
On the Length of Binary Forms
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Abstract The K-length of a form f in K[x1, . . . , xn], K ⊂ C, is the smallest
number of d-th powers of linear forms of which f is a K-linear combination.
We present many results, old and new, about K-length, mainly for n = 2, and often
about the length of the same form over different fields. For example, the K-length
of 3x5 − 20x3y2 + 10xy4 is three for K = Q(

√−1), four for K = Q(
√−2) and

five for K = R.
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1 Introduction and Overview

Suppose f(x1, . . . , xn) is a form of degree dwith coefficients in a fieldK ⊆ C. The
K-length of f , LK(f), is the smallest r for which there exist λj , αjk ∈ K so that

f(x1, . . . , xn) =
r∑

j=1

λj
(
αj1x1 + · · ·+ αjnxn

)d
. (1.1)

In this paper, we consider the K-length of a fixed form f as K varies; this
is apparently an open question in the literature, even for binary forms (n = 2).
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Sylvester [53, 54] explained how to compute LC(f) for binary forms in 1851 and
gave a lower bound for LR(f) for binary forms in 1864. Except for a few remarks,
we shall restrict our attention to binary forms.

It is trivially true that LK(f) = 1 for linear f and for d = 2, LK(f) equals the
rank of f : a representation over K can be found by completing the square, and this
length cannot be shortened by enlarging the field. Accordingly, we shall also assume
that d ≥ 3.

When K = C, the λj ’s in (1.1) are superfluous. The computation of LC(f)
is a huge, venerable and active subject, and difficult when n ≥ 3. The interested
reader is directed to [2,7,8,14,17,18,22,25,28,34,44–46] as representative recent
works. Even for small n, d ≥ 3, there are still many open questions. Landsberg
and Teitler [34] complete a classification of LC(f) for ternary cubics f and
also discuss LC(x1x2 · · ·xn), among other topics. Historically, much attention has
centered on the C-length of a general form of degree d. In 1995, Alexander and
Hirschowitz [1] (see also [5, 36]) established that for n, d ≥ 3, this length is
� 1
n

(
n+d−1
n−1

)�, the constant-counting value, with the four exceptions known since
the nineteenth century – (n, d) = (3, 5), (4, 3), (4, 4), (4, 5) – in which the length is
� 1
n

(
n+d−1
n−1

)�+1. There has been a recent series of papers studying LR(f) [4,9,15];
these study the length in a greater depth than we do here.

Two central examples illustrate the phenomenon of multiple lengths over differ-
ent fields.

Example 1.1. Suppose f(x, y) = (x+
√
2y)d+(x−√

2y)d ∈ Q[x, y]. ThenLK(f)
is 2 (if

√
2 ∈ K) and d (otherwise). This example first appeared in [47, p. 137]. (See

Theorem 4.6 for a generalization.)

Example 1.2. If φ(x, y) = 3x5 − 20x3y2 + 10xy4, then LK(φ) = 3 if and only if√−1 ∈ K , LK(φ) = 4 for K = Q(
√−2),Q(

√−3),Q(
√−5),Q(

√−6) (at least)
and LR(φ) = 5. (We give proofs of these assertions in Examples 2.1 and 3.1.)

The following simple definitions and remarks apply in the obvious way to forms
in n ≥ 3 variables, but for simplicity are given for binary forms. A representation
such as (1.1) is calledK-minimal if r = LK(f). Two linear forms are called distinct
if they (or their d-th powers) are not proportional. A representation is honest if the
summands are pairwise distinct. Any minimal representation is honest. Two honest
representations are different if the ordered sets of summands are not rearrangements
of each other; we shall not distinguish between �d and (ζkd �)

d where ζd = e2πi/d.
If g is obtained from f by an invertible linear change of variables over K , then
LK(f) = LK(g).

Given a form f ∈ C[x, y], we letEf denote the field generated by the coefficients
of f over C; LK(f) is defined for fields K satisfying Ef ⊆ K ⊆ C. The following
implication is immediate:

K1 ⊂ K2 =⇒ LK1(f) ≥ LK2(f). (1.2)

Strict inequality in (1.2) is possible, as shown by the two examples. Finally, we
define the cabinet of f , C(f), to be the set of all possible lengths for f .
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There is a natural alternative definition of length in which sums of powers are
considered without coefficients. This makes no difference when K = C or K =
R and d is odd, but in other cases, a form might not even be a sum of powers.
For example,

√
2 is not totally positive in K = Q(

√
2), so

√
2 · x2 is not a sum of

squares inK[x], and x4+λx2y2+y4 is a sum of fourth powers of real linear forms if
and only if 0 ≤ λ ≤ 6. This alternative definition was studied by Ellison [19] in the
special casesK = C,R,Q. Newman and Slater [39] do not restrict to homogeneous
polynomials. They write x as a sum of d d-th powers of linear polynomials; by
substitution, any polynomial is a sum of at most d d-th powers of polynomials.
They also show that the minimum number of d-th powers in this formulation is
≥ √

d. Because of the degrees of the summands, these methods do not homogenize
to forms. Mordell [37] showed that a polynomial that is a sum of cubes of linear
forms over Z is also a sum of at most eight such cubes. More generally, if R is a
commutative ring, then its d-Pythagoras number, Pd(R), is the smallest integer k
so that any sum of d-th powers in R is a sum of k d-th powers. Helmke [25] uses
both definitions for length for forms, but is mainly concerned with the alternative
definition in the case when K is an algebraically closed (or a real closed) field of
characteristic zero, not necessarily a subset of C. This subject is closely related to
Hilbert’s 17th Problem; see [10–12]. In [47], a principal object of study is Qn,2k,
the (closed convex) cone of real forms which are a sum of 2k-th powers of real
linear forms.

We now outline the remainder of the paper.
In Sect. 2, we give a self-contained proof of Sylvester’s 1851 Theorem

(Theorem 2.1). Although originally given over C, it adapts easily to any K ⊂ C

(Corollary 2.2). If f is a binary form, then LK(f) ≤ r if and only if a certain
subspace of the binary forms of degree r (a subspace determined by f ) contains a
form that splits into distinct factors over K . We illustrate the algorithm by proving
the assertions of lengths 3 and 4 for φ in Example 1.2.

In Sect. 3, we prove (Theorem 3.2) a homogenized version of Sylvester’s 1864
Theorem (Theorem 3.1), which implies that if real f has r linear factors over R
(counting multiplicity), then LR(f) ≥ r. As far as we can tell, Sylvester did
not connect his two theorems: perhaps because he presented the second one for
non-homogeneous polynomials in one variable.

We apply these theorems and some other simple observations in Sects. 4 and 5.
We first show that if LC(f) = 1, then LEf

(f) = 1 as well (Theorem 4.1). Any
set of d + 1 d-th powers of pairwise distinct linear forms is linearly independent
(Theorem 4.2). It follows quickly that if f(x, y) has two different honest repre-
sentations of length r and s, then r + s ≥ d + 2 (Corollary 4.3), and so if
LEf

(f) = r ≤ d+1
2 , then the representation over Ef is the unique minimal C-

representation (Corollary 4.4). We show that Example 1.1 gives a template for forms
f satisfying LC(f) = 2 < LEf

(f) (see Theorem 4.6), and give two generalizations
which provide other types of constructions (Corollaries 4.7 and 4.8) of forms with
multiple lengths. We apply Sylvester’s 1851 Theorem to give an easy proof of the
known result that LC(f) ≤ d (Theorem 4.9) and a slightly trickier proof of the
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probably-known result that LK(f) ≤ d as well (Theorem 4.10). Theorem 4.10
combines with Theorem 3.2 into Corollary 4.11: if f ∈ R[x, y] is a product of d
linear factors and not a d-th power, then LR(f) = d. Conjecture 4.12 asserts that
f ∈ R[x, y] is a product of d linear factors if and only if LR(f) = d. This conjecture
has recently been proven by Comon-Ottaviani-Causa-Re [9,15] when the factors of
f are distinct.

