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Abstract

• Population dynamics is the study of how and why population sizes change

over time.

• Repeated censuses of individuals within populations are the core data col-

lected by plant ecologists studying population dynamics.

• Plant populations are characterized by their size (or density) and their struc-

ture (the numbers of individuals of different ages and sizes).

• Plant population ecologists use observations, experiments, and mathematical

models to document and understand patterns of population dynamics.

• Most plant populations appear to be regulated by density-dependent forces;

resource competition and natural enemies are the most likely forces respon-

sible for regulation.
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• Stochastic forces have particularly strong effects on small populations.

• Population viability analyses assess how stochastic forces affect a

population’s probability of extinction and can be used to identify effective

management options.

• Demographic differences among individuals affect their potential contribu-

tions to population dynamics.

• Transition matrix models are the most important model used to study plant

populations and guide the management of harvested populations and species

of conservation concern.

• Regional dynamics of assemblages of plant subpopulations, such as

metapopulations, have not been well studied in plants and are an active area

of research.

Introduction

The Haleakala silversword, Argyroxiphium sandwicense subsp. macrocephalum, is
an unusual plant for many reasons, not the least of which is its striking appearance,

like the offspring of a marriage between a footstool and a pincushion (Fig. 1).

Found only on Mt. Haleakala, a dormant volcanic cinder cone on the Hawaiian

island of Maui, this remarkable plant lives on mostly barren, rocky, unstable slopes

at elevations of 2,100–3,000 m. Individuals live for up to 50 years before sending up

a flowering stalk that bears as many as 600 flower heads. After this one reproductive

episode, the plant dies.

The Haleakala silversword population has survived the cattle and goats that once

grazed the mountain and persists despite the fact that tourists impressed by their

bizarre appearance once routinely “bowled” these plants down the mountainside or

uprooted them for souvenirs. Protection from these threats in the 1930s greatly

increased the silversword’s numbers over the next 60 years. By the late 1990s, the

silversword population was estimated to be 16 times larger than it had been in 1935,

and this iconic plant came to be considered one of the Hawaiian Islands’ conser-

vation success stories. However, since the mid-1990s, the silversword population is

once again in decline (Fig. 2; Krushelnycky et al. 2013).

These trends would not have been apparent except for observers who chose to

census the number of silversword individuals in the Mt. Haleakala population,

starting with park ranger S.H. Lamb in 1935 (U.S. Fish and Wildlife Service 1997).

Census data are key to understanding the dynamics of plant populations, i.e., how

numbers of individuals change over time, and to determining the causes of those

changes. This chapter will examine the history, key concepts, main methodologies,

and important unanswered questions in the field of plant population dynamics.

A population is a group of individuals belonging to the same species, living

in the same area. The study of plant population dynamics, i.e., how and why plant

populations change in numbers over time, is a relatively recent chapter in

plant ecology. While a few earlier workers had carried out repeated censuses of

plant populations, British ecologist John L. Harper (1925–2009) revolutionized
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Fig. 1 A flowering

Haleakala silversword (Photo

by Forest and Kim Starr)

Fig. 2 Numbers of Haleakala silversword individuals at a high-elevation canyon rim site (open
squares) and at five sampling areas on the crater floor (other symbols) (Figure from Krushelnycky

et al. 2013)
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how ecologists thought about plants with his 1967 paper, “A Darwinian Approach

to Plant Ecology,” and his 1977 book, Population Biology of Plants. Before Harper,
it was mostly zoologists, not botanists, who studied the biology of populations.

Harper, his students, and many other ecologists he influenced developed the

quantitative, process-oriented, and often experimental approach to the study of

plant population dynamics that characterizes the field today. In fact, John Harper

argued that plants were more suitable than most animals for the study of population

dynamics because “plants stand still to be counted and do not have to be trapped,

shot, chased, or estimated” (Harper 1977, p. v).

Plant population ecologists are interested in knowing what trends characterize

plant populations over time – do they increase? Decrease? Remain constant? Are

these patterns predictable or stochastic? What forces are responsible for the differ-

ent patterns? These questions are of interest not only for their own sake, but also

because their answers can lead to effective problem solving in the fields of

agriculture, forestry, range management, natural area management, and species

conservation.

This chapter will begin by describing the structure of plant populations and by

considering some aspects of plant biology that affect how plant populations are

studied, such as the relationship between size and age, and how “individuals” are

defined. This will be followed by a description of some of the spatial and temporal

patterns displayed by different populations and a consideration of the possible

causes of these different patterns. The chapter will briefly review some of the

primary methodological approaches used to study plant populations in the field.

Throughout, it will illustrate some of the ways these approaches have been applied

to address particular practical problems, especially in the area of biodiversity

conservation.

Structure of Plant Populations

A consideration of the structure of plant populations starts with the question “what

is an individual?” Many herbaceous and woody plant species, including some tree

species, are capable of spreading horizontally by means of rhizomes and runners.

For such species, an “individual” is a nebulous concept and not necessarily a

meaningful distinction. It is easy to recognize a newly germinated seedling as a

single individual, but that individual can grow into a patch of grass many meters in

diameter or an aspen clone that covers an entire hillside. These differences between

individuals are a consequence of the modular growth form typical of most plant

species. Deciding how to quantify the number of individuals in a population is often

the first challenge that must be confronted when studying a plant population’s

dynamics.

Plant ecologists have found it useful to distinguish between two kinds of indi-

viduals. Individuals that arise from different propagules and are thus genetically

distinct from one another are known as genets. However, because an individual that
has spread horizontally may break up into physically independent units, not all
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independent units are distinct genets. Individuals that are physiologically indepen-

dent of one another are considered separate ramets, regardless of their genetic

similarity. The number of genets in a plant population can be much lower than the

number of ramets. Ramets are often easier to recognize than genets, so this definition

of an individual is more frequently used. Because the identification of individuals

can be so challenging in many species, studies of plant populations have historically

been biased toward those species in which individuals are relatively easy to define;

we know much less about species with strong propensities toward vegetative spread

than about species that tend to restrict their growth to the vertical dimension.

Once the issue of how to define an individual has been addressed, there are two

ways to express the size of a population. Sometimes a population’s size is described

as the number of individuals it contains; other times it is the population’s density that

is reported, i.e., the mean number of individuals per unit of area. It is important to

keep in mind that density is an average measure for the entire population and that

individuals can be distributed in space in three different ways. Individuals of a

species are sometimes spaced regularly, such that the mean density of individuals in

a series of sampling plots is greater than the variance in density among plots. Alder

shrubs in the Alaskan tundra are regularly spaced; Chapin et al. (1989) suggested

that regular spacing is most likely to be found in habitats with low species diversity

and intense competition for resources, like desert or tundra. Rarely, individuals are

randomly distributed in space (Hutchings 1997); in this case the mean density of

individuals among plots is similar to the variance. Finally, individuals are most often

found in a clumped distribution (Hutchings 1997), with the variance in the density of

individuals among sample plots being greater than the mean. A clumped distribution

pattern can occur if the underlying physical environment is heterogeneous, with

individuals clustered within the suitable patches and absent from the unsuitable

ones. It can also arise from the fact that many plant species have rather localized

seed dispersal, so that seedlings are often found in close proximity to their parents.

In addition to variation in their spatial distribution, individuals within a population

can vary in such characteristics as their size, their age, or their sex. These so-called

demographic parameters often have important effects on how each individual con-

tributes to a population’s dynamics. Because most plant species have perfect flowers,

there is only one sex in most plant populations; all individuals are hermaphrodites.

In such species, sex is not a particularly important demographic characteristic. Sex is

a more important demographic parameter in many animal populations and in those

plant species with separate sexes. In such species, the ratio of male to female

individuals can strongly affect a population’s potential for increase.

In animals with determinate growth, age is a very important demographic

parameter. Individual animals often must reach a certain age before achieving

sexual maturity, and an individual’s probabilities of dying and of giving birth

(probabilities often referred to as vital rates) are well correlated with its age.

