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           Introduction 

    Cigarette smoking represents a major world health hazard. In fact, chronic cigarette 
smoking is the leading risk factor for the development of chronic obstructive pulmo-
nary disease (COPD), the world's third leading cause of death and accounts for 90 % 
of lung cancers [ 1 ,  2 ]. Cigarette smoking produces adverse respiratory effects by 
exposing the airways and lung parenchyma to a variety of reactive oxygen species 
(ROS) and other toxic compounds. Although the molecular mechanisms underlying 
lung and airway damage in response to cigarette smoke remain incompletely under-
stood, ROS are believed to produce tissue injury by affecting the function and gene 
expression profi les of lung structural cells and infl ammatory cells. In fact, cigarette 
smoke exposure alters the expression of >600 genes in human monocytes [ 3 ]. 
Specifi cally, ROS exert direct deleterious effects on cell structure and function by dam-
aging protein, lipid and DNA macromolecules which impair cellular function, induce 
apoptosis, and stimulate dysfunctional matrix remodeling in the lung and in the respi-
ratory tract. Furthermore, cigarette smoke-induced cell damage causes the release of 
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alarmins, cytokines, chemokines and up-regulation of adhesion molecules by epithe-
lial cells in the airway and lung which collectively serve to attract an infl ammatory cell 
infi ltrate. In addition, bacterial constituents present in cigarette smoke further shape the 
intensity and infl ammatory response by activating PAMPs [pathogen associated 
molecular patterns] expressed by lung cells which, in turn, interact with the cell’s oxi-
dant defense mechanisms [ 4 ,  5 ]. Moreover, the infl ammatory process generated by the 
innate immune system, in turn, increases oxidant stress in the lung through the produc-
tion of the superoxide ion by infi ltrating neutrophils. Accordingly, the infl ammatory 
reaction in the lung induced by oxidants in cigarette smoke has the potential to act as a 
positive feedback loop or self-amplifying process which exacerbates both conditions. 

 This chapter will describe the composition of cigarette smoke and the mecha-
nism by which its major constituents induce oxidant stress imposed in the respira-
tory tract. Furthermore, we will discuss the molecular mechanisms in the lung 
which deal with oxidant stress. Finally, we will discuss the manner in which antioxi-
dant defense mechanisms in the respiratory tract interact with infl ammatory signal-
ing pathways to shape the intensity and nature of both responses to cigarette smoke.  

    Cigarette Smoke Composition 

 Cigarette smoke contains more than 4,700 separate compounds many of which are 
highly toxic and xenobiotic materials [ 6 – 9 ]. In particular, cigarette smoke contains 
a variety of aromatic and non-aromatic hydrocarbons (dioxin, benzopyrene); alpha 
and beta aldehydes (acrolein); heavy metals (cadmium, zinc, iron); toxic gases 
(nitrogen dioxide, nitric oxide, carbon monoxide); and bacterial-derived substances 
(lipopolysaccharides [LPS]) which induce important biological effects on the innate 
and adaptive immune systems. 

 The effects of many of these compounds on oxidant defenses and the immune 
system have been well characterized (see below). Of considerable importance, 
the effects of individual compounds of smoke produce effects which in some cases 
are opposite in sign to those produced by cigarette smoke per se suggesting that the 
effects of cigarette smoke cannot be predicted from the study of its individual com-
ponents but are best assessed using cigarette smoke itself. 

    Reactive Oxygen Species (ROS) 

 Smoke from a burning cigarette contains approximately 10 15  ROS per puff [ 6 ]. It 
has been estimated that the concentration of total reactive oxygen species contained 
in the average cigarette ranges from 16 to 55 nmol H 2 O 2 /L [ 10 ]. Chemical studies of 
cigarette smoke performed in the 1980s and 1990s have characterized the nature of 
the ROS generated by both the particulate phase which is retained on a fi lter (termed 
cigarette “tar”) and the gas or vapor phase which passes through the fi lter. In fact, 
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the differing materials in these two phases of cigarette smoke exert different bio-
logical effects. The majority of the toxic chemicals generated in the particulate 
phase are semiquinones, phenol, catechol and nicotine [ 11 ]. The tar phase also 
retains several heavy metal ions including cadmium, nickel, and zinc. The major 
chemicals in gaseous phase are carbon monoxide, nitrogen oxides, ammonia, form-
aldehyde, acrolein (aldehyde), toluene, benzene, hydrogen cyanide, and the short- 
chained amides, acrylamide, acetamide [ 11 ,  12 ]. 

 Cigarette smokers deposit up to 20 mg of tar in their lungs per cigarette smoked 
and the levels of ROS in cigarette smoke, which correlate closely with the level of 
tar phase materials [ 10 ]. Semiquinones cause sustained production of superoxide 
(.O 2 −), hydroxyl radical (OH.), singlet oxygen (1O 2 ) and hydrogen peroxide (H 2 O 2 ) 
[ 9 ]. In the aqueous phase of the surface lining fl uid of the respiratory tract, superox-
ide radicals react quickly to oxidize proteins, lipids or nucleic acid macromolecules. 
Superoxide also can be enzymatically dismuted to form the more stable oxidant, 
hydrogen peroxide, by superoxide dismutase. Hydrogen peroxide can also form the 
very highly reactive hydroxy radical via the Fenton reaction via the iron present in 
cellular fl uids and cigarette tar. 

 Although free radicals in the gas phase are short-lived and affect primarily the 
upper respiratory tract, radical concentrations are maintained at high levels in gas 
phase cigarette smoke for more than 10 min and seem to increase in concentration 
as smoke ages. In fact, radicals are continuously formed and destroyed. Based on 
nitrogen oxide chemistry, nitric oxide is slowly oxidized to form the more reactive 
nitrogen dioxide which reacts with unsaturated compounds such as isoprene to form 
carbon radicals which then rapidly react with oxygen to form peroxyl radicals. 
These in turn react with nitric oxide to produce more nitrogen dioxide. In general, 
the gas phase is believed to be less harmful to the lung than the tar phase [ 13 ]. 

