
Chapter 7
Estimation of DTRs for Alternative Outcome
Types

Up to this point, our development has focused entirely on the continuous outcome
setting. In this chapter, we will turn our attention to the developments that have
been made for estimating DTRs for more difficult outcome types including multi-
component rewards, time-to-event data, and discrete outcomes. As we shall see,
the range of approaches considered in previous chapters have been employed, but
additional care and thought must be devoted to appropriately handling additional
complexities in these settings.

7.1 Trading Off Multiple Rewards: Multi-dimensional
and Compound Outcomes

Most DTR applications involve simple, univariate outcomes or utilities such as
symptom scores or even survival times. However, it may be the case that a single
dimension of response is insufficient to capture the patient experience under treat-
ment. Recently, for example, Wang et al. (2012) conducted an analysis of a SMART-
design cancer treatment study in which the outcome was taken to be a compound
score numerically combining information on treatment efficacy, toxicity, and the risk
of disease progression. The optimal DTR using the composite endpoint was found
to differ from that using simpler endpoints based on a binary or ternary variable
indicating treatment success.

Lizotte et al. (2010) considered an approach based on inverse preference elicita-
tion. They proposed to find optimal regimes that can vary depending on how a new
patient is willing to trade off different outcomes, such as whether he is willing to
tolerate some side-effects for a greater reduction in disease symptoms. Specifically,
they considered a situation where there were two possible outcomes of interest,
R1 and R2, whose respective desirability could be described via a weighted sum
Y = δR1 +(1− δ )R2 for δ ∈ [0,1]. In this situation, Q-functions may be modeled
as a function of the two possible outcomes and δ ; for example, a linear model for
the Q-function might be represented using
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Qopt
j (Hj,A j) = δ (β T

j1Hj0 +ψT
j1Hj1A j)+(1−δ )(β T

j2Hj0 +ψT
j2Hj1A j).

Estimates of β j = (β j1,β j2) and ψ j = (ψ j1,ψ j2) may be obtained by OLS by setting
δ to 0 or 1 (Lizotte et al. 2010). This conceptualization of the outcome addresses an
important issue for researchers who may wish to propose not a single DTR, but one
which may be adapted not only to patient covariates but also to the relative value
patients place on different outcomes. For example, Thall et al. (2002) provided an
analysis where the response is taken to be a linear combination of the probability
of complete remission and the probability of death as judged by a physician with
expertise. It would be possible to use the approach of Lizotte et al. (2010) to either
leave δ unspecified so that future “users” or “recipients” of the DTR (i.e. patients)
could select their preferred weighting on the risks of remission versus death.

As noted by Almirall et al. (2012b), using a linear combination of outcomes
as the final response may not in all circumstances be clinically meaningful, but
may provide an important form of sensitivity analysis when outcome measures are
subjective.

7.2 Estimating DTRs for Time-to-Event Outcomes
with Q-learning

While much of the DTR literature has focused on continuous outcomes, research
and analyses have been conducted for time-to-event data as well. Here, we briefly
review some key developments.

7.2.1 Simple Q-learning for Survival Data: IPW
in Sequential AFT Models

Huang and Ning (2012) used linear regression to fit accelerated failure time (AFT)
models (Cox and Oaks 1984) in a Q-learning framework to estimate the optimal
DTR in a time-to-event setting. Consider a two-stage setting, where patients may
receive treatment in at least one and possibly two stages of a study. That is, all
patients are exposed to some level of the treatment (where we include a control
condition as a possible level of treatment) at the first stage. After the first stage
of treatment, one of three possibilities may occur to a study participant: (1) the
individual is cured by the treatment and does not require further treatment; (2) the
individual experiences the outcome event, or (3) the individual requires a second
stage of treatment, e.g. because of disease recurrence. Let Y denote the total follow-
up time for an individual. If the individual is cured, he is followed until the end
of the study and then censored so that Y is the time from the start of treatment to
the censoring time; if he experiences the outcome event, Y is the time at which the
event occurs. Further, let R denote the time from the initial treatment to the start
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of the second stage treatment (assuming this to be the same as the time of disease
recurrence), and let S denote the time from the start of the second stage treatment
until end of follow-up (due to experiencing the event or the end of the study); then
Y = R+S. Set S = 0 for those individuals who did not experience a second stage of
treatment.