By contrast, consider a seedling Eucalyptus, a 5 m tall Eucalyptus in the forest

understory, and a mature 100 m tall Eucalyptus tree, each of which has very

different probabilities of dying and of reproducing. While it is certain that the

mature tree is older than the seedling, the age of the understory individual is more
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difficult to predict. Such an individual might be quite young, if it germinated in a

light gap and there were no other individuals growing nearby to compete for water

or nutrients. Alternatively, such an individual might be considerably older if its

growth has been suppressed by competition with larger neighbors for many years.

But in an important sense, its age doesn’t matter; this individual won’t flower or set

seed until or unless it reaches the canopy. The indeterminate growth form of this

and many other plants means that an individual plant’s probability of dying or

reproducing tends to be more closely related to its size, or to its growth stage, than

to its age (Gurevitch et al. 2002). Individuals of different sizes or stages have very

different potentials to influence the population’s future size.

Therefore, many studies of plant populations record information on the size or

growth stage of each individual in the population. This information can be

displayed in the form of a histogram. Many plant populations in nature display a

size structure like that shown by the tropical tree Araucaria cunninghamii in Fig. 3.
This pattern has three primary causes: first, many plants tend to produce large

numbers of small propagules. Second, individuals experience mortality as they

grow. And third, small individuals are generally more vulnerable to mortality than

larger ones are, which is why numbers of individuals in the larger size classes

diminish much more gradually than those in the smaller size classes do.

The observation of deviations from this pattern can generate interesting ques-

tions about a population’s history. For example, in Yellowstone National Park,

USA, in the floodplain of the Lamar River, there are mature cottonwood trees and

large numbers of seedling cottonwoods, but almost no individuals intermediate in

size between these two classes (Fig. 4).

According to Beschta (2003), this gap suggests that little or no recruitment of this

riparian species occurred between 1920, when wolves were hunted to extinction in

the Park, and 1995, when they were reintroduced.While wolves were absent from the

Park, Beschta hypothesized, elk boldly grazed in these open river valleys, eating
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young seedlings and saplings and preventing the establishment of mature trees. With

the recent return of wolves to the valley, elk have becomemore wary, rarely venturing

out of the forest into the open floodplain habitat (Beschta 2003), allowing seedling

cottonwoods to survive unbrowsed. While this hypothesis for the cottonwood stage

structure in Yellowstone remains controversial (Winnie 2012), it is clear that the

unexpected size structure of this cottonwood population demands an explanation.

In even-aged populations of agricultural or greenhouse plants, other patterns of

size structure are observed, and it becomes possible to examine how these patterns

develop and change over time. Frequency distributions of seedling weights are

typically approximately normal (Fig. 5, top row).

Variation in seedling size exists because seed sizes are rarely uniform, and the

size of a seed has a strong influence on the size of the seedling that emerges from it

(Hutchings 1997). Over time, as seedlings grow, their weight distributions tend to

become increasingly skewed (Fig. 5, middle, bottom rows), especially at higher

densities, for several reasons (Hutchings 1997). First, there is genetic variation for

growth rate among a group of individuals. Second, the timing of a seedling’s

emergence relative to that of its closest neighbors can give certain seedlings an

initial growth advantage or disadvantage. Third, the spacing of a growing plant’s

immediate neighbors determines the amount of resources available to it. For all

these reasons, many individuals may remain small, spindly, and fail to flower or

produce seeds. This effect is most extreme and rapid in high-density populations

(Fig. 5, right-hand column).
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Over time, the death of some of the small individuals in a dense population can

allow other individuals to achieve larger size, and it is common to observe the size

structure of such populations shifting over time as shown in Fig. 5. Mortality

resulting from competition simultaneously alters the population density. Thus

density and individual plant weight change in concert. In many populations this

process of “self-thinning” has been shown to follow a temporal pattern represented

by the relationship

w ¼ cN�k ð1Þ
where w represents mean individual plant weight, N is density of surviving plants,

and c is a constant that varies among species. The value of the parameter k is

approximately 3/2 for a wide range of plant species (Harper 1977). Differences in

plant size caused by intraspecific competition ultimately lead to differences in

performance. These differences among individuals within a population can have

important effects on the potential of a population to change in numbers in the future.

Temporal Patterns of Population Dynamics

The size of any population changes over time because individuals are born and die

and/or migrate into or out of the population. In other words,

Ntþ1 ¼ Nt þ B� Dþ I� E ð2Þ

where Nt+1 ¼ a population’s size or density at time t + 1, Nt ¼ its size/density

one unit of time (usually a year) earlier, B ¼ the number of births, D ¼ the number

of deaths, I ¼ the number of immigrants into the population, and E ¼ the number

of emigrants from the population during the period between t and t + 1.

Because plants are sessile, changes in the size of a plant population are typically

much more influenced by births and deaths than by immigration/emigration

(though the influence of dispersal will be addressed in section “Spatial Patterns of

Population Dynamics”).

It is easy to imagine that most plant populations must be in a state of equilibrium

(Nt+1 ¼ Nt), with births balancing deaths (Fig. 6).

Dramatic changes in the abundance of plant species are rarely observed. But

long-term monitoring of plant populations reveals that few populations are static, at

least not for long, and that even those that appear static are actually undergoing

considerable turnover (Silvertown and Charlesworth 2001). Static populations

tend to be restricted to species where individuals are long-lived, like trees, to

habitats that rarely experience disturbances and to locations where environmental

conditions are predictable from year to year. Few species or environments fit this

description.

Instead, the sizes of plant populations typically fluctuate over time, either

deterministically, stochastically, or both. Some populations appear to be increasing

in numbers (Fig. 7); others appear to be decreasing (Fig. 8).
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Over longer time periods, the same population can display both patterns. Often

superimposed on these trends, and also evident in populations with little overall

change, is an unpredictable “wobble” in numbers of individuals (Fig. 9).

Causes of Different Temporal Patterns of Plant Population
Dynamics

What causes these different patterns? One important approach to understanding

patterns of population dynamics is to build mathematical models that vary in the

assumptions they make about the forces that might influence a population’s
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dynamics and then to compare the dynamics of model populations to information

about natural populations obtained by regular censuses.

A model is simply a mathematical representation of a hypothesis; assumptions

about possible forces at work are represented as elements of that mathematical

expression. The goal of model building is to develop a model: (a) that is as simple as

possible, (b) that captures the essential forces responsible for a population’s

dynamic behavior, and (c) that omits details that do not provide additional explan-

atory power. Such a model will concisely explain the reasons for a particular pattern

of population dynamics.

This section will consider a series of such models/hypotheses, starting with

simple ones and moving on to models of increasing complexity and realism. The

simpler models, so-called unstructured models, treat all individuals as equal,
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ignoring demographic characteristics such as size differences among individuals.

While such models may be unrealistic, they provide an important foundation upon

which to build more realistic versions. The more complex versions, so-called

structured models, incorporate demographic variation among individuals.

The simplest representation of population growth is the geometric model:

Ntþ1 ¼ Nt � λ ð3Þ
where λ ¼ the population’s net reproductive rate, i.e., the ratio of Nt+1 to Nt. In

Eq. 3, λ is a constant; in other words, this model contains the implicit assumption

that the population’s net reproductive rate does not change as a function of the

population’s size, and is not influenced by changing environmental conditions. This

model can be generalized to longer time periods:

Nt ¼ N0 � λt ð4Þ

Apopulation with λ > 1 is increasing geometrically (see Fig. 10), one with λ < 1

is decreasing geometrically (see Fig. 11), and one with λ ¼ 1 is not changing in size.

Because this model is in the form of a difference equation, it is a particularly apt way

to describe a population whose size grows (or shrinks) in “spurts” that occur once a

year. This is the case, for example, for annual species in which individuals live for

one growing season, produce seeds, and die at the end of that season, their seeds

germinating at the beginning of the next growing season.