 CS also promotes the generation of ROS and reactive nitrogen species (RNS) in 
resident lung structural and infl ammatory cells by activation of endogenous NADPH 
oxidase (NOX). NOX isoforms transport electrons from cytoplasmic high energy 
electron donor NADPH to generate O 2  −  and hydrogen peroxide (H 2 O 2 ) [ 14 ]. Of the 
family of NADPH oxidase (NOX) isoforms, NOX1, 2, 4, 5 and Duox 1 and 2 are 
expressed in lung epithelial and other cell types [ 14 – 19 ]. Moreover, NADPH oxi-
dase (NOX) isoforms are activated by cigarette smoke in a variety of cell types 
including alveolar macrophages, airway smooth muscle and pulmonary artery 
endothelial cells and are believed to contribute importantly to oxidant stress in the 
lung [ 14 ,  20 ,  21 ]. LPS in cigarette smoke acting on TLR4 [ 21 ] and cytokines 
secreted from airway and alveolar epithelial cells and infl ammatory cells in the lung 
such as TNF−α and IL-1β, activate NADPH oxidase. Of considerable importance, 
NADPH oxidase-derived ROS can induce mitochondrial ROS production indicating 
the possibility of a positive feedback loop [ 22 ,  23 ]. Of interest, tar- and nicotine- 
free cigarette smoke is capable of activating NADPH oxidase in PKC-dependent 
fashion indicating that gaseous phase ROS in addition to cigarette tar may contrib-
ute to NADPH-induced oxidant stress in some cell types [ 24 ]. In fact, acrolein, a gas 
phase constituent of cigarette smoke (see below), activates NADPH oxidase and 
superoxide production in human pulmonary endothelial cells [ 25 ]. 
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 An additional mechanism can contribute to endogenous ROS production in the 
lung. Nitric oxide (NO) in cigarette smoke can be transformed to NO by nitric oxide 
synthase which is expressed by a variety of respiratory cell types. In turn, ·NO can 
be oxidized to the more potent peroxynitrite (ONOO-) by superoxide anion. NO 
synthase expression can be up-regulated by TNF−α and IL-1β.  

    Acrolein 

 Acrolein, a highly water-soluble gas which is highly irritating to eyes, nose and 
respiratory passages, is deposited mainly in the aqueous lining fl uid of the lower 
respiratory tract when cigarette smoke is inhaled. Acrolein contains a highly reac-
tive alpha carbon which forms carbonylated macromolecules and depletes reduced 
glutathione and antioxidants in the respiratory tract [ 26 – 29 ]. As such acrolein and 
other α, β unsaturated aldehydes are major contributors to the oxidative damage 
induced by gas phase cigarette smoke [ 30 ,  31 ]. 

 Of interest, the concentration of acrolein in sidestream smoke is actually 17-fold 
greater than in mainstream smoke due to altered combustion chemistry and lower 
temperatures [ 32 ,  33 ]. Acrolein is also formed endogenously in the lung during 
infl ammation via three separate pathways: (1) by myeloperoxidase oxidation of the 
amino acid, threonine; by the oxidation of membrane fatty acids; and by thiamine 
oxidase mediated catabolism of the polyamines, spermine and spermidine. In fact, 
acrolein concentrations in expired breath condensate and in induced sputum are higher 
in smokers and ex-smoking subjects with COPD than in healthy nonsmokers [ 34 ,  35 ]. 

 Acrolein induces a variety of deleterious effects on the respiratory tract which 
mimic the effects of chronic cigarette smoke exposure. On balance, acrolein has a 
proinfl ammatory effect but its effects on individual components of the infl ammatory 
response are complex. In rodents, chronic exposure to acrolein increases infi ltration 
of macrophages, neutrophils, and CD8+ T cell into the lungs [ 36 ]. Moreover, acro-
lein exposure increases IFN-γ, IP-10 (CXCL10), IL-12, MCP-1 (CCL2), RANTES 
(CCL5) and metalloproteinase (MMP)-12 in BAL [ 36 ]. Of interest, macrophage 
accumulation, production of these cytokines and increased MMP12 in response to 
acrolein does not occur in CD8 defi cient mice suggesting that the pro-infl ammatory 
effect of acrolein is initiated by effects on CD8 cells. Acrolein inhibits neutrophil 
apoptosis [ 36 ] but augments alveolar macrophage apoptosis [ 37 ]. Acrolein also has 
novel pro-infl ammatory effects by generating chemoattractant peptides from break-
down of lung connective tissue. For example, acrolein acetylates the proline-glycine- 
protein (PGP) tri-peptide degradation product of collagen breakdown rendering it 
resistant to breakdown by the aminopeptidase activity of LTA4 hydroxylase [ 38 ]. 
PGP is chemoattractive for neutrophils by acting as a ligand for CXCL1 and CXCL2 
[ 38 ]. Acrolein does not affect the hydrolyase activity of LTA4 hydroxylase which 
converts LTA4 to the powerful neutrophil chemoattractant, LTB4 [ 38 ]. 

 Acrolein also has direct effects on the master infl ammatory gene transcrip-
tion factor, NF-κB which appear to be anti-infl ammatory [ 39 ]. For example, 
acrolein induces alkalization of the p50 subunit of NF-κB which inhibits its 
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binding to NF-κB consensus DNA sequences. This effect appears to account for 
acrolein-mediated inhibition of cytokine gene expression induced by endotoxin 
and TNF-α treatment [ 40 ]. 

 Acrolein also has complex effects on lung oxidant defense. It irreversibly inhib-
its important antioxidant proteins including thioredoxin reductase, thioredoxin 1 
and thioredoxin 2 but increases heme oxygenase-1 (HO-1) expression in human 
pneumocytes [ 41 ,  42 ].  

    Cadmium 

 Cadmium (Cd 2+ ) is abundant in tobacco and, depending on tobacco growing condi-
tions, may be present in μg amounts in each cigarette [ 43 ,  44 ]. In general, the higher 
binding affi nity of heavy metal ions leads to replacement of physiological divalent 
ions like Zn 2+  in native proteins thereby altering their structure and function [ 45 ,  46 ]. 
Cd 2+  is highly toxic to the lung when inhaled as a vapor or fume or directly instilled 
[ 47 – 50 ]. In human subjects [ 51 – 53 ] and animal models [ 54 – 56 ], acute exposure 
induces lung infl ammation; chronic exposure induces centrilobular emphysema [ 47 , 
 48 ,  57 ] and pulmonary fi brosis [ 58 ]. Cd 2+  is retained in the body for long periods 
with a half-life of >10 years [ 59 ]. Cd 2+  binding to metallothioneins in lung cells 
mitigates its toxicity [ 60 ,  61 ]. 

 It has been suggested that Cd 2+  present in cigarettes contributes to the develop-
ment of lung dysfunction and COPD in chronic smokers [ 62 ,  63 ]. In fact, Cd 2+  
concentrations are greater in the emphysematous lung (fourfold) compared to smok-
ers without emphysema and never smokers [ 64 ] and in alveolar macrophages from 
smokers compared to non-smokers [ 65 ]. Epidemiological studies indicate that urinary 
Cd 2+  levels are greater in smokers and ex-smokers than in never smokers [ 63 ,  66 ]. 
Moreover, FEV1 and FVC are inversely related urinary Cd 2+  levels and correlate 
better with Cd 2+  concentrations than pack years of smoking [ 63 ]. Studies of the 
effects of Cd 2+  in cultured pneumocytes, airway epithelial cells and lung fi broblasts 
indicate that Cd 2+  causes protein misfolding and may induce an unfolded protein 
response (UPR) response [see below] [ 67 ]. Specifi cally, Cd 2+  induces heat shock 70 
chaperone expression in rat pneumocytes and human airway epithelial cells [ 68 ,  69 ]. 
Moreover, Cd 2+  dose-dependently decreases total protein synthesis in rat type II 
 pneumocytes and a human pneumocyte cell line and procollagen and proteoglycan 
mRNA and protein expression in human lung fi broblasts [ 69 ].  

