
Chapter 9
Additional Considerations and Final Thoughts

The statistical study of DTRs and associated methods of estimation is a young
and growing field. As such, there are many topics which are only beginning to be
explored. In this chapter, we point to some new developments and areas of research
in the field.

9.1 Variable Selection

In estimating optimal adaptive treatment strategies, the variables used to tailor treat-
ment to patient characteristics are typically hand-picked by experts who seek to use
a minimum set of variables routinely available in clinical practice. However, studies
often use a large set of easy-to-measure covariates (e.g., multiple surveys of men-
tal health status and functioning) from which a smaller subset of variables must be
selected for any practical implementation of treatment tailoring. It may therefore
be desirable to be able to select tailoring variables with which to index the class of
regimes using automated or data-adaptive procedures. It has been noted that predic-
tion methods such as boosting could aid in selecting variables to adapt treatments
(LeBlanc and Kooperberg 2010); many such methods can be applied with ease, par-
ticularly to the regression-based approaches to estimating optimal DTRs, however
their ability to select variables for strong interactions with treatment rather than
simply strong predictive power may require special care and further study.

Recall the distinction between predictive variables (used to increase precision of
estimates) and prescriptive variables (used to adapt treatment strategies to patients),
i.e. tailoring variables (Gunter et al. 2007). In the Q-learning notation, predictive
variables correspond to the Hj0 terms in the Q-function associated with parameters
β , while the prescriptive or tailoring variables are those contained in Hj1, asso-
ciated with parameters ψ . Tailoring variables must qualitatively interact with the
treatment, meaning that the choice of optimal treatment varies for different values
of such variables. The usefulness of a prescriptive variable can be characterized by
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170 9 Additional Considerations and Final Thoughts

the magnitude of the interaction and the proportion of the population for whom the
optimal action changes given the knowledge of the variable (Gunter et al. 2007).

We will focus the discussion in this section on the randomized trial setting, so that
variable selection is strictly for the purposes of optimal treatment tailoring, rather
than elimination of bias due to confounding. Further, we will restrict attention to
the one-stage setting, as to date there have been no studies on the use of variable
selection for dynamic treatment regimes in the multi-stage setting.

9.1.1 Penalized Regression

Lu et al. (2013) proposed an adaptation of the lasso which penalizes only interaction
terms. Specifically, they consider the loss function

Ln(ψ ,β ,α) = Pn[Yi −φ(Oi;β )−ψT Oi(Ai −π(Oi))]
2 (9.1)

where the covariate vector Oi is augmented by a column of 1s and has total length
p+ 1, π(o) = P(A = 1|O = o;α) is the propensity score for a binary treatment A
and φ(O) is an arbitrary function. Lu et al. (2013) noted that the estimating function
found by taking the derivative of the loss function Ln(ψ ,β ,α) with respect to ψ
corresponds to an A-learning method of estimation, and is therefore robust to mis-
specification of the conditional mean model φ(O;β ) for the response Y in the sense
that the estimator requires correct specification of either the propensity score or the
mean model φ(O;β ). The decision (or treatment interaction) parameters ψ are then
shrunk using an adaptive lasso which penalizes parameters with a weight inversely
proportional to their estimated value, solving

min
ψ

Ln(ψ , β̂ , α̂)+λn

p+1

∑
j=1

|ψ̂ j|−1|ψ j|

where ψ̂ , β̂ are solutions to Eq. (9.1), α̂ is a consistent estimate of the propensity
score model parameters, and λn is a tuning parameter that may be selected using
cross-validation or some form of Bayesian Information Criterion (BIC). By penal-
izing the interaction parameters with the inverse of their estimated values, important
interactions (i.e. those estimated to have large coefficients) will receive little penalty,
while those with small estimates will be highly penalized.

Lu et al. (2013) showed that under standard regularity conditions, the estimators
of the parameters ψ resulting from the penalized regression will be asymptotically
normal and the set of selected treatment-covariate interactions will equal the set of
treatment-interaction which are truly non-zero. The properties of the penalized esti-
mator in multi-stage or non-regular settings were not examined. The estimator was
compared to the unpenalized estimator ψ̂ that results from solving Eq. (9.1) in low
and high dimensional problems (10 and 50 variables, respectively). Using a linear
working model for φ(Oi;β ), the penalized estimator selected the truly non-zero



9.1 Variable Selection 171

interaction terms with very high probability in samples of size 100 or larger. In high
dimensional settings, the penalized estimator increased the selection of the correct
treatment choice relative to the unpenalized estimator by 7–8 %; in low dimensional
settings, the improvement was more modest (2–3 %).

