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Abstract We study discrete models which are generated by the self-dual Yang–Mills
equations. Using a double complex construction, we construct a new discrete analog
of the Bogomolny equations. Discrete Bogomolny equations, a system of matrix-
valued difference equations, are obtained from discrete self-dual equations. The
gauge invariance of the discrete model is established.
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1 Introduction

This work is concerned with discrete model of the SU(2) self-dual Yang–Mills
equations described in [11]. It is well known that the self-dual Yang–Mills equations
admit reduction to the Bogomolny equations [1]. Let A be an SU(2)-connection
on R

3. This means that A is an su(2)-valued 1-form and we can write

A =
3

∑
i=1

Ai(x)dxi, (1)

where Ai : R3 → su(2). Here su(2) is the Lie algebra of SU(2). The connection A is
also called a gauge potential with the gauge group SU(2) (see [8] for more details).
Given the connection A, we define the curvature 2-form F by

F = dA+A∧A, (2)
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where∧ denotes the exterior multiplication of differential forms. Let Φ :R3 → su(2)
be a scalar field (a Higgs field). The Bogomolny equations are a set of nonlinear
partial differential equations, where unknown is a pair (A,Φ). These equations can
be written as

F = ∗dAΦ, (3)

where ∗ is the Hodge star operator on R
3 and dA is the covariant exterior differential

operator. This operator is defined by the formula

dAΩ = dΩ+A∧Ω+(−1)r+1Ω∧A,

where Ω is an arbitrary su(2)-valued r-form.
Let us now consider the connection A on R

4. We define A to be

A =
3

∑
i=1

Ai(x)dxi +Φ(x)dx4, (4)

where Ai and Φ are independent of x4. In other words, the scalar field Φ is identified
with a fourth component A4 of the connection A. It is easy to check that if the pair
(A,Φ) satisfies Eq. (3), then the connection (4) is a solution of the self-dual equation

F = ∗F. (5)

In fact, the Bogomolny equations can be obtained from the self-dual equations by
using dimensional reduction from R

4 to R
3 [1].

The aim of this paper is to construct a discrete model of Eq. (3) that preserves the
geometric structure of the original continual object. This means that speaking of a
discrete model, we mean not only the direct replacement of differential operators
by difference ones but also a discrete analog of the Riemannian structure over
a properly introduced combinatorial object. The idea presented here is strongly
influenced by the book by Dezin [3]. Using a double complex construction, we
construct a new discrete analog of the Bogomolny equations. In much the same way
as in the continual case, these discrete equations are obtained from discrete self-
dual equations. The gauge invariance of the discrete model is proved. We continue
the investigations [10,11], where discrete analogs of the self-dual and anti-self-dual
equations on a double complex are studied. It should be noted that there are many
other approaches to discretization of Yang–Mills theories. As the list of papers
on the subject is very large, we content ourselves by referencing the works [2, 4–
7, 9]. In these papers some other discrete versions of the Bogomolny equations are
studied.
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2 Double Complex Construction

The double complex construction is described in [10]. For the convenience of the
reader we briefly repeat the relevant material from [10] without proofs. Let the
tensor product C(n) =C⊗ . . .⊗C of a 1-dimensional complex C be a combinatorial
model of the Euclidean space R

n. The 1-dimensional complex C is defined in the
following way. Let C0 denote the real linear space of 0-dimensional chains generated
by basis elements xi (points), i ∈ Z. It is convenient to introduce the shift operator τ
in the set of indices by

τi = i+ 1.

We denote the open interval (xi, xτi) by ei. We regard the set {ei} as a set of
basis elements of the real linear space C1 of 1-dimensional chains. Then the 1-
dimensional complex (combinatorial real line) is the direct sum of the spaces
introduced above: C = C0 ⊕C1. The boundary operator ∂ on the basis elements
of C is given by

∂xi = 0, ∂ei = xτi − xi. (6)

