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Preface

Optical fiber is one of the twentieth century’s technology marvels. It made the
modern day high-speed communications networks possible and this significant
contribution was recognized by Charles K. Kao being awarded the Nobel Prize in
Physics in 2009. However, unknown to most of the general public, optical fiber
technology has made significant contributions to sensors and imaging technologies
as well. It was recognized during the early part of the optical fiber development
that optical fibers having small diameter, extremely long length, and flexibility
have desired properties for developing endoscopic imaging devices and sensors.
The long fiber length allowed the fiber optic sensors to have long interaction
lengths which made them highly sensitive. The small diameter allowed the fiber
optic sensors and imagers to be made compact and portable. The flexibility
allowed the sensor and imagers to be placed in most tight spaces. Now, fiber optic
imaging and sensing devices are being used for a wide range of applications such
as in medical, environmental, manufacturing, and defense.

This book is designed to highlight the basic principles of fiber optic imaging
and sensing devices. The book is by no means complete and comprehensive. But it
is designed to provide the readers with a solid foundation in fiber optic imaging
and sensing devices. It begins with an introductory chapter that starts from
Maxwell’s equations, mostly to show the readers where the governing equations in
fiber devices come from and some idea as to how they are derived. The chapter
ends with the derivation of the basic optical fiber characteristic equations and
solutions (i.e., fiber modes). Chapter 2 reviews most common fiber optic inter-
ferometric devices which are bases for many fiber optic imaging and sensing
systems. Chapter 3 discusses the basics of fiber optic imagers with emphasis on
fiber optic confocal microscope. The fiber optic interferometric sensors are dis-
cussed in detail in Chaps. 4 and 5. Chapter 4 deals with fiber Bragg grating based
sensor and various applications. Chapter 5 goes over in detail fiber Sagnac loop-
based sensors. Chapter 6 covers optical coherence tomography in detail. Unlike
other chapters, it goes into details the signal processing and systems level approach
of the real-time OCT implementation that I hope the readers may find useful for
building their own OCT systems. All the chapters start with theoretical derivation
of devices characteristics. This is to help student reader with understanding the
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underlying principle of fiber optic devices. Also useful forms of device charac-
teristic equations are provided so that this book can be used as a reference for
scientists and engineers in the optics and related fields.

This book could not have been written without the help of contributing authors,
Do-Hyun Kim from FDA, Utkarsh Sharma and Xing Wei from Carl Zeiss Meditec,
Li Qian from University of Toronto, Kang Zhang from GE Global Research, and
Young-Geun Han from Hanyang University; my sincere thanks to them. Also help
from one of my current students, Jaepyeong Cha, is greatly appreciated. I must say
Brett Kurzman, Editor of Engineering/Applied Sciences, Springer must be one of
the most patient people I know. Many thanks to his patience and accommodation.

Baltimore, March 2013 Jin U. Kang
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Chapter 1
Optical Fibers

Jin U. Kang

1.1 Wave Equation

Light is an electromagnetic disturbance that propagates through space as a wave.
Such electromagnetic (EM) wave is produced by a moving charge. An oscillating
charge at a frequency f, produces EM wave with frequency f, schematically shown
in Fig. 1.1:

1.1.1 Gauss’s Law

Therefore, to understand the basic properties of light, you have to understand the
basic laws that govern electric and magnetic fields. Gauss’s Law for electric fields
states that the total electric flux through any closed surface equals the net charge
inside that surface divided by the electric permittivity of space, e0. This can be
written in an integral form as:

I
E � dA ¼ Q

e0
ð1:1Þ

or differential form:

r � E ¼ q
e0

ð1:2Þ

Similarly, Gauss’s Law for magnetic field states that the net magnetic flux
through a closed surface is zero. This can be also written in an integral form:
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I
H � dA ¼ 0 ð1:3Þ

or differential form:

r � H ¼ 0 ð1:4Þ

1.1.2 Faraday’s Law

Faraday’s Law of induction states that the line integral of the electric field around
any closed path equals that rate of change of magnetic flux through any surface
area bounded by that path. This can be written in integral form:

I
E � ds ¼ dUm

dt
ð1:5Þ

or differential form:

r� E ¼ � oB

ot
ð1:6Þ

Here, B is the magnetic displacement vector defined as: B ¼ l0H: l0 is called
magnetic permeability of space.

1.1.3 Ampere-Maxwell Law

Ampere-Maxwell Law states that the line integral of the magnetic field around any
closed path is determined by the sum of the net conduction current through that
path and the rate of change of electric flux through any surface bounded by that
path. This can be written in integral form:

I
B � ds ¼ l0I þ e0l0

dUe

dt
ð1:7Þ

Fig. 1.1 Schematic of EM
wave generation by a moving
charge
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or differential form:

r� H ¼ J þ oD

ot
ð1:8Þ

D is the electric displacement vector defined as D ¼ e0E þ P:
P is the electric polarization defined as P ¼ e0vE where v is called electric

susceptibility and is an intrinsic property of the material system.

1.1.4 Maxwell’s Equations

Combining the basic laws described above, one can assemble well-known
Maxwell’s Equations.

r � B ¼ 0 ð1:9Þ

r � D ¼ q ð1:10Þ

r � E ¼ � oB

ot
ð1:11Þ

r �H ¼ J þ oD

ot
ð1:12Þ

and

D ¼ e0Eþ P;B ¼ l0H þM ð1:13Þ

If we simply assume free space, i.e., J ¼ M ¼ P ¼ 0, we can combine Eqs. 1.3
and 1.4 to obtain the following equation

r� E ¼ � o l0H þMð Þ
ot

ð1:14Þ

And use it to derive the characteristic equation for electric field wave as:

r�r� E ¼ �l0
o

ot
r� H ð1:15Þ

r �r� E ¼ �l0
o2D

ot2
ð1:16Þ

r �r� E ¼ �l0e0
o2E

ot2
ð1:17Þ

Since

r�r� E ¼ r r � Eð Þ � r2E ð1:18Þ
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Making paraxial beam approximation, i.e.,

r r � Eð Þ ¼ 0 ð1:19Þ

This simply implies that the curvature of the electric field is not large. From that
we can derive the well-known Wave Equation that governs the propagation of light
in free space.

Wave Equation:

r2E ¼ l0e0
o2E

ot2
ð1:20Þ

Also note that the Wave Equation for the magnetic field can be derived in
exactly the same manner and the following result:

r2H ¼ l0e0
o2H

ot2
ð1:21Þ

1.1.5 Solutions of Wave Equation

If we assume the direction of light propagation is along z axis, the wave equation
can be simplified as:

o2E

oz2
¼ l0e0

o2E

ot2
ð1:22Þ

And since the speed of light, c is defined as:

c ¼ 1ffiffiffiffiffiffiffiffiffi
l0e0
p ð1:23Þ

Finally, the simplified Wave Equation can be written as:

o2E

oz2
¼ 1

c2

o2E

ot2
ð1:24Þ

Similarly for magnetic field it can be written as:

o2H

oz2
¼ 1

c2

o2H

ot2
ð1:25Þ

The simplest plane wave solutions to both equations are sinusoidal waves,
which can be written as:

E ¼ E0 cos kz� xtð Þ ð1:26Þ

H ¼ H0 cos kz� xtð Þ ð1:27Þ
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Here k is called the propagation constant and x is the angular frequency of
light. They are defined as: k ¼ 2p

k ; x ¼ 2pf
Plug in the electric field solution to the electric field Wave Equation and one

gets:

�k2E0 cosðkz� xtÞ ¼ � 1
c2

E0x
2 cosðkz� xtÞ ð1:28Þ

Therefore, c2 ¼ x2

k2 has to be true. Using the definition of k and x shown above,
it can be reduced to the well-known definition of speed of light, c ¼ kf ; therefore,
the equation is satisfied.

It can also be shown from Maxwell’s Equation, if we assume Ey ¼ Ez ¼ 0; we
can relate electric field to magnetic field as:

dEx

dz
¼ �l0

dHy

dt
ð1:29Þ

By using the sinusoidal solutions in Eq. (1.3) it can be shown that

kE0 ¼ xl0H0 ð1:30Þ

therefore:

E0

B0
¼ E

B
¼ x

k
¼ c ð1:31Þ

Other plane wave solutions include:

Eforward ¼ E0 sinðkz� xtÞ ð1:32Þ

Ebackward ¼ E0 sinðkzþ xtÞ ð1:33Þ

E z; tð Þ ¼ 1
2

E0ei kz�xtð Þ þ c:c: ð1:34Þ

E ¼ E0eiðkz�xtÞ ð1:35Þ

A more complicated spherical wave solution can also be found as:

Eðr; tÞ ¼ E0
eiðkr�xtÞ

r
ð1:36Þ

Note that instantaneous intensity of the light is related to the electric field as:

I ¼ e0c Ej j2 ð1:37Þ

Therefore average intensity can also be written as:

Ih i ¼ e0c E0 cos xtð Þj j2
D E

¼ 1
2
e0cE2

0 ð1:38Þ
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Typical unit for both intensities are in watts per centimeter squared or W/cm2.
Light power in watts, therefore, is simply defined as intensity divided by area

or P = I/A:.

1.2 Refractive Index and Absorption

Refractive index and absorption are the two most fundamental optical properties of
any optical material systems. Refractive index, in the most simplified sense,
determines the speed of light in a material, as the speed of light in a material with
refractive index, n, is defined as, v = c/n. Since most light waves are non-
monochromatic and non-planar, the refractive index affects both temporal and
spatial aspects of light waves. Absorption is usually the most dominant loss
mechanism in optics, although one can always find a transparent band for any
given material system.

To understand the origin of both refractive index and absorption, I will use a
simple harmonic oscillator model to derive both refractive index and absorption.
The harmonic oscillator is schematically shown in Fig. 1.2.

Here, E is the driving electric field that drives the harmonic oscillator; e is an
electron with mass, m; x is the time-varying separation between the charges. Using
the Abraham-Lorentz Equation of Motion, we can write the characteristic equation
of this harmonic oscillator as:

€xðtÞ þ 2c _xðtÞ þ x2
0xðtÞ ¼ e

m
EðtÞ ð1:39Þ

Note €x ¼ d2x
dt2 ; _x ¼ dx

dt
The first term of the equation is the acceleration term, the second term is the

velocity term where c is damping constant, and x0 is the resonant frequency.
General solutions of the time-varying separation between the charges and the
driving electric field can be written as:

xðtÞ ¼ x0XðtÞ
2

e�ixt þ eixt
� �

ð1:40Þ

Fig. 1.2 Harmonic oscillator
model
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EðtÞ ¼ E0

2
e�ixt þ eixt
� �

ð1:41Þ

where X(t) is a time-varying unit-less complex amplitude, which is an intrinsic
property of the harmonic oscillator that determines how the oscillator responds to
the driving electric field. This is the term that leads to the refractive index and
absorption. By plugging in Eqs. (1.43) and (1.44) into (1.42) and neglecting small
terms such as:

€XðtÞ and c _XðtÞ

and ignoring negative frequencies, the equation can be written as:

�ixx0 _XðtÞ � x0x2

2
XðtÞ � ixcx0XðtÞ þ x0x0XðtÞ

2
¼ e

m

E0

2
ð1:42Þ

This can be written in terms of _XðtÞ as:

_XðtÞ ¼ � cþ
i x2

0 � x2
� �

2x

� �
XðtÞ þ ieE0

2xmx0
ð1:43Þ

In steady-state, we can set _XðtÞ ¼ 0 and write:

XðtÞ ¼ ieE0

2xmx0

2x

2xcþ ðx2
0 � x2Þ

� �
ð1:44Þ

By using the rotating wave approximation, where ðx2
0 � x2Þ � 2xðx0 � xÞ

finally, the equation can be written as:

XðtÞ ¼ ieE0

2xmx0

c� i x0 � xð Þ
c2 þ x0 � xð Þ2

" #
ð1:45Þ

As stated earlier, X is a complex value and can be defined as

XðtÞ � U � iV ð1:46Þ

Therefore, U and V, the real and imaging part of X, respectively, can be written as:

U ¼ eE0

2xmx0

x0 � xð Þ
c2 þ x0 � xð Þ2

ð1:47Þ

V ¼ � eE0

2xmx0

c

c2 þ x0 � xð Þ2
ð1:48Þ

From the definition of electric polarization, P, it can be written as:

P ¼ NðzÞex0X ð1:49Þ

1 Optical Fibers 7



where N is the number of oscillators. Also from the definition of P in terms of
electric susceptibility,

P ¼ e0vE0 ð1:50Þ

P ¼ NðzÞex0X � e0vE0 ð1:51Þ

By setting two equations to equal, one can see that v is related to X as:

v ¼ NðzÞex0X

e0E0
ð1:52Þ

Since v is also a complex number defined as v ¼ v0 þ iv00

The real and imaginary number of the electric susceptibility can be written as:

v0 � NðzÞex0

e0E0
U ð1:53Þ

v00 � NðzÞex0

e0E0
V ð1:54Þ

From the Wave Equation in the previous section, if we don’t ignore P, it can be
shown that the real part of the electric susceptibility is related to the refractive
index as:

n ¼ 1þ v0

2
ð1:55Þ

Therefore, n can finally be written as:

n ¼ 1þ NðzÞe2

4e0xm

x0 � xð Þ
c2 þ x0 � xð Þ2

ð1:56Þ

Figure 1.3 shows the plot of n as a function of angular frequency. Values used
are N = 1015 cm-3, k0 = 1,500 nm, c = 1014 s-1. One can deduce several facts
from the equation and the plot.

1. Index is highest near the resonant frequency and decreases as the frequency is
decreased.

2. Even in off-resonance, the index is not constant.
3. In the absence of other resonances, the index at the center of the resonance is 1.

Similarly from the Wave Equation in the previous section, it can be shown that the
imaginary part of the electric susceptibility is related to the loss coefficient, a, as:

a ¼ k0
v00

2
ð1:57Þ

8 J. U. Kang



Therefore the loss coefficient can be written as:

a ¼ k0
NðzÞe2

4e0xm

c

c2 þ x0 � xð Þ2
ð1:58Þ

For SiO2 glasses the main resonance lies below *350 nm and between visible
and near IR regime, for all practical purposes, there are no absorptions.

1.3 Slab Waveguides

Light travels in free space with velocity equal to c = 3 9 108 m/s and a propa-
gation constant of k0 ¼ x0=c: The velocity and direction of the light depend on the
basic physical properties of the media the light propagates in. Since the light is an
ultrahigh frequency electromagnetic wave, how the electric and the magnetic
waves of the light interact with the media will determine how the light propagates.
In most cases—at least within the scope of this book—we will only deal with cases
where the light travels in dielectric media; thus, only the interaction of the electric
field of the light with the media will be considered.

The light with a finite beam size will diffract and diverge while propagating.
The beam can be focused or collimated by using lenses and mirrors. Alternatively,
light can be transmitted through dielectric conduits, i.e., optical waveguides.

Examples of widely used optical waveguides include slabs, strips, and fibers.
They are described in more detail in this chapter.

Slab waveguides are one of the basic and simplest waveguide structures. Basic
properties of slab waveguides will be reviewed in this section. This will be a great
segue to a more complicated cylindrical waveguide (optical fiber) described later
in this chapter. Figure 1.4 shows a slab waveguide structure with a guiding layer of
index ng and substrate and cover materials of index ns and nc, respectively.
Without losing generality, we assume that they have the relation ng [ ns [ nc.
Snell’s law states that the incident and refracted light satisfy the condition,

Fig. 1.3 Susceptibility as a function of angular frequency
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n1 sin h1 ¼ n2 sin h2, where h1 and h2 are the angles between the incident or
refracted light and the boundary normal, respectively. When the incident angle is
larger than the critical angle hc; defined as hc ¼ sin�1ðn2=n1Þ; light gets reflected
100 %. When this is the case for both top and bottom interfaces between the
guiding layer, the cladding, and the substrate, light travels along z-axis in a zigzag
pattern, as shown below:

1.3.1 Total Internal Reflection and Phase Shift
at the Boundary

Consider light incident at an angle h1 on the interface of two different media which
are isotropic, homogeneous, lossless, and having refractive index n1 and n2;
respectively. As shown in Fig. 1.5. Two different cases can be considered,
depending on the orientation of the electric and magnetic field relative to the
incident surface normal.

guide 
ng

x

nssubstrate

cover nc

h

z

n 
nc

ng 

ns 

θ

Fig. 1.4 Side view of a slab
waveguide showing the
zigzag waves corresponding
to a guided mode

θi θr

θ t

n1

n2

E
Er

Et

Fig. 1.5 Light reflection and
transmission at the boundary
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1.3.1.1 Transverse Electric Reflection

If the electric field is parallel to the plane of incidence, this is referred to as
transverse electric (TE) field. This is schematically shown in Fig. 1.6.

Since fields parallel to the plane of incidence have to be continuous, we can
write two boundary conditions:

Ei þ Er ¼ Et ð1:59Þ

Bix þ Brx ¼ Btx ð1:60Þ

The boundary condition for the magnetic field can be written in terms of electric
field as:

niEi cos h� niEr cos h ¼ ntEt cos ht ð1:61Þ

By combining two equations:

niEi cos h� niEr cos h ¼ ntðEi þ ErÞ cos ht ð1:62Þ

We can obtain reflection efficient, r, for TE as:

rTE ¼
Er

Ei
¼ ni cos h� nt cos ht

ni cos hþ nt cos ht
ð1:63Þ

When the incidence angle is zero, the equation reduces to a well-known
reflection equation as:

r ¼ n1 � n2

n1 þ n2
ð1:64Þ

Note that the power reflection coefficient, R, is defined as R ¼ rj j2

Fig. 1.6 TE wave
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1.3.1.2 Transverse Magnetic Reflection

Similarly when the magnetic field is parallel to the plane of incidence, this is
referred to as transverse magnetic (TM) field. This is schematically shown in
Fig. 1.7.

The same boundary conditions exist as the TE case and this can be written as:

Bi þ Br ¼ Bt ð1:65Þ

Eix þ Erx ¼ Etx ð1:66Þ

These terms can be written in terms of electric fields as:

niEi þ niEr ¼ ntEt ð1:67Þ

Ei cos h� Er cos h ¼ Et cos ht ð1:68Þ

Combining these two equations and solving for the ratio of reflected field to the
incident field results in the reflection coefficient for the TM wave:

rTM ¼
Er

Ei
¼ nt cos h� ni cos ht

nt cos hþ ni cos ht
ð1:69Þ

Using the Snell’s equation,

n1 sin hi ¼ n2 sin ht ð1:70Þ

The Fresnel equations in terms of incident angle only can be written for TE and
TM waves:

rTE ¼
n1 cos hi � n2 cos ht

n1 cos hi þ n2 cos ht
¼

n1 cos hi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 hi

q

n1 cos hi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 hi

q ð1:71Þ

Fig. 1.7 TM wave
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rTM ¼
n2 cos hi � n1 cos ht

n2 cos hi þ n1 cos ht
¼

n2
2 cos hi � n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 hi

q

n2
2 cos hi þ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � n2
1 sin2 hi

q ð1:72Þ

If n1 [ n2 the reflection coefficients for both TE and TM become complex
when n2

2 \ n2
1 sin2 hi or the incident angle is greater than sin�1 n2

n1
: This results in

total internal reflection or 100 % of the light gets reflected. The angle at which this
occurs is called the critical angle and is defined as: hc ¼ sin�1 n2

n1

Since they are complex values, phase shift occurs when both TE and TM waves
reflect at the boundaries, which are given by:

tan /TE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 sin2 hi � n2
2

q

n1 cos hi
ð1:73Þ

tan /TM ¼
n2

1

n2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 sin2 hi � n2
2

q

n1 cos hi
ð1:74Þ

By substituting subscript 1 to g (the guiding material) and subscript 2 to either c
(the cover) or s (the substrate material), we obtain the phase shifts acquired at
those boundaries. From the above Eqs. (1.73 and 1.74), we can see that the phase
shift, /TE or /TM; increases from 0 at the critical angle to p=2 at the grazing
incidence.

1.3.2 Dispersion Curves

To study the time-independent waves guided by a step-index thin-film waveguide,
we begin with time-independent Maxwell’s equations for isotropic, nonmagnetic
media with l ¼ l0 and e ¼ e0n2

r� E ¼ �jxl0H ð1:75Þ

r �H ¼ jxe0n2E ð1:76Þ

r � l0H ¼ 0 ð1:77Þ

r � e0n2E ¼ 0 ð1:78Þ

All the guided field components must vary as e�jbz and the propagation constant
b needs to be determined. The self-consistency condition- also known as the
transverse resonance condition- states

2k0 ng h cos h� 2/s � 2/c ¼ 2mp ð1:79Þ

1 Optical Fibers 13



where m is an integer. This equation describes the constructive interference con-
dition for the transverse components of the field. We can see that only certain
discrete values of h can satisfy the above equation. These are called modes and the
integer m identifies the mode number.

For the mth guided mode of a slab waveguide, the propagation constant
bm ¼ x=tp ¼ k0ng sin hm; is the z-component of the wave vector k0ng: The propa-
gation constants are bounded by the plane wave propagation constants of substrate
and the guide layer: k0ns\b\k0ng: At the cutoff frequency, the propagation con-
stant b assumes the value of the lower bound k0ns: As x (or the thickness h)
increases, b approaches its upper bound k0ng and the number of guided modes
increases. While the guided modes are discrete, the radiation modes are continuous.

Based on the descriptions above, the effective index, N, of the guided mode can
be defined as:

N ¼ b=k ¼ ngsinh ð1:80Þ

which is bounded by ns \ N \ ng. Define normalized frequency V as:

V ¼ kh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

g � n2
s

q
ð1:81Þ

and a normalized guide index b related to the effective index N as:

b ¼ ðN
2 � n2

s Þ
ðn2

g � n2
s Þ

ð1:82Þ

The index b is zero at cutoff and approaches unity far away from it. For TE
mode, by using (1.80 and 1.81), we can rewrite equation (1.79) to be:

V
ffiffiffiffiffiffiffiffiffiffiffi
1� b
p

¼ mpþ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ð1� bÞ

p
þ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ aÞ=ð1� bÞ

p
ð1:83Þ

where a is the indicator of the waveguide asymmetry defined as

a ¼ ðn
2
s � n2

cÞ
ðn2

g � n2
s Þ

ð1:84Þ

For a sputtered glass slab waveguide, with ng = 1.62, ns = 1.515, nc = 1, and
a = 3.9, Fig. 1.8 shows the normalized dispersion curves of the guide index b as a
function of the normalized frequency, V, of the first four guided modes.

1.3.3 Field Distributions

TE mode has three field components: Ey, Hx and Hz.

Hy ¼ Ex ¼ Ez ¼ 0 ð1:85Þ
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Hx ¼ �ðb=xl0ÞEy ð1:86Þ

Hz ¼ ðj=xl0ÞoEy=ox ð1:87Þ

o2Ey=ox2 ¼ ðb2 � n2k0
2ÞEy ð1:88Þ

where k0
2 ¼ x2l0e0: Solving the differential Eq. (1.88) subject to the boundary

conditions at x = 0 and x = h provides the mode field distributions. From the
above analysis, we know k0

2ng
2 � b2 [ 0 and k0

2ns
2 � b2\ 0 k0

2nc
2 � b2\ 0;

such that possible solutions of Ey is a linear combination of sine and cosine
functions inside the guiding layer, while they are exponentially decaying functions
in the cover and substrate layers. Therefore, for the guiding layer region:

Ey ¼ C1 cosðkgxþ /Þ; kg ¼
ffiffiffiffiffiffi
k0

2
q

ng
2 � b2; 0 � x � h ð1:89Þ

Ey ¼ C2ecsx; cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � k0

2ns
2

q
; x � 0 ð1:90Þ

Ey ¼ C3e�ccðx�hÞ; cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � k0

2nc
2

q
; x 	 h ð1:91Þ

The unknown constants, C1, C2, C3 and /; can be determined by the boundary
conditions; Ey and dEy/dx are continuous. From these we can finally write down
the field distribution for TE modes:

Ey ¼ C1 cosðV
ffiffiffiffiffiffiffiffiffiffiffi
1� b
p x

h
Þ �

ffiffiffiffiffiffiffiffiffiffiffi
b

1� b

r
sinðV

ffiffiffiffiffiffiffiffiffiffiffi
1� b
p x

h
Þ

" #
; 0� x � h ð1:92Þ

Ey ¼ C1e�V
ffiffi
b
p
ðx=hÞ; x � 0 ð1:93Þ

Fig. 1.8 Normalized
dispersion diagram of a
planar slab waveguide with
ng = 1.62, ns = 1.515,
nc = 1
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Ey ¼ C1 cosðV
ffiffiffiffiffiffiffiffiffiffiffi
1� b
p

Þ þ
ffiffiffiffiffiffiffiffiffiffiffi

b

1� b

r
sinðV

ffiffiffiffiffiffiffiffiffiffiffi
1� b
p

Þ
" #

e�V
ffiffiffiffiffiffi
aþb
p

ðx�hÞ=h; x 	 h

ð1:94Þ

The first 3 guided TE modes in the above waveguide for V = 9.0 are plotted in
Fig. 1.9.

The dispersion curves and field distributions for TM modes can be derived in
the same manner as we did for TE modes.

1.4 Optical Fibers

Glass was one of the first materials used in the earliest days of optics to make a
dielectric waveguide because of the ease of forming it into different shapes and the
availability of a large number of dopants that change its optical materials. Much of
this knowledge came from thousands of years of glass works in human history.
Glass is a transparent, amorphous solid. Due to its transparency in the visible and
near-IR spectral regimes, glass was mostly investigated for communications
applications. The basic component of glass is fused silica (SiO2). Proper amounts
of other oxides can be added to adjust the refractive index as well as change other
characteristics, such as the mechanical strength and chemical durability of the
glass. Figure 1.10 shows the refractive index of various silica-based forms of glass
as the result of adding ZrO2, TiO2, Al2O3, or GeO2. These dopants result in an
increase of the glass refractive index; however, the index can also be decreased by
adding B2O3 or F.

The optical properties of fibers also depend on external environmental condi-
tions. For example, pure bulk silica has a thermal linear expansion coefficient,
aTherm ¼ 5:5� 10�7=oK3; and a temperature-dependent refractive index change,
nTherm ¼ 1:2� 10�5=oK10. Therefore, changes in the height of the guiding layer
due to temperature can be written as:

TE0 
b=0.91 
V=9.0 

TE1 
b=0.65 
V=9.0 

TE1 
b=0.23 
V=9.0 

Fig. 1.9 Field distributions of first 3 guided TE modes in a symmetric dielectric waveguide
(V = 9.0, with ns = 1.515, ng = 1.62, nc = 1, and a = 3.9)
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Dh ¼ aThemhDT: ð1:95Þ

Similarly, the index change of the guiding or cladding layer due to temperature
change can be written as:

Dncore; cladding ¼ nThemDT ð1:96Þ

Although this appears to be a small value, this index change due to temperature
can be comparable to the changes in index the fiber optic sensor is designed to
detect and can greatly affect the detection sensitivity.

Mechanical stress can also change the refractive index and dimension of the
fibers. The photo elastic coefficient of the silica glass is C ¼ �4:2� 10�12=Pa:
Therefore, giving a pressure, P, the change of the index of the core or cladding
layers can be written as: Dncore; cladding ¼ CP.

Here, we assume the effect is isotropic, which is true for bulk glass; however,
for non-isotropic waveguide structures, the effect is anisotropic.

Changes in the surrounding temperature and pressure change the refractive
index and the physical dimensions of the fiber, which changes the effective indices
for the TE and TM modes.

The basic geometry of optical fiber is shown in Fig. 1.11. To confine light so
that the light travels in guided mode in a fiber, the core has to have a higher
refractive index, n1, than the cladding index, n2, as shown in Fig. 1.12. Note that
the plastic jacket has been omitted in the index profile. Different dopants can be
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Fig. 1.10 Refractive index
of doped silica glasses at
0.5893 lm (calculated based
on C. L. Chen, Elements of
Optoelectronics and Fiber
Optics, p 467 1996)

Fig. 1.11 Cross section of an
optical fiber
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used to modify the refractive index of silica: P2O5 and GeO2 are commonly used to
increase the refractive index of SiO2 glass, while B2O3 and F are used to reduce the
index of SiO2 glass.

1.4.1 Fiber Modes

Fiber modes can be calculated by solving the wave equation as shown in (1.97):

r2 þ k2
� �

Ez z; r;u; tð Þ ¼ 0 ð1:97Þ

where z is the direction along the fiber, Ez is the longitudinal electrical field; 52

indicates the Laplacian operator and k2 ¼ x2n2=c2. x is the angular frequency of
light wave; n is the refractive index of medium, which equals n1 for the core and
equals n2 for the cladding; c is the speed of light in vacuum. Although we only
show Ez in (2, 1), Ez can be simply replaced with Hz to find out the magnetic field
distribution in a fiber; the following analysis is similar for electrical field and
magnetic field.

Due to the cylindrical shape of the fiber and because the refractive index profile
of fiber is cylindrically symmetric, it is more convenient to use a cylindrical
coordinate for describing the mode field profiles of optical fibers. In a cylindrical
coordinate, the transverse electric and magnetic fields of light wave can be
expressed as Er, Eu, Hr, and Hu. Transverse components can be obtained with
Maxwell’s curl equation, given that the axial components Ez and Hz are known by
solving (1.97). For reference electric and magnetic fields, a Laplacian operator in a
cylindrical coordinate can be written as:

E ¼ Err̂ þ E//̂þ Ezẑ

H ¼ Hrr̂ þ H//̂þ Hzẑ

r ¼ o

or
r̂ þ 1

r

o

o/
/̂þ o

oz
ẑ

r2 ¼ 1
r

o

or
ðr o

or
Þ þ 1

r2

o2

o/2 þ
o2

oz2

ð1:98Þ

If a wave propagates along the fiber in z direction and the field is cylindrically
symmetric, a general solution of the Wave Equation in a cylindrical coordinate can
be written as:

Fig. 1.12 Index profile of a
step-index fiber
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Ez z; r;u; tð Þ ¼ Ez rð Þ exp i xt � bzð Þ½ 
 exp �ilu½ 
 ð1:99Þ

In (1.99), l is an integer; b is the propagation constant, as in the case of planar
waveguides.

Expanding 52 in cylindrical coordinate and using (1.98), we may write (1.97)
more explicitly as (1.100), which is a Bessel equation of order l:

o2Ez rð Þ
or2

þ 1
r

oEz rð Þ
or
þ k2 � b2 � l2

r2

� �
Ez rð Þ ð1:100Þ

Confined propagation requires:

xn2

c
\b\

xn1

c
ð1:101Þ

Considering the behavior of fields when r ? 0 and r ? ?, we may express the
field in core and cladding as:

Ecore rð Þ ¼ AJl hrð Þ; for r\a

Ecladding rð Þ ¼ BKl qrð Þ; for r [ a
ð1:102Þ

In (1.102), A and B are constants, Jl is first kind of Bessel function, Kl is the first
kind of modified Bessel function where wave vectors h and q are defined as:

h2 ¼ xn1=cð Þ2�b2; q2 ¼ b2 � xn2=cð Þ2

To make sure the solution satisfies the boundary condition, that Eu, Ez, Hu, and
Hz are continuous at the boundary where r = a, after a lengthy derivation, we can
obtain the following characteristic equation that determines the propagation con-
stant b of the guided modes:

J0l hað Þ
haJl hað Þ þ

K 0l qað Þ
qaKl qað Þ

� �
n2

1
J0l hað Þ

haJl hað Þ þ n2
2

K 0l qað Þ
qaKl qað Þ

� �
¼ 1

qað Þ2
þ 1

hað Þ2

" #2

l
bc

x

� �2

ð1:103Þ

(1.103) is a quadratic equation in J01= ha Jl hað Þ½ 
 and this equation has two roots
corresponding to two classes of solutions. With l = 0 in (1.103), the modal con-
ditions can be separated into (1.104) and (1.105), corresponding to TE and TM
modes, respectively:

J1 hað Þ
haJ0 hað Þ ¼ �

K1 qað Þ
qaK0 qað Þ ð1:104Þ

J1 hað Þ
haJ0 hað Þ ¼ �

n2
2K1 qað Þ

n2
1qaK0 qað Þ ð1:105Þ
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The wave vectors h and q have the following relationship:

hað Þ2þ qað Þ2¼ a
x
c

	 
2
n2

1 � n2
2

� �
¼ V2 ð1:106Þ

V is called the normalized frequency, which determines how many modes the fiber
can support and is defined as:

V ¼ 2pa

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 � n2
2

q
ð1:107Þ

Also, the numerical aperture, NA; and the normalized propagation constant, b;
can be defined as:

NA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 � n2
2

q
ð1:108Þ

b ¼
n2

eff � n2
2

NA2
ð1:109Þ

where, neff ¼ b=Kð Þ is the effective refractive index that corresponds to each
guided mode in the fiber.

When NA is large, V is large: therefore, many modes are allowed to propagate
as guided modes of the fiber. The number of guided modes, M, that an optical fiber
supports, can be approximated by (1.110) given V [ 5. M is also called mode
volume.

M ¼ 4V2

p2
ð1:110Þ

We can also define the normalized index difference D as:

D ¼ n1 � n2

n1
ð1:111Þ

The Eqs. (1.104) and (1.105) can be solved graphically. Figure 1.13 shows the
left-hand side of (1.104) plotted in blue and the right-hand side of (1.104) with
different values of V plotted in red curves. The intersections of blue and red curves
correspond to allowed propagation constants that satisfy the characteristic equa-
tion. For V = 2, no intersection exists; therefore, this fiber does not support TE
mode. For V = 5, only one intersection exists, which indicates that only one TE
mode will be propagating in the fiber. With V = 7, two intersections can be found
in Fig. 1.13, which means that two TE modes are supported.

The fundamental mode for a fiber with a circular cross section is the HE11
mode. For V \ 2.4048, the fiber only supports the HE11 mode. Therefore, fibers
having circular cross sections are single mode fibers if V is less than 2.4048. The
transverse electric field associated with the HE11 mode is linearly polarized.

For weakly guided fibers, i.e. n1 & n2, having the core radius large compared
to k; the characteristic equation can be simplify to [1]:
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V
ffiffiffiffiffiffiffiffiffiffiffi
1� b
p J‘�1ðV

ffiffiffiffiffiffiffiffiffiffiffi
1� b
p

Þ
J‘ðV

ffiffiffiffiffiffiffiffiffiffiffi
1� b
p

Þ
þ V

ffiffiffi
b
p K‘�1ðV

ffiffiffi
b
p
Þ

K‘ðV
ffiffiffi
b
p
Þ
¼ 0 ð1:112Þ

Roots to this equation correspond to linear polarized modes and are labeled as
LP modes [1]. The relation between a traditional mode designation and the LP
mode designation is shown in Table 1.1. Figure 1.14 shows the b-V curves of
several LP modes for V less than 6.

Table 1.2 also shows the cut-off values of normalized frequency V for LP
modes l and m from 0 to 4:

The field distribution of LP modes with l = 0 can be deduced as:

Exðr;/; zÞ ¼ E0e�jkneff z

J0ðV
ffiffiffiffiffiffi
1�b
p

r=aÞ
J0ðV

ffiffiffiffiffiffi
1�b
p

Þ ; 0� r� a

K0ðV
ffiffi
b
p

r=aÞ
K0ðV

ffiffi
b
p
Þ ; r	 a

8<
: ð1:113Þ

Ezðr;/; zÞ ¼ E0
j

k0aneff
e�jk0neff z cos /

V
ffiffiffiffiffiffi
1�b
p

J1ðV
ffiffiffiffiffiffi
1�b
p

r=aÞ
J0ðV

ffiffiffiffiffiffi
1�b
p

Þ ; 0� r� a

V
ffiffi
b
p

K1ðV
ffiffi
b
p

r=aÞ
K0ðV

ffiffi
b
p
Þ ; r	 a

8<
: : ð1:114Þ

Hzðr;/; zÞ ¼ E0
j

g0k0a
e�jk0neff z sin /

V
ffiffiffiffiffiffi
1�b
p

J1ðV
ffiffiffiffiffiffi
1�b
p

r=aÞ
J0ðV

ffiffiffiffiffiffi
1�b
p

Þ ; 0� r� a

V
ffiffi
b
p

K1ðV
ffiffi
b
p

r=aÞ
K0ðV

ffiffi
b
p
Þ ; r	 a

8<
: ð1:115Þ

As shown in Fig. 1.15 and Table 1.1, the lowest order mode, LP01, has no
cutoff. The higher modes are cut off for V less than 2.4048.