9.1.2 Variable Ranking by Qualitative Interactions

As proposed by Gunter et al. (2007, 2011b), the S-score for a (univariate) variable
O is defined as:

SO = Pn

{
max
a∈A

Pn [Y |A = a,O]−max
a∈A

Pn [Y |A = a]

}
.

The S-score of a variable O captures the expected increase in the response that is
observed by adapting treatment based on the value of that variable. S-scores com-
bine two characteristics of a useful tailoring variable: the interaction of the variable
with the treatment and the proportion of the population exhibiting variability in its
value. A high S-score for a variable is indicative of a strong qualitative interaction
between the variable and the treatment, as well as a high proportion of patients for
whom the optimal action would change if the value of the variable were taken into
consideration. Thus, S-scores may be used to rank variables and select those that
have the highest scores. The performance of the S-score ranking method was found
to be superior to the standard lasso (Tibshirani 1996) in terms of consistent selection
of a small number of variables from a large set of covariates of interest.

In the real-data implementation of the S-score ranking performed by Gunter et al.
(2007), each variable was evaluated separately, without taking into account poten-
tial correlation between variables. Two variables that are highly correlated may have
similar S-scores (Biernot and Moodie 2010) but may not both be necessary for deci-
sion making. The S-score may be modified in a straight-forward fashion to examine
the usefulness of sets of variables, O′ given the use of others, O, by considering, for
example,

SO′|O = Pn

{
max
a∈A

Pn
[
Y |A = a,O,O′]−max

a∈A
Pn [Y |A = a,O]

}
.

Thus, the S-score approach could be used to select the variable, O, with the highest
score, then select a second variable, O′, with the highest S-score given the use of O
as a prescriptive variable, and so on.

For i= 1, . . . ,n subjects and j = 1, . . . , p possible tailoring variables, Gunter et al.
(2007, 2011b) proposed an alternative score, also based on both the strength of
interaction as measured by
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D j = max
1≤i≤n

(Pn[Y |O j = oi j,A = 1]−Pn[Y |O j = oi j,A = 0])

− min
1≤i≤n

(Pn[Y |O j = oi j,A = 1]−Pn[Y |O j = oi j,A = 0])

and the proportion of the population for whom the optimal decision differs if a
variable is used for tailoring, captured by

Pj = PnI

[
argmax

a
Pn[Y |O j = oi j,A = a] �= a∗

]

where a∗ = argmaxaPn[Y |A = a] is the optimal decision in the absence of tailoring.
These values are combined to form another means of ranking the importance of
tailoring variables, called the U-score:

Uj =

(
D j −min1≤k≤p Dk

max1≤k≤p Dk −min1≤k≤p Dk

)(
Pj −min1≤k≤p Pk

max1≤k≤p Pk −min1≤k≤p Pk

)
.

Gunter et al. (2007, 2011b) suggested the use of the S- and U-scores in combi-
nation with lasso:

1. Select variables that are predictive of the outcome Y from among the variables in
(H10,AH11), using cross-validation or the BIC to select the penalty parameter.

2. Rank each variable O j using the S- or U-score, retaining the predictive variables
selected in step (1) to reduce the variability in the estimated mean response.
Choose the M most highly-ranked variables, where M is the cardinality of the
variables in H11 for which the S- or U-score is non-zero.

3. Create nested subsets of variables.

(a) Let H∗
11 be the top M variables found in step (2), and let H∗

10 denote the union
of the predictive variables chosen in step (1) and H∗

11. Let M∗ denote the car-
dinality of (H∗

10,H
∗
11).

(b) Run a weighted lasso where all main effect and interaction variables chosen
in step (1) only have weight 1, and all interaction variables chosen in step
(2) are given a weight 0 < w ≤ 1 which is a non-decreasing function of the
U- or S-score. This downweights the importance of the prescriptive variables,
which are favored by lasso.

(c) Create M∗ nested subsets based on the order of entry of the M∗ variables in
the weighted lasso.

