
Chapter 8
Inference and Non-regularity

Inference plays a key role in almost all statistical problems. In the context of DTRs,
one can think of inference for mainly two types of quantities: (i) inference for the
parameters indexing the optimal regime; and (ii) inference for the value function
(mean outcome) of a regime – either a regime that was pre-specified, or one that
was estimated. The literature contains several instances of estimation and inference
for the value functions of one or more pre-specified regimes (Lunceford et al. 2002;
Wahed and Tsiatis 2004, 2006; Thall et al. 2000, 2002, 2007a). However there has
been relatively little work on inference for the value function of an estimated policy,
mainly due to the difficulty of the problem.

Constructing confidence intervals (CIs) for the parameters indexing the optimal
regime is important for the following reasons. First, if the CIs for some of these
parameters contain zero, then perhaps the corresponding components of the patient
history need not be collected to make optimal decisions using the estimated DTR.
This has the potential to reduce the cost of data collection in a future implementa-
tion of the estimated optimal DTR. Thus in the present context, CIs can be viewed
as a tool – albeit one that is not very sophisticated – for doing variable selection.
Such CIs can be useful in exploratory data analysis when trying to interactively find
a suitable model for, say, the Q-functions. Second, note that when linear models are
used for the Q-functions, the difference in predicted mean outcomes corresponding
to two treatments, e.g. a contrast of Q-functions or a blip function, becomes a lin-
ear combination of the parameters indexing the optimal regime. Point-wise CIs for
these linear combinations can be constructed over a range of values of the history
variables based on the CIs for individual parameters. These CIs can dictate when
there is insufficient support in the data to recommend one treatment over another; in
such cases treatment decisions can be made based on other considerations, e.g. cost,
familiarity, burden, preference etc.

An additional complication in inference for the parameters indexing the optimal
regime arises because of a phenomenon called non-regularity. It was Robins (2004)
who first considered the problem of inference for the parameters of the optimal
DTR in the context of G-estimation. As originally discussed by Robins, the treat-
ment effect parameters at any stage prior to the last can be non-regular under
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128 8 Inference and Non-regularity

certain longitudinal distributions of the data. By non-regularity, we mean that the
asymptotic distribution of the estimator of the treatment effect parameter does not
converge uniformly over the parameter space; see below for further details. This
technical phenomenon of non-regularity has considerable practical consequences; it
often causes bias in estimation, and leads to poor frequentist properties of Wald-type
or other standard confidence intervals. Any inference technique that aims to provide
good frequentist properties such as appropriate Type I error and nominal coverage
of confidence intervals has to address the problem of non-regularity. In this chap-
ter, we consider various approaches to inference in the context of Q-learning and
G-estimation.

8.1 Inference for the Parameters Indexing the Optimal
Regime Under Regularity

All of the recursive methods of estimation considered in previous chapters,
including Q-learning and G-estimation, can be viewed as two-step (substi-
tution) estimators at each stage. At stage j, the first step of estimation re-
quires finding the effect of treatment at all future stages, and then substitut-
ing these into the stage j estimating equation in order to find the estimator
of ψ j. For example, in the Q-learning context, for a two-stage example, the
pseudo-outcome at the first stage equals Ŷ1i = Y1i + maxa2 Qopt

2 (H2i,a2; β̂2, ψ̂2)
which relies on estimators of β2 and ψ2. Similarly, in the recursive implemen-
tation of G-estimation, the stage-1 estimating function includes Gmod,1(ψ1) =

Y +
[
γ1(h1,d

opt
1 ;ψ1)− γ1(h1,a1;ψ1)

]
+

[
γ2(h2,d

opt
2 ; ψ̂2)− γ2(h2,a2; ψ̂2)

]
, which

requires estimators of ψ2 (as well as estimators of propensity score model parame-
ters). At each stage, the decision rule parameters for that particular stage are treated
as parameters of interest, and any other parameters including those for treatment
models or subsequent treatment stages are considered nuisance parameters.

Newey and McFadden (1994) provide a discussion of the impact of the first-step
estimation on the standard errors of the second-step estimates. Van der Laan and
Robins (2003) also discuss the issue of second-step estimates’ standard errors, arriv-
ing at the same standard error as Newey and McFadden found by a different, more
measure-theoretic approach. We briefly review the theory of variance derivations
for estimating equations, and apply these methods to Q-learning and G-estimation.
Throughout this section, we consider only regular estimators, which in the DTR
context implies that there is a unique optimal treatment for each possible treatment
and covariate history at each stage. We will then consider the more challenging
problem of non-regular estimators in Sect. 8.2 and subsequent sections.
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8.1.1 A Brief Review of Variances for Estimating Equations

In this section, we provide a concise overview of the theory of estimating equations,
since most methods of estimation discussed in this book are M-estimators, i.e. esti-
mators which can be obtained as the minima of sums of functions of the data or are
roots of an estimating function. In particular, as implemented in previous chapters,
Q-learning and G-estimation are both M-estimators. This development will enable
us to derive and discuss measures of variability and confidence of the estimators of
decision rule parameters more precisely.

A function of the parameter and data, Un(θ) = Un(θ ,Y ) = PnU(θ ,Yi), which
is of the same dimensionality as the parameter θ for which E[Un(θ)] = 0 is con-
sidered. Un(θ) is said to be an estimating function (EF), and θ̂ is an EF estimator
if it is a solution to the estimating equation Un(θ) = 0. That is, θ̂ is an EF esti-
mator if Un(θ̂) = 0. Note that the EF Un(θ ,Y ) is itself a random variable, since
it is a function of the random variable Y . To perform inference, we derive the fre-
quency properties of the EF and can then transfer these properties to the resultant
estimator with the help of a Taylor approximation and the delta method. Excel-
lent resources on asymptotic theory of statistics are given by Van der Vaart (1998)
and Ferguson (1996); or for a particular focus on semi-parametric methods, see
Bickel et al. (1993) and Tsiatis (2006).

The corresponding estimating equation that defines the estimator θ̂ has the form

Un(θ̂) =Un(θ̂ ,Y ) = PnU(θ̂ ,Yi) = 0. (8.1)

The estimating Eq. (8.1) is said to be unbiased if E[Un(θ)] = 0, and so

Var [Un(θ)] = E
[
(Un(θ)−E[Un(θ)])(Un(θ)−E[Un(θ)])T

]

= E[Un(θ)Un(θ)T ],

which converges to some matrix ΣU . Further, Un(θ) is a sum of conditionally inde-
pendent terms, so under standard regularity conditions

Un(θ)→d N (0,ΣU ) . (8.2)

Using a first order Taylor expansion, we find

0 =Un(θ̂n) =Un(θ)+
(

∂Un(θ)
∂θ

)
(θ̂ −θ)+op(1).

This gives that (θ̂ − θ) = −
(

∂Un(θ)
∂θ

)−1
Un(θ)+ op(1). From this, we can deduce

that θ̂ →p θ and
√

n (θ̂ −θ)→d Np(0,A
−1ΣU (A

T )−1) (8.3)
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where A = −E
[

∂
∂θ Un(θ)

]
. That is, θ̂ is a consistent and asymptotically normally

distributed estimator. The form of the variance in expression (8.3) has led to it being
called the sandwich estimator, where A forms the “bread” and ΣU is the “filling” of
the sandwich.

It follows from Eq. (8.3) that
√

nΣ−1/2
θ̂ (θ̂ − θ) →d Np(0,Ip) where Σθ̂ =

A−1ΣU (AT )−1 and Ip is the p× p identity matrix, implying that confidence inter-
vals can be constructed, and significance tests performed, using a Wald statistic

of the form
√

nΣ−1/2
θ̂ θ̂ . In a more familiar form, this would give, for example, a

95 % confidence interval of θ̂ ± 1.96SE(θ̂) for a scalar-valued parameter θ (for
p-dimensional parameter θ , one can similarly construct component-wise CIs) and

a test statistic W =
√

nΣ−1/2
θ̂ θ̂ .

Confidence intervals for θ can also be constructed directly using the EF and its

standard error. From Eq. (8.2), we have Σ−1/2
U Un(θ) →d N (0,Ip). It is therefore

the case that we can construct a score or Rao interval by searching for values θ
that satisfy |Σ−1/2

U Un(θ)| ≤ 1.96. Unlike the Wald intervals, which rely only on the
value of the estimated parameter and its standard error, score-based intervals may
be more computationally burdensome as they may require a search over the space
of θ . However, score-based intervals may exhibit better finite sample properties even
when standard regularity conditions do not hold, since these intervals do not require
derivatives of the EF (Robins 2004; Moodie and Richardson 2010).

Now suppose that θ is vector-valued and can be partitioned such that
θ = (ψT ,β T )T where ψ is of interest, and β contains nuisance parameters (such
as, for example, parameters associated with predictive variables in Q-learning,
or parameters from a propensity score model in G-estimation). If interest lies in
performing significance tests about ψ leaving β unspecified, i.e. in testing null
hypotheses of the form

H0 : ψ = ψ0,β = ‘anything’

versus the alternative hypothesis

HA : (ψ,β ) �= (ψ0,β )

then we have what is called a composite null hypothesis. Suppose further that the

EF Un(θ) can be decomposed into Un(θ) =
(

Un(ψ)
Un(β )

)
.

To derive the correct variance for the composite null hypothesis, consider a Tay-
lor expansion of Un(ψ) about the limiting value, β , of a consistent estimator, β̂ , of
the nuisance parameter β :

Uadj(ψ) = Un(ψ)+

[
∂

∂β
Un(ψ)

]
(β̂ −β )+op(1) (8.4)

= Un(ψ)−
[

∂
∂β

Un(ψ)

][
∂

∂β
Un(β )

]−1

Un(β )+op(1). (8.5)
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From Eq. (8.4), it can be seen that E[Un(ψ)] = E[Uadj(ψ)] so Uadj(ψ) is an unbiased
EF; Eq. (8.5) follows from Eq. (8.4) via a substitution from a Taylor expansion of
the EF for β about its limiting value. From Eq. (8.5), we can derive the asymptotic
distribution of the parameter of interest ψ to be

√
n (ψ̂ −ψ)→d Np(0,Σψ̂)

where Σψ̂ = A−1
adjΣUadj(A

T
adj)

−1 is the asymptotic variance of ψ̂ with Aadj the

probability limit of −E
[

∂
∂ψ Uadj(ψ)

]
and ΣUadj is the probability limit of

E
[
Uadj(ψ)Uadj(ψ)T

]
. Note that ψ̂ is the substitution estimator defined by finding

the solution to the EF where an estimate of the (vector) nuisance parameter β̂ has
been plugged into the equation in place of the true value, β .

It is interesting to consider the variance of the substitution estimator ψ̂ with
the estimator, say ψ̃ , that would result from plugging in the true value of the nui-
sance parameter (a feasible estimator only when such true values are known). That
is, we may wish to consider Σψ̂ and Σψ̃ . It turns out that no general statement
regarding the two estimators’ variances can be made, however there are special
cases in which relationships can be derived (see Henmi and Eguchi (2004) for a
geometric consideration of EF which serves to elucidate the variance relationships).
For example, if the EF is the score function for θ in a parametric model, there is a
cost (in terms of information loss or variance inflation) that is incurred for having to
estimate the nuisance parameters. In contrast, in the semi-parametric setting where
the score functions for ψ and β are orthogonal and that the score function is used as
the EF for β , it can be shown that Σψ̃ −Σψ̂ is positive definite. That is, efficiency is
gained by estimating rather than knowing the nuisance parameter β .

8.1.2 Asymptotic Variance for Q-learning Estimators

We now apply the theory of the previous section to Q-learning for the case where we
use linear models parameterized by θ j = (ψ j,β j) of the form Qopt

j (Hj,A j;β j,ψ j) =

β T
j Hj0 +(ψT

j Hj1)A j. For simplicity of exposition, we will focus on the two-stage
setting, but extensions to the general, K-stage setting follow directly. Following
the algorithm for Q-learning outlined in Sect. 3.4.1, we begin with a regression of
Y2 using the model Qopt

2 (H2,A2;β2,ψ2) = β T
2 H20 +(ψT

2 H21)A2. Letting X2 denote
(H20,H21A2), this gives a linear regression of the familiar form E[Y2|X2] = X2θ2,
with Var[θ̂2] = (XT

2 X2)
−1σ2 where σ2 denotes the variance of the residuals Y2 −

X2θ2. Confidence intervals can then be formed, and significance tests performed, for
the vector parameter θ2. If composite tests of the form H0 : ψ2 = 0 are desired, hy-
pothesizing that the variables contained in H21 are not significantly useful tailoring
variables without specifying any hypothesized values for the value of β2, then the

Wald statistic should be scaled using I
1/2

ψ2ψ2.β2
= (Iψ2ψ2 −Iψ2β2

I −1
β2β2

Iβ2ψ2
)1/2,

where
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(
Iψ2ψ2 Iψ2β2

Iβ2ψ2
Iβ2β2

)

is a block-diagonal matrix decomposition of the information of the regression

parameters at the second stage, and similarly I
1/2

ψ2ψ2.β2
should be used to determine

the limits of a confidence interval.
Now, let us consider the first-stage estimator. First stage estimation proceeds

by first forming the pseudo-outcome Y1 +β T
2 H20 + |ψT

2 H21|, which we implement
in practice using the estimate Ŷ1 = Y1 + β̂ T

2 H20 + |ψ̂T
2 H21|, and regressing this on

(H10,H11A1) using the model Qopt
1 (H1,A1;β1,ψ1) = β T

1 H10 + (ψT
1 H11)A1. This

two-stage regression-based estimation can be viewed as an estimating equation
based procedure as follows. Define

U2,n(θ2) = Pn

(
Y2 −Qopt

2 (H2,A2;β2,ψ2)
)( ∂

∂θ2
Qopt

2 (H2,A2;β2,ψ2)
)

= Pn

(
Y2 −β T

2 H20 − (ψT
2 H21)A2

)
(HT

20,H
T
21A2)

T ,

U1,n(θ1,θ2) = Pn

(
Y1 +max

A2
Qopt

2 (H2,A2;β2,ψ2)−

Qopt
1 (H1,A1;β1,ψ1)

)( ∂
∂θ1

Qopt
1 (H1,A1;β1,ψ1)

)

= Pn

(
Y1 +β T

2 H20 + |ψT
2 H21|−β T

1 H10 − (ψT
1 H11)A1

)
(HT

10,H
T
11A1)

T .