The definition is extended to arbitrary chains by linearity.
Multiplying the basis elements xi and ei of C in various ways, we obtain the basis

elements of C(n). Let s(r)k = sk1 ⊗ . . .⊗ skn , where k = (k1, . . . ,kn) and ki ∈ Z, be
an arbitrary r-dimensional basis element of C(n). The product contains exactly r of
1-dimensional elements eki and n− r of 0-dimensional elements xki . The superscript
(r) also uniquely determines an r-dimensional basis element of C(n). For example,
the 1-dimensional ei

k and 2-dimensional ε i j
k basis elements of C(3) can be written as

e1
k = ek1 ⊗ xk2 ⊗ xk3 , e2

k = xk1 ⊗ ek2 ⊗ xk3 , e3
k = xk1 ⊗ xk2 ⊗ ek3 ,

ε12
k = ek1 ⊗ ek2 ⊗ xk3 , ε13

k = ek1 ⊗ xk2 ⊗ ek3 , ε23
k = xk1 ⊗ ek2 ⊗ ek3 ,

where k = (k1,k2,k3) and ki ∈ Z.
Now we consider a dual object of the complex C(n). Let K(n) be a cochain

complex with gl(2,C)-valued coefficients, where gl(2,C) is the Lie algebra of the
group GL(2,C). We suppose that the complex K(n), which is a conjugate of C(n),
has a similar structure: K(n) = K ⊗ . . .⊗K, where K is a dual of the 1-dimensional
complex C. We will write the basis elements of K as xi, ei. Then an arbitrary basis
element of K(n) is given by sk = sk1 ⊗ . . .⊗ skn , where ski is either xki or eki . For an
r-dimensional cochain ϕ ∈ K(n), we have

ϕ = ∑
k

∑
r

ϕ(r)
k sk

(r), (7)

where ϕ(r)
k ∈ gl(2,C). We will call cochains forms, emphasizing their relationship

with the corresponding continual objects, differential forms.
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We define the pairing operation for arbitrary basis elements εk ∈C(n), sk ∈ K(n)
by the rule

< εk, ask >=

{
0, εk �= sk

a, εk = sk, a ∈ gl(2,C).
(8)

Here for simplicity the superscript (r) is omitted. The operation (8) is linearly
extended to cochains.

The operation ∂ induces the dual operation dc on K(n) in the following way:

< ∂εk, ask >=< εk, adcsk > . (9)

For example, if ϕ is a 0-form, i.e., ϕ = ∑k ϕkxk, where xk = xk1 ⊗ . . .⊗ xkn , then

dcϕ = ∑
k

n

∑
i=1

(Δiϕk)e
k
i , (10)

where ek
i is the 1-dimensional basis elements of K(n) and

Δiϕk = ϕτik −ϕk. (11)

Here the shift operator τi acts as

τik = (k1, . . . ,τki, . . . ,kn).

The coboundary operator dc is an analog of the exterior differentiation operator d.
Introduce a cochain product on K(n). We denote this product by ∪. In terms of

the homology theory this is the so-called Whitney product. For the basis elements
of 1-dimensional complex K, the ∪-product is defined as follows:

xi ∪ xi = xi, ei ∪ xτi = ei, xi ∪ ei = ei, i ∈ Z,

supposing the product to be zero in all other cases. By induction we extend this
definition to basis elements of K(n) (see [10] for details). For example, for the
1-dimensional basis elements ek

i ∈ K(3) we have

ek
1 ∪ eτ1k

2 = εk
12, ek

1 ∪ eτ1k
3 = εk

13, ek
2 ∪ eτ2k

3 = εk
23,

ek
2 ∪ eτ2k

1 = −εk
12, ek

3 ∪ eτ3k
1 =−εk

13, ek
3 ∪ eτ3k

2 =−εk
23. (12)

To arbitrary forms the ∪-product be extended linearly. Note that the components of
forms multiply as matrices. It is worth pointing out that for any forms ϕ ,ψ ∈ K(n),
the following relation holds:

dc(ϕ ∪ψ) = dcϕ ∪ψ +(−1)rϕ ∪dcψ , (13)

where r is the dimension of a form ϕ . For the proof we refer the reader to [3].
Relation (13) is a discrete analog of the Leibniz rule for differential forms.
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Let us now together with the complex C(n) consider its “double,” namely, the
complex C̃(n) of exactly the same structure. Define the one-to-one correspondence

∗ : C(n)→ C̃(n), ∗ : C̃(n)→C(n) (14)

in the following way:

∗ : s(r)k →±s̃(n−r)
k , ∗ : s̃(r)k →±s(n−r)

k , (15)

where s̃(n−r)
k = ∗sk1 ⊗ . . .⊗∗skn and ∗ski = ẽki if ski = xki and ∗ski = x̃ki if ski =

eki . We let the plus sign in (15) if a permutation of (1, . . . ,n) with (1, . . . ,n) →
((r), . . . ,(n− r)) is representable as the product of an even number of transpositions
and the minus sign otherwise.