Fig. 1.13 Graphical solution
of (1.104)
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1.4.2 Multi-Modal Effects

When light is launched into a fiber with a larger number of guided modes, it would
mostly couple into a mode with a profile that mostly resembles the incident beam.

If we define almj j2 as the power of each mode, the total power of all the modes can
be written as:

Ptotal ¼
X
l0m0

al0m0j j2 ¼
X
l0m0

ZZ
El0m0 x; yð ÞE�l0m0 x; yð Þdxdy

����
����
2

ð1:116Þ

Therefore, mode coupling efficiency to a particular ðl; mÞ transverse mode field
distribution can be calculated as,

Table 1.1 Traditional versus LP mode designation

Normalized
frequency V

Traditional mode
designation

LP mode
designation

Number of
modes

Total number of
modes

0 * 2.4048 HE11 LP01 2 2
2.4048 * 3.8317 TE01, TM01, HE21 LP11 4 6
3.8317 * 5.1356 EH11, HE31 LP21 4 10

HE12 LP02 2 12
5.1356 * 5.5201 EH21, HE41 LP31 4 16
5.5201 * 6.3802 TE02, TM02, E22 LP12 4 20

Fig. 1.14 Normalized
propagation constant (b) as
function of normalized
frequency (V) for guided
modes in step-index optical
fiber

Table 1.2 Cutoff values of normalized frequency (V) for LP mode designation

V m = 1 m = 2 m = 3 m = 4

l = 0 0 3.832 7.016 10.173
l = 1 2.405 5.520 8.654 11.792
l = 2 3.832 7.016 10.173 13.323
l = 3 5.136 8.417 11.620 14.796
l = 4 6.379 9.760 13.017 16.224
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glm ¼
Power coupled into mode lm

Total incident power
¼ almj j2P

l0m0
al0m0j j2

¼
RR

Elm x; yð ÞE�lm x; yð Þdxdy
�� ��2

P
l0m0

RR
El0m0 x; yð ÞE�l0m0 x; yð Þdxdy

�� ��2 � ð1:117Þ

Mode matching is generally hard to do and the incident beam evolves into a
large number of guided modes. Coupling into a large number of modes in a
multimode fiber—unlike a single mode fiber with only a fundamental LP01

mode—introduces a large modal dispersion and significantly affects the pulse
shape as the pulse propagates in the fiber. However, the exact solutions of coupled
mode equations for all possible modes are very complicated, so they can be treated
by assuming a modal continuum rather than by considering a number of individual
modes where the mode coupling problem can be explained by a diffusion process.
Thus, the impulse response of the multimode fiber can be written as:

P z; tð Þ ¼ H2
0

ffiffiffiffiffi
p
Tt

r
1
2
þ t

c1zT

� ��1

exp � t

T
� c2

1z2T

4t

� �
ð1:118Þ

where T ¼ n
2cA ¼

nH2
0

2cc1
; H0 is the initial angular width at z ¼ 0; c1 is the steady-

state attenuation coefficient for a very long fiber z!1ð Þ; n is the refractive index

2a

(a) (b)

(c) (d)

Fig. 1.15 Sample intensity profiles of several lower-order modes: a LP01, b LP11, c LP21, d LP02

(2a diameter of fiber core)
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of the fiber, and A is the loss coefficient measured in m-1 rad-2. The results are
plotted as a function of the normalized delay time (t=T) for various normalized
lengths d ¼ c1zð Þ and the impulse responses are normalized for equal peak value
in Fig. 1.16.

For a multimode fiber, the mean pulse delay can be derived as a function of the
propagation distance (z), where the mode coupling predominates and is based on
the same diffusion model, the time delay is given as:

sh ¼
T

2
c1zþ h2

H2
0

� 1
2

 !
1� e�2c1z
� �" #

: ð1:119Þ

The resultant Fig. 1.17a shows the variation of s1 as a function of c1z for
h ¼ 0; h ¼ 1; and in between possible modes for a few-mode fiber for V\5: The
results imply that for a relatively short fiber length, the delay between each mode
is proportional to the propagation distance. Here, propagation angle of each mode
is obtained by guided mode analysis and the corresponding result is shown in
Fig. 1.17b.

1.4.3 Losses in Optical Fibers

Light guiding in optical fibers is similar to that of slab waveguides. The early fibers
were extremely lossy, with a typical loss of 1,000 dB/km. The use of optical fibers
in communications was not available until 1970 when fibers with a loss of 20 dB/
km near 1 lm wavelength region were introduced. Current technology makes it
possible to manufacture fibers with a loss as low as 0.2 dB/km.

Fig. 1.16 Normalized
impulse response as a
function of normalized time
delay (t=T) in a multimode
fiber over a normalized
distance (d ¼ c1z)
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For both multimode and single-mode fibers, the losses depend strongly on
wavelength (Fig. 1.18). Absorption and scattering of light traveling through a fiber
are the main sources of the losses. Fused silica glass (SiO2) exhibits two
strong absorption bands: a middle-infrared absorption band resulting from
vibrational transitions and an ultraviolet absorption band due to electronic and
molecular transitions. Figure 1.18 shows the absorption tails of glass due to elec-
tronic transitions in the ultraviolet (UV) region and molecular vibrational mode
transitions in the infrared (IR) region. In addition to the intrinsic absorptions there
are extrinsic absorptions due to impurities, mainly OH- ion vibrations associated
with water vapor dissolved in the glass. The fundamental OH- ion stretching
vibrational mode is at 2.72 lm, and the harmonic overtones, 1.38, 0.95, 0.72 and
0.6 lm, are in the near-IR and visible region.

Rayleigh scattering is another intrinsic effect that contributes to the attenuation
of light in glass. The random localized variations of the molecular positions in
glass create random in homogeneities of the refractive index that act as tiny
scattering centers. These microscopic variations of refractive index cause Rayleigh
scattering. The scattered intensity is wavelength dependent and proportional to x4

or to 1=k4. On the short wavelength side, less than 1.5 lm, losses are mainly
determined by the intrinsic Rayleigh scattering. On the long wavelength side, loss

Fig. 1.17 Delay and
propagation angle in
multimode fiber: a time
delays; b propagation angles
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is caused by the intrinsic molecular vibration absorption. Although current tech-
nology is able to decrease the OH- concentration level extremely low, the
absorption peaks can still be noticed.

1.4.4 Nonlinearity of Optical Fibers

From the two curl equations of the Maxwell Eqs. (1.75–1.78), we have

r2E ¼ l0e0
o2E

ot2
þ l0

o2P

ot2
ð1:120Þ

P ¼ e0vE ¼ e0 v 1ð Þ þ v 2ð ÞE þ v 3ð ÞEE þ . . .
	 


E ¼ e0v
ð1ÞE þ PNL ð1:121Þ

where PNL ¼ e0 vð2ÞE þ vð3ÞEE þ . . .
� �

E and vðjÞ j ¼ 1; 2; . . .ð Þ is the jth-order
susceptibility of the material. We rewrite the above equation to be:

r2E ¼ n2

c2

o2E

ot2
þ l0

o2PNL

ot2
ð1:122Þ

where c ¼ 1ffiffiffiffiffiffiffi
l0e0
p is the light speed in vacuum and n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vð1Þ

p
is the refractive

index.
Glass is an isotropic centro-symmetric material, so vð2Þ vanishes; therefore, we

can concentrate on the third order term vð3Þ only. Assuming the applied field is a
monochromatic wave EðtÞ ¼ E0 cosðxtÞ; plugging it into the expression of PNL in
(1.122), we have:

Pð3ÞðtÞ ¼ 1
4
e0v
ð3ÞE3

0 cosð3xtÞ þ 3
4
e0v
ð3ÞE3

0 cosðxtÞ ð1:123Þ
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Fig. 1.18 Loss spectrum of
silica fibers (graphed based
on Miya [4]
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The first term generates third harmonic, frequency at 3x; due to the applied
field at frequency x: The conversion efficiency is usually very low without the
careful arrangement of phase matching. The other term is responsible for an
optical Kerr effect, where the nonlinear refractive index change can be written as:

Dn ¼ n2I ð1:124Þ

where n2, the nonlinear refractive index coefficient is defined as n2 ¼ 3g0

n2
0e0

vð3Þ;

where g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
; and I is the optical intensity of the incident wave defined as

I ¼ EðxÞj j2
2g : The nonlinear coefficients in silica fibers are quite small. It has been

measured that n2 in silica fibers is approximately 2.2 * 3.4 9 10-20 m2/W [2],
which is 2 orders of magnitude smaller than most other nonlinear media. However,
the nonlinear effect in fibers can be significantly enhanced due to the character-
istics of the single mode fibers, i.e., small effective core area and low loss over a
long propagation length. The first characteristic leads to high intensity and the
second one enables long interaction length. In order to compare to other nonlinear
bulk materials, we can define a figure of merit which is the product of the intensity
and effective length, ILeff. For the bulk materials, assuming beam is Gaussian,

ILeff ¼
P

pw2

pw2

k
¼ P

k
ð1:125Þ

For fibers,

ILeff ¼
ZL

0

P

pw2
e�azdz ¼ P

pw2
ð1� e�aL

a
Þ ð1:126Þ

Therefore, the enhancement factor is:

ILeff�fiber

ILeff�bulk
¼ k

pw2a
ð1:127Þ

which can be as high as 109 around a wavelength of 1.55 lm.

1.4.5 Birefringence

Even a single-mode fiber can support two degenerate modes polarized in two
orthogonal directions. The two modes would not couple to each other in a fiber
with perfectly cylindrical geometry and isotropic material. However, the inevitable
non-perfect cylindrical geometry or small fluctuations in material break the mode
degeneracy and result in modal birefringence. The mode propagation constants
become slightly different for the modes polarized in x and y directions [3].

1 Optical Fibers 27



B ¼
bx � by

�� ��
k0

¼ nx � ny

�� �� ð1:128Þ

where nx and ny are the effective indices in the two orthogonal polarization states.
The axis along which n is larger is called the slow axis while the other one is called
the fast axis. The two modes exchange energy with each other periodically as they
propagate along the fiber with the period of one beat length, LB, defined as:

LB ¼
2p

bx � by

�� �� ¼
k
B

ð1:129Þ

Because conventional single-mode fibers have random birefringence fluctua-
tions along the fiber, light launched into the fiber with linear polarization loses
polarization within a short distance. To overcome the problem, polarization-
maintaining fibers (PMF) are made in which a large amount of birefringence is
introduced intentionally by making either the core or the cladding elliptical in
shape, or by inserting stress-applying elements beside the core. The birefringence
achieved is in the order of 10-6 to 10-4. If the polarization of the incident light is
coincident with the slow or the fast axis of the PMF, the polarization remains
unchanged during propagation. If the polarization axis has an angle with these
axes, the polarization changes periodically with a period equal to the beat length
LB, as shown in Figs. 1.19.
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Chapter 2
Fiber Optic Interferometric Devices

Utkarsh Sharma and Xing Wei

2.1 Introduction

Fiber optic interferometry can be broadly explained as the techniques that utilize
the fundamental principles of optical interference to measure physical sample
properties or detect changes via sensing systems that are partially or completely
realized using fiber optic components. While the field of optical interference dates
back to second half of seventeenth century, the advent of fiber optic interferometry
technology is rather recent as it stemmed out of advances in the fiber optics in late
1970’s and early 1980’s. In the next two sections, we will briefly review the major
advancements made in the field of optical interferometry and fiber optic inter-
ferometric devices.

2.1.1 Developments in Optical Interferometry: A Journey
towards Understanding Light

Historically, the experiments based on optical interference over the last three
centuries have played a key role in helping the physicists and scientists to make
breakthrough advancements in Physics and led to wide range of applications
involving highly sensitive metrology and sensing [1–3]. One of the unique
advantages that the phenomenon of optical interference offered to the physicists
was the capability to realize experimental optical setups and analyze the results
that could be used to either verify or question their hypothesis and theories. The
understanding of fundamentals of light and optical interference has come a long
way since physicists first started exploring this subject matter more than three
centuries ago. In one of the earliest experiments dating back to 1665, it was
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F. M. Grimaldi’s careful observations regarding the phenomenon of diffraction
that first hinted at the wave-nature of the light. R. Hooke and C. Huygens furthered
the wave theory of light but it was Newton’s assertion of corpuscular theory of
light that found broader acceptance for most of the seventeenth and eighteenth
century. It was the remarkable contributions of E. Young, A. Fresnel and J.
C. Maxwell that emphatically put the wave theory of light in the forefront again in
the nineteenth century. Finally, in the era of the birth of modern physics and
quantum mechanics in the twentieth century, the path-breaking works of M.
Planck, A. Einstein, L. deBroglie, N. Bohr, W. Heisenberg and other notable
physicists helped in establishing the wave-particle dual nature of light. It may be
fitting to say that mankind’s continually evolving understanding of the funda-
mentals of light and phenomenon such as optical interference has mirrored with
the key advances made in the field of Physics over the last three centuries.

2.1.2 Fiber Optic Interferometry

While the impact of optical interferometry on modern physics cannot be over-
stated, it has been the advancements in the fiber optic interferometry technology
that can be credited for utilizing this phenomenon for a wide range of commercial
and industrial applications including strain sensors for structural monitoring,
medical imaging, remote sensing and precise measurement applications to name a
few [4–6]. There have been three critical factors that have been instrumental
towards development of this technology. Firstly, it was the invention of laser that
provided a high intensity light source with strong spatial and temporal coherence
properties. Secondly, it was the advancements in optoelectronics industry that
facilitated development of optical detectors to realize sophisticated low noise
detection techniques to record optical interference effects with high sensitivity.
And finally, it was the development of low loss single mode fibers that made it
possible guide light in a flexible fiber optic waveguide and realize compact, low-
cost, robust and versatile fiber optic interferometers that would otherwise be
impractical to achieve with bulk-optic components.

Two of the major contributions of fiber optic interferometry have been in fiber
optic sensors and fiber optic devices. In this chapter, we will largely focus on fiber
optic sensors and its applications.

2.1.2.1 Advantages of Fiber Optic Technology

There are some unique advantages of fiber optics technology that make it espe-
cially attractive for sensing applications [5].
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1. Compact and lightweight: Fiber optic interferometers and sensors can be made
highly compact and hence find use in airborne and space-based sensing
applications.

2. High accuracy and sensitivity compared to typical mechanical or chemical
based sensors.

3. Flexibility for customized applications: Single mode fibers (SMF) provide a
loss-less and flexible optical wave-guide for transmission, delivery and col-
lection of optical signals. For example, one can use a flexible fiber to deliver or
collect light from internal body organs by integrating an optical fiber with an
endoscope. One can also utilize the nearly loss-less transmission properties of
SMFs for remote sensing operations.

4. Silica material properties: Optical fibers are made from silica (glass) and hence
carry some inherent advantages such as usability in harsh, high temperature and
rugged environments, and immunity to electromagnetic interference. Silica is
also a chemically passive material and hence it is not affected by corrosive
factors that might be present in the environment.

5. Multiplexing capabilities that allow distributed sensing applications.

2.1.2.2 Fiber Optic Interferometry Based Sensing: Technology Trends
and Applications

Fiber optic sensor technology was touted to be a huge breakthrough in 1980’s and
early 1990’s. Although it led to several successful commercial applications and its
impact on research and specialized engineering applications has been invaluable, it
has still failed to achieve the widespread commercial penetration in the sensors
market that it had once promised. The main reason for this failure is the stiff
competition it has faced due to existence of low cost conventional alternatives
such as electronic/mechanical or chemical sensors. The sensors industry is highly
fragmented with various independent market sectors where each has very spe-
cialized needs [6]. Although fiber optic technologies could offer higher resolution
and precision, such high sensitivities are often not required for most commercial
applications.

It was the steep growth of telecommunication industry in the 1990’s that fueled
the research and development in fiber optics technology and led to availability of
less costly, efficient and more sophisticated fiber optic components. However, the
cost of fiber optic sensor technology still needs to be reduced significantly to offer
a compelling incentive to sensors industry for adoption of the newer technology.
The prices of fiber optic and optoelectronic components such as laser diodes and
SMFs have seen a steep decrease by a factor of around hundred-folds over the last
30 years [5]. It is likely that this downward trend in prices will continue as the
technology matures further, and this may open up newer possibilities for optical
fiber sensor technology.
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There is also an alternative route towards progressive commercial success for
fiber optic sensor technology. The key to this approach would be to identify and
develop niche applications that can benefit from the unique advantages of the fiber
optic sensors. Environmental and atmospheric monitoring, industrial chemical
processing, advanced manufacturing processes, biotechnology, and defense are
some of the areas that can utilize the improved performance of the newer tech-
nology. With increased emphasis on monitoring the environmental changes, fiber
optic sensors could play a pivotal role in real-time measurements of pollutant
levels and contamination in the environment. The multiplexing and distributed
sensing capabilities of fiber optic sensors make them an excellent candidate for
structural health monitoring in airborne and satellite applications where weight is a
major consideration. It can also be used to remotely monitor chemical processes in
otherwise rugged and hazardous conditions. In medicine, fiber optics has been
found extremely useful in realizing optical imaging techniques such as optical
coherence tomography and delivering therapeutic light into an internal organ via
optical fiber conduit. Overall, the field of fiber optic interferometry is bound to
prosper and have a wider commercial impact in future as the technology evolves
and finds newer applications.

In the following section, we will discuss the basic fundamentals of fiber optic
interferometry and sensors. In Sect. 2.4, we will review basic principles of oper-
ations of some of the selected fiber optic components that are routinely used to
realize fiber optic interferometric sensors and devices. In Sect. 2.3, several inter-
ferometric architectures will be covered along with a few selective examples of
applications that use these interferometers.

2.2 Fundamentals of Optical Interferometry and Fiber
Optic Sensors

In this section, we will review the basic fundamentals about the optical interfer-
ence, and generic descriptions of fiber optic sensors. In the topics describing fiber
optic concepts and applications, the analysis will be limited to single mode optical
fibers for the scope of this chapter.

2.2.1 Optical Interference and Wave Representation of Light

As per the scalar wave model, monochromatic light constitutes of oscillating
electric and magnetic field components that can be mathematically represented by
the wavefunction wðr; tÞ, where it is a function of time, t and spatial position,
r = (x, y, z). As derived from Maxwell’s equations in the earlier chapter, the light
wavefunction satisfies the following scalar wave equation in vacuum,
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r2wðr; tÞ ¼ 1
c2

o2wðr; tÞ
ot2

; ð2:1Þ

where r2 is the Laplacian operator, and c is the speed of light in vacuum. Any
function that satisfies the above equation could be a possible representation of
optical waves. A characteristic property of the scalar wave equation is that it is
linear, and hence the principle of superposition can be applied if there is an
interaction of two or more wavefunctions. If the two optical fields, w1ðr; tÞ and
w2ðr; tÞ, have an overlap then the resulting optical field is given by the linear
superposition of the two waves as shown in the following equation:

wTotðr; tÞ ¼ w1ðr; tÞ þ w2ðr; tÞ: ð2:2Þ

It is often mathematically convenient to represent the light waves as complex
fields, although the electric or magnetic fields that carry the energy are represented
by the real part of this complex field. Monochromatic plane wave solution is often
used to describe various fundamentals of light as it is one of the simplest solutions
for the scalar wave equation. A monochromatic plane wave can be mathematically
represented as following:

wð~r; tÞ ¼ E0 exp i ~k:~r � 2ptt
� �� �

¼ E0 exp i kxxþ kyyþ kzz� 2ptt
� �� �

;
ð2:3Þ

where E0 is the field amplitude, ~k is the propagation wavevector, and t is the
frequency of light. Often in a simplified form, a plane wave propagating in the z
direction is represented as E0 exp i kz� xtð Þð Þ, where x ¼ 2ptð Þ is the angular
frequency of the light. In context to this chapter, a modified plane wave based
solution is also quite suitable to model light propagation in single mode fibers
when weakly guiding approximation is used [Chap. 1].

2.2.1.1 Interference of Monochromatic Planar Waves

The resulting electric field due to interference of two co-propagating plane waves
of the same frequency can be given as:

ETot ¼ E1 exp i kz� xt þ /1ð Þð Þ þ E2 exp i kz� xt þ /2ð Þð Þ; ð2:4Þ

where, E1; E2 and /1; /2 are the amplitudes and the phases of the two waves
respectively. The frequency of optical light is very high (*1014 Hz) and hence
one can only detect the intensity of the light using optical detectors. The intensity
is proportional to the time-averaged value of squared electric field: Ia E:E�h i (refer
Chap. 1 for more details). The intensity of the resulting field in Eq. (2.4) at the
detector can be given as follows:
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ITot ¼ E1 þ E2ð Þ: E1 þ E2ð Þ�h i ¼ E1j j2þ E2j j2þ 2Re E1E�2
� �

¼ E1j j2þ E2j j2þ 2 E1j j E2j jcosð/1 � /2Þ
ð2:5Þ

Hence, the resulting intensity due to interference of two waves is simply not the
sum of the individual intensities but is rather given by:

ITot ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffi
I1I2
p

cosð/1 � /2Þ: ð2:6Þ

It should be noted that the effective phase difference (/1 � /2, in this case)
plays an important role and determines if it is a constructive (/1 � /2 ¼ 2np;
n ¼ 0;�1;�2. . .) or destructive interference (/1 � /2 ¼ 2n� 1ð Þp; n ¼ 0;
�1;�2. . .). If two identical optical waves (assuming zero phase offsets, i.e.
/1 ¼ /2) undergo different path lengths before interference occurs, then it will
result in phase difference, D/ ¼ kðz1 � z2Þ ¼ kDz, where Dz is the path difference
between two waves. If the phase difference changes continuously, it will result in
interference fringes and the measured intensity will vary from a maximum of
Imax ¼ I1 þ I2 þ 2

ffiffiffiffiffiffiffiffi
I1I2
p� �

to a minimum of Imin ¼ I1 þ I2 � 2
ffiffiffiffiffiffiffiffi
I1I2
p� �

. A useful
parameter of interest is the fringe visibility contrast or fringe modulation depth and

is defined as:
Imax � Imin

Imax þ Imin

¼ 2
ffiffiffiffiffiffiffiffi
I1I2
p

I1 þ I2
.

2.2.1.2 Interference of Planar Waves of Different Frequency

In the last sub-section, we discussed the interference between two waves with
same frequency but different optical path length or phase difference. Another
important interference phenomenon is the resulting electric field due to interfer-
ence of plane waves of the different frequency. This mathematical analysis is
especially useful because in reality light waves are not strictly monochromatic but
have a finite spectral bandwidth. Having a finite bandwidth allows the ability to
modulate the field amplitude. Availability of high speed optical modulators
(electro-optic and acousto-optic) make it possible realize many useful technologies
that have had far reaching impact in fiber optic industry. Mathematically the sum
of two waves of equal amplitude but with different angular frequency can be
represented as following (assuming zero phase offsets for simplicity, i.e.
/1 ¼ /2 ¼ 0):

ETot ¼ E0 exp i k1z� x1tð Þð Þ þ E0 exp i k2z� x2tð Þð Þ
¼ E0 exp i k1z� x1tð Þð Þ þ E0 exp i k1 þ Dkð Þz� x1 þ Dxð Þtð Þð Þ;

ð2:7Þ

where the angular frequency and the propagation wavevector of the two waves
differ by Dx and Dk, respectively. If we simplify for the real part (electric field
value) of the Eq. (2.7) above then we get:
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Re ETotð Þ ¼ 2E0 cos k1 þ
Dk

2

� �
z� x1 þ

Dx
2

� �
t

� �
cos �Dk

2
zþ Dx

2
t

� �

¼ EMod tð Þ cos k1 þ
Dk

2

� �
z� x1 þ

Dx
2

� �
t

� �
;

ð2:8Þ

where the resulting wavefield has a modulated amplitude EMod tð Þ
¼ 2E0 cos � Dk

2 zþ Dx
2 t

� �
.

The resulting intensity measured by detector has modulations with a beat fre-
quency, Dx, as shown in the equation below:

ITot ¼ E1 þ E2ð Þ: E1 þ E2ð Þ�h i ¼ E1j j2þ E2j j2þ 2Re E1E�2
� �

¼ 2I0 1þ cosð�Dkzþ DxtÞð Þ ¼ 4I0 cos
�Dkzþ Dxt

2

� �2

:
ð2:9Þ

This result has a huge significance as beat frequencies can be orders of mul-
titude smaller than the optical frequency (*1014 Hz) which cannot be detected
using optoelectronic detectors. Instead one can rely on measurement of beat fre-
quency (typically kHz–GHz range) for highly sensitive phase measurements.
Figure 2.1 shows linear sum of two monochromatic waves of different frequency
and different amplitude. It should be noted that the resulting modulation depth is
not the maximum because the two waves have different amplitude.

Note: It must be noted that interference or linear superposition of the scalar
electric field applies only if the two waves have same polarization. Otherwise, the
addition of the two differently polarized light waves would result in an output field
of new polarization. Another important point to note is that both temporal and
spatial coherence are required for two fields to manifest interference effects.
Spatial coherence is a measure of correlation between electric field or wave-
functions at two different positions in space. Temporal coherence is a measure of

Fig. 2.1 Superposition of two monochromatic waves of different frequency and amplitude
(in blue and green). The resulting electric field is given by the red graph below, with amplitude
modulation showed with dashed black lines
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correlation or predictable phase relationship between fields or wavefunctions
observed at different points in time. As per the mathematical definition, mono-
chromatic plane waves that we have used so far in our analysis have infinite
coherence time and coherence lengths.

2.2.1.3 Quasi-monochromatic, Polychromatic, and Broadband Light

Monochromatic plane wave representation is a great tool to understand some of the
basic fundamentals of wave theory of light [2, 3]. However, in reality, there is no
such thing as a monochromatic plane wave because a truly monochromatic plane
wave has infinite energy and infinite time duration (time from �1 to þ1). In
fact, all the travelling light waves that carry energy have finite bandwidths and
hence for simplicity, we would call it polychromatic light. Polychromatic waves
can be expressed by using weighted sum of monochromatic waves of different
frequencies using the famous principle of superposition. The use of Fourier
methods greatly simplifies the representation of broadband light. For example, an
arbitrary wavefunction, EðtÞ, can be defined for a given location (say at z = 0)
using the superposition integral of monochromatic waves of different frequencies,
amplitude and phases as shown in the equation below:

EðtÞ ¼ 1
2p

Z1

�1

~EðxÞ expð�ixtÞdx: ð2:10Þ

Here EðxÞ can be obtained by carrying out the Fourier transform as shown
below:

~EðxÞ ¼
Z1

�1

EðtÞ expðixtÞdt ¼ F:T : EðtÞf g: ð2:11Þ

The spectrum of the wavefunction, EðtÞ, is defined as the absolute value of the

square of the Fourier transform of the wavefunction: SðxÞ ¼ F:T : EðtÞf gj j2¼
EðxÞj j2.

2.2.2 Phase and Group Velocity

The concept of group velocity and optical path delay is inherently central to any
practical interferometric setup. So far we have described monochromatic waves
that travel in vacuum with the phase velocity, vPh ¼ x

k ¼ c. When the waves travel
in a dispersive medium with refractive index n, the phase velocity is given as:
vPh ¼ c

n. We have already discussed that monochromatic waves are ideal
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representations and hence do not carry any energy. For a monochromatic wave,
this is often called phase velocity, and in vacuum, EM waves of different fre-
quency travel with the same phase velocity, i.e. of light. In reality, however,
energy is carried by wave packets or wave pulses and any media of propagation
has dispersion (see Chap. 1). Unlike, monochromatic waves that have indefinite
extent in time, a wave packet consist of a localized wavefunction (spatial or
temporal) that travels with a group velocity vg ¼ ox

ok

� �
in a dispersive medium.

Figure 2.2 shows the resulting wave packet as a result of superposition of multiple
monochromatic waves of variable frequency and amplitudes. In reality, a light
pulse of localized energy is made up of continuum of frequencies (that essentially
can be explained by the sum of Fourier frequencies of the light pulse). In the
Fig. 2.2, we can see that even the discrete number of wavelengths or frequencies
can add up to form a modulated electric field envelope or wave packet.

In Sect. 2.2.1.2, we saw an interesting result that when two monochromatic
waves of different frequency superimpose, it results in modulated electric field
amplitude. One of the key insights from this result is that superposition of many
monochromatic light waves with varying frequencies around a central frequency
can result in a localized light wave packet or a light pulse. In Eq. (2.8), the
simplified expression of the combined waves depicted a monochromatic wave with
average wavevector and frequency �k ¼ k þ Dk

2 ; & �x¼xþ Dx
2

� �
, but with

amplitude modulation. If we look at the modulated envelope, we realize that it has
a phase of its own and it travels with a group velocity of:

vg ¼
Dx
Dk
¼ ox

ok
ð2:12Þ

Hence for propagation of light in any optical media, the group refractive index
(ng) is defined as: ng ¼ c

vg
. It must be noted that group refractive index should not

be confused with the refractive index (n), which is defined as: n ¼ c
vPh

.

Fig. 2.2 Superposition of multiple monochromatic waves of varying frequency and amplitude
results in formation of a wave packet below (black)
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When light travels through a fiber or any other optical media, the phase term of
the associated electric field is modified as follows: Eout ¼ Ein exp ik0nzð Þ, where
n is the refractive index, k0 is the wavenumber in vacuum, and z is the distance
travelled in the media. One of the often used term in interferometry is the optical
path length (OPL), which is described as the product of the physical distance
travelled by an electric field and the refractive index of the medium OPL ¼ nzð Þ. A
related and equally useful term is called optical path difference (OPD), which is
described by the differential OPL between two light waves of the same origin, but
that travelled through different media or different distances. OPD is often calcu-
lated in two beam interferometry and is given by: OPD ¼ n1z1 � n2z2. For many
applications in interferometry, it is often convenient to use the group refractive
index to calculate the OPD or OPL.

2.2.3 Fiber Optic Interferometric Sensors

In a typical fiber optic interferometric sensor, the light is divided in at least two
parts and at least one part of the light interacts with the measurand (a quantity or
physical effect that is intended to be measured). The interaction of the measurand
with the light field would result in a phase shift or phase modulation, which can be
detected when the modified light field interferes with the reference light (Fig. 2.3).
Fiber optic interferometric sensors typically offer high sensitivities due to several
reasons including low propagation loss in fiber, and interferometric detection. As
shown in Fig. 2.3, the light can be modified by multitudes of environmental
perturbations or measurable quantities such as temperature, strain, heat, humidity,
force, pressure, flow, acoustic, vibrations, acceleration, velocity, electric or

Fig. 2.3 Schematic to show a generic interferometric fiber optic sensor. Environmental
perturbations such as temperature, strain, pressure etc. interact with the light field and impart a
phase shift or modulation that can be analyzed by processing the interference term at the detector
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magnetic fields etc. These environmental perturbations interact with the electric
field through a transducing mechanism and impart a change or modulation in the
phase term: DOPL ¼ D k0nzð Þ.

Broadly speaking, fiber optic sensors can be divided into two categories
(Fig. 2.4):

• Intrinsic fiber sensors: The light is modified inside the fiber and the fiber itself
acts as a transducer, in part or as a whole. Often the fiber is attached to a
material that acts as a transducer in tandem with fiber. The intrinsic fiber sensors
have the advantage of compact and efficient design with high sensitivity.

• Extrinsic or hybrid fiber sensors: The light is carried by a fiber to a location
where the light is modified by environmental perturbations or measurand, and
the modified light is then collected back by the same or another fiber and
directed to a detector where it is processed and analyzed. One of the major
advantages of the extrinsic fiber sensors is that the fiber acts as a flexible and
rugged dielectric conduit of light and enables delivery and collection of light for
measurement purposes, which otherwise would had been prohibitive due to
harsh environmental conditions.

In the intrinsic fiber sensors, these environmental perturbations impart a change
in the physical property of the fiber itself; such as temperature or strain induced
changes in length or refractive index which in turn imparts a change in the optical
phase of the light travelling through the fiber. On the other hand, extrinsic fiber
sensors could have much wider range of applications because it is then feasible to
expand the transducing mechanisms as the light is not necessarily confined within
the fiber when interacting with the perturbation field.

Fig. 2.4 Schematic to show a generic intrinsic and extrinsic fiber optic sensors. a intrinsic fibre
sensors. b extrinsic fiber sensors
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2.3 Fiber Optic Interferometer Architectures

In this section, we will briefly discuss some of the common fiber optic interfer-
ometer architectures topologies and draw parallels with their bulk optic counter-
part interferometer architectures. The four interferometer architectures are
Michelson, Mach–Zehnder, Sagnac and Fabry–Perot interferometers. The goal for
this section is to provide the reader with an overview of different architectures and
a more detailed treatment for most of these designs is either provided in the later
sections (Michelson and Mach–Zehnder interferometers in Sect. 2.4 of this
chapter) or later in this book (see the chapter on Sagnac interferometer later in the
book). In principle, any of the interferometric architecture (with the exception of
Sagnac interferometer) can be alternatively realized to measure any of the physical
properties. However, different architecture may present different design, cost and
performance trade-offs and one or another architecture may be preferred
depending upon the unique requirements of a specific application.

2.3.1 Michelson Interferometer

Michelson interferometer is probably the most commonly known optical config-
uration that is used for interferometry. One of the most significant applications of
this interferometer was in the famous Michelson-Morley experiment that was
carried out in 1887 to detect the relative motion of earth and aether in the universe.
While the unexpected results of the experiments confounded scientists at the time,
it was one of the key findings that inspired Einstein’s special theory of relativity.

Figure 2.5 shows the typical schematics of bulk-optic and fiber optic realizations
of Michelson interferometers. In a Michelson interferometer, an incident light field

Fig. 2.5 Schematic design for bulk-optic (left) and fiber optic Michelson interferometer
architecture. The electric fields, optical and fiber optic components shown in the figure are as
follows: Ein: incident electric field; Es: electric field in the sample arm; Eref: electric field in the
reference arm; BS1: beam splitter; M1 and M2: mirrors; C: fiber optic coupler; and D: detector
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is divided into two parts (sample and reference) by a beam splitter or fiber optic
coupler. The light in the reference and sample paths are reflected back and combined
using the same splitter and the interference patterns of the two lights are measured
using a detector. The light in the sample arm accrues perturbation field dependent
phase shifts that can be measured using interference with the reference light.

2.3.2 Mach–Zehnder Interferometer

In a Mach–Zehnder interferometer, the incident light field is divided into two parts
(sample and reference) by a beam splitter or fiber optic coupler. Unlike Michelson,
the light in the reference and sample paths is not reflected; rather it is directed to a
second splitter/combiner where the two lights combine and the interference pat-
terns are measured using detectors (Fig. 2.6). In fact, if a Mach–Zehnder inter-
ferometer is cut in half and folded back, the topology will become similar to that of
Michelson interferometer.

2.3.3 Fabry–Perot Interferometer

A Fabry–Perot (FP) interferometer of etalon consists of two reflective surfaces that
are often parallel. The incident light is reflected back and forth and transmitted
multiple times at the two partially reflective surfaces. The superposition of these
multiply reflected and transmitted beams at the two surfaces results in interference
effects that determine the transmission and back-reflected light characteristics of
the light. Figure 2.7 shows various bulk-optic and fiber optic realizations for FP
interferometers. The two examples corresponding to extrinsic and intrinsic fiber
optic FP interferometers are also shown. In the intrinsic fiber optic FP sensor the
reflective surfaces inside the fiber can be created by micro-machining, fiber Bragg
gratings (FBG), or thin film deposition.