Then the (joint) estimating equation for all the parameters from both stages of
Q-learning is given by

(
U2,n(θ2)

U1,n(θ1,θ2)

)
= 0.

At the first stage, then, both the main effect parameters β1 and all second
stage parameters can be considered nuisance parameters. Collecting these into
a single vector β � = (β1,β2,ψ2), we use a similar form to above, form-
ing Wald test statistics or CIs for the tailoring variable parameters using

I
1/2

ψ1ψ1.β
�
1

= (Iψ1ψ1 −Iψ1β �
1
I −1

β �
1β �

1

Iβ �
1ψ1

)1/2, where

(
Iψ1ψ1 Iψ1β �

1

Iβ �
1ψ1

Iβ �
1β �

1

)

is a block-diagonal matrix decomposition of the inverse-variance of all parameters.
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8.1.3 Asymptotic Variance for G-estimators

The variance of the optimal decision rule parameters ψ̂ must adjust for the plug-in
estimates of nuisance parameters in the estimating function of Eq. (4.3), U(ψ) =

∑n
i=1 ∑K

j=1 Uj(ψ j, ς̂ j(ψ j), α̂ j). In the derivations that follow, we assume the param-
eters are not shared between stages, however the calculations are similar in the
shared-parameter setting. Second derivatives of the estimating functions for all
parameters are needed, and thus we require that each subject’s optimal regime must
be unique at every stage except possibly the first. If for any individual, the optimal
treatment is not unique, then it is the case that γ j(h j,a j) = 0, or equivalently that for
a Q-function β T

j Hj0 +(ψT
j Hj1)(A j +1)/2, ψT

j Hj1 = 0. Provided the rule is unique,
then the estimating functions used in each stage of estimation for G-estimation will
be differentiable and so the asymptotic variance can be determined.

Robins (2004) derives the variance of U(ψ,ς(ψ),α) by performing a first order
Taylor expansion of the function about the limiting values of ς̂(ψ) and α̂ , ς and α:

Uadj(ψ) = U(ψ,ς ,α)+E

[
∂

∂ς
U(ψ,ς ,α)

]
(ς̂(ψ)− ς)+

E

[
∂

∂α
U(ψ,ς ,α)

]
(α̂ −α)+op(1)

to obtain the adjusted G-estimating function, Uadj(ψ), which estimates the
parameters from all stages j = 1, . . . ,K simultaneously. Of course, with the limiting
values of the nuisance parameters unknown, this expression does not provide a
practical EF. If l̇α and l̇ς denote the (score) EF for the treatment model and expected
counterfactual model nuisance parameters, respectively, then we can again apply a
Taylor expansion to find

α̂ −α = −
(

E

[
∂

∂α
l̇α(α)

])−1

l̇α(α)+op(1),

ς̂(ψ)− ς = −
(

E

[
∂

∂ς
l̇ς (ς)

])−1

l̇ς (ς)+op(1).

This gives

Uadj(ψ) = U(ψ,ς ,α)−E

[
∂

∂ς
U(ψ,ς ,α)

](
E

[
∂

∂ς
l̇ς (ς)

])−1

l̇ς (ς)

− E

[
∂

∂α
U(ψ,ς ,α)

]
E

[
∂

∂α
l̇α(α)

]−1

l̇α(α).

Thus the estimating function has variance E[Uadj(ψ)⊗2] = E[Uadj(ψ)Uadj(ψ)T ].
It follows that the variance of the blip function parameters which index the deci-
sion rules, ψ̂ = (ψ̂T

1 , ψ̂T
2 , . . . , ψ̂T

K )
T , is given by
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Σψ̂ = E

⎡
⎣
{(

E

[
∂

∂ψ
Uadj(ψ,ς ,α)

])−1

Uadj(ψ,ς ,α)

}⊗2
⎤
⎦ .

Suppose at each of two stages, p different parameters are estimated. Then Σψ̂ is
the (2p)× (2p) covariance matrix

Σψ̂ =

(
Σ (11)

ψ̂ Σ (12)
ψ̂

Σ (21)
ψ̂ Σ (22)

ψ̂

)
.

The p × p covariance matrix of ψ̂2 = (ψ̂20, . . . , ψ̂2(p−1)) that accounts for using

the substitution estimates ς̂2 and α̂2 is Σ (22)
ψ̂ , and accounting for substituting ψ̂2

as well as ς̂1 and α̂1 to estimate ψ1 gives the p× p covariance matrix Σ (11)
ψ̂ for

ψ̂1 = (ψ̂10, . . . , ψ̂1(p−1)).
However, as shown in Sect. 4.3.1, parameters can be estimated separately at each

stage using G-estimation recursively at each stage. In such a case, it is possible to

estimate the variances Σ (22)
ψ̂ and Σ (11)

ψ̂ of the stage-specific parameters recursively as
well (Moodie 2009a). The development for the estimation of the diagonal compo-

nents, Σ ( j j)
ψ̂ , of the covariance matrix Σψ̂ will be undertaken in a two-stage setting,

but the extension to the K stage case follows directly.
Let Uadj,1(ψ1,ψ2) and Uadj,2(ψ2) denote, respectively, the first and second com-

ponents of Uadj(ψ). At the second stage, use Uadj,2 to calculate Σ (22)
ψ̂ . To find the

covariance matrix of ψ̂1, use a Taylor expansion of U1(ψ1, ψ̂2, ς̂1(ψ1), α̂1) about the
limiting values of the nuisance parameters (ψ2,ς1,α1). After some simplification,
this gives:

Uε
adj,1(ψ1,ψ2) = Uadj,1(ψ1,ψ2)−E

[
∂

∂ψ2
U1(ψ1,ψ2,ς1,α1)

]
·

(
E

[
∂

∂ψ2
Uadj,2(ψ2,ς2,α2)

])−1

Uadj,2(ψ2,ς2,α2)

+op(1).

It then follows that
√

n(ψ̂1 −ψ1) converges in distribution to

N

⎛
⎝0,E

⎡
⎣
{(

E

[
∂

∂ψ1
Uε

adj,1

])−1

Uε
adj,1

}⊗2
⎤
⎦

⎞
⎠ .

Thus, the diagonal components of Σψ̂ are obtained using a more tractable calcula-
tion.

Note that if there are K > 2 stages, the similar derivations can be used, but re-
quire the use of K − j adjustment terms to Uadj, j for the estimation and substitu-
tion of all future decision rule parameters, ψ j+1, . . . ,ψK . Note that Uε

adj and Uadj
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produce numerically the same variance estimate at each stage: that is, the recursive
variance calculation simply provides a more convenient and less computationally
intensive approach by taking advantage of known independences (i.e. zeros in the
matrix of derivatives of U(ψ) with respect to ψ) which arise because decision rules
do not share parameters at different stages. The asymptotic variances can lead to
coverage below the nominal level in small samples, but perform well for samples
of size 1,000 or greater in regular settings where differentiability of the EFs holds
(Moodie 2009a).

8.1.4 Projection Confidence Intervals

Berger and Boos (1994) and Berger (1996) proposed a general method for
constructing valid hypothesis tests in the presence of a nuisance parameter. One
can develop an asymptotically exact confidence interval for the stage 1 parameter
ψ1 by inverting these hypothesis tests, based on the following nuisance parameter
formulation. As we have noted above, many DTR parameter estimators are obtained
via substitution because the true value of the stage 2 parameter ψ2 is unknown and
must be estimated (see Sect. 8.2 for details). Instead, if the true value of ψ2 were
known a priori, the asymptotic distribution of

√
n(ψ̂1 −ψ1) would be regular (in

fact, normal), and standard procedures could be used to construct an asymptotically
valid confidence interval although performance of such asymptotic variance esti-
mators may be poor in small samples. Thus, while ψ2 is not of primary interest for
analyzing stage 1 decisions, it nevertheless plays an essential role in the asymptotic
distribution of

√
n(ψ̂1 −ψ1). In this sense, ψ2 is a nuisance parameter. This idea

was used by Robins (2004) to construct a projection confidence interval for ψ1.
The basic idea is as follows. Let Sn,1−α(ψ2) denote an asymptotically exact con-

fidence interval for ψ1 if ψ2 were known, i.e., P(ψ1 ∈Sn,1−α(ψ2)) = 1−α+oP(1).
Of course, the exact value of ψ2 is not known, but since

√
n(ψ̂2 −ψ2) is regular

and asymptotically normal, it is straightforward to construct a (1− ε) asymptotic
confidence interval for ψ2, say Cn,1−ε , for arbitrary ε > 0. Then, it follows that⋃

γ∈Cn,1−ε Sn,1−α(γ) is a (1−α − ε) confidence interval for ψ1. To see this, note
that

P
(
ψ1 ∈

⋃

γ∈Cn,1−ε

Sn,1−α(γ)
)≥ 1−α+oP(1)+P

(
ψ2 /∈Cn,1−ε

)
= 1−α −ε+oP(1).

(8.6)

Thus, the projection confidence interval is the union of the confidence intervals
Sn,1−α(γ) over all values γ ∈ Cn,1−ε , and is an asymptotically valid (1−α − ε)
confidence interval for ψ1. The main downside of this approach is that it is poten-
tially highly conservative. Also, its implementation can be computationally highly
expensive.
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8.2 Exceptional Laws and Non-regularity of the Parameters
Indexing the Optimal Regime

The cumulative distribution function of the observed longitudinal data is said to
be exceptional if, at some stage j, the optimal treatment decision depends on at
least one component of covariate and treatment history and the probability that the
optimal rule is not unique is positive (Robins 2004). The combination of three fac-
tors makes a law exceptional: (i) the form of the blip or Q-function model, (ii) the
true value of the blip model parameters, and (iii) the distribution of treatments and
state variables. For a law to be exceptional, then, condition (i) requires the blip or
Q-function model to depend on at least one covariate such as prior treatment; condi-
tions (ii) and (iii) require that the model takes the value zero with positive probabil-
ity, that is, there is some subset of the population in which the optimal treatment is
not unique. Exceptional laws may commonly arise in practice: under the hypothesis
of no treatment effect, for a blip or Q-function that includes at least one compo-
nent of treatment and state variable history, every distribution is an exceptional law.
More generally, it may be the case that a treatment is ineffective in a sub-group of
the population under study. Exceptional laws give rise to non-regular estimators.

The issue of non-regularity can be better understood with a simple but instructive
example discussed by Robins (2004). Consider the problem of estimating |μ | based
on n i.i.d. observations X1, . . . ,Xn from N (μ ,1). Note that |X̄n| is the maximum
likelihood estimator of |μ |, where X̄n is the sample average. It can be shown that the
asymptotic distribution of

√
n(|X̄n|− |μ |) for μ = 0 is different from that for μ �= 0,

and more importantly, the change in the distribution at μ = 0 happens abruptly. Thus
|X̄n| is a non-regular estimator of |μ |. Also, for μ = 0,

lim
n→∞

E[
√

n(|X̄n|− |μ |)] =
√

2
π
.

Robins referred to this quantity as the asymptotic bias of the estimator |X̄n|. This
asymptotic bias is one symptom of the underlying non-regularity, as discussed by
Moodie and Richardson (2010).

We can graphically illustrate the asymptotic bias resulting from non-regularity
using a class of generative models in which exceptional laws arise (see Sect. 8.8
for details). Thus there are many combinations of parameters that lead to (near-)
non-regularity, and thereby bias in the parameter estimates. Hence it makes sense to
study the prevalence and magnitude of bias over regions of the parameter space.

Moodie and Richardson (2010) employed a convenient way to study this bias in
the context of G-estimation and the associated hard-threshold estimators using bias
maps. We employ the same technique here in the Q-learning context; see Fig. 8.1.
Bias maps show the absolute bias in ψ̂10 (parameter denoting main effect of treat-
ment at stage 1) as a function of sample size n and one of the stage 2 parameters,
ψ20, ψ21, or ψ22 (which are equal to the generative parameters γ5, γ6 and γ7, re-
spectively). The plots represent the average bias over 1,000 simulated data sets,
computed over a range of 2 units (on a 0.1 unit grid) for each parameter at sample
sizes 250,300, . . . ,1000. From the bias maps, it is clear that there exist many regions
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Fig. 8.1 Absolute bias of ψ̂10 in hard-max Q-learning in different regions (regular and non-regular)
of the underlying parameter space. Different plots correspond to different parameter settings.

of the parameter space that lead to bias in ψ̂10, thereby reinforcing the necessity to
address the problem through careful estimation and inference techniques.

As noted by Moodie and Richardson (2010), the bias maps can be used to visually
represent the asymptotic results concerning DTR estimators. Consistency may be
visualized by looking at a horizontal cross-section of a bias map: as sample size in-
creases, the bias of the first-stage estimator will decrease to be smaller than any
fixed, positive number at all non-regular parameter settings, even those that are
nearly non-regular. However, as derived by Robins (2004), there exist sequences of
data generating processes {ψ(n)} for which the second-stage parameters ψ2 decrease
with increasing n in such a way that the asymptotic bias of the first-stage estimator
ψ̂1 is strictly positive. Contours of constant bias can be found along the lines on the
bias map traced by plotting g2(ψ2) = kn−1/2 against n, for some constant k. The
asymptotic bias is bounded and, in finite samples, the value of the second-stage pa-
rameters (i.e. the “nearness” to non-regularity) and the sample size both determine
the bias of the first-stage parameter estimator.



