
Chapter 2
The Data: Observational Studies
and Sequentially Randomized Trials

The data for constructing (optimal) DTRs that we consider are obtained from either
longitudinal observational studies or sequentially randomized trials. In this chapter
we review these two types of data sources, their advantages and drawbacks, and
the assumptions required to perform valid analyses in each, along with some ex-
amples. We also discuss a basic framework of causal inference in the context of
observational studies, and power and sample size issues in the context of random-
ized studies.

2.1 Longitudinal Observational Studies

The goal of much of statistical inference is to quantify causal relationships, for in-
stance to be able to assert that a specified treatment1 improves patient outcomes
rather than to state that treatment use or prescription of treatment is merely asso-
ciated or correlated with better patient outcomes. Randomized trials are the “gold
standard” in study design, as randomization coupled with compliance allows causal
interpretations to be drawn from statistical association. Making causal inferences
from observational data, however, can be tricky and relies critically on certain (un-
verifiable) assumptions which we will discuss in Sect. 2.1.3. The notion of causation
is not new: it has been the subject matter of philosophers as far back as Aristotle,
and more recently of econometricians and statisticians. Holland (1986) provides a
nice overview of the philosophical views and definitions of causation as well as
of the causal models frequently used in statistics. Neyman (1923) and later Rubin
(1974) laid the foundations for the framework now used in modern causal inference.
The textbook Causal Inference (Hernán and Robins 2013) provides a thorough de-
scription of basic definitions and most modern methods of causal inference for both

1 In this book, we use the term treatment generically to denote either a medical treatment or an
exposure (which is the preferred term in the causal inference literature and more generally in epi-
demiology).
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point-source treatment (i.e. cross-sectional, or one-stage) settings as well as general
longitudinal settings with time-varying treatments and the associated complexities.

2.1.1 The Potential Outcomes Framework

Much of the exposition of methods used when data are observational will rely on
the notion of potential outcomes (also called counterfactuals), defined as a per-
son’s outcome had he followed a particular treatment regime, possibly different from
the regime which he was actually observed to follow (hence, counter to fact). The
individual-level causal effect of a regime may then be viewed as the difference in
outcomes if a person had followed that regime as compared to a placebo regime or
a standard care protocol. Consider, for example, a simple one-stage2 randomized
trial in which subjects can receive either a or a′. Suppose now that an individual
was randomized to receive treatment a. This individual will have a single observed
outcome Y which corresponds to the potential outcome “Y under treatment a”, de-
noted by Y (a), and one unobservable potential outcome, Y (a′), corresponding to the
outcome under a′. An alternative notation to express counterfactual quantities is via
subscripting: Ya and Ya′ (Hernán et al. 2000). Pearl (2009) uses an approach similar
to that of the counterfactual framework, using what is called the “do” notation to
express the idea that a treatment is administered rather than simply observed to have
been given: in his notation, E[Y |do(A = a)] is the expected value of the outcome
variable Y under the intervention regime a, i.e. it is the population average were all
subjects forced to take treatment a.

The so-called fundamental problem of causal inference lies in the definition of
causal parameters at an individual level. Suppose we are interested in the causal ef-
fect of taking treatment a instead of treatment a′. An individual-level causal parame-
ter that could be considered is a person’s outcome under treatment a′ subtracted from
his outcome under treatment a, i.e. Y (a)−Y (a′). Clearly, it is not possible to observe
the outcome under both treatments a and a′ without further data and assumptions
(e.g. in a cross-over trial with no carry-over effect) and so the individual-level causal
effect can never be observed. However, population-level causal parameters or aver-
age causal effects can be identified under randomization with perfect compliance, or
bounded under randomization with non-compliance. Without randomization, i.e. in
observational studies or indeed randomized trials with imperfect compliance, fur-
ther assumptions are required to estimate population-level causal effects, which we
shall detail shortly.

Suppose now that rather than being a one-stage trial, subjects are treated over two
stages, and can receive at each stage either a or a′. If an individual was randomized
to receive treatment a first and then treatment a′, this individual will have a single
observed outcome Y which corresponds to the potential outcome “Y under regime

2 While the term stage is commonly used in the randomized trial literature, the term interval is
more popular in the causal inference literature. In this book, for consistency, we will use the term
stage for both observational and randomized studies.
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(a,a′)”, which we denote by Y (a,a′), and three unobservable potential outcomes:
Y (a,a), Y (a′,a), and Y (a′,a′), corresponding to outcomes under each of the other
three possible regimes. As is clear even in this very simple example, the number
of potential outcomes and causal effects as represented by contrasts between the
potential outcomes can be very large, even for a moderate number of stages. As shall
be seen in Chap. 4, the optimal dynamic regime may be estimated while limiting the
models specified to only a subset of all possible contrasts.

2.1.2 Time-Varying Confounding and Mediation

Longitudinal data are increasingly available to health researchers; this type of data
presents challenges not observed in cross-sectional data, not the least of which is the
presence of time-varying confounding variables and intermediate effects. A variable
O is said to be a mediating or intermediate variable if it is caused by A and in turn
causes changes in Y . For example, a prescription sleep-aid medication (A) may cause
dizziness (O) which in turn causes fall-related injuries (Y ). In contrast, a variable,
O, is said to confound a relationship between a treatment A and an outcome Y if
it is a common cause of both the treatment and the outcome. More generally, a
variable is said to be a confounder (relative to a set of covariates X) if it is a pre-
treatment covariate that removes some or all of the bias in a parameter estimate,
when taken into account in addition to the variables X . It may be the case, then,
that a variable is a confounder relative to one set of covariates X but not another,
X ′. If the effect of O on both A and Y is not accounted for, it may appear that there
is a relationship between A and Y when in fact their pattern of association may
be due entirely to changes in O. For example, consider a study of the dependence
of the number of deaths by drowning (Y ) on the use of sunscreen (A). A strong
positive relationship is likely to be observed, however it is far more likely that this is
due to the confounding variable air temperature (O). When air temperature is high,
individuals may be more likely to require sunscreen and may also be more likely to
swim, but there is no reason to believe that the use of sunscreen increases the risk of
drowning. In cross-sectional data, eliminating the bias due to a confounding effect
is typically achieved by adjusting for the variable in a regression model.

