Business Processes
	5.5.2 Compliance Rules

	5.6 Related Work
	5.7 Conclusion
	References

	6 On the Composability of Semantic Web Services
	6.1 Introduction
	6.2 Web Service Composition: Background
	6.2.1 Process-Based Composition
	6.2.2 Interactive Composition
	6.2.3 Planning-Based Composition

	6.3 Semantic Description of Web Services
	6.3.1 Static Semantics of Operations
	6.3.2 Static Semantics of Messages
	6.3.3 Dynamic Semantics

	6.4 The Composability Model
	6.4.1 Composability Stack
	6.4.2 Operation Mode and States
	6.4.3 Horizontal and Vertical Composition
	6.4.4 Composability Rules Classification
	6.4.5 Composability Degree
	6.4.6 τ-Composability

	6.5 Static Semantic Composability
	6.5.1 Operation Granularity
	6.5.2 Message Granularity

	6.6 Dynamic Semantic Composability
	6.7 Business Process Composability
	6.8 Research Directions in Service Composition
	6.9 Conclusion
	References

	7 Semantic Web Service Composition: The Web Service Challenge Perspective
	7.1 Introduction
	7.2 Automatic Web Service Composition
	7.2.1 Syntactic Discovery
	7.2.2 Syntactical Composition
	7.2.3 Semantic Composition
	7.2.4 QoS-Based Composition

	7.3 History and Impact of the WSC
	7.3.1 History
	7.3.2 Impact

	7.4 Related Events
	7.5 The 2010 WSC
	7.5.1 Software Suite
	7.5.2 Suggested Composer Structure

	7.6 WSC-Based Survey of Semantic Web Service Composition Techniques
	7.6.1 Uninformed Search
	7.6.2 Informed/Heuristic Search
	7.6.3 Techniques from AI and Planning
	7.6.4 Metaheuristic and Centralized Approaches
	7.6.5 Multi-Agent and Decentralized Approaches

	7.7 Discussion
	References

	8 Automated Service Composition Based on Behaviors: The Roman Model
	8.1 Introduction
	8.1.1 Modeling Behaviors
	8.1.2 Composing Services
	8.1.3 The History of the Roman Model

	8.2 State-of-the-art on Automated Service Composition
	8.3 The Roman Approach
	8.3.1 The Framework
	8.3.2 Enacted Behaviors
	8.3.3 Orchestrator and Composition
	8.3.4 Composition via Simulation

	8.4 A Practical Application in Smart Homes
	8.4.1 Software Architecture, Service and Data Models
	8.4.2 Discussion and Lessons Learned

	References

	9 Behavioral Service Substitution
	9.1 Introduction
	9.2 Formalizing Service Behavior
	9.2.1 Basic Definition on Petri Nets
	9.2.2 Open Nets

	9.3 Service Substitution
	9.3.1 Multiparty Contracts and Accordance of Services
	9.3.2 Deciding Accordance Using Operating Guidelines
	9.3.3 Substitution in a Less Restrictive Setting
	9.3.4 Accordance in a Purely Service-Oriented Setting
	9.3.5 Service Instance Migration
	9.3.6 Discussion and Related Work

	9.4 Constructing Substitutable Services
	9.4.1 Approach
	9.4.2 Transformation Rules
	9.4.3 Discussion and Related Work

	9.5 Conformance Checking of Services Based on Observed Behavior
	9.5.1 Process Mining
	9.5.2 Conformance Checking Approaches
	9.5.3 Conformance Checking of the Public View
	9.5.4 Conformance Checking of the Private View
	9.5.5 Beyond Conformance Checking

	9.6 Conclusion
	References

	10 Web Service Adaptation: Mismatch Patterns and Semi-Automated Approach to Mismatch Identification and Adapter Development
	10.1 Introduction
	10.2 Service Adaptation: Requirements, State of the Art and Gaps
	10.2.1 Service Adaptation Requirements
	10.2.2 State of the Art

