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Preface

There have been dramatic developments in the areas of quadratic and higher degree
forms in recent years, and so the time seemed opportune to convene meetings
devoted to these topics. During March 2009 there were two major conferences in
the area of quadratic forms. One was a research conference at the University of
Florida in Gainesville, on “Quadratic forms, sums of squares, and integral lattices”
where the latest advances were presented. Immediately after this was the Arizona
Winter School on “Quadratic Forms” at the University of Arizona in Tucson, which
was an instructional workshop for graduate students with the goal of preparing them
for research in this important area. These two conferences were followed by the
Conference on Higher Degree Forms at the University of Florida in May 2009.

This volume is an outgrowth of these three conferences, all of which were
completely funded by the National Science Foundation. We gratefully acknowledge
this support from the NSF. The Tucson conference was the twelfth Arizona Winter
School, a longstanding series of NSF-supported workshops on topics in arithmetic
geometry. The two Gainesville conferences were in keeping with the tradition there
of having annual conferences on various aspects of number theory; they were
followed by two Focused Weeks (one on quadratic forms and another on the related
topic of integral lattices) at the University of Florida during the Spring of 2010, also
fully supported by the NSF. The PIs for the 2009 Florida NSF grant DMS-0753080
were Krishnaswami Alladi and Pham Tiep (then at the University of Florida),
with Manjul Bhargava (Princeton) as a consultant. The PIs for the Arizona Winter
School NSF grant DMS-0602287 were Matthew Papanikolas, Fernando Rodriguez-
Villegas, David Savitt, William Stein, and Dinesh Thakur.

The Arizona Winter School featured instructional lectures by Manjul Bhargava,
John Conway, Noam Elkies, Jonathan Hanke, and R. Parimala on various aspects
of quadratic forms. The informal (but comprehensive) notes of these lectures are
available at the website of the 2009 Arizona Winter School (http://swc.math.arizona.
edu). Parimala and Hanke have polished their articles and submitted excellent
surveys to this volume.

Even though the Florida conference on quadratic forms was a research con-
ference focusing on the latest developments, there was significant participation
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vi Preface

by graduate and undergraduate students to help them enter this exciting domain
of research. In order to prepare them for the advanced conference lectures, an
instructional workshop preceded this conference for which Jonathan Hanke was the
main lecturer. Some aspects of his Florida talks are covered in his survey paper in
this book.

In his survey, Hanke discusses fundamental connections between the classical
theory of quadratic forms over number fields and their rings of integers, and the
theory of modular and automorphic forms. In doing so he provides a treatment of
theta functions and some aspects of Clifford algebras as well. Hanke’s survey is
nicely complemented by that of Parimala who provides a lucid introduction to the
algebraic theory of quadratic forms, the invariants associated with quadratic forms,
and connections with Galois cohomology. She also states some open problems and
discusses recent progress. These two surveys are augmented by the survey and
research paper of Voight on quaternion algebras and quadratic forms.

The classical theorems of Lagrange that every integer is a sum of four squares
and Gauss that every integer is a sum of three triangular numbers motivate the
study of “universal forms”, namely those that represent all integers, as well as the
investigation of ternary forms in general. The papers of Jagy on integral positive
ternary quadratic forms, of Berkovich on sums of three squares, and of Chan
and Haensch on certain almost universal ternary forms, show that there still are
fundamental questions worthy of investigation on very classical topics.

Whereas the study of universal quadratic forms addresses the question of
representing all integers, one could consider the question of representing quadratic
forms by integral quadratic forms. In 2008 Ellenberg and Venkatesh introduced
ergodic theory as a new tool in this study and made dramatic progress going
beyond what Eichler and Kneser had achieved using an arithmetic approach. In his
survey of such representation problems, Schulze-Pillot sketches three approaches—
arithmetic, algebraic and ergodic—and gives a comparative study of them.

The theory of integral lattices has important links with quadratic forms. Bannai
and Miezaki discuss a famous conjecture of D. H. Lehmer on the Fourier coefficients
of weighted theta series of certain integral lattices and describe recent progress on
this classical question. Integral lattices and quadratic forms have links with binary
linear codes, and this is investigated by Elkies and Kominers. In doing so, they
provide a new structural development of harmonic polynomials on Hamming space
analogous to the treatment of harmonic polynomials on Euclidean space, and present
several applications.

Finally, the paper of Reznick discusses certain fundamental questions on the
length of binary forms of higher degree starting from the seminal work of Sylvester
in the mid-nineteenth century. After discussing some current research, he concludes
with a list of important open questions.

We hope that this volume, which comprises both introductory survey articles and
research papers reporting the latest developments, will be of interest to students and
senior mathematicians alike. In conducting the conferences in Florida, we owe a
special debt to Frank Garvan as a conference organizer and to Margaret Somers for
taking care of all local arrangements. Similarly, we wish to acknowledge Annette
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Horn for handling the local arrangements for the 2009 Arizona Winter School. We
thank Elizabeth Loew of Springer for her support and interest in including this book
in the series Developments in Mathematics.

Gainesville, FL, USA Krishnaswami Alladi
Princeton, NJ, USA Manjul Bhargava
Tucson, AZ, USA David Savitt
Tucson, AZ, USA Pham Huu Tiep
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Toy Models for D. H. Lehmer’s Conjecture II

Eiichi Bannai and Tsuyoshi Miezaki*

Abstract In the previous paper under the same title, we showed that the m-th
Fourier coefficient of the weighted theta series of the Z

2-lattice and the A2-lattice
does not vanish when the shell of norm m of those lattices is not the empty
set. In other words, the spherical 4 (resp. 6)-design does not exist among the
nonempty shells in the Z

2-lattice (resp. A2-lattice). This paper is the sequel to the
previous paper. We take 2-dimensional lattices associated to the algebraic integers of
imaginary quadratic fields whose class number is either 1 or 2, except for Q(

√−1)
and Q(

√−3), then, show that the m-th Fourier coefficient of the weighted theta
series of those lattices does not vanish, when the shell of normm of those lattices is
not the empty set. Equivalently, we show that the corresponding spherical 2-design
does not exist among the nonempty shells in those lattices.
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2 E. Bannai and T. Miezaki

1 Introduction

The concept of spherical t-design is due to Delsarte-Goethals-Seidel [7]. For a
positive integer t, a finite nonempty subset X of the unit sphere

Sn−1 = {x = (x1, x2, · · · , xn) ∈ R
n | x21 + x22 + · · ·+ x2n = 1}

is called a spherical t-design on Sn−1 if the following condition is satisfied:

1

|X |
∑

x∈X

f(x) =
1

|Sn−1|
∫

Sn−1

f(x)dσ(x),

for all polynomials f(x) = f(x1, x2, · · · , xn) of degree not exceeding t. Here,
the righthand side means the surface integral on the sphere, and |Sn−1| denotes
the surface volume of the sphere Sn−1. The meaning of spherical t-design is that
the average value of the integral of any polynomial of degree up to t on the sphere
is replaced by the average value at a finite set on the sphere. A finite subset X in
Sn−1(r), the sphere of radius r centered at the origin, is also called a spherical
t-design if 1

rX is a spherical t-design on the unit sphere Sn−1.
We denote by Harmj(R

n) the set of homogeneous harmonic polynomials of
degree j on R

n. It is well known that X is a spherical t-design if and only if the
condition

∑

x∈X

P (x) = 0

holds for all P ∈ Harmj(R
n) with 1 ≤ j ≤ t [7]. If the set X is antipodal, that is

−X = X , and j is odd, then the above condition is fulfilled automatically. So we
reformulate the condition of spherical t-design on the antipodal set as follows:

Proposition 1.1. A nonempty finite antipodal subsetX ⊂ Sn−1 is a spherical 2s+
1-design if the condition

∑

x∈X

P (x) = 0

holds for all P ∈ Harm2j(R
n) with 2 ≤ 2j ≤ 2s.

It is known [7] that there is a natural lower bound (Fisher type inequality) for
the size of a spherical t-design in Sn−1. Namely, if X is a spherical t-design in
Sn−1, then

|X | ≥
(
n− 1 + [t/2]

[t/2]

)
+

(
n+ [t/2]− 2

[t/2]− 1

)

if t is even, and
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|X | ≥ 2

(
n− 1 + [t/2]

[t/2]

)
(1)

if t is odd.
A lattice in R

n is a subset Λ ⊂ R
n with the property that there exists a basis

{v1, · · · , vn} of Rn such that Λ = Zv1 ⊕ · · · ⊕ Zvn, i.e., Λ consists of all integral
linear combinations of the vectors v1, · · · , vn. The dual lattice Λ is the lattice

Λ� := {y ∈ R
n | (y, x) ∈ Z, for all x ∈ Λ},

where (x, y) is the standard Euclidean inner product. The lattice Λ is called integral
if (x, y) ∈ Z for all x, y ∈ Λ. An integral lattice is called even if (x, x) ∈ 2Z
for all x ∈ Λ, and it is odd otherwise. An integral lattice is called unimodular if
Λ� = Λ. For a lattice Λ and a positive real numberm > 0, the shell of normm of Λ
is defined by

Λm := {x ∈ Λ | (x, x) = m} = Λ ∩ Sn−1(
√
m).

Let H := {z ∈ C | Im (z) > 0} be the upper half-plane.

Definition 1.1. Let Λ be the lattice of Rn. Then for a polynomial P , the function

ΘΛ,P (z) :=
∑

x∈Λ

P (x)eiπz(x,x)

is called the theta series of Λ weighted by P .

Remark 1.1 (See Hecke [9], Schoeneberg [19, 20]).

(i) When P = 1, we get the classical theta series

ΘΛ(z) = ΘΛ,1(z) =
∑

m≥0

|Λm|qm, where q = eπiz.

(ii) The weighted theta series can be written as

ΘΛ,P (z) =
∑

x∈Λ

P (x)eiπz(x,x)

=
∑

m≥0

a(P )
m qm, where a(P )

m :=
∑

x∈Λm

P (x).

These weighted theta series have been used efficiently for the study of spherical
designs which are the nonempty shells of Euclidean lattices. (See [5, 6, 16, 23, 24].
See also [2].)

Lemma 1.1 (cf. [23,24], [16, Lemma 5]). Let Λ be an integral lattice in R
n. Then,

for m > 0, the non-empty shell Λm is a spherical t-design if and only if

a(P )
m = 0
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for all P ∈ Harm2j(R
n) with 1 ≤ 2j ≤ t, where a(P )

m are the Fourier coefficients
of the weighted theta series

ΘΛ,P (z) =
∑

m≥0

a(P )
m qm.

We recall the definition of a modular form.

Definition 1.2. Let Γ ⊂ SL2(R) be a Fuchsian group of the first kind and let χ be
a character of Γ. A holomorphic function f : H → C is called a modular form of
weight k for Γ with respect to χ, if the following conditions are satisfied:

(i) f
(az + b

cz + d

)
=

(cz + d

χ(σ)

)k

f(z) for all σ =

(
a b

c d

)
∈ Γ.

(ii) f(z) is holomorphic at every cusp of Γ.

If f(z) has period N , then f(z) has a Fourier expansion at infinity, [11]:

f(z) =

∞∑

m=0

amq
m
N , qN = e2πiz/N .

We remark that for m < 0, am = 0, by the condition (ii). A modular form
with constant term a0 = 0, is called a cusp form. We denote by Mk(Γ, χ) (resp.
Sk(Γ, χ)) the space of modular forms (resp. cusp forms) with respect to Γ with the
character χ. When f is the normalized eigenform of Hecke operators, p. 163, [11],
the Fourier coefficients satisfy the following relations:

Lemma 1.2 (cf. [11], Proposition 32, 37, 40, Exercise 2, p. 164). Let α ∈ N and
f(z) =

∑
m≥1 a(m)qm ∈ Sk(Γ, χ). If f(z) is the normalized eigenform of Hecke

operators, then the Fourier coefficients of f(z) satisfy the following relations:

a(mn) = a(m)a(n) if (m,n) = 1 (2)

a(pα+1) = a(p)a(pα)− χ(p)pk−1a(pα−1) if p is a prime. (3)

We set f(z) =
∑

m≥1 a(m)qm ∈ Sk(Γ, χ). When dimSk(Γ, χ) = 1 and
a(1) = 1, then f(z) is the normalized eigenform of Hecke operators, [11]. So, the
coefficients of f(z) have the relations as mentioned in Lemma 1.2. It is known that

|a(p)| < 2p(k−1)/2 (4)

for all primes p, [11, p. 164], [10]. Note that this is the Ramanujan conjecture and
its generalization, called the Ramanujan-Petersson conjecture for cusp forms which
are eigenforms of the Hecke operators. These conjectures were proved by Deligne
as a consequence of his proof of the Weil conjectures, [11, p. 164], [10]. Moreover,
for a prime p with χ(p) = 1 the following equation holds, [12].
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a(pα) = p(k−1)α/2 sin(α+ 1)θp
sin θp

, (5)

where 2 cos θp = a(p)p−(k−1)/2 and α ∈ N.
It is well known that the theta series of Λ ⊂ R

n weighted by harmonic
polynomial P ∈ Harmj(R

n) is a modular form of weight n/2 + j for some
subgroup Γ ⊂ SL2(R) [8]. In particular, when deg(P ) ≥ 1, the theta series of
Λ weighted by P is a cusp form.

For example, we consider the even unimodular lattice Λ. Then the theta series of
Λ weighted by harmonic polynomial P , ΘΛ,P (z), is a modular form with respect to
SL2(Z).

Example 1.1. Let Λ be the E8-lattice. This is an even unimodular lattice of R
8,

generated by the E8 root system. The theta series is as follows:

ΘΛ(z) = E4(z) = 1 + 240

∞∑

m=1

σ3(m)q2m

= 1 + 240q2 + 2,160q4 + 6,720q6 + 17,520q8 + · · · ,
where σ3(m) is a divisor function σ3(m) =

∑
0<d|m d3.

For j = 2, 4 and 6, the theta series of Λ weighted by P ∈ Harmj(R
8) is a weight

6, 8 and 10 cusp form with respect to SL2(Z). However, it is well known that for
k = 6, 8 and 10, dimSk(SL2(Z)) = 0, that is, ΘΛ,P (z) = 0. Then by Lemma 1.1,
all the nonempty shells of E8-lattice are spherical 6-design.

For j = 8, the theta series of Λ weighted by P is a weight 12 cusp form with
respect to SL2(Z). Such a cusp form is uniquely determined up to constant, i.e., it
is Ramanujan’s delta function:

Δ(z) = q2
∏

m≥1

(1− q2m)24 =
∑

m≥1

τ(m)q2m.

The following proposition is due to Venkov, de la Harpe and Pache [5,6,16,23].

Proposition 1.2 (cf. [16]). Let the notation be the same as above. Let Λ be the
E8-lattice. Then the following are equivalent:

(i) τ(m) = 0.
(ii) (Λ)2m is an 8-design.

It is a famous conjecture of Lehmer that τ(m) 
= 0. So, Proposition 1.2 gives
a reformulation of Lehmer’s conjecture. Lehmer proved in [12] the following
theorem.

Theorem 1.1 (cf. [12]). Let m0 be the least value of m for which τ(m) = 0. Then
m0 is a prime if it is finite.
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There are many attempts to study Lehmer’s conjecture [12, 21], but it is difficult
to prove and it is still open.

Recently, however, we showed the “Toy models for D. H. Lehmer’s conjecture”
[3]. We take the two cases Z

2-lattice and A2-lattice. Then, we consider the
analogue of Lehmer’s conjecture corresponding to the theta series weighted by some
harmonic polynomialP . Namely, we show that the m-th coefficient of the weighted
theta series of Z2-lattice does not vanish when the shell of norm m of those lattices
is not an empty set. Or equivalently, we show the following result.

Theorem 1.2 (cf. [3]). The nonempty shells in Z
2-lattice (resp. A2-lattice) are not

spherical 4-designs (resp. 6-designs).

This paper is sequel to the previous paper [3]. In this paper, we take some
lattices related to the imaginary quadratic fields. LetK = Q(

√−d) be an imaginary
quadratic field, and let OK be its ring of algebraic integers. Let ClK be the ideal
classes. In this paper, we only consider the cases |ClK | = 1 and |ClK | = 2 except
for Sect. 6. So, when we consider the cases |ClK | = 1 and |ClK | = 2, we denote by
o (resp. a) the principal (resp. nonprincipal) ideal class.

We denote by dK the discriminant of K:

dK =

{−4d if − d ≡ 2, 3 (mod 4),

−d if − d ≡ 1 (mod 4).

Theorem 1.3 (cf. [25, p. 87]). Let d be a positive square-free integer, and let K =
Q(
√−d). Then

OK =

⎧
⎨

⎩
Z+ Z

√−d if − d ≡ 2, 3 (mod 4),

Z+ Z
−1 +√−d

2
if − d ≡ 1 (mod 4).

Therefore, we considerOK to be the lattice in R
2 with the basis

⎧
⎨

⎩
(1, 0), (1,

√−d) if − d ≡ 2, 3 (mod 4),

(1, 0),
(
− 1

2
,

√−d
2

)
if − d ≡ 1 (mod 4),

denoted by Lo.
Generally, it is well-known that there exists one-to-one correspondence between

the set of reduced quadratic forms f(x, y) with a fundamental discriminant dK < 0
and the set of fractional ideal classes of the unique quadratic field Q(

√−d) [25,
p. 94]. Namely, For a fractional ideal A = Zα + Zβ, we obtain the quadratic form
ax2+ bxy+ cy2, where a = αᾱ/N(A), b = (αβ̄+ ᾱβ)/N(A) and c = ββ̄/N(A).
Conversely, for a quadratic form ax2 + bxy + cy2, we obtain the fractional ideal
Z + Z(b +

√
dK)/2a. We remark that N(A) is a norm of A and ᾱ is a complex

conjugate of α.
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Here, we define the automorphism group of f(x, y) as follows:

Uf =

{(
α β

γ δ

)
∈ SL2(Z)

∣∣∣∣∣ f(αx+ βy, γx+ δy) = f(x, y)

}
.

Then, for n ≥ 1, the number of the nonequivalent solutions of f(x, y) = n under
the action ofUf is equal to the number of the integral ideals of norm n [25]. Namely,
let a be an ideal class and fa(x, y) be the reduced quadratic form corresponding to
a. Moreover, let La be the lattice corresponding to fa(x, y). Then,

∑

x∈La

q(x,x)

= 1 +#Uf

∑∞
n=1 #{A | A is an integral ideal of a, N(A) = n} qn,

(6)

where N(A) is the norm of an ideal A.

Theorem 1.4 (cf. [25, p. 63]). Let f(x, y) be the reduced quadratic form with
a fundamental discriminant D < 0 and Uf be the automorphism group of
f(x, y). Then

#Uf =

⎧
⎨

⎩

6 if D = −3,
4 if D = −4,
2 if D < −4.

These classical results are due to Gauss, Dirichlet, etc.
When |ClK | = 1 and 2, we give the generators ofLa Tables 5 and 6 of Appendix.

Here, we remark that when K = Q(
√−1) (resp. K = Q(

√−3)), Lo is Z2-lattice
(resp. A2-lattice). We studied the spherical designs of shells of those lattices in the
previous paper [3].

In this paper, we take the imaginary quadratic fields Q(
√−d), with d 
= 1 and

d 
= 3. Then, we consider the analogue of Lehmer’s conjecture corresponding to
its theta series weighted by some harmonic polynomial P . Here, we consider the
following problem of whether the nonempty shells of Lo and La are spherical
2-designs (hence 3-designs) or not.

In Sect. 4, we study the case that the class number is 1. We show that the m-th
coefficient of the weighted theta series of Lo-lattice does not vanish when the shell
of norm m of those lattices is not an empty set. Or equivalently, we show the
following result:

Theorem 1.5. Let K = Q(
√−d) be an imaginary quadratic field whose class

number is 1 and d 
= 1, 3 i.e., d is in the following set: {2, 7, 11, 19, 43, 67, 163}.
Then, the nonempty shells in Lo are not spherical 2-designs.

Similarly, in Sect. 5, we study the case that the class number is 2 and show the
following result:

Theorem 1.6. Let K = Q(
√−d) be an imaginary quadratic field whose class

number is 2 i.e., d is in the following set: {5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91,
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115, 123, 187, 235, 267, 403, 427}. Then, the nonempty shells in Lo and La are not
spherical 2-designs.

In Sect. 6, we consider the case that the class number is 3 and study the property
of Hecke characters. In Sect. 7, we give some concluding remarks and state a
conjecture for the future study.

2 Preliminaries

In this section, we review the theory of imaginary quadratic fields.

Theorem 2.1 (cf. [4, p. 104, Proposition 5.16]). We can classify the prime ideals
of a quadratic field as follows:

1. If p is an odd prime and (dK/p) = 1 (resp. dK ≡ 1 (mod 8)) then
(p)=PP (resp. (2) = PP ), where P and P are prime ideals with P 
= P ,
N(P )=N(P ) = p (resp. N(P ) = 2).

2. If p is an odd prime and (dK/p) = −1 (resp. dK ≡ 5 (mod 8)) then
(p)=P (resp. (2) = P ), where P is a prime ideal with N(P ) = p2 (resp.
N(P )=4).

3. If p | dk then (p) = P 2, where P is a prime ideal with N(P ) = p.

Lemma 2.1. Let |ClK | = 1 and I be an integral ideal of K . For n ∈ N, if N(I) =
n and I is a principal ideal, namely, I ∈ o then there exist a, b ∈ Z such that for
−d ≡ 2, 3 (mod 4)

n = a2 + db2,

for −d ≡ 1 (mod 4)

n = a2 + db2 or n =
a2 + db2

4
.

If |ClK | = 2,N(I) = n and I is a nonprincipal ideal, namely, I ∈ a and assume
that m is one of the norms of nonprincipal ideals then there exist a, b ∈ Z such that
for −d ≡ 2, 3 (mod 4)

mn = a2 + db2,

for −d ≡ 1 (mod 4)

mn = a2 + db2 or mn =
a2 + db2

4
.

Proof. We assume that |ClK | = 1. For−d ≡ 2, 3 (mod 4), we can write I = (a+
b
√−d), thenN(I) = a2+db2. For−d ≡ 1 (mod 4), we can write I = (a+b

√−d)
or I = ((a+ b

√−d)/2), then N(I) = a2 + db2 or N(I) = (a2 + db2)/4.
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Here, we assume that |ClK | = 2. Let J be the nonprincipal ideal of K whose
norm is m. If I is a nonprincipal ideal then, JI is a principal ideal of K . Therefore,
for−d ≡ 2, 3 (mod 4), we can write JI = (a+ b

√−d), then N(JI) = a2+ db2.
Hence, mn = a2 + db2. for −d ≡ 1 (mod 4), we can write JI = (a+ b

√−d) or
JI = ((a+ b

√−d)/2), thenN(JI) = a2+db2 orN(JI) = (a2+db2)/4. Hence,
mn = a2 + db2 or mn = (a2 + db2)/4. �
Proposition 2.1. Let F (m) be the number of the integral ideals of norm m of K .
Let p be a prime number. Then, if p 
= 2

F (pe) =

⎧
⎨

⎩

e+ 1 if (dK/p) = 1,

(1 + (−1)e)/2 if (dK/p) = −1,
1 if p | dK ,

if p = 2

F (2e) =

⎧
⎨

⎩

e+ 1 if dK ≡ 1 (mod 8),

(1 + (−1)e)/2 if dK ≡ 5 (mod 8),

1 if 2 | dK .

Proof. When (dK/p) = 1 i.e., (p) = PP and P 
= P , since P and P are the only
integral ideals of norm p, we have F (p) = 2. Moreover, the integral ideals of norm
pe are as follows: P e, P e−1P , . . . , (P )e. So, we have F (pe) = e + 1. The other
cases can be proved similarly. �

3 Hecke Characters and Theta Series

In this section, we introduce the Hecke character and discuss the relationships
between the Hecke character and the weighted theta series of the lattices Lo and
La. Then, we show that for |ClK | = 1 and P1 = (x2 − y2)/2, the weighted theta
series ΘLo,P1 is a normalized Hecke eigenform. For |ClK | = 2 and P2 = x2 − y2,
a certain sum of the two weighted theta series c1ΘLo,P2 + c2ΘLa,P2 is a normalized
Hecke eigenform. Later, we give the explicit values of c1 and c2.

For the readers convenience we quote from [15] the notion of the Hecke character
(for more information the reader is referred to [15]). A Hecke character φ of weight
k ≥ 2 with modulus Λ is defined in the following way. Let Λ be a nontrivial ideal in
OK and let I(Λ) denote the group of fractional ideals prime to Λ. A Hecke character
φ with modulus Λ is a homomorphism

φ : I(Λ)→ C
×

such that for each α ∈ K× with α ≡ 1 (mod Λ) we have

φ(αOK) = αk−1. (7)
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Let ωφ be the Dirichlet character with the property that

ωφ(n) := φ((n))/nk−1

for every integer n coprime to Λ.

Theorem 3.1 (cf. [15, p. 9], [14, p. 183]). Let the notation be the same as above,
and define ΨK,Λ(z) by

ΨK,Λ(z) :=
∑

A

φ(A)qN(A) =
∞∑

n=1

a(n)qn, (8)

where the sum is over the integral idealsA that are prime to Λ andN(A) is the norm
of the ideal A. Then ΨK,Λ(z) is a cusp form in Sk(Γ0(dK ·N(Λ)),

(−dK

•
)
ωφ).

We remark that function (8) is a normalized Hecke eigenform [1,22]. Moreover,
if the class number ofK is h then the character as given in (7) will have h extensions
to nonprincipal ideals. Namely, the function (8) has h choices, so we denote by
Ψ

(1)
K,Λ(z), . . . ,Ψ

(h)
K,Λ(z) these functions (see [17]).

Example 3.1.

(i) d = 2.
We calculate ΨK,Λ(z) =

∑
m≥1 a(m)qm, where Λ = (1) and the weight of

the Hecke character is 3. We remark that |ClK | = 1 and ideals are listed in
Table 3.

By the definitions (7) and (8), we have a(1) = 12 = 1, a(2) =
√−22 = −2,

a(3) = (−1 +√−2)2 + (−1−√−2)2 = 2, a(4) = 22, . . . . Thus, we obtain

Ψ
(1)
K,Λ(z) = q − 2q2 − 2q3 + 4q4 + 4q6 − 8q8 − 5q9 + · · · .

(ii) d = 5.
We calculate ΨK,Λ(z) =

∑
m≥1 a(m)qm, where Λ = (1) and the weight of the

Hecke character is 3. We remark that |ClK | = 2 and ideals are listed in Table 4.
When A of normm is a nonprincipal ideal,A2 is a principal ideal, so, φ(A2) is
computable by the definition (7). For example,φ((2, 1+

√−5))2 = φ((2)) = 4,
so, we can assume that φ((2, 1 +

√−5)) = 2, i.e., a(2) = 2. Then, since
(2, 1 +

√−5)(3, 1 +√−5) = (1 −√−5) and (2, 1 +
√−5)(3, 1 − √−5) =

(−1−√−5), we have a(3) = ((1+
√−5)2+(1−√−5)2)/2 = −4, a(4) = 22,

. . . . Thus, we obtain

Ψ
(1)
K,Λ(z) = q + 2q2 − 4q3 + 4q4 − 5q5 − 8q6 + 4q7 + 8q8 + 7q9 + · · · .

On the other hand, we assume that φ((2, 1 +
√−5)) = −2, i.e., a(2) = −2.

Then, we have

Ψ
(2)
K,Λ(z) = q − 2q2 + 4q3 + 4q4 − 5q5 − 8q6 − 4q7 − 8q8 + 7q9 + · · · .
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Table 1 Coefficients, c1 and c2

−d −5 −6 −10 −13 −15 −22 −35 −37 −51

c1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

c2 1/2 1/2 1/2 1/2 2 1/2 3 1/2 1/2

−d −58 −91 −115 −123 −187 −235 −267 −403 −427

c1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

c2 1/2 5/3 1/2 1/2 7/3 1/2 1/2 11/9 1/2

Here, we discuss the relationships between the Hecke character and the weighted
theta series of the lattices Lo and La. First, we quote the following theorem:

Theorem 3.2 (cf. [14, p. 192]). Let L be a 2-dimensional integral lattice with the
Gram matrix A and N be the natural number such that the elements of NA−1 are
rational integers. Let the character χ(d) be

χ(d) =
( (−1)(r/2) detL

d

)
.

Then, for P ∈ Harm2(R
2),

(1) ΘL,P ∈M3(Γ0(4N), χ).
(2) If all the diagonal elements of A are even, then ΘL,P ∈M3(Γ0(2N), χ).
(3) If all the diagonal elements of A and NA−1 are even, then ΘL,P ∈

M3(Γ0(N), χ).

Then, we obtain the following lemmas:

Lemma 3.1. Let K be an imaginary quadratic field whose class number is 1 and
Lo be the lattice corresponding to the principal ideal class o. Let φ be the Hecke
character of weight 3with modulusΛ. Assume thatΛ = (1) andP1 = (x2−y2)/2 ∈
Harm2(R

2). Then, ΨK,Λ(q) = ΘLo,P1(q).

Lemma 3.2. Let K be an imaginary quadratic field whose class number is 2
and Lo (resp. La) be the lattice corresponding to the principal ideal class o
(resp. nonprincipal ideal class a). Let φ be the Hecke character of weight 3 with
modulus Λ. Assume that Λ = (1) and P2 = x2 − y2 ∈ Harm2(R

2). Then,
ΨK,Λ(q) = c1ΘLo,P2(q) + c2ΘLa,P2(q), where c1 and c2 are given as in Table 1.

Proof of Lemmas 3.1 and 3.2. First, we assume that the lattices are integral
lattices, if not we multiply the Gram matrix of L by 2.

Because of the Theorems 3.1 and 3.2, ΨK,Λ(q), ΘLo,P (q) and ΘLa,P (q) with
P = P1, P2 are modular forms of the same group Γ. Therefore, we calculate the
basis of the space of modular forms of group Γ and check ΨK,Λ(q) = ΘLo,P1(q)
and ΨK,Λ(q) = c1ΘLo,P2(q)+ c2ΘLa,P2(q) explicitly (using “Sage”, Mathematics
Software [18]). �
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Corollary 3.1. Let the notation be the same as above. If |ClK | = 1 then ΘL1,P1(q)
is a normalized Hecke eigenform. If |ClK | = 2 then c1ΘL1,P2(q) + c2ΘL2,P2(q) is
a normalized Hecke eigenform.

Proof. The function (8) is a normalized Hecke eigenform [1, 22]. �
Finally, we give the following proposition, which is an analogue of Theorem 1.1

and the crucial part of the proof of Theorems 1.5 and 1.6.

Proposition 3.1. Assume that
∑

m≥1 a(m)qm is a normalized Hecke eigenform
of S3(Γ, χ) and the coefficients a(m) are rational integers. Moreover let p be the
prime such that χ(p) = 1. Let α0 be the least value of α for which a(pα) = 0. If
a(p) 
= ±p then α0 = 1 if it is finite.

Proof. Assume the contrary, that is, α0 > 1, so that a(p) 
= 0. By the equation (5),

a(pα0) = 0 = pα0
sin(α0 + 1)θp

sin θp
.

This shows that θp is a real number of the form θp = πk/(1 + α0), where k is an
integer. Now the number

z = 2 cos θp = a(p)p−1, (9)

being twice the cosine of a rational multiple of 2π, is an algebraic integer. On the
other hand, z is a root of the equation

pz − a(p) = 0. (10)

Hence z is a rational integer. By (4) and (9), we have |z| ≤ 1. Therefore z = ±1 and
the equation (10) becomes a(p) = ±p. By assumption, this is a contradiction. �

4 The Case of |ClK| = 1

Let K := Q(
√−d) be an imaginary quadratic field. If the class number of K is 1

then d is in the following set {1, 2, 3, 7, 11, 19, 43, 67, 163}. In particular, we only
consider the cases where d is in the set: {2, 7, 11, 19, 43, 67, 163} since the cases
d = 1 and d = 3 are considered in [3].

In this section, we assume that a(m) and b(m) are the coefficients of the
following functions:

ΘLo(q) =
∑

m≥0

a(m)qm, ΘLo,P1(q) =
∑

m≥1

b(m)qm,

where P1 = (x2 − y2)/2 ∈ Harm2(R
2).
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Lemma 4.1. Let p be a prime number. Let d be one of the elements in {2, 7, 11, 19,
43, 67, 163}. We set a′(m) = a(m)/2 for all m. Then,

a′(pe) =

⎧
⎨

⎩

e + 1 if (dK/p) = 1,

(1 + (−1)e)/2 if (dK/p) = −1,
1 if p | dK .

Proof. Because of the equation (6), a′(m) is the number of integral ideals of K of
norm m. Therefore, it can be proved by Proposition 2.1. �
Lemma 4.2. Let p be a prime number such that (dK/p) = 1. Then, b(p) 
= 0.
Moreover, if p 
= d then b(p) 
= ±p.

Proof. We remark that by Lemma 3.1 and Corollary 3.1, ΘLo,P1(q) = ΨK,Λ(q).
So, the numbers b(m) are the coefficients of ΨK,Λ(q).

First, we assume that d 
= 2, i.e., −d ≡ 1 (mod 4) and OK = Z + Z(1 +√−d)/2. If N((a+ b
√−d)) is equal to p then by Lemma 2.1

p = a2 + db2.

Because of the definition of ΨK,Λ(q),

b(p) = (a+ b
√−d)2 + (a− b√−d)2 = 2(a2 − db2).

If b(p) = 0 then a2 = db2. This is a contradiction. Assume that b(p) = ±p. Then,

2(a2 − db2) = ±(a2 + db2),

that is, a2 = 3db2 or 3a2 = db2. This is a contradiction.
If N(((a+ b

√−d)/2)) is equal to p then by Lemma 2.1

a2 + db2

4
= p.

Because of the definition of ΨK,Λ(q),

b(p) =
(a+ b

√−d
2

)2

+
(a− b√−d

2

)2

=
a2 − db2

2
.

If b(p) = 0 then a2 = db2. This is a contradiction. Assume that b(p) = ±p. Then,

a2 − db2
2

= ±a
2 + db2

4
,

that is, a2 = 3db2 or 3a2 = db2. This is a contradiction.
Next, we assume that d = 2 i.e., −d ≡ 2 (mod 4) and OK = Z + Z

√−2.
If N((a+ b

√−2)) is equal to p then by Lemma 2.1

p = a2 + 2b2.
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Because of the definition of ΨK,Λ(q),

b(p) = (a+ b
√−2)2 + (a− b√−2)2 = 2(a2 − 2b2).

If b(p) = 0 then a2 = 2b2. This is a contradiction. Assume that b(p) = ±p. Then,

2(a2 − 2b2) = ±(a2 + 2b2),

that is, a2 = 6b2 or 3a2 = 2b2. This is a contradiction. �
Proof of Theorem 1.5. We will show that b(m) 
= 0 when (Lo)m 
= ∅.

By Theorem 3.1, ΘLo,P1 is a normalized Hecke eigenform. So, We assume that
m is a power of prime, if not we could apply the equation (2). We will divide our
considerations into the following three cases.

(i) Case m = pα and p | dK :
By a(m) = 2 and the inequality (1), the shells (Lo)m are not spherical
2-designs. Hence, b(m) 
= 0.

(ii) Case m = pα and (dK/p) = −1:
By Lemma 4.1,

a(pn) =

{
0 if n is odd,

2 if n is even.

By a(m) = 2 and the inequality (1), when n is even, the shells (Lo)m are not
spherical 2-designs. Hence, b(m) 
= 0.

(iii) Case m = pα and (dK/p) = 1:
By Proposition 3.1 and Lemma 4.2, we have b(m) 
= 0. This completes the
proof of Theorem 1.5. �

5 The Case of |ClK| = 2

Let K := Q(
√−d) be an imaginary quadratic field. In this section, we assume that

the class number of K is 2. So, we consider that d is in the following set: {5, 6, 10,
13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427}. We denote by o
(resp. a) the principal (resp. nonprincipal) ideal class.

In this section, we also assume that a(m) and b(m) are the coefficients of the
following functions:

ΘLo(q) + ΘLa(q) =
∑

m≥0

a(m)qm,

c1ΘLo,P2(q) + c2ΘLa,P2(q) =
∑

m≥1

b(m)qm,

where c1 and c2 are defined in Lemma 3.2.
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Table 2 Values of m and b(m)

−d −5 −6 −10 −13 −15 −22 −35 −37 −51

m 2 2 2 2 3 2 5 2 3

b(m) 2 2 2 2 −3 2 −5 2 3

−d −58 −91 −115 −123 −187 −235 −267 −403 −427

m 2 7 5 3 11 5 3 13 7

b(m) 2 −7 −5 3 −11 5 3 −13 7

Lemma 5.1. Set l1 := {N(O) | O ∈ o} and l2 := {N(A) | A ∈ a}. Then,
l1 ∩ l2 = ∅. Therefore, the set Lo ∩ La consists of the origin.

Proof. Let p be a prime number such that (dK/p) = 1. Then there exist prime ideals
P and P ′ such that (p) = PP ′ and N(P ) = N(P ′) = p. Since a class number is
2, we have P and P ′ ∈ o or P and P ′ ∈ a. If P and P ′ ∈ o we denote by pi such a
prime. If P and P ′ ∈ a we denote by p′i such a prime.

Let p be a prime number such that (dK/p) = −1. Then (p) is a prime ideal and
N((p)) = p2. We denote by qi such a prime.

Let p be a prime number such that p | dK . Then there exists a prime ideal P such
that (p) = P 2 and N(P ) = p. Since a class number is 2, we have P ∈ o or P ∈ a.
If P ∈ o we denote by ri such a prime. If P ∈ a we denote by r′i such a prime.

We take the element n ∈ l1 ∩ l2 and perform a prime factorization, n =
p1 · · · p′1 · · · q1 · · · r1 · · · r′1 · · · . Then, p1 · · · , q1 · · · and r1 · · · correspond to princi-
pal ideals. So, if the number of occurrences of each of the primes p′ and r′ is even
then n ∈ l1 and if the number of occurrences of each of the primes p′ and r′ is odd
then n ∈ l2. This completes the proof of Lemma 5.1. �
Lemma 5.2. Let p be a prime number. Let d be one of the elements in {5, 6, 10,
13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427}. We set a′(m) =
a(m)/2 for all m. Then,

a′(pe) =

⎧
⎨

⎩

e + 1 if (dK/p) = 1,

(1 + (−1)e)/2 if (dK/p) = −1,
1 if p | dK .

Proof. Because of the equation (6), a′(m) is the number of integral ideals of K of
norm m. Therefore, it can be proved by Proposition 2.1. �

Lemma 5.3. Let p be a prime number such that (dK/p) = 1. Then, b(p) 
= 0.
Moreover, if p 
= d then b(p) 
= ±p.

Proof. We remark that by Lemma 3.2 and Corollary 3.1, c1ΘLo,P2(q) +
c2ΘLa,P2(q) = ΨK,Λ(q). So, the numbers b(m) are the coefficients of ΨK,Λ(q).

We set N(J) = p. When J is a principal ideal, it can be proved by the similar
method in Lemma 4.2. So, we assume that J is nonprincipal.

We list the smallest prime numberm such thatm | dK andm ∈ {N(I) | I ∈ a},
and the values b(m) are in Table 2.
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First, we assume that −d ≡ 2 or 3 (mod 4). If N(J) is equal to p then by
Lemma 2.1

mp = a2 + db2.

Because of the definition of ΨK,Λ(q),

b(mp) = (a+ b
√−d)2 + (a− b√−d)2 = 2(a2 − db2).

Since b(mp) = b(m)b(p) and the value of b(m) in Table 2, we have b(p) = a2−db2.
If b(p) = 0 then a2 = db2. This is a contradiction. Assume that b(p) = ±p. Then,

a2 − db2 = ±a
2 + db2

2
,

that is, a2 = 3db2 or 3a2 = db2. This is a contradiction.
Next, we assume that−d ≡ 1 (mod 4). IfN(J) is equal to p then by Lemma 2.1

there exist a, b ∈ Z such that

mp = a2 + db2 or mp =
a2 + db2

4
.

Because of the definition of ΨK,Λ(q),

b(mp) = (a+ b
√−d)2 + (a− b√−d)2 = 2(a2 − db2).

or

b(mp) =
(a+ b

√−d
2

)2

+
(a− b√−d

2

)2

=
a2 − db2

2
.

Since b(mp) = b(m)b(p) and the value of b(m) in Table 2, we have b(p) =
2/b(m)× (a2− db2) or b(p) = 1/b(m)× (a2− db2)/2. If b(p) = 0 then a2 = db2.
This is a contradiction. Assume that b(p) = ±p. Then,

2(a2 − db2)
b(m)

= ±a
2 + db2

m
,

or

a2 − db2
2b(m)

= ±a
2 + db2

4m
,

that is, a2 = 3db2 or 3a2 = db2 since m = ±b(m) for −d ≡ 1 (mod 4). This is a
contradiction. �
Proof of Theorem 1.6. Because of Lemma 5.1, it is enough to show that b(m) 
= 0
when (Lo)m 
= ∅ or (La)m 
= ∅.
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By Theorem 3.1, c1ΘLo,P2 + c2ΘLa,P2 is a normalized Hecke eigenform. So,
We assume that m is a power of prime, if not we could apply the equation (2). We
will divide into the three cases.

(i) Case m = pα and p | dK :
By a(m) = 2 and (1), the shells (L)m are not spherical 2-designs. Hence,
b(m) 
= 0.

(ii) Case m = pα and (dK/p) = −1:
By Lemma (4.1),

a(pn) =

{
0 if n is odd,

2 if n is even.

By a(m) = 2 and (1), when n is even, the shells (L)m are not spherical
2-designs. Hence, b(m) 
= 0.

(iii) Case m = pα and (dK/p) = 1:
By Proposition 3.1 and Lemma 5.3, b(m) 
= 0. This completes the proof of
Theorem 1.6. �

6 The Case of |ClK| = 3

In the previous sections, we studied the cases of class number h = |ClK | is either 1
or 2. However, it seems that the situation is somewhat different for the cases of class
numbers h ≥ 3. In this section, we discuss briefly how it is different, by considering
the case of d = 23 (h = 3).

We first remark that one reason of success for the cases h = 1 and h = 2 is
that the coefficients a(m) of the Hecke eigenform ΨK,Λ are all integers. Therefore,
by formula (10), we have that z = a(p)/p is a rational number (and since it is an
algebraic integer), and so it must be a rational integer. It seems that this situation
is no longer true in general for the cases of h ≥ 3. We will give more detailed
information, concentrating the special (and typical) case of d = 23.

We denote by o, a1 and a2 the ideal classes. The corresponding quadratic
forms are x2 + xy + 6y2, 2x2 − xy + 3y2 and 2x2 + xy + 3y2, namely,
Lo = 〈(1, 0), (1/2,√23/2)〉, La1 = 〈(2, 0), (1/2,√23/2)〉 and La2 =
〈(2, 0), (−1/2,√23/2)〉, respectively. We give the weighted theta series of those
ideal lattices. We set P1 = x2 − y2 and P2 = xy in this section.
ΘLo = 1+2q+2q4+4q6+4q8+2q9+4q12+2q16+4q18+2q23+4q24+2q25+
4q26+4q27+4q32+6q36+4q39+8q48+2q49+4q52+4q54+4q58+4q59+4q62+
6q64+8q72+4q78+2q81+4q82+4q87+2q92+4q93+4q94+8q96+2q100+O[q]101.
1
2 ×ΘLo,P1 = q+4q4−11q6−7q8+9q9+q12+16q16+13q18−23q23−44q24+
25q25 + 29q26 − 38q27 − 28q32 + 85q36 − 14q39 + 77q48 + 49q49 − 103q52 −
99q54 − 91q58 + 26q59 + 101q62 − 15q64 − 11q72 + 133q78 + 81q81 − 43q82 +
82q87 − 92q92 − 182q93 − 19q94 − 7q96 + 100q100 +O[q]101.
ΘLo,P2 = 0.
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ΘLa1
= 1+2q2+2q3+2q4+2q6+2q8+2q9+4q12+2q13+4q16+4q18+6q24+

2q26 + 2q27 + 2q29 + 2q31 + 4q32 + 6q36 + 2q39 + 2q41 + 2q46 + 2q47 + 6q48 +
2q50 + 4q52 + 6q54 + 2q58 + 2q62 + 4q64 + 2q69 + 2q71 + 8q72 + 2q73 + 2q75 +
6q78 +4q81 +2q82 +2q87 +2q92 +2q93 +2q94 +8q96 +2q98 +2q100 +O[q]101.
2×ΘLa1 ,P1 = 8q2 − 11q3− 7q4 + q6 + 32q8 + 13q9 − 88q12 + 29q13 − 56q16 +

121q18 + 81q24− 103q26− 99q27 − 91q29 + 101q31 + 49q32 +41q36 + 133q39−
43q41−184q46−19q47−183q48+200q50+232q52−295q54+209q58+41q62−
224q64+253q69+77q71+393q72−283q73−275q75−375q78+418q81−247q82−
227q87 + 161q92 − 203q93 + 353q94 + 616q96 + 392q98 − 175q100 +O[q]101.
4√
23
×ΘLa1 ,P2 = q3 − 3q4 + 5q6 − 7q9 + 9q13 − 11q18 + 13q24 − 3q26 + 9q27 −

15q29−15q31+21q32−27q36+17q39+33q41−39q47−19q48+45q54+21q58−
51q62− 23q69+57q71+5q72− 15q73+25q75− 35q78− 38q81+45q82− 55q87+
69q92 + 65q93 − 27q94 − 75q100 +O[q]101.
ΘLa2

= 1+2q2+2q3+2q4+2q6+2q8+2q9+4q12+2q13+4q16+4q18+6q24+

2q26 + 2q27 + 2q29 + 2q31 + 4q32 + 6q36 + 2q39 + 2q41 + 2q46 + 2q47 + 6q48 +
2q50 + 4q52 + 6q54 + 2q58 + 2q62 + 4q64 + 2q69 + 2q71 + 8q72 + 2q73 + 2q75 +
6q78 +4q81 +2q82 +2q87 +2q92 +2q93 +2q94 +8q96 +2q98 +2q100 +O[q]101.
2×ΘLa2 ,P1 = 8q2 − 11q3− 7q4 + q6 + 32q8 + 13q9 − 88q12 + 29q13 − 56q16 +

121q18 + 81q24− 103q26− 99q27 − 91q29 + 101q31 + 49q32 +41q36 + 133q39−
43q41−184q46−19q47−183q48+200q50+232q52−295q54+209q58+41q62−
224q64+253q69+77q71+393q72−283q73−275q75−375q78+418q81−247q82−
227q87 + 161q92 − 203q93 + 353q94 + 616q96 + 392q98 − 175q100 +O[q]101.
4√
23
×ΘLa2 ,P2 = −q3+3q4− 5q6+7q9− 9q13+11q18− 13q24+3q26− 9q27+

15q29+15q31−21q32+27q36−17q39−33q41+39q47+19q48−45q54−21q58+
51q62+23q69− 57q71− 5q72+15q73− 25q75+35q78+38q81− 45q82+55q87−
69q92 − 65q93 + 27q94 + 75q100 +O[q]101.

We calculate the Hecke character of weight 3 and modulus (1), i.e, we calculate
ΨK,Λ =

∑
m≥1 a(m)qm, where Λ = (1) and k = 3. When A of norm m is

a nonprincipal ideal, A3 is a principal ideal. Then we set φ(A)3 = φ(A3). For
example, (2,−1/2 +√−23/2)3 = (−3/2−√−23/2). Because of

φ
((−3−√−23

2

))
=

(−3−√−23
2

)2

=
−7 + 3

√−23
2

,

φ((2,−1/2 +√−23/2)) is one of the roots of

x3 −
(−7 + 3

√−23
2

)
= 0. (11)

We denote by α1, α2 and α3 the roots of equation (11), namely, α1 ∼ −1.86272+
0.728188i,α2 ∼ 0.300733− 1.97726i and α3 ∼ 1.56199+1.24907i, respectively.
Then, φ((2,−1/2 +

√−23/2)) is one of α1, α2 or α3. (Actually there are three
different Hecke characters in this case.) First let us set φ((2,−1/2 +√−23/2)) =
α1. By the equation (2,−1/2 +√−23/2)× (2, 1/2 +

√−23/2) = (2),
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φ
((

2,
−1 +√−23

2

))
× φ

((
2,

1 +
√−23
2

))
= φ((2)).

We get

α1 × φ
((

2,
1 +
√−23
2

))
= 4,

hence, φ((2, 1/2 +
√−23/2)) = 4/α1. So,

a(2) = φ
((

2,
−1 +√−23

2

))
+ φ

((
2,

1 +
√−23
2

))
= α1 + 4/α1.

By the equation (2,−1/2+√−23/2)×(3, 1/2−√−23/2) = (1/2−√−23/2),

φ
((

2,
−1 +√−23

2

))
× φ

((
3,

1−√−23
2

))
= φ

((1−√−23
2

))
.

We get

α1 × φ
((

3,
1−√−23

2

))
=

(1−√−23
2

)2

=
−11−√−23

2
,

hence, φ((3, 1/2−√−23/2)) = (−11−√−23)/2×1/α1. Similarly, φ((3,−1/2−√−23/2)) = (−11 +√−23)/2× α1/(α
2
1 + 4). So,

a(3) = φ
((

3,
1−√−23

2

))
+ φ

((
3,
−1−√−23

2

))

=
−11−√−23

2
× 1

α1
+
−11 +√−23

2
× α1

α2
1 + 4

.

We recall α1 ∼ −1.86272 + 0.728188i. Then, we obtain

Ψ
(1)
K,Λ = q − 3.72545q2 + 4.24943q3 + · · · .

Actually, it is possible to continue this calculation, but we need the information on
the basis of all the ideals, which is rather complicated. So, we determine the Hecke
eigenforms Ψ

(i)
K,Λ by a different method. By computer calculation (using “Sage”

[18]), we know that the space of the modular forms of weight 3 where ΨK,Λ belongs
is of dimension 3. We can calculate the basis of this modular form explicitly, and
the three basis elements are of the form:

q + 4q4 − 11q6 − 7q8 + 9q9 + · · · ,
q2 − 5q4 + 7q6 + 4q8 − 8q9 + · · · ,
q3 − 3q4 + 5q6 − 7q9 + · · · .
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On the other hand, because of Theorems 3.1 and 3.2, ΘLo,P1 , ΘLa1 ,P1 and ΘLa2 ,P2

are in the same space of Hecke eigenforms Ψ
(i)
K,Λ. Therefore, comparing the first

three coefficients of the following equation:

Ψ
(1)
K,Λ(q) =

1

2
ΘLo,P (q) + a2ΘLa1 ,P

(q) + b
4√
23

ΘLa2 ,P
(q),

we can find numbers a and b as follows:

(a, b) =

⎧
⎨

⎩

(A1, B2),

(A2, B1),

(A3, B3),

where A1, A2 and A3 are the elements defined by

{x | 512x3 − 96x+ 7 = 0}
= {A1 = −0.465681, A2 = 0.0751832, A2 = 0.390498},

respectively, and B1, B2 and B3 are the elements defined by

{x | 512x3 − 2208x+ 1587 = 0}
= {B1 = −2.37065, B2 = 0.873067, B3 = 1.49759},

respectively.
In this way, we can calculate the Hecke eigenforms Ψ(i)

K,Λ. Namely,

Ψ
(1)
K,Λ = q − 3.72545q2 + 4.24943q3 + 9.87897q4 − 15.831q6 − 21.9018q8 +

9.05761q9 + 41.9799q12 − 21.3624q13 + 42.0781q16 − 33.7437q18 − 23q23 −
93.07q24 + 25q25 + 79.5844q26 + 0.244826q27 + 55.473q29 − 33.9378q31 −
69.1528q32+89.4799q36−90.7777q39−8.78692q41+85.6853q46+42.8975q47+
178.808q48 + 49q49 − 93.1362q50 +O[q]51.

Ψ
(2)
K,Λ = q + 0.601466q2 + 1.54364q3 − 3.63824q4 + 0.928445q6 − 4.59414q8 −

6.61718q9 − 5.61612q12 + 23.5162q13 + 11.7897q16 − 3.98001q18 − 23q23 −
7.09168q24 + 25q25 + 14.1442q26 − 24.1073q27 − 42.4015q29 − 27.9663q31 +
25.4677q32+24.0749q36+36.3005q39+74.9986q41−13.8337q46−93.8839q47+
18.1991q48 + 49q49 + 15.0366q50 +O[q]51.

Ψ
(3)
K,Λ = q + 3.12398q2 − 5.79306q3 + 5.75927q4 − 18.0974q6 + 5.49593q8 +

24.5596q9 − 33.3638q12 − 2.15383q13 − 5.86788q16 + 76.7237q18 − 23q23 −
31.8383q24 + 25q25 − 6.72853q26 − 90.1376q27 − 13.0715q29 + 61.9041q31 −
40.3149q32+141.445q36+12.4773q39−66.2117q41−71.8516q46+50.9864q47+
33.993q48 + 49q49 + 78.0996q50 +O[q]51.

The coefficients a(m) for this case are far from integers. In fact they are not
elements in a cyclotomic number field in general. So, it seems difficult to use the
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Hecke eigenforms obtained this way to apply for the case of the class number 3
or more in general. Some new additional ideas will be needed to treat the case of
d = 23 or more generally the cases of class numbers h ≥ 3. We have included the
presentation of the results (although they are not conclusive) for d = 23, hoping
that it might help the reader for the future study on this topic.

Remark 6.1. We remark that the coefficients of Ψ(i)
K,Λ in above calculator results

are not exact values but approximate values.

7 Concluding Remarks

1. In this paper, we use the mathematics software “Sage” [18]. In particular,
the results in Tables 3 and 4 are compute by “Sage” using the command
“K.ideals of bdd norm()”. We remark that this command does not always give a
Z-basis of an ideal. We must use the command “(ideal).basis()”.

2. In Appendix C, we list theta series of lattices obtained from Q(
√−5). The other

cases are listed on one of the author’s website [13].

Table 3 Integral ideals of small norm of d = 2 and d = 5

N(A) A: ideal

1 (1)

2 (
√−2)

3 (−1 +
√−2)

(−1−√−2)

4 (2)

N(A) A: ideal

1 (1)

2 (2, 1 +
√−5)

3 (3, 1 +
√−5)

(3, 1−√−5)

4 (2)

5 (
√−5)

6 (1−√−5)

(−1−√−5)

Table 4 Integral ideals of small norm of d = 23

N(A) A: ideal

1 (1)

2 (2,−1/2 +
√−23/2)

(2, 1/2 +
√−23/2)

3 (3, 1/2 −√−23/2)

(3,−1/2 −√−23/2)

4 (4, 3/2 +
√−23/2)

(2)

(4, 5/2 +
√−23/2)

5 −

N(A) A: ideal

6 (1/2 −√−23/2)

(6, 5/2 +
√−23/2)

(6, 7/2 +
√−23/2)

(1/2 +
√−23/2)

7 −
8 (−3/2 −√−23/2)

(4,−1 +
√−23)

(4, 1 +
√−23)

(−3/2 +
√−23/2)

9 (9, 11/2 +
√−23/2)

(3)

(9, 7/2 +
√−23/2)

10 −
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3. In the previous paper [3], we studied the spherical designs in the nonempty
shells of the Z

2-lattice and A2-lattice. The results state that any shells in the
Z
2-lattice (resp. A2-lattice) are spherical 2-designs (resp. 4-designs). However,

the nonempty shells in the Z2-lattice (resp.A2-lattice) are not spherical 4-designs
(resp. 6-designs). It is interesting to note that no spherical 6-designs among the
nonempty shells of any Euclidean lattice of 2-dimensions is known. It is an
interesting open problem to prove or disprove whether these exist any 6-designs
which is a shell of a Euclidean lattice of 2-dimensions.

Responding to the authors’ request, Junichi Shigezumi performed computer
calculations to determine whether there are spherical t-designs for bigger t, in
the 2- and 3-dimensional cases. His calculation shows that among the nonempty
shells of integral lattices in 2-dimensions (with relatively small discriminant and
small norms), there are only 4-designs. That is, no 6-designs were found. (So
far, all examples of such 4-designs are the union of vertices of regular 6-gons,
although they are the nonempty shells of many different lattices). In the 3-
dimensional case, all examples obtained are only 2-designs. No 4-designs which
are shells of a lattice were found. It is an interesting open problem whether this
is true in general for the dimensions 2 and 3. Moreover, it is interesting to note
that no spherical 12-designs among the nonempty shells of any Euclidean lattice
(of any dimensions) is known. It is also an interesting open problem to prove or
disprove whether these exist any 12-designs which is a shell of a Euclidean
lattice.

Finally, we state the following conjecture for the 2-dimensional lattices.

Conjecture 7.1. Let L be the Euclidean lattice of 2-dimensions, whose
quadratic form is ax2 + bxy + cy2.

(i) Assume that b2 − 4ac = (Integer)2 × (−3). Then, all the nonempty shells
of L are not spherical 6-designs and some of the nonempty shells of L are
spherical 4-designs. Moreover, if all the nonempty shells of L are spherical
4-designs then
b2 − 4ac = −3, that is, A2-lattice.

(ii) Assume that b2 − 4ac = (Integer)2 × (−4). Then, all the nonempty shells
of L are not spherical 4-designs and some of the nonempty shells of L are
spherical 2-designs. Moreover, if all the nonempty shells of L are spherical
2-designs then
b2 − 4ac = −4, that is, Z2-lattice.

(iii) Otherwise, all the nonempty shells of L are not spherical 2-designs.
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A The Case of |ClK| = 1

Table 5 |ClK | = 1 −d −d (mod 4) dK Lo

−1 3 −22 [1,
√−1]

−2 2 −23 [1,
√−2]

−3 1 −3 [1, (1 +
√−3)/2]

−7 1 −7 [1, (1 +
√−7)/2]

−11 1 −11 [1, (1 +
√−11)/2]

−19 1 −19 [1, (1 +
√−19)/2]

−43 1 −43 [1, (1 +
√−43)/2]

−67 1 −67 [1, (1 +
√−67)/2]

−163 1 −163 [1, (1 +
√−163)/2]

B The Case of |ClK| = 2

Table 6 |ClK | = 2

−d −d (mod 4) dK Lo La

−5 3 −22 × 5 [1,
√−5] [2, 1 +

√−5]

−6 2 −23 × 3 [1,
√−6] [2,

√−6]

−10 2 −23 × 5 [1,
√−10] [2,

√−10]

−13 3 −22 × 13 [1,
√−13] [2, 1 +

√−13]

−15 1 −3× 5 [1, (1 +
√−15)/2] [2, (1 +

√−15)/2]

−22 2 −23 × 11 [1,
√−22] [2,

√−22]

−35 1 −5× 7 [1, (1 +
√−35)/2] [3, (1 +

√−35)/2]

−37 3 −22 × 37 [1,
√−37] [2, 1 +

√−37]

−51 1 −3× 17 [1, (1 +
√−51)/2] [3, (3 +

√−51)/2]

−58 2 −23 × 29 [1,
√−58] [2,

√−58]

−91 1 −7× 13 [1, (1 +
√−91)/2] [5, (3 +

√−91)/2]

−115 1 −5× 23 [1, (1 +
√−115)/2] [5, (5 +

√−115)/2]

−123 1 −3× 41 [1, (1 +
√−123)/2] [3, (3 +

√−123)/2]

−187 1 −11× 17 [1, (1 +
√−187)/2] [7, (3 +

√−187)/2]

−235 1 −5× 47 [1, (1 +
√−235)/2] [5, (5 +

√−235)/2]

−267 1 −3× 89 [1, (1 +
√−267)/2] [3, (3 +

√−267)/2]

−403 1 −13× 31 [1, (1 +
√−403)/2] [11, (9 +

√−403)/2]

−427 1 −7× 61 [1, (1 +
√−427)/2] [7, (7 +

√−427)/2]
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C Theta Series of Lo and La of Q(
√−5)

ΘLo = 1 + 2q + 2q4 + 2q5 + 4q6 + 6q9 + 4q14 + 2q16 + 2q20 + 8q21 + 4q24 +
2q25 + 4q29 + 4q30 + 6q36 + 4q41 + 6q45 + 4q46 + 6q49 + 8q54 + 4q56 + 4q61 +
2q64 +8q69 +4q70 +2q80 +10q81 +8q84 +4q86 +4q89 +4q94 +4q96 +2q100 +
4q101+8q105+4q109+4q116+4q120+2q121+2q125+12q126+8q129+4q134+
8q141 +6q144 +4q145 +4q149 +4q150 +8q161 +4q164 +4q166 +2q169 +8q174 +
6q180+4q181+4q184+16q189+6q196+8q201+4q205+4q206+4q214+8q216+
4q224 +6q225 +4q229 +4q230 +4q241 +4q244 +6q245 +8q246 +8q249 +4q254 +
2q256+12q261+4q269+8q270+8q276+4q280+4q281+2q289+12q294+8q301+
4q305+8q309+2q320+8q321+10q324+4q326+8q329+4q334+8q336+4q344+
8q345+4q349+4q350+4q356+2q361+8q366+12q369+4q376+8q381+4q384+
4q389+2q400+4q401+4q404+10q405+8q406+4q409+12q414+8q420+4q421+
4q430+4q436+18q441+4q445+4q446+4q449+4q454+4q461+4q464+8q469+
4q470 + 4q480 + 2q484 + 12q486 + 8q489 + 2q500 +O[q]501

ΘLa = 1+ 2q2 + 4q3 + 4q7 + 2q8 + 2q10 + 4q12 + 4q15 + 6q18 + 4q23 + 8q27 +
4q28 + 2q32 + 4q35 + 2q40 + 8q42 + 4q43 + 4q47 + 4q48 + 2q50 + 4q58 + 4q60 +
12q63 +4q67 +6q72 +4q75 +4q82 +4q83 +8q87 +6q90 +4q92 +6q98 +4q103 +
4q107 +8q108 +4q112 +4q115 +4q122 +8q123 +4q127 +2q128 +8q135 +8q138 +
4q140+12q147+2q160+10q162+4q163+4q167+8q168+4q172+4q175+4q178+
8q183+4q188+4q192+2q200+4q202+8q203+12q207+8q210+4q215+4q218+
4q223+4q227+4q232+4q235+4q240+2q242+12q243+2q250+12q252+8q258+
4q263 +8q267 +4q268 +8q282 +4q283 +8q287 +6q288 +4q290 +4q298 +4q300 +
8q303+4q307+12q315+8q322+8q327+4q328+4q332+4q335+2q338+8q343+
4q347+8q348+6q360+4q362+4q363+4q367+4q368+4q375+16q378+4q383+
12q387+6q392+8q402+4q410+4q412+4q415+12q423+8q427+4q428+8q432+
8q435 +4q443 +8q447 +4q448 +6q450 +4q458 +4q460 +4q463 +4q467 +4q482 +
16q483 + 4q487 + 4q488 + 6q490 + 8q492 + 8q498 +O[q]501

ΘLo,P = q + 4q4 − 5q5 − 8q6 + 7q9 + 8q14 + 16q16 − 20q20 − 16q21 − 32q24 +
25q25−22q29+40q30+28q36+62q41−35q45−88q46−33q49+16q54+32q56−
58q61 + 64q64 + 176q69 − 40q70 − 80q80 − 95q81 − 64q84 + 152q86 − 142q89 +
8q94 − 128q96 + 100q100 + 122q101 + 80q105 + 38q109 − 88q116 + 160q120 +
121q121− 125q125+56q126− 304q129− 232q134− 16q141+112q144+110q145+
278q149−200q150−176q161+248q164+152q166+169q169+176q174−140q180−
358q181− 352q184+32q189− 132q196+464q201− 310q205− 88q206+248q214+
64q216+128q224+175q225−262q229+440q230+302q241−232q244+165q245−
496q246− 304q249− 472q254+256q256− 154q261+38q269− 80q270+704q276−
160q280−418q281+289q289+264q294+304q301+290q305+176q309−320q320−
496q321−380q324−328q326+16q329+488q334−256q336+608q344−880q345−
22q349+200q350− 568q356+361q361+464q366+434q369+32q376+944q381−
512q384−202q389+400q400−478q401+488q404+475q405−176q406−802q409−
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616q414+320q420−778q421−760q430+152q436−231q441+710q445+872q446+
398q449−712q454+842q461−352q464−464q469−40q470+640q480+484q484+
616q486 + 656q489 − 500q500 +O[q]501

ΘLa,P = 2q2−4q3+4q7+8q8−10q10−16q12+20q15+14q18−44q23+8q27+
16q28+32q32− 20q35− 40q40− 32q42+76q43+4q47− 64q48+50q50− 44q58+
80q60 + 28q63 − 116q67 + 56q72 − 100q75 + 124q82 + 76q83 + 88q87 − 70q90 −
176q92 − 66q98 − 44q103 + 124q107 + 32q108 + 64q112 + 220q115 − 116q122 −
248q123− 236q127+128q128− 40q135+352q138− 80q140+132q147− 160q160−
190q162−164q163+244q167−128q168+304q172+100q175−284q178+232q183+
16q188− 256q192+200q200+244q202− 88q203− 308q207+160q210− 380q215+
76q218+436q223− 356q227− 176q232− 20q235+320q240+242q242+308q243−
250q250+112q252−608q258−284q263+568q267−464q268−32q282+316q283+
248q287+224q288+220q290+556q298−400q300−488q303−596q307−140q315−
352q322−152q327+496q328+304q332+580q335+338q338−328q343−116q347+
352q348−280q360−716q362−484q363+724q367−704q368+500q375+64q378−
44q383+532q387− 264q392+928q402− 620q410− 176q412− 380q415+28q423−
232q427+496q428+128q432−440q435+796q443−1112q447+256q448+350q450−
524q458+880q460−764q463+124q467+604q482+704q483+484q487−464q488+
330q490 − 992q492 − 608q498 +O[q]501

Ψ
(1)
K,Λ(z) = q+2q2− 4q3+4q4− 5q5− 8q6+4q7+8q8+7q9− 10q10− 16q12+

8q14 +20q15 +16q16 +14q18− 20q20− 16q21− 44q23− 32q24+25q25+8q27 +
16q28 − 22q29 + 40q30 + 32q32 − 20q35 + 28q36 − 40q40 + 62q41 − 32q42 +
76q43 − 35q45 − 88q46 + 4q47 − 64q48 − 33q49 + 50q50 + 16q54 + 32q56 −
44q58 + 80q60 − 58q61 + 28q63 + 64q64 − 116q67 + 176q69 − 40q70 + 56q72 −
100q75− 80q80− 95q81 + 124q82 + 76q83− 64q84 +152q86 +88q87 − 142q89−
70q90−176q92+8q94−128q96−66q98+100q100+122q101−44q103+80q105+
124q107 + 32q108 + 38q109 + 64q112 + 220q115 − 88q116 + 160q120 + 121q121 −
116q122−248q123−125q125+56q126−236q127+128q128−304q129−232q134−
40q135 +352q138− 80q140− 16q141 +112q144 +110q145 +132q147 +278q149−
200q150−160q160−176q161−190q162−164q163+248q164+152q166+244q167−
128q168+169q169+304q172+176q174+100q175−284q178−140q180−358q181+
232q183− 352q184+16q188+32q189− 256q192− 132q196+200q200+464q201+
244q202− 88q203− 310q205− 88q206− 308q207+160q210+248q214− 380q215+
64q216+76q218+436q223+128q224+175q225− 356q227− 262q229+440q230−
176q232−20q235+320q240+302q241+242q242+308q243−232q244+165q245−
496q246−304q249−250q250+112q252−472q254+256q256−608q258−154q261−
284q263+568q267− 464q268+38q269− 80q270+704q276− 160q280− 418q281−
32q282+316q283+248q287+224q288+289q289+220q290+264q294+556q298−
400q300+304q301−488q303+290q305−596q307+176q309−140q315−320q320−
496q321−352q322−380q324−328q326−152q327+496q328+16q329+304q332+
488q334+580q335−256q336+338q338−328q343+608q344−880q345−116q347+
352q348−22q349+200q350−568q356−280q360+361q361−716q362−484q363+
464q366+724q367− 704q368+434q369+500q375+32q376+64q378+944q381−
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44q383−512q384+532q387−202q389−264q392+400q400−478q401+928q402+
488q404+475q405−176q406−802q409−620q410−176q412−616q414−380q415+
320q420−778q421+28q423−232q427+496q428−760q430+128q432−440q435+
152q436−231q441+796q443+710q445+872q446−1112q447+256q448+398q449+
350q450−712q454−524q458+880q460+842q461−764q463−352q464+124q467−
464q469−40q470+640q480+604q482+704q483+484q484+616q486+484q487−
464q488 + 656q489 + 330q490 − 992q492 − 608q498 − 500q500 +O[q]501
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Abstract I discuss a variety of results involving s(n), the number of
representations of n as a sum of three squares. One of my objectives is to reveal
numerous interesting connections between the properties of this function and certain
modular equations of degree 3 and 5. In particular, I show that

s(25n) = (6− (−n|5)) s(n)− 5s
( n
25

)

follows easily from the well known Ramanujan modular equation of degree 5.
Moreover, I establish new relations between s(n) and h(n), g(n), the number of
representations of n by the ternary quadratic forms

2x2 + 2y2 + 2z2 − yz + zx+ xy, x2 + y2 + 3z2 + xy,

respectively.
Finally, I propose a remarkable new identity for s(p2n)− ps(n) with p being an

odd prime. This identity makes nontrivial use of the ternary quadratic forms with
discriminants p2, 16p2.
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1 Introduction

Let (a, b, c, d, e, f)(n) denote the number of representations of n by the ternary form
ax2 + by2 + cz2 + dyz + ezx + fxy. I will assume that (a, b, c, d, e, f)(n) = 0,
whenever n 
∈ Z . Let s(n) denote the number of representations of n by ternary
form x2+y2+z2. In [14], Hirschhorn and Sellers proved in a completely elementary
manner that

s(p2n) = (p+ 1− (−n|p)) s(n)− ps
(
n

p2

)
, (1.1)

when p = 3. Here (a|p) denotes the Legendre symbol. It should be pointed out that
the authors of [14] proved (1.1) for all odd prime numbers p by an appeal to the
theory of modular forms.

In Sect. 2, I will show that (1.1) with p = 5 follows easily from the well-known
identity for φ(q)2 − φ(q5)2 with

φ(q) =

∞∑

n=−∞
qn

2

. (1.2)

Here and throughout, q is a complex number with |q| < 1. I will also provide an
elementary proof of the following

Theorem 1.1. If n ≡ 1, 2 mod 4, then

s(25n)− 5s(n) = 4(2, 2, 2,−1, 1, 1)(n), (1.3)

and

Theorem 1.2. If n ≡ 1, 2 mod 4, then

s(9n)− 3s(n) = 2(1, 1, 3, 0, 0, 1)(n). (1.4)

In Sect. 5, I will show how to remove the parity restrictions in the above theorems
by proving Theorems 5.2 and 5.3. Section 6 contains my new Proposition 6.1, which
generalizes Theorems 1.1, 1.2, 5.2 and 5.3. A reader with no vested interest in q-
series may want to proceed directly to Sect. 6. However, a motivated reader may
decide to walk slowly through the initial sections to experience suffering which will
later turn into joy.

Let me point out that two ternary forms 2x2 + 2y2 + 2z2 − yz + zx + xy and
x2 + y2 + 3z2 + xy both have class number one. This implies that these forms
are both regular [11, 16, 17]. For a recent discussion of the relation between the
Ramanujan modular equations and certain ternary quadratic forms the reader is
invited to examine [2]. And it goes without saying that one should not forget the
timeless classic [1].
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I begin by recalling some standard notations, definitions, and useful formulas.

(a; q)∞ :=
∏

j≥0

(1− aqj), (1.5)

and

E(q) :=
∏

j≥1

(1− qj). (1.6)

Note that

E(−q) = E(q2)3

E(q4)E(q)
, (1.7)

Ramanujan’s general theta-function f(a, b) is defined by

f(a, b) =

∞∑

n=−∞
a

(n−1)n
2 b

(n+1)n
2 , |ab| < 1. (1.8)

In Ramanujan’s notation, the celebrated Jacobi triple product identity takes the
shape [5], p. 35

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1. (1.9)

Note that φ(q) can be interpreted as

φ(q) = f(q, q) =
E(q2)5

E(q4)2E(q)2
, (1.10)

where the product on the right follows easily from (1.8). We shall also require

φ(−q) = E(q)2

E(q2)
. (1.11)

Next we define

ψ(q) = f(q, q3) =

∞∑

n=−∞
q2n

2+n. (1.12)

It is not hard to check that

ψ(q) =
1

2
f(1, q) =

∑

n≥0

q
(n+1)n

2 =
E(q2)2

E(q)
, (1.13)

∞∑

n=−∞
q(4n+1)2 =

∞∑

n=−∞
q(4n+3)2 = qψ(q8), (1.14)
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and that

f(q, q9)f(q3, q7) =
E(q20)E(q5)E(q2)2

E(q4)E(q)
, (1.15)

f(q, q4)f(q2, q3) =
E(q5)3E(q2)

E(q10)E(q)
. (1.16)

The function f(a, b) may be dissected in many different ways. We will use the
following trivial dissections [5], pp. 40, 49

φ(q) = φ(q4) + 2qψ(q8), (1.17)

φ(q) = φ(q9) + 2qf(q3, q15), (1.18)

φ(q) = φ(q25) + 2qf(q15, q35) + 2q4f(q5, q45). (1.19)

We will also require a special case of Schröter’s formula [5], p. 45

f(a, b)f(c, d) = f(ac, bd)f(ad, bc) + af

(
b

c
, ac2d

)
f

(
b

d
, acd2

)
, (1.20)

provided ab = cd. Setting a = b = c = d = q in (1.20) we obtain

φ(q)2 = φ(q2)2 + 4qψ(q4)2. (1.21)

Iterating, we find that

φ(q)2 = φ(q4)2 + 4qψ(q4)2 + 4q2ψ(q8)2. (1.22)

Next, we set a = q, b = q9, c = q3, d = q7 in (1.20) and square the result. This way
we have

f(q, q9)2f(q3, q7)2 = f(q4, q16)2f(q8, q12)2

+2qf(q4, q16)f(q8, q12)f(q6, q14)f(q2, q18) + q2f(q6, q14)2f(q2, q18)2.

(1.23)

Finally, we multiply both sides in (1.23) by

E(q4)φ(q5)

E(q20)E(q10)2
,

and use (1.10), (1.13), (1.15) and (1.16) to arrive at

φ(q)f(q2, q8)f(q4, q6) = ψ(q4)φ(q5)φ(q10)

+ 2qψ(q2)ψ(q10)φ(q5) + q2ψ(q20)φ(q2)φ(q5). (1.24)
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This result will come in handy in my proof of (1.3) with n ≡ 2 mod 4. To deal with
the case n ≡ 1 mod 4 in (1.3) I will require another identity

φ(q)φ(q5) +
∑

m,n

q2m
2+2nm+3n2

= 2Π1(q), (1.25)

where

Π1(q) =
E(q10)E(q5)E(q4)E(q2)

E(q20)E(q)
. (1.26)

This formula was discovered and proven in [4]. The proof of (1.25), given in [4],
used only a special case of the Ramanujan 1ψ1 summation formula [6], p. 64.
Multiplying both sides in (1.25) by ψ(q10) and utilizing (1.13) and (1.15) we can
rewrite (1.25) as

ψ(q10)φ(q)φ(q5)+ψ(q10)
∑

m,n

q2m
2+2nm+3n2

= 2ψ(q2)f(q, q9)f(q3, q7). (1.27)

2 The Ternary Implications of the Fundamental Modular
Equation of Degree 5

In this section we will make an extensive use of a well-known modular equation of
degree 5

φ(q)2 − φ(q5)2 = 4qf(q, q9)f(q3, q7) (2.1)

to prove (1.1) with p = 5. We note that (2.1) has an attractive companion

5φ(q5)2 − φ(q)2 = 4Π2(q), (2.2)

where

Π2(q) =
E(q10)2E(q4)E(q)

E(q20)E(q5)
. (2.3)

Both (2.1) and (2.2) are discussed in [5]. We remark that the right hand side of (2.1)
was interpreted in terms of so-called self-conjugate 5-cores in [12]. To proceed
further I will need a sifting operator St,s. It is defined by its action on power series
as follows

St,s

∑

n≥0

c(n)qn =
∑

k≥0

c(tk + s)qk. (2.4)

Here t, s are integers such that 0 ≤ s < t. Making use of (1.19), we find that

S5,0φ(q)
2 = φ(q5)2 + 8qf(q, q9)f(q3, q7). (2.5)
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And so

S5,0(φ(q)
2 − φ(q5)2) = −(φ(q)2 − φ(q5)2) + 8qf(q, q9)f(q3, q7). (2.6)

Employing (2.1) twice, we see that

S5,0(qf(q, q
9)f(q3, q7)) = qf(q, q9)f(q3, q7). (2.7)

Analogously, we can check that

S5,0φ(q)
3 = φ(q5)3 + 24qφ(q5)f(q, q9)f(q3, q7), (2.8)

and that

S5,1φ(q)
3 = 6f(q3, q7)(φ(q5)2 + 4qf(q, q9)f(q3, q7)) = 6f(q3, q7)φ(q)2, (2.9)

S5,4φ(q)
3 = 6f(q, q9)(φ(q5)2 + 4qf(q, q9)f(q3, q7)) = 6f(q, q9)φ(q)2. (2.10)

We note, in passing, that thanks to (1.9), the right hand side in (2.9) can be rewritten
as an infinite product

∞∑

n=0

s(5n+ 1)qn = 6

∞∏

j=1

(1 − q2j)2(1 − q10j)

(1 + q−1+2j)4(1 + q−3+10j)(1 + q−7+10j).

Cooper and Hirschhorn studied the generating functions of subsequences of s(n)
that could be represented by a single, simple infinite product. For example,
(2.9), (2.10) and (4.17) are the formulas (3.1), (3.2) and (1.1) in [10].

With the aid of (1.19) we can combine (2.9) and (2.10) into a single elegant
statement

S5,r(φ(q)
3 − 3φ(q)φ(q5)2) = 0, (2.11)

where r = 1, 4. Next, we apply S5,0 to both sides of (2.8) to obtain, with a little
help from (2.7)

S25,0φ(q)
3 = φ(q)3 + 24qφ(q)f(q, q9)f(q3, q7). (2.12)

Subtracting 5φ(q)3 and making use of (2.1) again, we deduce that

S25,0φ(q)
3 − 5φ(q)3 = −4φ(q)3 + 6φ(q)(φ(q)2 − φ(q5)2)

= 2(φ(q)3 − 3φ(q)φ(q5)2). (2.13)

Finally, we apply S5,r with r = 1, 4 to both sides of (2.13) to find that

S125,25rφ(q)
3 − 5S5,rφ(q)

3 = 0. (2.14)
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But it is plain that

φ(q)3 =
∞∑

n=0

s(n)qn. (2.15)

And so the equation (2.14) can be interpreted as

s(25n)− 5s(n) = 0, (2.16)

when n ≡ 1, 4 mod 5. Thus, the proof of (1.1) with p = 5 and n ≡ 1, 4 mod 5 is
complete.

We now turn our attention to the n ≡ 2, 3 mod 5 case. Subtracting 2φ(q)3 from
the extremes of (2.13), we end up with the formula

S25,0φ(q)
3 − 7φ(q)3 = −6φ(q)φ(q5)2. (2.17)

It is now clear that for r = 2, 3

S5,r(S25,0φ(q)
3 − 7φ(q)3) = −6φ(q)2S5,rφ(q) = 0, (2.18)

where in the last step we took advantage of the dissection formula (1.19). Obviously,
(2.18) is equivalent to

s(25n)− 7s(n) = 0, (2.19)

when n ≡ 2, 3 mod 5. And so we completed the proof of (1.1) with p = 5 and
n ≡ 2, 3 mod 5. All that remains to do is to take care of the n ≡ 0 mod 5 case.
Adding φ(q)3 to both sides of (2.17) and applying S5,0 to the result, we get

S5,0(S25,0φ(q)
3 − 6φ(q)3) = S5,0(φ(q)

3 − 6φ(q)φ(q5)2). (2.20)

Next, we utilize (1.19), (2.1) and (2.8) to process the right hand side of (2.20) as
follows

S5,0(φ(q)
3 − 6φ(q)φ(q5)2) = φ(q5)3 + 6φ(q5)(φ(q)2 − φ(q5)2)− 6φ(q5)φ(q)2

= −5φ(q5)3.

Hence, we have shown that

S125,0φ(q)
3 − 6S5,0φ(q)

3 = −5φ(q5)3. (2.21)

Consequently,

s(25n)− 6s(n) = −5s
( n
25

)
, (2.22)

when 5|n. This concludes our proof of (1.1) with p = 5.
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3 Proof of Theorem 1.1

I begin by observing that Theorem 1.1 is equivalent to the following statement

S100,25rφ(q)
3 − 5S4,rφ(q)

3 = 4S4,rT (q), (3.1)

where

T (q) :=
∑

x,y,z

q2x
2+2y2+2z2−yz+zx+xy (3.2)

and r = 1, 2. It is not hard to verify that

S4,1T (q) = 6S4,1X(1, q), (3.3)

and that

S4,2T (q) = 3S4,2(X(0, q) +X(2, q)). (3.4)

Here

X(r, q) :=
∑

x,
y≡−z≡rmod 4

q2x
2+2y2+2z2−yz+zx+xy. (3.5)

It takes very little effort to check that

2x2+2y2+2z2−zy+zx+xy = 2

(
x+

y + z

4

)2

+
5

8
(y+z)2+

5

4
(y−z)2. (3.6)

Hence

X(r, q) =
∑

x,
y≡−z≡rmod 4

q2(x+
y+z
4 )

2
+10( y+z

4 )2+20( y−z
4 )2

=
∑

u,
w≡v+ r

2 mod 2

q2u
2+10v2+20w2

, (3.7)

for r = 0, 2. It is now evident that

X(0, q) +X(2, q) =
∑

u,v,w

q2u
2+10v2+20w2

= φ(q2)φ(q10)φ(q20). (3.8)

Using this last result in (3.4), we find that

S4,2T (q) = 3φ(q5)S4,2(φ(q
2)φ(q10)). (3.9)

Recalling (1.17), we obtain at once that

4S4,2T (q) = 24φ(q5)(ψ(q4)φ(q10) + 6q2φ(q2)ψ(q20)). (3.10)
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We now consider X(r, q) with r = 1, 3.

X(r, q) =
∑

u,
v≡wmod 2

q2u
2+10v2+5(2w+r)2 .

Recalling (1.14), we get

X(1, q) = X(3, q) =
∑

u,v,w̃

q2n
2+10v2+5(4w̃+1)2 = q5φ(q2)φ(q10)ψ(q40). (3.11)

Using (1.17), (3.3) and (3.11), we deduce that

S4,1T (q) = 6qψ(q10)S4,0(φ(q
2)φ(q10)) = 6qψ(q10)(φ(q2)φ(q10) + 4q3ψ(q4)ψ(q20)).

