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Preface

Heart rate variability is the study of autonomic nervous activity through the
information provided by fluctuations in heart rate. Autonomic activity is responsible
for regulating heart rate. By studying the beat-to-beat variability in the intervals
between heartbeats, it is possible to form a representation of autonomic nervous
activity. Alterations in this activity can thus be quantitatively measured with a non-
invasive technique. Accordingly, heart rate variability has become a very active
field of research and the most popular biological signal by which the autonomic
nervous system is studied. Heart rate variability can measure the individual levels
of parasympathetic and sympathetic modulation of heart rate, and from this
information one can make predictions on the state of the autonomic nervous system.
Moreover, a deeper exploration of the physiological basis of the autonomic nervous
system can be investigated.

The study of the autonomic nervous system from the information contained
in heart rate relies upon mathematical models and techniques and the power
of digital computers to achieve reliable and accurate results. In the past only
simplistic mathematical techniques have been brought to bear due to the limited
ability of clinical investigators in this regard. Recently, mathematicians, physicists
and engineers have worked alongside cardiologists and physiologists to develop
sophisticated models and mathematical techniques for the analysis of heart rate
data. The development of more accurate models of heart rate variability and robust
analysis techniques that are immune to the large levels of noise and artefact found
in all biological signals is an active field of research currently. Advances in this
area have direct benefits to clinical and physiological studies that employ heart rate
variability to study disease and physiology.

Many of the mathematical techniques are only approximations and have de-
fects that are not obvious except when analysed carefully with a mathematical
formulation. Mathematical analysis allows one to investigate the limitations of
analysis techniques. Further, the full potential of the analysis techniques is often
only revealed by a full mathematical treatment. The theoretical study of models
of the autonomic system has similar characteristics, with the limitations and full
descriptive power of a model being largely unknown until studied mathematically.
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viii Preface

The study of models also allows the development of optimal analysis techniques.
Many of the mathematical algorithms and models applied in HRV analysis remain
uninvestigated. The problem is, how do we quantitatively characterize (linear and/
or nonlinear) the heart rate time series to capture useful summary descriptions that
are independent of existing HRV measures? Recent research on HRV has proven
that Poincaré plot analysis (PPA) is a powerful tool to mark short-term and long-
term HRV. Researchers have investigated a number of techniques: converting the
two-dimensional plot into various one-dimensional views; the fitting of an ellipse
to the plot shape; and measuring the correlation coefficient of the plot. In fact,
they are all measuring linear aspects of the intervals which existing HRV indices
already specify. The fact that these methods appear insensitive to the nonlinear
characteristics of the intervals is an important finding because the Poincaré plot is
primarily a nonlinear technique. This result motivates the search for better methods
for Poincaré plot quantification. This provides the motivation for this book.

Chapter 1 gives an overview of the physiological concepts and necessary
background in the field of heart rate variability, including the history, physiology,
analysis techniques and the clinical significance of the field. This includes models
of heart rate variability and the mathematical signals employed to characterize heart
rate variability. Details of the time-domain and frequency-domain analysis of these
signals are also covered.

Chapter 2 provides a mathematical analysis of a common heart rate variability
technique known as the Poincaré plot. The Poincaré plot is an emerging analysis
technique that takes a sequence of intervals between heartbeats and plots each
interval against the following interval. The geometry of this plot has been shown to
distinguish between healthy and unhealthy subjects in clinical settings by employing
trained specialists to visually classify the plots. The Poincaré plot is a valuable HRV
analysis technique due to its ability to display nonlinear aspects of the interval
sequence. In particular we investigate the question of whether existing measures
of Poincaré plot geometry reflect nonlinear features of heart rate variability. We
show that methods of Poincaré quantification that summarize the geometrical
distribution of the points with “moment-like” calculations, i.e. means and standard
deviations, etc., are unlikely to be independent of existing linear measures of heart
rate variability.

Chapter 3 of the book investigates Poincaré plot interpretation using a new
oscillator model of heart rate variability. This chapter develops a physiologically
plausible mathematical model of autonomic nervous control of heart rate based on a
series of well-studied oscillations in heart rate. By employing the results described,
the time series of intervals between heartbeats are able to be analytically determined.
The properties of the Poincaré plot can then be derived. By analysing the Poincaré
plot in terms of an underlying model of HRV, the theoretical basis of Poincaré plot
morphology can be precisely related back to the model and therefore back to the
physiological causes. This provides a deeper understanding of the Poincaré plot
than has previously been possible. To validate the model, simulations of various
autonomic conditions are compared to HRV data obtained from subjects under the
prescribed conditions. For a variety of autonomic balances, the model generates
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Poincaré plots that undergo morphological alterations strongly resembling those of
actual heartbeat intervals.

Poincaré plot is valuable due to its ability to display nonlinear aspects of the
data sequence. However, the problem lies in capturing temporal information of the
plot quantitatively. The standard descriptors used in quantifying the Poincaré plot
(SD1, SD2) measure the gross variability of the time series data. Determination of
advanced methods for capturing temporal properties poses a significant challenge.
Chapter 4 proposes a novel descriptor “Complex Correlation Measure (CCM)” to
quantify the temporal aspect of the Poincaré plot. In contrast to SD1 and SD2, the
CCM incorporates point-to-point variation of the signal.

The asymmetry in heart rate variability is a visibly obvious phenomenon in the
Poincaré plot of normal sinus rhythm. It shows the unevenness in the distribution of
points above and below the line of identity, which indicates instantaneous changes in
the beat-to-beat heart rate. The major limitation of the existing asymmetry definition
is that it considers only the instantaneous changes in the beat-to-beat heart rate
rather than the pattern (increase/decrease). Chapter 5 describes a novel definition of
asymmetry considering the geometry of a 2D Poincaré plot. Based on the proposed
definition, traditional asymmetry indices—Guzik’s index (GI), Porta’s index (PI)
and Ehlers’ index (EI)—have been redefined.

Chapter 6 of the book considers the segmented aspects of Poincaré plot remain-
ing, on the one hand, the nonlinear properties of the system and, on the other hand,
providing high resolution information about the time course and time correlations
within a heart rate time series. These new approaches were successfully introduced
in risk stratification.

This book should be of considerable help to researchers, professionals in medical
device industries, academics and graduate students from a wide range of disciplines.
The text provides a comprehensive account of recent research in this emerging field
and we anticipate that the concepts presented here will generate further research in
this field.

Melbourne, VIC, Australia Ahsan Habib Khandoker
Melbourne, VIC, Australia Chandan Karmakar
Melbourne, VIC, Australia Michael Brennan
Jena, Germany Andreas Voss
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2.4 Relationship Between Poincaré Shape and Linear HRV Measure . . . . 22
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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Chapter 1
Introduction

Abstract The study of heart rate variability (HRV) focuses on the analysis of
beat-to-beat fluctuations in heart rate and the diagnostic ability that these fluc-
tuations provide. The series of time intervals between heartbeats, referred to as
RR intervals, are measured over a period of anywhere from 10 min to 24 h and
form the most commonly studied HRV time series (Rompelman et al., Med. Biol.
Eng. Comput. 15(3):233–239, 1977). The great majority of variability witnessed
in heart rate records is due to the autonomic nervous system modulating heart
rate (Jalife and Michaels, Vagal Control of the Heart: Experimental Basis and
Clinical Implications, ed. by Levy and Schwartz, Futura, New York, 1994, pp.
173–205). Accordingly, attention has focused on HRV as a method of quantifying
cardiac autonomic function. Vagal tone is the dominant influence under resting
conditions and the majority of heart rate fluctuations are a result of vagal modulation
(Chess et al., Am. J. Physiol. 228:775–780, 1975). This provides clinicians with a
reliable, non-invasive technique to monitor parasympathetic nervous activity. This,
and other information that can be derived from HRV records, is of great importance
to clinicians in the diagnosis, treatment and study of many illnesses related to the
cardiovascular and autonomic systems.

1.1 Heart Rate Variability Techniques in Cardiology

The study of heart rate variability (HRV) focuses on the analysis of beat-to-beat
fluctuations in heart rate and the diagnostic ability that these fluctuations provide.
The series of time intervals between heartbeats, referred to as RR intervals, are
measured over a period of anywhere from 10 min to 24 h and form the most
commonly studied HRV time series [1]. The great majority of variability witnessed
in heart rate records is due to the autonomic nervous system modulating heart
rate [2]. Accordingly, attention has focused on HRV as a method of quantifying
cardiac autonomic function. Vagal tone is the dominant influence under rest-
ing conditions and the majority of heart rate fluctuations are a result of vagal

A.H. Khandoker et al., Poincaré Plot Methods for Heart Rate Variability Analysis,
DOI 10.1007/978-1-4614-7375-6 1,
© Springer Science+Business Media New York 2013
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2 1 Introduction

Fig. 1.1 The RR intervals are constructed from the intervals between successive R waves

modulation [3]. This provides clinicians with a reliable, non-invasive technique to
monitor parasympathetic nervous activity. This, and other information that can be
derived from HRV records, is of great importance to clinicians in the diagnosis,
treatment and study of many illnesses related to the cardiovascular and autonomic
systems.

1.1.1 The RR Intervals

In HRV, an ECG recording is taken and processed to locate the times of the
heartbeats. This is done by locating the R waves in the ECG recordings, as they
are the largest deflection and the wave that is able to be most precisely located.
The times between successive R waves, the so-called RR intervals, is the time
series that is a result of this process. Figure 1.1 details the construction of the RR
intervals from the ECG. Short-term recordings or long-term recording of ECG can
be made. Short-term recordings are usually at least 5 min long, but not substantially
longer so as to guarantee stationarity. Long-term recordings are usually made for
24 h using a portable Holter recording device. Subjects who are healthy generally
exhibit a large degree of variability in the RR interval records. This is due to the
active operation of various control loops governing HRV. Subjects who are diseased
tend to have reduced HRV. This may be a consequence of sections (or all) of the
systems regulating heart rate being damaged. It might also be due to an alteration
in autonomic nervous behaviour secondary to the effects of a disease not directly
affecting the cardiovascular system. Figure 1.2 shows two example of RR interval
records. The first (Fig. 1.2a) is of a healthy individual and a substantial degree of
variability is present, including high- and low-frequency variability. The second
(Fig. 1.2b) record is of heart failure subject who has suffered considerable damage
to the parasympathetic nervous system. The level of variability in this record is
much less than the healthy subject. The lack of variability is primarily of the high-
frequency variety as would be expected for degraded parasympathetic function
(parasympathetic control is the only quick-acting modulator of heart rate).

HRV analysis’ primary purpose is to assess the function of the nervous system.
It is specifically not interested in determining whether the heart, as an individual
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Fig. 1.2 RR interval series is of a healthy subject (a) and is of a subject with heart failure (b)

unit, produces normal sinus beats. Analysing the ECG directly best assesses
problems with beat formation. HRV analysis assumes that each individual heartbeat
is a normal heartbeat with a normal ECG signature. In other words, RR interval
records should only contain heartbeats that were generated under sinus origin.
This is known as being in “sinus rhythm”. The autonomic nervous system directly
controls the sinus nodes rate of firing. When an ectopic pacemaker controls the
heart, the RR interval series don’t contain any information on the function of the
nervous system. In summary, HRV assesses the hearts rhythm, not how the heart
actually forms a beat.

1.2 History of Heart Rate Variability

Since ancient times, it has been known that there exists considerable variability in
heart rate even when the body is at rest. The fact that respiration was involved in
generating the heart rate fluctuations was well known, even in very early times,
because it causes easily noticeable short-term heart rate fluctuations. In 1733,
Steven Hales was able to report that beat-to-beat HRV was synchronous with
respiration [4]. Even though this cause and effect relationship was established, it
took until much later for this fact to be put to a clinical use. That time came with
the advent of the digital computer, which allowed long-term heart rate records to
be collected and analysed. In 1965 Hon and Lee reported that heart rate patterns
during foetal distress altered significantly earlier than did mean heart rate [5].
Bedside tests derived from short-term RR intervals were developed by Ewing to
detect diabetic neuropathy [6]. Both these works were based on the known effects
of respiration on heart rate. The next major development came as it was being
realized that the rhythms in heart rate were more complicated than just respiration.
The early 1970s saw a concentration of work describing the physiological rhythms
embedded in the heart rate signal, including vasomotor activity, thermal regulation
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and respiration [7–10]. In 1977 Wolf et al. showed that those with reduced HRV
were at higher risk of postinfarction mortality [11]. In other words, patients who
have survived a heart attack, but with little to no HRV, were in a high-risk
category for low survival probability. Akselrod et al. used power spectral analysis
to quantitatively evaluate cardiovascular control in 1981 [12]. The significance of
this result was that heart rate records could be decomposed into separate signals
that represented the operation of the different divisions of the autonomic nervous
system. The emergence of spectral analysis allowed the autonomic basis of HRV
to be explored [13, 14]. In the late 1980s the importance of HRV analysis became
appreciated when it was shown to be a strong independent predictor of mortality
after acute myocardial infarction [15–17]. As heart attack is a major problem
in today’s society, this result was received with much enthusiasm, as HRV is a
cheap, non-invasive technique that could lead to significantly better health care and
recovery management. Lately, with the development of nonlinear mathematics and
chaos theory, it has come to light that HRV signals appear to have much in common
with chaotic time series. Much has been made of this, and the various statistics used
to characterize chaotic time series have been applied to HRV classification [18–20].
These results are not yet convincing, but the hope is that nonlinear dynamics may
be able to unravel the high-level operation of the cardiovascular system, which is
known to be a nonlinear system.

HRV is becoming a valuable tool for the clinician. Many studies have been done
on the use of HRV as an indicator of disease, and an index of risk for sudden death.
A brief outline of some of the major findings is as follows:

Myocardial Infarction: Myocardial infarction or “heart attack” is the death of
tissue comprising the walls of the heart chambers (the myocardium). This usually
occurs from lack of oxygen (ischaemia) due to low levels of blood flow to the
heart. Myocardial ischemia caused by coronary occlusion has been shown to
be accompanied by excited sympathetic activity [21]. Autonomic activity has
been shown to be closely related to susceptibility to ventricular fibrillation [22].
In general, increased sympathetic activity was found to predispose to malig-
nant ventricular arrhythmias, and increased parasympathetic activity provided
a protective and antifibrillatory effect [23]. These findings have provided the
impetus to study the use of HRV as a non-invasive tool to evaluate alterations
of autonomic control in patients following myocardial infarction [24–34].

Risk Stratification Postinfarction: Risk stratification is designed for early
identification of the patient at high risk for complications. The aim is to
implement appropriate prophylactic therapy to prevent re-infarction or sudden
death. Of deaths following infarction, 75% are due to an arrhythmic mechanism
and the remainder are due to myocardial pump failure [35]. HRV is a very
useful prognostic index, probably because it reflects reduced vagal and increased
sympathetic activity [16, 36]. A recent major study has shown that reduced
24 h SDRR is a powerful independent predictor of cardiac events following
arrhythmic myocardial infarction [37].
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Hypertension: Hypertension is the medical term for high blood pressure. Several
functional alterations of the cardiovascular system are frequently found in
hypertensive patients. These alterations may increase their risk beyond that
induced by elevated blood pressure alone. Left ventricular hypertrophy (LVH),
which is a swelling of the left ventricle, secondary to hypertension, is one such
example. Reduced high-frequency HRV has been shown to correlate with LVH
and a worse prognosis after arrhythmic myocardial infarction [38].

Diabetes: Diabetes can cause severe autonomic dysfunction that can be responsi-
ble for several disabling symptoms, including sudden cardiac death (SCD) [39].
Although traditional measures of autonomic function are able to document the
presence of neuropathy, in general they are only abnormal when there is severe
symptomatology. Thus, by the time changes in function are evident, the natural
course of autonomic neuropathy is well established. HRV analysis is able to
detect the change in autonomic balance before neuropathy is established [40].

Sudden Cardiac Death: Ventricular tachyarrhythmias represent a leading cause
of SCD in the community [34, 41]. The study by Farrell et al. [42] reported
that decreased HRV was more predictive of subsequent arrhythmic events than
the presence of late potentials (Holter-derived arrhythmias treadmill exercise
test results or left ventricular ejection fraction). In multivariate analysis of
combinations of risk factors, the combination of late potentials recorded by the
signal averaged ECG and reduced HRV was more predictive than any other
combination.

Coronary Artery Disease: Studies using short-term measures of HRV demon-
strated an inverse relationship between cholesterol and vagal activity [43]. This
raises the possibility that a high cholesterol level may directly or indirectly
influence cardiac autonomic tone.

Heart Failure: Conflicting evidence as to the correlation between the degree of
myocardial damage sustained following a myocardial infarction and HRV in
humans [44, 45]. In patients with heart failure, one study showed a significant
linear correlation between HRV and ejection fraction [46] while others have
not [45].

Smoking and Alcohol: Smokers have increased sympathetic and reduced vagal
activity as measured by HRV analysis [47]. HRV is reduced following in-
gestion of alcohol suggesting sympathetic activation and/or parasympathetic
withdrawal [48]. Malapas et al. [49] have demonstrated vagal neuropathy in men
with chronic alcohol dependence using 24 h HRV analysis.

1.3 Physiological Basis of HRV Analysis

Several physiological rhythms modulate heart rate via the autonomic nervous
system. Instantaneous heart rate represents the total summation of all the effects
on the autonomic nervous system. In the normal healthy subject there are several
reflexes that operate in a simultaneous manner. These reflexes contain rhythms that
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Fig. 1.3 The process which generates vasomotor oscillations

are transmitted to the cardioregulatory systems in the brain and are effected in
heart rate. The correspondence between these rhythms and branches of autonomic
nervous system allows HRV analysis to provide information on the function of the
different sections of the autonomic nervous system.

Respiration: Respiratory sinus arrhythmia (RSA) refers to the clinical variation
in heart rate associated with breathing. Breathing causes disturbances in blood
pressure, which are sensed by the baroreceptors. The baroreflex arc processes the
changes in blood pressure and causes a corresponding fluctuation in heart rate [8].
Because respiration is roughly periodic with a relatively short period (about 3 s),
the fluctuations are mediated solely by the parasympathetic nervous system. As
a result, parasympathetic control is able to operate on a rapid time scale, whereas
the sympathetic systems cannot. Some researchers believe that the magnitude of
sinus arrhythmia provides an index of the level of cardiac vagal activity [50, 51].
RSA also relies on the baroreceptor reflex to operate and therefore assess the
functioning of the baroreceptor reflexes. Whether RSA indicates the entire level
of parasympathetic activity or only the modulatory portion thereof is a matter
that is under some debate [52].

Vasomotor Oscillations: Vasomotor oscillations are a low-frequency spontaneous
oscillation in blood pressure with a period of roughly 10 s. Constricting of the
cross-sectional area of the arteries via smooth muscle activation regulates blood
flow to different regions of the body. This process is controlled in a nonlinear
manner by the brain stem and the baroreceptors. Due to delays in the processing
system and the properties of smooth muscle activation, a spontaneous oscillation
of roughly 10 Hz appears in blood pressure. This oscillation is detected by the
baroreceptors and is superimposed onto the heart rate by the baroreceptor reflex
arc [8]. Figure 1.3 shows the process diagrammatically. Vasomotor oscillations
are mediated by the sympathetic nervous system [12, 53, 54]. There is debate
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Fig. 1.4 The cardiovascular control system as a feedback control system

about whether they are also mediated by the parasympathetic system [52,55] and
at this stage the results are inconclusive. This is a gap in the knowledge of how
the sympathetic nervous system affects heart rate and requires further research.

Sympathetic-Vagal Interactions: There is usually a balance between both divi-
sions of the autonomic nervous system with heart rate reflecting the net effect
of the two opposing arms of the system. At rest the vagal system is dominant;
however with increasing levels of activity the activity of the vagus decreases and
the sympathetic increases. However, although heart rate reflects the combined
activity of both arms of the autonomic nervous system, it cannot be used to gauge
the individual effect of the vagal or sympathetic system. It has been shown that
the activity of the vagus nerve is accentuated when heart rate has been accelerated
by sympathetic stimulation [56].

Heart Rate Control: Short-term heart rate control can be considered as a control
system where the physiological system is broken down into the following
components:

• Cardiovascular system: the plant
• Cardioregulatory system: the controller
• Autonomic nervous system: control inputs/outputs
• Vasomotor and respiration: disturbances

Figure 1.4 shows these components as a feedback control system. The distur-
bances in blood pressure are transmitted via the autonomic nervous system to the
controller, which causes sympathetic and parasympathetic activity to fluctuate in
rhythm. The fluctuations in blood pressure are therefore seen in heart rate also.
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1.4 Analysis Methods

The HRV indices can be divided into three major categories: time domain, frequency
domain and nonlinear. The time-domain indices were developed quite early in the
field and are still very popular. The frequency-domain indices were developed later
and allow the variability to be divided into separate rhythms based on frequency.
The nonlinear methods are based on the premise that HRV is a chaotic time series.
They are the latest development and a very active field at present. To emphasize
that edited RR intervals are being analysed, often the RR intervals are quoted as
NN intervals. The NN intervals are the normal-to-normal intervals that result from
editing ectopic beats and noise from the RR intervals. Either short-term or long-term
recordings are analysed.

1.4.1 Time Domain

The time-domain indices of HRV measure the statistical properties of RR intervals,
or the delta RR intervals. The delta RR intervals are the series of differences between
successive RR intervals. The most common class of time-domain indices are based
on statistical measurements of the intervals. Various “geometric” methods also exist,
in which various measurements are made of the geometry of patterns made by the
intervals. First we describe the most popular statistical techniques.

1.4.1.1 Statistical Techniques

The statistical techniques are based on various moments of the RR intervals and the
delta RR intervals:

SDRR The standard deviation of the RR intervals. This is a measure of total
variability of the RR intervals. Low values indicate practically no HRV and this
property alone has made it possibly the most used index in the literature [57–68].
SDRR increases as the length of time the measurement is taken over increases.
It is able to be used for both long-term and short-term recordings, although it is
not advised for use on short-term recordings due to dubious reproducibility [55].
Normal subjects have a value of 141+/−39 ms (mean +/− standard deviation)
for long-term recordings [55].

SDARR The standard deviation of the means of short-term (5 min) recordings.
This is a measure of variability with period over 5 min. This measure is obviously
only appropriate for long-term HRV measurements and is usually performed on
24 h records [69–74]. Normal subjects have a value of 127+/−35 ms [55].
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RMSSD Root mean square of the successive differences of the RR intervals.
This is a measure of short-term HRV. It is also given the name SDSD, which
stands for standard deviation of successive differences. The measure is best
used on long-term recordings, but is often employed for short-term recordings.
It is the most common time-domain measure of short-term HRV [29, 69, 75–80].
Normal subjects have an RMSSD value of 27+/−12 ms [55]. As short-term
variability is mediated purely by the parasympathetic system, RMSSD measures
parasympathetic modulation of heart rate.

NN50 The number of interval differences of successive NN intervals that are
greater than 50 ms. This is a measure of short-term HRV. This measure correlates
highly with RMSSD. NN50 measures parasympathetic modulation of heart rate.
RMSSD has better immunity to ectopic beats and has nicer statistical properties,
so it is the preferred measure of short-term HRV.

pNN50 The fraction of NN50 intervals as a proportion of the total number of NN
intervals. This is another measure of short-term HRV. This measure correlates
very highly with RMSSD . For the same reasons as NN50 RMSSD is a preferred
method of measuring short-term HRV; however this measure is still quite often
seen in the literature [40, 81–84].

1.4.1.2 Geometric Techniques

The geometric techniques convert the RR interval data into a geometric pattern.
Various qualities of the shape or pattern are measured and form the HRV indices.
The geometric techniques generally have better performance on poorly edited data.
The most popular techniques are:

HRV Triangular Index: First the sample density histogram is constructed.
The most frequent RR interval length is established and denoted by where is
the most frequent RR interval length. The triangular index is given by dividing
the total number of RR intervals by the most frequent RR interval length. The
HRV triangular index has a value of 37+/−15 in normal subjects. It is a measure
of total HRV, but it takes into account long-term fluctuations more than the short-
term [17].

Poincaré Plot: The Poincaré plot is a scatter plot of the RR intervals against the
next RR interval. The plot resembles a cloud oriented along the line of identity.
The shape of the cloud provides a very useful description of HRV [85–93].
The length of the plot corresponds to the level of long-term variability and
width of the plot measures short-term variability. Poincaré width is considered
a pure measure of parasympathetic activity [94]. Figure 1.5 displays a typical
Poincaré plot. Currently, Poincaré plot analysis is a very active field. The main
problem with Poincaré plot analysis is the lack of clear quantitative descriptions
of the plot.
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Fig. 1.5 Plot (a) is the HRV spectrum. The respiratory component near 0.3 Hz and the vasomotor
component near 0.1 Hz are clearly present. Plot (b) is the Poincaré plot of the same data. The length
and the width are shown graphically on the plot. Figure adapted from Brennan et al. [118]

1.4.2 Frequency Domain

Many methods exist for estimating the spectrum from the RR intervals [1, 95–102].
The methods include both parametric and non-parametric techniques. While
parametric methods obtain more accuracy on smaller data sets, the selection of
model order can be difficult to automate [55]. Spectral analysis of heart rate consists
of first calculating the power spectral density (PSD) of the RR intervals. Secondly,
the PSD is broken into separate frequency bands as Fig. 1.5(a) details. Thirdly, the
power in each band is calculated by integrating the PSD within the band limits. The
bands are placed so as to measure useful information on the autonomic nervous
system. The selection of the limits of each band has been standardized and depends
on whether short-term or long-term recordings are being processed.

1.4.2.1 Short-Term Recordings

There are three main spectral components in a short-term recording of which only
two are of physiological importance [8, 10, 12, 13, 53, 103]. They are:

• HF Power: high-frequency power (0.15–0.4 Hz). HF power is a measure of
parasympathetic activity [12, 14, 53, 94]. The band is roughly centred on the
average respiration frequency for a normal subject. For a normal subject, a peak
in the PSD curve exists in this band at roughly 0.3 Hz caused by respiration .

• LF Power: low-frequency power (0.04–0.15Hz). LF power is the subject of
some controversy. Some consider it to be a measure of both sympathetic and
parasympathetic activities [54,103,104], while others consider it a pure measure
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of sympathetic activity [12, 105]. For a normal subject, a peak exists in the
LF band caused by vasomotor oscillations. The band is roughly centred on the
frequency of the vasomotor oscillations, at roughly 0.1 Hz.

• VLF Power: very-low-frequency power (0–0.04 Hz). VLF does not correlate with
any known physiological rhythms. The VLF band is basically treated as noise and
effects due to nonstationarity. No peaks are present in this band.

The total power TOT is given by VLF + HF + LF. The HF and LF components
are often used to quantify the autonomic activity of the sympathetic and parasym-
pathetic branches. The balance between the two systems is often quantified by BAL
= LF/HF. However, this quantity is interpreted differently by those who consider
LF power to reflect sympathetic and parasympathetic activity. In this case LF/HF
represents the sympathetic activity. Often researchers normalize the indices by
dividing LF and HF by TOT. This gives more consistent results, especially when
comparing subjects under different autonomic stresses.

1.4.2.2 Long-Term Recordings

Long-term recordings used for spectral analysis are usually 24 h recordings. An ex-
tra band is included for long-term recordings:

• HF: same as for short-term recordings.
• LF: same as for short-term recordings.
• VLF: very-low-frequency band (0.003–0.04Hz). The VLF band only extends

down to 0.003 Hz.
• ULF: ultra-low-frequency band (0–0.003 Hz). The ULF band is included for

long-term recordings.

The physiological mechanisms that generate the peaks in the HF and LF bands
still produce peaks in long-term recordings. However, as the oscillations of these
systems are not stationary over long periods of time, the modulations are averaged
over the 24 h and detail is lost. Therefore, the use of LF and HF is not recommended
for 24 h records. The LF and HF bands normally only account for 5% of the
variability over 24 h. The physiological correlates of the VLF and ULF components
are not well understood at present [55].

1.4.3 Nonlinear Dynamics

Considering the variety of factors influencing heart rate, e.g. respiration or mental
load, it becomes apparent that heart rate regulation is one of the most complex
systems in humans [106]. Many techniques suggested by nonlinear dynamics have
been applied to the classification of HRV. The application of these techniques is
motivated by the fact that the control systems for HRV have been shown to be
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nonlinear [107–110] because of its high complexity and the nonlinear interactions
between the physiological subsystems. Several of those indices have been proven to
be of diagnostic relevance or have contributed to risk stratification.