	10.3 Mismatch Patterns for Service Mismatch Characterization and Resolution
	10.3.1 Common Mismatches Between Web Service Specifications
	10.3.2 Mismatch Patterns

	10.4 Semi-Automated Identification and Resolution of Mismatches
	10.4.1 Protocol-Aware Interface Matching
	10.4.2 Identification of Protocol-Level Mismatches Through Adapter Simulation

	10.5 Adapter Specification, Generation and Deployment
	10.5.1 Standalone Service Adaptation
	10.5.2 Aspect Oriented Service Adaptation
	10.5.3 Aspect-Oriented Versus Standalone Service Adaptation

	10.6 Concluding Remarks and Future Work
	References

	11 Transformation Framework for Consistent Evolution of UML Behavioral Elements into BPMN Design Element
	11.1 Introduction
	11.2 Related Work
	11.2.1 Formalization Approaches
	11.2.2 UML Model and BPMN Model Mapping

	11.3 Scope of Work
	11.4 Formalized Analysis Model
	11.4.1 Syntactic Rules
	11.4.2 Traceability Rules

	11.5 FAM2BP: Proposed Transformation Model
	11.5.1 Relational Model
	11.5.2 Transformation Rules
	11.5.3 Algorithm for Automated Transformation

	11.6 Case Study
	11.7 Implementation
	11.8 Conclusion
	References

	12 Context-Aware Services Engineering for Service-Oriented Architectures
	12.1 Introduction
	12.2 Related Work
	12.3 Case Study: Intelligent Transport
	12.4 Context-Aware Services Engineering Process
	12.5 Models and Transformations
	12.5.1 Models: c-FSP-UML Profile and c-FSP Aspects
	12.5.2 Model Transformations

	12.6 Formal Verification
	12.6.1 Model Checking Aspectual Pervasive Software Services
	12.6.2 Weaving of Pervasive Aspects and Components
	12.6.3 Concurrency Modeling
	12.6.4 Properties Specification and Verification

	12.7 Evaluation Framework
	12.7.1 Vertical Evaluation of the Research
	12.7.2 Horizontal Evaluation of the Research

	12.8 Research Extensions
	12.8.1 Aspectual FSP Generation as an Integrated Eclipse Plug-in
	12.8.2 Implementing the Model Checked Aspectual Pervasive Services

	12.9 Conclusion
	References

	Part II Service Selection and Assisted Composition
	13 Service Selection in Web Service Composition: A Comparative Review of Existing Approaches
	13.1 Introduction
	13.2 Web Service Composition
	13.3 Service Discovery Approaches
	13.4 Service Selection Challenges
	13.5 Service Selection Spectrum
	13.5.1 Optimization-Based Approaches
	13.5.2 Negotiation-Based Approaches
	13.5.3 Hybrid Approach

	13.6 Comparison
	13.7 Conclusion
	References

	14 QoS Analysis in Service Oriented Computing
	14.1 Introduction
	14.2 Related Work
	14.2.1 QoS Models
	14.2.2 QoS Monitoring
	14.2.3 Composite QoS Aggregation
	14.2.4 Service Modelling and Processing

	14.3 Composite Service Modelling
	14.3.1 Service Graph
	14.3.2 Sequential Pattern
	14.3.3 Parallel Pattern
	14.3.4 Structured Conditional Pattern
	14.3.5 Loop Pattern

	14.4 QoS Computation for Basic Composition Patterns
	14.4.1 Approach Overview and Underlying Assumptions
	14.4.2 QoS Probability Distribution Computation for Composition Patterns
	14.4.3 QoS Probability Distribution Calculation for Composition Patterns

	14.5 Algorithm to Estimate QoS for Web Service Compositions
	14.5.1 Algorithm Overview
	14.5.2 Algorithm for the Process of QoS Aggregation