Fig. 2.6 Schematic design for a bulk-optic (left) and fiber optic Mach–Zehnder interferometer
architecture
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In Sect. 2.2.3, we discussed that environmental perturbations could modify the
medium of propagation of light and result in phase shifts that is proportional to

effective change in OPL as shown here: D/ ¼ D nk0zð Þ ¼ k0z Dnþ nDz
z

� �
. Several

environmental perturbations such as temperature, pressure, strain and acoustic
waves could impart these phase shifts via interaction with fiber or external med-
ium. For example, Fig. 2.8a shows an intrinsic fiber optic temperature sensor
based on FP interferometer. Here the composite material attached to the fiber
introduces temperature dependent strain to the fiber, thereby resulting in phase
shifts. Figure 2.8b shows another FP interferometer based implementation that can
be used to measure acoustic waves or pressure changes. The diaphragm with a
reflective surface on one side acts as a transducer which results in displacement
with respect to pressure or acoustic changes.

Fig. 2.7 Schematic design for a bulk-optic (left), extrinsic fiber optic (middle), and intrinsic fiber
optic (right) Fabry–Perot interferometer architecture. R1 and R2 are the two reflective surfaces
forming the Fabry–Perot cavity

Fig. 2.8 a. Intrinsic FP interferometer based sensor for thermal measurements. b. Extrinsic FP
interferometer based sensor for pressure acoustic sensing
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2.3.4 Sagnac Interferometer

In Sagnac or ring interferometer, the incident light field is split into two parts.
While the path travelled by the two beams is the same, the two beams travel in
opposite angular directions (i.e. clockwise and anti-clockwise). After completing
the loop trajectory, the two beams combine at the point of entry and undergo
interference (Fig. 2.9). Because the two beams move in opposite angular direc-
tions, the interference signal at the coupler is highly sensitive to the angular motion
of Sagnac loop itself. Sagnac interferometers have found applications in fiber optic
gyroscopes and a more detailed discussion on theory and applications will be
provided in the later chapter.

2.4 Basic Operation Principles of Fiber Optic Components
and Assemblies

It is important to understand the basic operation principles of some of the selected
fiber optic components as majority of fiber optic sensors and interferometric setups
can be realized using these components. This section focuses on providing the basic
mathematical tools to model these components for interferometry applications.

2.4.1 Ideal 2 3 2 Fiber Optic Couplers

A very basic fiber optic component is a 2 9 2 fiber optic coupler that has two input
ports and two output ports, each port being a single-mode fiber that supports only the
LP01 mode of light at the wavelength of interest (Fig. 2.10). The ‘‘single-mode’’

Fig. 2.9 Schematic design for a bulk-optic (left), and intrinsic fiber optic (right) Sagnac
interferometer architecture. ECW and EACW are the electric field traveling in the clockwise and
anticlockwise direction in the Sagnac ring or loop
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fiber actually supports two degenerate modes of orthogonal polarizations. But for
simplicity the polarization effects are ignored for the moment. The light signals
entering the two input ports are mixed in the coupler and then redistributed at the two
output ports as illustrated in figure 2.10.

To describe the physics of light wave coupling we start from a simple math-
ematical model regardless of the light coupling mechanism. Following the con-
vention introduced in Chap. 1, we describe the time dependence of the light signals
at the 4 ports as

EnðtÞ ¼
1
2

En expð�ixtÞ þ c:c: ð2:13Þ

where En (n ¼ 1; 2, 3, and 4) are the complex amplitudes of the electric fields,
and c.c. stands for the complex conjugate.

For an ideal loss-less 2 9 2 coupler, the output is a unitary transformation of
the input, which can be conveniently expressed in the form a unitary matrix U

E3

E4

	 

¼ U

E1

E2

	 

¼ a b
�b� a�

	 

E1

E2

	 

: ð2:14Þ

Here, a and b are complex values (a� and b� are their complex conjugate),
which satisfy the following normalization constraint

aj j2þ bj j2¼ 1: ð2:15Þ

This unitary transformation guarantees that the total optical ‘‘power’’ is con-
served (loss-less)

E3j j2þ E4j j2¼ E1j j2þ E2j j2: ð2:16Þ

The values of aj j2 and bj j2, usually expressed in percentages, are the coupler’s
power splitting ratios for the parallel and cross paths. For example, a 50/50 coupler

and an 80/20 coupler can be described with U ¼ 1ffiffi
2
p 1 1
�1 1

	 

and

U ¼
ffiffiffiffiffiffiffi
0:8
p ffiffiffiffiffiffiffi

0:2
p

�
ffiffiffiffiffiffiffi
0:2
p ffiffiffiffiffiffiffi

0:8
p

	 

, respectively.

Fig. 2.10 Coupling of light
through a 2 9 2 fiber optic
coupler
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People familiar with electron spin in quantum mechanics may recognize that
matrix U has the same properties as a spin-1/2 rotation operator. It also resembles
the Jones matrix for a loss-less polarization component (to be discussed in Sect.
2.4.5). In fact the underlying mathematics is very much the same for these dis-
tinctly different physical subjects (It would be an insightful exercise to expand
matrix U in terms of the elegant Pauli matrices. But this is beyond the scope of this
book and we leave it to the interested readers).

It should be noted that matrix U is not unique, and the same coupler may be
described with other equivalent forms of U. For example, a 50/50 coupler could as

well be represented by U ¼ 1ffiffi
2
p 1 1

1 �1

	 

or U ¼ 1ffiffi

2
p 1 i

i 1

	 

. Depending on the

exact locations where the input and output amplitudes En (n ¼ 1; 2 , 3, and 4) are
defined, the matrix U could absorb some additional phase factors. For instance, if E4

for the 4th port is re-defined at a different location along the fiber such that E4 has a
phase shift of p or E04 ¼ E4 expðipÞ ¼ �E4, Eq. (2.14) can then be rewritten as

E3

E04

	 

¼ E3

�E4

	 

¼ 1 0

0 �1

	 

a b
�b� a�

	 

E1

E2

	 

¼ a b

b� �a�

	 

E1

E2

	 

: ð2:17Þ

Note the transformation matrix has changed after absorbing a phase factor
matrix. A global common phase factor has no significance in the analysis, but
relative phases are critical for the interference outcome. It is very important to
keep track of the phase factors in a consistent manner.

For non-monochromatic light waves, the x-dependence of U must be consid-
ered. In general, all matrix elements of U vary with x, not only the amplitude but
also the phase. Variation of amplitudes aj j and bj j means the coupler splitting
ratios are wavelength dependent. Variation of the phases, on the other hand,
indicates time delay and group velocity dispersion.

2.4.2 Mach–Zehnder Interferometer

The matrix representation is very convenient for the analysis of a fiber optic
interferometric system. Figure 2.11 shows a simple layout of a Mach–Zehnder
interferometer containing two 50/50 couplers and a phase shift element in between

As discussed earlier, the two 50/50 couplers can be described with

U1 ¼ U3 ¼
1ffiffiffi
2
p 1 1

1 �1

	 

ð2:18Þ

The phase shifter in the middle section is represented by a diagonal matrix:

U2 ¼
expði/Þ 0

0 1

	 

: ð2:19Þ
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For convenience we multiply a common phase factor expð�i/=2Þ and express
U2 in a more symmetric form (only the relative phase matters)

U2 ¼ ei/=2 0
0 e�i/=2

	 

: ð2:20Þ

The overall transformation matrix for the entire system can then be computed
by concatenating the three matrices

Utotal ¼ U3U2U1 ¼
1ffiffiffi
2
p
� �2 1 1

1 �1

	 

ei/=2 0

0 e�i/=2

" #
1 1

1 �1

	 


¼ 1
2

ei/=2 þ e�i/=2 ei/=2 � e�i/=2

ei/=2 � e�i/=2 ei/=2 þ e�i/=2

" #
¼

cos /=2ð Þ i sin /=2ð Þ
i sin /=2ð Þ cos /=2ð Þ

	 


ð2:21Þ

This result indicates that the system behaves like an optical switch. When

/ ¼ 0 the resulting matrix Utotal ¼
1 0
0 1

	 

represents a 100 % parallel-state, and

when / ¼ p the resulting matrix Utotal ¼
0 i
i 0

	 

represents a 100 % cross-state.

2.4.3 Michelson Interferometer

In Sect. 2.3.1 we have also introduced an important interferometer topology, the
Michelson interferometer, which involves reflecting the two output signals of the
2 9 2 coupler back into the same coupler to achieve optical interference
(Fig. 2.5). To model such an interferometer, it is necessary to know the trans-
formation matrix of the same coupler for light waves propagating in the opposite

Fig. 2.11 Mach-Zehnder
interferometer comprising 3
segments described by unitary
matrices U1, U2, and U3

46 U. Sharma and X. Wei



direction (input at ports 3 and 4, and output at ports 1 and 2 in Fig. 2.10). In the
following, we show that the matrix for the reverse propagating light is UT , the
transpose of U. In some sense this is a trivial result: it simply means the matrix
element that links a specific input port to a specific output port is reciprocal and
remains the same regardless of light transmission direction.

The derivation is based on time reversal symmetry, which the ideal loss-less
2 9 2 fiber optic coupler obeys. (Not all optical components obey time reversal
symmetry, as will be discussed later in Sect. 2.4.6). By definition the unitary
matrix U has the property U�1 ¼ Uþ (‘‘U dagger’’, conjugate transpose of U), Eq.
(2.14) can be easily reversed

E1

E2

	 

¼ Uþ

E3

E4

	 

¼ a� �b

b� a

	 

E3

E4

	 

: ð2:22Þ

But Uþ is not the matrix for the reverse propagating light waves. There is one
extra step. Time reversal means replacing t with �t, and Eq. (2.13) becomes

Enð�tÞ ¼ 1
2

En exp �ixð�tÞ½ � þ c:c:

¼ 1
2

E�n expð�ixtÞ þ c:c:
ð2:23Þ

This means under time reversal, the complex amplitudes En

(n ¼ 1; 2 , 3, and 4) all need to be replaced with their complex conjugate.
Applying complex conjugate to both sides of Eq. (2.22), we have

E�1
E�2

	 

¼ UT E�3

E�4

	 

¼ a �b�

b a�

	 

E�3
E�4

	 

: ð2:24Þ

This subtle difference between Uþ and UT should not be overlooked. For
example, let us consider a Michelson interferometer with perfectly reflective
mirrors at ports 3 and 4. What is the overall transformation Utotal after the light
waves are reflected back into the coupler, interfere, and reemerge at ports 1 and 2.
Knowing the transformation in the reverse direction is UT , we can perform a
straightforward calculation (ignoring a common phase factor introduced by the
mirrors):

Utotal ¼ UT U ¼ a �b�

b a�

	 

a b
�b� a�

	 

¼ a2 þ b�2 ab� a�b�

ab� a�b� a�2 þ b2

	 

: ð2:25Þ

If Uþ were used instead of UT for the counter-propagating waves, the answer
would be a unit matrix regardless of the nature of the coupler, which is obviously
incorrect.
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2.4.4 Other Fiber Optic Couplers

The loss-less 2 9 2 coupler discussed so far is only an ideal physical model. In
reality, couplers all have finite optical losses. More realistic 2 9 2 couplers can be
modeled using an ideal 2 9 2 coupler by adding attenuations to individual ports.
Once the attenuation is included, the transformation matrix U is no longer unitary
and some of the symmetry properties of an ideal 2 9 2 coupler no longer exist. For
a realistic 2 9 2 coupler in general, the coupling ratios for the two through paths
(from port 1 to port 3 and from port 2 to port 4) can be different. So are the
coupling ratios for the two cross paths (from port 1 to port 4 and from port 2 to
port 3). Nevertheless, one can often still use Eq. (2.14) as an approximation for a

lossy 2 9 2 coupler by lowering the value of aj j2þ bj j2 to below 1. The value of

�10 log aj j2þ bj j2
� �

is called the ‘‘excess loss’’ (in dB) of the coupler. The excess

loss of a good quality fiber optic coupler is typically less than 0.1 dB.
There are other kinds of fiber optic couplers such as a 1 9 2 Y-coupler or a

more sophisticated 3 9 3 coupler. A 1 9 2 Y-coupler can be simply modeled with
a 2 9 2 coupler having one of the 4 ports not used (terminated with an index-
matching absorber). An ideal 3 9 3 coupler, on the other hand, could be modeled
theoretically with a 3 9 3 unitary matrix. A 3 9 3 coupler is more difficult to
fabricate and it is not nearly as common as the 2 9 2 coupler in fiber optic
interferometry.

2.4.5 Fiber Birefringence and Polarization Controllers

The polarization effect has been ignored in the theoretical model presented above.
As we mentioned earlier, the ‘‘single-mode’’ fiber actually supports two degenerate
modes of orthogonal polarizations. For a realistic interferometric system based on
single mode fibers, the two polarization modes must be considered and polariza-
tion controllers are frequently used.

As we take into account the effect of polarization, a simple section of optical
fiber itself becomes a 2 9 2 coupler. Fiber birefringence causes coupling between
the two polarization modes in a way very similar to light wave coupling in a 2 9 2
coupler discussed in the previous section. When polarization is considered, a
2 9 2 fiber optic coupler in some sense becomes a 4 9 4 coupler and the trans-
formation matrices will have to be expanded.

The polarization state of light in a single-mode optical fiber is very similar to
that of a plane light wave in free space. It could be linear, circular, or elliptical. In
the following, we shall briefly describe the mathematical tools for modeling
polarization. We do not intend to go into all the details of polarization optics since
they are not the focus of this book. There are many good text books on this subject,
for example [2, 3].
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To model polarization, we first define two orthogonal polarization states along
the fiber as the basis vectors. These two polarizations do not have to be linear,
although linear polarizations are often chosen for convenience. Once the basis
polarization states are defined, the electric field of the light is projected to these
two basis vectors, resulting in two complex amplitudes Ex and Ey (we use sub-
scripts ‘‘x’’ and ‘‘y’’ here assuming horizontal and vertical linear polarizations are

the chosen basis). The complex vector
Ex

Ey

	 

is called the Jones vector.

Since a complex number has a real part and an imaginary part, a Jones vector
contains total 4 independent parameters. The polarization information is actually
fully described by just 2 independent parameters (a point on the 2-dimensional
surface of the Poincare sphere). The other 2 independent parameters in the Jones

vector are the magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exj j2þ Ey

�� ��2q
and a common phase, which can be

factored out if we are interested in the polarization only.
As light travels through a fiber optic system, the Jones vector is transformed by

a 2 9 2 matrix known as the Jones matrix

E2x

E2y

	 

¼ J

E1x

E1y

	 

¼ Jxx Jxy

Jyx Jyy

	 

E1x

E1y

	 

: ð2:26Þ

Note the similarity of Jones matrix J to the U matrix for the ideal 2 9 2 fiber
optic coupler discussed in Sect. 2.4.1. In fact, for a non-absorbing (loss-less)
polarization control device (a wave plate, for example), J is also a unitary matrix
and it takes the same general form as described in Eq. (2.14). Regardless of the
construction of the device, a unitary Jones matrix always has two orthogonal
eigenvectors with two phase-only eigenvalues (norm = 1). These two eigenvec-
tors correspond to two principal optical ‘‘axes’’ (generalized to include circular and
elliptical polarizations), which do not change during the transformation. The two
eigenvalues determine the phase retardation between the two optical axes.
Therefore, any non-absorbing polarization control device can be generally con-
sidered a phase retarder.

The most commonly used fiber optic polarization controller is realized by
bending the single-mode fiber into a loop (it could also be partial or multiple
loops). Bending induces birefringence through anisotropic stress at the fiber core.
Alternatively, one can apply anisotropic pressure on a section of fiber without
bending to achieve similar effects. By symmetry, the optical axes are the two
directions parallel and perpendicular to the plane of the loop. The amount of phase
retardation of a fiber loop is inversely proportional to the loop diameter: the
smaller the diameter, the higher the phase retardation. The Jones matrix of such a
fiber loop oriented at angle h with a phase retardation of d is

J ¼ cos d
2þ i sin d

2 cos 2h i sin d
2 sin 2h

i sin d
2 sin 2h cos d

2� i sin d
2 cos 2h

	 

: ð2:27Þ
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For example, a fiber loop oriented at a 45� angle between horizontal and ver-
tical (h ¼ p=4) with a phase retardation d ¼ p=2 (equivalent to a k=4 waveplate)
has the following Jones matrix

J ¼ cos p
4 þ i sin p

4 cos p
2 i sin p

4 sin p
2

i sin p
4 sin p

2 cos p
4 � i sin p

4 cos p
2

	 

¼ 1ffiffiffi

2
p 1 i

i 1

	 

: ð2:28Þ

Consider a horizontally polarized light input
E1x

E1y

	 

¼ 1

0

	 

, after passing this

k=4 waveplate, the output becomes circularly polarized

E2x

E2y

	 

¼ 1ffiffiffi

2
p 1 i

i 1

	 

1
0

	 

¼ 1ffiffiffi

2
p 1

i

	 

: ð2:29Þ

A manual fiber optic polarization controller usually consists of 2 or 3 fiber loops
with different diameters and adjustable orientations. The total effect can be
modeled by multiplying the Jones matrices of the individual fiber loops, each
being a linear waveplate. Excluding a common phase factor, any non-absorbing
polarization controller has only 3 independent parameters (3 degrees of freedom):
2 for defining the principal optical axes, and 1 for the retardation. In principle, a
polarization controller consisting of 3 fiber loops is sufficient to produce any
desired Jones matrix for polarization adjustment.

Again, similar to the ideal 2 9 2 fiber optic coupler, non-absorbing polarization
devices based on mechanical stress induced birefringence obey time reversal
symmetry. As a result, the Jones matrices for the forward and backward directions
are the transpose of each other.

Although much of the discussion in this section is about non-absorbing
polarization devices, the Jones matrix is also used to describe polarization com-
ponents that do absorb light. For example, a polarizer that blocks vertically
polarized light but passes horizontally polarized light can be described by a non-
unitary Jones matrix

E2x

E2y

	 

¼ J

E1x

E1y

	 

¼ 1 0

0 0

	 

E1x

E1y

	 

: ð2:30Þ

2.4.6 Fiber Optic Circulators and Isolators

The fiber optic circulator is an interesting and very useful device. A typical circulator
has 3 ports and the light wave propagates in a circular fashion as shown in Fig. 2.12

Such a device is non-reciprocal. It appears to violate time reversal symmetry:
the light path from port 1 to port 2 can be theoretically loss-less and yet it is uni-
directional and irreversible. There are different designs for optical circulators, and
all of them involve the non-reciprocal property of Faraday effect.
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The Faraday effect is a magneto-optic effect, in which the polarization of light
is rotated in an optical medium with a magnetic field applied along the light
propagation direction (Fig. 2.13).

Polarization rotation can also occur without magnetic field. The general effect is
called optical activity, for example, in crystalline quartz that exhibits chirality.
Optical activity causes the refractive indices for right-hand and left-hand circularly
polarized light waves to differ. The Faraday effect can be viewed as optical activity
induced by magnetic field. However, there is a fundamental difference between the
Faraday effect and optical activity caused by chirality. In the absence of magnetic
field, optical activity is reciprocal: when light transmission direction is reversed, so
is the polarization rotation. The Faraday effect, on the other hand, is non-reci-
procal: the polarization rotates in the same direction regardless of the light
transmission direction. The time reversal symmetry is not really violated because
the magnetic field must flip its direction in a truly time-reversed world.

This peculiar property of Faraday effect makes optical circulator possible.
Figure 2.14 shows one possible way to construct an optical circulator.

It contains two polarization splitters/combiners, a half-waveplate, and a Fara-
day rotator. The optical axis of the half-waveplate is at 22.5� from the x-axis, and
it rotates the both x and y polarizations by 45� in a reciprocal manner. The Faraday
rotator, on the other hand, also produces a 45� rotation, but non-reciprocal. As a
result, in one direction (Fig. 2.14, schematic on the left), when light passes both
the half-waveplate and the Faraday rotator, the polarization is unchanged. But in

Fig. 2.12 Three-port optical
circulator

Fig. 2.13 Rotation of light
polarization due to the
Faraday effect [Image
courtesy: Wikimedia
commons image file database
(drawing by: Bob Mellish)]
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the opposite direction (Fig. 2.14, schematic on the right), the polarization is rotated
by 90�. Therefore, in the forward direction light travels from port 1 to port 2, but in
the backward direction light entering port 2 would come out at port 3.

A fiber optic isolator is a simpler device with only two ports, and it is based on
the same operation principle as the circulator. Light can travel in one direction but
not the other. An optical isolator is often used to prevent back-reflection that tends
to cause light source instability and degradation.

2.5 Conclusion

Fiber optic interferometric sensors have found several industrial applications
including fiber optic gyros for navigation in airplanes and space-based systems, high-
precision process control and manufacturing, structural health monitoring of bridges,
dams, ships etc., oil and gas exploration activities, medical applications and so on.

While the sensitivity of the fiber optic interferometric sensors is typically very
high, an important challenge lies in the capability to differentiate the environmental
perturbations such as temperature, strain, pressure etc. In principle, all environ-
mental perturbations could be converted to optical signals by applying appropriate
transducing mechanisms. However, sometimes multiple effects could contribute
simultaneously and modify the light in the fiber in a similar manner. For example,
changes in temperature, strain, pressure or any mechanical perturbation could all
impact the light in fiber by changing fiber lengths and refractive index such that it is
difficult to differentiate one perturbation to another. The right solution to such
challenges is the design of appropriate transducing mechanism that is selective in
nature towards the measurement of a desired environmental perturbation.

Although the fiber optic sensors have already proven superior performances,
their relatively higher cost compared to conventional low cost sensors remains a
barrier towards its widespread adoption for wider range of applications. The
semiconductor industry has continued to progress steadily over the last few

Fig. 2.14 Non-reciprocal light propagation based on Faraday rotation: (a) and (b) polarization
beam splitters/combiners, (c) and (d) mirrors, (e) half-waveplate, and (f) Faraday rotator
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decades and as a result we have seen steady decrease in the cost of laser diodes,
detectors and other optoelectronic devices. It is expected that the further decrease
in optoelectronic components cost in future could be the right catalyst for the
continued progress of this field.
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Chapter 3
Fiber Optic Imagers

Do-Hyun Kim and Jin U. Kang

3.1 Basic Fiber Optic Imager

In most fiber optic imagers, their main differences from their bulk optic imaging
counterparts are that the free-space beam path and bulk optics components are
replaced by optical fibers and fiber optic components. These seem to be relatively
trivial differences; however, they greatly improve the functionality and practicality
of the fiber optic imaging systems compared to bulk systems for a wide range of
applications—especially for endoscopic, in situ imaging. An example of a simple
fiber optic imager is shown in Fig. 3.1. It consists of a light source, a fiber coupler,
a light detector, an imaging fiber, and an imaging probe. Depending on the
applications, the fiber coupler can be a simple power splitter (normally a 50/50
power splitter), wavelength-division-multiplexing (WDM) coupler, or other type
of wavelength- or polarization-dependent coupler.

The imaging fiber can be single-mode, multi-mode, or multi-core, also known
as a fiber bundle. The imaging probe typically consists of either an optical lens,
graded index lens, or ball lens.
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3.1.1 Simple Fiber Optic Imaging Probes: Single-Mode

The simplest imaging/sensing fiber optic probe is a bare fiber without any imaging
components, as shown in Fig. 3.2. This is typically used when the working dis-
tance, d, is very small, less than a few hundred microns. In general, a Gaussian
beam can be used to describe a beam profile exiting the optical fiber where it can
be written as:

E x; y; zð Þ ¼ E0ðzÞeik q2

2qðzÞ ð3:1Þ

where q2 = x2 ? y2, and the complex beam parameter, q, can be written in terms
of the beam radius of curvature, R(z), and the beam width, w(z), as:

1
qðzÞ ¼

1
RðzÞ � j

k
pw2ðzÞ ð3:2Þ

The Gaussian beam parameters can be analysed by a simple ABCD ray-transfer
matrix where a new beam parameter, q2, from the initial beam parameter, q1, is
related as:

q2 ¼
Aq1 þ B

Cq1 þ D
ð3:3Þ

By combining Eqs. 3.2 and 3.3, one can derive the new beam width, w2, as:

w2
2 ¼

B2 þ A2 p2

k2 w4
0

ðAD� BCÞðp2

k2 w2
0Þ

ð3:4Þ

d

Optical Fiber

Target

Fig. 3.2 Bare fiber probe

Light Source Fiber 
Coupler

Detector

Imaging Fiber

Imaging Probe

Fig. 3.1 Schematic of a
simple fiber optic imager
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If we assume that the target is a perfect mirror, the overall ABCD matrix for
beam propagation in free space for distance, d, reflected off of a target and
propagating distance, d, back to the fiber can be written as:

MFinal ¼
A B
C D

� �
¼ MReturnMFlatMirrorMIncident ¼

1 d
0 1

� �
1 0
0 1

� �
1 d
0 1

� �

¼ 1 2d
0 1

� �

ð3:5Þ

By combining 3.4 and 3.5, we can simplify Eq. 3.4 as:

w2
2 ¼

4d2 þ p2

k2 w4
0

p2

k2 w2
0

ð3:6Þ

By defining the Rayleigh range or confocal parameter, z0, as: z0 ¼ p
k w2

0 and the
overall beam propagation distance, z, as z = 2d, the equation reduces to a well-
known Gaussian beam width equation, which is in function of propagation dis-
tance as:

w2
2 ¼ w2

0
z2 þ z2

0

z2
0

ð3:7Þ

One of the main issues with the fiber probe is the coupling efficiency, T, of the
returning beam back into the fiber. Due to the small aperture of the fiber, for a
large z, the coupling efficiency is poor; this plays an important role in the quality
of the images that can be obtained. The fiber coupling efficiency, T, assuming the
system is lossless, can be calculated simply by an overlap integral between the
fiber mode profile and the imaging beam profile. This can be written as:

T ¼
RR

Frðx; yÞW 0ðx; yÞdxdy
�� ��2RR

Frðx; yÞF0rðx; yÞdxdy
RR

Wðx; yÞW 0ðx; yÞdxdy
ð3:8Þ

where Fr(x,y) is the imaging beam field profile at the distal end of the fiber as it
returns back, and W(x,y) is the fiber mode field profile which is the beam profile of
the imaging beam as it exits the fiber. From this model it is clear that the fiber does
not ‘‘see’’ the full imaging beam as it returns back to the fiber. In general, the
returning imaging field seen by the fiber, or W(x,y), is much larger than the beam
diameter at the sample surface and the one exited from the fiber. Only when the
target is in contact with the fiber end, the Fr(x,y) = W(x,y) and T = 1 can be
achieved, which describes the perfect coupling case. However, as z increases,
Fr(x,y) increases and this results in decreased coupling efficiency, T.

If a Gaussian beam profile is assumed, as in Eq. 3.1, the optical power collected
by the fiber tip—which is the integral of the beam intensity over the fiber core area
at the fiber tip plane—can be written as:
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P2 /
ZZ

s

P0

w2
2

expð� x2 þ y2

w2
2

Þdxdy / ½erf ð r0

w2
Þ�2 ð3:9Þ

where P0 is the power carried by the beam, s is the circular fiber core area with

radius r0, and erf(u) is the error function defined as erf ðuÞ ¼ 2ffiffi
p
p
Ru
0

e�t2
dt. For

estimation it is assumed that r0 ¼ w0. There T is calculated by dividing the right-

hand side of Eq. (3.9) to ½erf ð r0
w0
Þ�2, which results in

T ¼ ½erf ð r0

w2
Þ�2=½erf ð r0

w0
Þ�2 ¼ ½erf ðw0

w2
Þ�2=½erf ð1Þ�2 ð3:10Þ

The result above shows that the working distance for the bare fiber probe is less
than 0.5 mm. However, this also means that the bare fiber probe works very well,
better than the ones with lensed imagers if the working distance is less than
0.1 mm, with the best image occurring when the probe is in contact with the target,
i.e., z = 0 (Fig. 3.3).
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Fig. 3.3 Normalized coupling efficiency of a simple fiber probe as a function of total
propagation distance, z, which is twice the target distance for 4 different fibers with varying core
radius, r0
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3.1.2 Simple Fiber Probe Transverse Resolution

For all imaging systems, it is automatically assumed that the resolution of the
imaging system is limited by the beam spot size. Even for a bare fiber probe, as
shown in Fig. 3.2, it is often assumed that the resolution follows the Gaussian
beam propagation where the beam width changes as (rewriting 3.7):

w2ðzÞ ¼ w0 1þ z2

z2
0

� �1=2
ð3:11Þ

Rayleigh range, z0, is defined as the distance at which the beam width increases
by *1.4 times the original beam width. However, the lack of imaging system
makes the bare fiber probe-based imaging system non-reciprocal and the finite
aperture size of the fiber affects the effective resolution of the probe. In other
words, the resolution of such imaging system is limited by the imaging beam
coupling back to the fiber.

3.1.2.1 Resolution Measurement

To measure the resolution of the bare fiber imaging probe, one can use a simple
test setup shown in Fig. 3.4. This particular experiment was performed using an
800 nm source and a fiber having a core diameter of *5 microns. It measures the
received signal power as the fiber probe is scanned across a United States Air
Force (USAF) target containing high/low reflectivity boundary at some height
above the target.

Fiber

Light beam

scanning

Air Force target

Fig. 3.4 Experimental setup
to measure the transverse
resolution of a fiber probe

3 Fiber Optic Imagers 59



The test result is shown in Fig. 3.5 for 4 different imaging distances between
the fiber probe and the target. The sharpness of the signal falling edge as the fiber
is scanned from the high reflection to low indicates the resolution of the system. As
can be seen from the figures, as z increases, the resolution of the bare fiber imaging
system degrades. The ringing is the result of the edge diffraction.

The experimental result in Fig. 3.5 can be simulated using the signal coupling
efficiency described by Eq. 3.8. The simulation result is shown in Fig. 3.6. From
both the experimental and theoretical results, it can be clearly seen that the
sharpness of the edge decreases significantly as the z increases. Again, the ringing
around the edges is due to the edge diffraction, which will not be discussed in this
book.

From these results, the system point-spread function (PSF), pðxÞ of the bare
fiber probe imaging system to an impulse input, dðxÞ, can be obtained. Since the
input used in both the simulation and experiment is a step function, uðxÞ, the
output of the system, f ðxÞ, can be expressed as:
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Fig. 3.5 Experimentally obtained, normalized signal for 4 different imaging distances between
the fiber probe and the target, showing the transverse response function of the probe for a target
having a sharp boundary at the lateral position of *100 microns
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f ðxÞ ¼ pðxÞ � uðxÞ ¼
Zþ1

�1

pðx0Þuðx� x0Þdx0 ð3:12Þ

By taking the derivative of both sides, we can obtain an expression for the PSF as:

df ðxÞ
dx
¼
Zþ1

�1

pðx0Þ d uðx� x0Þ½ �
dx

dx0 ¼
Zþ1

�1

pðx0Þdðx� x0Þdx0 ¼ pðxÞ ð3:13Þ

Here the full-width half-maximum (FWHM) of the PSF is defined as the lateral
resolution. Again we assumed the beam profile to be Gaussian, f(x) and the cor-
responding error function is written as:

f ðxÞ ¼ A0

Z 1
x

expð�ax2Þ dx ¼ B0erfcð�bxÞ ð3:14Þ

The function, erfc, is called the complementary error function.
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Fig. 3.6 Numerically calculated, normalized signal for 4 different imaging distances between the
fiber probe and the target showing the transverse response function of the probe for a target
having a sharp boundary at the lateral position of *100 microns
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Using the experimental graphs in Fig. 3.5, the corresponding PSF can be
extracted and Fig. 3.7 shows the PSF, or the resolution of the system for 4 different
values of z. Clearly, PSF broadens with the increasing z.

Again using the theoretical graphs in Fig. 3.6, the corresponding PSF can be
extracted and Fig. 3.8 shows the theoretical PSF result.

The resolution result is summarized in Fig. 3.9, where the transverse resolution
obtained from both experimental and simulation results are plotted as a function of
imaging distance. Note that the transverse resolution of the bare fiber probe is
much better than that deduced by the spot size of the beam. For example, even
when the target surface is 1.5 mm away from the end of the fiber probe, the
resolution is still a respectable *33 um. In comparison, the beam size at the target
is approximately 75 microns. To obtain \10 um resolution, the imaging distance
has to be \100 um.
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Fig. 3.7 Calculated PSF for 4 different imaging distances between the fiber probe and the target
by fitting the experimental data obtained in Fig. 3.5
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Fig. 3.8 Calculated PSF for 4 different imaging distances between the fiber probe and the target
by fitting the calculated data obtained in Fig. 3.6
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3.1.3 Simple Fiber Probe with Thin Lens

A fiber optic imager that requires a longer working distance [0.5 mm requires a
lens to form an image at the distal end of the fiber, as shown in Fig. 3.10.

Following the same procedures shown in Sect. 3.1.1., the total ray-transfer
matrix can be written as:

MFinal ¼ MReturnMFlatMirrorMIncident

¼ 1 d1

0 0

� �
1 0
� 1

f 1

� �
1 d2

0 1

� �
1 0
0 1

� �
1 d2

0 1

� �
1 0
� 1

f 0

� �
1 d1

0 1

� �

ð3:15Þ

If the distance from the fiber to the lens, d1, is set to 2f, i.e., d1 = 2f, the
equation reduces to:

MFinal ¼
A B
C D

� �
¼

2d2

f � 3 2d2 � 4f

� 2
f þ

2d2

f2
2d2

f � 3

2
4

3
5 ð3:16Þ

By combining 3.4 and 3.16, we can simplify the Eq. 3.4 as:

w2
2 ¼

4ðd2 � 2f Þ2 þ ð2d2
f � 3Þ2 p2

k2 w4
0

p2

k2 w2
0

ð3:17Þ

The result above shows that the imaging depth is critically dependent on the
size of the fiber mode. This effect is expected from the well-known confocal
imaging where the depth resolution depends on the size of the aperture used. The
detail of this effect and the fiber confocal imager is reviewed in detail in Sect. 3.2
(Fig. 3.11).

3.2 Fiber Optic Confocal Microscope

3.2.1 Review of Fundamentals of Microscope

A fiber optic confocal microscope (FOCM) is a type of confocal microscope in
which the confocal pinhole is replaced by an optical fiber. Fundamentals of wide-
field and conventional confocal microscopy apply to an FOCM, some of which

Fig. 3.10 Simple fiber probe
with a thin lens having a focal
length, f
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will be introduced in this section briefly. More details of wide-field microscopy
and confocal microscopy can be found in other books, for example, Mertz’s [1]
and Pawley’s [2]. The principal goal of microscopy is to enlarge images to a
certain extent, so that they can reveal details of objects not perceived by the
unaided eye. The ability of a microscope to reveal details, in a more scientific way
of description, is defined by the resolving power, which is an instrument property,
specifying the smallest detail that a microscope can resolve in imaging an ideal
specimen [3]. The related quantity—resolution—refers to the detail actually
revealed in the image of a given specimen. Although resolving power refers to a
property of the instrument and resolution refers to the level of detail obtained in
the resulting image, both are quantified in terms of minimum resolvable distance,
dmin.

Ernst Abbé described the existence of a resolution limit in 1873 using the
diffraction theory, which is now commonly known as Fourier optics. The key idea
of Fourier optics is that the image formed from the specimen through an optical
system is the superposition of diffracted images of each point of the specimen, and
the image of the point itself is its Fourier transform–an Airy disk.
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Fig. 3.11 Normalized coupling efficiency as a function of target distance from lens, d2, for a
simple fiber probe with a thin lens
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The size of the Airy-disk and its higher-order surrounding diffraction rings limit
the highest resolution possible. There are many different ways to define the
minimum resolvable separation. The most commonly adapted definition is the
Rayleigh criterion: two overlapping Airy-disk images are resolvable when the
central maximum of one coincides with the first minimum of the other (see
Fig. 3.12a).

For quantitative analysis purposes, the image of a point observed through an
optical system is expressed as the point-spread function (PSF). Image obtained by
an optical system is a superposition of PSF of an extended object. The intensity
PSF is related to both lateral and axial resolution of a microscope. The amplitude
PSF can be calculated through a somewhat complicated procedure which can be
found in many optics text books (for example, [4]), and is expressed as:

hðu; vÞ ¼ �i
2pnA sin2 a

k
eiu= sin2 a

Z 1

0
J0ðvqÞeiuq2=2qdq ð3:18Þ

where k is the vacuum wavelength, n is the refractive index, nsina is the numerical
aperture of the lens, A is the area of the illumination, J0 is the zeroth-order Bessel
function. When the light path is in the z direction, v and u are normalized optical
units perpendicular and parallel to z, respectively:

v ¼ 2pnr sin a
k

ð3:19Þ

u ¼ 2pnz sin2 a
k

ð3:20Þ

where, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The intensity PSF is given by hðu; vÞj j2.