The following nonlinear methods/indices have been employed [106]:

• Fractal measures (e.g. power-law correlation, detrended fluctuation analysis,
multifractal analysis)

• Entropy measures (e.g. approximate entropy, sample entropy, compression
entropy)

• Symbolic dynamics measures and finally
• Poincaré plot

Even if these methods may lead to new insights into HRV changes under various
physiological and pathological conditions, the lacking standards of preprocessing
the heart rate time series and calculating the different indices and in addition the
problem of interpreting the physiological meanings of their indices prevented (yet)
a major breakthrough in clinical and ambulatory care.

However, methods from nonlinear dynamics provide additional prognostic
information and complement traditional time and frequency-domain analyses of
HRV. In this context the Poincaré plot analyses play a more and more important
role and—as an advantage—are easier to understand and interpret and are (at least
as simple plots) already widespread in Holter ECG analysis.



Chapter 2
Quantitative Poincaré Plot

Abstract Poincaré plot is a geometrical representation of a time series in a
Cartesian plane. Points of the plot are duplets of the values of the time series
and the distance (in number of values) between values of each duplet is the
lag of the plot. Statistically, lag-1 Poincaré plot displays the correlation between
consecutive samples in a graphical manner. It has been shown that Poincaré plot
reveals patterns of heart rate dynamics resulting from nonlinear processes (Tulppo
et al., Am. J. Physiol. 271:H244–H252, 1996; Brennan et al., IEEE Trans. Biomed.
Eng. 48:1342–1347, 2001). The lag-1 RR interval Poincaré plot, a two-dimensional
plot constructed by plotting consecutive RR intervals, is a representation of RR
time series on phase space or Cartesian plane (Liebovitch and Scheurle, Complexity
5:34–43, 2000). It is extensively used for qualitative visualization of physiological
signals. Poincaré plot is commonly applied to assess the dynamics of heart rate
variability (Tulppo et al., Am. J. Physiol. 271:H244–H252, 1996; Acharya et al.,
Med. Biol. Eng. Comput. 44(12):1031–1051, 2006; Tulppo et al., Am. J. Physiol.
247:H810–H816, 1998; Toichi et al., J. Auton. Nerv. Syst. 62:79–84, 1997; Hayano
et al., Nephrol. Dial. Transplant. 14:1480–1488, 1999). The quantitative analysis
of Poincaré plot predominantly means the mathematical characterization of the
shape of the plot. In the following sections we will discuss both the qualitative and
quantitative techniques of Poincaré plot for analysing HRV signal.

2.1 Introduction

Poincaré plot is a geometrical representation of a time series in a Cartesian plane.
Points of the plot are duplets of the values of the time series and the distance
(in number of values) between values of each duplet is the lag of the plot.
Statistically, lag-1 Poincaré plot displays the correlation between consecutive
samples in a graphical manner. It has been shown that Poincaré plot reveals patterns
of heart rate dynamics resulting from nonlinear processes [111, 112]. The lag-1 RR
interval Poincaré plot, a two-dimensional plot constructed by plotting consecutive
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RR intervals, is a representation of RR time series on phase space or Cartesian
plane [113]. It is extensively used for qualitative visualization of physiological
signals. Poincaré plot is commonly applied to assess the dynamics of heart rate
variability [111,114–117]. The quantitative analysis of Poincaré plot predominantly
means the mathematical characterization of the shape of the plot. In the following
sections we will discuss both the qualitative and quantitative techniques of Poincaré
plot for analysing HRV signal.

2.2 Visualization of HRV Using Poincaré Plot

The visual analysis of Poincaré plot is termed as qualitative analysis technique.
In HRV analysis, the qualitative technique was first used to visualize the complex
HRV pattern which could be produced by alterations and interactions of autonomic
and cardiovascular systems accompanying heart failure [91]. The result of qualita-
tive analysis provides additional information to the standard time-domain analysis
of HRV signal. It introduced the use of Poincaré plot to characterize the pattern of
RR intervals of a healthy heart. Moreover, the visual analysis of RR intervals used
to distinguish patients with advanced heart failure from healthy individuals [91].

Comet

This pattern represents the lengthening of RR intervals which indicates increased
beat-to-beat variability as well as overall range for healthy subjects (Fig. 2.1) [91].

Torpedo

This indicates that the change between consecutive RR intervals is minimal.
However, this minimal deviation does not indicate the fixed heart rate but suggests
gradual change in heart rate while maintaining small beat-to-beat variability
(Fig. 2.2) [91].

Fan

It has a small increase in RR interval length (i.e. shorter overall range) which is
associated with greater dispersion in consecutive RR intervals (Fig. 2.3) [91].
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Fig. 2.1 Poincaré plot of RR intervals of healthy patient with comet pattern. Figure adapted from
Woo et al. [91]

Complex

This pattern creates stepwise clusters of points with distinct gaps between the
clusters. The stepwise change in RR intervals represents lack of graded relationship
between successive RR intervals and linked to nonlinear behaviour (Fig. 2.4) [91].

2.3 Quantification of Poincaré Plot of RR Interval

Quantitative analysis of Poincaré plot quantifies the differences among the shape of
the plots. It is a mathematical approach to characterize the plot. The RR interval
Poincaré plot typically appears as an elongated cloud of points oriented along
the line of identity (RRn = RRn+1). Hence, the shape of the plot is measured as
the dispersion of points perpendicular to the line of identity, termed as short-term
variability, and along the line of identity, termed as long-term variability [89, 111].
Approaches of quantifying Poincaré plot are described in the following sections.
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Fig. 2.2 Poincaré plot of RR intervals of heart failure patient with torpedo pattern. Figure adapted
from Woo et al. [91]

Fig. 2.3 Poincaré plot of RR intervals of heart failure patient with fan pattern. Figure adapted
from Woo et al. [91]
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Fig. 2.4 Poincaré plot of RR-intervals of heart failure patient with complex pattern. Figure
adapted from Woo et al. [91]

2.3.1 Ellipse-Fitting Technique

Most researchers have adopted the ellipse-fitting technique to characterize the
Poincaré plot mathematically as shown in Fig. 2.5. The major axis of the fitted
ellipse is aligned with the line of identity, line passes through origin with slope
45◦, and the minor axis is perpendicular to the line of identity which has a slope of
135◦ and passes through centroid of the plot. Hence, the major and minor axis of
the fitted ellipse can be expressed as

RRn = RRn+1 (2.1)

and

RRn +RRn+1 = 2RR, (2.2)

where RR represents the RR interval series used in the Poincaré plot and RR
represents the mean value of RR interval series. In the ellipse-fitting technique, the
dispersion of the points along minor axis measures the width of the plot, whereas
the dispersion of the points along the major axis measures the length of the plot.
The distance of ith point of the plot, P(RRi,RRi+1), from major and minor axis,
respectively, can be expressed as

Di(min) =
RRi−RRi+1√

2
(2.3)
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solid line represents the line of identity

and

Di(maj) =
RRi+RRi+1−2RR√

2
. (2.4)

Finally, the short-term and long-term variability of the plot can be expressed as

SD1 =
√

1
N−1 ∑N−1

i=1 D2
i(min) (2.5)

and

SD2 =
√

1
N−1 ∑N−1

i=1 D2
i(maj), (2.6)

where N is the number of RR intervals in the plotted HRV signal.

Relation of SD1 and SD2 with Linear HRV Indices

The standard deviation of the RR intervals, denoted by SDRR, is often employed as
a measure of overall HRV as shown by [112]. It is defined as the square root of the
variance of the RR intervals
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SDRR =

√
1
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N

∑
i=1

(RRi −RR)2
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√
E[(RR−RR)2]
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E[RR2 − 2RRRR+RR

2
]

=
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E[RR2]− 2E[RR]RR+RR

2
]
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2
+RR

2

=

√
RR2 −RR

2
, (2.7)

where RR = E[RR].
The standard deviation of the successive differences of the RR intervals, denoted

by SDSD, is an important measure of short-term HRV. It is defined as the square
root of the variance of the sequence ΔRR, where each element of ΔRR, ΔRRi =
RRi −RRi+1:

SDSD =

√
1
N

N

∑
i=1

(ΔRRi −ΔRR)2,

where ΔRR = E[ΔRR] = E[RRi]−E[RRi+1]≡ 0 for stationary intervals. Consider-
ing this wide-sense stationarity the above equation can be expressed as

SDSD =

√
1
N

N

∑
i=1

ΔRRi
2

=

√
E[ΔRR2]

=

√
ΔRR2. (2.8)

Now using Eqs. 2.3 and 2.5 SD1 can be expressed as

SD1 =

√
1

N − 1

N−1

∑
i=1

(RRi −RRi+1)2

2

=

√
1
2

E[(RRi −RRi+1)2]

=

√
1
2

E[ΔRR2]
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=

√
1
2

ΔRR2

=
1√
2

SDSD. (2.9)

Similarly, using Eqs. 2.4 and 2.6, SD2 can be expressed as

SD2 =

√
1

N−1

N−1

∑
i=1

(RRi+RRi+1−2RR)2

2

=

√√√√ 1
N−1

N−1

∑
i=1

RRi
2+RRi+1

2+4RR
2
+2RRiRRi+1−4RRi+1RR−4RRiRR

2

=

√√√√ 1
N−1

N−1

∑
i=1

2RRi
2+2RRi+1

2+4RR
2−4RRi+1RR−4RRiRR−(RRi−RRi+1)

2

2

=

√√√√ 1
N−1

N−1

∑
i=1

2RRi
2+2RRi+1

2+4RR
2−4RRi+1RR−4RRiRR−ΔRR2

2

=

√
2E[RRi

2]+2E[RRi+1
2]+4RR

2−4E[RRi+1]RR−4E[RRi]RR−E[ΔRR2]

2

=

√
2RR2+2RR2+4RR

2−4RR
2−4RR

2−ΔRR2

2

=

√
4RR2−4RR

2−ΔRR2

2

=

√
2(RR2−RR

2
)−1

2
ΔRR2

=

√
2SDRR2−1

2
SDSD2 (2.10)

using assumptions E[RRi]=E[RRi+m] and E[RR2
i ]=E[RR2

i+m]. This shows that SD1
and SD2 of Poincaré plot are directly related to the basic statistical measures,
standard deviation of RR interval (SDRR) and standard deviation of the successive
difference of RR interval (SDSD) [112].
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Fig. 2.6 Details the construction of the width (or delta-RR interval) histogram, the RR interval
histogram and the length histogram. Each of these histograms is a projection of the points of the
Poincaré plot. Figure adapted from Brennan et al. [112]

2.3.2 Histogram Techniques

Intuitively, histogram is a graphical way to summarize the distribution of a univariate
data set. It organizes a group of data points into user-specified ranges. Adapting
the histogram technique to quantify Poincaré plot requires converting 2D Poincaré
plot signal into a univariate signal, which is achieved through various projections
of the points. Therefore, in histogram technique the shape of the Poincaré plot is
quantified by measuring the statistical properties of the various projections of the
plot [87, 89, 94]. Figure 2.6 shows three main projections of the plot.

RR Interval Histogram

The histogram of the Poincaré plot points projected onto the X axis or the Y axis.
Since the points in lag-1 Poincaré plot represent the consecutive RR intervals,
projecting them onto one of the axes represents the RR interval series (RR). The RR
interval histogram is usually quantified by the mean and standard deviation, which
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correspond directly to the same measures of RR denoted by RR and SDRR.
Therefore, this projection of Poincaré plot provides summary information on the
overall HRV characteristics.

“Width” or Delta-RR Interval Histogram

This is the histogram of the Poincaré plot points projected on the line of identity.
The X value of the point is on the line of identity while the Y value of the point
corresponds to the perpendicular distance of the point from the line of identity. It is
not exactly equivalent to the delta-RR interval histogram; the abscissa has been
scaled by the factor 1/

√
2. As expected of the ΔRR intervals, the histogram has

a zero mean. Therefore, the standard deviation of the width histogram is equal to
SD1, which is a scaling of the SDSD measure as shown in Eq. 2.9. This histogram
provides summary information on the short-term characteristics.

“Length” Histogram

This histogram is obtained by projecting the Poincaré plot points perpendicular onto
the line of identity. The histogram is described mathematically by the distribution of
x2 and the standard deviation is, therefore, equivalently equal to SD2. Consequently,
due to its connection with SD2, the length histogram portrays the long-term
characteristics of HRV.

2.4 Relationship Between Poincaré Shape and Linear HRV
Measure

The autocorrelation function is an important measure of HRV simply because its
Fourier transform is the power spectrum of intervals. The autocorrelation function
of the RR intervals is defined by Brennan et al. [112] as

γ(m) = E[RRiRRi+m], (2.11)

where m is the time delay. Brennan et al. [112] have also defined SD1 and SD2 with
respect to autocorrelation function as follows:

SD12 = γRR(0)− γRR(1) (2.12)

SD22 = γRR(0)+ γRR(1)− 2RR
2
, (2.13)
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where γRR(0) and γRR(1) are the autocorrelation functions for lag-0 and lag-1 RR
interval and RR is the mean of RR intervals. From Eqs. 2.12 and 2.13, it is obvious
that the measures SD1 and SD2 are derived from the correlation (at lag 0 and 1)
and mean of RR interval time series. The above equation sets are derived for unit
time delay Poincaré plot. Researchers have shown interest in plots with different
time delays to get a better insight in the time-series signal. Usually the time delay
is a multiple of the cycle length or the sampling time of the signal [118]. The
dependency among the variables is controlled by the choice of time delay, and
the most conventional analysis is performed with higher-order linear correlation
between points. In the case of plotting the 2D phase space with lag-m the equations
for SD1 and SD2 can be represented as

SD12 = γRR(0)− γRR(m)

⇒ SD1 = F(γRR(0),γRR(m)) (2.14)

and

SD22 = γRR(0)+ γRR(m)− 2RR
2

⇒ SD2 = F(γRR(0),γRR(m)), (2.15)

where γRR(m) is the autocorrelation function for lag-m RR interval. This implies
that the standard descriptors for any arbitrary m lag Poincaré plot is a function of
autocorrelation of the signal at lag-0 and lag-m.

2.5 Conclusion

Poincaré plot is a popular HRV analysis tool among clinicians due to its ability
to visually represent nonlinear dynamics of HRV. We explained and derived the
development of Poincaré plot both as a qualitative and quantitative tool for HRV
analysis. Existing descriptors of Poincaré plot are discussed and links with statistical
HRV measures are shown. These indicate that, despite the ability to represent
nonlinear dynamics, existing measures of Poincaré plot are unable to quantify this
information effectively. Hence, the vast potential of Poincaré plot in HRV analysis is
still unexplored. In the following chapters, we will discuss improvements of existing
measures and development of novel measures to better quantification of dynamical
information of HRV signal using Poincaré plot.



Chapter 3
Poincaré Plot Interpretation of HRV Using
Physiological Model

Abstract In this chapter, we present new results in developing a novel mathematical
model that describes the interactions between the sympathetic and the parasym-
pathetic nervous systems and heart rate fluctuations over a short-term period
of 5–10 min. While our model is based upon well-accepted physiological prin-
ciples, the mathematical formulation permits in-depth numerical and analytical
investigations yielding valuable insight into clinical RR interval analysis techniques.

3.1 Introduction

In this chapter, we present new results in developing a novel mathematical model
that describes the interactions between the sympathetic and the parasympathetic
nervous systems and heart rate fluctuations over a short-term period of 5–10 min.
While our model is based upon well-accepted physiological principles, the mathe-
matical formulation permits in-depth numerical and analytical investigations yield-
ing valuable insight into clinical RR interval analysis techniques.

Standard analysis techniques commonly estimate the levels of sympathetic and
parasympathetic activity from the variability in the RR intervals. Our attention
has focused on two specific HRV analysis techniques. The first is the frequency-
domain spectral analysis of RR intervals [14, 101, 119–121]. RR interval Poincaré
plot analysis is the second technique [59, 87, 89, 91, 94]. The main objective of our
model is to provide insight into the significance of Poincaré plot morphology, not to
accurately reproduce the complex autonomic activity of any particular individual.

Our model emulates the differing varieties of Poincaré plot patterns seen in
subjects over a range of sympathovagal balances. In addition, the model provides
a unique link between spectral analysis techniques and the emerging analysis
techniques that rely on the shape and/or other morphological properties of the
Poincaré plot. Analytical results on the “lengths” and “widths” of the Poincaré plots

A.H. Khandoker et al., Poincaré Plot Methods for Heart Rate Variability Analysis,
DOI 10.1007/978-1-4614-7375-6 3,
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Fig. 3.1 Plot (a) is the HRV spectrum. The respiratory component near 0.3 Hz and the vasomotor
component near 0.1 Hz are clearly present. Plot (b) is the Poincaré plot of the same data. The length
and the width are shown graphically on the plot. Figure adapted from Brennan et al. [118]

generated by our model are developed. Simulations are employed to confirm the
analytical results on the model. In order to evaluate the validity and scope of the
model and analysis we provide results using a set of data from actual subjects.

3.2 Autonomous Nervous System and HRV Analysis

It is well known that perturbations to autonomic activity, such as respiratory
sinus arrhythmia and vasomotor oscillations, cause corresponding fluctuations
in heart rate [8, 102]. HRV analysis seeks to determine the autonomic activity
from heart rate variability. Spectral analysis is the standard technique used to
determine the presence of respiratory sinus arrhythmia and vasomotor oscilla-
tions [8, 122]. This is accomplished by dividing the spectrum into low-(0.04–
0.15 Hz) and high-(0.15–0.4Hz) frequency bands, known as the LF and HF bands,
effectively distinguishing between rapid respiratory modulator activity and slow
vasomotor modulation of heart rate (see Fig. 3.1a). HF power is supposedly a
pure measure of parasympathetic activity, and LF power is reflective of sympa-
thetic modulation and parasympathetic tone, although it is sometimes considered
to reflect sympathetic tone [120]. In this chapter, spectral estimates are given
by the autoregressive (AR) parametric technique using the modified covariance
method [123] for the smooth spectrum and easy identification of the spectral peaks.

The Poincaré plot is a scatter plot of the current RR interval plotted against
the preceding RR interval. Poincaré plot analysis is a quantitative visual technique,
whereby the shape of the plot is categorized into functional classes [59,91]. The plot
provides summary information as well as detailed beat-to-beat information on
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Fig. 3.2 Three coupled oscillators representing the cardiac control system. Figure adapted from
Brennan et al. [118]

the behaviour of the heart [94]. Points above the line of identity indicate RR
intervals that are longer than the preceding RR interval, and points below the
line of identity indicate a shorter RR interval than the previous. Accordingly, the
dispersion of points perpendicular to the line of identity (the “width”) reflects
the level of short-term variability. This dispersion can be quantified by the standard
deviation of the distances the points lie from the line of identity. This measure
is equivalent to the standard deviation of the successive differences of the RR
intervals (SDSD or RMSSD) [89]. The standard deviation of points along the line of
identity (the “length”) reflects the standard deviation of the RR intervals (SDNN).
Figure 3.1b details these quantitative measures of Poincaré plot shape. Poincaré
plots appear under different names in the literature: scatter plots, first return maps
and Lorenz plots being prominent terms. A distinct advantage of Poincaré plots is
their ability to identify beat-to-beat cycles and patterns in data that are difficult to
identify with spectral analysis [59, 91].

3.3 Physiological HRV Model

In this section we develop a model using a coupled network of oscillators, each
representing a specific characteristic or facet of the baroreflex and autonomic
nervous system. The architecture of the network and the coupling are shown
in Fig. 3.2. The coupling constants Cs and Cp denote the level at which the
corresponding oscillator modulates the sinus node oscillator. For the purpose of
clarity, we define the respiratory oscillator as the parasympathetic oscillator.

3.3.1 Sympathetic Oscillator

The sympathetic oscillator (S) is governed by Eq. 3.1:

s = sin(ωst) (3.1)
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where s represents the level of sympathetic activation. Sympathetic activity occurs
on a slow time scale, i.e. it reacts slowly, altering heart rate over a long dura-
tion [8, 101, 124]. Accordingly it is assigned a small value, producing slow waves
of approximately 10–15 s duration. This oscillator represents the combined low-
frequency (LF) power of the HRV spectrum, which includes vasomotor activity.
It is generally accepted that low levels of sympathetic activity will result in slow
oscillations of sympathetic nerve activity entrained to the vasomotor oscillations.

As the level of sympathetic activity increases, these oscillations are damped and
the fluctuations disappear such that under intense sympathetic drive the heart rate
becomes metronomic in its regularity. This damped effect can be achieved by taking
ωs → 0 or by reducing the coupling between the sympathetic oscillator and the sinus
oscillator by taking Cs → 0.

3.3.2 Parasympathetic Respiratory Oscillator

Respiratory oscillations affect both the sympathetic and parasympathetic nervous
systems. However, because of the slow response time of the sympathetic system,
these rapid oscillations, often in the order of 2–3 seconds per cycle, are mediated
purely by the parasympathetic system [8, 101, 124]. The effects of respiration are
described by the parasympathetic respiratory oscillator (P), which is governed
by Eq. 3.2:

p = sin(ωpt) (3.2)

where p represents the level of parasympathetic respiratory activation. As the
parasympathetic system typically reacts faster than the sympathetic system, but
altering heart rate over a much shorter duration, this oscillator has a value of ωp

larger than ωs . Values in the simulation produce oscillations of duration between 2
and 5 s. This oscillator is intended to represent short-term activity impinging on the
sinus node via the parasympathetic nervous system.

3.3.3 Sinus Oscillator

The sinus node oscillator is based on the formulation of the well-known integral
pulse frequency modulation (IPFM) model. Hyndman and Mohn first suggested
the IPFM model as a representation of the cardiac pacemaker and the suitability
for modeling the sinus node has been discussed by a number of researchers in
the area of point event processes [97, 99, 102]. The IPFM model is a useful
description of how cardiac events are modulated by autonomic nervous activity
and has had numerous applications in describing the generation of point event
processes [99, 102]. The IPFM model generates heartbeats by integrating an input
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Fig. 3.3 IPFM model. The input signal HR+m(t) is integrated until the integrator output y(t)
reaches the threshold of unity. At this point a pulse is produced in the output signal x(t) and the
integrator is reset. Figure adapted from Brennan et al. [118]

signal until it reaches a preset threshold of unity. At this point a pulse is produced
and the integrator is reset to zero. See Fig. 3.3. The mathematical representation is
given in Eq. 3.3:

1 =
∫ tk+1

tk (HR+m(t))dt
x(t) = ∑N

k=1 δ (t − tk)
(3.3)

The signal m(t) is the input signal representing autonomic activity and tk is the
time of the kth R wave. When the input signal is zero the IPFM model generates
heartbeats with an interval equal to I = 1/HR where HR is a variable parameter
which represents mean heart rate. It is equal to the actual frequency of heartbeats
in the absence of any modulatory autonomic nervous activity. The input signal
m(t) represents the effects of modulatory autonomic nervous input and is defined
by Eq. 3.4. If the input signal is positive then heartbeats are generated at a faster
rate while a negative input signal causes heartbeats to be generated at a slower
rate. The function x(t) represents the series of pulses representing the heartbeats
generated by the model while y(t) designates the integrator’s output as a function of
time.



30 3 Poincaré Plot Interpretation of HRV Using Physiological Model

We have formulated the modulation of the sinus oscillator by the sympathetic
and parasympathetic oscillators as described by Eq. 3.4:

m(t) =Css(t)+Cp p(t) (3.4)

As a result, the sinus oscillator beats at a base rate of HR Hertz, which is
increased or decreased in an additive linear fashion by sympathetic and parasym-
pathetic respiratory modulation. For the modulating frequencies to appear unaliased
in the beat sequence, the mean beat frequency HR should be higher than the highest
modulating frequency component, ωp :

HR � ωp

2π
>

ωs

2π
(3.5)

The coupling constants Cs and Cp reflect the levels of sympathetic and parasym-
pathetic modulation of the sinus node, which is not equivalent to the tonic (mean)
levels of sympathetic and parasympathetic activity. The tonic autonomic influences
are included in the parameter HR which is a combined function of sympathetic
and parasympathetic activity, hormonal responses and various parameters of the
individual such as blood pressure. Accordingly HR is a function of the intrinsic
heart rate HR0 and the tonic influences of the autonomic system commonly referred
to as the sympathovagal balance [125]. While the exact nature of sympathovagal
balance is not completely understood, this concept has been formalized by the
following model, HR = HR0 ×m× n , due to Rosenblueth and Simeone [124] and
Katona et al. [126] in which m > 1 is the net sympathetic influence and n < 1 is
the net parasympathetic influence. It is still being debated if there exist any reliable
connections between the tonic influences m and n and the levels of modulation Cs

and Cp; however, it is often observed that heart rate and HRV are inversely related.
Accordingly, we model HR as a free variable which is not determined explicitly

by Cs or Cp. In other words, our model characterizes nervous activity as separate
modulatory and static effects. Cs and Cp should be chosen such that HR+m(t) is
strictly positive. Choosing Cs +Cp < HR guarantees this.

3.4 Mathematical Analysis of HRV Model Using
Poincaré Plot

This section develops a mathematical analysis used to investigate the length and
width of the Poincaré plots generated from the HRV model developed in the
previous sections. As the model is a simplification of actual HRV mechanisms
these results will not apply to real HRV data in an exact sense. However, the
results provide clear insight into the manner in which Poincaré plot descriptors
vary as sympathetic and parasympathetic modulation levels are varied. Specifically,
we characterize the theoretical dependency between low- and high-frequency
modulators and the shape of an RR interval Poincaré plot generated by our model.
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In accomplishing this analysis we require an explicit solution to the RR interval
series. The remainder of this section derives this result. By defining the time of the
initial beat to be the origin t0 = 0, the defining equation for the IPFM oscillator
(Eq. 3.3) can be expressed non-recursively as

∫ tk

0
[HR+m(t)]dt = k (3.6)

where m(t) is the modulating signal. In our model m(t) consists of two frequency
components. It turns out to be just as easy to work with N frequency components,
so we consider m(t) = ∑N

n=1 Cn cos(ωnt +φn) with ωn � 2πHR for all n, i.e. slow
modulation. The defining equation becomes

∫ tk

0
[1+ I

N

∑
n=1

Cn cos(ωnt +φn)]dt = kI (3.7)

We have also divided through by HR and expressed I = 1/HR to make the
equations simpler. After integrating, the general relationship

tk + I
N

∑
n=1

Cn

ωn
(sin(ωntk +φn)− sin(φn)) = kI (3.8)

is obtained. Performing the substitution tk = kI+ δk , as per De Boer et al. [99], the
following nonlinear relationship for δk is obtained:

δk =−I
N

∑
n=1

Cn

ωn
(sin(ωnkI+φn +ωnδk)− sin(φn)) (3.9)

The δk terms represent the amount each beat deviates from the regular pulse train
tk = kI . Equation 3.9 can be linearized about δk = 0 provided ωnδk is small for
all nε[1..N]. If the event times are close to a regular pulse train (δk < I/2π) and
the modulation frequencies are less than the mean beat frequency (ωn < 2πHR) it is
obvious that ωnδk � 1. Hence for a large class of practical pulse trains, including RR
intervals, a linear analysis is an accurate approximation. Linearizing about δk = 0
we obtain

δk ≈−I
N

∑
n=1

Cn

ωn
(sin(ωnkI +φn)− sin(φn)+ωnδk cos(ωnkI +φn)) (3.10)

Solving for δk gives the final expression for the beat times:

tk = kI + δk = kI +
∑N

n=1
Cn
ωn
(sin(ωnkI+φn)− sin(φn))

1− I ∑N
n=1 Cn cos(ωnkI +φn)

(3.11)
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The RR intervals are RRk = tk+1 − tk . For our model, N = 2 and C1 = Cs,
C2 = Cp, ω1 = ωs, ω2 = ωp and φ1 = φ2 = 0. In this case, Eq. 3.11 provides us
with an accurate approximation to the RR interval series generated by our HRV
model. This result holds so long as the intervals are approximately regular and the
modulation is slow. This is generally the case for RR intervals. However, for subjects
with very large HRV the assumption that the intervals are approximately regular may
be somewhat inaccurate. For the assumption δk < I/2π to be compromised, an RR
interval would have to deviate from the mean RR interval by an amount I greater
than I/π ≈ 0.32π .

3.4.1 Length of Poincaré Plot Main Cloud

In this section we develop an approximation to the length of a Poincaré plot,
depicted in Fig. 3.1b, as a function of the HRV model’s coupling constants Cs

and Cp. Researchers, who are dealing with noisy data, often employ the standard
deviation of the RR intervals (SDNN) as a measure of Poincaré length [89, 111].
For the purposes of this section, in which sequences lacking random variability are
analysed, it’s simpler to define the length to be the distance between the extreme
right- and left-most points of the Poincaré plot. The agreement between these two
measures is a simple scaling by a constant. Thus, length is defined as the difference
between the largest and smallest RR intervals: L = max

k
RRk −min

k
RRk.