Also, it is not hard to check that

∑

m,n

q2m
2+2nm+3n2

=
∑

m,n

q2(m+n)2+10n2

+ q3
∑

m,n

q2(m+n+1)(m+n)+10(n+1)n

= φ(q2)φ(q10) + 4q3ψ(q4)ψ(q20). (3.12)

This implies that

4S4,1T (q) = 24qψ(q10)
∑

m,n

q2m
2+2nm+3n2

. (3.13)

Next, we employ (2.13) to get

S100,25rφ(q)
3 − 5S4,rφ(q)

3 = 2S4,r(φ(q)
3 − 3φ(q)φ(q5)2). (3.14)

With the aid of (1.17), (1.22), (2.1) and (2.2) we verify that

S4,1(φ(q)
3 − 3φ(q)φ(q5)2) = 24qψ(q2)f(q, q9)f(q3, q7)− 12qφ(q)φ(q5)ψ(q10),

(3.15)

S4,2(φ(q)
3 − 3φ(q)φ(q5)2) = −24qψ(q2)ψ(q5)2 + 12φ(q)f(q2, q8)f(q4, q6).

(3.16)
Utilizing these results in (3.14) we obtain

S100,25φ(q)
3 − 5S4,1φ(q)

3 = 48qψ(q2)f(q, q9)f(q3, q7)− 24qφ(q)φ(q5)ψ(q10),
(3.17)

S100,50φ(q)
3 − 5S4,2φ(q)

3 = −48qψ(q2)ψ(q5)2 + 24φ(q)f(q2, q8)f(q4, q6).
(3.18)

Recalling (3.13), we see that (3.1) with r = 1 is equivalent to

2ψ(q2)f(q, q9)f(q3, q7)− φ(q)φ(q5)ψ(q10) = ψ(q10)
∑

m,n

q2m
2+2nm+3n2

,
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which is, essentially, (1.27). Analogously, employing (3.10), we find that (3.1) with
r = 2 is equivalent to

−2qψ(q2)ψ(q5)2+φ(q)f(q2, q8)f(q4, q6) = φ(q5)ψ(q4)φ(q10)+6q2φ(q2)φ(q5)ψ(q20),

which is, essentially, (1.24). The proof of Theorem 1.1 is now complete.
In Sect. 5 we will generalize Theorem 1.1. To this end we need to define

Y (r, q) :=
∑

x,
y+z≡rmod 4

q2x
2+2y2+2z2−yz+zx+xy, (3.19)

where r = 0, 1, 2, 3. Observe that the condition y + z ≡ r mod 4 allows us to
introduce new summation variables u, v, w, defined as x = w− v, y = 2u+ v + r,
z = 2u− v. Using (3.6), it is easy to see that

2x2 + 2y2 + 2z2 − zy+ zx+ xy = 2r2 +w(2w + r) + 5v(v + r) + 5u(2u+ r).

Hence

Y (0, q) = φ(q2)φ(q5)φ(q10), (3.20)

Y (2, q) = 4q3φ(q5)ψ(q4)ψ(q20), (3.21)

Y (1, q) = Y (3, q) = 2q2ψ(q)ψ(q5)ψ(q10). (3.22)

Employing (3.12), (3.20)–(3.22), we derive

T (q) =

3∑

r=0

Y (r, q) = φ(q5)
∑

m,n

q2m
2+2nm+3n2

+ 4q2ψ(q)ψ(q5)ψ(q10). (3.23)

It is easy to see that

∑

x,
y+z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy = Y (1, q) + Y (3, q) = 4q2ψ(q)ψ(q5)ψ(q10),

(3.24)
and that ∑

x,
y+z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy = 2Z(q), (3.25)

where

Z(q) :=
∑

x,
y≡0mod 2,
z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy. (3.26)
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It is worthwhile to point out that Z(q) has six equivalent representations. For
example, one has

Z(q) :=
∑

x≡0mod 2,
y≡1mod 2,

z

q2x
2+2y2+2z2−yz+zx+xy.

From (3.24), (3.25) we deduce that

Z(q) = 2q2ψ(q)ψ(q5)ψ(q10). (3.27)

We conclude this Section that by proving that
∑

x+y≡1mod 2,
y≡zmod 2

q2x
2+2y2+2z2−yz+zx+xy = Z(q). (3.28)

Indeed, the left hand side of (3.28) can be rewritten as

∑

x≡0mod 2,
y≡1mod 2,
z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy +

∑

x≡1mod 2,
y≡0mod 2,
z≡0mod 2

q2x
2+2y2+2z2−yz+zx+xy.

Now observe that

∑

x≡1mod 2,
y≡0mod 2,
z≡0mod 2

q2x
2+2y2+2z2−yz+zx+xy =

∑

x≡0mod 2,
y≡1mod 2,
z≡0mod 2

q2x
2+2y2+2z2−yz+zx+xy.

And so the left hand side of (3.28) becomes

∑

x≡0mod 2,
y≡1mod 2,

z

q2x
2+2y2+2z2−yz+zx+xy =

∑

x,
y≡0mod 2,
z≡1mod 2

q2x
2+2y2+2z2−yz+zx+xy = Z(q),

as desired.

4 Cubic Modular Identities Revisited

As in the last section, I begin by observing that Theorem 1.2 is equivalent to the
following statement

S36,9rφ(q)
3 − 3S4,rφ(q)

3 = 4S4,rφ(q
3)a(q), (4.1)
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where

a(q) :=
∑

x,y

qx
2+xy+y2

,

and r = 1, 2. The function a(q) was extensively studied in the literature [7–9,
13]. It appeared in Borwein’s cubic analogue of Jacobi’s celebrated theta function
identity [8]. I will record below some useful formulas

4a(q2)φ(q3) = φ(q)3 + 3φ(q3)4

φ(q) , (4.2)

a(q) = a(q3) + 6qE(q9)3

E(q3) , (4.3)

a(q) = φ(q)φ(q3) + 4qψ(q2)ψ(q6), (4.4)

a(q) = 2φ(q)φ(q3)− φ(−q)φ(−q3), (4.5)

2a(q2)− a(q) = φ(−q)3

φ(−q3) (4.6)

a(q) = a(q4) + 6qψ(q2)ψ(q6). (4.7)

Formula (4.2) appears as equation (6.4) in [7]. Identities (4.3)–(4.6) are discussed
in [9]. In order to prove (4.7), the authors of [13] have shown that

2qψ(q2)ψ(q6) =
∑

u�≡vmod 2

qu
2+3v2

. (4.8)

We have at once that

2qψ(q2)ψ(q6) =
∑

u≡1mod 2,
v≡0mod 2

qu
2+3v2

+
∑

u≡0mod 2,
v≡1mod 2

qu
2+3v2

= 2qψ(q8)φ(q12) + 2q3φ(q4)ψ(q24). (4.9)

Combining (4.7) and (4.9), we have a pretty neat dissection of a(q) mod 4

a(q) = a(q4) + 6qψ(q8)φ(q12) + 6q3φ(q4)ψ(q24). (4.10)

In [19], L.C. Shen discussed two well-known modular identities of degree 3

φ(q)2 − φ(q3)2 = 4q
ψ(q)ψ(q3)ψ(q6)

ψ(q2)
, (4.11)

and

φ(q)2 + φ(q3)2 = 2
ψ(q)f(q, q2)f(q2, q4)

ψ(q2)
. (4.12)
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Multiplying (4.11) and (4.12), and using

f(q, q2) =
E(q3)2E(q2)

E(q6)E(q)
, (4.13)

f(q, q5) =
E(q12)E(q3)E(q2)2

E(q6)E(q4)E(q)
(4.14)

together with (1.13) we have

φ(q)4 − φ(q3)4 = 8qφ(q3)f(q, q5)3. (4.15)

Next, we rewrite (4.15) as

φ(q)4

φ(q3)
= φ(q3)3 + 8qf(q, q5)3. (4.16)

Recalling (1.18), we can recognize the expression on the right as

φ(q3)3 + 8qf(q, q5)3 = S3,0(φ(q
9) + 2qf(q3, q15))3 = S3,0φ(q)

3.

And so

S3,0φ(q)
3 =

φ(q)4

φ(q3)
. (4.17)

Next, we want to show that

S9,0φ(q)
3 =

4φ(q)4 − 3φ(q3)4

φ(q)
. (4.18)

To this end, we apply S3,0 to both sides of (4.17). Utilizing (1.18), we find that

S9,0φ(q)
3 =

φ(q3)4 + 4(8qφ(q3)f(q, q5)3)

φ(q)
. (4.19)

The statement in (4.18) follows immediately from (4.15) and (4.19). Moreover,
we have

S9,0φ(q)
3 − 5φ(q)3 = −φ(q)3 − 3

φ(q3)4

φ(q)
= −4a(q2)φ(q3), (4.20)

where we used (4.2) in the last step. Adding 2φ(q)3 to the extremes in (4.20)
we derive

S9,0φ(q)
3 − 3φ(q)3 = 2φ(q)3 − 4a(q2)φ(q3). (4.21)

This result will come in handy in my proof of Theorem 5.2 in the next section.
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5 Proof of Theorems 1.2, 5.2 and 5.3

I begin this section by providing an easy proof of two formulas in (4.1). All I need
is the following

Lemma 5.1. If r = 1, 2, then

S4,r(φ(q)
3 − 2a(q2)φ(q3)) = S4,r(a(q)φ(q

3)). (5.1)

Proof: This lemma is a straightforward corollary of (1.17), (4.7) and (4.10). Next,
we apply S4,r with r = 1, 2 to (4.21) and use (5.1) to obtain

S36,9rφ(q)
3 − 3S4,rφ(q)

3 = 2S4,r(φ(q)
3 − 2φ(q3)a(q2)) = 2S4,r(a(q)φ(q

3)),
(5.2)

which is (4.1), as desired. The proof of Theorem 1.2 is now complete. We can do
much better, if we realize that (5.1) is an immediate consequence of the following
elegant result

φ(q)3 = φ(q3)(a(q) + 2a(q2)− 2a(q4)). (5.3)

To prove it, we divide both sides by φ(q3) and obtain

φ(q)3

φ(q3)
= 2a(q2)− a(q) + 2(a(q)− a(q4)). (5.4)

Using (4.6) and (4.7) in (5.4), we see that (5.3) is equivalent to

φ(q)3

φ(q3)
− φ(−q)3
φ(−q3) = 12qψ(q2)ψ(q6). (5.5)

To verify (5.5), I replace q by −q in (4.6) and subtract (4.6) to find with the aid of
(4.5) the following

φ(q)3

φ(q3)
− φ(−q)3
φ(−q3) = a(q)− a(−q) = 3(φ(q)φ(q3)− φ(−q)φ(−q3)). (5.6)

Subtracting (4.4) from (4.5) we obtain

φ(q)φ(q3)− φ(−q)φ(−q3) = 4qψ(q2)ψ(q6). (5.7)

Hence,
φ(q)3

φ(q3)
− φ(−q)3
φ(−q3) = 12qψ(q2)ψ(q6), (5.8)

as desired. This completes the proof of (5.3). We are now in a position to improve
on (5.2). Indeed, it follows from (4.21) and (5.3) that



On Representation of an Integer by X2 + Y 2 + Z2 and the Modular Equations. . . 43

S9,0φ(q)
3 − 3φ(q)3 = 2φ(q3)a(q)− 4φ(q3)a(q4). (5.9)

Consequently, we can extend Theorem 1.2 as

Theorem 5.2.

s(9n)− 3s(n) = 2(1, 1, 3, 0, 0, 1)(n)− 4(4, 3, 4, 0, 4, 0)(n). (5.10)

It is worthwhile to point out that Theorem 1.1 can be extended in a similar manner as

Theorem 5.3.

s(25n)− 5s(n) = 4(2, 2, 2,−1, 1, 1)(n)− 8(7, 8, 8,−4, 8, 8)(n). (5.11)

It is easy to check that (7, 8, 8,−4, 8, 8)(n) = 0 when n ≡ 1, 2 mod 4. And so
(5.11) reduces to (1.3) when n ≡ 1, 2 mod 4. Recalling (2.13), we see that all that
is required to prove Theorem 5.3 is

φ(q)3 − 3φ(q)φ(q5)2 = 2T (q)− 4T̃ (q), (5.12)

where T (q) was defined in (3.2), and

T̃ (q) :=
∑

x,y,z

q7x
2+8y2+8z2−4yz+8zx+8xy. (5.13)

Making easy changes of summation variables y → x+ y and z → x+ z in (3.2) we
find that

T (q) =
∑

x,y,z

q7x
2+2y2+2z2−yz+4zx+4xy. (5.14)

In a similar fashion one can prove that

T̃ (q) =
∑

x≡y≡zmod 2

q2x
2+2y2+2z2−yz+zx+xy. (5.15)

Combining (3.2), (3.25), (3.27), (3.28) and (5.15), we can easily derive that

T (q)− T̃ (q) = 2Z(q) + Z(q) = 6q2ψ(q)ψ(q5)ψ(q10). (5.16)

Hence we can rewite the right hand side of (5.12) as

2T (q)− 4T̃ (q) = 24q2ψ(q)ψ(q5)ψ(q10)− 2T (q).

Recalling (3.23), we see that (5.12) is equivalent to

φ(q)3 − 3φ(q)φ(q5)2 = 16q2ψ(q)ψ(q5)ψ(q10)− 2φ(q5)
∑

m,n

q2m
2+2nm+3n2

.

(5.17)
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To prove the above identity we subtract 2φ(q)φ(q5)2 from both sides and use (1.25),
(2.2) to find that

φ(q)Π2(q) = φ(q5)Π1(q)− 4q2ψ(q)ψ(q5)ψ(q10). (5.18)

Next, we multiply both sides of (5.18) by

E(q20)E(q5)E(q)

E(q10)2E(q4)E(q2)
,

and use (1.11) to end up with

φ(−q2)2 − φ(−q10)2 = −4q2E(q20)3E(q2)

E(q10)E(q4)
.

Finally, replacing q2 by q in the above, we deduce that (5.12) is equivalent to

φ(−q)2 − φ(−q5)2 = −4qE(q10)3E(q)

E(q5)E(q2)
.

Employing (1.7) and (1.15), we see that the last identity is nothing else but (2.1) with
q replaced by−q. Hence (5.12) is true. This completes my proof of the Theorem 5.3.

6 Bold Proposition

I now proceed to describe the generalization of Theorem 1.2 for any odd prime p.
Observe that the ternary quadratic form x2 + y2 + 3z2 + xy in this theorem has
the discriminants 32. We remind the reader that a discriminant of a ternary form
ax2 + by2 + cz2 + dyz + ezx+ fxy is defined as

1

2
det

⎡

⎣
2a f e

f 2b d

e d 2c

⎤

⎦ .

Using [18] it is easy to check that all ternary forms with the discriminant p2

belong to the same genus, say TG1,p. Let |Aut(f)| denote the number of integral
automorphs of a ternary quadratic form f , and let Rf (n) denote the number of
representations of n by f . Let p be an odd prime and n 
≡ 3 mod 4. I propose that

s(p2n)− ps(n) = 48
∑

f∈TG1,p

Rf (n)

|Aut(f)| − 96
∑

f∈TG1,p

Rf

(
n
4

)

|Aut(f)| . (6.1)
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Clearly, one wants to know if the parity restriction on n in (6.1) can be
removed. In other words, the question is whether a straightforward generalizion
of Theorem 5.2 exists. Fortunately, the answer is “yes”. However, the answer
involves the second genus of ternary forms TG2,p with discriminant 16p2. Note
that, in general, there are 12 genera of the ternary forms with the discriminant
16p2 [18]. However, when p ≡ 3 mod 4 one can create TG2,p from some binary
quadratic form of discriminant−p. It is a well known fact that all binary forms with
the discriminant −p belong to the same genus, say BGp. Let ax2 + bxz + cz2 be
some binary form ∈ BGp. We can convert it into ternary form

f(x, y, z) := 4ax2 + py2 + 4cz2 + 4|b|xz.
Next, we extend f to a genus that contains f . This genus is, in fact, TG2,p when
p ≡ 3 mod 4. It can be shown that the map

BGp → TG2,p

does not depend on which specific binary form from BGp we have choosen as
our starting point. I would like to comment that somewhat similar construction was
employed in [2] to define the so-called S-genus. Let me illustrate this map for
p = 23. In this case,

BG23 = {x2 + xz + 6z2, 2x2 + xz + 3z2, 2x2 − xz + 3z2}.

Choosing a binary form x2 + xz + 6z2 as a starting point one gets

{x2 + xz + 6z2} → {4x2 + 23y2 + 24z2 + 4xz} →
{4x2 + 23y2 + 24z2 + 4xz, 8x2 + 23y2 + 12z2 + 4xz, 3x2

+ 31y2 + 31z2 − 30yz + 2zx+ 2xy}.
We note that

TG2,23 : = {4x2 + 23y2 + 24z2 + 4xz, 8x2 + 23y2 + 12z2 + 4xz, 3x2

+ 31y2 + 31z2 − 30yz + 2zx+ 2xy}
is just one out of 12 possible genera of the ternary form with the discriminant 8,464.
It is instructive to compare TG2,23 and

TG1,23 := {x2+6y2+23z2+xy, 2x2+3y2+23z2+xy, 3x2+8y2+8z2−7yz+2zx+2xy}.

Clearly,

|TG1,23| = |TG2,23|.
Moreover,

|Aut(3x2 + 8y2 + 8z2 − 7yz + 2zx+ 2xy)|
= |Aut(3x2 + 31y2 + 31z2 − 30yz + 2zx+ 2xy)| = 12,
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|Aut(x2 + 6y2 + 23z2 + xy)| = |Aut(4x2 + 23y2 + 24z2 + 4xz)| = 8,

|Aut(2x2 + 3y2 + 23z2 + xy)| = |Aut(8x2 + 23y2 + 12z2 + 4xz)| = 4.

It is a bit less obvious that

(3, 31, 31,−30, 2, 2)(4n) = (3, 8, 8,−7, 2, 2)(n),

(4, 23, 24, 0, 4, 0)(4n) = (1, 6, 23, 0, 0, 1)(n),

(8, 23, 12, 0, 4, 0)(4n) = (2, 3, 23, 0, 0, 1)(n),

and that

(3, 31, 31,−30, 2, 2)(m) = (4, 23, 24, 0, 4, 0)(m) = (8, 12, 23, 0, 0, 4)(m) = 0,

whenever m ≡ 1, 2 mod 4. I propose that the above properties are, in fact, the
signature properties of TG2,p. In other words, for any odd prime p there exists an
automorphism preserving bijection

H : TG2,p → TG1,p,

such that , for any f ∈ TG2,p,

|Aut(f)| = |AutH(f)|,

Rf (4n) = RH(f)(n), (6.2)

and

Rf (m) = 0, when m ≡ 1, 2 mod 4. (6.3)

Jagy [15] suggested that TG1,p ∪ TG2,p does not represent any integer that is
quadratic residue mod p when p ≡ 1 mod 4, and when p ≡ 3 mod 4 this union
does not represent any integer that is a quadratic nonresidue mod p. That is for any
f ∈ TG1,p ∪ TG2,p

Rf (n) = 0,

when (−n|p) = 1. In addition, he pointed out that TG2,p represents a proper subset
of those numbers represented by TG1,p. Lastly, he observed that both TG1,p and
TG2,p are anisotropic at p. I discuss one more example. This time I choose p = 17.
Here one has

TG1,17 := {3x2+5y2+6z2+yz+2zx+3xy, 3x2+6y2+6z2−5yz+2zx+2xy},

and

TG2,17 := {7x2+11y2+20z2−8yz+4zx+6xy,3x2+23y2+23z2−22yz+2zx+2xy}.
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Note that

|Aut(3x2+5y2+6z2+yz+2zx+3xy)| = |Aut(7x2+11y2+20z2−8yz+4zx+6xy)| = 4,

|Aut(3x2+6y2+6z2−5yz+2zx+2xy)| = |Aut(3x2+23y2+23z2−22yz+2zx+2xy)| = 12,

(3, 23, 23,−22, 2, 2)(4n) = (3, 6, 6,−5, 2, 2)(n),
(7, 11, 20,−8, 4, 6)(4n) = (3, 5, 6, 1, 2, 3)(n),

(7, 11, 20,−8, 4, 6)(m) = (3, 23, 23,−22, 2, 2)(m) = 0,

whenever m ≡ 1, 2 mod 4. It is worthwhile to point out that there are exactly 12
genera with the discriminant 4,624. Only three of those have the correct cardinality

|TG2,17| = 2,

|{3x2 + 6y2 + 68z2 + 2xy, 10x2 + 11y2 + 14z2 + 2yz + 4zx+ 10xy}| = 2,

|{5x2 + 7y2 + 34z2 + 2xy, 6x2 + 12y2 + 17z2 + 4xy}| = 2.

Note, however, that

|Aut(3x2+6y2+68z2+2xy)| = |Aut(10x2+11y2+14z2+2yz+4zx+10xy)| = 4,

and

|Aut(5x2 + 7y2 + 34z2 + 2xy)| = |Aut(6x2 + 12y2 + 17z2 + 4xy)| = 4.

And so, TG2,17 is a unique genus with the desired properties.
I would like to conclude this discussion of TG2,p by providing a more explicit

description valid in three special cases. If p ≡ 3 mod 4, then TG2,p is the genus that
contains

4x2 + py2 + (p+ 1)z2 + 4zx.

I remark that the above form was obtained from the principal binary form x2+xz+
p+1
4 z2. If p ≡ 2 mod 3, then TG2,p is the genus that contains

x2 +
4p+ 1

3
y2 +

4p+ 1

3
z2 +

2− 4p

3
yz + 2zx+ 2xy.

If p ≡ 5 mod 8, then TG2,p is the genus that contains

8x2 +
p+ 1

2
y2 + (p+ 2)z2 + 2yz + 8zx+ 4xy.

Observe that the smallest prime to escape the above net of three special cases is
p = 73. I am now ready to unveil the promised extension of (6.1).
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Proposition 6.1. Let p be an odd prime, then

s(p2n)− ps(n) = 48
∑

f∈TG1,p

Rf (n)

|Aut(f)| − 96
∑

f∈TG2,p

Rf (n)

|Aut(f)| . (6.4)

The proof of this neat result with p ≥ 7 is beyond the scope of this paper and
will be given in [3]. Note, that (6.1) follows easily from (6.2) to (6.4).
Below I illustrate Proposition 6.1 with some initial examples

s(72n)− 7s(n) = 6(1, 2, 7, 0, 0, 1)(n)− 12(4, 7, 8, 0, 4, 0)(n), (6.5)

s(112n)− 11s(n) = 4(3, 4, 4,−3, 2, 2)(n) + 6(1, 3, 11, 0, 0, 1)(n)

− 8(3, 15, 15− 14, 2, 2)(n)− 12(4, 11, 12, 0, 4, 0)(n), (6.6)

s(132n)− 13s(n) = 12(2, 5, 5,−3, 1, 1)(n)− 24(8, 7, 15, 2, 8, 4)(n), (6.7)

s(172n)− 17s(n) = 12(3, 5, 6, 1, 2, 3)(n) + 4(3, 6, 6,−5, 2, 2)(n)
− 24(7, 11, 20,−8, 4, 6)(n)− 8(3, 23, 23,−22, 2, 2)(n),

(6.8)

s(192n)− 19s(n) = 6(1, 5, 19, 0, 0, 1)(n) + 12(4, 5, 6, 5, 1, 2)(n)

− 12(4, 19, 20, 0, 4, 0)(n)− 24(7, 11, 23,−10, 6, 2)(n), (6.9)

s(232n)− 23s(n) = 4(3, 8, 8,−7, 2, 2)(n) + 6(1, 6, 23, 0, 0, 1)(n)

+ 12(2, 3, 23, 0, 0, 1)(n)− 8(3, 31, 31,−30, 2, 2)(n)
− 12(4, 23, 24, 0, 4, 0)(n)− 24(8, 23, 12, 0, 4, 0)(n), (6.10)

Finally, I note that (6.5) implies the following impressive identity

8qψ(−q)E(q2)2S7,5(−q; q2)∞
= φ(q)3 + φ(q7)

∑

m,n

(qm
2+mn+2n2 − 2q4m

2+4mn+8n2

).
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Almost Universal Ternary Sums of Squares
and Triangular Numbers

Wai Kiu Chan and Anna Haensch

Abstract For any integer x, let Tx denote the triangular number x(x+1)
2 . In this

paper we give a complete characterization of all the triples of positive integers
(α, β, γ) for which the ternary sums αx2+βTy+γTz represent all but finitely many
positive integers. This resolves a conjecture of Kane and Sun (Trans Am Math Soc
362:6425–6455, 2010, Conjecture 1.19(i)) and complete the characterization of all
almost universal ternary mixed sums of squares and triangular numbers.

Key words and Phrases Primitive spinor exceptions • Ternary quadratic forms
• Triangular numbers
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1 Introduction

In the Focused Week on Integral Lattices hosted by the Department of Mathematics
in University of Florida in February 2010, the first author presented the result
in [1] which is a complete characterization of all triples (α, β, γ) of positive
integers for which the polynomials αTx + βTy + γTz are almost universal, that is,
representing all but finitely many positive integers. Here Tx denotes the triangular
number x(x + 1)/2. This resolves a conjecture made by Kane and Sun in [7,
Conjecture 1.19(ii)]. In [7] they also study other types of almost universal mixed
sums of squares and triangular numbers. In particular, they determine all almost
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universal ternary sums αx2 + βy2 + γTz [7, Theorem 1.6]. They also formulate a
conjecture [7, Conjecture 1.19(i)] about almost universal ternary sums of the form
αx2+βTy+γTz, and an affirmative answer to this conjecture would complete their
classification of those almost universal sums. The goal of this paper is to give such a
complete characterization via the geometric approach used in [1]. As consequences,
we resolve Kane and Sun’s conjecture and complete the task of characterizing all
almost universal ternary mixed sums of squares and triangular numbers.

The basic difference and similarity between our geometric approach and the theta
series approach in [7] is briefly explained in [1]. We would like to add a few more
comments for the ternary sums αx2 + βTy + γTz we are considering here. Let
r(n) be the number of representations of an integer n by αx2 + βTy + γTz . By the
inclusion and exclusion principle r(n) is the (β+γ+8n)-th coefficient of the linear
combination of theta series

θf(x,y,z) − θf(x,2y,z) − θf(x,y,2z) + θf(x,2y,2z),

where θf(x,y,z) is the theta series of the diagonal quadratic form f(x, y, z) =
8αx2 + βy2 + γz2. Using this linear combination of theta series, the authors in
[7] determine triples (α, β, γ) for which almost all the r(n) are nonzero. On the
other hand, our geometric approach is built upon only one ternary Z-lattice (not
necessarily diagonal) on the quadratic Q-space associated to the quadratic form
2αx2 + βy2 + γz2, whose representations of integers of the form β + γ + 8n will
correspond to the representation of n by αx2+βTy+γTz. This changes the original
problem to the question of determining which ternary quadratic forms represent
all sufficiently large integers in an infinite family of positive integers that has some
specific arithmetic interest (in our case, they are the integers congruent to β + γ
mod 8). Two powerful tools from the theory of representations of ternary quadratic
forms have been proven to be useful in dealing with this kind of questions. The first
one is the theorem of Duke and Schulze-Pillot [2] which asserts that a sufficiently
large integer is represented by a positive definite ternary quadratic form if that
integer is primitively represented by the spinor genus of the quadratic form. The
second one is the established theory of primitive spinor exceptions, especially the
formulae for computing the primitive relative spinor norm groups given by Earnest
et al. in [5] which allows us to determine effectively the set of primitive spinor
exceptions of a genus. The readers can find all relevant material in [5] and [9].

Our main results will be divided into four theorems which altogether will char-
acterize all triples (α, β, γ) for which αx2 + βTy + γTz are almost universal. Kane
and Sun’s conjecture only concerns the cases in which max{ord2(β), ord2(γ)} is
either 3 or 4. However, we opt to present the proofs of all cases since it does not
take too much extra effort to do so. This also provides a better understanding of the
geometric setting we described above.
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2 Preliminaries

Henceforth, the language of quadratic spaces and lattices as in [8] will be adopted.
We will follow mostly the notations used in [1]. Any unexplained notation and
terminology can be found there and in [8]. All the Z-lattices discussed below
are positive definite. If K is a Z-lattice and A is a symmetric matrix, we shall
write “K ∼= A” if A is the Gram matrix for K with respect to some basis of K .
The discriminant of K , denoted dK , is the determinant of A. An n × n diagonal
matrix with a1, . . . , an as the diagonal entries is written as 〈a1, . . . , an〉. However,
we use the notation [a1, . . . , an] to denote a quadratic space (over any field) with an
orthogonal basis whose associated Gram matrix is the diagonal matrix 〈a1, . . . , an〉.

The subsequent discussion involves the computation of the spinor norm groups of
local integral rotations and the relative spinor norm groups of primitive representa-
tions of integers by ternary quadratic forms. The formulae for all these computations
can be found in [3–6]. A correction of some of these formulae can be found in
[1, Footnote 1]. The symbol θ always denotes the spinor norm map. If t is an integer
represented primitively by gen(K) and p is a prime, then θ∗(Kp, t) is the primitive
relative spinor norm group of the Zp-lattice Kp. If E is a quadratic extension of Q,
Np(E) denotes the group of local norms from Ep to Qp, where p is an extension of
p to E.

Let a, b, c be relatively prime positive odd integers, m, r, and s be nonnegative
integers such that r ≤ s. Let L be the Z-lattice 〈2m+1a, 2rb, 2sc〉 in the orthogonal
basis {e1, e2, e3}. It can be shown easily that an integer n is represented by the
ternary sum 2max2 + 2rbTy + 2scTz if and only if 2rb + 2sc + 8n is represented
by the coset ω + 2L where ω = e2 + e3.

Lemma 2.1. (1) If 2max2+2rbTy+2scTz is almost universal, then Lp represents
all p-adic integers for every odd prime p.

(2) If Lp represents all p-adic integers for every odd prime p, then

(i) Lp
∼= 〈1,−1,−dL〉 and θ(O+(Lp)) ⊇ Z

×
p for all odd primes p;

(ii) Q2L is anisotropic.

Proof. See [1, Lemma 2.1]. �
As is explained in [1], the fact that Lp represents all p-adic integers for every odd

prime p is equivalent to the following more elementary statement:

(i) a, b, c are pairwise relatively prime, and (ii) if an odd prime p divides one of 2ma, 2rb or
2sc, then the negative of the product of the other two is a square modulo p.

Let M be the Z-lattice Zω + 2L. Relative to the basis {2e1, 2e2, ω}, M has the
following Gram matrix representation:

⎛

⎝
2m+3a 0 0

0 2r+2b 2r+1b

0 2r+1b 2rb+ 2sc

⎞

⎠ .
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The discriminant of M is 2m+r+s+5abc. Also of interest is the binary sublattice
P = Z2e2 + Zω whose Gram matrix is

(
2r+2b 2r+1b

2r+1b 2rb+ 2sc

)

and dP = 2r+s+2bc.

Lemma 2.2. Suppose that 2max2 + 2rbTy + 2scTz is almost universal. Then

(1) r = 0 when m > 0;
(2) 2rb+ 2sc is not divisible by 8 and r < 2.

Proof. (1) This is clear; otherwise 2max2 + 2rbTy + 2scTz only represents even
integers.

(2) Suppose that 2max2 + 2rbTy + 2scTz is almost universal. This means that all
but finitely many positive integers of the form 2rb + 2sc + 8n are represented
by the coset ω + 2L and hence by the lattice M . If 2rb + 2sc ≡ 0 mod 8, then
M2 represents all 2-adic integers in 8Z2 because Z is dense in Z2. But then M2

would be isotropic and this contradicts Lemma 2.1(2)(ii).
If r = 2, then m = 0, s > 2 and 2rb+ 2sc ≡ 4 mod 8. In this case,

M2
∼= 〈4b+ 2sc, 8a, 2s(4b+ 2sc)bc〉

which does not represent every element in 4Z×
2 . Therefore, ax2 + 4bTy + 2scTz is

not almost universal. �
Lemma 2.3. Suppose that 2m+1ax2+2rby2+2scz2 represents all p-adic integers
for every odd prime p, and that conditions (1) and (2) in Lemma 2.2 are satisfied.
Then

(1) Every positive integer of the form 2rb + 2sc+ 8n is represented primitively by
gen(M);

(2) If t is a primitive spinor exception of gen(M), then Q(
√−tdM) is either

Q(
√−1) or Q(

√−2).
Proof. (1) By virtue of Lemma 2.1(2)(i), it suffices to check that M2 primitively

represents all 2-adic integers of the form 2rb + 2sc + 8n. This is clear when
2rb+ 2sc is odd. Suppose that it is even. We first consider the case r = s = 0.

Since b + c 
≡ 0 mod 8, P
1
2
2 is a unimodular Z2-lattice, which is proper when

b+ c ≡ 2 mod 4 and improper when b+ c ≡ 4 mod 8. In either case, it is direct
to check that P2 primitively represents all 2-adic integers of the form b+c+8n.

Suppose that r = 1. If s > 1, then

M
1
2
2
∼= 〈4a〉 ⊥ 〈b+ 2s−1c〉 ⊥ 〈2s+1bc(b+ 2s−1c)〉.
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The binary sublattice 〈4a, b + 2s−1c〉 represents all units that are congruent
to b + 2s−1c mod 4. Hence M2 primitively represents all integers of the form
2b+ 2sc+ 8n.

However, when r = 1 and s = 1, ord2(b + c) = 1 by our assumption. So,
bc ≡ 1 mod 4 and u := (b + c)/2 is a unit in Z2. In this case,

M
1
4
2
∼= 〈2a, u, ubc〉

which represents all units in Z2. Therefore,M2 primitively represents all 2-adic
integers of the form 2b+ 2c+ 8n.

(2) This is the same as the proof of [1, Lemma 2.2(2)]. �
Lemma 2.4. Suppose that Lp represents all p-adic integers for every odd prime p.
If we are not in the exceptional case where r = s = 0 and b + c ≡ 4 mod 8, and
if 2rb + 2sc+ 8n is not a primitive spinor exception of gen(M) for all n ≥ 0, then
2max2 + 2rbTy + 2scTz is almost universal.

Proof. The proof is parallel to that of [1, Lemma 2.3]. We leave the detail to the
readers. Note that since we are not in the exceptional case (r = s = 0 and b+ c ≡ 4
mod 8), any representation of 2rb+ 2sc+ 8n by M must lie in ω + 2L. �

3 Main Results

We continue to assume that a, b, c are relatively prime positive odd integers.
By Lemma 2.2, we only need to address the following four cases:

(i) m = 0, r = 0, and s ≥ 1.
(ii) m = 0, r = 1, s ≥ 1, and ord2(b + c) = 1 if s = 1.

(iii) m > 0, r = 0, and s > 0.
(iv) m ≥ 0, r = s = 0, and ord2(b + c) ≤ 2.

They will be covered by Theorems 3.1–3.4 accordingly. We will provide full detail
in the proof of the first theorem. For the proofs of the other three theorems, since
the strategy and techniques involved are the same or very similar to the first one, we
will only present the argument that may be less transparent to the readers. In below,
the squarefree part of an integer α is denoted by sf(α).

Theorem 3.1. Suppose that s ≥ 1. Then ax2 + bTy + 2scTz is almost universal if
and only if 2ax2 + by2 +2scz2 represents all p-adic integers over Zp for every odd
p, and one of the following holds:

(1) s is odd, or s = 2;
(2) sf(abc) is divisible by a prime p ≡ 5, 7 mod 8;
(3) bc 
≡ 1 mod 8;

(4) sf(abc)−(b+2sc)
8 is represented by ax2 + bTy + 2scTz.
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Proof. We assume throughout that 2ax2+by2+2scz2 represents all p-adic integers
over Zp for every odd p. Then by Lemma 2.3(1), gen(M) represents all b+2sc+8n
primitively. Note that

M2
∼= 〈b+ 2sc, 8a, (b+ 2sc)2s+2bc〉.

In below, unless stated otherwise, t is always assumed to be an odd primitive spinor
exception of gen(M) and E is the quadratic field Q(

√−tdM). By Lemma 2.3(2),
E is either Q(

√−1) or Q(
√−2). The strategy of the proof is to show that under

(1), (2), or (3), gen(M) does not have any primitive spinor exception of the form
b+ 2sc+ 8n and hence Lemma 2.4 applies. At the end we show that if (1), (2) and
(3) all fail, then ax2 + bTy + 2scTz is almost universal if and only if (4) holds.

Suppose that s is odd. Since ord2(−tdM2) = s + 5 which is even, E must
be Q(

√−1). But by Earnest et al. [5, Theorem 2(b)(iv)] θ∗(M2, t) 
= N2(E).
Therefore, gen(M) does not have any odd primitive spinor exceptions.

If s = 2, M2 is of Type E as defined in [4, page 531] and so θ(O+(M2)) = Q
×
2

[3, Theorem 2.2]. Together with Lemma 2.1(2)(i) these show that gen(M) has only
one spinor genus, and hence in this case gen(M) does not have any primitive spinor
exception at all.

Now let us assume that s is even and s ≥ 4. Then E must be Q(
√−2). At the

primes p where
(

−2
p

)
= −1, θ(O+(Mp)) ⊆ Np(E) if and only if p � sf(abc), as a

consequence of [5, Theorem 1] and Lemma 2.1(2)(i). This means that if sf(abc) is
divisible by a prime p ≡ 5, 7 mod 8, then gen(M) does not have any odd primitive
spinor exceptions.

Suppose that (1) and (2) do not hold, but (3) holds. Let t be a primitive spinor
exception of gen(M) of the form t = b + 2sc + 8n. Since E = Q(

√−tdM) =
Q(
√−2), it follows that tabc ≡ 1 mod 8, and hence bc ≡ 3 mod 8 and ta ≡ 3

mod 8. Over Z2, M t
2
∼= 〈1, 8at, 2s+2bc〉. Let U be the Z2-lattice 〈1, 24〉. Then

θ(O+(M2)) ⊇ θ(O+(U)) = {1, 6,−1,−6}Q×2
2 by Earnest and Hsia [3, 1.9], and

so θ(O+(M2)) is not contained in N2(E) = {1, 2, 3, 6}Q×2
2 . As a result, none of

the positive integers b+ 2sc+ 8n is a primitive spinor exception of gen(M).
Let us suppose further that (1), (2), and (3) all fail. Then bc ≡ 1 mod 8 and

hence b ≡ c ≡ 1 or 3 mod 8. So the Q2 quadratic space underlying M2 is
isometric to either [2a, 1, 1] or [2a, 3, 3] with a ≡ 1 or 3 mod 8. They are isotropic
when a ≡ 3 mod 8 and a ≡ 1 mod 8, respectively, and this is impossible by
Lemma 2.1(2)(ii). Therefore, we must have a ≡ c mod 8, implying ac ≡ 1
mod 8, and hence ab ≡ 1 mod 8 as well.

Now we claim that sf(abc) is a primitive spinor exception of gen(M). Since
sf(abc) ≡ b ≡ b + 2sc mod 8, sf(abc) is represented primitively by gen(M).
Without causing any confusion, let E denote the field Q(

√−sf(abc)dM), which
is just Q(

√−2). When p is an odd prime, it follows from [5, Theorem 1] that
θ(O+(Mp)) ⊆ Np(E) and θ∗(Mp, sf(abc)) = Np(E). For the prime 2, M2

∼=
〈b, 8a, 2s+2c〉 which is not of Type E. Hence θ(O+(M2)) can be computed as
before, and the calculation shows that θ(O+(M2)) is exactly equal to N2(E).
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By Earnest et al. [5, Theorem 2(c)(iii)], we see that θ∗(M2, sf(abc)) = N2(E).
This proves our claim that sf(abc) is a primitive spinor exception of gen(M).

Suppose that sf(abc) is represented byM . If b+2sc+8n is not a primitive spinor
exception of gen(M), then b + 2sc+ 8n is represented primitively by spn(M) and
hence it is represented by M when n is sufficiently large. Otherwise, b + 2sc+ 8n
must be a square multiple of sf(abc) and hence b + 2sc + 8n is represented by M .
So we can conclude that b+2sc+8n is represented by M for almost all n. But any
representation of b+2sc+8nmust be in ω+2L; hence ax2+ bTy+2sTz is almost
universal.

Conversely, suppose that sf(abc) is not presented by M . Then there exist, as
shown in [9], infinitely many primes p such that p2sf(abc) is not represented by
M . For each such p, we have sf(abc)p2 ≡ b ≡ b + 2sc mod 8. Therefore, n :=
sf(abc)p2−(b+2sc)

8 is a positive integer for which b + 2sc + 8n is not represented by
ω + 2L. Therefore, ax2 + bTy + 2scTz cannot be almost universal. �
Theorem 3.2. Suppose s ≥ 1 and ord2(b + c) = 1 if s = 1. Then ax2 + 2bTy +
2scTz is almost universal if and only if 2ax2 + 2by2 + 2scz2 represents all p-adic
integers over Zp for every odd p, and one of the following holds:

(1) s is even or s = 1;
(2) sf(abc) is divisible by a prime p ≡ 3 mod 4;

(3) sf(abc)−(b+2s−1c)
4 is represented by ax2 + 2bTy + 2scTz .

Proof. As in the proof of Theorem 3.1, we assume throughout that 2ax2 + 2by2 +
2scz2 represents all p-adic integers over Zp for every odd p. If s = 1, then

M
1
4
2
∼= 〈2a, ε, εbc〉,

where ε := b+c
2 is a unit, since b+ c ≡ 2 mod 4 under our assumption. It follows

from [5, Theorem 2(c)] that θ(O+(M
1
4
2 )) 
⊆ N2(Q(

√
−tdM 1

4
2 )) for any odd t, and

hence 2b+ 2c+ 8n is not a primitive spinor exception of gen(M) for any n. When
s is even, it is more convenient to work with G :=M

1
2 . Over Z2,

G2
∼= 〈4a, b+ 2s−1c, (b+ 2s−1c)2s+1bc〉.

By Earnest et al. [5, Theorem 2(c)(i)], either θ(O+(G2)) 
⊆ N2(Q(
√−tdG2)) or

θ∗(G2, t) 
= N2(Q(
√−tdG2)) for any odd t. Therefore, gen(G) cannot have any

odd primitive spinor exceptions and hence 2b + 2sc + 8n is not a primitive spinor
exception of gen(M).

Suppose that (1) is false. Since s is odd, we know that Q(
√−tdG) = Q(

√−1)
for any odd primitive spinor exception t of gen(G). By Earnest et al. [5, Theorem 1],
we see that if p ≡ 3 mod 4, then p does not divide sf(abc). Therefore, if (2) holds,
then 2b+ 2sc+ 8n is not a primitive spinor exception of gen(M).
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Now we assume that both (1) and (2) do not hold. We claim that sf(abc)
is a primitive spinor exception of gen(G). It is clear that Gp represents sf(abc)
primitively for every odd prime p. At the prime 2, G2

∼= 〈t, 4a, t2s+1bc〉, where
t = b+2s−1c ≡ b ≡ 1 mod 4. The binary component 〈t, 4a〉 represents all 2-adic
units that are congruent to t mod 4. Since sf(abc) ≡ 1 ≡ t mod 4, G2 represents
sf(abc) primitively.

We then need to show that θ(O+(Gp)) ⊆ Np(E) = θ∗(Gp, sf(abc)) for all
primes p, where E = Q(

√−sf(abc)dG) which is Q(
√−1). The argument is

similar to the proof of Theorem 3.1. For odd primes, we apply [5, Theorem 1].
For the prime 2, since Gt

2
∼= 〈1, 4at, 2s+1bc〉 is not of Type E, θ(O+(G2)) =

Q(P (U))Q(P (W ))Q×2
2 by Earnest and Hsia [3, Theorem 2.7], with U ∼= 〈1, 4at〉

and W ∼= 4at〈1, 2s−1bc〉. It follows from [3, 1.9] that θ(O+(G2)) is always
inside N2(E) = {1, 2, 5, 10}Q×2

2 . We then apply [5, Theorem 2(b)] to show that
θ∗(G2, sf(abc)) = N2(E).

The last step is to show that if (1) and (2) do not hold, then (3) holds if and only
if ax2+2bTy+2scTz is almost universal. This can be done as in the last step of the
proof of Theorem 3.1. �
Theorem 3.3. Suppose thatm > 0 and s > 0. Then 2max2+bTy+2scTz is almost
universal if and only if 2m+1ax2 + by2 + 2scz2 represents all p-adic integers over
Zp for every odd p, and one of the following holds:

(1) m is even and s = 1 or 2; or, m = 1 and s is odd;

(2) sf(abc) is divisible by a prime p for which
(

−δ
p

)
= −1, where δ = 1 or 2 when

s+m is odd or even accordingly;
(3) (b + 2sc)sf(abc) 
≡ 1 mod 8;
(4) sf(abc)−(b+2sc)

8 is represented by 2max2 + bTy + 2scTz .

Proof. Again, we assume throughout that 2m+1ax2 + by2 + 2scz2 represents all
p-adic integers over Zp for every odd p. We first show that under condition (1),
gen(M) does not have any odd primitive spinor exception. When s = m = 1,

M2
∼= 〈b + 2c, (b+ 2c)23bc, 24a〉

which is of Type E. This means θ(O+(M2)) = Q
×
2 and hence gen(M) has only one

spinor genus. Consequently, gen(M) cannot have any primitive spinor exceptions.
When s = 1 and m > 0 is even, then m+ 3 > s+ 2 = 3 and

M2
∼= 〈b+ 2c, (b+ 2c)23bc, 2m+3a〉.

If t is an odd primitive spinor exception of gen(M), then Q(
√−tdM) must

be Q(
√−1). However, by Earnest et al. [5, Theorem 2(b)], θ∗(M2, t) 
=

N2(Q(
√−tdM)); hence gen(M) does not have any odd primitive spinor exception.

The two other cases in (1), namely when m = 1 and s ≥ 3 is odd, and when s = 2
and m > 0 is even, are done similarly but by Earnest et al. [5, Theorem 2(c)]
instead, since ord2(tdM) = s+ 6 and m+ 7, respectively, are odd.
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We then move on to show that if (1) fails but (2) holds, then gen(M) also does
not have any odd primitive spinor exception. After that, we assume that both (1) and
(2) fail but (3) holds, and show that none of the integers b+ 2sc+ 8n is a primitive
spinor exception of gen(M). These two steps can be done as in the proofs of the
previous theorems.

Now, assume that (1), (2), and (3) all fail. We claim that sf(abc) is a primitive
spinor exception. First we need to show that sf(abc) is primitively represented
by gen(M). There is no problem presented at the odd primes because of
Lemma 2.1(2)(i). Over Z2, M2

∼= 〈b + 2sc, 2m+3a, (b + 2sc)2s+2bc〉 where
m + 3 > 3 and s + 2 ≥ 3. Since (b + 2sc)sf(abc) ≡ 1 mod 8, M2 represents
sf(abc) primitively.

Let E be the field Q(
√−sf(abc)dM) which is Q(

√−1) when s+m is odd, and
Q(
√−2) when s+m is even. Using Lemma 2.1(2)(i) and [5, Theorem 1], one can

show that θ(O+(Mp)) ⊆ Np(E) = θ∗(Mp, sf(abc)) for every odd prime p. For the
prime 2, we first treat the case s+ 2 
= m+ 3. This case is further divided into two
subcases according to s+m is odd or even. When s+m is odd andm+3 > s+2,
for simplicity we let t = b+ 2sc in the following discussion, we have

M2
∼= 〈t, t2s+2bc, 2m+3a〉 ∼= 〈t, 2s+2a, 2m+3a〉.

Observe that M2 is not of Type E; otherwise s = 1 or m − s = 0, 2 and both are
impossible under our assumption. Let

U ∼= 〈1, 2s+2at〉 and W ∼= 2s+2at〈1, 2m−s+1〉.

Then θ(O+(M2)) = Q(P (U))Q(P (W ))Q×2
2 . Since at ≡ 1 mod 4, it follows

from [3, Remark 1.9] that both Q(P (U))Q×2
2 and Q(P (W ))Q×2

2 are inside
{1, 2, 5, 10}Q×2

2 which is the norm group N2(E) (note that E = Q(
√−1) when

s+m is odd). Further, we are in the situation of [5, Theorem 2(b)], where the “r”
there is our s + 2 which is strictly bigger than 3. Thus θ∗(M2, sf(abc)) = N2(E)
and hence sf(abc) is a primitive spinor exception of gen(M). The case where s+m
is odd and s + 2 > m + 3 is done similarly, with the Jordan decomposition of M2

switched to M2
∼= 〈t, 2m+3a, 2s+2a〉. The case where s + m is even follows the

same argument but with E changed to Q(
√−2).

Finally, there is the case when s+ 2 = m+ 3 and

M2
∼= 〈t〉 ⊥ 2s+2〈a, tbc〉.

Note that s + 2 > 3 because m > 0, and that E = Q(
√−1) since s +m is odd.

The spinor norm group θ(O+(M2)) is computed using [3, Theorem 3.14(iv)] and
[4, Theorem 1.2] (see [1, Footnote 1] for corrections), and the computation shows
that θ(O+(M2)) = {γ ∈ Q

×
2 : (γ,−1) = 1} which is equal to N2(E). Further,

by Earnest et al. [5, Theorem 2(b)] we know that θ∗(M2, sf(abc)) = N2(E), since
sf(abc) will not be in any ideal generated by 2.



60 W.K. Chan and A. Haensch

So we establish that sf(abc) is a primitive spinor exception of gen(M). The last
step is to show that (4) holds if and only if 2max2+bTy+2scTz is almost universal.
This is done by the same argument used in the proof of Theorem 3.1. �
Theorem 3.4. Suppose that m ≥ 0 and ord2(b+ c) ≤ 2. Then 2max2 + bTy+ cTz
is almost universal if and only if 2m+1ax2+by2+cz2 represents all p-adic integers
over Zp for every odd p, and one of the following holds:

(1) ord2(b+ c) = 2;
(2) m is odd or m = 0;
(3) sf(abc) is divisible by a prime p ≡ 3 mod 4;
(4) (b+c)

2 sf(abc) 
≡ 1 mod 4;

(5) 2sf(abc)−(b+c)
8 is represented by ax2 + 2bTy + 2scTz .

Proof. As before, we assume throughout that 2m+1ax2 + by2 + cz2 represents all
p-adic integers over Zp for every odd p.

Suppose that ord2(b + c) = 2. In this case, a representation of an integer of the
form b+ c+8n by the latticeM is not necessarily from the coset ω+2L. To amend
this, we consider the sublattice R of M such that Rp = Mp for every odd prime
p, and

R2 = Z2[2e1, bw − (b + c)e2, w] ∼= 〈2m+3a, (b+ c), (b + c)bc〉.

Since b+ c ≡ 4 mod 8, bc ≡ 3 mod 8 and hence the binary Z2-lattice 〈(b+ c), (b+
c)bc〉 represents all elements in 4Z×

2 . This shows that all positive integers of the
form b+ c+ 8n are represented primitively by gen(R). But it is straightforward to
show that the norm ideal of the Z-lattice R ∩ 2L is contained in 8Z, and hence any
representation of an integer b+c+8n byR must lie inside the subsetR∩ (ω+2L).
Therefore, we can replace M by R in our discussion. It is more convenient to work
with H := R

1
4 , and

H2
∼= 〈u, ubc, 2m+1a〉

where u := (b+ c)/4, which is a 2-adic unit.
When m is even, ord2(−tdH) is odd for any odd integer t. By Earnest et al. [5,

Theorem 2(c)], we see that gen(H) does not have any odd primitive spinor
exception, and hence b + c+ 8n cannot be a primitive spinor exception of gen(R)
for all positive integers n. Whenm is odd, Q(

√−tdH) is the field Q(
√−1) for any

odd primitive spinor exception t of gen(H). In this case,

Hu
2
∼= 〈1, 3, 2m+1au〉 ∼= A(1, 4) ⊥ 〈2m+1au〉

with both Jordan components having even order (see [3, Definition 3.1]). It then
follows from [4, 1.2(b)(2)] that θ(O+(H2)) = Z

×
2 Q

×2
2 which is not the norm group

of Q2(
√−1). This shows that H cannot have any odd primitive spinor exception,

and hence none of those integers b+c+8n is a primitive spinor exception of gen(R).
By Duke and Schulze-Pillot [2, Corollary], 2max2 + bTy + cTz is almost universal
when ord2(b + c) = 2.
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Suppose that ord2(b+ c) = 1. Let G be the lattice M
1
2 , and

G2
∼= 〈2m+2a, ε, εbc〉,

where ε := (b + c)/2 is a 2-adic unit. Since b + c ≡ 2 mod 4, we have bc ≡ 1
mod 4. If m = 0, the spinor norm ofO+(G2) is computed using [4, 1.2(b)(3)] (see
the correction in [1, Footnote 1]), and the computation shows that θ(O+(G2)) =
Q

×
2 . This means that gen(G) has only one spinor genus. In particular, gen(G) does

not have any primitive spinor exception, and hence none of the integers b + c+ 8n
is a primitive spinor exception of gen(M).

Suppose that m is odd. Then ord2(−tdG) is odd for any odd integer t. It follows
from [5, Theorem 2(c)] that θ(O+(G2)) 
⊆ N2(Q(

√−tdG)). Therefore, gen(G)
does not have any odd primitive spinor exception, and hence once again for any
n ≥ 0, b+ c+ 8n is never a primitive spinor exception of gen(M).

If (1) and (2) fail but (3) holds, then the usual argument shows that b + c + 8n
is not a primitive spinor exception for gen(M). Suppose now that (1), (2), and (3)
all fail. If t is a primitive spinor exception of gen(G) of the form ε + 4n, then
Q(
√−tdG) = Q(

√−1) and hence tsf(abc) ≡ εsf(abc) ≡ 1 mod 4. Thus, if
(4) holds, then gen(M) does not have any primitive spinor exception of the form
b+ c+ 8n.

When (1) to (4) all fail, we need to show that sf(abc) is a primitive spinor
exception of gen(G). As before, there is no problem at the odd primes. Since
ε = (b + c)/2 ≡ 1 mod 4, we have b + c ≡ 2 mod 8 and hence bc ≡ 1 mod 8
(not only ≡ 1 mod 4). Therefore G2

∼= 〈ε, ε, 2m+2a〉 ∼= 〈1, 1, 2m+2a〉 which
represents sf(abc) because sf(abc) ≡ ε mod 4, and then θ(O+(G)) = N2(E)
by Earnest and Hsia [4, 1.2(b)(3)], where E = Q(

√−sf(abc)dG) = Q(
√−1).

To show that θ∗(G2, sf(abc)) = N2(E), we need to analyze the conditions
in [5, Theorem 2(b)]. The “r” in that theorem is 0, and the lattices K and
K ′ are 〈2−2ε, ε, 2m+2a〉 and 〈ε, ε, 2m+2a〉 respectively. Clearly, θ(O+(K ′)) =
θ(O+(G2)) ⊆ N2(E). For θ(O+(K)), note that K4ε ∼= 〈1, 4, 2m+4aε〉 which is
not of type E. Hence θ(O+(K)) can be computed as we did several times before,
and the computations shows that θ(O+(K)) = {1, 5}Q×2

2 ⊆ N2(E). Therefore, by
Earnest et al. [5, Theorem 2(b)(iii)], θ∗(G2, sf(abc)) is equal to N2(E).

The last step is to show that when (1) to (4) fail, 2max2 + bTy + cTz is almost
universal if and only if (5) holds. This is done as in the proofs of the previous
theorems. �

The following corollary is conjectured by Kane and Sun in [7, Conjecture
1.19(i)]. We state it in an equivalent form that is more in line with our presentation.
In below, the odd part of an integer α is denoted by α′.

Corollary 3.5. When s ∈ {3, 4}, if 2max2 + 2rbTy + 2scTz is almost universal,
then one of the following holds:

(a) 4 | (2rb + 2sc) or sf(abc) 
≡ (2rb + 2sc)′ mod 23−ν where ν := ord2(2
rb +

2sc) < 2.
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(b) If sf(2m+r+sabc) ≡ (2rb + 2sc) mod 2 then sf(abc) is divisible by a prime
p ≡ 5, 7 mod 8. Otherwise, sf(abc) is divisible by a prime p ≡ 3 mod 4.

(c) 2m+3ax2+2rby2+2scz2 = 2νsf(abc) has integral solutions with y and z odd.

(d)

{
s = 3 implies 4 � 2ma and 2 � 2rb,

s = 4 implies 2 � 2ma and 2ma 
≡ 2rb mod 8.

Proof. Suppose that 2max2+2rbTy+2scTz is almost universal. When r = 1, then
m is necessarily equal to 0. If, in addition, s = 4, then (d) is always true. Let us
consider the case r = 1 and s = 3. Theorem 3.2 applies to this case and either (2)
or (3) there holds. But it is clear that (2) implies (b) and (3) implies (c).

Suppose that r = 0 and s = 3. When m = 0, 4 � a and 2 � b which implies that
(d) always holds. The case m > 0 is covered by Theorem 3.3. One of (2), (3), and
(4) there must hold. It is then clear that (b), (a), or (c) is true accordingly.

The case r = 0 and s = 4 can be verified similarly. If m > 0, we apply
Theorem 3.3 and it is easy to see that one of (a), (b), and (c) must be true in this case.
Whenm = 0 we apply Theorem 3.1 instead. One of (2), (3), and (4) in Theorem 3.1
must be true. It is clear that (2) and (b) are the same; so are (4) and (c). Suppose
that (3) of Theorem 3.1 holds, that is, bc 
≡ 1 mod 8. We may assume that (a)
fails; otherwise we are done. Then sf(abc) ≡ b + 24c ≡ b mod 8, that is, ac ≡ 1
mod 8. This implies that ab 
≡ 1 mod 8 and hence (d) holds. �
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1 Introduction

A well-known and fruitful analogy relates lattices L in Euclidean space R
n with

linear codes C in binary Hamming space F
n
2 . (See for instance [Ebe02], [Elk00],

and [CS99, 3.2].) Under this analogy the theta function

ΘL(q) =
∑

v∈L

q〈v,v〉/2 =
∑

k≥0

⎛

⎝
∑

〈v,v〉=2k

1

⎞

⎠ qk, (1.1)

a generating function that counts vectors v ∈ L in spheres {v : 〈v, v〉 = 2k} about
the origin, corresponds to the weight enumerator

WC(x, y) =
∑

c∈C

xn−wt(c)ywt(c) =
n∑

w=0

⎛

⎝
∑

wt(c)=w

1

⎞

⎠xn−wyw, (1.2)

a generating function counting words c ∈ C in Hamming spheres {c : wt(c) = w}
about the origin. This paper concerns a generalization of ΘL and WC that can be
used not only to count lattice or code elements in each sphere, by summing the
constant function 1 as in (1.1) and (1.2), but also to measure their distribution, by
summing a suitable nonconstant function. In the lattice case, we sum a harmonic
polynomial P on R

n, yielding the weighted theta function

ΘL,P (q) =
∑

v∈L

P (v)q〈v,v〉/2 =
∑

k≥0

⎛

⎝
∑

〈v,v〉=2k

P (v)

⎞

⎠ qk. (1.3)

In the code case, we sum a discrete harmonic polynomial Q on F
n
2 , yielding the

harmonic weight enumerator1

WC,Q(x, y) =
∑

c∈C

Q(c)xn−wt(c)ywt(c) =

n∑

w=0

⎛

⎝
∑

wt(c)=w

Q(c)

⎞

⎠xn−wyw. (1.4)

Weighted theta functions have been used extensively to study the configurations of
lattice vectors. But discrete harmonic polynomials and harmonic weight enumera-
tors are relatively unknown and rarely used. Moreover, the known construction of
discrete harmonic polynomials Q, and the known proofs of the basic properties of

1While the analogy between ΘL,P and WC,Q suggests calling WC,Q a “weighted weight
enumerator”, the comical juxtaposition of the two senses of “weight” dissuades us from using that
phrase. Since Bachoc [Bac99] had already introduced the term “harmonic weight enumerator” that
avoids this juxtaposition, we happily follow her usage.
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these Q and of the associated WC,Q (see [Del78, Bac99]), involve manipulations
of intricate combinatorial sums that are considerably harder than, and look nothing
like, the developments of their Euclidean counterparts.

Here we give a structural development of discrete harmonic polynomials and
harmonic weight enumerators that parallels the more familiar theory of harmonic
polynomials on R

n and weighted theta functions. In each case we use an action
of the Lie algebra sl2 on spaces of functions on R

n (for lattices) or on F
n
2 (for

codes). While the two cases are not completely parallel, the remaining distinctions
are inherent in the structure of Euclidean and Hamming space; for instance,
homogeneous polynomials on F

n
2 cannot be defined by Q(cv) = cdQ(v), and

since Hamming space is finite all the representations of sl2 that figure in the
discrete theory are finite-dimensional. Once we have established the new approach
to discrete harmonic polynomials and harmonic weight enumerators, we use it to
give cleaner derivations of the Assmus–Mattson theorem [AM69] and of the Koch
condition [Koc87] on the tetrad systems of Type II codes of length 24.2 Finally we
outline some further applications to the configurations of minimal-weight words in
extremal Type II codes that parallel recent configuration results for extremal Type II
lattices.

The rest of the paper is organized as follows. We first outline the sl2 approach
to harmonic polynomials on R

n and to the construction and basic properties of
weighted theta functions, and the connection with design properties of Type II
lattices. In the next section we review the MacWilliams identity for weight
enumerators and Gleason’s theorem for the weight enumerator of a Type II code.
In the following three sections we use the sl2 theory to develop the theory of
discrete harmonic polynomials Q, prove the MacWilliams identity for harmonic
weight enumeratorsWC,Q, and study the important special case whereQ is a “zonal
harmonic polynomial” (discrete harmonic polynomial invariant under a subgroup
Sw×Sn−w of the groupSn of coordinate permutations ofFn

2 ). The next two sections
relate these polynomials with t-designs and recover the Assmus–Mattson theorem
for extremal Type II codes and the Koch condition for Type II codes of length 24.
Finally we use these techniques to show for several values of n that any extremal
Type II code of length n is generated by its words of minimal weight, again in
analogy with known results for extremal Type II lattices. In an Appendix, we give
a direct proof of Gleason’s theorems for self-dual codes of Types I and II; certain
polynomials needed to describe harmonic weight enumerators occur naturally in the
course of this proof.

While the present paper considers codes only over F2, discrete harmonic
polynomials and harmonic weight enumerators generalize to linear codes over
arbitrary finite fields Fq (see [Bac01]). Our development of these notions extends to
that setting too, using representations of slq instead of sl2. This change introduces
enough new complications that we defer the analysis to future work.

2The second of these requires only the WC,Q for Q of degree 1, which coincide with Ott’s “local
weight enumerators” [Ott99].
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2 Weighted Theta Functions and Configurations
of Type II Lattices

2.1 Lattice-Theoretic Preliminaries

By a lattice in Euclidean space Rn we mean a discrete subgroup L ⊂ R
n of rank n;

equivalently,L is the Z-span of the columns of an invertiblen×n real matrix, sayM
(which does not depend uniquely on L: two such matrices M,M ′ yield the same
L if and only if M−1M ′ has integer entries and determinant ±1). The covolume
Vol(Rn/L) of the lattice is then |detM |. The dual lattice is defined by

L∗ = {v∗ ∈ R
n : ∀v ∈ L, 〈v, v∗〉 ∈ Z}. (2.1)

If L is the Z-span of the columns of the invertible matrixM then L∗ is the Z-span of
the columns of the transpose of M−1; in particular Vol(Rn/L∗) = Vol(Rn/L)−1.

If L = L∗ then L is self-dual. Then 〈v, v′〉 ∈ Z for all v, v′ ∈ L, and the norm
map L→ Z, v �→ 〈v, v〉 reduces modulo 2 to a group homomorphism L→ Z/2Z.
The lattice is said to be even or of Type II if this homomorphism is trivial, that is, if
〈v, v〉 ∈ 2Z for all v ∈ L; otherwise L is said to be odd or of Type I.

Examples. For each n ≥ 1 the lattice Z
n ⊂ R

n is of Type I. It is the unique Type I
lattice in R

n for n = 1, and unique up to isomorphism for n ≤ 8, but not unique for
any n ≥ 9; there are finitely many isomorphism classes of Type I lattices in R

n, but
the number of classes grows rapidly as n→∞ (see for instance [CS99, p. 403]).

If Rn contains a Type II lattice then n ≡ 0 mod 8 (see [Ser73, Chap. V]). Such
a lattice may be constructed as follows. For any n let Dn be the sublattice of Zn

consisting of all (x1, . . . , xn) such that
∑n

j=1 xj ≡ 0 mod 2, and let D+
n be the

union of Dn and the translate of Dn by the half-integer vector (1/2, 1/2, . . . , 1/2).
Then D+

n is:

• a lattice if and only if 2 | n,
• self-dual if and only if 4 | n, and
• of Type II if and only if 8 | n.

For n = 8, this latticeD+
8 coincides with the Gosset root latticeE8, which is known

to be the unique Type II lattice in R
8 up to isomorphism; we give one proof of its

uniqueness at the end of this section.3 There are two Type II lattices for n = 16
(namely E8 ⊕ E8 and D+

16), and 24 for n = 24 (the Niemeier lattices [Nie73]); for
large n ≡ 0 mod 8 the number is again always finite but grows rapidly as n → ∞
(see for instance [CS99, p. 50]).

3Serre [Ser73, Chap. VII] uses the notation En for our D+
n for all n ≡ 0 mod 8, but this notation

has not been widely adopted. For n ≡ 4 mod 8 the Type I lattice D+
n is isomorphic with Zn if and

only if n = 4.
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2.2 Poisson Summation

The Poisson summation formula is a remarkable identity relating the sum of a
function f over a lattice and the sum of the Fourier transform of f over the dual
lattice. We review this formula in the case of Schwartz functions, which is all that
we need. Recall that a Schwartz function is a C∞ function f : Rn → C such that f
and all its partial derivatives decay as o(〈x, x〉k) for all k as 〈x, x〉 → ∞. We define
the Fourier transform f̂ : Rn → C by

f̂(y) =

∫

x∈Rn

f(x) e2πi〈x,y〉 dμ(x); (2.2)

f̂ is a Schwartz function if f is.

Theorem 2.1 (Poisson Summation Formula). Let L be any lattice in R
n. Then

∑

x∈L

f(x) =
1

Vol(Rn/L)

∑

y∈L∗
f̂(y) (2.3)

for all Schwartz functions f : Rn → C.

Proof. Define F : Rn → C by

F (z) =
∑

x∈L

f(x+ z).

Because f is Schwartz, the sum converges absolutely to a C∞ function, whose value
at z = 0 is the left-hand side of (2.3). Since F (z) = F (x + z) for all z ∈ R

n and
x ∈ L, the function descends to a C∞ function on R

n/L, and thus has a Fourier
expansion

F (z) =
∑

y∈L∗
F̂ (−y) e2πi〈y,z〉, (2.4)

where

F̂ (y) =
1

Vol(Rn/L)

∫

z∈R
n/L

F (z) e2πi〈z,y〉 dμ(z).

Note that the vectors y ∈ L∗ are exactly those for which e2πi〈x,y〉 is well-defined on
R

n/L. Now choose a fundamental domain R for Rn/L; for instance, let v1, . . . , vn
be generators of L and set R = {a1v1 + · · ·+ anvn : 0 ≤ ai < 1}. Then we have

Vol(Rn/L)F̂ (y) =

∫

z∈R

F (z) e2πi〈y,z〉 dμ(z)

=

∫

z∈R

∑

x∈L

f(x+ z) e2πi〈y,z〉 dμ(z)
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=
∑

x∈L

∫

z∈R+x

f(z) e2πi〈y,z〉 dμ(z)

=

∫

z∈Rn

f(z) e2πi〈y,z〉 dμ(z) = f̂(y),

where we use in the next-to-last step the fact that Rn is the disjoint union of the
translates R+ x of R by lattice vectors. Thus (2.4) becomes

F (z) =
1

Vol(Rn/L)

∑

y∈L∗
f̂(−y) e2πi〈y,z〉. (2.5)

Taking z = 0 we obtain (2.3). �

2.3 Theta Functions

Suppose now that q is a real number with 0 < q < 1. We may then take
f(x) = q〈x,x〉/2 and recognize the left-hand side of (2.3) as the sum ΘL(q) of (1.1).
The Poisson summation formula then yields the following functional equation for
theta functions.

Proposition 2.2. Let L be any lattice in R
n. Then

ΘL∗(e−2πt) = Vol(Rn/L)t−n/2ΘL(e
−2π/t) (2.6)

for all t > 0.

Proof. Let f(x) = exp(−π〈x, x〉/t) in (2.3). We claim that

f̂(y) = tn/2 exp(−π〈y, y〉t). (2.7)

Indeed, choosing any orthonormal coordinates (x1, . . . , xn) for Rn, we see that the
integral (2.2) defining f̂(y) factors as

n∏

j=1

∫ ∞

−∞
e−πx2

j/te2πixjyj dxj ,

which reduces our claim to the case n = 1, which is the familiar definite integral
∫ ∞

−∞
e−πx2/t e2πixy dx = t1/2e−πty2

(see for instance [Rud76, Example 9.43, pp. 237–238] or [Kör90, Lemma 50.2(i),
pp. 246–247]). Using these f and f̂ in the Poisson summation formula (2.3) we
deduce the functional equation (2.6). �
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Now suppose L is a Type II lattice. Then L∗ = L, so the functional equation
relates ΘL to itself, and Vol(Rn/L) = 1. Moreover, each of the exponents 〈v, v〉/2
occurring in the formula (1.1) is an integer, so ΘL(q) is a power series in q and
extends to a function on the unit disc |q| < 1 in C. Thus by analytic continuation
the identity ΘL(e

−2πt) = t−n/2ΘL(e
−2π/t) holds for all t ∈ C of positive real part.

But ΘL(e
−2πt), being a power series in e−2πt, is also invariant under t �→ t + i.

This leads us to define the function

θL(τ) := ΘL(e
2πiτ ) =

∑

v∈L

eπ〈v,v〉iτ (2.8)

for τ in the Poincaré upper half-plane

H := {τ ∈ C : Im(τ) > 0}.
Then θL(τ) = θL(τ +1), and the Poisson identity gives θL(τ) = τ−n/2θL(−1/τ):
the expected factor of in/2 disappears because n ≡ 0 mod 8 for all Type II lattices.
It follows that

θL(τ) = (cτ + d)−n/2 θL

(
aτ + b

cτ + d

)
(2.9)

for all
(
a b
c d

)
in the subgroup of SL2(R) generated by ( 1 1

0 1 ) and
(
0 −1
1 0

)
. This

subgroup is the full modular group SL2(Z) of integer matrices of determinant 1.
(See [Ser73, Chap. VII] for this and the remaining results noted in this paragraph.)
The identity (2.9) for all such

(
a b
c d

)
, together with the fact that θL(τ) remains

bounded as Im(τ) → ∞ (because then q → 0), then shows that θL is a modular
form of weight n/2 for SL2(Z). Since n/2 ≡ 0 mod 4, this means that θL is a
polynomial in the normalized Eisenstein series

E4 = θE8
(τ) = 1 + 240

∞∑

n=1

n3qn

1− qn = 1 + 240q + 2160q2 + 6720q3 + · · ·

of weight 4 (where again q = e2πiτ ) and the cusp form4

Δ(τ) = q

∞∏

n=1

(1− qn)24 = q − 24q2 + 252q3 − 1472q4 · · ·

of weight 12. Moreover the coefficient of En/84 in this polynomial equals 1 because
that coefficient is the constant coefficient in the q-expansion, which is the number
of lattice vectors of norm zero.

4That is, a modular form that vanishes at all the cusps; for SL2(Z) there is only one cusp, at
Im(τ) → ∞, so a modular form in SL2(Z) is a cusp form if and only if its expansion as a power
series in q has constant coefficient zero. Note that the notation of [Ser73] diverges from the usual
practice that we follow: our E4, E6, and Δ are what Serre calls E2, E3 and (2π)−12Δ. (We use
“E” rather than “E ” to avoid confusion with the E8 lattice.)
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It follows for example that if n = 8 or n = 16 then θL = En/84 , while if n = 8m
with m = 3, 4, or 5 and L contains no vectors v with 〈v, v〉 = 2 then θL =
Em4 − 240mθm−3

E8
Δ (so for example the q2 coefficient is 720m(211 − 40m) > 0

andL has that many vectors v with 〈v, v〉 = 4). It is known that suchL are unique up
to isomorphism for n = 8 and n = 24 (the E8 and Leech lattices respectively), but
there are two choices for n = 16, and literally millions for n = 32 (see [Kin03])
and many more for n = 40, all with the same number of vectors of norm 2k for
each k.

More generally, given any n = 8m the theta series of any Type II lattice L
can be written uniquely as Em4 +

∑�m/3
k=1 akΔ

kEm−3k
4 for some ak. If L contains

no vectors v with 0 < 〈v, v〉 ≤ 2�m/3� then the ak are uniquely determined by
induction, and thus all such lattices have the same theta series. Such lattices L are
known as extremal lattices, and their common theta function θL is the extremal
theta function. Siegel [Sie69] proved that the q�m/3+1 coefficient of θL is positive,
from which Mallows, Odlyzko, and Sloane [MOS75] deduced that a Type II lattice
L ⊂ R

n has minimal norm at most 2(�m/3�+ 1), with equality if and only if L is
extremal.

2.4 The Spaces of Harmonic Polynomials

Let P be the C-vector space of polynomials on R
n, and Pd (d = 0, 1, 2, . . .)

its subspace of homogeneous polynomials of degree d, so that P =
⊕∞

d=0 Pd.
The Laplacian is the differential operator defined by5

Δ =

n∑

j=1

∂2

∂x2j
: C∞(Rn)→ C∞(Rn), P →P , Pd →Pd−2. (2.10)

Here x1, . . . , xn are any orthonormal coordinates on R
n, and Pd is taken to be {0}

for d < 0. The space of harmonic polynomials of degree d is then

P0
d := ker(Δ : Pd →Pd−2); (2.11)

this is the degree-d homogeneous part of

P0 :=

∞⊕

d=0

P0
d = ker(Δ : P →P). (2.12)

5The use of Δ for this operator and Δ for the modular form η24 = q
∏∞

n=1(1 − qn)24 may
be unfortunate, but should not cause confusion, despite the similarity between the two symbols,
because they never appear together outside this footnote. The alternative notation L for the
Laplacian would be much worse, as we regularly use L for a lattice.
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For example, P0
0 and P0

1 are the spaces of constant and linear functions respec-
tively, of dimensions 1 and n; and a quadratic polynomialP =

∑
1≤j≤k≤n ajkxjxk

is harmonic if and only if
∑n

j=1 ajj = 0, because ΔP is the constant polynomial
2
∑n

j=1 ajj .
It is well known, and we shall soon demonstrate, that Δ : Pd → Pd−2 is

surjective, whence

dim(P0
d) = dim(Pd)− dim(Pd−2) =

(
n+ d− 1

d

)
−

(
n+ d− 3

d

)
. (2.13)

We shall use two further operators on C∞(Rn) and on its subspace P . The first is

E := x · ∇ =
n∑

j=1

xj
∂

∂xj
. (2.14)

Euler proved that if P ∈ C∞(Rn) is homogeneous of degree d then EP = d · P ; in
particular Pd is the d-eigenspace of E|P . The second operator is multiplication by
the norm:

F := 〈x, x〉 =
n∑

j=1

x2j : P �→ 〈x, x〉P. (2.15)

Clearly F injects each Pd into Pd+2. Thus P0
d = ker(FΔ : Pd → Pd); that is,

P0
d is the zero eigenspace of the operator FΔ on Pd. We next show that the other

eigenspaces are FkP0
d−2k for k = 1, 2, . . . , �d/2�, and that Pd is the direct sum of

these eigenspaces, from which the surjectivity of Δ : Pd →Pd−2 soon follows.
We begin by finding the commutators of Δ,E,F. Recall that the commutator of

any two operatorsA,B on some vector space is

[A,B] = AB −BA = −[B,A].
For example, [xj , xk] = [∂/∂xj, ∂/∂xk] = 0 for all j, k, while [∂/∂xj , xk] = δjk
(Kronecker delta). Applying these formulas repeatedly, we obtain the commutation
relations

[Δ,F] = 4E+ 2n, [E,Δ] = −2Δ, [E,F] = 2F. (2.16)

This suggests the commutation relations

[X,Y] = H, [H,X] = 2X, [H,Y] = −2Y (2.17)

satisfied by the standard basis

(X,H,Y) =
(
( 0 1
0 0 ) ,

(
1 0
0 −1

)
, ( 0 0

1 0 )
)

(2.18)

of sl2. Indeed (2.16) is tantamount to an isomorphism of Lie algebras from sl2 to
the span of {Δ,E+ n

2 ,F} that takes (X,H,Y) to ( 1
2
Δ,−(E+ n

2 ),−

2 F) for some

nonzero � (all choices of � are equivalent via conjugation by diagonal matrices;
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later the choice � = 2π will be most natural for us). Some steps in the following
analysis are familiar from the representation theory of sl2, though here only infinite-
dimensional representations arise.

Now suppose P ∈ Pd is in the λ-eigenspace of FΔ for some λ. Then
〈x, x〉P = FP is in the (λ+ 4d+ 2n)-eigenspace of FΔ acting on Pd+2, because

FΔFP = F(FΔ + [Δ,F])P = F(FΔ + 4E+ 2n)P = F(λ + 4d+ 2n)P.

By induction on k = 0, 1, 2, . . . it follows that FkP is an eigenvector of FΔ|Pd+2k

with eigenvalue

λ+

k−1∑

j=0

(
4(d+ 2j) + 2n

)
= λ+ k

(
4(d+ k − 1) + 2n

)
.

Replacing d by d− 2k and taking λ = 0, we see that if P ∈P0
d−2k then FkP is an

eigenvector of FΔ|Pd
with eigenvalue

λd(k) := k
(
4(d− k − 1) + 2n

)
.

We next prove that this accounts for all the eigenspaces of FΔ|Pd
.

Lemma 2.3. Fix d ≥ 0 . For integers k, k′ such that 0 ≤ k < k′ ≤ d/2 we have
λd(k) < λd(k

′).

Proof. By induction it is enough to check this for k′ = k + 1. We compute

λd(k + 1)− λd(k) = 2n+ 4(d− 2k′) ≥ 2n > 0,

as claimed. �
Corollary 2.4. The sum over k = 0, 1, . . . , �d/2� of the subspaces FkP0

d−2k of
Pd is direct.

Proof. By Lemma 2.3, the λd(k) are strictly increasing, and thus distinct. Our claim
follows because FkP0

d−2k is a subspace of the λd(k) eigenspace of FΔ. �
Proposition 2.5. For k = 0, 1, . . . , �d/2�, let Pk

d = FkP0
d−2k. Then:

(1) The map Δ : Pd →Pd−2 is surjective.

(2) Pd =
⊕�d/2

k=0 Pk
d = P0

d ⊕ FPd−2, and P =
⊕∞

k=0 F
kP0.

(3) Pk
d is the entire λd(k) eigenspace of FΔ|Pd

, and FΔ|Pd
has no eigenvalues

other than the λd(k) for k = 0, 1, . . . , �d/2�.
(4) dim(P0

d) = dim(Pd)− dim(Pd−2) as claimed in (2.13).

Proof. The sum
⊕�d/2

k=0 Pk
d is direct by Corollary 2.4. We prove that it equals Pd

by comparing dimensions. Since F is injective we have dim(Pk
d ) = dim(P0

d−2k);
moreover

dim(P0
d−2k) ≥ dim(Pd−2k)− dim(Pd−2k−2),
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with equality if and only if Δ : Pd−2k → Pd−2k−2 is surjectve, because P0
d−2k

is the kernel of Δ : Pd−2k →Pd−2k−2. Hence dim
(⊕�d/2

k=0 Pk
d

)
is

�d/2∑

k=0

dim(Pk
d ) =

�d/2∑

k=0

dim(P0
d−2k) ≥

�d/2∑

k=0

(
dim(Pd−2k)− dim(Pd−2k−2)

)
,

(2.19)

and the last sum telescopes to dim(Pd). Thus equality holds termwise in the last

step of (2.19) and dim
(⊕�d/2

k=0 Pk
d

)
= dim(Pd). The first of these proves part (1)

(using the k = 0 term). The second yields

Pd =

�d/2⊕

k=0

Pk
d , (2.20)

as claimed in part (2); taking the direct sum over d yields P =
⊕∞

k=0 F
kP0,

also claimed in part (2). To complete the proof of part (2) we compare the
decompositions (2.20) of Pd and Pd−2 and note that Pk

d = FPk−1
d−2 for each

k > 0. Part (3) follows because the decomposition (2.20) diagonalizes FΔ|Pd
.

Finally part (4) is again the equality of the k = 0 terms in (2.19). �
Remarks. Part (2) of Proposition 2.5 says in effect that P =

⊕∞
d=0

(
P0

d ⊗Un
2 +d

)
,

where for any real m > 0 we write Um for the infinite-dimensional irreducible
representation of sl2 with basis {Ykv}∞k=0 where Xv = 0 and Hv = −mv. These
Um come from representations in the “discrete series” of unitary representations
of the Lie group SL2(R) when n is even (see [Lan75, Chap. IX]); when n is odd,
they come from discrete-series representations of the “metaplectic” double cover of
SL2(R) that do not descend to SL2(R).

It also follows from part (2) that P0
d ∩FPd−2 = {0}, and thus that P0 contains

no nonzero multiple of 〈x, x〉. Proving this was set as problem B-5 on the 2005
Putnam exam, which was the hardest of the 12 problems that year, solved by only
5 of the top 200 scorers (see [KAL06, pp. 736 and 741]). The solution printed in
[KAL06, p. 742] uses some of the ingredients used here to prove Proposition 2.5.

2.5 Weighted Theta Functions

The functional equation (2.6) for theta functions of lattices extends to theta functions
weighted by a harmonic polynomial.

Theorem 2.6. Let L be any lattice in R
n, and P : R

n → C any harmonic
polynomial of degree d. Then

ΘL∗,P (e
−2πt) = idVol(Rn/L)t−(n/2)−dΘL,P (e

−2π/t) (2.21)

for all t > 0.
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By the Poisson summation formula, this will follow from the following
generalization of (2.7):

Theorem 2.7. Suppose that t > 0 and P : Rn → C is a harmonic polynomial
on R

n of degree d. Define a function f : Rn → R by

f(x) = P (x) e−π〈x,x〉t. (2.22)

Then the Fourier transform of f is

f̂(y) = idt−(n
2 +d)P (y) e−π〈y,y〉/t. (2.23)

Proof. For t ∈ C define an operator

Gt : C
∞(Rn)→ C∞(Rn), g �→ e−πt〈x,x〉g (2.24)

that multiplies every C∞ function by the Gaussian e−πt〈x,x〉; these operators
constitute a one-parameter group: GtGt′ = Gt+t′ for all t, t′. We are then interested
in f = GtP for P ∈ P in the intersection of the kernel of Δ with an eigenspace
of E. If P ∈Pd then

d · f = Gt(d · P ) = GtEP = (GtEG−t)GtP = (GtEG−t)f,

so f is in the d-eigenspace of GtEG−t; likewise f ∈ kerGtΔG−t. Since our one-
parameter group {Gt} has infinitesimal generator−πF, we expect that conjugation
by Gt will take Δ,E to some linear combination of Δ,E,F. Indeed we find the
following relations.6

Lemma 2.8 (Conjugation ofΔ,E,F by Gt). The operatorsGt commute with F, and
we have

GtEG−t = E+ 2πtF, GtΔG−t = Δ+ πt(4E+ 2n) + (2πt)2F. (2.25)

Proof. As with the commutation relations (2.16), this comes down to an exercise
in differential calculus. Here we start from the fact that Gt commutes with each
xj while Gt(∂/∂xj)G−t = 2πtxj + (∂/∂xj), whence the first formula in (2.25)
quickly follows, while GtF = FGt is immediate. A somewhat longer computation
establishes the second formula. �
Corollary 2.9. The operators Δ,E,F act on GtP , and the subspace GtP0

d is the
intersection of ker(Δ+πt(4E+2n)+(2πt)2F) with the d-eigenspace of E+2πtF
in GtP .

