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1 Introduction

Carotid artery atherosclerosis is an important cause of death
and disability due to stroke. Among patients with carotid
plaques, only a few show warning events, whereas the
majority present cerebral events associated with previous
asymptomatic plaques.

Numerous studies reported the importance of the degree
of stenosis as an indicator of stroke in both symptomatic
and asymptomatic groups [1, 2]. Indeed, disease severity
and selection of patients for surgery is based on previous
occurrence of clinical symptoms, such as stroke, transient
ischemic attack (TIA), amaurosis fugax (AF), and the degree
of stenosis presented by the plaque.

Moreover, it has been shown [1,2] that surgery associated
with a degree of stenosis of more than 70 % resulted in an
absolute reduction of 17 % in the risk of ipsilateral stroke
after 2 years and 11.6 % at 3 years. These observations
suggest that not all severe stenotic plaques are harmful;
in fact, as reported by Inzitari et al. [3], the majority of
asymptomatic high-grade stenotic plaques remain asymp-
tomatic. Moreover, a study performed by Polak et al. [4]
reported evidence that atheromatous plaques with relatively
low degree of stenosis may produce symptoms as well. In
addition, endarterectomy carries a non-negligible risk for the
patient as well as significant financial costs for the patient,
hospital, and health system in general. Consequently, an
optimized characterization and identification of symptomatic
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lesions must be carried out to objectively select patients
which should be treated with surgery among those to whom
a correct medication represent a better solution.

While preliminary studies [5, 6] were based on a
subjective evaluation of the plaque appearance to interpret
the lesion severity, nowadays advanced methods of image
processing allow the extraction of a large number of features
from B-mode ultrasound (BUS) images of the carotid plaque.
Furthermore, specialized techniques can be employed to
identify a subset of salient features, which may be used
as input to a classification system. The use of feature
selection methods significantly simplifies the classification
task, which will be faster and use less memory, while usually
achieving a high classification performance. The evolution of
artificial intelligence methods in conjunction with optimized
computer performance has allowed the development of
computer-aided diagnosis (CAD) systems [7]. Such systems
are expected to help physicians on supporting the evaluation
of pathologic findings during the diagnostic procedure.

1.1 Background

Different techniques relying on both qualitative and quan-
titative assessment of carotid plaque echo-morphology can
be found in the literature, although no single technique has
emerged as the method of choice.

As suggested by histopathological studies, other factors
besides stenosis, including plaque structure and echo-
morphology (information on plaque gray-scale intensities)
have shown to be associated with neurological symptoms
[8–10]. Echogenic material reflects strongly the ultrasound
signal and comprises fibrous tissue and calcium deposits,
whereas echolucent material has less reflecting ability and
includes blood and lipids. As previously referred, echolucent
plaques are more likely to lead to development of neurologic
events than echogenic ones.

El-Barghouty et al. [8] in a study with 94 plaques
has provided a characterization of plaques based on the
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gray-scale median (GSM), reporting an association between
echolucency (GSM � 32) and the incidence of cerebral
computed tomography brain infractions. Subsequently, the
study conducted by Iannuzzi et al. [11] in 242 stroke and 336
transient ischemic attack patients showed that the features
more consistently associated with cerebrovascular events
were low echogenicity, thicker plaques, and presence of
longitudinal motion.

Then, Wilhjelm et al. [12] in a study with 52 patients
scheduled for surgery, presented a comparison between sub-
jective visual classification of the plaque appearance, first
and second-order statistical features, and histological anal-
ysis of the excised plaques. Some correlation was found
between the three types of information, where the best
performing feature was found to be the histogram contrast.

From thereon, various studies have emerged, either using
exclusively or combining texture information, based on first
and second order statistics [13], Fourier power spectrum
[13], fractal properties [14], and Law’s texture energy [7].
Particularly, Christodoulou et al. used statistical, model-
based, and Fourier-based methods as well as a combination
of classifiers and found an average diagnostic performance
(accuracy) of 73.1 % in identifying symptomatic lesions,
using a dataset composed of 230 plaque images.

The comprehensive study conducted by Pedro et al. [15]
in 215 carotid plaques, combined quantitative (e.g., the
degree of stenosis and histogram features) and qualitative
information resulting from visual inspecting the plaques on
BUS images for developing an ultrasound score. This score,
designated as Activity Index (AI) provides promising results
in identifying plaques with a high likelihood of developing
symptoms despite the significant number of false positive
samples.

Moreover, the work developed by Mougiakakou et al. [7]
extended previous studies on the characterization of carotid
plaques from BUS images, by systematically studying all
available first-order statistics, as well as Law’s texture energy
features. In that study, a CAD system is used to support
diagnosis based on a neural network trained via a combi-
nation of back propagation with a genetic algorithm. This
study produced promising results in identifying atheroma-
tous lesions at high risk of stroke in a population of 108
plaques, thus suggesting the use of CAD systems as valu-
able tools in modern clinical practice. A rather interesting
study performed by Kyriacou et al. [16] in a population of
137 asymptomatic and 137 symptomatic plaques proposed
a multilevel binary and gray-scale morphological analysis
method that have strong connections to prior clinical studies
on what constitutes an unstable, symptomatic plaque. The
multilevel approach is used to decompose the BUS image
in its low-image, middle-image, and hi-image parts corre-
sponding to hypoechoic, isoechoic, and hyperechoic image
components, as originally proposed by AbuRahma [17].