Analytically deriving the maximum and minimum of the RR interval series from
Eq. 3.11 is n’t straightforward; fortunately, these quantities can be approximated.
By employing the standard approximation (1+ z)−1 = 1− z for z << 1, Eq. 3.11
can be approximated as

δk ≈
[
−Ī

N

∑
n=1

Cn

ωn
(sin(ωnkĪ +ϕn)− sin(ϕn))

][
1− Ī

N

∑
n=1

Cn cos(ωnkĪ +ϕn)

]

(3.12)

Expanding the brackets, combining sums and using standard trigonometric
identities it is possible to express Eq. 3.12 as a sum of sinusoids

δk =−Ī
N
∑

n=1

Cn
ωn

[
sin

(
ωnkĪ +ϕn + Ī

N
∑

m=1
Cm sin(ϕm)

)
− sin(ϕn)

]

+Ī2
N
∑

n=1

N
∑

m=1

CnCm
2ωn

[sin((ωn −ωm)kĪ +ϕn −ϕm)+ sin((ωn +ωm)kĪ +ϕn +ϕm)]

(3.13)

Hence, the RR interval series, RRk = Ī+ δk − δk−1, is
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RRk = Ī − 2Ī
N
∑

n=1

Cn
ωn

sin
(

ωnĪ
2

)
cos

(
ωnkĪ +ϕn + Ī

N
∑

m=1
Cm sin(ϕm)− ωnĪ

2

)

+Ī2
N
∑

n=1

N
∑

m=1

CnCm
ωn

⎡
⎢⎣

sin
(
(ωn−ωm)Ī

2

)
cos
(
(ωn−ωm)kĪ+(ϕn−ϕm)− (ωn−ωm)Ī

2

)

+sin
(
(ωn+ωm)Ī

2

)
cos
(
(ωn+ωm)kĪ+(ϕn+ϕm)− (ωn+ωm)Ī

2

)

⎤
⎥⎦

(3.14)

Assuming the maximum values of the time-varying sinusoids (those dependent
upon k) of Eq. 3.14 are eventually sampled simultaneously at some point in time, an
approximation to the upper limit of the length is obtained by replacing the sinusoids
with the value 1. This approach gives the maximum length obtainable, a figure that
is strictly an upper bound yet also serves as an approximation to the true length L
for modulation frequencies significantly less than the mean beat frequency. This is
by virtue of having sampled frequently enough to examine arbitrarily close to the
upper bound at some point in time. The upper bound on L is then twice the sum of
the amplitudes of the frequency components described in Eq. 3.14. As Cn << 1,
L is largely determined by the first-order terms. Equation 3.15 is the first-order
approximation to length. It is noted that this quantity is no longer the strict upper
bound on L due to discarding of the higher-order contributions; however, it remains
an approximation to the true length:

L ≈ 4Ī
N

∑
n=1

Cn

ωn

∣∣∣∣sin

(
ωnĪ
2

)∣∣∣∣ (3.15)

Therefore, Poincaré plots obtained from our HRV model have a length approxi-
mated by

L ≈ 4
HR

[
Cs

ωs

∣∣∣sin
( ωs

2HR

)∣∣∣+ Cp

ωp

∣∣∣sin
( ωp

2HR

)∣∣∣
]

(3.16)

The actual (true) Poincaré plot length as a function of the HRV model’s coupling
constants Cs and Cp over the range 0.0–0.15 is shown in Fig. 3.4a (obtained
via simulations). Length appears to be dependent upon Cs and Cp in an almost
identical manner and to behave linearly, in agreement with this analysis. Figure
3.4c compares true length to the approximation to length given by Eq. 3.16.
For Cs +Cp << 1 the approximation is in excellent agreement with the true
length. As Cs +Cpincreases, second-order influences begin to become significant
due to nonlinear effects becoming prominent, as expected from the analysis. The
approximately identical manner that the coupling constants control the length can be
explained by noting that sin(x)≈ x when x � 1 and for low modulation frequencies
ωp � 2πHR. Accordingly, Eq. 3.16 behaves as

L ≈ 2
HR2 (Cs +Cp) (3.17)
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Fig. 3.4 Complete autonomic blockade. (a) Poincaré plot of subject with complete autonomic
denervation (transplant patient) with mean RR interval of 800 ms. (b) Sinus oscillator with low
coupling to sympathetic and parasympathetic oscillators. (c) Power spectra of plots (a) and (b).
Figure adapted from Brennan et al. [118]

These results state that high- and low-frequency modulations affect L in equiva-
lent manners for slow modulation and in a linear fashion for small coupling intensi-
ties. Under these conditions, length reflects neither the high- nor the low-frequency
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modulations more significantly than the other. Thus, for practical purposes, length
may be considered a measure of total modulation and is akin to the total power of
the modulating signal.

3.4.2 Width of the Poincaré Plot Main Cloud

The width of the main cloud of an RR interval Poincaré plot characterizes the
dispersion of points about the line of identity. Common measures of the width are
the standard deviation and the root mean square of the successive differences of
the RR intervals (SDSD or RMSSD) [89, 111]. As for the length of the model-
based Poincaré plot, the lack of any random component is exploited and the width
is defined to be the distance between the extremities as depicted in Fig. 3.1b. Thus,

the width is W = max
k

|ΔRRk|
/√

2 as Fig. 3.5 details. This expression involves the

“delta” RR intervals, ΔRRk = RRk−RRk−1, which are also known as the successive
differences of the RR intervals. They are given by
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N
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(3.18)

As can be seen from Eq. 3.18, the delta RR intervals posses no D.C. component,
which is expected due to the zero average. Similar frequency content is present as
for the length, except for being phase shifted and being multiplied by an extra sin(·)
term leading to the squared coefficient. An approximation to W is determined by
taking an upper bound for W (by replacing the time-varying sinusoids with unity)
and retaining only first-order terms as detailed in the calculations for length:

W ≈ 4
√

2Ī
N

∑
n=1

Cn

ωn
sin2

(
ωnĪ
2

)
(3.19)

For our HRV model, this expression is

W ≈ 4
√

2
HR

[
Cs

ωs
sin2

( ωs

2HR

)
+

Cp

ωp
sin2

( ωp

2HR

)]
(3.20)

Figure 3.4b details how true width varies as the coupling parameters are varied
over the range 0.0–0.15. A comparison of Eq. 3.20 to the true width is given in
Fig. 3.4d. It is seen that the approximation to W is accurate when Cs +Cp << 1 but
deviates widely as Cs +Cp becomes large, due mainly to second-order influences
becoming prominent. It can be seen from Fig. 3.4b that the level of high-frequency
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Fig. 3.5 Plot (a) is a Poincaré plot of a subject that has been given atropine to block parasym-
pathetic activity. Plot (b) shows model generated RR intervals when the sympathetic oscillator is
coupled. In plot (c) additive Gaussian noise with a standard deviation of 10 ms. is included. Plot
(d) is the power spectra of plots (a) (upper), (b) (middle) and (c). Figure adapted from Brennan
et al. [118]

modulation Cp is the dominant parameter controlling width. This property is clearly
seen from the analysis, especially for small modulation frequencies (ωs < 2πHR)
as Eq. 3.20 behaves approximately as

W ≈ 1√
2HR3

[Csωs +Cpωp] (3.21)
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Roughly speaking, the width of a Poincaré plot is a function of the weighted sum
of the low- and high-frequency amplitudes, where each amplitude is weighted by the
respective angular frequency. Accordingly, higher-frequency components contribute
to the width in larger amounts, and lower-frequency components contribute at minor
yet still significant levels. As will be explained later, Poincaré plot width should
correlate highly with high-frequency power (HF) and correlate at small levels with
low-frequency power (LF).

3.4.3 Poincaré Plot Morphological Properties for the
HRV Model

As the previous sections have shown, the correspondence between the HRV model’s
parameters and the Poincaré plot’s shape can be accurately approximated by a linear
transformation for small coupling intensities:

[
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(3.22)

The significance of this result is that the morphology of a Poincaré plot encodes
the amplitudes of the modulation signal, allowing recovery of the amplitudes for
signals composed of two known frequency components:
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γ = sin
(
ωp
/

2HR
)− sin

(
ωs
/

2HR
)

For our model, it is theoretically possible to estimate similar characteristics to
HRV spectral analysis, such as LF power, HF power and HF/LF ratios, from the
shape of the Poincaré plot by assigning appropriate values to the constants ωs

and ωp. This is in addition to investigating the detailed beat-to-beat characteristics of
HRV data. It should be noted that this property only applies exactly for modulation
signals composed of only two frequency components. Perhaps three-dimensional
Poincaré plots can resolve three frequency components, and so on. How well the
correspondence generalizes to actual HRV data is dependent on how well the HRV
spectrum is approximated by two dominant peaks.
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3.5 Simulation Results in Clinical Examples

In this section, we demonstrate that our model displays the features of real RR
intervals under various induced autonomic balances. We consider the following
conditions: complete autonomic blockade, parasympathetic blockade and normal
sympathetic-parasympathetic balance. Poincaré plots of the model’s output are
compared to plots of actual RR intervals obtained from patients under the prescribed
autonomic perturbations. The model’s simulated autonomic balance is adjusted
by varying the coupling constants, which alters the levels at which the oscilla-
tors influence the sinus oscillator. For all simulations, except where otherwise
mentioned, the following constants were used:

HR = 1.18 Hz, ωs = 2π × 0.025 Rad/s, and ωp = 2π × 0.344 Rad/s (3.24)

HR corresponds to an RR interval of 850 ms. The period of the sympathetic
oscillator is set to approximately 40 s and the parasympathetic oscillator is set to
a period of approximately 3 s.

3.5.1 Complete Autonomic Blockade

First, we consider the model’s output in the absence of coupling, a state that is easily
simulated with Csand Cp taking on very small values. Consider Fig. 3.6b for which
the coupling constants were Cs =Cp = 0.01. The Poincaré plot appears as a single
dense point termed a “tight cluster”. Due to the low coupling, there is very little
variation in m(t) and subsequently the sinus oscillator beats at a constant frequency
of HR Hertz. Accordingly the RR intervals varied little from the constant value
1/HR seconds. The behaviour of a de-nerved heart, such as found in the case of a
transplant patient as in Fig. 3.6a, is mimicked. Figure 3.6c shows the power spectra
of plots (a) and (b). It is seen that neither the transplant patient nor the model has
any significant spectral power in either the LF or HF bands.

3.5.2 Unopposed Sympathetic Activity–Parasympathetic
Blockade

This scenario is simulated by a high degree of coupling between the sympathetic
oscillator and the sinus oscillator while a low-coupling level is used for the
parasympathetic respiratory oscillator. Accordingly, the coupling constants take the
values Cs = 0.21 and Cp = 0. The model’s output, viewed as a Poincaré plot in
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Fig. 3.6 Balanced sympathetic and parasympathetic activity. Plot (a) shows RR intervals obtained
from a subject who is lying supine at rest. Plot (b) shows the model’s simulated output for the
coupling constants Cs = 0.3 and Cp = 0.05. Plot (c) shows the effect of increasing Cp to 0.1. Plot
(d) shows the power spectra of plots (a), (b) and (c). Figure adapted from Brennan et al. [118]

Fig. 3.7b, is a slender closed loop oriented along the line y = x and is suggestive of
a “cigar” due to its shape. No variability is present other than the motion around the
loop, a direct result of excluding the parasympathetic respiratory oscillator.

The plot in Fig. 3.7a is of a healthy subject who has been infused with atropine.
The variability witnessed in this plot is therefore largely a product of sympathetic
activity. The total lack of any short-term variability in our model’s output prevents
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Fig. 3.7 Poincaré width, W, is measured as the largest difference between consecutive intervals,
multiplied by the square root of 2. Figure adapted from Brennan et al. [118]

a clear comparison to this subject except at the most qualitative level. Figure 3.7c
shows the effect of artificially adding a small amount of short-term variability to the
model’s output by adding zero mean Gaussian noise with a standard deviation of 10
ms. to the simulated intervals. A Poincaré plot very similar to actual observed cigar-
shaped plots is observed. Real-life physiological systems usually do contain some
level of spontaneous random variability that is best modelled as noise, particularly
at this level. The model’s output resembles RR intervals recorded from patients with
degraded parasympathetic nervous control, such as patients with heart failure [89].
The length of the cigar is directly proportional to the amplitude of the sympathetic
modulation of the sinus oscillator.

The power spectrum of the atropine-infused subject in Fig. 3.7a is shown in the
upper panel of Fig. 3.7d. The spectrum is seen to consist of a substantial level of
LF power and very little HF power. The middle panel of Fig. 3.7d shows the power
spectra of the model-generated RR intervals. The single peak in the LF band is
the effect of the sympathetic oscillator with a coupling intensity of 0.21. Finally,
the lower panel of Fig. 3.7d shows the power spectrum of the model-generated RR
intervals with added noise. The noise adds a constant level across all frequencies to
the power spectrum, and therefore its presence does not overly alter the shape of the
spectrum.
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Fig. 3.8 Plots of width and length of Poincaré plot main clouds as the two coupling parameters
are varied over the range 0.0 to 0.15. Subplots (a) and (b) present the length and width obtained
from simulated RR intervals. Subplots (c) and (d) show how the analytic approximations to length
and width compare. Figure adapted from Brennan et al. [118]

3.5.3 Sympathetic-Parasympathetic Balance

In this scenario, levels of parasympathetic respiratory activity are introduced.
This is simulated by way of a small coupling intensity for the parasympathetic
respiratory oscillator in addition to a high level of sympathetic coupling. Figure
3.8b shows the model’s RR interval output for the coupling constants Cs = 0.3 and
Cp = 0.05. A large degree of variability emerges in the model’s output, in which
the parasympathetic oscillator is responsible for the flanging effect or widening
of the cigar shape into a “comet”. Comparing Fig. 3.8a and b shows how closely
the simulated RR intervals resemble a Poincaré plot of a subject at rest breathing
quietly in the supine position. Increasing the parasympathetic respiratory oscillator’s
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coupling intensity increases the width of the comet and consequently the level of
short-term variability in the RR intervals. Figure 3.8c demonstrates this effect with
Cp taking on the value of 0.1. The width of the comet is also dependent on the
frequency of the parasympathetic oscillator in an intuitive manner: larger values of
ωp yield wider comets because short-term variability is increased.

The power spectrum of the supine subject of Fig. 3.8a is presented in the upper
panel of Fig. 3.8d. A substantial level of both LF and HF power is displayed.
The middle panel of Fig. 3.8d shows the power spectrum of the model-generated
RR intervals. The two peaks produced by the sympathetic and the parasympathetic
oscillators with coupling intensities 0.3 and 0.05 are clearly shown. The lower
panel of Fig. 3.8d displays the power spectrum of Fig. 3.8c, which has an increased
value of 0.1 for the parasympathetic oscillator’s coupling.

A significant difference exists between the Poincaré plots of the model-generated
RR intervals and the RR intervals obtained clinically: the density of the points in
the simulated cases is skewed towards the lower left corner of the plot while actual
RR intervals are more centrally distributed. The core of this discrepancy lies in
the highly periodic nature of the oscillators. Fluctuations produced by the actual
autonomic nervous system are not pure sinusoidal signals. Instead they resemble a
random walk which obtains low- and high RR interval lengths occasionally while
usually fluctuating about a mean value without deviating widely. It is important to
observe that the lengths and widths of Fig. 3.8a and b are roughly the same. Our
model shows it is this feature that corresponds to the balance of low- and high-
frequency power being similar, not the dispersion of the points within the Poincaré
plot.

At this point it is interesting to consider how well the results of the previous
section apply to actual data obtained from subjects under various autonomic
conditions. The results are not expected to apply completely as they stem from
a model of a discrete spectrum. However, the general principles identified by
the analysis should be evident. That is, the length of the Poincaré plot should
be approximately equivalently dependent upon low-frequency modulation and
high-frequency modulation. In addition, the width is expected to be dependent
upon high-frequency modulation more strongly than on low-frequency modulation.
To these predictions, we apply the equations developed in the previous section to
RR intervals obtained from subjects under various autonomic conditions.

3.5.4 Data Set Acquisition

We employ the data set of a previous study [94] as it contains subjects over a
wide range of autonomic conditions. The data set consists of ten healthy subjects
(five female, five male) aged between 20 and 40 years (mean 30.2, sd 7.2). Each
subject underwent four autonomic perturbations: baseline study with subjects in
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the supine position in a quite environment; seventy-degree head-up tilt which
increases sympathetic activity and decreases parasympathetic activity; atropine
infusion which markedly decreases parasympathetic nervous system activity and
transdermal scopolamine which increases parasympathetic nervous activity. In all,
40 records were collected, each containing 1,024 RR intervals.

3.5.5 Data Set Analysis

For each data set, the length and width of the Poincaré plot and the LF and
HF power were calculated. The length was calculated by L = 2SDRR, and the
width by W =

√
2SDSD as can be derived from simple geometry. The LF and HF

parameters were calculated by using the AR technique with the modified covariance
technique [123]. The bands were LF = 0.04–0.15 Hz and HF = 0.15–0.4 Hz. First,
we derive the length and width of the Poincaré plot from the LF and HF power
by using Eq. 3.22 and compare the derived length and width with the actual length
and width by plotting them against each other as scatter plot. The closer the values
are to being identical, the closer the scatter plot resembles the line of identity.
Equation 3.22 requires the values of the constants ωs, ωp and HR. The value of HR
is calculated as the inverse of the average RR interval. The choice of suitable values
for ωs and ωp is akin to the choice of the LF and HF frequency bands. The mid-
frequencies of the bands would seem the most appropriate choice, i.e., ωs = 2π(0.1)
and ωp = 2π(0.28) radians/s.

Figure 3.9a displays the derived length on the vertical axis and the actual length
on the horizontal axis. The points do reflect the line of identity; however, there exists
a fair amount of variability which indicates that Eq. 3.22 does not hold entirely.
The goodness of fit to the line of identity can be quantified by the correlation
coefficient. Figure 3.9a has a correlation coefficient of 0.94 indicating that Eq. 3.22
holds reasonably well. In other words, Eq. 3.22 is explaining the main trend of the
actual length very well. Equation 3.22 has a tendency to underestimate the actual
length. This can be partially explained by noting that the length is a measure of all
the modulation; the LF and HF measures, however, only consider the power from
0.04 Hz upwards. The derived width vs. the actual width is plotted on Fig. 3.9b.
A very good fit with a correlation coefficient of 0.97 occurs. This indicates that
Eq. 3.22 is very good at predicting the width of a Poincaré plot. The superior
performance of the width over the length can be explained by noting that the
hypothesized reason for the underestimation of length is that the very-low-frequency
power has been ignored. Ignoring the very-low-frequency power will not adversely
affect the width as it is dominated by high-frequency power (HF).

The same analysis is now repeated for the reverse situation. Starting with the
length and width of a Poincaré plot, we derive the LF and HF power using Eq. 3.23
and assign LF = CS and HF = CP. The derived values of LF and HF are then
compared to the actual LF and HF values calculated by standard spectral analysis.
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Fig. 3.9 Comparisons of derived parameters versus actual values. Correlation coefficients are: plot
(a) 0.94, plot (b) 0.97, plot (c) 0.81 and plot (d) 0.94. Figure adapted from Brennan et al. [118]

Figure 3.9c displays the actual LF power vs. the derived LF power. The correlation
coefficient of the plot is 0.81, which indicates a reasonable linear fit. However, it
is clear that the main trend of the relationship between LF power and length and
width is clearly captured by Eq. 3.23. Figure 3.9d compares derived HF power with
actual HF power. A correlation coefficient of 0.93 indicates that Eq. 3.23 explains
the dependency of HF on the length and width very well.

These results clearly show that the principles identified from Eq. 3.22 and
Eq. 3.23 are present for actual HRV data. It must be remembered that the equations
are not expected to hold perfectly as they were derived for the HRV model under
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the assumption of two modulation frequencies. The fact that a discrete spectrum
consisting of only two components can explain so much about the relationships
between LF, HF, length and width of a Poincaré plot is remarkable.

3.5.6 Poincaré Plot Morphology for Real Data

In this section we discuss the significance of the length and width descriptors
of Poincaré plots. The results of the previous sections imply that the width is a
measure of short-term variability and the length is a measure of total variability. This
result has consequences for the correlations between frequency-domain indices and
Poincaré plot indices. Attempting to correlate LF power with Poincaré length (or
equivalent SDNN measures) will explain only part of the variations in Poincaré
length. Substantial portions of the variations are due to the codependency with
HF power and will appear as uncorrelated noise. In data sets where significant
variations in both LF and HF power are present, our model predicts that Poincaré
length will correlate reasonably well with both LF and HF powers; however, it
will correlate highly with neither due to the variations introduced by the other.
For Poincaré width, the dependencies upon HF power are stronger than those
of LF power. A strong correlation is expected when comparing HF power to
Poincaré width, as the variations due to LF power will be small. LF power should
correlate with Poincaré width, albeit at low levels, because LF power does influence
the width, but the variations present due to HF power are large and reduce the
correlation coefficient markedly.

Many of these results have already been shown experimentally. Specifically,
our findings corroborate the findings of Otzenberger et al. [127], who found that
SDNN (Poincaré length) correlated with both LF and HF power, and RMSSD
(Poincaré width) correlated with HF power and to a lesser extent, LF power. Tullppo
et al. [111], who investigated HRV and exercise, also present experimental results
which agree with our findings: SDNN correlated almost equally with HF (Pearson’s
correlation coefficient: r =0.75) and LF (r =0.72) power, and RMSSD correlated
highly with HF power (r =0.97) and to a lesser yet significant extent with LF power
(r =0.65).

3.6 Conclusion

Poincaré plots are generated from the model and compared to Poincaré plots
generated from subjects under various autonomic conditions. Now one can clearly
understand how various autonomic regimes appear on the Poincaré plot through
the use of the model. Traditionally, researchers have identified length and width
of Poincaré plots with low- and high-frequency powers, respectively, of the HRV
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signal. However, with the use of our model, we establish that the length and
width are not separately related, but are a weighted combination of low- and high-
frequency power. This investigation provides a theoretical link between frequency-
domain spectral analysis techniques and time-domain Poincaré plot analysis.

To determine the degree to which our results generalize to actual HRV data we
applied the model-based formulae to a set of clinical data. The results indicate
that the formulae do identify clear trends in the relationships between the spectral
components and Poincaré length and width. This gives definitive evidence that,
for HRV data, the length is a display of total modulation and the width indicates
predominately short-term modulation. In summary, this chapter provides clear
mathematical insight into the nature of observed data.



Chapter 4
Poincaré Plot in Capturing Nonlinear Temporal
Dynamics of HRV

Abstract The method and importance of capturing temporal variation using
standard descriptors (SD1 and SD2) of Poincaré plot have been presented in Chap. 2.
However, this does not include the temporal variation at point-to-point level of
the plot. In addition, SD1 and SD2 descriptors are linear statistics (Brennan et al.,
IEEE Trans. Biomed. Eng. 48:1342–1347, 2001) and hence the measures do not
directly quantify the nonlinear temporal variations in the time series contained in
the Poincaré plot. Although SD1/SD2 is considered as a nonlinear measure, it yields
mixed results when applied to the data sets that form multiple clusters in a Poincaré
plot due to complex dynamic behaviours (Brennan et al., IEEE Trans. Biomed. Eng.
48:1342–1347, 2001). This is because the technique relies on the existence of a
single cluster or a defined pattern (Christopher et al., Biophys. J. 82:206–214, 2002;
Schechtman et al., Pediatr. Res. 40:571–577, 1996). Therefore, further studies are
required in defining new descriptors for analysing temporal variability of time series
using Poincaré plots. Another driving force behind this study is the fact that the
visual pattern of the Poincaré plot of heart rate variability signals relies upon clinical
scenarios and the application of the existing standard descriptors in various studies
has resulted in limited success.

4.1 Introduction

The method and importance of capturing temporal variation using standard
descriptors (SD1 and SD2) of Poincaré plot have been presented in Chap. 2.
However, this does not include the temporal variation at point-to-point level of
the plot. In addition, SD1 and SD2 descriptors are linear statistics [112] and
hence the measures do not directly quantify the nonlinear temporal variations in
the time series contained in the Poincaré plot. Although SD1/SD2 is considered
as a nonlinear measure, it yields mixed results when applied to the data sets that
form multiple clusters in a Poincaré plot due to complex dynamic behaviours [112].
This is because the technique relies on the existence of a single cluster or a defined
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pattern [128,129]. Therefore, further studies are required in defining new descriptors
for analysing temporal variability of time series using Poincaré plots. Another
driving force behind this study is the fact that the visual pattern of the Poincaré plot
of heart rate variability signals relies upon clinical scenarios and the application of
the existing standard descriptors in various studies has resulted in limited success.

The inherent assumption behind using consecutive RR points in Poincaré plot is
that the “present-RR-interval” significantly influences the “following-RR-interval”.
Various researchers reported that varying lags of Poincaré plot give better under-
standing about the autonomic control of the heart rate that influence the short-term
and long-term variability of the heart rate [57,91]. A system can have different short-
and long-term correlations on different time scales. When the sampling interval is
less than the short-time correlation length, then these short-time correlations can
be predominantly seen [130]. So in the context of short- or long-term variability,
any point can influence at least a few successive points. Lerma et al. [131] reported
that the current RR interval can influence up to approximately eight subsequent
RR intervals in the context of the short-term variability. In another study, Thakre
and Smith examined the theoretical demand with different lags and showed that
there is a curvilinear relationship between lag Poincaré plot indices for normal
subjects, which is lost in congestive heart failure (CHF) patients [132]. The relation
between lags and width of Poincaré plot (SD1) has been reported by Goshvarpour
et al. [133]. Therefore, measurement from a series of lagged Poincaré plots (multiple
lag correlation) can potentially provide more information about the behaviour of the
underlying system than the conventional lag-1 plot measurements [131].

The hypothesis of this chapter is that any descriptor that captures temporal
information and is a function of multiple lag correlation, would provide more insight
into the system rather than conventional measurements of variability of Poincaré
plot (SD1 and SD2), which are parameters of a lag-1 correlation. In order to test this
hypothesis, we propose a novel descriptor, complex correlation measure (CCM), for
Poincaré plot that can be applied to measure the temporal variation of the Poincaré
plot and is a function of multiple lag correlation of the signal.

4.2 Nonlinear Dynamics

4.3 Limitation of Standard Descriptors of Poincaré Plot

SD1 and SD2 represent the distribution of the signal in 2D space and carry only
spatial (shape) information. It should be noted that many possible RR interval series
result in identical plot with exactly similar SD1 and SD2 values irrespective of
different temporal structures. For example, two signals with similar SD1 and SD2
values, top panels (Fig. 4.1), are different in terms of temporal structure, bottom
panels (Fig. 4.1).
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Fig. 4.1 Two different time series of length N (N = 1,000) with similar SD1 and SD2 values are
shown (m = 2) on top panel (a and b). In the bottom panel (c and d) the underlying dynamics of
first 20 points of both time series are shown to be different

Lerma et al. have shown that the measurement from a multiple lag Poincaré plot
provides more information than any measure from single lag Poincaré plot [131].
Indeed, the Poincaré plot at any lag-m is more of a generalized scenario, where
other levels of temporal variation of the dynamic system are hidden. As shown in
equation sets 2.14 and 2.15, for any m, the descriptors SD1 and SD2 only indicate m
lag correlation information of the plot. This essentially conveys overall behaviour of
the system neglecting its detail temporal variation. The Poincaré plot of RR interval
time series for three different lags is shown in Fig. 4.2. From the plots, it is obvious
that for any time-series signal, different lag plots better reveal the behaviour of the
signal than the single lag plot. The CCM is not only related to the SD1 and SD2, but
it also provides temporal information, which can be used to quantify the temporal
dynamics of the system.
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Fig. 4.2 Sequence of points (RRn, RRn+τ ) plotted and the triangle formed by each consecutive
three points. Here, m = {1,2,3} and RR ≡ {u1,u2, . . . . . . ,uN}.