	14.6 Experiments
	14.6.1 Validation
	14.6.2 Efficiency
	14.6.3 Scalability

	14.7 Conclusions and Future Work
	References

	15 QoS-based Service Selection
	15.1 Introduction
	15.2 Terminology
	15.2.1 Service Type
	15.2.2 Service and Service Selection
	15.2.3 QoS
	15.2.4 Composite Service

	15.3 QoS Model
	15.3.1 Common Attributes and Metrics
	15.3.2 Composite QoS

	15.4 Service Selection Problem
	15.4.1 Notations
	15.4.2 Global Constraints
	15.4.3 Utility Function
	15.4.4 Service Selection Problem

	15.5 Approaches to Computation for Service Selection
	15.5.1 Assumptions in Definitions
	15.5.2 Skyline Services
	15.5.3 Service Selection Algorithms

	15.6 Directions for Future Research
	15.6.1 Handling Failures and Runtime Adaptation
	15.6.2 Refining QoS Models
	15.6.3 Examining Incentives

	15.7 Summary
	References

	16 Composition of Web Services: From Qualitative to Quantitative Timed Properties
	16.1 Introduction
	16.2 Global Overview
	16.3 Modeling the Timed Behavior of Web Services
	16.4 Analyzing the Timed Composition Problem
	16.4.1 Building Timed P2P Connections
	16.4.2 Making Explicit the Implicit Timed Constraints Dependencies
	16.4.3 Generation of a Timed Mediator

	16.5 Back to the Case Study
	16.5.1 Composition Without the Timed Involvement of the Mediator
	16.5.2 Involving the Mediator

	16.6 Formal Verification and Validation of the Built Composition
	16.6.1 UPPAAL Overview
	16.6.2 Verification of Web service Compositions

	16.7 Related Work and Discussion
	16.8 Conclusion and Perspectives
	References

	17 Adaptive Composition and QoS Optimization of Conversational Services Through Graph Planning Encoding
	17.1 Introduction
	17.2 Preliminaries
	17.3 Modeling
	17.3.1 Conversation Modeling
	17.3.2 Semantic Structures
	17.3.3 Services
	17.3.4 Composition Requirements

	17.4 Encoding Composition as a Planning Problem
	17.4.1 DSS Encoding
	17.4.2 Workflow Encoding
	17.4.3 Composition Requirements Encoding
	17.4.4 Service Encoding
	17.4.5 Overall Encoding
	17.4.6 Plan Implementation
	17.4.7 Tool Support

	17.5 QoS Optimization of Conversational Service Composition as an Extension
	17.5.1 Aggregation of Quality of Services
	17.5.2 Encoding QoS-Aware Composition as a QoS-Aware Planning Problem
	17.5.3 Other QoS Criteria

	17.6 Related Work
	17.7 Conclusion
	References

	18 Automated Negotiation Among Web services
	18.1 Introduction
	18.1.1 Service Oriented Architecture
	18.1.2 QoS Specification
	18.1.3 Negotiation

	18.2 Communication Protocols for Negotiation
	18.2.1 WS-Agreement
	18.2.2 Contract Net
	18.2.3 WS-Policy
	18.2.4 WS-Negotiation
	18.2.5 Xplore

	18.3 Negotiation Agents
	18.3.1 Auction Based Agents
	18.3.2 Trade-Off Based Negotiation Agents
	18.3.3 Negotiation with Uncertain Data
	18.3.4 Genetic Algorithm Based Negotiations
	18.3.5 Combinatorial Negotiations

	18.4 Discussion
	18.4.1 A framework for Web Service Negotiation
	18.4.2 WebNeg

	18.5 Conclusion and Future Directions
	References

	19 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services
	19.1 Introduction
	19.2 Autonomic Computing Survey
	19.2.1 Self-* Capabilities
	19.2.2 Autonomic Computing Techniques

	19.3 DRAAS: Dynamically Reconfigurable Architecture for Autonomic Services
	19.3.1 DRAAS Architecture
	19.3.2 Illustration: Data Load Use Case
	19.3.3 Experimentation

