
229S. Van Huffel et al. (eds.), Oxygen Transport to Tissue XXXV, Advances 
in Experimental Medicine and Biology 789, DOI 10.1007/978-1-4614-7411-1_31,
© Springer Science+Business Media New York 2013

    Abstract     Since 1970, the multifactorial pathogenesis of the defi cient and heterogeneous 
oxygenation of transplanted murine tumors and of human cancers (including para-
meters determining oxygen delivery, e.g., blood fl ow, diffusion geometry, oxygen 
transport capacity of the blood) has been investigated in vivo. Hypoxia and/or 
anoxia was quantitatively assessed and characterized using microtechniques and 
special preclinical tumor models. Hypoxia subtypes were identifi ed, and critical 
supply conditions were theoretically analyzed. In the 1980s, fi rst experiments on 
humans were carried out in cancers of the rectum and of the oral cavity. In the 
1990s, the clinical investigations were carried out on cancers of the breast and of the 
uterine cervix, clearly showing that hypoxia is a hallmark of locally advanced 
human tumors. In multivariate analysis, hypoxia was found to be an independent, 
adverse prognostic factor for patient survival due to hypoxia-driven malignant pro-
gression and hypoxia-associated resistance to anticancer therapy.  

31.1         Introduction 

 During the directorship of Professor Gerhard Thews, research at the Institute of 
Physiology, University of Mainz, traditionally focussed on oxygen transport in 
blood, lung, brain, and heart. Joining his research team in 1970 as a postdoctoral 
research fellow, I was asked to “investigate the oxygen transport and respiratory gas 
exchange in other clinically relevant tissues and organs to expand the scope of 
research of the Institute” (G. Thews). After a careful and time-consuming literature 
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search, I fi nally decided to study oxygen transport to the spleen (murine, rabbit, human) 
and to solid, malignant tumors, since reliable oxygenation data for these tissues 
were not available at that time, especially in terms of translation of the preclinical 
data to the clinical setting. In the following, chronology-oriented chapters are pre-
sented, and selected data obtained over the last 40 years are described, clearly show-
ing the progress in relevant information. 

 The oxygenation status and data on the respiratory gas exchange of the spleen 
have been described earlier [ 1 – 3 ].  

31.2     The Past 

 Since 1970, in vivo investigations have been carried out on isotransplanted rat 
tumors after the development and implementation of a “tissue-isolated” tumor 
model in the rat kidney involving a single artery feeding the tumor and a single vein 
draining the tumor, thus enabling the measurement of total blood fl ow and of the 
biologically relevant arteriovenous concentration differences of the substrates and 
catabolites of interest [ 4 – 6 ]. Key results using this tumor preparation are as follows 
(for details, see [ 4 – 12 ]): (a) tumor blood fl ow (TBF) and oxygen availability exhibit 
pronounced intra-tumor and inter-tumor heterogeneities; (b) tumor oxygenation is 
distinctly poorer than in normal tissue and shows similar heterogeneities to those 
found for TBF; (c) increasing oxygen availability through increasing TBF, arterial 
oxygen content, and hemoglobin concentration (cHb) can increase oxygen uptake 
and can improve tissue oxygenation; (d) oxygen availability is the major determi-
nant of the oxygen consumption rate of cancers in situ; (e) oxygen consumption rate 
of cancers in situ is thus a function of TBF and arterial oxygen content; (f) weight- 
related TBF and tissue oxygenation generally decrease with increasing tumor size 
(not necessarily applicable to the clinical setting, see below); and (g) contrary to 
conventional belief, there is no evidence for a general mitochondrial dysfunction, 
speaking against a principal role of the Warburg effect in its original concept [ 6 ,  13 ]. 

 Modulation of the tumor oxygenation status has been described as a result of 
therapeutic measures (irradiation [ 14 ], localized hyperthermia [ 15 – 19 ], photody-
namic therapy [ 20 ], normobaric and hyperbaric hyperoxia [ 6 ,  21 ,  22 ], improvement 
of perfusion [ 23 ,  24 ], and correction of anemia using erythropoietin [ 25 ]). 

 Between 1977 and 1985, HbO 2  saturation of single red blood cells (RBCs) in 
tumor microvessels was registered in experimental rat tumors [ 26 ,  27 ], in cancers of 
the oral cavity and of the rectum, and in primary and metastatic bone tumors [ 28 – 30 ]. 
In accordance with the studies on experimental murine tumors, the oxygenation 
status in human cancers was poorer than in the normal tissue, exhibited pronounced 
intra-tumor and inter-tumor heterogeneities, and was positively correlated with the 
vascular density. In contrast to the experimental situation, the O 2  status in human 
tumors showed no size dependency. 

