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    Abstract     In this chapter we discuss the state of research on bat migration and compare 
some of these patterns to those of birds. We begin with an overview of the literature 
on migration, apply migration theory, and discuss case studies on four bat species 
on which the greatest knowledge and understanding of migratory patterns exists. 
We also discuss what is known of motivating factors for bat migration and where 
research needs are apparent.  

15.1         About Migration 

 Migration is the movement of animals that are following seasonal availability of 
resources and strategies involve an astonishing variety of schemes. Birds and mam-
mals differ from insects in migration: individual birds and mammals can do many 
round trips, usually reproducing only once per trip (but see Rohwer et al .   2009 ), 
whereas insects typically undergo multiple generations per migratory cycle (Drake 
and Gatehouse  1995 ). Dingle ( 1996 ) asserted that migrating animals display some 
or all of the following characteristics: (1) traveling longer distances and in relatively 
straighter lines than during foraging, (2) displaying special predeparture or post- 
arrival behaviors such as hyperphagia, (3) storing energy to use during or after the 
trip, and (4) not displaying normal responses to stimuli such as pheromones or prey. 
Migration differs from dispersal which is generally unidirectional. 

 Understanding animal migration is important. Migratory animals include wild 
birds that span political borders and spread zoonotic disease that can affect humans 
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(see Chap.   16    ) and agricultural insect pests such as the corn earworm ( Helicoverpa 
zea ) which cause billions of dollars of economic damage. Migratory bats help sup-
press migratory pests (Lee and McCracken  2005 ). The migratory lesser long- nosed 
bat ( Leptonycteris curasoae , Fleming  2004 ) and the straw-colored fruit bat ( Eidolon 
helvum , Richter and Cumming  2008 ) are important pollinators and seed dispersers 
following seasonal blooms of fl owers and fruit over thousands of kilometers and 
international borders. Moving animals transfer energy and nutrients among ecosys-
tems (Wikelski et al .   2007 ). Migratory animals also face habitat fragmentation and 
climate change, which are likely to be disruptive (   Sherwin et al.  2012 ; Wilcove and 
Wikelski  2008 ). In addition, increasing deployment of wind turbines to counter cli-
mate change kills thousands of migratory, and other, bats (see Chap.   20    ).  

15.2     Overview of Migration in Bats 

 There are several reviews on bat migration (Cryan and Veilleux  2007 ; Fenton and 
Thomas  1985 ; Fleming and Eby  2003 ; Griffi n  1970 ; Hutterer et al .   2005 ; Popa- 
Lisseanu and Voigt  2009 ) showing at least 87 species in 10 families for which all or 
part of a population migrates regionally or longer-distance (Table  15.1    ). Most 
migration research concerns birds (Faaborg et al.  2010 ) that have some similarity 
with bats (Dingle  1996 ), but there are signifi cant differences in scale and behavior. 
Bat migration is much less common than in birds (Brigham et al .   2012 ; Woods and 
Brigham  2004 ), covers shorter distances and possibly shorter stopover intervals 
(Fleming and Eby  2003 ), and involves foraging while migrating.

   Bats migrate to follow roosts and/or food (Fleming and Eby  2003 ). In temperate 
areas, some bats move regionally (100–500 km each way) to and from hibernacula 
(Rodrigues and Palmeirim  2008 ). Long-distance (~>1,000 km) migrants in temper-
ate areas often forgo hibernation by overwintering in milder climates offering food 
(Fleming and Eby  2003 ), although some European bats undergo long migrations to 
hibernacula (Hutterer et al .   2005 ). In tropical or subtropical areas, long-distance 
migrants follow transient fruit or nectar resources (Fleming and Eby  2003 ). Whether 
insect-eating bats migrate in response to seasonally available prey remains unknown 
as these patterns are obscured by the lack of information on seasonal insect avail-
ability beyond agricultural pests. Although regional migrants are assumed to move 
in search of roost sites (Griffi n  1945 ,  1970 ; Tuttle  1976 ), many latitudinal migrants 
may be pursuing food, with roosts being a secondary factor. 

 Migratory behavior appears to have independent, multiple evolutions, especially 
in the western hemisphere (Bisson et al .   2009 ; Popa-Lisseanu and Voigt  2009 ). The  
origin of most bat species and the greatest diversity occurs in the tropics where more 
stable resource bases occur; thus, temperate species migration is not likely an ances-
tral trait (Fleming and Eby  2003 ). Although migratory behaviors in bats are proba-
bly less diverse than in birds, some patterns exist. For example, there is sex-based 
migration (Ibanez et al .   2009 ), with females moving farther north in the spring in 
North America (Cryan  2003 , but see Kurta  2010 ) as well as in Europe and Australia 
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   Table 15.1    Bats known to migrate or suspected of migration with longest documented one-way 
migration distance (km)   

 Family  Species if known  Distance  References 

 Molossidae   Eumops perotis   Medellin ( 2003 ) 
  Eumops underwoodi   Medellin ( 2003 ) 
  Mops condylurus   McGuire and Ratcliffe ( 2011 ) 
  Nyctinimops macrotus   L  Medellin ( 2003 ) 
  Otomops madagascariensis   CMS ( 2012 ) 
  Otomops martiensseni   CMS ( 2012 ) 
  Tadarida brasiliensis   1,800  Cockrum ( 1969 ) 
  Tadarida insignis   Funakoshi and Yamamoto 