4. Choose from among the subsets based on the highest expected response, or al-
ternatively, the highest adjusted gain in the outcome relative to not using any
tailoring variables.

The variable selection approaches based on the S- and U-scores were found to
perform well in simulation, leading to variable choices that provided higher ex-
pected outcomes than lasso alone (Gunter et al. 2007, 2011b).
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9.1.3 Stepwise Selection

Gunter et al. (2011a) suggested that the qualitative ranking of the previous section
is complex and difficult to interpret, and instead proposed the use of a stepwise
procedure, using the expected response conditional on treatment A and covariates
O, as the criterion on which to select or omit tailoring variables.

The suggested approach begins by fitting a regression model for the response Y as
a function of treatment only, and estimating the mean response to the overall (“un-
tailored”) optimal treatment; denote this by V̂ ∗

0 . Next, let C contain the treatment
variable as well as all variables which are known to be important predictors of the
response. Fit a regression model for the response Y as a function of treatment and all
variables in C and estimate the mean response to the overall (un-tailored) optimal
treatment when the predictors in C are included in the model; denote this by V̂ ∗

C .
A key quantity that will be used to decide variable inclusion or exclusion is the
adjusted value of the model. For C , the adjusted value is AVC = (V̂ ∗

C − V̂ ∗
0 )/|C |

where |C | is the rank of the model matrix used in the estimation of the response
conditional on the variables in C .

Letting E denote all eligible variables, both predictive variables and treatment-
covariate interaction terms, not included in C . The procedure is then carried out by
performing forward selection and backwards elimination at each step.

Forward selection: For each variable e ∈ E ,

1. Estimate the predictive model using all the variables in C plus the variable e.
2. Optimize the estimated predictive model over the treatment actions to obtain

the optimal mean response, V̂ ∗
E , and calculate the adjusted value, AVe = (V̂ ∗

e −
V̂ ∗

0 )/|C + e|.
3. Retain the covariate e∗ which results in the largest value of AVe.

Backward elimination: For each variable c ∈ C ,

1. Estimate the predictive model using all the variables in C except the variable c.
2. Optimize the estimated predictive model over the treatment actions to obtain the

optimal mean response, V̂ ∗−c, and calculate the adjusted value, AV−c = (V̂ ∗−c −
V̂ ∗

0 )/|C − c|.
3. Let c∗ be the covariate which results in the largest value of AV−c.

If each of AVC, AVe∗ , and AV−c∗ are negative, the stepwise procedure is com-
plete and no further variable selection is required. If AVe∗ > max{AVC,AV−c∗}, e∗ is
included in C and AVC is set to AVe∗ ; otherwise, if AV−c∗ > max{AVC,AVe∗}, remove
c from C and AVC is set to AV−c∗ . Gunter et al. (2011a) suggested that all covariate
main effects should be retained in a model in which a treatment-covariate interac-
tion is present, and to group covariates relating to a single characteristic (e.g. dummy
variables indicating covariate level for categorical variables).

In simulation, the stepwise method was found to have higher specificity but lower
sensitivity than the qualitative interaction ranking approach of the previous section
(Gunter et al. 2011a). That is, the stepwise procedure was less likely to falsely in-
clude variables which did not qualitatively interact with treatment, at the cost of
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being less able to identify variables which did. However, the stepwise procedure is
rather easier to implement and can be applied to different outcome types such as
binary or count data.

Gunter et al. (2011c) used a similar, but more complex, method to perform
variable selection while controlling the number of falsely significant findings by us-
ing bootstrap sampling and permutation thresholding in combination. The bootstrap
procedure is used as a form of voting algorithm to ensure selection of variables that
modify treatment in a single direction, while the permutation algorithm is used to
maintain a family-wise error rate across the tests of significance for the coefficients
associated with the tailoring variables.

9.2 Model Checking via Residual Diagnostics

There has been relatively little work on the topic of model checking for estimating
optimal DTRs. The regret-regression approach of Henderson et al. (2010) is one of
the first in which the issues of model checking and diagnostics were specifically
addressed. Because regret-regression uses ordinary least squares for estimation of
the model parameters, standard tools for regression model checking and diagnostics
can be employed. In particular, Henderson et al. (2010) showed that residual plots
can be used to diagnose model mis-specification. In fact, these standard approaches
can and should be used whenever a regression-based approach to estimating DTR
parameters, such as Q-learning or A-learning as implemented by Almirall et al.
(2010), is taken.