As mentioned earlier, one way to define the resolution is to use the Rayleigh
criterion. In this case, as can be seen in Fig. 3.12a, the resolution corresponds to

(a) (b)

Fig. 3.12 Superposition of Airy disks. a Central maximum of one Airy disk coincides with the
first minimum of the other. b Separation between two Airy disks are minimal to give non-zero
superposition
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the separation at which a 26 % contrast is achieved. Another commonly used way
to define resolution is the separation at which the contrast is non-zero, any value
between 0 and 100 % (see Fig. 3.12b). The Rayleigh criterion will be adapted
throughout this section.

Under the Rayleigh criterion, we can define the lateral resolution for a con-
ventional microscope as the distance between the central maximum and first
minimum of the Airy disk, which is given by:

rxy �
1:22k
2NA

¼ 0:6k
NA

ð3:21Þ

rz �
2kn

NA2
ð3:22Þ

where k is the wavelength of the light source and NA is the numerical aperture of
the objective lens. This equation is convenient for calculating the lateral resolution
of a conventional wide-field microscope, at which a reasonable contrast is
obtained. In practice, it is difficult to measure the location of an intensity mini-
mum; hence, it is quite common to measure the full-width at half-maximum
(FWHM) of the microscope’s PSF to determine the resolution experimentally. The
measured value of FWHM is approximately 17 % smaller than the calculated
value of rxy.

3.2.2 Laser Scanning Confocal Microscopy (LSCM)

The word confocal means ‘‘of-same-foci.’’ Confocal microscopy is different from
wide-field microscopy because it restricts the detection of signals from the object
by using a confocal aperture placed in front of the detector and on the conjugate
plane of the image. Another aperture may be placed in front of the illuminator to
increase spatial coherency and thus to produce a diffraction-limited illumination
spot on the sample; however, this is not completely necessary. This is illustrated in
Fig. 3.13.

In a scanning microscope, the illumination and/or focused image is confined to
a very small region, usually a diffraction-limited spot; thus, scanning of small spots
over the larger specimen area is necessary to reconstruct a usable image containing
a region of interest larger than a diffraction-limited spot; hence, the name scanning
microscope.

The advantage of a confocal microscope is prominent when a thick sample is
being imaged. The sample must be thicker than the depth of field of the objective
lens. Figure 3.13a illustrates wide-field illumination combined with wide-field
imaging. The entire sample is illuminated and the signal—either scattered light or
fluorescence emission from the sample—is projected onto the image plane with a
certain thickness. Since the image is recorded by the detector, such as a focal plane
array placed at the image plane, the light signal from a thick sample will contribute
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to the recorded image in forms of blurriness or decreased contrast. If a confocal
aperture is placed in front of the detector, as shown in Fig. 3.13b, then majority of
the signal from the conjugate spot in the sample will be projected onto the aperture
(thus confocal). Lights scattered or fluoresced from the spot other than the con-
focal spot will be rejected. The detector does not have to be a focal plane array,
thus it can be replaced by a highly efficient photo-multiplier tube (PMT). When the
sample or the aperture is raster scanned along the image plane (IP), a two-
dimensional (2D) image of the sample only from the conjugate plane of IP is
reconstructed. Although the arrangement shown in Fig. 3.13b, which is wide-field
illumination combined with confocal detection, represents confocal microscopy, it
does not utilize the illuminating power of the light source (L) entirely. As a matter
of fact, this illumination scheme is highly inefficient because all the lights are lost
except that which illuminates a very small spot in the sample. The arrangement
shown in Fig. 3.13c solves this problem by using point illumination and point
confocal detection, which is most common in modern confocal microscopy. It also

Fig. 3.13 (a) Illustration of a wide-field illuminating and wide-field imaging microscope;
(b) wide-field illuminating and confocal imaging microscope; (c) point-illuminating and
confocal-imaging microscope. L lamp, C condenser, S sample, O objective lens, IP image plane,
F focusing lens, A1 aperture at the image plane, A2 aperture at the back-focal-plane of the
condenser
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provides higher rejection of scattered lights compared to Fig. 3.13b. An epi-
illumination version of Fig. 3.13 leads to the famous illustration from Minsky’s
original invention report of confocal microscopy [5], which is shown in Fig. 3.14.

The advantage of epi-illumination is that one lens can play the role of condenser
as well as that of objective lens. However, not all types of samples produce a
decent epi-illuminated signal; thus, epi- or trans-illumination must be chosen
carefully depending on the sample type. As can be seen in Fig. 3.14, the signal
from the sample other than the focal spot is rejected by the aperture in front of the
detector (A1). If the beam-splitter is replaced by a dichroic mirror that splits the
excitation wavelength and emission wavelength, then the confocal microscope
shown in Fig. 3.14 runs as a fluorescence confocal microscope.

For confocal microscopy, the FWHM extent of both lateral (xy-plane) and axial
(z-direction) PSF are about 30 % narrower than that of a conventional wide-field
microscope [6]. This improved PSF can be explained by Lukosz’s principle [7].
The improvement is due to the rejection of scattered light from out-of-focus which
contributes to the improvement of contrast. As was mentioned in Sect. 3.2.1, the
resolving power of the optical system is determined by the optical elements
(mostly by lenses), thus it remains the same for a wide-field microscope and
confocal microscope when the same lenses are used. Resolution is the result
induced from both resolving power and contrast; thus, resolution of a confocal
microscope is slightly higher than that of a wide-field microscope, which is
quantified as 30 % from experimental measurements and mathematical calcula-
tions [6].

rxy;confocal �
0:4k
NA

ð3:23Þ

For point-like objects, the same approach can be applied to determine a
microscope’s axial resolution. As in the lateral direction, the same Rayleigh cri-
terion can be applied, resulting in:

rz;confocal �
1:4kn

NA2
ð3:24Þ

Here, n stands for the refractive index of the specimen. As n is normally larger
than 1 and NA is smaller than 1, the axial resolution is poorer than the lateral
resolution. Practically, there are several technical concerns which reduce the

Fig. 3.14 Illustration of an
epi-illumination confocal
microscope. R focused
reflector, L lamp, O objective
lens, A1 detector aperture, A2
illuminator aperture, BS
beam-splitter
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resolution of the system: the size of the pinhole and pixilation of the confocal
microscope, noise of the detector, and the precision of the focusing mechanism.

Note that placing a pinhole with an arbitrary diameter will not guarantee the
confocal operation of the system. If a pinhole is large enough that all the incoming
signals—including that from the scattered light—pass through the pinhole, then
the pinhole does not play any role; the system is simply a wide-field microscope
with a limited field of view. Also, if a pinhole is too small, then the signal level
will be too low to acquire optimal image quality. Diffraction from the pinhole will
also affect the image quality negatively. Wilson et al. [8] showed that optimal
confocality of the system is achieved when the optical coordinate v of Eq. 3.19 is
less than 0.5.

v ¼ 2pnr sin a
k

\0:5 ð3:25Þ

This can be rewritten as:

r\
k

4pn sin a
ð3:26Þ

For example, when a 40 9 NA 0.6 numerical aperture objective lens is used in
the setup shown in Fig. 3.14, the diameter of the pinhole needs to be 6.7 lm or less
for the system to be operated in a confocal mode with 632.8 nm He–Ne laser in air
(n = 1). The smaller the pinhole diameter is, the higher the confocality of the
system becomes; however, due to the signal loss, the pinhole does not have to be
practically smaller than 6.7 lm. Improvement in resolution by using a pinhole
smaller than 6.7 lm is also negligible.

3.2.3 Laser Scanning Confocal Microscope

A laser scanning confocal microscope (LSCM) is widely used; however, there are
other types such as a spinning (Nipkow) disk confocal microscope [9] and a
programmable array microscope [10]. A fiber-optic confocal microscope (FOCM)
is a type of LSCM, thus only LSCM is considered in this chapter. Compared to
other confocal microscopes, LSCM is unique because it uses a laser as the light
source and the laser is scanned, not the sample or the detector. As mentioned
previously, using laser as a light source enables achieving a diffraction-limited
focal spot due to the high spatial coherence of laser. However, high coherence
sometimes decreases the image quality of LSCM when interference is formed
between the slide cover and objective lens. Scanning the sample—or sometimes,
the detector—gives the highest image quality without the spherical aberrations
induced in laser scanning. However, scanning the laser almost always achieves the
highest scanning speed, thus the highest image acquisition rate. A typical LSCM
setup is shown in Fig. 3.15.

70 D.-H. Kim and J. U. Kang



The example shown in Fig. 3.15 uses green (532 nm) laser as the light source.
The beam conditioner usually contains a power adjustment element such as a
variable neutral density filter or Pockel’s cell, beam expander, laser shutter,
polarizer, laser power monitor, spatial filter, regenerative amplifier, etc. Any of
these components can be omitted if necessary. Beam-splitters are in general 50:50
splitters, and can be replaced by dichroic mirrors for fluorescence-mode operation.
The X-scanner is in general a fast-scanner and can be a mirror scanned by galvo-
motor, resonant-motor, or rotating mirror block. The Y-scanner is a slow-scanner,
and a galvo-motor is commonly used. An acousto-optic tunable filter can also
deflect the laser beam, and thus is used as the fast-scanner. A telescope between
the X- and Y-scanners is not always necessary; however, it helps to reduce
comma-errors in scanning by placing the pivotal point of the scanning mirrors at
the back-focal plane of the scanning lens. When a telescope is not used, the X- and
Y-scanners should be placed as close as possible. The relationship between SL,
TL, and OL will be explained in more detail.

If the reflected light or fluorescence emission is captured by the detector using a
non-descanned (DS) beam-splitter or dichroic mirror, the microscope is being
operated under non-descanned mode. This is the common arrangement in two-
photon microscopes. The microscope is not a confocal microscope, although it is
still a laser scanning microscope. For this type of arrangement to be operated under
a confocal regime, the signal must be collected using the descanned BS or DM,
and the detector must be accompanied by the focusing lens (FL) and the aperture
placed at the focal plane of the FL. IF FL and A1 are removed, the setup is no
longer a confocal microscope, even though the signal is descanned. Descanned
detection without a confocal aperture is almost meaningless, except that the illu-
mination laser intensity can be higher than a wide-field microscope. Non-
descanned confocal operation is impossible because the pinhole position cannot be
fixed for a non-descanned (thus, still scanning) beam.

Figure 3.16 shows fluorescence microscopy images obtained by using both a
wide-field fluorescence microscope and LSCM. The sample was a prepared test
slide from Invitrogen (#F-24630), which is a mouse kidney section stained with
Alexa Fluor 488 WGA, Alexa Fluor 568 Phalloidin, and DAPI. Figure 3.16a is a

Fig. 3.15 Schematic of a
typical LSCM. BS beam-
splitter, DM dichroic mirror,
SL scanning lens, TL tube
lens, OL objective lens,
S sample, DAB data
acquisition board, FL
focusing lens, A1 confocal
aperture
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wide-field image with 405 nm excitation. Emissions from both Alexa Fluor 488
(shown in green in the figure) and Alexa Fluor 568 (shown in blue in the figure)
can be seen in one image. Figure 3.16b and c are confocal fluorescence images
using 405 nm excitation and two PMT channels separated by a dichroic filter:
Channel 1 is for [505 nm and Channel 2 is for \505 nm. Both channels are
overlaid in Fig. 3.16b and c. The difference between Fig. 3.16b and c is their
sample z-position. The depth discrimination capability of confocal microscopy can
be clearly seen in both figures. At different depths—not like the wide-field image
shown in Fig. 3.16a—only one emission can be dominantly seen in Fig. 3.16b and c.
Cells and organelles in kidney are stained by different dyes, thus their depth positions
in z-direction are separated by different emissions. Also, Fig. 3.16b and c demon-
strate sharper boundaries compared to Fig. 3.16a, which is enhanced by rejection of
scattered light. Depth discrimination and rejection of scattered light (thus a slightly
higher resolution) are two major advantages of confocal microscopy over wide-field
microscopy. Optical arrangement of scanning lens, tube lens, and objective lens is
critical for successful operation of LSCM in confocal mode, along with achieving
high confocality of the system.

Objective lenses are designed so that their highest diffraction-limited resolution
is achieved when their back apertures are filled with collimated monochromatic
light. Since the incoming light fills the back aperture of OL, scanning can be
achieved only by changing the incident angle (h) of the incoming light relative to
the optical axis of OL, which is illustrated in Fig. 3.17a. Each OL has the maxi-
mum allowable incident angle (hmax) which produces a usable image of the sample
with minimal spherical aberration. Any incoming light with an incident angle
larger than hmax will result in a distorted or unevenly illuminated image. The back-
aperture size of commonly used OL varies greatly: for example, Zeiss W Plan-
APO 20x/1.0NA lens which is widely used for in vivo imaging has a back aperture
with 18.0 mm diameter while Zeiss W Plan-APO 60x/1.0NA lens has a 6.0 mm
aperture. Lasers usually produce a collimated Gaussian output beam with a
diameter of 1.0–2.0 mm. Thus, SL and TL must provide a proper incident angle
(h) with a properly expanded beam diameter to OL. The less the SL-TL pair
expands the laser beam, the less the distortion from the scanning; however,

Fig. 3.16 (a) Wide-field fluorescence image; (b) Confocal fluorescence image from channel 1;
and (c) channel 2. See text for more detail
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scanning mirrors are limited for their sizes because their scanning speed is limited
by the inertia of the mirrors. The role of beam expansion by an SL-TL pair is
inevitable.

Figure 3.17b–d show the relative distances between SM, SL, and TL that are
required for the optics to achieve proper beam expansion and scanning. Optimal
performance of the scanning system critically depends on this optical arrangement.
Focal lengths of SL (fSL) and TL (fTL) are chosen so that the pair provides the
necessary beam expansion, as shown in Fig. 3.17c. For example, if the input beam
diameter is 3 mm and the back aperture of OL is 6 mm, the SL-TL pair must
provide 2-fold beam expansion; thus, fTL/fSL = 2 and d2 = fSL ? fTL. For the
scanning system to achieve the most uniform illumination while providing incident
angle to OL as large as hmax, the distance between SL and the pivotal axis of SM
needs to be fSL (¼ d1). Also, for the scanning beam to pass through the back
aperture of OL with minimal translational shift, the distance between TL and the
back aperture plane of OL needs to be fTL (¼ d3).

Measurement of the enhanced lateral (xy-plane) resolution of a confocal
microscope is difficult, because there is no standardized resolution test-target that
simulates a thick scattering biological specimen. If a generic USAF 1951 reso-
lution target is used, the enhancement in lateral resolution may not be clearly
detected; however, enhancement of axial (z-axis) resolution can be measured
relatively easily. A simple method to measure the axial response is to scan a
perfect reflector axially through its focus and measure the signal strength.
Figure 3.18 shows a typical response.

A confocal system with less than an optimal optical arrangement will dem-
onstrate a highly asymmetrical or Gaussian axial response. Practically, achieving
perfect axial response, as shown in Fig. 3.18, is highly challenging. Asymmetry is

Fig. 3.17 (a) Illustration of the incident angle of an incoming scanning beam that fills the back
aperture of an objective lens (OL); (b) Illustration showing the relative distance between scanning
mirror (SM), scanning lens (SL), and tube lens (TL); (c) Illustration showing the function of SL
and TL which expands the incoming collimating beam to fill the back aperture of the objective
lens (OL). The sum of the focal lengths of SL (fSL) and TL (fTL) equals d2; (d) Distance between
the pivotal points of SM and SL needs to be fSL, and distance between TL and back aperture of
OL needs to be fTL
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hard to remove completely due to the optical design of the objective lens itself
(mainly due to spherical aberration); however, it should be minimized. Other
factors depending on the mirror defocus, such as system magnification, effective
numerical aperture, and axial position also contribute to the asymmetric axial
response.

3.2.4 Introduction to Fiber-Optic Confocal Microscopy

Due to their flexibility and robustness, optical fibers enable delivery of lights to
hard-to-reach places as well as to collect them. Optical fibers also enable the
separation of the optical components such as the light source and detectors from
each other. Optical fibers have been adapted in confocal microscopy since the
early 1990s [11] and can be found in many commercial wide-field microscope
systems and endoscopic microscopy (endo-microscopy) systems. However, flexi-
bility and robustness are not the only factors that make optical fibers unique in
confocal microscopy applications. There are strong advantages of using optical
fibers in confocal microscopy, including the following:

1. The output from a small-core single-mode fiber serves as an ideal Gaussian
point-like light source, which contributes to achieving the diffraction-limited
focal spot of the objective lens, thus achieving the highest possible resolution
from given optics. This advantage is especially useful when a cost-effective
diode laser is the light source, which does not have a Gaussian profile. How-
ever, this advantage is not very useful when a laser system with TEM00 mode
output is available.

Fig. 3.18 A typical axial
response of a confocal
microscope–a squared Sinc
function
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2. The core of an optical fiber is an ideal pinhole, in terms of shape and size. As
described in Sect. 3.2.2, the pinhole diameter required for a NA = 0.6 lens with
632.8 nm laser in air is a few lm. A conventional pinhole with this size is very
hard to produce: the shape of the pinhole can be irregular or the size can be
incorrect. However, typical single-mode fibers have cores with a diameter in
the order of a few lm. Once the signal is coupled into the detecting fiber, its
delivery of light to the detector can be arranged in various ways so that the light
collection efficiency can be maximized.

3. One of the disadvantages of using optical fiber as the pinhole is reduced col-
lection efficiency. To efficiently couple the light into an optical fiber, not only
the size of the focused signal light needs to be matched to the fiber core, but
also the light field and numerical aperture must match those of the optical fiber.
Adjusting the field and numerical aperture of signal light is almost impossible
when the signal is a low-coherent fluorescence from biological samples. Also,
since biological samples exhibit various levels of signal—whether it be fluo-
rescence or reflectance—sometimes the size of the pinhole needs to be enlarged
at the expense of reduced confocality. Many commercial confocal microscopes
adapt multi-mode fiber with core size as large as 600 lm accompanied by a
variable pinhole placed in front of the fiber tip. More details about collection
efficiency will be discussed in a following section.

4. An all-fiber coupler or circulator makes it possible to use the fiber as the output
source as well as the input source at the same time. This arrangement, as shown
in Fig. 3.19, might be the best application of optical fibers in confocal
microscopy in terms of utilizing the advantages of optical fiber over pinholes.
One technical difficulty in such implementation stems from the fact that both
ends of the fiber are in the image planes of the microscope. As a result, Fresnel
reflection of the incident laser at the fiber tip can reduce the signal level.
Careful management of reflections at the optical surfaces using angled fiber
tips, anti-reflection coatings, and index-matching fluids helps reduce this
unwanted effect [2].

5. Use of a miniature lens (such as a graded-index lens) attached to the tip of the
optical fiber enables significant reduction of the optics size.

Fig. 3.19 Schematics of
FOCM. Single-mode fiber tip
serves as the point light
source as well as the pinhole
detector. Adaptation of an all-
fiber circulator enables the
entire construction to be
simple and robust. Scanning
and microscopic optics
remain the same as the bulk
optics version of Fig. 3.15
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3.2.4.1 Coherent Detection

Once collimated using a collimating lens, the laser output from an optical fiber is
no different than that from solid-state or gas lasers. Optical fiber as the light source
in FOCM does not affect image characteristics due to the characteristics of the
fiber. However, there is a significant difference between pinhole and optical fiber
as detectors because optical fiber acts as a coherent detector. Single- and multi-
mode fibers both serve as coherent detectors. Also, the spatial distribution of
modes within a multi-mode detection fiber may also carry information regarding
the source of the signal [2]. Not only does the size of the core of the optical fiber
affect the confocality and signal level as the pinhole does, but also the mode of the
incoming signal and the numerical aperture of the coupling lens affect the overall
performance. For a pinhole, the signal is integrated over the area of the pinhole,
while the signal is integrated over the modes at the entrance of the fiber. Since
axial response is more affected by the coherent detection, the axial response of
FOCM will be discussed in this section. Theoretical analyses used in this section
mostly follow Sheppard and Wilson’s excellent work in the 1990s.

When a pinhole is used in the confocal microscope detector, the detection is
incoherent; thus, the axial intensity of the light is integrated over the area of the
pinhole detector, such that:

IiðzÞ ¼
Z

Di

Ej j2SidDi ð3:27Þ

where Di is the area and Si is the sensitivity of the incoherent detector. The electric
field is such that:

Ej j2¼ExE�x þ EyE�y þ EzE
�
z

¼ I0j j2þ 2<ðI0I�2Þ cos 2ðc� hp

� 	
þ I2j j2þ 2 I1j j2cos2ðc� hpÞ

ð3:28Þ

where c denotes the angle of incident polarization with respect to x-axis, hp is the
angular component of the position vector, and < represents real-part. I0, I1, and I2

are intensity components with respect to the polarization vector, which are related
to the electric field as such:

Ex ¼ �
j
2

cos c I0 þ I2 cos 2hp


 �
þ sin cI2 sin 2hp

� 	
;

Ey ¼ �
j
2

cos cI2 sin 2hp þ sin cðI0 � I2 cos 2hpÞ
� 	

;

Ez ¼ �ij cos cI1 cos hp þ sin cI1 sin hp

� 	
ð3:29Þ

Using Eq. 3.27 in Eq. 3.28 for spherical coordinate, we obtain:

IiðzÞ ¼
Z R

0
I0j j2þ 2 I1j j2þ I2j j2

� 
qdq ð3:30Þ

where R is the radius of the detector aperture.
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For coherent detection using an optical fiber, the axial intensity is the inte-
gration over the field mode of the incident light which is given as:

IcðzÞ ¼
Z

Dc

EScdDc

����
����
2

ð3:31Þ

Since the terms of Eq. 3.29 consisting of sinhp, sin2hp, coshp, and cos2hp yield
zero when Dc, Eq. 3.31 can be expressed as:

IcðzÞ ¼ ðcos cþ sin cÞ
Z R

0
I0qdq

����
����
2

ð3:32Þ

Different from the incoherent detection of Eq. 3.30, the coherent detection
shown in Eq. 3.32 exhibits explicit dependence on the polarization angle of the
incident light, c. When the radius of both the pinhole and the optical fiber core
becomes point-like, the axial responses from both systems become identical.

3.2.4.2 Signal Collection

When the shot noise is the only source of the noise in the imaging system, then the
signal-to-noise ratio (SNR) is given as [12]:

SNR ¼ npffiffiffiffiffi
np
p ¼ ffiffiffiffiffi

np
p ð3:33Þ

where the number of photons (np) is related to the incident power (P), wavelength
(k), incident time (t), Planck’s constant (h), and speed of light (c), such that:

np ¼
Ptk
hc

ð3:34Þ

For a detection system with quantum efficiency QE, SNR is given in terms of
QE, np, and the number of involved electrons, nn:

SNR ¼ QEnpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QEnp þ n2

n

p ð3:35Þ

SNR for a confocal microscope when assuming negligible electronic noise
(nn = 0) is given as:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffi
QEnp

p FðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðvÞ þ av2=

ffiffiffi
4
pq ð3:36Þ

where v is the normalized coordinate of Eq. 3.19, F(v) is the fraction of signal
incident on the pinhole, and a is a constant representing the background noise
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level. Background noise in majority of confocal microscopy systems is out-of-
focus scattered light from thick specimen. For a circular pinhole and small v:

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffi
QEnp

p v

2
ffiffiffiffiffiffiffiffiffiffiffi
1þ a
p ð3:37Þ

Equation 3.37 tells us that SNR increases as the pinhole diameter r, thus v,
increases, and that as the background noise level—thus a—decreases.

In FOCM, SNR of the confocal microscopy expressed by Eq. 3.37 holds;
however, the limited acceptance angle of the optical fiber reduces the signal level,
which is one of the biggest differences from bulk confocal microscopy. This can be
expressed by numerical aperture of optical fiber (NAfiber). Normalized frequency,
or V-number, of an optical fiber is given by:

V ¼ 2pr

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 � n2
2

q
¼ 2pr

k
NAfiber ð3:38Þ

where r is the core radius, n1 and n2 are refractive indices of core and cladding,
respectively. NAfiber represents the numerical aperture of the fiber. Thus, for a
given optical fiber and laser, confocality condition Eq. 3.26 can be re-written in
terms of NAfiber:

r ¼ kV

2pNAfiber
\

k
4pn sin a

ð3:39Þ

After some arrangement, the requirement for the NAfiber for confocal operation
of a microscope becomes:

V2n sin a\NAfiber ð3:40Þ

This gives a good insight into how numerical apertures of the objective lens and
the fiber play their role in confocal microscopy. V is a value smaller than 2.405 for
single-mode operation of the fiber. Refractive index, n, is in general larger than 1.
Thus, NA of the objective lens (sina = NAobj) must be much smaller than NAfiber,
or NAfiber must be much larger than NAobj. To achieve high efficiency of coupling
light into an optical fiber, the focusing lens must provide high NAobj so that the
focused spot size can be comparable to the core size. High NAobj may sacrifice
confocality because of Eq. 3.40; thus, a compromise between coupling efficiency
and confocality must be found. Lowered coupling efficiency causes lowered SNR.
Since the detection fiber does not have to be operated in single-mode, a large-core
high-NA optical fiber is more suitable for detection fiber, which gives both high
coupling efficiency and confocality.

The same method used in Sect. 3.1.3 can be used to study the normalized
coupling coefficient for different objective lenses in a single-fiber confocal setup.
In this single-fiber confocal setup, an optical fiber is used for both illumination and
detection. Assuming the profile of the input beam exiting from the fiber tip has a
Gaussian distribution as before, the ray-transfer matrix can be calculated as [13]:
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A ¼ D ¼ � f 2
2 � 2L1f2 þ 2f1f2 � 2L2f2 þ 2L2L1 � 2L2f1

f 2
2

B ¼ �2
f 2
1

f 2
2

ðf2 � L2Þ

C ¼ � 2ðf1 þ f2 � L1Þðf1f2 � L1f2 þ L2L1 � L2f1 � L2f2Þ
f 2
1 f 2

2

ð3:41Þ

where f1 and f2 are the focal lengths of the two microscopic objective lenses, L1 is
the distance between the two lenses, and L2 is the distance between the sample
membrane and the f2 lens (Fig. 3.20). Simplifications to the above expressions can
be achieved if we assume L1 = f1 ? f2:

A ¼ D ¼ 1; C ¼ 0; B ¼ �2
f 2
1

f 2
2

ðf2 � L2Þ ð3:42Þ

Because the input beam exiting from the fiber tip has a flat wavefront, q1 can be
written as:

1
q1
¼ 1

R1
� i

k

pw2
0

¼ �i
k

pw2
0

ð3:43Þ

where w0 and R1 are the beam waist and the radius of curvature of the input
Gaussian beam, respectively. By substituting Eqs. (3.42 and 3.43) into (3.40), the
q-parameter of the return beam can be easily written as

q2 ¼ q1 � 2
f 2
1

f 2
2

ðf2 � L2Þ ¼ i
pw2

0

k
� 2

f 2
1

f 2
2

ðf2 � L2Þ ð3:44Þ

Fig. 3.20 Schematic of a
single fiber confocal
microscopy setup for
studying power collection
ratio
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Since we also have

1
q2
¼ 1

R2
� i

k

pw2
2

ð3:45Þ

by comparing the real and imaginary parts of Eq. (3.44) and (3.45), we can obtain
the radius of curvature R2 and the waist w2 of the output beam, respectively:

R2 ¼ �
ðpw2

0
k Þ

2 þ 4ðf1f2Þ
4ðf2 � L2Þ2

2
f 2
1

f 2
2
ðf2 � L2Þ

ð3:46Þ

w2
2 ¼ ð

k
pw0
Þ2 ðpw2

0

k
Þ2 þ 4ðf1

f2
Þ4ðf2 � L2Þ2

� �
ð3:47Þ

The optical power collected by the fiber tip is the integral of the beam intensity
over the fiber core area at the fiber tip plane, as was the case in Eqs. 3.9, and 3.10
can be used to calculate T, which shows the confocal effect of the system.

3.2.4.3 Variations of FOCM

The FOCM arrangement shown in Fig. 3.21 is a setup which utilizes the advantage
of using optical fiber as a point-like light source and as a point coherent detector.
The FOCM of Fig. 3.21 is especially useful in establishing a cost-effective
confocal microscopy system because a low-cost diode laser can be used, and other
optical components such as beam-splitter and pinholes can be avoided. However, it
does not utilize the advantage of optical fiber in terms of flexibility and robustness,
which enables compact remote sensing. Beam scanning at the distal end of the
optical fiber needs a special design.

One of the commonly used arrangements of compact remote sensing FOCM is
shown in Fig. 3.22. The bulk scanning optics of the arrangement in Fig. 3.21 were
replaced with a miniature endoscopic fiber scanner. The micro actuator translates
the fiber tip, which serves the role of a point-like light source and point detector at
the same time in a raster or spiral scanning pattern in a small package. The
descanned detector through the scanning fiber tip ensures confocal operation of the
system. The objective lens can be a common spherical lens or graded index
(GRIN) lens. The entire scanning section can be sealed in a compact package;
thus, this arrangement is suitable for endoscopic application. However, mechanical
scanning of the fiber tip in a small endoscopic package may limit the size of the
entire package.

Another method for compact remote scanning is shown in Fig. 3.23 [14]. This
arrangement uses an optical fiber bundle to deliver the scanning light signal from
and to the scanning microscope. The scanning microscope does not have to operate
under a confocal regime, but it has to be able to deliver an illumination laser into a
single core of the fiber bundle while detecting a signal from the same core. Optical

80 D.-H. Kim and J. U. Kang



arrangement of the fiber bundle and objective lens should be such that the
detection is achieved in high confocality. Using a GRIN lens will further minimize
the size of the setup.

Fig. 3.21 Experimental (solid) and simulation (dashed) results showing the fiber optic confocal
effect for four different microscopic objective lenses. The measured FWHM of the longitudinal
confocal response was found to be (a) 5X: 102 lm, (b) 10X: 28.4 lm, (c) 20X: 11 lm, and
(d) 40X: 4.4 lm, respectively

Fig. 3.22 FOCM with
scanning implemented on the
distal end of the optical fiber.
The micro actuator introduces
raster or spiral scanning of
the fiber-tip. OL represents
the objective lens
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3.3 Novel Application of FOCM

Confocal microscopy has been widely used in many practical fields ranging from
basic science to industrial applications due to its depth discrimination property,
which can be utilized for three-dimensional imaging of thick specimens [15–17].
The disadvantages of conventional pinholes used in normal confocal microscopes
have been overcome by replacing the pinholes with optical fiber [11], resulting in
the achievement of higher resolution [18]. Hollow-core fibers have been developed
since the surgical application of mid-infrared (IR) lasers was established. How-
ever, typical hollow-core fibers have been made of metal-coated or dielectric-
coated quartz or plastic tubes, and they have larger than a few hundred microm-
eters of diameter due to technical difficulties of production. Mid-IR applications
and hollow-core fiber deliveries are well summarized in many chapters

Yablonovitch was the first to propose that the periodicity in dielectric materials
could prevent the propagation of electromagnetic waves within a certain frequency
range. The periodicity of the dielectric constant induces the removal of degeneracy
of the free-photon states at Bragg planes and provokes a range of forbidden
energies for the photons. This has led to the appearance of a photonic crystal also
known as photonic bandgap material. There is a close analogy between electrons
in semiconductors and photons in photonic crystals. Many concepts valid for
electrons can now be extended to photons.

From the Maxwell’s equations, we can eliminate the electric field E(r) and write
the wave equation in terms of the magnetic field H(r):

r� 1
eðrÞr � HðrÞ
� �

¼ x2

c2
HðrÞ ð3:48Þ

And the transverse requirement needs to be satisfied:

Fig. 3.23 Endoscopic
FOCM based on fiber bundle.
Inset shows the multiple core
structure of the fiber bundle
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r � HðrÞ ¼ 0 ð3:49Þ

This is an eigenvalue problem. For a specific structure, e(r) and H(r) are solved
for some frequency. The electric field can be calculated by the following relation:

EðrÞ ¼ �i

xeðrÞ

� �
r� HðrÞ ð3:50Þ

Let us consider a one-dimensional (1-D) structure as shown in Fig. 3.24, which
is constituted of an array of alternating dielectric materials with dielectric con-
stants n1 and n2, and a period of a. From Bloch’s theorem, the eigenstates of the
translation operator in x direction, which are plane wave eikxx, are also the
eigenstates of the wavefunction Eq. (3.48). Thus the one-dimensional eigenstate of
magnetic field can be expressed as:

HkðxÞ ¼ eikxxukðxÞ ð3:51Þ

After a somewhat complex mathematical procedure, applying Eq. (3.51) into
Eq. (3.48) leads to:

HkukðxÞ ¼
xðkÞ

c

� �2

ukðxÞ ð3:52Þ

where Hk is a Hermitian differential operator defined as

Hk ¼ ðikx þ oxÞ � 1
eðxÞ ðikx þ oxÞ�
� �

ð3:53Þ

We find from Eqs. (3.52) and (3.53) a very familiar structure of quantum
physics: a Hamiltonian eigenvalue problem. Using the analogy of quantum
physics, we can induce a dielectric version of Bloch’s theorem

ukðxÞ ¼ ukðxþ aÞ ð3:54Þ

from which the dielectric version of the Brillouin zone is also predictable.
Omitting all the details of quantum physics analogy, two conclusions can be made:
(1) For an infinite periodic structure similar to Fig. 3.24, all the eigenfunctions can
be expressed in terms of the eigenfunction of the first Brillouin zone (any one pair
of n1 and n2 in Fig. 3.24); (2) Angular frequency x(k) which appears in Eq. (3.52)

n1 n2 n1 n2 n1 n2 …

x

y

a

Fig. 3.24 One-dimensional
periodic array of dielectric
material with refractive index
n1 and n2
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can have only values satisfying the dispersion relation (solid line), which is
graphically expressed in Fig. 3.25.

Figure 3.25 shows that some range of frequency values are not allowed for a
certain value of wave vectors, which is marked as the shaded area named photonic
bandgap. That is to say, in a periodic dielectric structure, light having a certain
frequency (wavelength) cannot exist. By placing different photonic bandgap
materials in a well-planned manner, a photonic well—an analogy of a quantum
well in quantum physics—can be constructed and light can be confined only in a
desired region. Extension of the above periodic 1-D structure to x–y plane, and
placing the same structure along z-axis, a new type of light-guiding structure can
be constructed–a photonic bandgap (or photonic crystal) fiber [19]. Photonic
bandgap fibers have such versatility that virtually any size or shape of any
wavelength of light-guiding core can be obtained by proper design of the bandgap
structure and usage of bandgap materials. Photonic crystal fibers have recently
been developed in various structures and have theoretically and experimentally
been shown to have several advantages over conventional silica-based fibers, e.g.,
low temperature dependence [20], hollow-core mid-IR guidance [21]. Our main
interest is to utilize hollow-core photonic bandgap fiber in single-fiber confocal
microscopy, which can lead to real-time imaging while delivering mid-IR surgical
laser power in the same single fiber.

A confocal microscope using a single optical fiber was built as shown in
Fig. 3.26 [22]. A 532 nm solid state laser and Crystal Fiber’s HC-530-01 hollow-
core photonic bandgap fiber (HC-PBF, core diameter: 5 lm, center wavelength:
511 nm) were used for the experimental setup; however, other lasers and fibers—
such as 632.8 nm He–Ne laser and gold-coated hollow-core fiber (HCF, core
diameter 700 nm)—were also used for comparison. To obtain optimum results, we
tried different objective lenses for coupling, collimating, and focusing (OL1-OL3),

Wave vector (ka/2π)
0 0.50.5

0

1.0

Frequency (ω
a/2π c)

Air band

photonic bandgap

Dielectric band

Fig. 3.25 Dispersion
relation of 1-D photonic
bandgap material in the first
Brillouin zone
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ranging from 59 to 1009. The structure of the HC-PBF used for the experiment is
shown in Fig. 3.27.