The power spectra was computed from such images, showing
significant differences between the symptomatic and asymp-
tomatic spectra. Moreover, the derived pattern spectra were
used as classification features with two different classifiers,
the Probabilistic Neural Network (PNN) and the Support
Vector Machine (SVM) and, as noted by the authors, the
low-images alone provide better results than complicated
multifeature classifier systems (�74 % versus 73 % [13]).
An elegant explanation of why the pattern spectra for low-
images performed better is that such images capture the
(more echolucent) lipid components and there is clinical
evidence that unstable plaques have large lipid components.

Furthermore, the importance of speckle in BUS images
as well as its statistical modeling for tissue characterization
has been previously documented [18]. In this chapter, we in-
vestigate the usefulness of a recently proposed de-speckling
algorithm [19] which is able to decompose an ultrasound
image into its noiseless and speckle components for feature
extraction and, consequently, for tissue characterization. It is
expected that such echo-morphology and texture parameters
obtained from these image sources could contribute to a
better analysis of the symptomatic plaque and differentiation
from the asymptomatic lesion.

Here, it is argued that an optimal method for identify-
ing vulnerable lesions should attempt to include not only
morphological and textural features extracted from pixel
intensity information within the plaque but also diagnostic
information regarding plaque structure and appearance (e.g.,
stenosis, evidence of surface disruption, and presence of
echogenic cap), interpreted and given by experienced physi-
cians. The combination of this information is expected to
produce a more comprehensive description of the profile of
an active plaque, potentially providing the identification of
lesions that would developed symptoms in the future.

1.2 Chapter Organization

This chapter is composed of two main parts, reflecting two
different studies that were performed. The workflow of the
current chapter is presented in Fig. 14.1.

Section 2 describes a cross-sectional study for character-
izing the symptomatic plaque including a detailed descrip-

Fig. 14.1 Framework presented in the current chapter
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tion of the data (Sect. 2.1) and methods (Sect. 2.2) used.
Then, the results and main observations about the first study
are drawn in Sect. 2.3.

The second study, presented in Sect. 3, involves the de-
velopment and testing of a diagnostic measure to quantify
plaque activity in a group of asymptomatic subjects. The
data used in the longitudinal study is described in Sect. 3.1.
The design of the plaque activity measure is described in
Sect. 3.2 and experimental results are given in Sect. 3.3.
Finally, Sect. 4 concludes the chapter.

2 Cross-Sectional Study

This study introduces a classification framework which en-
ables to distinguish between symptomatic and asymptomatic
lesions (Fig. 14.1). This method uses a collection of ultra-
sound image processing methods for feature extraction and
tissue classification. In addition, it provides the identification
of the most relevant parameters for plaque classification,
consequently yielding an ultrasound profile of the “active,”
symptomatic plaque.

2.1 Data Management

This study included 221 carotid bifurcation plaques acquired
from 99 patients, 75 males and 24 females. Mean age in this
group of subjects was 68 years old (41–88). This data set was
specifically assigned for training and testing the performance
of a classification framework in separating symptomatic from
asymptomatic lesions.

Patients were observed through neurological consultation
at Instituto Cardiovascular and Hospital de Santa Maria,
Lisbon, Portugal. A typical exam included a noninvasive
examination with color-flow duplex scan of one or both
carotids, performed with ATL-HDI 3000 equipment (Philips

Medical Systems, Bothell, WA, USA) using a L12-5 scan
probe (5–12 MHz broadband linear-array transducer). A
plaque was considered symptomatic when AF or focal tran-
sitory, reversible or established neurological symptoms in
the ipsilateral carotid territory, was observed in the previous
6 months. From this data set, 70 plaques were symptomatic
while the remaining 151 did not reveal symptoms. This
study was based on ultrasound images of plaques acquired at
a fixed time frame (cross-sectional study).

2.2 Methods: CAD System

The conceptual idea of the cross-sectional study relies on a
computer-assisted diagnostic framework (Fig. 14.2) designed
with the purpose of distinguishing between symptomatic
and asymptomatic lesions and, consequently, providing an
accurate description of the vulnerable plaque.

The CAD system is supported by an user-friendly
graphical interface, developed in MATLAB (Version
R2007b, The Mathworks, Natick, MA, USA). This program
provides the physician with several functionalities, including
image normalization, definition of plaque(s) contour(s),
adding relevant patient information (e.g., age, clinical
history, medication, risk factors) and about subjective plaque
structural characteristics (e.g., degree of stenosis, evidence
of surface disruption, presence of fibrous cap and echolucent
areas). Physicians can easily give their clinical input through
an application designed for this purpose. In addition, the
CAD system incorporates a chain of image processing tasks,
such as image normalization as well as estimation of the
envelope image and de-speckling. Operations involving
envelope RF (ERF) image retrieval and de-speckling are
employed to create new sources of information used for
plaque characterization. Finally, the designed CAD system
supplies the calculation of a measure which indicates the
risk of the plaque to developing symptoms formulated in two

?Fig. 14.2 Plaque classification
framework
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Fig. 14.3 RMM applied to
plaque intensities in the ERF
image: the RMM PDF is obtained
as in (14.1) using the estimated
weights and Rayleigh parameters

different ways: the Activity Index, early proposed by Pedro
et al. [15] and the Enhanced Activity Index (EAI), which is
detailed ahead in this chapter.