Directed Acyclic Graphs (DAGs), also called causal graphs, formalize the causal
assumptions that a researcher may make regarding the variables he wishes to ana-
lyze. A graph is said to be directed if all inter-variable relationships are connected
by arrows indicating that one variable causes changes in another and acyclic if it
has no closed loops (no feedback between variables); see, for example, Greenland
et al. (1999) or Pearl (2009) for further details. DAGs are becoming more common
in epidemiology and related fields as researchers seek to clarify their assumptions
about hypothesized relationships and thereby justify modeling choices (e.g. Bodnar
et al. 2004; Brotman et al. 2008). In particular, confounding in its simplest form can
be visualized in a DAG if there is an arrow from O into A, and another from O into
Y . Similarly, mediation is said to occur if there is at least one directed path of arrows
from A to Y that passes through O.
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Let us now briefly turn to a two-stage setting where data are collected at three
time-points: baseline (t1=0), t2, and t3. Covariates are denoted O1 and O2, measured
at baseline and t2, respectively. Treatment at stages 1 and 2, received in the intervals
[0, t2) and [t2, t3), are denoted A1 and A2 respectively. Outcome, measured at t3, is
denoted Y . Suppose there is an additional variable, U , which is a cause of both O2

and Y . See Fig. 2.1.

A1 A2

O2O1 Y

0U

(e)

(b)(a)

(d)

(f)

t1 t2 t3

(c)

(g)

Fig. 2.1 A two-stage directed acyclic graph illustrating time-varying confounding and mediation

We first focus on the effect of A1 on Y ; A1 acts directly on Y , but also acts indi-
rectly through O2 as indicated by arrows (e) and (d); O2 is therefore a mediator. We
now turn our attention to the effect of A2 on Y ; O2 confounds this relationship, as
can be observed by arrows (d) and (f). In this situation, adjustment for O2 is essential
to obtaining unbiased estimation of the effect of A2 on Y . However, complications
may arise if there are unmeasured factors that also act as confounders; in Fig. 2.1,
U acts in this way. If one were to adjust for O2 in a regression model, it would open
what is called a “back-door” path from Y to A2 via the path (b)→(a)→(c)→(g). This
is known as collider-stratification bias, selection bias, Berksonian bias, Berkson’s
paradox, or, in some contexts, the null paradox (Robins and Wasserman 1997; Gail
and Benichou 2000; Greenland 2003; Murphy 2005a); this problem will be consid-
ered in greater depth in Sect. 3.4.2 in the context of estimation. Collider-stratification
bias can also occur when conditioning on or stratifying by variables that are caused
by both the exposure and the outcome, and there has been a move in the epidemiol-
ogy literature to use the term selection bias only for bias caused by conditioning on
post-treatment variables, and the term confounding for bias caused by pre-treatment
variables (Hernán et al. 2004).
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Modeling choices become more complex when data are collected over time,
particularly as a variable may act as both a confounder and a mediator. The use
of a DAG forces the analyst to be explicit in his modeling assumptions, particu-
larly as the absence of an arrow between two variables (“nodes”) in a graph implies
the assumption of (conditional) independence. Some forms of estimation are able
to avoid the introduction of collider-stratification bias by eliminating conditioning
(e.g. weighting techniques) while others rely on the assumption that no variables
such as U exist. See Sect. 3.4.2 for a discussion on how Q-learning, a stage-wise
regression based method of estimation, avoids this kind of bias by analyzing one
stage at a time.

2.1.3 Necessary Assumptions

A fundamental requirement of the potential outcomes framework is the axiom of
consistency, which states that the potential outcome under the observed treatment
and the observed outcome agree: that is, the treatment must be defined in such a way
that it must be possible for all treatment options to be assigned to all individuals in
the population under consideration. Thus, the axiom of consistency requires that
the outcome for a given treatment is the same, regardless of the manner in which
treatments are ‘assigned’. This is often plausible in studies of medical treatments
where it is easy to conceive of how to manipulate the treatments given to the patients
(this setting is relevant in the DTR context), but less obvious for exposures that are
modifiable by a variety of means, such as body-mass index (Hernán and Taubman
2008), or that are better defined as (non-modifiable) characteristics, such as sex
(Cole and Frangakis 2009).

Before stating the necessary assumptions for estimating DTRs, we introduce the
following notations. Let āK ≡ (a1, . . . ,aK) denote a K-stage sequence of treatments.
Let (d1, . . . ,dK) denote a treatment regime, i.e. a set of decision rules where d j is
a mapping from the history space to the treatment/action space for all j. Similarly
let Ō j ≡ (O1, . . . ,O j) denote the collection of covariates observed up to stage j and
Ā j−1 ≡ (A1, . . . ,A j−1) denote the collection of past treatments prior to stage j. We
combine the treatment and covariate history up to the jth stage into a single history
vector, Hj ≡ (Ō j, Ā j−1). To estimate a DTR from either randomized or observational
data, two assumptions are required:

1. Stable unit treatment value assumption (SUTVA): A subject’s outcome is not in-
fluenced by other subjects’ treatment allocation (Rubin 1980).

2. No unmeasured confounders (NUC): For any regime āK ,

A j ⊥ (O j+1(ā j), . . . ,OK(āK−1),Y (āK))
∣
∣
∣Hj ∀ j = 1, . . . ,K.

That is, for any possible regime āK , treatment A j received in the jth stage is inde-
pendent of any future (potential) covariate or outcome, O j+1(ā j), . . . ,OK(āK−1),
Y (āK), conditional on the history Hj (Robins 1997).
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The first assumption – sometimes called no interaction between units or no
interference between units (Cox 1958) – is often reasonable, particularly in the
context of randomized trials where study participants are drawn from a large popu-
lation. SUTVA may be violated in special cases such as vaccinations for contagious
disease where the phenomenon of “herd immunity” may lead to protection of unvac-
cinated individuals or in the context of group therapy (e.g. a support group) where
the inter-personal dynamics between group members could influence outcomes.

The NUC assumption always holds under either complete or sequential random-
ization, and is sometimes called the sequential randomization assumption (SRA),
sequential ignorability, or exchangeability, which is closely linked to the concept
of stability (Dawid and Didelez 2010; Berzuini et al. 2012). The assumption may
also be (approximately) true in observational settings where all relevant confounders
have been measured. No unmeasured confounding is a strong generalization of the
usual concept of randomization in a single-stage trial, whereby it is assumed that,
conditional on treatment and covariate history, at each stage the treatment actually
received, A j, is independent of future states and outcome under any sequence of
future treatments, ā j. That is, conditional on the past history, treatment received at
stage j is independent of future potential covariates and outcome:

p(A j|Hj,O j+1(ā j), . . . ,OK(āK−1),Y (āK)) = p(A j|Hj).

It is this assumption that allows us to effectively view each stage as a randomized
trial, possibly with different randomization probabilities at stage j, given strata de-
fined by the history Hj.

If subjects are censored (lost to follow-up or otherwise removed from the study),
we must further assume that censoring is non-informative conditional on history,
i.e. that the potential outcomes of those subjects who are censored follow the same
distribution as that of those who are fully followed given measured covariates.