    Polycyclic Aromatic Hydrocarbons 

 Cigarette smoke contains a variety of biologically active, poly-aromatic hydrocar-
bons which act as ligands for an endogenous receptor, the aryl hydrocarbon receptor 
(AhR). The AhR is a member of the basic helix-loop-helix family of transcription 
factors which mediates the biologic and toxic effects of its xenobiotic ligands [ 70 ]. 
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The AhR induces expression of a variety of genes including phase I and II enzymes 
which detoxify toxins contained in cigarette smoke, cytochrome P450 and other 
monooxygenase activities [ 71 ]. The AhR also regulates cell apoptosis and transition 
through the cell cycle [ 71 ]. 

 When bound to its polycyclic aromatic hydrocarbon ligands such as dioxin 
(tetrachloro- dibenzo-dioxin [TCDD]) or benzopyrene, the AhR translocates from 
the cytoplasm to the nucleus, heterodimerizes with the AhR nuclear translocator 
(ARNT) and activates transcription through the xenobiotic response element (XRE). 
The XRE consists of a canonic motif of 5′-TNGCGTG-3′. After nuclear export, the 
AhR is degraded via the proteasome. Of interest, the lung contains the highest con-
centration of AhRs of any other organ in the body [ 72 – 74 ]. In fact, secretory pro-
teins such as surfactant protein A (SP-A) and clara cell secretory protein (CC10) are 
highly regulated by the AhR [ 75 ]. 

 TCDD the best characterized AHR ligand induces a variety of effects in cultured 
respiratory cells and the lungs of rodents. For example, TCDD induces expression 
of MUC5AC, COX-2, IL-1β and MCP-1 mRNA in cultured clara cells [ 75 ]. When 
injected intraperitoneally, TCDD produced similar effects in the whole lung lysate 
of mice along with increases in TNF-α and reductions in SP-A mRNA. Of interest, 
the results obtained using AhR knock-out mice exposed to cigarette smoke suggest 
that the AhR exerts an anti-infl ammatory effect. For example, AhR −/− mice demon-
strate increased numbers of total cells, neutrophils and lymphocytes in BAL in 
response to acute cigarette smoke inhalation [ 76 ]. Similar results were obtained with 
LPS treatment, which does not contain AhR ligands. Moreover, AhR−/− fi broblasts 
demonstrate heightened COX-2 expression and prostaglandin production in response 
to cigarette smoke which could be rescued by transient expression of AhR [ 77 ]. 
These data suggest that AhR defi cient animals are infl ammation prone and that the 
infl ammatory responses to TCDD may be a manifest of non-AhR mediated effects.  

    Nicotine 

 Nicotine is present in milligram amounts in cigarette tar and, like acetylcholine, is a 
cholinergic agonist that binds to and activates nicotinic acetylcholine receptors [ 78 ]. 
In cell types which express the α7 nicotinic acetylcholine receptor, nicotine exerts 
diverse, cell type specifi c effects on immune cells [ 79 ]. 

 In general, nicotine induces anti-infl ammatory effects in vivo [ 79 – 82 ]. For exam-
ple, nicotine inhibits LPS-induced elevation of serum TNF-α in mice, an effect 
which is eliminated in α7 knockout mice [ 79 ]. Similar effects were produced in 
alveolar macrophages in vitro [ 79 ]. Nicotine treatment also reduced LPS-induced 
leukocyte infi ltration and myeloperoxidase activity in the mouse lungs, and reduced 
lung MIP-1a, MIP-2, eotaxin, IL-1, IL-6, and TNF-α [ 81 ]. In contrast, nicotine 
 augments dendritic cell capacity to stimulate T-cell proliferation and release TH1 
cytokines like interleukin-12 by increasing expression of the co-stimulatory mole-
cules, CD86, CD40, MHC class II receptor, and the adhesion molecules, LFA-1 and 
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CD54 [ 83 ]. These latter results suggest that in contrast to its effects on innate 
immune responses activated by toll-like receptor stimulation, nicotine may augment 
adaptive immune responses. The mechanisms by which nicotine exerts these cell 
type specifi c effects and the signaling processes involved are unknown.   

    Antioxidant Defense Systems Involved in the Response 
to Cigarette Smoke 

 The respiratory system contains a variety of non-enzymatic and enzymatic antioxi-
dant systems which protect against the injurious effects of oxidants. These systems 
function to affect electron transfer, enzymatically degrade the chemical compound, 
as well as scavenge and sequester transition metal ions. The non-enzymatic system 
scavenges free radicals via electron transfer to electrophilic thiol or carbon groups. 
This system is comprised of low molecular weight molecules and proteins including 
glutathione, thioredoxin, peroxiredoxin, α-tocopherol (vitamin E), uric acid, and 
vitamin C in the extracellular compartment of the lung. Cigarette smoke alters the 
concentrations of anti-oxidants in lung and other tissues [ 6 ,  30 ,  84  and reviewed by 
 85 ]. For example, smokers have lower concentrations of vitamin C in their blood 
plasma and vitamin E in lung lavage than nonsmokers [ 86 – 88 ]. 