	19.4 Related Work: Implementation Approaches
	19.4.1 Model-Based Implementation Approaches
	19.4.2 Middleware-Based Implementation Approaches
	19.4.3 Platform-Based Implementation Approaches
	19.4.4 Concluding Remarks

	19.5 Conclusion
	References

	20 Comprehensive Variability Modeling and Management for Customizable Process-Based Service Compositions
	20.1 Introduction
	20.2 Related Work
	20.3 Motivating Example and Feature-Level Variability Modeling
	20.3.1 Feature Modeling
	20.3.2 Example Explained and Variability Inter-Dependencies

	20.4 Service Customization and Customizable Service Description
	20.4.1 Feature-Based Service Customization Framework
	20.4.2 Customizable Service Description

	20.5 Modeling Variability and Variability Dependencies in Process-Based Service Compositions
	20.5.1 Extending BPMN for Representing Variation Points and Variants
	20.5.2 Modeling Variability Intra-Dependencies
	20.5.3 Modeling Variability Inter-Dependencies

	20.6 The Development and Customization of Process-Based Service Compositions
	20.6.1 Process Development Methodology
	20.6.2 Deriving WSVL Description
	20.6.3 Deriving Executable Process Variants

	20.7 Prototype Implementation
	20.8 Conclusion
	References

	21 Software Product Line Engineering to Develop Variant-Rich Web Services
	21.1 Introduction
	21.2 Software Product Line Engineering (SPLE)
	21.3 Comparison of SPL and SOA
	21.3.1 Development Processes
	21.3.2 Reuse in SPL Versus SOA
	21.3.3 Architectural Aspects of SPL Versus SOA
	21.3.4 Variability in SPL and SOA

	21.4 Running Example
	21.5 Applying SPLE for Development of Service-Oriented Software Product Lines
	21.5.1 Service-Domain Engineering
	21.5.2 Service-Application Engineering

	21.6 Discussion
	21.7 Conclusion
	References

	22 QoS-Aware Web Service Recommendation via Collaborative Filtering
	22.1 Introduction
	22.2 WSRec: A Neighborhood-Based Web Service Recommendation Algorithm
	22.2.1 Similarity Computation
	22.2.2 QoS Value Prediction
	22.2.3 Recommendation for Active Users
	22.2.4 Time Complexity Analysis

	22.3 A Region-Based Web Service Recommendation Algorithm
	22.3.1 A Motivating Scenario
	22.3.2 Phase One: Region Creation
	22.3.3 Phase Two: QoS Prediction and Recommendation
	22.3.4 Time Complexity Analysis

	22.4 Experiments
	22.4.1 Experiment Setup
	22.4.2 WSRec Performance Evaluation
	22.4.3 Region-Based Recommender System Performance Evaluation

	22.5 Related Work
	22.5.1 Collaborative Filtering
	22.5.2 Web Service Selection and Recommendation

	22.6 Conclusion and Future Work
	References

	23 On Bootstrapping Web Service Recommendation
	23.1 Introduction
	23.2 Related Work
	23.3 Cold-start Service Recommendation
	23.3.1 NMTF for User and Service Group Discovery
	23.3.2 Decision Tree Learning for User and Service Profiling
	23.3.3 Computing G, B, and F

	23.4 Experiments
	23.4.1 Experiment Design
	23.4.2 Quality of Cold-start Recommendation
	23.4.3 Impact of Parameters

	23.5 Conclusion and Future Work
	References

	24 An Approach for Service Discovery and Recommendation Using Contexts
	24.1 Introduction
	24.2 Overview of Our Approach
	24.3 Background of Ontology
	24.4 Searching for Matching Ontologies
	24.5 Identifying Context Relations
	24.5.1 Identifying Relations of Two Context Values
	24.5.2 Inferring Relations Among Multiple Context Values