The optimal regime may only be estimated non-parametrically among the set of
feasible regimes (Robins 1994). Let p j(a j|Hj) denote the conditional probability of
receiving treatment a j given Hj, and let f (HK) denote the density function of HK .
Then for all histories hK with f (hK)> 0, a feasible regime d̄K satisfies

K

∏
j=1

p j(d j(Hj)|Hj = h j)> 0.

That is, feasibility requires some subjects to have followed regime d̄K for the an-
alyst to be able to estimate its performance non-parametrically. To express this in
terms of decision trees, no non-parametric inference can be made about the effect
of following a particular branch of a decision tree if no one in the sample followed
that path.

Other terms have been used to describe feasible treatment regimes, including
viable (Wang et al. 2012) and realistic (Petersen et al. 2012) rules. Feasibility
is closely related to the positivity, or experimental treatment assignment (ETA),
assumption. Positivity, like feasibility, requires that there are both treated and
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untreated individuals at every level of the treatment and covariate history. Positiv-
ity may be violated either theoretically or practically. A theoretical or structural
violation occurs if the study design prohibits certain individuals from receiving a
particular treatment, e.g. failure of one type of drug may preclude the prescription
of other drugs in that class. A practical violation of the positivity assumption is
said to occur when a particular stratum of subjects has a very low probability of re-
ceiving the treatment (Neugebauer and Van der Laan 2005; Cole and Hernán 2008).
Visual and bootstrap-based approaches to diagnosing positivity violations have been
proposed for one-stage settings (Wang et al. 2006; Petersen et al. 2012). Practical
positivity violations may be more prevalent in longitudinal studies if there exists a
large number of possible treatment paths; methods for handling such violations in
multi-stage settings are less developed.

There is an additional assumption that is not required for estimation, but that
is useful for understanding the counterfactual quantities and models that will be
considered: the assumption of additive local rank preservation, which we shall elu-
cidate in two steps. First, local rank preservation states that the ranking of subjects’
outcomes under a particular treatment pattern aK is the same as their ranking un-
der any other pattern, say dK , given treatment and covariate history (see Table 2.1).
In particular, if we consider two regimes dK and aK , local rank preservation states
that the ranking of patients’ outcomes under regime dK is the same as their rank-
ing under regime aK conditional on the history Hj. Local rank preservation is said
to be additive when Y (dK) = Y (aK)+ cons, where cons = E[Y (dK)−Y (aK)], i.e.,
the individual causal effect equals the average causal effect. This is also called unit
treatment additivity. Thus, rank preservation makes the assumption that the indi-
viduals who do best under one regime will also do so under another, and in fact
the ranking of each individual’s outcome will remain unchanged whatever the treat-
ment pattern received. Additive local rank preservation makes the much stronger
assumption that the difference between any two individuals’ outcomes will be the
same under all treatment patterns.

Table 2.1 Local rank preservation (LRP) and additive LRP, assuming all subjects have the same
baseline covariates

LRP Additive LRP
Subject Y (aK) Rank Y (dK) Rank Y (dK) Rank
1 12.8 3 15.8 3 13.9 3
2 10.9 1 14.0 1 13.0 1
3 13.1 4 16.0 4 14.2 4
4 12.7 2 14.5 2 13.8 2

2.2 Examples of Longitudinal Observational Studies

A variety of studies aimed at estimating optimal DTRs from observational data
have been undertaken. Data sources include administrative (e.g. hospital) databases
(Rosthøj et al. 2006; Cain et al. 2010; Cotton and Heagerty 2011), randomized
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encouragement trials (Moodie et al. 2009), and cohort studies (Van der Laan and
Petersen 2007b). We shall briefly describe three here to demonstrate the variety of
questions that can be addressed using observational data and DTR methodology.
In particular, the data in the examples below have been addressed using regret-
regression, G-estimation, and marginal structural models; these and related methods
of estimation are presented in Chaps. 4 and 5.

2.2.1 Investigating Warfarin Dosing Using Hospital Data

Rosthøj et al. (2006) aimed to find a warfarin dosing strategy to control the risk of
both clotting and excessive bleeding, by tailoring treatment using the international
normalized ratio, a measure of clotting tendency of blood. Observational data were
taken from hospital records over a five year period; recorded variables included age,
sex, and diagnosis as well as a time-varying measure of INR. There exists a standard
target range for INR, and so the vector-valued tailoring variable, O j, was taken to
be 0 if the most recent INR measurement lay within the target range and otherwise
was taken to be the ratio of the difference between the INR measurement and the
nearest boundary of the target range, and the width of that target range. Treatment at
stage j, A j, was taken to be the change in warfarin dose (with 0 being an acceptable
option). The outcome of interest was taken to be the percentage of the time on study
in which a subject’s INR was within the target range.

Rosthøj et al. (2006) modeled the effect of taking the observed rather than the
optimal dose of warfarin using parametric mean models that are quadratic in the
dosing effect so that doses that are either too low or too high are penalized.

2.2.2 Investigating Epoetin Therapy Using the United States Renal
Data System

Cotton and Heagerty (2011) performed an analysis of the United States Renal Data
System, an administrative data set based on Medicare claims for hemodialysis with
end-stage renal disease. Covariates included demographic variables as well as clin-
ical and laboratory variables such as diabetes, HIV status, and creatinine clearance.
Monthly information was also available on the number of dialysis sessions reported,
the number of epoetin doses recorded, the total epoetin dosage, iron supplementa-
tion dose, the number of days hospitalized and the most recently recorded hemat-
ocrit measurement in the month.

Restricting their analysis to incident end-stage renal disease patients free from
HIV/AIDS from 2003, Cotton and Heagerty (2011) considered treatment rules that
adjust epoetin treatment at time j, A j, multiplicatively based on the value of treat-
ment in the previous month, A j−1, and the most recent hematocrit measurement, O j:
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A j ∈
⎧

⎨

⎩

A j−1 × (0,0.75) if O j ≥ ψ −3
A j−1 × (0.75,1.25) if O j ∈ (ψ −3,ψ +3)
A j−1 × (1.25,∞) if O j ≤ ψ +3

where the target hematocrit range specified by the parameter ψ is varied to consider
a range of different regimes. That is, O j is the tailoring variable at each month, and
the optimal regime is the treatment rule dopt

j (O j,A j−1;ψ) that maximizes survival
time for ψ ∈ {31,32, . . . ,40}. Thus, in contrast to the strategy employed by Rosthøj
et al. (2006), the decision rules considered in the analysis of Cotton and Heagerty
(2011) did not attempt to estimate the optimal treatment changes/doses, but rather
focused on estimating which target range of hematocrit should initiate a change in
treatment dose from one month to the next. Note that the parameter ψ (the mid-
value of the target hematocrit range) does not vary over time, but rather is common
over all months; this is called parameter sharing (over time).

