
Chapter 11

Tropical Cloud Ensembles

11.1 Introduction

As one proceeds from the west coast of a continent, such as California in North

America orMorocco inNorthwestAfrica, towards the near-equatorial oceanic ITCZ,

one notes the following transition in the predominant species of tropical clouds:

coastal stratus, stratocumulus, fair weather cumulus, towering cumulus and cumulo-

nimbus. This is a typical scenario over the Pacific and Atlantic Oceans of the two

hemispheres. The Asian Monsoon carries some of its own cloud features over the

Indian Ocean. Figure 11.1 is a collage of cloud types and typical rainfall distributions

over the tropics during the northern summer. This identifies precipitation features,

such as those from the ITCZ, typhoon, monsoon, and near coastal phenomena. The

precipitation illustrated here was estimated from microwave radiances received by

the TRMM satellite. A plethora of clouds types abound in the tropics. Dynamics,

physics, andmicrophysics are important interrelated scientific areas for these clouds’

life cycles. Modeling of the life cycle of individual clouds and cloud ensembles and

representation of the effects of unresolved clouds in large scale environment are areas

of importance for tropical meteorology. The ocean, land surface, and planetary

boundary layer large scale wind systems and thermal and humidity stratification

have a large control over the nature of evolving clouds.

A background in Cloud Physics is necessary for the understanding of different

cloud types and their life cycle. Motions on meso-convective space and time scales

have a large influence on these life cycles. The problem is further compounded by

the need to know aerosol-cloud interactions, cloud radiative interactions, as well as

the mutual interactions among cloud microphysics, dynamics, and other physical

processes. Clouds seem to organize from the relatively small scales of the sea

breeze to large scales, such as the monsoon. Thus there is a coexistence of clouds

and the motion fields on many space and time scales. We allude to some of these

issues in the chapter on scale interactions.

A widely used measure of convective instability is the Convective Available

Potential Energy, or CAPE. CAPE represents the vertically integrated amount of
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buoyant energy that would be released if a parcel were lifted up to an equilibrium

level. It is measured in units of J kg�1. It is usually estimated using a skew-T-log-

p diagram. The higher the value of CAPE, the larger the potential for development

of deep convection. Negative values of CAPE represent a stable environment.

Values of CAPE between 0 and 1,000 J kg�1 are considered marginally unstable;

between 1,000 and 2,500 J kg�1 – moderately unstable; between 2,500 and

4,000 J kg�1 – very unstable; and finally, values above 4,000 J kg�1 are considered

representative of an extremely unstable atmosphere.

A number of instability measures are important for the understanding of

convection. Those can be found in introductory texts on meteorology. The student

should be familiar with concepts such as absolute instability, conditional instability,

potential instability, etc.

In this chapter we have taken the modeling approach as one that provides some

insights on processes that are important for the understanding of buoyancy-driven

dry convection, modeling of the non-precipitating shallow stratocumulus and the

modeling of cloud ensembles. This approach clearly has its flaws – none of the

model examples presented here are perfect. They are based on a number of

assumptions and hence have many limitations. Nevertheless, these models are

quite useful compared to looking at pictures of clouds and satellite imagery and

Fig. 11.1 A collage of cloud types and typical rainfall distributions over the tropics during the

northern summer
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gross interpretations that are never very complete in terms of providing insights on

the complex interactions we spoke of above. The modeling approach is better suited

as an avenue for understanding, provided one is mindful of its limitations.

11.2 Understanding Simple Buoyancy-Driven Dry

Convection

Here we shall show an example of a buoyancy-driven cloud model. This model has

applications for the understanding of dry convection over warm land surfaces.

It describes the growth of a buoyancy-driven cloud element in a neutral sounding,

i.e., a sounding with an initial stratification that has a constant potential temperature

in the vertical. It is possible to develop a rather simple model on an x-z plane to

study the growth of such a cloud using a simplified two dimensional vorticity

equation, the first law of thermodynamics and the mass continuity equation.

Dry convection thermals originate over hot surfaces, such as deserts, where the

lowest layers of the atmosphere have superadiabatic lapse rates. Driven by the

heating above the surface layer, buoyant thermals, also known as buoyancy driven

elements, are generated. These buoyancy driven elements act to destroy the

superadiabatic lapse rates. In a hydrostatic environment,

0 ¼ � @p

@z
� ρg (11.1)

For a buoyant parcel with a density of ρ0 the vertical acceleration is given by

dw

dt
¼ � 1

ρ0
@p0

@z
� g (11.2)

Assuming continuity of pressure across the buoyant element, i.e., @p0
@z ¼ @p

@z and

using the equation of state,

p ¼ ρRT (11.3)

the vertical equation of motion (11.2) can be written as

dw

dt
¼ �g

T0 � T

T
: (11.4)