The axial response was measured and the experimental results with HC-PBF
and 109, 209, and 609 focusing lenses are shown in Fig. 3.28. A solid state laser
with a wavelength of 532 nm, an output power of 25 mW, and a beam diameter of
0.7 mm was used along with a beamsplitting cube. A dielectric total-reflection
mirror was used as the object. The output power was in the microwatt range
revealing very low coupling efficiency, which was mainly due to the transmission
loss from the particular HC-PBF sample we used for the experiment.

The factory-specified transmission loss is \1 dB/m; however, the unit used
has [ 3 dB/m loss. FWHM were 14.7, 6.9, and 2.1 lm for the 109, 209, and 609

OL3’s, respectively. Using the values of NA of the objective lenses as summarized
in Table 3.2, the ratio of FWHM for confocal systems using 109, 209, and 609

lenses is 16:6.25:1.38, which is in close agreement with the ratio of the experi-
mental data, 14.7:6.9:2.1, within experimental errors.

Figure 3.29 shows the experimental results with HCF and He–Ne laser with a
wavelength of 632.8 nm, output power of 18.5 mW, and beam diameter of 1.8 mm
which was used along with a beamsplitting cube.

As we expected from a larger core diameter, the confocal signal showed
intensity as high as 2 mW. FWHM were 55 and 16 lm for 409 and 609,
respectively. Results from HCF showed a relatively large depth resolution, which
is not suitable for high-resolution confocal microscopy; however, we expect
normalized defocus (*z/k) remains the same when defocusing displacement
(z) and wavelength (k) increase simultaneously, leaving the shape (i.e., FWHM) of
the output signal the same.

Another advantage of confocal microscopy using hollow-core fiber is very a
low Fresnel back-reflection at the air-fiber interface. We could not fully utilize this
advantage at this time due to the fact that fiber couplers made with hollow-core or

Fig. 3.26 Schematic of
experimental setup. BS
beamsplitter, OL1 coupling
lens, OL2 collimating lens,
OL3 confocal lens,
z defocusing displacement of
a reflective object
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photonic bandgap fibers have not been developed yet; thus, a single fiber con-
figuration using a beamsplitting cube—another source of signal decrease from
back-reflection—was adapted. Total back-reflection through the system was
measured at 30 lW when HC-PBF was used and 200 lW when a solid-core
single-mode fiber was used. That is an 85 % reduction of background level
obtainable without anti-reflection coating or angle cleaving of the fiber tips. To
reduce the back-reflection at the surfaces of the beamsplitting cube, we

Fig. 3.27 Schematic of
cross-section of HC-PBF

Fig. 3.28 Experimental axial
responses obtained with 1 m
of HC-PBF, OL1 = 209,
OL2 = 109, and different
OL3’s marked as legends in
the graph

Table 3.2 Specifications of
objective lenses used for the
experiment

NNA Focal length, f (mm) WD (mm)

59 0.10 25.4 13.0
109 0.25 16.5 5.5
209 0.40 9.0 1.7
409 0.65 4.5 0.6
609 0.85 2.9 0.3
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investigated a mirror with a hole. A small hole with diameter d1 was drilled in 45
degree through the mirror, where d1 is the beam diameter of the laser (Fig. 3.30).

When the confocal signal coming out from the fiber is collimated through the
lens, OL1, it will have a larger diameter than the input laser according to the NA of
fiber and working distance of OL1. For a fixed value of NA of a fiber, the larger
the WD, the larger the signal reflected at the mirror back into the power meter. For
a fixed d1 and a given OL1, however, a larger WD means a longer focal length,
which will result in a larger spot size (d3) of the input laser at the fiber tip and will
lead to poor coupling efficiency. Using a 532 nm solid state laser with
d1 = 0.7 mm, the focused spot size was calculated using the formula w = 4kf/
(3pw0) to be 21.3, 11.6, and 3.74 lm for 109, 209, 609 lenses, respectively.

Although the spot size is larger than the core diameter (d0) of HC-PBF, 209

showed the best input coupling due to a smaller NA of 0.40 than that of 609 lens.
The beam-splitting efficiency, g1 = ( 1- d1

2/d2
2), was not physically meaningful

for 209 as d2 is smaller than d1. Note that d2 can be calculated from the relation,
d2 = 2WDtana. The proper choice of d1 and OL1 is needed for a given wave-
length and fiber for better total efficiency. Assuming a simple coupling efficiency
as g2 = d0

2/d3
2, total efficiency (g1 9 g2) was calculated and plotted in Fig. 3.31 for

different lasers, (a) for 5 lm core fiber and (b) for 8 lm core fiber.
The optimal result is predicted from the calculation to be when a lens with

f = 4 mm (409) was used in corporation with solid state laser, or when a lens
with f = 7.5 mm (209) was used with He–Ne leaser; however, d2 \ d1 for both
lenses, thus 109 lens was used for the measurement. The background level was as
low as 15 lW compared to 30 lW when a beam-splitting cube was used. Fig-
ure 3.31b when compared to Fig. 3.31a shows that the efficiency can be improved
when a fiber with a larger core diameter is used. Note that most of mid-IR hollow-
core fibers have [50 lm core diameter.

Fig. 3.29 Experimental axial
responses obtained with 1 m
of HCF, OL1 = 59,
OL2 = 109, and OL3 was
409 and 609
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Figure 3.32 shows the experimental results of the axial resolution measurement
using the designed holed-mirror type of beamsplitter. There is a hole with a
0.7 mm diameter, at an angle of 45 degrees to the mirror surface and the input
laser passes through the hole before being coupled to the HC-PBF. For precise
measurement of the axial resolution, a nano-positioning piezo-electric translational
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Fig. 3.31 Theoretical
calculation of total detection
efficiency for different lasers.
Beam diameter is 0.7, 1.3,
3.0 mm, and the wavelength
is 532, 632.8, 514.5 nm for
the solid state laser, He–Ne
laser, Ar-Kr laser,
respectively. The fiber is set
to have core diameter of
a 5 lm and b 8 lm. NA is
assumed to be 0.12 for both
cases

Fig. 3.30 Detailed schematic of the beam-splitting section using a mirror with a hole. WD
working distance of OL1, d1 diameter of laser beam, d2 diameter of collimated output

88 D.-H. Kim and J. U. Kang



stage was used to move the object. The precision of the movement is as low as
*100 nm. The actual movement step used for the experiment was 200 nm. Using
50 cm of HC-PBF, OL1 = 109, OL2 = 109, FWHM was measured to be
4.70 lm for 609 OL3, and 10.4 lm for 409 OL3. Reduction of the background
level by usage of a holed-mirror beamsplitter was 50 % lower than that of a cubic
beamsplitter.
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Chapter 4
Optical Fiber Gratings for Mechanical
and Bio-sensing

Young-Geun Han

4.1 Theoretical Analysis of Fiber Gratings

In general, optical fiber gratings can be classified as either fiber Bragg gratings
(FBGs) or long-period fiber gratings (LPGs) depending on whether the periodic
variation in the refractive index is ranged in the submicron or in the hundreds of
microns scale [1, 2]. Figure 4.1 shows the operating principle of FBGs and LPGs.
The periodic modulation in the refractive index induce, in the case of FBGs, mode
coupling between two counter-propagating modes, whereas in the case of LPGs, it
causes coupling between core and cladding modes. FBGs can be used to perform a
wide range of functions, such as reflection, filtering, and sensing. Depending on the
configuration of their physical structures such as index profile, grating period and
tilt, FBGs can be categorized as either uniform FBGs, apodized FBGs, blazed FBGs,
or chirped FBGs. Theoretical analysis of fiber gratings can be readily obtained by
solving Maxwell’s equation and considering small index perturbation [3–5].

In order to analyze optical characteristics of LPGs and FBGs, let’s drive the
coupled mode equation starting from Maxwell’s equation. Assume that each field
can be decomposed into spatial and temporal terms as:

~E ¼ ~Eð~r; tÞ ¼ ~Eð~rÞe�ixt

~H ¼ ~Hð~r; tÞ ¼ ~Hð~rÞe�ixt
ð4:1Þ

Assuming that the medium is linear, homogeneous and isotropic, e l, r are
independent of ~H, ~E, space or time and direction, the Maxwell’s equation for a
monochromatic wave can be written as:
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r� ~Hð~rÞ ¼ �ixe~Eð~rÞ

r �~Eð~rÞ ¼ ixl~Hð~rÞ
ð4:2Þ

r � ~Hð~rÞ ¼ �ixe~Eð~rÞ
r �~Eð~rÞ ¼ ixl~Hð~rÞ

ð4:3Þ

Assuming that the wave propagates in z-direction, and the special term of fields
can be decomposed into transverse and longitudinal components as

~Eð~rÞ ¼ ~Etð~rÞ þ~Ezð~rÞ
~Hð~rÞ ¼ ~Htð~rÞ þ ~Hzð~rÞ

ð4:4Þ

Then the Maxwell’s equation can be decomposed into transverse and longitu-
dinal components.

Transverse components:

rt � ~Hzð~rÞ þ rz � ~Htð~rÞ ¼ �ixe~Etð~rÞ

rt �~Ezð~rÞ þ rz �~Etð~rÞ ¼ ixl~Htð~rÞ
ð4:5Þ

Longitudinal components:

rt � ~Htð~rÞ ¼ �ixe~Ezð~rÞ

rt �~Etð~rÞ ¼ ixl~Hzð~rÞ
ð4:6Þ

The transverse mode equation can be obtained by applying êz� on Eq. (4.5)
which results in:
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Fig. 4.1 Operating principle of (a) fiber Bragg gratings and (b) long-period fiber gratings
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o~Hzð~rÞ
oz � ixeêz �~Etð~rÞ ¼ rt~Hzð~rÞ

o~Ezð~rÞ
oz þ ixlêz � ~Htð~rÞ ¼ rt~Ezð~rÞ

ð4:7Þ

The longitudinal mode equations from Eq. (4.6) can be obtained as

~Ezð~rÞ ¼ i
xert � ~Htð~rÞ

~Hzð~rÞ ¼ �i
xlrt �~Etð~rÞ

ð4:8Þ

By substituting Eq. (4.8) into Eq. (4.5), the transverse mode equation can be
expressed by

rt �
�i

xl
rt �~Etð~rÞ þ rz � ~Htð~rÞ ¼ �ixe~Etð~rÞ

rt �
i

xe
rt � ~Htð~rÞ þ rz �~Etð~rÞ ¼ ixl~Htð~rÞ

ð4:9Þ

For an ideal waveguide, the mode profile can be written as:

~Eð~r; tÞ ¼ ~Elðx; yÞeiblz�ixt

~Hð~r; tÞ ¼ ~Hlðx; yÞeiblz�ixt; ð4:10Þ

where bl is the propagating constant of the lth order mode.
Since l ¼ l0; e ¼ e0n2

0ðx; yÞ; where n0 is a refractive index in an ideal wave-
guide, then, Eq. (4.5) in the ideal mode case can be modified as:

�i

xl0
rt �rt �~El;tðx; yÞ þ iblêz � ~Hl;tð~rÞ ¼ �ixe0n2

0ðx; yÞ~El;tðx; yÞ

i

xe0
rt �

1
n2

0ðx; yÞ
rt � ~Hl;tð~rÞ

� �
þ iblêz �~El;tð~rÞ ¼ ixl0

~Hl;tð~rÞ
ð4:11Þ

where ~El;t and ~Hl;t are the transverse field of the lth order ideal mode for electric
and magnetic waves in an ideal waveguide. bl is the propagating constant of the lth
order mode.

For the perturbed waveguide, we can expand the perturbed field with a linear
summation of ideal normal modes such as:

~Etð~rÞ ¼
P1
l¼0

cleiblz~El;tðx; yÞ ¼
P1
l¼0

alðzÞ~El;tðx; yÞ

~Htð~rÞ ¼
P1
l¼0

gleiblz~Hl;tðx; yÞ ¼
P1
l¼0

blðzÞ~Hl;tðx; yÞ
ð4:12Þ

where the constant cl and gl are the slowly varying modal amplitudes that include
phase term for electric and magnetic waves, respectively. alðzÞ and blðzÞ are the
rapidly varying modal amplitudes that include phase term for electric and mag-
netic waves, respectively. Since l ¼ l0; e ¼ e0n2ð~rÞ; Eq. (4.9) can be modified by
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inserting Eq. (4.12) into Eq. (4.9). From that we obtain the governing equations for
the perturbed waveguide as:

�i

xl0

X
alðzÞrt �rt �~El;tðx; yÞ þ

X1
l¼0

oblðzÞ
oz

êz � ~Hl;tðx; yÞ ¼ �ixe0n2ð~rÞ
X1
l¼0

alðzÞ~El;tðx; yÞ

i

xe0

X
blðzÞrt �

i

n2
0ð~rÞ
rt � ~Hl;tðx; yÞ

� �
þ
X1
l¼0

oalðzÞ
oz

êz �~Etð~rÞ ¼ ixl0

X1
l¼0

blðzÞ~Hl;tðx; yÞ

ð4:13Þ

By substituting appropriate equations in the ideal waveguide into Eq. (4.13), we
have

P
alðzÞ �iblêz � ~Hl;tðx; yÞ � ixe0n2

0ðx; yÞ~El;tðx; yÞ
� �

~El;tðx; yÞ þ
P1
l¼0

oblðzÞ
oz

êz � ~Hl;tðx; yÞ

¼ �ixe0n2ð~rÞ
P1
l¼0

alðzÞ~El;tðx; yÞ

i

xe0

X
blðzÞrt �

i

n2
0 ðx; yÞ

� i

n2ð~rÞ

 !
rt � ~Hl;tðx; yÞ

 !
þ
X1
l¼0

iblblðzÞ �
oalðzÞ

oz

� �
êz �~Etð~rÞ ¼ 0

ð4:14Þ

Rearranging Eq. (4.14) results in:

P1
l¼0

oblðzÞ
oz
� iblaðzÞ

� �
êz � ~Hl;tðx; yÞ þ ixe0 n2ð~rÞ � n2

0ðx; yÞalðzÞ
� �

~El;tðx; yÞ ¼ 0

P1
l¼0

iblblðzÞ �
oalðzÞ

oz

� �
êz �~Etð~rÞ þ i

xe0

P
blðzÞrt �

i

n2
0 ðx; yÞ

� i

n2ð~rÞ

 !
rt � ~Hl;tðx; yÞ

 !
¼ 0

ð4:15Þ

Using the equations for normal modes and using the normalization and
orthogonalization conditions such as,Z

êz � ð~Em;tðx; yÞ � ~H�l;tðx; yÞÞdA ¼ 2
b�l
blj j

Pdm;l; ð4:16Þ

Where dm;l ¼ 1 for m ¼ l and dm;l ¼ 0 for m 6¼ l
Equation (4.15) can be modified by multiplying the terms with eitherR
~Em;tðx; yÞ� or

R
~Hm;tðx; yÞ�

R
~Em;tðx; yÞ�

P1
l¼0

oblðzÞ
oz
� iblaðzÞ

� �
êz � ~Hl;tðx; yÞ þ ixe0 n2ð~rÞ � n2

0ðx; yÞalðzÞ
� �

~El;tðx; yÞ ¼ 0

� �

R
~Hm;tðx; yÞ�

P1
l¼0

oalðzÞ
oz
� iblblðzÞ

� �
êz �~El;tð~rÞ þ i

xe0

P
blðzÞrt � i

n2ð~rÞ � i
n2

0 ðx;yÞ

� �
rt � ~Hl;tðx; yÞ

� �
¼ 0

� �

ð4:17Þ

Then Eq. (4.17) can be modified by using Eq. (4.16)
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obmðzÞ
oz � ibmaðzÞ ¼ 2

P1
l¼0

alðzÞKm;lðzÞ

oamðzÞ
oz � ibmbmðzÞ ¼ 2

P1
l¼0

blðzÞCm;lðzÞ
ð4:18Þ

Where

Km;lðzÞ ¼
ixe0

4P

bmj j
bm

Z
n2ð~rÞ � n2

0ðx; yÞ
� �

~E�m;tðx; yÞ �~El;tðx; yÞdA

Cm;lðzÞ ¼
ixe0

4P

bmj j
b�m

Z
n2

0ðx; yÞ
n2ð~rÞ n2ð~rÞ � n2

0ðx; yÞ
� �

~E�m;zðx; yÞ �~El;zðx; yÞdA

ð4:19Þ

The solutions for the mode coupling can be expressed as:

amðzÞ ¼ aðþÞm ðzÞ þ að�Þm ðzÞ ¼ cðþÞm ðzÞeibmz þ cð�Þm ðzÞe�ibmz

bmðzÞ ¼ aðþÞm ðzÞ � að�Þm ðzÞ ¼ cðþÞm ðzÞeibmz � cð�Þm ðzÞe�ibmz
ð4:20Þ

Where cð�Þm is the amplitude for the waves propagating in forward (þ) or or
backward (-) direction. Here, it is evident that the relative direction of the
magnetic field over the electric field of a mode is reversed when the propagation
direction is reversed in an ideal waveguide as seen in Fig. 4.2.

By substituting Eq. (4.20) into Eq. (4.18), we obtain

o

oz
aðþÞm ðzÞ þ að�Þm ðzÞ
� �

� ibm aðþÞm ðzÞ þ að�Þm ðzÞ
� �

¼ 2
X1
l¼0

aðþÞl ðzÞ þ að�Þl ðzÞ
� �

Km;lðzÞ

o

oz
aðþÞm ðzÞ � að�Þm ðzÞ
� �

� ibm aðþÞm ðzÞ � að�Þm ðzÞ
� �

¼ 2
X1
l¼0

aðþÞl ðzÞ � að�Þl ðzÞ
� �

Cm;lðzÞ
ð4:21Þ

By taking the sum or the difference in Eq. (4.21), we obtain

(a) (b)Fig. 4.2 Direction of
pointing vector (~S ¼ ~E � ~H)
propagating (a) forward z-
direction or (b) backward
-z-direction
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oaðþÞm ðzÞ
oz

� ibmaðþÞm ðzÞ ¼
X1
l¼0

aðþÞl ðzÞ Km;lðzÞ þ Cm;lðzÞ
� �

þ
X1
l¼0

að�Þl ðzÞ Km;lðzÞ � Cm;lðzÞ
� �

oað�Þm ðzÞ
oz

þ ibmað�Þm ðzÞ ¼
X1
l¼0

aðþÞl ðzÞ �Km;lðzÞ þ Cm;lðzÞ
� �

þ
X1
l¼0

að�Þl ðzÞ �Km;lðzÞ � Cm;lðzÞ
� �

ð4:22Þ

By using Eq. (4.20), we can get the mode equations for the slowly varying

factors cð�Þm as
ocðþÞm ðzÞ

oz ¼
P1
l¼0

Km;lðzÞ þ Cm;lðzÞ
� �

cðþÞl ðzÞeiðbl�bmÞz þ
P1
l¼0

Km;lðzÞ � Cm;lðzÞ
� �

cð�Þl ðzÞeð�ibl�bmÞz

ocð�Þm ðzÞ
oz e�ibmz ¼

P1
l¼0
�Km;lðzÞ þ Cm;lðzÞ
� �

cðþÞl ðzÞeiðblþbmÞz þ
P1
l¼0
�Km;lðzÞ � Cm;lðzÞ
� �

cð�Þl ðzÞeð�iblþibmÞz

ð4:23Þ

To simplify the expression, we define the coupling coefficient as:

vðp;qÞm;l ðzÞ ¼ pKm;lðzÞ þ qCm;lðzÞ

¼ ixe0

4P

Z
n2ð~rÞ � n2

0ðx; yÞ
� �

� p
bmj j
bm

~E�m;tðx; yÞ �~El;tðx; yÞ þ q
bmj j
b�m

n2
0ðx; yÞ
n2ð~rÞ

~E�m;zðx; yÞ �~El;zðx; yÞ
� �� �

da

ð4:24Þ

where p; q ¼ �. Then we will finally obtain the coupled mode equation for cð�Þm as

ocðþÞm ðzÞ
oz

¼
X1
l¼0

vðþ;þÞm;l cðþÞl ðzÞeiðbl�bmÞz þ
X1
l¼0

vðþ;�Þm;l cð�Þl ðzÞeð�ibl�bmÞz

ocð�Þm ðzÞ
oz

¼
X1
l¼0

vð�;þÞm;l cðþÞl ðzÞeiðblþbmÞz þ
X1
l¼0

vð�;�Þm;l cð�Þl ðzÞeð�iblþibmÞz
ð4:25Þ

From Eq. (4.25), we can obtain the coupling mode equation for FBGs and LPGs
by considering the refractive index profile of the perturbed waveguide nð~rÞas:

nð~rÞ ¼ n0ðx; yÞ þ Dnð~rÞ ð4:26Þ

If the perturbation is small such that Dn� n0, we can approximate Eq. (4.26)
as since Dn2 ! 0:

n2ð~rÞ � n2
0ðx; yÞ þ 2n0ðx; yÞDnð~rÞ: ð4:27Þ

In conventional waveguides, most of lower guided modes have small propa-
gating angles. Therefore the amplitude of the longitudinal field in the z-direction is
much smaller than that of the transverse field in the x- and y-direction. Therefore,
we can conclude:
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~Et

�� ��	 ~Ez

�� ��
~Ht

�� ��	 ~Hz

�� ��
Km;lðzÞ
�� ��	 Cm;lðzÞ

�� ��
ð4:28Þ

Then, the coupling constant can be modified as

vðp;qÞm;l ðzÞ ¼ pKm;lðzÞ þ qCm;lðzÞ � pKm;lðzÞ

¼ p
ixe0

4P

ZZ
2n0ðx; yÞDnð~rÞ~E�m;tðx; yÞ �~El;tðx; yÞda ð4:29Þ

By considering that the index perturbation is uniformly induced across the cross
sectional area of the waveguide in the z-direction but restricted in a localized area,
Eq. (4.29) can be written as:

Km;lðzÞ ¼ i2DnðzÞXm;l

Xm;l ¼
ixe0

4P

ZZ
2n0ðx; yÞDnð r!ÞE�m;tðx; yÞ � E

!
l;tðx; yÞda

ð4:30Þ

where Xm;l ¼ X�
m;l

. Therefore, Xm;l is real in general.
For the case of fiber gratings, the index perturbation can be written as

DnðzÞ ¼ DndcðzÞ þ DndcðzÞCos Kzþ UðzÞð Þ ð4:31Þ

where DndcðzÞ is a slowly varying DC part (* average index variation) and
DnacðzÞ is the rapidly varying AC part with a small phase variation, UðzÞ.

4.1.1 LPG: Co-Directional Coupling with Sinusoidal
Perturbation

From Eqs. (4.25) and (4.30), the coupled equations for the co-directional case can
be written as:

ocðþÞm ðzÞ
oz

¼
X1
l¼0

vðþ;þÞml ðzÞeiðbl�bmÞz � 2iDnðzÞ
X1
l¼0

XðþÞml cðþÞl ðzÞeiðbl�bmÞz ð4:32Þ

By inserting the periodic variation of Eq. (4.31) and decomposing it with self
coupling terms and cross coupling terms, we obtain:

ocðþÞm ðzÞ
oz

¼2i DndcðzÞ þ DnacðzÞ cos Kzþ UðzÞð Þ½ 
XðþÞm;mcðþÞm ðzÞ

þ2i DndcðzÞ þ DnacðzÞ cos Kzþ UðzÞð Þ½ 

X
l6¼m

XðþÞml cðþÞl ðzÞeiðbl�bmÞz
; ð4:33Þ

The cosine function can expressed in terms of exponential functions:
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cos Kzþ UðzÞð Þ ¼ 1
2

ei/ðzÞeiKz þ e�i/ðzÞe�iKz
� �

ð4:34Þ

Substituting Eq. (4.34) into Eq. (4.35) gives

ocðþÞm ðzÞ
oz

¼ 2iDndcðzÞXðþÞm;mcðþÞm ðzÞ

þ iDnacðzÞei/ðzÞXðþÞm;mcðþÞm ðzÞeiKz

þ iDnacðzÞe�i/ðzÞXðþÞm;mcðþÞm ðzÞe�iKz

þ 2iDndcðzÞ
X
l 6¼m

XðþÞm;l cðþÞl ðzÞeiðbl�bmÞz

þ iDnacðzÞei/ðzÞ
X
l 6¼m

XðþÞm;l cðþÞl ðzÞeiðbl�bmþKÞz

þ iDnacðzÞe�i/ðzÞ
X
l 6¼m

XðþÞm;l cðþÞl ðzÞeiðbl�bm�KÞz

ð4:35Þ

Since each cm is the slowly varying modal amplitude, the effect made by the
rapidly varying (or oscillating) terms in the above equation can be neglected in
most cases. Also for simplicity let’s only consider the mode coupling between the
core and the co-propagating cladding modes in a single-mode fiber, therefore:

cðþÞm ¼ ccore; c
m
caddðfor v ¼ 1; 2; 3; 4; . . .Þ ð4:36Þ

The effective index of the core mode is greater than that of the cladding modes
(bcore [ bm

clad for any cladding of mode order, m). The grating contains many
periods within the length of the grating, d. Then, we can get Kd 	 1, with
K ¼ 2p=K, K is the grating period. The mode spacing of the cladding modes is
wide enough or/and the length of the grating is long enough to satisfy:

bm
clad � bmþ1

clad

� �
d 	 1 ð4:37Þ

The coupling coefficient between cladding modes is extremely small. The terms
with the following phase factors in Eq. (4.35) can be sufficiently small to be
neglected;

eiKz; e�iKz; ei bcore�bm
cladð Þz ð4:38Þ

Therefore, only three terms (one self term and two sets of cross terms) are
remained;
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ocðþÞm zð Þ
oz

� 2iDndc zð ÞXðþÞmm cðþÞm zð Þ

þ iDnac zð ÞseiUðzÞ
X
l 6¼m

XðþÞml cðþÞl zð Þei bl�bmþKð Þz

þ iDnac zð Þe�iUðzÞ
X
l 6¼m

XðþÞml cðþÞl zð Þei bl�bm�Kð Þz;

ð4:39Þ

Decomposing Eq. (4.39) (when the left side is the core mode), we can obtain
the coupled core mode with a certain mode order (m) as:

occore zð Þ
oz

� 2iDndc zð ÞXðþÞcore;coreccore zð Þ

þ iDnac zð ÞeiUðzÞ
X

m

XðþÞcore;mc
m
clad zð Þei bm

clad�bcoreþKð Þz

þ iDnac zð Þe�iUðzÞ
X

m

XðþÞcore;mc
m
clad zð Þei bm

clad�bcore�Kð Þz

ð4:40Þ

In the 2-nd term, the phase factor can be vanished only for one cladding mode
that satisfies the phase matching condition defined as

Db � bcore � bm
clad � K ! 0 ð4:41Þ

Then we can obtain the expression for the phase matching condition for the
LPG as

kp ¼ Kðncore � nm
cladÞ ð4:42Þ

Note that for a given waveguide, the order of cladding mode mð Þ for the mode
coupling is determined (or selected) by the amount of K. The phase of the last term
of Eq. (4.40) is typically sufficiently small enough to be neglected, therefore Eq.
(4.40) can be written as:

occore zð Þ
oz

� 2iDndc zð ÞXðþÞcore;coreccore zð Þ þ iDnac zð ÞeiUðzÞXðþÞcore;mc
m
clad zð Þe�iDbz ð4:43Þ

By using the same procedure, the coupling mode equation can be obtained as

ocm
cladðzÞ
oz

� 2iDndcðzÞXðþÞm;m cm
cladðzÞ þ iDnacðzÞe�iUðzÞXðþÞm;coreccoreðzÞeiDbz; ð4:44Þ

By defining the coupling constant j as

jco
dc � 2DndcX

ðþÞ
core;core and jcl

dc � 2DndcX
ðþÞ
m;m

j ¼ jac � DnacX
ðþÞ
core;m; Then, DnacX

ðþÞ
m;core ¼ j�ac � j�

4 Optical Fiber Gratings for Mechanical and Bio-sensing 99



And re-defining the mode indexing as

A ¼ AðzÞ � ccoreðzÞ Core mode amplitude slowly varyingð Þ

B ¼ BðzÞ � cm
cladðzÞ Cladding mode amplitude slowly varyingð Þ

Then, the coupled mode equation becomes

A0 ¼ ijco
dcAþ ijacBe�iDbz ð4:45Þ

B0 ¼ ij�acAeþiDbz þ ijcl
dcB ð4:46Þ

In a matrix form, it can be written as:

AðzÞ0

BðzÞ0

" #
¼ i

jco
dc jace�iDbz

j�aceþiDbz jcl
dc

" #
AðzÞ
BðzÞ

	 

ð4:47Þ

The solution of the coupled-mode equation of two co-propagating modes is
then given by

AðzÞ

BðzÞ

" #
¼ ei

bcoþbm
cl

2 z
cos szþ i Db

2s sin sz
� �

eiK2z i j
s eiK2z sin sz

i j�
s e�iK2z sin sz cos sz� i Db

2s sin sz
� �

e�iK2z

2
4

3
5 Að0Þ

Bð0Þ

" #

ð4:48Þ

where s is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Db
2

� �2
þ jj�

r
�

4.1.2 FPG: Co-Directional Coupling with Sinusoidal
Perturbation

A core mode can be coupled to a counter propagating mode by a periodic index
perturbation that exists in FBGs. Since single- mode fibers have only one core

mode with a mode order l, only cð�Þ1 modes are possibly confined. Thus, from Eq.
(4.25) we can obtain:

ocðþÞ1 ðzÞ
oz

¼ vðþ;þÞ11 ðzÞcðþÞ1 ðzÞeiðb1�b1Þz þ vðþ;�Þ11 ðzÞcð�Þ1 ðzÞeið�b1�b1Þz ð4:49Þ

ocð�Þm ðzÞ
oz

¼ vð�;þÞm1 ðzÞcðþÞ1 ðzÞeiðb1þb1Þz þ vð�;�Þm1 ðzÞcð�Þ1 ðzÞeið�b1þbmÞz ð4:50Þ

Since the mode order m becomes 1 in the FBG, Eqs. 4.48 and 4.49 become

ocðþÞ1 ðzÞ
oz

¼ vðþ;þÞ11 ðzÞcðþÞ1 ðzÞ þ vðþ;�Þ11 ðzÞcð�Þ1 ðzÞe�2ib1z ð4:51Þ
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ocð�Þ1 ðzÞ
oz

¼ vð�;þÞ11 ðzÞcðþÞ1 ðzÞeþ2ib1z þ vð�;�Þ11 ðzÞcð�Þ1 ðzÞ ð4:52Þ

Using the new coupling coefficient defined in Eq. (4.30) yields

vðp;qÞ11 ðzÞ � i2DnðzÞXp
11 ¼ pi2DnðzÞX11 ð4:53Þ

Xp
11 � p

xe0

4P

b1j j
b1

ZZ
pert

n0ðx; yÞE�1tðx; yÞ � E1tðx; yÞdxdy ð4:54Þ

� p
xe0

4P

b1j j
b1

ZZ
pert

n0ðx; yÞ E1tðx; yÞj j2dxdy; ð4:55Þ

with Xð�Þ11 ¼ �XðþÞ11 . The coupling intensity is proportional to the intensity of E
field of the core mode. With the sinusoidal index variation of Eq. (4.31), we have:

ocðþÞ1 ðzÞ
oz

¼ 2iDndcðzÞXðþÞ11 cðþÞ1 ðzÞ

þ iDnacðzÞXðþÞ11 cð�Þ1 ðzÞ e�iUðzÞeið�2b1�KÞz þ eiUðzÞeið�2b1þKÞz
h i

ð4:56Þ

ocð�Þ1 ðzÞ
oz

¼ iDnacðzÞXð�Þ11 cðþÞ1 ðzÞ e�iUðzÞeið2b1�KÞz þ eiUðzÞeið2b1þKÞz
h i

þ 2iDndcðzÞXð�Þ11 cð�Þ1 ðzÞ ð4:57Þ

The terms having phases of e�iKz and e�i2b1 can be sufficiently small to be
neglected. The coupling factors of the core mode to other co-directional modes
were also removed for a single core fiber. Only the terms having small phase
factors dominates the coupling that is Db � 2bcore �K! 0.

Then we obtain the expression for the phase matching condition for the FBG as

kp ¼ 2ncoreK ð4:58Þ

For the case of a uniform grating (UðzÞ ¼ 0), we can write the coupled mode
equation for the FBG as:

ocðþÞ1 ðzÞ
oz

¼ 2iDndcðzÞXðþÞ11 cðþÞ1 ðzÞ þ iDnacðzÞXðþÞ11 cð�Þ1 ðzÞe�iDbz ð4:59Þ

ocð�Þ1 ðzÞ
oz

¼ iDnacðzÞXð�Þ11 cðþÞ1 ðzÞeþiDbz þ 2iDndcðzÞXð�Þ11 cð�Þ1 ðzÞ ð4:60Þ

Here the coupling constantjand the mode indexing can be defined as

jdcðzÞ � 2DndcðzÞXðþÞ11

jacðzÞ � DnacðzÞXðþÞ11
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A ¼ AðzÞ � cðþÞ1 ðzÞ

B ¼ BðzÞ � cð�Þ1 ðzÞ

by using the relationship of Xð�Þ11 ¼ �XðþÞ11 , we have the coupled mode equations
for two counter-propagating modes as

oAðzÞ
oz
¼ ijdcðzÞAðzÞ þ ijacðzÞBðzÞeiDbz ð4:61Þ

oBðzÞ
oz
¼ �ij�acðzÞAðzÞe�iDbz � ijdcðzÞBðzÞ ð4:62Þ

with Db � 2bcore � K

This can be written in a matrix form as:

AðzÞ0

BðzÞ0

" #
¼ i

jdc jace�iDbz

�j�aceþiDbz �jdc

	 
 AðzÞ

BðzÞ

" #
ð4:63Þ

The solution of the coupled-mode equation of two counter propagating modes
is given by

AðzÞ

BðzÞ

" #
¼

cosh szþ i Db
2s sinh sz

� �
eiK2z i j

s eiK2z sinh sz

�i j�
s e�iK

2z sinh sz cosh sz� i Db
2s sinh sz

� �
e�iK

2z

2
4

3
5 Að0Þ

Bð0Þ

" #
ð4:64Þ

where s is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj � � Db

2

� �2
r

.

4.2 Application I: Optical Delay Control

Chirped FBGs can be used to precisely control the optical delay and this can be
used for applications in telecommunication, fiber-optic sensors, microwave pho-
tonics, and bio-imaging. Chirped fiber Bragg gratings (CFBGs) have been used for
dispersion compensating devices due to their fiber compatibility, polarization
insensitivity, low nonlinearity, low loss and so on [6]. By compensating dispersion
in optical systems, high quality optical signal transmission was realized [7, 8].
Multiple elements photonic microwave true-time delay beam-forming based on the
chirped FBGs was achieved [9]. High speed and real time optical imaging tech-
nique was also obtained by using chirped FBGs [10]. The most important property
of the chirped FBGs is that it can control the optical delay time without center
wavelength shift. A simple and convenient method to control the optical delay
time is to exploit a symmetrical bending apparatus [11]. When the linear strain like
the tension or compression strain is induced along the length of a fiber grating, the
resonant wavelength is shifted into the longer and shorter wavelength,
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respectively, Consequently, the chirp ratio of uniform FBG is changed by the
tension and compression strain induced by the symmetrical bending, but the center
wavelength is not changed because the effect of tension and compression strain on
the center wavelength shift should be compensated mutually. Therefore, the group
delay and dispersion can be controlled without the center wavelength shift.