2.2.3 Estimating Optimal Breastfeeding Strategies Using Data
from a Randomized Encouragement Trial

The Promotion of Breastfeeding Intervention Trial (PROBIT) (Kramer et al. 2001)
has been used to explore several different dynamic regimes, with a view to optimiz-
ing growth (Moodie et al. 2009; Rich et al. 2010) and the vocabulary subtest of the
Wechsler Abbreviated Scales of Intelligence (Moodie et al. 2012).

PROBIT randomized hospitals and affiliated polyclinics in the Republic of
Belarus to a breastfeeding promotion intervention modeled on the WHO/UNICEF
Baby-Friendly Hospital Initiative or standard care. Mother-infant pairs were en-
rolled during their postpartum stay, and follow-up visits were scheduled at 1, 2,
3, 6, 9, and 12 months of age for various measures of health and size, including
weight, length, number of hospitalizations and gastrointestinal infections since the
last scheduled visit. At each follow-up visit up to 12 months, it was established
whether the infant was breastfeeding, as well as whether the infant was given other
liquids or solid foods. In a later wave of PROBIT, follow-up interviews and exami-
nations including the Wechsler test were performed on 13,889 (81.5 %) children at
6.5 years of age.

In analyses of these data, the treatment A j was taken to be continued breastfeed-
ing throughout the jth stage, and variables such as infant weight at the start of the
stage or the number of gastrointestinal infections at the previous stage have been
considered as potential tailoring variables, O j.
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2.3 Sequentially Randomized Studies

It is well known that estimates based on observational data are often subject to
confounding and various hidden biases; hence randomized data, when available, are
preferable for more accurate estimation and stronger statistical inference (Rubin
1974; Holland 1986; Rosenbaum 1991). This is especially important when dealing
with DTRs since the hidden biases can compound over stages. One crucial point
to note here is that developing DTRs is a developmental procedure rather than a
confirmatory procedure. Usual randomized controlled trials are used as the “gold
standard” for evaluating or confirming the efficacy of a newly developed treatment,
not for developing the treatment per se. Thus, generating meaningful data for de-
veloping optimal DTRs is beyond the scope of the usual confirmatory randomized
trials; special design considerations are required. A special class of designs called
sequential multiple assignment randomized trial (SMART) designs, tailor-made for
the purpose of developing optimal DTRs, is discussed below.

SMART designs involve an initial randomization of patients to possible treat-
ment options, followed by re-randomizations at each subsequent stage of some or
all of the patients to another treatment available at that stage. The re-randomizations
at each subsequent stage may depend on information collected after previous treat-
ments, but prior to assigning the new treatment, e.g. how well the patient responded
to the previous treatment. Thus, even though a subject is randomized more than
once, ethical constraints are not violated. This type of design was first introduced
by Lavori and Dawson (2000) under the name biased coin adaptive within-subject
(BCAWS) design, and practical considerations for designing such trials were dis-
cussed by Lavori and Dawson (2004). Building on these works, Murphy (2005a)
proposed the general framework of the SMART design. These designs attempt to
conform better to the way clinical practice for chronic disorders actually occurs, but
still retain the well-known advantages of randomization over observational studies.

SMART-like trials, i.e. trials involving multiple randomizations had been used
in various fields even before the exact framework was formally established; see
for example, the CALGB Protocol 8923 for treating elderly patients with leukemia
(Stone et al. 1995; Wahed and Tsiatis 2004, 2006), the CATIE trial for antipsy-
chotic medications in patients with Alzheimer’s disease (Schneider et al. 2001), the
STAR*D trial for treatment of depression (Lavori et al. 2001; Rush et al. 2004; Fava
et al. 2003), and some cancer trials conducted at the MD Anderson Cancer Center
(Thall et al. 2000). Other examples include a smoking cessation study conducted
by the Center for Health Communications Research at the University of Michigan
(Strecher et al. 2008; Chakraborty et al. 2010), and a trial of neurobehavioral treat-
ments for patients with metastatic malignant melanoma (Auyeung et al. 2009). More
recently, Lei et al. (2012) discussed four additional examples of SMARTs: the Adap-
tive Characterizing Cognition in Nonverbal Individuals with Autism (CCNIA) De-
velopmental and Augmented Intervention (Kasari 2009) for school-age, nonverbal
children with autism spectrum disorders; the Adaptive Pharmacological and Behav-
ioral Treatments for children with attention deficit hyperactivity disorder (ADHD)
(see for example, Nahum-Shani et al. 2012a,b); the Adaptive Reinforcement-Based
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Treatment for Pregnant Drug Abusers (RBT) (Jones 2010); and the ExTENd study
for alcohol-dependent individuals (Oslin 2005). Lei et al. (2012) also discussed the
subtle distinctions between different types of SMARTs in terms of the extent of
multiple randomizations: (i) SMARTs in which only the non-responders to one of
the initial treatments are re-randomized (e.g. CCNIA); (ii) SMARTs in which non-
responders to all the initial treatments are re-randomized (e.g. the ADHD trial); and
(iii) SMARTs in which both responders and non-responders to all the initial treat-
ments are re-randomized (e.g. RBT, ExTENd).

CBT

NTX

R

R

R

TM

TMC

CBT

EM+CBT+NTX

R

R

TM

TMC

NTX

EM+CBT+NTX

Fig. 2.2 Hypothetical SMART design schematic for the addiction management example (an “R”
within a circle denotes randomization at a critical decision point)

In order to make the discussion more concrete, let us consider a hypothetical
SMART design based on the addiction management example introduced in Chap. 1;
see Fig. 2.2 for a schematic. In this trial, each subject is randomly assigned to one
of two possible initial treatments: cognitive behavioral therapy (CBT) or naltrex-
one (NTX). A subject is classified as a non-responder or responder to the initial
treatment according to whether he does or does not experience more than two
heavy drinking days during the next two months. A non-responder to NTX is re-
randomized to one of the two subsequent treatment options: either a switch to
CBT, or an augmentation of NTX with CBT and an enhanced motivational program
(EM + CBT + NTX). Similarly, a non-responder to CBT is re-randomized to either
a switch to NTX or an augmentation (EM + CBT + NTX). Responders to the initial
treatment are re-randomized to receive either telephone monitoring only (TM) or
telephone monitoring and counseling (TMC) for an additional period of six months.
The goal of the study is to maximize the number of non-heavy drinking days over a
12-month study period.
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2.3.1 SMART Versus a Series of Single-stage Randomized Trials

Note that the goal of SMART design is to generate high quality data that would aid
in the development and evaluation of optimal DTRs. A competing design approach
could be to conduct separate randomized trials for each of the separate stages, to
find the optimal treatment at each stage based on the trial data, and then combine
these optimal treatments from individual stages to create a DTR. For example, in-
stead of the SMART design for the addiction management study described above,
the researcher may conduct two single-stage randomized trials. The first trial would
involve a comparison of the initial treatments (CBT versus NTX). The researcher
would then choose the best treatment based on the results of the first trial and move
on to the second trial where all subjects would be initially treated with the cho-
sen treatment and then responders would be randomized to one of the two possi-
ble options: TM or TMC, and non-responders would be randomized to one of the
two possible options: switch of the initial treatment or a treatment augmentation
(EM + CBT + NTX). However, when used to optimize DTRs, this approach suffers
from several disadvantages as compared to a SMART design.