A buoyancy-driven simple cloud model was first developed by Malkus and Witt

(1959) and by Nickerson (1965). This elementary model is most illustrative for the
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understanding of dry convection. It is a simple two-dimensional model on the zonal

plane (x, z) where the velocity components are defined in terms of the stream

function ψ as

u ¼ @ψ

@z
(11.5)

and

w ¼ � @ψ

@x
; (11.6)

thus ensuring that the continuity equation

@u

@x
þ @w

@z
¼ 0 (11.7)

is satisfied. The vorticity equation and the first law of thermodynamics in the x-z
plane are written by the relations

@η

@t
¼ J ψ ; ηð Þ � gϕþ νr2η (11.8)

@ϕ

@t
¼ J ψ ;ϕð Þ þ Q

θ0
þ νr2ϕ (11.9)

Here η is the relative vorticity given by η ¼ @u
@z � @w

@x ¼ r2ψ ; ϕ ¼ θ�θ0
θ0

is the

normalized potential temperature excess of a parcel with a potential temperature θ0
with respect to the environment θ; ν is the viscosity coefficient; and Q denotes the

diabatic heating which is defined below. Basically, the problem is regarded as a

system of two equations and two unknowns, ψ and ϕ. Once ψ is solved for, one can

find u and w from (11.5) and (11.6). This problem still needs the definition of the

heating Q and the boundary conditions and initial states for ψ and ϕ. The lateral

boundary condition for ψ utilizes a mirror image at x ¼ 0 and a Neuman boundary

condition @ψ
@x ¼ 0 at x ¼ L. Over the north and south boundaries ψ is set to zero and

ϕ is set to a constant value. An elevated initial potential temperature excess is

defined by

θ � θ0 ¼ 0:5 cos
π x

320
cos2

πðz� 100Þ
400

(11.10)
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and this excess resides within 0 � x � 160m and 100 � z � 300m. The diabatic

heating Q is defined by

Q ¼ Q0 cos
π x

320
cos2

πðz� 100Þ
40

(11.11)

and resides within 0 � x � 160m and 80 � z � 120m. This is a continuous heat

source at the base of the warm bubble defined by (11.10). It resides above the

Earth’s surface between 80 and 120 m and defines an initial buoyancy element. The

initial vertical stratification is a neutral state (θ0¼const). As the system of equations

is integrated, the buoyancy element rises and forms a mushroom cloud near x ¼ 0.

This growth of the buoyant element is very illustrative of the growth of shallow dry

convection.

Figure 11.2a–c shows the results of the model cloud growth at 2, 6 and 10 min

after the start of the integration. Here the solid lines represent the potential

temperature excess (in �C) and the dashed lines represent the stream function

(in m2s�1). This shows that the potential temperature excess grows in the form of

a plume and ends up using most of the initial buoyancy. The life time of this

buoyant element is roughly 15 min. Also note that, because of the imposed

symmetry about x ¼ 0, the left half of the cloud (not shown here) is a mirror

image of what the right half (shown here), resulting in a mushroom-shaped cloud.

11.3 Understanding Simple Buoyancy-Driven Shallow

Moist Convection

11.3.1 A Simple Cloud Model

The simple cloud model following Murray and Anderson (1965) is a simple

non-precipitating shallow convection model. It allows for the formation of liquid

water in a supersaturated environment, and for the evaporation of liquid water in a

non-saturated environment. Fallout of rain is not permitted. The totalmoisture (liquid

water and water vapor) is thus conserved. An outline of this two-dimensional (x-z)
cloud model is presented here.

The vorticity equation is expressed by

@

@t
r2ψ ¼ �Jðψ ;r2ψÞ þ g

TM

@T0

@x
þ νMr4ψ ; i:e:; (11.12)

Local Change of Vorticity ¼ Vorticity Advectionþ Buoyancy Term þ Friction

Here ψ is a stream function in the vertical plane (x, z) where TM is a mean

temperature for the entire domain and is a constant. T0 is the departure of the local
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Fig. 11.2 Configuration of the buoyant element at (a) 2, (b) 6, and (c) 10 min after the beginning

of integration. Solid lines show the potential temperature excess (�C), and dashed lines show the

stream function (m2s�1) (From Nickerson 1965)
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temperature T from a horizontal (x) average. νM is a diffusion coefficient for the

eddy flux of momentum. The stream function is related to the u and w velocity

components via the relations

@ψ

@z
¼ u (11.13)

and

@ψ

@x
¼ �w; (11.14)

so that the continuity equation

@u

@x
þ @w

@z
¼ 0 (11.15)

is satisfied.