First, let us assume that there is no censoring. Then an AFT Q-learning algorithm
for time-to-event outcomes proceeds much like that for continuous outcomes:

1. Stage 2 parameter estimation: Using OLS, find estimates (β̂2, ψ̂2) of the condi-
tional mean model Qopt

2 (H2i,A2i;β2,ψ2) of the log-transformed time of follow-up
from the start of the second stage, log(Si), for those who experienced a second
stage treatment.

2. Stage 2 optimal rule: By substitution, d̂opt
2 (h2) = argmaxa2 Qopt

2 (h2,a2; β̂2, ψ̂2).
3. Stage 1 pseudo-outcome: Set S∗i =maxa2 exp(Qopt

2 (H2i,a2; β̂2, ψ̂2)), i= 1, . . . ,n,
which can be viewed as the time to event that would be expected under optimal
second-stage treatment. Then calculate the pseudo-outcome,

Ŷ1i =

{
Yi if Si = 0
Ri +S∗i if Si > 0

i = 1, . . . ,n.

4. Stage 1 parameter estimation: Using OLS, find estimates

(β̂1, ψ̂1) = arg min
β1,ψ1

1
n

n

∑
i=1

(
log(Ŷ1i)−Qopt

1 (H1i,A1i;β1,ψ1)
)2

.

5. Stage 1 optimal rule: By substitution, d̂opt
1 (h1) = argmaxa1 Qopt

1 (h1,a1; β̂1, ψ̂1).

In the presence of censoring, the regressions in steps 1 and 4 above can be per-
formed with inverse probability weighting (IPW), where each subject is weighted
by the inverse of the probability of not being censored. Because censoring time
is a continuous measure, the probability of not being censored can be calculated
from the estimated survival curve for censoring, e.g. by fitting a Cox proportional
hazards model to estimate the distribution of the censoring times. Huang and Ning
(2012) proved consistency and asymptotic normality of the regression parameters
under a set of regularity conditions, illustrated good finite-sample performance of
the methodology under varying degrees of censoring using a simulation study, and
applied the methodology to analyze data from a study on the treatment of soft tissue
sarcoma.

7.2.2 Q-learning with Support Vector Regression for Censored
Survival Data

In Q-learning, the Q-functions need not always be modeled by linear models. In the
RL literature, Q-functions had been modeled via regression trees or more sophisti-
cated variations like random forests and extremely randomized trees (Ernst et al.
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2005; Geurts et al. 2006; Guez et al. 2008) or via kernel-based regression (Or-
moneit and Sen 2002). More recently in the DTR literature, Zhao et al. (2011) em-
ployed support vector regression (SVR) to model the Q-functions in the context
of modeling survival time in a cancer clinical trial. These modern methods from the
machine learning literature are often appealing due to their robustness and flexibility
in estimating the Q-functions. Following Zhao et al. (2011), here we briefly present
the SVR method to fit Q-functions.

Stepping outside the RL framework for a moment, consider a regression problem
with the vector of predictors x ∈ R

m and the outcome y ∈ R. Given the data{
xi,yi

}n
i=1, the goal in SVR is to find a (regression) function f : Rm → R that

closely matches the target yi for the corresponding xi. One of the popular loss
functions is the so-called ε-insensitive loss function (Vapnik 1995), defined as:
L ( f (xi),yi) = (| f (xi)−yi|−ε)+, where ε > 0 and u+ denotes the positive part of u.
The ε-insensitive loss function ignores errors of size less than ε and grows linearly
beyond that. Conceptually, this property is similar to that of the robust regression
methods (Huber 1964); see Hastie et al. (2009, p. 435) for more details on this sim-
ilarity, including a graphical representation.

In SVR, typically the regression function f (·) is assumed to take the form f (x) =
θ0 + θ T Φ(x), where Φ(x) is a vector of non-linear basis functions (or, features)
of the original predictor vector x. Thus, while the regression function employs a
linear model involving the transformed features Φ(x), it can potentially become
highly non-linear in the original predictor space, thereby allowing great flexibility
and predictive power. It turns out that the problem of solving for unknown f is a
convex optimization problem, and can be solved by quadratic programming using
Lagrange multipliers (see, for example, Hastie et al. 2009, Chap. 12).