The main steps of the CAD system, supported by the
described application, are explained next.

2.2.1 Image Processing
Image normalization is an important step to guarantee that
images acquired under different conditions yield comparable
and reproducible features and classification results. Image
normalization was achieved as previously reported [9]; in
particular, pixel intensities across the image were linearly
scaled so that the adventitia and blood intensities would be
in the range of 185–195 and 0–5, respectively (Fig. 14.3,
top-left). This is an interactive procedure since the user
must select two regions in the image, one corresponding to
the adventitia (accounting for the most echogenic part) and
the other to the blood (corresponding to the less echogenic
component).

The normalized image is used to segment existing
plaque(s) in the image. Each plaque is delineated by
drawing around its structure and the obtained contour is
a result of a two-step procedure: (a) contour interpolation
according to a maximum distance (10 pixels) allowed
between two consecutive points defined manually and (b)
contour smoothing using basis functions (sinc functions).

De-speckled and speckle components of the image are re-
quired to compute echo-morphological and textural features.
It is argued that the speckle-free (noiseless) component of
the ultrasound image contains echogenic contents providing
important insight on plaque morphology (and surrounding
tissues). On the other hand, the speckle component, due
to its multiplicative nature which makes it possible to dis-
sociate it from the underlying anatomy, enables to better
investigate the spatial relationship among pixels (texture)
in the image. In a first step, an estimate of the envelope
image (Fig. 14.3, top-right) is obtained from the normalized
BUS image through the proposed decompression method.
Subsequently, the ERF image is used to compute speckle-

free and speckle components, displayed in Fig. 14.3, bottom-
left and Fig. 14.3, bottom-right.

2.2.2 Feature Extraction
Features used for training the plaque classifier comprise
subjective input given by the physician together with infor-
mation automatically extracted from the normalized BUS,
ERF, de-speckled and speckle images. As a consequence,
features used for the purpose of plaque characterization
include:
• BUS morphological features given by a physician during

BUS examination. The 4-element vector of morphological
parameters include (a) evidence of plaque disruption,
defined by an interruption in the echogenic surface of
the plaque; (b) presence of echogenic cap, identified as
an equivalent of a thick fibrous cap and characterized
by an echogenic line over the visible structure of the
plaque; (c) the degree of stenosis, quantified using cross-
section area measurement combined with hemodynamic
assessment; and (d) plaque echo-structure appearance,
where uniform plaques are defined as homogeneous while
plaques presenting significant areas of echolucency are
defined as heterogeneous.

• Histogram features extracted from the histogram of nor-
malized pixel intensities inside the plaque. A total of 13
histogram features is estimated, including the mean gray
value, median gray value, percentage of pixels with grey
value lower than 40, standard deviation of gray values,
kurtosis, skewness, energy, entropy, 10-, 25-, 50-, 75-, and
90-percentiles.

• RMM features consist of the parameters of a mixture
of Rayleigh distribution (RMM), early proposed in [20],
used to model plaque echo-morphology contents. The
RMM method is applied on envelope data, whose pixel in-
tensities approximately follow Rayleigh statistics. Given
this, gray-scale intensities within the plaque are consid-
ered random variables described by the following mixture
of K distributions:
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p.yi j‰/ D
KX

kD1

�kp.yi j�k/; (14.1)

where p.yi j�k/ is the Rayleigh PDF. �k and �k are
the weights and Rayleigh parameters of the mixture,
respectively, which are estimated using the Expectation–
Maximization method, K D 6 (see Fig. 14.3) and ‰ D
f�1; : : : ; �k ; �1; : : : ; �kg. Hence, a 13-element feature
vector is obtained, consisting of 6 mixture weights, 6
Rayleigh parameters, and the effective number of RMM
components, determined by the number of mixture com-
ponents with nonzero weight.

• Rayleigh features consist of average theoretical estimators
of the Rayleigh distribution, whose parameters are given
by the pixels on the de-speckled which contains the
plaque. The Rayleigh features include the mean, �� D
�i;j

p
�=2, median, �� D �i;j

p
2 log.2/, variance, �� D

�i;j

p
.4 � �/=2 of Rayleigh values and percentage of

pixels with Rayleigh value lower than 40, �PP 40 D 100�
exp.�.402=2�i;j

2//.
• Texture features involve the study of the spatial distri-

bution of gray levels inside the plaque region extracted
from the speckle image. These features are estimated
from gray level cooccurrence matrices (GLCMs), autore-
gressive (AR) models, and wavelet models. GLCMs are
constructed using the relative frequencies P.i; j; d; �/

with which two neighboring pixels with gray levels i

and j at a given distance d and orientation � occur
on the image. The distances used are d D f1; 2; 3; 4g
pixels and the angles � D f0; 45; 90; 135gı, thus creat-
ing 16 different GLCMs. From each computed GLCM
different statistics can be derived, namely the Contrast,
Correlation, Energy, and Homogeneity thus producing a
64-element feature vector. Contrast measures the local
variations in the GLCM, while Correlation gives the
joint probability occurrence of the specified pixel pairs.
The Energy provides the sum of squared elements in the
GLCM and, finally, Homogeneity measures the closeness
of the distribution of elements in the GLCM to the GLCM
diagonal. Furthermore, to investigate a possible relation
between each pixel and its neighborhood, the AR model
is used on the speckle image, N D f�i;j g. This model
assumes �i;j to be a 2D random variable where each pixel
depends on its causal neighbors according to [21]:

�i;j D
p;qX

n;m

an;m�i�m;j �n C ui;j ; (14.2)

where an;m are the AR coefficients to be estimated and
ui;j are the residues. Considering a 1st order model such
that .p; q/ D .1; 1/, we estimate 3 AR coefficients.
Alternatively, plaque texture can be studied using multi-

level 2D wavelet decomposition. This technique consists
of using low and high pass filters onto the approximation
coefficients at level l in order to obtain the approxima-
tion at level l C 1 and the details in three orientations
(horizontal, vertical, and diagonal). Here, decomposition
is made along l D 4 levels. For each level, the percentage
of energy for the approximation EA as well as horizontal
EH, vertical EV, and diagonal ED details is computed.
Hence, a 13-element wavelet-based feature vector is ob-
tained composed of 4 (EH) C 4 (EV) C 4 (ED) C EA.
Therefore, each plaque is described by a feature vector

x of 4 (Clinical) C 13 (Histogram) C 13 (RMM) C 4
(Rayleigh) C 80 (Texture) D 114 features.

2.2.3 Classification
The aforementioned features which describe each plaque
are used to train the AdaBoost (Adaptive Boosting) clas-
sifier [22]. The use of such classifier is motivated by the
promising results achieved when classifying plaque compo-
nents on IVUS images [23]. AdaBoost is a binary classifier
which consists in designing a strong classifier by linearly
combining a set of weak classifiers. At each round of the
boosting algorithm, the classification error in classifying
the training data set is minimized by selecting the best
discriminative value of one feature in the vector x. The
classifier performance is assessed by means of the LOPO
cross-validation technique, where the training set is built
taking at each time all patients’ data, except one, used for
testing. Performance results are given in terms of Sensitivity:
Sens D TP/(TP C FN), Specificity: Spec D TN/(TN C FP),
Precision or PPV (Positive Predictive Value): Prec D TP/(TP
C FP) and Accuracy: Acc D (TP C TN)/(TP C TN C FP
C FN), where TP D True Positive, TN D True Negative,
FP D False Positive and FN D False Negative. Hence, a
good classifier for diagnostic purposes would present a high
sensitivity, meaning that it would be able to detect most of the
symptomatic lesions, and a high PPV, which indicates that
few asymptomatic lesions were identified as symptomatic.

2.2.4 Feature Analysis
A considerable amount of features was collected after
ultrasound image processing. Naturally, not all the features
are important to accurately characterize the plaque status,
whether it is symptomatic or not. Hence, at this point an
attempt is made to identify the most relevant ultrasound
parameters for this particular problem. Hypothesis testing is
a common method of drawing inferences about one or more
populations based on statistical evidences from population
samples (features). Here, we want to investigate if the
statistical properties of a given feature significantly differ
from the symptomatic to the asymptomatic group. Different
hypothesis tests, including the ´-, t-, Kolmogorov–Smirnov,
and Mann–Whitney U-tests, make different assumptions
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about the distribution of the random variable (feature value)
being sampled in the data. For example, the ´-test and the
t-test both assume that the data are independently sampled
from a normal distribution. In this work, the Mann–Whitney
U-test [24] was chosen because it was the one providing the
most promising results. This method performs a two-sided
rank sum test of the null hypothesis that feature values in
symptomatic and asymptomatic populations are independent
samples from identical continuous distributions with equal
medians, against the alternative that they do not have equal
medians. Moreover, the p-value is the probability of rejecting
the null hypothesis assuming that the null hypothesis is
true. Clinically significant features will have a p-value
which is typically lower than 0:05 or 0:01. In this work,
features were considered to be relevant for differentiating
between symptomatic and asymptomatic groups when the
p-value < 0:05.

2.3 Experimental Results

This section presents three types of results. First, a suitable
feature set, which is statistically relevant for the plaque clas-
sification problem is investigated and identified. Secondly,
AdaBoost is trained with different ultrasound feature sets
in order to evaluate which feature source is more effective
to distinguish between plaques with and without symptoms.
Then, an overall comparison study between state-of-the-art
classifiers (degree of stenosis and AI) and the proposed
method is provided.

Before implementing AdaBoost, it is of crucial impor-
tance to investigate the best feature set to describe and
identify symptomatology in carotid plaques. This will allow
to draw some conclusions about the different sources of
information employed for plaque classification.

The use of a Mann–Whitney (M–W) U hypothesis test,
described in Sect. 2.2.4, enables to identify ultrasound pa-
rameters with statistical significance. Table 14.1 presents the
parameters and corresponding sources and p-values of the
so-called best feature set.