According to (11.12), the buoyancy field (@T
0

@x > 0Þ contributes to vorticity

generation, i.e., to @
@tr2ψ > 0. This increase in vorticity will, in general, lead to

a cellular stream function geometry on the x-z plane with an enhancement of the

velocities u and w in different parts of the buoyant cell. This is the mechanism via

which buoyancy can initiate motion from an initial state of rest. If T0 is locally large
and positive, then on either side of it there would be regions of @T0

@x > 0 and @T0
@x < 0

respectively. The rising motion that results in the center will have two sinking lobes

on either side.

Any numerical model that is designed to study the time evolution of a phenom-

enon should have the following ingredients:

(i) Independent variables;

(ii) Dependent variables;

(iii) Closed system of equations

(iv) Finite differencing schemes for the above;

(v) Boundary conditions; and

(vi) Initial conditions.

In this problem, x, z and t are the independent variables. The dependent variables
are u, v, ψ , T0, ql and qv, where ql and qv are, respectively, the specific humidity of

liquid water content and that of the water vapor. We need six equations for these six

unknowns to close and solve this system. The principal numerical schemes needed

for this modeling include a time differencing scheme for marching forward and a

Poission solver to obtain the streamfunction from vorticity. Details on such

schemes can be found in texts on numerical methods such as Krishnamurti and

Bounoua (1996).
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The thermal energy equation is taken as

dT

dt
¼ �w

g

Cp
þ dT

dt

� �
ph

þ νTr2T; (11.16)

where

T ¼ TM þ T0ðzÞ þ T0 : (11.17)

T0ðzÞ is the initial stratification of temperature of the undisturbed state and is known,

and TM is the (constant) mean domain value. Equation 11.16 describes the change

of temperature T from which the changes of T0 can be deduced. dT
dt

� �
ph
is the diabatic

change of temperature due to phase change – either condensational heating or

evaporative cooling. The changes in liquid water and water vapor respectively

arising from phase changes and diffusion may be expressed by:

dql
dt

¼ dql
dt

� �
ph

þ νqr2ql (11.18)

dqv
dt

¼ dqv
dt

� �
ph

þ νqr2qv (11.19)

Equations 11.12 through 11.19 constitute a closed system provided the phase

change terms are adequately defined. To that end, if qv > qvs , where qvs is the

saturation value, the disposition of supersaturation is parameterized from the relation

dqv
dt

� �
ph

¼ � qv � qvs
Δt

(11.20)

Once saturation is reached, the local change for (11.19) is set to zero. Further-

more, one sets

dql
dt

� �
ph

¼ � dqv
dt

� �
ph

(11.21)

Thus saturation results in removal of water vapor and the formation of an

equivalent amount of liquid water.

Liquid water in an unsaturated environment evaporates until the environment is

saturated. This is expressed by

dql
dt

� �
ph

¼ � qvs � qv
Δt

(11.22)
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This is the parameterization for the evaporative process. Again, an equivalent

increase in water vapor in the water vapor equation is defined by the relation

dqv
dt

� �
ph

¼ � dql
dt

� �
ph

(11.23)

The condensation heating or evaporative cooling for the thermal equation is next

defined by the statement

Cp
dT

dt

� �
ph

¼ �L
dqv
dt

� �
ph

or Cp
dT

dt

� �
ph

¼ þL
dql
dt

� �
ph

(11.24)

Here one must use the appropriate sign for heating or cooling within the first law

of thermodynamics.

The diffusion terms are needed for the suppression of computational waves

which could otherwise grow to unrealistic sizes depending on the kind of numerical

prediction algorithm one uses. This issue shall not be discussed here.

The system is now closed. The solution procedure involves the following steps:

(i) An initial buoyancy and an initial state of no motion are specified to start the

computation. The initial buoyancy can be in the T0 field or it can be introduced
via the moisture and thus in the initial horizontal gradient of virtual

temperature.

(ii) The vorticity (11.12) yields a new value of the stream function; this in turn

gives the values of u and w from (11.13) and (11.14).

(iii) The two moisture equations provide new values of ql and qv.
(iv) The thermal (11.24) provide a prediction of the temperature T and thus the

temperature deviation T0 field

11.3.2 Initial and Boundary Conditions
and Domain Definition

At x ¼ 0, the horizontal gradient @=@x of all quantities is set to zero, and the stream
function is a constant at z ¼ 0, z ¼ zT and x ¼ xR (the bottom, top and right

boundaries of the domain). The perturbation temperature T0 vanishes at these

boundaries. The liquid water content is set to zero at the boundaries, and is also

initially set to zero over the entire domain. Initially there is no horizontal gradient of

water vapor qv and carries an initial vertical stratification. The initial thermal

stratification shows a conditional instability for the T0ðzÞ field in the lower tropo-

sphere. A perturbation in the T0 field is used to introduce an augmentation of the

virtual temperature that supplies the initial buoyancy perturbation necessary for the

growth of convection.
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The domain is an 8,000 m � 8,000 m2 within which there are grid points at

every 250 m in the x and z directions. In the actual simulations of the cloud Murray

and Anderson set νM ¼ 500 m2 s�1 and νq ¼ νT ¼ 0. The time step for calculations

is 15 s, which satisfies the linear stability criterion.