( 2001 ) 
  Tadarida latouchei   CMS ( 2012 ) 
  Tadarida condylura   O’Shea and Vaughan ( 1980 ) 
  Tadarida bemmelini   O’Shea and Vaughan ( 1980 ) 
  Tadarida pumila   O’Shea and Vaughan ( 1980 ) 
  Platymops setiger   O’Shea and Vaughan ( 1980 ) 

 Phyllostomatidae   Anoura geoffroyi   Medellin ( 2003 ) 
  Carollia perspicillata   <200  Fleming ( 1988 ) 
  Choeronycteris mexicana   L  Valiente-Banuet et al. ( 1996 ) 
  Leptonycteris curasoae   >1,000  Cockrum ( 1991 ) 
  Leptonycteris nivalis   >1,000  Moreno-Valdez et al. ( 2004 ) 
  Leptonycteris sanborni   Cockrum ( 1991 ) 
  Platalina genovensium   CMS ( 2012 ) 
  Sturnira lilium   Mello et al. ( 2008 ) 

 Vespertilionidae   Antrozous pallidus   R  Medellin ( 2003 ) 
  Barbastella barbastellus   290  Hutterer et al. ( 2005 ) 
  Eptesicus fuscus   Medellin ( 2003 ) 
  Eptesicus nilssonii   450  Hutterer et al. ( 2005 ) 
  Eptesicus serotinus   330  Hutterer et al. ( 2005 ) 
  Ia io   McGuire and Ratcliffe ( 2011 ) 
  Lasionycteris noctivagans   U  Cryan ( 2003 ) 
  Lasiurus borealis/blossevillii   U  Cryan ( 2003 ) 
  Lasiurus cinereus   U  Cryan ( 2003 ) 
  Lasiurus ega   Medellin ( 2003 ) 
  Lasiurus intermedius   Medellin ( 2003 ) 
  Lasiurus seminolus   U  Perry et al. ( 2010 ) 
  Lasiurus xanthinus   Medellin ( 2003 ) 
  Myotis auriculus   Medellin ( 2003 ) 
  Myotis blythii   488  Hutterer et al. ( 2005 ) 
  Myotis brandtii   618  Hutterer et al. ( 2005 ) 
  Myotis californicus   Medellin ( 2003 ) 
  Myotis capaccinii   140  Hutterer et al. ( 2005 ) 
  Myotis chiloensis   Fleming and Eby ( 2003 ) 
  Myotis ciliolabrum   Medellin ( 2003 ) 
  Myotis dasycneme   350  Hutterer et al. ( 2005 ) 
  Myotis daubentonii   304  Hutterer et al. ( 2005 ) 
  Myotis evotis   Medellin ( 2003 ) 

(continued)
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 Family  Species if known  Distance  References 

  Myotis griescens   >500  Tuttle ( 1976 ) 
  Myotis lucifugus   >500  Fleming and Eby ( 2003 ) 
  Myotis myotis   436  Hutterer et al. ( 2005 ) 
  Myotis mystacinus   240  Hutterer et al. ( 2005 ) 
  Myotis nattereri   327  Hutterer et al. ( 2005 ) 
  Myotis sodalis   500  Fleming and Eby ( 2003 ) 
  Myotis thysanodes   Medellin ( 2003 ) 
  Myotis tricolor   O’Shea and Vaughan ( 1980 ) 
  Myotis velifer   Medellin ( 2003 ) 
  Myotis volans   Medellin ( 2003 ) 
  Myotis yumanensis   Medellin ( 2003 ) 
  Nyctalus lasiopterus   U  Hutterer et al. ( 2005 ) 
  Nyctalus leiseri   1,568  Hutterer et al. ( 2005 ) 
  Nyctalus noctula   1,546  Hutterer et al. ( 2005 ) 
  Perimyotis subfl avus   R  Fleming and Eby ( 2003 ) 
  Pipistrellus nathusii   1,905  Hutterer et al. ( 2005 ) 
  Pipistrellus pygmaeus   U  Hutterer et al. ( 2005 ) 
     Pipistrellus pipistrellus   1,123  Hutterer et al. ( 2005 ) 
  Scotoecus hindei   O’Shea and Vaughan ( 1980 ) 
  Scotophilus nigrita   O’Shea and Vaughan ( 1980 ) 
  Vespertilio murinus   1,787  Hutterer et al. ( 2005 ) 

 Miniopteridae   Miniopterus australis   McGuire and Ratcliffe ( 2011 ) 
  Miniopterus infl atus   McGuire and Ratcliffe ( 2011 ) 
  Miniopterus natalensis   Miller-Butterworth et al. ( 2003 ) 
  Miniopterus schreibersi   833  Hutterer et al. ( 2005 ) 

 Emballonuridae   Emballonura monticola   CMS ( 2012 ) 
  Emballonura semicaudata   CMS ( 2012 ) 
  Taphozous mauritianus   O’Shea and Vaughan ( 1980 ) 
  Taphozous melanopogon   200  Gopalakrishna ( 1986 ) 

 Pteropodidae   Eidolon helvum   1,500  Thomas ( 1983 ) 
  Epomorphorus wahlbergi   McGuire and Ratcliffe ( 2011 ) 
  Myonycteris torquata   750  Thomas ( 1983 ) 
  Nanonycteris veldkampii   750  Thomas ( 1983 ) 
  Pteropus alecto   U  Breed et al. ( 2010 ) 
  Pteropus poliocephalus   978  Ratcliffe ( 1932 ) 
  Pteropus scapulatus   Ratcliffe ( 1932 ) 
  Pteropus vampyrus   Epstein et al. ( 2009 ) 