The complex of the cochains K̃(n) over the double complex C̃(n) has the same
structure as K(n). Note that forms ϕ ∈ K(n) and ϕ̃ ∈ K̃(n) have both the same
components. The operation (14) induces the respective mapping

∗ : K(n)→ K̃(n), ∗ : K̃(n)→ K(n) (16)

by the rule: < c̃, ∗ϕ >=< ∗c̃, ϕ >, < c, ∗ψ̃ >=< ∗c, ψ̃ >, where c ∈ C(n), c̃ ∈
C̃(n), ϕ ∈ K(n), ψ̃ ∈ K̃(n). For example, for the 2-dimensional basis elements εk

i j ∈
K(3) we have

∗εk
12 = ẽk

3, ∗εk
13 =−ẽk

2, ∗εk
23 = ẽk

1. (17)

This operation is a discrete analog of the Hodge star operation. Similarly to the
continual case, we have ∗ ∗ϕ = (−1)r(n−r)ϕ for any discrete r-form ϕ ∈ K(n).

Finally, for convenience we introduce the operation

ι̃ : K(n)→ K̃(n), ι̃ : K̃(n)→ K(n) (18)

by setting ι̃sk
(r) = s̃k

(r), ι̃ s̃k
(r) = sk

(r). It is easy to check that the following hold:

ι̃∗ = ∗ι̃, ι̃dc = dcι̃, ι̃ϕ = ϕ̃ , ι̃ ι̃ϕ = ϕ , ι̃(ϕ ∪ψ) = ι̃ϕ ∪ ι̃ψ ,

where ϕ ,ψ ∈ K(n).

3 Discrete Bogomolny Equations

Let us consider a discrete su(2)-valued 0-form Φ ∈ K(3). We put

Φ = ∑
k

Φkxk, (19)
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where Φk ∈ su(2) and xk = xk1 ⊗ xk2 ⊗ xk3 is the 0-dimensional basis element of
K(3), k = (k1,k2,k3), ki ∈ Z. We define a discrete SU(2)-connection A to be

A = ∑
k

3

∑
i=1

Ai
kek

i , (20)

where Ai
k ∈ su(2) and ek

i is the 1-dimensional basis element of K(3).
On account of (7), an arbitrary discrete 2-form F ∈ K(3) can be written as

follows:

F = ∑
k

∑
i< j

Fi j
k εk

i j = ∑
k

(
F12

k εk
12 +F13

k εk
13 +F23

k εk
23

)
, (21)

where Fi j
k ∈ gl(2,C) and εk

i j is the 2-dimensional basis element of K(3). Define a
discrete analog of the curvature form (2) by

F = dcA+A∪A. (22)

By the definition of dc (9) and using (12) we have

dcA = ∑
k

∑
i< j

(ΔiA
j
k −Δ jA

i
k)ε

k
i j , (23)

A∪A = ∑
k

∑
i< j

(Ai
kA j

τik
−A j

kAi
τ jk)ε

k
i j . (24)

Recall that Δi is the difference operator (11). Combining (23) and (24) with (21),
we obtain

Fi j
k = ΔiA

j
k −Δ jA

i
k +Ai

kA j
τik

−A j
kAi

τ jk. (25)

It should be noted that in the continual case the curvature form F takes values
in the algebra su(2) for any su(2)-valued connection form A. Unfortunately, this is
not true in the discrete case because, generally speaking, the components Ai

kA j
τik

−
A j

kAi
τ jk

of the form A∪ A in (22) do not belong to su(2). For a definition of the

su(2)-valued discrete curvature form, we refer the reader to [11].
Define a discrete analog of the exterior covariant differential operator dA as

dc
Aϕ = dcϕ +A∪ϕ +(−1)r+1ϕ ∪A,

where ϕ is an arbitrary r-form (7) and A is given by (20) . Then for the 0-form (19),
we obtain

dc
AΦ = dcΦ+A∪Φ−Φ∪A. (26)
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Using (10) and the definition of ∪, we can rewritten (26) as follows:

dc
AΦ = ∑

k

3

∑
i=1

(ΔiΦk +Ai
kΦτik −ΦkAi

k)e
k
i . (27)

Applying the operation ∗ (16) to this expression and by (17) we find

∗ dc
AΦ = ∑

k

(Δ1Φk +A1
kΦτ1k −ΦkA1

k)ε̃
k
23

−∑
k

(Δ2Φk +A2
kΦτ2k −ΦkA2

k)ε̃
k
13

+∑
k

(Δ3Φk +A3
kΦτ3k −ΦkA3

k)ε̃
k
12. (28)

Now suppose that Φ in the form (19) is a discrete analog of the Higgs field. Then
the discrete analog of the Bogomolny equation (3) is given by the formula