11.3.3 Numerical Model Results

Figure 11.3a–d shows the evolution of the equivalent potential temperature θe at

forecast times of 0, 10, 15, and 20 min from the beginning of integration. The initial

state distribution of θe has a minimum at the 3 km height. This initial state is

conditionally unstable. Near the ground, in the lowest half kilometer, the initial

state contains a stable layer. The initial buoyancy perturbation is placed above this

surface stable layer to initiate the cloud growth. As time proceeds to 10, 15, and

20 min one sees the growth of the cloud streamfunction and the evolution of the θe
field. The distortion of the θe isopleths by the evolving wind as a function of time is

very impressive. This evolution reduces the overall conditional instability over the

x-z plane as the cloud grows within it. The x-averaged reduction of the slope of θe is
illustrated in Fig. 11.4. This shows that a single cloud can substantially reduce the

conditional instability of the environment. Counteracting forcings must then come

into play in order to restore the conditional instability of the large scale tropics (see

Chap. 14).

The time history of vertical velocity and temperature departure at the axis of the

cloud (x ¼ 0) is shown in Fig. 11.5a, b. These are height-time sections covering the

life cycle of the model cloud. Figure 11.5a shows the evolution of the axis-centered

vertical velocity w (m s�1) for 40 min of integration. The upward motion starts

almost immediately, reaching a maximum value of nearly 13 ms�1 at a height of

2.8 km above the ground 14min after the initial time. After that the cloud dies out by

around 24 min. Thereafter mostly weak downward flows prevail. The attendant

temperature departureT0 (i.e., the warm and cold anomalies with respect to the initial

state horizontal average of temperature) is shown in Fig. 11.5b. By around 12 min

the latent heating provides a warm anomaly on the order of 5�C at a height of 2.8 km.

After 16 min this warm core weakens and narrows to 2�C near the 3 km level.

A very interesting aspect of this cloud model is the buoyancy-induced

overshooting of vertical motion. This overshooting of vertical motion above the

cloud results in cloud evaporation and adiabatic cooling and a narrow cold cap

above the cloud is seen. This cold cap has a temperature anomaly of�4�C and lasts

through roughly 28 min of integration.

Figure 11.6a–d shows the corresponding history of the growth of the

streamfunction ψ on the x-z plane (solid lines) and of the liquid water mixing

ratio (dashed lines) for times 5, 10, 15, and 20 min. The isopleths for the liquid

water mixing ratio starting at values � 0.4 g kg�1 outline the shape of the model

cloud (generally, visible clouds in the tropics have liquid water mixing ratios in

excess of this threshold value). In the first 15 min of this time history one sees the
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spectacular growth of the model cloud and the associated circulation described by

the streamfunction. Thereafter the cloud slowly starts to weaken. However, it

remains active near the axis (x ¼ 0) at a height of near 3.5 km. At 20 min, the

horizontal size of the cloud is around 1 km, and its vertical extent is about 4 km.

These numerical results can be regarded as a simulation of the life cycle of a

shallow non-precipitating stratocumulus cloud.
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Fig. 11.3 x-z cross-sections of the model potential temperature at time (a) top left 0, (b) top right

10, (c) bottom left 15, and (d) bottom right 20 min illustrating the evolution of the model moist

shallow convection (From Murray et al. 1965)
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11.4 A Cloud Ensemble Model

There are several cloud ensemble models that have been developed in recent years.

These models include several forms of water substance, including vapor, liquid and

ice phase. In this section we will provide a description of one such model that was

developed by Tao and Simpson (1993).

11.4.1 Kinematics and Thermodynamics

The equation of state is given by

p ¼ ρRTð1þ 0:61qvÞ (11.25)

where p, ρ and T are the pressure, density and temperature of the air, and (1 + 0.61qv)
is the virtual temperature correction for air with specific humidityqv. In the following
equations the Exner pressure π will be used; it is defined as

π ¼ p=p0ð ÞR=Cp ; (11.26)

Fig. 11.4 Vertical profiles of horizontally averaged potential temperature at the initial time and

20 min into the integration
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where p0 is a reference pressure. The virtual potential temperature is defined as

θv ¼ θð1þ 0:61qvÞ (11.27)

Fig. 11.5 Time-height cross-sections of (a) top vertical velocity, and (b) bottom temperature

departure. Centered at x ¼ 0 (From Murray and Anderson 1965)
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Using the definition of potential temperature,θ ¼ T p0=pð ÞR=Cp, or in other words,

θ ¼ T=π, the three equations of motion can be written as:

@u

@t
¼ � @

@x
uuð Þ � @

@y
uvð Þ � 1

�ρ

@

@z
�ρuwð Þ � Cp

�θ
@π0

@x
þ fvþ Du (11.28)

@v

@t
¼ � @

@x
uvð Þ � @

@y
vvð Þ � 1

�ρ

@

@z
�ρvwð Þ � Cp

�θ
@π0

@y
� fuþ Dv (11.29)

@w

@t
¼ � @

@x
uwð Þ � @

@y
wvð Þ � 1

�ρ

@

@z
�ρwwð Þ � Cp

�θ
@π0

@z
þ g

θ0

�θ
þ 0:61q0v � ql

� �
þ Dw

(11.30)

Fig. 11.6 Streamlines (solid) and liquid water mixing ratio (dashed) at (a) 10, (b) 15, (c) 20 and

(d) 25 min (From Murray and Anderson 1965)
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In these equations u, v and w are the zonal, meridional and vertical wind

components; g is the acceleration of gravity; ql is the mixing ratio of liquid water

plus that of ice. Primes denote departures from the corresponding horizontal area-

average. The horizontal area averages in turn are denoted by an overbar. Du, Dv and

Dw are the momentum diffusion rates of the sub-grid scales in the three respective

directions. The thermodynamic energy equation is written as

@θ

@t
¼� @

@x
uθð Þ � @

@y
vθð Þ � 1

�ρ

@

@z
�ρwθð Þ þ Dθ

þ Lv
Cp

c� ec � erð Þ þ Lf
Cp

fr � mð Þ þ Ls
Cp

d � sð Þ þ QR

(11.31)

where Lv, Lf and Ls denote, respectively, the latent heats of condensation, fusion

and sublimation; c, ec , and er are the rates of condensation, evaporation of cloud

water, and evaporation of cloud droplets respectively; fr and m are the rates of

freezing of raindrops and of melting of snow, graupel or hail; d and s are the rates of
deposition and sublimation of ice particles. QR is the radiative heating or cooling,

and Dθ is the horizontal diffusion rate of potential temperature.

The equation for the specific humidity of water vapor can be written as

@qv
@t

¼ � @

@x
uqvð Þ � @

@x
vqvð Þ � 1

�ρ

@

@z
�ρwqvð Þ þ Dqv � c� ec � erð Þ � d � sð Þ

(11.32)

Here Dqv is the horizontal diffusion rate for water vapor.

11.4.2 Cloud Microphysics

We will next address the water substance components of the model and their rates

of growth. A drop size distribution function N(D) is assumed as

NðDÞ ¼ N0e
�λD

i.e. the number of drops N (per unit volume of space) of a given size D is inversely

proportional to that size.N0, the value ofN atD ¼ 0, is called an intercept parameter.

λ is called the slope of the particle size distribution and is empirically expressed by

λ ¼ πρxN0

ρqx

� �1=4

(11.33)

where ρx and qx are the density and mixing ratio of the specific hydrometeor.
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The model uses values of the intercept parameter for graupel, snow and rain that

are around 0.04, 0.04 and 0.08 cm�4 respectively. The densities for graupel, snow

and rain are respectively 0.4 gcm�3, 0.1 g cm�3 and 1 g cm�3. For cloud ice, the

model assumes a single value of size with diameter of 2 � 10�3 cm and a density of

0.917 g cm�3.

The prognostic equations for the components of the water substance include the

following:

(a) Cloud water

�ρ
@qc
@t

¼ � @

@x
�ρ uqcð Þ � @

@y
�ρ vqcð Þ � @

@z
�ρwqcð Þ þ �ρ c� ecð Þ

� Tqc þ Dqc (11.34)

(b) Rain water

�ρ
@qr
@t

¼ � @

@x
�ρ uqrð Þ � @

@y
�ρ vqrð Þ � @

@z
�ρ w� Vrð Þqr½ � þ �ρ �er þ m� frð Þ

� Tqr þ Dqr (11.35)

(c) Ice

�ρ
@qi
@t

¼ � @

@x
�ρ uqið Þ � @

@y
�ρ vqið Þ � @

@z
�ρwqið Þ þ �ρ di � sið Þ

� Tqi þ Dqi (11.36)

(d) Snow

�ρ
@qs
@t

¼ � @

@x
�ρ uqsð Þ � @

@y
�ρ vqsð Þ � @

@z
�ρ w� Vsð Þqs½ �

þ �ρ ds � ss � ms þ fsð Þ � Tqs þ Dqs (11.37)

(e) Graupel

�ρ
@qg
@t

¼ � @

@x
�ρ uqg
� �� @

@y
�ρ vqg
� �� @

@z
�ρ w� Vg

� �
qg

� �

þ �ρ dg � sg � mg þ fg
� �� Tqg þ Dqg (11.38)

On the right hand side of the above equations there are terms of the kind

�ρ c� ecð Þ, �ρ �er þ m� frð Þ, �ρ di � sið Þ, etc. Taking (11.35) as an example, �ρ @qr
@t ¼

. . .þ �ρ �er þ m� frð Þ þ . . . , the right hand side is interpreted as follows –

evaporation (er) and freezing (fr) reduce the mixing ratio of rain water qr,
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therefore they figure in the equation with a minus sign; melting (m) increases the
mixing ratio of rain water, therefore it figures in the equation with a plus sign.