Figures 4.3a and b show the experimental scheme and the photograph for the
symmetrical bending apparatus, respectively, to control the optical delay time with
a uniform FBG [11]. The sophisticated fiber bending can induce symmetrically
linear strains gradient in the center of the uniform FBG. It consists of two trans-
lation stages with gears, a sawtooth wheel, two pivots, a micrometer, and two
cantilever beam holder. Opposite movement of two translation stages with gears
converts the linear motion of translation stage into the rotary motion of sawtooth
wheel. Figure 4.3c shows the induction principle of tension and compression strain
along the uniform FBG depending on the bending direction. When the left
translation stage is moved forward by the micrometer, its gear rotates the sawtooth
wheel and the right translation stage is moved backward by the rotary motion of
the sawtooth wheel. As two translation stages are moved oppositely by the
interaction between two gears and a sawtooth wheel, the position of two pivots on
two translation stages is changed oppositely, which induces the symmetrical
bending along the flexible cantilever beam. Consequently the tension and com-
pression strain along the uniform FBG through the symmetrically curved canti-
lever beam corresponding to the bending direction can be induced. Therefore, the
optical time delay of the uniform FBG can be effectively controlled by inducing
the tension and compression strain at each side of the FBG without the center
wavelength shift.

(b)

(c)

Cantilever
beam

Uniform FBGs

Moving pivot

Tension

Compression

Tension

Compression

(a)

Fig. 4.3 a Schematic of a chromatic dispersion controller with a uniform FBG. b Photograph of
the fabricated bending apparatus. c Symmetrical bending scheme based on two moving stage.
Tension and compression strain depending on the bending direction can be induced [11]
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The flexible cantilever beam is made of a spring steel with the high resistance
against fatigue and corrosion. The uniform FBG was carefully attached to the
cantilever beam using the UV curable epoxy to reduce the phase error along the
fiber grating due to the microbending, which can induce additional phase error.
The uniform FBG was apodized by using the Blackman profile to reduce the
sidelobes and the group delay ripple [7].

Figure 4.4 shows the experimentally obtained reflection spectra of the uniform
FBG as a function of the variations in the moving distance of the translation stage.
As the micrometer moves, the bending curve along the cantilever beam becomes
larger and this increases the amount of tension and compression strain corre-
sponding to the bending direction. A large amount of strain gradient changes the
chirp ratio along the uniform FBG and consequently makes its bandwidth be broad
without the center wavelength shift.

Figures 4.5a and b show the measured group delay and the measured group
velocity dispersion of the uniform FBG with the variation of the translation stage.
When the left translation stage was changed, the dispersion of CFBG was con-
trolled in the range from 312.6 ps/nm to 35.9 ps/nm. The small difference between
two results may be caused by the imperfection in the fabrication of the grating or
in curing process and coating material. The group delay ripple and the amplitude
of group delay ripple were successfully reduced, which was measured to be less
than *±5 ps over the whole dispersion tuning range. Since the uniform FBG
apodized by the Blackman profile was utilized, the stitching error induced by the
imperfection of the phase mask could be removed and the group delay ripple could
be suppressed. It is obvious that the uniform FBG is more effective for achieving
tunable chromatic dispersion control compared to using the chirped FBG.

Compared to FBGs, LPGs have an advantage of being able to be mass produced
due to their large periodicity and the nature of amplitude masks [1]. Therefore,
LPGs have potential for various applications, for example, gain flattening of
erbium doped fiber amplifier (EDFA), band-rejection filters [1]. Additionally,
LPGs is attracting interest for applications in sensing strain and temperature due to
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Fig. 4.4 Measured reflection
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its high sensitivity to these parameters [2]. LPGs are usually fabricated with the
amplitude mask method or the point-by-point method. Based on these methods,
several techniques have been developed for fabrication of the LPGs: (1) irradiation
of UV laser beam on hydrogen-loaded GeO2-doped fibers with the photosensitivity
effect [1]; (2) periodic relaxation of residual stress with CO2 laser [12, 13]; (3)
periodic physical deformation of the core with electric arc, CO2 laser, and flame
[14–16]; (4) microbending with electric arc [17]; and (5) thermal diffusion in
nitrogen-doped silica-core fiber with electric arc or CO2 laser [18]. Several
mechanisms, e.g., color center model [19] and residual stress relief model [20],
have been proposed for explanation of the refractive index change.

It is possible to realize the true time delay based on the cascaded LPGs [21]. As
seen in Fig. 4.6, the interference pattern resulting from the interaction between the
core and the cladding modes in two identical LPGs must be generated [22]. Optical
properties of the cascaded LPGs, such as peak spacing, bandwidth, and the number
of peaks, are controlled by changing physical parameter, such as the length of a
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Fig. 4.6 a Operating principle of the cascaded LPFG resulting in the interference between the
core and cladding modes. (b) transmission spectra of the cascaded LPGs with different separation
distances [22]
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LPG, the separation distance between two LPGs, the number of LPGs [22]. The
differential group delay (Ds) in the cascaded LPGs can be derived by [21]

Ds ¼ 1
c
ðnCo � nm

Cl � k
d

dk
ðnCo � nm

ClÞÞ; ð4:65Þ

where c is the light velocity and nCo and nm
Cl are effective indices of the core and the

cladding modes, respectively. m is the cladding mode order. If a single pulse in time
domain propagates along the cascaded LPGs, the first LPG divides a single pulse
into several pulses, which have different delays. Since the effective index of the
cladding is lower than that of the core, the optical pulse in the cladding mode
propagates faster than that in the core mode. As seen in Eq. (4.65), it is clearly
obvious that the amount of Ds is dominantly determined by the differential effective
group index between the core and the cladding modes in a single-mode fiber.
However, the optical time delay induced by the cascaded LPGs is very short
(*11.8 ps/m [21]) because of the small difference of the effective refractive indices.

4.3 Application II: Mechanical Sensors

Fiber gratings, in general, have high sensitivity to external perturbation such as
temperature, strain and bending, which have also led to much interest for sensing
applications [2]. The liquid level sensor based on phase shifting of LPGs induced
by the ambient refractive index was reported [23, 24] and the application of the
peak splitting of LPGs to bend sensors was reported [25, 26]. These sensors,
however, have limitations, such as concurrent sensitivities to multiple perturba-
tions; e.g., strain and temperature or bending and temperature. Versatile methods
of discriminating two coexisting sensitivities have been proposed, including
combination of two fiber Bragg gratings (FBGs) with different cladding diameter
[27] FBG-based practical sensors including a supplementary bending cantilever
beam were proposed as a promising solution for another simultaneous measure-
ment of pressure and temperature [28] and for measuring displacement and tem-
perature [29]. A single sampled chirped FBG (CFBG) embedded on a flexible
cantilever beam is capable of discriminating bending and temperature sensitivities
[30]. The sampled CFBG has multiple resonant peaks corresponding to the chirp
ratio and the number of grating samples. Figure 4.7(a) and 4.7(b) show the scheme
for the sensing probe and the transmission spectrum of a sampled CFBG
embedded on a cantilever beam for simultaneous measurement of bending and
temperature. The sampled CFBG was fabricated after exposing a photosensitive
fiber to a 244 nm Arþ laser beam through a chirped phase mask. The UV laser
was periodically opened and closed by using a shutter to modulate the amplitude
of the UV-induced refractive index resulting in the formation of the sampled
CFBG. Then the sampled CFBG was carefully attached to the cantilever beam by
using the UV curable epoxy [30].
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When the external bending is applied to the sampled CFBG, the wavelength
spacing of the sampled CFBG is changed because the compressive strain gradient
induced by the bending of the cantilever beam modifies the chirp ratio of the
chirped FBG. However, the wavelength spacing of the fiber grating is not changed
by the applied temperature because the chirp ratio of the sampled CFBG is not
changed by variation in temperature. The multiple resonant wavelengths, however,
are only shifted into the longer wavelength due to the positive thermal expansion
and optic coefficients of the fiber grating [30].

Figure 4.8a shows the transmission spectra of the sampled CFBG with varia-
tions in the bending curvature. Since the compression strain gradient induced by
the bending reduces the chirp ratio of the sampled CFBG, the wavelength spacing
diminishes as the bending curvature increases. It should be manifest that the
multiple resonant peaks also shift into the shorter wavelength due to the com-
pression strain along the sampled CFBG [30].

Figure 4.9(a) shows the transmission spectra of the sampled CFBG as the
applied temperature changes. Figuress 4.9(b) and 4.9(c) show the multiple
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Fig. 4.7 a Scheme for the sensing probe based on a sampled CFBG embedded on a cantilever
beam for simultaneous measurement of bending and temperature. b Transmission spectrum of the
sampled CFBG [30]
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Fig. 4.8 a Transmission spectra of the sampled CFBG. b Wavelength spacing change as a
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resonant wavelength shifts and the wavelength spacing change as a function of
temperature, respectively. All of multiple resonant wavelengths were shifted into
the longer wavelength due to the positive thermal expansion and optic coefficient
of the photosensitive fiber with high concentration of germanium. The wavelength
spacing, however, was not changed by the applied temperature because of the
independence of the chirp ratio on the ambient temperature variation [30].

In general, the cladding modes coupled from the core mode in the LPGs is
directly interfaced with external environment. It means that the LPGs have higher
sensitivity to the external perturbation than FBGs in terms of temperature sensi-
tivity. The temperature sensitivity of LPGs is changed by controlling the doping
concentrations of GeO2 and B2O3 in the core region. The deviation of the wave-
guide property due to temperature variation (dK/dT) is negligible compared to that
of the material property (dn/dT), and the temperature dependence of the resonance
peak wavelength can be written as [31]

dk
dtT
� K

dnCo

dT
� dnm

Cl

dT

� �
ð4:66Þ

It is obvious that the temperature sensitivity of the LPG can be controlled by
adjusting dopants, such as B2O3 with negative thermal property. For example, the
temperature sensitivity can be decreased by increasing the doping concentration of
B2O3 in the core. On the other hand, the temperature sensitivity can be positively
enhanced by doping B2O3 in the inner cladding [31].

Two kinds of single-mode fibers with similar properties except the doping
concentrations of GeO2 and B2O3 were exploited to fabricate LPGs with UV
excimer laser. The physical parameters of the two fibers are: core diame-
ter = 3.6 lm and 3.8 lm, relative index difference = 1.0 % and 0.8 %, cut off
wavelength = 960 nm and 910 nm. The cladding diameter is 125 lm for both. The
length and the period of the LPG were 1.17 mJ/mm2, 2 cm, and 400 lm, respec-
tively. The temperature and strain sensitivities of two LPGs for several cladding
mode orders (m) were then measured, and the measurement results are shown in
Table 4.1. LPG1 and LPG2 have positive and negative temperature sensitivities,
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respectively. The data also indicates that the temperature and strain sensitivities of
LPG1 and LPG2 vary with the cladding mode order. The strain sensitivity of LPGs
depends on the strain-optic coefficient, grating period K, and the cladding mode
order [2]. In previous reports, it was shown that the strain sensitivity of LPG
increases with the cladding mode order [2]. The strain sensitivity of the HE1,5 mode
in LPG1 was similar to that of the HE1,4 mode in LPG2 and their temperature
sensitivities were opposite in sign. This property makes it possible to discriminate
between the temperature and strain effects simultaneously [31].

Figure 4.10a shows the simple structure of the sensing probe based on dual
LPGs for simultaneous measurement of strain and temperature. A cladding mode
stripper between the two gratings is required to remove the interference pattern
because the cladding modes coupled from the core mode by the first LPG can
interfere with the core mode again in the second LPG. After fabricating LPG1, we
tried to make LPG2 such that the resonance wavelength coincides with the main
resonant wavelength of LPG1. To simply the sensing signal interrogation, peak
separation and shifting of two LPGs with different temperature sensitivities and the
same strain sensitivites were exploited. First of all, Two LPGs with positive and
negative temperature sensitivities were fabricated to induce the peak separation
with variations in temperature. Two LPGs, however, had similar strain sensitivity
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Fig. 4.10 a Scheme for the sensing probe based on two LPGs with similar strain sensitivities for
the simultaneous measurement of strain and temperature. b Evolution of the transmission
characteristics of two LPGs during the grating formation. [31]

Table 4.1 Temperature and strain sensitivities of LPG1 and LPG2 with the cladding mode order
(m) [31]

LPG1 LPG2

HE1,3 HE1,4 HE1,5 HE1,3 HE1,4 HE1,5

Wavelength [nm] 1217.27 1303.13 1488.86 1393.52 1488.86 1681.35
dk/dT [nm/ �C] 0.06 0.07 0.10 -0.57 -0.59 -0.65
dk/de nm/lstrain] 0.41 0.42 0.46 0.43 0.46 0.51
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so that resonant peak shift could be obtained with variations in strain. Since the
temperature sensitivities of two LPGs are opposite in sign while the strain sen-
sitivities are about the same, the resonant peak separation and shift should be
induced as the external temperature and strain change, respectively. This allows
unambiguous and simultaneous measurement of temperature and strain. The total
loss including the splicing loss and the loss due to the mode mismatch was less
than 0.1 dB. The overall length of the device is about 5 cm. Figure 4.10b shows
the transmission characteristics of LPGs with the overlapped resonant wavelength.
The circles show the resonant peaks of LPG2. In general, the core mode (HE1,1)
can be coupled to several cladding modes (HE1,m) of LPGs [1] and the multi-
resonant peaks appears in the transmission spectrum as seen in Fig. 4.10b (the
dashed line). After fabricating LPG1, we measured the variation of the trans-
mission spectra of the two gratings during the grating formation of LPG2. The
resonant wavelength of LPG2 shifted to longer wavelength due to increase of the
average index during the grating formation and finally overlapped with that of
LPG1 as shown in Fig. 4.10b (the gray line). The resonant wavelength of HE1,4 of
LPG2 overlapped with that of HE1,5 of LPG1, which has similar strain sensitivity
and opposite temperature sensitivity. The overlapped wavelength makes it easier
to measure the strain and temperature sensitivity with a single light source since
we need to detect only one wavelength. All of the resonant peaks of two LPGs
cannot be made to overlap consistently due to different photo-induced refractive
index changes with the cladding mode order during the grating formation

Figure 4.11 shows the peak separation of the sensing probe as a function of
temperature. The transmission characteristics of LPGs with the temperature
change were shown in the inset. The peak separation was induced as the tem-
perature increased because of the opposite temperature sensitivities of the two
LPGs. Since the negative temperature sensitivity of LPG2 was larger in magnitude
than the positive sensitivity of LPG1, the shift of the resonant peak to the left was
larger than to the right. The temperature sensitivity of the sensing probe was
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estimated as 0.69 nm/oC. Figure 4.12 shows the dependence of LPGs on the strain
change and the transmission characteristics are shown in the inset. Since the two
LPGs have similar strain sensitivity (*0.46 nm/lstrain), the resonant wavelength
shifted to the longer wavelength with the strain change. The measured strain
sensitivity was 0.46 nm/lstrain.

4.4 Application III: Bio Sensors

Biosensors, including biomarker detection for medical diagnostics, and pathogen
and toxin detection in food and water, have been attracting much attention. In
general, since conventional biosensors have exploited a flouro-immunoassay
method,.it is necessary to utilize the fluorescence labeling of the antigen or target
DNA, which always requires additional reagents [32]. It means that the ordinary
biosensors have many drawbacks, such as a high cost and the complicated and
real-time detection configurations. To overcome these disadvantages, many
methods have been applied to develop label-free detection biosensors [33, 34]. In
particular, there has been much interest in fiber optic biosensors have been the
promising techniques to realize high quality, label-free detection because of their
various advantages, such as high sensitivity, fast detection speed, small size,
variable and multiple detection of biosamples. A variety of biosensing techniques
based on the fiber-optic surface plasmon resonance (SPR) phenomenon have been
proposed [33, 35, 36]. In the case of the SPR biosensors, however, it is necessary
to precisely design and fabricate the SPR biosensors because the SPR properties
are highly sensitive to the metal contents, its thickness, and bio-molecules.
Recently, biosensors based on fiber gratings have been widely investigated
[37–41]. Most of fiber-grating-based biosensors have utilized long period gratings
(LPGs) tuwith radiation mode coupling at resonance wavelengths that are very
sensitive to the variation of the external medium [42]. To improve the sensitivity
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of LPG-based biosensors, several methods, such as colloidal gold modified LPGs
[39], LPGs with the etched cladding, [40], and LPGs with the nanostructured
overlayer [41] have been proposed. However, these methods are disadvantageous
because of the complicated and hazardous procedure, and the requirement of
additional materials. A new, sensitive DNA biosensor based on a surface LPG
inscribed on the surface of a side-polished fiber has been recently reported [43].

To fabricate a surface LPG, a single-mode fiber (SMF) was fixed by using an
UV curable epoxy (NOA81) on a quartz block and ground down roughly on a
brass plate by using an Al2O3 powder. The thickness of the cladding region was
determined by measuring the transmission loss induced by the surface roughness
[44]. Then, the roughly polised-SMF was polished again on a polyurethane plate
by using a CeO2 powder to reduce the surface roughness. After all polishing
processes, the slurry on the flat surface should be removed by using an ultrasonic
cleaning technique with de-ionized water and was dried at a temperature of 100OC
for 10 min. The photoresist (PR, Az4210) was coated on the surface of a D-shaped
fiber by using a spin coater. Then, all samples were soft-baked in a thermal oven
for 30 min at 90O C to remove some mixed solvent from the PR. In order to
induce periodic surface gratings, the side-polished SMF with the PR coating was
exposed to an UV lamp or an UV laser through a shadow long-period mask and
developed by using a specific developer (Az400 k 1:3.5. Finally the periodic
structure of the PR overlay on the surface of the side-polished fiber was periodi-
cally could be formed, which was a surface LPG. To stabilize the properties of the
surface LPG, the post-baking process should be taken. Figures 4.13a and b show
the scheme of the surface LPG and its microscope, respectively.

Since the refractive index of the PR-LPG overlay is higher than that of the core
mode in the SMF, it couples the core mode to leaky modes excited by the surface
PR-LPGs. When the effective index of the mth leaky mode is matched with
the effective index (neff) of the core mode in the PCF, resonant coupling between
the PCF and the surface PR-LPGs occurs. The resonant wavelength (km) can be
written as [45–47]:

km ¼
2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2

g � ðneff Þ
2Þ

q

mþ u
; ð4:67Þ

(a) (b)Λ

Fig. 4.13 a Scheme of the surface LPG. b Microscope image of the surface LPG [44]
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where d and ng are the thickness and the refractive index of the surface grating
overlay, respectively. The phase change, u, associated with external index change
can be expressed by [45–47]

u ¼ tan�1n
ðn2

eg � n2
extÞ

1
2

ðn2
g � n2

egÞ
1
2

; ð4:68Þ

where n is a polarization dependent constant. next is an external refractive index.
n can be determined by the polarization states [45–47]. It is clearly evident that
external refractive index (next) diminishes the amount of phase shift (u), which
contributes to the resonant wavelength shift to longer wavelengths [463-48].

Figure 4.14(a) shows the transmission spectrum of the surface LPG. The three
different dips in the transmission spectrum indicate three different resonance
wavelengths where a fundamental core mode couples to three leaky modes, p, q
and r (named for convenience), in the surface LPG. Because the effective index of
a high order leaky mode is smaller than a low order mode, the mode number of the
r mode should be higher than that of the q mode and the resonant peak of the r
mode should be appeared in a longer wavelength than other two modes. The
biggest dip in Fig. 4.14a indicates that strong coupling occurred in the surface
LPG between the fundamental core mode and higher mode order. Note that the
resonance wavelengths, corresponding to the r and q modes, are changed with
variations in the refractive indices of an external medium which are shown in
Fig. 4.14b. As refractive index was increased, the resonant wavelengths shifted to
a longer wavelength. When the refractive index was changed in a range from 1.333
to 1.454, the amount of resonance wavelength shifts for the q and r modes (as seen
in Figs. 4.14b and c, respectively) were 84.4 nm and 110 nm towards a longer
wavelength, respectively. The corresponding sensitivities were estimated to be
607.2 nm/RIU and 909.1 nm/RIU for the q and r modes, respectively. In this case,
the resolutions of the biosensor were 1.6 9 10 - 5 and 1.1 9 10 - 5 RIU for the
q and r modes, respectively. It is obvious that the r mode has higher sensitivity
than the q mode because the higher order modes have higher sensitivity than the
low order ones [2, 31].

Fig. 4.14 (a) Transmission spectrum of the LPG, (b) resonance wavelengths of he q mode, and
(c) r mode as functions of ambient indices [40]
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Poly-L-lysine (PLL) has an extreme positive charge with NH3
þ in the side

chain and is frequently exploited for adsorbing biomolecules with negative charge
like DNA (deoxynucleic acid) [48, 49]. A PLL solution (0.1 % W/V in water, the
molecular weight = 150,000-300,000 g/mol, Sigma) was employed, which was
commonly used in biology to treat glass slides. The surface LPG was initially
cleaned by using a phosphate-buffered saline solution (NaH2PO4/Na2HPO4 pH
7.4, 150 mM NaCl) (PBS) before being modified with Poly-L-lysine. The PLL
solution was dropped on the surface LPG to make a PLL layer for 160 min.
at room temperature. The PLL layer functionalizes the surface LPG with an amino
group at the free end, allowing a negatively charged DNA to be immobilized on
the surface LPG. Then, the surface LPG is washed again by using a PBS buffer to
remove excess PLL layers that were not immobilized on the surface LPG. The
1 lM probe of single-stranded DNA in the PBS buffer was then dropped on the
surface of the PLL layer for 130 min. at room temperature. Then, the cleaning
process was performed again. Finally, the 1 lM target single-stranded DNA in the
PBS buffer was dropped on the surface of a probe ssDNA layer and after 65 min
the sensor was washed by using a PBS buffer. About 100 ll of all biomolecules
was added and removed using a micro-pipette. Figure 4.15 shows the molecular
structure of the PLL, probe ssDNA and target ssDNA. The DNA sequences were
(5’-CAG CGA GGT GAA AAC GAC AAA AGG GG-3’) for the probe ssDNA
and (5’-CCC CTT TTG TCG TTT TCA CCT CGC TG-3’) for the target ssDNA.

The wavelength shift of the r mode in the surface LPG was measured, which
was highly sensitive to external refractive index in a range from 1.333 to 1.454. As
shown in Fig. 4.16 (a), the resonance wavelength shifted to a longer wavelength as
the biomolecular layers was formed. When the PBS buffer was dropped on the
surface LPG, the resonance wavelength was measured to e be 1411.69 nm. The
immobilization of PLL on the surface LPG made the resonance wavelength shifted
to 1413.52 nm. Then, when the probe ssDNA was immobilized on the PLL layer
in the surface LPG, the shift of the resonance wavelength was measured to be

Fig. 4.15 Molecular
structure of Poly-L-lysine,
probe ssDNA and target
ssDNA immobilized on the
surface LPG [43]
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1416.61 nm. Finally, the hybridization with the complementary target ssDNA
induced the a resonance wavelength shift of 1418.43 nm. The overall wavelength
shift induced by the hybridization reaction was 1.82 nm, which is *2.5 times
higher than the previously reported biosensor based on a dual-peak LPG [49]
under the same 1 lM target DNA concentration. It is evident that the surface LPG-
based biosensor is highly sensitive to DNA hybridization in comparison with
previously reported DNA fiber grating-based biosensors [38, 48]. The resonance
wavelengths of the fiber grating-based DNA biosensor after each procedure are
shown in Fig. 4.16 (b).
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Chapter 5
Sagnac Loop Sensors

Li Qian

Fiber-based Sagnac loop sensors are an important subcategory of fiber sensors
which utilize Sagnac interferometry. Sagnac interferometers, as opposed to all
other types of common interferometers, have the unique advantage of providing
the same physical path for the two counter-propagating lightwaves that create the
optical interference, hence eliminating signal fading problems due to path insta-
bilities caused by environmental disturbances. Another advantage of Sagnac
interferometry as a consequence of same-path interference is the relaxed
requirement on source coherence. In fact, many Sagnac loop sensors can use a
broadband source (or noise source), instead of a laser source. Sagnac loop sensors
work on the principle of breaking the inherent symmetry of the interferometer by
the effects they are made to sense—be it the rotational speed of a gyroscope, or the
Faraday effect induced by an electric current, or a traveling acoustic wave, etc.
These effects introduce a measurable phase shift between the two counter-prop-
agating lightwaves, which in turn is related to the magnitude of the effects to be
sensed. Fiber-based Sagnac loop sensors have the particular advantage of being
robust and low cost, for light is entirely contained in the optical fiber with no
moving parts and no special alignment required. In this chapter, we will introduce
the principle of Sagnac loop interferometry for optical sensing, followed by a few
special examples of fiber-based Sagnac loop sensors used in practical applications.

5.1 Principle of Sagnac Loop Interferometry

Sagnac interferometer was named after the French physicist Georges Sagnac, who
demonstrated in 1913 [1] that when light was split into two counter-propagating
beams travelling through the same path and brought back to the same point, it
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produced spatial interference pattern when such an experiment was set up on a
rotating platform (Fig. 5.1), and the interference fringe spacing was dependent on
the rotational motion of the platform. He further arrived at the conclusion that the
interference pattern is consistent with the assumption that the speed of light is a
constant, ‘‘independent of the collective motion of the source of light and the
optical system’’, a concept central to the theory of Special Relativity. It is inter-
esting to note that, more than six decades later, the first fiber optic gyroscope [2]
was built on exactly the same principle.

Today, the Sagnac interferometer refers to any loop interferometer that splits
the input lightwave into two that traverse exactly the same physical path in
opposing directions, and recombines them at the same point. The rotating platform
is not part of the Sagnac interferometer, though it is necessary for observing the
Sagnac effect.

Let us first go through the principle of operation of the Sagnac interferometer, a
simplified version of which is illustrated in Fig. 5.2. Here, we use an all-fiber
configuration, which consists of a 50/50 fiber coupler and a single-mode fiber loop
length of L. Such fiber Sagnac interferometer is also known as a fiber loop mirror,
for the reason that will become clear shortly.

For simplicity, let us ignore polarization effects. We can do so for the vast
majority of cases, as long as care is taken to make sure the two counter-

Fig. 5.1 The original experimental setup schematic published in [1] by Georges Sagnac,
showing a Sagnac interferometer on a rotational platform
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propagating waves have common polarization component when they meet back at
the coupler. There are a few commonly employed techniques to achieve this
polarization alignment: (1) Insert a polarizer at the input and the output of the
Sagnac loop. (2) Insert a fiber-based polarization controller inside the Sagnac loop.
(3) Use fiber coupler and fiber loop that are made of polarization-maintaining (PM)
fibers, and align input light polarization with one of the axes of the PM fiber. With
polarization effects taken care of, we can use scalar electric field in the following
analysis.

With the input electric field E0e�i2pm0t (where E0 is the field amplitude, m0 is the
optical frequency and t denotes the time variable) at Port 1 of the coupler (Fig. 5.2),
the electric fields at Port 2 and 3, after traversing the fiber loop, are given as:

E2 ¼
1ffiffiffi
2
p E0e�i2pm0teip2ei/ccw ð5:1Þ

E3 ¼
1ffiffiffi
2
p E0e�i2pm0tei/cw ð5:2Þ

Here, the p/2 phase is added to the cross port of the directional coupler [3] and
/ccw /ccw is the phase associated with light traversing the fiber loop in the counter-
clockwise (clockwise) direction. These two electric fields interfere again at the
coupler, resulting in output fields at Port 1 and 4, given by:

E1out ¼
1ffiffiffi
2
p E2 þ

1ffiffiffi
2
p E3eip2 ð5:3Þ

E4out ¼
1ffiffiffi
2
p E2eip2 þ 1ffiffiffi

2
p E3 ð5:4Þ

The output intensities at port 1 and 4 are therefore given by:

I1out / E�1outE1out

� �
¼ 1

2
E2

0 1þ cos D/ð Þ ð5:5Þ

I4out / E�4outE4out

� �
¼ 1

2
E2

0 1� cos D/ð Þ ð5:6Þ

1

4 3

2

50/50 
Coupler

input

output

output
L

Fig. 5.2 Fiber Sagnac
interferometer. The four Ports
of the coupler are labelled on
the diagram
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where ‘‘h i’’ denotes the time average, and D/ ¼def
/ccw � /cw; is the phase differ-

ence experienced by the two counter-propagating lightwaves traversing the fiber
loop.

Note, when the Sagnac loop is stationary and in the absence of any external
factors that break the reciprocity of the Sagnac loop, we have /ccw ¼ /cw ¼
2pm0nL=c; where n is the effective index of the fiber mode, L is the length of the
loop, and c is the speed of light in vacuum. In this case, there is zero phase
difference between the two counter-propagating lightwaves, and all of the input
power is reflected at Port 1 (I1out = I1in), hence it is also known as the fiber loop
mirror.

However, if the fiber loop is rotating, or if other external factors exist that
introduce non-reciprocity into the interferometer, then there will be a phase dif-
ference, i.e., D/ 6¼ 0; and the magnitude of the external factors may be determined
by measuring D/. This is the basis for fiber Sagnac loop sensing. In the following
sections, we will provide a few examples of how reciprocity is broken and how D/
is used in measurements and in sensing applications.

5.2 Interferometric Fiber Optic Gyroscope

Gyroscopes detect rotational movements and are commonly used in navigational
systems, aeronautics, and space exploration. Historically, they were based on
mechanical gyros consisting of a spinning wheel and gimbaled mounts. The
optical gyroscopes based on the Sagnac effect have a major advantage over the
mechanical gyros because it is ‘‘solid state’’ with no moving parts. It is based on
the Sagnac principle discovered by Georges Sagnac in 1913.

A rigorous way of analyzing the rotating Sagnac loop is to apply relativistic
electromagnetic theory to light propagation in a rotating medium [4, 5]. Below, we
will adopt a simpler approach to explain the phenomenon quantitatively. Consider
the fiber-optic Sagnac loop in Fig. 5.3 which has a total loop length L, wound N
times around a circle of radius R, that is, L = 2pRN. If the loop is rotating counter-
clockwise with an angular frequency X, then there are two effects we need to

input

output N turnsRΩ

Ωυ
cccw , ccw

c ν

ν

cw , cw

coupler = R

L=2πRN
50/50 

Fig. 5.3 A rotating fiber
Sagnac loop seen at a fixed
time instant. The coupler is
moving at a speed RX,
tangential to the loop
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consider in order to calculate the phase difference between the two counter
propagating lightwaves.

(1) Relativistic Doppler effect due to the fact that the coupler is moving at a speed
of RX, tangential to the loop, as indicated by the arrow near the coupler in
Fig. 5.3. The photons injected into the loop propagating counter-clockwise can
be considered as if they come from a source that is moving in the direction of
propagation, and experience a Doppler shift to a high frequency (blue shift).
Conversely, light injected into the loop propagating clockwise is red shifted.
When the light exits the loop, they experience the opposite Doppler shift,
returning to their original frequency. The amount of Doppler shift is related to
the ratio of the speed of the source (in this case, the coupler) to the speed of
light propagation: RX/(c/n), where c is the speed of light in vacuum, and n is
the effective index of the fiber mode. Here, c/n is approximately the speed of
light traveling in the fiber loop (see the second point below for more details). If
we denote mcw (mccw) as the Doppler-shifted frequency for lightwave traveling
clockwise (counter-clockwise), then its relationship with the original fre-
quency m0 is given by:

mcw

m0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RX

c=n

1þ RX
c=n

vuut � 1� RX
c=n

ð5:7Þ

mccw

m0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ RX

c=n

1� RX
c=n

vuut � 1þ RX
c=n

ð5:8Þ

(2) The Fresnel drag effect (also known as the Fizeau drag) due to the fact that the
medium in which light travels, in this case, the fiber loop, is moving. When the
medium is traveling in the same direction as the light, light propagates faster in
the inertial frame of the observer, and the converse is also true. Let us use ccw

and cccw to denote the speed of light in the fiber loop traveling clockwise and
counterclockwise, respectively, then we have:

ccw ¼
c

n
� 1� 1

n2

� �
RX ð5:9Þ

cccw ¼
c

n
þ 1� 1

n2

� �
RX ð5:10Þ

Now we are ready to calculate the phase shifts experienced by the two counter-
propagating waves:

/cw ¼ 2p
L

kcw
¼ 2p

2pRN

ccw=mcw
¼ 4p2RN

mcw

ccw
ð5:11Þ
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/ccw ¼ 2p
L

kccw
¼ 2p

2pRN

cccw=mccw
¼ 4p2RN

mccw

cccw
ð5:12Þ

Therefore, the phase difference can be calculated as:

D/ ¼ /ccw � /cw ¼ 4p2RN
mccw

cccw
� mcw

ccw

� �
� 4p2RN

c2
n2 mccwccw � mcwcccwð Þ

ð5:13Þ

Note, we used an approximation ccw & cccw & c/n for the ccw and cccw in the
denominators. Substituting (5.7)–(5.10) into (5.13) and taking the first-order
approximation for RX=c, we obtain

D/ � 4p2RNm0
2RX
c2
¼ 8pAN

ck0
X ð5:14Þ

where A is the area enclosed by the loop, and k0 is the wavelength of light in
vacuum. Though (5.14) is derived with a circular geometry for the fiber loop, it is
applicable to arbitrary loop shapes with the following vector modification [6]:

D/ ¼ 8pN

ck0

~A � ~X ð5:15Þ

where ~A has a magnitude equal to the area enclosed by the loop, and a direction
normal to the loop.

Note that the ‘‘double Doppler effect’’ approach we took above, which was
conceptually noted by Léfèvre [6], considers the spatial domain interference where
the Sagnac loop is fixed at one instant of time. A more common approach is to
consider temporal-domain interference [7] where the phase difference is derived
by considering the time difference for the two counter-propagating waves to reach
the output coupler. The result is the same, but as we are dealing with continuous-
waves here, we feel it is conceptually easier to understand in the spatial domain.

There are a few important remarks we should make regarding (5.14):

1. The phase difference, D/, is proportional to X to the first order. As this phase
difference produces the interference [cf. (5.5), (5.6)] observable at the output,
the fiber loop can thus be used to sense rotational speed of the system in which
it is placed. The unambiguous sensing range is determined by limiting D/ to
2mp\ D/ \ 2mpþ p, and the corresponding sensing range for the rotational
speed is:

Xp ¼
ck0

8AN
ð5:16Þ

As a numerical example, an Interferometric Fiber Optic Gyroscope (IFOG)
using the telecom wavelength of 1.55 lm (where loss is minimum), with an
area of 0.01 m2, and a fiber length of 1 km, gives Xp around 2 rad/s.

124 L. Qian



2. The phase difference, D/, is independent of n, the refractive index of the
medium. This means that the rotational measurement is not affected by the
dispersion of the medium.

3. The phase difference, D/, is proportional to N, the number of winding turns of
fiber. Therefore, the sensitivity of the IFOG can be greatly increased without
noticeably increasing the dimensions of the instrument. This is one major
advantage of the FOG over mechanical gyros. The sensitivity of an IFOG is
ultimately limited by the detector shot noise [6], which limits the resolution of
discerning a phase difference from power measurements by the detectors. If we
consider 1 lrad as a good order of magnitude for sensitivity, then the sensitivity
of the IFOG is given by:

Xl ¼
Xp

p
� 10�6 ¼ ck0

8pAN
� 10�6 ð5:17Þ

Obviously there is a direct trade off between sensing range and sensing sensitivity.
Taking the values used in the previous numerical example, Xp is 0.13 deg/h, two
orders of magnitude smaller than Earth’s rotation rate of 15 deg/h! Honeywell has
developed IFOGs with sensitivities ranging from 1–10 deg/h to 10-3 deg/h [8].

4. As ultimately we are detecting the optical power variation due to interference [cf.
(5.5), (5.6)], it can be seen that, while D/ is linear with X, the output power (or
intensity) is not, which affects the sensitivity of the gyroscope. In fact, sensitivity
is zero if D/ is centered on mp, and the direction of rotation rate change cannot be
discerned at this point due to the symmetry of the intensity response at this phase
angle. It is therefore necessary to ‘‘bias’’ the phase angle to the quadrature point
(mp ? p/2) to obtain maximum sensitivity. This is done by inserting a reciprocal
phase modulator near one end of the fiber loop to produce a sinusoidal phase
modulation [9–11]. This technique also allows for lock-in detection, largely
eliminating external phase perturbation noise. Further improvement in sensitivity
over the entire sensing range (not just at one operating point) of the gyroscope is
done with a closed-loop (or phase-nulling) signal processing technique [12, 13].
It uses the output of the Sagnac loop as an error signal to produce a nonreciprocal
phase difference between the two counter-propagating waves, such that the total
phase difference is maintained at zero by the feedback control loop. The rotation
speed is now proportional to the feedback value of the nonreciprocal phase
difference and is independent of the optical power measurement, and hence this
scheme provides linearity and stability.