In Corollary 5.1, we discuss the various possible cabinets when d = 3, 4; and
give examples for each one not already ruled out. We then completely classify
binary cubics; the key point of Theorem 5.2 is that if the cubic f has no repeated
factors, then Lk(f) = 2 if and only if Ef (

√−3Δ(f)) ⊆ K; this significance of
the discriminant Δ(f) can already be found in Salmon [52, Sect. 167]. This proves
Conjecture 4.12 for d = 3. In Theorem 5.3, we show that Conjecture 4.12 also
holds for d = 4. We then show (Theorem 5.4) that LC(f) = d if and only if there
are distinct linear forms �, �′ so that f = �d−1�′. (One direction of this result is well-
known; the other has recently been proved by Białynicki-Birula and Schinzel [2].)
The minimal representations of xkyk are parameterized (Theorem 5.5), and in
Corollary 5.6, we show that LK((x2 + y2)k) ≥ k + 1, with equality if and only
if tan π

k+1 ∈ K . In particular, LQ((x
2 + y2)2) = 4. Theorem 5.7 shows that

LQ(x
4 + 6λx2y2 + y4) = 3 if and only if a certain quartic diophantine equation

over Z has a non-zero solution.
Section 6 lists some open questions.
We would like to express our appreciation to the organizers of the Higher Degree

Forms conference in Gainesville in May 2009 for offering the opportunities to speak
on these topics, and to write this article for its Proceedings. We also thank Mike
Bennett, Tony Geramita, Giorgio Ottaviani, Joe Rotman and Zach Teitler for helpful
conversations and correspondence.

2 Sylvester’s 1851 Theorem

Modern proofs of Theorem 2.1 can be found in the work of Kung and Rota: [33,
Sect. 5], with further discussion in [30–32, 49]. We present here a very elementary
proof showing the connection with constant coefficient linear recurrences, in the
hopes that this remarkable theorem might become better known to the modern
reader.

Theorem 2.1 (Sylvester). Suppose

f(x, y) =
d∑

j=0

(
d

j

)
ajx

d−jyj (2.1)

and suppose
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h(x, y) =

r∑

t=0

ctx
r−tyt =

r∏

j=1

(−βjx+ αjy) (2.2)

is a product of pairwise distinct linear factors. Then there exist λk ∈ C so that

f(x, y) =

r∑

k=1

λk(αkx+ βky)
d (2.3)

if and only if
⎛

⎜⎜⎜⎝

a0 a1 · · · ar
a1 a2 · · · ar+1

...
...

. . .
...

ad−r ad−r+1 · · · ad

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

c0
c1
...
cr

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0

0
...
0

⎞

⎟⎟⎟⎠ ; (2.4)

that is, if and only if

r∑

t=0

a�+tct = 0, � = 0, 1, . . . , d− r. (2.5)

Proof. First suppose that (2.3) holds. Then for 0 ≤ j ≤ d,

aj =
r∑

k=1

λkα
d−j
k βj

k =⇒
r∑

t=0

a�+tct =
r∑

k=1

r∑

t=0

λkα
d−�−t
k β�+t

k ct

=

r∑

k=1

λkα
d−�−r
k β�

k

r∑

t=0

αr−t
k βt

kct =

r∑

k=1

λkα
d−�−r
k β�

k h(αk, βk) = 0.

Now suppose that (2.4) holds and suppose first that cr �= 0. We may assume
without loss of generality that cr = 1 and that αj = 1 in (2.2), so that the βj’s are
distinct. Define the infinite sequence (ãj), j ≥ 0, by:

ãj = aj if 0 ≤ j ≤ r − 1; ãr+� = −
r−1∑

t=0

ãt+�ct for � ≥ 0. (2.6)

This sequence satisfies the recurrence of (2.5), so that

ãj = aj for j ≤ d. (2.7)

Since |ãj | ≤ γ ·M j for suitable γ,M by induction, the generating function

Φ(T ) =

∞∑

j=0

ãjT
j
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converges in a neighborhood of 0. We have

(
r∑

t=0

cr−tT
t

)
Φ(T ) =

r−1∑

n=0

⎛

⎝
n∑

j=0

cr−(n−j)ãj

⎞

⎠T n +
∞∑

n=r

(
r∑

t=0

cr−tãn−t

)
T n.

It follows from (2.6) that the second sum vanishes, and hence Φ(T ) is a rational
function with denominator

r∑

t=0

cr−tT
t = h(T, 1) =

r∏

j=1

(1− βjT ).

By the method of partial fractions, there exist λk ∈ C so that

∞∑

j=0

ãjT
j = Φ(T ) =

r∑

k=1

λk
1− βkT

=⇒ ãj =
r∑

k=1

λkβ
j
k. (2.8)

A comparison of (2.8) and (2.7) with (2.1) shows that

f(x, y) =

d∑

j=0

(
d

j

)
ajx

d−jyj =

r∑

k=1

λk

d∑

j=0

(
d

j

)
βj
kx

d−jyj =

r∑

k=1

λk(x+ βky)
d,

(2.9)

as claimed in (2.3).
If cr = 0, then cr−1 �= 0, because h has distinct factors. We may proceed as

before, replacing r by r − 1 and taking cr−1 = 1, so that (2.2) becomes

h(x, y) =

r−1∑

t=0

ctx
r−tyt = x

r−1∏

j=1

(y − βjx). (2.10)

Since cr = 0, the system (2.4) can be rewritten as

⎛

⎜⎜⎜⎝

a0 a1 · · · ar−1

a1 a2 · · · ar
...

...
. . .

...
ad−r ad−r+1 · · · ad−1

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

c0
c1
...

cr−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0

0
...
0

⎞

⎟⎟⎟⎠ .

We may now argue as before, except that (2.7) becomes

ãj = aj for j ≤ d− 1, ad = ãd + λr (2.11)
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for some λr , and (2.9) becomes

f(x, y) =

d∑

j=0

(
d

j

)
ajx

d−jyj = λry
d +

r−1∑

k=1

λk

d∑

j=0

(
d

j

)
βj
kx

d−jyj

= λry
d +

r−1∑

k=1

λk(x+ βky)
d.

(2.12)

By (2.10), (2.12) meets the description of (2.3), completing the proof. �
The (d − r + 1) × (r + 1) Hankel matrix in (2.4) will be denoted Hr(f). If

(f, h) satisfy the criterion of this theorem, we shall say that h is a Sylvester form
for f . If the only Sylvester forms of degree r are λh for λ ∈ C, we say that h is
the unique Sylvester form for f . Any polynomial multiple of a Sylvester form that
has no repeated factors is also a Sylvester form, since there is no requirement that
λk �= 0 in (2.3). If f has a unique Sylvester form of degree r, then LC(f) = r and
LK(f) ≥ r.