Similar interpretation applies to the terms of this kind in all the above equations.

The transfer rates among the different hydrometeor species are denoted by T
with the relevant subscript. These are expressed by the following equations:

Tqc ¼ � Psacw þ Praut þ Pracw þ Psfw þ Dgacw þ Qsacw

� �� Pihom � Pimlt � Pidw

(11.39)

Tqi ¼ � Psaut þ Psaci þ Praci þ Psfi þ Dgaci þWgaci

� �þ Pihom � Pimlt þ Pidw

(11.40)

Tqr ¼ Qsacw þ Praut þ Pracw þ Qgacw � Piacr þ Dgacr þWgacr þ Psacr þ Pgfr

� �
(11.41)

Tqs ¼ Psaut þ Psaci þ Psacw þ Psfw þ Psfi þ δ3Praci þ δ3Piacr þ δ2Psacr

� Pgacs þ Dgacs þWgacs þ Pgaut þ 1� δ2Pracsð Þ� � (11.42)

Tqg ¼ 1� δ3ð ÞPraci þ Dgaci þWgaci þ Dgacw þ 1� δ3ð ÞPiacr þ Pgacs þ Dgacs

þWgacs þ Pgaut þ 1� δ2ð ÞPracs þ Dgacr þWgacr þ 1� δ2ð ÞPsacr þ Pgfr

(11.43)

In these equations,

Wgacr ¼ Pwet � Dgacw �Wgaci �Wgacs: (11.44)

If the temperature is above freezing,

Psaut ¼ Psaci ¼ Psacw ¼ Praci ¼ Piacr ¼ Psfi ¼ Psfw ¼ Dgacs ¼ Wgacs

¼ Pgacs ¼ Dgacr ¼ Pgwet ¼ Pracs þ Psacr ¼ Pgfr ¼ Pgaut ¼ Pimlt ¼ 0;

(11.45)

otherwise

Qsacw ¼ Qgacw ¼ Pgacs ¼ Pidw ¼ Pihom ¼ 0 (11.46)

The symbols on the right hand sides of the equations for the transfer rates among

different hydrometeor species (11.39) through (11.43) and in Eqs. 11.44 and 11.45

represent different processes as explained in Table 11.1 and illustrated

schematically in Fig. 11.7. Each of these is explained in greater detail in Lin

et. al. (1983) and Tao and Simpson (1993).
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The three momentum equation (for u, v, w), the first law of thermodynamics

(θ), the water vapor equation for (qv) and the five microphysical process equation

(qc, qr, ql, qs and qg) constitute ten prognostic equations. The mass continuity and

the equation of state bring in two more variables – the Exner pressure π (which is

related to the pressure p) and the density of air �ρ. In order to close this system of

equations, the transfer rates that account for all conversion processes need to be

calculated, usually by using suitable empirical parameterizations.

11.4.3 Conversion Processes

There are a number of conversion processes transforming one form of water within

a cloud into another, as seen in (11.39) through (11.43) and Table 11.1. The transfer

processes are generally modeled empirically based on microphysical field experi-

ment results. The degree of empiricism and the number of parameters controlling

the transfer are quite large. Cloud growth or decay in modeling studies is very

Fig. 11.7 Cloud

microphysical processes

of the Goddard Cumulus

Ensemble model (After Lin

et al. 1983)
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sensitive to the modeled values of these transfer processes. For illustrative

purposes, parameterizations for three of these processes are described below.

(a) Autoconversion (cloudwater to rainwater, Praut):

This process consists of transforming the liquid water from cloud droplets to

raindrops. Kessler (1969) formulated a simple parameterization of the role of

Table 11.1 List of acronyms

Symbol Meaning

Pdepi Depositional growth of cloud ice

Pint Initiation of cloud ice

Pimlt Melting of cloud ice to form cloud water

Pidw Depositional growth of cloud ice at the expense of cloud water

Pihom Homogeneous freezing of cloud water to form cloud ice

Piacr Accretion of rain by cloud ice; producing snow or graupel

depending on the amount of rain

Praci Accretion of cloud ice by rain; producing snow or graupel

depending on the amount of rain

Praut Autoconversion of cloud water to form rain

Pracw Accretion of cloud water by rain

Prevp (er) Evaporation of rain

Pracs Accretion of snow by rain; producing graupel if rain or snow

exceeds threshold and T < 273.16 or rain if T > 273.16

P(Q)sacw Accretion of cloud water by snow; producing snow (Psacw) if

T < 273.16 or rain (Qsacw) if T > 273.16

Psacr Accretion of rainby snow; producing graupel if rain or snow

exceeds threshold; if not, produces snow

Psaci Accretion of cloud ice by snow

Psaut Autoconversion (aggregation) of cloud ice to form snow

Psfw Bergeron process (deposition and rimming) – transfer of cloud

water to form snow

Psfi Bergeron process embryos (cloud ice) used to calculate transfer

rate of cloud water to snow (Psfw)