It is worth mentioning that (5.14) is derived assuming perfect reciprocity
between the two counter-propagating waves (except for the nonreciprocity induced
by the rotation)—this is to a large extent guaranteed by using single-mode
fiber, where the two counter-propagating waves are confined to the single mode of
fiber, insuring that they traverse the exact same path in opposite directions.
There are, however, a host of factors [14] that can introduce non-reciprocity into
the loop, resulting in noise and fluctuations. These include: (a) backscattering (b)
nonlinear effects and (c) environmental temperature and stress fluctuations.
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Rayleigh backscattering and other coherent backscattering due to imperfections
along the fiber (e.g. splices) occur at random locations along the fiber, which
introduces non-reciprocity. As a consequence, additional phase noise that is
environmentally sensitive is added to the phase difference caused by the rotation of
the interferometer, introducing short-term drifts in the IFOG [9, 10, 14]. This effect
can be reduced to a large extent by broadening the spectral width of the source,
i.e., reducing its coherence length, hence reducing the noise due to coherent
backscattering. Indeed, since the Sagnac interferometer has zero path difference,
one can even use incoherent light source in IFOG [15]. This is one major
advantage of IFOG over ring-laser gyroscopes.

Nonlinear effects, in particular, optical Kerr effect which produces intensity-
dependent refractive index, can cause non-reciprocity if there is a power imbalance
between the two counter-propagating waves [16] due to an imperfect 50/50 coupler.
There are two contributions to the phase due to the optical Kerr effect, one is a self-
induced nonlinear phase, also known as self-phase modulation, due to the intensity
of the wave itself. The other is cross-phase modulation, due to the co-existing
counter-propagating wave. The latter is twice as strong as the former [17], and as a
result, any power imbalance will lead to an imbalance of the nonlinear phase added
to the two waves. Even though optical Kerr effect is very weak, because of the large
length of fiber used in most gyroscopes, nonreciprocal phase change due to non-
linear index change can be significant. For example, silica fiber has a nonlinear
refractive index n2 of 3� 10�8lm2=W; and the mode area of a single-mode fiber at
the telecom wavelength is about 70lm2. For a loop length of 1 km, a power
imbalance of 0.6 lW is sufficient to cause a 1 lrad nonreciprocal phase difference
due to Kerr effect. Fortunately, the cross-phase effect can be reduced by half such
that it to a large extent cancels the self-phase effect, by either amplitude modulating
the waves with 50 % duty cycle, or using an incoherent source [17].

Environmental temperature and stress fluctuations tend to be nonuniform in
space. As we will see in Sect. 5.3, nonuniform time-varying environmental factors
can contribute to non-reciprocal phase difference. One can usually reduce the
effects of such fluctuations through lock-in detection. Additionally, such envi-
ronmental fluctuations can be reduced by judiciously winding the fiber coil such
that symmetric points on the loop (with respect to the center of the loop) are placed
in close proximity to each other [23, 24]. How this reduces the phase shift is
explained in the next section.

5.3 Fiber Optic Acoustic Sensor

Sound wave is fundamentally a travelling pressure wave through the medium in
which sound is propagating. The pressure that sound produces can cause a minute
strain in the material, resulting in a change of the refractive index, known as the
photoelastic effect [18]:
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Dn ¼ 1
2

n3pe ð5:18Þ

where n is the nominal refractive index of the material, p is a photoelastic coef-
ficient,1 and e is the mechanical strain induced by the pressure of the sound wave.
If a fiber coil is placed in the path of a sound wave, this refractive index change
will induce phase change in the light traveling through the fiber coil, which can be
measured and related back to the property of the sound. The first fiber sensor
proposed to use this principle to sense sound waves was in the form of a Mach–
Zehnder interferometer (MZI) [19, 20]. Sagnac fiber-optic acoustic sensor was
later proposed by Cahill and Udd [21, 22], who pointed out its advantages over
MZI at higher acoustic frequencies.

At this point the reader may ask, how can a Sagnac loop, which can only be
sensitive to nonreciprocal effects, be able to measure the refractive index change
(which is reciprocal) induced by sound waves? It turns out that, as long as the
perturbation over the fiber Sagnac loop is asymmetric with respect to the midpoint
of the loop, there will be a phase difference induced between the two counter-
propagating waves. Let us take a more detailed look below.

Suppose the perturbation to the refractive index is both a function of space and
of time, i.e., Dnðx; tÞ; where x is the distance coordinate along the fiber loop in the
counter-clockwise direction. Referring to Fig. 5.4, if a perturbation happening at
ðx; tÞ is imposing an additional phase shift to the counter-clockwise wave, the same
perturbation will not affect the clockwise wave, because the clockwise wave has
not reach it. Instead, the clockwise wave will be affected by the perturbation at a
later time, Dnðx; t þ L�2x

c=n Þ; when it reaches the same location x. Note, we use n to

denote the unperturbed effective index of the fiber mode, and the speed of light in
the fiber is approximated to c/n.

Therefore, we have,

d/ccw ¼
2p
k0

Dn x; tð Þdx ð5:19Þ

d/cw ¼
2p
k0

Dn x; t þ L� 2x

c=n

� �
dx ð5:20Þ

Therefore the phase difference induced by the perturbation at x is

d D/ð Þ ¼ 2p
k0

Dn x; tð Þ � Dn x; t þ L� 2x

c=n

� �� �
dx � � 2p

k0

oDn x; tð Þ
ot

L� 2x

c=n
dx

ð5:21Þ

1 To be more precise, p is a tensor element of the strain-optic tensor. The strain tensor modifies
the optical indicatrix (also a tensor). See [8].
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The first-order approximation used in (5.21) holds as long as the dynamics of
the perturbation is slow compared to the light transit time of the loop. The total
phase difference integrated over the length of the coil is

D/ ¼ � 2pn

ck0

Z L

0

oDn x; tð Þ
ot

L� 2xð Þdx ð5:22Þ

It is easy to see from (5.22) that, if the perturbation is symmetric with respect to
the center point of the coil, that is, if Dnðx; tÞ ¼ DnðL� 2x; tÞ; then the integral
will be zero, resulting in no net phase difference. Indeed, in the application of fiber
gyroscope, where environmentally induced phase difference is undesirable, the
fiber coil is intentionally wound to have the symmetric points on the fiber coil in
close proximity to each other to minimize the non-reciprocal effect of the envi-
ronmental fluctuations in temperature and pressure [23, 24]. In Sagnac acoustic
sensor, however, one can use this non-reciprocal effect to measure the effect of
sound waves.

From (5.22) we can also see that D/ will be maximized if we expose half of the
coil to the acoustic wave and shield the other half away from it. For this reason,
Sagnac acoustic sensors usually have the configuration that consists of a sensing
coil and a reference coil, of equal length [22, 25]. The reference coil can be
shielded from the acoustic wave by a special fiber coating [26] or by other means
of isolation [27].

If we now consider a simple case of harmonic acoustic wave, and assuming the
acoustic wavelength is large compared to the sensing coil dimensions (which can
be much smaller than the length of the fiber). Then, Dn can be treated as uniform
for the sensing coil and 0 for the reference coil:

Dn x; tð Þ ¼ Dn0 sin 2pftð Þ 0 \ x \ L=2
0 L=2 \ x \ L

	
ð5:23Þ

where f is the acoustic frequency. Substitute (5.23) into (5.22), we obtain

D/ ¼ � p2L2nDn0

ck0
f cos 2pftð Þ ð5:24Þ

x

L-2x

symmetric
location

input

output

output
L

50/50 

Δn(x,t)

Fig. 5.4 Time-varying
perturbation located
asymmetrically in the Sagnac
loop causes a non-reciprocal
phase shift, due to the fact
that the perturbation affects
the clockwise and
counterclockwise waves at
different times
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There is a linear dependence of the amplitude of D/ on f , which implies that
Sagnac acoustic sensors have increased sensitivities with increasing acoustic fre-
quency,2 making it particularly suitable for detection of underwater sound because
the background acoustic noise in the ocean decreases with increasing frequency
over a substantial frequency range [25].

5.4 Frequency-Shifted Sagnac Interferometer

We have seen that nonreciprocal effects can be introduced to a Sagnac loop by
perturbing it asymmetrically. In the case of IFOG, it is largely an effect to be
avoided, but it can also be taken advantage of. Non-reciprocal phase shifting
elements (in the form of a phase modulator or a frequency shifter) can be intro-
duced to the loop as a means for phase-nulling to increase the dynamic range and
sensitivity of the gyroscope [12, 13]. In the case of fiber Sagnac acoustic sensing,
this non-reciprocal effect is utilized to sense sound waves by isolating half of the
loop from the sound wave while exposing the other half.

In this section, we specifically consider a special type of Sagnac interferometer,
where a reciprocal frequency shifter is placed asymmetrically in the loop, as
shown schematically in Fig. 5.5.

A frequency shifter is an optical element that produces a frequency shift to the
optical wave passing through it. Such a frequency shifter can be realized using an
acousto-optic modulator (AOM), in which a traveling acoustic wave is driven
through an acousto-optic crystal, creating a moving refractive index grating that
diffracts the light wave and Doppler shifts its frequency by an amount equal to the
driving frequency. Depending on the diffraction order, both positive and negative
frequency shifts can be realized. AOMs are also reciprocal in the sense that it
works equally well when the lightwave reverses direction. Commercial AOMs
with fiber pigtails are available, with an operation frequency range typically about
±10 % of the intended driving frequency. (A larger operating range will cause
excessive loss due to the larger diffraction angle affecting light coupling to the
fiber). Currently, most common AOMs are designed to operate in the range of tens
to hundreds of megahertz, independent of polarization. Gigahertz AOMs are also
commercially available at a high cost, though their performance is typically
polarization dependent. Techniques other than AOMs exist that can create a fre-
quency shift to the lightwave. For example, phase or amplitude modulation of a
lightwave will create frequency sidebands that are frequency shifted from the
baseband signal, which can be isolated through filtering or signal processing.
Single-side-band modulation scheme can also be used to create a frequency shift.

2 The acoustic range under discussion here is quite low as we made simplifying assumptions to
arrive at (5.24): (a) the acoustic wavelength is larger than the coil dimension, and (b) the acoustic
frequency is lower than the characteristic frequency of the Sagnac loop.
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These techniques, however, may not be reciprocal, and are also typically polari-
zation dependent. Therefore, in many cases AOMs are preferred for performing
the function of the frequency shift in frequency-shifted Sagnac interferometers
(FSSI) due to their polarization independence and reciprocity.

The effect of the frequency shifter asymmetrically located in the Sagnac loop
can be easily understood by examining the phase difference it introduces to the
counter-propagating lightwaves. Consider the configuration illustrated in Fig. 5.5.
The clockwise wave travels the long section of the loop (Ll) at this original
frequency m0 and completes the short section of the loop (Ls) at the up-shifted
frequency m0 þ f . The counterclockwise wave does the reverse, traversing the short
section at m0 and the long section at m0 þ f . Therefore, the resulting phase differ-
ence is:

D/ ¼ 2pn

c
f Ll � Lsð Þ ð5:25Þ

Note the phase difference is linearly dependent on the amount of frequency shift
f, as well as the length imbalance ðLl � LsÞ marked by the location of the fre-
quency shifter. This simple configuration turns out to be extremely versatile for a
range of sensing applications. Below, we will review a few of them.

5.4.1 FSSI for Strain Sensing

One of the first applications of such a configuration is in long-range fiber strain
sensing [28, 29]: A portion of the fiber or the entire loop can act as a strain
gauge—when the strain changes, it creates a change in D/. The method was
implemented in combination with the phase-nulling technique developed for fiber
gyros, with a close-loop feedback to adjust f such that the phase difference pro-
duced by the strain is canceled by the phase difference produced by varying f
(Fig. 5.6). By differentiating (5.25) while keeping D/ constant, we obtain:

1

4 3

2
input

output

output
Ll

Ls

+f

Frequency
shifter

50/50
coupler

Fig. 5.5 A fiber Sagnac
interferometer with a
frequency shifter placed
asymmetrically in the loop
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 ð5:26Þ

where dL/L is the strain experienced by the sensing coil of length L. The strain
resolution is then determined by the frequency resolution, which can easily reach
10-8, e.g., 1 Hz resolution for 100 MHz of driving frequency. It has been pro-
posed that such high-sensitivity can be used for geological monitoring, such as
monitoring Earth’s slippage in earthquake prone regions, slippage of large struc-
tures built near cliffs, settling of dams, etc. [29].

5.4.2 FSSI for Fiber Length and Dispersion Measurements

Another usage of (5.25) is to measure fiber length (if n, the effective mode index of
a single-mode fiber is accurately known), or to measure fiber dispersion nðkÞ (if the
fiber length is known). Both aspects were explored by Abedin et al. [30] using a
Faraday-mirror enabled Sagnac interferometer with an RF phase modulator
(Fig. 5.7a), and later, by Qi et al. [31] using a simpler configuration with an AOM
as frequency shifter (Fig. 5.7b). The latter demonstrated a large dynamic range for
fiber length measurement and a relatively accuracy of 10-6 for long fibers. The
chromatic dispersion (CD) measurement based on FSSI [31] yields results in close
agreement with commercial CD instrument based on the modulation phase shift
method, yet the measurement configuration of FSSI is much simpler, requiring
only low-cost components and a cw laser source. (In the case of fiber length
measurement, one can even use incoherent broadband source, due to the zero-path-
length difference of the Sagnac interferometer).

Source

Detection 
Electronics

RF Driver

Error Signal

Output: df ∝ dL

L

Strain 
sensing coil

50/50 

Fig. 5.6 Schematic arrangement of strain sensing based on FSSI, combined with the phase-
nulling technique. Black lines indicate optical fibers while grey lines are electrical wires
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5.4.3 FSSI for Ultrasonic Sensing

The usefulness of the FSSI can be enhanced with a slight modification of its
configuration to enable single-end access of the test fiber. Consider the configu-
ration illustrated in Fig. 5.8a, one realizes that, even though it looks like a Mach–
Zehnder interferometer, it is in fact a Sagnac interferometer. Because of the second
50/50 coupler, there are in fact four waves propagating in the loop (Fig. 5.8b).
Two of them (taking Path 1 and Path 2) are the usual clockwise and counter
clockwise waves, completing the loop after reflection from the end of the ‘‘dan-
gling’’ fiber probe. Each of these two waves passes the frequency shifter once, and
therefore both have frequency m0 þ f , and the resulting interference of the two
waves is centered on DC. The other two waves (taking Path 3 and Path 4), trace
back their respective original path after reflection. As a result, one wave (taking
path 4) is frequency shifted twice to become m0 þ 2f , while the other (taking
path 3) is not shifted at all. The interferences involving these two waves, with each
other and with the other waves, are centered on f and 2f , which can be easily
filtered out.

Such single-ended FSSI configuration was first used for ultrasonic sensing by
Fomitchov et al. [32] for both extrinsic and intrinsic sensing of ultrasonic waves.
The ‘‘dangling’’ fiber in Fig 5.8a was used as a sensing probe. In the case of
extrinsic sensing (Fig. 5.9a), the probe was placed close to the surface of a
structure emitting ultrasonic signal, and light was collimated out of the fiber probe,
reflected off the target surface, and collected back into the probe. In the intrinsic
case (Fig. 5.9b), the fiber probe was embedded into the structure in the path of an
ultrasonic wave.

There are two components to the phase difference between the counterpropa-
gating waves in the Sagnac loop: one is the static phase difference D/sð Þ due to the
asymmetric location of the frequency shifter, the other is the dynamic phase dif-
ference D/d tð Þð Þ due to the modulation of the ultrasonic wave on the phases of the
two counter propagating waves:

(a) (b)

PMF

PMF

PBS

Fiber under test

Faraday 
mirror

50/50 

Fiber under test

Fiber 
polarization 
controller

50/50 

Light
source

Light
source

DetectorDetector

Fig. 5.7 Schematics for measuring fiber length and chromatic dispersion using FSSI used by
a Abedin et al. [30], and b used by Qi et al. [31]. Schematics are simplified to show only the
Sagnac loop. PM Phase modulator, PMF Polarization Maintaining Fiber
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D/ tð Þ ¼ D/s þ D/d tð Þ ð5:27Þ

The static phase difference D/sð Þ above is given by (5.25), and is dependent on
both the amount of frequency shift and the fiber length imbalance, which is con-
trolled by the length of the delay loop. In this particular application, the static
phase difference is tuned to the quadrature point (i.e., D/s ¼ mpþ p=2) to max-
imize the sensitivity to the ultrasound-induced phase change. The dynamic phase
difference is dependent on the arrival time difference (Ds) between the clockwise
(CW) and the counter clockwise (CCW) waves at the fiber probing tip, as shown in
Fig. 5.9. For simplicity, suppose in Fig 5.8a the optical path of the upper half of
the loop is exactly balanced out by that of the lower half of the loop except for the
length of the delay loop, then Ds ¼ Ldelayn=c, and the dynamic phase difference
can be calculated by:

D/d tð Þ ¼ /d tð Þ � /d t � Dsð Þ ð5:28Þ

where /d is the phase modulation of the lightwave due to the ultrasound. In the
case of extrinsic sensing, /d is a direct result of optical-path-length modulation
due to surface displacement DsðtÞ; i.e., /dðtÞ ¼ 2 2pm

c DsðtÞ. In the case of intrinsic
sensing, the structural density change due to ultrasound can induce both a physical
length change of the embedded fiber DlðtÞ; as well as a refractive index change
DnðtÞ due to the resulting strain. Therefore, /dðtÞ ¼ 2pm

c nDl tð Þ þ lDnðtÞð Þ; where n,
l are the refractive index and the length of the embedded fiber, respectively.

(a) (b)
reflectiondelay loop

50/50 50/50 
Path 1

50/50 

Path 2
50/50 

Path 3
50/50 

Path 4
50/50 

Fig. 5.8 a A frequency-shifted Sagnac interferometer with a dangling fiber probe and a delay
loop used for ultrasonic sensing. b The four possible paths lightwave circulating in the loop can
take
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(Note, since the frequency shift is orders of magnitude smaller than the optical
frequency, its effect on /d is negligible.) In either case, for a harmonic ultrasonic
perturbation, /d will take the form of A sin 2pmatð Þ; where ma is the acoustic fre-
quency and A is the amplitude of the induced phase shift. Substituting this form
into (5.28), and then using (5.27) and (5.6), we obtain the ac part of the output
intensity as

Iac / cos 2A sin pmaDsð Þ cos 2pma t � Ds
2

� �� �	 �
ð5:29Þ

Therefore, it can be seen that, in order to minimize signal distortion, Ds (that is
the delay length) should be tailored such that maDs ¼ 1

2 ; ma being the acoustic
frequency it is designed to measure. It is therefore a narrow-band acoustic sensor
that is insensitive to low-frequency vibrational and thermal noise. Fomitchov et al.
[32] demonstrated that this ultrasonic sensing system can be used to detect
structural flaws (such as flaws in an aircraft wheel) by monitoring the scattered
ultrasonic waves.

5.4.4 FSSI for Sensor Array Interrogation

The frequency shifter used in the previous example (5.4.3) serves the function of
biasing the measured phase difference at quadrature point. However, if we re-

time

ccw

cw

Δτ

Structure 

surface

(a) Fiber tip (b)

ccw

cw

Fiber tip

time

Δτ

Structure 

density

Sound wave

Fig. 5.9 Illustration of extrinsic and intrinsic ultrasonic sensing with a fiber probing tip from the
single-ended FSSI, adapted from [32]. a In the case of extrinsic sensing, structural surface
modified by ultrasonic wave modulates the optical path length for the CW and CCW wave at
different instants of time. b In the case of intrinsic sensing, structural density modified by
ultrasonic wave induces phase changes to the light traveling down the fiber tip
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examine (5.25), we notice that because the phase shift is proportional to the length
imbalance, FSSI can be used for location-resolved sensing. In particular, using the
single-end access configuration, one can put a number of weakly reflecting optical
sensors, such as FBGs, along the fiber, and use FSSI to resolve the reflections
(which contain sensor information) sent back by different sensors according to
their location (Fig. 5.10a). In other words, FSSI can be an effective sensor array
interrogation technique. Qi et al. [33] used such a system to locate multiple weak
reflections along a fiber link with high sensitivity (to -67 dB), while Ye et al. used
it to interrogate an FBG sensor array [34] as well as a gas sensor array [35].

The system as illustrated in Fig. 5.10a in fact is equivalent to multiple Sagnac
interferometers of different loop lengths connected in parallel (Fig. 5.10b). If one
linearly sweeps the frequency of the frequency shifter, for the nth loop, the output
intensity In will vary sinusoidally with frequency:

In / 1� cos
2pn

c
Ln � L0ð Þf

� �
ð5:30Þ

where Ln corresponds to the fiber length from the first coupler (C1) to the nth

reflective sensor and back to the frequency shifter, and L0 is the fiber length from
the frequency shifter to the first coupler, which is common to all loops. One can
immediately see that, with all reflective sensors present, the resulting output
intensity is in the form of:

Io /
XN

n¼1

An 1� cos
2pn

c
Ln � L0ð Þf

� �� �
ð5:31Þ

where An’s are proportionality constants which may be different for different
reflective sensors due to the difference in their reflectivities, as well as due to loss
encountered along the fiber. Equation (5.31) is nothing other than the summation
of sinusoids with different frequencies. As such, it can be easily ‘‘demodulated’’ by
taking a Fourier transform. Figure 5.11 gives a sample of Io (with Dc removed)
and its Fourier transform.

It can be seen from Fig. 5.11 that each reflective sensor produces a peak in the
Fourier domain, corresponding to its location. From (5.31), one can also utilize the

R1 R2 R3 RN

(a)

R1 R2 R3
RN

(b)

C1
C2

L0

L0

50/50

50/50

C1

50/50

Fig. 5.10 a FSSI used for
sensor array interrogation.
R1, R2, …, Rn are weak
reflective sensor elements
along the fiber. b The
equivalent ‘‘circuit’’ for FSSI
in (a), with many Sagnac
loops of different lengths
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fact that the location information is solely contained in the phase (or frequency) of
the signal, and the amplitude of the output intensity is independent of the location
(ignoring fiber loss, which is mostly spectrally flat). The implication is twofold: (1)
One can use the spectral information of the sensors (contained in the amplitude)
for sensing, and (2) The spectral information sent back from different sensors will
not interfere with each other, because the technique is capable of distinguishing the
sensors (an the information sent back by the sensors) by their location. In other
words, the technique allows different sensors to overlap spectrally. However, the
problem of spectral shadowing has to be considered. Spectral shadowing refers to
the fact that a sensor upstream in the array can modify the spectrum of the light
passing through it, and so light reflected by the sensors downstream also contains
the modification made by the sensor upstream. Hence, the sensor upstream can cast
‘‘spectral shadows’’ on the measured spectra of sensors downstream. Fortunately,
this spectral shadowing effect can be easily corrected by a simple division of the
amplitude [35]:

An

An�1
/ Rn kð Þ ð5:32Þ

where RnðkÞ is the spectral response of the nth sensor.
Figure 5.12 shows an example of using FSSI for interrogating a senor array of

10 FBGs [34, 35] before (Fig.5.12a) and after (Fig. 5.12b) strain is applied to some
of the FBGs. Spectral overlap of some of the FBGs is evident from the overall
optical spectrum seen on the Optical Spectrum Analyzer. Nevertheless, the loca-
tion-resolved results obtained from the Fourier transform of the output intensity as
a function of frequency sweep, f , reveal the reflection spectra for individual
gratings.

This sensor array interrogation technique based on FSSI, unlike the more
commonly used wavelength-division-multiplexing (WDM) techniques, does not
impose any spectral requirement on the sensing element. Because sensors are
allowed to have spectral overlap, FSSI has two main advantages over the WDM
technique: (1) The sensors (such as FBGs for strain or temperature sensing) can
have a much larger dynamic range, as each sensor can occupy the entire bandwidth
available to the system. (2) Fabrication tolerances on sensors are much more

Fourier 
Transform

Io

Fig. 5.11 An example of output intensity (a) and its Fourier transform (horizontal axis converted
to distance) (b) obtained from a single-end-access FSSI system with multiple reflective sensors in
an array
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relaxed, and the sensors no longer need to be sorted or grouped according to their
spectral characteristics, and they no longer have to avoid spectral overlapping. The
FSSI technique also has an advantage over time-division-multiplexing (TDM)
techniques for sensor array interrogation, because FSSI uses a continuous-wave
light source and slow detectors, as opposed to the requirement for pulsed source
and fast detection in TDM.

5.4.5 FSSI for Cavity Ring Down Sensing

The possibility of using frequency-shifted Sagnac interferometer for sensor mul-
tiplexing and for location-resolved sensing has opened up other opportunities for
FSSI-based sensing. One novel extension is the use of FSSI for continuous-wave
cavity ring down sensing.

Cavity ring down (CRD) technique was developed to measure minute quantities
of target molecules using light, by measuring the minute optical loss due to
absorption or scattering by the molecules. It conventionally employs a laser pulse
circulating in a high-finesse optical cavity (the ring-down cavity) containing the
target material (usually gas or liquid). The pulse peak intensity coupled out of the
cavity is slightly reduced each time the pulse completes a cavity round trip due to
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Fig. 5.12 Location-resolved FBG interrogation system showing individual FBG reflection
spectrum a before, and b after applying strain to FBG 1 (blue), 2(Green), and 4 (Red). The spectra
above were obtained on an Optical Spectrum Analyzer, indicating spectral overlap of some of the
FBGs. Adapted from [36]
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absorption or scattering of the target material. If the decay of pulse intensity is
recorded as a function of time, the cavity loss can be calculated from the char-
acteristic decay time of the pulse train [37]. More recently, CRD techniques that
use fiber cavity for sensing has also been developed [38–40].

Using the FSSI scheme, however, cavity ring down measurements can be done
with continuous-wave sources [41], without the need for pulses or temporal
modulation. This is because FSSI can distinguish light going through different path
lengths in the Sagnac interferometer. Consider the schematic illustrated in
Fig. 5.13a, with its equivalent ‘‘circuit’’ shown in Fig. 5.13b. Note Fig. 5.13b is
essentially the same as Fig. 5.10b, except that, in the case of nested ring-down
cavity, the number of Sagnac loops in parallel depends on the cavity loss.
Therefore, we can apply the same analysis we used for analyzing FSSI with
multiple reflections to the case of FSSI with a nested ring-down cavity. The output
intensity will have the same form as (5.31), and its Fourier transform will present a
series of equally spaced intensity peaks with a characteristic decay distance
(Fig. 5.14), from which the cavity loss can be determined:

output1

+f
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output2

l
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+f

input

output2

l l+d l+2d l+3d

(a)

(b)

Fig. 5.13 a A Frequency-shifted Sagnac interferometer with a nested ring-down cavity, which is
equivalent to (b) b an FSSI system with Sagnac loops of different lengths connected in parallel

Fig. 5.14 An example of
output intensity decay as a
function of distance (or the
number of cavity round trips),
obtained through Fourier
transform of the measured
intensity at the FSSI output as
a function of frequency
sweep. The decay length is
used to calculate the cavity
loss
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Cavity Loss ðdBÞ ¼ 10loge
cavity length

decay length
ð5:33Þ

where the decay length is defined as the distance required for the peak intensity to
drop to 1/e of its initial value.

This method has been applied to measure fiber bend loss [41], the concentration
of 1-octyne in a decane solution, and the refractive index of sodium chloride
solutions [42]. Preliminary results demonstrated that a refractive index sensitivity
of 1 9 10-4 RIU can be obtained with this method.

5.5 Fiber Optic Sagnac Current Sensor

The magnetooptic property of optical fibers [43] can be utilized for fiber-optic
current sensing, based on the well-known Faraday effect, or Faraday rotation. The
effect is usually described as a rotation of the azimuth angle of the plane of
polarization for a linearly polarized light propagating in a magnetic field H for a
path length L:

Dh ¼ V

Z L

0
H � dl ð5:34Þ

where Dh is the amount of azimuthal rotation, and V is the Verdet constant which
is material dependent. For standard silica fibers, the magneto-optic effect is very
weak, with V on the order of a few lrad/A. Fibers doped with certain rare-earth
element can have significantly enhanced Verdet constants [44].

An alternate way to describe the Faraday effect, which is more pertinent to the
Sagnac current senor, is to regard the effect as a circular birefringence produced by
the magnetic field. A circular birefringence results in different refractive indices
for the two orthogonal circular polarizations: Right-handed circular polarization
(RHCP) and left-handed circular polarization (LHCP). A linear polarization can be
considered as the superposition of co-propagating RHCP and LHCP with a relative
phase difference that equals to twice the azimuth of the linear polarization.
Therefore, the phase difference between RHCP and LHCP generated by the
magnetic field is

D/ ¼ 2V

Z L

0
H � dl ð5:35Þ

For a fiber coil of N turns wrapped around a wire carrying current I, the phase
difference can be further enhanced by a factor of N:

D/ ¼ 2NV

I
H � dl ¼ 2NVI ð5:36Þ

Equation (5.36) is the basis for interferometric fiber-optic current sensing.
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The Faraday effect is non-reciprocal, and therefore Sagnac interferometers are
ideally suited for measuring such an effect. In addition, signal-processing tech-
niques developed for the IFOG to enhance sensitivity and improve noise immunity
can be readily ‘‘borrowed’’ to produce high-sensitivity fiber-based Sagnac current
sensors. In a Sagnac interferometer, the Faraday effect introduces a phase differ-
ence (5.36) between counter-propagating lightwaves of the same handedness.3

Thus, measuring this phase difference involves converting a linearly polarized
lightwave into circular polarization (RHCP or LHCP) using a quarter-wave plate
before launching it into the sensing coil, and converting the circularly polarized
light back to the original linear polarization at the output of the sensing coil, and
then interfering them to measure the phase difference [45]. As in the case for the
IFOG, a phase modulator can be added to the Sagnac loop to ‘‘bias’’ the measured
phase angle to the quadrature point for better sensitivity (see Sect. 5.1). A simple
schematic is illustrated in Fig. 5.15.

Sagnac interferometry is only one of the many different techniques for fiber-
optic current sensing, i.e., measuring Dh (5.34) or D/ (5.36), but it has the
advantage of being sensitive only to non-reciprocal effects (of which Faraday
effect is one), while being immune to reciprocal effects, as long as the reciprocal
effects are not fast time-varying (see Sect. 5.3) and the Sagnac interferometer is
truly single-mode. In practice, however, it turns out that meeting these two
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Fig. 5.15 A simple schematic for implementing current sensing using a Sagnac interferometer
(Blue lines indicate polarization-maintaining fibers). k/4 indicates fiber-based Quarter-wave
plates

3 Note that the handedness of the circularly polarized light is in reference to its propagation
direction. Using a common convention, the E field of a right-hand circularly polarized lightwave
rotates clockwise (in time) as seen by an observer facing the incoming lightwave.
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conditions can be quite a challenge, especially when a measurement accuracy of
better than 0.1 % is required, for example, for revenue metering applications.

First, linear birefringence in a standard optical fiber (caused by imperfection in
the fiber fabrication process, and exasperated by bending and winding in the
coiling process) makes it impossible for the launched circularly polarized light to
propagate in a single circular polarization mode throughout the sensing coil.
Somewhere along the way, some power will couple back and forth between the
two circular polarization modes, depending on local birefringence, which is in
general not uniform (varies with location) and not constant (varies with time.) The
net effect is that different amounts of polarization noise are added to the two
counter-propagating waves, resulting in noise and instability in the phase mea-
surement. It is worth noting that this effect cannot be completely prevented even if
one polarization mode is completely filtered out at the output, because mode
coupling back and forth destroys reciprocity [45].

To alleviate this problem created by the fiber’s linear birefringence, one can
either significantly reduce the linear birefringence of the fiber coil, or significantly
overwhelm the linear birefringence of the fiber, by using fiber with a very high
circular birefringence. In the former case, fiber coils can be annealed [46] to
release stress and therefore stress-induced birefringence, or one can use special
fibers that produce less birefringence under stress [47], and/or use special fiber
packaging to reduce stress [48]. Alternatively, one can use fibers with a very high
intrinsic circular birefringence such that the fiber is essentially a ‘‘circular polar-
ization maintaining’’ fiber, in which weak linear birefringence cannot cause
noticeable mode coupling (in the same way that regular polarization-maintaining
fiber reduces mode coupling of linearly polarized modes). Quantitative analysis
showed that adding circular birefringence to the sensing coil stabilizes the scale
factor [49]. A high circular birefringence can be created by drawing an elliptical-
core fiber while spinning the preform at a high rate during the drawing process
(spun fiber) [50]. It should be noted that a high circular birefringence of the fiber
does not affect the sensitivity of the Sagnac interferometer, since the circular
birefringence induced by the Faraday effect is additive to the existing circular
birefringence of the fiber.

Second, time-varying perturbations (such as vibration and thermal fluctuations)
induce non-reciprocal effects when the perturbation site is asymmetrically located
with respect to the center of the Sagnac fiber loop (See Sect. 5.3). An ingenious
solution was developed (independently by Blake et al. [51] and by Frosio and
Dandliker [52]) to mitigate this problem by using a reflection topology and sending
both RHCP and LHCP down the sensing fiber, as illustrated in Fig. 5.16.

In this reflection Sagnac topology, linearly polarized light is split into two equal
components of two orthogonal linear polarizations (via a 45� splice) and launched
into a polarization-maintaining fiber. Both polarizations are converted into circular
polarizations (which are orthogonal to each other) through a short piece of bire-
fringe fiber that acts as a quarter-wave plate, and travel down the sensing coil.
Upon reflection, RHCP becomes LHCP and vice versa. The polarizations then
travel exactly the same path back up the sensing coil. They are then converted
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back into linear polarizations and brought to interfere with each other through the
polarizer that is oriented at 45� with respect to the two linear polarizations (because
of the 45� splice).

There are two distinct advantages to this reflection topology. First, the total
accumulated phase difference between the two circular polarizations due to the
Faraday effect is doubled compared to (5.36), i.e., D/ ¼ 4NVI. Second, since the
two interfering waves are now co-propagating along the fiber, any time-varying
perturbation (as long as it is not polarization dependent) affects both waves
equally, and at the same time, so it would not add to any phase difference between
the two. This topology has in fact been adopted by commercial fiber-optic current
sensors [48].

A third challenge, which is common to all optical current sensors, is to over-
come or compensate the temperature dependence of the Verdet constant, which
has a coefficient of (1/V)dV/dT = 0.7 9 10-4/�C [53]. It may seem small, but in
order to qualify for field applications, current sensors are required to be accurate
over a temperature range of -40–8 �C [54]. Without temperature compensation,
the accuracy cannot reach \0.1 %, which is usually required by the power
industry. Though one can add a temperature sensor co-located with the current
sensor and calibrate the scale factor of the current sensor according to its tem-
perature, such an arrangement would add considerable cost and complexity to the
sensing system. Passive compensation is much more desirable if it can be done to
specification. It turns out that the fiber-based quarter-wave plate(s) (shown in
Figs. 5.15 and 5.16) also has a temperature dependence which can be used to
compensate for the effect due to the variation of Verdet constant with temperature.
An ideal zeroth-order quarter-wave plate produces exactly p/2 phase shift (called
retardation) between the two orthogonal linear polarizations that are aligned to its
axes. However, the amount of retardation will be a function of temperature as the
refractive index of the quarter-wave plate is temperature dependent, causing the
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Fig. 5.16 A simplified reflection Sagnac interferometer used for current sensing (Blue lines
indicate polarization-maintaining fibers). k/4 indicates fiber-based Quarter-wave plates
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actual retardation to deviate from p/2. If we use e2 and e2 to denote the deviations
of retardation from p/2 for the two fiber-base quarter-wave plates shown in
Fig. 5.15, then the modified phase difference (D/e) between the two counter-
propagating waves is [55]:

D/e ¼ tan�1 cos e1 þ cos e2ð Þ sin D/
1þ cos e1cos e2ð Þ cos D/� sin e1sin e2 cos 2v

� �
ð5:37Þ

where D/ is given by (5.36), and v is the angle between the fast axes of the two
quarter-wave plates. For the reflection topology shown in Fig. 5.16, where only
one quarter-wave plate is used, the modified phase difference (D/e) between the
two co-propagating waves when they interfere at the detector is [48]:

D/e ¼ tan�1 2cos e sin 2D/ð Þ
1þ cos2 eð Þ cos 2D/ð Þ � sin2 e

� �
ð5:38Þ

For small e, (5.38) is approximated by D/e � 2D/=cos e; or

D/e � 2D/ � 2D/e2 ð5:39Þ

Therefore, the phase deviation from the expected 2D/ is a quadratic function of
e, which in turn is approximately a linear function of temperature. Pre-biasing e
can cause D/e to either increase or decrease with temperature (depending on
which branch of the quadratic curve e is on). Furthermore, the rate of increase or
decrease with temperature can also be determined by judiciously choosing the
range of e. To compensate for a positive temperature coefficient of the Verdet
constant, one needs to put a positive bias on e (i.e., larger than p/2 retardation).
More detailed analysis reveals that a retardation of 0.558p would compensate the
temperature variation of the Verdet constant almost exactly [48].

