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1 Quadratic Forms

Let k be a field with char k �= 2.

Definition 1.1. A quadratic form q : V → k on a vector space V over k is a map
satisfying:

(1) q(λv) = λ2q(v) for v ∈ V , λ ∈ k.
(2) The map bq : V × V → k, defined by

bq(v, w) =
1

2
[q(v + w) − q(v)− q(w)]

is bilinear.

We denote a quadratic form by (V, q), or simply by q. Throughout, we restrict
ourselves to the study of quadratic forms on finite-dimensional vector spaces.

The bilinear form bq is symmetric; q determines bq and for all v ∈ V , q(v) =
bq(v, v).

For a choice of basis {e1, . . . , en} of V , bq is represented by a symmetric matrix
A(q) = (aij) with aij = bq(ei, ej). If v =

∑
1≤i≤nXiei ∈ V , Xi ∈ k, then

q(v) =
∑

1≤i,j≤n

aijXiXj =
∑

1≤i≤n

aiiX
2
i + 2

∑

i<j

aijXiXj .

Thus q is represented by a homogeneous polynomial of degree 2. Clearly, every
homogeneous polynomial of degree 2 corresponds to a quadratic form on V with
respect to the chosen basis.

Definition 1.2. Two quadratic forms (V1, q1), (V2, q2) are isometric if there is an
isomorphism φ : V1

∼→ V2 such that q2(φ(v)) = q1(v) for all v ∈ V1.

If A(q1), A(q2) are the matrices representing q1 and q2 with respect to bases B1

andB2 of V1 and V2 respectively, φ yields a matrix T ∈ GLn(k), n = dimV , such
that

TA(q2)T
t = A(q1).

In other words, the symmetric matrices A(q1) and A(q2) are congruent. Thus
isometry classes of quadratic forms yield congruence classes of symmetric matrices.

Definition 1.3. The form q : V → k is said to be regular if bq : V × V → k is
nondegenerate.

Thus q is regular if and only if the map V → V ∗ = Hom(V, k), defined by
v �→ (w �→ bq(v, w)), is an isomorphism. This is the case if A(q) is invertible.

Let (V, q) be a quadratic form. Then

V0 = {v ∈ V : bq(v, w) = 0 for all w ∈ V }
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is called the radical of V . If V1 is any complementary subspace of V0 in V , then
q|V1 is regular and (V, q) = (V0, 0) ⊥ (V1, q|V1). Note that V is regular if and only
if the radical of V is zero.

Henceforth, we shall only be concerned with regular quadratic forms.

Definition 1.4. Let W be a subspace of V and q : V → k be a quadratic form. The
orthogonal complement of W denotedW⊥ is the subspace

W⊥ = {v ∈ V : bq(v, w) = 0 for all w ∈W}.

Exercise 1.5. Let (V, q) be a regular quadratic form and W a subspace of V .
Then

(1) dim(W ) + dim(W⊥) = dim(V ).
(2) (W⊥)⊥ =W.

1.1 Orthogonal Sums

Let (V1, q1), (V2, q2) be quadratic forms. The form

(V1, q1) ⊥ (V2, q2) = (V1 ⊕ V2, q1 ⊥ q2),
with q1 ⊥ q2 defined by

(q1 ⊥ q2)(v1, v2) = q1(v1) + q2(v2), v1 ∈ V1, v2 ∈ V2
is called the orthogonal sum of (V1, q1) and (V2, q2).

1.2 Diagonalization

Let (V, q) be a quadratic form. There exists a basis {e1, . . . , en} of V such that
bq(ei, ej) = 0 for i �= j. Such a basis is called an orthogonal basis for q. With
respect to an orthogonal basis, bq is represented by a diagonal matrix.

If {e1, . . . , en} is an orthogonal basis of q and q(ei) = di, we write q =
〈d1, . . . , dn〉. In this case, V = ke1 ⊕ · · · ⊕ ken is an orthogonal sum and q|kei
is represented by 〈di〉. Thus every quadratic form is diagonalizable.

1.3 Hyperbolic Forms

Definition 1.6. A quadratic form (V, q) is said to be isotropic if there is a nonzero
v ∈ V such that q(v) = 0. It is anisotropic if q is not isotropic. A quadratic form
(V, q) is said to be universal if it represents every element of k; i.e., given λ ∈ k,
there is a vector v ∈ V such that q(v) = λ.
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Example 1.7. The quadratic form X2 − Y 2 is isotropic over k. Suppose (V, q) is
a regular form which is isotropic. Let v ∈ V be such that q(v) = 0, v �= 0. Since q
is regular, there exists w ∈ V such that bq(v, w) �= 0. After scaling we may assume
bq(v, w) = 1. If q(w) �= 0, we may replacew byw+λv, λ = − 1

2q(w), and assume
that q(w) = 0. Thus W = kv ⊕ kw is a 2-dimensional subspace of V and q|W is
represented by ( 0 1

1 0 ) with respect to {v, w}.
Definition 1.8. A binary quadratic form isometric to (k2, ( 0 1

1 0 )) is called a hyper-
bolic plane. A quadratic form (V, q) is hyperbolic if it is isometric to an orthogonal
sum of hyperbolic planes. A subspace W of V such that q restricts to zero on W
and dimW = 1

2 dimV is called a Lagrangian.

Every regular quadratic form which admits a Lagrangian can easily be seen to be
hyperbolic.

Exercise 1.9. Let (V, q) be a regular quadratic form and (W, q|W ) a regular form
on the subspace W . Then (V, q) = (W, q|W ) ⊥ (W⊥, q|W⊥).

Theorem 1.10 (Witt’s Cancellation Theorem). Let (V1, q1), (V2, q2), (V, q) be
quadratic forms over k. Suppose

(V1, q1) ⊥ (V, q) ∼= (V2, q2) ⊥ (V, q).

Then (V1, q1) ∼= (V2, q2).

The key ingredient of Witt’s cancellation theorem is the following.

Proposition 1.11. Let (V, q) be a quadratic form and v, w ∈ V with q(v) =
q(w) �= 0. Then there is an isometry τ : (V, q)

∼→ (V, q) such that τ(v) = w.

Proof. Let q(v) = q(w) = d �= 0. Then

q(v + w) + q(v − w) = 2q(v) + 2q(w) = 4d �= 0.

Thus q(v + w) �= 0 or q(v − w) �= 0. For any vector u ∈ V with q(u) �= 0, define
τu : V → V by

τu(z) = z − 2bq(z, u)u

q(u)
.

τu is an isometry called the reflection with respect to u.
Suppose q(v − w) �= 0. Then τv−w : V → V is an isometry of V which sends v

to w. Suppose q(v + w) �= 0. Then τw ◦ τv+w sends v to w. �
Remark 1.12. The orthogonal group of (V, q) denoted by O(q) is the set of
isometries of V onto itself. This group is generated by reflections. This is seen by
an inductive argument on dim(q), using the above proposition.

Theorem 1.13 (Witt’s decomposition). Let (V, q) be a quadratic form (not neces-
sarily regular). Then there is a decomposition
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(V, q) = (V0, 0) ⊥ (V1, q1) ⊥ (V2, q2)

where V0 is the radical of q, q1 = q|V1 is anisotropic and q2 = q|V2 is
hyperbolic. If (V, q) = (V0, 0) ⊥ (W1, f1) ⊥ (W2, f2) with f1 anisotropic and
f2 hyperbolic, then

(V1, q1) ∼= (W1, f1), (V2, q2) ∼= (W2, f2).