First, this design strategy is myopic, and may often fail to detect possible de-
layed effects of treatments, ultimately resulting in a suboptimal DTR (Lavori and
Dawson 2000). Many treatments can have effects that do not occur until after the
intermediate outcome (e.g. response to initial treatment) has been measured, such
as improving the effect of a future treatment or long-term side effects that prevent
a patient from being able to use an alternative useful treatment in future. SMART
designs are capable of taking care of this issue while the competing approach is
not. This point can be further elucidated using the addiction management example,
following the original arguments of Murphy (2005a). Suppose counseling (TMC) is
more effective than monitoring (TM) among responders to CBT; this is a realistic
scenario since the subject can learn to use counseling during CBT at the initial stage
and thus is able to take advantage of the counseling offered at the subsequent stage
to responders. Individuals who received NTX during the initial treatment would not
have learned to use counseling, and thus among responders to NTX the addition
of counseling to the monitoring does not improve abstinence relative to monitoring
alone. If an individual is a responder to CBT, it is best to offer TMC as the sec-
ondary treatment. But if the individual is a responder to NTX, it is best to offer the
less expensive TM as the secondary treatment. In summary, even if CBT and NTX
result in the same proportion of responders (or, even if CBT appears less effective
at the initial stage), CBT may be the best initial treatment as part of the entire treat-
ment sequence. This would be due to the enhanced effect of TMC when preceded
by CBT. On the other hand, if the researcher employs two separate stage-specific
trials, he would likely conduct the second trial with NTX (which is cheaper than
CBT) as the initial treatment, unless CBT looks significantly better than NTX at the
first trial. In that case, there would be no way for the researcher to discover the truly
optimal regime.

Second, even though the results of the first trial may indicate that treatment a is
initially less effective than treatment a′, it is quite possible that treatment a may elicit
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valuable diagnostic information that would permit the researcher to better personal-
ize the subsequent treatment to each subject, and thus improve the primary outcome.
This issue can be better discussed using the ADHD study example (Nahum-Shani
et al. 2012a,b), following the original discussion of Lei et al. (2012). In secondary
analyses of the ADHD study, Nahum-Shani et al. (2012a,b) found evidence that
children’s adherence to the initial intervention could be used to better match the
secondary intervention. More precisely, among non-responders to the initial inter-
vention (either low-dose medication or low-dose behavioral modification), those
with low adherence performed better when the initial intervention was augmented
with the other type of intervention at the second stage, compared to increasing the
dose or intensity of the initial treatment at the second stage. This phenomenon is
sometimes called the diagnostic effect or prescriptive effect.

Third, subjects who enroll and remain in a single-stage trial may be inherently
different from those who enroll and remain in a SMART. This is a type of co-
hort effect or selection effect, as discussed by Murphy et al. (2007a). Consider a
single-stage randomized trial in which CBT is compared with NTX. First, in order
to reduce variability in the treatment effect, investigators would tend to set very re-
strictive entry criteria (this is the case with most RCTs), which would result in a
cohort that represents only a small subset of the treatable population. In contrast,
researchers employing a SMART design would not try to reduce the variability in
the treatment effect, since this design would allow varying treatment sequences for
different types of patients. Hence SMARTs can recruit from a wider population
of patients, and would likely result in greater generalizability. Furthermore, in a
single-stage RCT, for subjects with no improvement in symptoms and for those ex-
periencing severe side-effects, there is often no option but to drop out of the study
or cease to comply with the study protocol. In contrast, non-responding subjects in
a SMART would know that their treatments will be altered at some point. Thus it
can be argued that non-responding subjects may be less likely to drop out from a
SMART relative to a single-stage randomized trial. Consequently the choice of the
best initial treatment obtained from a single-stage trial may be based on a sample
less representative of the study population compared to the choice of the best initial
treatment obtained from a SMART.

From the above discussion, it is clear that conducting separate stage-specific tri-
als and combining best treatment options from these separate trials may fail to de-
tect delayed effects and diagnostic effects, and may result in possible cohort effects,
thereby rendering the developed sequence of treatment decisions potentially subop-
timal. This has been the motivation to consider SMART designs.

2.3.2 Design Properties

For simplicity of exposition, let us focus on SMART designs with only two stages;
however the ideas can be generalized to any finite number of stages. Denote the
observable data trajectory for a subject in a SMART by (O1,A1,O2,A2,Y ), where
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O1 and O2 are the pretreatment information and intermediate outcomes, A1 and A2

are the randomly assigned initial and secondary treatments, and Y is the primary
outcome, respectively. For example, in the addiction management study discussed
earlier, O1 may include addiction severity and co-morbid conditions, O2 may in-
clude the subject’s binary response status, side effects and adherence to the initial
treatment, and Y may be the number of non-heavy drinking days over the 12-month
study period. Under the axiom of consistency (see Sect. 2.1.3), the potential out-
comes are connected to the observable data by O2 = O2(A1) and Y = Y (A1,A2).

In a SMART, the randomization probabilities may depend on the available treat-
ment and covariate history; more precisely, the randomization probabilities for A1

and A2 may depend on H1 ≡ O1 and H2 ≡ (O1,A1,O2), respectively. Thus data
from a SMART satisfy the sequential ignorability or no unmeasured confounding
assumption (see Sect. 2.1.3). Under this assumption, the conditional distributions of
the potential outcomes are the same as the corresponding conditional distributions
of the observable data. That is,

P(O2(a1)≤ o2|O1 = o1) = P(O2 ≤ o2|O1 = o1,A1 = a1),

and

P(Y (a1,a2)≤ y|O1 = o1,O2(a1) = o2)

= P(Y ≤ y|O1 = o1,A1 = a1,O2 = o2,A2 = a2).

This implies that the mean primary outcome of a DTR can be written as a function
of the multivariate distribution of the observable data obtained from a SMART;
see Murphy (2005a) for detailed derivation. This property ensures that data from
SMARTs can be effectively used to evaluate pre-specified DTRs or to estimate the
optimal DTR within a certain class. We defer our discussion of estimation of optimal
DTRs to later chapters.