 The enzymatic system comprises the superoxide dismutase (SOD) family, cata-
lase, glutathione peroxidase and heme oxygenase-1 and is also altered by chronic 
cigarette smoke exposure. SOD which transforms superoxide into hydrogen perox-
ide includes copper/zinc SOD (Cu 2+ /Zn 2+ )-SOD in the cytoplasm, manganese 
(Mn 2+ )-SOD in mitochondria, and extracellular SOD in the interstitial space of the 
lung [ 89 ,  90 ]. Catalase and glutathione peroxidase catalyze hydrogen peroxide to 
oxygen and water. Catalase is primarily located in peroxisomes, and glutathione 
peroxidase is distributed in cytoplasm and extra-cellularly [ 91 ]. Heme oxygenase-1 
(HO-1) inactivates redox generating heme groups by converting heme to biliverdin- 
IXα, carbon monoxide (CO) and iron in the presence of O2 and an electron donor, 
NADPH/cytochrome p450 reductase [ 92 ]. Heme cleavage by HO-1 prevents 
hydroxyl radical formation through iron. In fact, the importance of the enzymatic 
systems involved in anti-oxidant stress in the prevention of cigarette smoke induced 
lung infl ammation and injury has been demonstrated repeatedly. The expression of 
SOD, catalase, glutathione peroxidase, and HO-1 is inducible by chronic oxidative 
stress including cigarette smoke exposure [ 93 – 95 ] and proinfl ammatory cytokines 
[ 96 ,  97 ]. Finally, the phase I enzymes which decarbonylate endogenous proteins 
and detoxify reactive aldehydes such as acetaldehyde and acrolein and other xeno-
biotics, such as aldehyde dehydrogenase, aldo-keto reductase, and NQO1 reductase, 
are also up-regulated in response to chronic cigarette smoke exposure [ 98 ]. 
Up-regulation of these enzymes in response to cigarette smoke-induced oxidant 
stress is largely accomplished via the transcriptional activity of the master anti- 
oxidant transcription factor, Nrf2 (nuclear factor-erythroid 2-related factor-2) [ 99 ]. 
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 The importance of the enzymatic anti-oxidant enzymes in protecting the respira-
tory system from cigarette smoke-induced injury has been demonstrated repeatedly. 
For example, exogenous expression of Cu 2+ -Zn 2+  – SOD protects CS, elatase and 
ceramide-induced emphysema in mice [ 100 ,  101 ]. Conditional knockout of extra-
cellular SOD results in the elevation of lung superoxide levels, infi ltration of infl am-
matory cells, and histological changes similar to those observed in adult respiratory 
distress syndrome [ 102 ]. In contrast, increased expression of extracellular SOD 
attenuates CS-mediated lung infl ammation and emphysema in mice [ 103 ]. 
Administration of the SOD mimetic (i.e., MnTBAP) and intranasal administration 
of SOD-containing microparticles which act to increase lung superoxide levels, 
reduces mortality and prevents histological alterations [ 102 ]. 

 The relevance of antioxidant enzymes in the prevention of cigarette smoke- 
induced chronic obstructive pulmonary disease in man is strongly suggested by 
epidemiologic data as well as observations that levels of antioxidant enzymes such 
as HO-1 are reduced in COPD [ 104 ]. Moreover, COPD patients demonstrate a high 
frequency of mutation of several genes of antioxidant enzymes such as extracellular 
SOD [ 105 ,  106 ], glutathione S-transferase M1 (GSTM1), GSTT1, GSTP1 and glu-
tamate cysteine ligase (GCL) [ 107 – 112 ]. 

    Nrf2/Keap 

 Nrf2, a transcription factor that mediates a broad-based set of adaptive responses to 
intrinsic and extrinsic cellular stresses, regulates expression of enzymes that inacti-
vate oxidants; increase NADPH synthesis; and enhance toxin degradation and 
export [ 113 ,  114 ]. Nrf2 also enhances the recognition, repair and removal of dam-
aged proteins; augments nucleotide repair; regulates expression of other transcrip-
tion factors, growth factors, receptors and molecular chaperones; and inhibits 
cytokine–mediated infl ammation [ 113 ,  114 ]. Of particular interest in the setting of 
cigarette smoke exposure, Nrf2 binds to anti-oxidant response elements in the pro-
moter region of a variety of genes coding for important anti-oxidant enzymes (e.g., 
heme oxygenase-1 [HO-1], glutathione-S-transferase [GST], glutathione peroxi-
dase [GP], superoxide dismutase [SOD], etc.) [ 99 ,  115 – 117 ]. In fact, Nrf2 regulates 
two major redox systems, the glutathione and thioredoxin systems, by promoting 
expression of enzymes involved in glutathione synthesis, transfer and reduction and 
thiodoxin synthesis and reduction [ 99 ,  115 – 117 ]. In addition, Nrf2 regulates several 
glutathione-dependent (e.g., UDP-glucuronosyl transferase) and glutathione inde-
pendent enzymes (e.g., NAD(P)H:quinone oxidoreductase1[NQO1]), which are 
important in the detoxifi cation of tobacco smoke products [ 116 ,  117 ]. 

 Nrf2 and its actin-tethered redox-sensitive inhibitor, Keap1 (Kelch like-ECH- 
associated protein 1), are widely expressed in bodily tissues [ 118 ]. When present in 
the cytoplasm attached Keap1, Nrf2 has a short half-life as a result of its susceptibil-
ity to ubiquitination and proteasomal degradation [ 118 ]. Oxidation of Keap1 allows 
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Nrf2 to dissociate and migrate to the nucleus where it binds to a specifi c DNA 
consensus sequence found in the antioxidant response element [5′- NTGAG/
CNNNGC-3′] [ 119 ]. Nrf2 activity is also regulated by the cytosolic protein, DJ-1, 
and the nuclear protein, Bach1 [ 120 ]. DJ-1 enhances Nrf2 expression by preventing 
its degradation by the proteasome thereby acting to stabilize Nrf2 in the cytoplasm 
[ 121 ]. The transcriptional inhibitor, Bach-1, on the other hand, inhibits Nrf2 tran-
scriptional activity [ 122 ] by competing with Nrf2 for available transcriptional co-
factors in the nucleus such as Maf K [ 119 ,  120 ,  123 ] 

 Of importance, post-translational modifi cations of Nrf2 (i.e., phosphorylation 
and acetylation) affect its functional activity in terms of binding to its inhibitors, its 
nuclear import and export, and its DNA binding affi nity and transcriptional activity 
[ 124 – 127 ]. For example, phosphorylation of Nrf2 facilitates its dissociation from 
KEAP1 and its translocation to the nucleus [ 124 – 126 ]. Kinases which phosphory-
late Nrf2 include PKC, PI3K and PERK [PKR-like ER resident kinase] [ 124 – 127 ]. 
At present, however, the Nrf2 phosphorylation sites targeted by kinases which may 
be activated by cigarette smoke e.g., PERK, PKC, PI3K, etc. and their functional 
consequences are completely unstudied. 

 Nrf2 is also acetylated by histone acetyltransferase (HAT) and deacetylated by 
histone deacetylase (HDAC) 2 [ 128 ]. Acetylation of Nrf2 diminishes its transcrip-
tional activity and enhances its export from the nucleus [ 128 ]. Accordingly, increases 
in the level of acetylated Nrf2 are associated with decreases in Nrf2 activity. 
Specifi cally, reductions in HDAC2 expression or activity which occur in the setting 
of cigarette smoke exposure, reduce Nrf2-regulated HO-1 expression and increase 
sensitivity to oxidative stress in BEAS2B cells and mice [ 128 ]. Moreover, HDAC2 
knock-down by RNA interference reduces H 2 O 2 -induced Nrf2 protein stability and 
activity in cells. 

 Nrf2 also interacts with the NF-κB family of transcription factors which regulate 
the innate and adaptive infl ammatory response and cell apoptosis (see below). For 
example, Nrf2 knockout mice demonstrate increased NF-κB activity after treatment 
with TNF-α, LPS and respiratory syncytial virus [ 129 ,  130 ]. Nrf2 attenuates IκB 
phosphorylation and increases IKK activity in response to TNF-α or LPS [ 130 ]. 
It is not clear if greater expression of NF-κB and its targets in Nrf2 defi cient animals 
is a result of diminished ability to scavange ROS or to a direct interaction between 
the two transcription factors. 