6This is where it becomes natural to use � = 2π when choosing the images of the generators (2.18)
of sl2: conjugation by Gt then takes (X,H,Y) to (X− tH− t2Y,H+2tY,Y); other choices would
produce more complicated coefficients.
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We next relate the Fourier transform of a Schwartz function f with the Fourier
transforms of its images under Δ,E,F.

Lemma 2.10 (Conjugation of Δ,E,F by the Fourier Transform). Let f : Rn → C

be any Schwartz function. Then:

(1) For each j = 1, . . . , n, the Fourier transform of xjf is (2πi)−1∂f̂/∂yj , and
the Fourier transform of ∂f/∂xj is −2πiyj f̂ .

(2) The Fourier transforms of Δf , (2E+ n)f , and Ff are respectively −(2π)2Ff̂ ,
−(2E+ n)f̂ , and −(2π)−2Δf̂ .

Proof. Again this is a calculus exercise, here with definite integrals. The formula
for the Fourier transform of ∂f/∂xj is obtained by integrating by parts with respect
to xj . The Fourier transform of xjf can be obtained from this using Fourier
inversion, or directly by differentiation with respect to yj of the integral (2.2) that
defines f̂(y). We then obtain part (2) by iterating the formulas in part (1) to find the
Fourier transform of ∂2f/∂x2j , xj∂f/∂xj , or x2jf , and summing over j. The case
of Ef can be explained by writing the operator 2E+ n as

n∑

j=1

(
xj(∂/∂xj) + (∂/∂xj) ◦ xj

)
.

�
We use this to show that if f ∈ GtP then f̂ ∈ G1/tP , that is, that f̂ is some

polynomial multiplied by e−π〈y,y〉/t. More precisely:

Proposition 2.11. Let t ∈ C with Re(t) > 0. If f = GtP for some P ∈ Pd then
f̂ = G1/tP̂ for some P̂ =

∑d
d′=0 P̂d′ with each P̂d′ ∈Pd′ and P̂d = idt−(n

2 +d)P .
As before t−(n

2 +d) denotes the −(n+ 2d) power of the principal square root of t.

Proof. We use induction on d. The base case d = 0 is the fact that the Fourier
transform of e−πt〈x,x〉 is t−n/2e−π〈y,y〉/t, which we showed already. Suppose we
have established the claim for P ∈ Pd. By linearity and the fact that Pd+1

is spanned by its subspaces xjPd, it is enough to prove the proposition with
P replaced by xjP . By the first part of Lemma 2.10, the Fourier transform of
GtxjP = xjGtP is

1

2πi

∂

∂yj

(
G1/tP̂

)
=

1

2πi
G1/t

( ∂P̂
∂yj
− 2π

t
yjP̂

)
. (2.26)

By the inductive hypothesis P̂ has degree d and leading part P̂d = idt−(n
2 +d)P .

Therefore the right-hand side of (2.26) has degree d+ 1 and leading part

−2πt−1

2πi
P̂d =

i

t
P̂d = id+1t−(n

2 +d+1)yjP.

This completes the inductive step and the proof. �
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To finish the proof of Theorem 2.7, suppose that P ∈ P0
d and that

f(x) = P (x) e−π〈x,x〉t = GtP . By Corollary 2.9,

(Δ+ πt(4E+ 2n) + (2πt)2F)f = 0, (E+ 2πtF)f = d · f.
Taking the Fourier transform and applying the second part of Lemma 2.10, we
deduce

(−(2π)2F− πt(4E+ 2n)− t2Δ)f̂ = 0, −
(
E+ n+

t

2π
Δ
)
f̂ = d · f̂ .

Eliminating Δf̂ , we find d · f̂ = (E + 2π
t F)f̂ ; that is, f̂ is in the d-eigenspace

of E + 2πt−1F. By Proposition 2.11, we know that f̂=G1/tP̂ for some P̂ ∈ P .

By Lemma 2.8, then, P̂ is in the d-eigenspace of E; that is, P̂ ∈ Pd. By
Proposition 2.11, we conclude that P̂ = idt−(n

2 +d)P . �
We have now proven the functional equation (2.21) for weighted theta functions

ΘL,P (Theorem 2.6). This identity is trivial when d = deg(P ) is odd, because then
ΘL,P is identically zero (by cancellation of the v and −v terms), but it gives new
information when d is even and positive.

Again we consider the special case of a Type II lattice. Generalizing (2.8), we
define

θL,P (τ) := ΘL,P (e
2πiτ ) =

∑

v∈L

P (v)eπ〈v,v〉iτ (2.27)

for τ ∈ H. Then θL,P (τ) = θL,P (τ + 1), and Theorem 2.6 gives θL,P (τ) =

t
−(n

2 +d)
θL(−1/τ), with the factor id absorbed by the change of variable τ = it

because d is even. It follows as before that

θL,P (τ) = (cτ + d)
−(n

2 +d)
θL,P

(
aτ + b

cτ + d

)
(2.28)

for all
(
a b
c d

) ∈ SL2(Z), so θL,P is a modular form of weight n
2 + d for SL2(Z).

Hence θL,P is a polynomial in E4 and the weight-6 Eisenstein series

E6 = 1− 504

∞∑

n=1

n5qn

1− qn = 1− 504q − 16632q2 − 122976q3 − · · · .

Moreover θL,P is a cusp form once d > 0: the constant coefficient is P (0), which
vanishes for nonconstant homogeneous P . Hence once d is positive the polynomial
giving θL,P in terms of E4 and E6 is divisible by Δ = 12−3(E34 − E26 ). (See again
[Ser73, Chap. VII].)
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In particular θL,P = 0 when n
2 +d ∈ {2, 4, 6, 8, 10, 14} because in those weights

the only cusp form is the zero form.7 Likewise we have the following observation.

Lemma 2.12. Suppose n = 8m and L ⊂ R
n is an extremal lattice. Then

θL,P = 0 for every nonconstant harmonic polynomial P on R
n whose degree d

satisfies 4(m − 3�m/3�) + d ∈ {2, 4, 6, 8, 10, 14}. If L ⊂ R
n is a Type II lattice

of minimal norm n/12 then θL,P = 0 for every harmonic polynomial P on R
n of

degree 2.

Proof. We saw already that θL,P is a cusp form. If L is extremal, the qk coefficient
of θL,P vanishes for each k ≤ �m/3�. Hence Δ−�m/3θL,P is a cusp form of
weight 4(m − 3�m/3�) + d, and thus vanishes when 4(m − 3�m/3�) + d ∈
{2, 4, 6, 8, 10, 14}. Likewise if L has minimal norm n/12 and P is a quadratic
harmonic polynomial then Δ1−(n/24)θL,P is a cusp form of weight 14, so again
θL,P = 0. �

If L is extremal then Lemma 2.12 applies to 6, 4, or 2 values of d for n ≡ 0, 8,
or 16 mod 24 respectively. We exploit these vanishing results in the next section.

2.6 Spherical t-Designs, the Venkov Condition on Niemeier
Lattices, and Extremal Type II Lattices

For real ν > 0 letAν : C∞(Rn)→ C be the functional that takes any function to its
average on the sphere Σν = {x ∈ R

n : 〈x, x〉 = ν} with respect to the probability
measure on Σν invariant under the orthogonal group. For any positive integer t, a
(possibly empty8) finite set D ⊂ R

n of nonzero vectors of equal norm ν is said to
be a (spherical) t-design if and only if

∑

v∈D

P (v) = |D| ·Aν(P ) (2.29)

for all P ∈P with degP ≤ t.9 By linearity it is enough to check this condition for
P ∈ Pd for each d ≤ t, and we may assume d > 0 because in the case d = 0 of

7In this setting n
2
+ d cannot be as small as 2 because n ≥ 8, but the possibility of weight 2 arises

in the proof of Lemma 2.12.
8With this definition ∅ is a t-design for all t. For most applications only nonempty designs are of
interest; for instance it is only when D is nonempty that we can divide both sides of (2.29) by
|D| to get the equivalent condition that the average of any polynomial of degree at most t over Σν

can be computed by averaging it over |D|. But we allow empty designs here, and also later in the
coding-theoretic setting, because this simplifies the statements of the results relating lattices with
spherical designs.
9See [Del78] for explanation of the term “r-design” for this property. For D �= ∅, the t-design
property is one way to make precise the idea that D is “well distributed” in Σν , and better
distributed as t grows. One application, and the original one according to [CS99, pp. 89–90],
is numerical integration on Σν , using the right-hand side of (2.29) as an approximation to the
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a constant polynomial the condition (2.29) is satisfied automatically. We next prove
that it is enough to check (2.29) for harmonic polynomials of positive degree. We
begin by showing that all such polynomials are in ker(Aν).

Lemma 2.13. If P is a nonconstant harmonic polynomial then Aν(P ) = 0.

Proof. Choose any s > 0. Since P is homogeneous, Aν(P ) is a positive multiple
of the integral of GsP over all of Rn. But this integral is the value of the Fourier
transform of GsP at the origin. By Theorem 2.7 this value is some multiple of P (0).
Since d > 0 we have P (0) = 0, so Aν(P ) = 0 as claimed. �

Thus our design criterion can be stated as follows.

Lemma 2.14. A finite subset D ⊂ Σν is a t-design if and only if
∑

v∈D P (v) = 0
for all nonconstant harmonic polynomials P of degree at most t.

Proof. The “only if” direction is immediate from Lemma 2.13. We prove the “if”
implication. By the second part of Proposition 2.5 any polynomial of degree d ≤ t

can be written as
∑�d/2

k=0 FkPk with each Pk harmonic of degree d − 2k. It is thus
enough to check (2.29) for each FkPk . But by hypothesis, (2.29) holds for each Pk

(including Pd/2 if d is even, because then Pk is constant). Since the restriction of
each FkPk to Σν is νkPk, it follows that (2.29) holds for FkPk as well, and we are
done. �

Combining this with Lemma 2.12 yields the following theorem of Venkov
[Ven01], which asserts that in an extremal or nearly extremal Type II lattice the
vectors of each nonzero norm form a spherical design.

Theorem 2.15. Let L ⊂ R
n be a Type II lattice with minimal norm 2k. Assume

r := 24k − n is nonnegative. Set t = 3 if r = 0 and t = (r/2) − 1 if r > 0. Then
L ∩ Σν is a t-design for every ν > 0.

Proof. Because L ∩ Σν is centrally symmetric, we need only check the criterion of
Lemma 2.14 for P of even degree. For such P , Lemma 2.12 applies, so θL,P = 0.
The criterion

∑
v∈D P (v) then holds because

∑
v∈D P (v) is a coefficient of θL,P .

�
Remarks. In general L ∩ Σν need not be a (t+ 1)-design: there will be lattice
norms ν and harmonic polynomials P of degree t + 1 whose sum over L ∩ Σν

is nonzero. However, when r > 0 it will be true that the sum over L ∩ Σν of any
harmonic polynomial of degree t + 3 vanishes, because there are no nonzero cusp
forms of weight 14. Thus eachL∩Σν is what Venkov [Ven01] called a “t 12 -design”:
a finite subset D ⊂ Σν such that

∑
v∈D P (v) = 0 for all P ∈P0

d with either d ≤ t
or d = t+ 3.

left-hand side even when P is not polynomial but smooth enough to be well approximated by
polynomials.
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The fact that in each caseL∩Σν is a 2-design already lets us deduce that ifL∩Σν

is nonempty then it spans Rn as a vector space. Indeed if L ∩ Σν does not span R
n

then it is contained in a hyperplane {x ∈ R
n : 〈x, ẋ〉 = 0} for some nonzero

ẋ ∈ R
n; then we can take P (x) = 〈x, ẋ〉2 in (2.29) and observe that each of the

terms P (v) in the left-hand side vanishes, while the factor Aν(P ) of the right-hand
side is strictly positive, so the remaining factor |D|must vanish, makingL∩Σν = ∅
as claimed.

More precise results can often be obtained when ν equals or slightly exceeds the
minimal norm, because then any two vectors in L ∩ Σν must have integer inner
product, and only a few integers can arise, making the condition that L ∩ Σν be
a t-design or a t 12 -design particularly stringent. We give three examples: Venkov’s
simplification of Niemeier’s classification of Type II lattices in R

24; configuration
results for extremal Type II lattices in several dimensions, including multiples of 24
up to 96, showing that such lattices are generated by their minimal vectors; and a
novel proof of the uniqueness of the E8 lattice.

Niemeier Lattices

Suppose L is a Type II lattice in R
24. Then the hypothesis of Theorem 2.15 is

satisfied with r = 0 or r = 24. In either case we find in particular that L ∩ Σ2

is a 2-design. But the vectors of norm 2 in any even lattice constitute a root system.
Venkov [Ven80] used the requirement that this root system be a 2-design to show
a priori that it must be among the 24 root systems that arise for the Niemeier lattices,
and thus to considerably streamline the classification of Type II lattices in R

24.

Configuration Results for Extremal Type II Lattices

While a nonempty shell L∩Σν in an extremal lattice Lmust generateRn as a vector
space, it need not generateL overZ: already (L, ν) = (D+

16, 2) is a counterexample,
since the minimal nonzero vectors of D+

16 generate only the index-2 sublattice D16.
Still, for some n it can be proved that every extremal lattice is generated by its
vectors of minimal norm 2k. Let L0 be the sublattice of L generated by the minimal
vectors, and assume [L : L0] > 1. Then there are nonlattice vectors v̇ ∈ L∗

0, and
〈v, v̇〉 ∈ Z for all v ∈ L ∩ Σ2k. If v̇ has minimal norm in its coset modL then
|〈v, v̇〉| ≤ k for all such v. This together with the t-design or t 12 -design condition
on L ∩ Σ2k yields a contradiction for several values of n, proving that L0 = L for
each of those n. (See [Ven84], [Oze86a], [Oze86b], [Kom09a], and [Elk12].)

The Uniqueness of E8

Finally, let n = 8 and let L ⊂ R
8 be any Type II lattice. Then

θL = E4 = 1 + 240q + 2160q2 + · · · ,
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and L is automatically extremal, so in particular L ∩ Σ2 is a 7-design of size 240.
We shall use these facts to prove that L ∼= E8. There are 2160 vectors of norm 4
in L; choose one, and call it ẋ. Let D be the 7-design L ∩ Σ2. For j ∈ Z let Nj

be the number of vectors x ∈ D such that 〈x, ẋ〉 = j. If Nj 
= 0, then |j| ≤ √8
(by Cauchy–Schwarz) and j ∈ Z (because 〈v, v′〉 ∈ Z for all v, v′ ∈ L); hence
j ∈ {−2,−1, 0, 1, 2}. Therefore

2∑

j=−2

Nj = |D| = 240. (2.30)

SinceD is centrally symmetric,N−j = Nj for each j. Finally, sinceD is a 7-design,
(2.29) holds with P (x) = 〈x, ẋ〉d for each positive integer d ≤ 7. This is automatic
for d odd, but for d = 2, 4, 6 we get linear equations in N0, N1, N2, and already the
d = 2 and d = 4 equations together with (2.30) let us solve for the Nj . We find

(N−2, N−1, N0, N1, N2) = (14, 64, 84, 64, 14). (2.31)

(See the Remarks at the end of this section for the evaluation of the functional Aν

on even powers of 〈x, ẋ〉.) In particular there are 14 vectors in D, call them vi for
1 ≤ i ≤ 14, whose inner product with ẋ is 2.

For each i we obtain a lattice vector xi = 2vi − ẋ that is orthogonal to ẋ and
satisfies 〈xi, xi〉 = 4 and xi ≡ ẋ mod 2L. For any i and i′ we have

〈xi, xi′〉 = 〈2vi − ẋ, 2vi′ − ẋ〉 = 4〈vi, vi′〉 − 2〈vi, ẋ〉 − 2〈ẋ, vi′〉+ 〈ẋ, ẋ〉
= 4〈vi, vi′〉 − 4− 4 + 4

= 4〈vi, vi′〉 − 4

≡ 0 mod 4.

Thus the vectors xi for 1 ≤ i ≤ 14, together with ẋ and −ẋ, are 16 vectors of
norm 4, any two of which are equal, opposite, or orthogonal. Hence the xi together
with ±ẋ are the minimal vectors of an isometric copy of 2Z8 in L. Moreover L
also contains vi = (ẋ + xi)/2, and thus contains the Z-span of ẋ and the vi,
which is isometric with D8. But L is self-dual, so D∗

8 ⊂ L ⊂ D8. Of the three
lattices satisfying this condition, one is Z8, which is of Type I, and the other two are
isomorphic with E8. Therefore L ∼= E8, as claimed.

Remarks. A related proof, parallel to the beginning of Conway’s proof [Con69] of
the uniqueness of the Leech lattice, starts from the observation that each of the 28

cosets of 2L in L intersects {v ∈ L : 〈v, v〉 ≤ 4} in either {0}, a pair of minimal
vectors, or at most 8 orthogonal pairs of vectors of norm 4. This accounts for at least
1 + 240/2 + 2160/16 = 256 = 28 cosets. Hence equality holds throughout, and
any of the nonzero cosets that does not meet Σ2 gives us a copy of D8 in L. This
approach uses only the modularity of θL, not of the more general θL,P , though it
applies in fewer cases. Either technique also yields the number of automorphisms
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of E8: there are 2160 choices of ẋ, and 277! automorphisms of D8 that fix ẋ, half
of which send E8 to itself, so |Aut(E8)| = 2160 · 267! = 696729600.

For even d ≥ 0, and a given vector ẋ of norm ν̇ > 0, the average over
Σν of 〈x, ẋ〉d is computed as a quotient of Beta integrals. We find that if
P (x) = 〈x, ẋ〉d then

Aν(P ) = (νν̇)d/2
∫ 1

0
ud(1−u2)(n−3)/2 du

∫ 1

0 (1−u2)(n−3)/2 du
= (νν̇)d/2

B
(
(d+1)/2, (n−1)/2)

B
(
1/2, (n−1)/2) ,

(2.32)

where u is the normalized projection (νν̇)−1/2|〈x, ẋ〉|. Thus

Aν(P ) = (νν̇)d/2
1

n

3

n+ 2

5

n+ 4
· · · d− 1

n+ d− 2
. (2.33)

In our case νν̇ = 2 · 4 = 8, so Aν(P ) = 1, 12/5, 8 for d = 2, 4, 6.
Alternatively we could apply Lemma 2.14 to the zonal spherical harmonics,

which are harmonic polynomials that depend only on 〈x, ẋ〉. For each degree d
there is a one-dimensional space of zonal spherical harmonics, proportional to a
Gegenbauer orthogonal polynomial C((n−2)/2)

m (u) with u = (νν̇)−1/2〈x, ẋ〉. This
is equivalent to using (2.32) and (2.33) for t-designs, but for a t 12 -design we need the
zonal spherical harmonics to exploit the vanishing of

∑
v∈D P (v) for P ∈ P0

t+3.
This, too, has an analog in the setting of discrete harmonic polynomials, as in the
proof of Theorem 9.2 at the end of this paper.

3 Weight Enumerators of Binary Linear Codes

3.1 Coding-Theoretic Preliminaries

By a (binary linear) code of length n we mean a vector subspace of the F2-vector
space F

n
2 . In this context, vectors of length n over F2 are often called (binary)

“words” of length n. The (Hamming) weight of a word w ∈ F
n
2 , denoted by wt(w),

is the number of nonzero coordinates of w, and the (Hamming) distance between
two words w,w′ ∈ F

n
2 is wt(w′ − w). We denote by (·, ·) the usual bilinear pairing

on F
n
2 , defined by (v, w) =

∑n
j=1 vjwj . For a linear code C ⊆ F

n
2 , the dual code is

the annihilator C⊥ of C with respect to this pairing; thus dim(C) + dim(C⊥) = n
and C⊥⊥ = C for every linear code C ⊆ F

n
2 .

IfC = C⊥ thenC is self-dual. Then (c, c′) = 0 for all c, c′ ∈ C, and in particular
wt(c) is even for all c ∈ C because 0 = (c, c) is the reduction of wt(c) mod 2.
The map wt : C → Z then reduces mod 4 to a group homomorphismC → 2Z/4Z.
The code C is said to be doubly even or of Type II if this homomorphism is trivial,
that is, if (c, c) ∈ 4Z for all c ∈ C; otherwise C is said to be singly even or of Type
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I. This notation reflects the analogy between binary linear codes and lattices. It also
respects the following construction (“Construction A” of [LS71]; see also [CS99,
pp. 182–183]) that associates a lattice LC ⊂ R

n to any linear code C ⊆ F
n
2 :

LC := {2−1/2v : v ∈ Z
n, v mod 2 ∈ C}. (3.1)

Indeed L∗
C = LC⊥ , so LC is self-dual if and only if C is, in which case LC is of

Type I or Type II according as C is of Type I or Type II, respectively.

Examples. If C = C⊥ then dim(C) = n/2, so n is even. For each positive even
integer n there is a Type I code of length n consisting of all c such that c2j−1 = c2j
for each j ≤ n/2. This is the unique Type I code for n = 2, and is unique up
to isomorphism (i.e., up to coordinate permutation) for n ≤ 8, but not unique for
any n ≥ 10; and as with lattices the number of isomorphism classes grows rapidly
with n.

If F
n
2 contains a Type II code then n ≡ 0 mod 8. (This follows via

Construction A from the corresponding theorem for lattices, but can also be proven
directly.10) An example is the extended Hamming code in F

8
2: if we identify F

8
2

with the space of F2-valued functions on F
3
2, the extended Hamming code can

be constructed as the subspace of affine-linear functions on F
3
2. The extended

Hamming code is the unique Type II code of length 8; there are two such codes
of length 16, nine of length 24, and a rapidly growing number as n → ∞ through
multiples of 8.

3.2 Discrete Poisson Summation

We define the discrete Fourier transform (or Hadamard transform) f̂ of a function
f : Fn

2 → C as the function on F
n
2 given by

f̂(u) =
∑

v∈F
n
2

(−1)(u,v)f(v). (3.2)

10Suppose C is a self-dual code of length n. Then C contains the all-1s vector 1, because (v, v) =
(v, 1) for all v ∈ Fn

2 , so C ⊆ C⊥ implies 1 ∈ C⊥. Thus C descends to a vector space of
dimension (n/2) − 1 in V := {0, 1}⊥/{0, 1}. Since 2 | n, the perfect pairing (·, ·) descends to a
perfect pairing on V, so a self-dual code is tantamount to a maximal isotropic subspace of V relative
to this pairing. If 4 | n then the map {0, 1}⊥ → F2, v �→ (wt(c)/2) mod 2 descends to a quadratic
form Q : V → F2 consistent with that pairing. A Type II code is then a self-dual code C that is
totally isotropic relative to Q. Such C exists if and only if (V,Q) has Arf invariant zero. But the Arf
invariant is 0 or 1 according as {v ∈ V: Q(v) = 0} has size 2n−3+2(n/2)−2 or 2n−3−2(n/2)−2.
But this count is (1/2)

∑n/4
j=0

(
n
4j

)
= (1/8)

∑
μ4=1(1 + μ)n = 2n−3 + (1/4) Re(1 + i)n, so the

result follows from the observation that (1 + i)4 = −4.
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We review the discrete Poisson summation formula, a discrete analog of the
Poisson summation formula for lattices (Theorem 2.1). Like its lattice analog, the
discrete Poisson summation formula relates the sum of a function to the sum of
the function’s discrete Fourier transform. Here, however, instead of considering the
sums of the function and its Fourier transform over a lattice L ⊂ R

n and its dual
L∗, we consider the sums of the function and its discrete Fourier transform over a
linear code C ⊂ F

n
2 and over C⊥, the dual code of C.

Theorem 3.1 (Discrete Poisson Summation Formula). Let C ⊂ F
n
2 be a binary

linear code of length n, and let f be a function from F
n
2 to C. Then

∑

c∈C

f(c) =
1

|C⊥|
∑

c′∈C⊥
f̂(c′). (3.3)

We briefly recount the standard proof of Theorem 3.1, which is the one presented
in [MS83, p. 127].

Proof of Theorem 3.1. By expanding the sum in the right-hand side of (3.3) and
rearranging the order of summation, we obtain

∑

c′∈C⊥
f̂(c′) =

∑

c′∈C⊥

∑

v∈F
n
2

(−1)(c′,v)f(v) =
∑

v∈F
n
2

f(v)
∑

c′∈C⊥
(−1)(c′,v). (3.4)

Now, whenever v ∈ C ⊂ F
n
2 and c′ ∈ C⊥, we have (c′, v) = 0 by the definition

of C⊥. It follows that the inner sum in (3.4) equals |C⊥| whenever v ∈ C.
Furthermore, when v 
∈ C, the inner sum of (3.4) vanishes.11 The result then follows
immediately. �

3.3 The MacWilliams Identity and Gleason’s Theorem

In this section, we recall two classical results from coding theory which are
closely related to the theory of lattices. The first of these results, the MacWilliams
identity (Theorem 3.2, below), expresses the weight enumerator of C⊥ in terms
of the weight enumerator of C. The second result (Theorem 3.3, below) is a
famous theorem originally due to Gleason [Gle71], which shows that the weight
enumerators of Type II codes can be expressed in terms of two particular weight
enumerators.

Theorem 3.2 (MacWilliams Identity ([Mac63]; [CS99, p. 78]; [Ebe02, p. 74];
[MS83, p. 126])). For any binary linear code C of length n, we have

11In this case, (c′, v) takes the values 0 and 1 equally often (see [MS83, p. 127]). (This statement is
just an instance of the well-known fact that the sum of a nontrivial character on a finite commutative
group vanishes.) We could also adapt the technique we used in proving Theorem 2.1, obtaining
discrete Poisson summation via the discrete Fourier expansion of the function z �→ ∑

c∈C f(c+z).
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WC(x, y) =
1

|C⊥|WC⊥(x+ y, x− y). (3.5)

Proof. Define a function f : Fn
2 → C by f(v) = xn−wt(v)ywt(v). Then

f̂(u) = (x+ y)n−wt(u)(x− y)wt(u).

Theorem 3.2 therefore follows directly from the discrete Poisson summation
formula (Theorem 3.1). �
Theorem 3.3 (Gleason’s Theorem ([Gle71]; [Slo77]; [CS99, p. 192]; [Ebe02,
p. 75])). For any Type II code C, the weight enumerator WC(x, y) is a polyno-
mial in

ϕ8 := x8 + 14x4y4 + y8 and ξ24 := x4y4(x4 − y4)4. (3.6)

Proof. Since C is of Type II, the exponent of y in each monomial xn−wt(v)ywt(v)

is a multiple of 4. Thus each monomial is invariant under the substitution of iy
for y, whence the sum WC(x, y) of these monomials also satisfies the identity
WC(x, y) =WC(x, iy). Since C = C⊥, we also have an identity

WC(x, y) =
1

|C|WC(x + y, x− y)

= 2−n/2WC(x+ y, x− y)
=WC

(
2−1/2(x+ y), 2−1/2(x− y)) : (3.7)

the first step uses Theorem 3.2; for the second, we deduce |C| = 2n/2 from 2n =
|C| · |C⊥| = |C|2; and for the last step, we use the fact that WC is a homogeneous
polynomial of degree n. Therefore this homogeneous polynomial is invariant under
the group, call it GII, generated by linear substitutions with matrices ( 1 0

0 i ) and
2−1/2

(
1 1
1 −1

)
.

It turns out thatGII is a complex reflection group, and thus has a polynomial ring
of invariants. Namely, GII is #9 in the Shephard-Todd list [ST54], and its invariant
degrees are 8 and 24, with ϕ8, ξ24 as a convenient choice of generators. This result
completes the proof of Gleason’s theorem for Type II codes. �

In Appendix A we give a direct proof that C[x, y]GII = C[ϕ8, ξ24]. The
literature contains several other approaches to the determination of this invariant
ring, including Ebeling’s proof in [Ebe02] using the theory of modular forms(!).
See [CS99, p. 192]. The method we use reachesGII via a suitable tower of reflection
groups starting from {1}, each normal in the next; along the way we also obtain
Gleason’s theorem for Type I codes, and encounter a polynomial ψ12, invariant
under an index-2 subgroup of GII, that will figure in our subsequent development.
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4 The Spaces of Discrete Harmonic Polynomials

In this section, we present some useful results in the theory of discrete harmonic
polynomials. These polynomials were originally introduced by Delsarte [Del78],
who gave a combinatorial development. Here, we give a new approach to these
polynomials using the finite-dimensional representation theory of sl2.

4.1 Basic Definitions and Notation

A function g on F2 may be interpreted as a 2 × 1 matrix g = ( g0g1 ), where gv is
the value assumed on input v ∈ F2. It is easily computed that the discrete Fourier
transform ĝ of g is the function

ĝ =
( g0+g1
g0−g1

)
=

(
1 1
1 −1

)
( g0g1 ) ;

the discrete Fourier transform is therefore encoded by the matrix T :=
(
1 1
1 −1

)
.

There is a natural action of sl2 on these functions g, defined by multiplication from
the left by matrices in sl2. Thus, we may interpret the space of functions on F2 as a
representation of sl2 isomorphic with the 2-dimensional defining representation V1
of sl2.

More generally, the operator

T̃ := T⊗n (4.1)

on V ⊗n
1 gives the discrete Fourier transform on v ∈ F

n
2 . For a pure tensor

g = ( g10g11 )⊗ · · · ⊗ ( gn0
gn1 ) ∈ V ⊗n

1 ,

which takes the value g1v1 · · · gnvn on v ∈ F
n
2 , we have

T̃g = (̂ g10
g11 )⊗ · · · ⊗ (̂ gn0

gn1 ) =
( g10+g11
g10−g11

)⊗ · · · ⊗ ( gn0+gn1

gn0−gn1

)
.

For example, the function on F
n
2 that takes (1, . . . , 1) to 1 and all other v ∈ F

n
2

to 0 is

g∗ = ( 01 )⊗ · · · ⊗ ( 0
1 ) ;

its discrete Fourier transform is12

ĝ∗ = T̃g∗ =
(

1−1

)⊗ · · · ⊗ (
1−1

)
.

12Note that this aligns with the expression

ĝ∗(u) =
∑

v∈F
n
2

(−1)(u,v)g∗(v) = (−1)
∑n

j=1 uj ,

obtained from the more common definition (3.2) of the discrete Fourier transform given earlier.
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4.1.1 Polynomials in the Variables (−1)vj (1 ≤ j ≤ n)

We denote by D the C-vector space of functions on F
n
2 . We can regard any function

in D as a polynomial in the variables ιvj (1 ≤ j ≤ n), where ι : F2 → C is the map

ι(0) = 0, ι(1) = 1.

Each of these variables satisfies (ιvj)
2 = ιvj . Hence the 2n monomials in which

each ιvj appears to power 0 or 1 constitute a basis for D . Each of these monomials
has degree at most n, and g∗ is the unique degree-nmonomial among them.

Instead of working with polynomials in the variables ιvj (1 ≤ j ≤ n), we work
with the discrete Fourier transforms (−1)vj (1 ≤ j ≤ n) of these variables.13 Thus
we consider D as the C-vector space of polynomial functionsQ in the variables

(−1)v1 , . . . , (−1)vn ,
where v ∈ F

n
2 . We denote by Dd the subspace of D consisting of degree-d

homogeneous polynomials in the (−1)vj (1 ≤ j ≤ n) with each variable (−1)vj
in each term appearing to degree 0 or 1. We adopt the convention that Dd = {0}
for d < 0.

The preceding discussion shows that any Q ∈ D may be interpreted as an
element of V ⊗n

1 , and that the discrete Fourier transform Q̂ of Q is equal to T̃Q.
The action of sl2 defined above gives rise to the following action on D : if M ∈ sl2
and Q ∈ D , then the action of M on Q is given by

(∑
( 1 0
0 1 )⊗ · · · ⊗M ⊗ · · · ⊗ ( 1 0

0 1 )
)
Q.

Here,
∑

( 1 0
0 1 )⊗ · · · ⊗M ⊗ · · · ⊗ ( 1 0

0 1 ) denotes the operator equal to

(M⊗· · ·⊗ ( 1 0
0 1 ))+· · ·+(( 1 0

0 1 )⊗· · ·⊗M ⊗ · · · ⊗ ( 1 0
0 1 )) +· · ·+(( 1 0

0 1 )⊗ · · · ⊗M),

the sum of n tensors, the j-th of which acts as M on the j-th factor and as the
identity matrix ( 1 0

0 1 ) on the other factors.

4.1.2 Conjugation of X̃, H̃, and Ỹ by the Discrete Fourier Transform

Recall that we denote by (X̃, H̃, Ỹ) the standard basis for sl2, exhibited in (2.18).
We define the operators X′, H′, and Y′ to be the conjugates of X̃, H̃, and Ỹ by the
discrete Fourier transform:

13Delsarte [Del78] uses the ιvj basis, rather than the (−1)vj basis. We depart from Delsarte’s
notation because the use of the (−1)vj basis greatly simplifies our development.
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X′ := T−1XT =
1

2
(H− X+ Y) ,

H′ := T−1HT = X+ Y,

Y′ := T−1YT =
1

2
(H+ X− Y) . (4.2)

Conjugation by the Fourier transform operator T induces an isomorphism of Lie
algebras

X←→ X′, H←→ H′, Y←→ Y′; (4.3)

hence these operators X′,H′,Y′ satisfy the commutation relations of (2.17), namely

[X′,Y′] = H′, [H′,X′] = 2X′, [H′,Y′] = −2Y′. (4.4)

We write X̃′, H̃′, and Ỹ′ for operators

X̃′ :=
∑(

1 0
0 1

)⊗· · ·⊗X′⊗· · ·⊗ (
1 0
0 1

)
= T̃−1

(∑(
1 0
0 1

)⊗· · ·⊗X⊗· · ·⊗ (
1 0
0 1

))
T̃,

H̃′ :=
∑(

1 0
0 1

)⊗· · ·⊗H′⊗· · ·⊗ (
1 0
0 1

)
= T̃−1

(∑(
1 0
0 1

)⊗· · ·⊗H⊗· · ·⊗ (
1 0
0 1

))
T̃,

Ỹ′ :=
∑(

1 0
0 1

)⊗· · ·⊗Y′⊗· · ·⊗ (
1 0
0 1

)
= T̃−1

(∑(
1 0
0 1

)⊗· · ·⊗Y⊗· · ·⊗ (
1 0
0 1

))
T̃,

(4.5)

which represent the actions of X′, H′ and Y′ on elements of V ⊗n
1 . The commutation

relations of (4.4) extend to these operators, as well:
[
X̃′, Ỹ′

]
= H̃′,

[
H̃′, X̃′

]
= 2X̃′,

[
H̃′, Ỹ′

]
= −2Ỹ′. (4.6)

The relations (4.6) induce an isomorphism between sl2 and the algebra generated
by X̃′, H̃′, and Ỹ′.

Now, we have the following result immediately from the definition of H̃′.

Lemma 4.1. If Q ∈ Dd, then H̃′Q = (n− 2d)Q.

Proof. The result follows directly, because the 1-eigenspace of H′ is the span of
{( 11 )} and the (−1)-eigenspace of H′ is the span of

{(
1−1

)}
. �

For Q ∈ Dd, we observe that (( 1 0
0 1 )⊗ · · · ⊗ X′ ⊗ · · · ⊗ ( 1 0

0 1 ))Q ∈ Dd−1, as
we have

X′ ( 1−1

)
= ( 11 ) and X′ ( 11 ) = ( 00 ) .

Thus, X̃′Q = (
∑

( 1 0
0 1 )⊗ · · · ⊗ X′ ⊗ · · · ⊗ ( 1 0

0 1 ))Q ∈ Dd−1. We define the space
of degree-d discrete harmonic polynomials by

D0
d := ker

(
X̃′ : Dd → Dd−1

)
. (4.7)
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We then define the space of discrete harmonic polynomials, denoted D0, to be the
direct sum

D0 :=

n⊕

d=0

D0
d = ker

(
X̃′ : D → D

)
. (4.8)

4.2 Decomposition of Degree-d Discrete Homogeneous
Polynomials

It is immediate from (4.6) that the operator H̃′ maps D0 to itself, since if Q ∈ D0

then

X̃′H̃′Q =
(
H̃′X̃′ −

[
H̃′, X̃′

])
Q =

(
H̃′X̃′ − 2X̃′

)
Q = 0.

The next lemma substantially refines this observation. Recall [Ser87, p. 18,
Definition 1] that an element e of an sl2 module is said to be primitive of weight λ
if e 
= 0, Xe = 0, and He = λe.

Lemma 4.2. If Q ∈ D0
d , then Q is either zero or primitive of weight n − 2d with

respect to the representation of sl2 induced by the action of X̃′, H̃′, and Ỹ′.

Proof. The result is a direct consequence of Lemma 4.1 because all Q ∈ D0 satisfy
X̃′Q = 0. �
Corollary 4.3. If d > n/2 then D0

d = {0}.
Proof. Since D is finite-dimensional, a primitive vector must have nonnegative
weight. �

For d ≤ n/2 and k = 0, 1, . . . , d, we define Dk
d := (Ỹ′)kD0

d−k.14 Combining
Lemma 4.2 with the representation theory of sl2, we now obtain a decomposition
result for Dd similar to that obtained for Pd in Proposition 2.5.

Proposition 4.4. For any d ≤ n/2, we have the following results.

(1) The map X̃′ : Dd → Dd−1 is surjective.
(2) We have the direct sum decomposition Dd =

⊕d
k=0 Dk

d = D0
d ⊕ Ỹ′Dd−1.

(3) For any nonzero Q ∈ Dd, the space spanned by
{
(Ỹ′)jQ

}n−2d

j=0
is an

irreducible sl2-module isomorphic to Vn−2d := Symn−2d(V1).
(4) dim(D0

d ) = dim(Dd)− dim(Dd−1) =
(
n
d

)− (
n

d−1

)
.

14The notation Dk
d is consistent with the notation D0

d for the space of degree-d discrete harmonic
polynomials.
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Proof. This follows quickly from Lemma 4.2 together with the finite-dimensional
representation theory of sl2; see for instance [Ser87, Chap. IV]. The first and second
parts follow from the decomposition of any finite-dimensional sl2-module as a direct
sum of irreducible modules, together with the explicit action of sl2 on each of
its finite-dimensional irreducible modules [Ser87, Chap. IV, Theorems 2 and 3].
The third part follows from the structure of the irreducible representation generated
by a primitive element of given weight [Ser87, Chap. IV, Corollary 2 of Theorem 1].
The fourth part follows from the first part. �

It also follows that X̃′ : Dd → Dd−1 is injective if d − 1 ≥ n/2, and thus an

isomorphism if n = 2d− 1; more generally, if d ≥ n/2 then X̃′2d−n
: Dd → Dn−d

is an isomorphism.

5 The Generalized MacWilliams Identity
for Harmonic Weight Enumerators

For a length-n binary linear code C ⊂ F
n
2 and a discrete harmonic polynomial Q,

the harmonic weight enumeratorWC,Q(x, y) is defined by

WC,Q(x, y) :=
∑

c∈C

Q(c)xn−wt(c)ywt(c). (5.1)

This function encodes the weights and distribution of the codewords of C, as the
weighted theta functions of a lattice L encode the norms and distribution of the
vectors of L.

We now derive a generalized MacWilliams identity for harmonic weight enumer-
ators.

Theorem 5.1. For any binary linear code C ⊂ F
n
2 and Q ∈ D0

d , the harmonic
weight enumeratorWC,Q(x, y) =

∑
c∈C Q(c)xn−wt(c)ywt(c) satisfies the identity

WC,Q(x, y) =

(
− xy

x2 − y2
)d

· 2
n
2 +d

|C⊥| ·WC⊥,Q

(
x+ y√

2
,
x− y√

2

)
. (5.2)

Theorem 5.1 was first proven by Bachoc [Bac99], via a purely combinatorial
argument. Here, we give a new proof of this result in analogy with the proof of
Theorem 2.6.
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5.1 Derivation of the Identity

For Q ∈ D , the function Q(v)xn−wt(v)ywt(v) corresponds in the tensor representa-
tion to the function ((

x 0
0 y

)⊗n
)
Q.

Therefore, in analogy with the Gaussian operators Gt defined in Sect. 2.5, we
introduce the operators

W :=
(
x 0
0 y

)
, W̃ := W⊗n, (5.3)

V :=
( x+y 0

0 x−y

)
, Ṽ := V⊗n. (5.4)

The operator W̃ serves as a sort of “discrete Gaussian” for weight enumerators.
Indeed, the weight enumeratorWC(x, y) of a length-n binary linear code is given by

WC(x, y) =
∑

c∈C

(
W̃ · ( 11 )⊗n

)
(c), (5.5)

and the Fourier transform of W̃ · ( 11 )⊗n is equal to Ṽ · ( 11 )⊗n.

Lemma 5.2. If Q ∈ Dd, then we have
(
Ṽ−1T̃W̃

)
Q = Q̂,

where Q̂ =
∑d

d′=0 Q̂d′ with Q̂d′ ∈ Dd for each d′ (0 ≤ d′ ≤ d) and

Q̂d =

(
− 2xy

x2 − y2
)d

Q. (5.6)

Proof. We proceed by strong induction on d. The base case d = 0 is immediate,
so we suppose that the result holds for Q ∈ Dd1 for each nonnegative d1 ≤ d, and
deduce that the result holds also for Q ∈ Dd+1.

The discrete Fourier transform operator is linear, hence it suffices to prove the
result for the polynomials of the form (−1)vj · Q with Q ∈ Dd. Now, we compute
the value of Ṽ−1T̃ times

(−1)vj ·Q(v) · xn−wt(v)ywt(v) = W̃ · (( 1 0
0 1 )⊗ · · · ⊗

(
1 0
0 −1

)⊗ · · · ⊗ ( 1 0
0 1 )

) ·Q
explicitly. We find that

Ṽ−1T̃
(
W̃

(
( 1 0
0 1 )⊗ · · · ⊗

(
1 0
0 −1

)⊗ · · · ⊗ ( 1 0
0 1 )

)
Q
)

=
(
Ṽ−1T̃W̃

) (
( 1 0
0 1 )⊗· · · ⊗

(
1 0
0 −1

)⊗· · · ⊗ ( 1 0
0 1 )

) (
Ṽ−1T̃W̃

)−1(
Ṽ−1T̃W̃

)
Q
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=

(
( 1 0
0 1 )⊗ · · · ⊗

(
0 x−y

x+y
x+y
x−y 0

)
⊗ · · · ⊗ ( 1 0

0 1 )

)(
Ṽ−1T̃W̃

)
Q

=

(
( 1 0
0 1 )⊗ · · · ⊗

(
0 x−y

x+y
x+y
x−y 0

)
⊗ · · · ⊗ ( 1 0

0 1 )

)
Q̂, (5.7)

where the last equality in (5.7) follows on applying the inductive hypothesis to(
Ṽ−1T̃W̃

)
Q.

It is clear that the right-hand side of (5.7) has maximal degree d + 1, since Q̂ is
of degree d and

( 1 0
0 1 )⊗ · · · ⊗

(
0 x−y

x+y
x+y
x−y 0

)
⊗ · · · ⊗ ( 1 0

0 1 )

is the identity on all but one coordinate. To finish the proof of the lemma, we
compute the degree-(d+ 1) term of (5.7). Now, since

(
0 x−y

x+y
x+y
x−y 0

)
( 11 ) =

x2 + y2

x2 − y2 ( 1
1 )−

2xy

x2 − y2
(

1−1

)
,

the degree-(d + 1) term of (5.7) must equal − 2xy
x2−y2 Q̂d.15 The desired expres-

sion (5.6) then follows from the inductive hypothesis. �
Lemma 5.3. If Q ∈ D0 and H̃′Q = λ ·Q, then

(1)
(
Ṽ−1T̃W̃

)
X̃′(Ṽ−1T̃W̃

)−1
Q = 0 and

(2)
(
Ṽ−1T̃W̃

)
H̃′(Ṽ−1T̃W̃

)−1
Q = λ ·Q.

Proof. Explicit computation gives

(
Ṽ−1T̃W̃

)
X̃′(Ṽ−1T̃W̃

)−1
= −x

2 − y2
2xy

· X̃′, (5.8)

(
Ṽ−1T̃W̃

)
H̃′(Ṽ−1T̃W̃

)−1
= H̃′ +

x2 + y2

xy
· X̃′. (5.9)

The first and second results follow directly from (5.8) and (5.9), respectively, since

Q ∈ D0 = ker(X̃′). �
Corollary 5.4. The operators X̃′ and H̃′ act on

(
Ṽ−1T̃W̃

)
D0. The subspace(

Ṽ−1T̃W̃
)
D0

d of D is the intersection of ker(X̃′) and the (n − 2d)-eigenspace of

H̃′ + x2+y2

xy X̃′ in
(
Ṽ−1T̃W̃

)
D0

d .

15Here, Q̂d is the degree-d term of Q̂, as in the lemma statement.
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5.1.1 Proof of the Generalized MacWilliams Identity

As a final step en route to Theorem 5.1, we prove an expression analog to
Proposition 2.11 for the discrete Fourier transform of the product of W̃ and a discrete
harmonic polynomialQ ∈ D0

d .

Proposition 5.5. If Q ∈ D0
d , then

(
Ṽ−1T̃W̃

)
Q =

(
− 2xy

x2 − y2
)d

Q. (5.10)

Proof. From Corollary 5.4, we see that
(
Ṽ−1T̃W̃

)
Q is in both D0 and (since then

X̃′Q = 0) the (n − 2d)-eigenspace of H̃′. That is,
(
Ṽ−1T̃W̃

)
Q ∈ D0

d . The result
then follows immediately from Lemma 5.2. �

Finally, we obtain the generalized MacWilliams identity by combining Proposi-
tion 5.5 with the discrete Poisson summation formula (Theorem 3.1).

Proof of Theorem 5.1. We obtain the discrete Fourier transform of W̃Q from
Proposition 5.5:

T̃
(
W̃Q

)
=

( −2xy
x2 − y2

)d

ṼQ =

( −2xy
x2 − y2

)d

· 2n/2 ·
((

x+y√
2

0

0 x−y√
2

)⊗n
)
·Q.
(5.11)

The desired formula (5.2) then follows directly from (5.11), upon applying
Theorem 3.1. �
Remark. One interesting consequence of Theorem 5.1 is that for any Q ∈ D0

d the
harmonic weight enumeratorWC,Qx, y is a multiple of x(xy)d

Corollary 5.6. For C a binary linear code and Q ∈ D0
d ,

WC,Q(x, y)

(xy)d

is a polynomial in the variables x, y.

Proof. By Theorem 5.1,

WC,Q(x, y)

(xy)d
=

(
− 1

x2 − y2
)d

· 2
n
2 +d

|C⊥| ·WC⊥,Q

(
x+ y√

2
,
x− y√

2

)
. (5.12)

The left-hand side is a rational function in x and y whose denominator divides
(xy)d, and the right-hand side is a rational function whose denominator divides
(x2 − y2)d. Since (xy)d and (x2 − y2)d are relatively prime, (5.12) is an identity
between polynomials in x and y. �
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As we see at the end of Sect. 7, Corollary 5.6 also follows directly from the sl2
development of discrete harmonic polynomials.

5.2 A Generalization of Gleason’s Theorem

In addition to the generalized MacWilliams identity, Bachoc [Bac99] obtained a
harmonic weight enumerator generalization of Gleason’s theorem. As we use this
result in Sect. 7, we state it here.

Theorem 5.7 (Bachoc [Bac99]). Let C be a Type II code of length n and let
Q ∈ D0

d . Then, the harmonic weight enumerator WC,Q(x, y) is an element of
the principal module C[ϕ8, ξ24]ψd for the polynomial algebra C[ϕ8, ξ24], whose
generator is given by

ψd :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 d ≡ 0 mod 4,

x3y3(x4 − y4)2(x8 − y8)(x8 − 34x4y4 + y8) d ≡ 1 mod 4,

x2y2(x4 − y4)2 d ≡ 2 mod 4,

xy(x8 − y8)(x8 − 34x4y4 + y8) d ≡ 3 mod 4.

(5.13)

The degree-12 polynomial ψ2 is a square root of ξ24; thus the harmonic
enumerators that can arise for even d are elements of the polynomial ring C[ϕ8, ψ2],
which is the ring of invariants for a complex reflection group contained with index 2
in GII (see the Appendix). For odd d, the polynomials ψd are more complicated
covariants of GII; we have ψ1 = ψ2ψ3 and ψ2

3 = ψ2(ϕ
3
8 − 108ξ24).

6 Zonal Harmonic Polynomials

We now introduce the zonal harmonic polynomials, a class ZD0 of discrete
harmonic polynomials analog to the zonal spherical harmonics mentioned at the
end of Sect. 2. Specifically, we fix some v̇ ∈ F

n
2 and some d with 0 ≤ d ≤ wt(v̇),

and determine the space ZD0
d ⊂ D0

d of degree-d discrete harmonic polynomials
invariant under coordinate permutations fixing v̇.

6.1 Preliminaries

Throughout, we fix v̇ ∈ F
n
2 . We denote by ZDd ⊂ Dd the space of degree-d discrete

homogeneous polynomials invariant under the group of coordinate permutations
fixing v̇, and set ZD0

d := ZDd ∩D0
d . We say that a polynomial in ZD0

d is a zonal
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harmonic polynomial of degree d, and we define the space ZD0 of zonal harmonic
polynomials by

ZD0 :=

wt(v̇)⊕

d=0

ZD0
d . (6.1)

6.1.1 Generators of ZDd

We now fix some d with 0 ≤ d ≤ wt(v̇) and let

C1;v̇ := {j : v̇j = 1}, C0;v̇ := {j : v̇j = 0}.
Now, we denote by Qd,k;v̇(v) the degree-d discrete polynomial

Qd,k;v̇(v) :=
∑

{j1,...,jk}⊆C1;v̇
{jk+1,...,jd}⊆C0;v̇

(−1)(vj1+···+vjk )+(vjk+1
+···+vjd )

=
∑

{j1,...,jk}⊆C1;v̇
{jk+1,...,jd}⊆C0;v̇

(−1)vj1 · · · (−1)vjk · (−1)vjk+1 · · · (−1)vjd ∈ Dd.

(6.2)

The sum is nonempty for all d (0 ≤ d ≤ wt(v̇)) since |C1;v̇| = wt(v̇) and |C0;v̇| =
n− wt(v̇).

By construction, it is clear that Qd,k;v̇ ∈ ZDd. Conversely, we have the
following lemma.

Lemma 6.1. The polynomials {Qd,k;v̇} d
k=0 generate ZDd.

Proof. The result follows immediately from the requirement that any Q ∈ ZDd

be invariant under all permutations simultaneously permuting the wt(v̇) nonzero
coordinates of v̇ and the n−wt(v̇) vanishing coordinates in v̇, together with the fact
that the multilinear monomials in the variables (−1)vj are a basis for D . �

Additionally, we have a combinatorial formula for Qd,k;v̇(v).

Proposition 6.2. We have

Qd,k;v̇(v) =

(
k∑

i=0

(−1)i
(
wt(v ∩ v̇)

i

)(
wt(v̇)− wt(v ∩ v̇)

k − i
))
×

(
d−k∑

i=0

(−1)i
(
wt(v)− wt(v ∩ v̇)

i

)(
(n− wt(v̇))− (wt(v)− wt(v ∩ v̇))

d− k − i
))

.

(6.3)
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The proof of Proposition 6.2 is immediately obtained from evaluation of the
expression (6.2) for Qd,k;v̇.

6.1.2 The Action of X̃′ on Qd,k;v̇

Now, we determine the action of X̃′ on the polynomials {Qd,k;v̇}wt(v̇)
k=0 .

Lemma 6.3. We have

X̃′Qd,k;v̇ =
(
(n−wt(v̇))− (d− k− 1)

)
Qd−1,k;v̇ +

(
wt(v̇)− (k− 1)

)
Qd−1,k−1;v̇.

(6.4)

Proof. First, we observe that

X̃′ · ((−1)vj1+···+vjd
)
=

d∑

�=1

(−1)vj0+vj1+···+vj�−1
+vj�+1

+···+vjd+vjd+1 , (6.5)

where we have used the convention that vj0 = 0 = vjd+1
.16 It then follows from

(6.5) that

X̃′Qd,k;v̇ = bk ·Qd−1,k;v̇ + bk−1 ·Qd−1,k−1;v̇

for constants bk, bk−1 ∈ Z. To see that

bk−1 = wt(v̇)− (k − 1),

we observe that each monomial term in Qd−1,k;v̇ can arise from wt(v̇) − (k − 1)
different monomial terms in Qd,k;v̇. Likewise, we obtain

bk = (n− wt(v̇))− (d− k − 1). �

6.2 Determination of the Zonal Harmonic Polynomials

We now combine Lemma 6.1 and Lemma 6.3 to characterize ZD0
d .

Proposition 6.4. IfQ ∈ ZD0
d , thenQ = b0 ·Qd;v̇ for some constant b0 ∈ C, where

Qd;v̇(v) :=

d∑

k=0

(−1)k
(

k−1∏

�=0

(n− wt(v̇))− (d− �− 1)

wt(v̇)− �

)
Qd,k;v̇(v). (6.6)

16To avoid having to adopt this convention, we could have used the slightly more standard notation
∑d

�=1(−1)vj1+···+v̂j�
+···+vjd . We opt not to use this notation because it conflicts with our usage

of ·̂ for the discrete Fourier transform.
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Proof. We consider some Q ∈ ZD0
d = ZDd ∩ D0

d . By Lemma 6.1, there exist

constants {bk}wt(v̇)
k=0 ⊂ C such that

Q =

wt(v̇)∑

k=0

bk ·Qd,k;v̇.

Since Q ∈ D0
d , we have

0 = X̃′Q = X̃′

⎛

⎝
wt(v̇)∑

k=0

bk ·Qd,k;v̇

⎞

⎠ =

wt(v̇)∑

k=0

bk · X̃′Qd,k;v̇

=

wt(v̇)∑

k=0

bk·
(
((n−wt(v̇))−(d−k−1))Qd−1,k;v̇ +

(
wt(v̇)−(k−1))Qd−1,k−1;v̇

)

=

wt(v̇)∑

k=0

(
bk
(
(n− wt(v̇))− (d− k − 1)

)
+ bk+1(wt(v̇)− (k))

)
Qd−1,k;v̇.

(The penultimate equality follows from Lemma 6.3.) By comparing coefficients, we
then obtain

bk+1 = − (n− wt(v̇))− (d− k − 1)

wt(v̇)− k bk

for each k (0 ≤ k ≤ wt(v̇)− 1); the result follows. �
Corollary 6.5. For each d (0 ≤ d ≤ wt(v̇)), we have dim(ZD0

d ) = 1.

7 t-Designs and Extremal Type II Codes

A t-(n,w, λ)-design is a (possibly empty17) collection D of distinct w-element
subsets of {1, . . . , n} with the property that |{S′ ∈ D : S ⊆ S′}| = λ for every
S ⊂ {1, . . . , n} with |S| = t. This generalizes the notion of a Steiner system, which
is a t-(n,w, 1) design. For example, the codewords of weight 4 in the extended
Hamming code form a 3-(8, 4, 1)-design, and the codewords of weight 12 in the
extended binary Golay code form a 5-(24, 12, 48) design. We shall see that these
are special cases of behavior common to all extremal Type II codes. When n, w,
and λ are undetermined or clear from context, we omit the qualifier “(n,w, λ)” and
simply refer to a t-(n,w, λ)-design as a t-design. (See [CvL91] for more about
t-designs, their uses and their relations with error-correcting codes.)

17Again we allow D = ∅, which is a t-(n, w, 0)-design for all t and w. As with spherical designs,
for most applications only nonempty D are of interest, but allowing empty designs simplifies the
statements of the results relating codes with combinatorial designs.
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7.1 An Equivalent Characterization of t-Designs

Each S′ ∈ D may be represented by its indicator vector (c1, . . . , cn), in which
cj = 1 if and only if j ∈ S′. Thus, a t-(n,w, λ)-design D corresponds to a subset
of the Hamming sphere of radius w,

σw := {v ∈ F
n
2 : wt(v) = w}.

We henceforth treat this representation ofD as completely equivalent to the setwise
representation of D, using the relevant terminology interchangeably.

We now introduce the following equivalent characterization of t-designs.

Proposition 7.1. A set D ⊆ σw is a t-design if and only if

∑

v∈D

Q(v) = 0

for all Q ∈ ⋃t
d=1 D0

d .

Proposition 7.1 is equivalent to Theorem 7 of Delsarte [Del78]. Our development
of D0 leads to a new proof of this result, which we present below. In Sect. 7.2,
we apply Proposition 7.1 to prove a special case of the Assmus–Mattson theorem
[AM69].

Throughout this section, we write χX for the characteristic function of the set X ,
and recall that H̃ denotes the action of H on V ⊗n

1 ,

H̃ :=
∑

( 1 0
0 1 )⊗ · · · ⊗ H⊗ · · · ⊗ ( 1 0

0 1 ) . (7.1)

We begin with a lemma regarding projections of functionsQ ∈ D to the Hamming
sphere σw.

Lemma 7.2. For Q ∈ D , we have χσw
Q = πn−2w(Q), where πn−2w(Q) is the

projection of Q to the n− 2w eigenspace of the action of H̃ on V ⊗n
1 .

Proof. This is immediate because the 1- and (−1)-eigenspaces of H are respectively
spanned by {( 10 )} and {( 01 )}. �

We now demonstrate Proposition 7.1.

Proof of Proposition 7.1. We denote by O the subset of V ⊗n
1 consisting of tensor

products of t copies of ( 01 ) or ( 10 ) and n− t copies of ( 11 ). It is clear that O spans
Dd for any d (0 ≤ d ≤ t). Now, the set D is a t-design if and only if, for all R ∈ O ,

|σw| · (χD, R) = |D| · (χσw
, R),
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where |·| is the cardinality function and (·, ·) is the inner product. It therefore suffices
to show that the set {χσw

R : R ∈ O} is spanned by

t⋃

d=0

{χσw
Q : Q ∈ D0

d}.

By the second part of Proposition 4.4, any R ∈ O may be written in the form

R =

t∑

j=0

(Ỹ′)jQj ,

with Qj ∈
⊕t−j

d=0 D0
d . By Lemma 7.2 and the hypothesis, it then only remains to

demonstrate that πn−2w((Ỹ′)jQj) and πn−2w(Qj) are related by a constant factor
i.e., that for each j = 0, . . . , t, we have

πn−2w((Ỹ′)jQj) = b · πn−2w(Qj) (7.2)

for some constant b depending on both j and t.
Now, given any Q ∈ D0

d , we see by the third part of Proposition 4.4 that the
polynomials (Ỹ′)kQ (0 ≤ k ≤ n − 2d) span an irreducible representation of
sl2 isomorphic to Vn−2d. We may regard this representation as degree n − 2d
homogeneous part of the polynomial algebra C[u0, u1] with generators u0, u1 and
with actions of X′,H′,Y′ respectively given by

u′0
∂

∂u′1
,

(
u′0

∂

∂u′0
− u′1

∂

∂u′1

)
, u′1

∂

∂u′0
, (7.3)

where u′0 = u0 + u1 and u′1 = u0 − u1. With this identification, we may take
Q = (u′0)n−2d, as

Q ∈ ker
(
X̃′ : D0

d → D0
d−1

)
.

We now show that πn−2w((Ỹ′)kQ) and πn−2w(Q) are related by a constant factor
for each k (0 ≤ k ≤ n− 2d); the desired expression (7.2) follows. We observe that
H acts as

u0
∂

∂u0
− u1 ∂

∂u1
. (7.4)

Therefore, πn−2w(Q) = πn−2w((u0 + u1)
n−2d) equals

(
n−2d
w−d

)
u
n−(d+w)
0 uw−d

1 . To

see this, note that πn−2w((u0 + u1)
n−2d) =

(
n−2d
b1

)
ub00 u

b1
1 with b0 + b1 = n− 2d

and b0−b1 = n−2w. (The latter statement follows from the definition of πn−2w(·).)
Likewise,

πn−2w((Ỹ′)kQ) = πn−2w((Ỹ′)k(u0 + u1)
n−2d)

is the un−(d+w)
0 uw−d

1 component of (Ỹ′)k(u0 + u1)
n−2d. Since this component is

equal to
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u
n−(d+w)
0 uw−d

1 = πn−2w(Q)

up to a constant factor, we are done. �
Remark. The constant relating πn−2w((Ỹ′)kQ) and πn−2w(Q) in the proof of

Proposition 7.1 is obtained directly from the identification of
{
(Ỹ′)kQ

}n−2d

k=0
with

Vn−2d. Consequently, this constant is independent of the choice of Q ∈ D0
d .

Proposition 7.1 leads to another equivalent characterization of t-designs which
makes the analogy between t-designs and spherical t-designs explicit. We have the
following corollary, which is equivalent to Theorem 6 of Delsarte [Del78].

Corollary 7.3. A set D ⊆ σw is a t-design if and only if

∑

v∈D

Q(v) =
|D|
|σw|

∑

v∈σw

Q(v) (7.5)

for all Q ∈ ⋃t
d=0 Dd.

Proof. As (7.5) is immediate when Q is constant, the result follows directly from
Proposition 7.1 and the second part of Proposition 4.4. �

Finally, we note that the proof of Proposition 7.1 shows that each Q ∈ D0
d is

supported on
⋃n−d

w=d σw. This fact leads to a second proof of Corollary 5.6.

Alternate Proof of Corollary 5.6. As Q ∈ D0
d is supported on

⋃n−d
w=d σw, we

know that

WC,Q(x, y) =

n∑

w=0

⎛

⎜⎝
∑

c∈C
wt(c)=w

Q(c)

⎞

⎟⎠ xn−wyw =

n−d∑

w=d

⎛

⎜⎝
∑

c∈C
wt(c)=w

Q(c)

⎞

⎟⎠ xn−wyw.

The result then follows immediately. �

7.2 The Extremal Type II Code Case of the Assmus–Mattson
Theorem

To illustrate the power of Proposition 7.1, we now prove the Assmus–Mattson
theorem [AM69] in the important special case of an extremal Type II code, that
is, a binary linear code C whose minimal (nonzero) weight

min(C) := min{wt(c) : c ∈ C, c 
= 0}
attains the upper bound 4�n/24�+ 4 derived by Mallows and Sloane [MS73] from
Gleason’s theorem for Type II codes.
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For any code C and integer w, we define Cw to be the subset of C consisting of
codewords of weight w. For n ≡ 0 mod 8, we define t(n) by

t(n) :=

⎧
⎪⎪⎨

⎪⎪⎩

5 n ≡ 0 mod 24,

3 n ≡ 8 mod 24,

1 n ≡ 16 mod 24.

(7.6)

Theorem 7.4. If C is an extremal Type II code of length n, then Cw is a t-design
for each t ≤ t(n) and any w.

By Proposition 7.1, this theorem follows quickly from the following result, which
is slightly more general and is a coding-theoretic analog of the r > 0 part of
Theorem 2.15.

Proposition 7.5. If C is an extremal Type II code of length n, then for any w and
any choices of d ∈ {1, . . . , t(n)} ∪ {t(n) + 2} and Q ∈ D0

d , we have

∑

c∈Cw

Q(c) = 0.

Proposition 7.5 was originally proven by Calderbank and Delsarte [CD93].
Here, we demonstrate how Proposition 7.5 follows quickly from Theorem 5.7.
This approach is due to Bachoc [Bac99]. Our exposition of this argument slightly
expands that of Bachoc [Bac99], which demonstrates only four cases of the result.

Proof of Proposition 7.5. We let d ∈ {1, . . . , t(n)} ∪ {t(n) + 2} and Q ∈ D0
d .

Then, we consider the harmonic weight enumerator WC,Q(x, y). By Theorems 5.1

and 5.7, we see that WC,Q(x, y)/(xy)
d is of the form ξ

(min(C)−d−bd)/4
24 · f , where

bd equals the valuation at y of ψd. This factor arises because the valuation at y of
WC,Q(x, y) is at least min(C).

We see that if WC,Q(x, y) is nonzero, then it has degree equal to

(n mod 24) + 4d− 24 (7.7)

if d ≡ 0 mod 2. Similarly, f has degree

(n mod 24) + 4d− 36 (7.8)

if d ≡ 1 mod 2. Since (7.7) and (7.8) are always negative for d ∈ {1, . . . , t(n)} ∪
{t(n) + 2}, we must have f ≡ 0, whence

n∑

w=0

(
∑

c∈Cw

Q(c)

)
xn−wyw =WC,Q(x, y) ≡ 0. �

We note the following special case of Proposition 7.1 which is relevant to our
proofs of configuration results in Sect. 9.
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Corollary 7.6. IfC is an extremal Type II code of lengthn andw > 0, then we have

∑

c∈Cw

Qt;v̇(c) = 0

for any t ∈ {1, . . . , t(n)} ∪ {t(n) + 2}.
Remarks. As Bachoc [Bac99] illustrates, it is possible to prove the full Assmus–
Mattson theorem with a harmonic weight enumerator argument similar to that used
in the proof of Proposition 7.5. We have focused on the case of an extremal Type II
code because the full force of Corollary 7.6 is required in Sect. 9.

8 The Koch Condition on Type II Codes of Length 24

8.1 Tetrad Systems

For any code C and integer w, we define Cw(C) to be the linear subcode of C
generated by the set Cw ⊆ C consisting of codewords of weight w. (This notation
is analogous to that of Ozeki [Oze86b] for lattices.)

For a doubly even code C ⊂ F
n
2 , the set C4 is called the tetrad system of C. In

analogy with the theory of root systems for lattices, the code C4(C) generated by
C4 is called the tetrad subcode of C, and if C4(C) = C then C is called a tetrad
code. The irreducible tetrad codes are exactly

• the codes d2k (k ≥ 2), consisting of all words c ∈ F
2k
2 of doubly even weight

such that c2j−1 = c2j for each j = 1, 2, . . . , k;
• the [7, 3, 4] dual Hamming code, called e7 in this context; and
• the [8, 4, 4] extended Hamming code, here called e8

(see [Koc87]). We use the names d2k , e7, e8 because the Construction A lattices
Ld2k

, Le7 , and Le8 are isomorphic with the root lattices D2k, E7, and E8

respectively.
Analogous to the Coxeter number of an irreducible root system, we define the

tetrad number η(C) of an irreducible tetrad code C of length m to be |C4|/m. A
quick computation shows that each of the m coordinates of C takes the value 1 on
exactly 4η(C) words inC4, and that η(d2k) = (k−1)/4 for each k, while η(e7) = 1
and η(e8) = 7/4.

8.2 Koch’s Tetrad System Condition

Through appeal to the condition of Venkov [Ven80] restricting the possible root
systems of Type II lattices of rank 24, Koch [Koc87] obtained a condition on the
tetrad systems of Type II codes of length 24. Specifically, he showed the following
result.
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Proposition 8.1. IfC is a Type II code of length 24, thenC has one of the following
nine tetrad systems:

∅, 6d4, 4d6, 3d8, 2d12, d24, 2e7 + d10, 3e8, e8 + d16. (8.1)

Koch recovered this condition from the Niemeier [Nie73] classification of Type II
lattices of rank 24 via Construction A. The condition is also a consequence of the
classification of Type II codes of length 24 given by Pless and Sloane [PS75].

8.3 A Purely Coding-Theoretic Proof of Koch’s Condition

Here, we present our proof [EK10] of Proposition 8.1 using the theory of harmonic
weight enumerators. This argument is closely analogous to that of Venkov [Ven80]
for the corresponding criterion on root systems of Type II lattices of rank 24. We thus
begin with a coding-theoretic analog of [Ven80, Proposition 1].

Lemma 8.2. If C is a Type II code of length 24, then

• either C4 = ∅ or for each j (1 ≤ j ≤ 24) there exists c ∈ C4 such that cj = 1,
and

• each irreducible component of C4(C) has tetrad number equal to |C4|/24.

Proof of Lemma 8.2. For each j (1 ≤ j ≤ n), we denote by Q1,j,n the discrete
harmonic polynomial defined by

Q1,j,n(v) := n · (−1)vj −
n∑

k=1

(−1)vk ∈ D0
1 . (8.2)

As in the proof of Proposition 7.5, we see that the harmonic weight enumerator

WC,Q1,j,24(x, y) =

24∑

w=0

(
∑

c∈Cw

Q1,j,24(c)

)
x24−wyw (8.3)

vanishes for each j (1 ≤ j ≤ 24). We then obtain
∑

c∈C4

(8− 48cj) = 0 (8.4)

for each j (1 ≤ j ≤ 24), since the left-hand side of (8.4) is the x20y4 coefficient of
the right-hand side of (8.3). Reorganizing (8.4) shows that

|{c ∈ C4 : cj = 1}| = |C4|/6. (8.5)
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The first part of the lemma then follows. In the case that C4 
= ∅, we also obtain
from (8.5) that each irreducible component of C4(C) has tetrad number 1

4 |C4|/6 =
|C4|/24. �
Remark. Since the discrete harmonic polynomial Q1,j,n has degree 1 and is
invariant under the coordinate permutations that fix j, it is proportional to the zonal
harmonic polynomialQ1;v̇ where v̇ is the j-th unit vector.

Proof of Proposition 8.1. As noted in Sect. 8.1, there is at most one tetrad system
with tetrad number η for each η 
∈ {1, 7/4}, while for each η ∈ {1, 7/4} there are
exactly two tetrad systems with tetrad number η, with η(d10) = η(e7) = 1 and
η(d16) = η(e8) = 7/4.

Now, Lemma 8.2 implies that if C4 
= ∅, then either C4 consists of μ copies of
the tetrad system d2k for some μ and k > 1 such that μ · 2k = 24, or it has one of
the following two forms:

• δ10d10 + ε7e7, with ε7 > 0 and 10δ10 + 7ε7 = 24, or
• δ16d16 + ε8e8, with ε8 > 0 and 16δ16 + 8ε8 = 24.

The resulting tetrad systems are precisely the eight nonempty systems listed
in (8.1). �

9 Configurations of Extremal Type II Codes

Let C be an extremal Type II code of length n = 8, 24, 32, 48, 56, 72, or 96. Set
w0 = min(C), so that w0 = 4, 8, 8, 12, 12, 16, or 20 respectively. We prove that C
is generated byCw0 . Our approach uses the harmonic weight enumerator machinery
developed in Sect. 5, following the approach used for lattices in [Ven84], [Oze86a],
[Oze86b], and [Kom09a].

First, we present a few preliminaries. For any v̇ ∈ F
n
2 and any j (0 ≤ j ≤ n), we

denote by Nj(C; v̇) the value

Nj(C; v̇) := |{c ∈ Cw0 : wt(c ∩ v̇) = j}| . (9.1)

Lemma 9.1. If ċ is a minimal-weight representative of the class [ċ] ∈ C/Cw0(C)
and c ∈ Cw0 , we have the inequality

wt(c ∩ ċ) ≤ w0

2
.

Proof. This follows quickly, because if wt(c ∩ ċ) > w0/2, then [ċ] contains a
codeword c+ ċ of weight

wt(c+ ċ) = wt(c) + wt(ċ)− 2wt(c ∩ ċ) < wt(ċ).

This contradicts the minimality of ċ in [ċ]. �
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We now prove our configuration result for Type II codes of lengths n = 48
and 72. The corresponding results for the remaining values of n are presented in
[EK12] and [Kom09b].

Theorem 9.2. If C is an extremal Type II code of length n = 48 or 72, then

C = Cw0(C).

Proof. We consider the equivalence classes of C/Cw0(C) and assume for the sake
of contradiction that there is some class [ċ] ∈ C/Cw0(C) with minimal-weight
representative ċ for which wt(ċ) = s > w0.

As C is self-dual, we have Nj(C; c) = 0 for all odd j. Additionally, by
Lemma 9.1, we must have N2j′(C; ċ) = 0 for j′ > w0/4. We now develop a
system of equations in the

w0

4
+ 1

variables N0(C; ċ), N2(C; ċ), . . . , Nw0/2(C; ċ). One such equation is

N0(C; ċ) +N2(C; ċ) + · · ·+Nw0/2(C; ċ) = |Cw0 |; (9.2)

Corollary 7.6 with v̇ = ċ yields t(n) + 1 more. This yields a system of

t(n) + 2 >
w0

4
+ 1

equations in the variables N2j′(C; ċ) (0 ≤ j′ ≤ w0/4).
For n = 48, 72, the (extended) determinants of these inhomogeneous systems are

226355271112232431471
(
11s3−396s2+4906s−20736

(s−3)(s−2)2(s−1)3s3
)
, (9.3)

242355272112131173232672711
(
39s4−2600s3+67410s2−800440s+3650496

(s−4)(s−3)2(s−2)3(s−1)4s4
)
,

(9.4)

respectively18; these determinants must vanish, as they are derived from overdeter-
mined systems. Since equations (9.3) and (9.4) have no integer roots s, we have
reached a contradiction. �
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Appendix A. Proof of Gleason’s Theorems for Binary Codes

Let GI be the subgroup of GL2(C) generated by
(
1 0
0 −1

)
and 2−1/2

(
1 1
1 −1

)
, and let

GII be the subgroup of GL2(C) generated by ( 1 0
0 i ) and 2−1/2

(
1 1
1 −1

)
. We have

seen, using (3.7) for the second generator, that if C is a binary code of Type I
(respectively Type II) then its weight enumerator WC is contained in the subring
of C[x, y] invariant under linear substitutions with matrices in GI (resp. GII). Here
we show that the GI invariants are generated by x2 + y2 and δ8 := x2y2(x2− y2)2,
and the GII invariants are generated by ϕ8 = We8(x, y) = x8 + 14x4y4 + y8

and ξ24 = x4y4(x4 − y4)4. Note that these are consistent with GI ⊂ GII because
ϕ8 = (x2 + y2)4 − 4δ8.

We first show that GI, and thus also GII, contains the signed permutation
subgroup of GL2(C), which is isomorphic with the eight-element dihedral group
and is generated by

(
1 0
0 −1

)
and ( 0 1

1 0 ). Indeed19 GI �
(
1 0
0 −1

)
= ( 1 0

0 i )
2, and

we calculate that ( 0 1
1 0 ) is the conjugate of

(
1 0
0 −1

)
by 2−1/2

(
1 1
1 −1

)
. Clearly a

polynomial in x, y is invariant under the four matrices
(±1 0

0 ±1

)
if and only if it is

a polynomial in x2 and y2. To be invariant also under ( 0 1
1 0 ) it must be a symmetric

polynomial in x2 and y2. Thus the invariants under this dihedral group are the
polynomials in x2 + y2 and x2y2.

We can already find theGI-subring. Since the involution 2−1/2
(
1 1
1 −1

)
fixes x2+

y2 and takes x2y2 to (x2− y2)2/4, it follows that the weight enumerator of a Type I
code is a polynomial in x2+y2, x2y2+(x2−y2)2/4, and x2y2(x2−y2)2/4. Using
the identity x2y2 + (x2 − y2)2/4 = (x2 + y2)2/4, we dispense with the second of
those three generators, and recover Gleason’s theorem for self-dual binary codes C
(whether of Type I or Type II): the weight enumerator of such a code is a polynomial
in x2 + y2 and δ8.

To find instead the GII invariants, we next adjoin the matrix i ( 1 0
0 1 ). We first

show that this matrix is contained in the scalar subgroup of GII. We claim that the
scalars in GI are the 8-th roots of unity. Any scalar matrix μ ( 1 0

0 1 ) has determinant

19In the coding context we could also show directly that WC is invariant under
(
0 1
1 0

)
, that is, that

WC(x, y) = WC(y, x). Any binary linear code C satisfies WC(x, y) = WC(y, x) if and only
if C contains the all-1s vector 1: in the forward direction, the number of weight n codewords is
WC(0, 1), while WC(1, 0) = 1 always; in the reverse direction, translation by 1 gives for each w
a bijection between the codewords of weight w and the codewords of weight n−w. But we noted
already that a self-dual code, whether of Type I or Type II, contains 1.
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μ2, and our generators ofGII have determinants i and−1, so μ ( 1 0
0 1 ) ∈ GII implies

μ8 = 1. All such μ appear because GII contains

(
2−1/2

(
1 1
1 −1

)
( 1 0
0 i )

)3

= 2−3/2(2 + 2i) ( 1 0
0 1 ) = eπi/4 ( 1 0

0 1 ) . (A.1)

(The invariance ofWC under eπi/4 ( 1 0
0 1 ) already shows that 8 | n.) In particularGII

contains i ( 1 0
0 1 ). This transformation fixes x2y2 and takes x2 + y2 to −(x2 + y2).

Hence the polynomials invariant under the signed permutation group and i ( 1 0
0 1 ) are

precisely the polynomials in x2y2 and (x2 + y2)2.
LetQ1 = (x2+y2)2,Q2 = −4x2y2, andQ3 = −(Q1+Q2) = −(x2−y2)2. We

next find elements of GII that permute the Qj . One is ς := e−3πi/4 · 2−1/2
(
1 1
1 −1

) ·
( 1 0
0 i ), which is a 3-cycle contained inGII by (A.1). We calculate that ς permutes the
Qj cyclically. The other is the diagonal matrix eπi/4 ( 1 0

0 i ), which takes Q2 to itself
and Q1, Q3 to each other. Thus the subring of C[x, y] invariant under the subgroup
of GII generated by signed permutations, i ( 1 0

0 1 ), ς , and eπi/4 ( 1 0
0 i ) consists of the

polynomials in Q1, Q2, Q3 invariant under arbitrary permutations. Since the three
Qj are independent but for the relation Q1 +Q2 +Q3 = 0, the invariant subring is
generated by their elementary symmetric functions of degrees 2 and 3. We calculate
that these are

Q1Q2 +Q3Q1 +Q2Q3 = −ϕ8 and Q1Q2Q3 = 4ψ2,

where ψ2 := x2y2(x4− y4)2 is the degree-12 invariant of (5.13). Thus the invariant
subring is C[ϕ8, ψ2]. Finally the scalar eπi/4 fixes ϕ8 and takes ψ2 to −ψ2, so the
subring of C[ϕ8, ψ2] invariant under eπi/4 is C[ϕ8, ψ

2
2 ]. Since ψ2

2 = ξ24, this proves
that any GII-invariant polynomial is contained in is C[ϕ8, ξ24].

While we proved only that C[ϕ8, ξ24] contains the invariant subring C[x, y]GII ,
we readily conclude that C[ϕ8, ξ24] = C[x, y]GII by verifying that both ϕ8 and ξ24
are invariant under GII. This can be checked either by direct computation of the
action of our generators 2−1/2

(
1 1
1 −1

)
and ( 1 0

0 i ), or by finding Type II codes Cn

of length n = 8 and n = 24 such that WC8 = ϕ8 and WC24 = ϕ3
8 + αξ24 for

some α 
= 0. We take for C8 the extended Hamming code, and for C24 the extended
Golay code or any of the other indecomposable Type II codes of length 24.
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the arithmetic and analytic theories of quadratic forms, aimed at a graduate-level
audience. The main themes discussed are: geometry and local-global methods, theta
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Introduction

These notes are an extension of the rough notes provided for my four lecture
graduate level course on “Quadratic Forms and Automorphic Forms” at the March
2009 Arizona Winter School on Quadratic Forms. They are meant to give a survey
of some aspects of the classical theory of quadratic forms over number fields and
their rings of integers (e.g. over Q and Z), and their connection with modular and
automorphic forms.
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are essentially a written version of the talks which have been filled out to include
precise references for all theorems and details of less well-known arguments with
the hope of enabling an eager graduate student to gain a working knowledge of the
basic ideas and arguments for each of the topics covered.

I would like to thank the organizers of the 2009 Arizona Winter School (David
Savitt, Fernando Rodriguez-Villegas, Matt Papanikolas, William Stein, and Dinesh
Thakur) for the opportunity to give these lectures, as well as all of the students
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Pete L. Clark, Danny Krashen, Rishikesh, Robert Varley and the anonymous referee
when proofreading of these notes. Finally, a special thank you to Krishna Alladi
for his multi-year efforts to organize this volume and bring it to publication in its
present form.

I am grateful to MSRI for their hospitality and 24-hour library access during the
Spring 2011 semester, during which the final version of these notes were written and
many of the references were added. I also acknowledge the support of NSF Grant
DMS-0903401 during the Winter School and while these notes were being written.

For a more lively (but perhaps less precise) introduction to this material, the
reader is encouraged to view videos of the lectures online at the Arizona Winter
School webpage

http://swc.math.arizona.edu/aws/09/

Any further information relating to the published version of these notes will be
posted on my website

http://jonhanke.com
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1 Background on Quadratic Forms

1.1 Notation and Conventions

We let Z, Q, R, C denote the usual integers, rational numbers, real numbers, and
complex numbers, and also denote the natural numbers as N := Z>0 := {1, 2, · · · }.
We say that an n×n matrixA = (aij) ∈Mn(R) over a ring R is even if aii ∈ 2R,
and symmetric if aij = aji for all 1 ≤ i, j ≤ n. The symmetric matrices in Mn(R)
are denoted by Symn(R). We denote the trivial (mod 1) Dirichlet character sending
all integers to 1 by 1. In analytic estimates, it is common to use the notationX  Y
to mean that X > C · Y for some (implied) constant C ∈ R > 0.

Suppose R is an integral domain and V is a (finite dimensional) vectorspace
over its field of fractions F . By a lattice or R-lattice in V we will mean a finitely
generated R-module over R that spans V . In particular, notice that we will always
assume that our lattices have full rank in V .

If F is a number field (i.e. a finite field extension of Q), then we define a place
or normalized valuation of F to be an equivalence class of metrics | · |v on F
that induce the same topology on F . We implicitly identify v with the distinguished
metric in each class agreeing with the usual absolute value when Fv = R or C,
and giving |p|v = |Ov/pOv| when v is non-archimedean and Fv has valuation ring
Ov with maximal ideal p. If p ∈ N with (p) = p ∩ Z then we have an associated
valuation on F×

v given by ordv(·) := − logp(·) = ordp(·). We define a (non-zero)
squareclass of a field K to be an element of K×/(K×)2, and when K is a non-
archimedean local field then the valuation ordv descends to give a (Z/2Z)-valued
valuation on squareclasses.

We say that anR-valued quadratic form over a (commutative) ringR is primitive
if the ideal generated by its values (Q(R)) is R and we say that Q represents
m if m ∈ Q(R). Given a quadratic space (V,Q) of dimension n over a field F ,
we define the orthogonal group O(V ) := OQ(V ) to be the set of invertible linear
transformations L : V → V so that Q(L(�v)) = Q(�v) for all �v ∈ V . Given a
basis of V , O(V ) can be realized as a subset of GLn(F ). We also define the special
orthogonal group SO(V ) := O+(V ) as the (orientation-preserving) subgroup of
O(V ) having determinant 1.