In the context of dynamic treatment regimes, the outcome of interest y (e.g. sur-
vival time from cancer) is often censored. The presence of censoring makes matters
more complicated and the SVR procedure as outlined above cannot be used without
modification. Shivaswamy et al. (2007) considered a version of SVR, without the
ε-insensitive property, to take into account censored outcomes. Building on their
work, Zhao et al. (2011) developed a procedure called ε-SVR-C (where C denotes
censoring) that can account for censored outcomes and has the ε-insensitive prop-
erty. Below we briefly present their procedure.

In general, we denote interval-censored survival (more generally, time-to-event)
data by

{
xi, li,ui

}n
i=1, where l and u stand for the lower and upper bound of the

interval under consideration. If a patient experiences the death event, then the cor-
responding observation is denoted by

{
xi,yi

}n
i=1 with li = ui = yi. Also, letting

ui =+ ∞, one can easily construct a right-censored observation
{

xi, li,+ ∞
}

. Given
the interval-censored data, consider the following loss function:

L ( f (xi), li,ui) = max(li − ε − f (xi), f (xi)−ui − ε)+.

The shape of the loss function for both interval-censored data and right-censored
data are displayed in Fig. 7.1.
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a b

Fig. 7.1 ε-SVR-C loss functions for: (a) interval-censored data (left panel), and (b) right-censored
data (right panel)

Defining the index sets L = {i : li > −∞} and U = {i : ui < +∞}, the ε-SVR-C
optimization formulation is:

min
θ ,θ0,ξ ,ξ ′

1
2
||θ ||2 +CE

(
∑
i∈L

ξi + ∑
i∈U

ξ ′
i

)
, subject to

(θ0 +θ T Φ(xi))−ui ≤ ε +ξi, i ∈U ;

li − (θ0 +θ T Φ(xi))≤ ε +ξ ′
i , i ∈ L;

ξi ≥ 0, i ∈ L;

ξ ′
i ≥ 0, i ∈U.

In the above display, ξi and ξ ′
i are the so-called slack variables and CE is the cost

of error. By minimizing the regularization term 1
2 ||θ ||2 as well as the training error

CE

(
∑i∈L ξi +∑i∈U ξ ′

i

)
, the ε-SVR-C algorithm can avoid both overfitting and un-

derfitting of the training data.
Interestingly, the solution depends on the basis function Φ only through inner

products Φ(xi)
T Φ(x j), ∀i, j. In fact, one need not explicitly specify the basis func-

tion Φ ; it is enough to specify the kernel function K(xi,x j) = Φ(xi)
T Φ(x j). One

popular choice of K used by Zhao et al. (2011) is the Gaussian (or radial basis) ker-
nel, given by K(xi,x j) = exp(−γ ||xi − x j||2). Thus the above optimization problem
is equivalent to the following dual problem:

min
λ ,λ ′

1
2
(λ −λ ′)T K(xi,x j)(λ −λ ′)−∑

i∈L
(li − ε)λ ′

i + ∑
i∈U

(ui + ε)λi,

subject to

∑
i∈L

λ ′
i − ∑

i∈U
λi = 0, 0 ≤ λi,λ ′

i ≤CE , i = 1, . . . ,n.



118 7 Estimation of DTRs for Alternative Outcome Types

The tuning parameters γ (in the definition of K) and CE are obtained by
cross-validation to achieve good performance. Once the above formulation is
solved to find the optimal values of λi and λ ′

i , say λ̂i and λ̂ ′
i , the regression function

is given by f̂ (x) = ∑n
i=1(λ̂ ′

i − λ̂i)K(xi,x)+ θ̂0. Due to the nature of the constraints
in the above optimization problem, typically only a subset of values of (λ̂ ′

i − λ̂i) are
non-zero, and the associated data points are called the support vectors.