Power and Sample Size

As is the case with any other study, power and sample size calculations are cru-
cial elements in designing a SMART. In a SMART, one can investigate multiple
research questions, both concerning entire DTRs (e.g. comparing the effects of two
DTRs) and concerning certain components thereof (e.g. testing the main effect of the
first stage treatment, controlling for second stage treatment). To power a SMART,
however, the investigator needs to choose a primary research question (primary hy-
pothesis), and calculate the sample size based on that question. Additionally, one or
more secondary questions (hypotheses) may be investigated in the study. While the
SMART provides unbiased estimates (free from confounding) to these secondary
questions by virtue of randomization, it is not necessarily powered to address these
secondary hypotheses.
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A good primary research question should be both scientifically important and
helpful in developing a DTR. For example, in the addiction management study
an interesting primary research question would be: “marginalizing over secondary
treatments, what is the best initial treatment on average?”. In other words, here the
researcher wants to compare the mean primary outcome of the group of patients
receiving NTX as the initial treatment with the mean primary outcome of those
receiving CBT. Standard sample size formula for a large sample comparison of two
means can be used in this case. Define the standardized effect size δ as the standard-
ized difference in mean primary outcomes between two groups (Cohen 1988), i.e.

δ =
E(Y |A1 = NTX)−E(Y |A1 = CBT)

√

[Var(Y |A1 = NTX)+Var(Y |A1 = CBT)]/2
.

Suppose the randomization probability is 1/2 for each treatment option at the first
stage. Standard calculation yields a total sample size formula for the two sided test
with power (1−β ) and size α:

n = 4(zα/2 + zβ )
2δ−2,

where zα/2 and zβ are the standard normal (1−α/2) percentile and (1− β ) per-
centile, respectively. To use the formula, one needs to postulate the effect size δ , as
is the case in standard two-group randomized controlled trials (RCTs).

Another interesting primary question could be: “on average what is the best sec-
ondary treatment, TM or TMC, for responders to initial treatment?”. In other words,
the researcher wants to compare the mean primary outcomes of two groups of re-
sponders (those who get TM versus TMC as the secondary treatment). As before,
standard formula can be used. Define the standardized effect size δ as the standard-
ized difference in mean primary outcomes between two groups (Cohen 1988), i.e.

δ =
E(Y |Response,A2 = TM)−E(Y |Response,A2 = TMC)

√

[Var(Y |Response,A2 = TM)+Var(Y |Response,A2 = TMC)]/2
.

Let γ denote the overall response rate to initial treatment. Suppose the random-
ization probability is 1/2 for each treatment option at the second stage. Standard
calculation yields a total sample size formula for the two sided test with power
(1−β ) and size α:

n = 4(zα/2 + zβ )
2δ−2γ−1.

To use the formula, one needs to postulate the overall initial response rate γ , in
addition to postulating the effect size δ . A similar question could be a comparison
of secondary treatments among non-responders; in this case the sample size formula
would be a function of non-response rate to the initial treatment.

Alternatively researchers may be interested in primary research questions related
to entire DTRs. In this case, Murphy (2005a) argued that the primary research ques-
tions should involve the comparison of two DTRs beginning with different initial
treatments. Test statistics and sample size formulae for this type of research ques-
tion have been derived by Murphy (2005a) and Oetting et al. (2011).
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The comparison of two DTRs, say d̄ and d̄′, beginning with different initial treat-
ments, can be obtained by comparing the subgroup of subjects in the trial whose
treatment assignments are consistent with regime d̄ with the subgroup of subjects
in the trial whose treatment assignments are consistent with regime d̄′. Note that
there is no overlap between these two subgroups since a subject’s initial treatment
assignment can be consistent with only one of d̄ or d̄′. The standardized effect size

in this context is defined as δ = (μd̄ − μd̄′)
/√

(σ2
d̄
+σ2

d̄′)/2, where μd̄ is the mean

primary outcome under the regime d̄ and σ2
d̄

is its variance. Suppose the random-
ization probability for each treatment option is 1/2 at each stage. In this case, using
a large sample approximation, the required sample size for the two sided test with
power (1−β ) and size α is

n = 8(zα/2 + zβ )
2δ−2.

Oetting et al. (2011) discussed additional research questions and the correspond-
ing test statistics and sample size formulae under different working assumptions. A
web application that calculates the required sample size for sizing a study designed
to discover the best DTR using a SMART design for continuous outcomes can be
found at

http://methodologymedia.psu.edu/smart/samplesize.

Some alternative approaches to sample size calculations can be found in Dawson
and Lavori (2010, 2012).

Furthermore, for time-to-event outcomes, sample size formulae can be found in
Feng and Wahed (2009) and Li and Murphy (2011). A web application for sample
size calculation in this case can be found at

http://methodologymedia.psu.edu/logranktest/samplesize.

Randomization Probabilities

Let p1(a1|H1) and p2(a2|H2) be the randomization probability at the first and second
stage, respectively. Formulae for the randomization probabilities that would create
equal sample sizes across all DTRs were derived by Murphy (2005a). This was
motivated by the classical large sample comparison of means for which, given equal
variances, the power of a test is maximized by equal sample sizes. Let k1(H1) be
the number of treatment options at the first stage with history H1 and k2(H2) be the
number of treatment options at the second stage with history H2, respectively. Then
Murphy’s calculations give the optimal values of randomization probabilities as

p2(a2|H2) = k2(H2)
−1, and

p1(a1|H1) =
E[k2(H2)

−1|O1,A1 = a1]
−1

∑k1(H1)
b=1 E[k2(H2)−1|O1,A1 = b]−1

. (2.1)



2.3 Sequentially Randomized Studies 25

If k2 does not depend on H2, the above formulae can be directly used at the start of
the trial. Otherwise, working assumptions concerning the distribution of O2 given
(O1,A1) are needed in order to use the formulae. In the case of the addiction man-
agement example, k1(H1) = 2 and k2(H2) = 2 for all possible combinations of
(H1,H2). Thus (2.1) yields an optimal randomization probability of 1/2 for each
treatment option at each stage. See Murphy (2005a) for derivations and further
details.

2.3.3 Practical Considerations

Over the years, some principles and practical considerations have emerged mainly
from the works of Lavori and Dawson (2004), Murphy (2005a) and Murphy et al.
(2007a) which researchers should keep in mind as general guidelines when design-
ing a SMART.

First, Murphy (2005a) recommended that the primary research question should
consider simple DTRs, leading to tractable sample size calculations. For example, in
the addiction management study, one can consider regimes where the initial decision
rule does not depend on an individual’s pre-treatment information and the secondary
decision rule depends only on the individual’s initial treatment and his response
status (as opposed to depending on a large number of intermediate variables).