In these notes we will study aspects of the theory of quadratic forms over rings
R and fields F of characteristic char(·) 
= 2 (i.e. where 1 + 1 
= 0). While one
can discuss quadratic forms in characteristic 2, we can no longer equate them with
symmetric bilinear forms, so the theory there is more complicated. For references
valid in characteristic 2, we refer the reader to [Kap03, Knu91, EKM08, Bak81,
Sah60].

Our main interest is in quadratic forms over the field Q, the ring Z, and their
completions, though we may consider a more general setting (e.g. a number field
and its ring of integers) when there are no additional complications in doing so.
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1.2 Definitions of Quadratic Forms

In this section we give some basic definitions and ideas used to understand quadratic
forms and the numbers they represent. We define a quadratic form Q(�x) over a
ring R to be a degree 2 homogeneous polynomial

Q(�x) := Q(x1, · · · , xn) :=
∑

1≤i≤j≤n

cijxixj

in n variables with coefficients cij in R.
When division by 2 is allowed (either in R or in some ring containing R) we

can also consider the quadratic form Q(�x) as coming from the symmetric Gram
bilinear form

B(�x, �y) :=
∑

1≤i,j≤n

bijxiyj =
t�xB �y (1.1)

via the formula Q(�x) = B(�x, �x) = t�xB �x, where the matrix B := (bij) and
bij = 1

2 (cij + cji) (with the convention that cij = 0 if i > j). We refer to the
symmetric matrix B = (bij) as the Gram matrix of Q. It is common to relate a
quadratic formQ(�x) to its Gram bilinear formB(�x, �y) by the polarization identity

Q(�x+ �y) = B(�x+ �y, �x+ �y)

= B(�x, �x) + 2B(�x, �y) +B(�y, �y) (1.2)

= Q(�x) + 2B(�x, �y) +Q(�y).

From either of these formulas for B(�x, �y), we see that the matrix B ∈ 1
2Symn(R).

Since often 1
2 /∈ R, it is somewhat unnatural to consider the Gram bilinear

form since it is not an object defined over R. However the Hessian bilinear form
H(�x, �y) := 2B(�x, �y) is defined over R and can be seen to be very naturally
associated to the quadratic form Q(�x) by the polarization identity. This definition
is motivated by the fact that the matrix H := 2B ∈ Symn(R) of the Hessian
bilinear form is the Hessian matrix of second order partial derivatives of Q(�x) (i.e.
H = (Hij) where aij = ∂

∂xi

∂
∂xj

Q(�x)). For this reason, it is often preferable to use
the Hessian formulation when working over rings, and in particular when R = Z.
Notice that the diagonal coefficients hii of the Hessian matrix are even, so H is
actually an even symmetric matrix. In the geometric theory of quadratic forms the
Hessian bilinear form is often referred to as the polar form ofQ because of its close
connection with the polarization identity (see [EKM08, p. 39]).

Another perspective on quadratic forms is to think of them as free quadratic
R-modules, by which we mean an R-moduleM ∼= Rn equipped with a “quadratic
function”

Q :M → R
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which is a function satisfying

1. Q(a�x) = a2Q(�x) for all a ∈ R, and for which
2. H(�x, �y) := Q(�x+ �y)−Q(�x)−Q(�y) is a bilinear form.

This perspective is equivalent to that of a quadratic form because one can recover
the quadratic form coefficients from cii = Q(�ei), and when i < j we have cij =
H(�ei, �ej).

In the case when R = Z, this perspective allows us to think of Q as a “quadratic
lattice” which naturally sits isometrically in a vector space over Q that is also
equipped with a quadratic form Q. More precisely, we define a quadratic space
to be a pair (V,Q) where V is a finite-dimensional vector space over F and Q is a
quadratic form on V . We say that a module M is a quadratic lattice if M is a (full
rank) R-lattice in a quadratic space (V,Q) over F , where F is the field of fractions
of R. Notice that we can always realize a quadratic form Q(�x) over an integral
domainR as being induced from a free quadratic latticeRn in some quadratic space
(V,Q), by thinking of Q as a function on V = Fn where F is the fraction field of
R. (Note: However if R is not a principal ideal domain then there will exist non-free
quadratic lattices, which cannot be described as quadratic forms!)

We say that a quadratic form Q(�x) is R-valued if Q(Rn) ⊆ R. From the
polarization identity we see that Q(�x) is R-valued iff Q(�x) is defined over R (i.e.
all coefficients cij ∈ R) because cij = H(�ei, �ej) when i 
= j and cii = Q(�ei).

1.3 Equivalence of Quadratic Forms

Informally, we would like to consider two quadratic forms as being “the same” if we
can rewrite one in terms of the other by a change of variables. More precisely, we say
that two quadratic forms Q1 and Q2 are equivalent over R, and write Q1 ∼R Q2,
if there is an invertible linear change of variables φ(�x) with coefficients in R so that
Q2(�x) = Q1(φ(�x)). We can represent φ(�x) (with respect to the generators �ei of
the free module Rn) as left-multiplication by an invertible matrix M over R – i.e.
M ∈Mn(R) and

φ(�x) =M�x.

Expressing this equivalence in terms of the associated Hessian and Gram matrices,
we see that composition with φ gives the equivalence relations

H1 ∼R
tMH1M = H2 and B1 ∼R

tMB1M = B2 (1.3)

where
Qi(�x) =

1
2
t�xHi�x = t�xBi�x.

For quadratic lattices, the corresponding notion is to say that two quadratic R-
modules are equivalent if there is a R-module isomorphism between the modules
commuting with the quadratic functions (i.e. preserving all values of the quadratic
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function). Because thisR-module isomorphism preserves all values of the quadratic
function, it is often referred to as an isometry. We will see later that this idea of
thinking of equivalent quadratic lattices as isometric lattices in a quadratic space is
very fruitful, and can be used to give a very geometric flavor to questions about the
arithmetic of quadratic forms.

1.4 Direct Sums and Scaling

Two important constructions for making new quadratic forms from known ones are
the operations of scaling and direct sum. Given a ∈ R and a quadratic form Q(�x)
defined over R, we can define a new scaled quadratic form a ·Q(�x) which is also
defined over R. We can also try to detect if a quadratic form is a scaled version of
some other quadratic form by looking at its values, generated either as a bilinear
form or as a quadratic form. We therefore define the (Hessian and Gram) scale
and norm of Q by

ScaleH(Q) := {H(�x, �y) | �x, �y ∈ Rn} (1.4)

ScaleG(Q) := {B(�x, �y) | �x, �y ∈ Rn} (1.5)

Norm(Q) := {Q(�x) | �x ∈ Rn} (1.6)

and notice that ScaleH/G(a · Q) = a · ScaleH/G(Q) and Norm(a · Q) = a2 ·
Norm(Q).

Another useful construction for making new quadratic forms is to take the direct
sum of two given quadratic forms. Given Q1(�x1) and Q2(�x2) in n1 and n2 distinct
variables overR respectively, we define their (orthogonal) direct sum Q1 ⊕Q2 as
the quadratic form

(Q1 ⊕Q2)(�x) := Q1(�x1) +Q2(�x2)

in n1 + n2 variables, where �x := (�x1, �x2).

1.5 The Geometry of Quadratic Spaces

Quadratic forms become much simpler to study when the base ring R is a field
(which we denote by F ). In that case we know that all finite-dimensional R-
modules are free (i.e. every finite-dimensional vector space has a basis), and
that there is exactly one of each dimension n. This simplification allows us to
replace commutative algebra with linear algebra when studying quadratic forms,
and motivates our previous definition of a quadratic space as pair (V,Q) consisting
of a quadratic formQ on a finite-dimensional vector space V over F . We will often
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refer to any quadratic form (in n variables) over a field as a quadratic space, with the
implicit understanding that we are considering the vector space V := Fn. We also
often refer to an equivalence of quadratic spaces (over F ) as an isometry.

We now present some very useful geometric classification theorems about
quadratic spaces. To do this, we define the (Gram) inner product of �v1, �v2 ∈ V
as the value of the Gram symmetric bilinear form B(�v1, �v2).1 We say that two
vectors �v1, �v2 ∈ V are perpendicular or orthogonal and write �v1 ⊥ �v2 if their
inner product B(�v1, �v2) = 0. Similarly we say that a vector �v is perpendicular
to a subspace W ⊆ V if �v ⊥ �w for all �w ∈ W , and we say that two subspaces
W1,W2 ⊆ V are perpendicular if �w1 ⊥ �w2 for all �wi ∈ Wi.

Our first theorem says we can always find an orthogonal basis for V , which we
can see puts the (Gram/Hessian) matrices associated to Q in diagonal form:

Theorem 1.5.1 (Orthogonal splitting/diagonalization). Every quadratic space V
admits an orthogonal basis.

Proof. This is proved in Cassels’s book [Cas78, Lemma 1.4 on pp. 13–14], where
he refers to this as a “normal basis”. �

Given a quadratic space (V,Q), to any a choice of basis B := {�v1, . . . , �vn} for
V we can associate a quadratic form QB(�x) by expressing elements of V in the
coordinates of B:

B �−→ QB(�x) := Q(x1�v1 + · · ·xn�vn)
We can use this association to define the determinant det(Q) of (V,Q) as the
determinant det(B) of the Gram matrix B of the associated quadratic form QB(�x)
for some basis B. However since changing the basis B induces the equivalence
relation (1.3), we see that det(Q) is only well-defined up to multiplication by
det(M)2 ∈ K×, and so det(Q) gives a well-defined square-class in K/(K×)2.
We say that Q is degenerate if det(Q) = 0, otherwise we say that Q is non-
degenerate (or regular). By convention, the zero-dimensional quadratic space has
det(Q) = 1 and is non-degenerate.

Lemma 1.5.2. If a quadratic space (V,Q) is degenerate, then there is some non-
zero vector �v ∈ V perpendicular to V (i.e., �v ⊥ V ).

The next theorem states that we can always reduce a degenerate quadratic space
to a non-degenerate space by (orthogonally) splitting off a zero space (V,Q), which
we define to be a vector space V equipped with the identically zero quadratic form
Q(�x) = 0. Notice that a zero space has an inner product that is identically zero, so
it is always perpendicular to itself. (In the literature a zero space is often referred to
as a totally isotropic space.) We define the radical of a quadratic space (V,Q) as
the maximal (quadratic) subspace of V perpendicular to all �v ∈ V , which is just the
set of vectors perpendicular to all of V .

1We could also have defined an inner product using the Hessian bilinear form, but this choice is
less standard in the literature and the difference will not matter for our purposes in this section.
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Lemma 1.5.3 (Radical Splitting). Every quadratic space can be written as a
orthogonal direct sum of a zero space (the radical of the quadratic space) and a
non-degenerate space.

Proof. This is given in Cassels’s book [Cas78, Lemma 6.1 on p. 28]. �
We say that a non-zero vector �v ∈ V is isotropic if Q(�v) = 0 and say that

�v is anisotropic otherwise. Extending this definition to subspaces, we say that a
subspace U ⊆ (V,Q) is isotropic if it contains an isotropic vector, and anisotropic
otherwise. Notice that U is a totally isotropic subspace ⇐⇒ every non-zero vector
in U is isotropic.

For non-degenerate quadratic spaces, isotropic vectors play a key role because
of their close relation to the hyperbolic plane H2, which is defined as the two-
dimensional quadratic space (say with coordinates x and y) endowed with the
quadratic form Q(�x) = Q(x, y) = xy. We also refer to the orthogonal direct sum
of r hyperbolic planes as the hyperbolic space H2r, which has dimension 2r.

Theorem 1.5.4 (Totally Isotropic Splitting). Suppose (V,Q) is a non-degenerate
quadratic space. Then for every r-dimensional zero subspace U ⊆ V we can find
a complementary r-dimensional subspace U ′ ⊆ V so that V = U ⊕ U ′ ⊕W as
vector spaces, and (as quadratic subspaces) W is non-degenerate and U ⊕ U ′ is
equivalent to the hyperbolic space H2r.

Proof. This is shown in Lam’s Book [Lam05, Theorem 3.4(1–2), p. 10], or by
repeated application of [Cas78, Corollary 1, p. 15]. �

In the case thatW is isotropic, we can repeatedly apply this to split off additional
hyperbolic spaces until W is anisotropic. So we could have initially taken U to be a
totally isotropic subspace of maximal dimension in (V,Q), called a maximal totally
isotropic subspace, and then concluded that W was anisotropic.

Another particularly useful result about quadratic spaces is that there is a large
group of F -linear isometries of (V,Q), called the orthogonal group and denoted
as OQ(V ) or O(V ), that acts on (V,Q). We will see throughout these lectures that
the orthogonal group is very closely connected to the arithmetic of quadratic forms,
partly because of the following important structural theorem of Witt which classifies
isometric quadratic subspaces within a given quadratic space in terms of the orbits
of O(V ).

Theorem 1.5.5 (Witt’s Theorem). Suppose that U and U ′ are non-degenerate
isometric (quadratic) subspaces of a quadratic space V . Then any isometry α :
U → U ′ extends to an isometry α : V → V .

Proof. This is proved in almost every quadratic forms book, e.g. Cassels’s book
[Cas78, Theorem 4.1 on p. 21], Shimura’s book [Shi10, Theorem 22.2 on pp. 116–
117], and Lam’s book [Lam05, Theorems 4.2 and 4.7 on pp. 12–15]. �

Notice that Witt’s Theorem shows that the dimension of a maximal isotropic
subspace of a quadratic space (V,Q) is a well-defined number (independent of the
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particular maximal isotropic subspace of V that we choose), since otherwise we
could find an isometry of V that puts the smaller subspace properly inside the larger
one, violating the assumption of maximality.

1.6 Quadratic Forms over Local Fields

We now suppose that (V,Q) is a non-degenerate quadratic space over one of the
local fields F = R, C or Qp where p is a positive prime number. In this setting we
can successfully classify quadratic spaces in terms of certain invariants associated
to them. The major result along these lines is that in addition to the dimension and
determinant, at most one additional invariant is needed to classify non-degenerate
quadratic spaces up to equivalence.

Theorem 1.6.1. There is exactly one non-degenerate quadratic space over C of
each dimension n.

Proof. From the orthogonal splitting Theorem 1.5.1 we see that any such Q(�x) ∼C∑n
i=1 cix

2
i with ci ∈ C

×. However since C
× = (C×)2 every ci can be written as

some a2i , so we see that Q(�x) =
∑n

i=1(aixi)
2 ∼C

∑n
i=1 x

2
i . �

Theorem 1.6.2. The non-degenerate quadratic spaces over R are in 1 − 1 corre-
spondence with the pairs (n, p1) where 0 ≤ p1 ≤ n.

Proof. Since R× has two squareclasses±(R×)2, we see that the diagonal elements
can be chosen to be either 1 or −1. Since the dimension of a maximal totally
isotropic subspace is a well-defined isometry invariant, this characterizes the
number of (1,−1) pairs on the diagonal, and then the remaining diagonal entries all
have the same sign. Its orthogonal complement is anisotropic, and is either 1n−2r or
−1n−2r depending on the sign of the values it represents. �

In practice it is more standard to use the signature invariant p := p1 − p2
instead of p1, however they are equivalent for our purpose of giving a complete set
of invariants for quadratic spaces over R.

Theorem 1.6.3. The non-degenerate quadratic spaces over Qp are in 1 − 1
correspondence with the triples (n, d, c) where n = dim(Q) ∈ Z ≥ 0, d =
det(Q) ∈ Q

×
p /(Q

×
p )

2, and c ∈ {±1} is the Hasse invariant of Q, under the
restrictions that

1. c = 1 if either n = 1 or (n, d) = (2,−1), and also
2. (n, d, c) = (0, 1, 1) if n = 0.

Proof. This is proved in Cassels’s book [Cas78, Theorem 1.1 on p. 55]. �
Another area in which we can extract more information about quadratic forms

over local fields is in terms of the maximal anisotropic dimension of K , which
is defined to be the largest dimension of an anisotropic subspace of any quadratic
space over K . This is sometimes called the u-invariant of K .
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Theorem 1.6.4. The maximal anisotropic dimensions of C,R and Qp are 1,∞,
and 4.

Proof. Over C any form in n ≥ 2 variables is isotropic, and any non-zero form of
dimension 1 is anisotropic. Over R we see that Q(�x) =

∑n
i=1 x

2
i is anisotropic

for any n ∈ N. Over Qp any form in n ≥ 5 variables isotropic, and there
is always an anisotropic form in four variables arising as the norm form from
the unique ramified quaternion algebra over Qp (see [Lam05, Theorem 2.12 and
Corollary 2.11, p. 158]). �

In particular, over R says that it is possible for quadratic forms of any dimension
to be anisotropic, which means that either Q represents only positive or only
negative values (using a non-zero vector), and in these cases we say Q is positive
definite or negative definite respectively. When a non-degenerate Q is isotropic
over R then it must represent both positive and negative values, in which case we
say that Q is indefinite. For Qp there is no notion of positive and negative, but one
can concretely understand the u-invariant u(Qp) = 4 from the existence of certain
(non-split) quaternion algebras at every prime p, which will be discussed in more
detail in Sect. 3. The norm forms of these quaternion algebras assume all values of
F and do not represent zero non-trivially.

1.7 The Geometry of Quadratic Lattices: Dual Lattices

Quadratic lattices also have a kind of geometry associated to them that is a little
more subtle than the “perpendicular” geometry of subspaces of quadratic spaces.
Given a (full rank) quadratic lattice L (over R) in a quadratic space (V,Q) (over
the fraction field F of R), we can consider the elements of V where the linear form
H(·, L) is in any fixed ideal I of R.2 When R = F is a field, the only ideals are
F and (0); taking I = F imposes no condition, and taking I = (0) recovers the
notion of the orthogonal complement L⊥ of L. However when R 
= F then taking
I = R gives an interesting integral notion of “orthogonality” which is very useful
for making other lattices that are closely related to L.

We define the (Hessian) dual lattice L# of L to be the set of vectors in V that
have integral inner product with all �w ∈ L, i.e.

L# := {�v ∈ V | H(�v, �w) ∈ R for all �w ∈ L}.

Notice that if H(�x, �y) is R-valued for all �x, �y ∈ L then we have L ⊆ L#. When an
R-valued lattice L is free as anR-module, we also know that the matrix ofH in any

2For any subset S ⊆ V the set H(S,L) is an R-module, and so it is natural to consider maximal
subsets of V where H(S, L) is a fixed R-module. From the bilinearity of H, we see that these
maximal sets S are also R-modules.
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basis of L is symmetric with coefficients in R and even diagonal (i.e. all aii ∈ 2R),
so H is an even symmetric matrix. We then define the level of L to be the smallest
(non-zero) ideal n ⊆ R so that the matrices in nH−1 are also even. The level is a
very useful invariant of L which appears when we take dual lattices (because H−1

is the matrix of basis vectors for the dual basis of the given basis B of L in the
coordinates of B), and in particular it plays an important role in the theory of theta
functions (see Sect. 2).

In the special case where R = Z the level n can be written as n = (N) for
some N ∈ N, and this (minimal) N is what is usually referred to as the level of the
quadratic lattice (which is also a quadratic form since all Z-lattices are free).

We say that a quadratic form over a ring R is (Hessian) unimodular if its
Hessian bilinear form has unit determinant (i.e. det(H) ∈ R×). In terms of
quadratic lattices, this is equivalent to saying that the associated quadraticR-lattice
(L,Q) = (Rn, Q) is (Hessian) self-dual (i.e. L# = L).

Remark 1.7.1. It is somewhat more customary for authors to define the dual lattice
[O’M71, §82F, p. 230] as the Gram dual lattice,

L#
G := {�v ∈ V | B(�v, �w) ∈ R for all �w ∈ L}.

and for the analogous notion of unimodular and self-dual to be Gram unimodular
(i.e. det(B) ∈ R×) and Gram self-dual (i.e. L#

G = L). While either definition will
suffice for a Jordan splitting theorem (Theorem 1.8.2) in terms of unimodular lat-
tices (because Gram and Hessian unimodular lattices are simply scaled versions of
each other), the Hessian definitions are more natural from an arithmetic perspective
(e.g. in the definition of level, the proof of Theorem 1.8.2, and our discussion of
neighboring lattices in Sect. 1.10). If 2 is invertible in R, then there is no distinction
between the Hessian and Gram formulations, so over local (p-adic) rings this only
makes a difference over the 2-adic integers Z2.

1.8 Quadratic Forms over Local (p-adic) Rings of Integers

If we consider quadratic forms over the ring of integers Zp of the p-adic field Qp,
then the classification theorem is more involved because the valuation and units will
both play a role. The main result along these lines involves the notion of a “Jordan
splitting”, which breaks Q into a sum of pieces scaled by powers of p which are as
simple as possible.

Lemma 1.8.1. Suppose that R is a principal ideal domain, L is a quadratic
R-lattice in the quadratic space (V,Q), and W is a non-degenerate subspace of
(V,Q). If Scale(L∩W ) = Scale(L), then we can write L = (L∩W )⊕ (L∩W⊥).

Proof. Since R is a principal ideal domain, we know that all finitely generated R-
modules are free [Lan95, Theorem 7.1, p. 146], giving L ≡ Rn and L ∩W ≡ Rk

where V and W have dimensions n and k respectively. The structure theorem for
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finitely-generated R-modules [Lan95, Theorem 7.8(i), p. 153] says that we can
find a set of n vectors {�w1, . . . , �wk, �vk+1, . . . �vn} that generate L whose first k
elements generate L ∩ W . Without loss of generality we can scale the quadratic
form Q so that ScaleH(L) = R, in which case the Hessian matrix of L ∩ W in
this basis is in GLn(R). Therefore for each generator �vj of L, we can realize the
vector (H(�wi, �vj))1≤i≤k as an R-linear combination of its columns, and this linear
combination can be used to adjust each �vj to be orthogonal to all �wi, completing the
proof. �
Theorem 1.8.2 (Jordan Decomposition). A non-degenerate quadratic form over
Zp can be written as a direct sum

Q(�x) =
⊕

j∈Z

pjQj(�xj)

where the Qj(�xj) are unimodular. More explicitly, if p > 2 then each Qj is a direct
sum of quadratic forms uix2 for some p-adic units ui ∈ Z

×
p , and if p = 2 then each

Qj is a direct sum of some collection of the unimodular quadratic forms uix2, xy,
and x2 + xy + y2.

Proof. This follows from successively applying Lemma 1.8.1, and noticing that the
minimal scale for a sublattice of L can always be attained by a rank 1 sublattice
when p 
= 2, and be a rank 2 sublattice when p = 2. The explicit statement for
p = 2 follows from checking equivalences between the rank 2 unimodular lattices.

Most authors state this result in terms of Gram unimodular lattices. When p > 2
this is given in Cassels’s book [Cas78, Lemma 3.4 on p. 115], while p = 2 is given in
the very explicit form stated here as [Cas78, Lemma 4.1 on p. 117]. See also [Ger08,
Theorem 8.1, p. 162 and Theorem 8.9, p. 168] and [O’M71, Theorem 93:29 on
p. 277]. For the general classification of integral quadratic forms over number fields
at primes over p = 2 see O’Meara’s book [O’M71, Theorem 93:28 on pp. 267–276],
though there only invariants (and not explicit representatives) are given. �
Remark 1.8.3. As a convention, we consider the ring of integers of R and C to be
just R and C again, so there is nothing new to say in that situation.

1.9 Local-Global Results for Quadratic Forms

A useful idea for studying quadratic forms over either Q or Z is to consider them
locally over all completions (by thinking of their coefficients in the associated local
field Qv or ring Zv), and then try to use information about these “local” quadratic
forms to answer questions about the original “global” quadratic form. While it is
easy to pass from Q to a local quadratic form Qv defined over its completion at the
valuation v, it is more difficult to reverse this process to glue together a set of local
formsQv for all v to obtain some “global” quadratic form Q.
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We now examine the extent to which this can be done. Our first theorem tells us
that for quadratic spaces over Q this “local-global” procedure works flawlessly, and
we can check the (rational) equivalence of forms using only local information.

Theorem 1.9.1 (Hasse-Minkowski Theorem). Given two quadratic formsQ1 and
Q2 defined over Q, we have

Q1 ∼Q Q2 ⇐⇒ Q1 ∼Qv Q2 for all places v of Q.

Proof. This is stated as the “Weak Hasse principle” in Cassels’s book [Cas78,
Theorem 1.3 on p. 77], but proved in [Cas78, §6.7, pp. 85–86]. �
Remark 1.9.2. The same result holds if we replace Q with any number field K , and
replace the Qv with all of the completionsKv at all places of K .

We denote the Z-equivalence class of Q by Cls(Q), and refer to it as the class of
Q. Given two quadratic forms Q1 and Q2 over Z, we always have that

Q1 ∼Z Q2 =⇒ Q1 ∼Zv Q2 for all places v

since the linear transformation giving the Z-equivalence is also defined over each
completion Zv . (Recall that Z∞ := R by convention.) However unlike with
quadratic forms over Q, we are not guaranteed that local equivalence over all
Zv will ensure equivalence over Z. The number of distinct Z-equivalence classes
of quadratic forms that are locally Zv-equivalent to Q at all places is called the
class number hQ of the quadratic form Q, and the set of all forms with the same
localization as Q is called the genus of Q, so hQ = |Gen(Q)|.

It is a major result of Siegel from the reduction theory of (either definite or
indefinite) quadratic forms over R that hQ <∞. The class number of an indefinite
quadratic form of dimension n ≥ 3 is particularly simple to compute, and can be
found in terms of a few local computations, but the class number of a definite form
is considerably more complicated to understand exactly.

Theorem 1.9.3. The class number hQ is finite.

Proof. This follows from the reduction theory of quadratic forms, which shows
that every class of quadratic forms over Z has some representative (of the same
determinant) whose coefficients lie in a compact set. This together with the
discreteness of the (integer) coefficients of Q gives that there are only finitely many
classes of quadratic forms of bounded discriminant. A proof can be found in [Cas78,
Theorem 1.1, p. 128 and Lemma 3.1, p. 135]. �
Remark 1.9.4. It is also useful to discuss the proper class of Q, denoted Cls+(Q)
which is the set of all Q′ ∈ Cls(Q) where Q′(�x) = Q(M�x) with det(M) = 1.
Since det(M) ∈ {±1}, we see that there are at most two proper classes in a class,
and so there are also finitely many proper classes in a given genus. The notion
of proper classes is only meaningful when n is even (because when n is odd the
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n × n scalar matrix M = −1n has det(−1n) = −1, so Cls(Q) = Cls+(Q)),
and is important for formulating the connection between proper classes of binary
quadratic forms and ideal classes in quadratic number fields. This connection is
discussed further in the Bhargava’s notes [Bha].

There is also a somewhat more geometrical notion of the class and genus of a
quadratic lattice L ⊂ (V,Q), by considering the orbit of L under the action of the
rational or adelic orthogonal group. In the language of quadratic forms, this says
that two (free) quadratic lattices are in the same class or genus iff any associated
quadratic forms (by choosing bases for the lattices) are in the same class or genus
(respectively). This gives rise to a class number h(L) which is the number of classes
in the genus of L (and is again finite), and this agrees with the class number of the
associated quadratic form when L is free. This notion of class and genus of a lattice
is discussed in [Ger08, Definition 9.7, pp. 180–181] and will be revisited in Sect. 4.5.

Interestingly, while indefinite forms appear more complicated on the surface,
their arithmetic is usually easier to understand than that of definite forms, as can be
seen from the following theorems. The main idea is due to Eichler who discovered
that the arithmetic of a certain simply connected algebraic group called the spin
group, which is a double covering of SO(Q) and is very easy to understand via a
property called “strong approximation”. This naturally leads to a notion of (proper)
spinor equivalence, and we call the orbit of L under this equivalence the (proper)
spinor genus Spn+(L) ofL. We will discuss these notions briefly in Sect. 3.5. Some
references for further reading about this topic are [Cas78, pp. 186–191], [Shi10,
pp. 177–178, 192], [O’M71, pp. 315–321], [PR94, §7.4, pp. 427–433], and [Kne66].

1.10 The Neighbor Method

In this section we describe the method of neighboring lattices due to Kneser, which
gives a useful construction for enumerating all classes in a given (spinor) genus of
quadratic forms. The idea is that one can perform explicit operations on a given
quadratic lattice L to produce different lattices that are obviously locally integrally
equivalent to L. By doing this carefully, one can find representatives of all classes
in the genus Gen(L).

Definition 1.10.1. Given two integer-valued quadratic lattices L,L′ ⊂ (V,Q) and
some prime p ∈ N, we say L and L′ are p-neighbors if [L : L ∩ L′] = [L′ :
L ∩ L′] = p and H(L,L′) 
⊆ Z.

1.10.1 Constructing p-Neighbors

Given a quadratic lattice L in a non-degenerate quadratic space (V,Q), we now
explain how to construct all of its p-neighboring lattices L′ explicitly in terms of
certain vectors in L.
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Theorem 1.10.2. If p ∈ N is prime, then every p-neighboring lattice L′ of a given
Z-valued primitive quadratic lattice L with ScaleH(L) = Z has the form

L′ = 1
p �w + L�w,p,⊥

where

L�w,p,⊥ := {�v ∈ L | H(�v, �w) ≡ 0 (mod p)},
for some primitive vector �w ∈ L with p2 | Q(�w).

Proof. Any index p superlattice L′ of L′′ must be of the form L′ = L′′ + 1
p �w

for some primitive vector �w in L′′, because by the structure theorem [Lan95,
Theorem 7.8(i), p. 153] one can choose a basis for L′ starting with some �w so that
replacing �w by p�w gives a basis for L′′. For such an L′ to be Z-valued we must
at least have Q( 1p �w) ∈ Z, which is equivalent to p2 | Q(�w). Further since every
�x ∈ L′ can be written as �x = �y + a

p �w for some �y ∈ L�w,p,⊥ and some a ∈ Z, we
have

Q(�x) = Q(�y + a
p �w)

= Q(�y) +H(�y, ap �w) +Q(ap �w)

= Q(�y)︸ ︷︷ ︸
∈Z

+a
pH(�y, �w) + aQ( 1p �w)︸ ︷︷ ︸

∈Z

∈ Z,

and so we must have H(�y, �w) ∈ pZ for all �y ∈ L′′. However this condition defines
an index p sublattice of L, since it is the kernel of the surjective homomorphism
L → Z/pZ defined by �v �→ H(�v, �w). By reversing our reasoning, we see that all
such L′ are p-neighbors of L. �

An important fact about p-neighborsL′ of L is that they are all in the same genus
Gen(L). It is interesting to ask how many classes in the genus of L can be created
by taking repeated p-neighbors starting from L. If one is allowed to vary the prime
p, then this p-neighbor procedure gives all (proper) classes in Gen(Q).

Theorem 1.10.3. 1. If L′ is a p-neighbor of L then L′ ∈ Gen(L).
2. If p � 2 det(L) and n ≥ 3, then any L′′ ∈ Spn+(L) can be obtained by taking

repeated p-neighbors of L.
3. If the prime p is allowed to vary, then we can obtain all proper classes Cls+(L)

in Gen(L) by taking repeated p-neighbors of L.

Proof. This definition of p-neighbor and local equivalence of p-neighbors is proved
in [Tor05, §3.1, pp. 31–35]. The spanning of the spinor genus is proved in [BH83,
Proposition 1, p. 339], and the spanning of the genus is proved in [BH83, Theorem 2,
p. 340]. �
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In fact, one can make more precise statements about exactly which spinor genera
appear by taking p neighbors because the p-neighboring operation can always be
realized by an element of spinor norm p(Q×)2. The image of this squareclass
in the finite set of Q×-squareclasses modulo spinor norms sn(O+

Q
(V )) and modulo

the adelic spinor norms of the stabilizer ofO+
A
(L) of L determines exactly which of

the (at most two) spinor genera can be reached by taking repeated p-neighbors of L.
There is also a nice characterization of the p-neighbors of L in terms of the non-

singular points of the associated hypersurfaceQ(�x) = 0 over Fp.

Theorem 1.10.4. The p-neighbors of L are in bijective correspondence with the
non-singular points of Q(�x) = 0 in P

n−1(Fp).

Proof. See [Tor05, Theorem 3.5, p. 34] or [SH98, Proposition 2.2, p. 739]. �
The p-neighbors can be organized into a weighted p-neighbor graph whose

vertices are the classes in Gen(L), where two vertices are connected by an edge
iff they are p-neighbors, and where the multiplicity of each edge is the number of
distinct p-neighboring lattices of L which are equivalent ∼Z to L′. From the above
theorem, we see that the p-neighbor graph is regular and that if p � 2 det(L) then
the it is pn−2-regular (i.e. every class has exactly pn−2 neighbors for the prime p).

2 Theta Functions

2.1 Definitions and Convergence

We say that m ∈ Z is represented by an integer-valued quadratic form Q in n
variables if there is a solution �x ∈ Z

n to the equation Q(�x) = m. Similarly we say
that m is locally represented by Q if there is a solution of Q(�x) = m with �x ∈ R

n

and also a solution �x ∈ (Z/MZ)n for every M ∈ N. Our main purpose in this
section will be to study the representation numbers

rQ(m) := #{�x ∈ Z
n | Q(�x) = m}

of a positive definite quadratic form Q over Z, in order to understand something
about which numbers m ∈ Z ≥ 0 are represented by Q. Our assumption here that
Q is positive definite ensures that rQ(m) < ∞, since there are only finitely many
lattice points (in Z

n) in the compact solid ellipsoid Em : Q(�x) ≤ m when �x ∈ R
n.

It will also be important to consider the (integral) automorphism group of Q,
which is defined as the set of invertible integral linear transformations preserving
Q, i.e.

Aut(Q) := {M ∈Mn(Z) | Q(M�x) = Q(�x) for all �x ∈ Z
n}.
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Our previous compactness observation also tells us that #Aut(Q) < ∞, since any
automorphism of Q is determined by its action on a basis of Zn and by taking m
large enough we can arrange that the (finitely many) integral vectors in Em span Z

n.
Because automorphisms preserve the values Q(�x) of all vectors, they preserve the
set of integral vectors inside the ellipsoid Em, and so there are only finitely many
possible images of any specified spanning set.

In this setting it makes sense to define the theta series of Q as the Fourier series
generating function for the representation numbers rQ(m) given by

ΘQ(z) :=

∞∑

m=0

rQ(m)e2πimz .

From this perspective, our main goal will be to understand the symmetries of this
generating function very well, and to use them to obtain information about the
representation numbers rQ(m).

In order to make ΘQ(z) more than just a formal object, we should try to establish
a some convergence properties so it can be regarded as an honest function. For this
series to converge absolutely we need the exponentials in the sum to be decaying,
which happens for z ∈ C when Im(z) > 0. For convenience, we denote by H the
complex upper half-plane

H := {z ∈ C | Im(z) > 0}.

The following theorem shows that any Fourier series with moderately (i.e. polyno-
mially) growing coefficients will converge absolutely onH.

Lemma 2.1.1 (Convergence of Fourier series). The Fourier series

f(z) :=

∞∑

m=0

a(m)e2πimz .

converges absolutely and uniformly on compact subsets of H to a holomorphic
function f : H → C if all of its coefficients a(m) ∈ C satisfy |a(m)| ≤ Cmr

for some constant C > 0.

Proof. See [Miy06, Lemma 4.3.3, p. 117]. �
Because the number of lattice points in a smooth bounded region R ⊂ R

n is
approximately Vol(R), we see that

∑M
i=0 rQ(m) < CMn for some constant C.

Therefore for each m individually we must have that rQ(m) < C1M
n−1 for some

constant C1, so the previous lemma shows that the theta function ΘQ(z) converges
(absolutely and uniformly) to a holomorphic function when z ∈ C and Im(z) > 0.
This gives the following important result:
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Theorem 2.1.2. The theta series ΘQ(z) of a positive definite integer-valued
quadratic form Q converges absolutely and uniformly to a holomorphic function
H → C.

2.2 Symmetries of the Theta Function

While it is not obvious at first glance, ΘQ(z) has a surprisingly large number of
symmetries. From its definition as a Fourier series, it is clearly invariant under the
transformation z �→ z + 1, but this is not particularly special since this holds for
any Fourier series. However there is an additional symmetry provided to us by
Fourier analysis because we can also view the theta function as a sum of a quadratic
exponential function over a lattice Zn, i.e.

ΘQ(z) =

∞∑

m=0

rQ(m)e2πimz =
∑

�x∈Zn

e2πiQ(�x)z.

This additional lattice symmetry is realized through the Poisson summation
theorem:

Theorem 2.2.1 (Poisson Summation Formula). Suppose that f(�x) is a function
on R

n which decays faster than any polynomial as |�x| → ∞ (i.e. for all r ≥ 0 we
know that |�x|rf(�x)→ 0 as |�x| → ∞). Then the equality

∑

�x∈Zn

f(�x) =
∑

�x∈Zn

f̂(�x)

holds and the sums on both sides are absolutely convergent, where

f̂(�x) :=

∫

�y∈Rn

f(�y)e−2πi�x·�y dy

is the Fourier transform of f(�x).

Proof. See [Lan94, pp. 249–250] for a proof of this. �
The important point here is that the Gaussian function f(x) = e−παx2

transforms
into a multiple of itself under the Fourier transform (which follows essentially from
checking that e−πx2

is its own Fourier transform). Writing z = x + iy ∈ H
in ΘQ(z), we see that the y-dependence of each term will look like a decaying
Gaussian (while the x-dependence will just oscillate), so Poisson summation allows
us to transform each term into itself after a little rescaling. This allows us to establish
an additional symmetry for the theta function under the transformation z �→ −1

Nz for
some N ∈ N. In the special case where Q(�x) = x2 we can take N = 4 and have
the two identities

Θx2(−1/4z) = √−2iz Θx2(z) and Θx2(z + 1) = Θx2(z). (2.1)
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By extending these to the group generated by the transformations z �→ −1
4z and

z �→ z + 1, we obtain following prototypical theorem.

Theorem 2.2.2. For all
[
a b
c d

] ∈ SL2(Z) with 4 | c, we have that

Θx2

(
az + b

cz + d

)
= ε−1

d

( c
d

)√
cz + d Θx2(z)

where −π
2 < arg(

√
z) ≤ π

2 ,

εd :=

{
1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4,
and

( c
d

)
:=

⎧
⎨

⎩

(
c
|d|

)
if c > 0 or d > 0,

−
(

c
|d|

)
if both c, d < 0.

Here when d > 0 the symbol
(
c
d

)
agrees with the usual quadratic character mod d.

Proof. This is stated in [Shi73, (1.10), p. 440] and proved in Proposition 2, p. 457.
See also Iwaniec [Iwa97, Theorem 10.10 with χ = 1, pp. 177–178], Knopp [Kno70,
Theorem 13, p. 46 and Theorem 3, p. 51], [Miy06, Corollary 4.9.7, p. 194] and
Andrianov-Zhuralev [AZ95, Proposition 4.15, p. 42] for proofs. �

For a diagonal quadratic form Q(�x) =
∑n

i=1 aix
2
i of level N , this formula is

enough to see that ΘQ(z) transforms into a multiple of itself under the element
z �→ −1

Nz . However to obtain a transformation formula for a general theta series
ΘQ(z) similar to Theorem 2.2.2, a more general strategy is needed. One approach
is to compute the transformation formulae for more general theta series involving a
linear term, and then to specialize this term to zero. Another approach is to obtain
identities for how a related generalized higher dimensional theta function (similar to
Θx2(z)) transforms with respect to a special subgroup of Sp2n(Z) called the theta
group. In the case where n = 1, the theta group consists the elements

[
a b
c d

]
of

Sp2(Z) = SL2(Z) where both products ab and cd are even. Either approach allows
one to show the following important transformation formula:

Theorem 2.2.3. Suppose Q is a non-degenerate positive definite quadratic form
over Z in n variables with level N . Then for all

[
a b
c d

] ∈ SL2(Z) with N | c, we
have that

ΘQ

(
az + b

cz + d

)
=

(
det(Q)

d

)[
ε−1
d

( c
d

)√
cz + d

]n
ΘQ(z),

where
√
z, εd, and

(
c
d

)
are defined in Theorem 2.2.2.

Proof. A nice discussion of theta series and their transformation formulas (by
the first approach) can be found in [Iwa97, Chap. 10], and a somewhat simpler
discussion of transformation formulas for theta series in an even number of variables
along these lines is given in the appendix to Chap. 1 of Eichler’s book [Eic66,
pp. 44–52]. The second approach described above can be found (in much greater
generality) in [AZ95, Chap. 1, §3–4, pp. 11–37], especially Theorem 3.13 on p. 22.

�
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Here the 2 × 2 matrices that give symmetries of ΘQ(z) form a subgroup of
SL2(Z) called the level N congruence group, which is usually denoted as

Γ0(N) :=

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
.

2.3 Modular Forms

It is useful to understand theta series in the context of all functions that have
symmetries with respect to the action of congruence subgroups Γ0(N) by linear
fractional transformations on H. This idea leads us to define a very important class
of functions called modular forms, whose symmetry properties essentially depend
on three parameters: the weight k ∈ 1

2Z, the level N ∈ N, and the character
χ : (Z/NZ)× → C

×. If the weight k /∈ Z, then we must specify an additional
function ε := ε(γ, k) called a multiplier system. For theta series this is called the
“theta multiplier”, but we will not be concerned with its exact form here.

Definition 2.3.1. We define a modular form of weight k, level N , Dirichlet
character χ and multiplier system ε to be a holomorphic function f : H → C

which transforms with respect to Γ0(N) under the rule

f

(
az + b

cz + d

)
= ε(γ, k)χ(d)(cz + d)kf(z) (2.2)

for all γ :=

[
a b

c d

]
∈ Γ0(N), and satisfies the additional technical condition that

f(z) is also “holomorphic” at the boundary values P
1(Q) := Q ∪ {∞} of the

quotient Γ0(N)\H.

It is standard notation to let Mk(N,χ) denote the C-vector space of all modular
forms of weight k ∈ 1

2Z, level N and character χ, where we assume the trivial
multiplier system ε(γ, k) := 1 if k ∈ Z and the theta multiplier system ε(γ, k) :=
ε−1
d

(
c
d

)
if k 
∈ Z.

We can now rephrase the symmetries of the theta function ΘQ(z) using the
language of modular forms. Good references for the general theory of modular
forms are [Iwa97,DS05,Miy06,Kob93,Shi94], and the theta multiplier is described
in detail in [Kno70, Chap. 4] and [Iwa97, Chap. 10]. One important observation to
make about modular forms f(z) is that the element [ 1 1

0 1 ] ∈ Γ0(N), and so the
transformation formula above shows that f(z + 1) = f(z).3 This periodicity
together with the holomorphy of f(z) shows that any modular form can be written
as a complex Fourier series

3To justify this, notice that both the trivial and theta multiplier systems have value 1 on this element.
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f(z) =

∞∑

m=0

a(m)e2πimz =

∞∑

m=0

a(m)qm where q := e2πiz (2.3)

and the Fourier coefficients a(m) ∈ C.

Corollary 2.3.2. Suppose Q is a non-degenerate positive definite quadratic form
over Z in n variables with level N . Then ΘQ(z) ∈Mn

2
(N,χ) is a modular form of

weight n
2 , level N and character χ(·) =

(
(−1)�

n
2

	 det(Q)
·

)
(and multiplier system

ε(γ, k) specified above).

Proof. This follows because ε2d =
(−1

d

)
, and so

[
ε−1
d

(
c
d

)]n
=

(−1
d

)�n
2  ·{

ε−1
d

(
c
d

)
if n is odd,

1 if n is even.
�

Remark 2.3.3. Note that here the “level” N refers both the level of the quadratic
form as well as the level of the modular form (i.e. we use symmetries from Γ0(N)).

To understand modular forms structurally, it is important to understand the action
of Γ0(N) on H by linear fractional transformations z �→ az+b

cz+d . When N = 1, then
Γ0(N) is all of SL2(Z) and there is a well-known fundamental domain F for this
action given by

F := {z ∈ H | |z| ≥ 1 and |Re(z)| ≤ 1
2},

together with some identifications of its boundary. After these identifications have
been made, the resulting fundamental domainF is not compact. HoweverF can be
naturally extended to a compact surface by adding one point (usually called∞ or
i∞) which we imagine to be at the topmost end of the y-axis. This point is called
a cusp of SL2(Z) due to the apparent pointyness of F as we move along the y-axis
towards i∞. In general, Γ0(N) has finite index in SL2(Z) and so its fundamental
domain will be a union of finitely many translates of F (with slightly different
boundary identifications). This larger fundamental domain is again not compact,
but here it can be made compact by the addition of finitely many “boundary” points
which we call cusps of Γ0(N). These cusps can always be represented by elements
of P

1(Q) since they will be the image of the cusp i∞ under some element of
Γ0(N) ⊂ SL2(Q), and we have the identification i∞ =∞ ∈ P

1(Q) ⊂ P
1(C).

These cusps play a very important role in the theory of modular forms. For
example, they can be used to define a natural subspace of modular forms which
vanish at all cusps, called the cusp forms Sk(N,χ) ⊆ Mk(N,χ). Also, for each
cusp C of Γ0(N) we can usually construct a special modular form EC(z) associated
to C which has value 1 at C and vanishes at all other cusps. We call the space
spanned by all of these functions associated to cusps the space of Eisenstein series
Ek(N,χ) ⊆Mk(N,χ).
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The Eisenstein series associated to cusps can be understood very explicitly, and
is usually considered to be the “easier” part ofMk(N,χ). For example, for the cusp
C = i∞ of SL2(Z), the associated Eisenstein series EC(z) of weight k ∈ 2Z > 2 is
given by

Gk(z) :=
1
2

∑

(c,d)∈Z
2

gcd(c,d)=1

1

(cz + d)k
= 1− 2k

B2k

∑

m≥1

σk−1(m)qm ∈Mk(N =1, χ=1)

(2.4)

where B2k is the (2k)th Bernoulli number, σk−1(m) :=
∑

0<d|m dk−1 is the

usual divisor function and q := e2πiz . (See [Miy06, Lemma 4.1.6, p. 100 and
Theorem 3.2.3, p. 90].) We can also interpret the Fourier expansion in (2.3) as
being associated with the cusp i∞, since we can view q as a local parameter in
the neighborhood of i∞.

Facts about Modular forms: We now state several fundamental structural
results in the theory of modular forms that are useful for understanding theta
series:

1. The space of modular forms Mk(N,χ) with fixed invariants (k,N, χ) is a finite
dimensional vector space over C [Miy06, §2.5, pp. 57–61].

2. The space Mk(N,χ) can be decomposed uniquely as a direct sum of cusp
forms (of functions vanishing at all cusps) and Eisenstein series (spanned by
the Eisenstein series associated to the cusps of Γ0(N)) [Miy06, Theorem 2.1.7,
p. 44 and Theorem 4.7.2, p. 179].

3. Any Eisenstein series has Fourier coefficients aE(m) which can be as large as
cεm

k−1+ε for any ε > 0 and some constant cε ∈ R > 0 [Miy06, Theorem 4.7.3,
p. 181].

4. Any cusp form has Fourier coefficients af (m) which are (trivially) no larger than
cεm

k
2+ε for any ε > 0 and some constant cε ∈ R > 0 [Miy06, Corollary 2.1.6,

p. 43].

For our purposes, it is important to note that the upper bound on Eisenstein
coefficients is not far from the truth, and is best possible when k > 2. When
k ∈ 2Z > 2, this bound is attained by the Eisenstein series (2.4).

2.4 Asymptotic Statements About rQ(m)

To apply our knowledge of modular forms to study the numbers m represented by
Q, we write the theta series as

ΘQ(z) = E(z) + C(z)
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where E(z) is an Eisenstein series and C(z) is a cusp form. Looking at the mth
Fourier coefficient of this equation gives a decomposition of the representation
numbers as

rQ(m) = aE(m) + aC(m).

From our informal discussion of modular forms above we know that the
Eisenstein Fourier coefficients aE(m) are about as large as mk−1 as m → ∞,
and when n = 5 one can show using (2.6) that

|aE(m)|  m
3
2

when they are non-zero, and when n ≥ 4 this occurs ⇐⇒ m is locally represented
by Q. Similarly we know that the cusp form Fourier coefficients satisfy

|aC(m)| # m
5
4+ε,

so if the Eisenstein coefficients are non-zero, then we know that rQ(m) is non-zero
and so m is represented by Q if m is sufficiently large. This asymptotic estimate
only improves when Q has more variables, giving the following theorem originally
due to Tartakowski:

Theorem 2.4.1 (Tartakowski, [Tar29]). If Q is a positive definite quadratic form
over Z in n ≥ 5 variables, then every sufficiently large number m ∈ N that is
locally represented by Q is represented by Q.

For n ≤ 4, the above results are not enough to show that the Eisenstein
coefficients are asymptotically larger than the cusp form coefficients, so more care
is needed. The case n = 4 was first handled by Kloosterman by a clever refinement
of the Circle Method (described briefly below), and has since been absorbed into the
theory of modular forms as a consequence of the Ramanujan bound |af (p)| ≤ 2

√
p

for prime coefficients of weight 2 cusp forms. This case also involves additional
local considerations at finitely many primes p where Q is anisotropic over Qp.

The case n = 3 is even more delicate, and involves additional arithmetic and
analytic tools to understand (e.g. spinor genera, the Shimura lifting of half-integral
weight forms, analytic bounds on square-free coefficients of half-integral weight
forms). In particular it was handled by Duke and Schulze-Pillot, and then by
Schulze-Pillot in the papers [DSP90,SP00]. For more details on asymptotic results,
see the survey papers [Han04, Duk97, Iwa87, SP04].

The case n = 2 of binary forms is a genuinely arithmetic problem (since for
weight k = 1 both cusp forms and Eisenstein series coefficients satisfy a(m)# mε

for any ε > 0 [Ser77, §5.2(c), p. 220]) and it exhibits a much closer connection
to explicit class field theory for quadratic extensions than the asymptotic results
described here.
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2.5 The Circle Method and Siegel’s Formula

The origins of the many of the modern analytic techniques in the theory of quadratic
forms have their origins in the famous “circle method” of Hardy, Littlewood
and Ramanujan. The idea of this method is that one can express the number
of representations rQ(m) for Q = a1x

2
1 + · · · + anx

2
n as an integral over the

unit circle which can be well-approximated by taking small intervals about angles
which are rational multiples of 2π (where small here means small relative to the
overall denominator of the rational multiples one considers). These rational angle
contributions can be thought of locally (in terms of Gauss sums), and so we learn
that local considerations give a good approximation of the number of representations
rQ(m) for Q = a1x

2
1 + · · · + anx

2
n when n is large enough. In the language of

modular forms this method produces an Eisenstein series EQ(z) (called a “singular
series”) with multiplicative Fourier coefficients that agrees with the theta series
θQ(z) at all rational points (and at∞) so the difference θQ(z)−EQ(z) is a cusp form
and so must have asymptotically smaller Fourier coefficients than E(z). This cusp
form can be analyzed to various degrees, but the most naive bound for its Fourier
coefficients gives non-trivial asymptotic information for the asymptotic behavior of
rQ(m) for m ≥ 5. (See [MW06, Chap. 6] and [Kno70, Chap. 5, pp. 63–87] for
details.) The case n = 4 can also be handled, but requires an essential refinement of
Kloosterman to obtain additional cancellation. (See [Iwa97, §11.4–5, pp. 190–199]
and [IK04, §20.3–5, pp. 467–486] for more details.)

Siegel used these ideas to give quantitative meaning to the Fourier coefficients
in the singular series both in terms of the underlying space of modular forms (as
an Eisenstein series), but also in terms of the “local densities” associated to the
quadratic form Q. In particular he proved the following theorem:

Theorem 2.5.1 (Siegel). Suppose Q(�x) is a positive definite integer-valued
quadratic form in n ≥ 5 variables, whose theta series ΘQ(z) is written (uniquely)
as a sum of an Eisenstein series E(z) and a cusp form C(z). Then the Eisenstein
series

E(z) =
∑

m≥0

aE(m)e2πimz

can be expressed in two different ways:
Firstly, E(z) can be recovered as a weighted sum of theta series over the genus

of Q:

E(z) =

∑
Q′∈Gen(Q)

ΘQ′ (z)
|Aut(Q′)|∑

Q′∈Gen(Q)
1

|Aut(Q′)|
, (2.5)

showing that E(z) is a genus invariant. (That is, the theta series of any Q′ ∈
Gen(Q) will have the same Eisenstein series E(z).)

Secondly, the Fourier coefficients aE(m) can be expressed as an infinite local
product
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aE(m) =
∏

places v

βQ,v(m) (2.6)

where the numbers βQ,v(m) are the local representation densities of Q at m,
defined by the limit

βQ,v(m) := lim
U→{m}

VolZn
v
(Q−1(U))

VolZv (U)
(2.7)

where U runs over a sequence of open subsets of Zv containing m with common
intersection {m}, and the volumes appearing are the natural translation-invariant
volumes on n-dimensional and 1-dimensional affine space over Zv of total vol-
ume one.

Proof. See Siegel’s Lecture notes [Sie63] or his original series of papers [Sie35,
Sie36, Sie37]. �
These formulas are extremely important for the analytical theory of quadratic forms,
and can be used to provide precise asymptotics for rQ(m) as m → ∞. Extensions
of this technique led Siegel to prove analogous results for more general kinds of
theta functions which count representations of a quadratic form by another quadratic
form. These are examples of “Siegel modular forms” which have analogous
symmetries for the symplectic group Sp2r. (See [AZ95] for more details.)

The formulas of Siegel were later generalized by Weil to a more representation-
theoretic context by means of a certain very simple representation of a symplectic
group called the “Weil representation” that we will meet later. This representation
can be used to give a proof of Siegel’s formulas in the case where Q is a positive
definite quadratic form in n ≥ 5 variables, and has been extended by Kudla and
Rallis [KR88b,KR88a] to cover many more cases, including n ≥ 3. It is interesting
to see the progression of ideas from the circle method to modular forms to the Weil
representation, and to notice that while the language used to obtain these results
changes to suit our deepening perspective and context, the essential features (and
technical difficulties) of the result remain very much the same.

These structural results about theta series and modular forms can also be
generalized to understand theta series of totally definiteOF -valued quadratic forms
over totally real number fields F . These theta series are then Hilbert modular forms
for a congruence subgroup of the group GL2(OF ) where OF is the ring of integers
of F . They can also be generalized to understand the number of representations of
a smaller quadratic form Q′ by Q, where this can be viewed in the lattice picture
as counting the number of isometric embeddings of the quadratic lattice L′ into L
(which are quadratic lattices associated to Q′ and Q respectively). In this context,
the resulting theta series is a Siegel modular form for some congruence subgroup
of the symplectic group Sp2n′(Z), where Q′ is a quadratic form in n′ variables.
(Notice that in the special case where n′ = 1 we have Sp2 = SL2.) In both of these
settings, Siegel’s formulas remain essentially unchanged.
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2.6 Mass Formulas

One useful application of the generalizations of Siegel’s formula to representing
quadratic forms Q′ by a quadratic form Q is when we take Q′ = Q. In this case, a
generalization of Siegel’s first formula (2.5) applied to the Qth-Fourier coefficient
of the associated Siegel modular form gives

aE(Q) =

∑
Q′′∈Gen(Q)

rQ′′ (Q)

|Aut(Q′′)|∑
Q′′∈Gen(Q)

1
|Aut(Q′′)|

=
1∑

Q′′∈Gen(Q)
1

|Aut(Q′′)|
(2.8)

because the number of representations rQ(Q′′) of any quadratic formQ′′ ∈ Gen(Q)
by Q is given

rQ(Q
′′) =

{
#Aut(Q) if Q′′ ∼Z Q,

0 if Q′′ 
∼Z Q.

From an extension of Siegel’s second formula (2.6), we also see that aE(Q) can be
written as a product of local densities (though in this case an extra factor of 2 is
needed). This motivates the definition of the mass of a quadratic form Q, denoted
by Mass(Q), as

Mass(Q) :=
∑

Q′′∈Gen(Q)

1

|Aut(Q′′)| .

By Siegel’s theorems we see that the mass is a local quantity, and can be computed
from local knowledge about Q over Zv at all places v.

Explicit computations of the mass are simple in principle, but often a bit painful
to make explicit. These are known as “exact mass formulas”, and they provide very
useful information about the class number hQ of a genus Gen(Q). As an example
of this, using the fact that every quadratic form has at least two automorphisms (e.g.
�x �→ ±�x) we can see that

Mass(Q) =
∑

Q′′∈Gen(Q)

1

|Aut(Q′′)| ≤
h(Q)

2
.

Therefore if the Mass(Q) is large then we know that the genus must contain many
distinct classes. However the size of the mass of a positive definite form can be
shown by local considerations to grow as we vary Q in an infinite family (e.g. if n
grows, or if det(Q) grows and n ≥ 2), so the class number can also be shown to
get very large in these situations. One interesting application of this is the following
result of Pfeuffer and Watson:

Theorem 2.6.1. There are only finitely many (classes of) primitive positive definite
quadratic forms Q over Z in n ≥ 2 variables with class number hQ = 1.
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In a long series of papers [Wat63]– [Wat84], Watson enumerated many of these
class number one forms. More generally, Pfeuffer showed that there are finitely
many totally definite primitive integer-valued quadratic forms Q in n ≥ 2 variables
with hQ = 1 as we vary over all totally real number fields. (See [Pfe71, Pfe78] for
details.)

It should also be noted that this is not the end of the story for mass formulas.
There are many other connections (e.g. to Tamagawa numbers, Eisenstein series
on orthogonal groups, and computational enumeration of classes in a genus) that
we do not have space to mention here. As an example of one continuation of
the story, in the past few years Shimura has defined a somewhat different notion
of “mass” and “mass formula” for quadratic forms which instead of dividing
the number of representations by the number of automorphisms, it counts the
number of equivalence classes of representations in a genus under the action of the
automorphism group. For a nice discussion of these see [Shi06b,Shi06a] and [Shi10,
§37], as well as the more detailed [Shi04, §12–13]. These are very interesting, but do
not fit within the framework we are describing here. They are also a good example
of how a well-established theory is still evolving in new ways, and that there are
many avenues left for future researchers to explore!

2.7 An Example: The Sum of 4 Squares

We conclude with a concrete example of how Siegel’s formulas can be used to
understand how many ways we can represent certain numbers as a sum of four
squares. This question can be treated in many different ways, but the most definitive
result is the following exact formula of Jacobi which he derived via the theory of
elliptic functions.

Theorem 2.7.1 (Jacobi [Jac]). For m ∈ N, we have

rx2+y2+z2+w2(m) = 8 ·
∑

0<d|m
4�d

d.

We will now derive some special cases of this result for certain m by using
Siegel’s formulas in Theorem 2.5.1. To do this, we first note that Q(�x) = x2 +
y2 + z2 + w2 has class number hQ = 1, so Siegel’s first formula gives

aE(m) =

∑
Q′′∈Gen(Q)

rQ′′ (m)

|Aut(Q′′)|∑
Q′′∈Gen(Q)

1
|Aut(Q′′)|

=

rQ(m)

����|Aut(Q)|
1

����|Aut(Q)|
= rQ(m).
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Now we can apply Siegel’s second formula to give the purely local formula

rQ(m) = aE(m) =
∏

v

βQ,v(m)

for rQ(m) in terms of local densities βQ,v(m) defined in (2.7). We now compute this
infinite product to evaluate rQ(m) for some m ∈ N. For convenience of notation,
from now on we use the abbreviation βv(m) := βx2+y2+z2+w2, v(m).

2.7.1 Canonical Measures for Local Densities

To compute the local densities βv(m) defined in (2.7) we use the “canonical” Haar
measures μ on Zv (i.e. additively invariant) uniquely defined by the normalizations

μZp(Zp) = 1, μR([0, 1]) = 1.

Even if one is unfamiliar with the measure μZp , the important thing is that we can
easily compute the measure of any set we are interested in. In particular, because we
can write Zp as the disjoint union

Zp =
⊔

a∈Z/piZ

a+ piZp

and each of these cosets has the same measure (by the additive invariance), we see
that μZp(p

i
Zp) =

1
pi and also μZn

p
(piZn

p ) =
1

pn·i .

2.7.2 Computing β∞(m)

When v = ∞ we have Zv = R, so we see that the local density β∞(m) is the
volume of a thin “shell” around the ellipsoid x2 + y2 + z2 + w2 = m divided by
the “thickness” of the shell (in m-space), which is some measure of the “surface
area” of the 4-sphere of radius r =

√
m. To compute β∞(m) we need to know the

“volume” of the 4-ball B4,r : x2 + y2 + z2 + w2 ≤ r2 is given by the well-known
formula

Vol(B4,r) =
π2

2 r
4.

(There are many ways to see this, for example as a consequence of Pappus’s
Centroid Theorem [Eve76, §6.18, p. 166] once the volume of the 3-ball B3,r is
known to be 4

3πr
3.)
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We now compute β∞(m) using the open sets U = Uε := (m− ε,m+ ε), giving

β∞(m) := lim
U⊃{m},U→{m}

VolRn(Q−1(U))

VolR(U)

= lim
ε→0

VolRn(Q−1(Uε))

VolR(Uε)

= lim
ε→0

π2

2 (
√
m+ ε

4 −√m− ε4)
2ε

= lim
ε→0

π2

2 ((m+ ε)2 − (m− ε)2)
2ε

= lim
ε→0

π2

2 ((��m2 + 2mε+��ε2)− (��m2 − 2mε+��ε2))
2ε

= lim
ε→0

π2

�2
�4m�ε

�2�ε

= π2m.

(2.9)

2.7.3 Understanding βp(m) by Counting

When v = p, we can think of Zp as coming from the quotients Z/piZ where i is
very large (i.e. Zp = lim←−Z/piZ). Because of this we can interpret the local density
βp(m) as a statement about the number of solutions of Q(�x) ≡ m (mod pi) for
sufficiently large powers pi. More precisely, we have

Lemma 2.7.2. When v = p is a prime number and Q(x) is a quadratic form in n
variables, then we may write βp(m) as

βp(m) = lim
i→∞

#{�x ∈ (Z/piZ)n | Q(�x) ≡ m (mod pi)}
p(n−1)i

.

Proof. This follows from the definition by choosing open sets Ui := piZp. Then

VolZp(Ui) =
1

pi

and each solution �x of Q(�x) ≡ m (mod pi) gives a p-adic coset �x + piZn
p of

solutions in Q−1(Ui). Therefore since Vol(piZn
p ) =

1
pni , we have

VolZn
p
(Q−1(Ui)) =

1

pni
·#{�x ∈ (Z/piZ)n | Q(�x) ≡ m (mod pi)}
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and so

βp(m) = lim
i→∞

VolZn
p
(Q−1(Ui))

VolZp(Ui)

= lim
i→∞

1
pni ·#{�x ∈ (Z/piZ)n | Q(�x) ≡ m (mod pi)}

1
pi

= lim
i→∞

#{�x ∈ (Z/piZ)n | Q(�x) ≡ m (mod pi)}
p(n−1)i

.

�
Philosophically we should think of this formula as the number of solutions

(mod pi) divided by the “expected number” of solutions (based solely on knowing
the dimension of Q(�x) = m is n− 1). To see that this limit actually exists, we need
to invoke Hensel’s lemma which (as a consequence) says that if i is sufficiently large
then the sequence defining βp(m) is constant. In particular, forQ(�x) = x21+· · ·+x2n
it is enough to compute the (non-zero) solutions (mod p) if p > 2 and (mod 8)
if p = 2. In the next few sections we compute the local densities βp(m) by counting
these numbers of solutions.

2.7.4 Computing βp(m) for All Primes p

Counting solutions to a polynomial equation over finite fields Z/pZ can be done
explicitly by the method of “exponential sums” (sometimes called Gauss sums or
Jacobi sums), and this gives particularly simple formulas for degree 2 equations.
One such formula is

Lemma 2.7.3. Suppose p ∈ N is a prime > 2, then

rx2+y2+z2+w2, p(m) =

{
p3 − p if p � m,

p3 + p(p− 1) if p | m.

which gives the following explicit local density formulas:

Lemma 2.7.4. Suppose p ∈ N is a prime > 2, then

βx2+y2+z2+w2, p(m) =

⎧
⎨

⎩
1− 1

p2 if p � m,(
1− 1

p2

)(
1 + 1

p

)
if p | m but p2 � m.

Remark 2.7.5. The formula when p | m follows by counting all solutions except
�x = �0, since that solution will not lift by Hensel’s lemma to a solution ofQ(�x) = m
(mod p2).
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When p = 2 we need to understand the local densities (mod 8), which we do
by explicitly enumerating the values Q(�x) of all vectors �x ∈ (Z/8Z)4, giving

Lemma 2.7.6. Suppose p = 2, then

βx2+y2+z2+w2, 2(m) =

{
1 if p � m,
3
2 if p | m but p2 � m.

2.7.5 Computing rQ(m) for Certain m

We are now in a position to compute the number of representations rQ(m) for some
simple numbers m. To warm up, we see that when m = 1 we have

rQ(1) =
∏

v

βv(1) = β∞(1)β2(1)
∏

p>2

βp(1) (2.10)

=
(
π2 · 1) (1)

∏

p>2

(
1− 1

p2

)
(2.11)

= π2

(
1

1− 1
22

) ∏

p

(
1− 1

p2

)
(2.12)

=
4π2

3

∏

p

(
1− 1

p2

)
(2.13)

=
4π2

3

1

ζ(2)
(2.14)

=
4��π2

3

6

��π2
(2.15)

= 8 (2.16)

which we could also have worked out (perhaps more quickly) by observing that if
Q(�x) =

∑4
i=1 x

2
i = 1, then we must have |xi| ≤ 1 and at all but one xi is zero.

Now suppose that m = p > 2 is prime. Then our computation at of rQ(p) looks
almost the same as when m = 1 with the exception that the factors at v = ∞ and
v = p have changed. This gives

rQ(p) = rQ(1) · β∞(p)

β∞(1)
· βp(p)
βp(1)

(2.17)

= rQ(1) ·�
�π2p

��π2
·�����(

1− 1
p2

)(
1 + 1

p

)

�����(
1− 1

p2

) (2.18)
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= rQ(1) · p ·
(
1 + 1

p

)
(2.19)

= 8(p+ 1) (2.20)

Finally, we suppose that m is an odd squarefree number t. Then the computation
changes at v =∞ and at all primes p | t, giving

rQ(t) = rQ(1) · β∞(t)

β∞(1)
·
∏

p|t

βp(t)

βp(1)
(2.21)

= rQ(1) · t ·
∏

p|t

p+1
p (2.22)

= 8
∏

p|t
(p+ 1). (2.23)

We see that this agrees with Jacobi’s divisor sum formula for rQ(m) in Theorem
2.7.1 since the positive divisors of t are exactly the terms appearing when the
product

∏
p|t(p+1) is fully expanded. One could continue to prove Jacobi’s formula

for rQ(m) for any m ∈ N by extending this computation, though the computations
of the local densities βp(m) when p = 2 and at primes where p2 | m become
somewhat more involved.

3 Quaternions and Clifford Algebras

In this section, we describe some important algebraic structures naturally associated
with quadratic forms. One of them is the Clifford algebra, which one can think of
an algebra that enhances a quadratic space with a multiplication law. The other is
the Spin group, which is an algebraic group that is the “double cover” of the special
orthogonal group and can be constructed naturally in terms of the Clifford algebra.

3.1 Definitions

Quadratic forms are closely connected with quadratic extensions, both those which
are commutative (quadratic fields and their rings of integers) and also non-
commutative (quaternion algebras and their maximal orders). We now explore some
connections with non-commutative algebras of a particularly nice kind (known as
“central simple algebras”), and describe their basic structure. Good references for
central simple algebras are [Jac89, §4.6], [GS06, §1–2], [Lam05, Chaps. III–IV]
and [Shi10, Chap. IV].
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We begin by defining a central simple algebra A as a finite-dimensional
(possibly non-commutative) algebra over a field k whose center is k and which
contains no proper non-zero two-sided ideals. To make the dependence on k explicit,
we sometimes write A as A/k. We say that the dimension of A/k is the dimension
of A as a vector space over k.

Theorem 3.1.1. Suppose that A1 and A2 are central simple algebras over k. Then
the tensor product A1 ⊗k A2 is also a central simple algebra over k.

Proof. See [Jac89, Corollary 3, p. 219]. �
Another nice property of central simple algebras is that we can freely extend the

base field k and preserve the property of being central simple (though now with a
larger center!):

Theorem 3.1.2. Suppose that A/k is a central simple algebra and K is a field
containing k, thenA/K := A⊗kK is a central simple algebra overK of the same
dimension as A/k.

Proof. See [Jac89, Corollary 2, p. 219] and the discussion on the top of p. 220. �
The simplest examples of central simple algebras are the matrix algebrasMn(k)

(which have dimension n2). Notice that any central simple algebra over k which
is commutative must be just k itself, so in general central simple algebras are non-
commutative. The next simplest example of a central simple algebra which is not
a field (i.e. non-commutative) is called a quaternion algebra, and can be defined
in terms of a basis B = {1, i, j, κ} satisfying the relations i2 = a, j2 = b, κ :=
ij = −ji for some fixed a, b ∈ k× (where we always assume that char(k) 
= 2).

This quaternion algebra is often referred to by the symbol
(

a,b
k

)
, though various

different choices of a and b may give rise to isomorphic quaternion algebras (e.g.(
1,−1
k

) ∼= (
4,−1
k

)
).

If A/k ∼= Mn(k) for some n, we say that A is split. If it happens that A ⊗k K
is split for some extension K of k, we say that A/k is split by K , or that K is a
splitting field for A/k. The following theorem (and proof) shows that it is not too
difficult to find a splitting field for any A/k:

Theorem 3.1.3. If A/k is a central simple algebra over k, then A/k is split by
some finite separable extension K/k.

Proof. The existence of a finite extension splitting A follows from [Jac89, Theo-
rem 4.8, p. 221] and the discussion on the top of p. 220. To see that they are not hard
to construct explicitly, see [Jac89, Theorem 4.12, p. 224]. Finally separability of the
extension follows from (the proof of) [GS06, Proposition 2.2.5, p. 22]. �

Since base change doesn’t change the dimension of a central simple algebra, and
we can always enlarge our base field so that A splits, we have the following useful
corollary and definition:
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Corollary 3.1.4. The dimension of a central simple algebra is always a square.

Definition 3.1.5. If A/k has dimension n2, then we say that A has degree n.

We can use this idea to define a norm mapNA/k : A→ k by extending scalars to
the separable closure ksep, which splits A by Theorem 3.1.3, giving an isomorphism
A/ksep ∼= Mn(k

sep). We then define the norm NA/k(x) as the determinant of x
under this isomorphism. Since det(x) is constant on conjugacy classes, the norm is
independent of the choice of isomorphism, and is invariant under the Galois action
as well, hence is in k. Since the determinant is multiplicative, we see that

NA/k(αβ) = NA/k(α)NA/k(β) for all α, β ∈ A.

If it happens that every non-zero element ofA is invertible (i.e. α ∈ A−{0} =⇒
there is some α′ ∈ A so that αα′ = 1 and α′α = 1) then we say that A is a
division algebra. One can think of division algebras as natural non-commutative
generalizations of (finite degree) field extensionsK/k. In fact any non-zero element
α of a central simple algebra A of degree n generates a commutative subalgebra
k[α] ⊆ A of degree [k[α] : k] dividing n. In the case of a quaternion algebra one
can realize the norm map in terms of a conjugation operation explicitly on the basis
(by taking α = a + bi + cj + dκ �→ ᾱ := a − bi − cj − dκ), giving the norm as
NA/k(α) = αᾱ. The property of being a division algebra can be easily characterized
in terms of the norm map.

Theorem 3.1.6. A central simple algebra A over k is a division algebra iff the
conditionNA/k(α) = 0 ⇐⇒ α = 0 holds.

Proof. Notice that α is invertible in A ⇐⇒ the left multiplication map Lα :
A/k → A/k is an invertible linear map (by taking α−1 := L−1

α (1)). However Lα

is invertible ⇐⇒ its linear extension Lsep
α : A/ksep → A/ksep over the separable

closure ksep of k is invertible, which happens iff det(Lsep
α ) = NA/k(α)

n 
= 0, where
n is the degree of A over k. (See also [Pie82, §16.3, Corollary a, p. 300].)

In the special case where A is quaternion algebra this follows more directly by
noticing that if α is invertible then its unique two-sided inverse has the form α−1 =
ᾱ · (NA/k(α))

−1, which exists iff NA/k(α) 
= 0. �
The following important structural result of Wedderburn shows that division

algebras play a crucial role in the study of central simple algebras. It is also the
starting point for defining the Brauer group, which we will not discuss here, but is
discussed in Parimala’s lecture notes [Par] in this volume.

Theorem 3.1.7 (Wedderburn). Every central simple algebra A over k is isomor-
phic to a matrix ring over a division algebra, i.e.

A ∼=Mn(D)

where D is a (unique) division algebra over k, and n ∈ N is the degree of A/k.
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Proof. See [GS06, Theorem 2.1.3, p. 18]. �
We now specialize to consider quaternion algebras, which are very closely related

to quadratic spaces and questions about quadratic forms. One important connection
is given by considering the associated quadratic space (V,Q) := (A/k,NA/k) of
the quaternion algebra A/k.

Lemma 3.1.8. A quaternion algebra A/k is uniquely determined (up to isomor-
phism) by its associated quadratic space.

Proof. When char(k) 
= 2 this is [Lam05, Theorem 2.5(a)–(b), pp. 57–58], and
more generally this follows from [Knu91, Chap. V, Proposition 2.4.1, p. 256]. �
In this language we have the following useful corollary of Theorem 3.1.6.

Corollary 3.1.9. A quaternion algebra A/k is a division algebra iff its associated
(4-dimensional) quadratic space is anisotropic.

By combining this with the theory of local invariants of quadratic spaces in Sect. 1.6,
we have the following uniqueness result:

Theorem 3.1.10. There is a unique quaternion division algebra over each of the
local fields Qp and R.

Proof. Over R we see that
(

a,b
R

)
is determined by the signs of a and b, and that this

is split iff at least one of them is > 0. The remaining case gives a = b = −1, which
gives the Hamiltonian quaternionsH and is the unique division algebra over R.

Over Qp this follows from Lemma 3.1.8 and the fact that there is a unique
4-dimensional anisotropic quadratic space over Qp (characterized by the Hilbert
symbol relation cp = (−1,−dp)p) [Cas78, Lemma 2.6, p. 59]. �

Therefore, since every non-split quaternion algebra is a division algebra we see
that

Theorem 3.1.11. There are exactly two quaternion algebras (up to isomorphism)
over each of the local fields k = Qp or R: the split algebra M2(k), and a division
algebra D.

When k = Qp or R, the dichotomy of Theorem 3.1.11 is often referred to as
saying that a quaternion algebraA/k is either split or ramified (when it is a division
algebra). The term “ramified” is used here because in the associated valuation
theory of local division algebras (which is discussed in [Shi10, §21, particularly
Theorem 21.17, p. 108]), the division quaternion algebra D has a valuation ring
with maximal ideal p satisfying p2 = (p) := pZ, which agrees with the usual notion
of ramification in algebraic number theory.

To decide whether the local quaternion algebra A/k above is split or ramified,
one can use the easily computable (local) Hilbert symbol

(·, ·)v : Q×
v /(Q

×
v )

2 ×Q
×
v /(Q

×
v )

2 −→ {±1} (3.1)
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which is a non-degenerate multiplicative symmetric bilinear form on the (non-zero)
squareclasses of Qv. The Hilbert symbol arises naturally in the study of Class Field
Theory [Neu99, Chap. V, §3, with n = 2], and is defined by the (not obviously
symmetric) relation (a, b)v = 1 ⇐⇒ a ∈ NKv/Qv

(K×
v ) where Kv := Qv(

√
b).

The Hilbert symbol has many interesting properties:

Theorem 3.1.12. The local Hilbert symbol defined in (3.1) satisfies the following
properties:

1. (a, b)v = (b, a)v, (symmetry)
2. (a1a2, b)v = (a1, b)v(a2, b)v, (bilinearity)
3. (a, b)v = 1 for all b ∈ Q

×
v /(Q

×
v )

2 =⇒ a ∈ (Q×
v )

2, (non-degeneracy)
4. (a,−a)v = (a, 1− a)v = 1, (symbol)
5. (a, b)p = 1 if p 
= 2 and ordp(a), ordp(b) ∈ 2Z.

Proof. This follows from [Cas78, Lemma 2.1, 42] except for (a, 1 − a)v = 1,
which follows since 1 − a = NQv(

√
a)/Qv

(1 +
√
a). See also [Neu99, Chap. V,

Proposition 3.2, p. 334] for the anaogous proofs over number fields. �
Hilbert symbols are also an example of a “symbol” in the sense of K-theory (see
[Lam05, Chap. V, §6 and Chap. X, §6, p. 362] and [NSW08, Chap. VI, §4, p. 356]),
but for our purposes it is enough to be able to explicitly compute them, which can
be done with the tables on [Cas78, pp. 43–44]. The question of computing Hilbert
symbols (and splitting of quaternion algebras) over number fields is discussed in
Voight’s paper [Voi] in this volume.

Finally, the Hilbert symbol also satisfies the global “reciprocity” relation, from
which quadratic reciprocity can be easily proved.

Theorem 3.1.13. For all a, b ∈ Q
×, we have the product formula

∏

v

(a, b)v = 1,

and all but finitely many factors are one.

Proof. See [Cas78, Lemma 3.4, 46] or [Neu99, Chap. VI, Theorem 8.1, p. 414] for
the analogous result over number fields. �
This theorem has the following important parity consequence for quaternion
algebras A/Q.

Corollary 3.1.14. Given any quaternion algebra A/Q, the set of places v where
A/Qv is ramified has even cardinality.

Proof. By writingA/Q as
(

a,b
Q

)
for some a, b ∈ Q

×, we see thatA/Qv is ramified

⇐⇒ (a, b)v = −1, and the product formula guarantees this happens an even
number of times. �
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3.2 The Clifford Algebra

Good basic references for Clifford algebras over fields of characteristic 
= 2 are
[Jac89, §4.8], [Lam05, Chap. V], and [Cas78, Chap. 10]. The valuation theory of
central simple algebras over number fields can be found in [Shi10], and Clifford
algebras over general rings are discussed thoroughly in [Knu91, Chaps. IV–V]. A
very in-depth treatment of Clifford algebras as well as automorphic forms on their
associated Spin groups can be found in the recent book of Shimura [Shi04].

Given a quadratic space (V,Q) over a field K (of characteristic 
= 2) of
dimension n, we define its Clifford algebra C(V ) as the K-algebra generated by
all formal multiplications of scalars k ∈ K and vectors �v ∈ V subject to the family
of “squaring relations” that �v 2 = �v · �v = Q(�v) for all �v ∈ V . More formally, we
can construct the Clifford algebra as a quotient C(V ) := T (V )/I(V ) of the tensor
algebra T (V ) = ⊕∞

i=0(⊗iV ) by the ideal of relations

I(V ) :=
the ideal of T (V ) generated by the set

{�v 2 −Q(�v), k · �v − k�v for all �v ∈ V, k ∈ K}.

This shows that C(V ) is well-defined (and we will soon see that it is non-zero!).
One useful observation is that there is also a nice relationship between multipli-

cation in C(V ) and the inner productB(�v, �w). We see this by expanding out

Q(�v + �w) = (�v + �w)2 (3.2)

= �v 2 + �v · �w + �w · �v + �w 2 (3.3)

= Q(�v) + (�v · �w + �w · �v) +Q(�w) (3.4)

and comparing this with the polarization identity (1.2), which shows that

�v · �w + �w · �v = 2B(�v, �w). (3.5)

This relation can be used to give a unique presentation of any element α ∈ C(V )
in terms of a given choice of basis B = {�v1, . . . , �vn} of V , since we can
reverse the order of adjacent elements to present them in terms of the basis of
all possible products of distinct vectors �vi ∈ B with indices i in increasing order.
Because these products are indexed by the 2n subsets I of {1, . . . , n}, we see that

Theorem 3.2.1. The dimension of the Clifford algebra is dimK(C0(V )) = 2n.

An interesting special case of the Clifford algebra is when the quadratic form Q
is identically zero. In this case, by taking a basis B for V and applying the relations
above we see that �vi ·�vj = −�vj ·�vi when i 
= j and �vi 2 = 0. This shows that C(V )

is just the exterior algebra ⊕i(
∧i

V ). When Q is not identically zero we can think
of C(V ) as a deformation of the exterior algebra that encodes the arithmetic of Q.
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Another interesting fact about the Clifford algebra is that it has a natural (Z/2Z)-
grading (called the parity) coming from the Z-grading on the tensor algebra T (V )
and the fact that the relations in I(V ) only involve relations among elements of the
same parity. We say that an element of C(V ) is said to be even or odd if it can be
written as a sum of elements of T (V ) of even or odd degree respectively. Given this,
we can consider the subalgebra C0(V ) of even elements in C(V ), called the even
Clifford algebra of V . It follows from our basis description of C(V ) above and
simple facts about binomial coefficients that

Theorem 3.2.2. The dimension of the even Clifford algebra is dimK(C0(V )) =
2n−1.

Both C(V ) and C0(V ) have a canonical involution α �→ α̃ defined (on the pure
tensor elements) by reversing the order of every product of vectors, i.e.

α := �v1 · · ·�vk �−→ �vk · · ·�v1 =: α̃,

and then extending this map linearly to the entire algebra. We can use this involution
to define a multiplicative norm function N : C(V )→ K by the product

N(α) := α · α̃.

To see that N(α) ∈ K notice that if α := �v1 · · ·�vk then

N(α) = α · α̃ = (�v1 · · ·�vk) · (�vk · · ·�v1) = Q(�vk) · · ·Q(�v1) ∈ K, (3.6)

by repeatedly using the relation �vi 2 = Q(�vi). This also shows that N(α) = α̃ · α.
We will be interested in multiplicative subgroups of C(V ), so we say that an

element α ∈ C(V ) is invertible if there is some α−1 ∈ C(V ) so that α · α−1 = 1.
Notice that if α is invertible, then

α−1 =
α̃

N(α)

and we also have α−1 · α = 1, so our inverses are “two-sided”. It is also useful
to notice that we already have a good understanding of what vectors �v ∈ V are
invertible.

Lemma 3.2.3. Suppose that �v ∈ V ⊂ C(V ). Then �v is invertible ⇐⇒ �v is
anisotropic.

Proof. This follows since �v is invertible ⇐⇒ N(�v) = �v · �v = Q(�v) 
= 0. �
Finally, we mention the following theorem that explains the structure of the

Clifford algebra as a central simple algebra.
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Theorem 3.2.4. Suppose that V is a non-degenerate quadratic space of dimension
n. Then C(V ) is a central simple algebra if n is even and C0(V ) is a central simple
algebra when n is odd.