138 8 Inference and Non-regularity

In many situations where the asymptotic distribution of an estimator is
unavailable, bootstraping is used as an alternative approach to conduct inference.
But the success of the bootstrap also hinges on the underlying smoothness of
the estimator. When an estimator is non-smooth, the ordinary bootstrap proce-
dure produces an inconsistent bootstrap estimator (Shao 1994). Inconsistency of
bootstrap in the above toy example has been discussed by Andrews (2000). Poor
performance of usual bootstrap CIs in the Q-learning context has been illustrated
by Chakraborty et al. (2010). We first discuss non-regularity in the specific con-
texts of G-estimation and Q-learning, then, in the following sections, we consider
several different approaches to inference that attempt to address the problem of
non-regularity.

8.2.1 Non-regularity in Q-learning

With (3.8) as the model for Q-functions, the optimal DTR is given by

dopt
j (Hj) = argmax

a j
(ψT

j Hj1)a j = sign(ψT
j Hj1), j = 1,2, (8.7)

where sign(x) = 1 if x > 0, and −1 otherwise. Note that the term β T
j Hj0 on the right

hand side of (3.8) does not feature in the optimal DTR. Thus for estimating optimal
DTRs, the ψ js are the parameters of interest, while β js are nuisance parameters.
These ψ js are the policy parameters for which we want to construct confidence
intervals.

Inference for ψ2, the stage 2 parameters, is straightforward since this falls in
the framework of standard linear regression. In contrast, inference for ψ1, the
stage 1 parameters, is complicated by the previously discussed problem of non-
regularity resulting from the underlying non-smooth maximization operation in the
estimation procedure. To further understand the problem, recall that the stage 1
pseudo-outcome in Q-learning for the i-th subject is

Ŷ1i = Y1i +max
a2

Qopt
2 (H2i,a2; β̂2, ψ̂2) = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i|, i = 1, . . . ,n,

which is a non-smooth (the absolute value function is non-differentiable at zero)
function of ψ̂2. Since ψ̂1 is a function of Ŷ1i, i = 1, . . . ,n, it is in turn a non-
smooth function of ψ̂2. As a consequence, the distribution of

√
n(ψ̂1 −ψ1) does

not converge uniformly over the parameter space of (ψ1,ψ2) (Robins 2004). More
specifically, the asymptotic distribution of

√
n(ψ̂1 −ψ1) is normal if ψ2 is such that

P[H2 : ψT
2 H21 = 0] = 0, but is non-normal if P[H2 : ψT

2 H21 = 0]> 0, and this change
in the asymptotic distribution happens abruptly. A precise expression for the asymp-
totic distribution can be found in Laber et al. (2011). The parameter ψ1 is called
a non-regular parameter and the estimator ψ̂1 a non-regular estimator; see Bickel
et al. (1993) for a precise definition of non-regularity. Because of this non-regularity,
given the noise level present in small samples, the estimator ψ̂1 oscillates between
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the two asymptotic distributions across samples. Consequently, ψ̂1 becomes a biased
estimator of ψ1, and Wald type CIs for components of ψ1 show poor coverage rates
(Robins 2004; Moodie and Richardson 2010).

8.2.2 Non-regularity in G-estimation

Let us again consider a typical, two-stage scenario with linear optimal blip func-
tions,

γ1(h1,a1) = (ψ10 +ψ11o1)(a1 +1)/2, and

γ2(h2,a2) = (ψ20 +ψ21o2 +ψ22(a1 +1)/2+ψ23o2(a1 +1)/2)(a2 +1)/2.

Let η2 = ψ20 + ψ21o2 + ψ22(a1 + 1)/2 + ψ23o2(a1 + 1)/2 and similarly define
η̂2 = ψ̂20 + ψ̂21o2 + ψ̂22(a1 + 1)/2+ ψ̂23o2(a1 + 1)/2. The G-estimating function
for ψ2 is unbiased, so E[η̂2] = η2. The sign of η2 is used to decide optimal treat-
ment at the second stage: dopt

2 = sign(η2) = sign(ψ20 +ψ21o2 +ψ22a1 +ψ23o2a1)

and d̂opt

2 = sign(η̂2) so that now the G-estimating equation solved for ψ1 at the first
interval contains:

Gmod,1(ψ1) = Y − γ1(o1,a1;ψ1)+ [γ2(h2, d̂
opt

2 ; ψ̂2)− γ2(h2,a2; ψ̂2)]

= Y − γ1(o1,a1;ψ1)+ [(d̂opt

2 −a2)(ψ̂20 + ψ̂21o2 + ψ̂22a1 + ψ̂23o2a1)/2]

= Y − γ1(o1,a1;ψ1)+ sign(η̂2)η̂2/2−a2η̂2/2
E
≥ Y − γ1(o1,a1;ψ1)+ sign(η2)η2/2−a2η2/2 = 0,

where E
≥ is used to denote “greater than or equal to in expectation”. The quan-

tity
[
γ2(h2,d

opt

2 ;ψ2)− γ2(h2,a2;ψ2)
]

in Gmod,1(ψ1) – or more generally, the sum

∑
k> j

[
γk(hk,d

opt
k ;ψk)− γk(hk,ak;ψk)

]
in Gmod, j(ψ j) – corresponds conceptually to |μ | in

the toy example with normally-distributed random variables Xi that was introduced
at the start of the section. By using a biased estimate of sign(η2)η2 in Gmod,1(ψ1),
some strictly positive value is added into the G-estimating equation for ψ1. The esti-
mating function no longer has expectation zero and hence is asymptotically biased.

8.3 Threshold Estimators with the Usual Bootstrap

In this section, we will present two approaches to “regularize” the non-regular
estimator (also called the hard-max estimator because of the maximum operation
used in the definition) by thresholding and/or shrinking the effect of the term in-
volving the maximum, i.e. |ψ̂T

2 H21|, towards zero. Usual bootstrap procedures in
conjunction with these regularized estimators offer considerable improvement over
the original hard-max procedure, as verified in extensive simulations. While these
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estimators are quite intuitive in nature, only limited theoretical results are available.
We present these in the context of Q-learning, but these can equally be applied in a
G-estimation setting.

8.3.1 The Hard-Threshold Estimator

The general form of the hard-threshold pseudo-outcome is

Ŷ HT
1i = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i| · I[|ψ̂T

2 H21,i|> λi], i = 1, . . . ,n, (8.8)

where λi (>0) is the threshold for the i-th subject in the sample (possibly depending
on the variability of the linear combination ψ̂T

2 H21,i for that subject). One way to
operationalize this is to perform a preliminary test (for each subject in the sample) of
the null hypothesis ψT

2 H21,i = 0 (H21,i is considered fixed in this test), set Ŷ HT
1i = Ŷ1i

if the null hypothesis is rejected, and replace |ψ̂T
2 H21,i| with the “better guess” of 0

in the case that the test fails to reject the null hypothesis. Thus the hard-threshold
pseudo-outcome can be written as

Ŷ HT
1i = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i| · I

[ √
n|ψ̂T

2 H21,i|√
HT

21,iΣ̂ψ̂2 H21,i

> zα/2

]
(8.9)

for i = 1, . . . ,n, where n−1Σ̂ψ̂2 is the estimated covariance matrix of ψ̂2. The
corresponding estimator of ψ1, denoted by ψ̂HT

1 , will be referred to as the hard-
threshold estimator. The hard-threshold estimator is common in many areas like
variable selection in linear regression and wavelet shrinkage (Donoho and John-
stone 1994). Moodie and Richardson (2010) proposed this estimator for bias cor-
rection in the context of G-estimation, and called it the Zeroing Instead of Plugging
In (ZIPI) estimator. In regular data-generating settings, ZIPI estimators converge to
the usual recursive G-estimators and therefore are asymptotically consistent, unbi-
ased and normally distributed. Furthermore, in any non-regular setting where there
exist some individuals for whom there is a unique optimal regime, ZIPI estimators
have smaller asymptotic bias than the recursive G-estimators provided parameters
are not shared across stages (Moodie and Richardson 2010).

Note that Ŷ HT
1 is still a non-smooth function of ψ̂2 and hence ψ̂HT

1 is a non-
regular estimator of ψ1. However, the problematic term |ψ̂T

2 H21| is thresholded, and
hence one might expect that the degree of non-regularity is somewhat reduced. An
important issue regarding the use of this estimator is the choice of the significance
level α of the preliminary test, which is an unknown tuning parameter. As dis-
cussed by Moodie and Richardson (2010), this is a difficult problem even in better-
understood settings where preliminary test based estimators are used; no widely ap-
plicable data-driven method for choosing α in this setting is available. Chakraborty
et al. (2010) studied the behavior of the usual bootstrap in conjunction with this
estimator empirically.
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8.3.2 The Soft-Threshold Estimator

The general form of the soft-threshold pseudo-outcome considered here is

Ŷ ST
1i = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i| ·

(
1− λi

|ψ̂T
2 H21,i|2

)+

, i = 1, . . . ,n, (8.10)

where x+ = xI[x > 0] stands for the positive part of a function, and λi (>0) is a
tuning parameter associated with the i-th subject in the sample (again possibly de-
pending on the variability of the linear combination ψ̂T

2 H21,i for that subject). In the
context of regression shrinkage (Breiman 1995) and wavelet shrinkage (Gao 1998),
the third term on the right side of (8.10) is generally known as the non-negative
garrote estimator. As discussed by Zou (2006), the non-negative garrote estimator
is a special case of the adaptive lasso estimator. Chakraborty et al. (2010) proposed
this soft-threshold estimator in the context of Q-learning.

Like the hard-threshold pseudo-outcome, Ŷ ST
1 is also a non-smooth function of

ψ̂2 and hence ψ̂ST
1 remains a non-regular estimator of ψ1. However, the problematic

term |ψ̂T
2 H21| is thresholded and shrunk towards zero, which reduces the degree of

non-regularity. As in the case of hard-threshold estimators, a crucial issue here is to
choose a data-driven tuning parameter λi; see below for a choice of λi following a
Bayesian approach. Figure 8.2 presents the hard-max, the hard-threshold, and the
soft-threshold pseudo-outcomes.

Choice of Tuning Parameters

A hierarchical Bayesian formulation of the problem, inspired by the work of
Figueiredo and Nowak (2001) in wavelets, was used by Chakraborty et al. (2010)
to choose the λis in a data-driven way. It turns out that the estimator (8.10) with
λi = 3HT

21,iΣ̂ψ̂2 H21,i/n, i = 1, . . . ,n, where n−1Σ̂ψ̂2 is the estimated covariance ma-
trix of ψ̂2, is an approximate empirical Bayes estimator. The following theorem can
be used to derive the choice of λi.

Theorem 8.1. Let X be a random variable such that X |μ ∼ N(μ ,σ2) with known
variance σ2. Let the prior distribution on μ be given by μ |φ 2 ∼ N(0,φ 2), with
Jeffrey’s noninformative hyper-prior on φ 2, i.e., p(φ 2) ∝ 1/φ 2. Then an empirical
Bayes estimator of |μ | is given by

ˆ|μ |EB
= X

(
1− 3σ2

X2

)+
(

2Φ
(X

σ

√(
1− 3σ2

X2

)+)
−1

)

+

√
2
π

σ
√(

1− 3σ2

X2

)+
exp

{
− X2

2σ2

(
1− 3σ2

X2

)+
}
, (8.11)

where Φ(·) is the standard normal distribution function.
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Fig. 8.2 Hard-threshold and soft-threshold pseudo-outcomes compared with the hard-max
pseudo-outcome
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The proof can be found in Chakraborty et al. (2010).

Clearly, ˆ|μ |EB
is a thresholding rule, since ˆ|μ |EB

= 0 for |X |<√
3σ . Moreover,

when |X/σ | is large, the second term of (8.11) goes to zero exponentially fast, and
(

2Φ
(X

σ

√(
1− 3σ2

X2

)+)
−1

)
≈ (2 I[X > 0]−1) = sign(X).

Consequently, the empirical Bayes estimator is approximated by

ˆ|μ |EB ≈ X
(

1− 3σ2

X2

)+
sign(X) = |X |

(
1− 3σ2

X2

)+
. (8.12)

Now for i = 1, . . . ,n separately, put X = ψ̂T
2 H21,i, and μ = ψT

2 H21,i (for fixed H21,i);
and plug in σ̂2 = HT

21,iΣ̂ψ̂2H21,i/n for σ2. This leads to a choice of λi in the soft-
threshold pseudo-outcome (8.10):

Ŷ ST
1i = Y1i + β̂ T

2 H20,i + |ψ̂T
2 H21,i| ·

(
1− 3HT

21,iΣ̂ψ̂2H21,i

n|ψ̂T
2 H21,i|2

)+

,

= Y1i + β̂ T
2 H20,i + |ψ̂T

2 H21,i| ·
(

1− 3HT
21,iΣ̂ψ̂2H21,i

n|ψ̂T
2 H21,i|2

)
· I

[ √
n|ψ̂T

2 H21,i|√
HT

21,iΣ̂ψ̂2 H21,i

>
√

3

]
,

i = 1, . . . ,n. (8.13)

The presence of the indicator function in (8.13) indicates that Ŷ ST
1i is a thresholding

rule for small values of |ψ̂T
2 H21,i|, while the term just preceding the indicator func-

tion makes Ŷ ST
1i a shrinkage rule for moderate to large values of |ψ̂T

2 H21,i| (for which
the indicator function takes the value one).

Interestingly, the thresholding rule in (8.13) also provides some guidance for
choosing the tuning parameter of the hard-threshold estimator. Note that the indi-
cator function in (8.13) corresponds to a pretest that uses a critical value of

√
3 =

1.7321; equating this value to zα/2 and solving for α , we get α = 0.0833. Hence a
hard-threshold estimator with tuning parameter α = 0.0833 ≈ 0.08 corresponds to
the soft-threshold estimator without the shrinkage effect. Chakraborty et al. (2010)
empirically showed that the hard-threshold estimator with α = 0.08 outper-
formed other choices of this tuning parameter as reported in the original paper
by Moodie and Richardson (2010).