Possible
treatments

Immediate Death

Stage 2

Possible
treatments 
and initial
timings

Stage 1

Progression

1 2

Fig. 7.2 Treatment plan and therapy options for advanced non-small cell lung cancer in a hypo-
thetical SMART design

Zhao et al. (2011) implemented Q-learning in conjunction with the ε-SVR-C
method described above in the context of a hypothetical two-stage SMART for
treating advanced non-small cell lung cancer; see Fig. 7.2 for a schematic. In ad-
dition to the complexity of the problem of selecting optimal stage-1 and stage-2
treatments, another goal was to determine the optimal time to initiate the stage-2
treatment, either immediately or delayed, that would yield the longest overall sur-
vival time. Let t1 and t2 denote the time-points where the first and second stage
treatment decisions are made, respectively. Let the time to disease progression, after
initiation of the stage-1 treatment (chemotherapy), be denoted by TP (for simplicity,
it is assumed that TP ≥ t2 with probability 1). Let TM denote the targeted time after
t2 of initiating the stage-2 treatment. The actual time to initiate the stage-2 treatment
is (t2 +TM)∧TP. At the end of first-stage therapy, i.e. at time t2, clinicians make a
decision about the target start time TM . Let TD denote the time of death from the start
of therapy (t1), i.e. the overall survival time. Note that this scenario is more complex
than that of the previous section; in the simpler setting of Huang and Ning (2012),
R = (t2 + TM)∧ TP and S = TD −R or, in the presence of censoring, S will be the
time on study following initiation of second treatment (total time minus R).

Acknowledging the possibility of right censoring, denote the patient’s censoring
time by C and indicator of the event (i.e. of not being censored) by δ = I[TD ≤ C].
Assume that the censoring is independent of both the death time and the patient
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covariates. For convenience, define T1 = TD ∧ t2 and YD = I[TD ∧C ≥ t2], and also
T2 = (TD − t2)I[TD ≥ t2] = (TD − t2)I[T1 = t2] and C2 = (C− t2)I[C ≥ t2]. Note that
TD = T1 +T2, where T1 is the time of life lived in [t1, t2] and T2 is the time of life
lived after t2.

As in previous chapters, let H1 and H2 denote the histories (e.g. current and past
covariates, and also past treatments) available at first and second stage respectively.
Also, let A1 and A2 denote the treatment choices at the two stages. In this study,
the treatment decision at the second stage also involves an initiation time TM , as
discussed above. Thus the stage-2 treatment is two-dimensional, denoted compactly
as (A2,TM). Define the optimal Q-functions for the two stages as follows:

Qopt
2

(
H2,(A2,TM)

)
= E

[
T2
∣∣H2,(A2,TM)

]
,

Qopt
1 (H1,A1) = E

[
T1 + I[T1 = t2] max

(A2,TM)
Qopt

2

(
H2,(A2,TM)

)∣∣H1,A1
]
.

In case of known Q-functions, the optimal DTR (dopt
1 ,dopt

2 ), using a backwards
induction argument, would be

dopt
2 (h2) = arg max

(a2,TM)
Qopt

2 (h2,(a2,TM)),

dopt
1 (h1) = argmax

a1
Qopt

1 (h1,a1).

When the Q-functions are unknown, they are estimated using suitable models. In the
present development, censored outcomes (T1∧C,δ1 = I[T1 ≤C]) and (T2∧C2,δ2 =
I[T2 ≤C2]) are used at both stages. The exact algorithm to perform Q-learning with
ε-SVR-C for censored survival data is as follows:

1. For those individuals with YD = 1 (i.e. those who actually go on to the second
stage of treatment), perform right-censored regression using ε-SVR-C of the cen-
sored outcome (T2∧C2,δ2) on the stage-2 variables (H2,(A2,TM)) to obtain Q̂opt

2 .
2. Construct the pseudo-outcome

T̂D = T1 + I[T1 = t2] max
(A2,TM)

Q̂opt
2 (H2,A2,TM) = T1 + I[T1 = t2]T̂2 = T1 +YDT̂2.

3. In fitting Qopt
1 , the pseudo-outcome T̂D is assessed through the censored ob-

servation (X̃ , δ̃ ), with X̃ = T1 ∧C +YDT̂2 = T̂D ∧ C̃ and δ̃ = I[T̂D ≤ C̃], where
C̃ =CI[C < t2]+∞I[C2 ≥ t2]. Perform ε-SVR-C of (X̃ , δ̃ ) on (H1,A1) to obtain
Q̂opt

1 .