F = ι̃ ∗ dc
AΦ, (29)

where ι̃ is the operation (17). From (21) and (28) it follows immediately that Eq. (29)
is equivalent to the following difference equations:

F12
k = Δ3Φk +A3

kΦτ3k −ΦkA3
k,

F13
k = −Δ2Φk −A2

kΦτ2k +ΦkA2
k ,

F23
k = Δ1Φk +A1

kΦτ1k −ΦkA1
k . (30)

Consider now the discrete curvature form (22) in the 4-dimensional case, i. e.,
F ∈ K(4). The discrete analog of the self-dual Eq. (5) can be written as follows:

F = ι̃ ∗F. (31)

By the definition of ∗ for the 2-dimensional basis elements εk
i j ∈ K(4), we have

∗εk
12 = ε̃k

34, ∗εk
13 =−ε̃k

24, ∗εk
14 = ε̃k

23,

∗εk
23 = ε̃k

14, ∗εk
24 =−ε̃k

13, ∗εk
34 = ε̃k

12.

Using this we may compute ∗F:

∗F = ∑
k

(
F12

k ε̃k
34 −F13

k ε̃k
24 +F14

k ε̃k
23 +F23

k ε̃k
14 −F24

k ε̃k
13 +F34

k ε̃k
12

)
.
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Then Eq. (31) becomes

F12
k = F34

k , F13
k =−F24

k , F14
k = F23

k . (32)

Let the discrete connection 1-form A ∈ K(4) be given by

A = ∑
k

3

∑
i=1

Ai
kek

i +∑
k

Φkek
4, (33)

where Ai
k ∈ su(2), Φk ∈ su(2) and k = (k1,k2,k3,k4), ki ∈ Z. Note that here we put

A4
k = Φk and Φk are the components of the discrete Higgs field. Suppose that the

connection form (33) is independent of k4, i.e.,

Δ4Ai
k = 0, Δ4Φk = 0 (34)

for any i = 1,2,3 and k = (k1,k2,k3,k4). Substituting (34) into (25) yields

Fi4
k = ΔiΦk +Ai

kΦτik −ΦkAi
k, i = 1,2,3.

Putting these expressions in Eq. (32) we obtain Eq. (30).
Thus, we have the following:

Theorem 1. The discrete Bogomolny equation (29) and the discrete self-dual
Eq. (31) are equivalent.

Let us consider the SU(2)-valued 0-form

h = ∑
k

hkxk, (35)

where hk ∈ SU(2) and xk = xk1 ⊗ xk2 ⊗ xk3 is the 0-dimensional basis element
of K(3). By analogy with classical Yang–Mills theories, we define a gauge
transformation for the discrete potential A ∈ K(3) and discrete field Φ ∈ K(3) as

A′ = h∪dch−1 + h∪A∪h−1, (36)

Φ′ = h∪Φ∪h−1, (37)

where h−1 is the 0-form with inverse components (inverse matrices) of h. Suppose
that the components hk ∈ SU(2) of (35) satisfy the following conditions:

hτ1τ2k = hτ3k, hτ1τ3k = hτ2k, hτ2τ3k = hτ1k (38)

for all k = (k1,k2,k3), ki ∈ Z. It is easy to check that the set of forms (35) satisfying
conditions (38) is a group under ∪-product.
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Theorem 2. The discrete Bogomolny equation (29) is invariant under the gauge
transformation (36) and (37), where h satisfies condition (38).

Proof. Rewrite Eq. (29) in the form

ι̃ ∗F − dc
AΦ = 0. (39)

The proof is based on Theorem 4.3 and Lemma 4.6 in [11]. Under the transformation
(36) the curvature form (22) changes as

F ′ = h∪F ∪h−1.

Using conditions (38) and Lemma 4.6 of [11] we have

ι̃ ∗F ′ = ι̃ ∗ (h∪F ∪h−1) = h∪ ι̃ ∗F ∪h−1. (40)

Since dch∪h−1 =−h∪dch−1 by (13), (26), (36), and (37), we compute

dc
A′Φ′ = dc

A′(h∪Φ∪h−1) = h∪dcΦ∪h−1

+ h∪A∪Φ∪h−1− h∪Φ∪A∪h−1 = h∪dc
AΦ∪h−1. (41)

Comparing (40) and (41) we obtain

ι̃ ∗F ′ − dc
A′Φ′ = h∪ (ι̃ ∗F − dc

AΦ)∪h−1.

Thus, if the pair (A,Φ) is a solution of Eq. (29), then (A′,Φ′) is also a solution
of (29). ��
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