Remark 1.14. A hyperbolic form (W, f) is determined by dim(W ); for if
dim(W ) = 2n, (W, f) ∼= nH , where H = (k2, ( 0 1

1 0 )) is the hyperbolic plane.

From now on, we shall assume (V, q) is a regular quadratic form. We denote by
qan the quadratic form (V1, q1) in Witt’s decomposition which is determined by q up
to isometry. We call 1

2 dim(V2) the Witt index of q. Thus any regular quadratic form
q admits a decomposition q ∼= qan ⊥ (nH), with qan anisotropic and H denoting
the hyperbolic plane. We also sometimes denote by Hn the sum of n hyperbolic
planes.

2 Witt Group of Forms

2.1 Witt Groups

We set

W (k) = {isomorphism classes of regular quadratic forms over k}/ ∼
where the Witt equivalence∼ is given by:

(V1, q1) ∼ (V2, q2) ⇐⇒ there exist r, s ∈ Z such that
(V1, q1) ⊥ Hr ∼= (V2, q2) ⊥ Hs .

W (k) is a group under orthogonal sum:

[(V1, q1)] ⊥ [(V2, q2)] = [(V1, q1) ⊥ (V2, q2)].

The zero element in W (k) is represented by the class of hyperbolic forms. For a
regular quadratic form (V, q), (V, q) ⊥ (V,−q) has Lagrangian

W = {(v, v) : v ∈ V }
so that (V, q) ⊥ (V,−q) ∼= Hn, n = dim(V ). Thus, [(V,−q)] = −[(V, q)] in
W (k).
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It follows from Witt’s decomposition theorem that every element in W (k) is
represented by a unique anisotropic quadratic form up to isometry. ThusW (k) may
be thought of as a group made out of isometry classes of anisotropic quadratic forms
over k.

The abelian groupW (k) admits a ring structure induced by tensor product on the
associated bilinear forms. For example, if q1 ∼= 〈a1, . . . , an〉 and q2 is a quadratic
form, then q1 ⊗ q2 ∼= a1q2 ⊥ a2q2 ⊥ · · · ⊥ anq2.

Definition 2.1. Let I(k) denote the ideal of classes of even-dimensional quadratic
forms in W (k). The ideal I(k) is called the fundamental ideal. In(k) stands for
the nth power of the ideal I(k).

Definition 2.2. Let Pn(k) denote the set of isomorphism classes of forms of
the type

〈〈a1, . . . , an〉〉 := 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉.
Elements in Pn(k) are called n-fold Pfister forms.

The ideal I(k) is generated additively by the forms 〈1, a〉, a ∈ k∗. Moreover, the
ideal In(k) is generated additively by n-fold Pfister forms. For instance, for n = 2,
the generators of I2(k) are of the form

〈a, b〉 ⊗ 〈c, d〉 ∼= 〈1, ac, ad, cd〉 − 〈1, cd,−bc,−bd〉 = 〈〈ac, ad〉〉 − 〈〈cd,−bc〉〉

Example 2.3. If k = C, every 2-dimensional quadratic form over k is isotropic.

W (k) ∼= Z/2Z

[(V, q)] �→ dim(V ) (mod 2)

is an isomorphism.

Example 2.4. Let k = Fpn , p �= 2, be a finite field. Then k∗ = k \ {0} has
two square classes, {1, u}. Every 3-dimensional quadratic form over k is isotropic.
Further, W (k) ∼= Z/4Z if −1 is not a square in Fpn and W (k) ∼= Z/2Z× Z/2Z if
−1 is a square in Fpn (cf. [L], Corollary 3.6).

Example 2.5. If k = R, every quadratic form q is represented by

〈1, . . . , 1,−1, . . . ,−1〉
with respect to an orthogonal basis. The number r of +1’s and the number s of−1’s
in the diagonalization above are uniquely determined by the isomorphism class of
q. The signature of q is defined as r − s. The signature yields a homomorphism
sgn: W (R)→ Z which is an isomorphism.
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2.2 Quadratic Forms Over p-Adic Fields

Let k be a finite extension of the field Qp of p-adic numbers. We call k a non-dyadic
p-adic field if p �= 2. The field k has a discrete valuation v extending the p-adic
valuation on Qp. Let π be a uniformizing parameter for v and κ the residue field for
v. The field κ is a finite field of characteristic p �= 2. Let u be a unit in k∗ such that
u ∈ κ is not a square. Then

k∗/k∗2 = {1, u, π, uπ}.
Since κ is finite, every 3-dimensional quadratic form over κ is isotropic. By Hensel’s
lemma, every 3-dimensional form 〈u1, u2, u3〉 over k, with ui units in k is isotropic.
Since every form q in k has a diagonal representation

〈u1, . . . , ur〉 ⊥ π〈v1, . . . , vs〉,
if r or s exceeds 3, q is isotropic. In particular every 5-dimensional quadratic form
over k is isotropic. Further, up to isometry, there is a unique quadratic form in
dimension 4 which is anisotropic, namely,

〈1,−u,−π, uπ〉.
This is the norm form of the unique quaternion division algebraH(u, π) over k (cf.
Sect. 2.3).

2.3 Central Simple Algebras and the Brauer Group

Recall that a finite-dimensional algebra A over a field k is a central simple algebra
over k if A is simple (has no two-sided ideals) and the center of A is k. Recall also
that for a field k,

Br(k) = {Isomorphism classes of central simple algebras over k} / ∼
where the Brauer equivalence ∼ is given by: A ∼ B if and only if Mn(A) ∼=
Mm(B) for some integers m,n. The pair (Br(k),⊗) is a group. The inverse of [A]
is [Aop] where Aop is the opposite algebra of A: the multiplication structure, ∗, on
Aop is given by a ∗ b = ba. We have a k-algebra isomorphism φ : A ⊗ Aop ∼−→
Endk(A) induced by φ(a ⊗ b)(c) = acb. The identity element in Br(k) is given
by [k]. By Wedderburn’s theorem on central simple algebras, the elements of Br(k)
parametrize the isomorphism classes of finite-dimensional central division algebras
over k.

For elements a, b ∈ k∗, we define the quaternion algebra H(a, b) to be the
4-dimensional central simple algebra over k generated by {i, j} with the relations
i2 = a, j2 = b, ij = −ji. This is a generalization of Hamilton’s quaternion algebra
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H(−1,−1) over the field of real numbers. The algebra H(a, b) admits a canonical
involution¯: H(a, b)→ H(a, b) given by

α+ iβ + jγ + ijδ = α− iβ − jγ − ijδ
This involution gives an isomorphism H(a, b) ∼= H(a, b)op; in particular, H(a, b)
has order 2 in Br(k). Let 2Br(k) denote the 2-torsion subgroup of the Brauer group
of k. The norm form for this algebra is given by N(x) = xx, which is a quadratic
form on H(a, b) represented with respect to the orthogonal basis {1, i, j, ij} by
〈1,−a,−b, ab〉 = 〈〈−a,−b〉〉.

2.4 Classical Invariants for Quadratic Forms

Let (V, q) be a regular quadratic form. We define dim(q) = dim(V ) and dim2(q) =
dim(V ) modulo 2. We have a ring homomorphism dim2 : W (k)→ Z/2Z. We note
that I(k) is the kernel of dim2. This gives an isomorphism

dim2 : W (k)/I(k)
∼−→ Z/2Z.