Once the Q-functions are fitted, the estimated optimal DTR is given by (d̂opt
1 , d̂opt

2 ),
where the stage-specific optimal rules are given by

d̂opt
2 (h2) = argmax

(a2,TM)

Q̂opt
2 (h2,(a2,TM)),

d̂opt
1 (h1) = argmax

a1

Q̂opt
1 (h1,a1).
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In the ε-SVR-C steps of the Q-learning algorithm, the tuning parameters CE and
γ are chosen via cross validation over a grid of values. Zhao et al. (2011) reported
robustness of the procedure to relatively small values of ε; they set its value at 0.1
in their simulation study.

Zhao et al. (2011) evaluated the above method of estimating the optimal DTR
with survival-type outcome in an extensive simulation study. In short, they consid-
ered a generative model, the parameters of which could be easily tweaked to reflect
four different clinical scenarios resulting in four different optimal regimes. They
generated data on 100 virtual patients from each of the 4 clinical scenarios, thus a
total of 400 virtual patients. Then the optimal regime was estimated via Q-learning
with ε-SVR-C. For evaluation purposes, an independent test sample of size 100 per
clinical scenario (hence totaling 400) was also generated. Outcomes (overall sur-
vival) for these virtual test patients were evaluated for the estimated optimal regime
as well as all possible (12) fixed regimes, using the generative model. Furthermore,
they repeated the simulations ten times for the training sample (each of size 400).
Then ten different estimated optimal regimes from these ten training samples were
applied to the same test sample (of size 400) mentioned earlier. All the results for
each of the 13 treatment regimes (12 fixed, plus the estimated optimal) were aver-
aged over the 400 test patients. It was found that the true overall survival was sub-
stantially higher for the estimated optimal regime than any of the 12 fixed regimes.
They also conducted additional simulations to check the sensitivity of the procedure
to the sample size. It was found that for sample sizes ≥100, the procedure is very
reliable in selecting the optimal regime.

7.3 Q-learning of DTRs for Discrete Outcomes

Moodie et al. (2013) recently tackled the challenging problem of Q-learning for
discrete-valued outcomes, and took a less parametric approach to modeling the Q-
functions by using generalized additive models (GAMs). Generalized additive mod-
els provide a user-friendly means to introducing greater flexibility in modeling the
relationship between an outcome and covariates. GAMs are treated as penalized
regression splines with different smoothing parameters allowed for each covariate,
where the degree of smoothing is selected by generalized cross-validation (Wood
2006, 2011). The automatic parsimony that the approach ensures helps to control
the dimensionality of the estimation problem, an important feature in the DTR set-
ting where the covariate space is potentially very large.

Suppose we are in a setting where the outcome at the final stage is discrete,
and there are no intermediate rewards. The outcome could represent, for instance,
a simple indicator of success such as maintenance of viral load below a given
threshold over the course of a study (a binary outcome), or the number of emer-
gency room visits in a given period (a count, possibly Poisson-distributed). When
the outcome Y is discrete, the Q-learning procedure must be adapted to respect
the constraints on the outcome, for example, Y is bounded in [0,1], or Y is
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non-negative. By definition, in a two-stage setting, we have Qopt
2 (H2,A2) =

E
[
Y
∣∣H2,A2

]
at the final interval. A reasonable modeling choice would be to consider

a generalized linear model (GLM). For instance, for a Bernoulli utility, we might

choose a logistic model of the form E
[
Y
∣∣H2,A2

]
= expit

(
β T

j Hj0 +(ψT
j Hj1)A j

)
,

where expit(x) = exp(x)/(1+ exp(x)) is the inverse-logit function. Similarly, for a
non-negative outcome, we might choose a Poisson family GLM with the canonical
link. The key is to choose a link function that is strictly increasing (or decreasing),
since this allows maximization of the second-stage Q-function by a maximization
of the linear specification in the mean. For example, in the binary outcome setting,

since the inverse-logit function is strictly increasing, expit
(

β T
j Hj0 +(ψT

j Hj1)A j

)
can be maximized by maximizing its argument, β T

j Hj0 +(ψT
j Hj1)A j. Therefore

Qopt
1 (H1,A1;β1,ψ1) = max

a2
Qopt

2 (H2i,a2; β̂2, ψ̂2) = expit
(

β̂ T
2 H20,i + |ψ̂T

2 H21,i|
)
,

which is bounded by [0,1]. As in the continuous utility setting, the optimal regime
at the first interval is defined by

d̂opt
1 (h1) = argmax

a1
Qopt

1 (h1,a1; β̂1, ψ̂1).