Consider the following small example using Q-learning: data are generated such
that O11 ∼ N(0,1) and O21 ∼N(−0.50+0.5O11,1), treatment is randomly assigned
at each stage with probability 1/2, and the binary tailoring variables are generated
via

P[O12 = 1] = P[O12 =−1] = 1/2,

P[O22 = 1|O12,A1] = 1−P[O22 =−1|O12,A1] = expit(0.1O12 + 0.1A1).

Thus the state variables are O1 = (O11,O12) and O2 = (O21,O22). Then for
ε ∼ N(0,1),

Y = 0.5O11 − 0.5A1+ 0.5O12A1 + 0.5O21+A2 + 1.4O22A2 +A1A2 + ε.

We fit three models. The first is correctly specified, the second omits the single pre-
dictive variable, O j1, from the model for the Q-function at each stage, and the third
omits the interaction A jO j2 from the Q-function model. As observed in Fig. 9.1,
residuals from the OLS fit at each stage of the Q-learning algorithm can be used
to detect the omission of important predictors of the response, but may not be suf-
ficiently sensitive to detect the omission of important tailoring variables from the
Q-function model.
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Fig. 9.1 Residual diagnostic plots for Q-learning using a simulated data set with n = 500. The
first and second columns show plots for residuals at the first and second stages, respectively. The
first row corresponds to a correctly specified Q-function model. In the second and third rows,
Q-function models at each stage are mis-specified by the omission, respectively, of a predictive
variable and an interaction with a tailoring variable

It is also possible to generalize the ideas of model-checking in regression to
G-estimation, producing a type of residual that can be used to construct residual
diagnostic plots. Recall that doubly-robust G-estimation can be based on the esti-
mating function:

U =
K−1

∑
j=0

Uj =
K−1

∑
j=0

{
Gmod, j(ψ)−E[Gmod, j(ψ)|Hj ]

}{
S j(A j)−E[S j(A j)|Hj]

}

where

Gmod, j(ψ)≡ Gmod, j(ψ)(HK ,AK ,ψ j) =Y − γ j(Hj,A j;ψ j)+
K−1

∑
m= j+1

μm(Hm,Am;ψm),
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for S j(A j) an analyst-specified function of Hj and A j. In general, due to high dimen-
sionality of the covariate space, estimation is made more tractable when parametric
models are specified for:

1. The blip function γ j(h j,a j;ψ j);
2. The expected potential outcome E[Gmod, j(ψ)|Hj;ς j ];
3. The treatment model E[A j|Hj;α j ], required for E[S j(A j)|Hj;α j].

The first of these provides estimates of the decision rule parameters while the other
two are considered nuisance models. Although some model mis-specification is per-
mitted in the doubly-robust framework, there are efficiency gains when both models
(2) and (3) are correct (Moodie et al. 2007).

Rich et al. (2010) note that, letting Gi j be Gmod, j(ψ) for subject i at stage j,

Gi j −E[Gi j|Hj;ς j(ψ j)]

=
{

Yi − γ j(Hj,A j;ψ j))+
K−1

∑
m= j+1

μm(Hm,Am;ψm)
}
−E[Gi j|Hj;ς j(ψ j)]

= Yi −
{

E[Gi j|Hj;ς j(ψ j)]−
K−1

∑
m= j+1

μm(Hm,Am;ψm)+ γ j(Hj,A j;ψ j))
}

has mean zero conditional on history Hj, so that a fitted value for Yi is given by

Ŷi j(ψ) =
{

E[Gi j|Hj;ς j(ψ j)]−
K−1

∑
m= j+1

μm(Hm,Am;ψm)+ γ j(Hj,A j;ψ j))
}
.

The residual for the ith individual at the jth stage is then defined to be

ri j(ψ) = Yi −
{

E[Gi j|Hj;ς j(ψ j)]−
K−1

∑
m= j+1

μm(Hm,Am;ψm)+ γ j(Hj,A j;ψ j))
}
.

To use the residual for model-checking purposes, estimates ψ̂ and ς̂ j(ψ̂ j) must be
substituted for the unknown parameters. The residuals ri j can be used to verify the
models E[Gi j|Hj;ς j(ψ j)] and γ(h j,a j;ψ j), diagnosing underspecification (that is,
the omission of a variable) and checking the assumptions regarding the functional
form in which covariates were included in the models.