Let disc(q) = (−1)n(n−1)/2[det(A(q))] ∈ k∗/k∗2. Since A(q) is determined up
to congruence, det(A(q)) is determined modulo squares. We have disc(H) = 1,
where H is the hyperbolic plane. The discriminant induces a group homomorphism

disc : I(k)→ k∗/k∗2

which is clearly onto. It is easy to verify that ker(disc) = I2(k). Thus the
discriminant homomorphism induces an isomorphism I(k)/I2(k)→ k∗/k∗2.

Example 2.6. Let 〈a, b〉 be a binary quadratic form. Then disc〈a, b〉 = −ab. The
discriminant is trivial if and only if 〈a, b〉 ∼= 〈1,−1〉 is a hyperbolic plane. Further,
if 〈a, b〉 represents a value c ∈ k∗, then 〈a, b〉 ∼= 〈c, abc〉.

The next invariant for quadratic forms is the Clifford invariant. To each quadratic
form (V, q) we wish to construct a central simple algebra containing V whose
multiplication on elements of V satisfies v · v = q(v). The smallest such algebra
(defined by a universal property) will be the Clifford algebra.

Definition 2.7. The Clifford algebra C(q) of the quadratic form (V, q) is
T (V )/Iq , where Iq is the two-sided ideal in the tensor algebra T (V ) generated
by {v ⊗ v − q(v) | v ∈ V }.

The algebra C(q) has a Z/2Z gradation C(q) = C0(q) ⊕ C1(q) induced by the
gradation T (V ) = T0(V )⊕ T1(V ), where

T0(V ) =
⊕

i≥0, i even

V ⊗i and T1(V ) =
⊕

i≥1, iodd

V ⊗i.
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If dim(q) is even, then C(q) is a central simple algebra over k. If dim(q) is odd,
C0(q) is a central simple algebra over k. The Clifford algebraC(q) comes equipped
with an involution τ defined by τ(v) = −v for v ∈ V . Thus, if dim(q) is even,
C(q) determines a 2-torsion element in Br(k).

Definition 2.8. The Clifford invariant c(q) of (V, q) in Br(k) is defined as

c(q) =

{
[C(q)], if dim(q) is even

[C0(q)], if dim(q) is odd

Example 2.9. Let q ∼= ⊗n
i=1〈〈−ai,−bi〉〉 ∈ I2(k). Then

c(q) = [⊗1≤i≤nHi]

where Hi = H(ai, bi).

Exercise 2.10. Given
⊗

1≤i≤nHi, a tensor product of n quaternion algebras over
k, show that there is a quadratic form q over k of dimension 2n+ 2 such that
c(q) = [

⊗
1≤i≤nHi].

The Clifford invariant induces a homomorphism c : I2(k) →2 Br(k), 2Br(k)
denoting the 2-torsion in the Brauer group of k. The very first case of the Milnor
conjecture (see Sect. 3) states: c is surjective and ker(c) = I3(k).

Theorem 2.11 (Merkurjev [M1]). The map c induces an isomorphism

I2(k)/I3(k) ∼=2Br(k)

Thus the image of I2(q) in 2Br(k) is spanned by quaternion algebras. It
was a longstanding question whether 2Br(k) is spanned by quaternion algebras.
Merkurjev’s theorem answers this question in the affirmative; further, it gives precise
relations between quaternion algebras in 2Br(k).

3 Galois Cohomology and the Milnor Conjecture

Let k̄ be a separable closure of k. Let Γk = Gal(k̄|k) be the absolute Galois group
of k. The group Γk is a profinite group:

Γk = lim←−
L⊂k̄, L/k finite Galois

Gal(L/k).

A discrete Γk-module M is a continuous Γk-module for the discrete topology on
M and the profinite topology on Γk. A Γk-module M is discrete if and only if
the stabilizer of each m ∈ M is an open subgroup, in particular, of finite index
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in Γk. For a discrete Γk-module M , we define Hn(k,M) as the direct limit of the
cohomology of the finite quotients

Hn(k,M) = lim−→
L⊂k̄, L/k finite Galois

Hn(Gal(L/k),MΓL).

Suppose char(k) �= 2 and M = μ2. The module μ2 has trivial Γk action and is
isomorphic to Z/2Z. We have

H0(k,Z/2Z) = Z/2Z

H1(k,Z/2Z) ∼= k∗/k∗2

H2(k,Z/2Z) ∼=2Br(k)

These can be seen from the Kummer exact sequence of Γk-modules:

0 −→ μ2 −→ k̄∗ ·2−→ k̄∗ −→ 0

and noting that H1(Γk, k̄
∗) = 0 (Hilbert’s Theorem 90) and H2(Γk, k̄

∗) = Br(k).
For an element a ∈ k∗, we denote by (a) its class in H1(k,Z/2Z) and for

a1, . . . , an ∈ k∗, the cup product (a1) ∪ · · · ∪ (an) ∈ Hn(k,Z/2Z) is denoted by
(a1) · · · · · (an).

For a, b ∈ k∗, the element (a).(b) represents the class of H(a, b) in 2Br(k).
The map

c : I2(k)→ H2(k,Z/2Z)

sends 〈1,−a,−b, ab〉 to the class of H(a, b) in H2(k,Z/2Z). The forms
〈1,−a,−b, ab〉 additively generate I2(k). Merkurjev’s theorem asserts that
H2(k,Z/2Z) is generated by (a).(b), with a, b ∈ k∗. The Milnor conjecture
(quadratic form version) proposes higher invariants In(k) → Hn(k,Z/2Z)
extending the classical invariants.

Milnor Conjecture. The assignment

〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 �→ (a1) · · · · · (an)
yields a map en : Pn(k) → Hn(k,Z/2Z). This map extends to a homomorphism
en : I

n(k)→ Hn(k,Z/2Z) which is onto and ker(en) = In+1(k).

The maps dimension mod 2, discriminant and Clifford invariant coincide with
e0, e1 and e2. Unlike these classical invariants, which are defined on all quadratic
forms, conjecturally en, n ≥ 3, are defined only on elements in In(k) on which the
invariants ei, i ≤ n − 1, vanish. In 1975, Arason [Ar] proved that e3 : I3(k) →
H3(k,Z/2Z) is well defined and is one-one on P3(k). As we mentioned earlier,
the first nontrivial case of the Milnor conjecture was proved by Merkurjev for
n = 2. The Milnor conjecture (quadratic form version) is now a theorem due to
Orlov–Vishik–Voevodsky [OVV].
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The Milnor conjecture gives a classification of quadratic forms by their Galois
cohomology invariants: Given anisotropic quadratic forms q1 and q2, suppose
ei(q1 ⊥ −q2) = 0 for i ≥ 0. Then q1 = q2 in W (k). We need only to verify
ei(q1 ⊥ −q2) = 0 for i ≤ N where N ≤ 2n and dim(q1 ⊥ −q2) ≤ 2n, by the
following theorem of Arason and Pfister.

Theorem 3.1 (Arason–Pfister Hauptsatz). Let k be a field. The dimension of an
anisotropic quadratic form in In(k) is at least 2n.

4 Pfister Forms

The theory of Pfister forms (or multiplicative forms, as Pfister called them) evolved
from questions on classification of quadratic forms whose nonzero values form a
group (hereditarily).

Definition 4.1. A regular quadratic form q over k is called multiplicative if the
nonzero values of q over any extension field L over k form a group.