Continuing with the binary outcome example, we have

argmax
a1

Qopt
1 (h1,a1; β̂1, ψ̂1) = argmax

a1
logit

(
Qopt

1 (h1,a1; β̂1, ψ̂1)
)

since the logit function is strictly increasing. We may therefore model the logit of
Qopt

1 (H1,A1;β1,ψ1) rather than the Q-function itself to determine the optimal DTR.
The Q-learning algorithm for a discrete outcome consists of the following steps:

1. Interval 2 parameter estimation: Using GLM regression with a strictly increasing
link function, f (·), find estimates (β̂2, ψ̂2) of the conditional mean model for the
outcome Y , Qopt

2 (H2i,A2i;β2,ψ2).

2. Interval 2 optimal rule: Set d̂opt
2 (h2) = argmaxa2 Qopt

2 (h2,a2; β̂2, ψ̂2).
3. Interval 1 pseudo-outcome: Set

Ỹ1i = max
a2

f (Qopt
2 (H2i,a2; β̂2, ψ̂2)), i = 1, . . . ,n.

4. Interval 1 parameter estimation: Using ordinary least squares regression, find
estimates

(β̂1, ψ̂1) = arg min
β1,ψ1

1
n

n

∑
i=1

(
Ỹ1i −Qopt

1 (H1i,A1i;β1,ψ1)
)2

.

5. Interval 1 optimal rule: Set d̂opt
1 (h1) = argmaxa1 Qopt

1 (h1,a1; β̂1, ψ̂1).
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The estimated optimal DTR using Q-learning is given by (d̂1, d̂2). In a binary
outcome scenario, note that unlike in the continuous utility setting, the pseudo-
outcome, Ỹ1i, does not represent the (expected) value of the second-interval Q-
function under the optimal treatment but rather a transformation of that expected
outcome.

We briefly consider a simulation study. The data for treatments (A1,A2), and
covariates (C1,O1,C2,O2) were generated as in Sect. 3.5. We considered three out-
come distributions: normal, Bernoulli, and Poisson, and two forms of the relation-
ship between the outcome and the variables C1 and C2. The first setting corresponds
to Scenario C of Sect. 3.5 (normal outcome, Q-functions linear in covariates); the
second varies only in that a quadratic terms for C1 and C2 are included in the mean
model. Similarly, settings three and four correspond to a Bernoulli outcome with Q-
functions that are, respectively, linear and quadratic in C1 and C2, and the final pair
of settings correspond to a Poisson outcome with Q-functions that are, respectively,
linear and quadratic in the covariates. Results are presented in Table 7.1.

Overall, we observe very good performance of both the linear (correct) speci-
fication and the GAM specification of the Q-function when the true confounder-
outcome relationship is linear: estimators are unbiased, and the use of the GAM for
the Q-function exhibits reasonably variability even for the smaller sample size of
250. In fact the variability of the estimator resulting from a GAM for the Q-function
is as low as the linear model-based estimator for the normal and Poisson outcomes,
implying there is little cost for the additional flexibility in the cases. When the de-
pendence of the utility on the confounding variables is quadratic, only the decision
rule parameters resulting from a GAM for the Q-function exhibits little or no bias
and good coverage rates.

Thus, it appears that Moodie et al. (2013) have taken a modest but promising step
on the path to a more fully generalized Q-learning algorithm, with the consideration
of a flexible, spline-based modeling approach for discrete outcomes. The next step
of adapting Q-learning to allow discrete interval-specific outcomes is challenging,
and remains an open problem.