	24.6 Generating Service Searching Criteria
	24.6.1 Identify User's Requirements in Given Context Scenarios
	24.6.2 Generate Service Searching Criteria

	24.7 Implementation
	24.8 Case Study
	24.8.1 Setup
	24.8.2 Evaluation Criteria
	24.8.3 Experiment Procedure
	24.8.4 Result Analysis
	24.8.5 Threats to Validity

	24.9 Related Work
	24.9.1 Context Modeling and Context-Aware Systems
	24.9.2 Discovering and Recommending Services Using Context

	24.10 Conclusion and Future Work
	References

	25 Data Transformation Knowledge Reuse in Spreadsheet-Based Mashup Development Platform
	25.1 Introduction
	25.2 Motivating Example
	25.3 Problem Definition
	25.4 Spreadsheet Template
	25.4.1 Template Description Language
	25.4.2 Inferring Templates

	25.5 Reuse Recommendation Algorithm
	25.6 Implementation
	25.7 Evaluation
	25.7.1 Performance
	25.7.2 Effectiveness

	25.8 Related Work
	25.9 Summary
	References

	26 A Unified RGPS-Based Approach Supporting Service-Oriented Process Customization
	26.1 Introduction
	26.2 Motivation and Overall Approach
	26.2.1 A Motivating Example
	26.2.2 Overall Approach

	26.3 The RGPS Meta-Model Framework
	26.3.1 The Role and Goal Meta-Model
	26.3.2 The Process Meta-Model
	26.3.3 The Service Meta-Model
	26.3.4 Domain Modeling

	26.4 RGPS-Based Process Customization Approach
	26.4.1 Procedure of Customization
	26.4.2 Elicit Users' Requirements
	26.4.3 Match with Domain Goals
	26.4.4 Supplement and Refine Goals
	26.4.5 Configure Processes
	26.4.6 Discover Services

	26.5 The Visualization Prototypes
	26.5.1 O-RGPS Domain Modeling Tool
	26.5.2 The Service Supermarket CloudCRM

	26.6 A Case Study
	26.7 Conclusions
	References

	27 Assisted Mashup Development: On the Discovery and Recommendation of Mashup Composition Knowledge
	27.1 Introduction
	27.2 Preliminaries and Problem
	27.2.1 A Canonical Mashup Model
	27.2.2 Problem Statement

	27.3 Approach
	27.3.1 Composition Knowledge Patterns
	27.3.2 Architecture

	27.4 Discovering Patterns
	27.4.1 Mining Algorithms

	27.5 Recommending Patterns
	27.5.1 Pattern Knowledge Base
	27.5.2 Exact and Approximate Pattern Matching

	27.6 Weaving Patterns
	27.6.1 Basic Weaving Strategy
	27.6.2 Contextual Weaving Strategy

	27.7 Implementation and Evaluation
	27.8 Related Work
	27.9 Conclusions
	References

	28 End Users Developing Mashups
	28.1 Introduction
	28.2 Related Research
	28.2.1 Mashups and Service Composition Environments
	28.2.2 User-Centric Approaches to Service Composition
	28.2.3 Automating Service Composition

	28.3 Challenges to Users Attempting to Compose Services
	28.3.1 Realistic Complexity is Overwhelming
	28.3.2 Heterogeneous Data and Dependencies Between Serviecs

	28.4 The Assisted Composition Approach
	28.4.1 Motivating Scenario
	28.4.2 Template-Based Service Composition
	28.4.3 Semantic Connections of Services
	28.4.4 Helping Users Choose Services Through Semantic Reasoning

	28.5 Summative Evaluation of User Assisted Composition Tool
	28.5.1 Evaluation Tasks
	28.5.2 Analysis Methods
	28.5.3 Evaluation Study One
	28.5.4 Results of Study One
	28.5.5 Evaluation Study Two
	28.5.6 Results of Study Two

	28.6 Conclusion
	References

	Index