We have the following examples of quadratic forms which are multiplicative.

Example 4.2. 〈1〉: nonzero squares are multiplicatively closed in k∗.

Example 4.3. 〈1,−a〉: x2 − ay2, a ∈ k∗ is the norm from the quadratic algebra
k[t]/(t2 − a) over k and the norm is multiplicative.

Example 4.4. 〈1,−a〉 ⊗ 〈1,−b〉: x2 − ay2 − bz2 + abt2 is a norm form from the
quaternion algebra H(a, b): N(α + iβ + jγ + ijδ) = α2 − aβ2 − bγ2 + abδ2.
The norm once again is multiplicative.

Example 4.5. 〈1,−a〉 ⊗ 〈1,−b〉 ⊗ 〈1,−c〉: (x2 − ay2 − bz2 + abt2) − c(u2 −
av2−bw2+abs2) is the norm form from an octonion algebra associated to the triple
(a, b, c); it is a non-associative algebra obtained from the quaternion algebraH(a, b)
by a doubling process (see [J, Sect. 7.6]). The norm is once again multiplicative.

Theorem 4.6 (Pfister). An anisotropic quadratic form q over k is multiplicative if
and only if q is isomorphic to a Pfister form.

We shall sketch a proof of this theorem. The main ingredients are the Cassels–
Pfister Theorem 4.7 and the Subform Theorem 4.10, which will not be proved in the
text. We refer to [L, Chap. IX, Theorems 1.3 and 2.8] for the proofs.

Theorem 4.7 (Cassels–Pfister). Let q = 〈a1, . . . , an〉 be a regular quadratic form
over k and f(X) ∈ k[X ], a polynomial over k which is a value of q over k(X). Then
there exist polynomials g1, . . . , gn ∈ k[X ] such that f(X) = a1g

2
1 + · · ·+ ang

2
n.

Corollary 4.8 (Specialization Lemma). Let q = 〈a1, . . . , an〉 be a quadratic
form over k, X = {X1, . . . , Xn}, p(X) ∈ k(X) a rational function represented
by q over k(X). Then for any v ∈ kn where p(v) is defined, p(v) is represented by
q over k.
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Proof. We may assume, by multiplying p(X) by a square, that p(X) ∈ k[X ].
Let p(X) = p1(Xn), where p1 is a polynomial in Xn with coefficients in
k[X1, . . . , Xn−1]. By the Cassels–Pfister theorem, p1(Xn) is represented by q over
k(X1, . . . , Xn−1)[Xn]. Let v = (v1, . . . , vn). Then specializing Xn to vn, we
have p1(vn) ∈ k[X1, . . . , Xn−1] is represented by q over k(X1, . . . , Xn−1). By
an induction argument, one concludes that p(v1, . . . , vn) is a value of q over k. �
Corollary 4.9. Let q be an anisotropic quadratic form over k of dimension n.
Then q is multiplicative if and only if, for indeterminates X = (X1, . . . , Xn),
Y = (Y1, . . . , Yn), q(X) q(Y ) is a value of q over k(X1, . . . , Xn, Y1, . . . , Yn).

Proof. The only non-obvious part is “if”. Suppose L/k is a field extension and
v, w ∈ Ln. Let q(v) = c and q(w) = d. Since q(X) q(Y ) is a value of q over
k(X,Y ), by the Specialization lemma, q(X) q(w) is a value of q over L(X) and by
the same lemma, q(v) q(w) is a value of q over L. �
Theorem 4.10 (Subform Theorem). Let q = 〈a1, . . . , an〉, γ = 〈b1, . . . , bm〉 be
quadratic forms over k with q anisotropic. Then γ is a subform of q (i.e., q ∼= γ ⊥ γ′
for some form γ′ over k) if and only if b1X2

1 + · · · + bmX
2
m is a value of q over

k(X1, . . . , Xm).

Corollary 4.11. Let q be an anisotropic quadratic form over k of dimension n. Let
X = {X1, . . . , Xn} be a list of n indeterminates. Then q is multiplicative if and
only if q ∼= q(X) q over k(X).

Proof. Suppose q ∼= q(X) q over k(X). Let A be the matrix representing q over k.
There existsW ∈ GLn(k(X)) such that q(X)A =WAW t. Let Y = {Y1, . . . , Yn}
be a list of n indeterminates. Over k(X,Y ),

q(X) q(Y ) = Y (q(X)A)Y t = (YW )A(YW )t = q(Z)

whereZ = YW . Thus q(X) q(Y ) is a value of q over k(X,Y ) and by Corollary 4.9,
q is multiplicative.

Suppose conversely that q is multiplicative. Then q(X) q(Y ) is a value of q over
k(X,Y ). By the Subform theorem, q(X) q is a subform of q. A dimension count
yields q ∼= q(X) q. �
Proof of Pfister’s Theorem 4.6. Let q = 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 be an anisotropic
quadratic form over k. Over any field extension L/k, either q is an anisotropic
Pfister form or isotropic in which case it is universal. Thus it suffices to show that
the nonzero values of q form a subgroup of k∗ for any anisotropic n-fold Pfister
form q. The proof is by induction on n; for n = 1, q is the norm form from a
quadratic extension of k (see Example 4.3) and we are done. Let n ≥ 2. We have
q ∼= q1 ⊥ anq1, where q1 = 〈1, a1〉 ⊗ · · · ⊗ 〈1, an−1〉 is an anisotropic (n − 1)-
fold Pfister form. Let X = {X1, . . . , X2n−1}, Y = {Y1, . . . , Y2n−1} be two lists of
2n−1 indeterminates. Since q1 is multiplicative, by Corollary 4.11, q1(X) q1 ∼= q1
over k(X) and q1(Y ) q1 ∼= q1 over k(Y ). We have, over k(X,Y ),
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q ∼= q1(X) q1 ⊥ anq1(Y ) q1 ∼= 〈q1(X), anq1(Y )〉 ⊗ q1.

Since q(X,Y ) = q1(X) + anq1(Y ), 〈q1(X), anq1(Y )〉 represents q(X,Y ).
Therefore, by a comparison of discriminants,

〈q1(X), anq1(Y )〉 ∼= 〈q(X,Y ), anq(X,Y )q1(X)q1(Y )〉
∼= q(X,Y )(1 ⊥ anq1(X)q1(Y ))

In particular,

q ∼= q(X,Y )〈1, anq1(X)q1(Y )〉 ⊗ q1
∼= q(X,Y )(q1 ⊥ anq1)
∼= q(X,Y ) q

Thus by Corollary 4.11, q is multiplicative.
Conversely, let q be an anisotropic quadratic form over k which is multiplicative.

Let n be the largest integer such that q contains an n-fold Pfister form q1 = 〈1, a1〉⊗
· · · ⊗ 〈1, an〉 as a subform. Suppose q ∼= q1 ⊥ γ, γ = 〈b1, . . . , bm〉, with m ≥ 1.
Let Z = {Z1, . . . , Z2n}. Over k(Z),

q ∼= q(Z, 0) q ∼= q1(Z)(q1 ⊥ γ) ∼= q1(Z) q1 ⊥ q1(Z) γ ∼= q1 ⊥ q1(Z) γ.