 Hipposideridae   Hipposideros commersoni   O’Shea and Vaughan ( 1980 ) 
  Hipposideros lankadiva   475  Gopalakrishna ( 1986 ) 
  Triaenops persicus   O’Shea and Vaughan ( 1980 ) 

    Rhinolophidae   Rhinolophus landeri   O’Shea and Vaughan ( 1980 ) 
  Rhinolophus hildebrandti   CMS ( 2012 ) 

 Megadermatidae   Cardioderma cor   O’Shea and Vaughan ( 1980 ) 
 Rhinopomatidae   Rhinopoma microphyllum   900  Gopalakrishna ( 1986 ) 

   L  long-distance migrant,  R  regional migrant,  U  maximum distance unknown, blank indicates no 
distance information available  

Table 15.1 (continued)
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(Fleming and Eby  2003 ). Bats also migrate in groups, sometimes even mixed- 
species groups (Cryan and Veilleux  2007 ; Fleming and Eby  2003 ). Bat migration 
sometimes coincides with mating behavior (Cryan and Veilleux  2007 ). Migratory 
bats typically share similar morphologies like high wing aspect ratios and high wing 
loading (Norberg and Rayner  1987 ) facilitating high-speed, long-distance fl ight. 
However, behavioral and morphological characteristics likely facilitated the evolu-
tion of migration, rather than being a causal agent (Fleming and Eby  2003 ). 

 Bisson et al .  ( 2009 ) suggest that migration evolved independently in several ves-
pertilionid lineages. Many cave-roosting  Myotis  are regional migrants but none move 
long distances. In contrast, many species of  Lasiurus  are long-distance migrants, but 
none appear to be regional migrants. Thus, Bisson et al .  ( 2009 ) conclude that long-
distance migration is less likely to have evolved in cave- than in tree-roosting bats, in 
contrast to how migration evolved in birds, starting with short- to long-distance 
migrations. However, Berthold ( 1999 ) posits that the evolution of migration in birds 
is ancestral and likely driven by coexistence of both migratory and nonmigratory 
genes in the same population, expressed depending on a threshold variable. Thus, 
ecology, morphology, or perhaps physiology drives the evolution of migration, and 
this could explain the probable independent evolution in multiple lineages of bats. 

 Tracking bats during seasonal movements is especially diffi cult, and what we 
know comes from large-scale banding efforts conducted in the fi rst half of the twen-
tieth century (Cockrum  1969 ; Glass  1982 ; Griffi n  1945 ; Hutterer et al .   2005 ; 
Steffens et al .   2007 ; Tuttle  1976 ) wherein more than a million bats in Europe and 
North America were captured at roosts and banded, with recovered bands showing 
clues to seasonal movements. Individual Brazilian free-tailed bats ( Tadarida brasil-
iensis ) banded in caves in southwestern USA show some individuals moved 
1,800 km into Mexico, at rates of about 50 km/day (Cockrum  1969 ; Glass  1982 ). In 
Europe, banding started in the 1940s in seven countries and continues today in 35 
countries. Data are available for 47 European species of bats and consolidation of 
records is underway, but even partial results show a striking pattern of movement for 
many long-distance migrants between northeastern and southwestern Europe 
(Hutterer et al .   2005 ). Banding of bats in North America and several European 
countries has decreased after massive banding-related mortality, often associated 
with inexperienced banders (Ellison  2008 , but see Rodrigues and Palmeirim  2008 ). 
Although banding can be harmful to bats, tracking individual bats is crucial to 
understanding bat migration, and improvements in banding technology would 
greatly assist in this effort.  

15.3     Applying Migration Theory to Bats 

 There is considerable theoretical and integrative research on migration (Berthold 
 1999 ; Dingle  2006 ), but almost all treatments ignore bats (e.g., Akesson and 
Hedenstrom  2007 ; Chapman et al .   2011 ; Dingle  2006 ; Hein et al.  2012 , but see 
Hedenstrom  2009 ) because knowledge remains patchy and often information such 
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as which species migrate, population sizes of those species, and their migratory 
routes remains unknown. Although population sizes of North American migratory 
tree bats are considered not measurable (Carter et al .   2003 ), we cannot clearly esti-
mate the magnitude of any threat without population estimates. Applications of 
molecular data offer estimates of current and historical population sizes and should 
be explored (Russell et al .   2011 ). Also, current tracking technology is limited 
(Holland and Wikelski  2009 ). Thus, fundamental research must still be addressed 
before migration theory can be applied to bats. 

 Migration appears to be a plastic behavior. In birds, substantial genetic variation 
for migration propensity, distance, and direction exists even in partial or nonmigra-
tory populations (Pulido  2007 ,  2011 ), and many bird species change their migration 
patterns or stop migration altogether (Sutherland  1998 ). For example, house fi nches 
( Carpodacus mexicanus ) introduced to eastern North America from a nonmigratory 
population quickly adopted migration (Able and Belthoff  1998 ). Populations of 
blackcaps ( Sylvia atricapilla ) that previously migrated from Europe to the 
Mediterranean and Africa now overwinter in the British Isles (Pulido  2007 ). Partial 
migration, where migrant and nonmigrant conspecifi cs share a common site during 
one period of their annual cycle, is common (Chapman et al .   2011 ; Berthold  1999 ). 
Many bat species are partial migrants (Fleming and Eby  2003 ). In some species 
(North American tree bats), males and females appear to migrate differently (Cryan 
 2003 ), and in others (e.g., Brazilian free-tailed bats), only part of the population 
migrates (Laval  1973 ). Moussy et al. ( 2012 ) review the effect of migration and dis-
persal on genetic structure of populations. 

