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Zürich, Switzerland

ISSN 2194-1009 ISSN 2194-1017 (electronic)
ISBN 978-1-4614-7332-9 ISBN 978-1-4614-7333-6 (eBook)
DOI 10.1007/978-1-4614-7333-6
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013945534

Mathematics Subject Classification (2010): 33C45, 34-XX, 35-XX, 37-XX, 39A10, 39A13, 39A06,
39A12, 45J05, 47-XX, 54C60, 65-XX, 76H05, 76Z05, 92D25, 93B03, 93B40

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

For five days from July 4 to 8, 2011, more than 230 mathematicians from 50
countries attended the International Conference on Differential and Difference
Equations and Applications, held at Azores University, Ponta Delgada, Portugal.

This conference was held in honour of Professor Ravi P. Agarwal for his
contributions to science and, in particular, to the mathematical community.

The scientific aim of this conference was to bring together mathematicians
working in various disciplines of differential and difference equations and their
applications. There were 11 plenary lectures, 21 main lectures, and 198 commu-
nications about the current research in this field. This volume contains 60 selected
original papers which are connected to research lectures given at the conference.
Each paper has been carefully reviewed.

We take this opportunity to thank all the participants of the conference and the
contributors to these proceedings. Our special thanks belong to the Department
of Mathematics, Azores University, Ponta Delgada, Portugal, for the sincere
hospitality. We are also grateful to the Scientific and Organizing Committees for
all the effort in the preparation of the conference.

We hope that this volume will serve researchers in all fields of differential and
difference equations.

Amadora, Portugal Sandra Pinelas
Zürich, Switzerland Michel Chipot
Brno, Czech Republic Zuzana Dosla
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Two-Term Perturbations in Half-Linear
Oscillation Theory

Ondřej Došlý and Simona Fišnarová

Abstract We consider the nonoscillatory half-linear differential equation

(r(t)Φ(x′))′+ c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1,

and we study the influence of the perturbation terms r̃, c̃ on oscillatory properties of
the equation

[(r(t)+ r̃(t))Φ(x′)]′+(c(t)+ c̃(t))Φ(x) = 0.

We prove new oscillation criteria which can be applied in situations where previ-
ously obtained criteria fail.

1 Introduction

We consider the half-linear second-order differential equation

L[x] := (r(t)Φ(x′))′+ c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, (1)

where r,c are continuous functions and r(t)> 0, and its “perturbation”, the equation

L̃[x] :=
[(

r(t)+ r̃(t)
)
Φ(x′)

]′
+
(
c(t)+ c̃(t)

)
Φ(x) = 0 (2)

O. Došlý (�)
Department of Mathematics and Statistics, Masaryk University, Kotlářská 2,
CZ-611 37 Brno, Czech Republic
e-mail: dosly@math.muni.cz

S. Fišnarová
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S. Pinelas et al. (eds.), Differential and Difference Equations with Applications, Springer
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4 O. Došlý and S. Fišnarová

with continuous functions r̃, c̃ and r(t) + r̃(t) > 0. We suppose that Eq. (1) is
nonoscillatory and we investigate the influence of the perturbation terms r̃, c̃ on
oscillatory behavior of Eq. (2).

It is a well-known fact that the oscillation theory of Eq. (1) is (almost) the same
as that of the linear Sturm–Liouville differential equation

(
r(t)x′

)′
+ c(t)x = 0 (3)

which is the special case p = 2 in Eq. (1); see [1,6] and the references given therein.
The classical approach to the half-linear oscillation theory consists in regarding
Eq. (1) as a perturbation of the one-term (nonoscillatory) differential equation

(
r(t)Φ(x′)

)′
= 0. (4)

The standard half-linear oscillation criteria claim, roughly speaking, that Eq. (1) is
oscillatory provided the function c is “sufficiently positive with respect to r”, while
it is nonoscillatory, if it is not “too positive”. Particular oscillation criteria along this
line can be found in [6].

A more general approach is presented in [6, Sect. 5.2]. There, the equation
(
r(t)Φ(x)

)′
+
[
c(t)+ c̃(t)

]
Φ(x) = 0 (5)

is viewed as a perturbation of Eq. (1) and the so-called principal solution of this
equation plays an important role in the obtained (non)oscillation criteria. Note that
in the linear oscillation theory, a two-term nonoscillatory equation (3) can be always
reduced to the one-term equation (r(t)x′)′ = 0, so this approach, in contrast to the
half-linear oscillation theory, brings actually nothing new.

Here we follow the idea initiated in [9] for linear equation (3) and extended to
half-linear case in [3, 4]. We obtain oscillation criteria for Eq. (2) where criteria
presented in the above mentioned papers fail. A typical model is the perturbed
Riemann–Weber half-linear differential equation

[(
1+ r̃(t)

)
Φ(x′)

]′
+

[
γp

t p +
μp

t p log2 t
+ c̃(t)

]
Φ(x) = 0,

where γp, μp are the so-called critical constants in the half-linear Euler and
Riemann–Weber equations; see [8] and also Sect. 3 of this paper.