7.4 Inverse Probability Weighted Estimation for Censored or
Discrete Outcomes and Stochastic Treatment Regimes

Some of the seminal work in developing MSMs for DTR estimation was performed
in a survival context, using inverse probability weighting combined with pooled
logistic regression to approximate a Cox model for the estimation of the hazard ra-
tio parameters (Hernán et al. 2006; Robins et al. 2008). The methods are gaining
popularity in straightforward applications examining, for example, when to initi-
ate dialysis (Sjölander et al. 2011) or antiretroviral therapy (Shepherd et al. 2010).
These methods require little adaptation to the algorithm described in Sect. 5.2.2: as
with continuous outcomes, data-augmentation is undertaken to create replicates of
individuals that are compatible with each regime of interest. The only step that dif-
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Table 7.1 Comparison of the performance Q-learning for normal, Bernoulli, and Poisson
outcomes when the true Q-function is either linear or quadratic in the covariates: bias, Monte
Carlo variance (MC var), Mean Squared Error (MSE) and coverage of 95 % bootstrap confidence
intervals (Cover) of the first interval decision rule parameter ψ10. Bias, variance, and MSE are each
multiplied by 10.

Adjustment n = 250 n = 1,000
method Bias MC var MSE Cover Bias MC var MSE Cover

Normal outcome, Q-functions linear in covariates
None 10.03 0.35 10.41 0.0 10.12 0.09 10.32 0.0
Linear 0.02 0.08 0.08 94.1 0.00 0.02 0.02 93.0
GAM 0.02 0.08 0.08 94.4 0.00 0.02 0.02 93.6

Normal outcome, Q-functions quadratic in covariates
None 18.18 16.30 4.935 68.1 18.92 4.31 40.11 10.8
Linear 29.64 20.53 108.38 37.9 31.42 4.72 103.46 0.1
GAM 0.21 1.49 1.50 95.2 −0.11 0.40 0.40 92.7

Bernoulli outcome, Q-functions linear in covariates
None 8.65 1.57 8.97 13.7 8.45 0.19 7.32 0.0
Linear 0.20 1.98 1.98 94.9 0.00 0.28 0.28 95.1
GAM 0.81 4.25 4.25 97.2 0.00 0.28 0.28 95.8

Bernoulli outcome, Q-functions quadratic in covariates
None 3.77 0.65 2.07 64.8 3.71 0.15 1.53 10.8
Linear 1.54 0.87 1.11 92.5 1.56 0.20 0.44 79.7
GAM 0.06 2.63 2.63 97.2 −0.11 0.32 0.32 97.0

Poisson outcome, Q-functions linear in covariates
None 8.97 0.70 8.74 5.6 9.49 0.23 9.23 0.0
Linear 0.14 0.11 0.11 93.9 0.14 0.02 0.03 93.8
GAM 0.13 0.11 0.11 95.7 0.14 0.02 0.03 94.5

Poisson outcome, Q-functions quadratic in covariates
None 4.39 0.19 2.12 15.4 4.32 0.04 1.91 0.0
Linear −1.01 0.27 0.38 90.1 −1.06 0.07 0.19 72.6
GAM 0.00 0.28 0.28 96.7 0.14 0.64 0.65 94.6

fers is the outcome regression model, which is adapted to the outcome type, using,
for example a weighted Cox model or a weighted pooled logistic regression rather
than weighted linear regression.

A separate but closely related body of work has focused on survival data
primarily in two-phase cancer trials. In the trials which motivated the statistical
developments, cancer patients were randomly assigned to one of several initial ther-
apies and, if the initial treatments successfully induced remission, the patient was
randomized to one of several maintenance therapies. A wide collection of methods
have been developed in this framework, including weighted Kaplan-Meier cen-
soring survivor curves and mean-restricted survival times (Lunceford et al. 2002),
an improved estimator for the survival distribution which was shown to be the
most efficient among regular, asymptotically linear estimators (Wahed and Tsiatis
2004, 2006). Log-rank tests and sample size calculations have since been developed
(Feng and Wahed 2009). While these methods do address estimation of a dynamic
regime of the form “what is the best initial treatment? what is the best subsequent
treatment if the initial treatment fails?”, these methods are typically used to select
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from among a small class of initial and maintenance treatment pairs, and have not
been developed to select an optimal threshold from among a potentially large list of
values.

The general MSM framework for DTR estimation has been further adapted to
handle stochastic treatment assignment rules. For example, Cain et al. (2010) con-
sidered treatment rules which allowed for a grace period of m months in the timing
of treatment initiation, i.e. a rule of the form “initiate treatment within m months of
covariate O crossing threshold ψ” rather than “initiate treatment when covariate O
crosses threshold ψ”.