 Migratory birds have smaller brains than nonmigrants (Sol et al .   2005 ). 
McGuire and Ratcliffe ( 2011 ) show a similar pattern with bats and suggest that 
transporting smaller, less massive brains supports an energy trade-off hypothesis. 
Alternatively, larger brains in nonmigrants may refl ect selection for behavioral 
fl exibility and the need to fi nd food in seasonally variable habitats and this might 
also explain why migratory birds are less successful invaders (Sol and Lefebvre 
 2000 ). Although brain size is smaller, the hippocampus, important to spatial mem-
ory in many birds and mammals (Moser  2011 ), is proportionately larger in migra-
tory birds, but not in migratory bats (McGuire and Ratcliffe  2011 ). Avoiding 
seasonal variation in resources by hibernating may result in less selection for 
behavioral fl exibility in nonmigratory bats. 

 Most birds fuel their migration primarily through fat stores (Gwinner  1990 ) as do 
many bats (McGuire et al .   2009 ), and the processes of acquiring and using fat stores, 
both for migration and hibernation, are a focus of current research. In many mam-
mals increased fat increases leptin production, resulting in appetite inhibition and 
increased metabolic rate (Florant and Healy  2012 ). In little brown bats, body mass 
increased before migration and hibernation, but leptin levels were low and even dis-
sociated with fat deposition (Kronfeld-Schor et al .   2000 ; Townsend et al .   2008 ) 
which might explain the ability of bats to continue adding fat. Decreased adiponec-
tin has been linked to obesity in rodents; however, adiponectin levels decreased in 
tissues of fattening bats but not in circulation, indicating that seasonal weight gains 
in bats differ from pathological weight gain (Townsend et al .   2008 ). 
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 That bats use stored fat for migration has been suggested (Fleming and Eby 
 2003 ; O’Shea  1976 ; Tuttle  1976 ), but it is diffi cult to distinguish between fat used 
for migration as opposed to hibernation (McGuire and Guglielmo  2009 ), and these 
two uses may be fundamentally different. Most mammals fuel high-intensity exer-
cise primarily through protein and carbohydrates, and the ability to use stored fat for 
extended migration is not well documented (McGuire and Guglielmo  2009 ). When 
actively foraging, bats use energy from harvested insects rather than stored fat 
(Voigt et al .   2010 ), and there is growing evidence that bats forage while migrating 
(Reimer et al .   2010 ; Valdez and Cryan  2009 ). A study of fat storage in hoary bats 
(Lasiurus cinereus), not known to hibernate, found differences in body fat percent-
age in those captured during migration versus nonmigration periods and increased 
enzymes indicative of stored fat conversion during migration (McGuire et al .   2013 ). 
Further, females had larger fat stores and optimized intercellular fatty acid transport 
structures which may be related to spring migration during pregnancy (McGuire 
et al .   2013 ). Pregnant female hoary bats are less likely than males to use torpor 
(Cryan and Wolf  2003 ) and travel greater distances than males (Cryan  2003 ). 
McGuire et al .  ( 2013 ) also reported lower body weights in migrating than nonmi-
grating hoary bats as well as reduced size of digestive organs, thereby reducing the 
weight carried during migration. Reduced digestive organs suggest that foraging 
during migration is opportunistic rather than required. The combination of increased 
fat reserves and the use of daily torpor distinguishes bat and bird migration strate-
gies. Foraging by bats may act to “top off” fuel reserves, whereas birds “empty their 
tanks” and completely refuel during migratory stopovers (McGuire  2012 ). Another 
intriguing difference is an increase in lung capacity in bats during migration, not 
observed in birds (McGuire et al.  2013 ). 

 The time available for feeding is the main limiting factor in bird migration dis-
tance (Kvist and Lindstrom  2000 ), resulting in a metabolic ceiling for storing fat 
despite the ability of passerine birds to migrate at night and feed by day. Hedenstrom 
( 2009 ) using a migratory model showed that because most bats neither feed nor 
migrate diurnally, time and fueling are more constrained in bats than birds. He pro-
posed selection pressure between autumn’s longer nights for feeding and transport 
and lower food abundance as winter approaches, resulting in an optimal migration 
period (Fig.  15.1a ). This model assumes that bats do not forage during migration, 
which may be invalid. In addition, bats generally do not spend entire nights foraging 
(Shiel et al .   1999 ). For example, length of night was not related to foraging time for 
female hoary bats, even after parturition when energy needs were high (Barclay 
 1989 ). Finally, Hedenstrom ( 2009 ) did not consider the fl uctuating availability of 
migratory insects, an important infl uence on an optimal migration date (Lee and 
McCracken  2005 ; Rydell et al .   2010 ). We present an alternate model (Fig.  15.1b ) 
using fl uxes in insect availability and corresponding changes in foraging times; 
some level of body condition (mass or lipid levels) would predict optimum depar-
ture time.