By Witt’s cancellation, γ ∼= q1(Z) γ over k(Z). Thus γ represents b1q1(Z) over
k(Z) and by the Subform theorem, γ ∼= b1 q1 ⊥ γ1. Then q ∼= q1 ⊥ b1 q1 ⊥ γ1 ∼=
〈1, b1〉 ⊗ q1 ⊥ γ1 contains an (n + 1)-fold Pfister form 〈1, b1〉 ⊗ q1, leading to a
contradiction to the maximality of n. Thus q ∼= q1. �

An important property of Pfister forms is stated in the following.

Proposition 4.12. Let φ be an n-fold Pfister form. If φ is isotropic then φ is
hyperbolic.

Proof. Let φ = r 〈1,−1〉 ⊥ φ0, with φ0 anisotropic, dim(φ0) ≥ 1 and r ≥ 1.
Let dim(φ) = m and X = {X1, . . . , Xm} be a list of m indeterminates. Over
k(X1, . . . , Xm)

r 〈1,−1〉 ⊥ φ0 = φ ∼= φ(X1, . . . , Xm)φ ∼= r 〈1,−1〉 ⊥ φ(X1, . . . , Xm)φ0.

By Witt’s cancellation theorem

φ0 ∼= φ(X1, . . . , Xm)φ0.

If b is a value of φ0, bφ(X1, . . . , Xm) is a value of φ0 and by the Subform theorem,
bφ is a subform of φ0 contradicting dim(φ0) < dim(φ). Thus φ ∼= r 〈1,−1〉 is
hyperbolic. �
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Corollary 4.13. The only integers n such that a product of sums of n squares is
again a sum of n squares over every field of characteristic zero are n = 2m for all
m ≥ 0.

Proof. Consider the quadratic form φn = x21 + x22 + · · ·+ x2n over Q. The form φn
is anisotropic. The condition that a product of sums of n squares is again a sum of n
squares over any field of characteristic zero is equivalent to φn being a Pfister form.
Thus dim(φn) = n = 2m for some m. �

5 Level of a Field

Definition 5.1. The level of a field k is the least positive integer n such that −1 is
a sum of n squares in k. We denote the level of k by s(k).

If the field is formally real (i.e., −1 is not a sum of squares), then the level is
defined to be infinite. It was a longstanding open question since the 1950s whether
the level of a field, if finite, is always a power of 2. Pfister’s theory of quadratic
forms leads to an affirmative answer to this question.

Theorem 5.2 ([Pf1]). The level of a field is a power of 2 if it is finite.

Proof. Let n = s(k). We choose an integerm such that 2m ≤ n < 2m+1. Suppose

− 1 = (u21 + u22 + · · ·+ u22m) + (u22m+1 + · · ·+ u2n) (5.3)

The element u21 + u22 + · · ·+ u22m �= 0 since s(k) ≥ 2m. Every ratio of sums of 2m

squares is again a sum of 2m squares since 〈1, 1〉⊗m is a multiplicative form. Thus,
from (5.3) we see that

0 = 1 +
u22m+1 + · · ·+ u2n + 1

u21 + · · ·+ u22m

= 1 + (v21 + · · ·+ v22m)

Therefore,−1 = v21 + · · ·+ v22m and s(k) = 2m. �
Remark 5.4. There exist fields with level 2n for any n ≥ 1. For instance,
R(X1, . . . , X2n)(

√−(X2
1 + · · ·+X2

2n) ) is a field of level 2n (cf. [L], Sect. XI.2).

Exercise 5.5. Let k be a p-adic field with p �= 2 and with residue field Fq. Prove
the following:

(1) s(k) = 1 if q ≡ 1 (mod 4).
(2) s(k) = 2 if q ≡ −1 (mod 4).
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6 The u-Invariant

Definition 6.1. The u-invariant of a field k, denoted by u(k), is defined to be
the largest integer n such that every (n + 1)-dimensional quadratic form over k is
isotropic and there is an anisotropic form in dimension n over k; if no such integer
exists, the u-invariant is said to be infinite. In other words,

u(k) = max {dim(q) : q anisotropic form over k}.

If k admits an ordering, then sums of nonzero squares are never zero and there
is a refined u-invariant for fields with orderings, due to Elman–Lam [EL]. In this
article, we do not discuss this refined invariant.

Example 6.2. (1) u(Fq) = 2, if q is odd.
(2) u(k(X)) = 2, if k is algebraically closed and X is an integral curve over k

(Tsen’s theorem).
(3) u(k) = 4 for k a p-adic field. For p �= 2, see Sect. 2.2. For p = 2, see [L,

Sect. XI.6].
(4) u(k) = 4 for k a totally imaginary number field. This follows from the Hasse–

Minkowski theorem.
(5) Suppose u(k) = n < ∞. Let k((t)) denote the field of Laurent series over k.

Then u(k((t))) = 2n. In fact, the square classes in k((t))∗ are {uα, tuα}α∈I

where {uα}α∈I are the square classes in k∗. As in the p-adic field case, every
form over k((t)) is isometric to 〈u1, . . . , ur〉 ⊥ t〈v1, . . . , vs〉, ui, vi ∈ k∗

and this form is anisotropic if and only if 〈u1, . . . , ur〉 and 〈v1, . . . , vs〉 are
anisotropic.

(6) More generally, if K is a complete discrete valuated field with residue field κ
of u-invariant n, then u(K) = 2n. For the case char(κ) = 2, we refer to [Sp].

Definition 6.3. A field k is Ci if every homogeneous polynomial inN variables of
degree d with N > di has a nontrivial zero.

Example 6.4. Finite fields and function fields in one variable over algebraically
closed fields are C1.

If k is a Ci field, u(k) ≤ 2i. Further, the propertyCi behaves well with respect to
function field extensions. If l/k is finite and k is Ci then l is Ci; further, if t1, . . . , tn
are indeterminates, k(t1, . . . , tn) is Ci+n.

Example 6.5. The u-invariant of transcendental extensions:

(1) u(k(t1, . . . , tn)) = 2n if k is algebraically closed. In fact,

u(k(t1, . . . , tn)) ≤ 2n
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since k(t1, . . . , tn) is a Cn field. Further, the form

〈〈t1, . . . , tn〉〉 = 〈1, t1〉 ⊗ · · · ⊗ 〈1, tn〉
is anisotropic over k((t1))((t2)) . . . ((tn)) and hence also over k(t1, . . . , tn).

(2) u(Fq(t1, . . . , tn)) = 2n+1 if q is odd.

All fields of known u-invariant in the 1950s happened to have u-invariant a power
of 2. Kaplansky raised the question whether the u-invariant of a field is always a
power of 2.

Proposition 6.6. The u-invariant does not take the values 3, 5, 7.

Proof. Let q be an anisotropic form of dimension 3. By scaling, we may assume that
q ∼= 〈1, a, b〉. Then the form 〈1, a, b, ab〉 is anisotropic; if 〈1, a, b, ab〉 is isotropic,
it is hyperbolic and Witt’s cancellation yields 〈a, b, ab〉 ∼= 〈1,−1,−1〉 which is
isotropic and q ∼= a〈a, b, ab〉 is isotropic leading to a contradiction. Thus u(k) �= 3.

Let u(k) < 8. Every three-fold Pfister form (which has dimension 8) is isotropic
and hence hyperbolic. Thus I3(k) which is generated by three-fold Pfister forms
is zero. Let q ∈ I2(k) be any quadratic form. For any c ∈ k∗, 〈1,−c〉 q ∈ I3(k)
is zero and cq is Witt equivalent to q, hence isometric to q by Witt’s cancellation.
We conclude that every quadratic form whose class is in I2(k) is universal.