The proof of Theorem 2.1 in [49] is based on apolarity. If f and h are given by
(2.1) and (2.2), and h(D) =

∏r
j=1(−βj ∂

∂x + αj
∂
∂y ), then

h(D)f =

d−r∑

m=0

d!

(d− r −m)!m!

(
d−r∑

i=0

ai+mci

)
xd−r−mym.

Thus, (2.4) is equivalent to h(D)f = 0. One can then argue that each linear factor
in h(D) kills a different summand, and dimension counting takes care of the rest.
In particular, if deg h > d, then h(D)f = 0 automatically, and this implies that
LC(f) ≤ d+ 1. Theorem 4.2 gives another explanation of this fact.

If h has repeated factors, a condition of interest in [30–33, 49], then Gundelfin-
ger’s Theorem [23], first proved in 1886, shows that a factor (−βx + αy)� of h
corresponds to a summand q(x, y)(αx+βy)d+1−� in f , where q is an arbitrary form
of degree � − 1. (We are not interested in such summands when � > 1. For more
discussion of this case, see [49].)

If d = 2s − 1 and r = s, then Hs(f) is s × (s + 1) and has a non-trivial
null-vector; for a general f , the resulting form h has distinct factors, and so is a
unique Sylvester form. (The coefficients of h, and its discriminant, are polynomials
in the coefficients of f .) This is how Sylvester proved that a general binary form
of degree 2s − 1 is a sum of s powers of linear forms over C, and the minimal
representation is unique.

If d = 2s and r = s, then Hs(f) is square; det(Hs(f)) is the catalecticant of f .
(For more on the term “catalecticant”, see [47, pp. 49–50] and [22, pp. 104–105].)
In general, there exists λ so that the catalecticant of f(x, y)−λx2s vanishes, and the
resulting non-trivial null vector is generally a Sylvester form (no repeated factors).
Thus, a general binary form of degree 2s is a sum of λx2s plus s powers of linear
forms over C.
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Sylvester’s Theorem can also be adapted to compute K-length when K � C,
with the understanding that a Sylvester form of minimal degree might not split
over K .

Corollary 2.2. Given f ∈ K[x, y], LK(f) is the minimal degree of a Sylvester
form for f which splits completely over K .

Proof. If (2.3) is a minimal representation for f over K , where λk, αk, βk ∈ K ,
then h(x, y) ∈ K[x, y] splits over K by (2.2). Conversely, if h is a Sylvester form
for f satisfying (2.2) with αk, βk ∈ K , then (2.3) holds for some λk ∈ C. This is
equivalent to saying that the linear system

aj =

r∑

k=1

αd−j
k βj

kXk, (0 ≤ j ≤ d) (2.13)

has a solution {Xk = λk} over C. Since aj , α
d−j
k βj

k ∈ K and (2.13) has a solution
over C, it also has a solution over K . Thus, f has a K-representation of length r.

�
Example 2.1 (Continuing Example 1.2). Note that

φ(x, y) = 3x5 − 20x3y2 + 10xy4 =

(
5

0

)
· 3 x5 +

(
5

1

)
· 0 x4y

+

(
5

2

)
· (−2) x3y2 +

(
5

3

)
· 0 x2y3 +

(
5

4

)
· 2 xy4 +

(
5

5

)
· 0 y5.

Since

⎛

⎝
3 0 −2 0

0 −2 0 2

−2 0 2 0

⎞

⎠ ·

⎛

⎜⎜⎝

c0
c1
c2
c3

⎞

⎟⎟⎠ =

⎛

⎝
0

0

0

⎞

⎠ ⇐⇒ (c0, c1, c2, c3) = r(0, 1, 0, 1),

φ has a unique Sylvester form of degree 3: h(x, y) = y(x2+y2) = y(y−ix)(y+ix).
Accordingly, there exist λk ∈ C so that

φ(x, y) = λ1x
5 + λ2(x+ iy)5 + λ3(x− iy)5.

Indeed, λ1 = λ2 = λ3 = 1, as may be checked. It follows that LK(φ) = 3 if and
only if i ∈ K . (There is no representation of length two.)

To find representations for φ of length 4, we consider (2.4) for φ with r = 4:

H4(φ) · (c0, c1, c2, c3, c4)t = (0, 0)t ⇐⇒ 3c0 − 2c2 + 2c4 = −2c1 + 2c3 = 0

⇐⇒ (c0, c1, c2, c3, c4) = r1(2, 0, 3, 0, 0) + r2(0, 1, 0, 1, 0) + r3(0, 0, 1, 0, 1),
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hence h(x, y) = r1x
2(2x2 + 3y2) + y(x2 + y2)(r2x + r3y). Given a field K , it is

unclear whether there exist {r�} so that h splits into distinct factors overK . We have
found such {r�} for small imaginary quadratic fields.

The choice (r1, r2, r3) = (1, 0, 2) gives h(x, y) = (2x2 + y2)(x2 + 2y2) and

24φ(x, y) = 4(x+
√−2y)5 +4(x−√−2y)5 + (2x+

√−2y)5 + (2x−√−2y)5.

Similarly, (r1, r2, r3) = (2, 0, 9) and (2, 0,−5) give h(x, y) = (x2 + 3y2)(4x2 +
3y2) and (x2 − y2)(4x2 + 5y2), leading to representations for φ of length 4
over Q(

√−3) and Q(
√−5). The simplest such representation we have found for

Q(
√−6) uses (r1, r2, r3) = (12,675, 0,−156,816) and

h(x, y) = (5x+ 12y)(5x− 12y)(6 · 132x2 + 332y2).

We conjecture that LQ(
√−m)(φ) = 4 for all non-square m ≥ 2. In Example 3.1,

we shall show that there is no choice of (r1, r2, r3) for which h splits into distinct
factors over any subfield of R.

3 Sylvester’s 1864 Theorem

Theorem 3.1 was discovered by Sylvester [55] in 1864 while proving Isaac
Newton’s conjectural variation on Descartes’ Rule of Signs, see [27, 56]. This
theorem appeared in Pólya-Szegö [42, Chap. 5, Problem 79], and has been used by
Pólya and Schoenberg [41] and Karlin [29, p. 466]. The (dehomogenized) version
proved in [42] is:

Theorem 3.1 (Sylvester). Suppose 0 �= λk for all k and γ1 < · · · < γr, r ≥ 2, are
real numbers such that

Q(t) =
r∑

k=1

λk(t− γk)
d

does not vanish identically. Suppose the sequence (λ1, . . . , λr , (−1)dλ1) has C
changes of sign and Q has Z zeros, counting multiplicity. Then Z ≤ C.

We shall prove an equivalent version which exploits the homogeneity of f to
avoid discussion of zeros at infinity in the proof. (The equivalence is discussed in
[50].)

Theorem 3.2. Suppose f(x, y) is a non-zero real form of degree dwith τ real linear
factors (counting multiplicity) and

f(x, y) =

r∑

j=1

λj(cos θjx+ sin θjy)
d (3.1)

where −π
2 < θ1 < · · · < θr ≤ π

2 , r ≥ 2 and λj �= 0. If there are σ sign changes in
the tuple (λ1, λ2, . . . , λr, (−1)dλ1), then τ ≤ σ. In particular, τ ≤ r.
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Example 3.1 (Examples 1.2 and 2.1 concluded). Since

φ(x, y) = 3x
(
x2 − 10−√

70
3 y2

)(
x2 − 10+

√
70

3 y2
)

is a product of five linear factors over R, LR(φ) ≥ 5. The representation

6φ(x, y) = 36x5 − 10(x+ y)5 − 10(x− y)5 + (x+ 2y)5 + (x− 2y)5

over Q implies that LR(φ) = 5. It will follow from Theorem 4.10 that C(φ) =
{3, 4, 5}.