   Birds and other animals use a variety of sensory cues in orientation and naviga-
tion (Akesson and Hedenstrom  2007 ) and often adhere to map and compass theory, 
i.e., determining position with respect to the goal (map) and determining goal 
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direction (compass). Map theory has been applied to adult avian migrants, reptiles, 
amphibians, and fi sh, and compass orientation is common in arthropods and juve-
nile birds (Holland  2007 ). Bats have good spatial memory (Holland et al .   2005 ) and 
Tsoar et al .  ( 2011 ) showed that Egyptian fruit bats ( Rousettus aegyptiacus ) use mul-
tiple visual landmarks for navigation, but long-distance homing involves other 
mechanisms. Like many animals, bats can sense Earth’s magnetic fi eld (Holland 
et al .   2006 ) which can provide two types of directional information: inclination 
(direction toward or away from the equator) and polarity (north/south direction). 
Birds are thought to respond only to inclination (Beason  2005 ). The preference of 
the Chinese noctule ( Nyctalus plancyi ) to roost in the north end of their cage sug-
gested a response to magnetic polarity (Wang et al .   2007 ). Bats calibrate the mag-
netic fi eld using sunset (Holland et al.  2008 ) but unlike birds, do not appear to use 
polarized light for calibration (Holland et al .   2010 ). Bats that emerged long after 
sunset did not use a star compass calibrated by the geomagnetic fi eld in place of 
sunset calibration (Holland et al .   2010 ) and thus responded differently than birds. 

 Many animals migrate using specifi c routes (Dingle  1996 ) and so apparently do 
bats. Lesser long-nosed bats follow a specifi c and relatively narrow path through a 
resource gradient (Fleming  2004 ; Morales-Garza et al .   2007 ), but most migration 
routes are probably broader and more diffuse. Tree bats in North America follow 

  Fig. 15.1    ( a ), after 
Hedenstrom ( 2009 ), the  solid 
line  represents night length 
(available foraging time) as a 
surrogate for body condition. 
 Dashed line  denotes insect 
abundance;  arrow  indicates 
optimal time for maximum 
migration speed; ( b ) 
represents an alternative 
model where insect 
abundance is lower and rises 
with fl uxes of migrating 
insects. Line designations as 
in ( a ). Departure time to 
permit optimum migration 
speed is a function of body 
condition is represented by 
the dotted line in ( b ), which 
tracks insect abundance       
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regular routes and are netted in specifi c locations at specifi c times, but these obser-
vations are anecdotal (Cryan and Veilleux  2007 ; Valdez and Cryan  2009 ). Tree bats 
appear to track closer to roost sites along mountain ranges (Baerwald and Barclay 
 2009 ) and avoid crossing open prairies. Other insectivorous bats follow linear land-
scape features to specifi c departure points before crossing open ocean (Ahlen et al .  
 2009 ), and it is not uncommon for migrating bats to follow riparian zones and shore-
lines (Barclay  1984 ; Serra-Cobo et al .   1998 ; Furmankiewicz and Kucharska  2009 ). 

 Many migratory birds use stopover sites (Berthold and Terrill  1991 ; Hedenstrom 
 2008 ), and there is evidence for this in bats (Cryan and Brown  2007 ; Dzal et al. 
 2009 ; Taylor et al .   2011 ), but if they remain for extended periods or are simply for-
aging along the way remains generally unknown. The defi nition of a migratory 
stopover is scale- and species-specifi c (Taylor et al.  2011 ). Cryan and Brown ( 2007 ) 
reviewed records of hoary bats “stopping over” on the Farallon islands during fall 
migration and found them present for 1–35 days during the fall, but could not quan-
tify how long any individual stayed.  Silver-haired bats Lasionycteris noctivagans  
stopped for several days during spring migration at a lake in Manitoba, Canada 
(Barclay et al .   1988 ). Dzal et al .  ( 2009 ) found evidence that silver-haired bats and 
hoary bats use Long Point, Ontario, Canada, as a migration fl yway, and that  L. noc-
tivagans  stopped over during August. Taylor et al .  ( 2011 ) and McGuire et al. ( 2011 ) 
radiotracked 30  L. noctivagans  at Long Point in fall 2009 and observed seven “stop-
over fl ights” and 23 distinct migratory departures. However, most stayed only one 
night except when weather conditions forced delay, and most had suffi cient fat 
reserves to complete migration without additional foraging (McGuire et al .   2011 ). 
 Myotis lucifugus  are the most common species at Long Point, and Dzal et al .  ( 2009 ) 
found that the genetic diversity during fall migration was higher than at swarming 
areas, suggesting that bats assemble there from diverse areas before crossing the 
lake. In Texas,  Tadarida brasiliensis  show a fall, and to a lesser extent spring, spike 
in their use of urban roosts, indicating possible migration stopovers (Scales and 
Wilkins  2007 ). Populations of  T. brasiliensis  vary at Carlsbad Cave, New Mexico, 
including a large temporary increase in mid-October (Altenbach et al .   1979 ; Hristov 
et al .   2010 ). Cockrum ( 1969 ) anecdotally reports hundreds of thousands of these 
bats arriving overnight at caves during migration and then departing days later, con-
sistent with our own observations in fall at Frio Cave, Texas. Many of these caves 
apparently function as maternity roosts as well as migratory stopovers. 