Psdep (ds) Deposition growth of snow

Pssub (ss) Sublimation of snow

Psmlt (ms) Melting of snow to form rain, T > 273.16

Pwacs Accretion of snow by cloud water to form rain, T > 273.16

Pgaut Autoconversion (aggregation) of snow to form graupel

Pgfr (fg) Probabilistic freezing of rain to form graupel

D(Q)gacw Accretion of cloud water by graupel

D(W)gaci Accretion of cloud ice by graupel

D(W)gacr Accretion of rain by graupel

Pgsub (sg) Sublimation of graupel

Pgmlt (mg) Melting of graupel to form rain, T > 273.16. (In this regime

Qgacw is assumed to be shed as rain)

Pgwet Wet growth of graupel; may involve Wgacs andWgaci and must include

Dgacw or Wgacr, or both. The amount of Wgacw which

is not able to freeze is shed to rain
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autoconversion of liquid water from raindrops with water content m (mass/

volume) to raindrops with water contentM. The autoconversion is formulated as

c1 ¼ Δql
Δt

� 	
auto

¼ kaðqc � qcrÞ (11.47)

and allows autoconversion process to take place only if the cloud water mixing

ratio qc is greater than a critical value qcr. The values of qcr and ka used by

Kessler are qcr ¼ 0.05 g kg�1 and ka ¼ 0.001 s�1

(b) Accretion (cloud water to rainwater, Pracw):

The formulation of accretion follows Kessler (1969) and that of terminal

velocity follows Srivastava (1967). After the embryonic rainfall droplets have

been formed it is assumed that the water content converts into rain following an

inverse exponential distribution function (Marshall-Palmer 1948) NðDÞ ¼ N0

e�λD, where N(D) is the number of raindrops per unit volume of diameter D, and

λ ¼ 3:67=D0 , where D0 is a threshold smallest diameter for the start of

this process.

The cross-sectional area of the raindrop is πD2=4 and its terminal velocity is

vTD hence the volume swept by this raindrop per unit time is vTDρ qcπD2=4.
The increase of mass of drops at each diameter is given by

Δq
Δt

� 	
acc

¼
ð1

0

vTDρ qc
πD2

4
NðDÞdD (11.48)

Assuming vTD ¼ 1500D1=2cm s�1 and integrating for all diameters, the

relation used for the computation of accretion process is obtained as an exact

solution of the integral above,

c2 ¼ Δql
Δt

� 	
acc

¼ 1500π

4
N0ρ

Γð3:5Þ
λ3:5

qc (11.49)

The rainwater mixing ratio is defined as

qr ¼
ð1

0

qrDdD ¼
ð1

0

N0e
�λD π

D3

6
ρw

� 	
dD (11.50)

After integrating qr ¼ πρwN0=λ
4, where ρw is the density of liquid water, the

value of λ is obtained as an exact solution

λ ¼ 4πρwN0

qr

� �1=4

(11.51)
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Finally, from

vT ¼

Ð1
0

qrDvTDdD

Ð1
0

qrDdD

¼

Ð1
0

qrDvTDdD

qr
(11.52)

Substituting from (11.48) one finally obtains the final fall speed of raindrops as

vT ¼ 1

πρwN0λ
�4

ð1

0

N0e
�λD πD3

6

� �
ρw1500D

1=2dD (11.53)

Or, after solving the above integral exactly,

vT ¼ 1500Γð4:5Þ=λ1=2Γð4Þ (11.54)

(c) Evaporation (cloud water to vapor, Prevp):

The evaporation process follows to some extent the format of Murray and

Anderson (1965) If the air is saturated the rate of change of the saturation

mixing ratio of water vapor is the same as the rate of change of the saturation

mixing ratio. On the basis of conservation of equivalent potential temperature

under conditions of saturation mixing ratio is

dqvs
dt

¼ �Bw (11.55)

and

B ¼ 1� 1
εL CpT � Lqvs
� �

Lþ CpRT
2

Lqvs εþ qvsð Þ
g (11.56)

where ε ¼ 0.62195 is the molecular weight of water vapor/molecular weight of

dry air, L ¼ 2.5 � 106 J kg�1 is the latent heat of evaporation, and Cp ¼ 1,004 J

kg�1 K�1 is the specific heat capacity of dry air. The amount of local change in

the water vapor mixing ratio is then

Δqv ¼ �BwΔt (11.57)