8.3.3 Analysis of Smoking Cessation Data:
An Illustration, Continued

To demonstrate the use of the soft-threshold method in a health application, here we
present the analysis of the smoking cessation data described earlier in Sects. 2.4.1
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and 3.4.3. The variables considered here are the same as those considered in
Sect. 3.4.3. To find the optimal DTR, we applied both the hard-max and the soft-
threshold estimators within the Q-learning framework. This involved:

1. Fit stage 2 regression (n = 281) of FF6Quitstatus using the model:

FF6Quitstatus = β20 +β21 ×motivation+β22 ×source

+β23 ×selfefficacy+β24 ×story

+β25 ×education+β26 ×PQ6Quitstatus

+β27 ×source×selfefficacy

+β28 ×story×education

+
(
ψ20 +ψ21 ×PQ6Quitstatus

)
×FFarm+error.

2. Construct the hard-max pseudo-outcome (Ŷ1) and the soft-threshold pseudo-
outcome (Ŷ ST

1 ) for the stage 1 regression by plugging in the stage 2 estimates:

Ŷ1 = PQ6Quitstatus+ β̂20 + β̂21 ×motivation+ β̂22 ×source

+ β̂23 ×selfefficacy+ β̂24 ×story

+ β̂25 ×education+ β̂26 ×PQ6Quitstatus

+ β̂27 ×source×selfefficacy+ β̂28 ×story×education

+
∣∣∣ψ̂20 + ψ̂21 ×PQ6Quitstatus

∣∣∣;

and

Ŷ ST
1 = PQ6Quitstatus+ β̂20 + β̂21 ×motivation+ β̂22 ×source

+ β̂23 ×selfefficacy+ β̂24 ×story

+ β̂25 ×education+ β̂26 ×PQ6Quitstatus

+ β̂27 ×source×selfefficacy+ β̂28 ×story×education

+
∣∣∣ψ̂20 + ψ̂21 ×PQ6Quitstatus

∣∣∣

×
(

1− 3Var(ψ̂20 + ψ̂21 ×PQ6Quitstatus)

|ψ̂20 + ψ̂21 ×PQ6Quitstatus|2
)+

.

Note that in this case one can construct both versions of the pseudo-outcomes for
everyone who participated at stage 1, since there are no variables from post-stage
1 required to do so.

3. Fit stage 1 regression (n = 1,401) of the pseudo-outcome using a model of the
form:

Ŷ1 or Ŷ ST
1 = β10 +β11 ×motivation

+β12 ×selfefficacy+β13 ×education
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+
(

ψ(1)
10 +ψ(1)

11 ×selfefficacy
)
×source

+
(

ψ(2)
10 +ψ(2)

11 ×education
)
×story+error.

No significant treatment effect was found at the second stage regression,
indicating the likely existence of non-regularity. At stage 1, for either estima-
tor, 95 % confidence intervals were constructed by centered percentile bootstrap
(Efron and Tibshirani 1993) using 1,000 bootstrap replications. The stage 1 analysis
summary is presented in Table 8.1. In this case, the hard-max and the soft-threshold
estimators produced similar results.

Table 8.1 Regression coefficients and 95 % bootstrap confidence intervals at stage 1, using both
the hard-max and the soft-threshold estimators (significant effects are in bold)

Hard-max Soft-threshold
Variable Coefficient 95 % CI Coefficient 95 % CI
motivation 0.04 (−0.00, 0.08) 0.04 (0.00, 0.08)
selfefficacy 0.03 (0.00, 0.06) 0.03 (0.00, 0.06)
education −0.01 (−0.07, 0.06) −0.01 (−0.07, 0.06)
source −0.15 (−0.35, 0.06) −0.15 (−0.35, 0.06)
source × selfefficacy 0.03 (0.00, 0.06) 0.03 (0.00, 0.06)
story 0.05 (−0.01, 0.11) 0.05 (−0.01, 0.11)
story × education −0.07 (−0.13, −0.01) −0.07 (−0.13, −0.01)

From the above analysis, it is found that at stage 1 subjects with higher level of
motivation or selfefficacy are more likely to quit. The highly personal-
ized level of source is more effective for subjects with a higher selfefficacy
(≥7), and deeply tailored level of story is more effective for subjects with lower
education (≤ high school); these two conclusions can be drawn from the inter-
action plots (with confidence intervals) presented in Fig. 3.2 (see Sect. 3.4.3). Thus
to maximize each individual’s chance of quitting over the two stages, the web-based
smoking cessation intervention should be designed in future such that: (1) smok-
ers with high self-efficacy (≥7) are assigned to highly personalized level of
source, and (2) smokers with lower education are assigned to deeply tailored
level of story.

8.4 Penalized Q-learning

In the threshold methods considered earlier, the stage 1 pseudo-outcomes can be
viewed as shrinkage functionals of the least squares estimators of the stage 2 param-
eters. However, they are not optimizers of any explicit objective function (except in
the special case of only one covariate or an orthonormal design). The Penalized Q-
learning (hereafter referred to as PQ-learning) approach, recently proposed by Song
et al. (2011), applies the shrinkage idea with Q-learning by considering an explicit
penalized regression at stage 2. The main distinction between the penalization used
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here and that used in the context of variable selection is in the “target” of penaliza-
tion: while penalties are applied to each variable (covariate) in a variable selection
context, they are applied on each subject in the case of PQ-learning.

Let θ j = (β T
j ,ψT

j )
T for j = 1, 2. PQ-learning starts by considering a penalized

least squares optimization at stage 2; it minimizes the objective function

W2(θ2) =
n

∑
i=1

(
Y2i −Qopt

2 (H2i,A2i;β2,ψ2)
)2

+
n

∑
i=1

Jλn

(
|ψT

2 H21,i|
)

with respect to θ2 to obtain the stage 2 estimates θ̂2, where Jλn(·) is a pre-specified
penalty function and λn is a tuning parameter. The penalty function can be taken
directly from the variable selection literature; in particular Song et al. (2011) uses
the adaptive lasso (Zou 2006) penalty, where Jλn(θ) = λnθ/|θ̂ |α with α > 0 and θ̂
being a

√
n-consistent estimator of θ . Furthermore, as in the adaptive lasso proce-

dure, the tuning parameter λn is taken to satisfy
√

nλn → 0 and nλn → ∞. The rest
of the Q-learning algorithm (hard-max version) is unchanged in PQ-learning.

The above minimization is implemented via local quadratic approximation
(LQA), following Fan and Li (2001). The procedure starts with an initial value ψ̂2(0)
of ψ2, and then uses LQA for the penalty terms in the objective function:

Jλn

(
|ψT

2 H21,i|
)
≈Jλn

(
|ψ̂T

2(0)H21,i|
)
+

1
2

J′λn

(
|ψ̂T

2(0)H21,i|
)

|ψ̂T
2(0)H21,i|

(
(ψT

2 H21,i)
2−(ψ̂T

2(0)H21,i)
2
)

for ψ2 close to ψ̂2(0). Hence the objective function can be locally approximated, up
to a constant, by

n

∑
i=1

(
Y2i −Qopt

2 (H2i,A2i;β2,ψ2)
)2

+
1
2

n

∑
i=1

J′λn

(
|ψ̂T

2(0)H21,i|
)

|ψ̂T
2(0)H21,i| (ψT

2 H21,i)
2.

When Q-functions are approximated by linear models as in (3.8), the above mini-
mization problem has a closed form solution:

ψ̂2 = [X22(I−X21(XT
21X21)

−1XT
21 +D)X22]

−1XT
22(I−X21(XT

21X21)
−1XT

21)Y2,

β̂2 = (XT
21X21)

−1XT
21(Y2 −X22ψ̂2),

where X22 is the matrix with i-th row equal to HT
21,i A2i, X21 is the matrix with i-

th row equal to HT
20,i, I is the n× n identity matrix, D is an n× n diagonal matrix

with Dii =
1
2 J′λn

(
|ψ̂T

2(0)H21,i|
)
/|ψ̂T

2(0)H21,i|, and Y2 is the vector of Y2i values. The

above minimization procedure can be continued for more than one step or until
convergence. However, as discussed by Fan and Li (2001), either the one-step or
multi-step procedure will be as efficient as the fully iterative procedure as long as
the initial estimators are good enough.



8.4 Penalized Q-learning 147

Inference for θ js in the context of PQ-learning is conducted via asymptotic
theory. Under a set of regularity conditions, Song et al. (2011) proved that:

1. θ̂2 is a
√

n-consistent estimator for the true value of θ2.
2. Oracle Property: With probability tending to 1, PQ-learning can identify the

individuals for whom the stage 2 treatment effect is zero.
3. Both θ̂2 and θ̂1 are asymptotically normal.

Variance Estimation

Song et al. (2011) provided a sandwich type plug-in estimator for the variance of θ̂2:

ĉov(θ̂2) = (Î20 + Σ̂)−1Î20(Î20 + Σ̂)−1,

where Î20 ≡ Pn[∇2
θ2θ2

(Y2 −Qopt
2 (H2,A2;θ2))

2] is the empirical Hessian matrix and

Σ̂ = diag{0,PnJ′′λn
(|ψ̂T

2 H21|)H21HT
21}. The above variance formula can be further

approximated by ignoring Σ̂ , in which case ĉov(θ̂2) = Î−1
20 . Song et al. (2011) re-

ported having used this reduced formula in their simulation studies and achieved
good empirical performance. Likewise, the estimated variance for θ̂1 is given by:

ĉov(θ̂1) = Î−1
10

[
cov

{
∇θ1 Qopt

1 (H1,A1; θ̂1)
(

Y1 +max
a2

Qopt
2 (H2,a2; θ̂2)−

Qopt
1 (H1,A1; θ̂1)

)
+PnZ1S̄2

T ĉov(θ̂2)S̄2ZT
1

}]
Î−1
10 ,

where Î10 ≡Pn[∇2
θ1θ1

(Y1+maxa2 Qopt
2 (H2,a2; θ̂2)−Qopt

1 (H1,A1;θ1))
2] is the empir-

ical Hessian matrix.
There are a few characteristics of the PQ-learning approach that demand some

discussion. First, this approach offers a data-analyst the ability to calculate stan-
dard errors using explicit formulae, which should be less time-consuming than a
bootstrap procedure. However in the present era of fast computers, the difference in
computing time between analytic and bootstrap approaches is gradually diminish-
ing. Second, the asymptotic theory of PQ-learning assumes a finite support for the
H21 values, which is achieved when only discrete covariates are used in the analysis.
Thus, if there are important continuous covariates in a study, one must first discretize
the continuous covariates before being able to use PQ-learning. Third, the success of
PQ-learning in addressing non-regularity crucially depends on the “oracle property”
described above; this property dictates that after the penalized regression in stage 2,
all subsequent inference will be the same as if the analyst knew which subjects had
no treatment effect. However this property does not say anything about very small
effects that are not exactly zero but are indistinguishable from zero in finite sam-
ples due to noise in the data (e.g. in “near non-regular” cases; see Sect. 8.8). It has
been widely argued (see e.g. Leeb and Pötscher 2005; Pötscher 2007; Pötscher and
Schneider 2008; Laber and Murphy 2011) that characterizing non-regular settings
by a condition like P[H2 : ψT

2 H21 = 0]> 0 is really a working assumption to reflect
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the uncertainty about the optimal treatment for patients with ‘small’ – rather than
zero – treatment effects. Such situations may be better handled by a local asymptotic
framework. From this perspective, the PQ-learning method is still non-regular as it
is not consistent under local alternatives; see Laber et al. (2011) for further details
on this issue.

8.5 Double Bootstrap Confidence Intervals

The double bootstrap (see, e.g. Davison and Hinkley 1997; Nankervis 2005) is a
computationally intensive method for constructing CIs. Chakraborty et al. (2010)
implemented this method for inference in the context of Q-learning. Empirically it
was found to offer valid CIs for the policy parameters in the face of non-regularity.
Below we present a brief description.

Let θ̂ be an estimator of a parameter θ and θ̂ ∗ be its bootstrap version. As is

well-known, the 100(1−α)% percentile bootstrap CI is given by
(

θ̂ ∗
( α

2 )
, θ̂ ∗

(1− α
2 )

)
,

where θ̂ ∗
γ is the 100γ-th percentile of the bootstrap distribution. Then the double

(percentile) bootstrap CI is calculated as follows:

1. Draw B1 first-step bootstrap samples from the original data. For each first-
step bootstrap sample, calculate the bootstrap version of the estimator θ̂ ∗b,
b = 1, . . . ,B1.

2. Conditional on each first-step bootstrap sample, draw B2 second-step (nested)
bootstrap samples and calculate the double bootstrap versions of the estimator,
e.g., θ̂ ∗∗bm, b = 1, . . . ,B1, m = 1, . . . ,B2.

3. For b = 1, . . . ,B1, calculate u∗b = 1
B2

∑B2
m=1 I[θ̂

∗∗bm ≤ θ̂ ], where θ̂ is the estimator
based on the original data.

4. The double bootstrap CI is given by
(

θ̂ ∗
q̂( α

2 )
, θ̂ ∗

q̂(1− α
2 )

)
, where q̂(γ) = u∗(γ), the

100γ-th percentile of the distribution of u∗b, b = 1, . . . ,B1.