 Weather infl uences migration for most fl ying animals (Shamoun-Baranes et al .  
 2010 ) including birds (Able  1973 ; Liechti  2006 ; Nisbet and Drury  1968 ). Most 
nocturnal migrant birds fl y in tailwinds or light winds rather than strong or head-
winds (Richardson  1990 ). Migratory bats are also more active in light winds (Arnett 
et al.  2008   ; Horn et al .   2008 ). Hoary bats were more likely to land on an island 
stopover during low wind periods, low moon illumination, higher cloud cover, and 
to a lesser extent low barometric pressure (Cryan and Brown  2007 ). However, a 
separate study documented this species fl ying often in unfavorable winds (Baerwald 
and Barclay  2011 ). Silver-haired bats were less likely to leave a stopover and con-
tinue migration during rain (McGuire et al .   2011 ). The timing of bird migration is 
related to cold fronts, especially during strong cold fronts in North America with 
falling pressure and temperature (Able  1973 ; Richardson  1990 ). Bats also migrate 
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with cold fronts (Cryan and Brown  2007 ). Birds with high wing loading and aspect 
ratio are less affected by weather variables during spring migration (Saino et al .  
 2010 ) as presumably should bats having similar wing form. Migratory insects nor-
mally fl y at much slower speeds than birds and bats, but during migration insects 
achieve similar speeds by moving with favorable wind conditions (Alerstam et al .  
 2011 ). There is evidence that bats take advantage of concurrent migration patterns 
to forage on migrating insects (Lee and McCracken  2005 ) and even birds (Ibanez 
et al .   2001 ; Popa-Lisseanu et al .   2007 ).  

15.4     Four Examples of Bat Migration 

 Baker ( 1978 ) distinguished between facultative and obligate migrants. Facultative 
migrants are sensitive to local cues like resource availability and may not migrate 
without them. Obligate migrants are less sensitive to cues and most individuals 
migrate even if resources remain locally available. The hoary bat is an example of a 
tree-roosting long-distance migrant, with a primarily north–south migration route, 
is not known to hibernate, and is a likely obligate migrants. The second example, 
Schreiber’s bent-winged bats, is another probable obligate migrant and an example 
of regional migrants that move seasonally between maternity and hibernacula caves. 
These widespread old-world bats do not appear negatively affected by banding 
(Rodrigues and Palmeirim  2008 ), and we summarize information connecting behav-
ior, population structure, and movement. Third, Brazilian free-tailed bats are facul-
tative migrants with North American populations that vary widely in migratory 
behavior, distance, sexual bias, and direction. Finally, we include here a long- 
distance tropical migrator, straw-colored fruit bat and compare its migration to 
long-distance movements of other tropical fruit bats. 

15.4.1     Long-Distance Migrant Tree Bats: Hoary Bats 

 A sense of urgency for research on long-distance migration by tree-roosting bats is 
motivated due to the large numbers of these bats killed by wind turbines (see Chap.   20    ). 

 In the spring, female hoary bats move through New Mexico about a month ear-
lier than males, and they apparently travel in groups, fl y below the canopy along 
streams, and forage during migration (Valdez and Cryan  2009 ). Females are usually 
pregnant during spring migration and less likely to use torpor (Cryan and Wolf 
 2003 ). Both in spring (Valdez and Cryan  2009 ) and fall (Reimer et al.  2010 ), the diet 
of hoary bats consists primarily of moths. Based on carcasses found at wind energy 
facilities, male hoary bats passed through Alberta, Canada, in late July, followed by 
females and young in early mid-August (Baerwald and Barclay  2011 ), and in the 
fall, hoary bats were recorded more often by acoustic detectors set at 30 m, than at 
or 67 m above ground level (Baerwald and Barclay  2011 ). Hoary bats may fl y at 
higher altitudes in fall than in spring (Johnson et al.  2011 ; Valdez and Cryan  2009 ), 
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although it is possible that bats are fl ying too high for detection in spring. At the 
Canadian wind facility, hoary bat activity was best predicted by falling barometric 
pressure, and this was refl ected in fatality rates (Baerwald and Barclay  2011 ). 

 A comparison of acoustic detection sites on a north/south gradient across the 
Eastern USA reveals a pattern of hoary and silver-haired bats moving north in the 
spring and south in the fall (Johnson et al .   2011 ), although this could refl ect forag-
ing activity variations due to insect population fl uxes. In Hawaii, hoary bats appar-
ently perform a seasonal altitudinal migration, with both sexes moving to lowlands 
during breeding season and then returning to highlands for the remainder of the year 
(Menard  2001 ). Seasonal altitudinal migration is also suggested for hoary bats in 
the Galapagos Islands (McCracken et al .   1997 ).  

15.4.2     Regional Migrant Cave Bats: Schreiber’s Bats 

 Many cave-roosting bats tend to move shorter distances, 500 km or less, and with 
less of a standard compass orientation than tree bats and in the spring, many species 
radiate from common hibernacula in a star-shaped pattern (Hutterer et al.  2005 ). 

 The cave-roosting regional migrant Schreiber’s bent-winged bat ( Miniopterus 
schreibersii ) is one of the most widespread species, in Europe, Africa, and Australia. 
Genetic structure occurs between subpopulations in southeastern Europe (Bilgin 
et al .   2008 ) and Australia (Cardinal and Christidis  1999 ) and existence of the closely 
related  Miniopterus natalensis  in South Africa (Miller-Butterworth et al .   2005 ). 