4.4 Complex Correlation Measures in Poincaré Plot:
A Novel Nonlinear Descriptor

The proposed descriptor CCM is computed using a moving window which embeds
the temporal information of the signal. This moving window is comprised of three
consecutive points from the Poincaré plot and the area of the triangle formed by
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these three points is computed. This area measures the temporal variation of the
points in the window. If three points are aligned on a line then the area is zero,
which represents the linear alignment of the points. Moreover, since the individual
measure involves three points of the two-dimensional plot, it is comprised of at
least four different points of the time series for lag m = 1 and at most six points
in case of lag m ≥ 3. Hence the measure conveys information about four different
lag correlations of the signal. Now, suppose the ith moving window is comprised
of points a(x1,y1), b(x2,y2) and c(x3,y3) then the area of the triangle (A) for ith
window can be computed using the following determinant:

A(i) =
1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
, (4.1)

where A is defined on the real line ℜ and

A(i) = 0, if points a, b and c are on a straight line
> 0, counterclockwise orientation the points a, b and c
< 0, clockwise orientation of the points a, b and c.

If Poincaré plot is composed of N points then the temporal variation of the plot,
termed as CCM, is composed of all overlapping three point windows and can be
calculated as

CCM(m) =
1

Cn(N − 2)

N−2

∑
i=1

‖A(i)‖, (4.2)

where m represents lag of Poincaré plot and Cn is the normalizing constant which
is defined as Cn = π ∗ SD1 ∗ SD2 and represents the area of the fitted ellipse over
Poincaré plot. The lengths of major and minor axis of the ellipse are 2SD1 and
2SD2.

Let the RR time series be composed of N RR interval values and defined as
RR ≡ u1,u2, . . . ,uN . As shown in Fig. 4.2, the lag-1 Poincaré plot consists of N − 1
numbers of 2D set of points PP, where PP ∈ {ℜ,ℜ} can be represented by PP ≡
{(u1,u2),(u2,u3), . . . ,(uN−1,uN)} and similarly for lag of m, N −m numbers of 2D
points are expressed as

PP ≡ {(u1,u1 +m),(u2,u2 +m), . . . ,(uN−m,uN)}.

Hence, for lag-m Poincaré plot, the first window will be composed of points
{(u1,u1+m),(u2,u2+m),(u3,u3+m)} and from Eq. 4.1, the area A can be calculated as

A(1) =
1
2
[u1u2+m − u1u3+m + u3u1+m − u2u1+m + u2u3+m − u3u2+m]. (4.3)
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Similarly the second and (N −m − 2)th window is composed of points {(u2,
u2+m),(u3,u3+m),(u4,u4+m)} and {(uN−m−2,uN−2),(uN−m−1,uN−1),(uN−m,uN)}
respectively. Hence, the area, A, for second and (N − m − 2)th window can be
calculated as

A(2) =
1
2
[u2u3+m − u2u4+m + u4u2+m − u3u2+m

+u3u4+m − u4u3+m] (4.4)

A(N −m− 2) =
1
2
[uN−m−2uN−1 − uN−m−2uN + uN−muN−2

−uN−m−1uN−2 + uN−m−1uN − uN−muN−1]. (4.5)

Using Eqs. 4.2–4.5, CCM(m) is calculated as follows:

CCM(m) =
1

2Cn(N−2)

[
uN−muN−1+u2u1+m−uN−1−muN−u1u2+m+

N−m

∑
i=3

uiui−2+m

−2
N−m

∑
i=2

uiui−1+m+2
N−1−m

∑
i=1

uiui+1+m−
N−2−m

∑
i=1

uiui+2+m

]
. (4.6)

Since RR intervals are discrete signal, the autocorrelation at lag m = j can be
calculated as

γRR( j) =
N

∑
n=1

RRnRRn+ j. (4.7)

Using Eqs. 2.14, 2.15, 4.6 and 4.7, CCM(m) can now be expressed as a function of
autocorrelation at different lags. Hence,

CCM(m) = F [γRR(0),γRR(m− 2),γRR(m− 1),γRR(m+ 1),γRR(m+ 2)] . (4.8)

In the Eq. 4.8, CCM(m) represents the point-to-point variation of the Poincaré plot
with lag-m as a function of autocorrelation of lags 0, m−2, m−1, m+1 and m+2.
This supports our hypothesis that CCM is measured using multiple lag correlation of
the signal rather than single lag. For the conventional lag-1 Poincaré plot CCM(1)
can be represented as

CCM(1) = F [γRR(−1),γRR(0),γRR(2),γRR(3)] . (4.9)
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4.5 Mathematical Analysis of CCM

The CCM has been mathematically defined and its relation with multiple lag
correlation information of the signal has been presented in the previous section.
In this section, we explore the different properties of CCM with synthetic RR
interval data.

4.5.1 Sensitivity Analysis

The sensitivity is defined as the rate of change of the value due to the change in
temporal structure of the signal. The change in temporal structure of the signal in
a window is achieved by surrogating the signal (i.e. data points) in that window.
Sensitivity analysis of CCM will reveal the minimum length of the signal required
to obtain a consistent CCM value. From the mathematical definition of CCM, we
anticipated that CCM would be more sensitive to changes in temporal structure
within the signal than the standard descriptors. We have compared the sensitivity
of CCM with standard descriptors (SD1, SD2) in order to validate our assumption.
A synthetic RR interval (rr02) time-series data from the open-access Physionet
database [134] is used to validate the sensitivity analysis.

4.5.1.1 Sensitivity to Changes in Window Length

The sensitivity of CCM with different window lengths was analysed in order to
define how it was affected by increasing the amount of change in temporal structure.
The minimum number of samples required for using CCM as a measurement tool
can also be defined using this analysis. The sensitivity to changes in window
length is measured by increasing the window length in each step, changing the
temporal structure of that window using surrogation and then calculating the CCM
of the changed signal. Increased window length effectively increases the number of
surrogating points, which results in increased probability of the amount of change in
temporal structure of the time-series signal. At each step the number of surrogated
points is increased by 50. We calculated SD1, SD2 and CCM of the RR interval
signal by increasing the number of surrogating points at a time. For a selected
window length, we have shuffled the points 30 times, to minimize impact of bias
of randomization, and calculated all descriptors each time after shuffling. Finally
the surrogated values of descriptors were taken as a mean of the calculated values.
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number of shuffled points increased by 50. Each time the signal has been shuffled for 30 times and
its mean has been taken to calculated the sensitivity

Then the sensitivity of descriptors ΔSD1j, ΔSD2j and ΔCCM j was calculated using
Eqs. 4.10–4.12:

ΔSD1j =
SD1j − SD10

SD10
(4.10)

ΔSD2j =
SD2j − SD20

SD20
(4.11)

ΔCCM j =
CCM j −CCM0

CCM0
, (4.12)

where SD10 = 0.36, SD20 = 0.08 and CCM0 = 0.16 were the parameters measured
for the original data set without surrogation and j represents the window number
whose data were surrogated and where, SD1j, SD2j and CCM j represent the SD1,
SD2 and CCM values, respectively, after surrogation of jth step.

The change of descriptors SD1, SD2 and CCM with increasing number of
shuffled RR intervals is presented in Fig. 4.3. From Fig. 4.3 it is obvious that the
rate of change with number of shuffled RR intervals was higher for CCM at any
point than SD1 and SD2. Therefore, we can conclude that CCM is more sensitive
than SD1 and SD2 with respect to change in temporal structure or the change in
autocorrelation of the signal which was earlier reported by Karmakar et al. [135].
Moreover, sensitivity of CCM with small number of RR intervals increases its
applicability to short-length HRV signal analysis.
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4.5.1.2 Homogeneity to Changes in Temporal Structure

In order to observe the homogeneity of sensitivity of CCM with changes in temporal
structure over the whole timeline of the signal, we have used a fixed-length moving
window, changed the temporal structure of that window using surrogation and then
calculated CCM value of the changed signal. We have divided the signal into 20
windows with 200 samples in each of them. To minimize the bias from surrogated
values, we have shuffled the points of each window 30 times and calculated all
descriptors each time after shuffling. Finally, the surrogated values of descriptors
were taken as a mean of the calculated values. Since we divided the entire signal
into 20 windows, it resulted in 20 values of SD1, SD2 and CCM. The sensitivity of
descriptors ΔSD1j, ΔSD2j and ΔCCM j was calculated using Eqs. 4.10–4.12. Similar
to the previous section, SD10, SD20 and CCM0 were the parameters measured for
the original data set without surrogation and j represents the window number whose
data were surrogated.

Value of ΔCCM is significantly higher than ΔSD1 and ΔSD2 which indicates
that CCM is much more sensitive than SD1 and SD2 to the underlying temporal
structure of the data (Fig. 4.4). This supports the mathematical definition of CCM as
a sensitive measure of temporal variation of the signal. The little variation in ΔCCM
value shows that different temporal position of changes in temporal structure does
not impact the CCM value, which means the homogeneity of CCM over time. Hence,
CCM reflects changes in temporal structure of the signal irrespective of the time.
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4.5.1.3 Examining the Influence of Various lags of Poincaré Plot

One of the variations commonly used in order to optimize the use of the Poincaré
plot as a quantitative tool is the lagged Poincaré plot [112, 136]. In several studies,
it is also reported that the use of quantitative tool on multiple lagged Poincaré
plot might be useful to distinguish normal from pathological heart rate signal
[131, 132, 136]. Therefore, analysis of lag response might give a comprehensive
idea about the use of CCM, as a new quantitative tool, in different physiological
conditions.

To quantify the influence of various lags of Poincaré plot on SD1, SD2 and
CCM, values of all descriptors were calculated for different time delays or lags
(m was varied in increments from 1 to 100). At each step, lag-m Poincaré plot was
constructed and then SD1, SD2 and CCM values were calculated for the plot.

The relationship of CCM, SD1 and SD2 with different lags (m was varied from
1 to 100) is shown in Fig. 4.5. A unit lag is used to create the Poincaré plot which
confirms the maximum linear correlation among data points. This lag selection may
have obscured the low-level nonlinearities of the signal and as a result CCM may be
unable to show better performance over standard poincaré descriptors. In contrast,
at higher lags, the standard descriptors are unable to capture the system dynamics.
It is also established in the literature that studying behaviour of descriptors as a
function of lags is more informative [132]. In our analysis, we have found that over
different lags, CCM shows more variability than SD1 and SD2. Among the three
descriptors the change in values for CCM was higher than both SD1 and SD2 which
again supports our claim of sensitivity of CCM with signal dynamics. Hence, we
conclude that the change in underlying temporal structure due to lag of the Poincaré
plot has higher impact on CCM than the traditional descriptors.



4.6 Physiological Relevance of CCM with Cardiovascular System 57

4.6 Physiological Relevance of CCM with Cardiovascular
System

In this chapter, we demonstrate the physiological significance of the novel measure
CCM by analysing the effects of perturbations of autonomic function on Poincaré
plot descriptors (SD1 and SD2) in HRV signal of young healthy human subjects
caused by the 70◦ head-up tilt test, atropine infusion and transdermal scopolamine
patch administration. A surrogate analysis is also performed on the data to show
that changes found in different phases of the activity are due to perturbed autonomic
activity rather than noise.

4.6.1 Subjects and Study Design

In this analysis, five subjects were studied with normal sinus rhythm, who did not
smoke, had no cardiovascular abnormalities and were not taking any medications.
Subjects were aged between 20 and 40 years (30.2± 7.2 years). All studies were
performed at the same time of the day without any disturbances. No respiration
control was performed because all phases of the study were conducted in the resting
state. An intravenous cannula was inserted into an antecubital vein and subjects then
rested 20 min before commencement of data collection. The length of the study
varied from 10 to 20 min. For autonomic perturbations the following sequence of
protocol was performed. At least 20 min was allowed between each phase to permit
the heart rate to return to baseline. Details of the study design and data collection
were published in [94]. The sequence of phases was maintained strictly as follows:

Baseline Study

All baseline studies were conducted in subjects in the post-absorptive state after
resting for 10 min in the supine position.

Seventy Degree Head-Up Tilt

Data were collected after subjects were tilted 70◦ on a motorized table. This
manoeuvre increases sympathetic and decreases parasympathetic nervous system
activity [137]. To permit the heart rate to stabilize at new position, data were
collected 5 min after the subjects were tilted.
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Atropine Infusion

Atropine sulphate (1.2 mg) was added to 50 ml of 5 intravenous dextrose and infused
at a rate of 0.12 mg/min for 5 min and then at a rate of 0.24 mg/min until completion
of this phase of study. Use of this dose regimen reduces parasympathetic nervous
system activity significantly [138]. After 10 min of infusion of atropine, the data
collection started.

Transdermal Scopolamine

One week after the above studies, a low-dose transdermal scopolamine patch
(hyoscine 1.5 mg) was applied overnight to an undamaged hair-free area of the skin
behind the ear. The patch remained in situ for the duration of this period of the
study. La Rovere et al. have shown that low-dose transdermal scopolamine increases
parasympathetic nervous system activity [139].

4.6.2 Results

The RR intervals and the corresponding Poincaré plot for all four phases of the
experiment with the same subject are shown in Fig. 4.6. From Fig. 4.6 it is eminent
that the atropine infusion strongly reduces the size of plot by reducing both the RR
interval (increase in heart rate) and its variation. Whereas, the head-up tilt position
reduces the RR interval (increase in heart rate) variability markedly with respect to
the baseline. In contrast, use of low-dose transdermal scopolamine increases the RR
interval (reduces heart rate) and its variability resulted into a wider Poincaré plot in
terms of width in both directions (perpendicular to line of identity and along the line
of identity).

The mean and standard deviation of heart rate variability features of all subjects
in all four phases are summarized in Table 4.1. Short-term variability (SD1) was
increased in scopolamine phase and decreased in atropine phase. A similar trend
was also found for long-term variability (SD2). Changes of SD1 values from phase
to phase were much higher than that of SD2. CCM value was also minimum
in atropine phase and maximum at scopolamine phase. Changes in mean values
of CCM between study phases were higher than both SD1 and SD2 (Table 4.1).
Moreover, changes in CCM values in atropine, 70◦ head-up tilt and scopolamine
phases from baseline are found significant (p < 0.01). Whereas, SD1 values were
significantly different in atropine and 70◦ Head-up tilt phases and SD2 values only
in atropine phase.

The errorbars of log-scaled SD1, SD2 and CCM values for four groups of subjects
are shown in Fig. 4.7. The atropine administration resulted into reduction in mean
value of SD1 (SD of ΔRR) all subjects which was also reported by Kamen et al. [94].
The similar effect was also found for SD2 and CCM. The use of scopolamine patch
increased both the width and height of the Poincaré plot which resulted in the
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Poincaré plot



60 4 Poincaré Plot in Capturing Nonlinear Temporal Dynamics of HRV

Table 4.1 Mean and standard deviation SD of values of all descriptors for lag-1 Poincaré plot

SD1 SD2 CCM
Feature (mean ± sd) (ms) (mean ± sd) (ms) (mean ± sd)

Atropine 4.45 ± 2.45* 43.11 ± 13.79* 3.88E-02 ± 1.05E−02*
Head-up tilt 11.96 ± 5.47 70.77 ± 13.98 6.29E-02 ± 2.08E−02*
Baseline 28.74 ± 9.28 85.94 ± 11.27 1.50E-01 ± 3.40E-02
Scopolamine 69.90 ± 21.25* 103.05 ± 20.05 2.75E-01 ± 2.14E−02*

SD1, SD2 and CCM values of all subjects (N = 5) were calculated for four phases as described in
Sect. 4.6.1. * indicates the value of the feature in corresponding phase is significantly (p < 0.01)
different from baseline phase using Wilcoxon rank-sum test

increase in mean values of CCM as well as SD1 and SD2. All subjects have shown a
marked reduction in SD1, SD2 and CCM values in 70◦ head-up tilt phase compared
to the baseline.

4.6.3 Physiological Relevance of CCM

Quantitative Poincaré plot analysis was used to assess the changes in HRV during
parasympathetic blockade [111] and compared the results with power spectral
analysis of HRV, which was the commonly used method in the measurement of
sympathovagal interaction [13, 103, 111, 140]. It was also reported that Poincaré
analysis method can provide the heart rate dynamics that is not detected by the
conventional time-domain methods [111]. The present quantitative analysis was
performed to measure the instantaneous beat-to-beat variance of RR intervals (SD1),
the long-term continuous variance of all RR intervals (SD2) and the variation
in temporal structure of all RR intervals (CCM). Instantaneous changes in RR
intervals are mediated by vagal efferent activity, because vagal effects on the sinus
node are known to develop faster than sympathetically mediated effects [101, 124].
The maximum reduction in SD1 during atropine infusion compared to baseline
values confirms that SD1 quantifies the vagal modulation of heart rate, which was
also reported by Kamen et al. [94] and Tulppo et al. [111]. Similar reduction in CCM
value could be observed (Table 4.1 and Fig. 4.7), which indicates that CCM might
correlate the parasympathetic nervous system activity. The lowest value of CCM
has also been found during atropine infusion which reduced the parasympathetic
activity and reduces instantaneous changes in HRV signal. Moreover, significant
(p < 0.01) change in CCM values in all phases from baseline phase compared to
SD1 and SD2 indicates that CCM is more sensitive to changes in parasympathetic
activity (Table 4.1). On the contrary, changes in SD1 values are insignificant in 70◦
head-up tilt phase and changes in SD2 values are insignificant both in 70◦ head-up
tilt and scopolamine phases.

Reciprocal changes in sympathetic and parasympathetic activity occur during
head-up tilt phase. The RR interval decreases and the high-frequency power of
RR intervals decreases during the head-up tilt phase as evidence of withdrawal
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of vagal activity (decrease in parasympathetic activity) [104, 141, 142]. The short-
term variability measure of Poincaré plot (SD1) also decreases and correlates with
high-frequency power as reported by Kamen et al. [94]. In this study, SD1 value
decreased during 70◦ head-up tilt phase compared to baseline, which supports the
results reported by previous studies [94, 137]. The CCM value has also decreased
in 70◦ head-up tilt phase compared to baseline, which indicates that CCM value
is modulated by the vagal tone (parasympathetic activity). Therefore, changes in
autonomic regulation caused by 70◦ head-up tilt phase resulted in concordant
changes in the temporal structure of the Poincaré plot of RR intervals.

The low-dose transdermal scopolamine patch may decrease heart rate by a
paradoxical vagomimetic effect [139]. Delivery by transdermal patch substantially
increases both baseline and reflexly augmented levels of cardiac parasympathetic
activity over 24 h in normal subjects [143,144]. Both time-domain HRV (mean, SD)
and frequency-domain HRV (high-frequency power) increased to a greater extent
during administration of low-dose scopolamine, which indicates the increase in
parasympathetic activity [139]. The increase in parasympathetic activity decreases
the heart rate and increases the RR interval as well as instantaneous variance in the
RR, as measured by SD1 of Poincaré plot. The increased value of SD1 correlates
with increase high-frequency power and supported by the previous study reported
by Kamen et al. [94]. In this study, the variability in the temporal structure of the
Poincaré plot (measured as CCM) was also found to be increased with increase in
parasympathetic activity during administration of low-dose scopolamine (Fig. 4.7,
Table 4.1). The increase in CCM value indicates that it reflects the change in
parasympathetic activity harmoniously.

4.7 Clinical Case Studies Using CCM of Poincaré Plot

In order to validate the proposed measure “CCM” two case studies were conducted
on RR interval data. The data from MIT-BIH Physionet database are [145] used in
the analysis. The medical fraternity has utilized Poincaré plot, using both qualitative
and quantitative approaches, for detecting and monitoring arrhythmia. Compared to
arrhythmia, fewer attempts have been made to utilize Poincaré plot to evaluate CHF.
In this study, we have analysed the performance of CCM and compared it with that
of SD1 and SD2 for recognizing both arrhythmia and CHF using HRV signals.

4.7.1 HRV Studies of Arrhythmia and Normal Sinus Rhythm

In this study, we have used 54 long-term ECG recordings of subjects in normal sinus
rhythm (30 men, aged 28.5–76, and 24 women, aged 58–73) from Physionet Normal
Sinus Rhythm database [145]. Furthermore, we have also used NHLBI-sponsored
cardiac arrhythmia suppression trial (CAST) RR-Interval Sub-study database for
the arrhythmia data set from Physionet. Subjects of CAST database had an acute
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myocardial infarction (MI) within the preceding 2 years and 6 or more ventricular
premature complexes (PVCs) per hour during a pre-treatment (qualifying) long-term
ECG (Holter) recording. Those subjects enrolled within 90 days of the index MI
were required to have left ventricular ejection fractions less than or equal to 55 %,
while those enrolled after this 90 day window were required to have an ejection
fraction less than or equal to 40 %.

The database is divided into three different study groups, among which we have
used the Encainide (e) group data sets for our study. From that group we have
chosen 272 subjects belonging to subgroup baseline (no medication). The original
long-term ECG recordings were digitized at 128 Hz, and the beat annotations were
obtained by automated analysis with manual review and correction [145]. lag-1
Poincaré plots were constructed for both normal and arrhythmia subjects and the
new measure CCM was computed along with SD1 and SD2. The SD1 and SD2 were
calculated to characterize the distribution of the plots, whereas CCM values were
used for characterizing the temporal structure of the plots.

Figure 4.8a represents box-whiskers (BW) plot for log(SD1) and it is obvi-
ous that boxes (interquartile range) of normal and arrhythmia subjects are non-
overlapping. But the whiskers (upper quartile) of normal subjects completely
overlap with the whiskers (lower quartile) of the arrhythmia subjects. In Fig. 4.8b,
the BW plot of log(SD2) is shown and it is apparent that the BW of normal subjects
completely overlapped with the whiskers (lower quartile) of the arrhythmia subjects.
But the box of arrhythmia subjects is still non-overlapping with the whiskers (upper
quartile) of the normal subjects. In Fig. 4.8c, the BW plot of log(CCM) is shown
and it is obvious that both of them are non-overlapping and distinct.

The p values obtained from ANOVA analysis between two groups for SD1, SD2
and CCM are given in Table 4.2. Using ANOVA, for CCM, p = 6.28× 10−18 is
obtained, whereas for SD1 and SD2, it is 7.6× 10−3 and 8.5× 10−3, respectively.
In case of p < 0.001 to be considered as significant, only CCM would show the
significant difference between two groups which indicates that CCM is a better
descriptor of HRV signal than SD1 and SD2 when comparing arrhythmia with
normal sinus rhythm subjects.

4.7.2 HRV Studies of Congestive Heart Failure and Normal
Sinus Rhythm

For this case study, we have used 29 long-term ECG recordings of subjects
(aged 34 to 79) with CHF (NYHA classes I, II and III) from Physionet CHF
database along with 54 ECG recordings of subjects with normal sinus rhythm as
discussed earlier [145]. The same ECG acquisition with beat annotations was used
as discussed in the previous case study. Similar to the previous case study, lag-1
Poincaré plots were constructed for both normal and CHF subjects and the new
descriptor CCM was computed as per traditional descriptors.
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Fig. 4.8 Box-whiskers plot of (a) SD1, (b) SD2 and (c) CCM for normal sinus rhythm (NSR,
n = 54) and arrhythmia (n = 272) subjects

Figure 4.9a represents BW plot for log(SD1) and it is apparent that boxes
(interquartile range) of normal and CHF subjects are overlapping. The BW of
normal subjects is completely overlapped with the box and whisker (lower quartile)
of the CHF subjects. In Fig. 4.9b, the box-whiskers plot of log(SD2) is shown and
boxes are apparently non-overlapped. But the BW plot of normal subjects mostly
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Table 4.2 Mean ± standard deviation of SD1, SD2 and CCM for
normal and arrhythmia subjects

SD1 SD2 CCM

Normal 0.03 ± 0.02 0.19 ± 0.04 0.05 ± 0.03
arrhythmia 1.92 ± 5.18 2.30 ± 5.86 0.26 ± 0.08
p value (ANOVA) 7.60E−3 8.50E−3 6.28E−18

p values from ANOVA analysis are given in the last row

overlaps with the whisker (upper quartile) of the CHF subjects. In Fig. 4.9c, the BW
plot of log(CCM) is shown to be non-overlapping and only the upper quartile (box)
and whisker of normal subjects are overlapped with the whisker (lower quartile) of
the CHF subjects.

The values of the mean and the standard deviation for both types of subjects are
shown in Table 4.3. Last row represents the p value obtained from ANOVA analysis
between the two groups for SD1, SD2 and CCM. Though SD2 and CCM show
similar difference between the mean of two subject groups, the standard deviation
of CCM is lower which concentrates with the distribution of CCM values around
mean comparing with that of SD2. The p value, obtained from ANOVA analysis for
CCM (p = 9.07× 10−14), shows more significance than SD1 and SD2.

4.8 Critical Remarks on CCM

The main motivation for using Poincaré plot is to visualize the variability of any
time-series signal. In addition to this qualitative approach, we propose a novel
quantitative measure, CCM, to extract underlying temporal dynamics in a Poincaré
plot. Surrogate analysis showed that the standard quantitative descriptors SD1 and
SD2 were not as significantly altered as did CCM, this is shown in Fig. 4.3. Both SD1
and SD2 are second-order statistical measures [112], which are used to quantify the
dispersion of the signal perpendicular and along the line of identity, respectively.
Moreover, SD1 and SD2 are functions of lag-m correlation of the signal for any
m lag Poincaré plot. In contrast, CCM is a function of multiple lag (m− 2, m− 1,
m, m+ 1, m+ 2) correlations and hence, this measure was found to be sensitive to
changes in temporal structure of the signal as shown in Fig. 4.3.

From the theoretical definition of CCM it is obvious that the correlation
information measured in SD1 and SD2 is already present in CCM. But this does
not mean that CCM is a derived measure from existing descriptors SD1 and SD2.
Rather, CCM can be considered as an additional measure incorporating information
obtained in SD1 and SD2 (as the lag-m correlation is also included in CCM mea-
sure). In a Poincaré plot, it is expected that lag response is stronger at lower values
of m and it attenuates with increasing values of m. This is due to the dependence
of Poincaré descriptors on autocorrelation functions. The autocorrelation function
monotonically decreases with increasing lags and in case of RR interval time series,
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Fig. 4.9 Box-whiskers plot of (a) SD1, (b) SD2 and (c) CCM for normal sinus rhythm (NSR,
n = 54) and congestive heart failure (CHF, n = 29) subjects

usually the current beat influences only about six to eight successive beats [132].
In this study, we also found that all measured descriptors SD1, SD2 and CCM
changed rapidly at lower lags and the values are stabilized with higher lag values
(Fig. 4.5). Since CCM is also a function of the signals autocorrelations, it shows a
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Table 4.3 Mean ± standard deviation of SD1, SD2 and CCM for
normal and congestive heart failure (CHF) subjects

SD1 SD2 CCM

Normal 0.03 ± 0.02 0.19 ± 0.04 0.05 ± 0.03
CHF 0.04 ± 0.02 0.11 ± 0.06 0.14 ± 0.06
p value (ANOVA) 5.65E−4 5.04E−12 9.07E−14

p values from ANOVA analysis are given in the last row

similar lag response to that shown by SD1 and SD2. Therefore, CCM may be used to
study the lag response behaviour of any pathological condition in comparison with
normal subjects or controls.

HRV measure is considered to be a better marker for increased risk of arrhythmic
events than any other non-invasive measure [146, 147]. An earlier study has
shown that Poincaré plots exposed completely different 2D patterns in the case
of arrhythmia subjects [148]. These abnormal medical conditions have complex
patterns due to reduced autocorrelation of the RR intervals. Consequently due
to the changes in autocorrelation, we have found that the variability measure
using Poincaré (SD1, SD2) was higher than normal subjects (shown in Table 4.2).
Moreover, the fluctuations of these variability measures were also very high in the
case of arrhythmias. This may be due to different types of arrhythmia along with
subjective variation of HRV. In arrhythmia subjects, CCM was found to be higher
compared to NSR subjects, but the deviation due to subjective variation is much
smaller than SD1 and SD2. As a result, CCM linearly separates these two groups of
subjects which means that the effect of different types of arrhythmia and subjective
variation are reduced while using CCM than other variability measures. Therefore,
we may conclude that CCM is a better marker for recognizing arrhythmia than the
traditional variability measures of Poincaré plot.

In case study, we have also shown how the Poincaré plot can be used to
characterize CHF subjects from normal subjects using RR interval time series.
Compared to SD2, SD1 and CCM values were found to be higher in CHF subjects.
This finding might indicate that the short-term variation in HRV is higher in CHF
subjects; however, the long-term variation is reduced. Since CCM captures the signal
dynamics at short level (i.e, three points of the plot), it appears to be affected by
short-term variation of the signal in CHF subjects. In the case of recognition of CHF
subjects, although SD2 showed good results, CCM was found to be more significant
(Table 4.3).