Next we attempt to provide some intuition1 about the double bootstrap using the
bagged hard-max estimator. Bagging (Breiman 1996), a nickname for bootstrap ag-
gregating, is a well-known ensemble method used to smooth “unstable” estimators,
e.g. decision trees in classification. Bagging was originally motivated by Breiman
as a variance-reduction technique; however Bühlmann and Yu (2002) showed that it
is a smoothing operation that also reduces the mean squared error of the estimator
in the case of decision trees, where a “hard decision” based on an indicator function
is taken. Note that in the context of Q-learning, the hard-max pseudo-outcome can
be re-written as

Ŷ1i = Y1i + β̂ T
2 H20,i + |ψ̂T

2 H21,i|

1 This is unpublished work, but the first author was pointed to this direction by Dr. Susan Murphy
(personal communication).
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= Y1i + β̂ T
2 H20,i +(ψ̂T

2 H21,i) ·
(

2 · I[ψ̂T
2 H21,i > 0]−1

)
. (8.14)

The second term in (8.14) contains an indicator function (as in a decision tree).
Hence one can expect that the bagged version of the hard-max estimator will ef-
fectively “smooth out” the effect of this indicator function (e.g. replace the hard
decision by a soft decision) and hence should reduce the degree of non-regularity.
More precisely, bagging would effectively replace the indicator I[ψ̂T

2 H21,i > 0] by

Φ

( √
nψ̂T

2 H21,i√
HT

21,iΣ̂ψ̂2
H21,i

)
; see Bühlmann and Yu (2002) for details. The bagged hard-max

estimator of ψ1 can be calculated as follows:

1. Construct a bootstrap sample of size n from the original data.
2. Compute the bootstrap version ψ̂∗

1 of the usual hard-max estimator ψ̂1.
3. Repeat steps 1 and 2 above B2 times yielding ψ̂∗1

1 , . . . , ψ̂∗B2
1 . Then the bagged

hard-max estimator is given by ψ̂Bag
1 = 1

B2
∑B2

b=1 ψ̂∗b
1 .

When it comes to constructing CIs, the effect of considering a usual bootstrap CI
using B1 replications along with the bagged hard-max estimator (already using B2

bootstrap replications) is, in a way, equivalent to considering a double bootstrap CI
in conjunction with the original (un-bagged) hard-max estimator.

8.6 Adaptive Bootstrap Confidence Intervals

Laber et al. (2011) recently developed a novel adaptive bootstrap procedure to
construct confidence intervals for linear combinations cT θ1 of the stage 1 coeffi-
cients in Q-learning, where θ T

1 = (β T
1 ,ψT

1 ) and c ∈R
dim(θ1) is a known vector. This

method is asymptotically valid and gives good empirical performance in finite sam-
ples. In this procedure, Laber et al. (2011) considered the asymptotic expansion of
cT√n(θ̂1 −θ1) and decomposed it as:

cT√n(θ̂1 −θ1) =Wn +Un,

where the first term is smooth and the second term is non-smooth. While Wn is
asymptotically normally distributed, the distribution of Un depends on the under-
lying data-generating process “non-smoothly”. To illustrate the effect of this non-
smoothness, fix H21 = h21. If hT

21ψ2 > 0, then Un is asymptotically normal with
mean zero. On the other hand, Un has a non-normal asymptotic distribution if
hT

21ψ2 = 0. Thus, the asymptotic distribution of cT√n(θ̂1 − θ1) depends abruptly
on both the true parameter ψ2 and the distribution of patient features H21. In par-
ticular, the asymptotic distribution of cT√n(θ̂1 − θ1) depends on the frequency of
patient features H21 = h21 for which there is no treatment effect (i.e. features for
which hT

21ψ2 = 0). As discussed earlier in this chapter, this non-regularity compli-
cates the construction of CIs for cT θ1.
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The adaptive bootstrap confidence intervals are formed by constructing smooth
data-dependent upper and lower bounds on Un, and thereby on cT√n(θ̂1 −θ1), by
means of a preliminary hypothesis test that partitions the data into two sets: (i)
patients for whom there appears to be a treatment effect, and (ii) patients in whom
it appears there is no treatment effect, and then drawing bootstrap samples from
these upper and lower bounds. The actual bounds are rather complex and difficult
to present without going into the details, so the explicit forms will not be presented
here. Instead, we focus on communicating the key ideas.

The bounds are formed by finding limits for the error of the overall approximation
due to misclassification of patients in the partitioning step. The idea of conducting
a preliminary hypothesis test prior to forming estimators or confidence intervals is
known as pretesting (Olshen 1973). In fact, the hard-threshold estimator (Moodie
and Richardson 2010) discussed earlier uses the same notion of pretest. As in the
case of hard-thresholding, Laber et al. (2011) conducted a pretest for each individual
in the data set as follows. Each pretest is based on

Tn(h21)�
n(hT

21ψ̂2)
2

hT
21Σ̂ψ̂2 h21

,

where Σ̂ψ̂2/n is the estimated covariance matrix of ψ̂2. Note that Tn(h21)
corresponds to the usual test statistic when testing the null hypothesis: hT

21ψ2 = 0.
The pretests are performed using a cutoff λn, which is a tuning parameter of the
procedure and can be varied; to optimize performance, Laber et al. (2011) used
λn = log logn in their simulation study and data analysis.

Let the upper and lower bounds on cT√n(θ̂1 − θ1) discussed above be given
by U (c) and L (c) respectively; both of these quantities are functions of λn.
Laber et al. (2011) showed that the limiting distributions of cT√n(θ̂1 − θ1) and
U (c) are equal in the case HT

21ψ2 �= 0 with probability one. Similarly, the limit-
ing distributions of cT√n(θ̂1 −θ1) and L (c) are equal in the case HT

21ψ2 �= 0 with
probability one. That is, when there is a large treatment effect for almost all patients
then the upper (or lower) bound is tight. However, when there is a non-null subset of
patients for which there is no treatment effect, then the limiting distribution of the
upper bound is stochastically larger than the limiting distribution of cT√n(θ̂1−θ1).
This adaptivity between non-regular and regular settings is a key feature of this
procedure.

Next we discuss how to actually construct the CIs by this procedure. By con-
struction of U (c) and L (c), it follows that

cT θ̂1 − U (c)√
n

≤ cT θ1 ≤ cT θ̂1 − L (c)√
n

.

The distributions of U (c) and L (c) are approximated using the bootstrap. Let û
be the 1−α/2 quantile of the bootstrap distribution of U (c), and let l̂ be the α/2
quantile of the bootstrap distribution of L (c). Then [cT θ̂1 − û/

√
n, cT θ̂1 − l̂/

√
n] is

the adaptive bootstrap CI for cT θ1.
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Through a series of theorems, Laber et al. (2011) proved the consistency of the
bootstrap in this context, and in particular that

P
(
cT θ̂1 − û/

√
n ≤ cT θ1 ≤ cT θ̂1 − l̂/

√
n
) ≥ 1−α +oP(1).

The above probability statement is with respect to the bootstrap distribution.
Furthermore, if P(HT

21ψ2 = 0) = 0, then the above inequality can be strength-
ened to equality. This result shows that the adaptive bootstrap method can be used
to construct valid (though potentially conservative) confidence intervals regardless
of the underlying parameters of the generative model. Moreover, in settings where
there is a treatment effect for almost every patient (e.g. regular settings), the adaptive
procedure delivers asymptotically exact coverage.

The theory behind adaptive bootstrap CIs uses a local asymptotic framework.
This framework provides a medium through which a glimpse of finite-sample be-
havior can be assessed, while retaining the mathematical convenience of large
samples. A thorough technical discussion of this framework is beyond the scope
of this book; hence here we presented only the key results without making ex-
act statements of the assumptions and theorems. The procedure discussed here can
be extended to more than two stages and more than two treatments per stage; see
Laber et al. (2011) for details. The main downside to this procedure lies in its com-
plexity – not just in the theory but also in its implementation. Constructing the
smooth upper and lower bounds involves solving very difficult nonconvex optimiza-
tion problems, making it a computationally expensive procedure. This conceptual
and computational complexity may be a potential barrier for its wide-spread dis-
semination.

8.7 m-out-of-n Bootstrap Confidence Intervals

The m-out-of-n bootstrap is a well-known tool for producing valid confidence sets
for non-smooth functionals (Shao 1994; Bickel et al. 1997). This method is the
same as the usual nonparametric bootstrap (Efron 1979) except that the resample
size, historically denoted by m, is of a smaller order of magnitude than the orig-
inal sample size n. More precisely, m depends on n, tends to infinity with n, and
satisfies m = o(n). Intuitively, the m-out-of-n bootstrap works asymptotically by
letting the empirical distribution tend to the true generative distribution at a faster
rate than the analogous convergence of the bootstrap empirical distribution to the
empirical distribution. In essence, this allows the empirical distribution to reach
its limit ‘first’ so that bootstrap resamples behave as if they were drawn from the
true generative distribution. Unfortunately, the choice of the resample size m has
long been a difficult obstacle since the condition m = o(n) is purely asymptotic and
thus provides no guidance for finite samples. Data-driven approaches for choosing
m in various contexts were given by Hall et al. (1995), Lee (1999), Cheung et al.
(2005), and Bickel and Sakov (2008). However, these choices were not directly
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connected with data-driven measures of non-regularity. Chakraborty et al. (2013)
recently proposed a method for choosing the resample size m in the context of Q-
learning that is directly connected to an estimated degree of non-regularity. This
method of choosing m is adaptive in that it leads to the usual n-out-of-n bootstrap
in a regular setting and the m-out-of-n bootstrap otherwise. This methodology, de-
veloped for producing asymptotically valid confidence intervals for parameters in-
dexing estimated optimal DTRs, is conceptually and computationally simple, mak-
ing it more appealing to data analysts. This should be contrasted with methods of
Robins (2004) and Laber et al. (2011), both of which involve solving difficult non-
convex optimization problems (see Laber et al. 2011, for a discussion).

Intuitively, the choice of the resample size m should reflect the degree of non-
smoothness in the underlying generative model. The non-smoothness in Q-learning
arises when there is an amassing of points on or near the boundary {h21 : hT

21ψ2 =

0}. Define p � P(HT
21ψ2 = 0), and consider the situation where non-regularity does

not exist, i.e. p = 0. Then
√

n(θ̂1 −θ1) is asymptotically normal and the n-out-of-n
bootstrap is consistent. However, if p > 0, given that ψ̂2 is not exactly equal to the
true value, the quantity θ̂1, as a function of ψ̂2, oscillates with a rate n−1/2 around
a point where abrupt changes of the asymptotic distribution occur. This is also true

for its bootstrap analogue θ̂ (b)
1,m while the oscillating rate is m−1/2. With a large p,

indicating a high degree of non-regularity, it is hoped that this bootstrap analogue
oscillates with a rate much slower than n−1/2. Therefore, a reasonable class of re-
sample sizes is given by

m � n f (p),

where f (p) is a function of p satisfying the following conditions:

(i) f (p) is monotone decreasing in p, takes values in (0,1] and satisfies f (0) = 1;
and

(ii) f (p) is continuous and has bounded first derivative.

One still needs to estimate f (p) from data since p is unknown. Define the plug-
in estimator for p, p̂ = PnI[n(HT

21ψ̂2)
2 ≤ τn(H21)] for cutoff τn(H21) (see below),

where Pn denotes the empirical average. Thus, naturally, one can use the resample
size

m̂ � n f ( p̂). (8.15)

Chakraborty et al. (2013) showed that m̂/n f (p) → 1 almost surely, and thus m̂
p→ ∞

and m̂/n
p→ 0. For implementation, they proposed a simple form of f (p) satisfying

conditions (i) and (ii),

m̂ � n
1+α(1− p̂)

1+α , (8.16)

where α > 0 is a tuning parameter that can be either fixed at a constant or chosen
adaptively using the double bootstrap (see below for the algorithm). Note that for
fixed n, m̂ is a monotone decreasing function of p̂, taking values in the interval

[n
1

1+α ,n]. Thus, α governs the smallest acceptable resample size.
Another potentially important tuning parameter is τn(H21). For a given patient

history h21, the indicator I[n(hT
21ψ̂2)

2 ≤ τn(h21)] can be viewed as the acceptance
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region of the null hypothesis hT
21ψ2 = 0. Thus, a natural choice for τn(h21) is(

hT
21Σ̂21h21

) · χ2
1,1−ν , where n−1Σ̂21 is the plug-in estimator of the asymptotic co-

variance matrix of ψ̂2 and χ2
1,1−ν is the (1−ν)×100 percentile of a χ2 distribution

with 1 degree of freedom. Chakraborty et al. (2013) used ν = 0.001 in their sim-
ulations, and also showed robustness of results to this choice of ν via a thorough
sensitivity analysis.

As before, let c ∈ R
dim(θ1) be a known vector. To form a (1−η)× 100 % con-

fidence interval for cT θ1, first find l̂ and û, the (η/2)× 100 and (1−η/2)× 100

percentiles of cT√m(θ̂ (b)
1 − θ̂1) respectively, where θ̂ (b)

1 is the m-out-of-n bootstrap

analog of θ̂1 (the dependence of θ̂ (b)
1 on m is implicit in the notation). The confi-

dence interval is then given by (cT θ̂1 − û/
√

m,cT θ̂1 − l̂/
√

m).
Next we describe the double bootstrap procedure for choosing the tuning

parameter α employed to define m. Suppose cT θ1 is the parameter of interest,
and its estimate from the original data is cT θ̂1. Consider a grid of possible values
of α; Chakraborty et al. (2013) used {0.025,0.05,0.075, . . . ,1} in their simulation
study and data analysis. The exact algorithm follows.

1. Draw B1 usual n-out-of-n first-stage bootstrap samples from the data and calcu-

late the corresponding bootstrap estimates cT θ̂ (b1)
1 , b1 = 1, . . . ,B1. Fix α at the

smallest value in the grid.
2. Compute the corresponding values of m̂(b1) using Eq. (8.16), b1 = 1, . . . ,B1.
3. Conditional on each first-stage bootstrap sample, draw B2 m̂(b1)-out-of-n second-

stage (nested) bootstrap samples and calculate the double bootstrap versions of

the estimate cT θ̂ (b1b2)
1 , b1 = 1, . . . ,B1, b2 = 1, . . . ,B2.