In the case of upward motion this represents condensation and is accompanied

by an equal and opposite change in cloud water mixing ratio and an increase in

temperature, i.e.,
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Δqc ¼ �Δqv (11.58)

ΔT ¼ L

Cp
Δqc (11.59)

In the case of downward motion of saturated air, the same treatment is used. The

increase of mixing ratio, however, accompanying this change is done through

evaporation of cloud and/or rain. If cloud water is sufficient to accomplish this

change, no rainwater is evaporated. If the cloud water is insufficient some rainwater

is evaporated until the sum of cloud water and rainwater evaporation is enough to

accomplish the change computed in (11.55).

11.4.4 Modeling Results

In this section we will show some results from Tao and Simpson (1993) and

McCumber et al. (1991). These results pertain to some aspects of cloud microphys-

ical sensitivity to the passage of a tropical squall line. This squall line propagated

from West Africa into the eastern Atlantic Ocean.

Microphysical sensitivity experiments show some interesting differences from

the inclusion versus non inclusion of the ice phase. One of the results was the

partitioning of the convective and anvil rain. These results covering a simulated

domain of a squall line are shown in Fig. 11.8a, b. When ice phase is excluded the

quantitative amount of heavy precipitation increases significantly (and unrealisti-

cally). The inclusion of ice brings this heavy precipitation to values that are an order

of magnitude smaller and in agreement with observations. The depths of stratiform

clouds were considerably reduced when ice was not included (Fig. 11.9a, b). The

ice free run lacks a well defined anvil and also carries excessive cellular

precipitating towers. This experiment without ice phase also conveyed a slower

propagation speed for the squall line.

By using microphysics schemes with varying densities and intercept parameters

for the different hydrometeors, one can study the sensitivity of cloud simulations to

the distribution and parameterization of hydrometeors.

McCumber et al. (1991) used two experiments with different schemes for

modeling the ice phase of water within the cloud. The schemes that he used were:

1. A graupel-only scheme, after Rutledge and Hobbs (1984), which has graupel and

snow but no hail processes.

2. A hail-only scheme, after Lin et al. (1983), which has snow and hail but no

graupel processes.
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The main difference between graupel and hail is in the hydrometeors’ density –

the respective values are 0.4 g cm�3 and 0.9 g cm�3 – and in their size (graupel

particles are generally much smaller).

In the graupel-only case (Fig. 11.10a) the vertical distribution of hydrometeors

shows a predominance of graupel over snow particles in the convective and anvil

regions. This is a result of the graupel particles being smaller than the snow

particles and thus falling more slowly. As a consequence, in the graupel-only

case, the melting and deposition of snow are second-order processes. In the

hail-only case (Fig. 11.10b), because of the formation and rapid fall out of the

hail stones, snow becomes the dominant precipitating hydrometeor within the anvil

cloud. This large amount of snow accounts for larger amounts of melting and

deposition of snow.

Fig. 11.8 Total rain intensity

integrated over the grid points

designated as the convective

and stratiform (anvil) regions

from (a) ice run, and (b)

ice-free run (Adapted from

McCumber et al. 1991)
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The heating/cooling profiles along the vertical from the above two sensitiv-

ity experiments for a tropical squall type convective system are shown in

Fig. 11.11b. The hail-only experiment is seen to be characterized by less

Fig. 11.9 Vertical cross-section of a simulated tropical squall-type convective line at its mature

stage from (a) ice run and (b) ice free run. The contour intervals show radar reflectivity at 5dBZ

interval beginning from 10dBZ; contours are highlighted at intervals of 15dBZ. From McCumber

et al. (1991)
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diabatic cooling in the lower troposphere compared to the significant cooling in

the graupel-only experiment (Fig. 11.11a). The cooling in the hail-only case is

mainly attributed to the evaporation of rain and melting of snow (which falls

more slowly than hail) and for the graupel-only case there is large scale

melting of graupel in the lower troposphere which leads to enhanced lower

tropospheric cooling.

Fig. 11.10 Mean water and ice hydrometeors (g/kg per grid pint) depicted as a function of height
for tropical squall system simulations. The curves for the hydrometeors shown are rain (qr, short
dash), cloud water (qc, solid), graupel/hail (qg, dotted), cloud ice (qi, dot-dash), and snow (qs, long
dash). The units in the figure are normalized with respect to the number of horizontal model grid

points. (The unnormalized units are obtained by multiplying by 512 km). The top panel shows

results from the graupel-only experiment, while the bottom panel shows results from the hail-only

experiment (From McCumber et al. 1991)
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