So far the discussion indicates that CCM is an additional descriptor of Poincaré
plot along with SD1 and SD2. This also implies that CCM is a more consistent
descriptor compared to SD1 and SD2. Considering the presented case studies,
it is clear that neither SD1 nor SD2 alone can independently distinguish NSR
subjects from CHF and arrhythmia subjects. However, in the same scenario, CCM
has the ability to perform the classification task independently. This justifies the
usefulness of the proposed descriptors as a feature in a pattern recognition scenario.
Our primary motivation for detecting pathology with a novel descriptor like CCM
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rather than by observing a visual pattern is achieved, as shown by the case studies
described. Although we have not looked at the physiological interpretation of CCM,
the following remarks are relevant. The Poincaré plot reflects the autocorrelation
structure through the visual pattern of the plot. The standard descriptors SD1 and
SD2 summarize the correlation structure of RR interval data as shown by Brennan
et al. [112]. CCM is based on the autocorrelation at different lags of the time
series, hence giving an in-depth measurement of the correlation structure of the plot.
Therefore, the value of CCM decreases with increased autocorrelation of the plot.
In arrhythmia, the pattern of the Poincaré plots becomes more complex [148], thus
reducing the correlation of the signal (RRi, RRi+1). In case of healthy subjects
the value of CCM is lower than that of arrhythmic subjects. In the future, the
performance of CCM for other pathologies might be worth looking.

4.9 Conclusion

CCM is developed based on the limitation of standard descriptors SD1 and SD2.
The analysis carried out confirms the hypothesis that CCM measures the temporal
variation of the Poincaré plot. In contrast to the standard descriptors, CCM evaluates
point-to-point variation of the signal instead of gross variability. CCM is more
sensitive to changes in temporal variation of the signal and varies with different
lags of Poincaré plot. Besides the mathematical definition of CCM and analysing
properties of the measure, CCM was found to be effective in the assessment of
different physiological and pathological conditions.



Chapter 5
Heart Rate Asymmetry Analysis Using
Poincaré Plot

Abstract Physiological systems are inherently complex and subject to energy,
entropy and information fluxes across their boundaries. These systems function in
disequilibrium in healthy condition and their self-organizing capability is related to
asymmetricity of the underlying processes (Costa et al., Phys. Rev. Lett. 95:1–4,
2005). In pathological perturbations, a loss of self-organizing capability associated
with aging or disease is a function of loss of asymmetricity (Costa et al., Phys. Rev.
Lett. 95:1–4, 2005). Intuitively, asymmetry refers to the lack of symmetry; in other
words, the distribution of signals is imbalanced. This imbalance or dissimilarity can
easily be observed in geometry of the phase space plots. Asymmetry is expected to
be present in physiological systems (Chialvo and Millonas, Phys. Rev. Lett. 209:26–
30, 1995) as it is the fundamental property of a non-equilibrium system (Prigogine
and Antoniou, Ann. N. U. Acad. Sci. 879:8–28, 2007). Furthermore, asymmetry
is linked with the time irreversibility, which is reported as highest in systems with
healthy physiology (Costa et al., Phys. Rev. Lett. 95:1–4, 2005; Costa et al., Phys.
Rev. Lett. 89:062102, 2002). Thus, asymmetry represents the presence of complex
nonlinear dynamics in physiological signals. So far, very little work has been
published in defining and measuring asymmetry in physiological signals (Piskorski
and Guzik, Phys. Rev. Lett. 28:287–300, 2007).

5.1 Introduction

Physiological systems are inherently complex and subject to energy, entropy and
information fluxes across their boundaries. These systems function in disequilibrium
in healthy condition and their self-organizing capability is related to asymmetricity
of the underlying processes [149]. In pathological perturbations, a loss of self-
organizing capability associated with aging or disease is a function of loss of
asymmetricity [149]. Intuitively, asymmetry refers to the lack of symmetry; in other
words, the distribution of signals is imbalanced. This imbalance or dissimilarity can
easily be observed in geometry of the phase space plots. Asymmetry is expected
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to be present in physiological systems [150] as it is the fundamental property of
a non-equilibrium system [151]. Furthermore, asymmetry is linked with the time
irreversibility, which is reported as highest in systems with healthy physiology [149,
152]. Thus, asymmetry represents the presence of complex nonlinear dynamics in
physiological signals. So far, very little work has been published in defining and
measuring asymmetry in physiological signals [153].

Heart rate variability (HRV), the variation of the time period between consecutive
heartbeats, is thought to reflect the heart’s adaptability to the changing physiological
conditions. HRV is a net effect of extrinsic regulation and intrinsic heart rhythm. It is
however predominantly dependent on the extrinsic regulation of the heart rate [114].
The autonomic nervous system [sympathetic (SNS) and parasympathetic (PNS)]
plays a major role in regulating heart rate. Sympathetic activity is responsible for
increasing the heart rate while the parasympathetic activity lowers the heart rate.
Both of them work concurrently to control the heart rate in a given range. In practice
there is always some variability in heart rate, due to imbalances in the activity levels
of SNS and PNS. Hence, any heart rate cannot increase or decrease indefinitely
but instead will be followed by an opposite trend. However, it is unlikely that any
increase or decrease in RR interval has a reversing effect on the very next RR
interval. The speed at which the heart rate increases or decreases is variable, which
implies that the periods of increasing or decreasing RR interval are also not equal.
As a result, heart rate asymmetry (HRA) should be a common phenomena present
in a healthy heart, which is also reported by Piskorski and Guzik [153] and Porta
et al. [154] and the main focus of this chapter.

An obvious phenomenon in a typical Poincaré plot is asymmetry with respect
to the line of identity (line with 45◦ slope and passes through the origin). Porta
et al. have examined the asymmetry of Poincaré plot and shown the interrelationship
between time reversibility, pattern asymmetry and nonlinear dynamics [154].
While doing so, the authors have used three different indices, Guzik’s index
(GI), Porta’s index (PI) and Ehlers’ index (EI) [155–157]. Guzik et al. [156]
analysed the asymmetry of short-segment HRV signal (5 min) and extended to
long segment (30 min) [153]. It has been reported that about 80% of healthy
subjects showed HRA. Since asymmetry is a phenomenon of a healthy physiological
system [149,152], it is concluded that in a resting situation, the healthy heart should
always exhibit the asymmetry.

5.2 Existing Indices of HRA

The traditional asymmetry indices used in previous studies are GI, PI and EI [154–
157] . For defining all the indices, let us assume that the increasing cloud I and
decreasing cloud D are a set of points as shown below, respectively:

I ≡
M⋃

i=1

Pi(RRi,RRi+1)



5.2 Existing Indices of HRA 71

and

D ≡
K⋃

i=1

Pi(RRi,RRi+1),

where M and K represent the number of points in increasing and decreasing cloud.

5.2.1 Guzik’s Index

Guzik et al. have defined the index for measuring the HRA using the Poincaré
plot [156]. For defining GI, the distance of the plotted points from the line of identity
is used. For ith point Pi(RRi,RRi+1) of the plot, the distance can be calculated as

Di =
| RRi −RRi+1 |√

2

P+
i represents the point above the line of identity (RRi < RRi+1) and the distance Di

is denoted as D+
i , whereas P−

i is the point below the line of identity, i.e. RRi <RRi+1,
and the distance is denoted by D−

i . Guzik’s index (GI) is defined as

GI =
∑

C(P+
i )

i=1 (D+
i )

2

∑N−1
i=1 (Di)2

× 100%, (5.1)

where C(P+
i ) gives the number of points above the line of identity. In the new

definition of asymmetry, the line of identity is not used for grouping the plotted
points into two different clouds. As a result, it is not possible to calculate the new GI
using Eq. 5.1. The set of points {P+

i } used in Eq. 5.1 is equivalent to the increasing
cloud defined in the new definition of asymmetry. Hence, using the increasing cloud
I, Eq. 5.1 can be redefined using the proposed definition:

GIp =
∑M

i=1 (Di)
2

∑N−1
i=1 (Di)2

× 100%, (5.2)

where the numerator corresponds to the increasing cloud, the denominator corre-
sponds to the total number of points and GIp is the redefined Guzik’s index.

5.2.2 Porta’s Index

Porta et al. have also defined the asymmetry with respect to the line of identity [155].
Rather than considering the relative distance of the points with respect to the line of
identity, the authors have assessed asymmetry by evaluating the number of points
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below the line of identity with respect to the overall number of points not on the line
of identity. Hence, PI is defined as

PI =
C(P−

i )

C(P+
i )+C(P−

i )
× 100%. (5.3)

According to the proposed definition, the set of points P−
i is equivalent to the set of

points belonging to the decreasing cloud D. Hence, Eq. 5.3 can be redefined as:

PIp =
K

M+K
× 100%, (5.4)

where K and M are the number of points in cloud D and I, respectively.

5.2.3 Ehlers’ Index

Ehler et al. have used the first derivative of the RR interval series for assessing
asymmetry of the given distribution [157]. Skewness is measured over the first
derivative signal to estimate the asymmetry of the distribution. Hence, for RR
interval time series, it can be defined as

EI =
∑N−1

i=1 (RRi −RRi+1)
3

(∑N−1
i=1 (RRi −RRi+1)2)

3
2

. (5.5)

Ehlers’ index (EI) can be redefined with the proposed definition splitting into
positive and negative cloud as

EIp =
∑M

i=1 (Δ Ii)
3 +∑K

i=1 (ΔDi)
3

(∑N−1
i=1 (RRi −RRi+1)2)

3
2

, (5.6)

where

Δ Ii = RRi+1 −RRi,Pi(RRi,RRi+1) ∈ I

and

ΔDi = RRi −RRi+1,Pi(RRi,RRi+1) ∈ D.

Normalization of Indices

For the sake of comparison, normalization of the indices to a convenient scale is
recommended. Both GI and PI values range between 0 and 100, with the index value
of symmetry S = 50. Asymmetricity of the signal is ranked based on the difference
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of the index value from S. Index value > 50 represents that the distribution is
positively skewed, either by the magnitude or by the number of points, whereas
index value < 50 corresponds to the reverse distribution. The symmetricity in EI
(EI ∈ [−1,1]) is characterized as S= 0 and values > 0 or < 0 rank the asymmetricity
of the signal. Therefore, to compare EI with GI and PI, it is necessary to use a
normalized scale for the index value calculated. In this study, we have defined a
range, R, for the index values to define asymmetricity. The range is defined as 1%
of the difference between minimum and maximum index values, where index is
either GI, PI or EI. Now, if index ∈ (S±R) then the signal is symmetric, otherwise
asymmetric. The redefined indices (GIp, PIp and EIp) are also normalized in the
same manner.

5.3 New Definition of Asymmetry in RR Interval Time Series

The line of identity in Poincaré plot is defined as the line that passes through the
origin at an angle of 45◦ with x-axis. Therefore, any point P(x,y) on the line of
identity can be expressed as x = y. Brennan et al. have defined the line of identity
and shown that SD1 is the standard deviation perpendicular to the line of identity
and SD2 is the standard deviation of plotted points along the line of identity [112].
But the mathematical formulation given for SD1 and SD2 by Brennan et al. [112]
does not comply with the concept of line of identity which is shown by Piskorski and
Guzik [153]. Piskorski and Guzik have also shown that the line of identity defined by
Brennan et al. [112] is a line, which actually passes through the moment of inertia
or centroid of the plotted data points with slope of 45◦ [153]. The authors have
named that line as l1 and showed the difference in calculation of SD1 and SD2 with
respect to the line of identity and l1 (Fig. 5.1). The standard descriptors calculated
with respect to the line of identity and l1 show negligible difference. As the line of
identity has a special criteria x = y, Piskorski et al. suggested that the line of identity
will be the best option for measuring SD1 and SD2. In our work, we have followed
Piskorski and Guzik [153] in defining the line of identity.

The asymmetry indices GI and PI are defined based on the asymmetry definition
by Piskorski and Guzik [153]. On the other hand, EI does not depend on any specific
definition of asymmetry. It is directly calculated from the time-series information
by computing skewness of the first derivative of the signal, i.e. the points of
the Poincaré plot are not necessarily divided into two groups (increasing and
decreasing). The details for calculating all indices are given in Sect. 5.4. In [153],
asymmetry is defined with respect to the line of identity. All points on the line of
identity (x= y) have equal consecutive RR intervals. Hence, any point above the line
of identity corresponds to increasing RR interval (i.e. decreasing heart rate) and any
point below corresponds to decreasing RR interval (i.e. increasing heart rate). Based
on this, asymmetry is defined and quantified using different indices. Moreover, this
HRA can visually be observed as the clouds of points above and below the line
of identity. In healthy condition, the heart shows continuous short-term variability
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Fig. 5.1 A standard Poincaré plot of RR intervals of a healthy person (N = 3000). The line of
identity (solid line) and line through centroid, l1, (dashed line) are also shown. Figure adapted
from Karmakar et al. [165]

owing to SNS and PNS activities, which impacts on the formation of cloud around
the line of identity. However, this definition of asymmetry does not represent true
increasing or decreasing pattern in the heart rate. To overcome this problem, we
have defined the asymmetry of heart rate in Poincaré plot independent of the line of
identity, i.e. decision about a point whether it is increasing or decreasing is not made
based on its position with respect to line of identity on the 2D Poincaré map. In the
proposed definition, the cloud of points is partitioned into three parts: (1) points
belonging to the increasing pattern of RR interval (I); (2) points belonging to the
decreasing pattern of RR interval (D); and (3) points belonging to the stable pattern
in RR interval (N). The decision about a point as to whether it belongs to one of the
above three classes is made based on the neighbouring point in the Poincaré plot.
Therefore, the analysis corresponds to at least three consecutive RR intervals of the
RR interval time series for lag-1 Poincaré plot. Let the vector RR be defined as
RR ≡ {RR1,RR2,RR3, . . . ,RRN} where RRi is the ith RR interval and N is the total
number of RR intervals. Furthermore, let P, the set of all points in a lag-1 Poincaré
plot, be defined as P ≡⋃N−1

i=1 Pi(RRi,RRi+1).
For any two points Pi(RRi,RRi+1) and Pi+1(RRi+1,RRi+2) of the Poincaré plot,

which involves three RR intervals {RRi,RRi+1,RRi+2}, the status of the point Pi+1

with respect to clouds of points is defined as:
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Fig. 5.2 Poincaré plot points marked with cloud initials I, D and N, which indicates that the point
belongs to increasing, decreasing and stable cloud, respectively. Figure adapted from Karmakar
et al. [165]

Pi ∈ I : (RRi < RRi+1
∧

RRi+1 < RRi+2)
∨

(RRi ≥ RRi+1
∧

RRi+1 < RRi+2)
∨

(RRi > RRi+1
∧

RRi+1 ≤ RRi+2)

∈ D : (RRi > RRi+1
∧

RRi+1 > RRi+2)
∨

(RRi ≤ RRi+1
∧

RRi+1 > RRi+2)
∨

(RRi < RRi+1
∧

RRi+1 ≥ RRi+2)

∈ N : RRi = RRi+1 = RRi+2. (5.7)

After defining the clouds, the asymmetry is defined between the points of I and
D, i.e. the asymmetry is defined as the lack of symmetry among the distribution
of points in I and D. Hence, any point belonging to cloud N is not considered for
calculating asymmetry. According to this definition, it is possible to find points I or
D on both sides of the line of identity as shown in Fig. 5.2. Examples of the proposed
definition with the RR intervals series shown in Fig. 5.2 are given in Fig. 5.3.

5.4 Modified HRA Indices Using Poincaré Plot

In this section, the asymmetry indices are redefined in accordance with the proposed
definition of asymmetry. For redefining all the indices, let us assume that the
increasing cloud I and decreasing cloud D are a set of points as shown below,
respectively:
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Fig. 5.3 RR interval time series of length N (= 13). The cloud type (I, D or N) corresponds to the
point {Pi(RRi , RRi+1)} for Guzik’s definition and point {Pi(RRi, RRi+1), Pi+1(RRi+1,RRi+2)} for
the new definition. Figure adapted from Karmakar et al. [165]

I ≡
M⋃

i=1

Pi(RRi,RRi+1)

and

D ≡
K⋃

i=1

Pi(RRi,RRi+1),

where M and K represent the number of points in increasing and decreasing cloud.

5.4.1 Guzik’s Index (GIp)

In the new definition of asymmetry, the line of identity is not used for grouping the
plotted points into two different clouds. As a result, it is not possible to calculate
the new GI using Eq. 5.1. The set of points {P+

i } used in Eq. 5.1 is equivalent to
the increasing cloud defined in the new definition of asymmetry. Hence, using the
increasing cloud I, Eq. 5.1 can be redefined using the proposed definition:

GIp =
∑M

i=1 (Di)
2

∑N−1
i=1 (Di)2

× 100%, (5.8)

where the numerator corresponds to the increasing cloud, the denominator corre-
sponds to the total number of points and GIp is the redefined Guzik’s index.
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5.4.2 Porta’s Index (PIp)

According to the proposed definition, the set of points P−
i is equivalent to the set of

points belonging to the decreasing cloud D. Hence, Eq. 5.3 can be redefined as

PIp =
K

M+K
× 100% (5.9)

where K and M are the number of points in cloud D and I, respectively.

5.4.3 Ehlers’ Index (EIp)

Ehlers’ index (EI) can be redefined with the proposed definition splitting into
positive and negative cloud as

EIp =
∑M

i=1 (Δ Ii)
3 +∑K

i=1 (ΔDi)
3

(∑N−1
i=1 (RRi −RRi+1)2)

3
2

, (5.10)

where,

Δ Ii = RRi+1 −RRi,Pi(RRi,RRi+1) ∈ I

and

ΔDi = RRi −RRi+1,Pi(RRi,RRi+1) ∈ D.

5.5 Application of HRA in Clinical Research

5.5.1 Presence of HRA in Healthy Subjects

One important hypothesis about the HRA is that in resting condition a healthy heart
should exhibit asymmetricity. In this section we have tested this hypothesis using
both existing and redefined HRA indices.

5.5.1.1 Data and Results

In order to validate the new definition of asymmetry, GI, PI and EI using Guzik’s
definition and GIp, PIp and EIp using the proposed definition of asymmetry are
calculated for RR interval data of short segment (5 min) and long segment (30 min)
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Fig. 5.4 Guzik’s index (GI) of asymmetry for short-segment (5 min, panels a and b) and long-
segment (30 min, panels c and d) RR interval signal of normal sinus rhythm subjects (n = 54).
Top panel (a and c) shows the GI (see Eq. 5.1) values using Guzik’s asymmetry definition and
bottom panel (b and d) shows GIp (see Eq. 5.8) values using proposed asymmetry definition. Figure
adapted from Karmakar et al. [165]

which belongs to short-term HRV analysis [55]. The data from MIT-BIH Physionet
database are used in this analysis [145]. RR intervals of 54 subjects with normal
sinus rhythm (30 men, aged 28.5–76, and 24 women, aged 58–73) have been
used from the Physionet Normal Sinus Rhythm database [145] for evaluating the
proposed definition. Hence we had 54 sets of recordings, of which the first 5 and
30 min were used for short- and long-segment analysis, respectively. The original
long term ECG recordings were digitized at 128 Hz, and the beat annotations were
obtained by automated analysis with manual review and correction [145]. The short-
and long-segment RR interval series were taken from the beginning of each subject’s
RR interval, but the time of the day or night cannot be mentioned as it was not
clearly stated in the Physionet database. Details about the RR interval time series
can be found in [158].

The GI values for short-segment (panels a and b) and long-segment (panel, c
and d) RR interval time series are shown in Fig. 5.4. Top panel (a and c) of Fig. 5.4
represents the GI values. For short segment, 61.11% of the subjects are found to be
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asymmetric, GI ∈ (49,51), with GI values 52.37±5.72 (mean ± sd). Furthermore,
53.74% of the subjects are found to be asymmetric, GI ∈ (49,51), with GI values
52.18± 4.13 for long-segment study. The presence of asymmetry using Guzik’s
definition is not consistent and the reason for this is reported as unknown [156].
The GIp values for both short- and long-segment RR interval signals are shown in
the bottom panel (b and d) of Fig. 5.4. In the short-segment case, the GIp values
range within 44.72±11.12 and 79.63% of the subjects are found to be asymmetric.
In addition, 81.48% of subjects showed asymmetry for long-segment signal with
GIp values 45.81±6.56. This shows significant improvement in consistency of GIp

for defining asymmetry using proposed definition in contrast to Guzik’s asymmetry
definition.

In Fig. 5.5, PI and PIp values for short-segment (panel a and b) and long segment
(panels c and d) RR interval time series are shown. Top panel (a and c) represents
the PI values, whereas the bottom panel (b and d) shows PIp values. For short-
segment signal 61.11% subjects showed asymmetry, PI /∈ (49,51), with PI values
50.11± 2.63, whereas 53.70% of subjects showed asymmetry, PIp /∈ (49,51), with
PIp values 49.94± 2.12 in accordance to the proposed definition. In case of long-
segment variability, 40.74% of subjects showed asymmetry with PI values 50.65±
1.94. On the other hand, 31.48% of subjects showed asymmetry with PIp values
50.27± 1.47.

Figure 5.6 shows the values of asymmetry index EI; 50% of the subjects with
EI values 0.0290± 0.0711 are found asymmetric in case of short-segment signal
with Guzik’s definition of asymmetry. On the other hand, 94.44% of the subjects
are screened asymmetric using the proposed definition with EIp values −0.1979±
0.2344. Similarly, for long-segment signal, 20.37% subjects are found asymmetric
with EI values 0.0145±0.0331 using Guzik’s definition. However, 85.19% subjects
are screened asymmetric with EIp values −0.1909±0.2053. Table 5.1 shows mean
and standard deviations of values of all indices, and asymmetry subjects (%) for
both short- and long-segment signals are given.

5.5.1.2 Discussion

Asymmetry is related with nonlinear dynamics and time irreversibility, which
exhibit the most complex interrelationships [149, 152]. It is reported to be highest
for healthy physiological systems under resting conditions [149] and decreases
with pathology, thus providing a marker for any loss of normal functionality.
Guzik et al. [156] have reported that the asymmetry in HRV might be related to the
response of the baroreflex to increase or decrease the blood pressure [159]. However,
exact reason for such asymmetry is largely unknown.

In this study, a novel way for defining asymmetry of RR interval time series in
Poincaré plot has been presented. Two merits of the novel definition are: (1) It is
correctly defined from geometrical point of view because it considers pattern rather
than a single point of the Poincaré plot to categorize a point either as increasing,
decreasing or stable; (2) It captures HRA of healthy subjects using existing
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10 20 30 40 50
0

20

40

60

80

100
a

b d

c
P

I(
G

uz
ik

’s
 d

ef
in

iti
on

)

10 20 30 40 50
0

20

40

60

80

100

10 20 30 40 50
0

20

40

60

80

100

P
I p

(N
ew

 d
ef

in
iti

on
)

Subject number i

10 20 30 40 50
0

20

40

60

80

100

Subject number i

Fig. 5.5 Porta’s index (PI) of asymmetry for short segment (5 min, panel a and b) and long
segment (30 min, panel c and d) RR interval signal of normal sinus rhythm subjects (n = 54).
Top panel (a and c) shows the PI (see Eq. 5.3) values using Guzik’s asymmetry definition and
bottom panel (b and d) shows PIp (see Eq. 5.9) values using new asymmetry definition. Figure
adapted from Karmakar et al. [165]

asymmetry indices at higher prevalence than that defined by Guzik et al. [156].
Though Guzik’s definition of asymmetry is very simple and intuitive, using such a
definition may not be physiologically correct. For instance, it is known that HRV
signal of normal resting subjects should be asymmetric as reported by Piskorski and
Guzik [153] and Costa et al. [149]. In our study, using Guzik’s definition, only 62%
of such subjects showed asymmetry, whereas the new definition showed asymmetry
in more than 94 % of the subjects. Also, the regulation of heart rate in resting
subjects is not instantaneous but takes a couple of seconds [159]. In such a case, it is
important to measure the pattern of changes in heart rate rather than instantaneous
effect. Therefore, the consideration of instantaneous changes could be a major
limitation of the existing definition. As a result, use of patterns in the proposed
definition, rather than instantaneous changes, reveals much higher incidence of
asymmetry in healthy subjects.
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Fig. 5.6 Ehlers’ index (EI) of asymmetry for short-segment (5 min, panels a and b) and long
segment (30 min, panels c and d) RR interval signal of normal sinus rhythm subjects (n = 54). Top
panel (a and c) shows the EI (see Eq. 5.5) values using Guzik’s asymmetry definition and bottom
panel (b and d) shows EIp (see Eq. 5.10) values using new asymmetry definition. Figure adapted
from Karmakar et al. [165]

Table 5.1 Mean and standard deviation (SD) of Guzik’s index (GI), Porta’s index (PI) and Ehlers’
index (EI) for 5 and 30 min signal of subjects, n = 54, with normal sinus rhythm

Index Length Guzik’s definition New definition

(min) Mean ± SD Asymmetry Mean ± SD Asymmetry
(%) (%)

Guzik’s index 5 47.63 ± 5.72 61.11 55.28 ± 11.12 79.63
30 47.82 ± 4.13 53.74 54.19 ± 6.56 81.48

Porta’s index 5 50.11 ± 2.63 61.11 49.94 ± 2.12 53.70
30 50.65 ± 1.94 40.74 50.27 ± 1.47 31.48

Ehlers’ index 5 0.0290 ± 0.0711 50.00 −0.1979±0.2344 94.44
30 0.0145 ± 0.0331 20.37 −0.1909±0.2053 85.19

Subjects (%) found to be asymmetric using both definition for all indices are also given
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This analysis exploits the physiological phenomena of the system to define
the asymmetry in the signal. Important findings of this study are: (a) Existing
asymmetry indices are more sensitive to capture asymmetricity with the proposed
definition of asymmetry than the existing definition (Figs. 5.4–5.6, Table 5.1). (b) GI
and EI capture the asymmetricity better than the PI; i.e. for both definitions, use of
location of points in the 2D map with respect to the line of identity for calculating
the indices performs better than using only the information about the number of
points in the distribution (Figs. 5.4–5.6, Table 5.1). Furthermore, the asymmetricity
has been calculated for subjects with normal sinus rhythm using both definitions.
The results are in accordance with the reported asymmetry in HRV [149, 154–156].
In this analysis, we have found that 79.63% and 81.48% of subjects are shown
to be asymmetric using the proposed definition compared to 61.11% and 53.74%
of subjects with Guzik’s definition for short-segment and long-segment signals,
respectively (Fig. 5.4).

However, other than the definition of HRA, the index calculated by Piskorski and
Guzik [153] and Porta et al. [154] was also different than the way we have
calculated in this study. We have used the bidirectional and normalization criteria
(as discussed in Sect. 5.2.3) to compare among different indices popularly used
for asymmetry measurement. Moreover, if we used the same asymmetry measure
as used by Piskorski and Guzik [153], then it would be 48.15 % and 40.74 % for
short and long segment, respectively, in our results. Hence, use of bidirectional
criteria for defining asymmetry has increased the prevalence of having asymmetry.
However, the intention of using bidirectional criterion has been supported by the
time reversibility or asymmetry theory. In reference to the result published by
Piskorski and Guzik [153], the 81 % or 82 % subjects showing asymmetry can not
be comparable to this study as the data set used in their study was different. In this
study, only 61.11 % and 53.74 % of subjects were showing asymmetry using Guzik’s
definition with bidirectional and normalization criteria for short and long segment,
respectively.

Using Guzik’s definition and Porta’s index (PI), 61.11% of the subjects are
classified as having asymmetry in case of short-segment signal and 40.74% in the
case of long-segment signal, in contrast to the findings reported in [155]. However,
using the new definition, PIp was reduced to 53.70% and 31.48% for short-segment
and long-segment signals, respectively. The reason behind the reduced performance
of PIp against PI is the difference of the number of points used for calculating the
index. If we observe the two definitions closely, there is hardly any difference in the
number of points in the increasing and decreasing clouds. Hence similar numbers
were expected. The use of the number of points has been shown by Porta et al.
to work well in certain conditions like foetal heart rate monitoring [155]. In this
study, we did not find any specific advantage with Porta’s index. This justification
is strongly supported by the result obtained using EIp, which showed 94.44% and
85.19% of subjects having asymmetry for both short-segment and long-segment
signals, using the new definition. In contrast, 50.00% and 20.37% of subjects are
found to be asymmetric using Guzik’s definition for the short-segment and long-
segment signals, respectively. Therefore, we confirm that our definition performs
better in quantifying asymmetry using existing indices than the previous ones.
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Piskorski and Guzik [153] performed surrogate analysis to show that HRA is
related to some unknown underlying dynamics rather than a random behaviour and
showed that the presence of asymmetry or the time reversibility is abolished in
randomized HRV signal. Piskorski and Guzik [153] used random shuffling surrogate
method, in which the signals were randomly shuffled so that the probability of
distribution remained the same but the temporal correlations were destroyed [160,
161]. However, nonlinear measurement is not necessarily be affected by such
surrogation [162]. The discrimination, by any measure either linear or nonlinear,
of the original time series from this type of surrogation only suggests the presence
of hidden correlation in the original time series. Therefore, we conclude that the
effect of surrogation does not have a specific impact on nonlinear properties like
asymmetry or time reversibility. However, it has impact on asymmetricity measured
with respect to line of identity, because the correlation of the signal changes with
surrogation and it affects the distribution of points in Poincaré plot around the line
of identity. Therefore, results of surrogate analysis have no affect on this proposed
definition.