4. For b1 = 1, . . . ,B1, compute the (η/2)×100 and (1−η/2)×100 percentiles of{
cT
√

m̂(b1)
(

θ̂ (b1b2)
1 − θ̂ (b1)

1

)
, b2 = 1, . . . ,B2

}
, say l̂(b1)

DB and û(b1)
DB respectively.

Construct the double centered percentile bootstrap CI from the b1-th first-

stage bootstrap data as
(

cT θ̂ (b1)
1 − û(b1)

DB /
√

m̂(b1),cT θ̂ (b1)
1 − l̂(b1)

DB /
√

m̂(b1)
)
, b1 =

1, . . . ,B1.
5. Estimate the coverage rate of the double bootstrap CI from all the first-stage

bootstrap data sets as

1
B1

B1

∑
b1=1

I

[
cT θ̂ (b1)

1 − û(b1)
DB /

√
m̂(b1) ≤ cT θ̂1 ≤ cT θ̂ (b1)

1 − l̂(b1)
DB /

√
m̂(b1)

]
.

6. If the above coverage rate is at or above the nominal rate, up to Monte Carlo
error, then pick the current value of α as the final value. Otherwise, update α to
its next higher value in the grid.

7. Repeat steps 2–6, until the coverage rate of the double bootstrap CI, up to Monte
Carlo error, attains the nominal coverage rate, or the grid is exhausted.2

2 If this unlikely event does occur, one should examine the observed values of p̂. If the values of p̂
are concentrated close to zero, ν may be increased; if not, the maximal value in the grid should be
increased.
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Chakraborty et al. (2013) proved the consistency of the m-out-of-n bootstrap in
this context, and in particular that

P
(

cT θ̂1 − û/
√

m̂ ≤ cT θ1 ≤ cT θ̂1 − l̂/
√

m̂
)
≥ 1−η +oP(1).

The above probability statement is with respect to the bootstrap distribution.
Furthermore, if P(HT

21ψ2 = 0) = 0, then the above inequality can be strengthened
to equality. This result shows that the m-out-of-n bootstrap method can be used to
construct valid (though potentially conservative) confidence intervals regardless of
the underlying parameters or generative model. Moreover, in settings where there is
a treatment effect for every patient (regular setting), the adaptive procedure delivers
asymptotically exact coverage. Unlike the theoretical setting of adaptive CIs of
Laber et al. (2011), the theory of m-out-of-n bootstrap does not involve a local
asymptotic framework (in fact it is not consistent under local alternatives).

The m-out-of-n bootstrap procedure for two stages in the context of Q-learning
with linear models has been implemented in the R package qLearn that is freely
available from the Comprehensive R Archive Network (CRAN):

http://cran.r-project.org/web/packages/qLearn/index.html.

8.8 Simulation Study

In this section, we consider a simulation study to provide an empirical evaluation of
the available inference methods discussed in this chapter. Nine generative models
are used in these evaluations, each of them having two stages of treatment and two
treatments at each stage. Generically, these models can be described as follows:

• Oi ∈ {−1,1}, Ai ∈ {−1,1} for i = 1, 2;
• P(A1 = 1) = P(A1 =−1) = 0.5, P(A2 = 1) = P(A2 =−1) = 0.5;
• O1 ∼ Bernoulli(0.5), O2|O1,A1 ∼ Bernoulli(expit(δ1O1 +δ2A1));
• Y1 ≡ 0,

Y2 = γ1 + γ2O1 + γ3A1 + γ4O1A1 + γ5A2 + γ6O2A2 + γ7A1A2 + ε ,

where ε ∼ N (0,1) and expit(x) = ex/(1+ ex). This class is parameterized by nine
quantities γ1,γ2, . . . ,γ7,δ1,δ2.

The form of the above class of generative models, developed by
Chakraborty et al. (2010), is useful as it allows one to influence the degree of
non-regularity present in the example problems through the choice of γs and δ s,
and in turn evaluate performance in these different scenarios. Recall that in Q-
learning, non-regularity occurs when more than one stage 2 treatment produces
exactly or nearly the same optimal expected outcome for a set of patient histories
that occur with positive probability. In the model class above, this occurs if the
model generates histories for which γ5A2 + γ6O2A2 + γ7A1A2 ≈ 0, i.e., if it gener-
ates histories for which Q2 depends weakly or not at all on A2. By manipulating
the values of γs and δ s, we can control: (i) the probability of generating a patient
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history such that γ5A2 + γ6O2A2 + γ7A1A2 = 0, and (ii) the standardized effect size
E(γ5 + γ6O2 + γ7A1)/

√
Var(γ5 + γ6O2 + γ7A1). These two quantities, denoted by p

and φ , respectively, can be thought of as measures of non-regularity. Note that for
fixed parameter values, the linear combination (γ5 + γ6O2 + γ7A1) that governs the
non-regularity in an example generative model can take only four possible values
corresponding to the four possible (O2,A1) cells. The cell probabilities can be easily
calculated; the formulae are provided in Table 8.2. Using the quantities presented
in Table 8.2, one can write

E[γ5 + γ6O2 + γ7A1] = q1 f1 +q2 f2 +q3 f3 +q4 f4,

E[(γ5 + γ6O2 + γ7A1)
2] = q1 f 2

1 +q2 f 2
2 +q3 f 2

3 +q4 f 2
4 .

From these two, one can calculate Var[γ5+γ6O2+γ7A1], and subsequently the effect
size φ .

Table 8.2 Distribution of the linear combination (γ5 + γ6O2 + γ7A1)

(O2,A1) cell Cell probability Value of the
(averaged over O1) linear combination

(1,1) q1 ≡ 1
4

(
expit(δ1 +δ2)+ expit(−δ1 +δ2)

)
f1 ≡ γ5 + γ6 + γ7

(1,−1) q2 ≡ 1
4

(
expit(δ1 −δ2)+ expit(−δ1 −δ2)

)
f2 ≡ γ5 + γ6 − γ7

(−1,1) q3 ≡ 1
4

(
expit(δ1 −δ2)+ expit(−δ1 −δ2)

)
f3 ≡ γ5 − γ6 + γ7

(−1,−1) q4 ≡ 1
4

(
expit(δ1 +δ2)+ expit(−δ1 +δ2)

)
f4 ≡ γ5 − γ6 − γ7

Table 8.3 provides the parameter settings; the first six of these settings were
constructed by Chakraborty et al. (2010), and were described therein as “non-
regular,” “near-non-regular,” and “regular.” Example 1 is a setting where there is
no treatment effect for any subject (any possible history) in either stage. Example
2 is similar to example 1, where there is a very weak stage 2 treatment effect for
every subject, but it is hard to detect the very weak effect given the noise level in
the data. Example 3 is a setting where there is no stage 2 treatment effect for half
the subjects in the population, but a reasonably large effect for the other half of
subjects. In example 4, there is a very weak stage 2 treatment effect for half the
subjects in the population, but a reasonably large effect for the other half of sub-
jects (the parameters are close to those in example 3). Example 5 is a setting where
there is no stage 2 treatment effect for one-fourth of the subjects in the population,
but others have a reasonably large effect. Example 6 is a completely regular setting
where there is a reasonably large stage 2 treatment effect for every subject in the
population. Song et al. (2011) also used these six examples for empirical evaluation
of their PQ-learning method.

To these six, Laber et al. (2011) added three further examples labeled A, B, and
C. Example A is an example of a strongly regular setting. Example B is an example
of a non-regular setting where the non-regularity is strongly dependent on the stage
1 treatment. In example B, for histories with A1 = 1, there is a moderate effect of
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A2 at the second stage. However, for histories with A1 = −1, there is no effect of
A2 at the second stage, i.e., both actions at the second stage are equally optimal.
In example C, for histories with A1 = 1, there is a moderate effect of A2, and for
histories with A1 = −1, there is a small effect of A2. Thus example C is a “near-
non-regular” setting that behaves similarly to example B.

Table 8.3 Parameters indexing the example models

Example γT δ T Type R egularity Measures
1 (0,0,0,0,0,0,0) (0.5,0.5) Non-regular p = 1 φ = 0/0
2 (0,0,0,0,0.01,0,0) (0.5,0.5) Near-non-regular p = 0 φ = ∞
3 (0,0,−0.5,0,0.5,0,0.5) (0.5,0.5) Non-regular p = 1/2 φ = 1.0
4 (0,0,−0.5,0,0.5,0,0.49) (0.5,0.5) Near-non-regular p = 0 φ = 1.02
5 (0,0,−0.5,0,1.0,0.5,0.5) (1.0,0.0) Non-regular p = 1/4 φ = 1.41
6 (0,0,−0.5,0,0.25,0.5,0.5) (0.1,0.1) Regular p = 0 φ = 0.35

A (0,0,−0.25,0,0.75,0.5,0.5) (0.1,0.1) Regular p = 0 φ = 1.035
B (0,0,0,0,0.25,0,0.25) (0,0) Non-regular p = 1/2 φ = 1.00
C (0,0,0,0,0.25,0,0.24) (0,0) Near-non-regular p = 0 φ = 1.03

The Q-learning analysis models used in the simulation study are given by

Qopt
2 (H2,A2;β2,ψ2) = HT

20β2 +HT
21ψ2A2,

Qopt
1 (H1,A1;β1) = HT

10β1 +HT
11ψ1A1,

where the following patient history vectors are used:

H20 = (1,O1,A1,O1A1)
T ,

H21 = (1,O2,A1)
T ,

H10 = (1,O1)
T ,

H11 = (1,O1)
T .

So the models for the Q-functions are correctly specified. For the purpose of
inference, the focus is on ψ10 and ψ11, the parameters associated with stage 1 treat-
ment A1 in the analysis model. They can be expressed in terms of γs and δ s, the
parameters of the generative model, as follows:

ψ10 = γ3 +q1| f1|−q2| f2|+q3| f3|−q4| f4|,
and ψ11 = γ4 +q′1| f1|−q′2| f2|−q′3| f3|+q′4| f4|,

where q′1 = q′3 =
1
4 (expit(δ1 +δ2)− expit(−δ1 +δ2)), and q′2 = q′4 =

1
4 (expit(δ1 −

δ2)− expit(−δ1 −δ2)).

Below we will present simulation results to compare the performances of
ten competing methods of constructing CIs for the stage 1 parameters of Q-
learning. We will be reporting the results for centered percentile bootstrap (CPB)
(Efron and Tibshirani 1993) method. Let θ̂ be an estimator of θ and θ̂ (b) be its
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bootstrap version. Then the 100(1 − α)% CPB confidence interval is given by(
2θ̂ − θ̂ (b)

(1− α
2 )
,2θ̂ − θ̂ (b)

( α
2 )

)
, where θ̂ (b)

γ is the 100γ-th percentile of the bootstrap

distribution. The competing methods are listed below:

(i) CPB interval in conjunction with the (original) hard-max estimator (CPB-
HM);

(ii) CPB interval in conjunction with the hard-threshold estimator with α = 0.08
(CPB-HT0.08);

(iii) CPB interval in conjunction with the soft-threshold estimator (CPB-ST);
(iv) Double bootstrap interval in conjunction with the hard-max estimator (DB-

HM);
(v) Asymptotic confidence interval in conjunction with the PQ-learning estimator

(PQ);
(vi) Adaptive bootstrap confidence interval (ACI);

(vii) m-out-of-n CPB interval with fixed α = 0.1, in conjunction with the hard-max
estimator (m̂0.1-CPB-HM);

(viii) m-out-of-n CPB interval with data-driven α chosen by double bootstrap, in
conjunction with the hard-max estimator (m̂α̂ -CPB-HM);

(ix) m-out-of-n CPB interval with fixed α = 0.1, in conjunction with the soft-
threshold estimator (m̂0.1-CPB-ST);

(x) m-out-of-n CPB interval with data-driven α chosen by double bootstrap, in
conjunction with the soft-threshold estimator (m̂α̂ -CPB-ST)

The comparisons are conducted on a variety of settings represented by examples
1–6, A–C, using N = 1,000 simulated data sets, B = 1,000 bootstrap replications,
and the sample size n = 300. However, the double bootstrap CIs are based on
B1 = 500 first-stage and B2 = 100 second-stage bootstrap iterations, due to the in-
creased computational burden. Note that here we simply compile the results from the
original papers instead of implementing and running them afresh. As a consequence,
the results for all the methods across all examples are not available.

We focus on the coverage rate and width of CIs for the parameter ψ10 that denotes
the main effect of treatment; see Table 8.4 for coverage and Table 8.5 for width of
CIs. Different authors also reported results for the stage 1 interaction parameter ψ11;
however the effect of non-regularity is less pronounced on this parameter, and hence
less interesting for the purpose of illustration of non-regularity and comparison of
competing methods.