 The combination of strong philopatry and extensive banding has resulted in 
details of seasonal movements. In Portugal (1987–2005), 36,000 bats were banded 
and tracked (Ramos Pereira et al .   2009 ; Rodrigues and Palmeirim  2008 , Rodrigues 
et al.  2010 ) providing evidence that females stage at spring roosts until just before 
parturition when they move to maternity roosts in caves. Following weaning, they 
move to other caves where they spend autumn and sometimes winter. Males leave 
hibernacula later and change roosts during maternity season, and roost temperature 
was more likely to infl uence migration destination than insect availability, as 
inferred from temperatures at foraging areas (Rodrigues and Palmeirim  2008 ). 

 While many migratory bat species show little evidence of population structure 
(Petit and Mayer  2000 ; Russell et al .   2005 ), Schreiber’s bat is an interesting excep-
tion and extensive banding data enable us to compare population structural and 
observed behavior to predictive models (Ruedi and McCracken  2009 ). For example, 
strong patterns of structure in mitochondrial DNA (mtDNA) are considered to indi-
cate strong female philopatry to breeding sites, and more diffuse patterns in males 
indicate sex-biased movement by males during breeding seasons. In this scenario, 
nuclear DNA (nDNA) patterns would not show structure. In the Portuguese 
Schreiber’s bat colonies, while both males and females visit different maternity 
caves, all females raise pups only in the cave in which they were born (Rodrigues 
et al .   2010 ). Mating occurs at hibernacula shared among the colony’s maternity 
roosts (Rodrigues and Palmeirim  2008 ). As a result of this strict philopatry to mater-
nity caves, all gene fl ow is male-induced during regional migrations (Rodrigues 
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et al .   2010 ). The strong patterns in mtDNA also appear, at a weaker level, in nDNA, 
refl ecting the strong regional philopatry observed in both males and females (Ramos 
Pereira et al .   2009 ). 

 In a study of the closely related South African Schreiber’s long-fi ngered bat 
( M. natalensis ), Miller-Butterworth et al .  ( 2003 ) found similar population structure 
even though migration varied between subpopulations. However, neither migration 
distance nor zoogeographic barriers prevented gene fl ow between colonies, so 
structure was due to philopatry or other differences. In one subpopulation, morpho-
logical differences mirrored the genetic distinctions, with the northern colony 
(intermediate migrants) showing higher wing aspect ratios than other colonies 
(shorter-distance migrants) (Miller-Butterworth et al .   2003 ).  

15.4.3     Long-Distance, Facultative, and Partial Migrants 

 Migratory patterns of Brazilian free-tailed bats ( Tadarida brasiliensis ) are more dif-
fi cult to defi ne than for the tree and cave bats described above. In contrast to the 
highly structured populations of  M. schreibersii , populations of Brazilian free-tailed 
bats are panmictic, showing no genetic structure (Russell et al .   2005 ), but bats in 
different geographic areas demonstrate different migratory behaviors. In the south-
eastern USA, they appear to be sedentary and to use torpor in winter (Cockrum 
 1969 ; Laval  1973 ), whereas on the west coast, bats probably migrate but not neces-
sarily long distances or in a north–south direction (Krutzsch  1955 ). In mid-conti-
nent a large segment of the population are long- distance migrants, traveling up to 
1,900 km between Mexico and the USA (Cockrum  1969 ; Glass  1982 ); however, 
many males may remain in Mexico year-round (Davis et al.  1962 ; Glass  1982 ), 
while other males move north where they mate in the spring in Texas (Reichard 
et al.  2009 ). Reports of large maternity colonies in Mexico (Lopez-Gonzalez and 
Best  2006 ) and of bats overwintering in the USA (Geluso  2008 ; Scales and Wilkins 
 2007 ) further confuse the picture. 

 Bats overwintering at Carlsbad Cave, New Mexico, included individuals of both 
sexes and varying ages, and evidence indicates active feeding in winter except dur-
ing high winds (Geluso  2008 ). Banding of large numbers in the 1950s and 1960s 
(Cockrum  1969 ; Glass  1982 ; Villa and Cockrum  1962 ) showed migration between 
caves in the southwestern United States and Mexico. Bats leaving nursery caves in 
Oklahoma range into Texas and Mexico during the fall, traveling as far as 1,840 km, 
and do not return until the spring (Glass  1982 ). The maximum documented migra-
tion rate was 32 km/day (Villa and Cockrum  1962 ). Cold weather appears an impor-
tant factor spurring fall bat movement (Constantine  1967 ; Svoboda and Choate 
 1987 ). Brazilian free-tailed bats change roosts frequently before and after the mater-
nity season with population sizes fl uctuating greatly in caves in Kansas during 
spring (Twente  1956 ), and Davis Cave in South Central Texas is a staging area in 
spring for bats going north to Oklahoma caves (Short et al .   1960 ). In the fall, popu-
lations shift from caves to nearby bridges (Horn and Kunz  2008 ). 
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 The considerable variation in migration strategies found in Brazilian free-tailed 
bats may be analogous to Blackcaps ( Sylvia atricapilla ) found across Europe and 
Africa which show wide variations in migratory strategies with very little popula-
tion structure (Perez-Tris et al .   2004 ).  