Proof. See [Jac89, Theorem 4.14, p. 237], [Lam05, Theorems 2.4 and 2.5, p. 110],
[Shi10, Theorem 23.8, p. 125]. A more general version of this holds over rings,
where the word “Azumaya” replaces “central simple”. (See [Knu91, Chap. IV,
Theorem 2.2.3, p. 203 and Theorem 3.2.4(1), p. 210] for proofs, and [Sal99, Chap. 2]
for a discussion of Azumaya.) �

3.3 Connecting Algebra and Geometry
in the Orthogonal Group

One important feature of the orthogonal groupO(V ) is that can be used to describe
equivalences of quadratic spaces and quadratic lattices, however this is not very
useful unless one can somehow describe the elements of O(V ). One approach for
doing this is to try to use the geometry of V to construct explicit transformations
in O(V ). We now describe how this is done (over fields K of characteristic
char(K) 
= 2).

Given some �v ∈ V with Q(�v) 
= 0, we can define the reflection symmetry
τ�v ∈ O(V ) defined by sending �v �→ −�v and pointwise fixing all vectors in
the orthogonal complement (K�v)⊥ of the line spanned by �v. Using the standard
projection formulas of linear algebra (e.g. [Str09, §4.2]) we see that τ�v can be written
explicitly as

τ�v(�w) = �w − 2
B(�v, �w)

B(�v,�v)
�v, (3.7)

which is only defined if B(�v,�v) = Q(�v) 
= 0. Notice that since we are reversing
the direction of a line, and stabilizing its complement, we know det(τ�v) = −1. One
useful property of these reflection symmetries is that they can be explicitly seen to
act transitively on vectors of a given non-zero length. More precisely,

Lemma 3.3.1. Suppose that �v, �w ∈ V satisfy Q(�v) = Q(�w).

(a) If Q(�v) = Q(�w) 
= 0. Then α�v = �w where α is a product of at most two
reflection symmetries.

(b) If Q(�v − �w) 
= 0, then
τ�v−�w(�v) = �w.

Proof. This can be found in [Cas78, pp. 19–20] among other places, though we give
the argument here. Part (b) follows from a direct computation with (3.7). Part (a)
follows from (b) if Q(�v − �w) 
= 0, otherwise the polarization identity (1.2) ensures
thatQ(�v+ �w) 
= 0, and so part (b) allows us to find a symmetry interchanging�v and
−�w. From here the symmetry τ�w interchanges �w and−�w, giving α = τ�w ·τ�v+�w. �
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This transitive action of reflection symmetries shows that they generate the full
orthogonal group O(V ) for any non-degenerate quadratic space.

Theorem 3.3.2. If (V,Q) is a non-degenerate quadratic space, then every element
β ∈ O(V ) can be written as a product of reflection symmetries, i.e.

β = τ�v1 · · · τ�vk
for some vectors �vi ∈ V with Q(�vi) 
= 0.

Proof. This is proved [Cas78, Lemma 4.3, pp. 20–21]. This follows by induction
on the dimension on V , since for any �v with Q(�v) 
= 0 we can find some product of
symmetries α so that α�v = β�v. Therefore α−1β fixes K�v and also W := (K�v)⊥,
and we are reduced to showing that α−1β is a product of symmetries on W . When
dim(W ) = 1, this holds because β : �v �→ ±�v, completing the proof. �

There is a particularly interesting map called the spinor norm map, denoted
sn(α), from O+(V ) to the squareclasses K×/(K×)2 that can be defined easily by
using the reflection symmetry description ofO(V ). To do this we write α ∈ O+(V )
as a product of symmetries τ�v and define

α = τ�v1 · · · τ�vk �−→ Q(�v1) · · ·Q(�vk) =: sn(α). (3.8)

This gives a squareclass because we could have rescaled any of the �vi without
changing its associated symmetry τ�vi , but we would change Q(�vi) by a non-zero
square. However it is more work to show that sn(α) is independent of our particular
presentation of α as a product of symmetries.

Lemma 3.3.3. Suppose that (V,Q) is a non-degenerate quadratic space. Then any
even element in the center of C(V ) is a scalar.

Proof. This can be shown by taking an orthogonal basis {�ei} for V , which
necessarily satisfies �ei�ej = −�ej�ei, and imposing the commutation relation. This
is done explicitly in [Cas78, Lemma 2.3, p. 174], [O’M71, §54:4, pp. 135–136],
[Shi10, Corollary 23.9, p. 126] and somewhat indirectly in [Lam05, Theorem 3.4,
p. 92 and Theorem 2.2, p. 109]. �
Theorem 3.3.4. Suppose that (V,Q) is a non-degenerate quadratic space. Then the
spinor norm map sn : O(V )→ F×/(F×)2 is a well-defined group homomorphism.

Proof. To see that sn(α) is well-defined, notice that any two expressions for α as a
product of transpositions gives rise to an expression for the identity map as a product
of an even number of reflection symmetries

∏

i

τ�vi = id ∈ SO(V ),
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and sn(α) is well-defined iff
∏

iQ(�vi) ∈ (F×)2. Lemma 3.4.1 allows us to interpret
τ�v as conjugation by �v in C(V ) and letting u :=

∏
i �vi ∈ C0(V ) we see that

u�wu−1 = �w for all �w ∈ V . Therefore by Lemma 3.3.3 we know that u ∈ K×,
and so

∏
iQ(�vi) = uũ = u2 ∈ (K×)2. (This argument also appears in [Cas78,

Corollary 3, p. 178], [Shi10, §24.8, p. 131], [O’M71, §55, p. 137] and [Lam05,
Theorem 1.13, p. 108].) �

3.4 The Spin Group

Now that we understand some basic properties of the Clifford algebra and the
orthogonal group, we are ready to construct a very useful “two-fold cover” of the
special orthogonal groupSO(V ) called the spin group. Aside from being interesting
in its own right, the spin group plays a very important role in the theory of indefinite
quadratic forms.

As a first step, we notice that conjugation in the Clifford algebra is a very
interesting operation because it naturally produces elements of the orthogonal
group. For example, if it happens that u ∈ C(V )× satisfies u−1V u ⊆ V then
we claim that this conjugation gives an isometry of V , and so it is an element of the
orthogonal group O(V ). To see this, for any �x ∈ V we compute

Q(u−1�xu) = (u−1�xu)(u−1�xu) = u−1 · �x · �x · u = Q(�x).

Amazingly, we can even identify exactly which element of O(V ) this conjugation
gives us.

Lemma 3.4.1. Suppose that u ∈ V satisfies Q(u) 
= 0 and that for all �x ∈ V the
conjugation ϕu : �x �→ u−1�xu ∈ V . Then ϕu ∈ O(V ) and ϕu gives the negative
reflection symmetry −τu.

Proof. We have already seen that ϕu ∈ O(V ), so we only need to identify ϕu

explicitly as

ϕu = u−1�xu =
u

Q(u)
�xu

=
1

Q(u)

[
(u�x+ �xu)u− xu2]

=
1

Q(u)
[2B(x, u)u− xQ(u)]

= −x+
2B(x, u)

Q(u)
u

= −τu(�x). �
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This leads us to define the multiplicative subgroup

U0 := {u ∈ (C0(V ))× | u−1V u ⊆ V } ⊆ C0(V )

on which we have a natural conjugation map ϕ : U0 → O(V ) defined by sending
u �→ (ϕu : �x �→ u−1�xu). It takes a little work to see that the image of this map is in
SO(V ).

Lemma 3.4.2. The conjugation map above gives a homomorphism ϕ : U0 →
SO(V ).

Proof. If u ∈ U0 then by Theorem 3.3.2 we can find r anisotropic vectors �vi so that
α :=

∏
i �vi gives ϕ(α) = ϕ(u), and so β := α · u−1 has ϕ(β) = id ∈ O(V ).

This is equivalent to the commutation relation β�v = �vβ for all �v ∈ V . However by
expressing β as a unique linear combination of ordered monomials with respect to
some fixed orthogonal basis {�wi}for V , this commutation relation for �wi says that
each monomial containing �wi must have even degree, and so β ∈ C0(V ). Therefore
α ∈ C0(V ), r is even and ϕ(u) = ϕ(α) ∈ SO(V ).

This argument can be found in [Cas78, Theorem 3.1, pp. 176–177], [Shi10,
Theorem 24.6, pp. 129–130], and there Shimura points out that this result is
originally due to Lipschitz [:1959], though a special case was shown by Clifford.

�
This map is very useful for connecting the Clifford algebra and the special

orthogonal group, as it provides a natural and explicit covering.

Lemma 3.4.3. Suppose that (V,Q) is non-degenerate quadratic space. Then the
conjugation map ϕ : U0 → SO(V ) is surjective with kernel K×, and so
U0/(K

×) ∼−→ SO(V ).

Proof. Surjectivity follows from Theorem 3.3.2 and Lemma 3.4.1. To see that
Ker(ϕ) = K×, use Theorem 3.3.2 and Lemma 3.3.3.

This can also be found in [Cas78, Theorem 3.1, p. 176] and [Shi10, Theorem
24.6(iii), p. 129]. �

Using this Lemma, we define the spin group Spin(V ) as the elements of α ∈ U0

with norm N(α) = 1. The spin group an algebraic section of the covering map
ϕ : U0 → SO(V ), which we soon show is a “double covering” of its image. A
helpful observation for doing this is that the spinor norm of an element of Spin(V )
under this composition can be computed fairly easily.

Lemma 3.4.4. Suppose that (V,Q) is non-degenerate quadratic space. Then for
any u ∈ U0 we have sn(u) = N(u)(K×)2.

Proof. This is shown in [Cas78, Corollary 1, p. 177] and [Shi10, §24.8 above
(24.7a), p. 131], but we give the argument below.

We first show that any α ∈ U0 can be written as a product of an even number
of anisotropic vectors �vi ∈ V . To see this, we use the proof of Lemma 3.4.2 to see
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that α :=
∏

i �vi ∈ (C0(V ))× and that ϕ(α · u−1) = id ∈ O(V ). Therefore α · u−1

commutes with V , hence is in the center ofC(V ), and applying Lemma 3.3.3 shows
that u = c

∏
i �vi for some c ∈ K×.

Given that u ∈ U0 can be written as a product of anisotropic vectors u =
�v1 · · ·�vr, the lemma follows from computing N(u) =

∏r
i=1Q(�vi) = sn(u)

using (3.6). �
From this it follows that the spinor norm of the image of any element of Spin(V )

under ϕ must be trivial (i.e. sn(ϕ(Spin(V ))) = (K×)2), and so the image of
Spin(V ) is contained in the spinor kernel κ(V ) := ker(sn). In fact

Lemma 3.4.5. The map ϕ : Spin(V )→ SO(V ) has image κ(V ) and kernel {±1}.
The image Im(ϕ(Spin(V ))) = κ(V ) since any element α ∈ U0 with sn(α) =
(K×)2 must have N(α) = 1, and also Ker(ϕ(Spin(V ))) = {±1}.
Proof. The image is κ(V ) because any α ∈ U0 with sn(α) = (K×)2 must have
N(α) = 1, and the kernel consists of the elements c ∈ F× with N(c) = c2 = 1.

�
We can conveniently summarize our results in the following exact commutative

diagram:

{±1}
� �

��

K×
� �

��
1 �� Spin(V ) ��

ϕ
��
���
�
�

U0

Norm
��

ϕ
��
��

K× ��

id
��

1

1 �� κ(V ) �� SO(V )
sn

�� K×/(K×)2

This shows our main result

Theorem 3.4.6. Spin(V ) is a double covering of the spinor kernel κ(V ) ⊆
SO(V ), and the obstruction to this being a covering map are presence of non-trivial
squareclasses of K× in the image of the spinor norm map sn.

In the special case where K× has only one squareclass (e.g. when K is
algebraically closed), we have that

Corollary 3.4.7. If K× = (K×)2, then Spin(V ) is a double cover of SO(V ).

Another interesting special case arises when K = R and (V,Q) is positive
definite. Here all spinor norms are positive, hence they are in the identity squareclass
(R×)2, so κ(V ) = SO(V ) and again Spin(V ) is a double cover of SO(V ).
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3.5 Spinor Equivalence

In Sect. 1.9 we have seen that equivalence of quadratic forms can be viewed as
the equivalence of quadratic lattices in a quadratic space (V,Q) by the action
of O(V ). There are other more refined notions of equivalence that are useful as
well. For example, equivalence of quadratic lattices under SO(V ) is called proper
equivalence, and plays an essential role in the theory of binary quadratic forms.
In this section we are interested in defining a notion of equivalence called “spinor
equivalence” that comes from the action of the spin group Spin(V ) and plays an
important role for understanding indefinite quadratic forms in n ≥ 3 variables.

We say that two quadratic forms overZ are locally spinor equivalent if for every
place v their associated quadratic lattices are in the same κ(Vv)-orbit, where κ(Vv)
is the local spinor kernel group at v.

In our definition of the genus Gen(Q) earlier, we saw that it could also be locally
realized by the action of a product of local groupsO(Vv) giving local isometries, and
in Sect. 4.5 we will give a precise adelic version of this statement. One important
thing to check is that the local equivalence defining the genus is weaker than the
corresponding global equivalence defining classes. This is obvious for the definition
of Gen(Q), but must be forcibly imposed in the case of the spinor genus (because
O(V ) 
⊆∏

v κ(Vv)).
Suppose thatQ has a corresponding quadratic latticeL ⊂ (V,Q). Then we define

the spinor genus of Q, denoted Spn(Q), to be the set of all quadratic forms Q′

whose corresponding lattice L′ ⊂ (V,Q) is locally spinor equivalent to L after
performing a global isometry (in O(V )). The importance of the spinor genus comes
from the following beautiful observation of Eichler that the associated spin groups
have a “strong approximation” property, which essentially says that the Q-rational
points of the “adelic spin group” are dense in the adelic group Spin(V )A. While we
avoid a more precise statement here, this adelic formulation of algebraic groups will
play a central role in Sect. 4.

Theorem 3.5.1 (Eichler [Eic52]). Suppose that Q is a non-degenerate indefinite
quadratic form over Z in n ≥ 3 variables. Then there is exactly one class of
quadratic forms in its spinor genus.

Proof. This is proved in [Cas78, Theorem 7.1, p. 186] and [Shi10, Theorem 32.15,
p. 192]. �

This theorem allows is to understand statements about indefinite forms in n≥3
variables by performing various local computations. There is also a (somewhat
modified) version of Siegel’s Theorem 2.5.1 due to Schulze-Pillot [SP84] that
holds for quadratic forms when one averages over Spinor genus Spn(Q) instead
of a genus Gen(Q). From our computations in Sect. 2.7, we see that this kind of
formula gives direct access to the arithmetic of Q when there is only one class in its
spinor genus.
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4 The Theta Lifting

4.1 Classical to Adelic Modular Forms for GL2

It is convenient to understand the transformation property (2.2) of modular forms
by viewing them as functions on the algebraic group GL2 with certain invariance
properties. We do this in two steps, first by lifting the function f(z) on H to a
function f̃ on GL2(R), and then by further lifting this to a function F on the
adelic group GL2(A) whose transformation properties can be seen most simply.
This adelic perspective will also give us a very flexible language to use to describe
the lifting of modular forms via the Weil representation. This passage from classical
to adelic modular forms is described in [Gel75b, §3], [Shi97, §10] and [Hid00,
§3.1.5].

Given a modular form f(z) : H → C of integral weight k ∈ Z, levelN , Dirichlet
character χ and trivial multiplier system as in Definition 2.3.1 (so f ∈ Mk(N,χ)),
we can express its defining transformation property (2.2) as the invariance property
(f |k,χγ)(z) = f(z) for all γ ∈ Γ0(N) with respect to the weight-character slash
operator

(f |k,χ γ)(z) := f(γ ·z)(cz+d)−kχ(d)−1, where γ =
[
a b
c d

] ∈ Γ0(N). (4.1)

To create an invariant function on GL+
2 (R), we first notice that the weight-

character slash operator cannot be extended to allow γ ∈ GL+
2 (R) because the

character factor χ(d) does not make sense in this generality, though the weight
factor (cz + d)k does make sense. However if we ignore the character χ in (4.1)
(i.e. take χ = 1 there), then we do get a well-defined weight slash operator

(f |k g)(z) := f(g · z)(cz + d)−k, where g =
[
a b
c d

] ∈ GL+
2 (R).

For these operators the transformation property of f ∈ Mk(N,χ) becomes the
twisted invariance (f |kγ)(z) = χ(d)f(z) for all γ ∈ Γ0(N). We can also use this to
make a twisted invariant function f̃ on GL+

2 (R) by noticing that the linear fractional
transformation action of GL+

2 (R) on H is transitive. By choosing a distinguished
point i ∈ H, we can define f̃ : GL+

2 (R)→ C by

f̃(g) := (f |k g)(i),

which satisfies f̃(γg) = χ(d)f̃ (g) for all γ ∈ Γ0(N).
At this point we do not yet have a truly invariant function on GL+

2 (R) unless
the character χ is trivial. To incorporate the character χ into our formalism, we
need to find a natural place for this “mod N character” to live. The necessary
congruence structure is provided by the groups GL2(Qp) at the non-archimedean
(i.e. p-adic) places, and the natural structure combining all of these completions
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GL2(Qv) is the “adelization” GL2(A) of the algebraic group GL2 over Q, defined
in the next section. For our purposes in this section we will not be too interested in
the role of the character when passing from a classical modular form to an adelic
one, however we will be very interested in adelic modular forms in general as the
natural “invariant” setting for discussing modular forms.

4.2 Adelizations and Adelic Modular Forms

In this section we give a general definition for adelic modular forms for a general
algebraic group G. This agrees with the definitions above when G = GL2, and in
future sections we will want to consider G to be either the symplectic group Sp2n
or the special orthogonal group SO(Q) of a definite rational quadratic form Q.

We first define the adelization of an affine/linear algebraic group G over the
ring of integersO of a number field F (defined as the zero set of an ideal of relations
in a polynomial ring O[�x]) to be the restricted direct product

∏′
v G(Fv) of the

local algebraic groupsG(Fv) over all places v of F , which is the subset of the usual
direct product

∏
v G(Fv) satisfying the restriction that gA = (gv)v is subject to the

restriction that gv ∈ G(Ov) for all but finitely many v. The restricted direct product
has several advantages over the usual direct product – it is small enough to be locally
compact (since every element has all but finitely many components in the compact
groupG(Ov)), but it is large enough to contain all rational points G(F ).

For the convenience of the reader, we will consistently use subscripts (e.g.
A, v,∞, f) to denote the kind of element (resp. adelic, local, archimedean, non-
archimedean/finite) that the element g• ∈ G(F•) represents. We also denote the
center of G by Z , to which the same conventions apply for z ∈ Z(F•). Elements
without subscripts will represent rational elements (i.e. we take g ∈ G(F )). In most
cases Z(F ) = F× and ZA := Z(FA) are the ideles of F . It is also common to
denote the compact groups G(Ov) as Kv, with Kv denoting a fixed choice of the
maximal compact subgroup in G(Fv) when v is archimedean.

In the case where G = SL2 and F = Q, we can use this notion of an adelic
group to further lift a classical modular form f(z) to an “invariant” function on
SL2(A). To do this we extend the original weight-character slash operator to an
operator on SL2(A) by writing the Dirichlet character χ(d) as a product of prime-
power characters χp : Zp/p

νpZp
∼= Z/pνpZ→ C where νp := ordp(N). These χp

can be thought of as characters on the p-adic congruence subgroups

Kp(N) := {g = [
a b
c d

] ∈ SL2(Zp) | c ∈ pνpZp},

and so χ can be thought of as a character on the compact product group Kf(N) :=∏
pKp(N) by the formula

χ : (xp){p∈f} �−→
∏

p

χp(xp)
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in which all but finitely many factors χp(xp) = 1. With this reformulation of the
Dirichlet character χ, we define the adelic slash operator by the formula

(f |k,χ,A gA)(z) := f(g∞·z)(c∞z+d∞)−k
∏

p
χp(dp)

−1, where gA =
[
a b
c d

] ∈ SL2(A),

and notice that for all γ ∈ Γ0(N) (considered as an elements of SL2(A) by the
canonical diagonal embedding γ �→ (γ, γ, . . . )) we have the invariance property
that

(f |k,χ,A γ)(z) = (f |k,χ γ)(z) = f(z).

We can now lift the classical modular form f(z) ∈ Mk(N,χ) to an adelic
function F : SL2(A) → C by defining its dependence on gA through its action
on the distinguished point i ∈ H as

F(gA) := (f |k,χ,A gA)(i). (4.2)

One can easily verify that this adelic lift F satisfies the following important
invariance properties:

• F(g′gA) = F(gA) for all g′ ∈ SL2(Q),
• F(gAkf ) = F(gA) · χ(kf ) for all kf ∈ Kf (N).

One could work a little harder to show that F(gA) is an “adelic automorphic form”
for the group G = SL2 in the sense defined below, but for our purposes in these
notes the most important properties are the “rational left-invariance” and “right K-
finiteness” properties just mentioned. These are the features of adelic automorphic
forms that will be most prominent as we perform our explicit theta-lift.

Since our main goal is to move automorphic forms form one group to another, it
will be important to have a definition of automorphic forms that is general enough
to cover all cases of interest. In general, one defines an adelic automorphic form
on a linear algebraic groupG to be a function F : GA → C satisfying:

1. F is left-invariant for the rational group: F(g · gA) = F(gA) for all g ∈ G(F )
and for all gA ∈ GA.

2. F has a central adelic (Hecke) character ψ : ZA : Z(A) → C
× so that F(zA ·

gA) = ψ(zA) · F(gA) for all zA ∈ ZA and for all gA ∈ GA.
3. F is right-“KA-finite”, meaning that the span of F as a function under the action

of KA by the right regular representation kA : F �→ F̃(gA) := F(gA · kf ) is a
finite-dimensional vector space over F .

4. F∞ is smooth and “z∞-finite”, where z∞ is the center of the universal enveloping
algebra for G∞: meaning that the image of F under z spans a finite-dimensional
vector space over F∞. We note that z∞ can also be interpreted as the ring of
bi-invariant differential operators on G∞, and in the case of GL2(R) that z∞ is

the ring C[Δ] where Δ is the hyperbolic Laplacian operator−y2
(

∂2

∂x2 + ∂2

∂y2

)
.



156 J. Hanke

5. F has moderate growth: meaning that there are constants C and M ∈ R > 0 so
that |F([ a 0

0 1 ] gA)| ≤ C|a|M
A

for all a ∈ A
×
F with |a|A > c for some c, and all gA

in any fixed compact subset of GA.

The most important conditions for us will be conditions (1)–(3). Condition (4)
is a generalization of the usual holomorphy condition for classical modular forms
(since any real-analytic function is an eigenfunction of the Laplacian operator with
eigenvalue zero), and condition (5) is a technical growth condition used to exclude
poorly behaved functions. In the case where G is an orthogonal group of a definite
quadratic form conditions (4) and (5) can be safely omitted because the archimedean
component is already compact.

References for this section: For adelizations of algebraic groups and modular
forms for an adelic group see [Shi97, §8, 10, 11], for definitions of adelic modular
forms onGL2 [Gel75b, §1.3, pp. 40–53] and [Hid00, §3.1]. Some motivation for this
reformulation of the classical language can be found in the brief Corvallis article of
Piatetski-Shapiro [PS79]. See also Bump’s book [Bum97, §3.1–2] for a discussion
of the adelic approach to automorphic forms for the important groupsGL1 and GL2.

4.3 The Weil Representation

To see how theta functions arise in terms of representation theory, we now
define the Weil representation whose symmetries will be closely related to the
Fourier transform. We will not go through the explicit construction of the Weil
representation, but instead content ourselves to list its defining properties below
and go on to use the Weil representation to produce classical theta functions. Some
references that explicitly construct the Weil representation are [LV80], or Gelbart’s
book [Gel76]. Other places where the Weil representation is used in a similar
way are [Pra93, Pra98, Gel79], Kudla’s lecture notes [Kud08], and Gelbart’s book,
[Gel75a, §7A, pp. 134–150].

These considerations give rise to the adelic Weil Representation W : Sp2
(F )\Sp2(A) → GL(S(VA)) on the space of Schwartz functions on VA, defined
by the following transformation formulas:

1.

(
W

([
a 0

0 a−1

])
Φ

)
(�v) = χV (a) · |a|

n
2

A
· Φ(a�v)

2.

(
W

([
1 x

0 1

])
Φ

)
(�v) = eA(xQ(�v)) · Φ(�v)

3.

(
W

([
0 1

−1 0

])
Φ

)
(�v) = Φ̂(−�v)

Here the character χV (·) := (·, (−1)n/2 det(Q))F and eA denotes the adelic
exponential, defined by

eA((xv)v) := e2πi x∞ ·
∏

p

e−2πiFracp(xp)
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where Fracp(xp) ∈ Q/Z is defined as any rational number with p-power denomi-
nator for which xp ∈ Fracp(xp)+Zp. (Notice that the adelic exponential is always
given by a finite product since any adele xA will have all but finitely many xp ∈ Zp.)
The adelic exponential eA is also used to define the adelic Fourier transform

Φ̂(�w) :=

∫

�v∈VA

eA(H(�v, �w))Φ(�v) dA�v

of any Schwartz function Φ ∈ S(VA), where the additive Haar measure dA�v is
normalized so that Vol(VA) = 1. An explicit reference for these formulas are
[Gel76, Theorem 2.22, p. 37]; also [Kud08, I.1.6, p. 3] (though there is a minor
typo writing x for a in the second formula there).

These formulas uniquely define the Weil representation, since any element
of Sp2(FA) can be expressed as a product of these elements (using the Bruhat
decomposition for Sp2 = SL2). They are also visibly trivial on elements of Sp2(F ),
because the adelic absolute value | · |A, the rational Hilbert symbol (·, ·)F :=∏

v(·, ·)Fv , and the adelic exponential eA(·) are all trivial on rational elements.

Remark 4.3.1. We have not explicitly defined (adelic) Schwartz functions on
VA, which are just finite linear combinations of an infinite product

∏
v Φv(xv) of

Schwartz functions Φv on Fv where Φv is the characteristic function of Zp at all but
finitely many places. For more details, see [Bum97, §3.1, pp. 256–257].

4.4 Theta Kernels and Theta Liftings

For convenience, we now let W denote the non-degenerate 2-dimensional symplec-
tic vector space over F , and identify SL2(F ) with Sp(W ). The Weil representation
restricted to our pair G × H := Sp(W ) × O(V ) incorporates both an invariance
under the orthogonal group, and a Fourier transform from the Weyl element.

To produce theta functions from this, we will need to introduce the familiar
classical features of a self-dual function on a lattice. In the adelic context, our
lattice is provided by the rational points V (F ) and the adelic self-dual function
is taken to be the local product φA(�vA) :=

∏
v φv(�vv) of the familiar Gaussian

exponential φ∞(�v) := e−πQ(�v) at ∞ and the characteristic function of the
completion of some fixed lattice L on V at all non-archimedean places p. (To
fix ideas we can take F = Q and take the standard lattice L = Z

n, giving
φp(�v) := characteristic function of Zn

p .)
Finally we must sum the values of our function φA over the rational lattice V (F ),

which gives rise to a “theta distribution”

θ : φ �→
∑

�v∈V (F )

φ(�v)
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on functions φ ∈ S(V ). We will be interested in the behavior of this distribution
under the action of the Weil representation, so we define the theta kernel

θφ(g, h) :=
∑

�v∈V (F )

(W(g, h)φ)(�v) =
∑

�v∈V (F )

(W(g)φ)(h−1�v)

as the value of the theta distribution under this action. This theta kernel already
feels very similar to a theta series (since we are summing a quadratic Gaussian over
a rational lattice, and our choice φA is supported only on the integral lattice), though
it depends on two variables g ∈ Sp2(A) and h ∈ OQ(A). However it is more
appropriate to think of this as a part of an adelic “theta machine” that will allow us
to produce many theta series on Sp2 = SL2 after eliminating the orthogonal variable
h in some way.

We now study the rational invariance properties of the theta kernel, which allow
us to think of our a priori “adelic” construction as something “automorphic”. The
main observation is

Lemma 4.4.1. The theta kernel θφ(g, h) is a function on Sp(W )\Sp(WA) ×
O(V )\O(VA).
Proof. At the end of the previous section we noted that the Weil representation
transformation 2 is invariant when x ∈ F . Transformation 1 with a ∈ F× performs
a rational scaling of the values, which leaves the rational lattice V (F ) invariant, and
transformation 3 preserves the theta kernel because the (adelic) Poisson summation
formula tells us that the sum of a function on the standard lattice is the same as
the sum using its Fourier transform. Therefore the theta kernel has the rational
lattice symmetries of being left-invariant under Sp(W ). It is also left-invariant under
O(V (F )) because that action just permutes V (F ). Therefore we have shown that
the theta kernel is rationally left-invariant, and so it descends to a function on the
rational left cosets as desired. �
This rational bi-invariance is exactly what allows us to use the theta kernel to
move automorphic forms between the orthogonal and symplectic groups. Given an
automorphic form F (hA) on the orthogonal group O(VA), we can define its theta
lift by the integral

(Θ(F ))(gA) :=

∫

hA∈O(V )\O(VA)

F (gA) θφ(gA, hA) dhA (4.3)

of F against the theta kernel with respect to the choice of adelic Haar measure
dhA on O(VA) giving the adelic stabilizer StabA(L) ⊂ O(VA) volume 1. The theta
lift Θ(F )(gA) formally inherits the symplectic invariance of the theta kernel, and
gives an automorphic form on Sp(WA) when the integral converges. In the next few
sections we will give an explicit example of how this process can be used to produce
the classical theta series of a positive definite integer-valued quadratic form.
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4.5 Some Simple Automorphic Forms
on the Orthogonal Group

To actually use the theta lift, we must have at our disposal a supply of automorphic
forms on the orthogonal quotient O(V )\O(VA). In this section we describe the
simplest of these, characteristic functions of a point, which are surprisingly useful
for our purposes.

We begin by giving a classical interpretation of the orthogonal quotient
O(V )\O(VA). Given the rational quadratic space (V,Q), we define an action
of the adelic orthogonal group O(VA) on the set of all (quadratic) OF -lattices in
(V,Q) by using the following local-global statement for lattices in a rational vector
space.

Lemma 4.5.1. There is a natural bijection between lattices L in an n-dimensional
F -rational vector space V and the tuples (Lp)p of local lattices Lp ⊂ Vp := V ⊗F

Fp satisfying the property that all but finitely many Lp are equal to On
p . (Here p

runs over the set of (non-zero) primes of F .)

Proof. This is proved in [Shi10, Lemma 21.6, pp. 102–103] and [Wei67, Theorem 2,
p. 84]. The relevant maps in each direction are

L �→ (Lp := L⊗OF Op)p and (Lp)p �→ L :=
⋂

p

(V ∩ Lp). �

With this lemma, we define an action of hA ∈ O(VA) on the lattices in (V,Q) by
acting locally on the associated tuple of local lattices:

hA : L �−→ (hpLp)p
Lemma←→ hAL.

This action produces a new tuple of local lattices, which differs from the first tuple
at only finitely many places (by the restricted direct product condition on O(VA)),
and so corresponds to a unique lattice in (V,Q). Notice that this action makes no
use of the non-archimedian component h∞ of hA.

We now fix a lattice L in (V,Q), and interpret the action of O(VA) on L
classically.

Lemma 4.5.2. The orbit of L under O(VA) is the genus of L.

Proof. From the definition of the action, we see that the new lattice L′ := hAL is
locally isometric to the lattice L at all primes p, so it is in the genus of L. Since
L′ ⊂ (V,Q) we see they are also isometric at the archimedian place ∞, hence
L′ ∈ Gen(L).

Similarly, any lattice in Gen(L) can be realized as hAL by taking hp to be the
element of the orthogonal group carryingLp toL′

p at the finitely many primes where
Lp 
= L′

p, and taking all other components hv as the identity. �
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This interpretation can be extended a little further, by trying to describe the
classes in the genus Gen(L) adelically. If we define the adelic stabilizer

KA := StabA(L) := {hA ∈ O(VA) | hAL = L}

then we have a bijection

O(VA)/StabA(L)
1−1←→ Gen(L)

hA �−→ hAL

Taking this one step further, we have the important bijection

O(V )\O(VA)/StabA(L) 1−1←→ classes in Gen(L)

because two lattices in (V,Q) are in the same class if they are isometric, hence they
differ by the action of an element of O(V ).

This finite quotient O(V )\O(VA)/StabA(L) corresponding to the classes in the
genus can also be thought of as the analogue of the usual upper half-plane H (for
SL2) for the orthogonal group O(V ). Under this analogy, we see that the analogue
of modular functions forO(V ) are just functions on this finite set of points (labelled
by the classes Li in Gen(L)). The simplest of these are the characteristic functions
ΦLi of each point, and the constant function 1, both of which we will see play a
special role the theory of theta series. Since the non-archimedian part of StabA(L)
is a compact group, we can easily verify that both of these functions are adelic
automorphic forms in the sense of Sect. 4.2.

4.6 Realizing Classical Theta Functions as Theta Lifts

We now compute the theta lifting of the characteristic function ΦLj of the double
coset of O(VA) corresponding to a chosen quadratic lattice Lj ∈ Gen(L), with
respect to the fixed choice of function φA(�vA) described above. We will see that this
an adelic automorphic form that classically corresponds to a certain multiple of the
familiar theta series

ΘLj(z) :=
∑

�v∈Lj

e2πiQ(�v)z =
∑

m∈Z≥0

rLj (m) e2πimz .

By our definition of the theta lift in (4.3), we are interested in computing

Θ(ΦLj)(gA) =

∫

O(V )\O(VA)

ΦLj(hA) θφ(gA, hA) dhA (4.4)
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as an automorphic form on SL2 = Sp2. To do this we first decompose O(VA) as
a union of double cosets corresponding to the classes in the genus of L (i.e. with
respect to the adelic stabilizer KA), giving

O(VA) =
⊔

i∈I

O(VF )αi,AKA

for some fixed choice of representatives αi := αi,A ∈ O(VA) where Gen(L) =⊔
i∈I Cls(Li) and Li = αiL. Since the action of O(VA) on lattices only depends

on the non-archimedean components of αi,A, to simplify our lives we choose the
αi,A to have trivial archimedean components αi,∞ = 1 ∈ O(V∞). It will also be
convenient to define the adelic stabilizers Ki,A := StabA(Li) of the other lattices
Li ∈ Gen(L). With this we compute

Θ(ΦLj )(gA) =

∫

O(VF )\O(VA)

ΦLj (hA) θφ(gA, hA) dhA (4.5)

=

∫

O(VF )\⊔
i∈I O(VF )αiKA

ΦLj (hA) θφ(gA, hA) dhA (4.6)

=
∑

i∈I

∫

O(VF )\O(VF )αiKA

ΦLj(hA) θφ(gA, hA) dhA (4.7)

=
∑

i∈I

∫

O(VF )\O(VF )αiKAα
−1
i

ΦLj (hAαi) θφ(gA, hAαi) dhA (4.8)

=
∑

i∈I

∫

O(VF )\O(VF )Ki,A

ΦLj(hAαi) θφ(gA, hAαi) dhA (4.9)

=
∑

i∈I

∫

(O(VF )∩Ki,A)\Ki,A

ΦLj(hAαi) θφ(gA, hAαi) dhA (4.10)

=
∑

i∈I

1

|Aut(Li)|
∫

Ki,A

ΦLj (hAαi) θφ(gA, hAαi) dhA, (4.11)

where the last step follows because O(VF ) ∩ Ki,A is the finite group of rational
automorphisms Aut(Li), since Ki,A is the adelic stabilizer of Li. (Note: We are
also implicitly using the invariance of the left Haar measure dhA under right
multiplication, because the orthogonal group is unimodular. See [Wei82, p. 23],
[Vos98, §14.4, p. 137] and [Ono66, §2, p. 123] for a justification of this bi-
invariance.)

At this point we have “unfolded” our integral to the point where it factors as a
product of local integrals (sinceKi,A is the product of the local stabilizersKi,v over
all places v), each of which we can try to evaluate separately. We first notice that for
each summand we have an integral over Ki,A = αiKAα

−1
i , giving
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Θ(ΦLj )(gA) =
∑

i∈I

1

|Aut(Li)|
∫

Ki,A

ΦLj (hAαi) θφ(gA, hAαi) dhA (4.12)

=
∑

i∈I

1

|Aut(Li)|
∫

KA

ΦLj (αihA) θφ(gA, αihA) dhA (4.13)

whose integrals do not depend on i ∈ I . To analyze the internal integral, notice that
hA ∈ KA, giving that

ΦLj (αihA) 
= 0 ⇐⇒ αihA ∈ O(VF ) · αj ·KA (4.14)

⇐⇒ αi ∈ O(VF ) · αj ·KA (4.15)

⇐⇒ αi = αj (4.16)

and so all terms with αi 
= αj vanish. Thus

Θ(ΦLj )(gA) =
1

|Aut(Lj)|
∫

hA∈KA

θφ(gA, αjhA) dhA (4.17)

At this point we have to unwind the theta kernel to evaluate the integral, now
heavily using the fact that this is a product of local integrals. We can simplify the
non-archimedean orthogonal action with the observation that

h−1
p α−1

j �v ∈ Lp for all primes p ⇐⇒ �v ∈ αjhpLp = Lj,p for all p (4.18)

⇐⇒ �v ∈ Lj . (4.19)

This together with our choice that αj,∞ = 1 ∈ O(V∞) gives

Θ(ΦLj)(gA) =
1

|Aut(Lj)|
∫

hA∈KA

θφ(gA, αjhA) dhA (4.20)

=
1

|Aut(Lj)|
∫

hA∈KA

∑

�v∈VF

(W(gA)φA)(h
−1
A
α−1
j �v) dhA (4.21)

=
1

|Aut(Lj)|
∫

hA∈KA

∑

�v∈Lj

(W(gA)φA)(h
−1
∞ �v) dhA. (4.22)

To understand the non-archimedean symplectic action we take advantage of the
invariance of the theta lift under Sp(WF ) by invoking the “strong approximation”
property of symplectic groups, (a special case of) which states that

Sp(WA) = Sp(W ) · Sp(F∞)
∏

p

Sp(Op).
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This means that we can adjust the element gA (by left-multiplying with some
element gF ∈ Sp(W )) so that its new local components gp live in Sp(Op) for
all primes p. By using the transformation formulas of the Weil representation we
see that each component gp acts trivially on the characteristic function φp(�v) of Lp.
Thus we can express our theta lift as depending only on the archimedean component
g∞ of gA, giving

Θ(ΦLj )(gA) =
1

|Aut(Lj)|
∫

hA∈KA

∑

�v∈Lj

(W(g∞)φ∞)(h−1
∞ �v) dhA. (4.23)

Since we are interested in the classical modular form f(z) on H associated the
adelic modular form Θ(ΦL), we need only evaluate this on elements g∞ ∈ SL2(R)
for which g∞ · i = z ∈ H. We notice that when x, y ∈ R with y > 0, the elements

g∞,z :=

[
1 x

0 1

] [√
y 0

0
√
y−1

]

satisfy g∞,z · i = x + iy ∈ H. For these elements g∞,z , the action of the Weil
representation in (4.23) can be written more explicitly as

(W(g∞,z)φ∞)(h−1
∞ �v) =

(
W

([
1 x

0 1

])
W

([√
y 0

0
√
y−1

])
φ∞

)
(h−1

∞ �v) (4.24)

= y
n
4

(
W

([
1 x

0 1

])
φ∞

)
(
√
y h−1

∞ �v) (4.25)

= y
n
4 e2πixQ(�v)φ∞(

√
y h−1

∞ �v) (4.26)

= y
n
4 e2πixQ(�v)e−2πQ(

√
y h−1

∞ �v) (4.27)

= y
n
4 e2πixQ(�v)e2πi·iyQ(h−1

∞ �v) (4.28)

= y
n
4 e2πixQ(�v)e2πi·iyQ(�v) (4.29)

= y
n
4 e2πizQ(�v). (4.30)

Substituting this back into (4.23) gives

Θ(ΦLj)(g∞,z) =
1

|Aut(Lj)|
∫

hA∈KA

∑

�v∈Lj

(W(g∞,z)φ∞)(h−1
∞ �v) dhA (4.31)

=
1

|Aut(Lj)|
∫

hA∈KA

∑

�v∈Lj

y
n
4 e2πiQ(�v)z dhA (4.32)
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=
VolA(KA)

|Aut(Lj)|
∑

�v∈Lj

y
n
4 e2πiQ(�v)z (4.33)

=
1

|Aut(Lj)|
∑

�v∈Lj

y
n
4 e2πiQ(�v)z. (4.34)

Now using the relation (4.2) with k = n/2 and trivial Dirichlet character χ we have
g∞,z has (cz + d)k = y−k/2 and can see that Θ(ΦLj) corresponds to the classical
weight k modular form

f(z) : = χ(d)(cz + d)k ·Θ(ΦLj )(g∞,z) (4.35)

= y−n/4 ·Θ(ΦLj )(g∞,z) (4.36)

=
1

|Aut(Lj)|
∑

�v∈Lj

e2πiQ(�v)z. (4.37)

But this is just the usual theta series ΘLj(z) weighed by the rational factor 1
|Aut(Lj)| ,

so we have indeed recovered the classical theta function as the theta lift of the
characteristic function of the double coset O(V )αj,AKA of the adelic orthogonal
group corresponding to the lattice Lj ∈ Gen(L).
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[Wat63] G. L. Watson. One-class genera of positive quadratic forms. J. London Math. Soc.,
38:387–392, 1963.

[Wat84] G. L. Watson. One-class genera of positive quadratic forms in seven variables. Proc.
London Math. Soc. (3), 48(1):175–192, 1984.
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Integral Positive Ternary Quadratic Forms

William C. Jagy

Abstract We discuss some families of integral positive ternary quadratic forms.
Our main example is f(x, y, z) = x2+ y2+16nz2, where n is positive, squarefree,
and n = u2 + v2 with u, v ∈ Z.

Key words Ternary quadratic forms • Spinor genus

Subject Classification: Primary 11E20; Secondary 11D85, 11E12, 11E25

1 Notation

As in [4, 13], and Sect. 7 of [15], we let the integer sextuple

〈a, b, c, r, s, t〉
refer to the quadratic form

f(x, y, z) = ax2 + by2 + cz2 + ryz + szx+ txy.

The Gram matrix for the form is the matrix of second partial derivatives:
⎛

⎝
2a t s

t 2b r

s r 2c

⎞

⎠ .
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So our Gram matrix is symmetric, positive definite, and has integer entries.
We define our discriminant Δ as half the determinant of the matrix above, so

Δ = 4abc+ rst− ar2 − bs2 − ct2.

All our forms are positive and primitive (gcd(a, b, c, r, s, t) = 1). Note that we do
allow some of r, s, t to be odd at times. When r, s, t are all even, we refer to the
form as classically integral.

2 Introduction

In a 1995 letter to J.S. Hsia and R. Schulze-Pillot, Irving Kaplansky pointed out
some simple properties of

〈2, 2, 4k2 + 1, 2, 2, 0〉

or

f(x, y, z) = 2x2 + 2y2 + (4k2 + 1)z2 + 2yz + 2zx.

When k is odd, then f 
= m2, in notation going back to Jones and Pall [11], where
this means that all prime factors of m are congruent to 1 (mod 4).

We give the simple proof, while changing the focus to

〈2, 2, 4n+ 1, 2, 2, 0〉

where n is odd, squarefree, and n = u2 + v2 in integers. Furthermore the numbers
not represented will be all nm2.

Lemma 2.1. Let n be positive, odd, squarefree, and n = u2 + v2 in integers. Then

〈2, 2, 4n+ 1, 2, 2, 0〉 
= nm2.

Proof: We have the identity

2x2 + 2y2 + (4n+ 1)z2 + 2yz + 2zx = (x+ y + z)2 + (x− y)2 + 4nz2.

That is to say, 〈2, 2, 4n+ 1, 2, 2, 0〉 represents all numbers that can be expressed as
U2 + V 2 + 4nz2 with U + V + z even. So, assume we have

U2 + V 2 + 4nz2 = nm2, U + V + z ≡ 0 (mod 2).

As n,m are odd, it follows that U + V is odd, so z is also odd and nonzero. Then

U2 + V 2 = n(m2 − 4z2),
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and

U2
1 + V 2

1 = m2 − 4z2 = (m+ 2z)(m− 2z).

Now, m + 2z ≡ 3 (mod 4), m − 2z ≡ 3 (mod 4). There is some prime q ≡ 3
(mod 4) such that q2i+1 ‖ m + 2z. However, (m + 2z)(m − 2z) is the sum of
two squares, so we also have q2j+1 ‖ m − 2z, from which it follows that q|m, a
contradiction.©

Our discussion of the genus containing 〈2, 2, 4n+ 1, 2, 2, 0〉 is simplified by

Lemma 2.2. Let k be any positive integer. Then 〈1, 1, 16k, 0, 0, 0〉 and 〈2, 2, 4k +
1, 2, 2, 0〉 are in the same genus.

Proof: We use Proposition 4 on page 410 of Lehman [13], using his terminology
and notation, once for each form. Divisor, reciprocal, and level are defined on
page 402, while conditions we need on the relationship of the form and its reciprocal
are given in Proposition 2 on page 403.

First, we take f = 〈a, b, c, r, s, t〉 = 〈1, 1, 16k, 0, 0, 0〉, which has discrim-
inant 64k, level 64k, and divisor m = 4. Next, we find its reciprocal φ =
〈α, β, γ, ρ, σ, τ〉 = 〈16k, 16k, 1, 0, 0, 0〉,which has discriminant 1024k2, level 64k,
and divisor μ = 64k. So we have a = γ = 1.

Lehman defines the collection of genus symbols on page 410. As m = 4 is not
divisible by any odd prime or by 16 or 32, none of the genus symbols (f |·) are
defined. As μ = 64k and γ = 1, for any odd prime dividing k we have (φ|p) =
(γ|p) = (1|p) = 1. Then, as 16, 32|μ, we have (φ|4) = (−1)(γ−1)/2 = (−1)0 = 1,

then (φ|8) = (−1)(γ2−1)/8 = (−1)0 = 1.
We need to take a cyclic permutation of variables in our second form to use

these results, so, reusing most of the letters, take h = 〈a, b, c, r, s, t〉 = 〈4k +
1, 2, 2, 0, 2, 2〉, which has discriminant 64k, level 64k, and divisor m = 4. The
reciprocal is η = 〈α, β, γ, ρ, σ, τ〉 = 〈4, 8k + 1, 8k + 1, 2,−4,−4〉, which has
discriminant 1024k2, level 64k, and divisor μ = 64k. This time a = 4k + 1 and
γ = 8k + 1. This works out, insofar as the conditions in Proposition 2 are that
gcd(a, γ) = gcd(a,mμ) = gcd(γ,mμ) = 1.

Once again, with m = 4, Lehman gives no value for any of the genus symbols
(h|·). For any odd prime p|k, we get (η|p) = (γ|p) = (8k + 1|p) = (1|p) = 1.
Then, as 16, 32|μ, we have (η|4) = (−1)(γ−1)/2 = (−1)4k = 1, then (η|8) =

(−1)(γ2−1)/8 = (−1)8k2+2k = 1.
We have calculated discriminant, level, and collection of genus symbols for f, h

and found agreement, so our two forms are in the same genus by Proposition 4 of
[13].©

We introduce a celebrated result of Duke and Schulze-Pillot, which is the
Corollary to Theorem 3 in [6]:

Theorem 2.3. Let q(x1, x2, x3) be a positive integral ternary quadratic form. Then
every large integer n represented primitively by a form in the spinor genus of q is
represented by q itself and the representing vectors are asymptotically uniformly
distributed on the ellipsoid q(x) = n.



172 W.C. Jagy

We will also need a short lemma on binary forms:

Lemma 2.4. If all prime factors of a positive integer are 1 (mod 4), then it can be
represented primitively as x2 + y2, that is with gcd(x, y) = 1.

From Lemma 2.4, when n is odd, squarefree, and n = u2 + v2 in integers, and
all prime factors of m are 1 (mod 4) as well (although m need not be squarefree),
we see that nm2 is primitively represented by 〈1, 1, 16n, 0, 0, 0〉. But Kaplansky’s
argument has shown that 〈2, 2, 4n + 1, 2, 2, 0〉 
= nm2. It now follows from
Theorem 2.3 that 〈2, 2, 4n + 1, 2, 2, 0〉 and 〈1, 1, 16n, 0, 0, 0〉, while in the same
genus, are in fact in different spinor genera, so there are at least two spinor genera
in this genus.

J. S. Hsia [9] confirmed for the author that, for both odd and even squarefree
n = u2 + v2, the genus of 〈1, 1, 16n, 0, 0, 0〉 has exactly two spinor genera, and
that n itself is a spinor exceptional integer (a number not represented by one of
the spinor genera). He mentioned that the methods were in [7]. He also pointed
out his proof that, if there are any spinor exceptions for a genus, there is one that
divides 2Δ, this being Theorem 2 in [8]. Our family shows that the smallest spinor
exception can be as large as Δ/64.

We return briefly to the base genus, with our n = 1. For all numbers except
odd squares, the number of representations by 〈1, 1, 16, 0, 0, 0〉 is the same as the
number of representations by 〈2, 2, 5, 2, 2, 0〉.Then, for k odd, r〈1,1,16,0,0,0〉(k2)−
r〈2,2,5,2,2,0〉(k2) = 4 (−1|k) k. Complete proofs of these facts have been supplied
by Alexander Berkovich [3] and Wadim Zudilin [17], in the language of modular
forms. In this situation, the odd squares are called the splitting integers for the
genus, as the Siegel weighted average representation of the odd squares for one
spinor genus disagrees with that of the other spinor genus. As it is also possible to
calculate the Siegel weighted average of representations for any genus, this allows
one to separately calculate r〈1,1,16,0,0,0〉(j) and r〈2,2,5,2,2,0〉(j) for any integer j.
Splitting integers are used in Sect. 2 of [1] to correctly partition a genus of ten
classes into its spinor genera, five classes each. The characterization of splitting
integers as disagreement of representation measures is Corollary 1 on page 3 of [1].
An anonymous referee has pointed out that explicit calculation of the difference of
representation measures is dealt with in Satz 2 and Korollar 1 of [14].

3 A Rare Phenomenon

We have mentioned that, with n squarefree and n = u2 + v2, the genus of
〈1, 1, 16n, 0, 0, 0〉 has two spinor genera, and n itself is a spinor exception. In this
section we prove

Theorem 3.1. Let n be positive, odd, squarefree, and n = u2 + v2 in integers.
Then every form in the same spinor genus as 〈1, 1, 16n, 0, 0, 0〉 also integrally
represents n.

In another section we will prove the same result for even n.
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The main tool is a genus-correspondence, with the first simple properties
conjectured by the author, and proved by Wai Kiu Chan [5]. First we need to
describe what we mean by a ternary form representing a multiple of another ternary
form.

Suppose we have two positive ternary forms f, g, with Gram matrices F,G, and
suppose we have some positive integer k. We will say that f represents kg when
there is an integral matrix P such that

P t FP = kG.

The easiest consequence of such a relationship is that, whenever g integrally
represents an integer w, it follows that f integrally represents kw.

Our concern is for the situation when two forms represent prescribed multiples
of each other:

Theorem 3.2 (Chan). Suppose f0, g0 are positive ternary forms with integral
discriminant ratio k. Suppose that f0 represents kg0 and g0 represents kf0. Then,
for any f1 ∈ gen f0, there is at least one g1 ∈ gen g0 such that f1 represents kg1
and g1 represents kf1. Also, for any g2 ∈ gen g0, there is at least one f2 ∈ gen f0
such that g2 represents kf2 and f2 represents kg2.

We call this a genus-correspondence because it is generally many-to-many, that is,
there is generally no well-defined mapping on equivalence classes of forms in either
direction.

We are now able to prove Theorem 3.1. Take n = u2 + v2 to be squarefree and
odd. Let G0 be the Gram matrix for g0 = 〈1, 1, 16n, 0, 0, 0〉, so that

G0 =

⎛

⎝
2 0 0

0 2 0

0 0 32n

⎞

⎠ .

Let F0 be the Gram matrix for f0 = 〈1, 1, 16, 0, 0, 0〉, so that

F0 =

⎛

⎝
2 0 0

0 2 0

0 0 32

⎞

⎠ .

We have P tG0 P = nF0, with

P =

⎛

⎝
u v 0

−v u 0

0 0 1

⎞

⎠ .

Note that detP = n. We take the adjointQ so that PQ = QP = nI and for that
matter detQ = n2. We find that Qt F0Q = nG0, with

Q =

⎛

⎝
u −v 0

v u 0

0 0 n

⎞

⎠ .
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Furthermore, the ratio of the discriminants of f0, g0 is 64n/64 = n. So f0 represents
ng0 and g0 represents nf0, and Theorem 3.2 applies.

Let g1 be any form in the spinor genus of g0, written g1 ∈ spn g0. According to
Lemma 2.4, for any prime p ≡ 1 (mod 4), we know that x2 + y2 and therefore g0
represent np2 primitively. According to Theorem 2.3, when p is sufficiently large,
np2 is also represented by g1. From Theorem 3.2, we know that g1 corresponds with
either f0 = 〈1, 1, 16, 0, 0, 0〉 or f1 = 〈2, 2, 5, 2, 2, 0〉. However, if f1 represented
ng1, then f1 would integrally represent n2p2, which is a spinor exception for this
genus and is not, in fact, represented by f1. It follows that g1 represents nf0 and f0
represents ng1. In particular, g1 integrally represents n. This completes the proof of
Theorem 3.1.©

Next, consider any g2 ∈ gen g0 but g2 /∈ spn g0. Then g2 does not represent n,
as n is a spinor exception for gen g0. So it is not possible for g2 to represent nf0.
From Theorem 3.2, we find that g2 represents nf1, where f1 = 〈2, 2, 5, 2, 2, 0〉.
We have chosen to say that this genus-correspondence respects spinor genus.
Formally, we could say this: given a pair of genera with discriminant ratio k and a
genus-correspondence. Suppose that f3 represents kg3 and g3 represents kf3, while
f4 represents kg4 and g4 represents kf4. We say that the genus-correspondence
respects spinor genus when f3, f4 are in the same spinor genus if and only if g3, g4
are in the same spinor genus.

We have extensive numerical support for the following:

Conjecture 3.3. Given two genera G1, G2 of positive ternary forms, with integral
squarefree discriminant ratio and with a genus-correspondence. Suppose that
G1, G2 both have exactly two spinor genera. Then G1 has spinor exceptional
integers if and only ifG2 has spinor exceptional integers,G1 has splitting integers if
and only if G2 has splitting integers, and the genus-correspondence respects spinor
genus. When there are spinor exceptions, the regular spinor genera correspond.
When there are splitting integers, the spinor genera that have larger (weighted)
representation measures for the smallest splitting integers correspond.

We should emphasize that a genus need not have splitting integers. The best
known example is that of gen 〈1, 17, 289, 0, 0, 0〉, from page 257 of [2]. The
example with the smallest discriminant (1375) is gen 〈1, 5, 70, 5, 0, 0〉, just beyond
the range of the Brandt and Intrau tables [4]. It was rather surprising that splitting
integers were not evidently required for a genus-correspondence to respect spinor
genus, as there is then no apparent way to label one spinor genus as “more regular”
than the other.

With less detail and far less evidence, we also offer, for four or more spinor
genera,

Conjecture 3.4. Given two genera G1, G2 of positive ternary forms, with integral
squarefree discriminant ratio and with a genus-correspondence. Suppose that
G1, G2 have exactly the same number (some 2j) of spinor genera. Then the genus-
correspondence respects spinor genus.
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Note that, with squarefree discriminant ratio and a genus-correspondence, it is
still common for either the genus with larger discriminant or the genus with the
smaller discriminant to have fewer spinor genera than the other. Such examples can
be quite instructive.

4 Tornaria’s Constructions

Gonzalo Tornaria was kind enough to describe the genus-correspondence, in two
situations, as a mapping between forms in some canonical shapes. These mappings
do not extend to mappings of equivalence classes. The virtue of this approach
is the placing of the genus-correspondence as merely one variant of Kaplansky’s
“descent” steps, used in preparing [10], and described throughout [12]. The
similarity to Watson transformations [16] also becomes apparent, although a Watson
transformation is a well-defined mapping on equivalence classes of forms, and a
Watson transformation does not send a form with some odd prime p ‖ Δ to a
form with Δ 
= 0 (mod p). The closest parallel we know involving a Watson
transformation is the descent of a form (probably regular) with Δ = 2592 = 32 · 81
to one with Δ = 32 that is regular, in that

λ9(〈5, 9, 17, 6, 5, 3〉) = 〈1, 3, 3, 1, 0, 1〉.

We have taken some extra care to show how Tornaria’s ascent and descent steps
may be viewed as inverses, at least to the extent that they interchange forms in one
canonical shape with forms in another canonical shape.

Take an odd prime p and a discriminant such that Δ 
= 0 (mod p). Take any
form f0 = 〈a, b, c, r, s, t〉 with discriminant Δ. As f0 is isotropic in Qp, we may
demand that c ≡ 0 (mod p), in that such a value is indeed primitively represented
by our form. From Δ ≡ rst−ar2−bs2 
= 0 (mod p) we know that r, s are not both
divisible by p. If necessary, interchange variables so that s 
= 0 (mod p). Formally,
we have taken the Gram matrixA1 and replaced it by the equivalentA2 = P t A1P,
where

P =

⎛

⎝
0 1 0

1 0 0

0 0 1

⎞

⎠ .

The coefficients become 〈b, a, c, s, r, t〉, and we simply rename these with the
original letters. So we now have 〈a, b, c, r, s, t〉 with c ≡ 0 (mod p), s 
= 0
(mod p). Next, solve for k in a + sk ≡ 0 (mod p), then find A3 = Qt A2Q,
with

Q =

⎛

⎝
1 0 0

0 1 0

k 0 1

⎞

⎠ ,
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The new coefficients are 〈a + sk + ck2, b, c, r, s + 2ck, t + rk〉. Renaming again,
we have 〈a, b, c, r, s, t〉 with a, c ≡ 0 (mod p), s 
= 0 (mod p), this being the first
of the two canonical shapes. Then we may construct the form

g0(x, y, z) =
1

p
f0(px, py, z),

with coefficients

g0 =

〈
pa, pb,

c

p
, r, s, pt

〉
.

In the descent direction, let Δ ≡ 0 (mod p) and Δ 
= 0 (mod p2), or p ‖
Δ. Let g1 = 〈a, b, c, r, s, t〉 have discriminant Δ. This time we need to explicitly
require that the form be isotropic in Qp. We then demand that p2|a. It follows that
Δ ≡ rst− bs2 − ct2 
= 0 (mod p2). Thus we know that s, t are not both divisible
by p. If necessary, transpose s, t so that s 
= 0 (mod p). We are taking the Gram
matrix B1 and replacing it by B2 = P t B1P, where

P =

⎛

⎝
1 0 0

0 0 1

0 1 0

⎞

⎠ .

Next, solve for an integer k in t+ sk ≡ 0 (mod p). Construct the matrix

Q =

⎛

⎝
1 0 0

0 1 0

0 k 1

⎞

⎠ ,

and take the form with Gram matrix B3 = Qt B2Q. The new coefficients are
〈a, b+ rk+ ck2, c, r+2ck, s, t+ sk〉. The value t has thus been replaced by t+ sk,
divisible by p, but without altering the value of a or s. At this point, Δ ≡ −bs2
(mod p), so that p|b. We now have our form in the second canonical shape, g1 =
〈a, b, c, r, s, t〉, with a, b, t all divisible by p, indeed p2|a, but s 
= 0 (mod p). The
new form, with discriminant Δ

p , is given by

f1(x, y, z) =
1

p
g1(x, y, pz),

with coefficients

f1 =

〈
a

p
,
b

p
, pc, r, s,

t

p

〉
.
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5 Even n

We prove the other case of Theorem 3.1, namely

Theorem 5.1. Let n be positive, even, squarefree, and n = u2 + v2 in integers.
Then every form in the same spinor genus as 〈1, 1, 16n, 0, 0, 0〉 also integrally
represents n.

Proof: The genus containing f0 = 〈1, 1, 32, 0, 0, 0〉 consists of three classes, in
two spinor genera. The first spinor genus contains the classes 〈1, 1, 32, 0, 0, 0〉 and
〈2, 2, 9, 2, 2, 0〉, both of which represent 2. The other spinor genus consists of the
single class 〈1, 4, 9, 4, 0, 0〉, which does not represent 2 or any 2m2.

With n even, g0 = 〈1, 1, 16n, 0, 0, 0〉 represents n
2 · 〈1, 1, 32, 0, 0, 0〉, so that

〈1, 1, 32, 0, 0, 0〉 also represents n
2 · 〈1, 1, 16n, 0, 0, 0〉, and there is thus a genus-

correspondence. Consider some g1 ∈ spn g0. From Lemma 2.4, for any prime
p ≡ 1 (mod 4), we know that x2 + y2 represents (n/2)p2 primitively, denote
this (n/2)p2 = a2 + b2, gcd(a, b) = 1. As a2 + b2 is odd, it follows
that gcd(a − b, a + b) = 1 as well. So we have the primitive representation
(a− b)2 + (a+ b)2 = np2, which tells us that g0 primitively represents np2. When
p is sufficiently large, Theorem 2.3 tells us that g1 represents np2. By Theorem 3.2,
we know that g1 corresponds with at least one of the three forms in the genus
of f0. However, if 〈1, 4, 9, 4, 0, 0〉 should represent n

2 g1, it would follow that

〈1, 4, 9, 4, 0, 0〉 represented the integer n2p2

2 , which is of the form 2m2. It follows
that g0 represents either n

2 · 〈1, 1, 32, 0, 0, 0〉 or n
2 · 〈2, 2, 9, 2, 2, 0〉. In either case g0

represents the integer n.©
We pause to discuss the influence of Conjecture 3.3. It was necessary to have

a separate proof for even n because 4m2 is not a spinor exception for the genus
containing 〈1, 1, 16, 0, 0, 0〉. If we had known a proof of Conjecture 3.3, we could
simply have said that any form in the same spinor genus as 〈1, 1, 16n, 0, 0, 0〉
represents n·〈1, 1, 16n, 0, 0, 0〉. Similarly, we would not have needed any invocation
of Theorem 2.3, which can become unusable if primitive representations of desirable
numbers are not available.

Conjecture 3.3 would be an even bigger help in the following related pair of
examples, where the conjectured behavior has simply not been proved, although
checked as correct for n ≤ 200. One situation is n = u2 + uv + 4v2 squarefree,
with the genus of 〈1, 4, 225n, 0, 0, 1〉. Second, n = 2u2 + uv+2v2 squarefree, and
the genus of 〈2, 2, 225n, 0, 0, 1〉. In these cases n is allowed odd or even. The “base”
genus has four forms in two spinor genera of two classes each:〈1, 4, 225, 0, 0, 1〉 and
〈1, 15, 60, 15, 0, 0〉 are in one spinor genus, 〈6, 6, 25, 0, 0, 3〉 and 〈9, 10, 10, 5, 0, 0〉
are in the other. The spinor exceptions are of the form μ2, where all prime factors of
μ are 1, 2, 4, 8 (mod 15), and 2 itself is included. As 9μ2 and 25μ2 are not spinor
exceptions, to deal with n divisible by 3, 5, 15, we would first need to calculate the
genera of 〈2, 2, 675, 0, 0, 1〉, 〈2, 2, 1125, 0, 0, 1〉, and 〈1, 4, 3375, 0, 0, 1〉.
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6 Involutions

We return to odd squarefreen = u2+v2 and the genus of 〈1, 1, 16n, 0, 0, 0〉. As long
as n ≤ 505, a few interesting things happen. First, the two spinor genera in the
genus have the same number of equivalence classes of forms. Second, for each class
f, there is a single class g with f 
= g, such that f represents 4g and g represents
4f, while g never lies in the same spinor genus as f . So “involution” seems a good
term for this, as we have a bijection that interchanges the two spinor genera.

A similar thing happens in these two situations, from the last paragraph of Sect. 5:
first, n = u2 +uv+4v2, with 〈1, 4, 225n, 0, 0, 1〉, or second, n = 2u2 +uv+2v2,
with 〈2, 2, 225n, 0, 0, 1〉, while we keep n squarefree, but add the restriction that
n not be divisible by 3 or 5. There are indeed two spinor genera, and they are the
same size, checked for n ≤ 200. The worthwhile detail is that we get one involution
where each f has a single g 
= f such that f represents 9g and g represents 9f, so
that is one involution. But there is a different involution where f represents 25g and
g represents 25f . Both 9 and 25 interchange spinor genera. Nothing special occurs
with 4.

This last conjecture has not been checked as thoroughly, but is worthwhile for
suggesting possibilities with four spinor genera. In [2], there is a genus with four
spinor genera described, containing the form called B1 = 〈1, 20, 400, 0, 0, 0〉. The
spinor genera all have three classes. There are two families of spinor exceptions,
5m2, all prime factors of m being 1 (mod 4), and φ2, where all prime factors of φ
are 1, 3, 7, 9 (mod 20).

This first step has been checked for n ≤ 1189 = 29 · 41. Let n be squarefree,
and all prime factors of n be either 1 (mod 20) or 9 (mod 20). Then the genus of
〈1, 20, 400n, 0, 0, 0〉 has four spinor genera of equal size. Either n = u2 + 20v2 or
n = 4u2 + 5v2, and it is easy to check that 〈1, 20, 400n, 0, 0, 0〉 represents either
n·〈1, 20, 400, 0, 0, 0〉 or n·〈4, 5, 400, 0, 0, 0〉. In turn, the relevant form in the “base”
genus represents n · 〈1, 20, 400n, 0, 0, 0〉. This extends to a genus-correspondence.
With all as described, this genus-correspondence respects spinor genus.

Let us label the four spinor genera. Let An be regular, let Bn 
= 5nm2, let
Cn 
= nφ2, finally Dn 
= 5nm2, nφ2. These next items have been checked only as
far as n ≤ 61. There are involutions with multiplier 25, these interchange An with
Cn, and then interchangeBn with Dn.

In comparison, with multiplier 4, any form in An corresponds with a single one
in Dn, but with two forms each in Bn, Cn. Similar comments apply beginning with
any of the four spinor genera. So multiplier 4 does give an identifiable involution,
(Bn matches with Cn,) but the behavior is not as clean as that with multiplier 25.

Finally, we explain the restriction on n itself. If n is a number that is represented
by both the binary forms x2 + 20y2 and 4x2 + 5y2, such as n = 21, then
〈1, 20, 400n, 0, 0, 0〉 represents both n·〈1, 20, 400, 0, 0, 0〉 and n·〈4, 5, 400, 0, 0, 0〉,
so that it is not possible to have a genus-correspondence that respects spinor genus,
even if the resulting genus does actually possess four spinor genera.
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1 Quadratic Forms

Let k be a field with char k 
= 2.

Definition 1.1. A quadratic form q : V → k on a vector space V over k is a map
satisfying:

(1) q(λv) = λ2q(v) for v ∈ V , λ ∈ k.
(2) The map bq : V × V → k, defined by

bq(v, w) =
1

2
[q(v + w) − q(v)− q(w)]

is bilinear.

We denote a quadratic form by (V, q), or simply by q. Throughout, we restrict
ourselves to the study of quadratic forms on finite-dimensional vector spaces.

The bilinear form bq is symmetric; q determines bq and for all v ∈ V , q(v) =
bq(v, v).

For a choice of basis {e1, . . . , en} of V , bq is represented by a symmetric matrix
A(q) = (aij) with aij = bq(ei, ej). If v =

∑
1≤i≤nXiei ∈ V , Xi ∈ k, then

q(v) =
∑

1≤i,j≤n

aijXiXj =
∑

1≤i≤n

aiiX
2
i + 2

∑

i<j

aijXiXj .

Thus q is represented by a homogeneous polynomial of degree 2. Clearly, every
homogeneous polynomial of degree 2 corresponds to a quadratic form on V with
respect to the chosen basis.

Definition 1.2. Two quadratic forms (V1, q1), (V2, q2) are isometric if there is an
isomorphism φ : V1

∼→ V2 such that q2(φ(v)) = q1(v) for all v ∈ V1.

If A(q1), A(q2) are the matrices representing q1 and q2 with respect to bases B1

andB2 of V1 and V2 respectively, φ yields a matrix T ∈ GLn(k), n = dimV , such
that

TA(q2)T
t = A(q1).

In other words, the symmetric matrices A(q1) and A(q2) are congruent. Thus
isometry classes of quadratic forms yield congruence classes of symmetric matrices.

Definition 1.3. The form q : V → k is said to be regular if bq : V × V → k is
nondegenerate.

Thus q is regular if and only if the map V → V ∗ = Hom(V, k), defined by
v �→ (w �→ bq(v, w)), is an isomorphism. This is the case if A(q) is invertible.

Let (V, q) be a quadratic form. Then

V0 = {v ∈ V : bq(v, w) = 0 for all w ∈ V }
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is called the radical of V . If V1 is any complementary subspace of V0 in V , then
q|V1 is regular and (V, q) = (V0, 0) ⊥ (V1, q|V1). Note that V is regular if and only
if the radical of V is zero.

Henceforth, we shall only be concerned with regular quadratic forms.

Definition 1.4. Let W be a subspace of V and q : V → k be a quadratic form. The
orthogonal complement of W denotedW⊥ is the subspace

W⊥ = {v ∈ V : bq(v, w) = 0 for all w ∈W}.

Exercise 1.5. Let (V, q) be a regular quadratic form and W a subspace of V .
Then

(1) dim(W ) + dim(W⊥) = dim(V ).
(2) (W⊥)⊥ =W.

1.1 Orthogonal Sums

Let (V1, q1), (V2, q2) be quadratic forms. The form

(V1, q1) ⊥ (V2, q2) = (V1 ⊕ V2, q1 ⊥ q2),
with q1 ⊥ q2 defined by

(q1 ⊥ q2)(v1, v2) = q1(v1) + q2(v2), v1 ∈ V1, v2 ∈ V2
is called the orthogonal sum of (V1, q1) and (V2, q2).

1.2 Diagonalization

Let (V, q) be a quadratic form. There exists a basis {e1, . . . , en} of V such that
bq(ei, ej) = 0 for i 
= j. Such a basis is called an orthogonal basis for q. With
respect to an orthogonal basis, bq is represented by a diagonal matrix.

If {e1, . . . , en} is an orthogonal basis of q and q(ei) = di, we write q =
〈d1, . . . , dn〉. In this case, V = ke1 ⊕ · · · ⊕ ken is an orthogonal sum and q|kei
is represented by 〈di〉. Thus every quadratic form is diagonalizable.

1.3 Hyperbolic Forms

Definition 1.6. A quadratic form (V, q) is said to be isotropic if there is a nonzero
v ∈ V such that q(v) = 0. It is anisotropic if q is not isotropic. A quadratic form
(V, q) is said to be universal if it represents every element of k; i.e., given λ ∈ k,
there is a vector v ∈ V such that q(v) = λ.
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Example 1.7. The quadratic form X2 − Y 2 is isotropic over k. Suppose (V, q) is
a regular form which is isotropic. Let v ∈ V be such that q(v) = 0, v 
= 0. Since q
is regular, there exists w ∈ V such that bq(v, w) 
= 0. After scaling we may assume
bq(v, w) = 1. If q(w) 
= 0, we may replacew byw+λv, λ = − 1

2q(w), and assume
that q(w) = 0. Thus W = kv ⊕ kw is a 2-dimensional subspace of V and q|W is
represented by ( 0 1

1 0 ) with respect to {v, w}.
Definition 1.8. A binary quadratic form isometric to (k2, ( 0 1

1 0 )) is called a hyper-
bolic plane. A quadratic form (V, q) is hyperbolic if it is isometric to an orthogonal
sum of hyperbolic planes. A subspace W of V such that q restricts to zero on W
and dimW = 1

2 dimV is called a Lagrangian.

Every regular quadratic form which admits a Lagrangian can easily be seen to be
hyperbolic.

Exercise 1.9. Let (V, q) be a regular quadratic form and (W, q|W ) a regular form
on the subspace W . Then (V, q) = (W, q|W ) ⊥ (W⊥, q|W⊥).

Theorem 1.10 (Witt’s Cancellation Theorem). Let (V1, q1), (V2, q2), (V, q) be
quadratic forms over k. Suppose

(V1, q1) ⊥ (V, q) ∼= (V2, q2) ⊥ (V, q).

Then (V1, q1) ∼= (V2, q2).

The key ingredient of Witt’s cancellation theorem is the following.

Proposition 1.11. Let (V, q) be a quadratic form and v, w ∈ V with q(v) =
q(w) 
= 0. Then there is an isometry τ : (V, q)

∼→ (V, q) such that τ(v) = w.

Proof. Let q(v) = q(w) = d 
= 0. Then

q(v + w) + q(v − w) = 2q(v) + 2q(w) = 4d 
= 0.

Thus q(v + w) 
= 0 or q(v − w) 
= 0. For any vector u ∈ V with q(u) 
= 0, define
τu : V → V by

τu(z) = z − 2bq(z, u)u

q(u)
.

τu is an isometry called the reflection with respect to u.
Suppose q(v − w) 
= 0. Then τv−w : V → V is an isometry of V which sends v

to w. Suppose q(v + w) 
= 0. Then τw ◦ τv+w sends v to w. �
Remark 1.12. The orthogonal group of (V, q) denoted by O(q) is the set of
isometries of V onto itself. This group is generated by reflections. This is seen by
an inductive argument on dim(q), using the above proposition.

Theorem 1.13 (Witt’s decomposition). Let (V, q) be a quadratic form (not neces-
sarily regular). Then there is a decomposition
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(V, q) = (V0, 0) ⊥ (V1, q1) ⊥ (V2, q2)

where V0 is the radical of q, q1 = q|V1 is anisotropic and q2 = q|V2 is
hyperbolic. If (V, q) = (V0, 0) ⊥ (W1, f1) ⊥ (W2, f2) with f1 anisotropic and
f2 hyperbolic, then

(V1, q1) ∼= (W1, f1), (V2, q2) ∼= (W2, f2).

Remark 1.14. A hyperbolic form (W, f) is determined by dim(W ); for if
dim(W ) = 2n, (W, f) ∼= nH , where H = (k2, ( 0 1

1 0 )) is the hyperbolic plane.

From now on, we shall assume (V, q) is a regular quadratic form. We denote by
qan the quadratic form (V1, q1) in Witt’s decomposition which is determined by q up
to isometry. We call 1

2 dim(V2) the Witt index of q. Thus any regular quadratic form
q admits a decomposition q ∼= qan ⊥ (nH), with qan anisotropic and H denoting
the hyperbolic plane. We also sometimes denote by Hn the sum of n hyperbolic
planes.

2 Witt Group of Forms

2.1 Witt Groups

We set

W (k) = {isomorphism classes of regular quadratic forms over k}/ ∼
where the Witt equivalence∼ is given by:

(V1, q1) ∼ (V2, q2) ⇐⇒ there exist r, s ∈ Z such that
(V1, q1) ⊥ Hr ∼= (V2, q2) ⊥ Hs .

W (k) is a group under orthogonal sum:

[(V1, q1)] ⊥ [(V2, q2)] = [(V1, q1) ⊥ (V2, q2)].

The zero element in W (k) is represented by the class of hyperbolic forms. For a
regular quadratic form (V, q), (V, q) ⊥ (V,−q) has Lagrangian

W = {(v, v) : v ∈ V }
so that (V, q) ⊥ (V,−q) ∼= Hn, n = dim(V ). Thus, [(V,−q)] = −[(V, q)] in
W (k).
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It follows from Witt’s decomposition theorem that every element in W (k) is
represented by a unique anisotropic quadratic form up to isometry. ThusW (k) may
be thought of as a group made out of isometry classes of anisotropic quadratic forms
over k.

The abelian groupW (k) admits a ring structure induced by tensor product on the
associated bilinear forms. For example, if q1 ∼= 〈a1, . . . , an〉 and q2 is a quadratic
form, then q1 ⊗ q2 ∼= a1q2 ⊥ a2q2 ⊥ · · · ⊥ anq2.

Definition 2.1. Let I(k) denote the ideal of classes of even-dimensional quadratic
forms in W (k). The ideal I(k) is called the fundamental ideal. In(k) stands for
the nth power of the ideal I(k).

Definition 2.2. Let Pn(k) denote the set of isomorphism classes of forms of
the type

〈〈a1, . . . , an〉〉 := 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉.
Elements in Pn(k) are called n-fold Pfister forms.

The ideal I(k) is generated additively by the forms 〈1, a〉, a ∈ k∗. Moreover, the
ideal In(k) is generated additively by n-fold Pfister forms. For instance, for n = 2,
the generators of I2(k) are of the form

〈a, b〉 ⊗ 〈c, d〉 ∼= 〈1, ac, ad, cd〉 − 〈1, cd,−bc,−bd〉 = 〈〈ac, ad〉〉 − 〈〈cd,−bc〉〉

Example 2.3. If k = C, every 2-dimensional quadratic form over k is isotropic.

W (k) ∼= Z/2Z

[(V, q)] �→ dim(V ) (mod 2)

is an isomorphism.

Example 2.4. Let k = Fpn , p 
= 2, be a finite field. Then k∗ = k \ {0} has
two square classes, {1, u}. Every 3-dimensional quadratic form over k is isotropic.
Further, W (k) ∼= Z/4Z if −1 is not a square in Fpn and W (k) ∼= Z/2Z× Z/2Z if
−1 is a square in Fpn (cf. [L], Corollary 3.6).

Example 2.5. If k = R, every quadratic form q is represented by

〈1, . . . , 1,−1, . . . ,−1〉
with respect to an orthogonal basis. The number r of +1’s and the number s of−1’s
in the diagonalization above are uniquely determined by the isomorphism class of
q. The signature of q is defined as r − s. The signature yields a homomorphism
sgn: W (R)→ Z which is an isomorphism.
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2.2 Quadratic Forms Over p-Adic Fields

Let k be a finite extension of the field Qp of p-adic numbers. We call k a non-dyadic
p-adic field if p 
= 2. The field k has a discrete valuation v extending the p-adic
valuation on Qp. Let π be a uniformizing parameter for v and κ the residue field for
v. The field κ is a finite field of characteristic p 
= 2. Let u be a unit in k∗ such that
u ∈ κ is not a square. Then

k∗/k∗2 = {1, u, π, uπ}.
Since κ is finite, every 3-dimensional quadratic form over κ is isotropic. By Hensel’s
lemma, every 3-dimensional form 〈u1, u2, u3〉 over k, with ui units in k is isotropic.
Since every form q in k has a diagonal representation

〈u1, . . . , ur〉 ⊥ π〈v1, . . . , vs〉,
if r or s exceeds 3, q is isotropic. In particular every 5-dimensional quadratic form
over k is isotropic. Further, up to isometry, there is a unique quadratic form in
dimension 4 which is anisotropic, namely,

〈1,−u,−π, uπ〉.
This is the norm form of the unique quaternion division algebraH(u, π) over k (cf.
Sect. 2.3).

2.3 Central Simple Algebras and the Brauer Group

Recall that a finite-dimensional algebra A over a field k is a central simple algebra
over k if A is simple (has no two-sided ideals) and the center of A is k. Recall also
that for a field k,

Br(k) = {Isomorphism classes of central simple algebras over k} / ∼
where the Brauer equivalence ∼ is given by: A ∼ B if and only if Mn(A) ∼=
Mm(B) for some integers m,n. The pair (Br(k),⊗) is a group. The inverse of [A]
is [Aop] where Aop is the opposite algebra of A: the multiplication structure, ∗, on
Aop is given by a ∗ b = ba. We have a k-algebra isomorphism φ : A ⊗ Aop ∼−→
Endk(A) induced by φ(a ⊗ b)(c) = acb. The identity element in Br(k) is given
by [k]. By Wedderburn’s theorem on central simple algebras, the elements of Br(k)
parametrize the isomorphism classes of finite-dimensional central division algebras
over k.

For elements a, b ∈ k∗, we define the quaternion algebra H(a, b) to be the
4-dimensional central simple algebra over k generated by {i, j} with the relations
i2 = a, j2 = b, ij = −ji. This is a generalization of Hamilton’s quaternion algebra
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H(−1,−1) over the field of real numbers. The algebra H(a, b) admits a canonical
involution¯: H(a, b)→ H(a, b) given by

α+ iβ + jγ + ijδ = α− iβ − jγ − ijδ
This involution gives an isomorphism H(a, b) ∼= H(a, b)op; in particular, H(a, b)
has order 2 in Br(k). Let 2Br(k) denote the 2-torsion subgroup of the Brauer group
of k. The norm form for this algebra is given by N(x) = xx, which is a quadratic
form on H(a, b) represented with respect to the orthogonal basis {1, i, j, ij} by
〈1,−a,−b, ab〉 = 〈〈−a,−b〉〉.

2.4 Classical Invariants for Quadratic Forms

Let (V, q) be a regular quadratic form. We define dim(q) = dim(V ) and dim2(q) =
dim(V ) modulo 2. We have a ring homomorphism dim2 : W (k)→ Z/2Z. We note
that I(k) is the kernel of dim2. This gives an isomorphism

dim2 : W (k)/I(k)
∼−→ Z/2Z.

Let disc(q) = (−1)n(n−1)/2[det(A(q))] ∈ k∗/k∗2. Since A(q) is determined up
to congruence, det(A(q)) is determined modulo squares. We have disc(H) = 1,
where H is the hyperbolic plane. The discriminant induces a group homomorphism

disc : I(k)→ k∗/k∗2

which is clearly onto. It is easy to verify that ker(disc) = I2(k). Thus the
discriminant homomorphism induces an isomorphism I(k)/I2(k)→ k∗/k∗2.

Example 2.6. Let 〈a, b〉 be a binary quadratic form. Then disc〈a, b〉 = −ab. The
discriminant is trivial if and only if 〈a, b〉 ∼= 〈1,−1〉 is a hyperbolic plane. Further,
if 〈a, b〉 represents a value c ∈ k∗, then 〈a, b〉 ∼= 〈c, abc〉.

The next invariant for quadratic forms is the Clifford invariant. To each quadratic
form (V, q) we wish to construct a central simple algebra containing V whose
multiplication on elements of V satisfies v · v = q(v). The smallest such algebra
(defined by a universal property) will be the Clifford algebra.

Definition 2.7. The Clifford algebra C(q) of the quadratic form (V, q) is
T (V )/Iq , where Iq is the two-sided ideal in the tensor algebra T (V ) generated
by {v ⊗ v − q(v) | v ∈ V }.

The algebra C(q) has a Z/2Z gradation C(q) = C0(q) ⊕ C1(q) induced by the
gradation T (V ) = T0(V )⊕ T1(V ), where

T0(V ) =
⊕

i≥0, i even

V ⊗i and T1(V ) =
⊕

i≥1, iodd

V ⊗i.
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If dim(q) is even, then C(q) is a central simple algebra over k. If dim(q) is odd,
C0(q) is a central simple algebra over k. The Clifford algebraC(q) comes equipped
with an involution τ defined by τ(v) = −v for v ∈ V . Thus, if dim(q) is even,
C(q) determines a 2-torsion element in Br(k).

Definition 2.8. The Clifford invariant c(q) of (V, q) in Br(k) is defined as

c(q) =

{
[C(q)], if dim(q) is even

[C0(q)], if dim(q) is odd

Example 2.9. Let q ∼= ⊗n
i=1〈〈−ai,−bi〉〉 ∈ I2(k). Then

c(q) = [⊗1≤i≤nHi]

where Hi = H(ai, bi).