Proof of Theorem 3.2. We first rewrite (3.1):

2f(x, y) =

r∑

j=1

λj(cos θjx+ sin θjy)
d+

r∑

j=1

(−1)dλj(cos(θj + π)x+ sin(θj + π)y)d.

(3.2)

View the sequence (λ1, λ2, . . . , λr, (−1)dλ1, (−1)dλ2, . . . , (−1)dλr , λ1) cycli-
cally, identifying the first and last term. There are 2σ pairs of consecutive terms with
a negative product. This count is independent of the starting point, so if we make
any invertible change of variables (x, y) �→ (cos θx+ sin θy,− sin θx + cos θy) in
(3.1) (which doesn’t affect τ , and which “dials” the angles by θ), and reorder the
“main” angles to (−π

2 ,
π
2 ], the value of σ is unchanged. We may therefore assume

that neither x nor y divide f , that xd and yd are not summands in (3.2) (i.e., θj
is not a multiple of π

2 ), and that if there is a sign change in (λ1, λ2, . . . , λr), then
θu < 0 < θu+1 implies λuλu+1 < 0. Under these hypotheses, we may safely
dehomogenize f by setting either x = 1 or y = 1 and avoid zeros at infinity and
know that τ is the number of zeros of the resulting polynomial. The rest of the proof
generally follows [42].

Let σ̄ denote the number of sign changes in (λ1, λ2, . . . , λr). We induct on σ̄.
The base case is σ̄ = 0 (and λj > 0 without loss of generality). If d is even, then
σ = 0 and

f(x, y) =

r∑

j=1

λj(cos θjx+ sin θjy)
d

is definite, so τ = 0. If d is odd, then σ = 1. Let g(t) = f(t, 1), so that

g′(t) =
r∑

j=1

d (λj cos θj) (cos θjt+ sin θj)
d−1.

Since d − 1 is even, cos θj > 0 and λj > 0, g′ is definite and g′ �= 0. Rolle’s
Theorem implies that g has at most one zero; that is, τ ≤ 1 = σ.
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Suppose the theorem is valid for σ̄ = m ≥ 0 and suppose that σ̄ = m + 1 in
(3.1). Now let h(t) = f(1, t). We have

h′(t) =
r∑

j=1

d (λj sin θj) (cos θj + sin θjt)
d−1.

Note that h′(t) = q(1, t), where

q(x, y) =

r∑

j=1

d (λj sin θj) (cos θjx+ sin θjy)
d−1.

Since σ̄ ≥ 1, θu < 0 < θu+1 implies that λuλu+1 < 0, so that the number of
sign changes in (dλ1 sin θ1, dλ2 sin θ2, . . . , dλr sin θr) is m, as the sign change at
the u-th consecutive pair has been removed, and no other possible sign changes
are introduced. The induction hypothesis implies that q(x, y) has at most m linear
factors, hence q(1, t) = h′(t) has ≤ m zeros (counting multiplicity) and Rolle’s
Theorem implies that h has ≤ m+ 1 zeros, completing the induction. �

4 Applications to Forms of General Degree

We begin with a folklore result: the vector space of complex forms f in n variables
of degree d is spanned by the set of linear forms taken to the d-th power. It follows
from a 1903 theorem of Biermann (see [47, Proposition 2.11] or [51] for a proof)
that a canonical set of the “correct” number of d-th powers over Z forms a basis:

{
(i1x1 + . . .+ inxn)

d : 0 ≤ ik ∈ Z, i1 + · · ·+ in = d
}
. (4.1)

If f ∈ K[x1, . . . , xn], then f is a K-linear combination of these forms and so
LK(f) ≤ (n+d−1

n−1

)
. We show below (Theorems 4.10 and 5.4) that when n = 2, the

bound for LK(f) can be improved from d+ 1 to d, but this is best possible.
The first two results are presented explicitly for completeness.

Theorem 4.1. If f ∈ K[x, y], then LK(f) = 1 if and only if LC(f) = 1.

Proof. One direction is immediate from (1.2). For the other, suppose f(x, y) =
(αx+ βy)d with α, β ∈ C. If α = 0, then f(x, y) = βdyd, with βd ∈ K . If α �= 0,
then f(x, y) = αd(x+ (β/α)y)d. Since the coefficients of xd and dxd−1y in f are
αd and αd−1β, it follows that αd and β/α = (αd−1β)/αd are both in K . �
Theorem 4.2. Any set {(αjx+βjy)

d : 0 ≤ j ≤ d} of pairwise distinct d-th powers
is linearly independent and spans the binary forms of degree d.
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Proof. The matrix of this set with respect to the basis
(
d
i

)
xd−iyi is [αd−i

j βi
j ], whose

determinant is Vandermonde:

∏

0≤j<k≤d

∣∣∣∣
αj βj
αk βk

∣∣∣∣ .

This determinant is a product of non-zero terms by hypothesis. �
By considering the difference of two representations of a given form, we obtain

an immediate corollary about different representations of the same form. Trivial
counterexamples, formed by splitting summands, occur in non-honest representa-
tions.

Corollary 4.3. If f has two different honest representations:

f(x, y) =

s∑

i=1

λi(αix+ βiy)
d =

t∑

j=1

μj(γjx+ δjy)
d, (4.2)

then s+ t ≥ d+ 2. If s+ t = d+ 2 in (4.2), then the combined set of linear forms,
{αix+ βiy, γjx+ δjy}, is pairwise distinct.

The next result collects some consequences of Corollary 4.3.

Corollary 4.4. Let E = Ef .

(1) If LE(f) = r ≤ d
2 + 1, then LC(f) = r, so C(f) = {r}.

(2) If, further, LE(f) = r ≤ d
2 +

1
2 , then f has a unique C-minimal representation.

(3) If d = 2s − 1 and Hs(f) has full rank, f has a unique Sylvester form h of
degree s and Ef ⊆ K , then LK(f) ≥ s, with equality if and only if h splits
in K .

Proof. We take the parts in turn.

(1) A different representation of f overC must have length ≥ d+2−r ≥ d
2+1 ≥ r

by Corollary 4.3, and so LC(f) = r.
(2) If r ≤ d

2 + 1
2 , then any other representation has length ≥ d

2 + 3
2 > r, and so

cannot be minimal.
(3) If d = 2s−1 and r = s, then the last case applies, so f has a unique C-minimal

representation, and by Corollary 2.2, this representation can be expressed in K
if and only if the Sylvester form splits over K . �

We now give some more explicit constructions of forms with multiple lengths.
We first need a lemma about cubics.

Lemma 4.5. If f is a cubic given by (2.1) andH2(f) =

(
a0 a1 a2
a1 a2 a3

)
has rank ≤ 1,

then f is a cube.
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Proof. If a0 = 0, then a1 = 0, so a2 = 0 and f is a cube. If a0 �= 0, then
a2 = a21/a0 and a3 = a1a2/a0 = a31/a

2
0 and f(x, y) = a0(x + a1

a0
y)3 is again a

cube. �
Theorem 4.6. Suppose d ≥ 3 and there exist αi, βi ∈ C so that

f(x, y) =
d∑

i=0

(
d

i

)
aix

d−iyi = (α1x+ β1y)
d + (α2x+ β2y)

d ∈ K[x, y]. (4.3)

If (4.3) is honest and LK(f) > 2, then there exists u ∈ K with
√
u /∈ K so that

LK(
√
u)(f) = 2. The summands in (4.3) are conjugates of each other in K(

√
u).