15.4.4     Migration in Old-World Fruit Bats 

 Even less is known about migration of old-world fruit bats than for microchiropter-
ans, and there are undoubtedly many migratory pteropodids as yet unstudied 
(Fleming and Eby  2003 ). Most documented migration by fruit bats is regionally 
restricted, nondirectional, and tracks ephemeral food resources (Fleming and Eby 
 2003 ), except for the straw-colored fruit bat ( Eidolon helvum ). At least one popula-
tion of these large bats leaves their African savanna habitat during the dry season 
and moves 2,518 km (Richter and Cumming  2008 ) to take advantage of large fruit-
ing events (Richter and Cumming  2006 ). Between fi ve and ten million  E. helvum  
spend October through December at Kasanka National Park, Zambia, arriving as 
fruit ripens and leaving when fruiting slows (Richter and Cumming  2006 ). It is 
unclear whether this foraging pressure is sustainable, as areas are becoming 
degraded, resulting in higher tree mortality and fi re risk (Byng et al .   2010 ). Richter 
and Cumming ( 2008 ) tracked four male  E. helvum  with satellite transmitters from 
Kasanka back to the Democratic Republic of Congo and showed that bats moved an 
average of 90 km/day and traveled 2,518 km in 149 days. Thomas ( 1983 ) suggests 
this movement is to avoid competition for fruit resources. 

 Other examples of wide-ranging movements of pteropodids are less obviously 
migratory. A number of  Pteropus  species have been studied as reservoirs for viral 
pathogens; at least three  Pteropus  species are known to harbor Hendra or Nipah 
viruses. Radiotracked  P. vampyrus  traveled across political borders in Southeast 
Asia (Epstein et al .   2009 ), including Thailand, Sumatra, Malaysia, and Indonesia, 
fl ying up to 363.4 km. One bat covered 130 km in 2 h while foraging (Epstein et al .  
 2009 ), and in another case, a  P. alecto  traveled over 3,000 km (Breed et al .   2010 ).   

15.5     Future Directions 

 Our knowledge of migration in bats has been limited (Griffi n  1970 ), but as new 
technologies are applied, knowledge will increase (Bridge et al .   2011 ; Cryan and 
Diehl  2009 ; Holland and Wikelski  2009 ). 

 Satellite tracking offers long-distance monitoring of individuals (Wikelski et al .  
 2007 ), but current transmitters are too large for most bats (Aldridge and Brigham 
 1988 ). However, exciting results are coming in from tracking large bats (Richter and 
Cumming  2008 ; Tidemann and Nelson  2004 ). Smith et al. ( 2011 ) found that opti-
mal tracking design for  Pteropus  was species- and ecology-specifi c with solar 
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powered transmitters only working for bats that roost higher in canopy, allowing for 
recharging during the day. 

 Stable isotopes can infer movements of individual bats over long distances 
because stable hydrogen isotopes (δD) are absorbed into tissues and fur from water. 
By matching isotope values from tissue samples with known values from water 
sources across a landscape, one can determine at what location those tissues formed. 
Stable hydrogen isotope (δD) values from the hair of bats (captures or museum col-
lections) identifi ed movement patterns of North American tree bats (Britzke et al .  
 2009 ; Cryan et al .   2004 ). Fraser et al .  ( 2012 ) showed that contrary to previous 
assumptions, male  Perimyotis subfl avus  migrated in north–south directions like 
hoary or silver-haired bats, rather than as regional migrants. Despite the usefulness 
of stable isotopes, there are important limitations; quantifying underlying hydrogen 
isotope gradients in water supplies is needed to provide more meaningful spatial 
resolution. In addition, understanding molt patterns is critical because species vary in 
annual molt cycles thereby affecting δD values (Fraser et al.  2010 ), although using 
δD values from hair from sedentary bat species avoids the molt-timing problem 
(Popa-Lisseanu et al .   2012 ). In that study, when combined with δ 13 C and δ 15 N values, 
δD values predicted locations of known bat samples signifi cantly more accurately. 

 Advances in radar technologies allow tracking the movements of individuals and 
groups of individuals and possibly to distinguish among taxa (Ahlen et al.  2009 ; 
Chilson et al.  2011 ; Gauthreaux et al.  2008 ; Horn and Kunz  2008 , but see Kunz 
et al.  2007 ). Bruderer and Popa-Lisseanu ( 2005 ) compared video and radar data to 
differentiate small, medium, and large bats from migrating birds, although distin-
guishing among similar-sized bats (e.g.,  Nyctalus noctula  and  Eptesicus serotinus ) 
required analysis of additional behavioral or ecological features. Their data also 
showed that during migration, fl ight speeds for  N. noctula  and  E. serotinus  were 
higher than expected. Study-specifi c radar installations are not necessarily required 
to apply this technology to broader questions of bat migration. The newly developed 
National Mosaic and Multi-Sensor Quantitative Precipitation Estimation system 
(NMQ) Web portal offers public access to NEXRAD historical data that will enable 
tracking of migrants across North America (Chilson et al.  2011 ), but much work 
needs to be done to standardize the data sets for biological use. 

 We believe the following will be at the forefront of future migration research on 
bats: (1) placing bats in the theoretical context of migration; (2) understanding the 
physiology of energy storage and use during migration; (3) exploring links between 
seasonal and spatial changes in food availability, the timing of migration events, and 
the use of stopover locations in bats; (4) documenting long-distance movements of 
individual bats across international boundaries and establishing connectivity of 
their populations through use of satellite technology; and (5) learning more about 
individual and group movements and assessing population sizes and trajectories 
using information from radar networks. The continued growth of wind power and 
its impact on bat populations as well as effects of climate change on the movements 
of bats, their prey, and the pathogens that they vector all suggest that migration in 
bats will be an increasingly important focus of research.     
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