Exercise 2.10. Given
⊗

1≤i≤nHi, a tensor product of n quaternion algebras over
k, show that there is a quadratic form q over k of dimension 2n+ 2 such that
c(q) = [

⊗
1≤i≤nHi].

The Clifford invariant induces a homomorphism c : I2(k) →2 Br(k), 2Br(k)
denoting the 2-torsion in the Brauer group of k. The very first case of the Milnor
conjecture (see Sect. 3) states: c is surjective and ker(c) = I3(k).

Theorem 2.11 (Merkurjev [M1]). The map c induces an isomorphism

I2(k)/I3(k) ∼=2Br(k)

Thus the image of I2(q) in 2Br(k) is spanned by quaternion algebras. It
was a longstanding question whether 2Br(k) is spanned by quaternion algebras.
Merkurjev’s theorem answers this question in the affirmative; further, it gives precise
relations between quaternion algebras in 2Br(k).

3 Galois Cohomology and the Milnor Conjecture

Let k̄ be a separable closure of k. Let Γk = Gal(k̄|k) be the absolute Galois group
of k. The group Γk is a profinite group:

Γk = lim←−
L⊂k̄, L/k finite Galois

Gal(L/k).

A discrete Γk-module M is a continuous Γk-module for the discrete topology on
M and the profinite topology on Γk. A Γk-module M is discrete if and only if
the stabilizer of each m ∈ M is an open subgroup, in particular, of finite index
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in Γk. For a discrete Γk-module M , we define Hn(k,M) as the direct limit of the
cohomology of the finite quotients

Hn(k,M) = lim−→
L⊂k̄, L/k finite Galois

Hn(Gal(L/k),MΓL).

Suppose char(k) 
= 2 and M = μ2. The module μ2 has trivial Γk action and is
isomorphic to Z/2Z. We have

H0(k,Z/2Z) = Z/2Z

H1(k,Z/2Z) ∼= k∗/k∗2

H2(k,Z/2Z) ∼=2Br(k)

These can be seen from the Kummer exact sequence of Γk-modules:

0 −→ μ2 −→ k̄∗ ·2−→ k̄∗ −→ 0

and noting that H1(Γk, k̄
∗) = 0 (Hilbert’s Theorem 90) and H2(Γk, k̄

∗) = Br(k).
For an element a ∈ k∗, we denote by (a) its class in H1(k,Z/2Z) and for

a1, . . . , an ∈ k∗, the cup product (a1) ∪ · · · ∪ (an) ∈ Hn(k,Z/2Z) is denoted by
(a1) · · · · · (an).

For a, b ∈ k∗, the element (a).(b) represents the class of H(a, b) in 2Br(k).
The map

c : I2(k)→ H2(k,Z/2Z)

sends 〈1,−a,−b, ab〉 to the class of H(a, b) in H2(k,Z/2Z). The forms
〈1,−a,−b, ab〉 additively generate I2(k). Merkurjev’s theorem asserts that
H2(k,Z/2Z) is generated by (a).(b), with a, b ∈ k∗. The Milnor conjecture
(quadratic form version) proposes higher invariants In(k) → Hn(k,Z/2Z)
extending the classical invariants.

Milnor Conjecture. The assignment

〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 �→ (a1) · · · · · (an)
yields a map en : Pn(k) → Hn(k,Z/2Z). This map extends to a homomorphism
en : I

n(k)→ Hn(k,Z/2Z) which is onto and ker(en) = In+1(k).

The maps dimension mod 2, discriminant and Clifford invariant coincide with
e0, e1 and e2. Unlike these classical invariants, which are defined on all quadratic
forms, conjecturally en, n ≥ 3, are defined only on elements in In(k) on which the
invariants ei, i ≤ n − 1, vanish. In 1975, Arason [Ar] proved that e3 : I3(k) →
H3(k,Z/2Z) is well defined and is one-one on P3(k). As we mentioned earlier,
the first nontrivial case of the Milnor conjecture was proved by Merkurjev for
n = 2. The Milnor conjecture (quadratic form version) is now a theorem due to
Orlov–Vishik–Voevodsky [OVV].
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The Milnor conjecture gives a classification of quadratic forms by their Galois
cohomology invariants: Given anisotropic quadratic forms q1 and q2, suppose
ei(q1 ⊥ −q2) = 0 for i ≥ 0. Then q1 = q2 in W (k). We need only to verify
ei(q1 ⊥ −q2) = 0 for i ≤ N where N ≤ 2n and dim(q1 ⊥ −q2) ≤ 2n, by the
following theorem of Arason and Pfister.

Theorem 3.1 (Arason–Pfister Hauptsatz). Let k be a field. The dimension of an
anisotropic quadratic form in In(k) is at least 2n.

4 Pfister Forms

The theory of Pfister forms (or multiplicative forms, as Pfister called them) evolved
from questions on classification of quadratic forms whose nonzero values form a
group (hereditarily).

Definition 4.1. A regular quadratic form q over k is called multiplicative if the
nonzero values of q over any extension field L over k form a group.

We have the following examples of quadratic forms which are multiplicative.

Example 4.2. 〈1〉: nonzero squares are multiplicatively closed in k∗.

Example 4.3. 〈1,−a〉: x2 − ay2, a ∈ k∗ is the norm from the quadratic algebra
k[t]/(t2 − a) over k and the norm is multiplicative.

Example 4.4. 〈1,−a〉 ⊗ 〈1,−b〉: x2 − ay2 − bz2 + abt2 is a norm form from the
quaternion algebra H(a, b): N(α + iβ + jγ + ijδ) = α2 − aβ2 − bγ2 + abδ2.
The norm once again is multiplicative.

Example 4.5. 〈1,−a〉 ⊗ 〈1,−b〉 ⊗ 〈1,−c〉: (x2 − ay2 − bz2 + abt2) − c(u2 −
av2−bw2+abs2) is the norm form from an octonion algebra associated to the triple
(a, b, c); it is a non-associative algebra obtained from the quaternion algebraH(a, b)
by a doubling process (see [J, Sect. 7.6]). The norm is once again multiplicative.

Theorem 4.6 (Pfister). An anisotropic quadratic form q over k is multiplicative if
and only if q is isomorphic to a Pfister form.

We shall sketch a proof of this theorem. The main ingredients are the Cassels–
Pfister Theorem 4.7 and the Subform Theorem 4.10, which will not be proved in the
text. We refer to [L, Chap. IX, Theorems 1.3 and 2.8] for the proofs.

Theorem 4.7 (Cassels–Pfister). Let q = 〈a1, . . . , an〉 be a regular quadratic form
over k and f(X) ∈ k[X ], a polynomial over k which is a value of q over k(X). Then
there exist polynomials g1, . . . , gn ∈ k[X ] such that f(X) = a1g

2
1 + · · ·+ ang

2
n.

Corollary 4.8 (Specialization Lemma). Let q = 〈a1, . . . , an〉 be a quadratic
form over k, X = {X1, . . . , Xn}, p(X) ∈ k(X) a rational function represented
by q over k(X). Then for any v ∈ kn where p(v) is defined, p(v) is represented by
q over k.
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Proof. We may assume, by multiplying p(X) by a square, that p(X) ∈ k[X ].
Let p(X) = p1(Xn), where p1 is a polynomial in Xn with coefficients in
k[X1, . . . , Xn−1]. By the Cassels–Pfister theorem, p1(Xn) is represented by q over
k(X1, . . . , Xn−1)[Xn]. Let v = (v1, . . . , vn). Then specializing Xn to vn, we
have p1(vn) ∈ k[X1, . . . , Xn−1] is represented by q over k(X1, . . . , Xn−1). By
an induction argument, one concludes that p(v1, . . . , vn) is a value of q over k. �
Corollary 4.9. Let q be an anisotropic quadratic form over k of dimension n.
Then q is multiplicative if and only if, for indeterminates X = (X1, . . . , Xn),
Y = (Y1, . . . , Yn), q(X) q(Y ) is a value of q over k(X1, . . . , Xn, Y1, . . . , Yn).

Proof. The only non-obvious part is “if”. Suppose L/k is a field extension and
v, w ∈ Ln. Let q(v) = c and q(w) = d. Since q(X) q(Y ) is a value of q over
k(X,Y ), by the Specialization lemma, q(X) q(w) is a value of q over L(X) and by
the same lemma, q(v) q(w) is a value of q over L. �
Theorem 4.10 (Subform Theorem). Let q = 〈a1, . . . , an〉, γ = 〈b1, . . . , bm〉 be
quadratic forms over k with q anisotropic. Then γ is a subform of q (i.e., q ∼= γ ⊥ γ′
for some form γ′ over k) if and only if b1X2

1 + · · · + bmX
2
m is a value of q over

k(X1, . . . , Xm).

Corollary 4.11. Let q be an anisotropic quadratic form over k of dimension n. Let
X = {X1, . . . , Xn} be a list of n indeterminates. Then q is multiplicative if and
only if q ∼= q(X) q over k(X).

Proof. Suppose q ∼= q(X) q over k(X). Let A be the matrix representing q over k.
There existsW ∈ GLn(k(X)) such that q(X)A =WAW t. Let Y = {Y1, . . . , Yn}
be a list of n indeterminates. Over k(X,Y ),

q(X) q(Y ) = Y (q(X)A)Y t = (YW )A(YW )t = q(Z)

whereZ = YW . Thus q(X) q(Y ) is a value of q over k(X,Y ) and by Corollary 4.9,
q is multiplicative.

Suppose conversely that q is multiplicative. Then q(X) q(Y ) is a value of q over
k(X,Y ). By the Subform theorem, q(X) q is a subform of q. A dimension count
yields q ∼= q(X) q. �
Proof of Pfister’s Theorem 4.6. Let q = 〈1, a1〉 ⊗ · · · ⊗ 〈1, an〉 be an anisotropic
quadratic form over k. Over any field extension L/k, either q is an anisotropic
Pfister form or isotropic in which case it is universal. Thus it suffices to show that
the nonzero values of q form a subgroup of k∗ for any anisotropic n-fold Pfister
form q. The proof is by induction on n; for n = 1, q is the norm form from a
quadratic extension of k (see Example 4.3) and we are done. Let n ≥ 2. We have
q ∼= q1 ⊥ anq1, where q1 = 〈1, a1〉 ⊗ · · · ⊗ 〈1, an−1〉 is an anisotropic (n − 1)-
fold Pfister form. Let X = {X1, . . . , X2n−1}, Y = {Y1, . . . , Y2n−1} be two lists of
2n−1 indeterminates. Since q1 is multiplicative, by Corollary 4.11, q1(X) q1 ∼= q1
over k(X) and q1(Y ) q1 ∼= q1 over k(Y ). We have, over k(X,Y ),
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q ∼= q1(X) q1 ⊥ anq1(Y ) q1 ∼= 〈q1(X), anq1(Y )〉 ⊗ q1.

Since q(X,Y ) = q1(X) + anq1(Y ), 〈q1(X), anq1(Y )〉 represents q(X,Y ).
Therefore, by a comparison of discriminants,

〈q1(X), anq1(Y )〉 ∼= 〈q(X,Y ), anq(X,Y )q1(X)q1(Y )〉
∼= q(X,Y )(1 ⊥ anq1(X)q1(Y ))

In particular,

q ∼= q(X,Y )〈1, anq1(X)q1(Y )〉 ⊗ q1
∼= q(X,Y )(q1 ⊥ anq1)
∼= q(X,Y ) q

Thus by Corollary 4.11, q is multiplicative.
Conversely, let q be an anisotropic quadratic form over k which is multiplicative.

Let n be the largest integer such that q contains an n-fold Pfister form q1 = 〈1, a1〉⊗
· · · ⊗ 〈1, an〉 as a subform. Suppose q ∼= q1 ⊥ γ, γ = 〈b1, . . . , bm〉, with m ≥ 1.
Let Z = {Z1, . . . , Z2n}. Over k(Z),

q ∼= q(Z, 0) q ∼= q1(Z)(q1 ⊥ γ) ∼= q1(Z) q1 ⊥ q1(Z) γ ∼= q1 ⊥ q1(Z) γ.

By Witt’s cancellation, γ ∼= q1(Z) γ over k(Z). Thus γ represents b1q1(Z) over
k(Z) and by the Subform theorem, γ ∼= b1 q1 ⊥ γ1. Then q ∼= q1 ⊥ b1 q1 ⊥ γ1 ∼=
〈1, b1〉 ⊗ q1 ⊥ γ1 contains an (n + 1)-fold Pfister form 〈1, b1〉 ⊗ q1, leading to a
contradiction to the maximality of n. Thus q ∼= q1. �

An important property of Pfister forms is stated in the following.

Proposition 4.12. Let φ be an n-fold Pfister form. If φ is isotropic then φ is
hyperbolic.

Proof. Let φ = r 〈1,−1〉 ⊥ φ0, with φ0 anisotropic, dim(φ0) ≥ 1 and r ≥ 1.
Let dim(φ) = m and X = {X1, . . . , Xm} be a list of m indeterminates. Over
k(X1, . . . , Xm)

r 〈1,−1〉 ⊥ φ0 = φ ∼= φ(X1, . . . , Xm)φ ∼= r 〈1,−1〉 ⊥ φ(X1, . . . , Xm)φ0.

By Witt’s cancellation theorem

φ0 ∼= φ(X1, . . . , Xm)φ0.

If b is a value of φ0, bφ(X1, . . . , Xm) is a value of φ0 and by the Subform theorem,
bφ is a subform of φ0 contradicting dim(φ0) < dim(φ). Thus φ ∼= r 〈1,−1〉 is
hyperbolic. �
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Corollary 4.13. The only integers n such that a product of sums of n squares is
again a sum of n squares over every field of characteristic zero are n = 2m for all
m ≥ 0.

Proof. Consider the quadratic form φn = x21 + x22 + · · ·+ x2n over Q. The form φn
is anisotropic. The condition that a product of sums of n squares is again a sum of n
squares over any field of characteristic zero is equivalent to φn being a Pfister form.
Thus dim(φn) = n = 2m for some m. �

5 Level of a Field

Definition 5.1. The level of a field k is the least positive integer n such that −1 is
a sum of n squares in k. We denote the level of k by s(k).

If the field is formally real (i.e., −1 is not a sum of squares), then the level is
defined to be infinite. It was a longstanding open question since the 1950s whether
the level of a field, if finite, is always a power of 2. Pfister’s theory of quadratic
forms leads to an affirmative answer to this question.

Theorem 5.2 ([Pf1]). The level of a field is a power of 2 if it is finite.

Proof. Let n = s(k). We choose an integerm such that 2m ≤ n < 2m+1. Suppose

− 1 = (u21 + u22 + · · ·+ u22m) + (u22m+1 + · · ·+ u2n) (5.3)

The element u21 + u22 + · · ·+ u22m 
= 0 since s(k) ≥ 2m. Every ratio of sums of 2m

squares is again a sum of 2m squares since 〈1, 1〉⊗m is a multiplicative form. Thus,
from (5.3) we see that

0 = 1 +
u22m+1 + · · ·+ u2n + 1

u21 + · · ·+ u22m

= 1 + (v21 + · · ·+ v22m)

Therefore,−1 = v21 + · · ·+ v22m and s(k) = 2m. �
Remark 5.4. There exist fields with level 2n for any n ≥ 1. For instance,
R(X1, . . . , X2n)(

√−(X2
1 + · · ·+X2

2n) ) is a field of level 2n (cf. [L], Sect. XI.2).

Exercise 5.5. Let k be a p-adic field with p 
= 2 and with residue field Fq. Prove
the following:

(1) s(k) = 1 if q ≡ 1 (mod 4).
(2) s(k) = 2 if q ≡ −1 (mod 4).
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6 The u-Invariant

Definition 6.1. The u-invariant of a field k, denoted by u(k), is defined to be
the largest integer n such that every (n + 1)-dimensional quadratic form over k is
isotropic and there is an anisotropic form in dimension n over k; if no such integer
exists, the u-invariant is said to be infinite. In other words,

u(k) = max {dim(q) : q anisotropic form over k}.

If k admits an ordering, then sums of nonzero squares are never zero and there
is a refined u-invariant for fields with orderings, due to Elman–Lam [EL]. In this
article, we do not discuss this refined invariant.

Example 6.2. (1) u(Fq) = 2, if q is odd.
(2) u(k(X)) = 2, if k is algebraically closed and X is an integral curve over k

(Tsen’s theorem).
(3) u(k) = 4 for k a p-adic field. For p 
= 2, see Sect. 2.2. For p = 2, see [L,

Sect. XI.6].
(4) u(k) = 4 for k a totally imaginary number field. This follows from the Hasse–

Minkowski theorem.
(5) Suppose u(k) = n < ∞. Let k((t)) denote the field of Laurent series over k.

Then u(k((t))) = 2n. In fact, the square classes in k((t))∗ are {uα, tuα}α∈I

where {uα}α∈I are the square classes in k∗. As in the p-adic field case, every
form over k((t)) is isometric to 〈u1, . . . , ur〉 ⊥ t〈v1, . . . , vs〉, ui, vi ∈ k∗

and this form is anisotropic if and only if 〈u1, . . . , ur〉 and 〈v1, . . . , vs〉 are
anisotropic.

(6) More generally, if K is a complete discrete valuated field with residue field κ
of u-invariant n, then u(K) = 2n. For the case char(κ) = 2, we refer to [Sp].

Definition 6.3. A field k is Ci if every homogeneous polynomial inN variables of
degree d with N > di has a nontrivial zero.

Example 6.4. Finite fields and function fields in one variable over algebraically
closed fields are C1.

If k is a Ci field, u(k) ≤ 2i. Further, the propertyCi behaves well with respect to
function field extensions. If l/k is finite and k is Ci then l is Ci; further, if t1, . . . , tn
are indeterminates, k(t1, . . . , tn) is Ci+n.

Example 6.5. The u-invariant of transcendental extensions:

(1) u(k(t1, . . . , tn)) = 2n if k is algebraically closed. In fact,

u(k(t1, . . . , tn)) ≤ 2n
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since k(t1, . . . , tn) is a Cn field. Further, the form

〈〈t1, . . . , tn〉〉 = 〈1, t1〉 ⊗ · · · ⊗ 〈1, tn〉
is anisotropic over k((t1))((t2)) . . . ((tn)) and hence also over k(t1, . . . , tn).

(2) u(Fq(t1, . . . , tn)) = 2n+1 if q is odd.

All fields of known u-invariant in the 1950s happened to have u-invariant a power
of 2. Kaplansky raised the question whether the u-invariant of a field is always a
power of 2.

Proposition 6.6. The u-invariant does not take the values 3, 5, 7.

Proof. Let q be an anisotropic form of dimension 3. By scaling, we may assume that
q ∼= 〈1, a, b〉. Then the form 〈1, a, b, ab〉 is anisotropic; if 〈1, a, b, ab〉 is isotropic,
it is hyperbolic and Witt’s cancellation yields 〈a, b, ab〉 ∼= 〈1,−1,−1〉 which is
isotropic and q ∼= a〈a, b, ab〉 is isotropic leading to a contradiction. Thus u(k) 
= 3.

Let u(k) < 8. Every three-fold Pfister form (which has dimension 8) is isotropic
and hence hyperbolic. Thus I3(k) which is generated by three-fold Pfister forms
is zero. Let q ∈ I2(k) be any quadratic form. For any c ∈ k∗, 〈1,−c〉 q ∈ I3(k)
is zero and cq is Witt equivalent to q, hence isometric to q by Witt’s cancellation.
We conclude that every quadratic form whose class is in I2(k) is universal.

Suppose u(k) = 5 or 7. Let q be an anisotropic form of dimension u(k). Since
every form in dimension u(k) + 1 is isotropic, if disc(q) = d, q ⊥ −d is isotropic
and therefore q represents d. We may write q ∼= q1 ⊥ 〈d〉 where q1 is even-
dimensional with trivial discriminant. Hence [q1] ∈ I2(k) so that q1 is universal.
This in turn implies that q1 ⊥ 〈d〉 ∼= q is isotropic, leading to a contradiction. �

In the 1990s Merkurjev [M2] constructed examples of fields k with u(k) = 2n
for any n ≥ 1, n = 3 being the first open case, answering Kaplansky’s question in
the negative. Since then, it has been shown that the u-invariant could be odd. In [I],
Izhboldin proves that there exist fields k with u(k) = 9 and in [V] Vishik has shown
that there exist fields k with u(k) = 2r + 1 for all r ≥ 3.

Merkurjev’s construction yields fields k which are not of arithmetic type, i.e.,
not finitely generated over a number field or a p-adic field. It is still an interesting
question whether u(k) is a power of 2 if k is of arithmetic type.

The behavior of the u-invariant is very little understood under rational function
field extensions. For instance, it is an open question if u(k) <∞ implies u(k(t)) <
∞ for the rational function field in one variable over k. This was unknown for
k = Qp until the late 1990s. Conjecturally, u(Qp(t)) = 8, in analogy with the
positive characteristic local field case; the field Fp((X))(t) is C3 (see [G]) so that
u(Fp((X))(t)) ≤ 8 for p odd. If u is a nonsquare in Fp, 〈1,−u〉⊗〈1,−X〉⊗〈1,−t〉
is anisotropic over Fp((X))(t), so that u(Fp((X))(t)) = 8.

We indicate some ways of bounding the u-invariant of a field k once we know
how efficiently the Galois cohomology groups Hn(k,Z/2Z) are generated by
symbols for all n.
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We set

Hn
dec(k,Z/2Z) = {(a1) · · · · · (an) : ai ∈ k∗}

and call elements in this set symbols. By Voevodsky’s theorem on the Milnor
conjecture,Hn(k,Z/2Z) is additively generated by Hn

dec(k,Z/2Z).

Proposition 6.7. Let k be a field such that Hn+1(k,Z/2Z) = 0 and for 2 ≤ i ≤
n, there exist integers Ni such that every element in Hi(k,Z/2Z) is a sum of Ni

symbols. Then u(k) is finite.

Proof. Let q be a quadratic form over k of dimension m and discriminant d. Let
q1 = 〈d〉 if m is odd and 〈1,−d〉 if m is even. Then q ⊥ −q1 has even dimension
and trivial discriminant. Hence q ⊥ −q1 ∈ I2(k). Let e2(q ⊥ −q1) =

∑
j≤N2

ξ2j
where ξ2j ∈ H2

dec(k,Z/2Z). Let φ2j be two-fold Pfister forms such that e2(φ2j) =
ξ2j . Then q2 =

∑
j≤N2

φ2j has dimension at most 4N2 and e2(q ⊥ −q1 ⊥ −q2) =
0 and q ⊥ −q1 ⊥ −q2 ∈ I3(k), by Merkurjev’s theorem. Repeating this process
and using the Milnor conjecture, we get qi ∈ Ii(k) which is a sum of Ni i-fold
Pfister forms and q−∑

1≤i≤n qi ∈ In+1(k) = 0, since Hn+1(k,Z/2Z) = 0. Thus
[q] =

∑
1≤i≤n qi and dim(qan) ≤

∑
1≤i≤n 2iNi. Thus u(k) ≤∑

1≤i≤n 2
iNi. �

Definition 6.8. A field k is said to have cohomological dimension at most n (in
symbols, cd(k) ≤ n) if Hi(k,M) = 0 for i ≥ n + 1 for all finite discrete Γk-
modules M (cf. [Se, §3]).

Example 6.9. Finite fields and function fields in one variable over algebraically
closed fields have cohomological dimension 1. Totally imaginary number fields
and p-adic fields are of cohomological dimension 2. If k is a p-adic field, and
k(X) a function field in one variable over k, cd(k(X)) ≤ 3. In particular,
H4(k(X),Z/2Z) = 0.

Theorem 6.10 (Saltman [Sa]). Let k be a non-dyadic p-adic field and k(X) a
function field in one variable over k. Every element in H2(k(X),Z/2Z) is a sum of
two symbols.

Theorem 6.11 (Parimala–Suresh [PS1]). Let k(X) be as in the previous theorem.
Then every element in H3(k(X),Z/2Z) is a symbol.

Corollary 6.12. For k(X) as above, u(k(X)) ≤ 2 + 8 + 8 = 18.

It is not hard to show from the above theorems that u(k(X)) ≤ 12. With some
further work it was proved in [PS1] that u(k(X)) ≤ 10. More recently in [PS2] the
estimated value u(k(X)) = 8 was proved. For an alternate approach to u(k(X)) =
8, we refer to [HH,HHK,CTPS]. More recently, Heath-Brown and Leep [HB] have
proved the following spectacular theorem: If k is any p-adic field and k(X) the
function field in n variables over k, then u(k(X)) = 2n+2.
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7 Hilbert’s Seventeenth Problem

An additional reference for sums of squares is [C].

Definition 7.1. An element f ∈ R(X1, . . . , Xn) is called positive semi-definite if
f(a) ≥ 0 for all a = (a1, . . . , an) ∈ R

n where f is defined.

Hilbert’s seventeenth problem:
Let R(X1, . . . , Xn) be the rational function field in n variables over the field R

of real numbers. Hilbert’s seventeenth problem asks whether every positive semi-
definite f ∈ R(X1, . . . , Xn) is a sum of squares in R(X1, . . . , Xn). E. Artin settled
this question in the affirmative and Pfister gave an effective version of Artin’s result
(cf. [Pf, Chap. 6]).

Theorem 7.2 (Artin, Pfister). Every positive semi-definite function f ∈ R(X1, . . . ,
Xn) can be written as a sum of 2n squares in R(X1, . . . , Xn).

For n ≤ 2 the above was due to Hilbert himself. If one asks for expressions
of positive definite polynomials in R[X1, . . . , Xn] as sums of 2n squares in
R[X1, . . . , Xn], there are counterexamples for n = 2; the Motzkin polynomial

f(X1, X2) = 1− 3X2
1X

2
2 +X4

1X
2
2 +X2

1X
4
2

is positive semi-definite but not a sum of squares in R[X1, X2]. In fact, Pfister’s
result has the following precise formulation.

Theorem 7.3 (Pfister). Let R(X) be a function field in n variables over R. Then
every n-fold Pfister form in R(X) represents every sum of squares in R(X).

We sketch a proof of this theorem below.

Definition 7.4. Let φ be an n-fold Pfister form with φ = 1 ⊥ φ′. The form φ′ is
called the pure subform of φ.

Proposition 7.5 (Pure Subform Theorem). Let k be any field of characteristic not
2, φ an anisotropic n-fold Pfister form over k and φ′ its pure subform. If b1 is any
value of φ′, then φ ∼= 〈〈b1, . . . , bn〉〉 for some b2, . . . , bn ∈ k∗.

Proof. The proof is by induction on n; for n = 1 the statement is clear. Let
n > 1. We assume the statement holds for all (n − 1)-fold Pfister forms. Let
φ = 〈〈a1, . . . , an〉〉, ψ = 〈〈a1, . . . , an−1〉〉, and let φ′, ψ′ denote the pure subforms
of φ and ψ respectively. We have φ = ψ ⊥ anψ, φ′ = ψ′ ⊥ anψ. Let b1 be a
value of φ′. We may write b1 = b′1 + anb, with b′1 a value of ψ′ and b a value of
ψ. The only nontrivial case to discuss is when b 
= 0 and b′1 
= 0. By induction,
ψ ∼= 〈〈b′1, b2, . . . , bn−1〉〉 and bψ ∼= ψ. We thus have

φ ∼= 〈〈b′1, b2, . . . , bn−1, an〉〉 ∼= 〈〈b′1, b2, . . . , bn−1, anb〉〉
∼= 〈〈b′1, anb〉〉 ⊗ 〈〈b2, . . . , bn−1〉〉
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Since b1 = b′1 + anb, 〈b′1, anb〉 ∼= 〈b1, b1b′1anb〉 and we have

〈〈b′1, anb〉〉 = 〈1, b′1, anb, anbb′1〉
= 〈1, b1, b1b′1anb, anbb′1〉
= 〈〈b1, c1〉〉,

where c1 = b1b
′
1anb. Thus,

φ ∼= 〈〈b1, c1, b2, · · · , bn−1〉〉. �
Proof of Pfister’s Theorem 7.3. Let φ be an anisotropic n-fold Pfister form over
K = R(X). Let b = b21 + · · · + b2m, bi ∈ K∗. We show that φ represents b by
induction on m. For m = 1, b is a square and is represented by φ. Suppose m = 2,
b = b21+b

2
2, b1 
= 0, b2 
= 0. The fieldK(

√−1) is a function field in n variables over
C and is Cn. Then φ is universal overK(

√−1) and hence represents β = b1 + ib2.
Let v, w ∈ K2n such that φK(

√−1)(v + βw) = β. Hence

φ(v) + β2φ(w) + β(2φ(v, w) − 1) = 0.

The irreducible polynomial of β over K is

φ(w)X2 + (2φ(v, w) − 1)X + φ(v)

and hence N(β) = b = φ(v)
φ(w) is a value of φ since φ is multiplicative.

Suppose m > 2. We argue by induction on m. Suppose φ represents all sums of
m − 1 squares. Let b be a sum of m squares. After scaling b by a square, we may
assume that b = 1 + c, c = c21 + · · ·+ c2m−1, c 
= 0. Let φ ∼= 1 ⊥ φ′. By induction
hypothesis, φ represents c. Let c = c20 + c′, c′ a value of φ′. Let ψ = φ ⊗ 〈1,−b〉
and ψ = 1 ⊥ ψ′ with ψ′ = 〈−b〉 ⊥ φ′ ⊥ −bφ′. The form ψ′ represents c′ − b =
(c− c20)− (1 + c) = −1− c20. Thus, by the Pure Subform theorem,

ψ ∼= 〈〈−1 − c20, d1, . . . , dn〉〉 = 〈1,−1− c20〉 ⊗ 〈〈d1, . . . , dn〉〉.

By induction, the n-fold Pfister form 〈〈d1, . . . , dn〉〉 represents 1+c20 which is a sum
of 2 squares; thus ψ is isotropic, hence hyperbolic. Thus φ ∼= bφ represents b. �
Corollary 7.6. LetK = R(X) be a function field in n variables over R. Then every
sum of squares in K is a sum of 2n squares.

Proof. Set φ = 〈1, 1〉⊗n in the above theorem. �
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8 Pythagoras Number

Definition 8.1. The Pythagoras number p(k) of a field k is the least positive
integer n such that every sum of squares in k∗ is a sum of at most n squares; if
no such n exists, p(k) is defined to be infinity.

Example 8.2. If R is the field of real numbers, p(R) = 1.

Example 8.3. If R(X1, . . . , Xn) is a function field in n variables over R, by
Pfister’s theorem (Corollary 7.6), p(R(X1, . . . , Xn)) ≤ 2n.

Let K = R(X1, . . . , Xn) be the rational function field in n variables over R. We
discuss the effectiveness of the bound p(K) ≤ 2n. For n = 1 the bound is sharp.
For n = 2 the Motzkin polynomial

f(X1, X2) = 1− 3X2
1X

2
2 +X4

1X
2
2 +X2

1X
4
2

is positive semi-definite; Cassels–Ellison–Pfister [CEP] show that this polyno-
mial is not a sum of three squares in R(X1, X2) (see also [CT]). Therefore
p(R(X1, X2)) = 4.

Lemma 8.4 (Key Lemma). Let k be a field and n = 2m. Let u = (u1, . . . , un) and
v = (v1, . . . , vn) ∈ kn be such that u · v =

∑
1≤i≤n uivi = 0. Then there exist

wj ∈ k, 1 ≤ j ≤ n− 1 such that
( ∑

1≤i≤n

u2i

)( ∑

1≤i≤n

v2i

)
=

∑

1≤j≤n−1

w2
j .

Proof. Let λ =
∑

1≤i≤n u
2
i , μ =

∑
1≤i≤n v

2
i . We may assume without loss of

generality that u 
= 0 and v 
= 0. The elements λ and μ are values of φm = 〈1, 1〉⊗m

and λφm ∼= φm, μφm ∼= φm. We choose isometries f : λφm ∼= φm, g : μφm ∼=
φm such that f(1, 0, . . . , 0) = u and g(1, 0, . . . , 0) = v. If U and V are matrices
representing f , g respectively, we have

UU t = λ−1, V V t = μ−1, λ−1μ−1 = λ−1V V t = (V U t)(V U t)t.

The first row of V U t is of the form (0, w2, . . . , wn) since u ·v = 0. Thus λ−1μ−1 =∑
2≤i≤n w

2
i . �

Corollary 8.5. Let k be an ordered field with p(k) = n. Then p(k(t)) ≥ n+ 1.

Proof. Let λ ∈ k∗ be such that λ is a sum of n squares and not a sum of less than
n squares. Suppose λ + t2 is a sum of n squares in k(t). By the Cassels–Pfister
theorem,

λ+ t2 = (μ1 + ν1t)
2 + · · ·+ (μn + νnt)

2
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with μi, νi ∈ k∗. If u = (μ1, . . . , μn), v = (ν1, . . . , νn), then u · v = 0,∑
1≤i≤n μ

2
i = λ,

∑
1≤i≤n ν

2
i = 1. Thus λ = (

∑
1≤i≤n μ

2
i )(

∑
1≤i≤n ν

2
i ) is a

sum of n− 1 squares by the Key Lemma 8.4, contradicting the choice of λ. �
Corollary 8.6. For n ≥ 2,

n+ 2 ≤ p(R(X1, . . . , Xn)) ≤ 2n.

Proof. By [CEP], we know that p(R(X1, X2)) = 4. The fact that n + 2 ≤
p(R(X1, . . . , Xn)) now follows by Corollary 8.5 and induction. �
Remark 8.7. It is open whether p(R(X1, X2, X3)) = 5, 6, 7 or 8.

Remark 8.8. The possible values of the Pythagoras number of a field have all been
listed ([H], [Pf, p. 97]).

Proposition 8.9. If k is a non-formally real field, p(k) = s(k) or s(k) + 1.

Proof. If s(k) = n, then−1 is not a sum of less than n squares, so that p(k) ≥ s(k).
For a ∈ k∗,

a =

(
a+ 1

2

)2

+ (−1)
(
a− 1

2

)2

is a sum of n+ 1 squares if −1 is a sum of n squares. Thus p(k) ≤ s(k) + 1. �
Let k be a p-adic field and K = k(X1, . . . , Xn) a rational function field in n

variables over k. Then s(k) = 1, 2 or 4 so that s(K) = 1, 2 or 4. Thus p(K) ≤ 5.
(In fact it is easy to see that if s(k) = s, p(K) = s+ 1.)

Thus we have bounds for p(k(X1, . . . , Xn)) if k is the field of real or complex
numbers or the field of p-adic numbers. The natural questions concern a number
field k.

9 Function Fields Over Number Fields

Let k be a number field and F = k(t) the rational function field in one variable over
k. In this case p(k(t)) = 5 is a theorem [La]. The fact that p(k(t)) ≤ 8 can be easily
deduced from the following injectivity in the Witt groups [CTCS, Proposition 1.1]:

W (k(t)) −→
∏

w∈Ω(k)

W (kw(t)),

with Ω(k) denoting the set of places of k. In fact, if f ∈ k(t) is a sum of squares,
f is a sum of at most two squares in kw(t) for a real place w, by Pfister’s theorem
(which in the case of function fields of curves goes back to Witt). Further, for a finite
place w of k or a complex place, 〈1, 1〉⊗3 = 0 in W (kw). Thus 〈1, 1〉⊗3 ⊗ 〈1,−f〉
is hyperbolic over kw(t) for all w ∈ Ω(k).
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By the above injectivity, this form is hyperbolic over k(t), leading to the fact that
f is a sum of at most eight squares in k(t).

We have the following conjecture due to Pfister for function fields over number
fields.

Conjecture (Pfister). Let k be a number field and F = k(X) a function field in d
variables over k. Then

(1) For d = 1, p(F ) ≤ 5.
(2) For d ≥ 2, p(F ) ≤ 2d+1.

For a function field k(X) in one variable over k, (d = 1), the best known result
is due to F. Pop, p(F ) ≤ 6 [P]. For d = 2, the conjecture is settled in [CTJ]. We
sketch some results and conjectures from the arithmetic side which imply Pfister’s
conjecture for d ≥ 3 (see Colliot-Thélène and Jannsen [CTJ] for more details).

For any field k, by Voevodsky’s theorem, we have an injection

en : Pn(k)→ Hn(k,Z/2Z).

In fact, for any field k, if φ1, φ2 ∈ Pn(k) have the same image under en then φ1 ⊥
−φ2 ∈ ker(en) = In+1(k). InW (k), φ1 ⊥ −φ2 = φ′1 ⊥ −φ′2 where φ′1 and φ′2 are
the pure subforms of φ1 and φ2. Moreover, dim(φ′1 ⊥ −φ′2)an ≤ 2n+1− 2 < 2n+1.
By the Arason–Pfister Hauptsatz, (Theorem 3.1), anisotropic forms in In+1(k) must
have dimension at least 2n+1. Therefore φ1 = φ2.

Let k be a number field and F = k(X) be a function field in d variables over k.
Let f ∈ F be a function which is a sum of squares in F . One would like to show that
f is a sum of 2d+1 squares. Let φd+1 = 〈1, 1〉⊗(d+1) and q = φd+1⊗〈1,−f〉. This
is a (d+ 2)-fold Pfister form and φd+1 represents f if and only if q is hyperbolic or
equivalently, by the injectivity of en above, ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

We look at this condition locally at all completions kv at places v of k. Let kv(X)
denote the function field of X over kv. (We may assume that X is geometrically
integral.) Let v be a complex place. The field kv(X) has cohomological dimension
d so thatHm(kv(X),Z/2Z) = 0 form ≥ d+1. Hence ed+2(φd+1⊗〈1,−f〉) = 0
over kv(X). Let v be a real place. Over kv(X), f is a sum of squares, hence a sum
of at most 2d squares (by Pfister’s Theorem 7.3) so that φd+1⊗〈1,−f〉 is hyperbolic
over kv(X). Hence ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

Let v be a non-dyadic p-adic place of k. Then φ2 is hyperbolic over kv so that
φd+1 ⊗ 〈1,−f〉 = 0 and ed+2(φd+1 ⊗ 〈1,−f〉) = 0.

Let v be a dyadic place of k. Over kv , φ3 is hyperbolic so that ed+2(φd+1 ⊗
〈1,−f〉) = 0. Thus for all completions v of k, ed+2(φd+1 ⊗ 〈1,−f〉) is zero.
The following conjecture of Kato implies Pfister’s conjecture for d ≥ 2.

Conjecture (Kato). Let k be a number field, X a geometrically integral variety
over k of dimension d. Then the map

Hd+2(k(X),Z/2Z)→
∏

v∈Ωk

Hd+2(kv(X),Z/2Z)

has trivial kernel.
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The above conjecture is the classical Hasse–Brauer–Noether theorem if the
dimension of X is zero, i.e., the injectivity of the Brauer group map:

Br(k) ↪→
⊕

v∈Ωk

Br(kv).

For dimX = 1, the conjecture is a theorem of Kato [Ka]. Kato’s conjecture is now
a theorem due to Jannsen [Ja1, Ja2] for dimX ≥ 2. Thus for every function field
k(X) in d variables over a number field k, d ≥ 2, we have p(k(X)) ≤ 2d+1.

We now explain how Kato’s theorem was used by Colliot-Thélène to derive
p(k(X)) ≤ 7 for a curve X over a number field. We note that this bound is weaker
than the bound established by F. Pop.

Suppose K = k(X) has no ordering. We claim that s(K) ≤ 4. To show this
it suffices to show that 〈1, 1〉⊗3 is zero over kv(X) for every place v of k. At
finite places v, 〈1, 1〉⊗3 is already zero in kv. If v is a real place of k, kv(X) is the
function field of a real curve over the field of real numbers which has no orderings.
By a theorem of Witt, Br(kv(X)) = 0 and every sum of squares is a sum of two
squares in kv(X). Thus −1 is a sum of two squares in kv(X) and 〈1, 1〉⊗3 = 0
over kv(X). Since H3(k(X),Z/2Z) → ∏

v∈Ωk
H3(kv(X),Z/2Z) is injective by

Kato’s theorem, e3(〈1, 1〉⊗3) = 0 in H3(k(X),Z/2Z). Since e3 is injective on
three-fold Pfister forms, 〈1, 1〉⊗3 = 0 in k(X). Thus s(k(X)) ≤ 4. In this case,
p(k(X)) ≤ 5.

Suppose K has an ordering. Let f ∈ K∗ be a sum of squares in K . Then
K(
√−f) has no orderings and hence −1 is a sum of 4 squares in K(

√−f). Let
ai, bi ∈ K be such that

−1 =
∑

1≤i≤4

(ai + bi
√
−f)2, ai, bi ∈ K.

Then

1 +
∑

1≤i≤4

a2i = f
( ∑

1≤i≤4

b2i
)
,

∑

1≤i≤4

aibi = 0.

By the Key Lemma 8.4, (1+
∑

1≤i≤4 a
2
i )

∑
1≤i≤4 b

2
i is a sum of at most 7 squares.
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On the Length of Binary Forms

Bruce Reznick

Abstract The K-length of a form f in K[x1, . . . , xn], K ⊂ C, is the smallest
number of d-th powers of linear forms of which f is a K-linear combination.
We present many results, old and new, about K-length, mainly for n = 2, and often
about the length of the same form over different fields. For example, the K-length
of 3x5 − 20x3y2 + 10xy4 is three for K = Q(

√−1), four for K = Q(
√−2) and

five for K = R.

Key words and Phrases Length • Sums of powers • Binary forms • Sylvester
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1 Introduction and Overview

Suppose f(x1, . . . , xn) is a form of degree dwith coefficients in a fieldK ⊆ C. The
K-length of f , LK(f), is the smallest r for which there exist λj , αjk ∈ K so that

f(x1, . . . , xn) =
r∑

j=1

λj
(
αj1x1 + · · ·+ αjnxn

)d
. (1.1)

In this paper, we consider the K-length of a fixed form f as K varies; this
is apparently an open question in the literature, even for binary forms (n = 2).
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Sylvester [53, 54] explained how to compute LC(f) for binary forms in 1851 and
gave a lower bound for LR(f) for binary forms in 1864. Except for a few remarks,
we shall restrict our attention to binary forms.

It is trivially true that LK(f) = 1 for linear f and for d = 2, LK(f) equals the
rank of f : a representation over K can be found by completing the square, and this
length cannot be shortened by enlarging the field. Accordingly, we shall also assume
that d ≥ 3.

When K = C, the λj ’s in (1.1) are superfluous. The computation of LC(f)
is a huge, venerable and active subject, and difficult when n ≥ 3. The interested
reader is directed to [2,7,8,14,17,18,22,25,28,34,44–46] as representative recent
works. Even for small n, d ≥ 3, there are still many open questions. Landsberg
and Teitler [34] complete a classification of LC(f) for ternary cubics f and
also discuss LC(x1x2 · · ·xn), among other topics. Historically, much attention has
centered on the C-length of a general form of degree d. In 1995, Alexander and
Hirschowitz [1] (see also [5, 36]) established that for n, d ≥ 3, this length is
' 1n

(
n+d−1
n−1

)(, the constant-counting value, with the four exceptions known since
the nineteenth century – (n, d) = (3, 5), (4, 3), (4, 4), (4, 5) – in which the length is
' 1n

(
n+d−1
n−1

)(+1. There has been a recent series of papers studying LR(f) [4,9,15];
these study the length in a greater depth than we do here.

Two central examples illustrate the phenomenon of multiple lengths over differ-
ent fields.

Example 1.1. Suppose f(x, y) = (x+
√
2y)d+(x−√2y)d ∈ Q[x, y]. ThenLK(f)

is 2 (if
√
2 ∈ K) and d (otherwise). This example first appeared in [47, p. 137]. (See

Theorem 4.6 for a generalization.)

Example 1.2. If φ(x, y) = 3x5 − 20x3y2 + 10xy4, then LK(φ) = 3 if and only if√−1 ∈ K , LK(φ) = 4 for K = Q(
√−2),Q(

√−3),Q(
√−5),Q(

√−6) (at least)
and LR(φ) = 5. (We give proofs of these assertions in Examples 2.1 and 3.1.)

The following simple definitions and remarks apply in the obvious way to forms
in n ≥ 3 variables, but for simplicity are given for binary forms. A representation
such as (1.1) is calledK-minimal if r = LK(f). Two linear forms are called distinct
if they (or their d-th powers) are not proportional. A representation is honest if the
summands are pairwise distinct. Any minimal representation is honest. Two honest
representations are different if the ordered sets of summands are not rearrangements
of each other; we shall not distinguish between �d and (ζkd �)

d where ζd = e2πi/d.
If g is obtained from f by an invertible linear change of variables over K , then
LK(f) = LK(g).

Given a form f ∈ C[x, y], we letEf denote the field generated by the coefficients
of f over C; LK(f) is defined for fields K satisfying Ef ⊆ K ⊆ C. The following
implication is immediate:

K1 ⊂ K2 =⇒ LK1(f) ≥ LK2(f). (1.2)

Strict inequality in (1.2) is possible, as shown by the two examples. Finally, we
define the cabinet of f , C(f), to be the set of all possible lengths for f .
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There is a natural alternative definition of length in which sums of powers are
considered without coefficients. This makes no difference when K = C or K =
R and d is odd, but in other cases, a form might not even be a sum of powers.
For example,

√
2 is not totally positive in K = Q(

√
2), so

√
2 · x2 is not a sum of

squares inK[x], and x4+λx2y2+y4 is a sum of fourth powers of real linear forms if
and only if 0 ≤ λ ≤ 6. This alternative definition was studied by Ellison [19] in the
special casesK = C,R,Q. Newman and Slater [39] do not restrict to homogeneous
polynomials. They write x as a sum of d d-th powers of linear polynomials; by
substitution, any polynomial is a sum of at most d d-th powers of polynomials.
They also show that the minimum number of d-th powers in this formulation is
≥ √d. Because of the degrees of the summands, these methods do not homogenize
to forms. Mordell [37] showed that a polynomial that is a sum of cubes of linear
forms over Z is also a sum of at most eight such cubes. More generally, if R is a
commutative ring, then its d-Pythagoras number, Pd(R), is the smallest integer k
so that any sum of d-th powers in R is a sum of k d-th powers. Helmke [25] uses
both definitions for length for forms, but is mainly concerned with the alternative
definition in the case when K is an algebraically closed (or a real closed) field of
characteristic zero, not necessarily a subset of C. This subject is closely related to
Hilbert’s 17th Problem; see [10–12]. In [47], a principal object of study is Qn,2k,
the (closed convex) cone of real forms which are a sum of 2k-th powers of real
linear forms.

We now outline the remainder of the paper.
In Sect. 2, we give a self-contained proof of Sylvester’s 1851 Theorem

(Theorem 2.1). Although originally given over C, it adapts easily to any K ⊂ C

(Corollary 2.2). If f is a binary form, then LK(f) ≤ r if and only if a certain
subspace of the binary forms of degree r (a subspace determined by f ) contains a
form that splits into distinct factors over K . We illustrate the algorithm by proving
the assertions of lengths 3 and 4 for φ in Example 1.2.

In Sect. 3, we prove (Theorem 3.2) a homogenized version of Sylvester’s 1864
Theorem (Theorem 3.1), which implies that if real f has r linear factors over R
(counting multiplicity), then LR(f) ≥ r. As far as we can tell, Sylvester did
not connect his two theorems: perhaps because he presented the second one for
non-homogeneous polynomials in one variable.

We apply these theorems and some other simple observations in Sects. 4 and 5.
We first show that if LC(f) = 1, then LEf

(f) = 1 as well (Theorem 4.1). Any
set of d + 1 d-th powers of pairwise distinct linear forms is linearly independent
(Theorem 4.2). It follows quickly that if f(x, y) has two different honest repre-
sentations of length r and s, then r + s ≥ d + 2 (Corollary 4.3), and so if
LEf

(f) = r ≤ d+1
2 , then the representation over Ef is the unique minimal C-

representation (Corollary 4.4). We show that Example 1.1 gives a template for forms
f satisfying LC(f) = 2 < LEf

(f) (see Theorem 4.6), and give two generalizations
which provide other types of constructions (Corollaries 4.7 and 4.8) of forms with
multiple lengths. We apply Sylvester’s 1851 Theorem to give an easy proof of the
known result that LC(f) ≤ d (Theorem 4.9) and a slightly trickier proof of the
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probably-known result that LK(f) ≤ d as well (Theorem 4.10). Theorem 4.10
combines with Theorem 3.2 into Corollary 4.11: if f ∈ R[x, y] is a product of d
linear factors and not a d-th power, then LR(f) = d. Conjecture 4.12 asserts that
f ∈ R[x, y] is a product of d linear factors if and only if LR(f) = d. This conjecture
has recently been proven by Comon-Ottaviani-Causa-Re [9,15] when the factors of
f are distinct.

In Corollary 5.1, we discuss the various possible cabinets when d = 3, 4; and
give examples for each one not already ruled out. We then completely classify
binary cubics; the key point of Theorem 5.2 is that if the cubic f has no repeated
factors, then Lk(f) = 2 if and only if Ef (

√−3Δ(f)) ⊆ K; this significance of
the discriminant Δ(f) can already be found in Salmon [52, Sect. 167]. This proves
Conjecture 4.12 for d = 3. In Theorem 5.3, we show that Conjecture 4.12 also
holds for d = 4. We then show (Theorem 5.4) that LC(f) = d if and only if there
are distinct linear forms �, �′ so that f = �d−1�′. (One direction of this result is well-
known; the other has recently been proved by Białynicki-Birula and Schinzel [2].)
The minimal representations of xkyk are parameterized (Theorem 5.5), and in
Corollary 5.6, we show that LK((x2 + y2)k) ≥ k + 1, with equality if and only
if tan π

k+1 ∈ K . In particular, LQ((x
2 + y2)2) = 4. Theorem 5.7 shows that

LQ(x
4 + 6λx2y2 + y4) = 3 if and only if a certain quartic diophantine equation

over Z has a non-zero solution.
Section 6 lists some open questions.
We would like to express our appreciation to the organizers of the Higher Degree

Forms conference in Gainesville in May 2009 for offering the opportunities to speak
on these topics, and to write this article for its Proceedings. We also thank Mike
Bennett, Tony Geramita, Giorgio Ottaviani, Joe Rotman and Zach Teitler for helpful
conversations and correspondence.

2 Sylvester’s 1851 Theorem

Modern proofs of Theorem 2.1 can be found in the work of Kung and Rota: [33,
Sect. 5], with further discussion in [30–32, 49]. We present here a very elementary
proof showing the connection with constant coefficient linear recurrences, in the
hopes that this remarkable theorem might become better known to the modern
reader.

Theorem 2.1 (Sylvester). Suppose

f(x, y) =
d∑

j=0

(
d

j

)
ajx

d−jyj (2.1)

and suppose
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h(x, y) =

r∑

t=0

ctx
r−tyt =

r∏

j=1

(−βjx+ αjy) (2.2)

is a product of pairwise distinct linear factors. Then there exist λk ∈ C so that

f(x, y) =

r∑

k=1

λk(αkx+ βky)
d (2.3)

if and only if
⎛

⎜⎜⎜⎝

a0 a1 · · · ar
a1 a2 · · · ar+1

...
...

. . .
...

ad−r ad−r+1 · · · ad

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

c0
c1
...
cr

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0

0
...
0

⎞

⎟⎟⎟⎠ ; (2.4)

that is, if and only if

r∑

t=0

a�+tct = 0, � = 0, 1, . . . , d− r. (2.5)

Proof. First suppose that (2.3) holds. Then for 0 ≤ j ≤ d,

aj =
r∑

k=1

λkα
d−j
k βj

k =⇒
r∑

t=0

a�+tct =
r∑

k=1

r∑

t=0

λkα
d−�−t
k β�+t

k ct

=

r∑

k=1

λkα
d−�−r
k β�

k

r∑

t=0

αr−t
k βt

kct =

r∑

k=1

λkα
d−�−r
k β�

k h(αk, βk) = 0.

Now suppose that (2.4) holds and suppose first that cr 
= 0. We may assume
without loss of generality that cr = 1 and that αj = 1 in (2.2), so that the βj’s are
distinct. Define the infinite sequence (ãj), j ≥ 0, by:

ãj = aj if 0 ≤ j ≤ r − 1; ãr+� = −
r−1∑

t=0

ãt+�ct for � ≥ 0. (2.6)

This sequence satisfies the recurrence of (2.5), so that

ãj = aj for j ≤ d. (2.7)

Since |ãj | ≤ γ ·M j for suitable γ,M by induction, the generating function

Φ(T ) =

∞∑

j=0

ãjT
j
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converges in a neighborhood of 0. We have

(
r∑

t=0

cr−tT
t

)
Φ(T ) =

r−1∑

n=0

⎛

⎝
n∑

j=0

cr−(n−j)ãj

⎞

⎠T n +
∞∑

n=r

(
r∑

t=0

cr−tãn−t

)
T n.

It follows from (2.6) that the second sum vanishes, and hence Φ(T ) is a rational
function with denominator

r∑

t=0

cr−tT
t = h(T, 1) =

r∏

j=1

(1− βjT ).

By the method of partial fractions, there exist λk ∈ C so that

∞∑

j=0

ãjT
j = Φ(T ) =

r∑

k=1

λk
1− βkT =⇒ ãj =

r∑

k=1

λkβ
j
k. (2.8)

A comparison of (2.8) and (2.7) with (2.1) shows that

f(x, y) =

d∑

j=0

(
d

j

)
ajx

d−jyj =

r∑

k=1

λk

d∑

j=0

(
d

j

)
βj
kx

d−jyj =

r∑

k=1

λk(x+ βky)
d,

(2.9)

as claimed in (2.3).
If cr = 0, then cr−1 
= 0, because h has distinct factors. We may proceed as

before, replacing r by r − 1 and taking cr−1 = 1, so that (2.2) becomes

h(x, y) =

r−1∑

t=0

ctx
r−tyt = x

r−1∏

j=1

(y − βjx). (2.10)

Since cr = 0, the system (2.4) can be rewritten as

⎛

⎜⎜⎜⎝

a0 a1 · · · ar−1

a1 a2 · · · ar
...

...
. . .

...
ad−r ad−r+1 · · · ad−1

⎞

⎟⎟⎟⎠ ·

⎛

⎜⎜⎜⎝

c0
c1
...

cr−1

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0

0
...
0

⎞

⎟⎟⎟⎠ .

We may now argue as before, except that (2.7) becomes

ãj = aj for j ≤ d− 1, ad = ãd + λr (2.11)
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for some λr , and (2.9) becomes

f(x, y) =

d∑

j=0

(
d

j

)
ajx

d−jyj = λry
d +

r−1∑

k=1

λk

d∑

j=0

(
d

j

)
βj
kx

d−jyj

= λry
d +

r−1∑

k=1

λk(x+ βky)
d.

(2.12)

By (2.10), (2.12) meets the description of (2.3), completing the proof. �
The (d − r + 1) × (r + 1) Hankel matrix in (2.4) will be denoted Hr(f). If

(f, h) satisfy the criterion of this theorem, we shall say that h is a Sylvester form
for f . If the only Sylvester forms of degree r are λh for λ ∈ C, we say that h is
the unique Sylvester form for f . Any polynomial multiple of a Sylvester form that
has no repeated factors is also a Sylvester form, since there is no requirement that
λk 
= 0 in (2.3). If f has a unique Sylvester form of degree r, then LC(f) = r and
LK(f) ≥ r.

The proof of Theorem 2.1 in [49] is based on apolarity. If f and h are given by
(2.1) and (2.2), and h(D) =

∏r
j=1(−βj ∂

∂x + αj
∂
∂y ), then

h(D)f =

d−r∑

m=0

d!

(d− r −m)!m!

(
d−r∑

i=0

ai+mci

)
xd−r−mym.

Thus, (2.4) is equivalent to h(D)f = 0. One can then argue that each linear factor
in h(D) kills a different summand, and dimension counting takes care of the rest.
In particular, if deg h > d, then h(D)f = 0 automatically, and this implies that
LC(f) ≤ d+ 1. Theorem 4.2 gives another explanation of this fact.

If h has repeated factors, a condition of interest in [30–33, 49], then Gundelfin-
ger’s Theorem [23], first proved in 1886, shows that a factor (−βx + αy)� of h
corresponds to a summand q(x, y)(αx+βy)d+1−� in f , where q is an arbitrary form
of degree � − 1. (We are not interested in such summands when � > 1. For more
discussion of this case, see [49].)

If d = 2s − 1 and r = s, then Hs(f) is s × (s + 1) and has a non-trivial
null-vector; for a general f , the resulting form h has distinct factors, and so is a
unique Sylvester form. (The coefficients of h, and its discriminant, are polynomials
in the coefficients of f .) This is how Sylvester proved that a general binary form
of degree 2s − 1 is a sum of s powers of linear forms over C, and the minimal
representation is unique.

If d = 2s and r = s, then Hs(f) is square; det(Hs(f)) is the catalecticant of f .
(For more on the term “catalecticant”, see [47, pp. 49–50] and [22, pp. 104–105].)
In general, there exists λ so that the catalecticant of f(x, y)−λx2s vanishes, and the
resulting non-trivial null vector is generally a Sylvester form (no repeated factors).
Thus, a general binary form of degree 2s is a sum of λx2s plus s powers of linear
forms over C.
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Sylvester’s Theorem can also be adapted to compute K-length when K � C,
with the understanding that a Sylvester form of minimal degree might not split
over K .

Corollary 2.2. Given f ∈ K[x, y], LK(f) is the minimal degree of a Sylvester
form for f which splits completely over K .

Proof. If (2.3) is a minimal representation for f over K , where λk, αk, βk ∈ K ,
then h(x, y) ∈ K[x, y] splits over K by (2.2). Conversely, if h is a Sylvester form
for f satisfying (2.2) with αk, βk ∈ K , then (2.3) holds for some λk ∈ C. This is
equivalent to saying that the linear system

aj =

r∑

k=1

αd−j
k βj

kXk, (0 ≤ j ≤ d) (2.13)

has a solution {Xk = λk} over C. Since aj , α
d−j
k βj

k ∈ K and (2.13) has a solution
over C, it also has a solution over K . Thus, f has a K-representation of length r.

�
Example 2.1 (Continuing Example 1.2). Note that

φ(x, y) = 3x5 − 20x3y2 + 10xy4 =

(
5

0

)
· 3 x5 +

(
5

1

)
· 0 x4y

+

(
5

2

)
· (−2) x3y2 +

(
5

3

)
· 0 x2y3 +

(
5

4

)
· 2 xy4 +

(
5

5

)
· 0 y5.

Since

⎛

⎝
3 0 −2 0

0 −2 0 2

−2 0 2 0

⎞

⎠ ·

⎛

⎜⎜⎝

c0
c1
c2
c3

⎞

⎟⎟⎠ =

⎛

⎝
0

0

0

⎞

⎠ ⇐⇒ (c0, c1, c2, c3) = r(0, 1, 0, 1),

φ has a unique Sylvester form of degree 3: h(x, y) = y(x2+y2) = y(y−ix)(y+ix).
Accordingly, there exist λk ∈ C so that

φ(x, y) = λ1x
5 + λ2(x+ iy)5 + λ3(x− iy)5.

Indeed, λ1 = λ2 = λ3 = 1, as may be checked. It follows that LK(φ) = 3 if and
only if i ∈ K . (There is no representation of length two.)

To find representations for φ of length 4, we consider (2.4) for φ with r = 4:

H4(φ) · (c0, c1, c2, c3, c4)t = (0, 0)t ⇐⇒ 3c0 − 2c2 + 2c4 = −2c1 + 2c3 = 0

⇐⇒ (c0, c1, c2, c3, c4) = r1(2, 0, 3, 0, 0) + r2(0, 1, 0, 1, 0) + r3(0, 0, 1, 0, 1),
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hence h(x, y) = r1x
2(2x2 + 3y2) + y(x2 + y2)(r2x + r3y). Given a field K , it is

unclear whether there exist {r�} so that h splits into distinct factors overK . We have
found such {r�} for small imaginary quadratic fields.

The choice (r1, r2, r3) = (1, 0, 2) gives h(x, y) = (2x2 + y2)(x2 + 2y2) and

24φ(x, y) = 4(x+
√−2y)5 +4(x−√−2y)5 + (2x+

√−2y)5 + (2x−√−2y)5.
Similarly, (r1, r2, r3) = (2, 0, 9) and (2, 0,−5) give h(x, y) = (x2 + 3y2)(4x2 +
3y2) and (x2 − y2)(4x2 + 5y2), leading to representations for φ of length 4
over Q(

√−3) and Q(
√−5). The simplest such representation we have found for

Q(
√−6) uses (r1, r2, r3) = (12,675, 0,−156,816) and

h(x, y) = (5x+ 12y)(5x− 12y)(6 · 132x2 + 332y2).

We conjecture that L
Q(

√−m)(φ) = 4 for all non-square m ≥ 2. In Example 3.1,
we shall show that there is no choice of (r1, r2, r3) for which h splits into distinct
factors over any subfield of R.

3 Sylvester’s 1864 Theorem

Theorem 3.1 was discovered by Sylvester [55] in 1864 while proving Isaac
Newton’s conjectural variation on Descartes’ Rule of Signs, see [27, 56]. This
theorem appeared in Pólya-Szegö [42, Chap. 5, Problem 79], and has been used by
Pólya and Schoenberg [41] and Karlin [29, p. 466]. The (dehomogenized) version
proved in [42] is:

Theorem 3.1 (Sylvester). Suppose 0 
= λk for all k and γ1 < · · · < γr, r ≥ 2, are
real numbers such that

Q(t) =
r∑

k=1

λk(t− γk)d

does not vanish identically. Suppose the sequence (λ1, . . . , λr , (−1)dλ1) has C
changes of sign and Q has Z zeros, counting multiplicity. Then Z ≤ C.

We shall prove an equivalent version which exploits the homogeneity of f to
avoid discussion of zeros at infinity in the proof. (The equivalence is discussed in
[50].)

Theorem 3.2. Suppose f(x, y) is a non-zero real form of degree dwith τ real linear
factors (counting multiplicity) and

f(x, y) =

r∑

j=1

λj(cos θjx+ sin θjy)
d (3.1)

where −π
2 < θ1 < · · · < θr ≤ π

2 , r ≥ 2 and λj 
= 0. If there are σ sign changes in
the tuple (λ1, λ2, . . . , λr, (−1)dλ1), then τ ≤ σ. In particular, τ ≤ r.
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Example 3.1 (Examples 1.2 and 2.1 concluded). Since

φ(x, y) = 3x
(
x2 − 10−√

70
3 y2

)(
x2 − 10+

√
70

3 y2
)

is a product of five linear factors over R, LR(φ) ≥ 5. The representation

6φ(x, y) = 36x5 − 10(x+ y)5 − 10(x− y)5 + (x+ 2y)5 + (x− 2y)5

over Q implies that LR(φ) = 5. It will follow from Theorem 4.10 that C(φ) =
{3, 4, 5}.
Proof of Theorem 3.2. We first rewrite (3.1):

2f(x, y) =

r∑

j=1

λj(cos θjx+ sin θjy)
d+

r∑

j=1

(−1)dλj(cos(θj + π)x+ sin(θj + π)y)d.

(3.2)

View the sequence (λ1, λ2, . . . , λr, (−1)dλ1, (−1)dλ2, . . . , (−1)dλr , λ1) cycli-
cally, identifying the first and last term. There are 2σ pairs of consecutive terms with
a negative product. This count is independent of the starting point, so if we make
any invertible change of variables (x, y) �→ (cos θx+ sin θy,− sin θx + cos θy) in
(3.1) (which doesn’t affect τ , and which “dials” the angles by θ), and reorder the
“main” angles to (−π

2 ,
π
2 ], the value of σ is unchanged. We may therefore assume

that neither x nor y divide f , that xd and yd are not summands in (3.2) (i.e., θj
is not a multiple of π

2 ), and that if there is a sign change in (λ1, λ2, . . . , λr), then
θu < 0 < θu+1 implies λuλu+1 < 0. Under these hypotheses, we may safely
dehomogenize f by setting either x = 1 or y = 1 and avoid zeros at infinity and
know that τ is the number of zeros of the resulting polynomial. The rest of the proof
generally follows [42].

Let σ̄ denote the number of sign changes in (λ1, λ2, . . . , λr). We induct on σ̄.
The base case is σ̄ = 0 (and λj > 0 without loss of generality). If d is even, then
σ = 0 and

f(x, y) =

r∑

j=1

λj(cos θjx+ sin θjy)
d

is definite, so τ = 0. If d is odd, then σ = 1. Let g(t) = f(t, 1), so that

g′(t) =
r∑

j=1

d (λj cos θj) (cos θjt+ sin θj)
d−1.

Since d − 1 is even, cos θj > 0 and λj > 0, g′ is definite and g′ 
= 0. Rolle’s
Theorem implies that g has at most one zero; that is, τ ≤ 1 = σ.
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Suppose the theorem is valid for σ̄ = m ≥ 0 and suppose that σ̄ = m + 1 in
(3.1). Now let h(t) = f(1, t). We have

h′(t) =
r∑

j=1

d (λj sin θj) (cos θj + sin θjt)
d−1.

Note that h′(t) = q(1, t), where

q(x, y) =

r∑

j=1

d (λj sin θj) (cos θjx+ sin θjy)
d−1.

Since σ̄ ≥ 1, θu < 0 < θu+1 implies that λuλu+1 < 0, so that the number of
sign changes in (dλ1 sin θ1, dλ2 sin θ2, . . . , dλr sin θr) is m, as the sign change at
the u-th consecutive pair has been removed, and no other possible sign changes
are introduced. The induction hypothesis implies that q(x, y) has at most m linear
factors, hence q(1, t) = h′(t) has ≤ m zeros (counting multiplicity) and Rolle’s
Theorem implies that h has ≤ m+ 1 zeros, completing the induction. �

4 Applications to Forms of General Degree

We begin with a folklore result: the vector space of complex forms f in n variables
of degree d is spanned by the set of linear forms taken to the d-th power. It follows
from a 1903 theorem of Biermann (see [47, Proposition 2.11] or [51] for a proof)
that a canonical set of the “correct” number of d-th powers over Z forms a basis:

{
(i1x1 + . . .+ inxn)

d : 0 ≤ ik ∈ Z, i1 + · · ·+ in = d
}
. (4.1)

If f ∈ K[x1, . . . , xn], then f is a K-linear combination of these forms and so
LK(f) ≤ (

n+d−1
n−1

)
. We show below (Theorems 4.10 and 5.4) that when n = 2, the

bound for LK(f) can be improved from d+ 1 to d, but this is best possible.
The first two results are presented explicitly for completeness.

Theorem 4.1. If f ∈ K[x, y], then LK(f) = 1 if and only if LC(f) = 1.

Proof. One direction is immediate from (1.2). For the other, suppose f(x, y) =
(αx+ βy)d with α, β ∈ C. If α = 0, then f(x, y) = βdyd, with βd ∈ K . If α 
= 0,
then f(x, y) = αd(x+ (β/α)y)d. Since the coefficients of xd and dxd−1y in f are
αd and αd−1β, it follows that αd and β/α = (αd−1β)/αd are both in K . �
Theorem 4.2. Any set {(αjx+βjy)

d : 0 ≤ j ≤ d} of pairwise distinct d-th powers
is linearly independent and spans the binary forms of degree d.
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Proof. The matrix of this set with respect to the basis
(
d
i

)
xd−iyi is [αd−i

j βi
j ], whose

determinant is Vandermonde:

∏

0≤j<k≤d

∣∣∣∣
αj βj
αk βk

∣∣∣∣ .

This determinant is a product of non-zero terms by hypothesis. �
By considering the difference of two representations of a given form, we obtain

an immediate corollary about different representations of the same form. Trivial
counterexamples, formed by splitting summands, occur in non-honest representa-
tions.

Corollary 4.3. If f has two different honest representations:

f(x, y) =

s∑

i=1

λi(αix+ βiy)
d =

t∑

j=1

μj(γjx+ δjy)
d, (4.2)

then s+ t ≥ d+ 2. If s+ t = d+ 2 in (4.2), then the combined set of linear forms,
{αix+ βiy, γjx+ δjy}, is pairwise distinct.

The next result collects some consequences of Corollary 4.3.

Corollary 4.4. Let E = Ef .

(1) If LE(f) = r ≤ d
2 + 1, then LC(f) = r, so C(f) = {r}.

(2) If, further, LE(f) = r ≤ d
2 +

1
2 , then f has a unique C-minimal representation.

(3) If d = 2s − 1 and Hs(f) has full rank, f has a unique Sylvester form h of
degree s and Ef ⊆ K , then LK(f) ≥ s, with equality if and only if h splits
in K .

Proof. We take the parts in turn.

(1) A different representation of f overC must have length≥ d+2−r ≥ d
2+1 ≥ r

by Corollary 4.3, and so LC(f) = r.
(2) If r ≤ d

2 + 1
2 , then any other representation has length ≥ d

2 + 3
2 > r, and so

cannot be minimal.
(3) If d = 2s−1 and r = s, then the last case applies, so f has a unique C-minimal

representation, and by Corollary 2.2, this representation can be expressed in K
if and only if the Sylvester form splits over K . �

We now give some more explicit constructions of forms with multiple lengths.
We first need a lemma about cubics.

Lemma 4.5. If f is a cubic given by (2.1) andH2(f) =

(
a0 a1 a2
a1 a2 a3

)
has rank≤ 1,

then f is a cube.
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Proof. If a0 = 0, then a1 = 0, so a2 = 0 and f is a cube. If a0 
= 0, then
a2 = a21/a0 and a3 = a1a2/a0 = a31/a

2
0 and f(x, y) = a0(x + a1

a0
y)3 is again a

cube. �
Theorem 4.6. Suppose d ≥ 3 and there exist αi, βi ∈ C so that

f(x, y) =
d∑

i=0

(
d

i

)
aix

d−iyi = (α1x+ β1y)
d + (α2x+ β2y)

d ∈ K[x, y]. (4.3)

If (4.3) is honest and LK(f) > 2, then there exists u ∈ K with
√
u /∈ K so that

LK(
√
u)(f) = 2. The summands in (4.3) are conjugates of each other in K(

√
u).

Proof. First observe that if α2 = 0, then α2β1 
= α1β2 implies that α1 
= 0. But
then a0 = αd

1 
= 0 and a1 = αd−1
1 β1 imply that αd

1, β1/α1 ∈ K as in Theorem 4.1,
and so

f(x, y)− αd
1(x+ (β1/α1)y)

d = (β2y)
d = βd

2y
d ∈ K[x, y].

This contradicts LK(f) > 2, so α2 
= 0; similarly, α1 
= 0. Let λi = αd
i and

γi = βi/αi for i = 1, 2, so λ1λ2 
= 0 and γ1 
= γ2. We have

f(x, y) = λ1(x+ γ1y)
d + λ2(x+ γ2y)

d =⇒ ai = λ1γ
i
1 + λ2γ

i
2.

Now let

g(x, y) = λ1(x+ γ1y)
3 + λ2(x+ γ2y)

3 = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3.

Since λi 
= 0 and (4.3) is honest, Corollary 4.3 implies that LC(g) = 2, so H2(g)
has full rank by Lemma 4.5. It can be checked directly that

(
a0 a1 a2
a1 a2 a3

)
·
⎛

⎝
γ1γ2

−(γ1 + γ2)

1

⎞

⎠ =

(
0

0

)
,

and this gives h(x, y) = (y − γ1x)(y − γ2x) as the unique Sylvester form for g.
Since H2(g) has entries in K and hence has a null vector in K , we must have h ∈
K[x, y]. By hypothesis, h does not split over K; it must do so over K(

√
u), where

u = (γ1 − γ2)2 = (γ1 + γ2)
2 − 4γ1γ2 ∈ K . Moreover, if σ denotes conjugation

with respect to
√
u, then γ2 = σ(γ1) and since λ1 + λ2 ∈ K , λ2 = σ(λ1) as well.

Note that λi = αd
i and γi = βi/αi ∈ K(

√
u), but this is not necessarily true for αi

and βi themselves. �
Corollary 4.7. Suppose g ∈ E[x, y] does not split over E, but factors into distinct
linear factors g(x, y) =

∏r
j=1(x + αjy) over an extension field K of E. If d >

2r − 1, then for each � ≥ 0,
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f�(x, y) =

r∑

j=1

α�
j(x+ αjy)

d ∈ E[x, y],

and LK(f�) = r < d+ 2− r ≤ LE(f�).

Proof. The coefficient of
(
d
k

)
xd−kyk in f� is

∑r
j=1 α

�+k
j . Each such power-sum

belongs to E by Newton’s Theorem on Symmetric Forms. If αs /∈ E (which must
hold for at least one αs 
= 0), then α�

s(x+ αsy)
d /∈ E[x, y]. Apply Corollary 4.3.

�
Corollary 4.8. Suppose K is an extension field of Ef , r ≤ d+1

2 , and

f(x, y) =
r∑

i=1

λi(αix+ βiy)
d

with λi, αi, βi ∈ K . Then every automorphism of K which fixes Ef permutes the
summands of the representation of f .

Proof. We interpret σ(λ(αx + βy)d) = σ(λ)(σ(α)x + σ(β)y)d. Since σ(f) = f ,
the action of σ is to give another representation of f . Corollary 4.4(2) implies that
this is the same representation, perhaps reordered. �
Theorem 4.9. If f ∈ K[x, y], then LC(f) ≤ deg f .

Proof. By a change of variables, which does not affect the length, we may assume
that neither x nor y divide f , hence a0ad 
= 0 and h = adx

d − a0yd is a Sylvester
form which splits over C. �

We have been unable to find an “original” citation for Theorem 4.9. It appears
as an exercise in Harris [24, Exercise 11.35], with the (dehomogenized) maximal
length occurring at xd−1(x + 1) (see Theorem 5.4). Landsberg and Teitler [34,
Corollary 5.2] prove thatLC(f) ≤

(
n+d−1
n−1

)−(n−1), which reduces to Theorem 4.9
for n = 2. The proof of Theorem 4.9 will not apply to LK(f) for K 
= C, because
adx

d − a0yd usually does not split over K . A more careful argument is required,
constructing an explicit Sylvester form of degree d for f which splits over K .

Theorem 4.10. If f ∈ K[x, y], then LK(f) ≤ deg f .

Proof. Write f as in (2.1). If f is identically zero, there is nothing to prove.
Otherwise, we may assume that f(1, 0) = a0 
= 0 after a change of variables if
necessary. By Corollary 2.2, it suffices to find h(x, y) =

∑d
k=0 ckx

d−kyk which

splits into distinct linear factors over K and satisfies
∑d

k=0 akck = 0.
Let e0 = 1 and ek(t1, . . . , td−1) denote the usual k-th elementary symmetric

functions. We make a number of definitions:
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h0(t1, . . . , td−1;x, y) :=
d−1∑

k=0

ek(t1, . . . , td−1)x
d−1−kyk =

d−1∏

j=1

(x+ tjy),

β(t1, . . . , td−1) := −
d−1∑

k=0

akek(t1, . . . , td−1),

α(t1, . . . , td−1) :=

d−1∑

k=0

ak+1ek(t1, . . . , td−1),

Φ(t1, . . . , td−1) :=

d−1∏

j=1

(α(t1, . . . , td−1)tj − β(t1, . . . , td−1)),

Ψ(t1, . . . , td−1) := Φ(t1, . . . , td−1)×
∏

1≤i<j≤d−1

(ti − tj).

Then β(0, . . . , 0) = −a0e0 = −a0 
= 0, so Φ(0, . . . , 0) = ad−1
0 
= 0 and Φ is

not the zero polynomial, and thus neither is Ψ. Choose γj ∈ K , 1 ≤ j ≤ d − 1,
so that Ψ(γ1, . . . , γd−1) 
= 0. It follows that the γj’s are distinct, and αγj 
= β,
where α = α(γ1, . . . , γd−1) and β = β(γ1, . . . , γd−1). Let ẽk = ek(γ1, . . . , γd−1).
We claim that

h(x, y) =

d∑

i=0

cix
d−1yi := (αx+βy)h0(γ1, . . ., γd−1;x, y) = (αx+βy)

d−1∏

j=1

(x+γjy)

= (αx+βy)

d−1∑

k=0

ẽkx
d−1−kyk = αẽ0x

d+

d−1∑

k=1

(αẽk + βẽk−1)x
d−kyk+βẽd−1y

d

is a Sylvester form for f . Note that the γj’s are distinct and αγj 
= β, 1 ≤ j ≤ d−1,
so that h is a product of distinct linear factors. Finally,

d∑

k=0

akck = αẽ0a0 +
d−1∑

k=1

(αẽk + βẽk−1)ak + βẽd−1ak =

α

d−1∑

k=0

ẽkak + β

d−1∑

k=0

ẽkak+1 = α(−β) + βα = 0.

This completes the proof. �
Corollary 4.11. If f is a product of d real linear forms and not a d-th power, then
LR(f) = d.

Proof. Write f as a sum of LR(f) = r ≤ d d-th powers and rescale into the shape
(3.1). Taking τ = d in Theorem 3.2, we see that d ≤ σ ≤ r. �
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Conjecture 4.12. If f ∈ R[x, y] is a form of degree d ≥ 3, then LR(f) = d if and
only if f is a product of d linear forms.

We shall see in Theorems 5.2 and 5.3 that this conjecture is true for d = 3, 4.
After a preprint of this paper was distributed, Giorgio Ottaviani pointed out that

in the case that the roots of f are distinct, Conjecture 4.12 has been proved very
recently by Comon and Ottaviani [15] and by Causa and Re [9].

5 Applications to Forms of Particular Degree

Corollary 4.3 and Theorem 4.10 impose some immediate restrictions on the possible
cabinets of a form of degree d.

Corollary 5.1. Suppose deg f = d.

(1) If LC(f) = r, then C(f) ⊆ {r} ∪ {d− i : 0 ≤ i ≤ r − 2}.
(2) If LC(f) = 2, then C(f) is either {2} or {2, d}.
(3) If f has k different lengths, then d ≥ 2k − 1.
(4) If f is cubic, then C(f) = {1}, {2}, {3} or {2, 3}.
(5) If f is quartic, then C(f) = {1}, {2}, {3}, {4}, {2, 4} or {3, 4}.
We now completely classify LK(f) when f is a binary cubic.

Theorem 5.2. Suppose f(x, y) ∈ Ef [x, y] is a cubic form with discriminant Δ and
suppose Ef ⊆ K ⊆ C.

(1) If f is a cube, then LK(f) = 1 and C(f) = {1}.
(2) If f has a repeated linear factor, but is not a cube, then LK(f) = 3 and C(f) =
{3}.

(3) If f does not have a repeated factor, then LK(p) = 2 if
√−3Δ ∈ K and

LK(p) = 3 otherwise, so either C(f) = {2} or C(f) = {2, 3}.
Proof. The first case follows from Theorem 4.1. In the second case, after an
invertible linear change of variables, we may assume that f(x, y) = 3x2y, and
apply Theorem 2.1 to test for representations of length 2. But

(
0 1 0

1 0 0

)
·
⎛

⎝
c0
c1
c2

⎞

⎠ =

(
0

0

)
=⇒ c0 = c1 = 0, (5.1)

so h has repeated factors. HenceLK(x2y) ≥ 3 and by Theorem 4.10,LK(x2y)= 3.
Finally, suppose

f(x, y) = a0x
3 + 3a1x

2y + 3a2xy
2 + a3y

3 =

3∏

j=1

(rjx+ sjy)
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does not have repeated factors, so that

0 
= Δ(f) =
∏

j<k

(rjsk − rksj)2,

and consider the system:

(
a0 a1 a2
a1 a2 a3

)
·
⎛

⎝
c0
c1
c2

⎞

⎠ =

(
0

0

)
.

By Lemma 4.5, this system has rank 2; the unique Sylvester form is

h(x, y) = (a1a3 − a22)x2 + (a1a2 − a0a3)xy + (a0a2 − a21)y2,
which happens to be the Hessian of f . Since h ∈ Ef [x, y] ⊆ K[x, y], it splits over
K if and only if its discriminant is a square in K . A computation shows that

(a1a2 − a0a3)2 − 4(a1a3 − a22)(a0a2 − a21) = −
Δ(f)

27
= −3Δ(f)

92
.

Thus, LK(f) = 2 if and only if
√−3Δ(f) ∈ K . If h does not split over F , then

LF (f) = 3 by Theorem 4.10. �
In particular, x3, x3 + y3, x2y and (x + iy)3 + (x − iy)3 have the cabinets

enumerated in Corollary 5.1(4). If f has three distinct real linear factors, then
Δ(f) > 0, so

√−3Δ(f) /∈ R and LR(f) = 3. If f is real and has one real and two
conjugate complex linear factors, then Δ(f) < 0, so LR(f) = 2. Counting repeated
roots, we see that if f is a real cubic, and not a cube, then LR(f) = 3 if and only if
it has three real factors, thus proving Conjecture 4.12 when d = 3.

Example 5.1. We find all representations of 3x2y of length 3. Note that

H3(f) · (c0, c1, c2, c3)t = (0) ⇐⇒ c1 = 0 ⇐⇒ h(x, y) = c0x
3+ c2xy

2+ c3y
3.

If c0 = 0, then y2 | h, which is to be avoided, so we scale and assume c0 = 1. We
can parameterize the Sylvester forms as h(x, y) = (x− ay)(x− by)(x+ (a+ b)y)
with a, b,−(a+ b) distinct. This leads to an easily checked general formula

3(a− b)(a+ 2b)(2a+ b)x2y =

(a+ 2b)(ax+ y)3 − (2a+ b)(bx+ y)3 + (a− b)(−(a+ b)x+ y)3.
(5.2)

Białynicki-Birula and Schinzel [2, Lemma 7.1] give the general formula for dxd−1y
as a sum of d d-th powers of linear forms.

Theorem 5.3. If f is a real quartic form, then LR(f) = 4 if and only if f is a
product of four linear factors.
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Proof. Factor ±f as a product of k positive definite quadratic forms and 4 − 2k
linear forms. If k = 0, then Corollary 4.11 implies that LR(f) = 4. We must show
that if k = 1 or k = 2, then f has a representation over R as a sum of ≤ 3 fourth
powers.

If k = 2, then f is positive definite and by [43, Theorem 6], after an invertible
linear change of variables, f(x, y) = x4 + 6λx2y2 + y4, with 6λ ∈ (−2, 2]. (This
is also proved in [51].) If r 
= 1, then

(rx + y)4 + (x+ ry)4 − (r3 + r)(x + y)4

= (r − 1)2(r2 + r + 1)
(
x4 −

(
6r

r2+r+1

)
x2y2 + y4

)
.

(5.3)

Let φ(r) = − 6r
r2+r+1 . Then φ(−2 +

√
3) = 2 and φ(1) = −2, and since φ is

continuous, it maps [−2 +√3, 1) onto (−2, 2], and (5.3) shows that LR(f) ≤ 3.
If k = 1, there are two cases, depending on whether the linear factors are distinct.

Suppose that after a linear change, f(x, y) = x2h(x, y), where h is positive definite,
and so for some λ > 0 and linear �, h(x, y) = λx2+�2. After another linear change,

f(x, y) = x2(2x2 + 12y2) = (x+ y)4 + (x− y)4 − 2y4, (5.4)

and (5.4) shows that LR(f) ≤ 3.
If the linear factors are distinct, then after a linear change,

f(x, y) = xy(ax2 + 2bxy + cy2),

where a > 0, c > 0, b2 < ac. After a scaling, f(x, y) = xy(x2+dxy+y2), |d| < 2,
and by taking ±f(x,±y), we may assume d ∈ [0, 2). If r 
= 1, then

(r4 + 1)(x+ y)4 − (rx + y)4 − (x+ ry)4

= 4(r − 1)2(r2 + r + 1)
(
x3y +

(
3(1+r)2

2(r2+r+1)

)
x2y2 + xy3

)
.