Table 14.1 Optimal ultrasound parameter set

Ultrasound parameter Type

Degree of stenosis Clinical
Plaque echo-structure appearance Clinical
Evidence of plaque disruption Clinical
Presence of echogenic cap Clinical
Mean Histogram
Skewness Histogram
Percentile 10, 50 Histogram
4th; 5th; 6th Rayleigh parameters Rayleigh mixture models
5th; 6th mixture components Rayleigh mixture models
# mixture components Rayleigh mixture models
Wavelet decomposition energy Speckle
GLCM homogeneity Speckle

A closer look at the 16-element feature set allows to verify
that both subjective and image-based parameters are useful
for plaque classification. In particular, features from different
image sources, namely the normalized image, the envelope
RF image, and speckle field are considered statistically
relevant. This preliminary observation justifies the use of an
ultrasound preprocessing set of operations since it enables to
estimate useful parameters for plaque classification.

Furthermore it is interesting to study the classifier
performance under different conditions. Hence, AdaBoost
is trained with five different parameter sets, considering
only morphological information (F:1), parameters used to
estimate the AI (F:2), the total feature set (F:3), and a
feature set composed of the most relevant features (F:4),
summarized in Table 14.1. Moreover, a last feature set
(F:5) is also considered, including again the best feature
set except that now all parameters were computed from just
one image source—the normalized image, thus discarding
information contained on de-speckled and speckle images.
After training, the diagnostic value of each classifier is tested
on the validated database, according to the LOPO technique.
Classification performance is shown in Fig. 14.4, while a
detailed description is given in Table 14.2.

Several observations can be made: first, morphologi-
cal features are important markers of symptomatology as
justified by the significant accuracy and specificity values

Acc Sens Spec Prec

Fig. 14.4 Plaque classification
with AdaBoost trained with
different feature sets
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Table 14.2 Detailed classification of results obtained
with AdaBoost (results obtained with best feature set are
highlighted)

LOPO ( %) F:1 F:2 F:3 F:4 F:5

Acc 85.57 85.10 78.37 88.46 80.77

Sens 73.85 75.38 56.92 80.00 63.08

Spec 90.91 89.51 88.11 92.31 88.81

Prec 78.69 76.56 68.52 82.54 71.93

obtained with F:1. However, it is important to bear in
mind that this result is attained exclusively with subjective
parameters, quantified and interpreted by physicians, which
naturally know the patient clinical status. It is not quantifiable
to what extent this a priori knowledge influences the estima-
tion of morphological parameters. Secondly, morphological
parameters are combined with histogram parameters, namely
the GSM and P40, thus determining the feature set used in
the AI method. Results obtained with F:2 are similar to F:1,
except for sensitivity which is higher in F:1 meaning that it
is able to detect more TP at the expense of getting more FP
(lower precision).

Moreover, in order to investigate the usefulness of the
proposed feature set we have trained AdaBoost with all the
ultrasound parameters proposed in this work. Naturally, F:3

results in lower classifier performance and this can be mostly
explained by the fact that some undesirable features are clut-
tering the classifier, which tweaks in favor of those features
thus leading to poor classification performance. Finally, the
collection of features which were found to be statistically
relevant for this particular problem were used to train the
studied classifier. Using F:4, all the performance criteria are
significantly better than the reference classifier (F:2) up to
80 % sensitivity (improvement of 5 %) and 88.5 % accuracy
(improvement of 3 %).

Hence, it was clearly identified a set of features, including
morphology, echogenicity, and texture, which proved to be
suitable for identifying symptomatic plaques among plaques
presenting no symptoms. As it was previously detailed, such

features were extracted after applying a set of processing op-
erations, including envelope RF estimation and de-speckling.

In order to assess the usefulness of the aforementioned
sources of information, a comparison is made between clas-
sification results when features are computed from different
image sources (F:4), as proposed along this chapter, and
when such features are exclusively obtained from normalized
images (F:5). Results clearly show that the classification
performance is substantially improved from F:5 to F:4

showing that it is preferable to use the mentioned RMM and
textural features when these are extracted from their sources,
envelope RF image, and speckle, respectively, rather than
computing such features on the normalized image.

A third result, presented in Fig. 14.5 and Table 14.3, is
designed to show a general perspective of the classification
performances obtained with different approaches. Hence, in
this study we have included the gold-standard method, based
on the degree of stenosis with a clinical meaningful cut-off of
80 %, together with a recent approach based on the AI score
and, finally, the best classifier investigated so far throughout
this chapter, that is, the AdaBoost method trained with the
so-called best feature set.

By comparing the outcomes of each classifier, it is ob-
served that AdaBoost trained with the estimated best feature
set outperforms the other two approaches which are often
referred in literature. In particular, specificity and precision
values are significantly higher for AdaBoost with respect
to the other classifiers which suggests that the number of
detected FP is relatively small. As a consequence, the accu-
racy obtained in correct plaque classification is also high.

Furthermore, it should be interesting to perform a di-
rect comparison between the effectiveness of the proposed
classification method and other related work [13,16]. Even if
this is not possible because the ultrasound data used is not
the same, the margin between the accuracy obtained with
the AdaBoost method (�88 %) and these studies (�74 %)
is large enough to argue that the proposed method indeed
outperforms other related plaque classification approaches.