Second, when designing the trial, the class of treatment options at each stage
should be restricted by ethical, scientific or feasibility considerations (Lavori and
Dawson 2004; Murphy 2005a). It is better to use a low dimensional summary crite-
rion (e.g. response status) instead of all intermediate outcomes (e.g. improvement of
symptom severity, side-effects, adherence etc.) to restrict the class of possible treat-
ments; in many contexts including mental health studies, feasibility considerations
may often force researchers to use a patient’s preference in this low dimensional
summary. Lavori and Dawson (2004) demonstrated how to constrain treatment op-
tions (and thus decision rules) using the STAR*D study as an example (this study
will be introduced later in this chapter). Yet, Murphy (2005a) warned against un-
necessary restriction of the class of the decision rules. In our view, determining the
“right class” of treatment options in any given study remains an art, and cannot be
fully operationalized.

Third, a SMART should be viewed as one trial among a series of randomized
trials intended to develop and/or refine a DTR (Collins et al. 2005). It should even-
tually be followed by a confirmatory randomized trial that compares the developed
regime and an appropriate control (Murphy 2005a; Murphy et al. 2007a).

Fourth, like traditional randomized trials, SMARTs may involve usual problems
such as dropout, non-compliance, incomplete assessments, etc. However, by virtue
of the option to alter the non-functioning treatments at later stages, SMARTs should
be more appealing to participants, which may result in greater recruitment success,
greater compliance, and lower dropout compared to a standard RCT.
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Finally, as in the context of any standard randomized trial, feasibility and ac-
ceptability considerations relating to a SMART can best be assessed via (external)
pilot studies (see, e.g. Vogt 1993). Recently Almirall et al. (2012a) discussed how
to effectively design a SMART pilot study that can precede, and thereby aid in fine-
tuning, a full-blown SMART. They also presented a sample size calculation formula
useful for designing a SMART pilot study.

2.3.4 SMART Versus Other Designs

The SMART design discussed above involves stages of treatment and/or experi-
mentation. In this regard, it bears similarity with some other common designs, in-
cluding what are known as adaptive designs (Berry 2001, 2004). Below we discuss
the distinctions between SMART and some other multi-stage designs, to avoid any
confusion.

SMART Design Versus Adaptive Designs

“Adaptive design” is an umbrella term used to denote a variety of trial designs that
allow certain trial features to change from an initial specification based on accu-
mulating data (evolving information) while maintaining statistical, scientific, and
ethical integrity of the trial (Dragalin 2006; Chow and Chang 2008). Some com-
mon types of adaptive designs are as follows. A response adaptive design allows
modification of the randomization schedules based on observed data at pre-set in-
terim times in order to increase the probability of success for future subjects; Berry
et al. (2001) discussed an example of this type of design. A group sequential design
(Pocock 1977; Pampallona and Tsiatis 1994) allows premature stopping of a trial
due to safety, futility and/or efficacy with options of additional adaptations based
on the results of interim analyses. A sample size re-estimation design involves the
re-calculation of sample size based on study parameters (e.g. revised effect size,
conditional power, nuisance parameters) obtained from interim data; see Banerjee
and Tsiatis (2006) for an example. An adaptive dose-finding design is used in early
phase clinical development to identify the minimum effective dose and the max-
imum tolerable dose, which are then used to determine the dose level for the next
phase clinical trials (see for example, Chen 2011). An adaptive seamless phase II/III
trial design is a design that addresses within a single trial objectives that are nor-
mally achieved through separate trials in phase II and phase III of clinical devel-
opment, by using data from patients enrolled before and after the adaptation in the
final analysis; see Levin et al. (2011) for an example. In general, the aim of adaptive
designs is to improve the quality, speed and efficiency of clinical development by
modifying one or more aspects of a trial. Recent perspectives on adaptive designs
can be found in Coffey et al. (2012).
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Based on the above discussion, now we can identify the distinctions between the
standard SMART design and adaptive designs. In a SMART design, each subject
moves through multiple stages of treatment, while in most adaptive designs each
stage involves different subjects. The goal of a SMART is to develop a good DTR
that could benefit future patients. Many adaptive designs (e.g. response adaptive de-
sign) try to provide the most efficacious treatment to each patient in the trial based
on the current knowledge available at the time that a subject is randomized. In a
SMART, unlike in an adaptive design, the design elements such as the final sam-
ple size, randomization probabilities and treatment options are pre-specified. Thus,
SMART designs involve within-subject adaptation of treatment, while adaptive de-
signs involve between-subject adaptation.

Next comes the natural question of whether some adaptive features can be in-
tegrated into the SMART design framework. In some cases the answer is yes, at
least in principle. For example, Thall et al. (2002) provided a statistical framework
for an adaptive design in a multi-stage treatment setting involving two SMARTs.
Thall and Wathen (2005) considered a similar but more flexible design where the
randomization criteria for each subject at each stage depended on the data from
all subjects previously enrolled. However, adaptation based on interim data is less
feasible in settings where subjects’ outcomes may only be observed after a long pe-
riod of time has elapsed. How to optimally use adaptive design features within the
SMART framework is an open question that warrants further research.

SMART Design Versus Crossover Trial Design

SMART designs have some operational similarity with classical crossover trial de-
signs; however they are very different conceptually. First, treatment allocation at any
stage after the initial stage of a SMART typically depends on a subject’s intermedi-
ate outcome (response/non-response). However, in a crossover trial, subjects receive
all the candidate treatments irrespective of their intermediate outcomes. Second, as
the goal of a typical cross-over study is to determine the outcome of a one-off treat-
ment, crossover trials consciously attempt to wash out the carryover effects (i.e.
delayed effects), whereas SMARTs attempt to capture them and, where possible,
take advantage of any interactions between treatments at different stages to opti-
mize outcome following a sequence of treatments.

SMART Design Versus Multiphase Experimental Approach

As mentioned earlier, a SMART should be viewed as one trial among a series of ran-
domized trials intended to develop and/or refine a DTR. It should eventually be fol-
lowed by a confirmatory randomized trial that compares the developed regime and
an appropriate control (Murphy 2005a; Murphy et al. 2007a). This purpose is shared
by the multiphase experimental approach (with distinct phases for screening, refin-
ing, and confirming) involving factorial designs, originally developed in engineering
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(Box et al. 1978), and recently used in the development of multicomponent behav-
ioral interventions (Collins et al. 2005, 2009; Chakraborty et al. 2009). Note that
DTRs are multicomponent treatments, and SMARTs are developmental trials to aid
in the innovation of optimal DTRs. From this perspective, a SMART design can be
viewed as one screening/refining experiment embedded in the entire multiphase ex-
perimental approach. In fact, Murphy and Bingham (2009) developed a framework
to connect SMARTs with factorial designs. However, there remain many open ques-
tions in this context, and more research is needed to fully establish the connections.