(5.5)

Let ψ(r) = 3(1+r)2

2(r2+r+1) . Since ψ(−1) = 0, ψ(1) = 2 and ψ is continuous, it maps
[−1, 1) onto [0, 2), and (5.5) shows that LR(f) ≤ 3. �

The next result may be very old; LC(x
d−1y) = d seems well known, but the

only reference we have seen for the converse is the very recent [2, Corollary 3].
Białynicki-Birula and Schinzel also classify all binary p with deg p = d and
LC(p) = d − k for 1 ≤ k ≤ 3 and sufficiently large d. Landsberg and Teitler [34,
Corollary 4.5] and Boij, Carlini and Geramita [4] have both shown that LC(x

ayb) =
max(a+ 1, b+ 1) if a, b ≥ 1.

Theorem 5.4. If d ≥ 3, then LC(f) = d if and only if there are two distinct linear
forms � and �′ so that f = �d−1�′.
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Proof. If f = �d−1�′, then after an invertible linear change, we may assume that
f(x, y) = dxd−1y. If LC(dx

d−1y) ≤ d− 1, then f would have a Sylvester form of
degree d− 1. But then, as in (5.1), (2.4) becomes

(
0 1 · · · 0
1 0 · · · 0

)
·

⎛

⎜⎜⎜⎝

c0
c1
...

cd−1

⎞

⎟⎟⎟⎠ =

(
0

0

)
=⇒ c0 = c1 = 0,

so h(x, y) =
∑d−1

t=0 ctx
d−1−tyt does not have distinct factors. Thus,

LC(dx
d−1y) = d.

Conversely, suppose LC(f) = d. Factor f =
∏
�
mj

j as a product of pairwise
distinct linear forms, with

∑
mj = d, m1 ≥ m2 · · · ≥ ms ≥ 1, and s > 1

(otherwise, LC(f) = 1.) Make an invertible linear change taking (�1, �2) �→ (x, y),
and call the new form g; LC(g) = d as well. If g(x, y) =

∑d
�=0

(
d
�

)
b�x

d−�y�, then
b0 = bd = 0. By hypothesis, there does not exist a Sylvester form of degree d − 1
for g. Consider Theorem 2.1 in this case. We have

(
0 b1 · · · bd−2 bd−1

b1 b2 · · · bd−1 0

)
·

⎛

⎜⎜⎜⎝

c0
c1
...

cd−1

⎞

⎟⎟⎟⎠ =

(
0

0

)
.

If m1 ≥ m2 ≥ 2, then x2, y2 | g(x, y) and b1 = bd−1 = 0 and xd−1 − yd−1 is
a Sylvester form of degree d − 1 for f . Thus m2 = 1 and so y2 does not divide g
and b1 
= 0. Let q(t) =

∑d−2
i=0 bi+1t

i (note the absence of binomial coefficients!)
and suppose q is not the constant polynomial. Then there exists t0 so that q(t0) = 0.
Since q(0) = b1, t0 
= 0. We have

(
0 b1 · · · bd−2 bd−1

b1 b2 · · · bd−1 0

)
·

⎛

⎜⎜⎜⎝

1

t0
...

td−1
0

⎞

⎟⎟⎟⎠ =

(
t0q(t0)

q(t0)

)
=

(
0

0

)
.

Since

h(x, y) =
d−1∑

i=0

ti0x
d−1−iyi =

xd − td0yd
x− t0y =

d−1∏

k=1

(x− ζkd−1t0y)

has distinct linear factors, it is a Sylvester form for g, and LC(g) ≤ d − 1. This
contradiction implies that q has no zeros, so q(t) = b1 must be a constant. It follows
that g(x, y) = db1x

d−1y, as promised. �
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By Corollaries 4.4 and 5.1, instances of the first five cabinets in Corollary 5.1(5)
are: x4, x4 + y4, x4 + y4 + (x+ y)4, x3y and (x+ iy)4 + (x− iy)4. It will follow
from the next results that C((x2 + y2)2) = {3, 4}.
Theorem 5.5. If d = 2k and f(x, y) =

(
2k
k

)
xkyk, then LC(f) = k + 1. The

minimal C-representations of f are given by

(k + 1)

(
2k

k

)
xkyk =

k∑

j=0

(ζj2k+2wx + ζ−j
2k+2w

−1y)2k, 0 
= w ∈ C. (5.6)

Proof. We first evaluate the right-hand side of (5.6) by expanding the powers:

k∑

j=0

(ζj2k+2wx + ζ−j
2k+2w

−1y)2k =

k∑

j=0

2k∑

t=0

(
2k

t

)
ζ
j(2k−t)−jt
2k+2 w(2k−t)−tx2k−tyt

=

2k∑

t=0

(
2k

t

)
w2k−2tx2k−tyt

⎛

⎝
k∑

j=0

ζ
j(k−t)
k+1

⎞

⎠ . (5.7)

But
∑m−1

j=0 ζrjm = 0 unless m | r, in which case it equals m. Since the only multiple
of k + 1 in the set {k − t : 0 ≤ t ≤ 2k} occurs for t = k, (5.7) reduces to the left-
hand side of (5.6). We now show that these are all the minimal C-representations
of f .

Since Hk(x
kyk) has 1’s on the NE-SW diagonal, it is non-singular, so

LC(x
kyk) > k, and LC(x

kyk) = k + 1 by (5.6). By Corollary 4.3, any minimal
C-representation not given by (5.6) can only use powers of forms which are distinct
from any wx + w−1y. If ab = c2 
= 0, then ax + by is a multiple of a

cx + c
ay.

This leaves only x2k and y2k, and there is no linear combination of these giving
xkyk. �

The representations in (5.6) arise because the null-vectors of Hk+1(x
kyk) can

only be (c0, 0, . . . , 0, ck+1)
t and c0x

k+1 + ck+1y
k+1 is a Sylvester form when

c0ck+1 
= 0.

Corollary 5.6. For k ≥ 2, LC((x
2 + y2)k) = k+1, and LK((x2 + y2)k) = k+1

iff tan π
k+1 ∈ K . The C-minimal representations of (x2 + y2)k are given by

(
2k

k

)
(x2 + y2)k =

1

k + 1

k∑

j=0

(
cos( jπ

k+1 + θ)x + sin( jπ
k+1 + θ)y

)2k

, θ ∈ C.

(5.8)

Proof. The invertible map (x, y) �→ (x − iy, x + iy) takes xkyk into (x2 + y2)k.
Setting 0 
= w = eiθ in (5.6) gives (5.8). If tanα 
= 0, then
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(cosα x+sinα y)2k = cos2k α ·(x+tanα y)2k = (1+tan2 α)−k(x+tanα y)2k.

Thus, if tanα ∈ K , then (cosα x + sinα y)2k ∈ K[x, y]. Further, if cosα = 0,
then (cosα x+ sinα y)2k = y2k ∈ K[x, y]. Conversely, if (cosα x+sinα y)2k ∈
K[x, y] and cosα 
= 0, then the ratio of the coefficients of x2k−1y and x2k equals
2k tanα, which must be in K . It follows that LK((x2 + y2)k) = k + 1 if and only
if there exists θ ∈ C so that for each 0 ≤ j ≤ k, either cos( jπ

k+1 + θ) = 0 or

tan( jπ
k+1 + θ) ∈ K . Since tanα, tanβ ∈ K imply tan(α− β) ∈ K and k ≥ 2, we

see that (5.8) is a representation overK if and only if tan π
k+1 ∈ K . �

In particular, since tan π
3 =

√
3 /∈ Q, LQ((x

2 + y2)2) > 3 and so must equal
4. Thus, C((x2 + y2)2) = {3, 4}, as promised. Since tan π

m is irrational for m ≥ 5
(see e.g. [40, Corollary 3.12]), it follows that LQ((x

2 + y2)k) = k + 1 only for
k = 1, 3.

It is worth remarking that xkyk is a highly singular complex form, as is (x2 +
y2)k. However, as a real form, (x2 + y2)k is interior to the real convex cone Q2,2k.
For real θ, the formula in (5.8) goes back at least to Friedman [21] in 1957. It was
shown in [47] that all minimal real representations of (x2 + y2)k have this shape.
There is an equivalence between representations of (x2+y2)k as a real sum of 2k-th
powers and quadrature formulas on the circle – see [47]. In this sense, (5.8) can be
traced back to Mehler [35] in 1864.

A real representation (1.1) of (
∑
x2i )

k (with positive real coefficients λj ) is
called a Hilbert Identity; Hilbert [20, 26] used such representations with rational
coefficients to solve Waring’s problem. Hilbert Identities have been important in
studying quadrature problems on Sn−1, the Delsarte-Goethals-Seidel theory of
spherical designs in combinatorics and for embedding questions in Banach spaces
[47, Chaps. 8 and 9], as well as for explicit computations in Hilbert’s 17th problem
[48]. It can be shown that any such representation requires at least

(
n+k−1
n−1

)

summands, and this bound also applies if negative coefficients λj are allowed. It is
not known whether allowing negative coefficients can reduce the total number of
summands. However, Blekherman [3] has recently constructed f ∈ Q6,4 which
has a smaller length if one allows negative λj in a real representation. When
(
∑
x2i )

k is a sum of exactly
(
n+k−1
n−1

)
2k-th powers, the coordinates of minimal

representations can be used to produce tight spherical designs. Such representations
exist when n = 2, 2k = 2, (n, 2k) = (3, 4), (n, 2k) = (u2 − 2, 4) (u = 3, 5),
(n, 2k) = (3v2 − 4, 6) (v = 2, 3), (n, 2k) = (24, 10). It has been proved that they
do not exist otherwise, unless possibly (n, 2k) = (u2 − 2, 4) for some odd integer
u ≥ 7 or (n, 2k) = (3v2 − 4, 6) for some integer v ≥ 4. These questions have
been largely open for more than thirty years. It is also not known whether there
exist (k, n) so that LR((

∑
x2i )

k) > LC((
∑
x2i )

k), although this cannot happen for
n = 2. For that matter, it is not known whether there exists any f ∈ Qn,d so that
LR(f) > LC(f).
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We conclude this section with a related question: if fλ(x, y) = x4+6λx2y2+y4

for λ ∈ Q, what isLQ(fλ)? If λ ≤ − 1
3 , then fλ has four real factors, soLQ(fλ) = 4.

Since detH2(fλ) = λ− λ3, LC(fλ) = 2 for λ = 0, 1,−1. The formula

(x4 + 6λx2y2 + y4) = λ
2

(
(x+ y)4 + (x− y)4)+ (1− λ)(x4 + y4)

shows that LQ(f0) = LQ(f1) = 2; 2f−1(x, y) = (x+iy)4+(x−iy)4 has Q-
length 4.

Theorem 5.7. Suppose λ = a
b ∈ Q, λ3 
= λ. Then LQ(x

4 + 6λx2y2 + y4) = 3 if
and only if there exist integers (m,n) 
= (0, 0) so that

Γ(a, b,m, n) = 4a3b m4 + (b4 − 6a2b2 − 3a4)m2n2 + 4a3b n4 (5.9)

is a non-zero square.

Proof. By Corollary 2.2, such a representation occurs if and only if there is a cubic
h(x, y) =

∑3
i=0 cix

3−iyi which splits over Q and satisfies

c0 + λc2 = λc1 + c3 = 0. (5.10)

Assume that h(x, y) = (mx + ny)g(x, y), (m,n) 
= (0, 0) with m,n ∈ Z. If
g(x, y) = rx2 + sxy + ty2, then c0 = mr, c1 = ms+ nr, c2 = mt+ ns, c3 = nt
and (5.10) becomes

(
m λn λm

λn λm n

)
·
⎛

⎝
r

s

t

⎞

⎠ =

(
0

0

)
(5.11)

Ifm = 0, then the general solution to (5.11) is (r, s, t) = (r, 0,−λr) and rx2−λry2
splits over Q into distinct factors iff λ is a non-zero square; that is, iff ab is a square,
and similarly if n = 0. Otherwise, the system has full rank since λ2 
= 1 and any
solution is a multiple of

rx2 + sxy+ ty2 = (λn2−λ2m2)x2+(λ2− 1)mnxy+(λm2−λ2n2)y2. (5.12)

The quadratic in (5.12) splits over Q into distinct factors iff its discriminant

4λ3m4 + (1− 6λ2 − 3λ4)m2n2 + 4λ3n4 = b−4Γ(a, b,m, n) (5.13)

is a non-zero square in Q. �
In particular, we have the following identities: Γ(u2, v2, v, u) = (u5v − uv5)2

and Γ(uv, u2 − uv + v2, 1, 1) = (u − v)6(u + v)2, hence LQ(fλ) = 3 for λ = τ2

and λ = τ
τ2−τ+1 , where τ = u

v ∈ Q, τ 
= ±1. These show that LQ(fλ) = 3 for
a dense set of rationals in [− 1

3 ,∞). These families do not exhaust the possibilities.
If λ = 38

3 , so fλ(x, y) = x4 + 76x2y2 + y4, then λ is expressible neither as τ2 nor
τ

τ2−τ+1 for τ ∈ Q, but Γ(38, 3, 2, 19) = 276,9062.
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We mention two negative cases: if λ = 1
3 , Γ(1, 3,m, n) = 12(m2 + n2)2, which

is never a square, giving another proof that LQ((x
2 + y2)2) = 4. If λ = 1

2 , then

Γ(1, 2,m, n) = 8m4 − 11m2n2 + 8n4 = 27
4 (m

2 − n2)2 + 5
4 (m

2 + n2)2,

hence if LQ(x
4 + 3x2y2 + y4) = 3, then there is a solution to the Diophantine

equation 27X2 + 5Y 2 = Z2. A simple descent shows that this has no non-zero
solutions: working mod 5, we see that 2X2 = Z2; since 2 is not a quadratic residue
mod 5, it follows that 5 | X,Z , and these imply that 5 | Y as well. It follows that,
LQ(x

4 + 3x2y2 + y4) = 4.
Solutions of the Diophantine equation Am4 + Bm2n2 + Cn4 = r2 were first

studied by Euler; see [16, pp. 634–639] and [38, pp. 16–29] for more on this topic.
This equation has not yet been completely solved; see [6, 13]. We hope to return to
the analysis of (5.9) in a future publication.

6 Open Questions

We are confident that Conjecture 4.12 can be completely settled. This raises the
question of whether there exist other fields besides C (and possibly R) for which
there is a simple description of {f : LK(f) = deg f}.

Which cabinets are possible for binary forms? Are there other restrictions beyond
Corollary 5.1(1)? How many different lengths are possible? If |C(f)| ≥ 4, then
d ≥ 7. Can anything more be said about forms in n ≥ 3 variables?

Can f have more than one, but a finite number, of K-minimal representations,
where K is not necessarily equal to Ef? Theorem 5.7 might be a way to find such
examples.

Length is generic over C, but not over R. For d = 2r, the R-length of a real form
is always 2r in a small neighborhood of

∏d
j=1(x − jy), but the R-length is always

r + 1 in a small neighborhood of (x2 + y2)r [47]. Which combinations of degrees
and lengths have interior? Does the parity of d matter? This question is explored in
much greater detail in [15].
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Representation of Quadratic Forms by Integral
Quadratic Forms

Rainer Schulze-Pillot

Abstract The number of representations of a positive definite integral quadratic
form of rank n by another positive definite integral quadratic form of rankm≥n has
been studied by arithmetic, analytic, and ergodic methods. We survey and compare
in this article the results obtained by these methods.
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1 Introduction

It is a classical problem to study the solvability and the number of integral solutions
of the quadratic diophantine equation

m∑

i,j=1

aijxixj = t

for an integral symmetric matrix A = (aij ) and an integer t. Already Gauß studied
more generally systems of such equations of the form

tXAX = T
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where now T is another (half-) integral symmetric matrix of size n ≤ m. If one
looks for rational instead of integral solutions, the Hasse-Minkowski theorem states
the validity of the local-global principle for this problem, i.e., a rational solution
exists if and only if solutions exist over R and over all p-adic fields Qp. That the
local-global principle fails for integral solutions is already seen in simple examples
likeQ(x1, x2) = 5x21+11x22 which represents 1 over R and over all Zp but not over
Z. Whereas the integral local-global principle can be saved with some modifications
for indefinite A by the theory of spinor genera, the best possible results in the
definite case prove that local representability implies global representability for T
that are sufficiently large in a suitable sense and yield asymptotic formulas for T
which are locally represented. The case of one equation (n = 1) is already classical,
and considerable effort has been spent in the last 60 years on the case of n > 1, using
both analytic and purely arithmetic methods. The introduction of ergodic theory as a
new tool in [16] by Ellenberg and Venkatesh in 2008 has brought dramatic progress,
it builds on the arithmetic approach of Eichler and Kneser and is also inspired by
work of Linnik on representation of integers by ternary quadratic forms.

In this survey we sketch all three approaches (arithmetic, analytic, ergodic) and
compare their results. At present each of the methods gives results which cannot be
achieved by one of the others.

I thank G. Harcos and the referee for some helpful remarks.

2 Statement of the Problem and Notations

An integral valued quadratic form Q = QA on Z
m is given as QA(x) = 1

2
txAx,

where A ∈ M sym
m (Z) is an integral symmetric matrix with even diagonal. Associ-

ated to it are the symmetric bilinear forms b(x,y) = Q(x+ y) −Q(x)−Q(y) =
txAy and B = 1

2b with B(x,x) = Q(x). One says that the symmetric matrix T of
size n is represented by QA or that Q2T is represented by QA over Z (resp. over Q)
if there is X ∈Mm,n(Z) (resp. ∈Mm,n(Q)) with QA(X) = 1

2

t
XAX = T .

An integral representation is called primitive if all elementary divisors ofX are 1,
in particular for n = 1 this says that the coefficients x1, . . . , xm of the representing
vector x ∈ Z

m are relatively prime. If the matrix A is positive definite the matrix
equation QA(x) = T has only finitely many solutions over Z and one calls

r(A, T ) := #{X ∈Mm,n(Z) | QA(X) = T }

the number of representations of T by A. The matrices A1, A2 ∈ M sym
m (Z) and

their associated quadratic forms QA1 , QA2 are called rationally resp. integrally
equivalent if the equations A1 =t X1A2X1, A2 =t X2A1X2 are solvable with
X1, X2 ∈ GLm(Q) resp. in GLm(Z). Clearly, integrally equivalent forms represent
the same numbers and matrices and have the same representation numbers. The
forms QA1 , QA2 (or their associated symmetric matrices) are said to be locally
everywhere integrally (resp. rationally) equivalent, if tXA1X = A2 is solvable
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with X ∈ GLm(Zp) (resp. ∈ GLm(Qp)) for all primes p and A1 and A2 have
the same signature (i.e., tXA1X = A2 is solvable in GLm(R)). Forms which
are locally everywhere integrally equivalent are said to belong to the same genus.
Analogously one defines the notion that T is locally everywhere representable
by QA (integrally or rationally). The Hasse-Minkowski theorem [17] asserts that
rational representation locally everywhere is equivalent to representation (over Q);
this is not true for integral representation, where representation over Z is stronger
than representation locally everywhere.

Since it is in principle easy to determine the numbers or matrices which are
represented locally everywhere by determining the solvability of finitely many
congruences, the problem to determine all T which are represented by QA is
reduced to

Problem 1. Given A ∈ M sym
m (Z) determine conditions on T ∈ M sym

n (Z) (with
n ≤ m) such that T meeting these conditions is represented integrally by QA if it is
represented locally everywhere integrally by QA.

Similarly, determine conditions under which primitive representability locally
everywhere implies (primitive) representability over Z.

For many purposes it is convenient to use the equivalent but slightly more flexible
language of quadratic spaces and lattices in them which has been introduced by Witt;
in particular for generalizations to forms over number fields and their integers it is
the more natural framework:

Definition 1. Let F be a field. A quadratic space (V,Q) over F is a finite
dimensional vector space V over F equipped with a map Q : V → F satisfying

(a) Q(ax) = a2Q(x) for all x ∈ V, a ∈ F
(b) b(x, y) := Q(x+ y)−Q(x)−Q(y) defines a symmetric bilinear form on V .

The map Q is called the quadratic form on V and b is called its associated bilinear
form.

If B = (e1, . . . , em) is a basis of V we call the matrix MB(Q) := (b(ei, ej)) ∈
M sym

m (F ) the Gram matrix of (V,Q) (or just of Q) with respect to B.
If (V ′, Q′) is another quadratic space over F a linear isomorphism f : V → V ′

is called an isometry if Q′(f(x)) = Q(x) holds for all x ∈ V . If an isometry
f : (V,Q) → (V ′, Q′) exists one says that the spaces are isometric or equivalent
or that they belong to the same class.

If the mapping f above is just injective but may fail to be surjective it is called an
isometric embedding of (V,Q) into (V ′, Q′) and one says that (V,Q) is represented
by (V ′, Q′).

The geometric formulation of integral quadratic forms is obtained by considering
lattices on quadratic spaces. In the most classical case we have:

Definition and Lemma 2. Let (V,Q) be a quadratic space over the field Q of
rational numbers.

A Z- lattice (or simply lattice) on V is a finitely generated Z-submodule L of V
which generates V over Q.
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Equivalently, L =
⊕m

i=1 Zei for some basis (e1, . . . , em) of the space V (which
is then also a basis of the Z-module L). We also call (L,Q) a quadratic lattice.

The lattice L is called integral if Q(L) ⊆ Z.
If (L,Q) is an integral Z-lattice and B = (e1, . . . , em) is a basis of L, the

quadratic polynomialPQ,B(x1, . . . , xm) = Q(
∑m

i=1 xiei) has integral coefficients;
this polynomial is then what is usually called an integral valued quadratic form (see
[9]). One obtains a classically integral quadratic form in the sense of [9] if in
addition the bilinear form B = b/2 assumes integral values.

Since we will also consider the number field situation we need the following
more general definition:

Definition 3. Let F be a number field and R its ring of integers or let F be the
completion of a number field at a non-archimedean place and again R its ring of
integers.

A finitely generated R-submodule L of V is called an R-lattice on V if L
generates V over F . We also call (L,Q) a quadratic lattice over R. The lattice
L is called integral (with respect to R) if Q(L) ⊆ R.

If the lattice L is free with basis B = (e1, . . . , em) over R the matrix A =
(b(ei, ej)) ∈M sym

m (F) is called its Gram matrix with respect to B.
Lattices L on (V,Q) and L′ on (V ′, Q′) are called isometric or equivalent if

there is an isometry f : (V ′, Q′)→ (V,Q) with f(L′) = L; one writes L′ ∈ cls(L)
and also says that L and L′ belong to the same class.

The lattice L′ is said to be represented by L if there is an isometric embedding
f : (V ′, Q′) → (V,Q) with f(L′) ⊆ L. We write r(L,L′) for the number of such
representations if this number is finite.

The representation f is called primitive if f(L′) = L ∩ f(V ′). For a ∈ R it is
called of imprimitivity bounded by a if a(L ∩ f(V ′)) ⊆ f(L′).

If F is totally real and L is (totally) positive definite we denote by min(L) :=
min{NF

Q
(Q(x)) | x ∈ L, x 
= 0} the minimum of the lattice L. (For the

question which lattices have large minimum it does not matter whether we chose
this definition or min{TrF

Q
(Q(x)) | x ∈ L, x 
= 0} instead, see the remark in [20,

p.139].)

Remark. (a) If one wants to use the language of matrices instead of that of lattices
and R is no principal ideal domain, one has to consider Gram matrices with
respect to linearly dependent generating sets (see [48]); this is one of the reasons
why lattices give the more convenient framework.

(b) An equivalent characterization of a lattice on V is: L is an R-submodule of
F , and for some basis (x1, . . . , xm) of V and some c ∈ R one has cL ⊆
Rx1 + . . .+Rxm ⊆ L. If R is a principal ideal domain we can instead require
L = Rx1+ . . .+Rxm for some basis of V as before. IfR is no PID one admits
non free lattices as well.

(c) If R is the ring of integers of the number field F and S = Rv its completion at
some place v we write (Lv, Q) for the extension of (L,Q) to Rv and call it the
completion of L at v; if v is archimedean we have Rv = Fv and Lv = Vv.
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In the sequel we let F be a number field with ring of integers R.
The R-lattices Λ, Λ′ are in the same genus (Λ′ ∈ gen(Λ)) if Λv is isometric to

Λ′
v for all places v of F . The R-lattice N is represented by Λ locally everywhere

if Nv is represented by Λv for all places v of F . If the lattices in question are free
and have Gram matrices A, T with respect to bases B of Λ and B′ of Λ′ resp. N ,
the notions of equivalence, genus, (primitive) representation (locally everywhere)
for lattices given above translate into those for symmetric matrices described earlier
in this section.
Problem 1 from above becomes

Problem 1’. Given an R-lattice Λ of rank m describe conditions on an R-lattice
N of rank n ≤ m such that N satisfying these conditions is represented by Λ
(primitively) if it is represented by Λ (primitively) locally everywhere. If possible
give (approximate) formulas for the numbers or measures of representations.

3 Siegel’s Theorem

Although a strict local-global principle is not valid for representation of numbers
or forms by integral quadratic forms, the Hasse-Minkowski theorem for quadratic
forms over a number field has the consequence that a lattice N which is represented
by the lattice Λ locally everywhere (primitively) is represented by some lattice Λ′ in
the genus of Λ (primitively), see [9,38]. Siegel’s celebrated theorem in fact gives the
so-called mass formula (German: Maßformel, verbal translation to English: measure
formula) for the average number of representations of K by Λ.

Theorem 4. Let {L1, . . . , Lh} be a set of representatives of the classes of lattices
in the genus of Λ. If Q is definite put w =

∑h
i=1

1
|O(Li)| (where O(Li) is the group

of isometries of L onto itself with respect to Q) and write

r(gen Λ, N) =
1

w

h∑

i=1

r(Li, N)

|O(Li)|

for Siegel’s weighted average of the representation numbers of N by the lattices Li

in the genus of Λ.
If Q is not definite and neither the space FΛ nor the orthogonal complement of

a representation of FN in FΛ is a hyperbolic plane the measure (mass) w = μ(Λ)
of Λ and the representation measures μ(Li, N) of N by the Li can be defined as in
[48] and one puts

r(gen Λ, N) =
1

w

h∑

i=1

μ(Li, N).
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Then r(gen L,N) can be expressed as a product of local densities over the non-
archimedean places v of F ,

r(gen Λ, N) = c · (NF
Q
(detN))

m−n−1
2 (NF

Q
(det Λ))−

n
2

∏

v

αv(Λ, N)

with some constant c.
Here by NF

Q
(det(Λ)) resp. NF

Q
(det(N)) we denote the norm of the ideal

generated by the determinants of the Gram matrices with respect to linearly
independent subsets of the respective lattice, the local density αv(Λ, N) is for a
non-archimedean place v of F with residue field of order qv and local prime element
ωv ∈ Rv given as

αv(Λ, N) = αv(Sv, Tv)

= q
j·(n·(n+1)

2 −mn)
v #Aj(Sv, Tv),

for sufficiently large j with an additional factor 1
2 if m = n, where Sv, Tv denote

Gram matrices of the local lattices Λv, Nv and where we write

Aj(Sv, Tv) = {X = (xij ) ∈Mm,n(Rv)/ω
j
vMm,n(Rv) |t XSvX ≡ T mod ωj

v}
with the congruence being required modulo integral symmetric matrices with even
diagonal.

An analogous formula holds for averaged primitive representation numbers resp.
measures and primitive local densities α∗

v(Λ, N) counting congruence solutions as
above but with the representing matrix X being primitive.

The (primitive) local densities in Siegel’s theorem are nonzero if N is represented
(primitively) locally by Λ and their product converges, so the theorem implies that
(as mentioned above) such an N is represented (primitively) by at least one class of
lattices in the genus of Λ; it gives a quantitative version of this qualitative result.

If Λ happens to be in a genus of one class, as is the case e.g. for the lattice over Z
corresponding to the sum of k integral squares with k ≤ 8, Siegel’s theorem gives
an exact formula for r(Λ, N) resp. the measure μ(Λ, N). Since one can give closed
formulae for αv(Λ, N) for almost all v (where the exceptional set depends on Λ) the
average representation numbers or measures can be determined explicitly for given
Λ by determining the numbers of solutions of finitely many congruence systems.

In the asymptotic formulas to be discussed later the average representation
number r(gen Λ, N) will be the main term.

4 The Indefinite Case

For the rest of this article we restrict attention to quadratic spaces and lattices with
non-degenerate quadratic formQ, as usual we will often suppress the quadratic form
Q in the notation.
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The case that Λv is isotropic (i.e., represents zero nontrivially) for at least one
archimedean place v of F has been solved as completely as possible:

Theorem 5 (Eichler [15], Kneser [35], Weil [51], Hsia [19]). Let Λ be a non-
degenerate quadratic R-lattice of rank m such that Λv is isotropic for at least one
archimedean place v of F .

(a) If the non-degenerate quadraticR-latticeN of rank n ≤ m−3 is represented by
Λ locally everywhere it is represented by Λ, and the measure of representations
(Darstellungsmaß) of N by Λ′ is the same for all lattices Λ′ in the genus of Λ.

(b) If N is as above with n = m− 2 then either the measure of representations of
N by a lattice Λ′ is the same for all Λ′ in the genus of Λ or the genus of Λ splits
into two half genera consisting of equally many classes such that the measure
of representations of N by Λ′, Λ′′ is the same if Λ′, Λ′′ belong to the same half
genus.

The latter case occurs only for N for which the discriminant of the space
FN (i.e., the determinant of a Gram matrix of that quadratic space) belongs
to one of finitely many square classes depending on Λ which can be explicitly
determined.

Remark. (a) The proof uses the theory of spinor genera, a modified version of it
plays a role in the arithmetic and the ergodic approach to problem 1’ for definite
lattices, see Lemma 13 below.

(b) The measure of representations has been defined by Siegel in [47]; an equivalent
definition using measures on adelic orthogonal groups is given e.g. in [35].

(c) In the case n = 1, m = 3, the difference between the representation measures
of the half genera occurring in part (b) of the theorem has been calculated in
[43]. The integers represented (primitively) locally everywhere but not globally
by all classes in the genus have been determined explicitly in [42] without
the primitivity condition and in [14] for the primitive case; they are called
(primitive) spinor exceptions.

(d) Some further results for the case n = m− 2 have been obtained in [52, 53].
The cases n = m − 1 and m = n do not admit clean solutions; what can be
done is shown in [52, 53].

(e) The determination of the square classes in part (b) of the theorem is achieved by
computing the spinor norms of the local orthogonal groups of the lattices Nv.
This computation is given in [13, 18, 34].

(f) An analytic proof of the result for n = 1, m = 4 has been given by Siegel
in [49].

5 Representation of Integers (n = 1)

By the results of the previous section we can restrict attention from now on to
the case that F is totally real and Λ is totally (positive) definite. In this case the
representation numbers
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r(Λ, N) = #{ϕ : N −→ Λ | ϕ linear isometry}

are finite. The first general result here is the following theorem. It has been proven
with the help of the Hardy Littlewood circle method in [32] by Kloosterman for
diagonal forms and in [33] for general forms using both modular forms and the
Hardy Littlewood method in 1927; Kloosterman’s first proof has been generalized
in [50] by Tartakovskii to general forms in 1929.

Theorem 6 (Kloosterman, Tartakovskii). Let Λ be a positive definite Z-lattice
of rank m ≥ 5. Then Λ represents all sufficiently large numbers t which are
represented by it locally everywhere. The same is true for m = 4 if one restricts
attention to t which are represented locally everywhere primitively or which satisfy
at least for some fixed a that for each p there is x ∈ Λp with Q(x) = t and
a−1x 
∈ Λp (one also says that t is represented locally everywhere with imprimitivity
bounded by a).

In both cases one has an asymptotic formula

r(Λ, t) = r(genΛ, t) + O(t
m
4 −δ)

for any δ < 5
16 for odd m and δ < 1

2 for even m, where the main term r(gen Λ, t)
grows at least like t

m
2 −1−ε for all ε > 0 for t satisfying the conditions given.

Remark. (a) The condition on bounded imprimitivity for the local representations
is automatically satisfied for all primes p for which Λp is isotropic (represents
zero nontrivially), hence in particular for all p not dividing the determinant of Λ.

(b) The exponents in the error terms are better than the original ones; the bound for
even m is the Ramanujan-Petersson bound (proven by Deligne), the bound for
odd m is the bound from [4, (1.3)].

(c) In the Hardy Littlewood method the main term appears as the singular series.

This result already contains some essential features of the general situation (i.e.,
arbitrary n):

• Instead of an exact formula one has an asymptotic formula whose main term is
determined by the local arithmetic of N and Λ.

• The asymptotic formula is unconditional form = 5 = 2 ·n+3 (with n = 1) and
needs an additional primitivity assumption for m = 4 = 2 · n+ 2 = n+ 3.

• Results for representation of sufficiently large integers follow directly from the
asymptotic formula and can be made explicit.

The result has been generalized to the number field case and (as far as possible)
to m = 3, for details see the survey [44] and notice that the bound in the error
term for odd m has meanwhile been improved in [5]. All these results can be
generalized to representations with congruence conditions and to statements about
the equidistribution of lattice points on (higher dimensional) ellipsoid surfaces,
see [12].
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Remark. There are several results about representation of numbers by an integral
quadratic form that don’t fit well into this survey but should at least be mentioned:

• The 15-theorem of Conway and Schneeberger [2] states that a classically integral
quadratic form represents all natural numbers if it represents all natural numbers
up to 15. A modification of this result is the 290-conjecture, stating that an
integral valued quadratic form represents all natural numbers if it represents
all natural numbers up to 290; a proof of this conjecture has been announced
by Bhargava and Hanke in 2008. A generalization of both these results to
representation of quadratic forms has been proven by B. M. Kim, M.-H. Kim
and Oh in [23].

• In several recent articles the representation of numbers by a quadratic form with
restricted variables is investigated, e.g. [3] treats the number of representations
of t as a sum of four squares whose largest prime factor is bounded (“smooth
squares”).

6 Representation of Forms (n > 1), Analytic Method

We continue to assume Λ to be positive definite (and F totally real), so that the
representation number r(Λ, N) is finite.

All results obtained for r(Λ, N) with n = rk(N) > 1 obtained so far by analytic
methods are for the case R = Z, F = Q and use the fact that the theta series
of degree n of Λ is a Siegel modular form with respect to a suitable congruence
subgroup of the modular group Spn(Z).

To fix some notation let

Spn(R) = {g ∈ GL2n(R) | tg
(
0n −1n
1n 0n

)
g =

(
0n −1n
1n 0n

)
}

be the real symplectic group of rank (degree, genus) n andHn the Siegel upper half

space of degree (genus) n, with g =

(
A B

C D

)
∈ Spn(R) acting by

Z �−→ g〈Z〉 := gZ := (AZ +B)(CZ +D)−1.

A Siegel modular form of weight k for the congruence subgroup Γ ⊆ Spn(Z) is a
holomorphic function F : Hn −→ C satisfying F (g〈Z〉) = det(CZ +D)kF (Z)

for all g =

(
A B

C D

)
∈ Γ. If χ : Γ −→ C

× is a character we will also use

Siegel modular forms with character (nebentype) χ, where one has F (g〈Z〉) =
χ(g) det(CZ + D)kF (Z) for g ∈ Γ. (If n = 1, one has to add a holomorphy
condition at the cusps.) The theta series of degree (genus) n of the positive definite
lattice Λ is given as
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ϑ(n)(Λ, Z) =
∑

x=(x1,...,xn)∈Λn

exp(2πitr(Q(x)Z))

with Q(x) = (B(xi, xj)) ∈ M sym
n (12Z), if S is a Gram matrix of Λ we can

also write

ϑ(n)(Λ, Z) = ϑ(n)(S,Z) =
∑

X∈Mm,n(Z)

exp(πi tr(tXSXZ))

=
∑

T

r(S, T ) exp(2πi tr(TZ))

where T runs over half integral positive semidefinite symmetric matrices with
integral diagonal.

Proposition 7. Let Λ as above have even rank and Gram matrix S, let M be an
integer such that MS−1 is integral with even diagonal and write

χ

(
A B

C D

)
=

(
(−1)m

2 detS

detD

)
(generalized Jacobi symbol)

for

(
A B

C D

)
∈ Γ

(n)
0 (M) = {g =

(
A B

C D

)
∈ Spn(Z) | C ≡ 0 modM}.

Then ϑ(n)(Λ, ·) is a Siegel modular form of weight k = m
2 with character χ for the

group Γ
(n)
0 (M).

In particular, if detS = 1 (Λ and S are then called even unimodular), ϑ(n)(Λ, ·)
is a Siegel modular form for the full modular group Spn(Z).

Proof. A proof can e.g. be found in [1], where also a similar formula is given for
the case of odd rank m. �
For a Siegel modular form F of degree n for some congruence subgroup Γ the
φ-operator is defined by

(F |φ)(Z) = (φF )(Z) = lim
t→∞F

(
Z 0

0 it

)
(Z ∈ Hn−1),

the function F |φ is then a Siegel modular form of degree n− 1 for the group

{γ =

(
A B

C D

)
|

⎛

⎜⎜⎝

(
A 0

0 1

) (
B 0

0 0

)

(
C 0

0 0

) (
D 0

0 1

)

⎞

⎟⎟⎠ ∈ Γ}.
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F is a cusp form if F |γ|φ = 0 for all γ ∈ Spn(Z), it is said to vanish in all
zero-dimensional cusps if

(F |γ) | Φn−1 = 0 for all γ ∈ Spn(Z)

(i.e., if the constant term in the Fourier expansion of F |γ vanishes for all γ ∈
Spn(Z)). A well-known fact is:

Proposition 8. If Λ, Λ′ are lattices in the same genus, the function ϑ(n)(Λ, ·) −
ϑ(n)(Λ′, ·) vanishes in all zero dimensional cusps. If we define

ϑ(n)(gen(Λ), Z) =
∑

T

r(gen Λ, NT ) exp(πi tr(TZ))

with NT denoting a lattice with Gram matrix T , then also

ϑ(n)(Λ, ·)− ϑ(n)(gen(Λ), ·)

vanishes in all zero dimensional cusps.

Proof. In the case n = 1 this has been noticed in [46, p. 376], the general case is an

immediate consequence. The reason is that Spn(Z) is generated by

(
0n −1n
1n 0n

)
and

matrices not changing the Fourier expansion of ϑ(n)(Λ, ·) and that F |
(
0n −1n
1n 0n

)

can be expressed with the help of the Poisson summation formula as a sum of
terms whose constant term in the Fourier expansion depends only on the congruence
properties of S. �
The analytic approach to Problem 1’ can now be formulated as follows.

Write r(Λ, N) = r(genΛ, N)+(r(Λ, N)−r(gen Λ, N)) and try to estimate the
main term r(genΛ, N) from below and the error term r(Λ, N)− r(genΛ, N) from
above, using the fact that the latter expression is a Fourier coefficient of a Siegel
modular form which vanishes in all zero dimensional cusps. In the case n = 1
we have to estimate the Fourier coefficients of a cusp form, which allows to use
Deligne’s theorem (i.e., the truth of the Ramanujan-Petersson conjecture) if m is
even. For n > 1, the difference ϑ(Λ, ·) − ϑ(genΛ, ·) will in general not be a cusp
form; this makes the estimation of the error term from above considerably more
difficult.

The first result for our problem in the case n > 1 is due to Raghavan:

Theorem 9 ([39]). Let N run through positive definite integral lattices of rank n
with 2n+ 3 ≤ m and (detN)→∞ satisfying one of the equivalent conditions

(a) min(N) ·min(N#) < c1 for some fixed c1 > 0
(b) min(N#) ≥ c1(detN)−

1
n for some fixed c2 > 0

(c) min(N) ≥ c3(detN)
1
n for some fixed c3 > 0
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Then one has

r(Λ, N) = r(gen Λ, N) + O((detN)
m−n−1

2 · (min(N))(n+1−m
2 )/2).

Proof. The idea of the proof is to compute the Fourier coefficient at T of g(Z) :=
ϑ(n)(Λ, Z)− ϑ(n)(genΛ, Z) as

∫

E

g(Z) exp(−2πi tr(TZ))dX,

where the variable Z = X + iT−1 runs over a cube E of side length 1 with one
corner in T−1, using a generalized Farey dissection of this cube which has been
introduced by Siegel in [49].

Raghavan proves in fact more generally an estimate for the Fourier coefficient of
F −ϕ, where F is a Siegel modular form of weight k > n+1 and ϕ the associated
Eisenstein series; the analytic version of Siegel’s theorem states that ϑ(n)(gen(Λ), ·)
is the Eisenstein series associated to ϑ(n)(Λ, ·).

Raghavan shows that the formula given above is indeed an asymptotic formula
for the number of representations of N by Λ in the case n = 2; this is achieved by
estimating the local densities (and hence the main term r(gen(Λ), N)) from below;
we will see a more general version of that below. �
Remark. Minkowski’s reduction theory of positive definite quadratic forms implies
that the minimum of N grows at most like a constant multiple of (det(N))

1
n , so the

condition of the theorem roughly says that the minimum ofN grows as fast as it can.
Since Λ represents (by the case n = 1) only all sufficiently large numbers that it

represents locally everywhere, there are in general some small numbers which are
represented by Λ locally everywhere but not globally. It is then easy to construct a
sequence of latticesN of growing determinant and one of these exceptional numbers
as minimum which are represented locally everywhere but not globally (since their
minimum is not represented globally). The most common example of this type is to
take the Leech lattice for Λ and the number 1 as minimum ofN . It is therefore clear
that an asymptotic formula for r(Λ, N) can not rely on the growth of det(N) alone.

Raghavan’s result was further improved by Kitaoka in [24, 25].

Theorem 10 ([24]).

(a) If m ≥ 2n + 3 holds, the product
∏

p αp(Λ, N) is bounded from below and
above by constants depending only on Λ for allN which are represented locally
everywhere by Λ.

In particular, one has

r(genΛ, N) > c4(detN)
m−n−1

2

for all N which are represented locally everywhere by Λ , with c4 depending
only on Λ.
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(b) The formula in Raghavan’s theorem is an asymptotic formula for N which are
represented locally everywhere by Λ and for which min(N) ≥ c3(detN)

1
n

with some constant c3 > 0 independent of N .
If N runs through lattices of rank n with min(N) > c3(detN)

1
n , any N of

sufficiently large minimum which is represented locally everywhere by Λ is
represented globally by Λ.

(c) If n = 2, m = 7, there is a constant c5 depending only on Λ such that the
condition min(N) ≥ c3(detN)

1
2 above can be replaced by min(N) ≥ c5.

In particular, any N which is represented locally everywhere by Λ and has
minimum ≥ c5 is represented globally by Λ.

The method of proof here is essentially the same as for Raghavan’s theorem, but
considerably refined.

Another interesting result of Kitaoka is proved in [26].

Theorem 11 ([27]). Let n = 2, m = 6. Let N0 have Gram matrix T0 and be
represented by Λ locally everywhere. Then for t→∞ with gcd(t, det(Λ)) = 1 and
such that tT0 is represented by Λp for all p dividing det(Λ) one has

r(Λ, tT0) = r(gen(Λ), tT0) + O(t
5
2+δ) for all δ > 0,

where the main term r(gen(Λ), tT0) grows at least like t3−ε for all ε > 0.
In particular, for t large enough and satisfying the conditions above the matrix

tT0 is represented by Λ.

For the case that Λ is even unimodular (i.e., the Gram matrix S of Λ has even
diagonal and determinant 1), the estimation of the error term has also been investi-
gated by Kitaoka using instead of the circle method as above the decomposition of
ϑ(n)(Λ, ·)−ϑ(n)(genΛ, ·) into a cusp form and Klingen-Eisenstein series associated
to cusp forms of degree r < n. The result is a similar asymptotic formula as above
for the range m ≥ 4n+ 4, namely

r(Λ, N) = r(genΛ, N) + O((min(N))1−
m
4 )(detN)

m−n−1
2 .

In particular, in exchange for the restriction on Λ and the stronger condition m ≥
4n+ 4 one gets rid of the condition min(N) > c3(detN)

1
n .

In all of the above results one can deduce global representability from local
representability only for lattices N of large minimum, a condition which excludes
many cases of interest in which the determinant of N grows but the minimum
remains small.

The examples which show its necessity are latticesN of large determinant which
have small minimum or more generally a sublatticeN ′ of small determinant, so that
it can happen that N ′ is not represented globally by Λ. On the other hand, a lattice
N ′ of rank n′ < n and small determinant of which one already knows that it is
represented globally by Λ may have extensions to lattices N of rank n which are
represented locally everywhere. A result towards the global representation of such
N by Λ has been obtained in [8].
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Theorem 12 ([8]). Let T1 be positive definite symmetric Minkowski reduced of
rank n1 and Λ be even unimodular. Then for Minkowski reduced symmetric n× n-

matrices T =

(
T1 T2
tT2 T4

)
with m > 4n and sufficiently large min(T4) the primitive

representation number r∗(Λ, T ) satisfies

r∗(Λ, T ) = c6r
∗(Λ, T1) · (detT4)m−n−1

2

+O((det T4)
m−n−1

2 )min(T4)
−m

4 +v(n1)

for some constant c6 
= 0, with v(n1) <
m
4 .

The proof uses again the decomposition of ϑ(n)(Λ) − ϑ(n)(genΛ) into a sum of
Klingen-Eisenstein series associated to cusp forms of degrees ≤ n. Notice that for
even unimodularΛ andm ≥ 2n+3 the condition of local representability is satisfied
automatically.

In the case n1 = 1 Böcherer has shown in [6] that for a square free integer t1 =
T1 this problem can also be treated using the theory of Jacobi forms; a generalization
of that result to general t1 and to not necessarily unimodular Λ will be the subject
of the PhD thesis of T. Paul in Saarbrücken.

7 Representation of Forms, Arithmetic Method

In order to present the arithmetic method we need some terminology. We denote
by OV (F ) the group of isometries of V with respect to Q (the orthogonal group
of the quadratic space (V,Q)), by OV (A) its adelization, and by SOV (F ) resp.
SOV (A) their subgroups of elements of determinant 1. For a lattice Λ on V we
denote its automorphism group (or unit group) {σ ∈ OV (F ) | σ(Λ) = Λ} by
OΛ(R) and similarly for the local or adelic analogues. SpinV (A) is the adelic spin
group and O′

V (A) its image in OV (A), i.e., the subgroup of adelic transformations
of determinant and spinor norm 1.

The orbit of a fixed lattice Λ under OV (A) consists then of all lattices on V in
the genus of Λ, the lattices on V in the spinor genus of Λ comprise the orbit under
OV (F )O

′
V (A).

The proof of the theorem of Sect. 4 on representation by indefinite lattices
rests on the strong approximation theorem for the spin group with respect to an
archimedean place of F at which Q is indefinite.

In the case of a definite lattice one can, following Eichler [15], consider it as
“arithmetically indefinite” if there is a non-archimedean place w of F for which Λw

is isotropic (i.e., represents zero nontrivially). The strong approximation theorem
gives then
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Lemma 13. Let w be a non-archimedean place of F for which Λw is isotropic.

(a) Each class in the spinor genus of Λ has a representative Λ′ such that Λ′
v = Λv

for all places v 
= w.
(b) If the genus of Λ consists of only one spinor genus there is an integer s such

that Λ represents every R-lattice N for which Nv is represented by pswΛv for
all finite places v of F (where pw is the ideal of R corresponding to w).

(c) If m ≥ n+ 3 and N is represented (primitively) locally everywhere by Λ there
is a lattice Λ′ in the spinor genus of Λ with Λ′

v = Λv for all places v 
= w and
Λ′
w in the Spin(Fw)-orbit of Λw, such thatN is represented (primitively) by Λ.

The lemma alone is not sufficient to deduce global representability of N by Λ from
representability locally everywhere since in the definite situation the spinor genus
consists in general of more than one class. We will see in the next section that it
provides the starting point for the ergodic method of Ellenberg and Venkatesh. It is
also basic for the purely arithmetic method of Hsia, Kitaoka and Kneser.

ForN which is represented by Λ locally everywhere they construct in [20], using
the local arithmetic of lattices, a finite set of sublatticesK(J) of rank n and L(J) of
rankm− n ≥ n+3 of Λ which are orthogonal to each other and such that for each
finite place v of F the lattice Nv is represented either by K(J)v or by psvL(J)v .
With the help of (b) of the Lemma and some additional rather tricky approximation
arguments they can then deduce that N is represented by one of the K(J) + L(J)
and hence by Λ if the minimum of N is large enough. The final result is

Theorem 14 ([20]). There is a constant c7 = c7(Λ) such that form ≥ 2n+3 every
lattice N which is represented locally everywhere by Λ and has minimum ≥ c7 is
represented by Λ.

The constant in the theorem can in principle be made effective; such an effective
version (with a rather large constant) has been given by Chan and Icaza in [10] for
m ≥ 3n + 3 and for n = 2,m = 7. It has been shown by Jöchner and Kitaoka
in [22] that the proof of the theorem can be modified to give the same result for
representations with additional congruence and primitivity conditions and by Hsia
and Prieto-Cox in [21] that it can also be generalized to hermitian forms.

Kitaoka has further noticed (see [8, p. 95]) that a version of the result on
extensions of representations in Theorem 12 can also be obtained by the arithmetic
method, the result given in [8] has been further improved by Chan, B. M. Kim,
M.-H. Kim, and Oh in [11] to give

Theorem 15 ([11]). Let F = Q, let K be a lattice of rank k on the space of Λ,
let σ : K −→ Λ be a representation. Then there is a constant c8 > 0 such that
one has:

If N ⊇ K is a lattice of rank n with m ≥ k + 2(n − k) + 3 on the space
of Λ such that for all primes p the local representation σp : Kp −→ Λp can be
extended to a representation ρp : Np −→ Λp and such that the minimum of the
orthogonal projection π(N) on the orthogonal complement of QK in QΛ is larger
than c8, the representation σ can be extended to a representation ρ : N −→ Λ.
One can in addition specify congruence conditions modulo an integer prime to
2 det(K) det(Λ).
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8 Representation of Forms, Ergodic Method

The result of (c) of Lemma 13 can be rephrased group theoretically:
There exists an isometric embedding of N into Λ′ = uΛ with

u ∈ OV (F )(
∏

v �=w

OΛ(Rv))SpinV (Fw).

Representability ofN by Λ is equivalent to being able to choose u ∈ OV (F )OΛ(A)
instead with OΛ(A) =

∏
v OΛ(Rv).

If we consider N as a sublattice of Λ′ we can clearly modify u by a suitable
element of OW1 (Fw), where W1 = (FN)⊥.

Ellenberg and Venkatesh show in [16] that the necessary modification of u is
indeed possible forN of sufficiently large minimum if one hasm ≥ n+3, the lattice
N has square free determinant, and N satisfies some additional conditions; their
proof uses ergodic theory, in particular results of Ratner and Margulis/Tomanov (see
[37,40]). In view of the fact that before their work it was generally considered to be
possible that m = 2n+ 2 is the natural barrier for the validity of a representability
result this represented a dramatic breakthrough. That their conditions on the lattice
N (but not on its dimension) can be further relaxed has been shown in [45], where
also the arithmetic parts of their proof were reformulated in a way closer to previous
work in the arithmetic theory of quadratic forms.

The final result is:

Theorem 16. Let (V,Q),Λ be as before, fix a finite placew of F and j ∈ N, a ∈ R.
Then there exists a constant c9 := c9(Λ, j, w, a) such that Λ represents all R -

lattices N of rank n ≤ m− 3 satisfying

(a) N is represented by Λ locally everywhere with imprimitivity bounded by a and
with isotropic orthogonal complement at the place w.

(b) ordw(det(Nw)) ≤ j
(c) The minimum of N is ≥ c9.

The representation may be taken to be of imprimitivity bounded by a.
The isotropy condition is satisfied automatically if n ≤ m− 5 or if w is such that

the determinants of the local lattices Λw and Nw are units in Rw.

It is not difficult to adapt the method in order to obtain a version for extensions
of representations:

Corollary 17. Let (V,Q),Λ be as before, fix a finite place w of F and j ∈ N,
a ∈ R.

Let K ⊆ Λ be a fixed R-lattice of rank k, σ : K −→ Λ a representation of K by
Λ and assume that Kw is unimodular.

Then there exists a constant c10 := c10(Λ, R, j, w, a) such that one has: If N ⊇
K is an R-lattice of rank n ≤ m− 3 and
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(a) For each place v ofF there is a representation τv : Nv −→ Λv with τv|Kv = σv
with imprimitivity bounded by a and with isotropic orthogonal complement in
Λ at the place w

(b) For the w-adic order ordw(det(Nw)) of the determinant of a Gram matrix of
Nw one has ordw(det(Nw)) ≤ j

(c) The minimum of N ∩ (FK)⊥ is ≥ c10,

then there exists a representation τ : N −→ Λ with τ |K = σ.
The representation may be taken to be of imprimitivity bounded by a.
The isotropy condition is satisfied automatically if n ≤ m− 5 or if w is such that

the local lattices Λw and Nw are unimodular.

Ellenberg and Venkatesh prove the theorem in [16] under the stronger restriction that
the determinant of N is square free; the version of it given here and the corollary
are proven in [45].

For the reader’s convenience we add a matrix version of the main result for the
case F = Q:

Theorem 18. Let S ∈ M sym
m (Z) be a positive definite integral symmetric m×m-

matrix, fix a prime q and positive integers j, a.
Then there is a constant c11 such that a positive definite matrix T ∈ M sym

n (Z)
with n ≤ m− 3 is represented by S (i.e., T =tXSX with X ∈Mmn(Z)) provided
it satisfies:

(a) For each prime p there exists a matrix Xp ∈ Mmn(Zp) with tXpSXp = T
such that the elementary divisors of Xp divide a and such that the equations
tXqSy = 0 and tySy = 0 have a nontrivial common solution y ∈ Z

m
q

(b) qj � det(T )
(c) min{tyTy | 0 
= y ∈ Z

n} > c11

The matrix X may be chosen to have elementary divisors dividing a.

As remarked earlier the primitivity (or bounded imprimitivity) condition is
satisfied automatically in the range m ≥ 2n + 3 covered by the analytic and
arithmetic results. Kitaoka has proved in [27,28,30,31] some lemmas which imply
that one can drop or weaken the primitivity conditions in some lower dimensional
cases; the original purpose of those lemmas was to obtain improved estimates for
the main term in the analytic method which could be used once the analytic estimate
for the error term in the asymptotic formula could be improved sufficiently much.
This leads to the following corollaries, proven in [45]:

Corollary 19. LetF = Q, let (V,Q),Λ be as before and fix a prime q and j ∈ N.

(a) Let n ≥ 6 and m = dim(V ) ≥ 2n. Then there exists a constant
c12 := c12(Λ, j, q) such that Λ represents all Z - lattices N of rank n which
are represented by Λ locally everywhere, have minimum ≥ c12 and satisfy
ordq(det(N)) ≤ j.
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(b) Let n ≥ 3 and m = dim(V ) ≥ 2n + 1. Then there exists a constant
c13 := c13(Λ, j, q) such that Λ represents all Z - lattices N of rank n
which are represented by Λ locally everywhere, have minimum ≥ c13, satisfy
ordq(det(N)) ≤ j and which are in the case n = 3 such that the orthogonal
complement of Nq in Λq is isotropic.

(c) Let n = 2 and m = dim(V ) ≥ 6. Then there exists a constant c14 :=
c14(Λ, j, q) such that Λ represents all Z - lattices N of rank n which are repre-
sented by Λ locally everywhere, have minimum ≥ c14, satisfy ordq(det(N)) ≤
j and which are such that the orthogonal complement of Nq in Λq is isotropic.

(d) Let a positive definite Z-lattice N0 of rank n0 ≤ m − 3 with Gram matrix T0
be given. Let S be a finite set of primes with q ∈ S such that one has

(i) Λp and (N0)p are unimodular for all primes p 
∈ S and for p = q.
(ii) Each isometry class in the genus of Λ has a representative Λ′ on V such

that Λ′
p = Λp for all primes p 
∈ S.

Then there exists a constant c15 := c15(Λ, T0, S) such that for all sufficiently
large integers t ∈ Z which are not divisible by a prime in S, the Z-latticeN with
Gram matrix tT0 is represented by Λ if it is represented by all completions Λp.

9 Comparison of Results

Concerning dimension bounds the theorem of Ellenberg and Venkatesh is clearly
superior to the results obtained by other methods, and it should not be difficult to
show that it is best possible in this respect. The method makes it necessary to impose
a bound on the power to which some fixed prime is allowed to divide the determinant
of the lattice N ; this is not necessary for the arithmetic and the analytic results in
the dimension range where they are valid. At least at present the ergodic method
gives neither an effective bound on the “sufficiently large” minimum of the lattice
N nor an asymptotic formula for the number of representations. This may of course
change with further refinements of the results from ergodic theory which make the
proof possible.

Results of Kitaoka (see [25, 27, 29]) on estimates of local densities show that
at least the main term r(genΛ, N) is still growing like (det N)

m−n−1
2 in the range

n+ 3 < m ≤ 2n+ 2 if one puts suitable restrictions on N , e.g., if one supposes a
Gram matrix of N to have square free determinant.

On the other hand, even for a Siegel cusp form of weight k the best known
estimtes for the Fourier coefficient a(F, T ) at T bound it by a term of the type
(det T )r where r is not much smaller than k

2 , see [7] for some results in
that direction. The famous conjecture of Resnikoff and Saldaña [41] (for which
meanwhile counterexamples are known, see [36]) predicts an estimate

|a(F, T )| = O((det(T ))
k
2−n+1

4 +ε),
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hence (with m = 2k) an exponent m−n−1
4 + ε at det(T ), which, like the exponent

in the main term, depends only on the differencem− n but not on m itself.
An asymptotic formula for r(Λ, N) valid in a range m ≥ n+ n0 for some fixed

n0 would have a main term growing like (det(T ))
n0−1

2 (with some restrictions on
T ), in particular the exponent would be independent of the weight of the theta series.
Its validity would therefore in particular require that the Fourier coefficients of the
modular form ϑ(n)(Λ)− ϑ(n)(gen(Λ)), which in general is not cuspidal, satisfy an
estimate similar to that of the Resnikoff-Saldaña conjecture for Fourier coefficients
of cusp forms.
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47. C.L. Siegel: Über die analytische Theorie der quadratischen Formen II, Ann. of Math. (2) 37
(1936), 230–263
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Abstract We discuss the relationship between quaternion algebras and quadratic
forms with a focus on computational aspects. Our basic motivating problem is to
determine if a given algebra of rank 4 over a commutative ring R embeds in the
2×2-matrix ringM2(R) and, if so, to compute such an embedding. We discuss many
variants of this problem, including algorithmic recognition of quaternion algebras
among algebras of rank 4, computation of the Hilbert symbol, and computation of
maximal orders.
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Since the discovery of the division ring of quaternions over the real numbers by
Hamilton, and continuing with work of Albert and many others, a deep link has
been forged between quadratic forms in three and four variables over a field F and
quaternion algebras over F . Starting with a quaternion algebra over F , a central
simple F -algebra of dimension 4, one obtains a quadratic form via the reduced
norm (restricted to the trace zero subspace); the split quaternion algebra over F ,
the 2 × 2-matrix ring M2(F ), corresponds to an isotropic quadratic form, one that
represents zero nontrivially. (Conversely, one recovers the quaternion algebra via the
Clifford algebra of the quadratic form.) In this article, we give an exposition of this
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link relating quaternion algebras and quadratic forms from an explicit, algorithmic
perspective and in a wider context.

Let R be a noetherian, commutative domain. We say that R is computable if
there exists an encoding of R into bits with algorithms to perform ring operations in
R and to test if an element of R is zero. The following basic algorithmic problem,
along with its many variants, forms the core of this article. (See Sect. 1 for further
definitions and algorithmic specifications.)

Problem (ISMATRIXRING). Given a computable domainR and anR-algebraO of
rank 4, determine if O embeds in M2(R) and, if so, compute an explicit embedding
O ↪→ M2(R) of R-algebras.

The Problem (ISMATRIXRING) captures in an important way the link between
quadratic forms and quaternion algebras. In the simplest case where R = F is
a field—when such an embedding is necessarily an isomorphism—this problem
corresponds to asking if a ternary quadratic form overF represents zero nontrivially,
and for this reason it arises in a wide variety of situations. When F is a local
field, this problem corresponds to the computation of the Hilbert symbol. In the
case where R is a local ring, it corresponds to the computation of an (explicit)
integral splitting of a quaternion order and thereby appears as a foundational
step in many algorithms in arithmetic geometry (as in work of Kirschmer and
the author [18]). Finally, when R is a Dedekind domain, roughly speaking, the
problem of approximating (ISMATRIXRING) naturally gives rise to the problem of
computing a maximal order containing O. In these and other ways, therefore, the
Problem (ISMATRIXRING) will serve as kind of unifying and motivating question.

In Sect. 1, we introduce the basic terminology we will use throughout concerning
computable rings and quaternion algebras. In Sect. 2, we consider algebras equipped
with a standard involution and we exhibit an algorithm to test if an F -algebraB has
a standard involution. In Sect. 3, we relate algebras with a standard involution to
quadratic forms via the reduced norm; we introduce the theory of quadratic forms
over local PIDs, providing an algorithm to compute a normalization of such a form.
As a consequence, we exhibit an algorithm to test if an F -algebraB is a quaternion
algebra and, if so, to compute standard generators for B. With these reductions,
we turn in Sect. 4 to Problem (ISMATRIXRING) for quaternion algebras and prove
that this problem is deterministic polynomial-time equivalent to the problem of
determining if a conic defined over F has an F -rational point (and, if so, to exhibit
one).

In Sect. 5, we consider Problem (ISMATRIXRING) in the case where F is a
local field, which corresponds to the computation of the Hilbert symbol; in Sect. 6
we treat the more delicate case of a local dyadic field, and putting these together
prove that there is a deterministic polynomial-time algorithm to compute the Hilbert
symbol (Theorem 6.1). We thereby exhibit an algorithm to compute the generalized
Jacobi symbol for computable Euclidean domains. In Sect. 7, we turn to the case
of a Dedekind domain R and relate Problem (ISMATRIXRING) to the problem of
computing a maximal R-order; we prove that the problem of computing a maximal
order for a quaternion algebra B over a number field F is probabilistic polynomial-
time equivalent to the problem of factoring integers. Finally, in Sect. 8, we consider
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the Problem (ISMATRIXRING) over Q, and show that recognizing the matrix ring is
deterministic polynomial-time equivalent to the problem of quadratic residuosity.

Many of the results in this paper fit into the more general setting of semisimple
algebras; however, we believe that the special link to quadratic forms, along with
the wide application of quaternion algebras (analogous to that of quadratic field
extensions), justifies the specialized treatment they are afforded here.

The author would like to thank his Ph.D. advisor Hendrik Lenstra for his many
helpful comments, the MAGMA group at the University of Sydney for their support
while writing this paper, and David Kohel for his valuable input. We are indebted to
Carl Pomerance for the citation [2] and would like to thank Asher Auel, Jonathan
Hanke, Kate Thompson, and the referee for helpful corrections and suggestions.
Some of the results herein occur in the author’s Ph.D. thesis [39].

1 Rings and Algebras

We begin by introducing some notation and background that will be used through-
out. Let R be a commutative, noetherian domain (with 1), and let F be the field of
fractions of R.

Let O be an R-algebra, an associative ring with 1 equipped with an embedding
R ↪→ O of rings (taking 1 ∈ R to 1 ∈ O) whose image lies in the center of
O; we identify R with its image under this embedding. We will assume without
further mention that O is a finitely generated, projective (equivalently, locally free)
R-module of rank n ∈ Z≥1.

Computable rings and algebras. We will follow the conventions of Lenstra [22]
for rings and algorithms, with the notable exception that we do not require all rings
to be commutative.

A domainR is computable ifR comes equipped with a way of encoding elements
ofR in bits (i.e. the elements of R are recursively enumerable, allowing repetitions)
along with deterministic algorithms to perform ring operations in R (addition,
subtraction, and multiplication) and to test if x = 0 ∈ R; a ring is polynomial-
time computable if these algorithms run in polynomial time (in the bit size of the
input). A field is computable if it is a computable ring and furthermore there exists
an algorithm to divide by a nonzero element. For precise definitions and a thorough
survey of the subject of computable rings we refer to Stoltenberg-Hansen and Tucker
[34] and the references contained therein.

Example 1.1. A domain R which is the localization of a ring which is finitely
generated over its prime ring is computable by the theory of Gröbner bases [13].
For example, any finitely generated algebra over Z or Q (without zerodivisors, since
we restrict to domains) is computable, and in particular the coordinate ring of any
integral affine variety over a finitely generated field is computable.
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Example 1.2. IfR is a computable domain, then F is a computable field if elements
are represented in bits as pairs of elements of R in the usual way.

Remark 1.3. Inexact fields (e.g. local fields, such as Qp or R) are not computable,
since they are uncountable! However, see the discussion in Sect. 5 for the use of a
computable subring which works well in our situation.

Example 1.4. A number field F is computable, specified by the data of the minimal
polynomial of a primitive element (itself described by the sequence of its coeffi-
cients, given as rational numbers); elements of F are described by their standard
representation in the basis of powers of the primitive element [6, Sect. 4.2.2]. For a
detailed exposition of algorithms for computing with a number field F , see Cohen
[6, 7] and Pohst and Zassenhaus [27].

Remark 1.5. Global function fields, i.e. finite extensions of k(T ) with k a finite
field, can be treated in a parallel fashion to number fields. Unfortunately, at the
present time the literature is much less complete in providing a suite of algorithms
for computing with integral structures in such fields—particularly in the situation
where one works in a relative extension of such fields—despite the fact that some
of these algorithms have already been implemented in MAGMA [3] by Hess [14].
Therefore, in this article we will often consider just the case of number fields and
content ourselves to notice that the algorithms we provide will generalize with
appropriate modifications to the global function field setting.

Throughout this article, when discussing algorithms, we will assume that the
domain R and its field of fractions F are computable.

Let B be a F -algebra with dimF B = n and basis e1, e2, . . . , en (as an F -vector
space), and suppose e1 = 1. A multiplication table forB is a system of n3 elements
(cijk)i,j,k=1,...,n of F , called structure constants, such that multiplication in B is
given by

eiej =
n∑

k=1

cijkek

for i, j ∈ {1, . . . , n}.
An F -algebra B is represented in bits by a multiplication table and elements of

F are represented in the basis ei. Note that basis elements in B can be multiplied
directly by the multiplication table but multiplication of arbitrary elements in B
requiresO(n3) arithmetic operations (additions and multiplications) in F ; in either
case, note the output is of polynomial size in the input for fixed B.

Remark 1.6. We have assumed that B is associative as an F -algebra; however, this
property can be verified by simply checking the associative law on a basis.

Remark 1.7. We require that the element 1 be included as a generator of B, since
by our definition an F -algebra is equipped with an embedding F ↪→ B. This is not
a serious restriction, for the equations which uniquely define the element 1 in B are
linear equations and so 1 ∈ B can be (uniquely) recovered by linear algebra over
F . (And an algebra without 1 embeds inside an algebra with 1.)
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An R-algebra O is represented in bits by the F -algebra B = O ⊗R F and a
set of R-module generators x1, . . . , xm ∈ B with x1 = 1. A morphism between
R-algebras is represented by the underlying R-linear map, specified by a matrix in
the given sets of generators for the source and target.

Quaternion algebras. We refer to Vignéras [38] and Reiner [28] for background
relevant to this section.

An F -algebra B is central if the center of B is equal to F , and B is simple if
the only two-sided ideals of B are (0) and B (or equivalently that any F -algebra
homomorphism with domain B is either the zero map or injective).

Remark 1.8. One can compute the center of B by solving the n linear equations
xei = eix for x = x1e1 + · · · + xnen and thereby, for example, verify that B is
central.

Definition 1.9. A quaternion algebra B over F is a central simple F -algebra with
dimF B = 4.

An F -algebra B is a quaternion algebra if and only if there exist i, j ∈ B which
generate B as an F -algebra such that

i2 = a, j2 = b, ji = −ij (1.10)

with a, b ∈ F× if charF 
= 2, and

i2 + i = a, j2 = b, ji = (i+ 1)j (1.11)

with a ∈ F and b ∈ F× if charF = 2. We give an algorithmic proof of
this equivalence in Sect. 3. We accordingly denote an algebra (1.10), (1.11) by

B =

(
a, b

F

)
, say that B is in standard form, and call the elements i, j standard

generators. Note that B has basis 1, i, j, ij as an F -vector space, so indeed
dimF B = 4.

Example 1.12. The ring M2(F ) of 2 × 2-matrices with coefficients in F is a

quaternion algebra over F . Indeed, we have

(
1, 1

F

)
∼= M2(F ) with j �→

(
0 1

1 0

)

and

i �→
(
1 0

0 −1
)

or i �→
(
0 1

1 1

)

according as charF 
= 2 or charF = 2.
Every quaternion algebra over a separably (or algebraically) closed field F is

isomorphic to M2(F ).

Example 1.13. The R-algebra H =

(−1,−1
R

)
, generated by i, j satisfying i2 =

j2 = (ij)2 = −1 is the usual division ring of quaternions over R. Every quaternion
algebra over R is isomorphic to either M2(R) or H, according to the theorem of
Frobenius.



260 J. Voight

Let B be an F -algebra. An R-order in B is a subring O ⊂ B that is finitely
generated as an R-module and such that OF = B. We see that an R-algebra O is
anR-order inB = O⊗RF , and we will use this equivalence throughout, sometimes
thinking of O as an R-algebra on its own terms and at other times thinking of O as
arising as an order inside an algebra over a field.

A quaternion order over R is an R-order in a quaternion algebra B over F .
Equivalently, an R-algebraO is a quaternion order if B = O ⊗R F is a quaternion
algebra over F .

Example 1.14. M2(R) is a quaternion order in M2(F ).
If a, b ∈ R \ {0}, then O = R ⊕ Ri ⊕ Rj ⊕ Rij is a quaternion order in

B =

(
a, b

F

)
. So for example Z ⊕ Zi ⊕ Zj ⊕ Zij is a Z-order in the rational

HamiltoniansB =

(−1,−1
Q

)
.

Further examples of quaternion orders will be defined in the next section (see
Lemma 2.11).

Modules over Dedekind domains. Let R be a Dedekind domain, an integrally
closed (noetherian) domain in which every nonzero prime ideal is maximal. Every
field is a Dedekind domain (vacuously), as is the integral closure of Z or Fp[T ]
in a finite (separable) extension of Q or Fp(T ), respectively. The localization of a
Dedekind domain at a multiplicative subset is again a Dedekind domain. If R is the
ring of integers of a number field, then we call R a number ring.

Over a Dedekind domain R, every projective R-module M can be represented
as the direct sum of projective R-modules of rank 1, which is to say that there exist
projective (equivalently, locally principal) R-modules a1, . . . , an ⊂ F (also known
as fractional ideals of R) and elements x1, . . . , xn ∈M such that

M = a1x1 ⊕ · · · ⊕ anxn;

we say then that the elements xi are a pseudobasis for M with coefficient ideals ai.
More generally, if M = a1x1 + · · ·+ amxm (the sum not necessarily direct), then
we say the elements xi are a pseudogenerating set for M (with coefficient ideals
ai).

In fact, the above characterization can be made computable as follows.

Proposition 1.15. Let R be a number ring. Then there exists an algorithm which,
given a projective R-module M specified by a pseudogenerating set, returns a
pseudobasis for M .

The algorithm in Proposition 1.15 is a generalization of the Hermite normal form
(HNF) for matrices over Z; see Cohen [7, Chap. 1]. Therefore, from now on we
represent a quaternion order O over a number ring R by a pseudobasis; in such a
situation, we may and do assume that a1 = R and x1 = 1 (by employing the HNF).

Remark 1.16. Recalling Remark 1.5, in particular there seems to be no comprehen-
sive reference for results akin to Proposition 1.15 in the global function field case.
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2 Standard Involutions and Degree

Quaternion algebras, or more generally algebras which have a standard involution,
possess a quadratic form called the reduced norm. In this section, we discuss this
association and we give an algorithm which verifies that an algebra has a standard
involution. As a reference, see Jacobson [17, Sect. 1.6], Knus [19], and work of the
author [40].

In this section, let R be an integrally closed (noetherian) domain with field of
fractions F . Let O be an R-algebra and let B = O ⊗R F .

Degree. We first generalize the notion of degree from field extensions to R-
algebras.

Definition 2.1. The degree of x ∈ O over R, denoted degR(x), is the smallest
positive integer n such that x satisfies a monic polynomial of degree n with
coefficients inR. The degree ofO overR, denoted degR(O), is the smallest positive
integer n such that every element of O has degree at most n.

Every x ∈ O satisfies the characteristic polynomial of (left) multiplication by
x on a set of generators for O as an R-module, and consequently degR(O) < ∞
(under our continuing hypothesis thatO is projective of finite rank).

Lemma 2.2. We have degR(O) = degF (B).

Proof. Since O is finitely generated as an R-module and R is noetherian, the
R-submodule R[x] ⊂ O is finitely generated, so x is integral over R. Since R is
integrally closed, the minimal polynomial of x ∈ O over F has coefficients in R
by Gauss’s lemma, so degR(x) = degF (x) and thus degR(O) ≤ degF (B). On
the other hand, if y ∈ B then there exists 0 
= d ∈ R such that x = yd ∈ O so
degF (x) = degF (y) = degR(y) so degF (B) ≤ degR(O). �

From the lemma, we need only consider the degree of an algebra over a field.

Example 2.3. B has degree 1 if and only if B = F .
If K is a separable field extension of F with dimF K = n, then K has degree n

as a F -algebra (in the above sense) by the primitive element theorem.
If dimF B = n, then B has degree at most n but even if B is commutative one

may still have degF (B) < dimF B: for example, B = F [x, y, z]/(x, y, z)2 has
rank 4 over the field F but has degree 2.

Standard involutions. We will see in a moment that quaternion orders and
algebras are algebras of degree 2; this will be a consequence of the fact that they
possess a standard involution. Indeed, the link between algebras with an involution
and quadratic forms the heart of much important work [20].

Definition 2.4. An anti-automorphism of O is an R-linear map : O → O with
1 = 1 and xy = y x for all x ∈ O. An involution is an anti-automorphism such that
x = x for all x ∈ O. An involution is standard if xx ∈ R for all x ∈ O.
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Note that if xx ∈ R for all x ∈ O, then (x+1)(x+1) = xx+ (x+ x) + 1 ∈ R
and hence x+ x ∈ R for all x ∈ O as well. Note that xx = xx for all x ∈ O since
x(x+ x) = (x+ x)x (and R is central in O).

Example 2.5. If O = Mn(R), then the transpose map is an anti-automorphism
which is standard if and only if n = 1; the adjoint map is a standard involution for
n ≤ 2 but is not R-linear for n ≥ 3.

Suppose now that O has a standard involution . Then we define the reduced
trace and reduced norm, respectively, to be the maps

trd : O → R nrd : O → R

x �→ x+ x x �→ xx = xx

We have

x2 − trd(x)x + nrd(x) = x2 − (x+ x)x+ xx = 0 (2.6)

for all x ∈ O. It follows that if O has a standard involution then either O = R (so
the standard involution is the identity and O = R has degree 1) or O has degree 2.

Example 2.7. Let B =

(
a, b

F

)
be a quaternion algebra over F . Then B has a

standard involution, defined as follows. For x = t+ ui+ vj + wk, we have

x = t− ui− vj − wk

so trd(x) = 2t and nrd(x) = t2 − au2 − bv2 + abw2 if charF 
= 2 and

x = t+ (u + 1)i+ vj + wk

so trd(x) = 2u and nrd(x) = t2 + tu+ au2 + bv2 + bvw + abw2 if charF = 2.

Lemma 2.8. O has a standard involution if and only ifB = O⊗RF has a standard
involution.

Proof. If O has a standard involution, we obtain one on B by extending F -linearly.
Conversely, suppose B has a standard involution and let x ∈ O. Then as in the
proof of Lemma 2.2, x is integral over R so its minimal polynomial over F has
coefficients in R. If x ∈ R, then x = x and there is nothing to prove. If x 
∈ R,
this minimal polynomial must be given by (2.6), so trd(x) = x + x ∈ R and thus
x = trd(x)− x ∈ O has xx = nrd(x) ∈ R as well. �

An R-algebra S is quadratic if S has rank 2 as an R-module.

Lemma 2.9. Let S be a quadratic R-algebra. Then S is commutative and has a
unique standard involution.
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Proof. By Lemma 2.8, it suffices to prove the lemma for K = S ⊗R F . But then
for any x ∈ K \F we haveK = F ⊕Fx so K is commutative. Moreover, we have
x2 − tx+ n = 0 for some unique t, n ∈ F and so the (necessarily unique) standard
involution is given by x �→ t− x, extending by F -linearity. (See also Scharlau [33,
Sect. 8.11] for a proof of this lemma.) �
Corollary 2.10. If O has a standard involution, then this involution is unique.

This corollary follows immediately from Lemma 2.9 by restricting to quadratic
subalgebrasK of B.

Quaternion orders. Having identified the standard involution on a quadratic
algebra, we now generalize the construction of quaternion algebras (1.10), (1.11)
to quaternion orders. Let S be a quadratic R-algebra, and suppose S is separable,
so the minimal polynomial of every x ∈ S has distinct roots over the algebraic
closure F of F . Let J ⊂ S be an invertible S-ideal (equivalently, a locally principal

S-module) and let b ∈ R \ {0}. We denote by

(
S, J, b

R

)
the R-algebra S ⊕ Jj

subject to the relations j2 = b and ji = ij for all i ∈ S, where denotes the unique
standard involution on S obtained from Lemma 2.9. We say that such an algebra is
in standard form.

Lemma 2.11. The R-algebraO =

(
S, J, b

R

)
is a quaternion order.

Proof. We consider B = O ⊗R F . Let K = S ⊗R F and let i ∈ K \ F . Since K
is separable, if charF 
= 2 by completing the square we may assume i2 = a with
a ∈ F×; if charF = 2, we may assume i2 + i = a with a ∈ F . Now since J is
projective we have J ⊗R F = J ⊗S K ∼= K so B ∼= K ⊕ Kj as an F -algebra.
Finally, since ji = ij = (trd(i) − i)j and trd(i) = 0, 1 according as charF 
= 2

or not, we have identified B as isomorphic to the quaternion algebra

(
a, b

F

)
. �

Algorithmically identifying a standard involution. We conclude this section
with an algorithm to test if an F -algebra B (of dimension n) has a standard
involution.

First, we note that ifB has a standard involution : B → B, then this involution
and hence also the reduced trace and norm can be computed efficiently. Indeed,
let {ei}i be a basis for B; then trd(ei) ∈ F is simply the coefficient of ei in
e2i , and so ei = trd(ei) − ei for each i can be precomputed for B; one recovers
the involution on B (and hence also the trace) for an arbitrary element of B by
F -linearity. Therefore the involution and the reduced trace can be computed using
O(n) arithmetic operations in F (with output linear in the input for fixedB) and the
reduced norm using O(n2) operations in F (with output quadratic in the input).

Algorithm 2.12. Let B be an F -algebra given by a multiplication table in the basis
e1, . . . , en with e1 = 1. This algorithm returns TRUE if and only if B has a standard
involution.
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1. For i = 2, . . . , n, let ti ∈ F be the coefficient of ei in e2i , and let ni = e2i − tiei.
If some ni 
∈ F , return FALSE.

2. For i = 2, . . . , n and j = i+ 1, . . . , n, let nij = (ei + ej)
2 − (ti + tj)(ei + ej).

If some nij 
∈ F , return FALSE. Otherwise, return TRUE.

Proof of correctness. Let F [x] = F [x1, . . . , xn] be the polynomial ring over F in
n variables, and let BF [x] = B⊗F F [x]. Let ξ = x1 + x2e2 + · · ·+xnen ∈ BF [x],
and define

tξ =

n∑

i=1

tixi

and

nξ =

n∑

i=1

nix
2
i +

∑

1≤i<j≤n

(nij − ni − nj)xixj .

Let

ξ2 − tξξ + nξ =

n∑

i=1

ci(x1, . . . , xn)ei

with ci(x) ∈ F [x]. Each ci(x) is a homogeneous polynomial of degree 2. The
algorithm then verifies that ci(x) = 0 for x ∈ {ei}i ∪ {ei + ej}i,j , and this implies
that each ci(x) vanishes identically. Therefore, the specialization of the map ξ �→
ξ = tξ − ξ is the unique standard involution on B. �
Remark 2.13. Algorithm 2.12 requires O(n) arithmetic operations in F , since e2i
can be computed directly from the multiplication table and hence (ei + ej)

2 =
e2i + eiej + ejei + e2j can be computed using O(4n) = O(n) operations.

3 Algebras with a Standard Involution and Quadratic Forms

In this section, we describe a relationship between R-algebras with a standard
involution and quadratic forms over R. The main result of this section is an
algorithm which verifies that an R-algebra O over a local PID is a quaternion
order and, if so, exhibits standard generators for O. Specializing, we will thereby
recognize quaternion algebras over a field F . We then extend this to recognizing
quaternion orders over a number ring R. Over fields, a reference for this section is
Lam [21], and for more about algebras equipped with a quadratic norm form, we
refer the reader to Knus [19].

Quadratic forms over rings. We begin by defining quadratic forms over a
(noetherian) domain R.
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Definition 3.1. A quadratic form over R is a map Q : M → R, where M is a
finitely generated projective R-module, such that:

(i) Q(ax) = a2Q(x) for all a ∈ R and x ∈M ; and
(ii) The map T :M ×M → R defined by

T (x, y) = Q(x+ y)−Q(x)−Q(y)

is R-bilinear.

A symmetric bilinear form T : M × M → R is even if T (x, x) ∈ 2R for
all x ∈ M . If T arises from a quadratic form, then T is even, and conversely if
T is even and 2 is a nonzerodivisor in R then one recovers the quadratic form as
Q(x) = T (x, x)/2.

Let Q : M → R be a quadratic form and suppose that M is free over R with
basis e1, . . . , en. The Gram matrix of Q with respect to the basis e1, . . . , en is the
matrix A = (T (ei, ej))i,j=1,...,n ∈ Mn(R). The matrix A has the property that
xtAy = T (x, y), where we identify x = x1e1 + · · ·+xnen with the column vector
(x1, . . . , xn)

t, and similarly for y. In particular we have xtAx = 2Q(x).
Let Q : M → R be a quadratic form. We say x, y ∈ M are orthogonal (with

respect to Q) if T (x, y) = 0.

Example 3.2. LetO be anR-algebra with a standard involution . Then the reduced
norm nrd : O → R (defined by x �→ xx for x ∈ O) is a quadratic form on O with
associated bilinear form

T (x, y) = xy+yx = trd(xy) = trd(x)y+trd(y)x−(xy+yx) = trd(xy) (3.3)

for x, y ∈ O. In particular T (1, x) = T (x, 1) = trd(x). Note that x, y ∈ O are
orthogonal if and only if xy = −yx, and if further trd(x) = trd(y) = 0 then
x = −x and y = −y so x, y are orthogonal if and only if xy = −yx.