7.5 Estimating a DTR for a Binary Outcome Using
a Likelihood Approach

Thall and colleagues have considered DTRs in several cancer treatment settings,
where the typical treatment paradigm is “play the winner, drop the loser” (Thall
et al. 2000): a patient given an initial course of a treatment will continue to receive
that treatment if it is deemed to be sufficiently successful (e.g. due to partial tumor
shrinkage or partial remission), will be switched to a maintenance therapy or follow-
up if completely successful, and will be switched to an alternative treatment (some-
times referred to as a salvage therapy) if the initial treatment is unsuccessful. The
definition of success on a particular course of treatment may depend on which
course it is. For example, in prostate cancer, a success on the first course of treat-
ment requires a decrease of at least 40 % in the cancer biomarker prostate-specific
antigen (PSA) from baseline, while success in the second course requires a decrease
of at least 80 % in PSA from the baseline value (and, in both cases, no evidence of
disease progression).

In a prostate cancer treatment trial, Thall et al. (2000) took a parametric approach
to estimating the best sequence of treatments with the goal of maximizing the prob-
ability of successful treatment, where success is a binary variable. Four treatment
courses were considered. Patients were randomized to one of the four treatments,
and if treatment failed, randomized to one of the remaining three options. That is,
A1 = {1,2,3,4} and A2 = A1 \ a1 (where a1 is the treatment actually given at the
first stage). A patient was switched from a treatment after the first failure, or deemed
to have had a successful therapy following two successful courses of the same treat-
ment. Thus, the trial can be viewed as a two-stage trial in which patients can have
at least one and at most two courses of treatment in the first stage, and at most two
courses of treatment in the second stage for a total two to four courses of treatment.

The optimizing criterion for determining the best DTR was the probability of
successful therapy. That is, the goal was to maximize ξ (a,a′) = ξa +(1− ξa)ξa′|a,
where ξa is the probability of a patient success in the first two courses with initial
treatment a and ξa′|a is the probability that the patient has two successful courses
with treatment a′ following initial (unsuccessful) treatment with a, i.e. under treat-
ment strategy (a,a′). Parametric conditional probability models were posited to
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obtain estimates of ξ (a,a′) that were allowed to depend on the patient’s state and
treatment history. For example, letting Yj take the value 1 if a patient experiences
successful treatment on the jth course and 0 otherwise, patient outcomes through
the first two courses of therapy can be characterized by the following probabilities:

θ1(a) = P(Y1 = 1|A1 = a)

θ2(1;(a,a)) = P(Y2 = 1|Y1 = 1,A1 = A2 = a)

θ2(0;(a′,a)) = P(Y2 = 1|Y1 = 0,A1 = a′,A2 = a)

which gives ξa = θ1(a)θ2(1;(a,a)). Logistic regression models were proposed for
the above probabilities, i.e. logit(θ j) were modeled as linear functions of treatment
and covariate histories for each of the j courses of treatment. These probability
models can be extended to depend on state variables such as initial disease severity
as well. Once all these models are fitted, one can pick the best DTR, i.e. the best
treatment pair (a,a′) that maximizes the overall success probability ξ (a,a′).

7.6 Discussion

In this chapter, we have considered the estimation of DTRs for a variety of outcome
types, including multi-dimensional continuous outcomes, time-to-event outcomes
in the presence of censoring, as well as discrete outcomes. Methods used in the
literature for such data include Q-learning, marginal structural models, and a fully
parametric, likelihood-based approach. In the context of Q-learning, modeling of
time-to-event data has been accomplished using accelerated failure time models
(with censoring handled by inverse probability weighting) and using the less para-
metric approach of support vector regression. For discrete outcomes, Q-learning has
also been combined with generalized additive models selected by generalized cross-
validation, with promising results. The MSM approach has been implemented for
discrete failure times only, but can easily be used in a continuous-time setting using
a marginal structural Cox model. G-estimation can also be employed assuming an
AFT (see Mark and Robins 1993; Hernán et al. 2005) to estimate DTRs, however
the approach remains under-utilized, perhaps because of the relative lack of standard
software with which it can be implemented.
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