2.4 Examples of Sequentially Randomized Studies

In this section, we consider two examples of SMARTs in great detail. An in-depth
discussion of several other recently-conducted SMARTs can be found in Lei et al.
(2012).

2.4.1 Project Quit – Forever Free: A Smoking Cessation Study

Here we briefly present a two-stage SMART design implemented in a study to de-
velop/compare internet-based interventions (dynamic treatment regimes) for smok-
ing cessation and relapse prevention. The study was conducted by the Center for
Health Communications Research at the University of Michigan, and was funded
by the National Cancer Institute (NCI). This study allowed the researchers to test
cutting-edge web-based technology in a real-world environment that has the infras-
tructure for both evaluating and disseminating population-based cancer prevention
and control programs. The first stage of this study, known as Project Quit, was con-
ducted to find an optimal multi-factor behavioral intervention to help adult smokers
quit smoking; and the second stage, known as Forever Free, was a follow-on study
to help those (among the Project Quit participants) who had already quit remain
non-smoking, and offer a second chance to those who failed to give up smoking
at the previous stage. Details of the study design and primary analysis of the stage
1 data can be found in Strecher et al. (2008). Analysis of the data from the two
stages considered together with a goal of finding an optimal DTR can be found in
Chakraborty (2009) and Chakraborty et al. (2010).

At stage 1, although there were five two-level treatment factors in the original
fractional factorial design, only two, source (of online behavioral counseling
message) and story (of a hypothetical character who succeeded in quitting smok-
ing) were significant in the primary analysis reported in Strecher et al. (2008). For
simplicity of discussion, here we consider only these two treatment factors at stage
1, which would give a total of 4 treatment combinations at stage 1 corresponding to
the 2×2 design. The treatment factor sourcewas varied at two levels, e.g. high vs.
low level of personalization; likewise the factor storywas varied at two levels, e.g.
high vs. low tailoring depth (degree to which the character in the story was tailored
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to the individual subject’s baseline characteristics). Baseline variables at this stage
included subjects’ motivation to quit (on a 1–10 scale), selfefficacy (on
a 1–10 scale) and education (binary, ≤high school vs.> high school). At stage
2, there were two treatment options: booster intervention and control. At the first
stage, 1,848 subjects were randomized, out of which only 479 decided to continue
to stage 2 and hence were subsequently randomized.

There was an outcome measured at the end of each stage in this study. The stage
1 outcome was binary quit status at 6 months from the date of initial randomization,
called PQ6Quitstatus (1 = quit, 0 = not quit). The stage 2 outcome was binary
quit status, called FF6Quitstatus, at 6 months from the date of stage 2 random-
ization (i.e., 12 months from the date of stage 1 randomization). We will re-visit
this study in Sects. 3.4.3 and 8.3.3, in the context of estimating optimal DTRs and
conducting inference about them.

2.4.2 STAR*D: A Study of Depression

Sequenced Treatment Alternatives to Relieve Depression (STAR*D) was a multi-
site, multi-level randomized controlled trial designed to assess the comparative ef-
fectiveness of different treatment regimes for patients with major depressive dis-
order (MDD) (Fava et al. 2003; Rush et al. 2004). This study was funded by the
National Institute of Mental Health (NIMH). The study enrolled a total of 4,041
patients, all of whom were treated with citalopram (CIT) at level 1. Clinic visits
occurred several times during each treatment level, at 2- or 3-week intervals (weeks
0, 2, 4, 6, 9, 12). Severity of depression at any clinic visit was assessed using the
clinician-rated and self-report versions of the Quick Inventory of Depressive Symp-
tomatology (QIDS) scores (Rush et al. 2004). A schematic of the treatment assign-
ment algorithm is given in Fig. 2.3. This study is more complex than the smoking
cessation study in that there are more than two stages.

Level 1 Initial treatment: CIT

Level 2 “Switch” treatments: BUP, CT, SER, or VEN
“Augment” treatments:  CIT + (BUP, BUS, or CT)

Level 2a If switched to CT in Level 2: BUP or VEN

Level 3 “Switch” treatments: MIRT or NTP
“Augment” treatments:  previous treatment + (Li or THY)

Level 4 Switch to TCP or MIRT + VEN

Follow-up

Fig. 2.3 A schematic of the algorithm for treatment assignment in the STAR*D study
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Success was based on a total clinician-rated QIDS-score of ≤5 (“remission”)
during treatment with CIT. Those without remission were eligible to receive one
of up to seven treatment options available at level 2, depending on their prefer-
ence to switch or augment their level-1 treatment. Patients preferring a switch were
randomly assigned to one of four treatment options: bupropion (BUP), cognitive
psychotherapy (CT), sertraline (SER), or venlafaxine (VEN). Those preferring an
augmentation were randomized to one of three options: CIT + BUP, CIT + buspirone
(BUS), or CIT + CT. Only the patients assigned to CT or CIT + CT in level 2 were
eligible, in the case of a non-satisfactory response, to move to a supplementary level
of treatment (level 2A), to switch to either VEN or BUP. Patients not responding sat-
isfactorily at level 2 (and level 2A, if applicable) would continue to level 3 treatment.
Depending on the preference, patients at level 3 were randomly assigned to switch
to either mirtazapine (MIRT) or nortriptyline (NTP), or randomly assigned to aug-
ment their previous treatment with lithium (Li) or thyroid hormone (THY). Patients
without a satisfactory response at level 3 continued to level 4 treatments, which
included two options: tranylcypromine (TCP) or MIRT + VEN. Patients achieving
remission (QIDS ≤5) at any level entered a follow-up phase. Treatment assignment
at each level took place via randomization within a patient’s preference category.
For a complete description of the STAR*D study design, see Fava et al. (2003) and
Rush et al. (2004). We will re-visit this study in Chap. 8 in the context of making
inference about the parameters indexing the optimal DTRs.

2.5 Discussion

In this chapter, we have described the two sources of data that are commonly used
for estimating DTRs: observational follow-up studies and SMARTs. The use of ob-
servational data adds an element of complexity to the problem of estimation and
requires careful handling and additional assumptions, due to the possibility of con-
founding. To assist in the careful formulation of causal contrasts in the presence
of confounding, the potential outcomes framework was introduced. In contrast,
SMARTs offer simpler analyses but often require significant investment to conduct
a high quality trial with adequate power. We discussed conceptual underpinnings
of and practical considerations for conducting a SMART, as well as its distinctions
from other multiphase designs. We introduced several examples of observational
and sequentially randomized studies, some of which we will investigate further in
subsequent chapters.
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