It is also possible to express the hypothesis that the population growth rate is a

constant in continuous time, a form that some readers may find more familiar:

dN

dt
¼ rN ð5Þ

In this continuous-time model of exponential (i.e., geometric) population

growth, r is a parameter known as the intrinsic or instantaneous rate of increase
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and is defined as the difference between the per capita birth and death rates.

A growing population has an r > 0, while a declining one has an r < 0. This

model produces the same results as those shown in Figs. 10 and 11 except that

the change in population size is continuous rather than stepwise. For more about

the correspondence between the difference-equation and continuous-time forms of

the geometric/exponential growth model, see Begon et al. (1996).

When a population’s dynamics fit the pattern of change in numbers over time

shown in Fig. 10, it suggests that necessary resources are superabundant relative to the

resource requirements of individuals in the population. This pattern can be observed

in plant populations that have recently colonized an environment where competitors

and predators are rare and where resources are temporarily superabundant, such as

species occupying a recently abandoned agricultural field, a newly logged forest, or

the site of a recent fire, flood, or other catastrophic disturbance. Many species are

specifically adapted to these habitats and are rarely seen in other circumstances,

surviving from disturbance to disturbance by means of long-lived seed banks.

However, few populations exhibit a pattern of geometric growth for more than a

short time; no population is capable of increasing forever without limit. One

obvious cause of population decline is a directional change in the suitability of

the environment resulting from successional change, e.g., as a meadow is colonized

by shrubs and trees, herb and grass species decrease in abundance. It is more

challenging to understand changes in numbers that occur in environments that are

not undergoing such obvious environmental change.

Populations that experience a positive growth phase at first are often limited

(eventually) by abiotic or biotic factors. Some of these factors act with an intensity

that is independent of the size of the population subject to them; these are often

referred to as density-independent limiting forces. For example, a severe drought

might cause the death of all of the seedlings whose roots failed to reach a particular

soil depth, no matter whether the density of seedlings was relatively high or
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relatively low. A late frost might cause the abortion of all the developing seeds in a

population. Density-independent mortality can periodically reduce the size of a

population; Fig. 12 shows population trends for Linanthus parryae, a desert annual,
in the Mojave Desert of southern California, USA. The years when no adults were

recorded had extremely low rainfall; the population persisted during these periods

by means of dormant seeds. It is hard to imagine a population in which density-

independent forces have no effect on population density or dynamics. However,

while density-independent mortality sources can limit the size of a population, they

cannot regulate it (Watkinson 1997).

What Forces Regulate the Sizes of Plant Populations?

Many populations appear to be regulated, i.e., to behave as though there were upper

and lower bounds on their size, in that the population tends to return to its previous

size or density following a perturbation. The population of the fast-growing annual

Poa annua shown in Fig. 13, for example, has reached a more or less stable density

in a relatively short time. Density-independent mortality sources cannot explain the

existence of these bounded patterns. To understand regulated patterns of population

dynamics, it is necessary to look to forces whose effects are proportionally more

severe when the density of a population is high than when it is low, i.e., forces

whose effects are density dependent.

For example, a plant seed might not germinate successfully unless it falls in a safe
site, a microsite that has the appropriate physical and biological conditions that will

permit a seedling to emerge safely from a seed (Harper 1977). Because any envi-

ronment contains a limited number of safe sites, themortality rate from failure to land

in a safe site will be greater when large numbers of seeds are produced thanwhen few

seeds are produced (Fig. 14). Or, consider a fungal pathogen that infects and kills

individual hemlock trees that are too weak to mount a defense. An individual tree is
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less vulnerable to infection in a population where individuals are widely spaced than

in one where trees are crowded and sunlight or nutrients are in short supply. Thus

mortality due to fungal attackmay be density dependent. Finally, when the number of

adult plants is small, each individual will grow larger and produce more seeds than

when individuals are denser (Fig. 14). All these forces tend to dampen variations in

population density and thus to regulate population numbers.

Because so many plant populations appear to be regulated in some way, the

existence of density dependence has been investigated in a wide range of species.

Both observational and experimental approaches have been used. Two kinds of

observational studies have provided evidence for density-dependent population

regulation. First, ecologists have looked for positive correlations between plant

size and interplant distance, considering such patterns to be evidence that plant size

is controlled, to some degree, by the intensity of competition with neighbors. Other

kinds of observational studies have taken advantage of natural variation in popula-

tion density, either in time or in space, to determine whether and how a population’s

birth and death rates vary with density. However, tightly regulated populations are
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expected to exhibit little natural variation in density; thus the stronger the regula-

tion, the harder it is to detect (Silvertown and Charlesworth 2001). Another

shortcoming of both kinds of observational studies is that spatial variation in

environmental factors could complicate the interpretation of observed trends

(Antonovics and Levin 1980). An alternative approach has been to alter density

experimentally, either in the field or in the greenhouse, and to measure how survival

and fecundity rates vary with density.

A large number of such studies have repeatedly demonstrated that variation in

population density can have dramatic effects on individual growth rates, fecundity

rates, and mortality rates (Harper 1977; Antonovics and Levin 1980). At relatively

low densities, individual plants tend to exhibit few reductions in performance.

However, at medium densities, reductions are often seen in growth rate and

reproductive output. Finally, at relatively high densities, mortality rates can

dramatically increase. For example, studies of how final biomass depends on the

density of seeds originally sown have repeatedly confirmed the “law of constant

final yield” (Fig. 15). Similarly, the relationship between plant weight and

plant density represented by the “�3/2 self-thinning law” (Eq. 1) illustrates the

powerful influence of density. Because these reductions are observed even in

controlled environments where herbivores and parasites are absent, it is clear that

these reductions are very often a consequence of resource competition among

conspecific neighbors.

The potential effect of intraspecific competition can be incorporated into the

previous model of population growth, shown here in the form of a difference

equation (contrast this with Eq. 3):

Ntþ1 ¼ Ntλ

1þ aNt

ð6Þ

In this so-called logistic model, a equals (λ � 1)/K, where K is the carrying

capacity of the environment for the species (in units of numbers of individuals).
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This model differs from the geometric model only in its modification of the assump-

tion that λ is a constant. The logistic model assumes that the growth rate is equal to λ
when Nt is near 0 and that it decreases linearly toward 1 as Nt approaches K. The

logistic model generates the population dynamics shown by the closed circles in

Fig. 16. A derivation of this model can be found in Begon et al. (1996).

Some readers may be more familiar with the continuous-time form of the logistic

model,

dN

dt
¼ rN

K� N

K

� �
ð7Þ

Equation 7 contains the same assumption about the linear dependence of the

population growth rate on N as does Eq. 6. Both models predict that a population’s

numbers should grow until they reach an equilibrium size (K), at which point deaths

balance births. The observation in nature of a trajectory like that in Fig. 13 implies

that a population’s dynamics are largely governed by intraspecific competition for

one or more limited resources. Many populations that initially display a pattern of

geometric growth eventually reach a more or less stable size like that predicted by

the logistic model.

Resource competition is not the only biotic interaction potentially capable of

regulating plant populations; interactions with enemies like herbivores, seed pred-

ators, and plant parasites such as fungi and bacteria also have the potential to act as

regulatory forces. An influential paper by Hairston et al. (1960) argued that the fact

that plants generally appear “abundant and largely intact” implied that it was

unlikely that plant populations could be regulated by their enemies. However, this

argument has been challenged for many reasons (see review by Crawley 1989).

Indeed, it is often assumed that natural enemies can regulate plant populations; for

example, efforts to use biological control to reduce weed populations are grounded

in this assumption (Halpern and Underwood 2006). In addition, a popular hypothesis
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to explain why plant species that have been transported from their native location to

a new geographical region often become invasive is the “enemy release hypothesis.”

This hypothesis proposes that movement to a new location releases nonnative

species from the regulatory effects of the enemies that held them in check where

they were native.