Acc Sens Spec Prec

Fig. 14.5 Plaque classification
using two state-of-the-art
approaches together with
proposed method
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Table 14.3 Detailed classification results according to different
feature sets and performance criteria

LOPO ( %)
Degree
of stenosis AI

AdaBoost
w/best feature set

Acc 66.44 74.66 88.46
Sens 79.55 65.91 80.00
Spec 60.78 78.43 92.31
Prec 46.67 56.86 82.54

3 Longitudinal/Natural History Study

A study which aims at classifying plaques with and without
symptoms using both morphological- and image-based fea-
tures has just been presented. However, despite its clinical
significance, the CAD system as it has been described so
far is not capable of identifying those asymptomatic lesions
at high risk of becoming symptomatic. In fact, this kind of
information would be more useful for physicians because
they would be able to observe an asymptomatic lesion and
quantitatively evaluate if such lesion is prone to develop
symptoms.

As a consequence, the identification of a subset of “dan-
gerous” or “active” plaques, featuring high neurological
risk would help in the indication of treatment. Needless
to say, this decision has important clinical and economical
consequences for all the parts involved in this process.

As mentioned before, the absolute benefit of surgical
intervention based on the degree of stenosis alone as a
decision-making criterion is low in the asymptomatic disease
and in symptomatic disease with moderate obstruction [1,2].
This clearly motivates the need for developing new strategies
for plaque risk prediction.

In this study, a quantitative tool to evaluate plaque ac-
tivity is proposed, designated by EAI. This method makes
use of information gained during the cross-sectional study,
particularly the estimated feature set which provides the best
discrimination of symptomatic lesions among those that are
harmless. Hence, the so-called best feature set represents an
ultrasound input for an algorithm which aims at predicting
the occurrence of symptoms in a longitudinal study con-
ducted in a group of asymptomatic subjects (Fig. 14.1).

Again, the diagnostic power of the proposed EAI is
compared to other strategies for identifying plaques at high
risk, namely the one based on the degree of stenosis and the
AI [15].

3.1 Data Management

This study presents a score that correlates with plaque
activity and tests its diagnostic power on a group of 112
asymptomatic plaques, acquired from 112 patients. BUS im-

ages were collected from the ACSRS (Asymptomatic Carotid
Stenosis and Risk Study) [25], consisting in a multicentre
natural history study of patients with asymptomatic internal
carotid diameter stenosis greater than 50 % in relation to
the bulb. The degree of stenosis was graded using multiple
established ultrasonic duplex criteria. The distribution of
plaques according to the degree of stenosis was an average
value of �75 % (50–99) and no. of plaques with degree of
stenosis > 70 % D 80. Patients were followed for possible
occurrence of symptoms for a mean time interval of 37.1
weeks. At the end of the study, 13 out of 112 patients
(11.6 %) had developed symptoms (3 AF, 6 TIA, 4 stroke).

3.2 Methods: Enhanced Activity Index

A quantitative diagnostic measure—EAI—is developed con-
sidering the knowledge gathered in the cross-sectional study.
Recall that the first study enabled to identify the “profile” of
the “active” plaque by taking into account a set of parameters
that are statistically relevant for separating symptomatic and
asymptomatic lesions. Hence, the implementation of EAI is
performed as follows:
1. The ultrasound “profile” of the “active” plaque is consid-

ered, by taking the features which are relevant for plaque
classification, using the M–W U statistical test.

2. Reference values are taken for each ultrasound feature,
fi , and group, symptomatic (S ), and asymptomatic
(A), considering the mean (�i .S/; �i .A/) and variance
(�2

i .S/; �2
i .A/).

3. The EAI�, renamed for convenience, is computed as the
Bayes factor given by

EAI� D RS

RA

; (14.3)

where

Rk D
X

i

p.fi j!k/ � N .�i .k/; �2
i .k//; k D fS; Ag

(14.4)

are the marginal likelihoods of each group (S or A) and
correspond to the sum of the conditional probabilities of
each feature belonging to each group, respectively. Such
conditional probabilities in (14.4) are computed assuming
a normal distribution (Fig. 14.6). In (14.3), RS and RA

represent the likelihoods of each plaque producing symp-
toms or stabilize, respectively. Hence, when EAI D 1,
the result is inconclusive, while for EAI < 1 the plaque
will stay harmless with a significant probability which
is higher as EAI decreases. Contrarily, plaques showing
an EAI > 1 are prone to produce symptoms, being more
“dangerous” when EAI increases.
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Fig. 14.6 Illustrative concept of
conditional probabilities for a
particular plaque feature fi used
to compute the EAI

Fig. 14.7 Mapping function for re-scaling the EAI onto a 0–100 scale,
where 100 represents maximum risk and 0 accounts for stability

4. The EAI is rescaled using a sigmoid mapping function
which places the EAI onto a 0 100 scale. This function,
sketched in Fig. 14.7 is defined as

EAI D 100

1 C exp �.EAI� � 1/
: (14.5)

This mapping technique is useful to make the predictive
power of the proposed EAI method comparable to AI [15]
and degree of stenosis [2].

3.3 Experimental Results

The longitudinal study (Fig. 14.1) investigates the diagnostic
power of EAI for identifying plaques at high risk of originat-
ing cerebrovascular events. To make this study feasible, the

proposed method should be compared with other strategies
of plaque risk prediction (e.g. degree of stenosis and AI).