Proof. First observe that if α2 = 0, then α2β1 �= α1β2 implies that α1 �= 0. But
then a0 = αd

1 �= 0 and a1 = αd−1
1 β1 imply that αd

1, β1/α1 ∈ K as in Theorem 4.1,
and so

f(x, y)− αd
1(x+ (β1/α1)y)

d = (β2y)
d = βd

2y
d ∈ K[x, y].

This contradicts LK(f) > 2, so α2 �= 0; similarly, α1 �= 0. Let λi = αd
i and

γi = βi/αi for i = 1, 2, so λ1λ2 �= 0 and γ1 �= γ2. We have

f(x, y) = λ1(x+ γ1y)
d + λ2(x+ γ2y)

d =⇒ ai = λ1γ
i
1 + λ2γ

i
2.

Now let

g(x, y) = λ1(x+ γ1y)
3 + λ2(x+ γ2y)

3 = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3.

Since λi �= 0 and (4.3) is honest, Corollary 4.3 implies that LC(g) = 2, so H2(g)
has full rank by Lemma 4.5. It can be checked directly that

(
a0 a1 a2
a1 a2 a3

)
·
⎛

⎝
γ1γ2

−(γ1 + γ2)

1

⎞

⎠ =

(
0

0

)
,

and this gives h(x, y) = (y − γ1x)(y − γ2x) as the unique Sylvester form for g.
Since H2(g) has entries in K and hence has a null vector in K , we must have h ∈
K[x, y]. By hypothesis, h does not split over K; it must do so over K(

√
u), where

u = (γ1 − γ2)
2 = (γ1 + γ2)

2 − 4γ1γ2 ∈ K . Moreover, if σ denotes conjugation
with respect to

√
u, then γ2 = σ(γ1) and since λ1 + λ2 ∈ K , λ2 = σ(λ1) as well.

Note that λi = αd
i and γi = βi/αi ∈ K(

√
u), but this is not necessarily true for αi

and βi themselves. �
Corollary 4.7. Suppose g ∈ E[x, y] does not split over E, but factors into distinct
linear factors g(x, y) =

∏r
j=1(x + αjy) over an extension field K of E. If d >

2r − 1, then for each � ≥ 0,
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f�(x, y) =

r∑

j=1

α�
j(x+ αjy)

d ∈ E[x, y],

and LK(f�) = r < d+ 2− r ≤ LE(f�).

Proof. The coefficient of
(
d
k

)
xd−kyk in f� is

∑r
j=1 α

�+k
j . Each such power-sum

belongs to E by Newton’s Theorem on Symmetric Forms. If αs /∈ E (which must
hold for at least one αs �= 0), then α�

s(x+ αsy)
d /∈ E[x, y]. Apply Corollary 4.3.

�
Corollary 4.8. Suppose K is an extension field of Ef , r ≤ d+1

2 , and

f(x, y) =
r∑

i=1

λi(αix+ βiy)
d

with λi, αi, βi ∈ K . Then every automorphism of K which fixes Ef permutes the
summands of the representation of f .

Proof. We interpret σ(λ(αx + βy)d) = σ(λ)(σ(α)x + σ(β)y)d. Since σ(f) = f ,
the action of σ is to give another representation of f . Corollary 4.4(2) implies that
this is the same representation, perhaps reordered. �
Theorem 4.9. If f ∈ K[x, y], then LC(f) ≤ deg f .

Proof. By a change of variables, which does not affect the length, we may assume
that neither x nor y divide f , hence a0ad �= 0 and h = adx

d − a0y
d is a Sylvester

form which splits over C. �
We have been unable to find an “original” citation for Theorem 4.9. It appears

as an exercise in Harris [24, Exercise 11.35], with the (dehomogenized) maximal
length occurring at xd−1(x + 1) (see Theorem 5.4). Landsberg and Teitler [34,
Corollary 5.2] prove thatLC(f) ≤

(
n+d−1
n−1

)−(n−1), which reduces to Theorem 4.9
for n = 2. The proof of Theorem 4.9 will not apply to LK(f) for K �= C, because
adx

d − a0y
d usually does not split over K . A more careful argument is required,

constructing an explicit Sylvester form of degree d for f which splits over K .

Theorem 4.10. If f ∈ K[x, y], then LK(f) ≤ deg f .

Proof. Write f as in (2.1). If f is identically zero, there is nothing to prove.
Otherwise, we may assume that f(1, 0) = a0 �= 0 after a change of variables if
necessary. By Corollary 2.2, it suffices to find h(x, y) =

∑d
k=0 ckx

d−kyk which

splits into distinct linear factors over K and satisfies
∑d

k=0 akck = 0.
Let e0 = 1 and ek(t1, . . . , td−1) denote the usual k-th elementary symmetric

functions. We make a number of definitions:
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h0(t1, . . . , td−1;x, y) :=
d−1∑

k=0

ek(t1, . . . , td−1)x
d−1−kyk =

d−1∏

j=1

(x+ tjy),

β(t1, . . . , td−1) := −
d−1∑

k=0

akek(t1, . . . , td−1),

α(t1, . . . , td−1) :=

d−1∑

k=0

ak+1ek(t1, . . . , td−1),

Φ(t1, . . . , td−1) :=

d−1∏

j=1

(α(t1, . . . , td−1)tj − β(t1, . . . , td−1)),

Ψ(t1, . . . , td−1) := Φ(t1, . . . , td−1)×
∏

1≤i<j≤d−1

(ti − tj).

Then β(0, . . . , 0) = −a0e0 = −a0 �= 0, so Φ(0, . . . , 0) = ad−1
0 �= 0 and Φ is

not the zero polynomial, and thus neither is Ψ. Choose γj ∈ K , 1 ≤ j ≤ d − 1,
so that Ψ(γ1, . . . , γd−1) �= 0. It follows that the γj’s are distinct, and αγj �= β,
where α = α(γ1, . . . , γd−1) and β = β(γ1, . . . , γd−1). Let ẽk = ek(γ1, . . . , γd−1).
We claim that

h(x, y) =

d∑

i=0

cix
d−1yi := (αx+βy)h0(γ1, . . ., γd−1;x, y) = (αx+βy)

d−1∏

j=1

(x+γjy)

= (αx+βy)

d−1∑

k=0

ẽkx
d−1−kyk = αẽ0x

d+

d−1∑

k=1

(αẽk + βẽk−1)x
d−kyk+βẽd−1y

d

is a Sylvester form for f . Note that the γj’s are distinct and αγj �= β, 1 ≤ j ≤ d−1,
so that h is a product of distinct linear factors. Finally,

d∑

k=0

akck = αẽ0a0 +
d−1∑

k=1

(αẽk + βẽk−1)ak + βẽd−1ak =

α

d−1∑

k=0

ẽkak + β

d−1∑

k=0

ẽkak+1 = α(−β) + βα = 0.

This completes the proof. �
Corollary 4.11. If f is a product of d real linear forms and not a d-th power, then
LR(f) = d.

Proof. Write f as a sum of LR(f) = r ≤ d d-th powers and rescale into the shape
(3.1). Taking τ = d in Theorem 3.2, we see that d ≤ σ ≤ r. �
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Conjecture 4.12. If f ∈ R[x, y] is a form of degree d ≥ 3, then LR(f) = d if and
only if f is a product of d linear forms.