The relative importance of natural enemies in regulating plant populations

remains controversial, however, because they have been less well investigated

experimentally. Much of the evidence supporting the role of natural enemies

comes from large-scale releases of herbivores for purposes of weed control; such

releases are neither randomized nor replicated. Better evidence comes from con-

trolled experiments in which plants in plots protected from herbivore activity by

caging or insecticide application are compared to plants in unprotected control

plots. The results of such studies have been mixed, with vertebrate herbivores

typically exerting stronger regulatory effects than insects and some studies showing

no evidence for herbivore regulation (Crawley 1989). Because these methods of

herbivore exclusion have been shown to have unintentional treatment effects, even

those studies implicating herbivores as important do not necessarily provide com-

pelling evidence for the role of natural enemies in regulating plant population

dynamics (Crawley 1989). Additionally, such studies are often limited to measuring

the impact of enemies on individual plant performance, and their results cannot

easily be “scaled up” to provide insights about the regulation of entire populations.

For example, a herbivore that reduces an individual’s seed production might not

affect the population’s dynamics if the availability of safe sites limits the numbers

of seeds that can germinate successfully (Crawley 1989; Halpern and Underwood

2006). Finally, studies investigating the effect of natural enemies on plant perfor-

mance rarely investigate whether such effects are density dependent, as they must

be if they are to be able to regulate plant population dynamics (Halpern and

Underwood 2006). The role of natural enemies in regulating plant populations is

an important area in need of additional investigation, especially because the

findings of these efforts have important implications for the control of pests and

the management of plant invasions (Halpern and Underwood 2006).

The Role of Stochastic Influences, Especially in Small Populations

In addition to seeking to understand the forces that regulate sizes or densities of

plant populations, plant ecologists are also interested in understanding the role of

stochastic influences on population dynamics. Such influences are especially

important in small, at-risk plant populations. Ecologists recognize two kinds of

stochastic influences. Environmental stochasticity refers to erratic, unpredictable

variation among years in abiotic and biotic parameters such as rainfall, temperature,

winter snow depth, dates of first and last frost, or population sizes of predators,

parasites, or interspecific competitors. These forces can be thought of as external to

the population, and they affect all individuals in similar ways. Environmental

stochasticity, on short or long time scales, leads survival and recruitment rates to
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vary from 1 year to the next, producing temporal patterns like that in Fig. 9. All

natural populations, regardless of their size, are influenced to some degree by

environmental stochasticity.

In contrast to environmental stochasticity, demographic stochasticity refers to

variation in vital rates arising from chance differences in the fates of different

individuals; this kind of variation arises from within the population itself rather than

from external forces. For example, an average plant in a population might be

expected to produce 100 seeds, but not every plant conforms to this average.

Some might make more than 100 seeds, some fewer. Demographic stochasticity

is primarily a concern for small populations, because in large populations, there

are abundant opportunities for these random deviations from the mean to cancel one

another out. For this reason, large populations are much more likely to follow the

law of averages. In a small population, however, it is likely that these random

interindividual differences will lead to deviations in the numbers of deaths or births

in different years and thus to a population size that varies randomly from 1 year to

the next. Since small populations also experience environmental stochasticity, they

can fluctuate in size to a considerable degree between years. This fluctuation is

important because it greatly increases their vulnerability to extinction.

The way environmental stochasticity affects population dynamics, and thus a

population’s extinction risk, is important but somewhat counterintuitive. Temporal

fluctuations in vital rates do more than cause a population’s dynamics to be more

variable over time; they can actually cause a population to grow more slowly than it

would in the absence of variability. Morris and Doak (2002) illustrate this effect

using the following example. Imagine a population of 100 individuals with an

annual growth rate, λ, that can take one of two values, 0.86 and 1.16, each value

occurring with a 50 % probability. The average of these two values is 1.01; thus, we

might reasonably expect that this population would have 14,477 individuals

500 years in the future:

100 � 1:01ð Þ500 ¼ 14, 477 ð8Þ
However, the population will not grow at a rate of 1.01 every one of these

500 years. Each year, it will grow either at a rate of 1.16 or 0.86. If λ ¼ 1.16 in

exactly 250 years, and 0.86 in the other 250, which is quite probable, the population

would in fact have only 54 individuals 500 years from now, a huge difference from

the calculation in Eq. 8:

100 � 1:16ð Þ250 � 0:86ð Þ250 ¼ 54:8 ð9Þ
Of course other outcomes are possible in this probabilistic scenario, but this one

is the most likely. It is no accident that the computation that accounted for variation

in λ predicted a smaller population than the computation using the mean; incorpo-

rating stochasticity into models of population growth makes it likely that

populations will do worse than they would in a deterministic model (Morris and

Doak 2002).
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In the preceding example, the simple average of the two values of λ, 1.01,
generated a very poor (and wildly overoptimistic) prediction of the population’s

future dynamics. This simple average (the sum of n values divided by n) is also

known as the arithmetic mean. A less-familiar mean is the geometric mean (the nth

root of the product of n values). The geometric mean of 1.16 and 0.86 is 0.9988, and

using it instead of the arithmetic mean generates a more accurate prediction of the

population’s growth rate in the face of environmental stochasticity:

100 � 0:9988ð Þ500 ¼ 54:8 ð10Þ
The geometric mean of a series of numbers is always less than or equal to the

arithmetic mean. That the geometric mean λ yields a more accurate population

prediction should make sense, given that population growth is a multiplicative

process.

As this example illustrates, a population experiencing temporal variability in

vital rates might decline over time, even if in some years its growth rate, λ, is well
above 1.0. This fact has important implications for the persistence of species of

conservation concern. Using information about the amount of temporal variability a

population experiences, a prediction can be made about the likelihood that a

population will persist or go extinct within some specified time frame. Such

information can also be used to identify effective management options. These

investigations use a variety of modeling approaches collectively known as popula-

tion viability analysis (PVA).

Over the last several decades, the development of models to assess the extinction

risk of threatened or endangered populations has been one of the most active areas

of research in plant (and animal) population dynamics. Morris et al. (1999) is an

excellent introduction to some of the most commonly used PVA approaches, and

Morris and Doak (2002) provide further elaboration; Brigham and Thomson (2003)

provide a good, brief overview. PVA models allow λ to vary over a range of values
from year to year, with that range representing the degree of environmental

variation a population experiences. Such models cannot forecast the future size of

the population with certainty; instead, they aim to forecast the probability that a

population will achieve a particular size (or become effectively extinct) by some

specified future time. The greater the interannual variability in population growth

rates, the greater the uncertainty associated with these forecasts.

To illustrate this approach, some of the data in Fig. 2 for the Hawaiian silversword

are analyzed here using the simple PVA for “count data” (i.e., unstructured data)

presented in Morris et al. (1999). The data come from 11 permanent plots that were

established on Mt. Haleakala in 1982 to permit long-term monitoring of the silver-

sword population. All individuals in the plots were censused in 23 of the years

between 1982 and 2010 (Krushelnycky et al. 2013). The population in Fig. 2 shown

by the closed squares has fluctuated in numbers over the census period and since 2000

has appeared to be declining. What are the survival prospects for this population if

current trends continue? The first step in performing a count-based PVA is to estimate

values of μ, which is a stochastic version of the log of the population growth rate (see
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Morris andDoak 2002 for details), and of σ2, ameasure of the stochastic variance in μ.
Morris et al. (1999) and Morris and Doak (2002) provide formulas for computing

these parameters. Following their procedure yields a value for μ of �.001. The fact

that μ is negative means that the population will certainly go extinct; this is a

reasonable expectation given the population trend evident in Fig. 2. But how much

time will elapse before extinction occurs? To determine the likely time frame for this

event, the cumulative distribution function (CDF) of extinction probabilities can be

estimated (code for this computation is available in the R package “popbio”). To

estimate a CDF, it is important to define an extinction “threshold,” i.e., a number of

individuals below which the population becomes effectively extinct. In this example,

that threshold has been set to four individuals. The resulting CDF, shown in Fig. 17,

illustrates that without active management of some kind, this population of Hawaiian

silverswords is likely to be extinct within 200 years.