Suppose u(k) = 5 or 7. Let q be an anisotropic form of dimension u(k). Since
every form in dimension u(k) + 1 is isotropic, if disc(q) = d, q ⊥ −d is isotropic
and therefore q represents d. We may write q ∼= q1 ⊥ 〈d〉 where q1 is even-
dimensional with trivial discriminant. Hence [q1] ∈ I2(k) so that q1 is universal.
This in turn implies that q1 ⊥ 〈d〉 ∼= q is isotropic, leading to a contradiction. �

In the 1990s Merkurjev [M2] constructed examples of fields k with u(k) = 2n
for any n ≥ 1, n = 3 being the first open case, answering Kaplansky’s question in
the negative. Since then, it has been shown that the u-invariant could be odd. In [I],
Izhboldin proves that there exist fields k with u(k) = 9 and in [V] Vishik has shown
that there exist fields k with u(k) = 2r + 1 for all r ≥ 3.

Merkurjev’s construction yields fields k which are not of arithmetic type, i.e.,
not finitely generated over a number field or a p-adic field. It is still an interesting
question whether u(k) is a power of 2 if k is of arithmetic type.

The behavior of the u-invariant is very little understood under rational function
field extensions. For instance, it is an open question if u(k) <∞ implies u(k(t)) <
∞ for the rational function field in one variable over k. This was unknown for
k = Qp until the late 1990s. Conjecturally, u(Qp(t)) = 8, in analogy with the
positive characteristic local field case; the field Fp((X))(t) is C3 (see [G]) so that
u(Fp((X))(t)) ≤ 8 for p odd. If u is a nonsquare in Fp, 〈1,−u〉⊗〈1,−X〉⊗〈1,−t〉
is anisotropic over Fp((X))(t), so that u(Fp((X))(t)) = 8.

We indicate some ways of bounding the u-invariant of a field k once we know
how efficiently the Galois cohomology groups Hn(k,Z/2Z) are generated by
symbols for all n.



Some Aspects of the Algebraic Theory of Quadratic Forms 197

We set

Hn
dec(k,Z/2Z) = {(a1) · · · · · (an) : ai ∈ k∗}

and call elements in this set symbols. By Voevodsky’s theorem on the Milnor
conjecture,Hn(k,Z/2Z) is additively generated by Hn

dec(k,Z/2Z).

Proposition 6.7. Let k be a field such that Hn+1(k,Z/2Z) = 0 and for 2 ≤ i ≤
n, there exist integers Ni such that every element in Hi(k,Z/2Z) is a sum of Ni

symbols. Then u(k) is finite.

Proof. Let q be a quadratic form over k of dimension m and discriminant d. Let
q1 = 〈d〉 if m is odd and 〈1,−d〉 if m is even. Then q ⊥ −q1 has even dimension
and trivial discriminant. Hence q ⊥ −q1 ∈ I2(k). Let e2(q ⊥ −q1) =

∑
j≤N2

ξ2j
where ξ2j ∈ H2

dec(k,Z/2Z). Let φ2j be two-fold Pfister forms such that e2(φ2j) =
ξ2j . Then q2 =

∑
j≤N2

φ2j has dimension at most 4N2 and e2(q ⊥ −q1 ⊥ −q2) =
0 and q ⊥ −q1 ⊥ −q2 ∈ I3(k), by Merkurjev’s theorem. Repeating this process
and using the Milnor conjecture, we get qi ∈ Ii(k) which is a sum of Ni i-fold
Pfister forms and q−∑

1≤i≤n qi ∈ In+1(k) = 0, since Hn+1(k,Z/2Z) = 0. Thus
[q] =

∑
1≤i≤n qi and dim(qan) ≤

∑
1≤i≤n 2iNi. Thus u(k) ≤∑

1≤i≤n 2
iNi. �

Definition 6.8. A field k is said to have cohomological dimension at most n (in
symbols, cd(k) ≤ n) if Hi(k,M) = 0 for i ≥ n + 1 for all finite discrete Γk-
modules M (cf. [Se, §3]).

Example 6.9. Finite fields and function fields in one variable over algebraically
closed fields have cohomological dimension 1. Totally imaginary number fields
and p-adic fields are of cohomological dimension 2. If k is a p-adic field, and
k(X) a function field in one variable over k, cd(k(X)) ≤ 3. In particular,
H4(k(X),Z/2Z) = 0.

Theorem 6.10 (Saltman [Sa]). Let k be a non-dyadic p-adic field and k(X) a
function field in one variable over k. Every element in H2(k(X),Z/2Z) is a sum of
two symbols.

Theorem 6.11 (Parimala–Suresh [PS1]). Let k(X) be as in the previous theorem.
Then every element in H3(k(X),Z/2Z) is a symbol.

Corollary 6.12. For k(X) as above, u(k(X)) ≤ 2 + 8 + 8 = 18.

It is not hard to show from the above theorems that u(k(X)) ≤ 12. With some
further work it was proved in [PS1] that u(k(X)) ≤ 10. More recently in [PS2] the
estimated value u(k(X)) = 8 was proved. For an alternate approach to u(k(X)) =
8, we refer to [HH,HHK,CTPS]. More recently, Heath-Brown and Leep [HB] have
proved the following spectacular theorem: If k is any p-adic field and k(X) the
function field in n variables over k, then u(k(X)) = 2n+2.
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7 Hilbert’s Seventeenth Problem

An additional reference for sums of squares is [C].

Definition 7.1. An element f ∈ R(X1, . . . , Xn) is called positive semi-definite if
f(a) ≥ 0 for all a = (a1, . . . , an) ∈ R

n where f is defined.

Hilbert’s seventeenth problem:
Let R(X1, . . . , Xn) be the rational function field in n variables over the field R

of real numbers. Hilbert’s seventeenth problem asks whether every positive semi-
definite f ∈ R(X1, . . . , Xn) is a sum of squares in R(X1, . . . , Xn). E. Artin settled
this question in the affirmative and Pfister gave an effective version of Artin’s result
(cf. [Pf, Chap. 6]).

Theorem 7.2 (Artin, Pfister). Every positive semi-definite function f ∈ R(X1, . . . ,
Xn) can be written as a sum of 2n squares in R(X1, . . . , Xn).

For n ≤ 2 the above was due to Hilbert himself. If one asks for expressions
of positive definite polynomials in R[X1, . . . , Xn] as sums of 2n squares in
R[X1, . . . , Xn], there are counterexamples for n = 2; the Motzkin polynomial

f(X1, X2) = 1− 3X2
1X

2
2 +X4

1X
2
2 +X2

1X
4
2

is positive semi-definite but not a sum of squares in R[X1, X2]. In fact, Pfister’s
result has the following precise formulation.

Theorem 7.3 (Pfister). Let R(X) be a function field in n variables over R. Then
every n-fold Pfister form in R(X) represents every sum of squares in R(X).

We sketch a proof of this theorem below.

Definition 7.4. Let φ be an n-fold Pfister form with φ = 1 ⊥ φ′. The form φ′ is
called the pure subform of φ.

Proposition 7.5 (Pure Subform Theorem). Let k be any field of characteristic not
2, φ an anisotropic n-fold Pfister form over k and φ′ its pure subform. If b1 is any
value of φ′, then φ ∼= 〈〈b1, . . . , bn〉〉 for some b2, . . . , bn ∈ k∗.