Example 3.4. Let O0 = {x ∈ O : trd(x) = 0} be the R-submodule of elements
of reduced trace zero. ThenO/O0 is torsion-free, since if rx ∈ O0 then trd(rx) =
r trd(x) = 0 so trd(x) = 0 so x ∈ O0. Thus ifR is a Dedekind domain or 2 ∈ R×,
thenO0 is a projectiveR-submodule of O and O ⊃ R⊕O0. We therefore obtain a
quadratic form nrd0 = nrd |O0 : O0 → R.

If Q : M → R and Q′ : M ′ → R are quadratic forms, we define the form
Q ⊥ Q′ on M ⊕M ′ by requiring that (T ⊥ T ′)(x + x′) = T (x) + T (x′) and
(Q ⊥ Q′)(x + x′) = Q(x) +Q(x′). (Note that T (x, x) = 2Q(x) for all x ∈M so
if 2 
= 0 ∈ R then the second condition follows from the first.)

Let Q : M → R be a quadratic form and suppose that M is free (of finite rank).
In this case, a basis e1, . . . , en for M gives an isomorphism M ∼= Rn in which Q
can be written
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Q(x) = Q(x1e1 + · · ·+ xnen) =
∑

i

Q(ei)x
2
i +

∑

i<j

T (ei, ej)xixj

with x = (x1, . . . , xn) ∈ Rn.
For a ∈ R, the quadratic form Q(x) = ax2 on R is denoted 〈a〉; similarly, for

a1, . . . , an ∈ R, we abbreviate 〈a1〉 ⊥ · · · ⊥ 〈an〉 = 〈a1, . . . , an〉. For a, b, c ∈ R,
the quadratic form Q(x, y) = ax2 + bxy + cy2 on R2 is denoted [a, b, c].

Example 3.5. Let B =

(
a, b

F

)
be a quaternion algebra over F . Then as in

Example 2.7, in the basis 1, i, j, ij we have nrd ∼= 〈1,−a,−b, ab〉 ∼= 〈1,−a〉 ⊥
−b〈1,−a〉 if charF 
= 2 and nrd ∼= [1, 1, a] ⊥ b[1, 1, a] if charF = 2.

Similarly, for nrd0 : B0 → F we have nrd0 ∼= 〈−a,−b, ab〉 ∼= 〈−a〉 ⊥
−b〈1,−a〉 if charF 
= 2 and nrd0 ∼= 〈1〉 ⊥ b[1, 1, a] if charF = 2.

Quadratic forms over DVRs. Now let R be a local PID. Then R has valuation
ordv : R→ Z≥0 ∪ {∞} and uniformizer π. If R = F is a field, then π = 1 and the
valuation is trivial, i.e. ordv(x) = 0 for x ∈ F× (and ordv(0) =∞).

Let Q : M → R be a quadratic form over R. Then since R is a PID, M is free;
let n be the rank of M over R. We will now seek to find a basis for Rn in which a
quadratic form Q has a particularly simple form: we will seek to diagonalize Q as
far as possible. In cases where 2 ∈ R×, we can accomplish a full diagonalization;
otherwise, we can at least break up the form as much as possible, as follows.

A quadratic form Q over R is atomic if either:

(i) Q ∼= 〈a〉 for some a ∈ R×, or
(ii) 2 
∈ R× and Q ∼= [a, b, c] with a, b, c ∈ R satisfying

ordv(b) < ordv(2a) ≤ ordv(2c) and ordv(a) ordv(b) = 0.

In case (ii), we necessarily have ordv(2) > 0 and ordv(b
2 − 4ac) = 2 ordv(b).

Example 3.6. If 2 ∈ R×, then a quadratic form Q is atomic if and only if Q(x) =
ax2 for a ∈ R×.

Example 3.7. IfR = F is a field with charF = 2, then [a, b, c] is atomic if and only
if b ∈ F×; scaling y by a/b realizes this form as isomorphic to a[1, 1, ca/b2] with
a ∈ F×. Therefore, over fields, recording the middle coefficient is unnecessary, and
indeed other texts use [a, b] to denote the quadratic form ax2 + xy + by2.

For example, take R = Z2[
√
2] with normalized valuation ordv(

√
2) = 1 and

let Q(x, y) = x2 +
√
2xy. Then according to our definition, Q is atomic, since

ordv(b) = 1 < ordv(2a) = 2 ≤ ordv(2c) = ∞ and ordv(a) = 0. But this form is
not globally divisible by any element of positive valuation, and a calculation shows
that any isomorphic (equivalent) form has middle coefficient of positive valuation.

Example 3.8. Suppose R = Z2 is the ring of 2-adic integers, so that ordv(x) =
ord2(x) is the largest power of 2 dividing x ∈ Z2. Recall that Z

×
2 /Z

×2
2 is
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represented by the elements±1,±5, therefore a quadratic formQ over Z2 is atomic
of type (i) above if and only if Q(x) ∼= ±x2 or Q(x) ∼= ±5x2. For forms of type
(ii), the conditions ordv(b) < ordv(2a) = ordv(a) + 1 and ordv(a) ordv(b) = 0
imply in fact ordv(b) = 0, and so a quadratic form Q over Z2 is atomic of type (ii)
if and only if Q(x, y) ∼= ax2 + xy + cy2 with ord2(a) ≤ ord2(c). Replacing x by
ux and y by u−1y for u ∈ Z

×
2 we may assume a = ±2t or a = ±5 · 2t with t ≥ 0,

and then the atomic representative [a, 1, c] of the isomorphism class of Q is unique.

A quadratic form Q is decomposable if Q can be written as the orthogonal sum
of two quadratic forms (Q ∼= Q1 ⊥ Q2) and is indecomposable otherwise.

It follows by induction on the rank of M that Q is the orthogonal sum of
indecomposable forms. We will soon give an algorithmic proof of this fact and write
each indecomposable form as a scalar multiple of an atomic form. We begin with
the following lemma.

Lemma 3.9. An atomic form Q is indecomposable.

Proof. If Q is atomic of type (i) then the space underlying Q has rank 1, so this is
clear. So supposeQ = [a, b, c] is atomic of type (ii) and supposeQ is decomposable.
It follows that if x, y ∈ M then T (x, y) ∈ 2R. Thus we cannot have ordv(b) = 0,
so ordv(a) = 0, and further ordv(b) ≥ ordv(2) = ordv(2a); this contradicts the
fact that Q is atomic. �
Proposition 3.10. Let R be a local PID and let Q : M → R be a quadratic form.
Then there exists a basis of M such that the form Q can be written

Q ∼= πe1Q1 ⊥ · · · ⊥ πenQn

where the forms Qi are atomic and 0 ≤ e1 ≤ · · · ≤ en ≤ ∞.

In the above proposition, we interpret π∞ = 0. A form as presented in
Proposition 3.10 is called normalized, and the integer ei is called the valuation of
πeiQi. The tuple of valuations ei for Q is unique.

Example 3.11. By Example 3.5, if B is a quaternion algebra over a field F then the
quadratic form nrd is normalized in the basis 1, i, j, ij, with a similar statement for
nrd0.

We give an algorithmic proof of Proposition 3.10. (Over fields, see Lam [21,
Sect. 1.2], and see Scharlau [33, Sect. 9.4] for fields of characteristic 2.)

Algorithm 3.12. Let R be a computable ring which is a local PID with (com-
putable) valuation ordv : R→ Z≥0 ∪ {∞}.

Let Q :M → R be a quadratic form over R and let e1, . . . , en be a basis for M .
This algorithm returns a basis of M in which Q is normalized.

1. If T (ei, ej) = 0 for all i, j, return fi := ei. Otherwise, let (i, j) with 1 ≤ i ≤
j ≤ n be such that ordv T (ei, ej) is minimal, taking i = j if possible and if not
taking i minimal.



268 J. Voight

2. If i = j, let f1 := ei and proceed to Step 3. If i 
= j and 2 ∈ R×, let f1 := ei+ej
and proceed to Step 3. Otherwise, proceed to Step 4.

3. Let ei := e1. For k = 2, . . . , n let

fk := ek − T (f1, ek)

T (f1, f1)
f1.

Let m = 2 and proceed to Step 5.
4. (We have 2 
∈ R× and i 
= j.) Let

f1 :=
πordv T (ei,ej)

T (ei, ej)
ei,

f2 := ej , ei := e1 and ej := e2. Let d := T (f1, f1)T (f2, f2) − T (f1, f2)2.
For k = 3, . . . , n, let

tk := T (f1, f2)T (f2, ek)− T (f2, f2)T (f1, ek)
uk := T (f1, f2)T (f1, ek)− T (f1, f1)T (f2, ek)

and let

fk := ek +
tk
d
f1 +

uk
d
f2.

Let m = 3.
5. Recursively call the algorithm with M = Rfm ⊕ · · · ⊕ Rfn, and return
f1, . . . , fm−1 concatenated with the output basis.

Given such a basis, one recovers the normalized quadratic form by factoring out
in each atomic form the minimal valuation achieved. (One can also keep track of
this valuation along the way in the above algorithm, if desired.)

Remark 3.13. Note that if 2 ∈ R×, then this algorithm computes a diagonalization
of the form Q, ordering the coefficients by their valuation.

Proof of correctness. In Step 3, we verify that ordv T (f1, f1) ≤ ordv T (f1, ek).
Indeed, we have

T (f1, f1) = T (ei, ei) + 2T (ei, ej) + T (ej, ej)

and so ordv T (f1, f1) = ordv T (ei, ej) by the ultrametric inequality and the
hypotheses that ordv T (ei, ej) < ordv T (ei, ei), T (ej, ej) and ordv(2) = 0. So
Steps 2 and 3 give correct output.

We have left to check Step 4. This is proven by letting fk = ek + tkf1 + ukf2
and solving the linear equations T (f1, fk) = T (f2, fk) = 0 for tk, uk. The
result then follows from a direct calculation, coupled with the fact that ordv(d) =
2 ordv T (f1, f2) ≤ ordv(tk) (and similarly with uk). This case only arises if (and
only if)
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ordv T (f1, f2) < ordv T (f1, f1) = ordv(2Q(f1)) ≤ ordv(2Q(f2))

so the corresponding block is indeed atomic. �
Example 3.14. Consider the binary quadratic form [a, b, c] over Z2. Then
T (e1, e1) = 2a, T (e1, e2) = b, and T (e2, e2) = 2c. We follow the course of
Algorithm 3.12. If ordv(2a) is minimal, then in Steps 2 and 3 we diagonalize
(complete the square): we have f1 = e1 and f2 = e2 − (b/2a)e1 and so we obtain
the (isomorphic) form 〈a, c + b2/4a〉. If ordv(2c) is minimal, then we similarly
obtain 〈c, a + b2/4c〉. Finally, if ord2(b) is minimal, then we enter Step 4. Since
(i, j) was taken with i minimal, for illustration we may suppose i = 1 and j = 2.
Then we have t = ordv(b) < ordv(2a) ≤ ordv(2c). Writing a = 2ta′, b′ = 2tb′

and c′ = 2tc′, in Step 4, we simply have f1 = (1/b′)e1 and f2 = e2 and we obtain
the form 2t[a′/(b′)2, 1, c′] and [a′/(b′)2, 1, c′] is indeed atomic.

Example 3.15. Consider the form q(x, y, z) = xy + xz over Z2. We enter Step 4
with f1 = e1 and f2 = e2. We compute that d = −T (f1, f2) = −1, and t3 = 0 and
u3 = 1. Thus f3 = e3 − f2 = e3 − e2, and we obtain the form [0, 1, 0] ⊥ 〈0〉.

We note that Algorithm 3.12 requires O(n2) arithmetic operations in R. This
algorithm can be modified suitably to operate on the Gram matrix (T (ei, ej))i,j of
the quadratic form Q, which as explained above recovers the quadratic form when
2 
= 0 ∈ R.

For a quadratic form Q : M → R, we define

rad(Q) = {x ∈M : T (x, y) = 0 for all y ∈M};

we say Q is nonsingular if rad(Q) = {0}.
Example 3.16. We have rad(Q ⊥ Q′) = rad(Q)⊕rad(Q′), and ifQ is atomic then
rad(Q) = {0}. In particular, one can read off rad(Q) directly from a normalized
form by the corresponding valuations.

Identifying quaternion algebras. Using the above normalization of a quadratic
form in the case whereR = F is a field, we can directly identify quaternion algebras
amongst algebras with a standard involution.

Proposition 3.17. Let B be an F -algebra with a standard involution. If dimF

B=4, then B is a quaternion algebra if and only if nrd is nonsingular.

Proof. If B is a quaternion algebra, then nrd is nonsingular by Example 3.5.
Conversely, B has a basis 1, i, j, k which is a normalized basis for Q. First

suppose charF 
= 2. By orthogonality we have trd(i) = 0 so i2 = − nrd(i) =
a 
= 0 by nonsingularity and similarly j2 = b 
= 0, and ji + ij = 0 from (3.3)

so (ij)2 = −ab. Thus B ⊃
(
a, b

F

)
hence this map is an isomorphism. The case

charF = 2 follows similarly: now instead we have i2 + i = a and ji = ij =
(i+ 1)j. �
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Proposition 3.17 yields the following algorithm.

Algorithm 3.18. Let B be an F -algebra with dimF B = 4 (specified by a
multiplication table). This algorithm returns TRUE if and only if B is a quaternion

algebra, and if so returns an isomorphism B ∼=
(
a, b

F

)
.

1. Verify that B has a standard involution by calling Algorithm 2.12. If not, return
FALSE.

2. Compute a normalized basis 1, i, j, k for the quadratic form nrd : B → F by
calling Algorithm 3.12.

3. Test if nrd is nonsingular as in Example 3.16. If so, return TRUE and the

quaternion algebra

(
a, b

F

)
given by the standard generators i, j.

Remark 3.19. Given a quaternion algebra over Q, Rónyai [29, Theorem 2.1]
gives an algorithm to compute a standard representation, but this algorithm tests
a polynomial of degree 2 over Q for irreducibility; the above algorithm requires no
such test.

Remark 3.20. If in Step 3 one finds that nrd is not nonsingular, then one has the
further refinement of Algorithm 3.18 as follows.

We denote by rad(B) the Jacobson radical of B, the largest two-sided nil
ideal of B, i.e. the largest two-sided ideal in which every element is nilpotent.
An algebra B for which rad(B) = {0} is called semisimple. We claim that
rad(B) = rad(nrd). Indeed, let e ∈ B be nilpotent, so that e2 = 0. For any
x ∈ B, we have by (3.3) that

xe+ ex = trd(x)e + trd(xe).

It follows that e generates a nil ideal if and only if T (x, e) = 0 for all x ∈ B, which
holds if and only if x ∈ rad(nrd). Thus rad(B) = rad(nrd). One can then easily
modify the algorithm to output rad(B) = rad(nrd).

Remark 3.21. Another algorithm which tests if B is a quaternion algebra (but does
not give a standard representation) under the assumption charF = 0 runs as
follows. (See Lam [21, Chap. 4] for the standard facts we use.) By the Wedderburn-
Artin theorem and a dimension count, the algebraB overF is a quaternion algebra if
and only ifB is central and semisimple. We verify thatB is central as in Remark 1.8.
To verify semisimplicity, if charF = 0, Dickson [10, Sect. 66] showed that B with
dimF B = n is semisimple if and only if the matrix (Tr(eiej))i,j=1,...,n has full
rank n, where Tr is the (left) algebra trace.

In view of Algorithm 3.18, we assume from now on that a quaternion algebra B
over a field F is given as input by a standard representation.

Over a general domain R, the above algorithms do not generalize directly, as
we cannot hope to normalize a quadratic form in such a simple way for over
rings that are no longer local PIDs. Indeed, the category of quadratic forms over
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a general domain R can be quite complicated—already forms over the integers Z
are of significant interest. However, over Dedekind domains, we can still recognize
quaternion orders, and one instead understands these orders as in Sect. 1 via their
localizations, a subject which will consume the later sections of this article.

Identifying quaternion orders. Let F be a number field and let ZF be its ring of
integers. In this section, we give an algorithm which allows us in many cases to put
quaternion orders in a standard form as in the discussion of Lemma 2.11.

Algorithm 3.22. Let O ⊂ B be a quaternion order over ZF . Let ι : K → B be an
embedding of F -algebras withK a field such that [K : F ] = 2 and ι(K)∩O = ZK

is maximal. This algorithm returns a fractional ideal b ofK , an element j ∈ O such

that O = ι(ZK)⊕ ι(b)j ∼=
(
ZK , b, b

ZF

)
.

1. IdentifyK with ι(K). Let K = F ⊕Fi with i ∈ B. Compute j ∈ B orthogonal
to 1, i.

2. Let x1, . . . , xm be a generating set forO as a ZF -module. Write xk = ak + bkj
with ak, bk ∈ K for k = 1, . . . ,m.

3. Compute a pseudo-basis ZK ⊕ bj for the ZK-module generated by (ak, bk) for
k = 1, . . . ,m using a HNF.

4. Let a, b be generators for b as an ZF -module. If trd(j) 
= 0, then let
c:= trd(bj)a− trd(aj)b, let j:=cj and b:=(1/c)b. Return b and the element j.

Proof of correctness. In Step 4, we check directly that trd(j) = trd(ij) = 0, as
desired. �
Remark 3.23. One can extend Algorithm 3.22 when ι(K) ∩ O = S is no longer
maximal by an appropriate modification of the HNF algorithm over S.

4 Identifying the Matrix Ring

In this section, we continue the pursuit of our motivating question and address the
computational complexity of identifying the matrix ring over a field. Throughout
this section, let F be a computable field. We represent a quaternion algebra B over

F by a standard form B =

(
a, b

F

)
.

Problem (ISMATRIXRING). Given a quaternion algebra B over F , determine if
B ∼= M2(F ).

We may also ask for a solution to the more difficult problem of constructing an
explicit isomorphism.

Problem (EXHIBITMATRIXRING). Given a quaternion algebra B over F , deter-
mine if B ∼= M2(F ) and, if so, output such an isomorphism.
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Zerodivisors. Let B be a quaternion algebra. The following structural lemma
allows us to address the above problems.

Lemma 4.1. The following are equivalent:

(i) B ∼= M2(F );
(ii) B is not a division ring;

(iii) There exists a nonzero e ∈ B such that e2 = 0; and
(iv) B has a proper, nonzero left (or right) ideal I .

If B ∼= M2(F ), we say that B is split. More generally, if K ⊃ F is a field
containing F , then we say K is a splitting field for B if BK = B ⊗F K is split.

We give a proof of Lemma 4.1 in an algorithmically effective way in this section.
The implication (i)⇒ (ii) is clear. The implication (ii)⇒ (iii) is obtained as follows.

Algorithm 4.2. Let x ∈ B be a zerodivisor. This algorithm returns a nonzero
element e ∈ B such that e2 = 0.

1. If trd(x) = 0, return x.
2. Compute 0 
= y ∈ B orthogonal to 1, x with respect to the quadratic form nrd.

If xy = 0, return y; otherwise, return xy.

Proof of correctness. The element x 
= 0 is a zerodivisor if and only if nrd(x) =
xx = 0. Since y is orthogonal to 1 we have trd(y) = 0 so y = −y; similarly, since
y is orthogonal to x we have trd(xy) = − trd(xy) = 0. If xy = 0 then y is a
zerodivisor. If xy 
= 0 then nrd(xy) = nrd(x) nrd(y) = 0, as desired. �

The implication (iii) ⇒ (iv) follows, since e generates a proper left (or right)
ideal. Below, in the proof of correctness of the following algorithm, we will show
that if I = Be then dimF I = 2; the final implication (iv)⇒ (i) then follows since
left multiplication gives a nonzero F -algebra map B → EndF (I) ∼= M2(F ) which
is injective since B is simple and therefore an isomorphism as dimF B = 4 =
dimF M2(F ).

Algorithm 4.3. Let e ∈ B satisfy e2 = 0. This algorithm returns a standard

representationB ∼=
(
1, 1

F

)
∼= M2(F ).

1. Find k ∈ {i, j, ij} such that trd(ek) = s 
= 0. Let t = trd(k) and n = nrd(k),
and let e′ = (1/s)e.

2. Let j′ = k + (−tk + n+ 1)e′ and let

i′ =

{
e′k − (k + t)e′, if charF 
= 2;

k + ((t+ 1)k + n+ 1)e′, if charF = 2.

Return i′, j′.

Proof of correctness. In Step 1, if trd(ek) = 0 for all such k then e ∈ rad(nrd),
contradicting Lemma 3.17. We have trd(e′k) = trd(ke′) = 1 so trd(e′k) = −1.
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Consider I = Fe′ + Fke′. Note trd(ke′) 
= 0 implies that e′, ke′ are linearly
independent. Let A be the subalgebra of B generated by e′ and k. We have
e′k + ke′ = te′ + 1 from (3.3) and k2 = tk − n, and thus we compute that left
multiplication yields a map

A→ EndF (I) ∼= M2(F )

e′, k �→
(
0 1

0 0

)
,

(
0 −n
1 t

)
.

A direct calculation then reveals that j′ �→
(
0 1

1 0

)
and i′ �→

(
1 0

0 −1
)

if charF 
= 2

and i′ �→
(
0 1

1 1

)
if charF = 2, as in Example 1.12.

It follows all at once that A = B, that I = Be′, and that the map B → M2(F )
is an isomorphism. �
Remark 4.4. An algorithm like the above which requires linear algebra in F is
claimed but not exhibited explicitly by Rónyai [29]; see also further of Rónyai [32,
Sect. 5.1].

Conics. We have already seen in Lemma 4.1 that B ∼= M2(F ) if and only if there
exists 0 
= e ∈ B such that e2 = 0. To this end, as in the previous section let

B0 = {e ∈ B : trd(e) = 0}.

We have dimF B0 = 3, and given a standard representation for B =

(
a, b

F

)
, we

have a basis for B0 given by i, j, ij if charF 
= 2 and 1, j, ij if charF = 2, as in
Example 3.5.

We may identify the set P(B0) = B×
0 /F

× with the points of the projective plane
P
2(F ) over F . Then the equation nrd0(x, y, z) = 0 yields a conic C ⊂ P

2
F defined

over F , a nonsingular projective plane curve of degree 2.

Lemma 4.5. The following are equivalent:

(i) B ∼= M2(F );
(v) The quadratic form Q = nrd |B0 associated to B represents zero over F ; and

(vi) The conic C associated to B has an F -rational point.

Therefore we are led to the following problems.

Problem 4.6 (HASPOINT). Given a conic C defined over a field F , determine if C
has an F -rational point.

Problem 4.7 (EXHIBITPOINT). Given a conic C defined over a field F , determine
if C has an F -rational point and, if so, output such a point.
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These problems could be equivalently formulated as follows: given a nonsingular
ternary quadratic form Q : V → F , determine if F is isotropic (represents zero
nontrivially) and, if so, find 0 
= x ∈ V such that Q(x) = 0. We find the geometric
language here to be more suggestive, but really these are equivalent ways to describe
the same situation.

By Algorithm 3.12, given a conicC overF , there is a (deterministic, polynomial-
time) algorithm which computes a change of coordinates in which C is given by the
equation

ax2 + by2 + cz2 = 0

if charF 
= 2, with a, b, c ∈ F×, and

ax2 + axy + aby2 + cz2 = 0

if charF = 2, with a, c ∈ F× and b ∈ F by Example 3.7. In the first case,
multiplying through by abc 
= 0 we obtain bc(ax)2 + ac(by)2 + (abc2)z2 = 0

which arises as the form associated to

(−bc,−ac
F

)
; in the second case, we multiply

through by c 
= 0 to obtain (ac)x2 + (ac)xy + b(ac)y2 + (cz)2 = 0 which is

associated to

(
b, ac

F

)
. Together with Algorithm 4.3, therefore, we arrive at the

following lemma.

Proposition 4.8. The association B �→ C = nrd0 gives a bijection between
quaternion algebras over F up to isomorphism and conics over F up to isomor-
phism.

Problems (ISMATRIXRING), (EXHIBITMATRIXRING) are (deterministic poly-
nomial-time) equivalent to Problems (HASPOINT), (EXHIBITPOINT), respectively.

Proof. We need only identify isomorphisms: we need to show that two quaternion
algebras B ∼= B′ are isomorphic if and only if the induced conics C ∼= C′ are
isomorphic.

We treat only the case charF 
= 2; the case charF = 2 follows similarly. If φ :
B → B′ is an isomorphism of quaternion algebras, then φ(1) = 1 so φ(B0) = B′

0,
and the reduced norm is determined by the standard involution which is unique, so
nrdB = nrdB′ ◦φ.

Conversely, suppose ψ : C → C′ is an isomorphism. Choose a quadratic form
Q so that C is given by Q = 0 in P

2
F , normalized and scaled so that Q ∼= nrd0

for some B ∼=
(
a, b

F

)
. Choose similarly Q′ for C′. Then ψ is given by an element

of PGL3(F ) and there exists a lift of ψ to GL3(F ) such that Q = Q′ ◦ ψ. The
F -linear map ψ : B0 → B′

0 extends naturally (defining φ(1) = 1) to an F -linear
map which we also denote ψ : B → B′, and we must show that ψ is an F -algebra
isomorphism.

Suppose B =

(
a, b

F

)
. Then we have nrd(ψ(i)) = nrd(i) = −a and

nrd(ψ(i)) = ψ(i)ψ(i) = −ψ(i)2 so ψ(i)2 = a. Similarly we have ψ(j)2 = b.
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We have ji = −ij since i, j are orthogonal, but then ψ(i), ψ(j) are orthogonal
so ψ(j)ψ(i) = −ψ(i)ψ(j). Finally, we have that both ψ(ij) and ψ(i)ψ(j) are
orthogonal to 1, ψ(i), ψ(j), and ψ(ij)2 = −ab = (ψ(i)ψ(j))2, so ψ(ij) =
±ψ(i)ψ(j). If the negative sign occurs, we replace ψ by the linear map defined
on the basis 1, i, j, ij unmodified on 1, i, j but negated on ij; this map is now an

F -algebra homomorphism. Together, these imply that B′ ∼=
(
a, b

F

)
as well. �

We conclude this section by considering a simple case of the above problems.
First, let F = Fq be a finite field with q elements. Indeed, Problem (HASPOINT)
is trivial: since every conic over a finite field has a point (an elementary argument),
one can simply always output TRUE!

For Problem (EXHIBITPOINT), we will make use of the following related
problem.

Problem 4.9 (SQUAREROOT). Given a ∈ F×2, output b ∈ F× such that b2 = a.

We have two cases. First, if q is even, then one can solve Problem
(SQUAREROOT) in deterministic polynomial time (by repeated squaring, since
q − 1 = #F

×
2r is odd); for a conic in the form given in Example 3.5, given up to

scaling by x2+ by2+ byz+abz2 with a, b ∈ Fq and b 
= 0, this is already sufficient
to solve Problem (EXHIBITPOINT). If q is odd, then there exists a deterministic
polynomial-time algorithm to solve (EXHIBITPOINT) over Fq by work of van
de Woestijne [37]. There also exists a probabilistic polynomial-time algorithm,
which intersects the conic with a random line and then calls (SQUAREROOT), and
there is a probabilistic polynomial-time algorithm to solve (SQUAREROOT) but no
deterministic such algorithm (without further assumption of a generalized Riemann
hypothesis). The latter algorithm is extremely efficient in practice.

Remark 4.10. It would also be interesting to study the corresponding problem
where M2(F ) is replaced by another quaternion algebra B′: in other words, to test
if two quaternion algebras B, B′ over F are isomorphic and, if so, to compute
an explicit isomorphism. Since the reduced norm is determined by the standard
involution on a quaternion algebra, and this involution is unique, it follows that if
B ∼= B′ then nrdB ∼= nrdB′ ; in fact, this is an equivalence even when restricted
to the trace zero subspace [21]. Therefore one is led to consider the problem of
determining if two quadratic forms are isometric and, if so, to compute an explicit
isometry.

Remark 4.11. More generally, one can establish a functorial bijection between
twisted similarity classes of ternary quadratic forms over a commutative ring R
and quaternion rings over R via the Clifford algebra; see work of the author
[41]. It would be interesting to investigate the algorithmic implications of this
correspondence.
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5 Splitting Fields and the Hilbert Symbol

In this section, we exhibit algorithms for solving the Problem (ISMATRIXRING)
over a local field with residue characteristic not 2: in this setting, our problem is
otherwise known as computing the Hilbert symbol.

Hilbert symbol. Let F be a field with charF 
= 2, and let a, b ∈ F×. The Hilbert
symbol is defined to be

(a, b)F =

⎧
⎨

⎩
1, if

(
a, b

F

)
∼= M2(F );

−1, otherwise.

We begin by recalling a well-known criterion [38, Corollaire 2.4].

Lemma 5.1. A quaternion algebra

(
a, b

F

)
is split if and only if b ∈ NK/F (K

×),

where K = F [i].

Here, we write K = F [i] = F ⊕ Fi to be the quadratic F -algebra generated
by i.

Proof. If NK/F (u + vi) = nrd(u + vi) = b with x, y ∈ F , then x = u + vi + j
has nrd(x) = nrd(u + vi + j) = nrd(u + vi) + nrd(j) = b − b = 0, so B is not
a division ring, so B ∼= M2(F ) by Lemma 4.1. Conversely, if B

∼−→ M2(F ), then

after conjugating by an element of GL2(F ) we may assume i �→
(
0 a

1 0

)
(rational

canonical form). The condition that ji = −ij implies that j �→
(
u −av
v −u

)
and

j2 = u2 − av2 = b = NK/F (u+ vi). �
Lemma 5.2. We have (a, b)F = (b, a)F and (a, b)F = (−ab, b)F . If u, v ∈ F×

then (a, b)F = (au2, bv2)F .

Proof. Interchanging i, j gives an isomorphism

(
a, b

F

)
∼=

(
b, a

F

)
; replacing i, j

by ui, vj gives an isomorphism

(
a, b

F

)
∼=

(
u2a, v2b

F

)
. By considering the algebra

generated by ij, j we see that

(
a, b

F

)
∼=

(
a,−ab
F

)
. �

Local Hilbert symbol. For the rest of this section, let F be a number field. For a
place v of F , let Fv denote the completion of F at v and let Rv be its valuation ring.
Let πv be a uniformizer for Fv and let kv be the residue field of Fv .

If a, b ∈ F×
v , we abbreviate (a, b)v = (a, b)Fv . We now proceed to discuss the

computability of (a, b)v , and thereby Problem (ISMATRIXRING) for local fields Fv

with char kv 
= 2.
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Remark 5.3. With Lemma 5.1 in mind, we recall the following facts about local
norms. There is a unique unramified quadratic extension Kv of Fv , obtained from
the corresonding unique such extension of residue fields. Then NKv/Fv

(K×
v ) =

R×
v × π2Z

v by Hensel’s lemma, since the norm map in an extension of finite fields is
surjective. For further details, see Neukirch [25, Corollary V.1.2] or Fröhlich [12,
Proposition 7.3].

We begin by recalling the following fundamental result concerning division
quaternion algebras over a local field [38, Théorèmes II.1.1, II.1.3].

Lemma 5.4. Let v be a noncomplex place of F . Then there is a unique quaternion
algebra Bv over Fv which is a division ring, up to Fv-algebra isomorphism.

Note that there is no division quaternion algebra over C since C is algebraically
closed. The unique division algebra overR is the classical ring of HamiltoniansH =(−1,−1

R

)
. If v is nonarchimedean, then the unique division ring over Fv is given

by Bv
∼=

(
Kv, πv
Fv

)
, where Kv is the (unique) unramified quadratic extension

of Fv .
Let B be a quaternion algebra over F . We say B is unramified (or split) at v if

B ⊗F Fv
∼= M2(Fv), i.e. Fv is a splitting field for B; otherwise (if Bv is a division

ring) we say B is ramified at v.
A place v of F is odd if either v is real or v is nonarchimedean and #kv is odd;

v is even if v is nonarchimedean and #kv is even. (A complex place is neither odd
nor even.) For an odd place v and a ∈ F×

v , we define the square symbol

{
a

v

}
=

⎧
⎪⎪⎨

⎪⎪⎩

1, if a ∈ F×2
v ;

−1, if a 
∈ F×2
v and ordv(a) is even;

0, if a 
∈ F×2
v and ordv(a) is odd.

Here we set the convention that v is a real place then πv = −1 is a uniformizer for

Fv
∼= R and that a = (−1)ordv(a)|a|; in other words,

{
a

v

}
= 1 or 0 according as

a > 0 or a < 0.

Suppose v is nonarchimedean. If ordv(a) = 0, then

{
a

v

}
=

(a
v

)
is the usual

Legendre symbol (see (5.7) below); in fact,

{
a

v

}
= 0 if and only if ordv(a) is odd.

Note that the square symbol is not multiplicative, for example

{
π2
v

v

}
= 1 
= 0 =

{
πv
v

}2

; it is multiplicative when restricted to the subgroup of elements with even

valuation, however.
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Finally, we note that

{
a

v

}
= −1 if and only if Fv(

√
a) is an unramified field

extension of Fv and

{
a

v

}
= 0 if and only if Fv(

√
a) is ramified; when v is real, we

follow the convention that C is considered to be ramified over R.

Proposition 5.5. Let v be an odd place of F and let a, b ∈ F×
v . Then (a, b)v = 1 if

and only if

{
a

v

}
= 1 or

{
b

v

}
= 1 or

{−ab
v

}
= 1 or

{
a

v

}
=

{
b

v

}
=

{−ab
v

}
= −1.

Proof. First, suppose v is archimedean. Then (a, b)v = 1 if and only if v(a) > 0 or

v(b) > 0 if and only if

{
a

v

}
= 1 or

{
b

v

}
= 1. So we suppose v is nonarchimedean.

Let Bv =

(
a, b

Fv

)
, and let Kv = Fv[i], where we recall i2 = a. Since (a, b)v =

(b, a)v = (a,−ab)v, the statement is symmetric in interchanging a, b and replacing

b by −ab. If one of

{
a

v

}
= 1 or

{
b

v

}
= 1 or

{−ab
v

}
= 1, then we may suppose

{
a

v

}
= 1; consequently, Kv is not a field, so Bv is not a division ring and by

Lemma 4.1 we have (a, b)v = 1. We cannot have

{
a

v

}
=

{
b

v

}
=

{−ab
v

}
= 0.

Thus we have only to consider the case

{
a

v

}
= −1.

If

{
b

v

}
= −1, then since Kv is the unique unramified quadratic extension of Fv

and ordv(b) is even, we have b ∈ NKv/Fv
(K×

v ) by Remark 5.3, so by Lemma 5.1

we have that Bv is split so (a, b)v = 1. Otherwise,

{
b

v

}
= 0. But now Fv[i] = Kv

is the unramified quadratic extension of Fv so b 
∈ NKv/Fv
(K×

v ) and thus Bv is a
division ring by Lemma 5.1, so (a, b)v = −1. �

Corollary 5.6. Let a, b ∈ Rv\{0} and suppose a ∈ R×
v . Then (a, b)v =

(a
v

)ordv b

.

Representing local fields. When discussing computability for local fields, we
immediately encounter the following issue: a local field Fv is uncountable, so it
is not computable.

One has at least two choices for overcoming this obstacle. One possibility is
to use exact local field arithmetic, where one includes with the specification of an
element its precision. One then requires the output of algorithms to be a continuous
function of the input and to be correct with whatever output precision is given.
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This way of working with R (or C) also goes by the name exact real (or complex)
arithmetic. This model has several advantages. In practice, for many applications
this works extremely well: if more precision is required in the output, one simply
gives more precision in the input. Consequently this model is also very efficient.
Although this method does not realize a local field F as a computable field, all of
the algorithms we discuss in this article work well in this model for Fv.

A second method is simply to work in a computable subfield F of the local
field Fv . Indeed, any subfield F which is countably generated over its prime field is
computable. In this article, we will take this approach; it is more appropriate for the
theoretical discussion below (even as it will be less efficient in practice).

With this discussion in mind, we represent a local field as follows. First, let F
be a number field. Let v be a place of F . If v is archimedean, then it is specified by
some ordering of the roots of f in C. If v is nonarchimedean, then v is specified by
a prime ideal in the ring of integers in F . We can thereby compute a uniformizer
πv ∈ F for the place v by the Chinese remainder theorem.

We then represent the local field as F alg
v = F ∩ Fv , an algebraic closure of

F in Fv . Given a (monic) polynomial g with coefficients in F , there exists a
deterministic algorithm which returns the roots of g in Fv (as elements of F alg

v ).
In the nonarchimedean case, Hensel’s lemma provides the essential ingredient to
show that one can (efficiently) compute with F alg

v . With this choice, by computing
in the subfield generated by any element x ∈ F alg

v we can compute the discrete
valuation ordv : F → Z ∪ {∞} as well as the reduction map Rv → kv modulo πv .
When v is real, we recall that ordv(a) = 0, 1 according as a > 0 or a < 0, and so
the computability of ordv follows from well-known algorithms for exact real root
finding.

The above discussion applies equally well to the case of global function fields;
see Remark 1.5. For more on computably algebraically closed fields, we refer again
to Stoltenberg-Hansen and Tucker [34].

Computing the local Hilbert symbol. To conclude, we discuss the computability
of the Hilbert symbol for odd places using Proposition 5.5. We use Proposition 5.5
and the correspondence above to relate Problem (HASPOINT) to the problem of
computing the square symbol.

Suppose Fv is archimedean. The Hilbert symbol for Fv
∼= C is trivial. If v is real,

then

{
a

v

}
= 1, 0 according as a > 0 or a < 0, so by the correspondence above

this solves (HASPOINT) for these fields. It follows that Problem (EXHIBITPOINT)
is equivalent to Problem (SQUAREROOT), and there is a deterministic algorithm to
solve this problem in the computable subfield F alg

v = F ∩ R by hypothesis.
Next, suppose Fv is nonarchimedean and that v is odd. Then we can evaluate{
a

v

}
by simply computing ordv(a) = e; if e is odd then

{
a

v

}
= 0, whereas if e is

even then

{
a

v

}
=

(a0
v

)
where a0 = aπ−e

v ∈ Rv and
(a0
v

)
=

(
a0
p

)
is the usual

Legendre symbol, defined by
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(
a0
p

)
=

⎧
⎪⎪⎨

⎪⎪⎩

0, if a0 ≡ 0 (mod p);

1, if a0 
≡ 0 (mod p) and a0 is a square modulo p;

−1, otherwise.

. (5.7)

The Legendre symbol can be computed in deterministic polynomial time by Euler’s
formula

(
a0
p

)
≡ a(q−1)/2

0 (mod p)

using repeated squaring, where q = #kv .
To solve Problem (HASPOINT), by Proposition 5.5 we have two cases. In the first

case, where one value of the square symbol is equal to 1, we reduce to Problem
(SQUAREROOT) over F alg

v which we can solve by the above. Otherwise, if all
three symbols in Proposition 5.5 are −1, then also by Hensel’s lemma, Problem
(EXHIBITPOINT) overF alg

v is reducible to Problem (EXHIBITPOINT) over kv , which
was discussed at the end of the previous section.

If we restrict our input to a global field F , then a runtime analysis of the above
method yields the following.

Proposition 5.8. Let F be a number field and let v be an odd place ofF . Then there
exists a deterministic polynomial-time algorithm to evaluate the Hilbert symbol
(a, b)v for a, b ∈ F×.

Remark 5.9. By Hilbert reciprocity, we have

∏

v

(a, b)v = 1 (5.10)

whenever F is a global field and a, b ∈ F×. Consequently, if one can compute all
but one local Hilbert symbol (a, b)v , then the final symbol can be recovered from
the above relation. In particular, this means for a number field F , if there exists a
unique prime above 2 (e.g. when F = Q) then one can evaluate (a, b)2 in this way.

6 The Even Local Hilbert Symbol

In this section, we discuss the computation of the local Hilbert symbol for an even
place of a number field F . The main result of this section is the following theorem.

Theorem 6.1. Let F be a number field and let v be a place of F . Then there exists
a deterministic polynomial-time algorithm to evaluate the Hilbert symbol (a, b)v for
a, b ∈ F×.
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If v is complex, this theorem is trivial; if v is an odd place of F then Theorem 6.1
follows from Proposition 5.8. So suppose that v is an even place of F , i.e. #kv is
even. Let ZF be the ring of integers of F and let p be the prime of ZF corresponding
to v.

We first give an algorithm which gives a solution to an integral norm form via a
Hensel-like lift.

Algorithm 6.2. Let p an even prime with ramification index e = ordp 2, and let
a, b ∈ F be such that ordp(a) = 0 and ordp(b) = 1. This algorithm outputs a
solution to the congruence

1− ay2 − bz2 ≡ 0 (mod p2e)

with y, z ∈ ZF /p
2e and y ∈ (ZF /p)

×.

1. Let f ∈ Z≥1 be the residue class degree of p (so that #(ZF /p) = 2f ) and let
q = 2f . Let π be a uniformizer at p.

2. Initialize (y, z) := (1/
√
a, 0).

3. Let N := 1−ay2− bz2 ∈ ZF /4ZF and let t := ordp(N). If t ≥ 2e, return y, z.
Otherwise, if t is even, let

y := y +

√
N

aπt
πt/2

and if t is odd, let

z := z +

√
N

bπt−1
π�t/2.

Return to Step 3.

In this algorithm, when we write
√
u for u ∈ (ZF /p

2e)× we mean any choice of
a lift of

√
u ∈ (ZF /p)

× to ZF /p
2e.

Proof of correctness. The key calculation in Step 3 is as follows: if t is even, we
make the substitution

1− a(y + uπt/2)2 − bz2 = N − 2auπt/2y − au2πt ≡ 0 (mod pt+1)

and solve for u. Note that since t < 2e we have ordp(2π
t/2) = e + t/2 ≥ t + 1;

solving we get u2 ≡ N/(aπt) (mod p) as claimed. The case where t is odd is
similar: we have

1− ay2 − b(z +
√
N/bπt−1π�t/2)2

= N − 2bz
√
N/bπt−1π�t/2 − b(N/bπt−1)πt−1

≡ N −N ≡ 0 (mod pt+1)
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and the middle term above vanishes modulo pt+1 since t < 2e implies e + 1 +
�t/2� = e+ 1 + (t− 1)/2 ≥ t+ 1. �
Remark 6.3. Alternatively, we can compute a solution modulo 2 directly. The map

(ZF /p
e)2 → ZF /2ZF

(y, z) �→ 1− ayq − bzq

is ZF /p ∼= Fq-linear since 2 ≡ 0 (mod pe). Let (y0, z0) be in the kernel of this

map. Letting (x, y, z) := (1, y
q/2
0 , z

q/2
0 ), we see 1− ay2 − bz2 ≡ 0 (mod 2).

Remark 6.4. This is better than the algorithm provided in Simon’s thesis [35]
because we do not need to make a brute force search, which might not run in
polynomial time.

We reduce to the above Hensel lift by the following algorithm.

Algorithm 6.5. Let p an even prime with ramification index e = ordp 2 and let
a, b ∈ F× be such that v(a) = 0 and v(b) ∈ {0, 1}. This algorithm outputs y, z, w ∈
ZF /p

2e such that

1− ay2 − bz2 + abw2 ≡ 0 (mod p2e)

and y ∈ (ZF /p)
×. Let π be a uniformizer for p.

1. If v(b) = 1, return the output (y, z, 0) of Algorithm 6.2 with input a, b.
2. Suppose a ∈ (ZF /p

e
ZF )

×2 and b ∈ (ZF /p
e
ZF )

×2. Let (a0)2a ≡ 1 (mod pe)
and (b0)

2b ≡ 1 (mod pe). Return

y := a0, z := b0, w := a0b0.

3. Swap a, b if necessary so that a ∈ (ZF /p
e
ZF )

× \ (ZF /p
e
ZF )

×2. Let t be the
largest integer such that a ∈ (ZF /p

t)×2 but a 
∈ (ZF /p
e)×2. Then t is odd;

write a = a20 + πtat with a0, at ∈ ZF . Let y, z be the output of Algorithm 6.2
with input a′ := a, b′ := −πat/b. Return

y′ :=
1

a0
, z′ :=

π�t/2

a0z
, w′ :=

yπ�t/2

a0z

(reswapping if necessary).

Proof of correctness. In Step 2, writing aa20 = 1 + 2a′ and bb20 = 1 + 2b′ with
a′, b′ ∈ ZF we indeed have

1− a(a0)2 − b(b0)2 + ab(a0b0)
2

= 1− (1 + 2a′)− (1 + 2b′) + (1 + 2a′)(1 + 2b′) ≡ 0 (mod p2e)

since 4 ∈ p2e.
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Now we discuss Step 3. Write a = a0 + a1π+ · · ·+ ae−1π
e−1 with ai ∈ ZF /p.

Then indeed a ∈ (ZF /p
e)×2 if and only if and ai = 0 for i odd by the freshperson’s

dream, so in particular t < e is odd. Now suppose from Algorithm 6.2 we have

1− ay2 + (πat/b)z
2 ≡ 0 (mod p2e).

Note ordp(z) ≤ �t/2� = (t − 1)/2 since otherwise a ∈ (ZF /p
t+1)×2, a

contradiction. Multiplying by −bπt−1/z2 = −b(π�t/2/z)2 gives

−b(π�t/2/z)2 + ab(yπ�t/2/z)2 − πtat ≡ 0 (mod p2e)

so

a20 − (a20 + πtat)− b(π�t/2/z)2 + ab(yπ�t/2/z)2 ≡ 0 (mod p2e)

so since a = a20 + πtat, dividing by a20 we have the result. �
We say that π−1 ∈ F is an inverse uniformizer for p if ordp(π−1) = −1 and

ordq(π
−1) ≥ 0 for all q 
= p.

We are now prepared to evaluate the even Hilbert symbol.

Algorithm 6.6. Let B =

(
a, b

F

)
be a quaternion algebra with a, b ∈ F×, and let

p be an even prime of F . This algorithm returns the value of the Hilbert symbol
(a, b)p.

1. Scale a, b if necessary by an element of Q×2 ∩ Z so that a, b ∈ ZF .
2. Let π−1 be an inverse uniformizer for p. Let a := (π−1)2�ordp(a)/2a and b :=

(π−1)2�ordp(b)/2b. If ordp a = ordp b = 1, let a := (π−1)2(−ab). Swap if
necessary so that ordp a = 0.

3. Call Algorithm 6.5, and let i′ := (1 + yi+ zj +wij)/2. Let f(T ) = T 2 − T +
nrd(i′) be the minimal polynomial of i′. If f has a root modulo p, return 1.

4. Let j′ := (zb)i− (ya)j and let b′ := (j′)2. If ordv b′ is even, return 1, otherwise
return −1.

Proof of correctness. If in Step 2 we have a root modulo p, then by Hensel’s lemma,
f has a root t ∈ Fp, hence t−i′ is a zero divisor and we return 1 correctly. Otherwise,
by Lemma 5.4, we have Kp = Fp[i

′] is the unramified field extension of Fp. We

compute that trd(j′) = trd(i′j′) = 0, so Bp
∼=

(
Kp, b

′

Fp

)
and Bp is split if and

only if ordp b′ is even. �
Note that the above algorithms run in deterministic polynomial time.

Example 6.7. Let F = Q(u) where u = 8
√
500. Then 2ZF = (2, 8

√
500)4 = p4, so

ZF,p is a ramified extension of Z2 of residue degree 2 and ramification degree e = 4.
Using Algorithm 6.6, we compute (a, b)p where b = u2 + 40 and a = u2 + u+ 1.
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In Step 2, we compute the inverse uniformizer π−1 = u3/10 satisfying the
polynomial T 8 − 5/4. We compute ordp(a) = 0 and ordp(b) = 2. So we let
b := (π−1)2b = 1

5 (2u
6 + 25) with now ordp(b) = 0.

In Step 3, we call Algorithm 6.5. We use the uniformizer π = u. We compute
that b ≡ 1 (mod pe) so b ∈ (ZF /p

e
ZF )

×2 but a ≡ 1 + π + π2 (mod pe). So we
write a = a0 + πtat with a0 = 1 and at = u+ 1.

We then call Algorithm 6.2 with input a′ := a and b′ := −πat/b. We initialize
(y, z) = (1, 0). In Step 3 of this algorithm, we have N := 1 − (1 + u + u2) =
−(u + u2) with valuation t := 1. We let z :=

√
N/b = 1 and return; now N :=

1−ay2−bz2 has valuation t := 9 > 2e, so we exit the loop with output y = z = 1.
We then exit Algorithm 6.5 with y′ := 1/a0 = 1, z′ := π�t/2�/(a0z) = 1,

and w′ := yπ�t/2�/(a0z) = 1. We verify that 1 − a(y′)2 − b(z′)2 + ab(w′)2 =
1− a− b+ ab ≡ 0 (mod 4).

Returning to Algorithm 6.6, we let i′ := (1+i+j+ij)/2 and compute nrd(i′) =
1/10(w7 + 10w2 + 10w+ 500) ≡ 0 (mod p), so f(T ) = T 2 − T + nrd(i′) has a
root modulo p, and we return (a, b)p = 1.

Computing the Jacobi symbol. An interesting consequence of the above algo-
rithm is that one can evaluate the Jacobi symbol in deterministic polynomial time
in certain cases analogous to the way (“reduce and flip”) that one computes this
symbol using quadratic reciprocity in the case F = Q. (See Lenstra [23] for an
alternative approach which works in greater generality.)

We extend the definition of the Legendre symbol (5.7) to a symbol
(a
b

)
with b

odd by multiplicativity, and we define
(a
b

)
=

(
a

bZF

)
.

We write v | 2∞ for the set of finite even places and real archimedean places
of F .

Proposition 6.8. Let a, b ∈ ZF satisfy aZF + bZF = ZF , with b odd, and suppose
a = a0a1 with a1 odd. Then

(a
b

)(
b

a1

)
=

∏

v|2∞
(a, b)v.

Proof. By Hilbert reciprocity (5.10), we have

∏

v

(a, b)v = 1 =
∏

v|2∞
(a, b)v

∏

p�2

(a, b)p.

By Lemma 5.5, if p is odd and ordp(a) = ordp(b) = 0 then (a, b)p = 1. Therefore

∏

p|a1b

(a, b)p =
∏

v|2∞
(a, b)v.
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For p odd, if ordp a1 > 0 then ordp b = 0 by assumption and thus

(a, b)p =

(
b

p

)ordp a

=

(
b

p

)ordp a1

.

Similarly if ordp b > 0 then (a, b)p =
(

a
p

)ordp b

, hence

∏

p|a1b

(a, b)p =
(a
b

)(
b

a1

)
.

The result follows. �
A Euclidean function on F is a map N : ZF \ {0} → Z≥0 such that for all

a, b ∈ ZF we have N(ab) = N(a)N(b) and there exists q, r ∈ ZF such that
a = qb+ r with either r = 0 or N(r) < N(b). A Euclidean function is computable
if given a, b, the elements q, r as above are computable.

Algorithm 6.9. Let F be a number field with a computable Euclidean function N

and let a, b ∈ ZF \ {0}. This algorithm returns the Jacobi symbol
(a
b

)
.

1. Initialize z = 1.
2. If bZF = ZF , return z. Otherwise, compute q, r ∈ ZF such that a = qb + r. If
r = 0, return 0. Let a := r. Write a = a0a1 with a1 ∈ ZF odd.

3. Multiply z by
∏

v|2,∞(a, b)v , computed using Algorithm 6.6. Return to Step 2,
with (a, b) = (b, a1).

Proof of correctness. The division algorithm associated to N implies that ZF has
unique factorization, so we can indeed write a = a0a1 with a1 odd. The algorithm
terminates because in Step 4 we have N(a1) ≤ N(a) = N(r) < N(b). �
Remark 6.10. For any fixed F , one can precompute a table of the values (a, b)p for
a, b in appropriate residue classes modulo an even prime p; this is what is usually
done for F = Q, for example.

Relationship to conics. In view of the results in Sect. 4, we now relate the above
algorithms to the geometric problem of rational points on conics.

Theorem 6.11 (Hasse-Minkowski). A quaternion algebra B has B ∼= M2(F ) if
and only if B is unramified at all places.

Equivalently, a conic C has C(F ) 
= ∅ if and only if C(Fv) 
= ∅ for all places v
of F . For a proof of the Hasse-Minkowski Theorem, see Lam [21], O’Meara [26],
or Vignéras [38, Sect. III.3.1]

Proposition 6.12. Problem (ISMATRIXRING) is deterministic polynomial-time re-
ducible to the problem of factoring ideals in ZF .
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Proof. Given a quaternion algebra B =

(
a, b

F

)
, we have Bv

∼= M2(Fv) for all

v � 2ab∞, and by factoring by the above algorithms for each v | 2ab∞ we check if
Bv
∼= M2(Fv) by computing the Hilbert symbol (a, b)v in deterministic polynomial

time. �

7 Maximal Orders

In this section, we consider some integral versions (for orders) of the above
algorithms relating quadratic forms and quaternion algebras. Our main result relates
identifying the matrix ring to computing a maximal order. Throughout this section,
let F be a number field, let ZF be its ring of integers, and letO be a (ZF -)order in a
quaternion algebraB over F . For further reading, see Reiner [28] or Vignéras [38].

Computing maximal orders, generally. There exists a deterministic algorithm to
compute the ring of integers ZF (see Cohen [6, Sect. 6.1], [7, Algorithm 2.4.9]): in
fact, computing ZF is deterministic polynomial-time equivalent to the problem of
finding the largest square divisor of a positive integer [5, 22]; no polynomial-time
algorithm is known for this problem (though see work of Buchmann and Lenstra [4]
for a way of “approximating” ZF ).

Example 7.1. If F = Q(
√
D), then R = Z⊕Z(d+

√
d)/2 whereD = df2 and f2

is the largest square divisor of D subject to the requirement that d ≡ 0, 1 (mod 4).

We consider in this section the noncommutative analogues of this problem. We
have the following general result due to Ivanyos and Rónyai [16, Theorem 5.3],
which was rediscovered by Nebe and Steel [24]; see also Friedrichs [11].

Theorem 7.2. There exists an explicit algorithm which, given a semisimple F -
algebraB, computes a maximal orderO ⊂ B. This algorithm runs in deterministic
polynomial time given oracles for the problems of factoring integers and factoring
polynomials over finite fields.

At present, it is not known if there exist deterministic polynomial-time algorithms
to solve either of these latter two problems. Indeed, we have already noted that
computing a maximal order in F is as hard as computing the largest squarefree
divisor of a positive integer; therefore, it is reasonable to expect that the problem
for a noncommutative algebra B is no less complicated. (See a more precise
characterization of this complexity at the end of this section.)

We do not discuss the algorithm exhibited in Theorem 7.2; rather, we consider
the special case of quaternion algebras, and by manipulations with quadratic forms
we obtain a simpler algorithm.

Discriminants. We begin by analyzing the following problem.



Identifying the Matrix Ring 287

Problem 7.3 (ISMAXIMAL). Given an order O ⊂ B, determine if O is a maximal
order.

This problem has a very simple solution as follows. The discriminant D(B) of
B is the ideal equal to the product of all primes of ZF where B is ramified:

D(B) =
∏

p ramified

p.

On the other hand, the discriminant disc(O) of an order O ⊂ B is the ideal
generated by the set

{det(trd(xixj))i,j=1,...,4 : x1, . . . , x4 ∈ O}.

The discriminant disc(O) is the square of an ideal in ZF , and the reduced
discriminant d(O) of O is the ideal satisfying d(O)2 = disc(O).

Given a pseudobasis (ai, xi) forO we have

disc(O) = (a1 · · · a4)2 det(trd(xixj))i,j=1,...,4.

Remark 7.4. Although we will not use this in the sequel, the reduced discriminant
can in fact be computed more simply: if O = ZF ⊕ ai⊕ bj ⊕ ck then

d(O) = abc trd((ij − ji)k).

Lemma 7.5. An orderO ⊂ B is maximal if and only if d(O) = D(B).

Proof. We give only a sketch of the proof. For a prime p of ZF , let ZF,p be the
completion of ZF at p and Fp the completion of F at p; write Op = O ⊗ZF ZF,p

and similarly Bp = B ⊗F Fp.
We have d(O) = D(B) if and only if d(O)p = d(Op) = D(Bp) = D(B)p for

all primes p, and the order O is maximal if and only if Op is maximal for every
prime p of ZF (see [28, 11.2]). So it suffices to note that if p is unramified then
any maximal order of Bp has discriminant ZF,p and if p is ramified then the unique
maximal order of Bp has reduced discriminant pZF,p [28, Theorem 14.9]. �

Putting these together with the computation of the local Hilbert symbol, we have
shown that one can solve Problem (ISMAXIMAL) in deterministic polynomial time
given an oracle to factor integers and polynomials over finite fields, since this allows
the factorization of the discriminant D(B) [6, Proposition 6.2.8, Algorithm 6.2.9];
note that this need only be done once for a quaternion algebra B.

Computing maximal orders. We now turn to the problem of computing a maximal
order in a quaternion algebra.

Problem 7.6 (ALGEBRAMAXORDER). Given a quaternion algebra B over F ,
compute a maximal orderO ⊂ B.
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A more general problem is as follows.

Problem 7.7 (MAXORDER). Given an order Λ ⊂ B in a quaternion algebra B
over F , compute a maximal orderO ⊃ Λ.

One immediately reduces from the former to the latter by exhibiting any order
in B, as follows. (First, we compute ZF as above; this can be considered a

precomputation step if F is fixed.) If B =

(
a, b

F

)
, we may scale a, b by a nonzero

square integer so that a, b ∈ ZF , and then

Λ = ZF ⊕ ZF i⊕ ZF j ⊕ ZF ij (7.8)

is an order, where i, j are the standard generators for B.
An order O is p-maximal for a prime p if Op = O ⊗ZF ZF,p is maximal (as

an ZF,p-order). Note that if ordp(d(Op)) = 0 then necessarily O is p-maximal. To
solve Problem (MAXORDER), we recursively compute a p-maximal order for every
prime p | d(O), proceeding in two steps.

We say an order O is p-saturated if nrd |Op has a normalized basis 1, i, j, k (see
Proposition 3.10) such that each atomic block has valuation at most 1; we then say
that 1, i, j, k is a p-saturated basis for O.

We compute a p-saturated order in the following straightforward way. Recall that
π−1 ∈ F is an inverse uniformizer for p if ordp(π−1) = −1 and ordq(π

−1) ≥ 0
for all q 
= p.

Algorithm 7.9. Let
Λ = ZF ⊕ ai⊕ bj ⊕ ck ⊂ B

be an order and let p be prime. This algorithm computes a p-saturated orderO ⊃ Λ
and a p-saturated basis forO.

1. Choose d ∈ a such that ordp(d) = ordp(a) and let i := di; compute similarly
with j, k. Let O := Λ.

2. Run Algorithm 3.12 over the localization of ZF at p with input the quadratic
form nrd |O and the basis 1, i, j, k; let 1, i∗, j∗, k∗ be the output. Let c ∈ ZF be
such that ordp c = 0 and such that ci∗ ∈ O, and let i := ci∗; compute similarly
with j, k.

3. Let π−1 be an inverse uniformizer for p. For each atomic form Q in nrdO, let
e be the valuation of Q, and multiply each basis element in Q by (π−1)�e/2.
Return O := Λ + (ZF i⊕ ZF j ⊕ ZF k) and the basis 1, i, j, k.

Proof of correctness. In Step 3, we are asserting that the output of Algorithm 3.12
leaves 1 as the first basis element. Indeed, we note that ordp trd(j) ≤ ordp
trd(i(ij)) since trd(i(ij)) = trd(i)2 − trd(j) nrd(i) and similarly ordp trd(i) ≤
ordp trd((ij)j).
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Let 1, i, j, k be the basis computed in Step 3. By definition, this basis is
p-saturated; we need to show that O is indeed an order. But O is an order if and
only if Oq is an order for all primes q, and we have Oq = Λq for all primes q 
= p.

For any x, y ∈ B we have xy + yx = trd(y)x + trd(x)y − T (x, y), so if O is
an order then O + ZFx is multiplicatively closed if and only if T (x, y) ∈ ZF for
all y ∈ O. We have T (x, y) = 0 if x, y are orthogonal, and if x, y are a basis for an
atomic block Q then by definition the valuation of T (x, y) is at least the valuation
of Q and so we can multiply each by (π−1)�e/2, preserving integrality. �

After p-saturating, one can compute a maximal order as follows.

Algorithm 7.10. Let Λ be an order and let p be prime. This algorithm computes a
p-maximal orderO ⊃ Λ.

1. Compute a p-saturated order O ⊃ Λ and let 1, i, j, k be a p-saturated basis for
O. Let π−1 be an inverse uniformizer for p.

2. Suppose p is odd. Swap i for j or k if necessary so that a := i2 has ordp(a) = 0.
Let b := j2. If ordp b = 0, return O. Otherwise, if ordp b = 1 and (a/p) = 1,
solve

x2 ≡ a (mod p)

for x ∈ ZF /p. Adjoin the element π−1(x− i)j to O, and returnO.
3. Otherwise, p is even. Let t := trd(i), let a := − nrd(i), and let b := j2.

(a) Suppose ordp t = 0. If ordp b = 0, returnO. If ordp b = 1 and T 2− tT +a =
0 has a root x modulo p, and returnO + ZFπ

−1(x− i)j.
(b) Suppose ordp trd(i) > 0. Let y, z, w be the output of Algorithm 6.5 with

input a, b. Let

i′ := (π−1)e(1 + yi+ zj + wij).

Adjoin i′ to O, and return to Step 1.

Proof of correctness. At every step in the algorithm, for each prime q 
= p the order
Oq does not change, so we need only verify thatOp is indeed a maximal order.

In Step 2, we have that b is a uniformizer for p, that d(Op) = 4abZF,p. If
ordp(b) = 0 then ordp d(Op) = 0 so O is indeed maximal. Otherwise, we have

d(Op) = p and Bp
∼=

(
Kp, b

Fp

)
where Kp = Fp[i]. We conclude that Bp is a

division ring (and hence Op is maximal) if and only if (a/p) = −1. If (a/p) = 1
and j′ = π−1(x − i)j, then 1, i, j′, ij′ form the ZF,p-basis for a maximal order,
since (j′)2 = (π−1)2(x2 − a)b ∈ ZF,p and j′i = −ij′.

In Step 3, first note that ij is also orthogonal to 1, i: we have i orthogonal to j so
trd(ij) = 0 so ij is orthogonal to 1, and similarly trd(iji) = trd(nrd(i)j) = 0.

In particular, we have Bp =

(
Kp, b

Fp

)
where Kp = Fp[i]. By a comparison of

discriminants, using the fact that the basis is normalized, we see that 1, i, j, ij is a
p-saturated basis for O as well, so without loss of generality we may take k = ij.
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Suppose first that ordp trd(i) = 0, so we are in Step 3a. If ordp b = 0, then
ordp d(Op) = 0 so Op is maximal. If ordp b > 0, then since the basis is p-saturated
we have ordp b = 1. Thus as in the case for p odd, we have Bp is a division ring if
and only if Kp is not a field, and as above the adjoining the element π−1(x − i)j
yields a maximal order.

So suppose we are in Step 3b, so ordp trd(i) > 0. Since 1, i, j, k is normalized,
we have ordp trd(i) = ordp T (1, i) ≤ ordp T (j, k). Adjoining i′ toO gives a ZF,p-
module with basis 1, i′, j, i′j since y ∈ (ZF /p)

×; adjoining j′ gives a module with
basis 1, i′, j′, i′j′ for the same reason. We verify that Op after these steps is indeed
an order: we have trd(i′) = 2(π−1)e ∈ ZF,p and nrd(i′) = (π−1)2e(1 − ay2 −
bz2 + abw2) ∈ ZF,p by construction, so at least ZF,p[i] = ZF,p ⊕ ZF,pi is a ring.
Similarly we have (j′)2 = b′ ∈ ZF,p. Finally, we have trd(i′i) = 2(π−1)eya and
trd(i′j) = 2(π−1)ezb, so it follows that trd(i′j′) = 0, and hence j′i′ = −i′j′ =
−i′j′ − trd(i′)j′, so indeed we have an order. �
Remark 7.11. One must really treat the even and odd prime cases separately.

Consider, for example, F = Q, and the quaternion algebra B =

(−3, 5
Q

)
. Then

we have the maximal orders Z[(1 + i)/2] ⊂ Q(i) ∼= Q(
√−3) and Z[(1 + j)/2] ⊂

Q(j) ∼= Q(
√
5), but we find that

(
1 + j

2

)(
1 + i

2

)
=

(
1− i
2

)(
1 + j

2

)
+
ij

2
,

which is not integral (since ij/2 has norm 15/4).

Remark 7.12. In the proof of correctness for Algorithm 7.10, in each case where p

is ramified inB we have in fact writtenBp
∼=

(
Kp, π

Fp

)
whereKp is the unramified

extension of Fp. The reader will note the similarity between this algorithm and the
algorithm to compute the Hilbert symbol: the former extends the latter by taking a
witness for the fact that the algebra is split, namely a zerodivisor modulo p, and uses
this to compute a larger order (giving rise therefore to the matrix ring).

Combining these two algorithms, we have the following immediate corollary.

Corollary 7.13. There exists an algorithm to solve (EXHIBITMATRIXRING) for
orders over ZF,p.

(We recall the discussion in Sect. 4 for the representation of local fields and
rings.) In other words, if O ⊂ B is an order in a quaternion algebra B over a
number field F and p is prime of ZF which is unramified in B, then there exists an
algorithm to compute an explicit embeddingO ↪→ M2(Op).

Putting these two algorithms together, we have proved the following theorem.

Theorem 7.14. Problem (MAXORDER) is deterministic polynomial-time reducible
to the problem of factoring ideals in ZF .
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Proof. Given any order Λ, we factor its discriminant d(Λ), and for each prime
p | d(Λ), we compute a p-saturated order containing Λ from Algorithm 7.9 and a
p-maximal orderO containing it using Algorithm 7.10. �
Complexity analysis. Given Theorem 7.14, we prove the following result which
characterizes the abstract complexity class of this problem, following a hint of
Ronyai [30, Sect. 6].

Theorem 7.15. Problem (ALGEBRAMAXORDER) for any fixed number field F is
probabilistic polynomial-time equivalent to the problem of factoring integers.

To prove the theorem, we will use two lemmas. The first lemma is a standard
fact.

Lemma 7.16. The problem of factoring integral ideals a of an arbitrary number
field is probabilistic polynomial-time equivalent to the problem of factoring integers.

Proof. Suppose a is an integral ideal of F . After factoring the absolute discriminant
dF of F , we can in deterministic polynomial time compute the ring of integers ZF

of F as above. Now let a be an ideal with norm N(a) = a. After we factor a,
for each prime p | a, we decompose pZF =

∏
i p

ei
i into primes by a probabilistic

polynomial-time algorithm due to Buchmann and Lenstra (see Cohen [6, Algorithm
6.2.9]): this algorithm uses a probabilistic algorithm to factor polynomials over
a finite field, such as the Cantor-Zassenhaus algorithm; see von zur Gathen and
Gerhard [13, Theorem 14.14] or Cohen [6, Sect. 3.4]. (In fact, for our applications,
it suffices to have an algorithm to compute a square root in a finite field, for which
we may use the algorithm of Tonelli and Shanks (see Cohen [6, Sect. 1.5.1])).

From this list of primes we easily obtain the factorization of a. Conversely, if
one has an algorithm to factor ideals, then one may factor aZF into primes and
computing norms we recover the prime factorization of a over Z. �
Remark 7.17. Deterministically, already the problem of finding a nonsquare mod-
ulo a prime p is difficult; one unconditional result known is that the smallest
quadratic nonresidue of a prime p is of size exponential in log p; under condition
of a generalized Riemann hypothesis, one can find a quadratic nonresidue which is
of polynomial size in log p.

We will also make use of one other lemma.

Lemma 7.18. Let a be an ideal of ZF which is odd, not a square, and not a prime
power. Let

S =

{
b ∈ (ZF /a)

× : there exist pe, qf ‖ a with

(
b

p

)e

= −1 and

(
b

q

)f

= 1

}
.

Then #S ≥ 1

2
#(ZF /a)

×.
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Proof. For an ideal b, let Φ(b) = #(ZF /b)
×. First consider the case where a =

peqf is the product of two prime powers. Without loss of generality, we may assume
e is odd. If f is even, then b ∈ S if and only if (b/p) = −1, so #S = Φ(pe)/2 ·
Φ(qf ) = Φ(a)/2. If f is odd, then #S = 2(Φ(pe)/2)(Φ(qf )/2) = Φ(a)/2.

To conclude, write a = peqfb with b coprime to pq and e odd. Then by the
preceding paragraph #S ≥ (1/2)Φ(peqf)Φ(b) = Φ(a)/2. �
Proof of Theorem 7.15. Since one can factor ideals in probabilistic polynomial time
given an algorithm to factor integers by Lemma 7.16, we may compute a maximal
order as in the previous section as the resulting computations run in (deterministic)
polynomial time.

Now we prove the converse. Suppose we have an algorithm to solve Problem
(ALGEBRAMAXORDER). Let a ∈ Z>0 be the integer to be factored, which we may
assume without loss of generality is odd, not a prime power, and not a square. We
can in constant time (for fixed F ) factor the absolute discriminant dF , so we may
also assume gcd(a, dF ) = 1. It follows that the ideal aZF is also odd, not a prime
power, and not a square.

We compute a random b ∈ ZF /aZF with b 
= 0. Since N(aZF ) = ad where
d = [F : Q], if N(bZF ) is not a power of a then dividing gcd(ad,N(b)) by powers
of a we obtain a factor of a. Otherwise, a = aZF + bZF is a proper divisor of aZF ,
and we repeat, computing a random b ∈ ZF /a—in at most d steps, we will either
factor a or find an element b such that aZF + bZF = ZF . Note d depends only on
F and not on B, so we find such a b in probabilistic polynomial time.

By Lemma 7.18, we can find in probabilistic polynomial time b ∈ (ZF /aZF )
×

such that pe, qf ‖ a with (b/p)e = −1 and (b/q)f = 1, say. Let B =

(
a, b

F

)
. By

hypothesis, calling an algorithm to solve (ALGEBRAMAXORDER) we may compute
a maximal orderO ⊂ B.

We claim that p | d(O) but q � d(O). Assuming this claim, we have that
gcd(N(d (O)), a) is a proper factor of a, and the proof is complete.

First we prove that p | d(O). Since p is prime to dF , we know that p is unramified
in F , and since pe ‖ aZF with e odd, the extension F (

√
a)/F is ramified at p.

Since (b/p) = −1, by Corollary 5.5, the algebra B is ramified at p. Therefore by
Lemma 7.5, p divides the discriminant d(O).

Now we show that q � d(O). If f is even, since qf ‖ aZF , we have thatF (
√
a)/F

is unramified at q; since also (b/q) 
= 0, by the same corollary,B is unramified at q.
And if f is odd, then since (b/q)f = 1 we must have (b/q) = 1, and again by the
corollary it follows that B is unramified. �
Relationship to conics. We return once again to the theme of rational points on
conics.

We have seen that given an algorithm to factor integers, one can solve both
Problems (ISMATRIXRING), or equivalently (HASPOINT), over a number field F in
probabilistic polynomial time by factoring the discriminant and computing Hilbert
symbols. We have also seen that (ALGEBRAMAXORDER) over a number field F is
probabilistic polynomial time equivalent to the problem of factoring integers.



Identifying the Matrix Ring 293

We are left to consider (EXHIBITMATRIXRING), or equivalently (EXHIBITPOINT).
In the special case where F = Q, one shows that again they are reducible to the
problem of integer factorization.

Theorem 7.19 (Cremona-Rusin [8], Ivanyos-Szántó [15], Simon [36]). There
exists an explicit algorithm to solve (EXHIBITPOINT) over Q which runs in
deterministic polynomial time given an oracle to factor integers.

From our point of view, the algorithm(s) described in the above theorem can
be rephrased in the following way: there exists an explicit algorithm which, given
a order O over Z of discriminant 1 which is split at ∞, computes a zerodivisor
x ∈ O. This algorithm proceeds by computing a reduced basis of O with respect to
the reduced norm nrd, a kind of indefinite LLL-algorithm.

Question 7.20. Does there exist an algorithm which, given an order O over ZF of
discriminant 1 which is split at all real places of F , computes a zerodivisor x ∈ O?

One possible approach to this conjecture, then, is to provide an indefinite LLL
algorithm over F in the special case of ZF -module of rank 4 and discriminant 1.
Perhaps one can prove this at least in the case where ZF is computably Euclidean?

We discuss the computational complexity of Problem (ISMATRIXRING) over Q
in the next section (and relate this to the problem of factoring integers). From the
discussion above, it seems reasonable to conjecture the following.

Conjecture 7.21. Problem (EXHIBITPOINT) over Q is (probabilistic) polynomial-
time equivalent to the problem of factoring integers.

Having treated the case of number fields in some detail, we note that over more
general fields, the literature is much less complete.

Question 7.22. For which computable fields F is there an effective algorithm to
solve Problems (HASPOINT) and (EXHIBITPOINT)?

For example, one may ask for which fields F is there an effective version of the
Hasse-Minkowski theorem? Of course, if one can solve (HASPOINT), then given a
conic which is known to have a solution one can always simply enumerate the points
of P2(F ) until a solution is found.

8 Residuosity

In this final section, we return to Problem (ISMATRIXRING) and characterize its
computational complexity. Let F be a number field with ring of integers ZF .

For a nonzero ideal b of ZF , let sqrad(b) be the product of the prime ideals p
dividing b to odd exponent, or equivalently the quotient of b by the largest square
ideal dividing b.



294 J. Voight

Problem (QUADRATICRESIDUOSITY). Given an odd ideal b and a ∈ ZF ,
determine if a ∈ (ZF / sqrad(b))

×2, i.e., determine if a is a quadratic residue
modulo sqrad(b).

Problem (QUADRATICRESIDUOSITY) reduces to the more familiar problem of
quadratic residuosity when b is a squarefree ideal, namely, to determine if a ∈
(ZF /b)

×2. If b = p is a prime ideal, one has a ∈ (ZF /p)
×2 if and only if (a/p) =

1, and this Legendre symbol can be evaluated in deterministic polynomial time (as
discussed above, by repeated squaring). In general, for b squarefree, we have a ∈
(ZF /b)

×2 if and only if a ∈ (ZF /p)
×2 for all primes p | b. In particular, by this

reduction if one can factor b, one can solve Problem (QUADRATICRESIDUOSITY).
It is a terrific open problem in number theory to determine if the converse holds,
even for the case F = Q and b generated by pq with p, q distinct primes.

We first relate the Problems (ISMATRIXRING) and (QUADRATICRESIDUOSITY)
as follows.

Proposition 8.1. Problem (ISMATRIXRING) over F is deterministic polynomial-
time reducible to Problem (QUADRATICRESIDUOSITY) over F .

Proof. Let B =

(
a, b

F

)
be a quaternion algebra over F . Scaling a, b by an integer

square, we may assume a, b ∈ ZF . Recall that B ∼= M2(F ) if and only if every
place v of F is unramified in B, i.e., if (a, b)v = 1 for all places v of F .

For fixed F , we can in constant (deterministic) time compute the set of even
places of F . We then compute the Hilbert symbol (a, b)v for v real easily and for v
even by Algorithm 6.6.

For the odd places, we first apply Lemma 5.5, which implies that we need only
check primes p | abZF . We compute g = aZF + bZF and then by small linear
combinations we find g ∈ g−1 such that gg−1 is coprime to aZF and bZF and

(a + b)ZF . Now

(
a, b

F

)
∼=

(
a′, b′

F

)
where a′ = a + b and b′ = −abg2. We

claim that after repeating this eventually we will have a and b coprime. Indeed, if
ordp(a) = ordp(b) then already ordp(−abg2) = 0, and if ordp(a) > ordp(b) > 0,
say, then ordp(−abg2) = ordp(a) − ordp(b) and ordp(a + b) = ordp(b), so then
ordp(a) + ordp(b) > ordp(a) = ordp(a

′) + ordp(b
′), and since this is a sequence

of nonnegative integers eventually either we will have either ordp(a) = 0 or
ordp(b) = 0.

Then for any prime p | bZF , we have that p is ramified in B if and only if
p | sqrad(bZF ) and (a/p) = −1. We can test this latter condition for all p | bZF

by calling the algorithm to solve (QUADRATICRESIDUOSITY) by determining if
a is a quadratic residue modulo sqrad(bZF ). We then repeat this step with a, b
interchanged, and we return TRUE if and only if both of these quadratic residuosity
tests return TRUE. �

When F = Q, in fact these problems are equivalent.

Theorem 8.2. Problem (ISMATRIXRING) over Q is probabilistic polynomial-time
equivalent to Problem (QUADRATICRESIDUOSITY) over Q.
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Remark 8.3. Rónyai [29, 31] conditionally proves exactly Theorem 8.2 (under the
assumption of the Generalized Riemann Hypothesis).

Before proving this theorem, we derive one preliminary result.

Lemma 8.4. Let a, b ∈ Z>0 be such that b is odd and (a/b) = 1. Let � be an odd

prime such that �b ∈ (Z/aZ)×2 and
(a
�

)
= 1. Then

(
a, �b

Q

)
∼= M2(Q) if and only

if a is a square modulo sqrad(b).

Proof. Again, we have

(
a, �b

Q

)
∼= M2(F ) if and only if (a, �b)v = 1 for all places

v of Q. Since a > 0, we know (a, �b)∞ = 1. By hypothesis, for all odd p | a we
have (�b/p) = 1 hence (a, �b)p = 1, and similarly (a, �b)� = 1. Moreover, since
(a/b) = 1, the number of primes p | sqrad(b) such that (a/p) = −1 must be

even, and since the quaternion algebra

(
a, �b

Q

)
is ramified at an even number of

places, we conclude that (a, �b)2 = 1. Therefore

(
a, �b

Q

)
∼= M2(F ) if and only if

(a, �b)p = 1 for all p | sqrad(b) if and only if a is a square modulo sqrad(b). �
The preceding lemma shows that the two problems in Theorem 8.2 can be linked

by finding a suitable prime �. The conditions on � are congruence conditions, so
by the theorem on primes in arithmetic progression, such primes are abundant.
Explicitly, we rely on the specialization of a result from analytic number theory,
stated by Adleman, Pomerance, and Rumely [2, Proposition 8] and attributed to the
proof of Linnik’s theorem by Bombieri (using results of Gallagher and related to a
result of Tatuzawa); see their paper for further discussion.

Lemma 8.5. There exist effectively computable (absolute) constants x0, δ ∈ R>0

such that whenever x ≥ x0, we have
∣∣∣∣∣

∑

�≤x
�≡b (mod q)

log �− x

φ(q)

∣∣∣∣∣ ≤
x

2φ(q)

for all q with 1 ≤ q ≤ xδ and all b with gcd(b, q) = 1, except possibly for those q
which are multiples of a certain integer q0(x) > (log x)3/2.

Proof of Proposition 8.2. We must show that if we are able to solve (ISMATRIXRING),
then we can solve Problem (QUADRATICRESIDUOSITY) in probabilistic polynomial
time.

Let x = max((4b)1/δ, x0), with x0, δ as in Lemma 8.5. Let c be a random integer
with 1 ≤ c < b. We compute q ≡ ac2 (mod 4b) with 1 ≤ q < 4b and q ≡ 1
(mod 4). Then q is a random element in [1, 4b] ∩ Z such that aq ∈ (Z/bZ)×2 and
q ≡ 1 (mod 4). Let

Q = {1 ≤ q < b : aq ∈ (Z/bZ)×2 and q ≡ 1 (mod 4)}.
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From Lemma 8.5, we have
∑

�≤x, �≡a (mod q) log � < x/(2φ(q)) only if q is

divisible by q0(x) > (log x)3/2; thus the set of such q ∈ Q has cardinality at
most #Q/(logx)3/2. Using partial summation (a standard argument which can be
found in Davenport [9, p. 112]), it follows that a random q ∈ Q has probability
1− 1/(logx)3/2 of satisfying

π(x; q, b) = #{� ≤ x : � prime, � ≡ b (mod q)} < 1

2φ(q)

x

log x

whenever gcd(b, q) = 1. We then compute a random integer 1 ≤ � < x with � ≡ b
(mod q) and test if � is prime, which can be done in (deterministic) polynomial
time [1]. Combining these, in probabilistic polynomial time, we may assume that �
indeed is prime.

We conclude by calling the algorithm to solve (ISMATRIXRING) on B =(
q, �b

Q

)
. We have

(q
�

)
=

(
�

q

)
=

(
b

q

)
=

(q
b

)
=

(a
b

)
= 1

since q ≡ 1 (mod 4), and �b ≡ 1 (mod q). So by Lemma 8.4, we have B ∼=
M2(Q) if and only if q is a square modulo sqrad(b), which holds only if a is a
square modulo sqrad(b), as desired. �

We leave the natural generalization where Q is replaced by a number field F as
an open question.
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12. A. Fröhlich, Local fields, in Algebraic number theory, J.W.S. Cassels and A. Fröhlich, eds.,
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Computaç ã o, Campinas, 1988.

20. Max-Albert Knus, Alexander Merkurjev, and Jean-Pierre Tignol, The book of involutions,
American Math. Soc. Colloquium Publications, vol. 44, AMS, Providence, RI, 1998.

21. T.Y. Lam, A first course in noncommutative rings, 2nd ed., Graduate texts in mathematics,
vol. 131, American Math. Soc., Providence, 2001.

22. H.W. Lenstra, Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.) 26
(1992), no. 2, 211–244.

23. H. W. Lenstra, Jr., Computing Jacobi symbols in algebraic number fields, Nieuw Arch. Wisk.
(4) 13 (1995), no. 3, 421–426.

24. Gabriele Nebe and Allan Steel, Recognition of division algebras, J. Algebra 322 (2009), no. 3,
903–909.

25. Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften,
vol. 322, Springer-Verlag, Berlin, 1999.

26. O. Timothy O’Meara, Introduction to quadratic forms, Classics in Mathematics, Springer-
Verlag, Berlin, 2000.

27. Michael Pohst and Hans Zassenhaus, Algorithmic algebraic number theory, Revised reprint,
Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press,
Cambridge, 1997.

28. Irving Reiner, Maximal orders, Clarendon Press, Oxford, 2003.
29. Lajos Rónyai, Zero divisors in quaternion algebras, J. Algorithms 9 (1988), 494–506.
30. Lajos Rónyai, Algorithmic properties of maximal orders in simple algebras over Q, Comput.

Complexity 2 (1992), no. 3, 225–243.
31. Lajos Rónyai, Simple algebras are difficult, Proceedings, 19th ACM Symp. on Theory of

Computing, 1990, 398–408.
32. Lajos Rónyai, Computing the structure of finite algebras, J. Symbolic Computation 9 (1990),

355–373.
33. Winfried Scharlau, Quadratic and Hermitian forms, Springer-Verlag, Berlin, 1985.
34. Viggo Stoltenberg-Hansen and John V. Tucker, Computable rings and fields, Handbook of

computability theory, ed. Edward R. Griffor, North-Holland, Amsterdam, 1999, 336–447.
35. Dénis Simon, Equations dans les corps de nombres et discriminants minimaux, thèse, Universit
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