Incorporating Population Structure into Models and Analyses

Even these more complex models incorporating stochastic variation described in

the previous section are relatively simple in that they are unstructured. They track

total population numbers, treating all individuals as making the same contribution

to population growth, ignoring the fact that individuals can vary with respect to the

demographic parameters introduced in section “Structure of Plant Populations.”

Structured models of population dynamics take a different approach, tracking the

vital rates of different age, stage, or size classes separately and making predictions

not only about how the size of an entire population might change under different

assumptions, but also about how the abundances of each class are expected to

change. A great deal of research in plant population dynamics over the last several

decades has made use of these models.
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Structured models are based on the notion of a life table, a convenient way

to summarize demographic information for age-structured populations. First

developed for human populations, life tables contain information on how probabil-

ities of survival and reproduction vary with an individual’s age. A life table

summarizes data collected during repeated regular censuses of a cohort, which is

a group of individuals all born at the same point in time. This information can then

be used to calculate the cohort’s (and, by extension, the population’s) rate of

increase.

Each age is represented as a separate row in a life table (see Table 1), and

information on the survival and fecundity for each age is organized as a series of

columns. The first column of a life table contains the ages (x) of individuals in the

cohort, with x ¼ 0 representing the age of a newborn individual. (Because seeds

are so hard to observe, “birth” in plant life tables is often defined as the appearance

of a seedling.) While censuses are often conducted annually for organisms in

seasonal environments, census intervals may be chosen to be shorter (as in

Table 1) or longer than a year, depending on the life history of the organism.

The life table here is for an annual grass, Poa annua, and censuses were carried out
every three months.

At each census, the numbers of survivors of the cohort are counted. These data

are presented in the second column (ax). The original number of individuals in the

cohort, 843 in this example, is a0. These values can be used to compute each age

class’s age-specific survivorship, lx (ax/a0), which is the proportion of the original

cohort that lives at least until age x. Age-specific fecundity, mx, is typically

quantified as the mean number of seeds (or seedlings) produced per individual

while it is age x.

The symbols used to represent these different vital rates are unfortunately not

standardized; some authors use Nx in place of ax or Bx in place of mx. Likewise,

survivorship (lx) is sometimes represented as the proportion of a cohort still alive, as

is the case here, and other times as a standardized number of survivors from

a hypothetical original cohort of 1,000. It is also worth noting that for organisms

Table 1 A life table for the grass Poa annua, data from Law (1975), table adapted from Begon

et al. (1996)

x, age (in 3-month

periods in this

example)

ax, number of

individuals that live

to age x

lx, proportion

surviving to age

x

mx, mean number of seeds

produced by an individual while

age x

0 843 1.0 0

1 722 0.856 300

2 527 0.625 620

3 316 0.375 430

4 144 0.171 210

5 54 0.064 60

6 15 0.018 30

7 3 0.004 10

8 0 0 –
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with separate sexes, life tables are based on the number of female offspring

produced by a typical female, since the population growth rate in such species is

typically determined by the rate at which females reproduce. Since most plant

species are hermaphroditic, life tables for most plants need not make this

distinction.

The data in a life table can be used to compute the cohort’s net reproductive rate,

R0, the average number of offspring that a typical individual produces over its

lifetime, i.e., per generation. The formula for R0 is

R0 ¼
Xk
x¼0

lxmx ð11Þ

where k is the final age used in the life table. Note that R0 differs from a simple sum

of the numbers of offspring produced at each age; it weights each reproductive

episode by the likelihood that an individual will live to that age. The units of R0 are

the expected numbers of offspring produced per newborn individual per generation.

In order to convert R0 to λ or to r, the generation time, G, must be computed, as

follows:

G ¼
X k

x¼0
lxmxxX k

x¼0
lxmx

ð12Þ

The relationship between R0 and λ is then

λ ¼ R0ð Þ1
G ð13Þ

while the relationship between R0 and r is

r ¼ ln R0ð Þ
G

ð14Þ

It is important to note that life tables, like the simplest unstructured models

presented in section “Causes of Different Temporal Patterns of Plant Population

Dynamics,” assume that an individual’s fecundity depends only on its age and is not

affected by population density. Thus a life table is implicitly a geometric growth

model. In that sense, it can accurately compute a population’s current reproductive

rate, but it might do a poor job of forecasting future reproduction. Secondly,

because in many plants the correlation between age and size is not very strong

(Gurevitch et al. 2002), life tables are not appropriate tools for the study of many

plant populations; they are probably most appropriately applied to annual species,

as in Table 1. However, they provide a useful introduction to other kinds of

structured models.

Structured models of most plant species tend to use size classes rather than age

classes. The use of size classes introduces some complications into the modeling

process. In a life table, in which individuals are classified by their age, an

individual can have only two possible fates between successive censuses: it may
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move into the next age class, or it may die. When individuals are classified by size

rather than age, there are more possibilities. Between censuses, an individual may

(a) move from a smaller size class to one or more larger size classes (“growth”),

(b) move from a larger class to one or more smaller classes (“regression”),

(c) remain in the same class (“stasis”), or (d) die. These complex possibilities are

often displayed in the form of a life-cycle diagram. Figure 18 shows a life-cycle

diagram for American ginseng, Panax quinquefolius, an herbaceous perennial.

The arrows represent the possible changes that individual plants can undergo

between successive censuses, as well as the fact that plants having at least two

leaves can also produce seeds. Individuals that die between censuses are not shown

in the diagram.

To accommodate these complications, plant ecologists generally model a

structured population’s dynamics with size-structured transition matrix models,

also known as Leslie matrix models, Lefkovitch models, or simply matrix

models. A “transition” is a period of time between successive population censuses,

during which individuals in the population may undergo changes in their status, like

those in Fig. 18. These models represent the population’s status changes during

each of these transitions as a matrix of vital rates (Fig. 19). Each vital rage is

estimated from annual censuses of individually marked plants. A transition matrix

is square (i.e., it has equal numbers of rows and columns). There are as many

rows and columns as there are size classes. Each entry in the matrix has

two subscripts: the first (i) representing its row (i.e., the class it has transitioned

to) and the second (j) representing its column (i.e., the class it has transitioned

from). Each entry in the matrix, aij, represents the proportion of individuals

originally present in class j that transitioned to class i between the first and second

census.

Seed
Seedling 1-leaf 2-leaf 3-leaf 4-leaf

Fig. 18 Life-cycle diagram for Panax quinquefolius, American ginseng. In this scheme, individ-

uals are divided into six possible size classes. Information from annual censuses allows researchers

to estimate the probability of each of the “transitions” represented by the arrows (Reprinted from

Farrington et al. 2008)
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Though a transition matrix does not explicitly include survival/mortality rates

for each size class, the proportion of individuals in class j experiencing mortality

between the two censuses can be calculated as

1�
Xi¼k

i¼1

aij ð15Þ

Conventionally, the first class in a transition matrix represents newborn individ-

uals (i.e., individuals present at the second census that were not present at the first),

so the entries in the top row of the matrix are zero until reproduction has been

incorporated. The reproductive contribution of class j is defined as the mean

number of class-1 individuals present at time t + 1 that were produced between

the first and second censuses by individuals in class j at time t. Morris et al. (1999)

and Morris and Doak (2002) provide clear accounts of how to construct a transition

matrix from census data.

Figure 20 shows an example of a matrix (M) for a hypothetical plant population

in which individuals can belong to any of three size classes. In this example, these

transitions are possible: class-1 individuals can grow to class 2 or to class 3 or die;

class-2 individuals can stay in class 2, grow to class 3, or die; and class-3 individ-

uals can stay in class 3 or die. Only class-3 individuals can reproduce. Figure 20

also shows two vectors (columns of numbers). These vectors represent the

population’s size structure, i.e., the numbers of individuals present in each size

class at some particular census period. The sum of these numbers equals nt, the total

number of individuals in the population at time t.