 Direct evidence of the importance of Nrf2 in the pathogenesis of cigarette smoke- 
induced lung infl ammation and emphysema has been provided in animal models 
and in cultured lung cells and human subjects [ 99 ,  131 ]. For example, Nrf2 knock-
out mice are more susceptible to CS-induced emphysema and infl ammation while 
transcriptional induction of Nrf2 by CDDO (2-cyano-3,12-dioxooleana-1,9(11)-
dien-28-oicacid) reduces oxidative stress and alveolar destruction in wild-type 
mouse but not in Nrf2 knockout mice [ 15 ,  99 ,  132 ,  133 ]. Mice defi cient in Nrf2 
demonstrate increased numbers of macrophages in BAL and lung tissue following 
cigarette smoke exposure [ 119 ]. Nrf2 knockout mice demonstrate increased lung 
infi ltration with macrophages, lymphocytes, eosinophils, and neutrophils after 
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ovalbumin inhalation [ 134 ]. Moreover, type II pneumocytes from Nrf2 knockout 
mice demonstrate impaired growth and increased sensitivity to oxidant-induced cell 
death [ 99 ,  131 ]. In addition, deletion of KEAP1 in Clara cells in the airways of mice 
attenuates CS-induced infl ammation and oxidative stress [ 135 ]. On the other hand, 
knockdown of DJ-1 in mouse lungs, mouse embryonic fi broblasts and human air-
way epithelial cells (BEAS2B) impairs antioxidant induction in response to CS 
[ 133 ]. Of considerable interest, expression of Nrf2 and several Nrf2-regulated anti- 
oxidant enzymes e.g. NQO1, HO-1 and glutamate cysteine ligase modifi er subunit, 
is reduced in subjects with advanced COPD [ 133 ]. The potential importance of Nrf2 
in cigarette smoke-induced lung infl ammation and tissue injury have recently 
prompted trials of substances which increase anti-oxidant gene expression in respi-
ratory cells in subjects with COPD. For example, sulforaphane, a derivative of broc-
coli sprouts, and resveratrol, a polyphemolic phytoalexin in grapes, regulate Nrf2 
expression [ 136 ,  137 ].  

    Heat Shock Proteins (HSP) 

 The HSP family of proteins (e.g., HSP27, 60, 70, 90 and 100) participate in protein 
homeostasis in the cytoplasm and mitochondria and interact closely the ER chaper-
ones in protein folding and transport [ 138 ]. For example, HSP90 interacts with and 
stabilizes IRE1 and PERK kinases [ 139 ]. 

 Hsps (e.g., Hsp27, 60, 70, 90 and 100) are induced in response to cigarette smoke 
and are highly expressed in the lungs of chronic smokers and subjects with COPD 
[ 140 ]. In addition, serum levels of Hsp27 [ 141 ], Hsp70 and Hsp90 are elevated in 
COPD [ 142 ]. In vitro, ROS induce HSP expression in lung structural cells. For 
example, H 2 O 2  increases the levels of Hsp60 in bronchial epithelial cells through a 
pathway involving NF-κB-p65 [ 143 ]. Of interest, however, in animal models, the 
effects of cigarette smoke exposure on the expression of Hsps are complex and 
appear to be related to the duration of CS exposure. For example, 1- month exposure 
of rats to CS increases expression of Hsp70 in airway smooth muscle while a 
3-month exposure dramatically reduced it [ 144 ]. Hsp expression is also controlled 
by corticosteroids. For example, dexamethasone increases Hsp72 mRNA and pro-
tein expression in the presence of cigarette smoke extract resulting in increased 
survival of alveolar epithelial cells [ 145 ]. 

 Release of HSPs into the extracellular milieu may promote infl ammation. 
For example, HSP60 released by epithelial cells in the setting of oxidative stress 
stimulates neutrophil activity in COPD patients [ 143 ]. Hsp60 also is a key target 
of T cell responses in chronic infl ammation and induces expression of TNF-α and 
Th1- promoting cytokines, IL-12 and IL-15 in macrophages [ 146 ]. In addition, 
 oxidative stress inducers such as CS induce the secretion of Hsp70 from lung 
structural cells and promote IL-8 release [ 147 ,  148 ], probably through acting as 
ligand for TLR4 [ 149 ].   
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    Molecular Mechanisms of Oxidant Stress Induced 
Infl ammation 

    Mitogen Activated Protein Kinases (MAPK) 

 The major redox sensitive signaling system presented in the lung is the MAPK 
 system. MAPKs affect molecular targets which ultimately alter gene transcription in 
response to environmental stress. MAPK kinases include extracellular signal- 
regulated kinases (ERK), c-Jun-terminal kinases (JNKs), and p38 kinases. These 
kinases target a variety of immune effector molecules. For example, MAPK signal-
ing pathways affect T-cell activation and differentiation [ 150 ,  151 ]. MAPK signaling 
regulates the infl ux of infl ammatory cells into the respiratory tract. Specifi cally, p38 
activation enhances lung infl ammation by increasing the expression of inter- cellular 
adhesion molecule-1, tumor necrosis factor (TNF)-α, and MIP-2. P38 MAPK inhibi-
tors decrease the expression of these pro-infl ammatory cytokines and inhibit neutro-
phil infl ux in animal models of COPD [ 152 ]. 

 Reactive oxygen species in cigarette smoke such as superoxide, hydrogen perox-
ide and peroxynitrite induce phosphorylation and activation of ERK [ 153 ], P38 
[ 154 ], and JNK [ 155 ]. In part, MAPK activation is mediated by activation of the 
epidermal growth factor receptor and its tyrosine kinase activity [ 156 ]. Oxidants can 
also enhance MAPK signaling by inactivating tyrosine protein tyrosine phosphatase 
is such as PP2a which inactivate MAPK such as JNK and p38 [ 157 ]. The importance 
of ROS-induced activation of the protein tyrosine phosphatases (PTPS) has been 
demonstrated recently in studies in which PP2a knockdown increases the intensity 
of cigarette smoke-induced infl ammation in the lungs of mice   . PTPS may be an 
activated as a result of oxidation of cysteine residues within their catalytic domains. 
In addition MAPK phosphatases (MKPs) which inactivate MAPK are also inacti-
vated by ROS [ 158 ].  