Such comparison is here performed using ROC (Receiver
Operating Characteristic) curve analysis [26]. In general,
when considering the results of a particular test in two pop-
ulations, one population with a disease, the other population
without the disease, one rarely observes a perfect separation
between the two groups. For every possible cut-off point or
criterion value which one selects to discriminate between
the two populations, there will be some cases with the
disease correctly classified as positive (TPF D True Positive
fraction) but some samples with the disease classified as
negative (FNF D False Negative fraction). On the other hand,
some cases without the disease will be correctly classified as
negative (TNF D True Negative fraction) but some samples
without the disease will be classified as positive (FPF D False
Positive fraction). In a ROC curve the TPF (Sensitivity) is
plotted as function of the FPF (100-Specificity) for different
cut-off points, therefore each point on the ROC plot repre-
sents a sensitivity/specificity pair corresponding to a particu-
lar decision threshold. A test with perfect discrimination (no
overlap in the two distributions) has a ROC plot that passes
through the upper left corner (100 % TPF and 0 % FPF).
Sometimes, the ROC is used to generate a summary statistic.

Moreover, the area under the ROC curve (ROC AUC)
statistic is often used in machine learning for model com-
parison. This measure indicates that a predictive method is
more accurate as higher is the ROC AUC. Similarly, it can
be interpreted as the probability that when one randomly
picks one positive and one negative example, the classifier
will assign a higher score to the positive example than to the
negative. In engineering, the area between the ROC curve
and the no-discrimination line is also used. This area is
often simply known as the discrimination. Moreover, the
intersection of the ROC curve with the line at 90ı to the no-
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Fig. 14.8 ROC curves for different prediction methods

discrimination line is also considered as an heuristic method
to investigate the cut-off providing the best discriminative
power of the test (or predictive method).

Figure 14.8 presents the ROC curves obtained with the
three studied predictive methods. The ROC AUCs are 0.6496
(64.96 %), 0.7329 (73.29 %), and 0.9057 (90.57 %) for de-
gree of stenosis, AI and EAI, respectively. Naturally, the
ROC AUC of the no-discrimination line is 0.5000 (50.00 %).
These results markedly show that the EAI method is the most
accurate method among the ones tested. Additionally, the AI
method is also better than the degree of stenosis, as expected,
because the former includes other parameters besides the
stenosis degree. When computing the differences between
the ROC AUCs and the no-discrimination line, one obtains
14.96 %, 23.29 %, and 40.57 % of discrimination for degree
of stenosis, AI and EAI, respectively. This observation gives
a clue about the amount of effective diagnostic information
that is gained since the no-discrimination line corresponds
to random guessing. The results reinforce the idea that the
EAI method is the most discriminant among the investigated
approaches.

According to the aforementioned heuristic method, the
cut-off values providing the best trade-off between TP and
FP rates for each predictive method are respectively 80, 65,
and 68 for degree of stenosis, AI, and EAI (Fig. 14.8).

Note that the choice of a method to identify the best cut-
off value is critical for the performance of the predictive
method. The heuristic method that was presented (a diagonal
line perpendicular to the nondiscriminant line, intersecting
it at 0.5 FPR and 0.5 TPR) assigns equal importance to
the detection of TP (TPR) and TN (1-FPR). In practice,
we can argue that the relative importance of TPR and TNR

should change according to each scenario. Hence, when the
decision-making strategy intends to assign more relevance to
the TPR, the cut-off line (or curve) should be shifted upper
right while the opposite should happen when an increase
importance is to be given to the TNR.

Figure 14.9 provides a different viewpoint about the di-
agnostic power of the proposed EAI prediction method
when compared to the other methods. Particularly, this result
allows the comparison of FP and FN samples according to
different cut-offs applied for each studied method. Hence,
the shorter the bars corresponding to the FP and FN are, the
better is the cut-off or the predictive method, depending on
if one is studying a particular method or comparing the three
methods at the same time. To make an equivalence between
the results shown in Fig. 14.9 and the ROC curves, it can be
said that as the bars of FN and FP get smaller (hence, the
TPR increases and the FPR decreases), the predictive method
moves up and left, respectively.

It can be clearly observed that the application of the EAI
method provides lower FP values when compared to the
other methods regardless the cut-off chosen. Also evident
is the fact that the prediction method based on stenosis
is the one resulting in the highest number of FP, which
is a natural observation because it is by far the simplest
discriminative test used. Other observation that can be made
from comparing Fig. 14.9b, c is that, generally, the number
of FP is significantly lower for EAI when compared to AI.

In fact, Fig. 14.9 provides an objective interpretation of
the trade-off between FP and FN. However, choosing an
optimal cut-off is highly subjective. The reader should bear
in mind that a method with a good diagnostic power should
be naturally able to identify as much TP samples as possible,
while providing a small number of FN and FP. In fact, the
cut-off should be chosen according to a justifiable criterion:
(a) is it more important to identify and treat all subjects
that will develop a neurological complication even though
a large number of patients must be operated? (b) should one
be worried about sparing as many patients as we can from
surgery?, or (c) should one decide on combining low FP and
FN rates? If we pick the latter, the most suitable cut-off for
degree of stenosis is 70 % while the best cut-offs for AI are
56 and 50, respectively. Additionally, it is worth to note that
the application of EAI with the mentioned cut-off is able to
identify all TP, in other words, is capable of predicting all
plaques that developed symptoms.