Matrix models place vital rate data into a matrix format so that the operations of

matrix algebra can be used to project the population’s size structure into the future,

M nt nt+1×

×

=

=
0 .1250

.091 0.601

.633 .82.011

(0 × 15)

(.601 × 15)

(.011 × 15)

(0 × 30)

(.091 × 30)

(.633 × 30)

(.125 × 100)

(0 × 100)

(.82 × 100)

15
30
100

=
12.5

11.745
101.155

Fig. 20 This example represents a population divided into three size classes. At time t there were

15 class-1 individuals, 30 class-2 individuals, and 100 class-3 individuals. Multiplication of the

matrixM by the vector nt as shown produces a new vector, nt+1, of 12.5 class-1 individuals, 11.745
class-2 individuals, and 101.155 class-3 individuals (since a fractional individual cannot exist,

these are often rounded to the nearest whole number)

From class (at time t):

To class
(at time t+1):

2

3

4

1
a21

a31

a41

a11

a22

a32

a42

a12

a23

a33

a43

a13

a24

a34

a44

a14

2 3 41

Fig. 19 A generic size-

classified transition matrix

model for a species with four

size classes, not yet

parameterized with data
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given particular assumptions. When a transition matrix is multiplied by a vector that

represents a population’s current size structure, the resulting vector gives the

population’s size structure 1 year in the future. (Figure 20 shows how matrix

multiplication is carried out.) Repeated multiplication of the matrix by the resulting

vector (using mathematical software such as MATLAB or Mathematica) can

project the population any number of years into the future. Iterative multiplication

eventually yields a population size structure that is stable, in the sense that the

proportion of the population in each size class does not change, even as the total

population size continues to grow (or shrink). The dominant eigenvalue of the

matrix, which can be easily computed with mathematical software, is equivalent

to λ, the population’s rate of increase, the rate at which the population size will

change once it has achieved its stable size structure. This one parameter, λ,
integrates multiple vital rates into a single metric.

Because λ indicates whether a population is stable, increasing, or declining, it

provides important basic information about a population’s status. Matrix models

also allow researchers to determine other important information about a species.

Through approaches known as sensitivity and elasticity analyses and life table

response experiments (Caswell 2001), the contribution of individual vital rates or

of particular matrix entries to the overall population growth rate can be assessed.

These analyses allow researchers to explore the specific mechanisms underlying

observed variation in λ over time or between different populations. More complex

versions of these models can be created to incorporate the production of vegetative

propagules, seed dormancy, and other life history variations.

But the growth in the use of matrix models since their introduction in the early

1970s is due particularly to their usefulness for guiding management (Crone

et al. 2011). For the last several decades, conservation biologists have studied the

population dynamics of plant species of conservation concern to better document

the status of sensitive species of plants, to quantify extinction risk, to understand the

causes of population declines, to explore possible ways to reverse those declines,

and to assess the effects of possible changes in management or environmental

conditions. For those charged with managing these species, managing invasive

species, or setting guidelines for sustainable harvesting, λ provides important

information about population status.

Furthermore, matrix models can allow a researcher to model the potential long-

term effects of events that a natural or managed population might experience, such

as herbivory, harvesting, controlled burning, etc. This can be done in a variety of

ways. A sensitivity analysis allows ecologists to evaluate the effectiveness of

management alternatives that are expected to alter particular elements in a matrix.

Alternatively, potential management approaches can be simulated by repeatedly

multiplying alternative matrices, representing different environmental states, in

different orders (see the example of Hudsonia montana described below). Such

information can help managers decide whether a particular harvesting rate is

sustainable or how frequently to mow or burn a meadow or grassland they are

managing for a sensitive species. For example, American ginseng is a plant that is

harvested as a medicinal herb; its market value makes it a tempting target for illegal

54 P. Bierzychudek



overharvesting. Farrington et al. (2008) modified vital rates in a matrix model to

investigate how different levels of harvesting, in association with browsing by deer,

influenced ginseng’s population growth rate.

For all of the reasons described above, matrix models have become the primary

analytical tool for studying plant population dynamics; by 2009, well over 300 such

studies had been published (Crone et al. 2011), and their numbers continue to grow.

However, some caveats about the use of matrix models are in order. One of the

assumptions of the basic transition matrix model is that the population’s vital

rates as represented in the matrix will remain constant over the time frame

over which λ is being projected. However, vital rates are not fixed; they vary

from 1 year to the next, as a consequence of stochastic environmental variation.

Two censuses – one transition – cannot capture the full range of environmental

variation that a population experiences. Ecologists have invested considerable

effort in developing ways to incorporate this year-to-year variation in vital rates

into matrix models.

There are two general approaches for incorporating environmental variability

into matrix models; both require census data frommultiple years. The first approach

is to construct a series of transition matrices, one for each pair of censuses. Then,

λ is computed by computer simulation, by drawing individual matrices at random

(with replacement) from the pool of those available. The second approach is to

represent each vital rate in the matrix as a random variable capable of taking on a

range of possible values (determined using census data from multiple years) and

then to use computer simulation to create a unique matrix from these ranges of

allowable values for each time step in the simulation. In both approaches, because

the sequence of matrices used will affect the value of λ, researchers compute the

mean and variance of λ from a large number of simulations (1,000 or more). These

approaches thus also provide researchers with important information about the

uncertainty associated with their estimates of λ. Both approaches to incorporating

temporal variability in vital rates have strengths and weaknesses and many varia-

tions (see Morris and Doak 2002).

A good example of the utility of the matrix model approach for the management

of threatened species is provided by a study of mountain golden heather, Hudsonia
montana, a threatened shrub from North Carolina, USA (Gross et al. 1998). Once

thought to be extinct, H. montana was rediscovered in 1979. The reasons for its low
numbers were hypothesized to be either competition from other plants as a result of

fire suppression and/or trampling by hikers and campers. Gross et al. (1998) used

matrix modeling to address these questions aboutH. montana: How can recovery be

achieved? Would protection from trampling be sufficient to permit recovery? Can

the implementation of controlled burns achieve recovery? Must both strategies be

implemented? If controlled burns are important, given their high cost, what is the

least frequent burn interval that can achieve a positive population growth rate?

Gross et al.’s (1998) study used census data on H. montana collected over 5 years

from an unmanipulated population as well as from one subjected to a controlled

burn. Observations of the reasons for each observed mortality event allowed the

quantification of trampling-caused mortality. Multiple censuses provided Gross
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et al. (1998) with data on vital rates in the burned population during the year of the

burn as well as 1 and 2 years afterward.

Gross et al. (1998) performed both a deterministic analysis as well as one that

incorporated stochastic variability by treating each vital rate as a random variable.

In the deterministic analysis, they created different matrices that represented

populations subject to one of three levels of trampling (no reduction from current

levels and 50 % and 100 % reductions of trampling mortality) in non-burn, burn,

and postburn years. By multiplying different matrices together, they created prod-

uct matrices that simulated a variety of burn scenarios (e.g., burning every other

year, every 5th year, every 10th year) in combination with any of the three

trampling scenarios and computed λ for each one. In their stochastic analysis,

they explored 39 different management strategies, consisting of the three different

trampling levels combined with 13 different burn scenarios, ranging from no

burning to control burns carried out at intervals of between 1 and 20 years.