Proof. The proof is by induction on n; for n = 1 the statement is clear. Let
n > 1. We assume the statement holds for all (n − 1)-fold Pfister forms. Let
φ = 〈〈a1, . . . , an〉〉, ψ = 〈〈a1, . . . , an−1〉〉, and let φ′, ψ′ denote the pure subforms
of φ and ψ respectively. We have φ = ψ ⊥ anψ, φ′ = ψ′ ⊥ anψ. Let b1 be a
value of φ′. We may write b1 = b′1 + anb, with b′1 a value of ψ′ and b a value of
ψ. The only nontrivial case to discuss is when b �= 0 and b′1 �= 0. By induction,
ψ ∼= 〈〈b′1, b2, . . . , bn−1〉〉 and bψ ∼= ψ. We thus have

φ ∼= 〈〈b′1, b2, . . . , bn−1, an〉〉 ∼= 〈〈b′1, b2, . . . , bn−1, anb〉〉
∼= 〈〈b′1, anb〉〉 ⊗ 〈〈b2, . . . , bn−1〉〉
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Since b1 = b′1 + anb, 〈b′1, anb〉 ∼= 〈b1, b1b′1anb〉 and we have

〈〈b′1, anb〉〉 = 〈1, b′1, anb, anbb′1〉
= 〈1, b1, b1b′1anb, anbb′1〉
= 〈〈b1, c1〉〉,

where c1 = b1b
′
1anb. Thus,

φ ∼= 〈〈b1, c1, b2, · · · , bn−1〉〉. �
Proof of Pfister’s Theorem 7.3. Let φ be an anisotropic n-fold Pfister form over
K = R(X). Let b = b21 + · · · + b2m, bi ∈ K∗. We show that φ represents b by
induction on m. For m = 1, b is a square and is represented by φ. Suppose m = 2,
b = b21+b

2
2, b1 �= 0, b2 �= 0. The fieldK(

√−1) is a function field in n variables over
C and is Cn. Then φ is universal overK(

√−1) and hence represents β = b1 + ib2.
Let v, w ∈ K2n such that φK(

√−1)(v + βw) = β. Hence

φ(v) + β2φ(w) + β(2φ(v, w) − 1) = 0.

The irreducible polynomial of β over K is

φ(w)X2 + (2φ(v, w) − 1)X + φ(v)

and hence N(β) = b = φ(v)
φ(w) is a value of φ since φ is multiplicative.

Suppose m > 2. We argue by induction on m. Suppose φ represents all sums of
m − 1 squares. Let b be a sum of m squares. After scaling b by a square, we may
assume that b = 1 + c, c = c21 + · · ·+ c2m−1, c �= 0. Let φ ∼= 1 ⊥ φ′. By induction
hypothesis, φ represents c. Let c = c20 + c′, c′ a value of φ′. Let ψ = φ ⊗ 〈1,−b〉
and ψ = 1 ⊥ ψ′ with ψ′ = 〈−b〉 ⊥ φ′ ⊥ −bφ′. The form ψ′ represents c′ − b =
(c− c20)− (1 + c) = −1− c20. Thus, by the Pure Subform theorem,

ψ ∼= 〈〈−1 − c20, d1, . . . , dn〉〉 = 〈1,−1− c20〉 ⊗ 〈〈d1, . . . , dn〉〉.

By induction, the n-fold Pfister form 〈〈d1, . . . , dn〉〉 represents 1+c20 which is a sum
of 2 squares; thus ψ is isotropic, hence hyperbolic. Thus φ ∼= bφ represents b. �
Corollary 7.6. LetK = R(X) be a function field in n variables over R. Then every
sum of squares in K is a sum of 2n squares.

Proof. Set φ = 〈1, 1〉⊗n in the above theorem. �
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8 Pythagoras Number

Definition 8.1. The Pythagoras number p(k) of a field k is the least positive
integer n such that every sum of squares in k∗ is a sum of at most n squares; if
no such n exists, p(k) is defined to be infinity.

Example 8.2. If R is the field of real numbers, p(R) = 1.

Example 8.3. If R(X1, . . . , Xn) is a function field in n variables over R, by
Pfister’s theorem (Corollary 7.6), p(R(X1, . . . , Xn)) ≤ 2n.

Let K = R(X1, . . . , Xn) be the rational function field in n variables over R. We
discuss the effectiveness of the bound p(K) ≤ 2n. For n = 1 the bound is sharp.
For n = 2 the Motzkin polynomial

f(X1, X2) = 1− 3X2
1X

2
2 +X4

1X
2
2 +X2

1X
4
2

is positive semi-definite; Cassels–Ellison–Pfister [CEP] show that this polyno-
mial is not a sum of three squares in R(X1, X2) (see also [CT]). Therefore
p(R(X1, X2)) = 4.

Lemma 8.4 (Key Lemma). Let k be a field and n = 2m. Let u = (u1, . . . , un) and
v = (v1, . . . , vn) ∈ kn be such that u · v =

∑
1≤i≤n uivi = 0. Then there exist

wj ∈ k, 1 ≤ j ≤ n− 1 such that
( ∑

1≤i≤n

u2i

)( ∑

1≤i≤n

v2i

)

=
∑

1≤j≤n−1

w2
j .

Proof. Let λ =
∑

1≤i≤n u
2
i , μ =

∑
1≤i≤n v

2
i . We may assume without loss of

generality that u �= 0 and v �= 0. The elements λ and μ are values of φm = 〈1, 1〉⊗m

and λφm ∼= φm, μφm ∼= φm. We choose isometries f : λφm ∼= φm, g : μφm ∼=
φm such that f(1, 0, . . . , 0) = u and g(1, 0, . . . , 0) = v. If U and V are matrices
representing f , g respectively, we have

UU t = λ−1, V V t = μ−1, λ−1μ−1 = λ−1V V t = (V U t)(V U t)t.

The first row of V U t is of the form (0, w2, . . . , wn) since u ·v = 0. Thus λ−1μ−1 =∑
2≤i≤n w

2
i . �

Corollary 8.5. Let k be an ordered field with p(k) = n. Then p(k(t)) ≥ n+ 1.

Proof. Let λ ∈ k∗ be such that λ is a sum of n squares and not a sum of less than
n squares. Suppose λ + t2 is a sum of n squares in k(t). By the Cassels–Pfister
theorem,

λ+ t2 = (μ1 + ν1t)
2 + · · ·+ (μn + νnt)

2
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with μi, νi ∈ k∗. If u = (μ1, . . . , μn), v = (ν1, . . . , νn), then u · v = 0,∑
1≤i≤n μ

2
i = λ,

∑
1≤i≤n ν

2
i = 1. Thus λ = (

∑
1≤i≤n μ

2
i )(

∑
1≤i≤n ν

2
i ) is a

sum of n− 1 squares by the Key Lemma 8.4, contradicting the choice of λ. �
Corollary 8.6. For n ≥ 2,

n+ 2 ≤ p(R(X1, . . . , Xn)) ≤ 2n.

Proof. By [CEP], we know that p(R(X1, X2)) = 4. The fact that n + 2 ≤
p(R(X1, . . . , Xn)) now follows by Corollary 8.5 and induction. �
Remark 8.7. It is open whether p(R(X1, X2, X3)) = 5, 6, 7 or 8.

Remark 8.8. The possible values of the Pythagoras number of a field have all been
listed ([H], [Pf, p. 97]).