Rich et al. (2010) considered a two-stage simulation, and examined plots of the
first- and second-stage residuals against covariates and fitted values. The resid-
ual plots were able to detect incorrectly-specified models in a variety of settings,
and appeared able to distinguish at which stage the model was mis-specified.
While patterns in residual plots provide a useful indicator of problems with model
specification, they do not necessarily indicate in which model a problem occurs,
i.e. whether the problem is in the specification of the blip function or the expected
counterfactual model.
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Consider the following example, where data are generated as follows:

O1 ∼ N(0,140)

O2 ∼ N(50+ 1.25O1,120)

A j = 1 with probability p j and A j =−1 with probability 1− p j for j = 1,2

Y ∼ N(300+ 1.6O1+ 1.2O2,300)− μ1(H1,A1;ψ1)− μ2(H2,A2;ψ2)

where p1 = expit(0.1− 0.003O1), p2 = expit(0.5− 0.004O2), and the regret func-
tions μ1(O j,A1;ψ1), μ2(H2,A2;ψ2) are based on the linear blip functions

γ1(O1,A1;ψ1) = (170− 3.4O1)I[A1 = 1]

γ2(H2,A2;ψ2) = (420− 2.8O2)I[A1 = 1].

In Fig. 9.2, we plot the residuals for four different models, three of which have
mis-specified components, from a single data set of size 500. The first and sec-
ond models mis-specified the form of E[Gi j|Hj;ς j(ψ j)], the expected counterfac-
tual model, at stage one and two, respectively. The third model correctly specified
the expected counterfactual models, but omitted O1 and O2 from the blip models at
both stages. The fourth model was correctly specified. In the first, second, and fourth
rows, the stage(s) where no models are mis-specified provide residual plots with no
systematic patterns. However, if the expected counterfactual model (row 1 and 2)
or the blip models (row 3) are mis-specified at one or both stages, obvious trends
appear in the residual plots. As noted by Rich et al. (2010), mis-specification of
the expected counterfactual model and the blip function result in similar patterns in
the residual plots; it is therefore not possible to determine which model is incorrect
simply by inspection of residual plots.

9.3 Discussion and Concluding Remarks

In this book, we have attempted to provide an introduction to the key findings
in the statistical literature of dynamic treatment regimes. In Chaps. 1 and 2, we
introduced the motivation for seeking evidence-based decision rules for treating
chronic conditions, and outlined the key features of the structures of longitudinal
data which are used to make inference about optimal treatment policies: obser-
vational follow-up studies and sequential multiple-assignment randomized trials.
In the third chapter, we delved more deeply into the mathematics of the decision
making problem and the reinforcement learning perspective. We also introduced Q-
learning in Chap. 3, which is increasingly finding favor in the scientific community
for the ease with which it can be implemented. Chapter 4 presented several semi-
parametric methods arising from the causal inference literature: G-estimation and
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Fig. 9.2 Residual diagnostic plots for G-estimation using simulated data set with n = 500. The first
two columns show plots for residuals and the first stage ( j = 1), the last two for residuals at the
second stage ( j = 2). Specifically, the columns plot: (1) first stage residuals vs. O1, (2) residuals
vs. fitted values at the first stage, (3) second stage residuals vs. O2, and (4) residuals vs. fitted
values at the second stage. Rows correspond model choices: (1) E[Gmod,1(ψ)|O1;ς1(ψ1)] mis-
specified, (2) E[Gmod,2(ψ)|H2;ς2(ψ2)] mis-specified, (3) γ1(O1,A1;ψ1) and γ2(H2,A2;ψ2) mis-
specified, and (4) all models correctly specified. The solid grey curve indicates a loess smooth
through the points

the regret-based methods including A-learning and regret-regression; where con-
nections exist between methods, they were demonstrated. In Chap. 5, we turned
our attention to methods that model regimes directly, including inverse probability
weighting, marginal structural models, and classification-based approaches.

Our survey of estimation methods continued in Chap. 6, where the likelihood-
based method of G-computation was demonstrated in both the frequentist and
Bayesian contexts. In Chap. 7, we turned our attention to estimating DTRs for
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alternative outcome types, including outcomes that are compound measures or
multi-component in nature, as well as time-to-event and discrete valued. A range
of methods have been applied in these settings, from Q-learning to marginal struc-
tural models to a likelihood-based approach.