5.5.2 Correlation Between HRA and Parasympathetic Activity

In this section we assess the changes in HRA in experimental conditions using
Poincaré plot during parasympathetic blockade (atropine infusion) and parasympa-
thetic enhancement (scopolamine administration). The correlations between HRA
and the frequency-domain parameters are also analysed to better explain the changes
in HRA with respect to PNS activity.

5.5.2.1 Clinical Study Methodology

Eight subjects with normal sinus rhythm, non-smokers, without cardiovascular
abnormalities and who were not taking any medications were studied. Subjects were
aged between 20 and 40 years (30.5± 7.3).

All recordings were performed at the same time of the day without any
disturbances. No respiration control was performed because all phases of the study
were conducted in the resting state. An intravenous cannula was inserted into an
antecubital vein and subjects then rested 20 min before recording of data. The length
of the study varies from 10 to 20 min. For autonomic perturbations the following
sequence of protocol was performed. At least 20 min was allowed between each
phase to permit the heart rate to return to baseline. Details of the study design and
data collection are reported by Kamen et al. [94] and the sequence of phases was
maintained strictly as follows:
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Baseline Study

All baseline studies were conducted in subjects in the post-absorptive state after
resting for 10 min in the supine position.

Atropine Infusion

Atropine sulphate (1.2 mg) was added to 50 ml intravenous dextrose and infused
at a rate of 0.12 mg/min for 5 min and then at a rate of 0.24 mg/min until
completion of this phase of study. Use of this dose regimen reduces PNS activity
significantly [138]. After 10 min of infusion of atropine, the data collection started.

Transdermal Scopolamine

One week after the above studies, a low-dose transdermal scopolamine patch
(hyoscine 1.5 mg) was applied overnight to an undamaged hair-free area of the skin
behind the ear. The patch remained in situ for the duration of this period of study.
It has been shown in [139] that low-dose transdermal scopolamine increases PNS
activity.

5.5.2.2 Deviation from Symmetry Distsym

Deviation of the asymmetry index (GIp) from symmetric range of the index is
defined as Distsym. For ith subject Distsym is calculated as

Distsym = |GIp(i)−GIp(sym)|
where GIp(sym) is the index value for symmetric range and defined as

GIp(sym) = 49, GIp(i)< 49
GIp(sym) = 51, GIp(i)> 51
GIp(sym) = GIp, otherwise

Finally, Distsym = 0 indicates the absence of HRA, whereas Distsym > 0 indicates
presence of HRA.

5.5.2.3 Power Spectral Analysis

The HRV time series was generated as a function of heartbeats and the resulting
interval tachogram is thus a series of RR intervals plotted as a function of the
interval number. In this study we have used the MATLAB R2009b implementation
of Welch’s method for calculating power spectrum density (PSD). In this method the
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data are zero-padded to length of the FFT and divided into overlapping segments.
The PSD of each segment is computed and the PSD estimates are averaged out,
which is the result of the power spectral analysis. This averaging decreases the
variance of the estimate relative to a single periodogram estimate of the entire
data record [163]. We have used FFT length of 128 data points which is divided
into eight segments with 50 % overlap between them. The resultant PSD vector
length is 65 which also represents the number of frequency bin. The resolution of
each bin is 1/128 (i.e. 0.0078 cycles/interval). In order to express the result in true
frequency domain (Hz), the spectral units are then divided by the mean RR interval
as discussed in [94].

5.5.2.4 Statistics

MATLAB statistics toolbox was used to perform a Spearman nonparametric
correlation coefficient [164] analysis between frequency-domain features (LF, HF
and LF/HF) and HRA index GIp. The coefficient is signified by R (rho), and can
take on the values from −1.0 to 1.0, where −1.0 is a perfect negative (inverse)
correlation, 0.0 is no correlation and 1.0 is a perfect positive correlation.

5.5.2.5 Results from HRA Analysis

RR intervals and corresponding Poincaré plots of all three phases of studies
are shown in Fig. 5.7. Results of power spectral analysis of HRV signal of all
subjects for all phases of study are summarized in Table 5.2. Subjects displayed a
marked reduction both in low-frequency power (0.04–0.15Hz) and high-frequency
(> 0.15 Hz) power during atropine infusion. In contrast, LF/HF (ratio between
low-frequency and high-frequency power) increased significantly during this phase.
Moreover, only 5 out of 8 subjects are found to be asymmetric which is lower than
the total number of subjects (7 out of 8) found asymmetric during baseline phase.
On the other hand, all eight subjects are screened asymmetric during scopolamine
phase.

The HRA index values of all subjects for all three phases of the study are
plotted in Fig. 5.8. The dotted lines represent the range of HRA index value that
is considered symmetric. In this analysis, we have used the HRA index value
49 ≤ GIp ≤ 51 as symmetric as suggested in our previous study [165]. The HRA
index GIp during atropine infusion phase shows that 3 out of 8 subjects lie inside
the symmetric range (panel a, Fig. 5.8). On the other hand, GIp value of only 1 out
of 8 subject lies inside the symmetric range in baseline phase (panel b, Fig. 5.8).
It is interesting to discover that all subjects lie outside the symmetric range in
scopolamine administration phase (panel c, Fig. 5.8). This indicates that the HRA
reduces in the subjects during atropine infusion, whereas it increases in scopolamine
administration.
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Fig. 5.7 RR interval time series for single subject from all three phases of study with correspond-
ing Poincaré plot

The effect of parasympathetic activity on HRA can be also measured as deviation
of HRA index (GIp) values from symmetricity, Distsym, is shown in Fig. 5.9. In the
atropine infusion phase 5 out of 8 subjects were found asymmetric with lowest
mean(Distsym)Atro value as depicted using solid line among all phases. In scopo-
lamine administration phase all 8 subjects (out of 8) were found asymmetric with the
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Table 5.2 HRV parameters from subjects exposed to parasympathetic perturbations

Feature Atropine Baseline Scopolamine
(mean ± SD) (mean ± SD) (mean ± SD)

LF (ms2) 704.10 ± 94.00 1095.93 ± 224.71 1286.39 ± 207.70
HF (ms2) 34.22 ± 13.36 253.38 ± 252.71 503.39 ± 286.94
LF/HF 22.20 ± 5.00 7.43 ± 4.02 3.43 ± 2.02
No. of asymmetric subjects 5 7 8

(out of 8)

All values are presented as (mean ± standard deviation)
Abbreviations: LF low-frequency power, HF high-frequency power, LF/HF ratio between low-
frequency and high-frequency power, Asymmetry percentage of subjects screened asymmetric

highest mean(Distsym)Scop value as depicted using dash-dot line among all phases,
whereas at baseline 7 out of 8 subjects found asymmetric with a mean(Distsym)Base
higher than mean(Distsym)Atro and lower than mean(Distsym)Scop.

The correlation between frequency-domain parameters and asymmetry is shown
in Table 5.3 and Fig. 5.10. Top panels a, b and c of Fig. 5.10 shows the correlation
of GIp with LF, HF and LF/HF during atropine infusion phase. Accounting for
intersubject variation, the overall measure has shown a significantly strong negative
correlation of GIp with LF (R = −0.76, p = 0.037) and stronger with HF (R =
−0.95, p = 0.001) (Fig. 5.10a, b). LF/HF also demonstrated significant positive
correlation (R = 0.83, p = 0.015) with GIp (Fig. 5.10c). In the baseline phase only
LF/HF demonstrated (Fig. 5.10f) significant negative correlation with GIp having
(R =−0.76, p= 0.037); however, the correlation coefficient of LF and HF with GIp

was positive but insignificant with R = 0.67, p = 0.083 and R = 0.69, p = 0.069,
respectively. In the scopolamine administration phase, LF and HF also demonstrated
(Fig. 5.10g, h) positive correlation with GIp; however, those relations were not
significant, R = 0.42, p = 0.296 and R = 0.61, p = 0.111, respectively. However,
LF/HF demonstrated a nearly significant negative correlation (R = −0.69, p =
0.066) with GIp (Fig. 5.10i).

5.5.2.6 Discussion

HRV data have been analysed using both frequency-domain and time-domain
techniques. Quantitative Poincaré plot analysis was used to assess the changes in
HRV during parasympathetic blockade [111] and compared the results with power
spectral analysis of HRV, which was the commonly used method in the measurement
of sympathovagal interaction [13, 103, 111, 140]. The potential use of Poincaré plot
to measure HRA has also been explored by Karmakar et al. [165], Porta et al. [154]
and Guzik et al. [156]. In this chapter, we have shown that HRA correlates with
the changes with parasympathetic activity. In addition, we compared the changes
in HRA due to change in parasympathetic activity with results of power spectral
analysis.
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Asymmetry is related with nonlinear dynamics and time irreversibility, which
exhibit the most complex inter-relationships [149, 152]. It is reported to be highest
for healthy subjects under resting conditions [149, 156] and decreases with pathol-
ogy, thus providing a marker for any loss of normal functionality. Previous studies
[156, 159] reported that the asymmetry in HRV may be related to the baroreflex to
increase or decrease the blood pressure. However, exact reason for such asymmetry
is largely unknown and therefore more information is required on the dynamics
of HRV. In this chapter, we have shown that the changes in HRA correlate with
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Fig. 5.9 Distance of HRA index (GIp) from the symmetric range for atropine infusion, baseline
and scopolamine administration phase. Mean distance of all subjects for each phase is shown using
solid line (atropine), dashed line (baseline) and dash-dot line (scopolamine)

Table 5.3 Spearman correlation coefficient (R) and significance (p) of
GIp with LF, HF and LF/HF for parasympathetic perturbations

����GIp

Phase
Atropine Baseline Scopolamine

LF R −0.76 0.67 0.42
p 0.037* 0.083 0.296

HF R −0.95 0.69 0.61
p 0.001** 0.069 0.111

LF/HF R 0.83 −0.76 −0.69
p 0.015* 0.037* 0.066

Statistical significance: *p < 0.05; **p < 0.01

parasympathetic activity in healthy subjects which is the first time it has been shown
to our knowledge.

Subjects displayed a marked reduction in high-frequency power during atropine
infusion. Similarly, the HRA index value (GIp) also closest to the symmetric region,
measured as the deviation from symmetricity (Fig. 5.9) compared to baseline phase,
indicates that changes in parasympathetic activity affect the presence of HRA
as well as deviation of HRA index values (GIp) from symmetricity. Moreover,
these results are also supported by the significant correlation of HF with GIp

in atropine infusion phase (Fig. 5.10b and Table 5.3). However, the insignificant
relation between HF and GIp might be due to the small number of subjects.
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Fig. 5.10 Correlation between frequency-domain parameters (LF low-frequency power, HF high-
frequency power, and LF/HF their ratio) with asymmetry index (GIp). Top panel (a), (b) and (c)
shows the correlation of GIp with LF, HF and LF/HF during atropine infusion. Middle panel (d),
(e) and (f) shows the correlation of GIp with LF, HF and LF/HF during baseline condition. Bottom
panel (g), (h) and (i) shows the correlation of GIp with LF, HF and LF/HF during scopolamine
administration

The low-dose scopolamine may decrease heart rate by a paradoxical vagomimetic
effect [139]. Delivery of scopolamine by transdermal patch substantially increases
both baseline and reflexly augmented levels of cardiac parasympathetic activity
over 24 h in normal subjects [143, 144]. HF increased to a greater extent during
administration of scopolamine (Table 5.2), which is consistent with an increase in
PNS activity [139]. This increase in parasympathetic activity increases screened
HRA subject number to 8 out of 8 as compared to 7 out of 8 in baseline phase
which indicates that HRA reflects an effective change in parasympathetic activity.
In addition, although intersubject variation can be noticed in GIp values, the HRA
index value (GIp) moves further from the symmetric region (Fig. 5.9) compared
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to the baseline phase. However, correlation of HF with GIp was found to be
insignificant during scopolamine administration phase which could be due to the
low number of subjects.

Instantaneous changes in RR intervals (short-term variability) are mediated by
vagal efferent activity, because vagal effects on the sinus node are known to develop
faster than sympathetically mediated effects [101,124]. As a result, atropine infusion
reduces the short-term variability in HRV signal which reduces the HF as shown
in this study as well as reported by Kamen et al. [94] and Tulppo et al. [111].
In contrast, scopolamine increases the short-term variability which is reflected as
increase in HF as compared to baseline. Since the detection of HRA implies the
presence of nonlinear dynamics [155], our results support presence of nonlinear
short-term heart period variability in a significant percentage of healthy young
humans in baseline phase [149, 154, 156, 165–167] which reduces with atropine
infusion and increases with scopolamine administration.

LF/HF ratio depends on changes in both low-frequency and high-frequency
powers. In our study, we found a strong and significant correlation of GIp with
LF/HF both in atropine infusion and baseline phases of experiment. Although
strongly criticized, the ratio of LF/HF is believed to be an indirect index of (or at
least to be related to) the sympathovagal balance [55,116,168,169]. The correlations
found in the present study suggest that HRA is related to both LF and HF (Table 5.3)
to some extent and which is strongly reflected with LF/HF in all phases.

5.6 Conclusion

The redefinition of asymmetry in Poincaré plot provides an improvement in
analysing asymmetricity of physiological time-series signal. The three asymmetry
indices Guzik’s index, Porta’s index and Ehlers’, index which are used to represent
asymmetry have been redefined according to the new definition. The indices GIp

and EIp have been shown to perform better in detecting asymmetry in heart rate
series of normal healthy subjects with a slight reduction in performance using PIp

with the new definition. The experiment described here has resulted in relatively
better performance compared to the existing definition.

In addition, we have observed that atropine infusion and scopolamine admin-
istration result in changes in HRA. The HRA index (GIp) values are significantly
correlated with changes in high-frequency power in both atropine infusion and
baseline phases. This study provides an insight about the physiological link between
HRA and parasympathetic activity; however further studies with larger population
and relation with sympathetic activity may provide a complete physiological
explanation of HRA with respect to sympathovagal activity.

Although the concept of HRA is not new, the modified definition has shown
superior performance in detecting HRA in healthy humans during rest. However, the
exact physiological reason behind HRA is yet to be revealed. To better understand
the physiological relevance of HRA, in the next chapter, the correlation of HRA
with changes in PNS activity is examined.



Chapter 6
Segmented Poincaré Plot Analysis and Lagged
Segmented Poincaré Plot Analysis

Abstract Traditional Poincaré plot analysis (PPA) represents a two-dimensional
graphical and quantitative representation of a time series dynamics. However,
traditional PPA indices measure mainly linear aspects of the heart rate variability
(HRV).

Therefore, we introduced a new method of PPA - the segmented Poincaré plot
analysis (SPPA) that retains essential nonlinear characteristics of the HRV and other
time series.

Additional insights into the underlying physiological mechanisms have been
gained by extending the methodology of SPPA. Thus we developed the lagged SPPA
(LSPPA) that investigates time correlations of the BBI.

For the first time we could demonstrate that an HRV index from SPPA was able
to contribute to risk stratification in patients suffering from DCM. LSPPA provides
a prognostic preview for DCM patients regarding several associated symptoms
such as endothelial dysfunctions and increased risk stratification in DCM to 92%
accuracy.

SPPA was also applied to BBI time series and blood pressure signals to
investigate the coupling between those two time series.

In several studies we could demonstrate that the applications of SPPA and
LSPPA lead to much more information about impaired autonomic regulation and
have the potential to be applied in much more fields of medical diagnosis and risk
stratification.

6.1 Introduction

Traditional Poincaré plot analysis (PPA) [59,87,89,91] represents a two-dimensional
graphical and quantitative representation of a time series dynamics. Babloyantz
and Destexhe [170] were the first to introduce this nonlinear method for heart
rate variability (HRV) analysis including both the pseudo-phase space and phase
space quantification methods. Two-dimensional pseudo-phase space plots represent

A.H. Khandoker et al., Poincaré Plot Methods for Heart Rate Variability Analysis,
DOI 10.1007/978-1-4614-7375-6 6,
© Springer Science+Business Media New York 2013
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univariate system behaviour investigating signal values (NNn+1) as a function of
their previous ones (NNn), whereas phase space plots represent multivariate system
behaviour investigating interactions of at least two different signals.

Typically the following indices from PPA are calculated: short-term (SD1) and
long-term (SD2) fluctuations of the investigated system and the ratio SD1/SD2
[87,89]. An ellipse can be drawn into the plot along the line of identity whereas the
centre represents the mean value of the time series and the axes are SD1 and SD2.
Even PPA is a nonlinear method where these indices appear insensitive to the
nonlinear characteristics of the beat-to-beat intervals (BBI) [112].

Previous studies of patients suffering from dilated cardiomyopathy (DCM) have
not evaluated the contribution of traditional PPA in risk stratification for sudden
death [171, 172]. One reason for this is that these PPA indices measure mainly
linear aspects of the BBI. Therefore, we recently introduced an enhanced method
of PPA—the segmented Poincaré plot analysis (SPPA) [173] that retains essential
nonlinear characteristics of the HRV time series. SPPA is characterized by a rotated
and segmented Poincaré plot into a grid of 12×12 rectangles based on the centre of
the cloud of points. Each rectangle is adapted to the SD1 (height) and SD2 (width).

In this chapter the ability of SPPA to differentiate between linear, nonlinear and
Gaussian noise-caused dependencies is first tested by simulating and analysing such
BBI time series. Then, surrogate analysis is performed to prove the ability of SPPA
to obtain nonlinear behaviour in time series. Further, we represent a first study to
investigate high- and low-risk patients suffering from DCM which subsequently use
an extended SPPA method to investigate the Poincaré plot in a more detailed way
by dividing the plot into 24× 24 rectangles (adapted to SD1/2 and SD2/2) as well
as into 48×48 rectangles (adapted to SD1/4 and SD2/4). Following this, SPPA will
be performed to investigate age dependencies in healthy subjects.

The next step will be to apply SPPA to other cardiovascular signals such as
systolic blood pressure (SBP) and diastolic blood pressure (DBP) in pregnant
women suffering from hypertensive pregnancy disorders such as chronic or ges-
tational hypertension and pre-eclampsia.

Even if the SPPA increases risk stratification [173], it still provides less
information about the physiological background of the impaired autonomous
regulation. Therefore, the objective was to investigate if time correlations will
provide such information. As a consequence, the Lagged SPPA (LSPPA) method
was developed to provide high-resolution analysis particularly in the very low (VLF
= 0.0033–0.04Hz) and low-frequency (LF= 0.04–0.15 Hz) bands [174]. In contrast
to the traditional linear methods of HRV analysis [172, 175] and to PPA (related
to BBIs) [172] which did not contribute to risk stratification, indices from LSPPA
enhance risk stratification and provide some additional insights into the underlying
physiological mechanism of heart rate regulation which will be later discussed.

Finally, we will discuss newer studies as well as first concepts to further improve
these kinds of analysis methods to open up new fields of application. In this context,
we will investigate other bio-signals such as respiratory signals and enhance the
analysis method by introducing the interaction analysis using two-dimensional
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Fig. 6.1 The principle of SPPA; (a) traditional Poincaré plot, the calculation of SD1 and SD2;
(b) rotated Poincaré plot (45◦); (c) a segmented Poincaré plot including SPPA indices

(2D SPPA) and three-dimensional (3D SPPA) approaches. This method improve-
ment could lead to further enhanced information concerning alterations produced
by coupled physiological systems.

6.2 Segmented Poincaré Plot Analysis

6.2.1 SPPA Method

The SPPA retains nonlinear features from a system based on PPA, representing an
enhanced pseudo-phase space quantification method [173]. The Poincaré plots are
two-dimensional graphical representations (as a cloud of points) of a time series
plotted against its subsequent one. The calculation of PPA standard indices provides
the basis for SPPA.

The SPPA method functions as follows:

1. The linear indices of SD1 and SD2 (Fig. 6.1a), representing short- and long-term
fluctuations of the investigated system, are calculated according to traditional
PPA (Eqs. 6.1–6.4), where Var is the variance, NNn is a value of the time series
with n = 1, . . . ,N − 1 (N is the length of time series) and NNn+m is the shifted
version of the same time series shifted by a lag of m = 1 [89, 112, 176]:

Nn = (NN1,NN2, . . . ,NNN−1) (6.1)

NNn+1 = (NN2,NN3, . . . ,NNN) (6.2)

SD1 =

√
VAR

(
NNn −NNn+1√

2

)
(6.3)

SD2 =

√
VAR

(
NNn +NNn+1√

2

)
. (6.4)
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2. The cloud of points presented by PPA is then rotated α = 45◦ around the
main focus of the plot (Eq. 6.5), allowing for a simplified SD1/SD2 adapted
probability-estimating procedure (Fig. 6.1b), whereby z is the axis of rotation and
NNn and NNn+1 are the mean values of the original (NNn) and shifted versions
(NNn+1) of a time series, respectively:

⎡
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NN
′
n

NN
′
n+1

z
′

⎤
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⎡
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NNn

NNn+1

z

⎤
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z

⎤
⎦
⎞
⎠ .

(6.5)

3. Starting from the centre of the cloud of points, a grid of 12× 12 rectangles
(Fig. 6.1c) is drawn into the plot. The size of each rectangle is adapted to SD1
(height) and SD2 (width).

4. The number of points within each rectangle (Mi j) related to the total number
of points (N) was counted to obtain the single probabilities (pi j). Based on
these probabilities, all row (i) and column ( j) probabilities were calculated by
summation of the related single probabilities (Eqs. 6.6 and 6.7):

pri =
12

∑
j=1

pi j (6.6)

pc j =
12

∑
i=1

pi j. (6.7)

6.2.2 Applying SPPA on Simulated BBI Time Series

The ability of SPPA to discriminate between different system states can be
demonstrated with simulated time series. To compare SPPA to PPA, different BBI
time series were simulated that are characterized by similar values of PPA indices
SD1 and SD1. The four simulated time series were:

• S1: Noise
Normal distributed white noise (Gaussian noise):

h(x) =
1√

2πδ 2
∗ e−

(x−Δx)2

2∗δ 2 . (6.8)

• S2: Nonlinear signal
Lorenz attractor:

dx = (−σx+σy)dt (6.9)

dy = (ρx− y− xz) (6.10)

dz = (−β z+ xy)dt. (6.11)
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• S3: Linear/nonlinear noisy signal
Three sinusoidal functions with Gaussian noise and Lorenz attractor:

x(t) = S1+S2+sin(0.2 ∗ 2 ∗ pi∗ t)+sin(0.15 ∗ 2 ∗ pi∗ t)+sin(0.01 ∗ 2 ∗ pi∗ t).

(6.12)

• S4: Linear surrogated noisy signal
Three sinusoidal functions with Gaussian noise and the surrogated Lorenz

attractor:

x(t) = S1+ surrogate(S2)+ sin(0.2 ∗ 2 ∗ pi∗ t)

+ sin(0.15 ∗ 2 ∗ pi∗ t)+ sin(0.01 ∗ 2 ∗ pi∗ t). (6.13)

Applying the amplitude adjusted Fourier transform (AAFT) algorithm introduced
by Theiler et al. [160], we generated surrogate time series which have the amplitude
distribution and the power spectrum of the original BBI time series. The idea of the
AAFT algorithm is to first rescale the values in the original time series to make them
Gaussian. Then the Fourier transform (FT) algorithm is used to create surrogate
time series including the same Fourier spectrum as the rescaled data. Finally,
the Gaussian surrogate is rescaled back to have the same amplitude distribution as
the original time series. A significant difference between the nonlinear values for the
original and the surrogate time series shows that SPPA can reliably distinguish linear
from nonlinear time series (see also Sect. 6.2.3). Therefore, we compare S3 (as the
original signal including nonlinearities) with S4 (the surrogated signal) where S4
differs from S3 only in the surrogated part of the Lorenz signal part (S2).

The simulated BBI time series (S1–S4) were generated for t = 30 min each with
a sampling frequency of 1,000 Hz (Fig. 6.2). Physiological properties somewhat
representing human HRV were simulated by including sinusoidal signals of the
most prominent frequency bands HF (0.2 Hz), LF (0.15 Hz) and VLF (0.01 Hz)
with regard to the coupled signals S3 and S4. Additionally, the amplitudes of
the signals have been adjusted without suppressing any dependencies within the
coupled signals and ensuring similar linear indices calculated by traditional PPA as
much as possible.

In relation to the totalized value of amplitudes concerning all simulated BBI
time series (S1–S4), we generated percentage amplitudes, respectively (Gaussian
noise (S1, S3, S4): 4%; Lorenz attractor (S2–S4): 70%; sinusoidal functions
(S3, S4): 14%).

Validating the defined dependencies within the simulated BBI time series, we
applied the auto correlation function (ACF), which investigates linear dependencies,
and the auto mutual information function (AMIF), which investigates linear and
nonlinear dependencies in the simulated BBI time series (see Fig. 6.3). The concept
of mutual information is based on an assessment of information flow I, defined by
means of a probability distribution p [177–179] in the case of a discrete random
number.
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Fig. 6.2 Simulated BBI time series: (a) S1: Gaussian noise; (b) S2: Lorenz attractor; (c) S3: linear/
nonlinear noisy signal including three sinusoidal functions (0.2 Hz, 0.15 Hz and 0.01 Hz) with
Gaussian noise and Lorenz attractor; (d) S4: linear surrogated noisy signal including three sinus
functions (0.2 Hz, 0.15 Hz and 0.01 Hz) with Gaussian noise and the surrogated Lorenz attractor

In Gaussian noise, both functions are almost zero for each τ except for τ = 0
(S1—Fig. 6.3a). In case of pure nonlinearity (S2—Fig. 6.3b) and the nonlinear
coupled time series (S3—Fig. 6.3c), significant nonlinear dependencies in the AMIF
which are too wide peaks at τ = 0 can been shown. The arrows in Fig. 6.3c, d
(S4) show the difference between the coupled time series. While the nonlinear
part (Lorenz attractor) within S3 causes a wide peak, S4 does not exhibit this peak
because of the destroyed nonlinear structures within the surrogated Lorenz attractor.
In ACF a few linear dependencies can be shown in which S3 and S4 are coupled with
three sinus functions.
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Fig. 6.3 Results of AMIF (left) and ACF (right) applying simulated BBI time series, respectively:
(a) S1: Gaussian noise; (b) S2: Lorenz attractor; (c) S3: linear/ nonlinear noisy signal including
three sinusoidal functions (0.2 Hz, 0.15 Hz and 0.01 Hz) with Gaussian noise and Lorenz attractor;
(d) S4: linear surrogated noisy signal including three sinus functions (0.2 Hz, 0.15 Hz and 0.01 Hz)
with Gaussian noise and the surrogated Lorenz attractor; the arrow highlights the different
behaviour of the (surrogated) Lorenz attractor
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Fig. 6.4 SPPA plots applying simulated BBI time series: (a) S1: Gaussian noise; (b) S2: Lorenz
attractor; (c) S3: linear/nonlinear noisy signal including three sinusoidal functions (0.2 Hz, 0.15 Hz
and 0.01 Hz) with Gaussian noise and Lorenz attractor; (d) S4: linear surrogated noisy signal
including three sinus functions (0.2 Hz, 0.15 Hz and 0.01 Hz) with Gaussian noise and the
surrogated Lorenz attractor

The simulated BBI time series are presented in pseudo-phase space plots
(Fig. 6.4), applying SPPA. This method provides a grid of 12× 12 rectangles and
a size adapted to SD1 and SD2 was applied (see also Sect. 6.2.1).

The shape of the cloud of points concerning Gaussian noise (S1—Fig. 6.4a)
and nonlinear Lorenz attractor (S2—Fig. 6.4b) is typical for these dependencies.
The coupled signals are barely distinguishable (S3—Fig. 6.4c and S4—Fig. 6.4d).