We shall see in Theorems 5.2 and 5.3 that this conjecture is true for d = 3, 4.
After a preprint of this paper was distributed, Giorgio Ottaviani pointed out that

in the case that the roots of f are distinct, Conjecture 4.12 has been proved very
recently by Comon and Ottaviani [15] and by Causa and Re [9].

5 Applications to Forms of Particular Degree

Corollary 4.3 and Theorem 4.10 impose some immediate restrictions on the possible
cabinets of a form of degree d.

Corollary 5.1. Suppose deg f = d.

(1) If LC(f) = r, then C(f) ⊆ {r} ∪ {d− i : 0 ≤ i ≤ r − 2}.
(2) If LC(f) = 2, then C(f) is either {2} or {2, d}.
(3) If f has k different lengths, then d ≥ 2k − 1.
(4) If f is cubic, then C(f) = {1}, {2}, {3} or {2, 3}.
(5) If f is quartic, then C(f) = {1}, {2}, {3}, {4}, {2, 4} or {3, 4}.

We now completely classify LK(f) when f is a binary cubic.

Theorem 5.2. Suppose f(x, y) ∈ Ef [x, y] is a cubic form with discriminant Δ and
suppose Ef ⊆ K ⊆ C.

(1) If f is a cube, then LK(f) = 1 and C(f) = {1}.
(2) If f has a repeated linear factor, but is not a cube, then LK(f) = 3 and C(f) =

{3}.
(3) If f does not have a repeated factor, then LK(p) = 2 if

√−3Δ ∈ K and
LK(p) = 3 otherwise, so either C(f) = {2} or C(f) = {2, 3}.

Proof. The first case follows from Theorem 4.1. In the second case, after an
invertible linear change of variables, we may assume that f(x, y) = 3x2y, and
apply Theorem 2.1 to test for representations of length 2. But

(
0 1 0

1 0 0

)
·
⎛

⎝
c0
c1
c2

⎞

⎠ =

(
0

0

)
=⇒ c0 = c1 = 0, (5.1)

so h has repeated factors. HenceLK(x2y) ≥ 3 and by Theorem 4.10,LK(x2y)= 3.
Finally, suppose

f(x, y) = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3 =

3∏

j=1

(rjx+ sjy)
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does not have repeated factors, so that

0 �= Δ(f) =
∏

j<k

(rjsk − rksj)
2,

and consider the system:

(
a0 a1 a2
a1 a2 a3

)
·
⎛

⎝
c0
c1
c2

⎞

⎠ =

(
0

0

)
.

By Lemma 4.5, this system has rank 2; the unique Sylvester form is

h(x, y) = (a1a3 − a22)x
2 + (a1a2 − a0a3)xy + (a0a2 − a21)y

2,

which happens to be the Hessian of f . Since h ∈ Ef [x, y] ⊆ K[x, y], it splits over
K if and only if its discriminant is a square in K . A computation shows that

(a1a2 − a0a3)
2 − 4(a1a3 − a22)(a0a2 − a21) = −Δ(f)

27
= −3Δ(f)

92
.

Thus, LK(f) = 2 if and only if
√−3Δ(f) ∈ K . If h does not split over F , then

LF (f) = 3 by Theorem 4.10. �
In particular, x3, x3 + y3, x2y and (x + iy)3 + (x − iy)3 have the cabinets

enumerated in Corollary 5.1(4). If f has three distinct real linear factors, then
Δ(f) > 0, so

√−3Δ(f) /∈ R and LR(f) = 3. If f is real and has one real and two
conjugate complex linear factors, then Δ(f) < 0, so LR(f) = 2. Counting repeated
roots, we see that if f is a real cubic, and not a cube, then LR(f) = 3 if and only if
it has three real factors, thus proving Conjecture 4.12 when d = 3.

Example 5.1. We find all representations of 3x2y of length 3. Note that

H3(f) · (c0, c1, c2, c3)t = (0) ⇐⇒ c1 = 0 ⇐⇒ h(x, y) = c0x
3+ c2xy

2+ c3y
3.

If c0 = 0, then y2 | h, which is to be avoided, so we scale and assume c0 = 1. We
can parameterize the Sylvester forms as h(x, y) = (x− ay)(x− by)(x+ (a+ b)y)
with a, b,−(a+ b) distinct. This leads to an easily checked general formula

3(a− b)(a+ 2b)(2a+ b)x2y =

(a+ 2b)(ax+ y)3 − (2a+ b)(bx+ y)3 + (a− b)(−(a+ b)x+ y)3.
(5.2)

Białynicki-Birula and Schinzel [2, Lemma 7.1] give the general formula for dxd−1y
as a sum of d d-th powers of linear forms.

Theorem 5.3. If f is a real quartic form, then LR(f) = 4 if and only if f is a
product of four linear factors.
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Proof. Factor ±f as a product of k positive definite quadratic forms and 4 − 2k
linear forms. If k = 0, then Corollary 4.11 implies that LR(f) = 4. We must show
that if k = 1 or k = 2, then f has a representation over R as a sum of ≤ 3 fourth
powers.

If k = 2, then f is positive definite and by [43, Theorem 6], after an invertible
linear change of variables, f(x, y) = x4 + 6λx2y2 + y4, with 6λ ∈ (−2, 2]. (This
is also proved in [51].) If r �= 1, then

(rx + y)4 + (x+ ry)4 − (r3 + r)(x + y)4

= (r − 1)2(r2 + r + 1)
(
x4 −

(
6r

r2+r+1

)
x2y2 + y4

)
.

(5.3)

Let φ(r) = − 6r
r2+r+1 . Then φ(−2 +

√
3) = 2 and φ(1) = −2, and since φ is

continuous, it maps [−2 +
√
3, 1) onto (−2, 2], and (5.3) shows that LR(f) ≤ 3.

If k = 1, there are two cases, depending on whether the linear factors are distinct.
Suppose that after a linear change, f(x, y) = x2h(x, y), where h is positive definite,
and so for some λ > 0 and linear �, h(x, y) = λx2+�2. After another linear change,

f(x, y) = x2(2x2 + 12y2) = (x+ y)4 + (x− y)4 − 2y4, (5.4)

and (5.4) shows that LR(f) ≤ 3.
If the linear factors are distinct, then after a linear change,

f(x, y) = xy(ax2 + 2bxy + cy2),

where a > 0, c > 0, b2 < ac. After a scaling, f(x, y) = xy(x2+dxy+y2), |d| < 2,
and by taking ±f(x,±y), we may assume d ∈ [0, 2). If r �= 1, then

(r4 + 1)(x+ y)4 − (rx + y)4 − (x+ ry)4

= 4(r − 1)2(r2 + r + 1)
(
x3y +

(
3(1+r)2

2(r2+r+1)

)
x2y2 + xy3

)
.

(5.5)

Let ψ(r) = 3(1+r)2

2(r2+r+1) . Since ψ(−1) = 0, ψ(1) = 2 and ψ is continuous, it maps
[−1, 1) onto [0, 2), and (5.5) shows that LR(f) ≤ 3. �

The next result may be very old; LC(x
d−1y) = d seems well known, but the

only reference we have seen for the converse is the very recent [2, Corollary 3].
Białynicki-Birula and Schinzel also classify all binary p with deg p = d and
LC(p) = d − k for 1 ≤ k ≤ 3 and sufficiently large d. Landsberg and Teitler [34,
Corollary 4.5] and Boij, Carlini and Geramita [4] have both shown that LC(x

ayb) =
max(a+ 1, b+ 1) if a, b ≥ 1.