Combining all of the abovementioned engineering solutions—reducing
unwanted non-reciprocal effects (due to linear birefringence and time-varying
perturbations) and compensating for temperature dependence of the Verdet con-
stant, as well as applying signal processing techniques developed for IFOG (such
as quadrature bias or phase nulling), today’s state-of-the-art fiber-optic current
sensors based on Sagnac interferometers can achieve accuracies well within 0.1 %
[55]. Compared to traditional electric current transformers, fiber-optic current
sensors can have a much higher measurement bandwidth (for AC currents), limited
only by the transit time of light in the sensing coil. Furthermore, they have the
attractive advantages of being immune to electromagnetic interference, requiring
no electrical insulation, low cost, and light weight, particularly for high voltage
systems. (A conventional electrical current transformer sensor requires costly and
bulky oil-filled insulation tower, and for a 500 kV system, the sensor can weigh as
much as 7,000 kg! [56]).
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5.6 Summary

We have shown in this chapter that the fiber Sagnac interferometer is a versatile
tool for a range of sensing applications. The key feature of the Sagnac loop is that
it measures non-reciprocal effects (e.g. Sagnac effect, Faraday effect, time-varying
effects such as those caused by acoustic signals), while being insensitive to reci-
procal effects. Topological modifications of the Sagnac interferometer leads to
novel applications such as sensor multiplexing, as well as spatial-domain contin-
ous-wave cavity-ring-down sensing.

Acknowledgment The author of this Chapter wishes to thank Fei Ye and Dr. Bing Qi for
providing results and diagrams used in Sect. 5.4.4.
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Chapter 6
Principles of Optical Coherence
Tomography

Kang Zhang and Jin U. Kang

6.1 Optical Coherence and Interference

Optical coherence is a property describing a degree of correlation between phases
of optical waves. An optical wave with arbitrary amplitude and phase can be
described by a complex wave function a(r, t). The time-averaged intensity
I(r, t) can be defined as,

Iðr; tÞ ¼ aðr; tÞa�ðr; tÞh i ð6:1Þ

where h i is the averaging operation. When I(r, t) is time-invariant, the optical
wave is viewed as statistically stationary.

The spatial and temporal coherence of a stationary optical wave aðr; tÞ can be
mutually described by a correlation function Gðr1; r2; sÞ as:

Gðr1; r2; sÞ ¼ aðr1; tÞa�ðr2; t þ sÞh i ð6:2Þ

The complex degree of coherence function gðr1; r2; sÞ can be then defined as,

gðr1; r2; sÞ ¼
Gðr1; r2; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Iðr1ÞIðr2Þ
p ð6:3Þ

In situations where two waves’ spatial positions coincide, e.g. r ¼ r1 ¼ r2; Eq.
(6.2) becomes a temporal coherence function GðsÞ.

GðsÞ ¼ aðtÞa�ðt þ sÞh i ð6:4Þ
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Then the temporal complex degree of coherence gðsÞ can be written as:

gðsÞ ¼ aðtÞa�ðt þ sÞh i
aðtÞa�ðtÞh i ð6:5Þ

The degree of coherence of a light source can be described qualitatively using
gðsÞ as:

gðsÞj j ¼ 1 Perfectly coherent ð6:6Þ

0\ gðsÞj j\1 Partially coherence
ð6:7Þ

gðsÞj j ¼ 0 Totally incoherent ð6:8Þ

The coherence time sc and corresponding coherence length are defined as,

sc ¼
Z1

�1

gðsÞj j2ds ð6:9Þ

lc ¼ csc ð6:10Þ

The spectral function of a light source can be described by the power spectral
density (PSD) as,

SðmÞ ¼
Z1

�1

GðsÞej2pmsds ð6:11Þ

Optical coherence applications use a wide range of interferometers that intro-
duce an optical delay time, s by inducing an optical path-length (OPL) difference,
DL ¼ cs.

6.2 Time Domain Optical Coherence Tomography

The first time domain optical coherence tomography (TD-OCT) system was based
on a low-coherence Michelson interferometer [1]. Figure 6.1 illustrates the prin-
ciple of a time domain system, where a low-coherent light source with a Gaussian
PSD, SðmÞ is used as the light source. The image sample can be modeled as a multi-
layered structure with interfaces Ri. A reference mirror moves along the axial
direction and interferes with each interface over the image range DD in depth.

For a low-coherent light source, the coherence function can be modeled as,

GðsÞ ¼ GaðsÞe�j2pm0s ¼ GaðsÞj je�j2pm0s�uaðsÞ ð6:12Þ
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where m0 is the central frequency of SðmÞ [2]. Here the time delay s relates to the
spatial displacement of an interface relevant to the fixed reference plane by
s ¼ DD=c.

The detector measures the inference between the two optical waves ar and as

which come from the reference mirror and the sample respectively. Considering
Eq. (6.4), the detected average intensity can be written as,

I ¼ ar þ asj j2
D E

¼ arj j2
D E

þ asj j2
D E

þ a�r as

� �
þ ara

�
s

� �
¼ Ir þ Is þ 2Re GðsÞf g ¼ Ir þ Is þ 2 GðsÞj j cos uðsÞ

ð6:13Þ

Assuming that the spectral width satisfies Dmc ¼ 1=sc � m0; GaðsÞj j and /aðsÞ
are slow varying respect to sc; and GaðsÞj j ¼ GðsÞj j; for a single interface with
reflectivity Ri; Eq. (6.13) can be further expressed as,

I ¼ Ir þ Is þ 2Ri Gðs� siÞj j cos½2pm0ðs� siÞ þ uaðs� siÞ�

¼ Ir þ Is þ
2Ri

c
GðDD� DDiÞj j cos½2pm0ðDD� DDiÞ þ uaðDD� DDiÞ�

ð6:14Þ

Here gives the response of a single interface, which presents the point spread
function (PSF) of the OCT imaging system. For multiple interfaces, Eq. (6.14) turns to,

I ¼ Ir þ
X

i

Is

þ 2
c

X
i

Ri GðDD� DDiÞj j cos½2pm0ðDD� DDiÞ þ uaðDD� DDiÞ�

þ 2
c

X
ij

RiRj GðDDi � DDjÞ
�� �� cos½2pm0ðDDi � DDjÞ þ uaðDDi � DDjÞ�

ð6:15Þ
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where the last term results from autocorrelation between interfaces.
Equation (6.15) presents the basic 1-D depth information inside the sample,

which is referred to as an ‘‘A-scan’’. Correspondingly, a 2-D cross-sectional image
can be achieved by moving the light spot across a line on the sample, which is
referred to as a ‘‘B-scan’’; a 3-D volumetric image can be achieved by moving the
light spot across a region on the sample, which is referred to as a ‘‘C-scan’’. For
some special cases, the light spot stays in the same position on the sample, and the
series of A-scan over time is referred to as an ‘‘M-scan’’.

For a Gaussian spectral shape of SðmÞ; according to Eq. (6.11), GðsÞ can be
expressed as,

GðsÞ ¼
Z1

0

SðmÞe�j2pmsdm ð6:16Þ

With a normalized SðmÞ [3], we have,

SðmÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=p

p
Dmc

e�4 ln 2
t�t0

tð Þ2 ð6:17Þ

Then by Eqs. (6.16) and (6.17), GðsÞ can be expressed as,

GðsÞ ¼ e
� pDts

2
ffiffiffiffi
ln 2
p

� �2

� e�j2pt0s ð6:18Þ

6.3 Fourier Domain Optical Coherence Tomography

Fourier domain optical coherence tomography (FD-OCT) has been advancing
rapidly since the first demonstration [4], and now dominates the OCT research and
market with superior A-scan rates in the order of tens of kHz up to MHz, as well as
a much higher sensitivity—usually two order of magnitude higher than the TD-
OCT [5, 6]. FD-OCT can be categorized into two different types: spectrometer
based OCT (Fig. 6.2a) and swept-source based OCT (Fig. 6.2b), which follow the
same interference principle. However, during the rest of this chapter spectrometer-
based SD-OCT will be simply referred to as ‘‘FD-OCT’’.

Figure 6.3 presents the layout and signal processing steps of FD-OCT. Each
interface of the multi-layered sample produces a spectral interferogram, SiðmÞ. The
detected spectrum is a superposition of the interferograms from all the layers.
The A-scan signal can be then reconstructed by taking the Fourier transform of the
combined interferogram, e.g. measured spectrum from the spectrometer.

The measured spectrum can be expressed as [7],
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ScombinedðmÞ ¼ SðmÞ � qðmÞ

� Rr þ
X

i

Ri þ 2
X

i

ffiffiffiffiffiffiffiffiffi
RrRi
p

cosð2pmsiÞ þ 2
X

i;j

ffiffiffiffiffiffiffiffiffi
RiRj

p
cosð2pmðsi � sjÞÞ

" #

ð6:19Þ

where qðmÞ is the spectral response of the spectrometer, which is usually non-linear
with respect to m. To reconstruct A-scan signal DðsÞ; a Fourier transform on
ScombinedðmÞ is performed, assuming a uniform qðmÞ for simplicity, as,
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DðsÞ ¼ FTm!s ScombinedðmÞf g

¼ Rr þ
X

i

Ri

 !
GðsÞ þ

X
i

ffiffiffiffiffiffiffiffiffi
RrRi

p
GðsÞ � dðs� siÞð Þ þ

X
i;j

ffiffiffiffiffiffiffiffiffi
RiRj

p
GðsÞ � dðs� ðsi � sjÞÞ
� 	

¼ 1
c

Rr þ
X

i

Ri

 !
GðDDÞ. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .ðDC Component)

þ 1
c

X
i

ffiffiffiffiffiffiffiffiffi
RrRi

p
GðDDÞ � dðDD� DDiÞð Þ. . .. . .. . .. . .. . .ðCross-Correlation ComponentÞ

þ 1
c

X
i;j

ffiffiffiffiffiffiffiffiffi
RiRj

p
GðDDÞ � dðDD� ðDDi � DDjÞ
� 	

. . .:ðAuto-Correlation Component)

ð6:20Þ

Here the delta functions dðDD� DDiÞ and reflectivities Ri represent the multi-
layered sample. The cross-correlation component is the desired signal for
Michelson type FD-OCT.

Obvious from Eq. (6.20), a direct Fourier transform generates a pair of con-
jugate signals at each side of the zero-delay plane, which is the major artifact in
FD-OCT imaging. Several phase-shift interferometery methods have been devel-
oped to tackle such artifacts [8–12]. Later in this chapter, a simple and effective
method called the ‘‘Simultaneous B-M-mode scanning method’’ is adopted by
applying a linear phase modulation u tjxð Þ¼b � tjxð Þ to each M-scan/B-scan’s 2D
interferogram frame I tjx; kð Þ [12], as,
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Fig. 6.3 Layout and signal processing of FD-OCT
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Ftjx!f ju½I tjx; kð Þ� ¼ arj j2d f juð Þ
þ Cf jufFtjx!f ju½as tjx; kð Þ�g
þ Ftjx!f ju½a�r tjx; kð Þar kð Þ� � d f juþ bð Þ
þ Ftjx!f ju½as tjx; kð Þa�r kð Þ� � d f ju� bð Þ ;

ð6:21Þ

where Cf jufg is the correlation operator. The first three terms on the right hand of
Eq. (6.21) present the DC noise, autocorrelation noise, and complex-conjugate
noise, respectively. The last term can be filtered out by a proper band-pass filter in
the fju domain and then convert back to the tjx domain by applying an inverse
Fourier transform along the fju direction which is a modified Hilbert transform.
Figure 6.4 compares the images of a multi-layered phantom using standard (half-
range) FD-OCT and full-range FD-OCT.

6.4 Imaging Resolution of OCT

From Eqs. (6.15) and (6.21), the A-scan signal describes the spatial convolution of
PSF GðDDÞ and the sample’s structure function dðDD� DDiÞ; therefore the
FWHM axial resolution of TD-OCT and FD-OCT are the same according to Eq.
(6.18)

DdOCT ¼
2 ln 2

p
k0

Dk
ð6:22Þ

Zero- Delay

(a)

(b)

Fig. 6.4 Image comparison
between a Standard (half-
range) FD-OCT, b Full-range
FD-OCT
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The lateral resolution of both TD-OCT and FD-OCT systems are determined by
the numerical aperture (N. A.) of the imaging lens, as

DxOCT ¼
2
ffiffiffiffiffiffiffi
ln 2
p

p
k0

N:A:
ð6:23Þ

6.5 Optical Dispersion Mismatch and Compensation
in OCT

Optical dispersion mismatch is a common problem for all Michelson type OCT
systems, especially more so for an ultra-high resolution FD-OCT system using an
extremely broadband light source. The optical dispersion arises from wavelength-
dependent phase velocity described by the optical material-related propagation
constant bðxÞ; which can be expanded as a Taylor series as,

bðxÞ ¼bðx0Þ þ
db
dx

����
x0

ðx� x0Þ þ
1
2

d2b
dx2

����
x0

ðx� x0Þ2

þ 1
6

d3b
dx3

����
x0

ðx� x0Þ3 þ . . .

ð6:24Þ

Here db
dx is the inverse group velocity, and d2b

dx2 describes the group velocity
dispersion, which majorly contributes to the broadening of system PSF. The third-

order dispersion d3b
dx3 produces asymmetric distortion of the PSF.

The dispersion mismatch in an OCT system usually results from unbalance
between optical components in the sample arm and reference arm, and for some
cases like retinal OCT, also comes from the imaging sample itself (the vitreous
humor). Dispersion compensation is necessary for most ultra-high resolution FD-
OCT systems and usually two approaches are utilized,

(1) Hardware Approach: The dispersion of the sample arm is physically matched
by putting balancing optical components on the reference arm. One simplest
way may be using identical optics, and an alternative way is using dispersion
matching prism pairs. Therefore hardware approach usually need additional
cost for optical components.

(2) Software Approach: A phase correction via Hilbert transformation is applied
to the original spectrum, as [13],

U ¼ �a2 x� x0ð Þ2�a3 x� x0ð Þ3 ð6:25Þ

Here only the second and third order dispersions are compensated), where a2 and
a3 were pre-optimized parameters depending on the system. Software approach is
cost-effective but brings large computing burden due to the Hilbert transformation.
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6.6 Frontiers in OCT: GPU Accelerated Real-Time
Ultra-High Speed FD-OCT

6.6.1 Background and Overview

In recent years, the raw data acquisition speed of FD-OCT systems has been
advancing rapidly so that 100 kHz level FD-OCT system are common today
[14–23]. For a spectrometer-based OCT, an ultrahigh speed CMOS line scan
camera based system achieved up to 312,500 line/s in the year 2008 [14]; while for
a swept-source based OCT, Multi-MHz rate was achieved in the year 2010 [22].
Such ultrahigh acquisition speed enables time-resolved volumetric (4D) recording
and reconstruction of dynamic physical processes [17–21].

While the acquisition speed of FD-OCT has been satisfying the interventional
imaging requirements, the image (A-scan) reconstruction and visualization speeds
have not kept up with the ever increasing rate of data acquisition, becoming one of
the limiting factors for employing FD-OCT systems in practical therapeutic
intervention applications. For most FD-OCT systems, the raw data is acquired in
real-time but only saved to hard drive for later reconstruction and visualization.
For surgeries, such imaging protocol provides valuable ‘‘pre-operative/post-oper-
ative’’ images, but is incapable of providing real-time, ‘‘inter-operative’’ imaging
for surgical guidance and intervention.

The image reconstruction and visualization schematic for a general FD-OCT
system is show as Fig. 6.5, for both standard and full-range FD-OCT. The A-scans
are acquired and processed independently; therefore FD-OCT is inherently ideal
for a massive parallel processing architecture. Several parallel processing methods
have been implemented to improve A-scan data of FD-OCT images including
FPGA [24, 25] and multi-core CPU parallel processing [26, 27]. Recent progresses
in general-purpose GPU makes it possible to implement ultrahigh throughput OCT
data processing and visualization on a variety of low-cost, many-core graphics
cards [28–36]. As shown in Fig. 6.6, one or multiple GPUs can be directly
integrated into the FD-OCT system without needing any optical modification.
Compared to FPGA and multi-core processing methods, GPU acceleration is more
cost-effective in terms of price/performance ratio and convenience of system
integration.

For the standard half-range FD-OCT, GPU-based image reconstruction has
been implemented on both linear-k and non-linear-k systems [28–32]. As will be
shown in this section, [3,000,000 A-scan/second processing rate for 1024-pixel
standard FD-OCT is achieved.

For the full-range FD-OCT, the image reconstruction requires signal processing
workload more than 3 times that of the standard OCT, since each A-scan requires a
Modified Hilbert Transform implemented by three fast Fourier transforms (FFT) in
different dimensions of the frame, a band-pass filtering, and necessary matrix
transpose [37]. Several publications have demonstrated the GPU accelerated
processing of full-range FD-OCT [33–35]. As will be shown in this section,
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[1,300,000 A-scan/second processing rate for 1024-pixel full-range FD-OCT is
achieved.

For volumetric visualization, multiple 2D slice extraction and co-registration is
the simplest approach, while volume rendering offers more comprehensive spatial
view of the whole 3D data set, which is not immediately available from 2D slices.
However, volume rendering such as ray-casting is usually very time-consuming
for CPU. So real-time rendering for a large data volume is only available through
massive parallel processors such as GPU. Moreover, a complete 3D data set must
be ready prior to any volumetric visualization due to the feature of FD-OCT signal
processing method, which still would require a solution. As will be presented later

FFTRaw spectrum Scalinginterpolation

Complete processing of one A-scan

2D Frame Display
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Transform
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Fig. 6.5 Basic data processing and visualization flowchart for a genetic FD-OCT system.
Hollow arrows indicate the data path for full-range FD-OCT processing

GPU 2
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Fig. 6.6 GPU integration into the FD-OCT system

156 K. Zhang and J. U. Kang



in this section, real-time 4D OCT imaging has also been achieved through GPU-
based volume rendering [29, 36].

6.6.2 System Layout and Data Flow

The GPU acceleration technologies can be incorporated with a regular FD-OCT
system through a hardware-software heterogeneous computing platform, as shown
in Fig. 6.7. A 12-bit dual-line CMOS line-scan camera (Sprint spL2048-140 k,
Basler AG, Germany) works as the detector of the OCT spectrometer. A super-
luminescence diode (SLED) (k0 = 825 nm, Dk = 70 nm, Superlum, Ireland) was
used as the low-coherent light source, which provided a measured axial resolution
of approximately 5.5 lm in air, 4.1 lm in water. Since the SLED’s spectrum only
covers less than half of the CMOS camera’s sensor array, the camera is set to work
at 1024-pixel mode by selecting the area-of-interest (AOI). The camera works at
the ‘‘dual-line averaging mode’’ to get 3 dB higher SNR of the raw spectrum [14],
and the minimum line period is camera-limited to 7.8 ls, which corresponds to a
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Board
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GPU
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FD-OCT system

Workstation

Fig. 6.7 System configuration: CMOS, CMOS line scan camera; L, spectrometer lens; G,
grating; C1, C2, C3, achromatic collimators; C, 50:50 broadband fiber coupler; CL, camera link
cable; GPU, graphics processing unit; GVS, galvanometer (only the first galvanometer is
illustrated for simplicity); SL, scanning lens; DCL, dispersion compensation lens; M, reference
mirror; PC, polarization controller; SP, Sample
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maximum line rate of 128 k A-scan/s. The beam scanning was implemented by a
pair of high speed galvanometer mirrors driven by a dual channel function gen-
erator and synchronized with a high speed frame grabber (PCIE-1429, National
Instruments, USA). The transversal resolution was approximately 20 lm,
assuming Gaussian beam profile. A quad-core Dell T7500 workstation was used to
host the frame grabber (PCIE x4 interface) and GPU (PCIE x16 interface), and in
our experiments, certain models of GPUs manufactured by NVIDIA was used to
perform the FD-OCT image reconstruction and visualization. The GPU is pro-
grammed through NVIDIA’s CUDA technology. The FFT operation is imple-
mented by the CUFFT library [38]. The software is developed under Microsoft
Visual Cþþ environment with the NI-IMAQ Win32 API (National Instrument).

For the full-range FD-OCT mode, a phase modulation is applied to each B-
scan’s 2D interferogram frame by slightly displacing the probe beam off the first
galvanometer’s pivoting point (here only the first galvanometer is illustrated in the
figure) [37, 39]. In this experimental setup, the scanning angle is 8� and the beam
offset is 1.4 mm, therefore a carrier frequency of 30 kHz is obtained according to
Ref. [39].

The Data Flow on a CPU-GPU heterogeneous computing architecture is shown
in Fig. 6.8, where three major threads are used for the data acquisition (Thread 1),
the GPU processing (Thread 2), and the image display (Thread 3), respectively.

Thread 1

Thread 2

Thread 3

Frame Grabber Host 
Memory Buffer

GPU
Memory Buffer

GPU
Pre-stored Memory 

GPU
FD-OCT 
Reconstruction

GPU
Frame Buffer

Host  
Frame BufferDisplay

Trig

Trig

FD-OCT System

Volume Rendering 
(Optional)

Fig. 6.8 Data flow on a CPU-GPU heterogeneous computing architecture
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The three threads are triggered unidirectionally and work in the synchronized
pipeline mode, as indicated by the blue dashed arrows.

Thread 1 is implemented through National Instruments IMAQ library, which
controls the interface between frame grabber and CMOS camera.

Thread 2 is a GPU-CPU hybrid thread which consists of tens of thousands of
GPU threads. The solid arrows describe the main data stream and the hollow
arrows indicate the internal data flow of the GPU. Some parameters for the
interpolation and the reference frame are stored in the ‘‘GPU Pre-stored Memory’’
section. In our previous work, we have implemented a series of algorithms into the
‘‘GPU FD-OCT Reconstruction’’ box [29, 33, 35, 36].

Thread 3 is responsible for image display. The GPU based volume rendering is
also available if the OCT system is doing C-scan to get 3D data set. The volume
rendering can be done on the same GPU for reconstruction [29], or on a secondary
GPU dedicated to visualization [36], as will be shown later.

6.6.3 Benchmark Tests

(1) GPU processing line rate for different FD-OCT methods

First we performed benchmark line rate test of different FD-OCT processing
methods on the GTX 480 GPU as follows:

LIFFT Standard FD-OCT with Linear Spline Interpolation (LSI);
LIFFT-C Full-range FD-OCT with LSI;
CIFFT Standard FD-OCT with Cubic Spline Interpolation (CSI);
CIFFT-C Full-range FD-OCT with CSI;
NUDFT Standard FD-OCT with Non-Uniform Discrete Fourier Transform

(NUDFT);
NUDFT-C Full-range FD-OCT with NUDFT;
NUFFT Standard FD-OCT with Non-Uniform Fast Fourier Transform

(NUFFT);
NUFFT-C Full-range FD-OCT with NUFFT;

The details of the different algorithms are presented in Ref. [35]. All algorithms
are tested with 4,096 lines of both 1024-pixel spectrum and 2048-pixel spectrum.
For each case, both the peak internal processing line rate and the reduced line rate
considering the data transfer bandwidth of PCIE x16 interface are listed in
Fig. 6.9. The processing time is measured with CUDA API functions and all
CUDA threads are synchronized before the measurement. In the system, the PCIE
x16 interface has a data transfer bandwidth of about 4.6 GByte/s for both transfer
data into and out of the GPU from the Host side.

As in Fig. 6.9a, the processing speed of LIFFT goes up to [3,000,000 line/s
(effectively [1,000,000 line/s under data transfer limit), achieving the fastest
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processing line rate of FD-OCT by the time of publication [35]. The final pro-
cessing line rate for 1024-pixel full-range FD-OCT with GPU-NUFFT is 173 k
line/s, which is still higher than the maximum camera acquisition rate of 128 k
line/s, while the GPU-NUDFT speed is relatively lower in both standard and
complex FD-OCT.

(2) Comparison of point spread function

Then we compared the depth resolved point spread function (PSF) of standard FD-
OCT by different processing methods, as shown in Fig. 6.10, using GPU based
LIFFT, CIFFT, NUDFT and NUFFT, respectively. A mirror is used as an image
sample for evaluating the PSF. Here 1,024 of GPU-processed 1024-pixel A-scans
are averaged to present the mean noise level for the PSF in each axial position
[40]. From Fig. 6.10a, it is evident that using LIFFT method introduces a signif-
icant background noise and side-lobes around the signal peak. The side-lobes tend
to be broad and extend to their neighboring peaks, which can results in significant
OCT image degradation. When CIFFT is used instead, as shown in Fig. 6.10b, the
side-lobes are suppressed in the shallow image depth, but still considerably high in
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deeper depth. Figure 6.10c and d shows significant suppression of side-lobes over
the whole image depth which utilized NUDFT and NUFFT, respectively.

The PSFs and sensitivity roll-off of the full-range FD-OCT mode are shown in
Fig. 6.11, where a different scanning lens was used and the spot size was
approximately 40 lm [36]. The data was processed by a NVIDIA GTX 580 GPU
(512 cores, 1.59 GHz, processor clock and 1.5 GBytes graphics memory). At both
sides of the zero-delay, PSFs at different positions are processed as A-scans using
LSI with FFT (Fig. 6.11a and b) and NUFFT (Fig. 6.11c and d), respectively.

As one can see, using NUFFT processing, the system obtained a sensitivity fall-
off of 19.6 dB from position near zero-delay to the negative edge, and 18.8 dB to
the positive edge, which is lower than using linear interpolation with FFT (24.7 dB
to the negative edge and 24.5 dB to the positive edge). Moreover, compared to the
linear interpolation method, NUFFT obtained a constant background noise level
over the whole A-scan range. The blue arrows in Fig. 6.11a and b indicates side
lobes in the PSFs near both positive and negative edges as a result of interpolation
error. By applying a proper super-Gaussian filter to the modified Hilbert transform
[34], the conjugate suppression ratios of 37.0 and 40.9 dB are obtained respec-
tively at the positive and negative sides near zero-delay.
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Fig. 6.10 Depth resolved point spread function for standard FD-OCT by different processing
methods: a LIFFT; b CIFFT; c NUDFT; d NUFFT
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6.6.4 Real-Time 2D Imaging Tests

In vivo human finger imaging using GPU-NUFFT-based full-range FD-OCT is
shown in Fig. 6.12. Images were displayed at 29.8fps with original frame size of
4,096 pixel (lateral) 9 1,024 pixel (axial). Figure 6.12a and b present the coronal
scans of the fingertip and palm, where the epithelial structures such as sweat duct
(SD), stratum corneum (SC) and stratum spinosum (SS) are clearly distinguish-
able. Figure 6.12c and d present the coronal scans of the finger nail fold region,
showing the major dermatologic structures such as epidermis (E), dermis (D), nail
bed (NB), and nail root (NR), as well as in the sagittal scans in Fig. 6.12e and f.

Compared to standard FD-OCT, the GPU-NUFFT full-range FD-OCT image is
free of conjugate artifact, DC noise, and autocorrelation noise. These noises are
problematical to remove in standard FD-OCT. Moreover, due to the implemen-
tation of the complex OCT processing, the image depth is effectively doubled, with
the highest SNR region in the zero delay point.
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Fig. 6.11 Point spread function and sensitivity roll-off for full-range FD-OCT: (a) and (b), PSFs
processed by linear interpolation with FFT, blue arrows indicate the side lobes of PSFs near
positive and negative edges due to interpolation error. (c) and (d), PSFs processed by NUFFT
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6.6.5 Real-Time 3D (4D) Imaging Tests

(1) 4D Visualization by en face slice extraction

First, the simplest 4D visualization was tested by en face slice extraction,
implemented by a single GPU (NVIDIA Quadro FX5800, with 240 stream pro-
cessors, 1.3 GHz clock rate and 4 GBytes graphics memory). The FD-OCT
worked at 1024-pixel mode. The line scan rate was set to 100,000 line/second.
A Naval orange juice sac was used as the sample. Three different volume sizes are
tested: 250 9 160 9 512 voxels (40,000 A-scans/volume); 250 9 80 9 512
voxels (20,000 A-scans/volume); 125 9 80 9 512 voxels (10,000 A-scans/vol-
ume); corresponding to a volume rate of 2.5, 5 and 10 volume/s, respectively.
Figure 6.13 shows the en face slices of approximately 1 9 1 mm region in two
different depths extracted from the same volumetric data and the depth difference
of about 25 lm. All the A-scans of one volume were acquired and processed as
one batch and remapped for en face slice extraction. More than one en face images
at different depth can be quickly reconstructed and displayed simultaneously since
the complete 3D data is available. As one can see, with decreasing volume size and
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Fig. 6.12 Real-time full-range FD-OCT images using GPU-NUFFT, where the bars represent
1 mm in both dimensions for all images: a Finger tip, (coronal). b Finger palm (coronal).
c–d Finger nail fold (coronal); e–f Finger nail (sagittal). SD, sweat duct; SC, stratum corneum;
SS, stratum spinosum; NP, nail plate; NB, nail bed; NR, nail root; E, epidermis; D, dermis
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increasing volume rate, the image quality degenerate but the major details such as
cell wall are still clear enough to be visible compared with the largest volume size
slices as in Fig. 6.13a and b.

(2) 4D Visualization by volume rendering (Standard FD-OCT, Single GPU)

This technology implemented using a NVIDIA Quadro FX 5800 GPU can perform
real-time volume rendering of continuous acquired data volume at 10 volume per
second 4D FD-OCT ‘‘live’’ image using. The system’s acquisition line rate is set to
be 125,000 line/s at 1024-OCT mode. The acquisition volume size is set to be
12,500 A-scans, providing 125(X) 9 100(Y) 9 512(Z) voxels after the signal
processing stage, which takes less than 10 ms and leaves more than 90 ms for each
volume interval at the volume rate of 10 volume/s. The image plane is set to
512 9 512 pixels, which means a total number of 5,122 = 262,144 eye rays are
used to accumulate though the whole rendering volume for the ray-casting process
[41]. The actual rendering time is recorded during the imaging processing to be
*3 ms for half volume and *6 ms for full volume, which is much shorter than
the volume interval residual ([90 ms).

First we tested the real-time visualization ability by imaging non-biological
samples. Here the volume rendering is applied and the real volume size is
approximately 4 9 4 9 0.66 mm. Figure 6.14a presents the top surface of a piece
of sugar-shell coated chocolate. Here the perspective projection is used for the

Fig. 6.13 4D visualization by en face slice extraction, the scale bar represents 100 lm for all
images: a 250 9 160 9 512 voxels; b from the same volume as (a) but 25 lm deeper;
c 250 9 80 9 512 voxels; d from the same volume as (c) but 25 lm deeper; e 125 9 80 9 512
voxels; f from the same volume as (e) but 25 lm deeper
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eye’s viewpoint [42], and the rendering volume frame is indicated by the white
lines. Figure 6.14b shows the situation when the target surface is truncated by the
rendering volume’s boundary, the X–Y plane, where the sugar shell is virtually
‘‘peeled’’ and the inner structures of the chocolate core is clearly recognizable.
Figure 6.14c illustrates a five-layer polymer phantom, where the layers are easily
distinguishable. The volume rendering frame in Fig. 6.14c is configured as ‘‘L’’
shape so the tapes are virtually ‘‘cut’’ to reveal the inside layer structures.

In vivo real-time 3D imaging of a human fingertip is shown in Fig. 6.15.
Figure 6.15a shows the skin and fingernail connection, the full volume rendering is
applied here giving a real size of 4 9 4 9 1.32 mm considering the large topology
range of the nail connection region. The major dermatologic structures such as
epidermis (E), dermis (D), nail fold (NF), nail root (NF) and nail body (N) are
clearly distinguishable from Fig. 6.15a. The fingerprint is imaged and shown in
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Fig. 6.14 a The 3D OCT image of a piece of sugar-shell coated chocolate; b sugar-shell top
truncated by the X–Y plane, inner structure visible; c A five-layer phantom
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Fig. 6.15b, where the epithelium structures such as sweat duct (SD), stratum
corneum (SC) can be clearly identified. Figure 6.30c offers a top-view of the
fingerprint region, where the surface is virtually peeled by the X-Y plane and the
inner sweat duct are clearly visible. The volume size for Fig. 6.15b and c is
2 9 2 9 0.66 mm.

To make full use of the computing power and the whole 3D data, multiple 2D
frames processed from the same 3D data set with different model view matrix can
be rendered. This is shown as a side-view (Fig. 6.16a, b, d, e), top-view
(Fig. 6.16c) and bottom-view (Fig. 6.16f), where Fig. 6.16a and d are using the
same model view matrix but displayed with the ‘‘L’’ volume rendering frame. All
frames are rendered from the same volume period and displayed simultaneously,
thus gives more comprehensive information of the target. The two vertexes with
the big red and green dot indicate the same edge for each rendering volume frame.
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Fig. 6.15 In vivo real-time 3D imaging of a human fingertip: a Skin and fingernail connection;
b Fingerprint, side-view with ‘‘L’’ volume rendering frame; c Fingerprint, top-view
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Fig. 6.16 Real-time volume imaging of the finger print by 4D standard FD-OCT
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Fig. 6.17 Real-time volume imaging of the polymer foam by 4D standard FD-OCT
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Fig. 6.18 Real-time volume imaging of the nail fold by 4D full-range FD-OCT
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Fig. 6.19 Real-time volume imaging of the finger print by 4D full-range FD-OCT
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Figure 6.17 shows the imaging of a polymer foam sample following the same
rendering protocol. The volume size for both Figs. 6.16 and 6.17 is
2 9 2 9 0.66 mm.

(3) 4D Visualization by volume rendering (Full-range FD-OCT, Dual-GPU)

Real-time 4D full-range FD-OCT using the dual-GPU platform can improve the
system performance and stability [43]. The system consists of GPU-1 (NVIDIA
GeForce GTX 480) with 480 stream processors, 1.45 GHz processor clock and
1.5 GBytes graphics memory is dedicated for raw data processing of B-scan
frames. GPU-2 (NVIDIA GeForce GTS 450) with 192 stream processors,
1.76 GHz processor clock and 1.0 GBytes graphics memory is dedicated for the
volume rendering and display of the complete C-scan image processed by GPU-1.
The A-scans were processed by CIFFT-C method.

In this demonstration, the B-scan size is set to 256 A-scans with 1024 pixel
each. The C-scan size is set to 100 B-scans, resulting in 256(Y) 9

100(X) 9 1024(Z) voxels (effectively 250(Y) 9 98(X) 9 1024(Z) voxels after
removing of edge pixels due to fly-back time of galvanometers), and 5 volumes/
second. It takes GPU-2 about 8 ms to render one 2D image with 512 9 512 pixel
from this 3D data set using the ray-casting algorithm.

Figures 6.18 and 6.19 presents the multiple real-time volume imaging of the
nail fold and finger print by 4D full-range FD-OCT, respectively. The scanning
range is 3.5 mm (X) 9 3.5 mm (Y) lateral and 3 mm (Z) for the axial full-range.
The major dermatologic structures such as epidermis (E), dermis (D), nail plate
(NP), nail root (NR) and nail bed (NB), stratum corneum (SC) and stratum
spinosum (SS) are clearly distinguishable.
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