First, let us focus on Table 8.4. As expected from the inconsistency of the usual n-
out-of-n bootstrap in the present non-regular problem, the CPB-HM method shows
the problem of under-coverage in most of the examples. While CPB-HT0.08, by
virtue of bias correction via thresholding (see Moodie and Richardson 2010), per-
forms well in Ex. 1–4, it fares poorly in Ex. 5–6 (and was never implemented in
Ex. A–C). Similarly CPB-ST performs well, again by virtue of bias correction via
thresholding (see Chakraborty et al. 2010), except in Ex. 6, A, and B. The compu-
tationally expensive double bootstrap method (DB-HM) performs well across the
first six examples (but was never tried on Ex. A–C). The PQ method (see Song
et al. 2011) performs well across the first six examples (but was never tried on
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Ex. A–C). PQ-learning is probably the cheapest method computationally, because
CIs are constructed by asymptotic formulae rather than any kind of bootstrapping.
The ACI, as known from the work of Laber et al. (2011), is a consistent bootstrap
procedure that is conservative in some of the highly non-regular settings but deliv-
ers coverage rates closer to nominal as the settings become more and more regu-
lar (as the degree of non-regularity as measured by p decreases). The behavior of
the m-out-of-n bootstrap method with fixed α = 0.1 (m̂0.1-CPB-HM) is quite sim-
ilar to that of ACI in that these CIs are conservative in highly non-regular settings,
but become close-to-nominal as the settings become more regular. Both ACI and
m̂0.1-CPB-HM deliver nominal coverage in the two strictly regular settings (Ex. 6,
Ex. A) and the one mildly non-regular (p = 1

4 ) setting (Ex. 5) considered. However,
m̂0.1-CPB-HM is computationally much less expensive (about 180 times) than ACI
which involves solving a very difficult optimization problem. Interestingly, the m-
out-of-n bootstrap with data-driven α via double bootstrap (m̂α̂ -CPB-HM) offers
an extra layer of adaptiveness; fine-tuning α via double bootstrapping reduces the
conservatism present in the case of ACI and m̂0.1-CPB-HM, and provides nominal
coverage in all the examples. However, it is computationally expensive (comparable
to ACI). The m̂0.1-CPB-ST method performs similarly to the other versions of m-
out-of-n bootstrap methods, except perhaps a bit more conservately in non-regular
examples. However, this conservatism is reduced in the m̂α̂ -CPB-ST method. The
performances of the last two methods of inference show that the use of m-out-of-n
bootstrap is not limited to the original hard-max estimator, but can also be success-
fully used in conjunction with other non-smooth estimators like the soft-threshold
estimator. See Chakraborty et al. (2013) for further discussion on the m-out-of-n
bootstrap methods in this context.

Table 8.4 Monte Carlo estimates of coverage probabilities of confidence intervals for the main
effect of treatment (ψ10) at the 95 % nominal level. Estimates significantly below 0.95 at the 0.05
level are marked with ∗. Examples are designated NR non-regular, NNR near-non-regular, R regular

n = 300
Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. A Ex. B Ex. C
NR NNR NR NNR NR R R NR NNR

CPB-HM 0.936 0.932* 0.928* 0.921* 0.933* 0.931* 0.944 0.925* 0.922*
CPB-HT0.08 0.950 0.953 0.943 0.941 0.932* 0.885* – – –

CPB-ST 0.962 0.961 0.947 0.946 0.942 0.918* 0.918* 0.931* 0.938
DB-HM 0.936 0.936 0.948 0.944 0.942 0.950 – – –

PQ 0.951 0.940 0.952 0.955 0.953 0.953 – – –
ACI 0.994 0.994 0.975 0.976 0.962 0.957 0.950 0.977 0.976

m̂0.1-CPB-HM 0.984 0.982 0.956 0.955 0.943 0.949 0.953 0.971 0.970
m̂α̂ -CPB-HM 0.964 0.964 0.953 0.950 0.939 0.947 0.944 0.955 0.960
m̂0.1-CPB-ST 0.993 0.993 0.979 0.976 0.954 0.943 0.939 0.972 0.977
m̂α̂ -CPB-ST 0.971 0.976 0.961 0.956 0.949 0.935 0.926* 0.971 0.967

Table 8.5 presents the Monte Carlo estimates of the mean width of CIs. Mean
widths corresponding to CPB-HT0.08, DB-HM and PQ were not reported in the
original papers in which they appeared. Among the rest of the methods, as expected,
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Table 8.5 Monte Carlo estimates of the mean width of confidence intervals for the main effect of
treatment (ψ10) at the 95 % nominal level. Widths with corresponding coverage significantly below
nominal are marked with ∗. Examples are designated NR non-regular, NNR near-non-regular, R
regular

n = 300
Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. A Ex. B Ex. C
NR NNR NR NNR NR R R NR NNR

CPB-HM 0.269 0.269* 0.300* 0.300* 0.320* 0.309* 0.314 0.299* 0.299*
CPB-HT0.08 – – – – – – – – –

CPB-ST 0.250 0.250 0.293 0.293 0.319 0.319* 0.323* 0.303* 0.304
DB-HM – – – – – – – – –

PQ – – – – – – – – –
ACI 0.354 0.354 0.342 0.342 0.341 0.327 0.327 0.342 0.342

m̂0.1-CPB-HM 0.346 0.347 0.341 0.341 0.340 0.341 0.332 0.342 0.343
m̂α̂ -CPB-HM 0.331 0.331 0.321 0.323 0.330 0.336 0.322 0.328 0.328
m̂0.1-CPB-ST 0.324 0.324 0.336 0.336 0.343 0.352 0.343 0.353 0.353
m̂α̂ -CPB-ST 0.273 0.275 0.306 0.306 0.328 0.349 0.331* 0.330 0.332

CIs constructed via the usual n-out-of-n method (CPB-HM and CPB-ST) have the
least width; however these are often associated with under-coverage. The widths
of the CIs from the last five methods are quite comparable, with m̂α̂ -CPB-HM and
m̂α̂ -CPB-ST offering narrower CIs more often.

Given the above findings, it is very hard to declare an overall winner. From a
purely theoretical standpoint, the ACI method (Laber et al. 2011) is arguably the
strongest since it uses a local asymptotic framework. However it is conceptually
complicated, computationally expensive, and often conservative in finite samples.
In terms of finite sample performance, both versions of the m-out-of-n bootstrap
method (Chakraborty et al. 2013) are at least as good as (and often better than) the
ACI method; moreover, they are conceptually very simple and hence may be more
attractive to practitioners. The version with fixed α (m̂0.1-CPB-HM), while simi-
lar to ACI in conservatism, is computationally much cheaper. On the other hand,
the version with data-driven choice of α (m̂α̂ -CPB), while computationally as de-
manding as the ACI, overcomes the conservatism and provides nominal coverage in
all the examples. Nonetheless, m-out-of-n bootstrap methods are valid only under
fixed alternatives, not under local alternatives. The PQ-learning method (Song et al.
2011) is also valid only under fixed alternatives but not under local alternatives.
This method is non-conservative in Ex. 1–6, and is computationally the cheapest.
However its coverage performance in Ex. A–C and the mean widths of CIs resulting
from this method in all the examples are unknown to us at this point.

Note that the bias maps of Fig. 8.1 in Sect. 8.2 were created in a scenario where
γ5 + γ6O2 + γ7A1 = 0 with positive probability. As noted previously, the generative
parameters γ5, γ6 and γ7 correspond to the policy parameters ψ20, ψ21, and ψ22 of
the analysis model, respectively. For all bias maps in the figure, γ1 = γ2 = γ4 = 0 and
γ3 = −0.5; the first three plots (upper panel) explored the extent of bias in regions
around the parameter setting given in Ex. 5 of Table 8.3, while the last three plots
(lower panel) explore the extent of bias in regions around the parameter setting in
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Ex. 6 of Table 8.3. More precisely, in the first three plots, δ1 = 1, δ2 = 0; and only
one of ψ20 (= γ5), ψ21 (= γ6), or ψ22 (= γ7) was varied while the remaining were
fixed (e.g. (ψ21,ψ22) = (0.5,0.5) fixed in the first plot, (ψ20,ψ22) = (1.0,0.5) fixed
in the second plot, and (ψ20,ψ21) = (1.0,0.5) fixed in the third plot). Similarly, in
the last three plots, δ1 = δ2 = 0.1; and only one of ψ20, ψ21, or ψ22 was varied
while the remaining were fixed, e.g. (ψ21,ψ22) = (0.5,0.5) fixed in the first plot of
the lower panel, (ψ20,ψ22) = (0.25,0.5) fixed in the second plot of the lower panel,
and (ψ20,ψ21) = (0.25,0.5) fixed in the third plot of the lower panel.

8.9 Analysis of STAR*D Data: An Illustration

8.9.1 Background and Study Details

Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed
class of antidepressants with simple dosing regimens and a preferable adverse effect
profile in comparison to other types of antidepressants (Nelson 1997; Mason et al.
2000). Serotonin is a neurotransmitter in the human brain that regulates a variety
of functions including mood. SSRIs affect the serotonin based brain circuits. Other
classes of antidepressants may act on serotonin in concert with other neurotransmit-
ter systems, or on entirely different neurotransmitter. While a meta-analysis of all
efficacy trials submitted to the US Food and Drug Administration of four antidepres-
sants for which full data sets were available found that pharmacological treatment
of depression was no more effective than placebo for mild to moderate depression,
other studies support the effectiveness of SSRIs and other antidepressants in pri-
mary care settings (Arroll et al. 2005, 2009). Few studies have examined treatment
patterns, and in particular, few have studied best prescribing practices following
treatment failure.

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) was a
multisite, multi-level randomized controlled trial designed to assess the comparative
effectiveness of different treatment regimes for patients with major depressive disor-
der, and was introduced earlier in Chap. 2. See Sect. 2.4.2 for a detailed description
of the study design along with a schematic of the treatment assignment algorithm.
Here we will focus on levels 2, 2A, and 3 of the study only. For the purpose of the
current analysis, we will classify the treatments into two categories: (i) treatment
with an SSRI (alone or in combination): sertraline (SER), CIT + bupropion (BUP),
CIT + buspirone (BUS), or CIT + cognitive psychotherapy (CT) or (ii) treatment
with one or more non-SSRIs: venlafaxine (VEN), BUP, or CT alone. Only the
patients assigned to CIT + CT or CT alone in level 2 were eligible, in the case of a
non-satisfactory response, to move to a supplementary level of treatment (level 2A),
to receive either VEN or BUP. Patients not responding satisfactorily at level 2 (and
level 2A, if applicable) would continue to level 3. Treatment options at level 3 can
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again be classified into two categories, i.e. treatment with (i) SSRI: an augmentation
of any SSRI-containing level 2 treatment with either lithium (Li) or thyroid hor-
mone (THY), or (ii) non-SSRI: mirtazapine (MIRT) or nortriptyline (NTP), or an
augmentation of any non-SSRI level 2 treatment with either Li or THY.

8.9.2 Analysis

Here we present the analysis originally conducted by Chakraborty et al. (2013). In
this analysis, level 2A was considered a part of level 2. This implies that a patient
who received an SSRI at level 2 but a non-SSRI at level 2A was considered a re-
cipient of SSRI in the combined level 2+ 2A for the present analysis. Also, levels
2 (including 2A, if applicable) and 3 were treated as stages 1 and 2 respectively of
the Q-learning framework (level 4 data were not considered in this analysis). As a
feature of the trial design, the outcome data at stage 2 were available only for the
non-remitters from stage 1; so Chakraborty et al. (2013) defined the overall primary
outcome (Y ) as the average −QIDS score over the stage(s) a patient was present in
the study, i.e.

Y = R1 ·Y1 +(1−R1) ·
(Y1 +Y2

2

)
,

where Y1 and Y2 denote the −QIDS scores measured at the end of stages 1 and 2
respectively (the negative of QIDS score was taken to make higher values corre-
spond to better outcomes), and R1 = 1 if the subject achieved remission (QIDS≤ 5)
at the end of stage 1, and 0 otherwise.

Following Pineau et al. (2007), three covariates (tailoring variables) were
included in this analysis: (i) QIDS-score measured at the start of the level
(QIDS.start), (ii) the slope of the QIDS-score over the previous level (QIDS.slope),
and (iii) preference. While QIDS.start and QIDS.slope are continuous variables,
preference is a binary variable, coded 1 for preference to switch previous treatment
and −1 for preference to augment previous treatment or no preference. Following
the notation used earlier, let O1 j denote the QIDS.start at the jth stage, and O2 j de-
note the QIDS.slope at the jth stage, O3 j denote the preference at the jth stage, and
A j denote the treatment at the jth stage, for j = 1,2. Treatment at each stage was
coded 1 for SSRI and −1 for non-SSRI. The following models for the Q-functions
were employed:

Qopt
2 = β02 +β12O12 +β22O22 +β32O32 +β42A1 +

(
ψ02 +ψ12O12 +ψ22O22

)
A2,

Qopt
1 = β01 +β11O11 +β21O21 +β31O31 +

(
ψ01 +ψ11O11 +ψ21O21 +ψ31O31

)
A1.

To avoid singularity, a preference-by-treatment interaction was not included in the
model for Qopt

2 ; similarly no A1A2 interaction was included. According to the above
models, the optimal DTR is given by the following two decision rules:

dopt
2 (H2) = sign(ψ02 +ψ12O12 +ψ22O22),
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dopt
1 (H1) = sign(ψ01 +ψ11O11 +ψ21O21 +ψ31O31).

One thousand two hundred and sixty patients were used at stage 1 (level 2); a small
number (19) of patients were omitted altogether due to gross item missingness in the
covariates. Of the 1,260 patients at stage 1, there were 792 who were non-remitters
(QIDS> 5) who should have moved to stage 2 (level 3); however, only 324 patients
were present at stage 2 while the rest dropped out. To adjust for this dropout, the
model for Qopt

2 was fitted using inverse probability weighting where the probability
of being present at stage 2 was estimated by logistic regression using O11, O21, O31,
A1, −Y1, O22, O11A1, O21A1, and O31A1 as predictors.

Another complexity came up in the computation of the pseudo-outcome,
maxa2 Qopt

2 . Note that for (792− 324) = 468 non-remitters who were absent from
stage 2, covariates O12 (QIDS.start at stage 2) and O32 (preference at stage 2)
were missing, rendering the computation of the pseudo-outcome impossible for
them. For these patients, the value of O12 was imputed by the last observed QIDS
score in the previous stage – a sensible strategy for a continuous, slowly changing
variable like the QIDS score. On the other hand, the missing values of the binary
variable O32 (preference at stage 2) were imputed using k nearest neighbor (k-NN)
classification, where k was chosen via leave-one-out cross-validation. Following
these imputations, Q-learning was implemented for this data; the estimates of the
parameters of the Q-functions, along with their 95 % bootstrap CIs were computed.
While only the usual bootstrap was used at stage 2, both the usual bootstrap and the
adaptive m-out-of-n bootstrap procedure (with α chosen via double bootstrap) were
employed at stage 1, to facilitate ready comparison.