Differences in SPPA are shown in spite of similar linear PPA indices. Mean
deviations of 0.14% (mean value of BBI), 6.21% (SD1), 14.95% (SD2) and 12.81%
(SD1/SD2) were reached when applying traditional PPA.

In addition, we calculated the row and column probabilities of the simulated
BBI time series by applying SPPA. With regard to column 6 and rows 5–8, we
calculated lower mean deviations (2.76–6.73%) by applying SPPA as compared to
the traditional PPA. However, there are considerably higher mean deviations with
regard to columns 3–5 (19.20–73.32%) and 7–10 (16.85–66.67%) as well as row 3
(67.41%), 4 (19.38%), 9 (24.04%) and 10 (66.67%).
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Fig. 6.5 Traditional linear PPA indices (SD1 and SD2) applying the original nonlinear BBI time
series (Lorenz attractor) and its 20 surrogated BBI time series each

To summarize, we could achieve considerably higher mean deviations by
applying SPPA (2.76–73.32%) as compared to PPA (0.14–14.95%), confirming the
assumption of SPPA to increase the differentiation between various dependencies
such as Gaussian noise, nonlinearity and several coupled signals.

6.2.3 The Ability of SPPA to Obtain Nonlinear Behaviour
in Time Series When Applying Surrogate Data Analysis

As previously mentioned in Sect. 6.2.2, surrogate data analysis techniques are
applied, testing nonlinearity in time series by constructing surrogate data sets.
Therefore, the AAFT algorithm described by Theiler et al. [160] is used to destroy
nonlinear structures within time series while linear structures are maintained.

The aim of the following surrogate analysis is to test the ability of SPPA to
obtain nonlinear structures represented in nonlinear BBI time series. In this study,
20 surrogate time series were generated by shuffling an original BBI time series.

The surrogate data analysis technique is applied for simulated nonlinear BBI
time series (S2: Lorenz attractor—Sect. 6.2.2) consisting of three nonlinear parts
(Eqs. 6.9–6.11). To illustrate the dependencies within the investigated BBI time
series, the behaviour of two linear PPA indices (SD1 and SD2—see Fig. 6.5) and
one nonlinear SPPA index (fourth column—Fig. 6.6) are shown as an example.
Thus, the figures represent the value of the original BBI time series compared to
the values of the surrogated BBI time series, respectively.

It could be shown that linear indices (SD1 and SD2) exhibit small deviations
especially in relation to the value of the original BBI time series as compared to the
nonlinear index (column 4), which presents significantly higher deviations.

Table 6.1 represents SPPA and traditional PPA indices by applying the original
nonlinear BBI time series as well as the averaged one applying 20 surrogate BBI
time series, whereas the most important indices are marked which significantly
discriminate high- and low-risk DCM patients in a subsequent study applying the
lagged segmented Poincaré plot analysis (LSPPA—see also Sect. 6.4.2).
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Fig. 6.6 Typical SPPA indices (column 4) applying the original nonlinear BBI time series (Lorenz
attractor) and its 20 surrogated BBI time series

Table 6.1 Column and row occurrences applying the most important SPPA and PPA indices
investigating the original simulated BBI time series (Lorenz attractor) and the averaged mean value
of BBI and its standard deviation (SD), calculating 20 surrogated BBI time series; the difference in
% specifies the deviation between the original index and its averaged surrogated BBI time series;
significant LSPPA indices are marked

Surrogate
Method Indices Original Mean BBI SD Difference in %

SP
PA

Column 3 0.0000 0.0000 0.0000 0.00
Column 4 0.2781 1.3745 0.3421 79.77
Column 5 19.4105 15.4535 0.5934 20.39
Column 6 33.9822 34.1208 0.9934 0.41
Column 7 25.5840 32.2259 1.2327 20.61
Column 8 19.5217 14.0623 0.8743 27.97
Column 9 1.2236 2.7462 0.4657 55.44
Column 10 0.0000 0.0167 0.0408 100.00
Row 3 0.1112 0.0083 0.0204 92.50
Row 4 1.3904 2.1536 0.2075 35.44

Row 5 14.9055 14.4713 0.6289 2.91
Row 6 34.3715 33.3695 0.4916 2.92
Row 7 32.9255 33.3528 0.4625 1.28
Row 8 14.5718 14.4741 0.6482 0.67
Row 9 1.6129 2.1619 0.2271 25.40
Row 10 0.1112 0.0083 0.0204 92.50

PP
A

Mean 857.7575 857.7144 0.0211 0.01
SD1 35.0760 36.2740 1.1795 3.30
SD2 39.3134 38.0830 1.0708 3.13
SD1/SD2 0.8922 0.9540 0.0569 6.48

Calculating the deviations of surrogate BBI time series (SD1 = 35.08± 0.024;
SD2 = 39.31 ± 0.021) and the original BBI time series (SD1 = 35.07; SD2 =
39.31), we obtained small ones when applying PPA (difference: 0.001–0.009%).
In comparison, there are higher deviations (difference: 1.47–100%) when applying
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Table 6.2 Classification of healthy subjects (REF) and DCM patients

REF DCM group DCM HR DCM LR

Number of subjects (male/female) 21 (12/9) 91 (70/21) 14 (11/3) 77 (59/18)
Age (year) 35±13 55±10 54±11 56±10
EF (%) – 36±12 31±6 37±12
NYHA (I-IV) – 2.2±0.8 2.6±0.9 2.1±0.8
LVEDD (mm) – 63.5±8 68.8±10 62.5±7

SPPA as seen by the representative example found in column 4 (original: 0.28;
surrogate = 1.43± 0.28; difference: 80.53%). In conclusion, we could confirm that
indices from PPA represent linear dependencies, whereas SPPA indices obtain non-
linear dependencies representing considerable differences, as seen by the selected
nonlinear structures.

6.2.4 Application of SPPA for Risk Stratification in Dilated
Cardiomyopathy Patients

DCM is a chronic disease of the heart muscle characterized initially by a dilated left
ventricle or dilation of both ventricles. This is attached to normal or reduced wall
thickness and an impaired systolic function [180]. In the industrialized countries
with aging populations, DCM is one of the most common public health problems
(mortality of 5% per year) and occurs much more frequently (1,856,000 patients in
the USA [181]) than other major forms of cardiomyopathy [182].

Various studies were performed to indicate risk stratification in patients with
DCM. In former studies it was demonstrated that linear and nonlinear methods of
HRV and baroreflex sensitivity (BRS) analysis could not considerably contribute to
risk stratification in those patients [175, 183]. Therefore, the aim of this study is to
analyse the suitability of SPPA to improve the risk stratification in DCM patients.

We enrolled 91 DCM patients (70 male and 21 female) and 21 references (healthy
subjects; REF). The diagnosis of all DCM patients was confirmed by experienced
cardiologists using coronary angiography and echocardiography (Table 6.2). From
every patient a thirty-minute high-resolution ECG (orthogonal corrected Frank lead
ECG, 22-bit resolution, 1,600 Hz sampling frequency) was recorded.

After a two-year follow-up, the DCM patients were divided into two groups:
DCM without progression of the disease (low-risk, DCM LR) and patients who
died due to a cardiac event or were reanimated because of a life-threatening
arrhythmic event (high-risk, DCM HR). BBI were extracted using self-developed
wavelet-based pattern recognition software [172]. The ECGs and the patients’
data were stored in a database. A heart rate time series (tachogram) consisting of
successive BBI were extracted from the ECG data. Applying an adaptive variance
estimation algorithm, ectopic beats and artefacts were rejected and interpolated.
These disturbances could considerably influence the PPA and, in particular, the
SPPA [173, 183].
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The nonparametric Mann-Whitney U-test was performed to determine the highly
significant indices (p < 0.01) and the significant indices (0.01 ≤ p < 0.05),
differentiating between DCM patients and healthy subjects as well as between high-
risk and low-risk DCM patients. The receiver operating characteristic (ROC) was
computed univariate as well as multivariate, estimating the sensitivity for each value
vs. the specificity. To validate a specific method, the performance of each index was
assessed by estimating the area under the ROC curve (AUC).

Former studies of ECG could not improve risk stratification in patients suffering
from DCM [171, 172]. The aim of this method is to prove the ability for both
discrimination between DCM HR and DCM LR and between DCM and REF, as
well as to perform basic testing for LSPPA. The results of the group tests applying
SPPA are demonstrated in Table 6.3.

SPPA partly discriminates between the investigated groups. Highly significant
indices of the group test between DCM patients and REF could be calculated as
seen in columns 4 (p = 0.0014), 9 (p = 0.0002) and 10 (p = 0.0007) and in row
11 (p = 0.0052). One significant index (column 5: p = 0.0241) and one highly
significant index (column 8: p = 0.0005) could be determined as risk predictors in
DCM patients differentiating between DCM HR and DCM LR. Therefore, column
8 represents the highest AUC value of 80.0% with a sensitivity of 75.3% and a
specificity of 71.4%.

The highest significant columns (columns 5 and 8) for risk stratification in
DCM patients are shown in Fig. 6.7 and are exemplary for DCM HR and DCM LR
patients, respectively.

The percentage of measuring points within the highly significant columns is
higher in DCM HR patients (column 5: mean = 1.223± 0.124; column 8: mean
= 1.249± 0.106) than in DCM LR patients (column 5: mean = 0.990± 0.214;
column 8: mean = 1.021± 0.167). This means a higher dispersion of measuring
points in patients with DCM HR when compared to DCM LR patients of DCM.

The highly significant columns (5 and 8) are located at a distance of SD2 apart,
the mean of both BBIn (mean BBIn). In general, the borders of the highly significant
columns can be described as follows:

• Column 5: from mean BBIn − 2 * SD2 to mean BBIn − SD2
• Column 8: from mean BBIn + 2 * SD2 to mean BBIn + SD2

The distance between the centre of the cloud of points and the significant columns
of SPPA (columns 5 and 8) is equal in both directions (SD2). The significant
columns are ranged very symmetrically around the centre of the cloud of points.
Przibille et al. [184] were the first to study the influence of the standard deviation
of all BBI (SDNN) within the Poincaré plots. Therefore, it could be shown that
patients with an SDNN <50 ms died due to a cardiac event. They identified HRV
analysis as being highly significant for DCM patients [184]. In our study, we found
no significant differences in SDNN investigating high- and low-risk DCM patients,
but highly differences discriminating between DCM patients and healthy subjects.
These differences are caused probably due to the considerable limitations and the
low number of enrolled patients in the compared study.
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Fig. 6.7 Examples of SPPA plots applying DCM HR (left) and DCM LR (right) patients,
respectively; yellow marked rectangles generally include measuring points and the blue ones
exhibit a single probability of more than 5%; the most significant columns 5 and 8 are framed

Fig. 6.8 Additional SPPA plots with different rectangle sizes; (a) test method I: SD1/2, SD2/2
and 24×24 rectangles; (b) test method II: SD1/4, SD2/4 and 48×48 rectangles

In conclusion, for the first time HRV indices from PPA were able to contribute
to risk stratification (AUC value of 80.0%) in patients suffering from DCM. Further
on, the SPPA retains nonlinear features, and therefore, overcomes limitations of
traditional PPA.

6.2.5 Investigating the Influence of Rectangle Size

The standard SPPA method (see Sect. 6.2.1) fits a grid of 12×12 rectangles into the
cloud of points where the size of the rectangles is adapted to the standard deviations
SD1 and SD2. Investigating the influence of the rectangles’ size, we decreased the
size of the rectangles by a half (SD1/2, SD2/2) or quarter (SD1/4, SD2/4), leading
to an increased number of rectangles within the Poincaré plot.

In order to demonstrate SPPA’s performance related to the varying rectangle
sizes, we investigated DCM patients (idiopathic DCM) as introduced in Sect. 6.2.4.
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Table 6.4 Significant indices applying test method I including the mean value and SD for the
group test DCM HR vs. DCM LR (N.S. not significant; *p < 0.05; **p < 0.01)

Assigned column within standard SPPA 2 3 5 8

Related column (test method I) 4 5 10 16
DCM HR Mean (%) 0 0.0098 9.4527 4.8851

SD 0 0.0380 2.2235 1.0513
DCM LR Mean (%) 0.0544 0.1058 8.0524 3.7057

SD 0.1279 0.1656 2.1551 1.1818
p(DCM HR vs. DCM LR) 0.0336* 0.0071** 0.0441* 0.0008**

Test Method I

The size of the rectangles is adapted to SD1/2 and SD2/2, increasing the number
of rectangles to 24× 24 rectangles (Fig. 6.8a).

Table 6.4 presents significant columns of the BBI time series applying test
method I. The coloured columns are located within the highly significant columns of
standard SPPA. Therefore, column 10 (test method I: p = 0.0441) is located within
column 5 (blue-coloured) and column 16 (test method I: p = 0.0008) in column 8
(red-coloured) of standard SPPA, as pictured in Fig. 6.9.

Additionally, columns 4 (p = 0.0336) and 5 (p = 0.0071) could discriminate
between the investigated groups of patients when applying test method I.

Test Method II

Test method II quadruples the number of rectangles in comparison to the standard
SPPA. Therefore, the size of the rectangles is adapted to SD1/4, SD2/4, thus
dividing the Poincaré plot into 48× 48 rectangles (Fig. 6.8b).

Table 6.5 represents significant columns as a result of test method II and
discriminating between DCM HR and DCM LR patients. Therefore, the coloured
columns are part of highly significant columns of standard SPPA. To this end, test
method II was assigned four different columns: column 19 (p = 0.004) located
within column 5 (blue-coloured) and columns 30 (p = 0.004), 31 (p = 0.001) and
32 (p = 0.024) assigned within column 8 (red-coloured) of standard SPPA, also
pictured in Fig. 6.9.

Furthermore, we calculated three significant columns (column 9: p = 0.014,
column 10: p = 0.018 and column 11: p = 0.024) located within column 3 of
standard SPPA.

Therefore, it could be concluded that the results of test method I and test method
II are rather similar to the results of standard SPPA.

6.2.6 Investigating Age Dependencies in Healthy Subjects

Even HRV analysis is an established method for characterizing autonomic regula-
tion [114, 185–187] and has various applications [158, 188–197]. The demands for
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Fig. 6.9 Illustration of significant columns regarding standard SPPA (top), test method I (middle)
and test method II (bottom) investigating DCM HR (left) and DCM LR (right)

short-term HRV analysis are continually increasing, especially in the ambulatory
sector, to monitor temporary examinations and to obtain an almost immediate test
result. There is a great demand for short-term HRV analysis methods determining
reference values of linear and nonlinear short-term HRV indices from a healthy
population when considering age and sex dependencies.

The objectives of this study are to generally investigate age dependencies of
short-term HRV indices and to investigate this age dependency over the course of
several decades in healthy subjects [198].

The present study includes 12-lead ECG signals (based on KORA S4 study [199])
recorded under resting conditions over a period of 5 min (sample frequency 500 Hz).
The investigated subjects were informed about their participation. Furthermore, the
study conforms to the recommendations of the Declaration of Helsinki and has
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Table 6.5 Significant indices as a result of test method II for the group test DCM HR vs.
DCM LR (N.S. not significant; *p < 0.05; **p < 0.01)

Assigned column within
standard SPPA 3 3 3 5 8 8 8

Related column (test method II) 9 10 11 19 30 31 32
DCM HR Mean (%) 0 0.010 0.028 4.309 4.237 3.060 1.826

SD 0 0.037 0.044 1.108 0.546 0.836 0.469
DCM LR Mean (%) 0.040 0.065 0.114 3.408 3.544 2.244 1.462

SD 0.069 0.116 0.144 1.027 0.857 0.681 0.586
p(DCM HR vs. DCM LR) 0.014* 0.018* 0.024* 0.004** 0.004** 0.001** 0.024*

Table 6.6 Classification of healthy subjects within each age class
(2 and 5 age classes)

2 age classes N ♂/ ♀ 5 age classes N ♂/♀
25–49 years 1,315 (744/571) (1) 25–34 years 393 (235/158)
50–74 years 591 (380/211) (2) 35–44 years 278 (183/95)

(3) 45–54 years 393 (235/158)
(4) 55–64 years 278 (183/95)
(5) 65–74 years 146 (84/62)

been approved by the appropriate medical ethics committee. A total of 1,906 ECG
recordings from healthy subjects were selected consisting of 782 women and 1,124
men between the ages of 25 and 74 years (see Table 6.6).

BBI were extracted and ectopic beats (ventricular or supra ectopic beats)
and artefacts replaced by interpolated “normal” beats by applying an adaptive
filter [183]. The heart rate time series (tachogram) consisting of successive BBI
were extracted from the ECG data.

All statistical analyses were performed using the statistical software SPSS 19.
Univariate statistical analyses on the basis of descriptive statistics were calculated
for PPA and SPPA indices in both age clusters.

The following tests were calculated to determine age dependency of SPPA
indices:

Test I: Test for a general age dependency (25–49 years compared with 50–74
years—Table 6.7) using the Mann-Whitney U-test for two independent samples.

Test II: Test for the development of age dependency—age groups (25–34, 35–
44, 45–54, 55–64, and 65–74 years—Table 6.8) compared with each other using the
Kruskal-Wallis test followed by Mann-Whitney U-tests (Table 6.9).

The indices of the PPA (SD1, SD2 and SD1/SD2) showed highly significant
age-dependent differences within tests I and II. In contrast, all represented indices
of SPPA showed no significant differences when comparing the respective age
decades. Only row 8 represented a slightly significant age-dependent difference
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Table 6.7 Results of test I including median values and interquartile ranges applying PPA and
SPPA in age clusters 25–49 years and 50–74 years (N.S. not significant; *p < 0.01; **p <
Bonferroni = 0.0008; ***p < 1×10−10; ****p < 1×10−20)

25–49 years 50–74 years
N = 1,315 N = 591 U-Test

Method Index Median[lower quartile (0.25) - upper quartile (0.75)] Test I

PP
A

SD1 21.73 (15.51–30.75) 12.9 (9.15–18.69) ****
SD2 54.24 (42.56–69.78) 39.39 (29.55–52.76) ****
SD1/SD2 0.4 (0.32–0.50) 0.32 (0.25–0.41) ****

SP
PA

column 4 1.98 (1.20–2.89) 2.06 (1.29–2.96) N.S.
Column 5 12.37 (10.35–14.50) 12.09 (9.58–14.41) N.S.
Column 6 34.80 (31.66–37.50) 33.97 (30.80–37.32) *
Column 7 34.55 (31.70–38.34) 35.26 (32.49–39.62) *
Column 8 13.29 (11.75–14.8) 13.27 (11.53–14.97) N.S.
Column 9 1.82 (1.03–2.62) 1.66 (0.66–2.54) *
Row 4 1.88 (1.21–2.54) 1.84 (1.24–2.39) N.S.
Row 5 13.04 (11.18–14.79) 12.38 (10.36–14.15) **
Row 6 35.00 (32.31–37.68) 35.53 (32.89–38.23) N.S.
Row 7 33.68 (29.87–36.90) 34.85 (32.05–38.32) **
Row 8 14.57 (12.42–16.55) 13.10 (11.07–15.02) ****
Row 9 1.55 (1.00–2.10) 1.71 (1.18–2.28) **

when comparing the age decades 45–54 and 55–64 years. The mean values of
SD1, SD2 and SD1/SD2 decrease with increasing age when applying tests I and II.
In addition, a decreasing trend could be detected only for row 8 of SPPA. Therefore,
SPPA indices could perhaps function as very good age-independent indices or risk
markers for certain diseases. In a future study, this thesis will be examined by
comparing short-term SPPA between patient groups and healthy subjects.

6.3 Application of SPPA to Blood Pressure Signals

Usually Poincaré plots are applied for a two-dimensional graphical and quantitative
representation plotting NNn+1 against NNn (see also Sect. 6.2.1). The SPPA method
is used to assess successive values of BBI time series and based on simplified phase
space embedding so far.

6.3.1 SPPA Adaptation to Blood Pressure (BP)

The present study concentrates on the analysis of SBP as well as DBP measurements
plotting SBPn+1 over SBPn and DBPn+1 over DBPn respectively. Therefore, the
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Table 6.9 Results of Kruskal-Wallis test followed by Mann-Whitney U-tests between each two
age decades (test II) applying PPA (SD1, SD2 and SD1/SD2) and SPPA (column 4–9 and row 4–9);
1 = 25–34 years, 2 = 35–44 years, 3 = 45–54 years, 4 = 55–64 years and 5 = 65–74 years (N.S. not
significant; *p < 0.01; **p < Bonferroni = 0.0008; ***p < 1×10−10; ****p < 1×10−20)

Bonferroni post hoc test

Kruskal-Wallis 1 2 3 4 1 2 3 1 2 1
Index test 2 3 4 5 3 4 5 4 5 5

SD1 **** **** **** ** N.S. **** **** ** **** **** ****
SD2 **** * *** ** N.S. **** **** *** **** **** ****
SD1/SD2 **** ** ** N.S. N.S. **** *** N.S. **** ** ****
Column 4 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
Column 5 N.S. N.S. N.S. N.S. N.S. * * N.S. * N.S. N.S.
Column 6 N.S. * N.S. N.S. N.S. * N.S. N.S. * N.S. N.S.
Column 7 ** * N.S. N.S. N.S. ** N.S. N.S. ** N.S. N.S.
Column 8 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
Column 9 * N.S. N.S. N.S. N.S. ** N.S. N.S. ** N.S. *
Row 4 N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S.
Row 5 ** N.S. N.S. N.S. N.S. N.S. ** * ** ** **
Row 6 * N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. * **
Row 7 ** N.S. N.S. * N.S. * ** * ** ** **
Row 8 **** * * * N.S. ** ** ** *** *** ****
Row 9 ** N.S. N.S. N.S. N.S. ** N.S. N.S. ** N.S. **

equations (Eqs. 6.3 and 6.4) calculating SD1 and SD2 are adapted to the investigated
blood pressure time series (BP). Furthermore, the ratio SD1/SD2 is calculated.
These indices are similarly determined for SBP and DBP.

The SPPA procedure applying BP includes the following four procedures (as
seen in Fig. 6.10) which are similar to standard SPPA:

• SD1 (Eq. 6.14) and SD2 (Eq. 6.14) are calculated according to traditional PPA
(Fig. 6.10a):

SD1 =

√
VAR

(
BPn −BPn+1√

2

)
(6.14)

SD2 =

√
VAR

(
BPn +BPn+1√

2

)
. (6.15)

• The cloud of points is rotated by an angle of α = 45 around the main focus of the
cloud of points (Fig. 6.10b).

• A grid of 12 × 12 rectangles is fitted to the cloud of points starting from the main
focus of the cloud of points where the size of each rectangle is adapted to SD1
(height) and SD2 (width) (see Fig. 6.10c).
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Fig. 6.10 Adaptation of SPPA to blood pressure signals (e.g. SBP): (a) traditional Poincaré
plot, calculation of SD1 and SD2; (b) rotated Poincaré plot (45◦ around the main focus);
(c) segmentation of the Poincaré plot (12 × 12 rectangles, based on SD1 and SD2), calculation
of row- and column probabilities and declaration of SPPA indices

• For estimating single probabilities (pi j) the number of points within every
rectangle is counted and normalized by the total number of points. Based on
these single probabilities, all row (i) and column (j) probabilities are calculated
by summation of the related single probabilities (Eqs. 6.6 and 6.7).

6.3.2 Application to Hypertensive Pregnancy Disorders

Hypertensive pregnancy disorders are a leading cause of maternal and foetal
morbidity and mortality and affect 6–8% of all pregnancies. These disorders can
result in severe complications for the mother and the foetus of which pre-eclampsia
(PE) has the worst perinatal outcome [200]. Several studies suggested that the
autonomic nervous system plays an important role in the process of developing
hypertensive pregnancy disorders, especially PE [201–204].
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Table 6.10 Classification of pregnant women with hypertensive disorders (oHY) and
pre-eclampsia (PE) including the number of patients, mean, range and SD of age (in years)
and week of gestation (gw)

Group Number Age (mean ± SD) Age range gw (mean ± SD) Range gw

oHY 40 28.6 ± 5.0 19–38 32.9 ± 5.8 20–41
PE 29 27.7 ± 5.4 19–38 32.2 ± 4.1 25–39

Table 6.11 Highly significant SPPA indices from SBP and DBP time series
(Mann-Whitney U-test) with mean values and SDs differentiating both groups (oHY/
PE, probabilities in percentages)

Method Index p (oHY vs. PE) oHY (mean ± SD) PE (mean ± SD)

SBP

Column 4 1.67×10−4 0.59±0.71 1.59±1.36
Column 6 4.75×10−5 42.17±7.59 34.02±6.61
Column 7 2.46×10−5 28.22±4.78 34.79±6.38
Column 9 2.23×10−4 3.16±1.04 1.99±1.23
Column 10 4.16×10−5 0.57±0.47 0.15±0.21

DBP Row 3 2.00×10−4 0.34±0.16 0.22±0.14

Therefore, Seeck et al. [205] investigated whether women suffering from
pre-eclampsia could be differentiated from women suffering from various other
hypertensive pregnancy disorders employing the SPPA. Continuous blood pres-
sure (BP) recordings (30 min; Portapres, TNO Biomedical Instrumentation) of 69
pregnant women with hypertensive disorders (29 PE, 40 with chronic or gestational
hypertension (oHY)) were included (Table 6.10).

To test for significant differences between the investigated groups, we applied
the Mann-Whitney U-test (level of significance: p < 0.001). The linear discriminant
function analysis (LDA) was performed including all highly significant SPPA (p <
0.001) indices. The performance of each index was assessed by estimating the area
under the ROC curve. Indices achieving an area under the ROC curve (AUC) above
0.75 were combined in sets of two or three and enrolled in LDA again to determine
the optimal multivariate set of indices.

SPPA exhibits significant differences between PE and oHY (Table 6.11) of
SBP and DBP. Especially columns 4 (p = 1.67 × 10−4), 6 (p = 4.75 × 10−5),
7 (p = 2.46×10−5), 9 (p = 2.23×10−4) and 10 (p= 4.16×10−5) identified highly
significant modifications when applying SBP time series. SPPA of DBP time series
indicated one highly significant difference in row 3 (p = 2.00× 10−4).

Furthermore, univariate as well as multivariate LDA (Table 6.12) demonstrated
that indices deriving from SPPA are suitable for differentiation between oHY
and PE. Therefore, this procedure could contribute to the differential diagnosis of
hypertensive pregnancy disorders.

Univariate LDA of highly significant SPPA indices revealed five indices that
achieved a ROC value above 0.75, whereas SBP column7 had the most discrim-
inative power (AUC = 0.781). The optimal multivariate set of indices containing
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Table 6.12 SPPA indices
with highest values of area
under the ROC curve and the
best sets of indices when
investigating two and three
indices

Indices/set of indices AUC

SBP column7 0.781
SBP column10 0.774
SBP column6 0.771
DBP row3 0.752
SBP column4 0.751
SBP column10, SBP column7 0.836
SBP column10, SBP column7, DBP row3 0.847

two indices consisted of SBP column7 and SBP column10 and improved the ROC
value up to 0.836. The best multivariate result was achieved by adding DBP row3
(AUC = 0.847).

Patterns of SBP and DBP variability differ significantly between hypertensive
pregnancy disorders reflecting altered mechanisms of BP regulation. The present
study of SPPA in hypertensive pregnancy disorders is a potential technique for
analysing BP time series which would allow for differentiation between chronic
and gestational hypertension and pre-eclampsia. Therefore, SPPA could contribute
to a differential diagnosis of hypertensive pregnancy disorders.

6.4 Lagged Segmented Poincaré Plot Analysis

The objective of LSPPA is to investigate if time correlations will provide informa-
tion about the physiological background of the impaired autonomous regulation,
especially in very low (VLF = 0.0033–0.04Hz) and low-frequency (LF = 0.04–
0.15 Hz) bands. Therefore, we will provide additional insight into the underlying
physiological mechanism of heart rate regulation. Furthermore, we will demonstrate
enhanced risk stratification by applying indices from the LSPPA method.

6.4.1 Method

The SPPA method (Sect. 6.2.1) considers NNn as a function of its subsequent NNn+m

by a lag of one (m = 1). The lag is defined as the distance between the investigated
NN. For time correlation analysis, LSPPA investigates patterns applying lags from
m = 1 · · ·100 (as seen in Fig. 6.11).