    Nuclear Factor Kappa B (NF-κB) 

 A redox sensitive transcriptional factor NF-κB, is an important regulator of the 
infl ammatory and cell stress responses [ 159 ,  160 ]. Specifi cally, NF-κB regulates 
expression of a variety of cytokines, chemokines, immunoreceptors, cell-adhesion 
molecules, stress response genes, regulators of apoptosis, growth factors, and tran-
scription factors. NF-κB is a family of homo- or heterodimers which contain a 
conserved Rel homology domain responsible for dimerization and binding to the 
consensus sequence [5′-GGGRNNYYCC-3′] [ 159 ,  160 ]. The NF-κB family of pro-
teins can be divided into two distinct families based on the presence of a transacti-
vation domain. RelA (p65), RelB and c-Rel all contain transactivation domains 
while p50 and p52 do not and require heterodimerization with the Rel proteins for 
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this function. In the absence of stimulation, NF-κB is inhibited in the cytosol by 
association with IκB [ 161 – 163 ]. In response to appropriate stimuli, IκB is phos-
phorylated by IκB kinases (IKKs) at two separate serine residues which leads its 
ubiquitination and subsequent proteasomal degradation. Release of NF-κB from 
IκB allows its translocation to the nucleus and subsequent binding to the promoter 
region of over 100 target genes [ 164 ]. In particular, NF-κB regulates the expression 
of over 30 cytokines and chemokines, immune recognition receptors and cell adhe-
sion molecules required for neutrophil migration including TNF-α, inducible NOS 
(iNOS), interleukin-1 (IL- 1), intra-cellular adhesion molecule-1 (ICAM-1), and 
cyclooxygenase (COX-2) [ 165 ]. A wide range of agents involved in oxidant stress, 
immune system activation and bacterial infection stimulate IKK to activate NF-κB 
including H 2 O 2 , TNF-α, IL-1, phorbol esters, microbial infection or PAMPs [ 165 ]. 

 The importance of NF-κB in the infl ammatory response of the lung is demon-
strated by the fact that NF-κB knockout mice manifest less lung infl ammation and 
cytokine levels in the BAL compared to wild-type animals in response to inhaled 
toxic substances. For example, NF-κB knockout mice demonstrate less neutrophil 
infi ltration and cytokine expression in the lung in response to LPS [ 166 ]. Moreover, 
ROS in cigarette smoke such as hydrogen peroxide activate NF-κB in several cell 
lines in vitro [ 167 – 169 ]. In fact, H 2 O 2  treatment leads to phosphorylation and activa-
tion of IKK. Oxidants may also also directly phosphorylate the p65 subunit of NF-κB. 

 Of interest, NF-κB is also regulated by Nrf2. For example, NF-κB activity is 
increased in Nrf2 knockout mice after treatment with TNF-α, LPS and respiratory 
syncytial virus [ 129 ,  130 ]. In fact, Nrf2 attenuates IκB phosphorylation and 
increases IKK activity in response to TNF-α or LPS [ 130 ]. In addition, Nrf2 appears 
to regulate expression of at least subsets of the NF-κB family directly. For example, 
p50 and p65 are reduced in Nrf2 −/−  fi broblasts while c-Rel is increased in Nrf2 −/−  
fi broblasts [ 170 ]. Greater expression of NF-κB and its targets in Nrf2 defi cient ani-
mals may be a result of diminished ability to scavenge ROS and, hence, to greater 
oxidant stress or to more direct interactions between the two transcription factors. 
Of note, since a variety of stimuli such as ROS and LPS induce both Nrf2 and 
NF-κB activity, an entirely antagonistic relationship between the two transcription 
factors under all circumstances is unlikely [ 171 – 174 ]. 

 Of note, NF-κB appears to be negatively regulated by the AhR. For example, 
AhR −/−  mice demonstrate increased NF-κB DNA binding activity in whole lung 
lysates [ 76 ]. Morever, heightened prostaglandin responses to cigarette smoke in 
AhR −/−  fi broblasts appear to be explained in part by loss of RelB protein. These data 
suggest that the AhR represses the NF-κB complex by interacting with RelB.  

    AP-1 

 AP-1, another redox sensitive transcription factor, exerts a pro-infl ammatory effect 
by inducing the expression of a variety of chemokines, in particular, C-X-C 
 chemokines [ 175 ] in alveolar macrophages [ 176 ] and lung epithelial cells [ 177 ,  178 ]. 
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AP-1 is a heterodimer composed of Fos, Jun and activating transcription factor (ATF) 
 subunits interacted with c-Jun, the most potent activator of the group. Fos stabilizes 
Jun thereby enhancing its binding to promoter region in target genes. 

 MAPK signaling is an important pathway for AP-1 activation by phosphorylation 
of Fos, JUN, or ATF subunits [ 179 ,  180 ]. PERK (protein kinase R-like ER resident 
kinase) activation also induces Fos expression [ 181 ]. ROS can activate AP-1. For 
example, hydrogen peroxide induces phosphorylation of FOS and JUN and increases 
the expression of Fos, an effect which is attenuated by the use of ERK or JNK inhibi-
tors indicating the importance of the MAPK signaling pathway [ 182 ]. Cigarette smoke 
induces phosphorylation of c-Jun which in turn promotes the expression of CXCL8.  

    Histone Deacetylases (HDAC) 

 The HDAC enzymes deacetylate lysine groups on histones thereby interfering with 
the binding of transcriptional activators. As such, the HDAC family of enzymes 
generally inhibits immune responses in the lung [ 183 ]. In fact, corticosteroids act by 
recruiting HDACs to transcriptional co-activators such as p65-CBP thereby inhibit-
ing their activity by inducing deacetylation of the histone complex. HDACs also 
attenuate infl ammation by deacetylating and, hence, inactivating the RelA subunit of 
NF-κB [ 184 ]. Acetylation of RelA inhibits IκB−α binding [ 184 ] and augments bind-
ing to IKKα causing export of the NF-κB complex from the nucleus [ 184 ]. The 
effect of HDAC activity, therefore, is to attenuate NF-κB transcriptional activity. 

 Of considerable interest, HDAC activity is affected by the redox state of the cell 
and is inhibited under conditions of oxidative stress. For example, cigarette smoke 
and H2O2 augment histone acetylation by decreasing the expression and activity of 
HDAC in human bronchial epithelial cells [ 185 – 187 ]. In the rodent model, cigarette 
smoke exposure increases histone acetylation, decreases HDAC activity and 
enhances NF-κB mediated signaling [ 188 ,  189 ]. In contrast, cigarette smoke 
increases HAT activity contributing to increased acetylation of histone proteins 
[ 186 ]. Of interest, reduced HDAC2 activity in COPD may contribute to increases in 
Nrf2 acetylation, reduced Nrf2 stability and impaired anti-oxidant defense [ 128 ].  