8.9.3 Results

Results of the above analysis are presented in Table 8.6. In this analysis, m
was chosen to be 1,059 in a data-driven way (using double bootstrap). At both
stages, the coefficient of QIDS.start (β12 and β11) and the coefficient of prefer-
ence (β32 and β31) were statistically significant. Additionally ψ31, the coefficient
of preference-by-treatment interaction at stage 1 was significantly different from 0;
this fact is particularly interesting because it suggests that the decision rule at stage
1 should be individually tailored based on preference.

The estimated optimal DTR can be explicitly described in terms of the ψ̂s:
d̂opt

2 (H2) = sign(−0.18 − 0.01O12 − 0.25O22), and d̂opt
1 (H1) = sign(−0.73 +

0.01O11 + 0.01O21 − 0.67O31). That is, the estimated optimal DTR suggests treat-
ing a patient at stage 2 with an SSRI if (−0.18 − 0.01 × QIDS.start2 − 0.25 ×
QIDS.slope2) > 0, and with a non-SSRI otherwise. Similarly, it suggests treat-
ing a patient at stage 1 with an SSRI if (−0.73 + 0.01 × QIDS.start1 + 0.01 ×
QIDS.slope1 −0.67×preference1)> 0, and with a non-SSRI otherwise.
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Table 8.6 Regression coefficients and their 95 % centered percentile bootstrap CIs (both the usual
n-out-of-n and the novel m-out-of-n) in the analysis of STAR*D data (significant coefficients are
in bold)

Parameter Variable Estimate 95 % CI (n-out-of-n) 95 % CI (m-out-of-n)
Stage 2 (n = 324)

β02 Intercept2 −1.66 (−3.70, 0.43) –
β12 QIDS.start2 −0.72 (−0.87, −0.56) –
β22 QIDS.slope2 0.79 (−0.32, 1.99) –
β32 Preference2 0.74 (0.05, 1.50) –
β42 Treatment1 0.26 (−0.38, 0.89) –
ψ02 Treatment2 −0.18 (−2.15, 2.00) –
ψ12 Treatment2 ×QIDS.start2 −0.01 (−0.18, 0.13) –
ψ22 Treatment2 ×QIDS.slope2 −0.25 (−1.33, 0.94) –

Stage 1 (n = 1,260; m̂ = 1,059)
β01 Intercept1 −0.47 (−1.64, 0.71) (−1.82, 0.97)
β11 QIDS.start1 −0.55 (−0.63, −0.48) (−0.65, −0.46)
β21 QIDS.slope1 0.12 (−0.36, 0.52) (−0.41, 0.57)
β31 Preference1 0.88 (0.40, 1.40) (0.35, 1.46)
ψ01 Treatment1 −0.73 (−1.84, 0.43) (−1.91, 0.48)
ψ11 Treatment1 ×QIDS.start1 0.01 (−0.06, 0.09) (−0.07, 0.09)
ψ21 Treatment1 ×QIDS.slope1 0.01 (−0.44, 0.46) (−0.47, 0.49)
ψ31 Treatment1 ×Preference1 −0.67 (−1.17, −0.18) (−1.29, −0.16)

However, these are just the “point estimates” of the optimal decision rules.
A measure of confidence for these estimated decision rules can be formulated as
follows. Note that the estimated difference in mean outcome at stage 2 correspond-
ing to the two treatment options is given by

Qopt
2 (H2,1; β̂2, ψ̂2)−Qopt

2 (H2,−1; β̂2, ψ̂2)

= 2
(−0.18−0.01×QIDS.start2 −0.25×QIDS.slope2

)
.

Likewise, the estimated difference in mean pseudo-outcome at stage 1 correspond-
ing to the two treatment options is given by

Qopt
1 (H1,1; β̂1, ψ̂1)−Qopt

1 (H1,−1; β̂1, ψ̂1)

= 2
(−0.73+0.01×QIDS.start1 +0.01×QIDS.slope1 −0.67×preference1

)
.

For any fixed values of QIDS.start, QIDS.slope, and preference, one can construct
point-wise CIs for the above difference in mean outcome (or, pseudo-outcome)
based on the CIs for the individual ψs, thus leading to a confidence band around the
entire function. The mean difference function and its 95 % confidence band over the
observed range of QIDS.start and QIDS.slope are plotted for stage 1 (separately for
preference= “switch” and preference= “augment or no preference”) and for stage
2 (patients with all preferences combined), and are presented in Fig. 8.3. Since the
confidence bands in all three panels contain zero, there is insufficient evidence in
the data to recommend a unique best treatment.
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Fig. 8.3 Predicted difference in mean outcome and its 95 % confidence band for: (a) patients pre-
ferring treatment switch at stage 1; (b) patients either preferring treatment augmentation or without
preference at stage 1; and (c) all patients at stage 2

8.10 Inference About the Value of an Estimated DTR

In Sect. 5.1, we discussed estimation of the value of an arbitrary DTR. Once a DTR
d̂ is estimated from the data (say, via Q-learning, G-estimation, etc.), a key quantity
to assess its merit is its true value, V d̂ . A point estimate of this quantity, say V̂ d̂ ,
can be obtained, for example, by the IPTW formula (see Sect. 5.1). However it may
be more interesting to construct a confidence interval for V d̂ and see if the confi-
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dence interval contains the optimal value V opt (implying that the estimated DTR is
not significantly different from the optimal DTR), or the value of some other pre-
specified (not necessarily optimal) DTR. It turns out that the estimation of the value
of an estimated DTR, or constructing a confidence interval for it, is a very difficult
problem.

From Sect. 5.1, we can express the value of d̂ by

V d̂ =

∫ ( K

∏
j=1

I[A j = d̂ j(Hj)]

π j(A j|Hj)

)
Y dPπ , (8.17)

where π is an embedded DTR in the study from which the data arose (e.g. the
randomization probabilities in the study); see Sect. 5.1 for further details. Note
that (8.17) can be alternatively expressed as

V d̂ =
∫ {

K

∏
j=1

1
π j(A j|Hj)

Y

}( K

∏
j=1

I[A j = d̂ j(Hj)]
)

dPπ

=
∫

c(O1,A1, . . . ,OK+1;π)
( K

∏
j=1

I[A j = d̂ j(Hj)]
)

dPπ (8.18)

where

c(O1,A1, . . . ,OK+1;π) =

{
K

∏
j=1

1
π j(A j|Hj)

Y

}

is a function of the entire data trajectory and the embedded DTR π . Note that the
form of the value function, as expressed in (8.18), is analogous to the test error
(misclassification rate) of a classifier in a weighted (or, cost-sensitive) classifica-
tion problem, where c(O1,A1, . . . ,OK+1;π) serves as the weight (or, cost) function.
Zhao et al. (2012) vividly discussed this analogy in a single-stage decision problem;
see also Sect. 5.3.

From this analogy, one can argue that the confidence intervals for the value func-
tion could be constructed in ways similar to those for confidence intervals for the
test error of a learned classifier. Unfortunately, constructing valid confidence in-
tervals for the test error in classification is an extremely difficult problem due to
the inherent non-regularity (note the presence of non-smooth indicator functions in
the definition of the value function); see Laber and Murphy (2011) for further de-
tails. Standard methods like normal approximation or the usual bootstrap fail in this
problem. Laber and Murphy (2011) developed a method for constructing such con-
fidence intervals by use of smooth data-dependent upper and lower bounds on the
test error; this method is similar to the method described in Sect. 8.6 in the context
of inference for Q-learning parameters. They proved that for linear classifiers, their
proposed confidence interval automatically adapts to the non-smoothness of the test
error, and is consistent under local alternatives. The method provided nominal cover-
age on a suite of test problems using a range of classification algorithms and sample
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sizes. While intuitively one can expect that this method could be successfully used
for constructing confidence intervals for the value function, more research is needed
to extend and fine-tune the procedure to the current setting.

8.11 Bayesian Estimation in Non-regular Settings

Robins (2004) considered the behavior of Bayesian estimators under exceptional
laws, i.e. the situations where the data-generating distributions lead to non-regularity
in frequentist approaches. He considered a prior distribution, π(ψ), for the de-
cision rule parameters that is absolutely continuous with respect to a Lebesgue
measure and assigns positive mass over the area that includes the true (unknow-
able) parameter values. Robins (2004) showed that the posterior distribution of the
decision rule parameters is non-normal, but that credible intervals based on the
posterior distribution are well-defined under all data-generating distributions with
probability 1. Furthermore, in many cases the frequentist confidence interval and
the Bayesian credible interval based on the highest posterior density will coincide,
even at exceptional laws, in very large samples. Robins noted:

Nonetheless, in practice, if frequentist [confidence interval for ψ] includes exceptional laws
(or laws very close to exceptional laws) and thus the set where the likelihood is relatively
large contains an exceptional law, it is best not to use a normal approximation, but rather to
use either Markov chain Monte Carlo or rejection sampling techniques to generate a sample
ψ(v),v = 1, . . . ,V [. . . ] to construct highest posterior credible intervals, even if one had a
prior mass of zero on the exceptional laws.

Following the estimation of the posterior density via direct calculation or, more
likely, Markov Chain Monte Carlo, the Bayesian analyst must then formulate opti-
mal decision rules. This can be done in a variety of manners, such as recommending
treatment if the posterior median of HT

j1ψ j is greater than some threshold or if the
probability that the posterior mean of HT

j1ψ j exceeds a threshold is greater than a
half. Decisions based on either of these rules will coincide when the posterior is nor-
mally distributed, but may not in general (i.e. when laws are exceptional). Alterna-
tively, both Arjas and Saarela (2010) and Zajonc (2012) considered a G-computation
like approach, and choose as optimal the rule that maximizes the posterior predictive
mean of the outcome.

8.12 Discussion

In this chapter, we have illustrated the problem of non-regularity that arises in the
context of inference about the optimal “current” (stage j) treatment rule, when the
optimal treatments at subsequent stages are non-unique for at least some non-null
proportion of subjects in the population. We have discussed and illustrated the phe-
nomenon using Q-learning as well as G-estimation.
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As discussed by Chakraborty et al. (2010), the underlying non-regularity affects
the analysis of optimal DTRs in at least two different ways: in some data-generating
models it induces bias in the point estimates of the parameters indexing the optimal
DTRs, and in other settings it causes lightness of tail of the asymptotic distribu-
tion but no bias. The coexistence of these two not-so-well-related issues makes this
inference problem unique and challenging.

Non-regularity is an issue in the estimation of the optimal DTRs because it arises
when there is no (or a very small) treatment effect at subsequent stages. This is
exactly the setting that we are likely to face in many SMARTs in a variety of appli-
cation areas, due to clinical equipoise (Freedman 1987). Thus we want estimators
and inference tools to perform well particularly in non-regular settings. In the case
of the hard-max estimator, unfortunately the point of non-differentiability coincides
with the parameter value such that ψT

2 H21 = 0 (non-unique optimal treatment at the
subsequent stage), which causes non-regularity. The threshold estimators (both soft
and hard), in some sense, redistribute the non-regularity from this “null point” to two
different points symmetrically placed on either side of the null point (see Fig. 8.2).
This is one reason why threshold estimators tend to work well in non-regular set-
tings.

However, threshold estimators are still non-smooth, and hence cannot perform
uniformly well throughout the parameter space (particularly in regular settings).
Furthermore, due to their non-smoothness, the usual bootstrap procedure is still a
theoretically invalid inference procedure. Song et al. (2011) extended the idea of
thresholding into penalized regression in the Q-learning steps which led to the PQ-
learning estimators. Asymptotic CIs for PQ-learning estimators are constructed via
analytical formulae, making the procedure computationally cheap. While thresh-
old methods focused primarily on bias correction, PQ-learning was perhaps a more
comprehensive attack on the root of the problem.

A different class of methods emerged from the works of Laber et al. (2011)
and Chakraborty et al. (2013). These methods do not disturb the original Q-learning
(hard-max) estimators, but employ more sophisticated versions of the ordinary boot-
strap to mimic the non-regular asymptotic distributions of the estimators. The adap-
tive method of Laber et al. (2011) is computationally and conceptually complex,
while the m-out-of-n bootstrap method is simpler and thus may be more attractive
to practitioners. Another computationally expensive method is the double bootstrap,
which performs well in conjunction with the original estimator. Yet another method
to construct CIs in non-regular settings is the score method due to Robins (2004);
except for the work of Moodie and Richardson (2010), this approach has not been
thoroughly investigated in simulations, likely due to its computational burden.

As discussed by Chakraborty et al. (2013), their adaptive m-out-of-n resampling
scheme is conceptually very similar to the subsampling method without replace-
ment. In particular, a subsample size of m̃ = m̂/2 would enjoy similar asymptotic
theory to the adaptive m-out-of-n bootstrap and hence provide consistent confidence
sets (see, for example, Politis et al. 1999). One possible advantage of the adaptive
m-out-of-n scheme over an adaptive subsampling scheme is that in a regular setting,
the m-out-of-n procedure reduces to the familiar n-out-of-n bootstrap which may be
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more familiar to applied quantitative researchers. Many of the inference tools dis-
cussed in this chapter can be extended to involve more stages and more treatment
options at each stage; see, for example, Laber et al. (2011) and Song et al. (2011).
Aside from notational complications, extending the adaptive m-out-of-n procedure
should also be straightforward.

Finally, we touched on the problems of inference for the value of an estimated
DTR, discussing the work of Laber and Murphy (2011), and Bayesian estimation.
These are very interesting yet very difficult problems, and little has yet appeared in
the literature. More targeted research is warranted.
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