Results presented in Fig. 14.9 are detailed in Table 14.4,
providing different performance criteria for each method and
cut-offs. For instance, note that the EAI method with cut-off
52 shows 100 % sensitivity and 30.95 % positive predictive
value. This is, indeed, the most important result to outline
since the EAI, with this particular cut-off, is able to identify
all the plaques which will develop symptoms while detecting
the smallest number of false positives.
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a b cFig. 14.9 Bar plot with TP, FP
and FN values for different
cut-offs, according to the stenosis
predictor (a), AI (b) and EAI (c)

Table 14.4 Diagnostic
(discriminative) power of the
investigated methods for different
cut-offs, according to
performance criteria including
sensitivity, specificity, accuracy,
PPV and NPV

Cut-off Sens ( %) Spec ( %) Acc ( %) PPV ( %) NPV ( %)

Stenosis >40 92.31 0 10.71 10.81 0

>50 92.31 21.21 29.46 13.33 95.46

>60 92.31 27.27 34.82 14.29 96.43

>70 92.31 31.31 38.39 15.00 96.87
>80 61.54 66.67 66.07 19.51 92.96

AI >40 92.31 26.26 33.93 14.12 96.30

>45 92.31 33.33 40.18 15.36 97.06

>50 92.31 41.41 47.32 17.14 97.62
>56 84.62 50.50 54.46 18.33 96.15

>60 76.92 57.58 59.82 19.23 95.00

>65 69.23 67.68 67.86 21.95 94.37

>70 61.54 80.81 78.57 29.63 94.12

EAI >40 100 68.69 72.32 29.55 100

>50 100 69.70 73.21 30.23 100

>52 100 70.71 74.10 30.95 100
>56 92.31 70.71 73.21 29.27 98.59

>60 84.61 70.71 72.32 27.50 97.22

>65 76.92 75.76 75.89 29.41 96.15

>70 76.92 80.81 80.36 34.48 96.39

Results obtained for the best cut-off for each method (combination of best Sens and PPV)
are highlighted

In predictive analysis, a table of confusion, also known
as a confusion matrix, is a table with two rows and two
columns that reports the number of TN, FP, FN, and TP.
Table 14.5 summarizes the true predictive value of each
method according to the aforementioned cut-offs, selected
after comprehensive appreciation of Table 14.4.

As it is observed in Table 14.5 the EAI method was able to
identify the 13 patients who had developed symptoms by the
end of the follow-up (longitudinal) study, whereas the degree
of stenosis and the AI methods were unable to identify,
respectively, 1 and 2 patients who developed neurological
complications later. Moreover, as far as the false positive
number is concerned, the EAI method yields 29 FP against
49 and 68, respectively, for the AI and degree of stenosis.
This means that if the decision of surgery for plaque removal
was based in the former method, only 29 patients were
unnecessarily operated. This number is significantly smaller
than the one observed for the other methods, suggesting
that the EAI is the most cost-effective method. Thus, the

Table 14.5 Confusion matrix with prediction outcome of
the investigated methods: stenosis (underlined), AI (italics),
and EAI (bold)

Actual value

P N

Prediction P0 12 11 13 68 49 29
N0 1 2 0 31 50 70

EAI method demonstrates to have the best diagnostic power
among the methods investigated because it provides the most
accurate selection of a subset of patients potentially at high
risk within a population of asymptomatic patients.

4 Conclusions

Carotid plaques are the commonest source of neurological
symptoms due to embolization or flow reduction.
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Throughout this chapter it has been motivated the need for
defining accurately the ultrasound “profile” of the “active”
plaque, that is, the asymptomatic lesion with an increased
likelihood of becoming symptomatic. This is of considerable
importance because currently the treatment planning, based
only on the patient’s clinical history and degree of stenosis,
is not optimal and cost-effective.

First, a cross-sectional study was performed for training
and testing the Adaptive Boosting classifier using the LOPO
cross-validation technique. This classifier consists of ultra-
sound parameters, accounting for morphology, echogenicity,
and texture, extracted from different image sources, after
application of a set of processing operations, described in
previous chapters. A suitable statistical hypothesis test is
applied in order to identify a subset of features which are
statistically meaningful to discriminate between plaques with
and without symptoms. An AdaBoost classifier based on
the so-called best feature set outperforms other state-of-the-
art methods, yielding an accuracy of 88 % and sensitivity
of 80 % in identifying symptomatic plaques. Moreover, a
comparative study of classifiers performance clearly suggests
the usefulness of the preprocessing ultrasound methods,
proposed throughout this thesis, as well as the value of
mixture model and textural features for plaque classification.

Once a suitable ultrasound profile of the symptomatic or
active plaque was established, an EAI that quantifies the
degree of plaque activity or likelihood to rupture was pro-
posed. This measure was evaluated on a longitudinal study
of asymptomatic plaques and compared to other approaches
(degree of stenosis and AI), demonstrating the best diagnos-
tic power. In particular, EAI provides correct identification
of all plaques that developed symptoms while giving the
smallest number of false positives. This result suggests that
the EAI could have a significant impact on stroke prediction
and treatment planning.
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