Proposition 8.9. If k is a non-formally real field, p(k) = s(k) or s(k) + 1.

Proof. If s(k) = n, then−1 is not a sum of less than n squares, so that p(k) ≥ s(k).
For a ∈ k∗,

a =

(
a+ 1

2

)2

+ (−1)
(
a− 1

2

)2

is a sum of n+ 1 squares if −1 is a sum of n squares. Thus p(k) ≤ s(k) + 1. �
Let k be a p-adic field and K = k(X1, . . . , Xn) a rational function field in n

variables over k. Then s(k) = 1, 2 or 4 so that s(K) = 1, 2 or 4. Thus p(K) ≤ 5.
(In fact it is easy to see that if s(k) = s, p(K) = s+ 1.)

Thus we have bounds for p(k(X1, . . . , Xn)) if k is the field of real or complex
numbers or the field of p-adic numbers. The natural questions concern a number
field k.

9 Function Fields Over Number Fields

Let k be a number field and F = k(t) the rational function field in one variable over
k. In this case p(k(t)) = 5 is a theorem [La]. The fact that p(k(t)) ≤ 8 can be easily
deduced from the following injectivity in the Witt groups [CTCS, Proposition 1.1]:

W (k(t)) −→
∏

w∈Ω(k)

W (kw(t)),

with Ω(k) denoting the set of places of k. In fact, if f ∈ k(t) is a sum of squares,
f is a sum of at most two squares in kw(t) for a real place w, by Pfister’s theorem
(which in the case of function fields of curves goes back to Witt). Further, for a finite
place w of k or a complex place, 〈1, 1〉⊗3 = 0 in W (kw). Thus 〈1, 1〉⊗3 ⊗ 〈1,−f〉
is hyperbolic over kw(t) for all w ∈ Ω(k).
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By the above injectivity, this form is hyperbolic over k(t), leading to the fact that
f is a sum of at most eight squares in k(t).

We have the following conjecture due to Pfister for function fields over number
fields.

Conjecture (Pfister). Let k be a number field and F = k(X) a function field in d
variables over k. Then

(1) For d = 1, p(F ) ≤ 5.
(2) For d ≥ 2, p(F ) ≤ 2d+1.

For a function field k(X) in one variable over k, (d = 1), the best known result
is due to F. Pop, p(F ) ≤ 6 [P]. For d = 2, the conjecture is settled in [CTJ]. We
sketch some results and conjectures from the arithmetic side which imply Pfister’s
conjecture for d ≥ 3 (see Colliot-Thélène and Jannsen [CTJ] for more details).

For any field k, by Voevodsky’s theorem, we have an injection

en : Pn(k)→ Hn(k,Z/2Z).

In fact, for any field k, if φ1, φ2 ∈ Pn(k) have the same image under en then φ1 ⊥
−φ2 ∈ ker(en) = In+1(k). InW (k), φ1 ⊥ −φ2 = φ′1 ⊥ −φ′2 where φ′1 and φ′2 are
the pure subforms of φ1 and φ2. Moreover, dim(φ′1 ⊥ −φ′2)an ≤ 2n+1− 2 < 2n+1.
By the Arason–Pfister Hauptsatz, (Theorem 3.1), anisotropic forms in In+1(k) must
have dimension at least 2n+1. Therefore φ1 = φ2.

Let k be a number field and F = k(X) be a function field in d variables over k.
Let f ∈ F be a function which is a sum of squares in F . One would like to show that
f is a sum of 2d+1 squares. Let φd+1 = 〈1, 1〉⊗(d+1) and q = φd+1⊗〈1,−f〉. This
is a (d+ 2)-fold Pfister form and φd+1 represents f if and only if q is hyperbolic or
equivalently, by the injectivity of en above, ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

We look at this condition locally at all completions kv at places v of k. Let kv(X)
denote the function field of X over kv. (We may assume that X is geometrically
integral.) Let v be a complex place. The field kv(X) has cohomological dimension
d so thatHm(kv(X),Z/2Z) = 0 form ≥ d+1. Hence ed+2(φd+1⊗〈1,−f〉) = 0
over kv(X). Let v be a real place. Over kv(X), f is a sum of squares, hence a sum
of at most 2d squares (by Pfister’s Theorem 7.3) so that φd+1⊗〈1,−f〉 is hyperbolic
over kv(X). Hence ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

Let v be a non-dyadic p-adic place of k. Then φ2 is hyperbolic over kv so that
φd+1 ⊗ 〈1,−f〉 = 0 and ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

Let v be a dyadic place of k. Over kv , φ3 is hyperbolic so that ed+2(φd+1 ⊗
〈1,−f〉) = 0. Thus for all completions v of k, ed+2(φd+1 ⊗ 〈1,−f〉) is zero.
The following conjecture of Kato implies Pfister’s conjecture for d ≥ 2.

Conjecture (Kato). Let k be a number field, X a geometrically integral variety
over k of dimension d. Then the map

Hd+2(k(X),Z/2Z)→
∏

v∈Ωk

Hd+2(kv(X),Z/2Z)

has trivial kernel.
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The above conjecture is the classical Hasse–Brauer–Noether theorem if the
dimension of X is zero, i.e., the injectivity of the Brauer group map:

Br(k) ↪→
⊕

v∈Ωk

Br(kv).

For dimX = 1, the conjecture is a theorem of Kato [Ka]. Kato’s conjecture is now
a theorem due to Jannsen [Ja1, Ja2] for dimX ≥ 2. Thus for every function field
k(X) in d variables over a number field k, d ≥ 2, we have p(k(X)) ≤ 2d+1.

We now explain how Kato’s theorem was used by Colliot-Thélène to derive
p(k(X)) ≤ 7 for a curve X over a number field. We note that this bound is weaker
than the bound established by F. Pop.

Suppose K = k(X) has no ordering. We claim that s(K) ≤ 4. To show this
it suffices to show that 〈1, 1〉⊗3 is zero over kv(X) for every place v of k. At
finite places v, 〈1, 1〉⊗3 is already zero in kv. If v is a real place of k, kv(X) is the
function field of a real curve over the field of real numbers which has no orderings.
By a theorem of Witt, Br(kv(X)) = 0 and every sum of squares is a sum of two
squares in kv(X). Thus −1 is a sum of two squares in kv(X) and 〈1, 1〉⊗3 = 0
over kv(X). Since H3(k(X),Z/2Z) → ∏

v∈Ωk
H3(kv(X),Z/2Z) is injective by

Kato’s theorem, e3(〈1, 1〉⊗3) = 0 in H3(k(X),Z/2Z). Since e3 is injective on
three-fold Pfister forms, 〈1, 1〉⊗3 = 0 in k(X). Thus s(k(X)) ≤ 4. In this case,
p(k(X)) ≤ 5.

Suppose K has an ordering. Let f ∈ K∗ be a sum of squares in K . Then
K(
√−f) has no orderings and hence −1 is a sum of 4 squares in K(

√−f). Let
ai, bi ∈ K be such that

−1 =
∑

1≤i≤4

(ai + bi
√
−f)2, ai, bi ∈ K.

Then

1 +
∑

1≤i≤4

a2i = f
( ∑

1≤i≤4

b2i
)
,

∑

1≤i≤4

aibi = 0.

By the Key Lemma 8.4, (1+
∑

1≤i≤4 a
2
i )
∑

1≤i≤4 b
2
i is a sum of at most 7 squares.
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