Theorem 5.4. If d ≥ 3, then LC(f) = d if and only if there are two distinct linear
forms � and �′ so that f = �d−1�′.
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Proof. If f = �d−1�′, then after an invertible linear change, we may assume that
f(x, y) = dxd−1y. If LC(dx

d−1y) ≤ d− 1, then f would have a Sylvester form of
degree d− 1. But then, as in (5.1), (2.4) becomes

(
0 1 · · · 0
1 0 · · · 0

)
·

⎛

⎜⎜⎜⎝

c0
c1
...

cd−1

⎞

⎟⎟⎟⎠ =

(
0

0

)
=⇒ c0 = c1 = 0,

so h(x, y) =
∑d−1

t=0 ctx
d−1−tyt does not have distinct factors. Thus,

LC(dx
d−1y) = d.

Conversely, suppose LC(f) = d. Factor f =
∏
�
mj

j as a product of pairwise
distinct linear forms, with

∑
mj = d, m1 ≥ m2 · · · ≥ ms ≥ 1, and s > 1

(otherwise, LC(f) = 1.) Make an invertible linear change taking (�1, �2) �→ (x, y),
and call the new form g; LC(g) = d as well. If g(x, y) =

∑d
�=0

(
d
�

)
b�x

d−�y�, then
b0 = bd = 0. By hypothesis, there does not exist a Sylvester form of degree d − 1
for g. Consider Theorem 2.1 in this case. We have

(
0 b1 · · · bd−2 bd−1

b1 b2 · · · bd−1 0

)
·

⎛

⎜⎜⎜⎝

c0
c1
...

cd−1

⎞

⎟⎟⎟⎠ =

(
0

0

)
.

If m1 ≥ m2 ≥ 2, then x2, y2 | g(x, y) and b1 = bd−1 = 0 and xd−1 − yd−1 is
a Sylvester form of degree d − 1 for f . Thus m2 = 1 and so y2 does not divide g
and b1 �= 0. Let q(t) =

∑d−2
i=0 bi+1t

i (note the absence of binomial coefficients!)
and suppose q is not the constant polynomial. Then there exists t0 so that q(t0) = 0.
Since q(0) = b1, t0 �= 0. We have

(
0 b1 · · · bd−2 bd−1

b1 b2 · · · bd−1 0

)
·

⎛

⎜⎜⎜⎝

1

t0
...

td−1
0

⎞

⎟⎟⎟⎠ =

(
t0q(t0)

q(t0)

)
=

(
0

0

)
.

Since

h(x, y) =
d−1∑

i=0

ti0x
d−1−iyi =

xd − td0y
d

x− t0y
=

d−1∏

k=1

(x− ζkd−1t0y)

has distinct linear factors, it is a Sylvester form for g, and LC(g) ≤ d − 1. This
contradiction implies that q has no zeros, so q(t) = b1 must be a constant. It follows
that g(x, y) = db1x

d−1y, as promised. �
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By Corollaries 4.4 and 5.1, instances of the first five cabinets in Corollary 5.1(5)
are: x4, x4 + y4, x4 + y4 + (x+ y)4, x3y and (x+ iy)4 + (x− iy)4. It will follow
from the next results that C((x2 + y2)2) = {3, 4}.

Theorem 5.5. If d = 2k and f(x, y) =
(
2k
k

)
xkyk, then LC(f) = k + 1. The

minimal C-representations of f are given by

(k + 1)

(
2k

k

)
xkyk =

k∑

j=0

(ζj2k+2wx + ζ−j
2k+2w

−1y)2k, 0 �= w ∈ C. (5.6)

Proof. We first evaluate the right-hand side of (5.6) by expanding the powers:

k∑

j=0

(ζj2k+2wx + ζ−j
2k+2w

−1y)2k =

k∑

j=0

2k∑

t=0

(
2k

t

)
ζ
j(2k−t)−jt
2k+2 w(2k−t)−tx2k−tyt

=

2k∑

t=0

(
2k

t

)
w2k−2tx2k−tyt

⎛

⎝
k∑

j=0

ζ
j(k−t)
k+1

⎞

⎠ . (5.7)

But
∑m−1

j=0 ζrjm = 0 unless m | r, in which case it equals m. Since the only multiple
of k + 1 in the set {k − t : 0 ≤ t ≤ 2k} occurs for t = k, (5.7) reduces to the left-
hand side of (5.6). We now show that these are all the minimal C-representations
of f .

Since Hk(x
kyk) has 1’s on the NE-SW diagonal, it is non-singular, so

LC(x
kyk) > k, and LC(x

kyk) = k + 1 by (5.6). By Corollary 4.3, any minimal
C-representation not given by (5.6) can only use powers of forms which are distinct
from any wx + w−1y. If ab = c2 �= 0, then ax + by is a multiple of a

cx + c
ay.

This leaves only x2k and y2k, and there is no linear combination of these giving
xkyk. �

The representations in (5.6) arise because the null-vectors of Hk+1(x
kyk) can

only be (c0, 0, . . . , 0, ck+1)
t and c0x

k+1 + ck+1y
k+1 is a Sylvester form when

c0ck+1 �= 0.

Corollary 5.6. For k ≥ 2, LC((x
2 + y2)k) = k+1, and LK((x2 + y2)k) = k+1

iff tan π
k+1 ∈ K . The C-minimal representations of (x2 + y2)k are given by

(
2k

k

)
(x2 + y2)k =

1

k + 1

k∑

j=0

(
cos( jπ

k+1 + θ)x + sin( jπ
k+1 + θ)y

)2k
, θ ∈ C.

(5.8)

Proof. The invertible map (x, y) �→ (x − iy, x + iy) takes xkyk into (x2 + y2)k.
Setting 0 �= w = eiθ in (5.6) gives (5.8). If tanα �= 0, then
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(cosα x+sinα y)2k = cos2k α ·(x+tanα y)2k = (1+tan2 α)−k(x+tanα y)2k.

Thus, if tanα ∈ K , then (cosα x + sinα y)2k ∈ K[x, y]. Further, if cosα = 0,
then (cosα x+ sinα y)2k = y2k ∈ K[x, y]. Conversely, if (cosα x+sinα y)2k ∈
K[x, y] and cosα �= 0, then the ratio of the coefficients of x2k−1y and x2k equals
2k tanα, which must be in K . It follows that LK((x2 + y2)k) = k + 1 if and only
if there exists θ ∈ C so that for each 0 ≤ j ≤ k, either cos( jπ

k+1 + θ) = 0 or

tan( jπ
k+1 + θ) ∈ K . Since tanα, tanβ ∈ K imply tan(α− β) ∈ K and k ≥ 2, we

see that (5.8) is a representation overK if and only if tan π
k+1 ∈ K . �

In particular, since tan π
3 =

√
3 /∈ Q, LQ((x

2 + y2)2) > 3 and so must equal
4. Thus, C((x2 + y2)2) = {3, 4}, as promised. Since tan π

m is irrational for m ≥ 5
(see e.g. [40, Corollary 3.12]), it follows that LQ((x

2 + y2)k) = k + 1 only for
k = 1, 3.