    The Unfolded Protein Response (UPR) 

 The UPR alters the activity of signaling pathways which control protein synthesis, 
transport and degradation [ 125 ,  126 ,  190 ]. Moreover, the UPR up-regulates expres-
sion of a wide array of genes vital for cell survival including genes which promote 
oxidant defense (e.g., Nrf2, ATF4, HO-1). The UPR is activated in response to ROS 
and protects against oxidant-induced cell injury and death while defective function 
of UPR activity impairs the response to oxidant stress, increases ROS burden and 
diminishes cell survival [ 125 ,  126 ,  190 – 195 ]. Of considerable importance, signaling 
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pathways activated by the UPR also enhances the activity of pro-infl ammatory 
 pathways which regulate the immune response and thus have the potential to 
 augment the innate infl ammatory response to cigarette smoke [ 196 ]. 

 Oxidant stress in general and cigarette smoke exposure, in particular, cause pro-
tein oxidation and misfolding in the lungs [ 197 ,  198 ] and cultured respiratory cells 
[ 197 ,  199 ]. The effects of cigarette smoke on protein oxidation appear to be largely 
due to the action of acrolein, superoxide and H 2 O 2 . In addition, nicotine induces a 
UPR response in several cell types presumably by increasing cytosolic calcium 
[ 200 ]. Protein misfolding induced by cigarette smoke can be attenuated by ROS 
scavengers and by pre-treatment with an anti-oxidant, the glutathione precursor, 
n-acetyl cysteine [ 190 ,  194 ,  201 – 204 ]. 

 Misfolded proteins are non-functional and potentially cytotoxic when present in 
suffi cient amount. Accordingly, cells have evolved mechanisms to refold misfolded 
proteins using a variety of chaperones, protein disulfi de isomerases and oxido- 
reductases to isomerize, oxidize and reduce thiol groups on target proteins [ 196 ]. 
The processes involved in protein refolding are energy dependent and require oxida-
tion of thiol groups and the formation of intramolecular and intermolecular disulfi de 
bonds [ 205 ]. Electron transport during disulfi de bond formation involves two 
ER-resident enzymes: protein disulfi de isomerase [PDI] and ER oxidoreductase 1 
[ERO1] [ 206 ]. PDI accepts electrons resulting in cysteine oxidation and disulfi de 
bond formation. Electrons are then transferred by ERO1 to reduce molecular oxy-
gen (O 2 ) and form H 2 O 2 , thereby increasing the oxidant burden of the cell. 

 The presence of misfolded proteins is sensed by a triad of ER resident proteins 
[i.e., PERK (protein kinase R like-ER resident kinase); ATF6 (activating transcrip-
tion factor 6); and IRE1 (inositol requiring enzyme-1)] [ 191 ,  192 ,  207 – 209 ]. 
Although the precise mechanism by which an increase in the load of misfolded 
proteins is sensed is uncertain, dissociation of an inhibitor protein, the chaperone, 
GRP78, from the luminal surface of the sensors increases their activity and triggers 
a UPR. IRE1α and IREβ (which is present in the lung and gut only), are transmem-
brane kinases with RNase activity, which splice XBP1 mRNA into a transcription 
factor (sXBP1) which also up-regulates the above ER resident chaperones, as well 
as genes involved in protein ubiquitination and degradation, lipid biosynthesis and 
expansion of ER mass. Activation of IRE1 induces a conformational change which 
leads to its formation of a complex with the adapter protein, TRAF2 [TNF-α recep-
tor associated factor-2] which recruits IKK leading to the phosphorylation and deg-
radation of IkB [ 210 ,  211 ]. The IRE1-TRAF2 complex can also recruit JNK which 
phosphorylates and activates AP-1 [ 212 ]. 

 PERK is a transmembrane kinase which phosphorylates and thereby inhibits 
eIF2α, the eukaryotic translation initiation factor-2α. Phosphorylation of eIF2α is a 
crucial feature of the UPR since it inhibits protein translation globally, but facilitates 
translation of selected mRNAs containing appropriate open reading frames. In fact, 
inhibition of eIF2α up-regulates translation of Nrf2 and ATF4, a basic zipper tran-
scription factor which enhances ER chaperone expression, and which up-regulates 
expression of HO-1 and NQO1metabolizing enzymes [ 116 ,  117 ]. Of interest, phos-
phorylation of eIF2α and attenuated translation increases expression of NF-κB [ 213 ]. 
Since IκB, which has a much shorter half-life than NF-κB, attenuating expression of 
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IkB increases the ratio of NF-κB to IkB therby freeing NF-κB to translocate to the 
nucleus. PERK also directly phosphorylates Nrf2, which facilitates its dissociation 
from the cytoplasmic inhibitor, KEAP1, and its translocation to the nucleus [ 124 –
 126 ]. ATF4 also induces expression of the pro-apoptotic transcription factor, CHOP 
(CCAAT/enhancer protein-homologous protein) which contributes to a UPR driven 
apoptosis pathway of cell death in lung structural and infl ammatory cells [ 214 ,  215 ]. 

 ATF6 is a proto-transcription factor, which upon proteolytic cleavage of its 
N-terminal transcriptionally active form in the Golgi apparatus, traffi cs to the 
nucleus where in conjunction with sXBP1, it activates genes encoding GRP78, cal-
reticulin, calnexin, and PDI (protein disulfi de isomerase). 

 Cigarette smoke induces a UPR response in the lungs of chronic cigarette smokers 
and in cultured human airway epithelial cells as refl ected by up-regulation of expres-
sion of the hallmark UPR effector proteins, GRP78, calreticulin, calnexin and PDI 
[ 197 ]. Of interest, the UPR response to cigarette smoke appears to be partially revers-
ible with smoking cessation since expression of these proteins is signifi cantly less in 
ex-smokers than in active smokers. Cigarette smoke exposure also increases the 
expression of genes involved in protein folding and the ubiquitin-proteosome path-
way in human monocytes suggesting impaired protein folding in this cell type [ 3 ]. 
Moreover, in vitro studies in human airway epithelial cells [ 202 ,  203 ,  215 ,  216 ] indi-
cate that the cigarette smoke induced UPR is rapid in onset (within hours) and dose-
dependent [ 197 ,  202 ,  203 ,  215 ,  216 ]. Furthermore, PERK activity is increased since 
phospho-eIF2α, ATF4 and Nrf2 are up-regulated [ 197 ,  203 ]. In contrast, the IRE1 
signaling pathway is not activated by cigarette smoke since XBP1 mRNA splicing is 
unchanged [ 202 ,  203 ,  215 ]. Activation of the PERK pathway without increase in 
activity of the IRE1 pathway in the setting of cigarette smoke exposure appears to be 
explained by active suppression of XBP1 splicing by cigarette smoke [ 203 ]. 