For more comparable results, the same time series length for each time series
were used by cutting an offset (specific number of NN) at the end of each time
series (Eq. 6.16). This step yields the following Eqs. 6.17 and 6.18 which are based
on Eqs. 6.1 and 6.2:
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Fig. 6.11 Exemplary principal of time correlation analysis applying LSPPA for NN intervals
(lags: m = 1–3)

Fig. 6.12 The simplified procedure of lagged segmented Poincaré plot analysis (LSPPA)

offset = 100−m (6.16)

NNn = (NN1,NN2, . . . ,NNN−m−offset) (6.17)

NNn+m = (NNm+1,NNm+2, . . . ,NNN−offset). (6.18)

The simplified principle of LSPPA shown in Fig. 6.12 is divided into three main
parts: preprocessing, segmentation and lag classification.
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The corresponding frequency f, related to the lag (m), assuming the mean values
of all investigated patients (meanNN = 867 ms), is calculated as follows (Eq. 6.19):

f ∼ 1/(m∗meanNN). (6.19)

The lags are combined into 8–10 different clusters covering the most significant
frequencies. Too many single indices will be avoided since these would probably
lead to too much uncertainty. The defined clusters include 5–10 lags. Lower clusters
include five lags, whereas the upper ones include ten lags, according to the degree
of difference between the frequencies. This procedure must be separately and
specifically defined for each study because of its dependency on the meanNN of all
investigated subjects. One example of classification of lags will be shown in the next
chapter in which LSPPA to DCM patients are implicated (Sect. 6.4.2, Fig. 6.10).

The cardiovascular regulation is influenced by various oscillations which differ
in origin. Bernjak et al. [206], Rossi et al. [207] and Tikhonova et al. [208]
published the physiological correlations of frequency bands related to respira-
tory (0.145–0.6Hz), intrinsic myogenic (0.052–0.145Hz), neurogenic/sympathetic
(0.021–0.052Hz) and endothelial (0.0095–0.021Hz) activity.

6.4.2 Application of LSPPA to Determine Risk Stratification
in Patients Suffering from Dilated Cardiomyopathy

The present study applies LSPPA to DCM patients using similar data pre-processing
and statistical methods as that of the application study of SPPA (see Sect. 6.2.4).
We enrolled 91 patients (DCM HR = 14, DCM LR = 77) suffering from DCM
(Table 6.2). The goal of the investigation was to determine whether LSPPA is
able to analyse time correlations corresponding to different frequency bands ( f =
0.012 · · ·1.153 Hz—Fig. 6.13) and whether this type of analysis could improve risk
stratification.

Significant indices for the group test between high- and low-risk patients of
DCM applying the BBI time series are presented in Table 6.13. It could be shown
that LSPPA presents highly significant indices in all clusters except in cluster II
(p = 0.0241). The revealed significances of LSPPA could especially be found in
column 8 (cluster I: p = 0.0021; cluster VII: p = 0.0002), column 5 (cluster V:
p = 0.0014; cluster VI: p = 0.0019), row 3 (cluster III: p = 0.0006) and row 5
(cluster IV: p = 0.0002; cluster VIII: p = 0.0047). Therefore, cluster IV (sensitivity
= 85.7%; specificity = 71.4%; AUC = 80.89%) and cluster VII (sensitivity =
78.57%; specificity = 74%; AUC = 80.89%) present the best indices (marked in
Table 6.13).

By comparison, traditional PPA does not achieve any significant indices inves-
tigating SD1, SD2 and their ratio SD1/SD2. Therefore, calculating the sensitivity,
specificity as well as AUC was not performed.

It could be demonstrated that high-risk DCM patients achieve a significantly
higher row and column probability compared to low-risk DCM patients. Especially
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Fig. 6.13 Declaration of clusters of lags including their corresponding frequencies (in Hz) and
related frequency bands, with application for DCM patients

Table 6.13 Significant LSPPA and PPA indices (**highly significant (p < 0.01); *significant
(0.01 = p = 0.05); N.S. not significant; n.c. not calculated) differentiating DCM HR vs. DCM LR
including the mean values and SDs for each group; sensitivity in % (SENS), specificity in %
(SPEC) and the area under the curve (AUC) in %

DCM LR DCM HR SENS SPEC AUC
Cluster Index p Mean SD Mean SD in % in % in %

I Column 8 0.0021** 12.5264 2.1366 14.2066 1.2742 71.4 72.7 76.16
II Column 5 0.0241* 12.5567 2.7892 14.4045 2.6267 62.34 57.14 68.37
III Row 3 0.0006** 0.3588 0.2297 0.1433 0.1604 64.3 85.7 78.9
IV Row 5 0.0002** 11.7781 1.8335 13.374 0.8906 85.7 71.4 80.89
V Column 5 0.0014** 13.3114 2.3159 15.5025 2.3892 78.57 80.5 76.72
VI Column 5 0.0019** 13.2425 2.1543 15.293 2.3726 78.6 72.7 76.35
VII Column 8 0.0002** 13.5174 1.7237 15.2921 1.2757 78.57 74 80.89
VIII Row 5 0.0047** 12.3039 1.5853 13.4518 1.5261 71.4 76.6 73.84

PP
A

SD1 N.S. 30.003 17.554 34.136 18.866 n.c. n.c. n.c.
SD2 N.S. 36.135 18.389 39.18 24.623 n.c. n.c. n.c.
SD1/SD2 N.S. 0.814 0.141 0.885 0.149 n.c. n.c. n.c.

the number of points within the more central regions (columns 5 and 8) increased,
whereas the number of points within the peripheral regions decreased (column 1–3,
10–12). This represents a reduced variability in high-risk DCM patients.

The most important differences were recognized within LF and VLF bands
corresponding to endothelial and neurogenic/sympathetic activities. Oscillations at
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frequencies in VLF bands are often related to vasomotor tones of thermoregulation
or to the dynamics of hormonal systems, but the origin and frequency of these
oscillations are still unknown [209]. The VLF band includes frequency bands
indicating endothelial activity (clusters VI–VIII). Treasure et al. [210] demonstrated
that endothelium-dependent dilation of the coronary microvasculature is impaired in
patients suffering from DCM. Endothelial dysfunction in DCM patients could
also be proven in animal studies, e.g. Kaiser et al. [211], who found impaired
endothelium-dependent vasodilatation to acetylcholine in the hind limb of dogs with
experimental heart failure.

6.4.3 LSPPA in Comparison to Traditional Time
and Frequency Domain Analysis

We have proven that LSPPA has the potential to differ between high- and low-risk
patients of DCM regarding several frequencies (0.012–1.153Hz), corresponding to
traditional HF, LF and VLF frequency bands. In this study, HRV is quantified with
indices calculated from time- and frequency-domain analyses, comparing them with
LSPPA by applying the BBI time series of DCM patients (see also Sect. 6.2.4 and
Table 6.2) [55].
The following indices are calculated from time-domain analyses (HRV TD):

• meanNN = mean value of BBI time series (ms)
• SDNN = standard deviation of BBI time series (ms)
• RMSSD = square root of the mean squared differences of successive BBIs (ms)
• pNN50 = percentage of successive BBI differences > 50 ms

In addition, traditional PPA provides detailed beat-to-beat information and calcu-
lates the following linear indices:

• SD1 = the standard deviation (ms) of short-term BBI variability (Eq. 6.3)
• SD2 = the standard deviation (ms) of long-term BBI variability (Eq. 6.4)
• SD1/SD2 = the axes ratio

The following gives an introduction to frequency-domain analysis methods that
are applied to fast fourier transform (FFT) and short-time fourier transform (STFT).
When performing frequency-domain analysis, the tachogram of each patient is
resampled (2 Hz, linear interpolation) to obtain an equidistant time series.

The FFT is applied using the Blackman Harris window. The power spectra
of the entire equidistant time series are estimated and relevant frequency-domain
indices are extracted in accordance with the Task Force of the European Society of
Cardiology [55]:

• HF = power in high-frequency band (0.15–0.4 Hz) (s2)
• LF = power in low-frequency band (0.04–0.15Hz) (s2)
• VLF = power in very-low-frequency band (0.0033–0.04Hz) (s2)
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• LF/HF = ratio of LF to HF power
• LFn = normalized LF
• HFn = normalized HF

The STFT (Eq. 6.20) provides a time-frequency decomposition of BBI time
series. Considering the averaged time series for each group of patients x(i) and
applying Blackman Harris window w(i) with Ns = 512 samples, the FT of the
windowed signal x(i)w(i− k) is the STFT [212,213] and where n and k(1 = n = N)
represent the discrete time and frequency:

Xk (n)=
i=k+ Ns

2

∑
i=k− Ns

2

x(i)w(i−k)e− j 2πn
Ns ∗i. (6.20)

The window is shifted by one sample. This procedure is repeated up to the end of
the BBI time series. To generate comparable frequency-domain values (VLF, LF and
HF), the power density spectrum Xk(n) is integrated within the specific frequency
band.

The spectral resolution Fa (Eq. 6.21) depends upon the sampling frequency (2 Hz)
of the (resampled) tachogram (ΔT = 0.5 Hz) and upon the length of the selected
window (Ns = 512 samples):

Fa=
1

Ns∗ΔT
. (6.21)

Table 6.14 represents the results of time-domain (HRV TD and PPA) and
frequency-domain (FFT and STFT) analyses including mean values and their
standard deviations for all groups of DCM patients and healthy subjects (REF).
Calculating the group test between DCM patients and REF, we could obtain highly
significant indices within the time-domain (SDNN, RMSSD, pNN50, SD1 and SD2)
as well as the frequency-domain analyses in VLF, LF and HF bands when applying
FFT and STFT. However, when investigating the group test between high- and
low-risk DCM patients, neither time-domain nor frequency-domain analyses could
confirm risk stratification in DCM patients.

The power spectra for each group of patients considering FFT and STFT (see
Figs. 6.14 and 6.15, respectively) represent the power intensity within HF, LF and
VLF bands. The figures show the averaged plots within the considered groups of
high- and low-risk DCM patients and healthy subjects (REF).

Calculating the spectral resolution of STFT (Eq. 6.21), we reach a resolution
of Fa = 0.0039 Hz for each window (Ns = 512 samples; ΔT = 0.5 s) and a
resolution of Fa = 0.0006 Hz for the whole signal (Ns = 3,600 samples; ΔT =
0.5 s) applying FFT. In contrast, LSPPA achieves a spectral resolution up to
0.0002 Hz within VLF band (m= 100) depending on m, whereby higher lags present
higher resolutions. Furthermore, STFT seems to have a different visual appearance
within the investigated patient groups. However, there are no significant changes
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Table 6.14 Significant STFT, PPA, time-domain (HRV TD) and frequency-domain (FFT) indices
of the group tests DCM HR vs. DCM LR and DCM vs. REF, including mean values and SDs; N.S.
not significant; *p < 0.05; **p < 0.01

DCM HR
vs. DCM DCM HR DCM LR REF

Index DCM LR vs. REF Mean SD Mean SD Mean SD

HRV TD

meanNN (ms) N.S. N.S. 828.43 112.30 906.96 145.86 858.75 134.40
SDNN (ms) N.S. ** 33.45 17.70 36.98 21.66 60.38 21.54
RMSSD (ms) N.S. ** 17.43 11.46 20.53 12.14 47.99 26.98
pNN50 (%) N.S. ** 0.03 0.06 0.05 0.08 0.24 0.23

PPA
SD1(ms) N.S. ** 30.00 17.55 34.14 18.87 56.27 21.97
SD2(ms) N.S. ** 36.13 18.39 39.18 24.62 63.47 22.51
SD1/SD2 N.S. N.S. 0.81 0.14 0.89 0.15 0.88 0.15

FFT

VLF (s2) N.S. ** 176.47 198.77 178.90 212.84 281.80 200.99
LF (s2) N.S. ** 44.09 47.08 79.64 130.66 214.58 170.97
HF (s2) N.S. ** 29.62 41.75 33.30 44.89 216.41 213.01
LF/HF N.S. * 2.49 2.18 3.44 3.70 1.94 2.00
LFn N.S. * 0.66 0.11 0.67 0.18 0.56 0.18
HFn N.S. * 0.34 0.11 0.33 0.18 0.44 0.18

STFT
VLF N.S. ** 23341 12800 20264 11235 37001 12950
LF N.S. ** 11547 7087 8869 5443 21589 8592
HF N.S. ** 11004 6211 10097 7387 29293 15932
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Fig. 6.14 FFT plots of high-risk DCM patients (a), low-risk DCM patients (b) and healthy
subjects (c) averaged over all investigated subjects within each group. The frequency bands HF,
LF and VLF are labelled

considering differences in the standardized frequency bands HF, LF and VLF when
discriminating between high- and low-risk DCM patients (see Table 6.14).

Comparing the results of time- and frequency-domain analyses and LSPPA when
applying high- and low-risk DCM patients, we can conclude that LSPPA represents
highly significant indices (as seen in Table 6.13) within all defined clusters. LSPPA
results are therefore better suited for time correlation analyses. It has been confirmed
that LSPPA improves the results of traditional time- and frequency-domain analyses
with regard to the corresponding frequency bands.
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Fig. 6.15 STFT plots of high-risk DCM patients (a), low-risk DCM patients (b) and healthy
subjects (c) averaged over all investigated subjects within each group. The frequency bands HF,
LF and VLF are labelled

6.5 Perspective

We successfully performed several studies including SPPA for BBI time series (risk
stratification of DCM patients and age dependencies in healthy subjects) as well
as blood pressure signals (for application in the area of hypertensive pregnancy
disorders). Furthermore, we could demonstrate that indices obtained from LSPPA
improve risk stratification in DCM patients and that the calculated time correlations
provide some additional insights into the underlying physiological mechanisms of
these patients.

In this regard, several approaches have not yet been included and will be
described in the following chapters. In these chapters, we will investigate the BBI
time series of ECG signals, SBP as well as DBP and respiratory signals (RESP).
Subsequent studies should focus on univariate (1D) as well as multivariate (2D and
3D) analyses of cardiovascular signals.

6.5.1 Application of SPPA and LSPPA to Respiratory Signals

Respiratory sinus arrhythmia (RSA), one of the physiological interactions between
respiration and circulation, is HRV in synchrony with respiration where the BBI
time series based on an ECG is shortened during inspiration and prolonged during
expiration. RSA has been a focus of study since its first description by Ludwig [214].
The review article of Tripathi [215], inter alia, gives an overview of respiratory
frequency and tidal volume associated with HRV.

The respiration signal significantly differs in patients suffering from cardio-
vascular diseases compared to healthy subjects. Therefore, we will investigate
this influence by applying univariate and multivariate SPPA as well as LSPPA to
investigate BBI time series, SBP- and DBP signals. The considerations about using
multivariate SPPA methods are described in the following Sects. 6.5.2 (2D SPPA)



6.5 Perspective 123

and 6.5.3 (3D SPPA) in more detailed way. Further considerations exist in the field
of investigating different diseases like DCM, schizophrenia or pre-eclampsia using
the entire respiration signal as well as inspiration and expiration periods.

6.5.2 Application of SPPA to Two-Dimensional Analysis
of Signal Couplings (2D SPPA)

SPPA retains nonlinear features of the investigated system and until now has
been applied to BBI time series and blood pressure signals, respectively. For
multivariate analyses, we will consider the interaction between two different time
series. The resulting method will be adapted by determining the phase space of two
series instead of the pseudo-phase space of only one time series—the so-called 2D
SPPA. This was recently published in a pilot study by Seeck et al. [216].

The 2D SPPA generally will include the following procedures (see Fig. 6.16)
similar to the recently presented SPPA method [173] which was introduced in
Sect. 6.2.1:

1. The linear indices SD1 and SD2 are calculated according to traditional PPA.
A linear regression is fitted into the cloud of points and the angle α between
the x-axis and the regression line is calculated (see Fig. 6.16a).

2. The cloud of points is rotated by the angle α around the main focus of the cloud
(see Fig. 6.16b) to perform a simplified SD1/SD2-adapted probability-estimating
procedure (with the consideration as to whether the cloud rotation will improve
the results of 2D SPPA).

3. A grid of 12× 12 rectangles is fitted into the plot starting from the main focus
of the plot where the size of each rectangle is adapted to SD1 (height) and SD2
(width) (see Fig. 6.16c).

4. For estimating single probabilities (probability of occurrence: poi j), the number
of points within each rectangle is counted and normalized by the total number
of points. Based upon these single probabilities, all row (i) and column ( j)
probabilities are calculated by summation of the related single probabilities
(Eqs. 6.6 and 6.7).

To evaluate 2D SPPA patterns, it is perhaps necessary to observe specific regions
of the cloud of points rather than the total row and column probabilities. Therefore,
a novel segmentation algorithm is to be considered (as seen in Fig. 6.17) calculating
the summation of the related single probabilities as (Eqs. 6.22–6.25):

pori left=
6

∑
j=1

pi j (6.22)

pori right=
12

∑
j=7

pi j (6.23)
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Fig. 6.16 A 2D SPPA procedure: (a) calculation of SD1 and SD2 and angle α between linear
regression line and x-axis, (b) rotation of the cloud of points by α (an example for movement of
points is highlighted by the circle); (c) segmentation of the plot into 12× 12 rectangles based on
SD1 and SD2 with declaration of SPPA indices

poc j top=
6

∑
i=1

pi j (6.24)

poc j bottom=
12

∑
i=7

pi j. (6.25)

In a first pilot study [216] with patients suffering from persistent atrial fibrillation
(AF), we applied 2D SPPA of BBI time series and SBP including the segmented
algorithm of 2D SPPA. All patients underwent successful electrical cardioversion
(CV) which was defined as a stable sinus rhythm for the following 24 h. A follow-
up examination after one year was obtained for all patients as well as their general
practitioners. AF recurred in 12 patients within the first year (group: REZ) and 15
patients remained in sinus rhythm for at least one year (group: SR) (see Table 6.15).
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Fig. 6.17 Exemplary consideration of a novel segmentation algorithm of 2D SPPA

Table 6.15 Classification of SR (sinus rhythm) and REZ (AF recurrence)
patients including the number of patients, gender, mean value, range and SD
of age (in years)

Group Number Numbermale/female Mean ± SD age Range age

SR 15 10/6 62.5 ± 11.9 44–79
REZ 12 4/7 69.0 ± 6.8 59–83

When discriminating between the two groups of patients, we obtained one
significant index (BBI/SBP-row10 left: KS-test for two samples: p10 left = 0.016;
AUC = 78%) which was derived by applying 2D SPPA. This index reflects the
probability of a low BBI following a very low SBP. This system’s status is found
more often in patients remaining in sinus rhythm than in patients with an AF relapse.
This supports the assumption of reduced BRS and a lower variation of the system
in patients with AF [217].
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Fig. 6.18 Principle of 3D SPPA including univariate and multivariate analyses

6.5.3 Application of SPPA to Three-Dimensional Analysis
of Signal Couplings (3D SPPA)

Three-dimensional SPPA (3D SPPA) methods will investigate three shifted signals
from a time series (univariate) or three different signals (multivariate: e.g. BBI time
series, SBP and DBP) plotted in several box models. The basis of our methodology
rests on specific subdivisions of the box model which is similar to SPPA. Figure 6.18
represents the general principle of 3D SPPA considering univariate and multivariate
analysis methods.

Furthermore, there is discussion to generate two different versions of 3D SPPA
according to the size of the boxes within the 3D cubes plot (Fig. 6.18):

• First version: Adapted 3D SPPA (size of boxes depending on the calculated
standard deviations (SD) of investigated signals)

• Second version: Determined 3D SPPA (size of boxes are previously defined to
get equal dimensions for each patient)

The first version (adapted 3D SPPA) deals with the calculation of the standard
deviation (SD). Therefore, each axis of the 3D cubes plot is divided into 12 equal
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Fig. 6.19 Exemplary colourized 3D cubes plot of the first version of 3D SPPA (adapted 3D SPPA)
including the planes and their regression lines

parts adapted to the calculated SD of investigated signals with regard to the axis.
The resulting 3D cubes plot consists of 12×12×12 equal boxes whereby the centre
of all boxes represents the main focus of the cloud of points (as seen in Fig. 6.19).
Depending on the percentage of measuring points within each box, we colour the
boxes to allow for an improved graphical information processing.

To exemplarily demonstrate the first version (multivariate case) of 3D SPPA,
we investigated BBI time series, SBP and RESP, as found in Fig. 6.19. In addition,
the adapted 3D SPPA shows all three planes of a 3D cubes plot and the regression
line of each plane.

The second version (determined 3D SPPA) deals with an equal grid for all
patients depending on the investigated signals. Therefore, the distance between
minimum and maximum of each investigated signal will be calculated and divided
into 14 equal parts. This 3D cubes plot represents the basic 3D cubes plot with
regard to all patients. The borders of the boxes will be calculated separately and
specifically for each study according to the investigated patients.

Figure 6.20 demonstrates the 3D cubes plot of determined 3D SPPA and
represents a healthy subject.

Consideration might also be given to normalizing the resulting 3D cubes plots by
rotating the cloud of points in each plane. A first approach is provided by calculating
the regression lines in each of the three planes of the 3D cubes plot (see Fig. 6.19).
Then a rotation of the cloud of points is performed for both methods, Adapted and
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Fig. 6.20 Exemplary coloured 3D cubes plot of the second version of 3D SPPA (determined 3D
SPPA)

Determined 3D SPPA. Therefore, regression lines through the centre of the cloud of
points will be drawn in each plane of the cubes plot and the angles between the axis
and the regression line are calculated. The clouds of points are then rotated by the
angles around the main focus of each specific cloud (comparable to the 2D SPPA).

6.6 Conclusions

The methodology of SPPA was introduced and applied to patients suffering from
DCM. The results indicated the ability of SPPA to differ between high- and low-
risk patients of DCM as well as between DCM patients and healthy subjects. For
the first time we could demonstrate that an index from SPPA showing heart rate
variability was able to contribute to risk stratification in patients suffering from
DCM. Furthermore, SPPA retains nonlinear features of the investigated system,
therefore overcoming some limitations of traditional PPA [8].

Finally, we could show that SPPA is rather age-independent in short-time HRV
analyses. In future, this study will be examined by comparing the short-term HRV
indices between groups of patients and including a healthy control group.

By using a model, Brennan et al. [118] established that the length and width of
Poincaré plots are not separately related to LF and HF powers of the HRV signal,
respectively, but instead are a weighted combination of LF and HF powers. We could
show by applying SPPA that these effects are also superimposed by nonlinear
dynamics of HRV.

Additional insights into the underlying physiological mechanisms have been
gained by extending the methodology of SPPA. Thus we developed the LSPPA that
enhances the PPA method by investigating time correlations of the BBI. LSPPA
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provides a prognostic preview for DCM patients regarding several associated
symptoms such as endothelial dysfunctions. Therefore, the LSPPA method seems
to be a potent risk stratifier in patients with idiopathic DCM.

In our studies we could demonstrate that with specific extension the PPA can
lead to much more information about impaired autonomic regulation and has
the potential to be applied in much more fields of medical diagnosis and risk
stratification.
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Traditional Poincaré plot analysis, 93

V
Vasomotor oscillations, 6–7, 26, 28
Visual analysis

comet pattern, 14, 15
complex pattern, 15, 17
fan pattern, 14, 16
torpedo pattern, 14, 16


	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Heart Rate Variability Techniques in Cardiology
	1.1.1 The RR Intervals

	1.2 History of Heart Rate Variability
	1.3 Physiological Basis of HRV Analysis
	1.4 Analysis Methods
	1.4.1 Time Domain
	1.4.1.1 Statistical Techniques
	1.4.1.2 Geometric Techniques

	1.4.2 Frequency Domain
	1.4.2.1 Short-Term Recordings
	1.4.2.2 Long-Term Recordings

	1.4.3 Nonlinear Dynamics


	2 Quantitative Poincaré Plot
	2.1 Introduction
	2.2 Visualization of HRV Using Poincaré Plot
	2.3 Quantification of Poincaré Plot of RR Interval
	2.3.1 Ellipse-Fitting Technique
	2.3.2 Histogram Techniques

	2.4 Relationship Between Poincaré Shape and Linear HRV Measure
	2.5 Conclusion

	3 Poincaré Plot Interpretation of HRV Using Physiological Model
	3.1 Introduction
	3.2 Autonomous Nervous System and HRV Analysis
	3.3 Physiological HRV Model
	3.3.1 Sympathetic Oscillator
	3.3.2 Parasympathetic Respiratory Oscillator
	3.3.3 Sinus Oscillator

	3.4 Mathematical Analysis of HRV Model Using Poincaré Plot
	3.4.1 Length of Poincaré Plot Main Cloud
	3.4.2 Width of the Poincaré Plot Main Cloud
	3.4.3 Poincaré Plot Morphological Properties for theHRV Model

	3.5 Simulation Results in Clinical Examples
	3.5.1 Complete Autonomic Blockade
	3.5.2 Unopposed Sympathetic Activity–Parasympathetic Blockade
	3.5.3 Sympathetic-Parasympathetic Balance
	3.5.4 Data Set Acquisition
	3.5.5 Data Set Analysis
	3.5.6 Poincaré Plot Morphology for Real Data

	3.6 Conclusion

	4 Poincaré Plot in Capturing Nonlinear Temporal Dynamics of HRV
	4.1 Introduction
	4.2 Nonlinear Dynamics
	4.3 Limitation of Standard Descriptors of Poincaré Plot
	4.4 Complex Correlation Measures in Poincaré Plot: A Novel Nonlinear Descriptor
	4.5 Mathematical Analysis of CCM
	4.5.1 Sensitivity Analysis
	4.5.1.1 Sensitivity to Changes in Window Length
	4.5.1.2 Homogeneity to Changes in Temporal Structure
	4.5.1.3 Examining the Influence of Various lags of Poincaré Plot


	4.6 Physiological Relevance of CCM with Cardiovascular System
	4.6.1 Subjects and Study Design
	4.6.2 Results
	4.6.3 Physiological Relevance of CCM

	4.7 Clinical Case Studies Using CCM of Poincaré Plot
	4.7.1 HRV Studies of Arrhythmia and Normal Sinus Rhythm
	4.7.2 HRV Studies of Congestive Heart Failure and Normal Sinus Rhythm

	4.8 Critical Remarks on CCM
	4.9 Conclusion

	5 Heart Rate Asymmetry Analysis Using Poincaré Plot
	5.1 Introduction
	5.2 Existing Indices of HRA
	5.2.1 Guzik's Index
	5.2.2 Porta's Index
	5.2.3 Ehlers' Index 

	5.3 New Definition of Asymmetry in RR Interval Time Series
	5.4 Modified HRA Indices Using Poincaré Plot
	5.4.1 Guzik's Index (GIp)
	5.4.2 Porta's Index (PIp)
	5.4.3 Ehlers' Index (EIp)

	5.5 Application of HRA in Clinical Research
	5.5.1 Presence of HRA in Healthy Subjects
	5.5.1.1 Data and Results
	5.5.1.2 Discussion

	5.5.2 Correlation Between HRA and Parasympathetic Activity
	5.5.2.1 Clinical Study Methodology
	5.5.2.2 Deviation from Symmetry Distsym
	5.5.2.3 Power Spectral Analysis
	5.5.2.4 Statistics
	5.5.2.5 Results from HRA Analysis
	5.5.2.6 Discussion


	5.6 Conclusion

	6 Segmented Poincaré Plot Analysis and Lagged Segmented Poincaré Plot Analysis
	6.1 Introduction
	6.2 Segmented Poincaré Plot Analysis
	6.2.1 SPPA Method
	6.2.2 Applying SPPA on Simulated BBI Time Series
	6.2.3 The Ability of SPPA to Obtain Nonlinear Behaviour in Time Series When Applying Surrogate Data Analysis
	6.2.4 Application of SPPA for Risk Stratification in Dilated Cardiomyopathy Patients
	6.2.5 Investigating the Influence of Rectangle Size
	6.2.6 Investigating Age Dependencies in Healthy Subjects 

	6.3 Application of SPPA to Blood Pressure Signals
	6.3.1 SPPA Adaptation to Blood Pressure (BP) 
	6.3.2 Application to Hypertensive Pregnancy Disorders

	6.4 Lagged Segmented Poincaré Plot Analysis
	6.4.1 Method
	6.4.2 Application of LSPPA to Determine Risk Stratification in Patients Suffering from Dilated Cardiomyopathy
	6.4.3 LSPPA in Comparison to Traditional Time and Frequency Domain Analysis

	6.5 Perspective
	6.5.1 Application of SPPA and LSPPA to Respiratory Signals
	6.5.2 Application of SPPA to Two-Dimensional Analysis of Signal Couplings (2D SPPA)
	6.5.3 Application of SPPA to Three-Dimensional Analysis of Signal Couplings (3D SPPA)

	6.6 Conclusions

	References
	Index