It is worth remarking that xkyk is a highly singular complex form, as is (x2 +
y2)k. However, as a real form, (x2 + y2)k is interior to the real convex cone Q2,2k.
For real θ, the formula in (5.8) goes back at least to Friedman [21] in 1957. It was
shown in [47] that all minimal real representations of (x2 + y2)k have this shape.
There is an equivalence between representations of (x2+y2)k as a real sum of 2k-th
powers and quadrature formulas on the circle – see [47]. In this sense, (5.8) can be
traced back to Mehler [35] in 1864.

A real representation (1.1) of (
∑
x2i )

k (with positive real coefficients λj ) is
called a Hilbert Identity; Hilbert [20, 26] used such representations with rational
coefficients to solve Waring’s problem. Hilbert Identities have been important in
studying quadrature problems on Sn−1, the Delsarte-Goethals-Seidel theory of
spherical designs in combinatorics and for embedding questions in Banach spaces
[47, Chaps. 8 and 9], as well as for explicit computations in Hilbert’s 17th problem
[48]. It can be shown that any such representation requires at least

(
n+k−1
n−1

)

summands, and this bound also applies if negative coefficients λj are allowed. It is
not known whether allowing negative coefficients can reduce the total number of
summands. However, Blekherman [3] has recently constructed f ∈ Q6,4 which
has a smaller length if one allows negative λj in a real representation. When
(
∑
x2i )

k is a sum of exactly
(
n+k−1
n−1

)
2k-th powers, the coordinates of minimal

representations can be used to produce tight spherical designs. Such representations
exist when n = 2, 2k = 2, (n, 2k) = (3, 4), (n, 2k) = (u2 − 2, 4) (u = 3, 5),
(n, 2k) = (3v2 − 4, 6) (v = 2, 3), (n, 2k) = (24, 10). It has been proved that they
do not exist otherwise, unless possibly (n, 2k) = (u2 − 2, 4) for some odd integer
u ≥ 7 or (n, 2k) = (3v2 − 4, 6) for some integer v ≥ 4. These questions have
been largely open for more than thirty years. It is also not known whether there
exist (k, n) so that LR((

∑
x2i )

k) > LC((
∑
x2i )

k), although this cannot happen for
n = 2. For that matter, it is not known whether there exists any f ∈ Qn,d so that
LR(f) > LC(f).
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We conclude this section with a related question: if fλ(x, y) = x4+6λx2y2+y4

for λ ∈ Q, what isLQ(fλ)? If λ ≤ − 1
3 , then fλ has four real factors, soLQ(fλ) = 4.

Since detH2(fλ) = λ− λ3, LC(fλ) = 2 for λ = 0, 1,−1. The formula

(x4 + 6λx2y2 + y4) = λ
2

(
(x+ y)4 + (x− y)4

)
+ (1− λ)(x4 + y4)

shows that LQ(f0) = LQ(f1) = 2; 2f−1(x, y) = (x+iy)4+(x−iy)4 has Q-
length 4.

Theorem 5.7. Suppose λ = a
b ∈ Q, λ3 �= λ. Then LQ(x

4 + 6λx2y2 + y4) = 3 if
and only if there exist integers (m,n) �= (0, 0) so that

Γ(a, b,m, n) = 4a3b m4 + (b4 − 6a2b2 − 3a4)m2n2 + 4a3b n4 (5.9)

is a non-zero square.

Proof. By Corollary 2.2, such a representation occurs if and only if there is a cubic
h(x, y) =

∑3
i=0 cix

3−iyi which splits over Q and satisfies

c0 + λc2 = λc1 + c3 = 0. (5.10)

Assume that h(x, y) = (mx + ny)g(x, y), (m,n) �= (0, 0) with m,n ∈ Z. If
g(x, y) = rx2 + sxy + ty2, then c0 = mr, c1 = ms+ nr, c2 = mt+ ns, c3 = nt
and (5.10) becomes

(
m λn λm

λn λm n

)
·
⎛

⎝
r

s

t

⎞

⎠ =

(
0

0

)
(5.11)

Ifm = 0, then the general solution to (5.11) is (r, s, t) = (r, 0,−λr) and rx2−λry2
splits over Q into distinct factors iff λ is a non-zero square; that is, iff ab is a square,
and similarly if n = 0. Otherwise, the system has full rank since λ2 �= 1 and any
solution is a multiple of

rx2 + sxy+ ty2 = (λn2−λ2m2)x2+(λ2− 1)mnxy+(λm2−λ2n2)y2. (5.12)

The quadratic in (5.12) splits over Q into distinct factors iff its discriminant

4λ3m4 + (1− 6λ2 − 3λ4)m2n2 + 4λ3n4 = b−4Γ(a, b,m, n) (5.13)

is a non-zero square in Q. �
In particular, we have the following identities: Γ(u2, v2, v, u) = (u5v − uv5)2

and Γ(uv, u2 − uv + v2, 1, 1) = (u − v)6(u + v)2, hence LQ(fλ) = 3 for λ = τ2

and λ = τ
τ2−τ+1 , where τ = u

v ∈ Q, τ �= ±1. These show that LQ(fλ) = 3 for
a dense set of rationals in [− 1

3 ,∞). These families do not exhaust the possibilities.
If λ = 38

3 , so fλ(x, y) = x4 + 76x2y2 + y4, then λ is expressible neither as τ2 nor
τ

τ2−τ+1 for τ ∈ Q, but Γ(38, 3, 2, 19) = 276,9062.
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We mention two negative cases: if λ = 1
3 , Γ(1, 3,m, n) = 12(m2 + n2)2, which

is never a square, giving another proof that LQ((x
2 + y2)2) = 4. If λ = 1

2 , then

Γ(1, 2,m, n) = 8m4 − 11m2n2 + 8n4 = 27
4 (m

2 − n2)2 + 5
4 (m

2 + n2)2,

hence if LQ(x
4 + 3x2y2 + y4) = 3, then there is a solution to the Diophantine

equation 27X2 + 5Y 2 = Z2. A simple descent shows that this has no non-zero
solutions: working mod 5, we see that 2X2 = Z2; since 2 is not a quadratic residue
mod 5, it follows that 5 | X,Z , and these imply that 5 | Y as well. It follows that,
LQ(x

4 + 3x2y2 + y4) = 4.
Solutions of the Diophantine equation Am4 + Bm2n2 + Cn4 = r2 were first

studied by Euler; see [16, pp. 634–639] and [38, pp. 16–29] for more on this topic.
This equation has not yet been completely solved; see [6, 13]. We hope to return to
the analysis of (5.9) in a future publication.

6 Open Questions

We are confident that Conjecture 4.12 can be completely settled. This raises the
question of whether there exist other fields besides C (and possibly R) for which
there is a simple description of {f : LK(f) = deg f}.

Which cabinets are possible for binary forms? Are there other restrictions beyond
Corollary 5.1(1)? How many different lengths are possible? If |C(f)| ≥ 4, then
d ≥ 7. Can anything more be said about forms in n ≥ 3 variables?

Can f have more than one, but a finite number, of K-minimal representations,
where K is not necessarily equal to Ef? Theorem 5.7 might be a way to find such
examples.

Length is generic over C, but not over R. For d = 2r, the R-length of a real form
is always 2r in a small neighborhood of

∏d
j=1(x − jy), but the R-length is always

r + 1 in a small neighborhood of (x2 + y2)r [47]. Which combinations of degrees
and lengths have interior? Does the parity of d matter? This question is explored in
much greater detail in [15].
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