The study’s results demonstrated that neither management strategy by itself was

sufficient to reverse the decline of H. montana (Fig. 21). However, they found that

population growth (λ > 1) was possible if burning was combined with the elimi-

nation of some or all of the trampling. While one burn every 6–8 years was

predicted to maximize H. montana’s growth rate, Gross et al. (1998) found that

decreasing the burn frequency to as much as once every 12–16 years would still

allow the numbers of this threatened plant to increase. The stochastic analysis

produced a somewhat more optimistic outlook (compare Fig. 21) than the deter-

ministic one. This finding runs counter to the idea described in section “The Role of

Stochastic Influences, Especially in Small Populations” that incorporating environ-

mental variability often leads to forecasts of slower population growth. This result

could be due to the nature of the variability in this particular example or to negative

correlations in the variability of different vital rates (Doak et al. 2005).

Gross et al. (1998) asked what strategies would be effective in reversing

H. montana’s observed decline. The same data can be used to carry out a PVA.

The goal of such an analysis is to forecast the probability of extinction if no

management were implemented. Morris and Doak (2002) reanalyzed Gross

et al.’s (1998) data to produce such a forecast. Incorporating environmental vari-

ability by using a matrix-selection approach, Morris and Doak (2002) computed the

cumulative probability of extinction (which they defined as the population’s falling

below 500 individuals, since most of the “individuals” are dormant seeds in the soil)

as a function of time. They found that, in the absence of any management action, the

population has nearly a 50 % probability of extinction within 50 years (Fig. 22).

Methods for these and other analyses using matrix models can be found in Caswell

(2001) and in Morris and Doak (2002), and code for carrying them out is available

in the R package “popbio.”

The incorporation of environmental variability is not the only important concern

when using matrix models. Another assumption of matrix models is that the

population has attained a stable size distribution. Until this occurs, the actual

population growth rate can be quite different and either larger than or smaller

than λ. A population in a highly variable environment may not have the opportunity
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to achieve a stable size distribution, in which case the λ generated by a matrix

model may provide a poor forecast of population behavior. However, Williams

et al. (2011) surveyed data from 46 plant species and found that most were near

their stable size distributions. For populations that are not, methods of transient

analyses (references in Williams et al. 2011) can be used to arrive at forecasts of

population growth rates.

Thirdly, it is important to recognize that while these models are structured, they

are variations of the simple geometric growth model first presented in section

“Causes of Different Temporal Patterns of Plant Population Dynamics,” in which

λ is assumed to be independent of population density. In that section, it was

acknowledged that the geometric model is quite unrealistic. However, measured

values of λ for plant populations tend to center around 1.0 (Crone et al. 2013),

which implies that most of the populations analyzed using these models are not
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changing in size very rapidly; therefore, the geometric model may often be an

appropriate one. For species of conservation concern, whose population sizes are by

definition well below K, the assumption of a lack of density dependence is certainly

appropriate, justifying the widespread use of these models for this purpose. Never-

theless, it is clear that there are some kinds of plant populations for which this

density-independent approach is unsuitable. For this reason, density-dependent

versions of matrix models have been developed (Caswell 2001: Morris and

Doak 2002).

The widespread use of matrix models, coupled with an appreciation of their

limitations/assumptions, has raised questions about their value and applicability.

Crone et al. (2013) used long-term data from 20 plant species to compare

the forecasts of matrix models for these species with their observed population

dynamics. They concluded that matrix models provided a good integration of a

population’s vital rates during the time period during which those vital rates had

been estimated and that λ was indeed a suitable way to assess a population’s status

and to evaluate management options. However, they found that in many instances,

matrix models failed to accurately forecast future population sizes. In evaluating

the possible causes of this failure, Crone et al. (2013) ruled out density dependence

and shortcomings in the number of sampled plants or census years, two often-cited

concerns about matrix models.

Instead, they concluded that the most plausible explanation for why matrix

models sometimes fail to accurately forecast future population behavior is that

the assumption of environmental constancy (even allowing for stochastic variation

about some mean) is not met (Crone et al. 2013). Especially in the face of the

environmental changes in temperature and precipitation currently occurring as a

result of anthropogenically increased levels of atmospheric CO2, it is clearly

desirable to develop ways to incorporate the likely effects of directionally changing

environmental parameters into models of population dynamics.
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Krushelnycky et al. (2013) took such an approach to try to understand the

reasons why, after such a successful population recovery, the Hawaiian silversword

population has once again begun to decline. Since climate data indicated that

conditions on the volcano had become drier and warmer over time, they investi-

gated this possible cause for the declining population growth rate by modeling the

dependence of annual values of λ on various measures of rainfall and temperature.

They found that λ was positively correlated with the number of wet season days

having >10 mm of rainfall and negatively correlated with the number of rainless

days during the dry season. However, λ was also negatively correlated with the

number of rainy season days where rainfall exceeded 15 mm. These associations

explained 64 % of the observed variation in λ. Population growth rate did not

depend significantly on temperature. These results suggested that changes in rain-

fall patterns are affecting the persistence of the silversword population, though not

in a straightforward way. The authors concluded that the view of the Haleakala

silversword as “secure” is no longer justified, now that global climate change has

begun to significantly affect rainfall patterns on the volcano. Despite successful

efforts to address earlier threats of vandalism and grazing, it now seems that the

silversword has a bigger problem, one not so easily solved by building fences or

educating visitors; climate change appears to be causing most of these high-altitude

populations to decline (Krushelnycky et al. 2013).

Increasingly, plant ecologists are looking for ways to incorporate the role of

changing environmental factors into their analyses of past population dynamics, as

in the above example, as well as into forecasts of future dynamics. For example,

Salguero-Gomez et al. (2012) used structured demographic models, coupled with

high-resolution climatic models projecting future global changes in temperature and

precipitation, to assess how these climatic changes would be likely to affect two

species of desert plants, one fromUtah in southwestern North America and one from

Israel’s Negev Desert. Their surprising result was that projected changes in precip-

itation in these regions (increases in Utah, decreases in Israel) were expected to lead

to increased population growth for both plant species (Salguero-Gomez et al. 2012).

Spatial Patterns of Population Dynamics

Up until now, the emphasis in this chapter has been on how births and deaths

contribute to changes in the size or density of plant populations. Immigration and

emigration, though included in Eq. 2, have been ignored. But just as population

densities vary in time, they can also vary spatially. Ecologists are discovering that

this spatial variation is fluid rather than static. They are asking questions about what

determines these patterns and developing tools to study them.

The study of spatial patterns of population dynamics is driven in large part by the

recognition that suitable habitat for many species is fragmented rather than contig-

uous. The fragmentary nature of suitable habitat is caused not only by natural

physical phenomena (e.g., variation in parent material of soil, in elevation and

hydrology, and the ephemeral nature of many habitats) but also, very importantly,
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by human activities like urban and agricultural development, forest harvesting, etc.

Such anthropogenic habitat fragmentation has been recognized as one of the greatest

threats to species diversity. Regardless of the cause of patchiness, many plant species

are distributed within discrete patches of suitable habitat embedded in an unsuitable

habitat matrix; these patches can be connected by the dispersal of seeds and/or pollen.

Understanding the persistence of species in fragmented habitats often requires

adopting a spatial perspective that includes more than a single local population.

Regional assemblages of populations of the same species can take many forms.

The best-studied type of regional population assemblage is the metapopulation.
A metapopulation is a network of relatively small, local subpopulations connected

by migration. Because of their small size, individual subpopulations within the

larger metapopulation are prone to local extinction. Metapopulation theory has led

to the conclusion that in order for a metapopulation to persist over the long term,

there must be asynchronous, reciprocal dispersal between existing subpopulations

and from existing subpopulations to unoccupied patches of suitable habitat and that

the density of suitable habitat patches must exceed some threshold (Freckleton and

Watkinson 2002). The dynamics of the entire metapopulation are determined by

these processes of extinction, dispersal, and recolonization and thus are not a simple

function of the collective dynamics of local populations (Freckleton and Watkinson

2002). Likewise, the dynamics of local populations that are part of a metapopulation

cannot be completely understood without adopting a metapopulation perspective.