Chapter 8 focused on improving estimation and inference, which presents a
particular challenge in the dynamic treatment regime setting due to non-regularity
of the estimators under certain underlying longitudinal data distributions, including
those in which treatment has no effect. Three methods of bias reduction are con-
sidered: hard- and soft-thresholding, and penalized Q-learning. We then presented
three bootstrap-based approaches to constructing confidence intervals which yield
greatly improved coverage over any naively constructed interval at and near points
in the parameter space that cause non-regularity of the estimators.

Finally, in this chapter, we have brought together a collection of topics that are at
the forefront of research activity in dynamic regimes. The first two sections consid-
ered practical problems in implementing optimal DTR estimation: variable selection
and model checking. In Sect. 9.1, we presented proposed approaches to the selection
of tailoring variables, which differs from the usual problem of variable selection in
that the analyst is seeking to find variables which qualitatively interact with treat-
ment rather than those which are good predictors of the outcome. In the following
section, we demonstrated the use of residual plots to assess model specification in
Q-learning and G-estimation. As a summary of current or ongoing work, it is likely
that this chapter is incomplete since the study of dynamic treatment regimes is, as
a field, so active and is attracting new researchers from a diversity of backgrounds.
The refinement and application of estimation techniques and the need to provide
reliable measures of goodness-of-fit will continue to provide inspiration for many
researchers in the coming years.

With the anticipated popularity of SMARTs in clinical and behavioral research,
we foresee an inevitable complexity in the near future. Note that many interventions,
either due to their very nature or due to logistical feasibility, need to be admin-
istered in group settings, requiring the design and analysis of cluster-randomized
SMARTs. Some such complex trials are currently being considered. At the design
level, cluster randomization would imply increased sample size requirements due
to intra-class correlation, as expected. At the analysis level, on the other hand, it
would open up several questions, e.g. how to incorporate random effects models or
generalized estimating equations (GEE) methods into the framework of estimation
techniques like Q-learning or G-estimation, whether the correlation would enhance
the phenomenon of non-regularity in inference, and so on. These are areas of active
current research.

While much of the personalized medicine literature is occupied by the use of
patients’ genetic information in personalizing treatments, the use of genetic infor-
mation in the dynamic regime context, as of now, is surprisingly limited. Thus we
envision this as a critically important research direction in the near future. This being
one of the most natural next steps, methodologists will have to carefully investigate
how best to handle the associated high dimensionality.
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In today’s health care, there seems to be an increasing trend in the use of sophis-
ticated mobile devices (e.g. smart phones, actigraph units containing accelerom-
eters, etc.) to remotely monitor patients’ chronic health conditions and to act on
the fly, when needed. According to the reinforcement learning literature, this is an
instance of online decision making in a possibly infinite horizon setting involving
many stages of intervention. Development of statistically sound estimation and in-
ference techniques for such a setting seems to be another very important future
research direction.

The call to personalize medicine is growing more urgent, and reaching beyond
the walls of academia. Even in popular literature (see, e.g. Topol 2012), it has been
declared that

This is a new era of medicine, in which each person can be near fully defined at the individ-
ual level, instead of how we practice medicine at the population level, with [. . . ] use of the
same medication and dosage for a diagnosis rather than for a patient.

While it is true that high dimensional data, even genome scans, are increas-
ingly available to the average “consumer” of medicine, there remains the need
to adequately and appropriately evaluate any new, tailored approach to treatment.
It is that evaluation, by statistical means, that has proven theoretically, computa-
tionally, and practically challenging and has driven many of the methodological
innovations described in this text.

The study of estimation and inference for dynamic treatment regimes is still
relatively young, and constantly evolving. Many inferential problems, including
inference about the optimal value function, remain incompletely addressed. A fur-
ther key challenge is the dissemination of the statistical results into the medical and
public health spheres, so that the methods being developed are not used in ‘toy’
examples, but are deployed in routine use for the evidence-based improvement of
treatment of chronic illnesses. While observational data can help drive hypotheses
and suggest good regimes to explore, increasing the use of SMARTs in clinical re-
search will be required to better understand and evaluate the sequential treatment
decisions that are routinely taken in the care of chronic illnesses.
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