 In 1985, investigations were started to assess the oxygen status of orthotopically 
xenografted human breast cancers in immune-defi cient rnu/rnu rats. In order to allow 
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measurements of TBF and the relevant arteriovenous concentration differences, 
a novel “tissue-isolated tumor” model was implemented [ 31 ,  32 ]. Experiments using 
different tumor histologies showed that – comparable to experimental murine tumors 
– the oxygen consumption and the median tissue pO 2  both were a function of TBF 
and the oxygen availability, respectively [ 33 ]. Theoretical analysis of the oxygen 
supply conditions in these xenografted human tumors led to the conclusion that oxy-
gen seems to be the limiting substrate for unlimited proliferation and glucose for 
tumor cell survival [ 34 ,  35 ]. 

 Using  31 P-NMR-spectroscopy studies starting in 1987, correlations between the 
bioenergetic status, the tissue oxygenation, and the intracellular pH (pH i ) were eval-
uated. In experimental murine tumors, pH i  was neutral to alkaline whereas the 
extracellular pH (pH e ) was acidic [ 36 ]. Intracellular pH was found to be alkaline as 
long as the median tissue pO 2  was above 10 mmHg. Below this threshold, pH i  
became acidic [ 37 – 41 ] and the gradient between the intracellular pH and extracel-
lular pH fl attened. 

 In 1989 systematic investigations on gynecological patient cancers (cervix, 
breast, vulva) were initiated. In these patients, the pretherapeutic oxygenation 
status of primary and recurrent tumors was assessed using the pO 2  histography 
system [ 42 – 46 ]. Publication of these data had a tremendous impact in defi ning the 
role of tumor hypoxia in malignant progression and therapeutic resistance [ 47 – 52 ]. 
Key fi ndings were as follows: (a) approx. 60 % of pretreatment cervical cancers 
were hypoxic; (b) cancer oxygenation was distinctly poorer than that of the nor-
mal tissues at the site of tumor growth; (c) the extent of hypoxia was independent 
of clinical size, stage, histology, grade, lymph node status, and various patient 
demographics; (d) hypoxia was aggravated in anemic patients; (e) hypoxia was 
less pronounced on transgression of stage IVA cervical cancers into the bladder 
wall; (f) recurrent tumors were more hypoxic than their primaries; and (g) there 
was no typical topological distribution of hypoxic areas within tumors (periphery 
vs. center). 

 Since 1990, investigations on hypoxia-driven malignant progression followed, 
based on the observations that in multivariate analysis, hypoxia was found to be a 
strong, independent, and adverse prognostic factor for overall and disease-free sur-
vival in cervical cancer patients [ 53 – 58 ]. 

 In the last 10 years, the recognition of tumor hypoxia as a pivotal factor driving 
the development of a highly malignant phenotype – in which the HIF system, 
genetic instability, and clonal selection play a central role – has encouraged attempts 
to correlate the expression of “endogenous” hypoxia markers (HIFs, GLUT-1, CA 
IX) with the oxygenation status in identical, non-necrotic tumor microareas. Our 
results clearly showed that there is no correlation between the protein expression of 
these markers and pO 2  data measured with O 2  microsensors [ 59 – 62 ]. This supports 
the hypothesis that the HIF system can be stabilized even under normoxic condi-
tions (e.g., by oncogenic growth factors, certain cytokines, glucose deprivation, aci-
dosis, and gene mutations). From this it can be concluded that HIF-1α and its target 
genes cannot be considered as strict hypoxia markers, but instead should be consid-
ered to be markers of hypoxia-associated malignant progression.  
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31.3     The Present 

 Since 2008 our research focus is on the classifi cation and quantifi cation of hypoxia 
subtypes in xenografted human squamous cell carcinomas of the head and neck. In 
these experiments, hypoxia subtypes are categorized as follows: (a) continuous 
(chronic) hypoxia due to diffusion limitations or sustained microvascular fl ow stop 
by disturbed Starling forces, (b) intermittent (acute) hypoxia due to temporary 
obstructions of tumor microvessels or distinct fl uctuations of RBC fl uxes, and (c) 
hypoxemic hypoxia due to patient anemia or plasma fl ow in microvessels only [ 63 ]. 
Using tumor cryosections and (immuno-) fl uorescence, detection and quantifi cation 
of these subtypes showed that chronic hypoxia is the dominating subtype in vital 
tumor tissue, followed by acute and hypoxemic hypoxia. Analyses using microcir-
culatory supply units yielded pronounced (tumor size-dependent) intra-tumor het-
erogeneity and distinct variability between different tumor lines [ 64 – 67 ].  

31.4     The Future 

 The extent of hypoxia subtypes, their respective fractions of total hypoxia, their 
time frames, and biological and therapeutic consequences will be investigated in the 
near future. Furthermore, detection and reliable quantifi cation of hypoxia subtypes 
in the clinical setting are urgently needed, especially for critical judgment of frac-
tionation schedules in radio(chemo-)therapy.     
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