While metapopulation theory has had a strong influence on how animal

populations are studied, there are limited numbers of studies of plant populations

that take a metapopulation perspective, in part because the existence of seed

dormancy in many plant species complicates the quantification of extinction rates

(Husband and Barrett, 1996) and also because it is difficult to recognize what

constitutes a suitable habitat patch when it is unoccupied (Freckleton and

Watkinson 2002). Another way in which regional assemblages of plant populations

may differ from those of animals is that plants and their propagules are often very

long-lived, and their dispersal abilities are more limited than those of animals; thus

processes such as extinction and colonization may take place on much longer time

scales. Consequently, few studies have attempted to measure colonization, extinc-

tion, and recolonization rates and the density of suitable habitat patches for regional

assemblages of plant species (Freckleton and Watkinson 2002; Ouborg and

Eriksson 2004). In fact, the very applicability of the metapopulation concept to

plant species continues to be the topic of vigorous debate (Husband and Barrett,

1996; Freckleton and Watkinson 2002; Ouborg and Eriksson 2004).

Determining whether a particular plant species has a true metapopulation struc-

ture is more than an academic concern; it has important implications for how

species conservation should be approached. For species that exist as

metapopulations, it is inevitable that local populations will go extinct, so conser-

vation efforts must not only protect existing subpopulations; they must also protect

unoccupied but suitable habitat and conserve dispersal opportunities (e.g., through

the creation of corridors). This is not necessary when local processes dominate

spatial dynamics. In addition to metapopulations, ecologists recognize other kinds
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of regional population assemblages. For example, some species occupy networks of

habitat patches in which dispersal is primarily one way. Such networks (termed

“source-sink” or “mainland-island” models) can persist if there are one or more

source populations (where reproduction rates typically exceed mortality rates) that

periodically provide emigrants to sink populations (where mortality rates typically

exceed reproductive rates). In other species, different subpopulations may be so

isolated from one another that the subpopulations are more or less unconnected and

regional-scale spatial dynamics are governed almost completely by the dynamics of

local populations. Finally, there are species that do not occupy distinct habitat

patches, but exist as spatially distinct subpopulations within an essentially contin-

uous habitat; spatial dynamics in this case are also governed largely by local

processes (Freckleton and Watkinson 2002; Ouborg and Eriksson 2004). Given

the importance of understanding spatial population dynamics to ecology, evolution,

and conservation, the study of metapopulations in particular and of spatial dynam-

ics in general is and will continue to be an active area of ongoing research in plant

ecology (Ouborg and Eriksson 2004).

A Brief Guide to Methodological Approaches Used in Field
Studies of Plant Population Dynamics

Defining the Boundaries of a Population

Apopulation is a group of individuals belonging to the same species.Howdo ecologists

determine the boundaries of a population? Sometimes boundaries are obvious, e.g.,

when a plant species lives on an island or in a natural area surrounded by developed

land. But other times, a population’s boundaries are not so obvious; in these situations,

ecologists define the boundaries of a population somewhat arbitrarily. Knowledge of

the typical dispersal distance of seeds, or of the flight distance of pollinators, can be

helpful in defining boundaries. In practice, ecologists usually define boundaries as

regions where a population’s density falls off. Unless the population of interest is

assumed to be closed to immigration/emigration, such a loose definition does not

usually present a problem. The concept of a population is, after all, a human construct.

Anyone who studies population dynamics must make choices about how many

and which populations to include in their study. These might be a random sample of

known populations, or populations might be chosen because of some factor of

interest that is being investigated. Issues that arise in sampling from a set of possible

populations are addressed by Morris and Doak (2002).

Censusing Populations

In the beginning of this chapter, repeated censuses were described as being at the

heart of studies of plant population dynamics. Of course, annual censuses must be

made at approximately the same time each year. Some studies of population
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dynamics (known as count-based studies) only require information about how the

numbers of individuals in the population change over time. For these studies, it is

not necessary to know how each individual plant’s status changes temporally and

thus marking plants individually is unnecessary. It is not even necessary to count

the numbers of seeds in the soil, because such censuses are useful as long as they

represent counts of a constant fraction of the population each year (Morris

and Doak 2002). If a population is at or near a stable size distribution (see

section “Incorporating Population Structure into Models and Analyses”), this

assumption is likely to be met and seeds can be ignored. However, careful records

do need to be kept about the location of population boundaries, so repeated counts

can be made in the same area. Count data are the easiest data to acquire and are the

kinds of data most often collected by land managers responsible for monitoring

sensitive species. Analysis of these data is done by means of unstructured models

(see section “The Role of Stochastic Influences, Especially in Small Populations”).

However, it is relatively easy to track changes in the status of individual plants

over time and thus to go beyond count-based studies to incorporate information on a

population’s age or size structure and how it changes over time. [A video by plant

ecologist James McGraw demonstrates some of these techniques using wild gin-

seng, Panax quinquefolium. http://www.youtube.com/watch?v¼u3CxPUr6cy4.]

These data can then be used to parameterize structured models (see section

“Incorporating Population Structure into Models and Analyses”). Gathering such

information typically requires marking each individual in the population (or a

randomly chosen subset of individuals) with a unique number, usually by attaching

numbered metal tags to the plants or inserting them into the ground nearby. A metal

detector can be a useful tool for relocating buried tags. Alternatively, for very

small plants, the corners of small sampling plots can be marked with nails and a

pantograph, photograph, or other method used to locate and relocate particular

individuals within the plot. However, rhizomatous plants and those whose position

may be altered by burrowing animals or by frost heaving can move a surprising

amount from 1 year to the next, making reliable re-identification difficult.

For structured population studies, decisions must be made about how to demar-

cate size classes or stages. This decision is partly based on convenience and

feasibility, but it is also important to find a reasonable compromise between

creating too few and too many classes. The more individuals in each class, the

more accurately their vital rates can be estimated. But the wider the boundaries of

the class, the more likely it is that the class will pool individuals of widely varying

sizes, with divergent demographic fates. See Caswell (2001) and Morris and Doak

(2002) for detailed advice about defining size class boundaries.

While most size classes are relatively easy to recognize, others are more

problematic. Some perennial plants have underground corms or other perennating

organs that, though alive, may remain dormant for one or more growing seasons.

Distinguishing dormancy from mortality requires multiple census years. Accurately

estimating individual fecundity can be difficult without repeated visits to a

population at the time of seed production, and many species have seeds that

remain dormant in the seed bank for anywhere from a few months to many years.
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Sometimes experiments involving buried seeds are necessary to quantify seed

dormancy and survival rates. Other species form vegetative propagules (e.g.,

cormlets) that can be dispersed and must be accounted for. Each species requires

its own set of methodological decisions.

Future Directions

Transition matrix models will continue to be an important way to study the

dynamics of plant populations and to guide management decisions. Every year

these models grow increasingly sophisticated (Salguero-Gomez and de Kroon

2010). Some of the newest developments include ways to represent networks of

populations connected by dispersal, investigate the importance of ecological drivers

of population dynamics, explore the transient dynamics of populations responding

to changing conditions, and make better population forecasts in the face of temporal

and spatial stochasticity.

Understanding the effects of climate change on plant population dynamics, in

particular, is an area of high priority. Climate change is a long-term, uncontrolled

experiment whose effects on population dynamics are of great scientific and

practical importance. The large numbers of published studies making use of matrix

models facilitate the asking of questions such as: can we make robust predictions

about whether species in particular habitats or with particular life histories are more

or less vulnerable to the effects of stochasticity or climate change than others?

In the study of population dynamics in general, advances in molecular technol-

ogies are making it possible to identify and quantify soil microorganisms, permit-

ting researchers to begin to explore how interactions with soil biota determine plant

population dynamics (Bever et al. 1997). And there are growing links between the

study of population dynamics and other biological subdisciplines, such as commu-

nity ecology, ecosystem ecology, and ecophysiology, with the goal of providing a

greater mechanistic understanding of the processes underlying population dynam-

ics and a better understanding of large-scale ecological processes.
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