 Of considerable interest, cross-talk between components of the UPR and com-
ponents of both the MAPK pathway (i.e., JNK) and Toll-like receptor pathways 
(i.e., TLR4) affect the intensity of the infl ammatory response and infl ammatory cell 
survival [ 4 ,  5 ,  217 ]. These interactions may augment the intensity of the infl amma-
tory process in the lung. For example, activation of the kinase activity of the IRE-1 
arm of the UPR by misfolded proteins activates both JNK and NF-κB and increases 
IL-8 mRNA and protein in human alveolar pneumocytes and airway epithelial cells 
[ 218 – 220 ]. Moreover, the IRE1 arm of the UPR can be activated by PAMPs to 
amplify the intensity of the innate immune response to pathogens. For example, 
LPS-induced activation of TLR 2 or 4 acting through the TRAF6 adapter protein 
activates the endonuclease activity of IRE1 with resultant increases in sXBP1 [ 5 ]. 
In turn, sXBP1 augmented production of IL-6 thereby magnifying the innate 
immune response to microbial infection in human monocytes [ 221 ]. Prior activa-
tion of the UPR by inducing protein misfolding using the canonical stimulus, thap-
sigargin, potentiated IRE activation of potentiated the IL-6 response to LPS. Of 
interest, the PERK and ATF6 arms of the UPR were inhibited. These data suggest 
that the UPR may potentiate the innate infl ammatory response to PAMPs. 
Specifi cally, the combination of cigarette smoke exposure and TLR activation may 
act cooperatively to increase lung infl ammation. In fact, mice treated with a combi-
nation of cigarette smoke and the viral PAMP and TLR3 ligand, poly (I:C), 
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demonstrate synergistic augmentation of lung infl ammation and emphysema 
 compared to either treatment alone [ 222 ]. 

 Of interest, TLR4 activation by LPS also inhibits translation of ATF4 through a 
TRIF-dependent pathway in mouse monocytes [ 4 ,  217 ]. Inhibition of ATF4 expres-
sion diminishes expression of its downstream target, the pro-apoptosis transcription 
factor, CHOP, thereby promoting cell survival. Of interest, CHOP also appears to 
induce IL-8 expression at the transcriptional level by binding to the IL-8 promoter 
in human airway epithelial cells [ 218 ]. Inhibition of CHOP expression by LPS may 
therefore reduce IL-8 expression. Nonetheless, enhanced survival of TLR4-activated 
monocytes in the lung is likely to augment the infl ammatory response to LPS pres-
ent in cigarette smoke. Moreover, the combination of cigarette smoke exposure and 
activation of a TLR may act cooperatively to increase lung infl ammation. In fact, 
mice treated with a combination of cigarette and the TLR3 ligand, poly (I:C), dem-
onstrated synergistic augmentation of lung infl ammation and emphysema compared 
to either treatment alone [ 222 ]. 

 Oxidant stress is heightened in subjects with COPD and persists for prolonged 
periods even after subjects have stopped smoking [ 104 ,  133 ,  223 ]. In part, oxidant 
stress is heightened because Nrf2 expression is reduced in subjects with COPD [ 15 , 
 122 ,  133 ,  223 ]. Reductions in Nrf2 in lung tissue and in alveolar macrophages 
appears to explain reductions in both glutathione dependent and glutathione- 
independent anti-oxidant defense, in particular, HO-1, which is transcriptionally 
regulated by Nrf2 and ATF4 [ 92 ,  224 ]. Nrf2 up-regulates the expression of the com-
ponents of the 26 S proteosome [ 223 ]. Accordingly, decreased Nrf2 expression 
decreases proteasomal activity, impairs protein degradation and leads to accumula-
tion of misfolded proteins in the lung of subjects with COPD [ 223 ]. Accumulation 
of misfolded proteins in the lungs of subjects with COPD may be expected to 
enhance UPR activity and contribute to the NF-κB-induced infl ammatory process. 
However, UPR activity in the lungs of subjects with COPD is unstudied.   

    Variations in Antioxidant Gene Expression and Susceptibility 
to Lung Infl ammation 

 Of considerable importance, the propensity to develop lung disease varies widely 
across cigarette smokers and correlates only weakly with the smoking history as 
refl ected in the number of cigarette pack years [ 225 ,  226 ]. In fact, it is estimated that 
only a minority (i.e., 15–35 %) of chronic, continuous cigarette smokers develop 
COPD [ 226 ,  227 ]. That the majority of long-term smokers do not develop lung dam-
age or COPD suggests that compensatory mechanisms protect the lung from RONS 
or xenobiotic materials. In this regard, the magnitude of up-regulation of mRNA 
for several anti-oxidant genes e.g., glutathione peroxidase, glutathione synthase, 
HO-1, etc., varies considerably across individual cigarette smokers [ 228 ,  229 ]. 
The mechanism(s) underlying this inter-individual variability in important anti-oxidant 
gene expression is unknown. 
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 In this regard, the expression of UPR related genes in response to pharmacologi-
cal stimuli like thapsigargin or tunicamycin also varies widely in healthy human 
subjects but is concordant in monozygotic twins [ 230 ]. Moreover, polymorphisms 
in the PERK promoter affect PERK function and expression [ 231 ]. These fi ndings 
suggest that UPR responses are genetically determined and that inter-individual dif-
ferences in UPR function may affect the response to cigarette smoke and the devel-
opment of lung infl ammation in chronic smokers. This issue is unstudied, however.  

    Conclusion 

 The complex mix of compounds present in cigarette smoke exposes the respiratory 
tract to oxidant stress. Many of these compounds induce an infl ammatory response 
by activating redox sensitive, pro-infl ammatory pathways including NF-κB, AP-1 
and MAPKs and by inhibiting redox sensitive anti-infl ammatory pathways such as 
HDACs. Conversely, an elaborate network of protein and small molecule anti- 
oxidants exist to scavenge ROS in the respiratory tract and maintain redox balance 
in the cell. The regulation of anti-oxidant defense is largely under the control of the 
redox sensitive transcription factor, Nrf2. Moreover, the UPR which is activated 
when proteins are oxidized and misfolded in the ER, regulates anti-oxidant defense 
per se by both Nrf2 dependent and Nrf2-indpendent mechanisms. Of considerable 
importance, the NF-κB mediated pro-infl ammatory and Nrf2 mediated anti-oxidant 
pathways interact to shape the intensity of the infl ammatory response to cigarette 
smoke. Moreover, the UPR acting through its IRE1 arm appears to paradoxically 
have a pro-infl ammatory aspect as well by affecting cytokine expression directly 
and indirectly via the NF-κB and AP-1 signaling pathways. Of considerable impor-
tance, genetically determined inter-individual responses to oxidant stress and UPR 
activation vary considerably and are likely to contribute to differences in suscepti-
bility to cigarette smoke-induced lung infl ammation and lung damage. Further stud-
ies will be required to characterize the effects of cigarette smoke on the Nrf2 and 
UPR systems in the lung and their role in the development of cigarette smoke- 
induced lung infl ammation and tissue damage.     
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