2 Preliminaries

The principal tool we use in our paper is the Riccati technique and its modifications,
which we explain at the beginning of this section. If x(t) �= 0 is a solution of Eq. (1),
then the Riccati variable w = rΦ(x′/x) solves the Riccati type differential equation

R[w] := w′+ c(t)+ (p− 1)r1−q(t)|w|q = 0, q :=
p

p− 1
. (6)
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If h is a positive differentiable function and we put v = hp(w−wh), where w is a
solution of Eq. (6) and wh = rΦ(h′/h), then v is a solution of the so-called modified
Riccati equation

Rm[v] := v′+ h(t)L[h](t)+ (p− 1)r1−q(t)h−q(t)H(t,v) = 0, (7)

where

H(t,v) := |v+G(t)|q− qΦ−1(G(t))v−|G(t)|q, G := rhΦ(h′). (8)

The relationship between solutions of Eqs. (6) and (7) is described in the next
lemma. The proof of statements (i) and (ii) can be found in [3]; the statement (iii) is
Theorem 2.2.1 of [6].

Lemma 1. (i) Let h > 0 and w be differentiable functions and let v = hp(w−wh).
Then

hpR[w] = Rm[v]. (9)

(ii) The function H(t,v) defined in (8) satisfies H(t,v)≥ 0 with the equality if and
only if v = 0.

(iii) Equation (1) is nonoscillatory if and only if there exists a differentiable function
w satisfying R[w](t)≤ 0 for large t.

Now we give a result of [4, Theorem 3.5] which concerns nonnegativity of
solutions of the modified Riccati equation (7).

Lemma 2. Let h be a positive continuously differentiable function such that
h′(t)�=0 for large t. Suppose that
∫ ∞

r−1(t)h−2(t)|h′(t)|2−p dt = ∞, h(t)L[h](t)≥ 0 for large t, lim
t→∞

|G(t)|= ∞.

Then all possible proper solutions (i.e., solutions which exist on some interval of the
form [T,∞)) of Eq. (7) are nonnegative.

The second basic method of the half-linear oscillation theory is the so-called
variational principle, which is formulated in the next lemma.

Lemma 3. Equation (2) is oscillatory if and only if for every T ∈ R, there exists a
nontrivial function y ∈W 1,p(T,∞), with compact support in (T,∞), such that

F (y;T,∞) =

∫ ∞

T

[
(r(t)+ r̃(t))|y′|p− (c(t)+ c̃(t)|y|p

]
dt ≤ 0. (10)

Next we present, for the sake of the later comparison, some known results
concerning oscillation of Eq. (2). These statements are taken from [3, 5]. Note that
in those papers, the function h is supposed to be a positive solution of Eq. (1), so
the coefficient C defined in Eq. (11) below reduces to C = h [(r̃Φ(h′))′+ c̃Φ(h)].
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More precisely, Proposition 1 below is a modification of [3, Theorem 4], while
Proposition 2 is a modification of [5, Theorem 4]. Here we present a more
general version of the statements with arbitrary positive continuously differentiable
function h. The proofs are almost the same; the only difference is in the definition
of the function C.

In the rest of the paper we use the following notation, where h is a positive
continuously differentiable function:

C := hL̃[h], R := (r+ r̃)h2|h′|p−2, Ω := (r+ r̃)hΦ(h′). (11)

Proposition 1. Let h be a positive continuously differentiable function such that

C(t)≥ 0 for large t,
∫ ∞

C(t)dt < ∞, (12)

0 < liminf
t→∞

Ω(t)≤ limsup
t→∞

Ω(t)< ∞, (13)

∫ ∞ dt
R(t)

= ∞, (14)

and
∫ ∞

(r(t)+ r̃(t))1−qh−q(t)dt = ∞. (15)

If there exists ε > 0 such that the equation

(
R(t)y′

)′
+

q− ε
2

C(t)y = 0 (16)

is oscillatory, then (2) is also oscillatory.

Remark 1. Applying the Hille–Nehari criteria to the linear equation (16), one can
obtain that under conditions (12)–(15), Eq. (2) is oscillatory provided

liminf
t→∞

∫ t
R−1(s)ds

∫ ∞

t
C(s)ds >

1
2q

; (17)

see [3].

Proposition 2. Let h be the a positive continuously differentiable function satisfy-
ing conditions (15) and

C(t)≥ 0 for large t,
∫ ∞

C(t)dt = ∞, (18)

limsup
t→∞

Ω(t)< ∞. (19)

Then Eq. (2) is oscillatory.
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3 Oscillation Criteria

A typical example of perturbed equation where the previous results do not apply is
the perturbed Riemann–Weber half-linear differential equation

[
(1+ r̃(t))Φ(x′)

]′
+

[
γp

t p +
μp

t p log2 t
+ c̃(t)

]
Φ(x) = 0, (20)

where

γp =

(
p− 1

p

)p

, μp =
1
2

(
p− 1

p

)p−1

, (21)

are the so-called critical constants in the general unperturbed Riemann–Weber
equation

(
Φ(x′)

)′
+

[
γ
t p +

μ
t p log2 t

]
Φ(x) = 0, (22)

where the constants γ = γp, μ = μp are “separating” values between oscillation
and nonoscillation in Eq. (22); see [8]. Equation (22) with these limiting values has

a solution which asymptotically behaves like h(t) = t
p−1

p log
1
p t. For this function,

e.g., in the case when r̃(t) = o(1) as t → ∞, which is a typical case in applications,
the limit in (19) is infinite, so criteria given in Propositions 1, 2 cannot be applied.

As main results of the paper we present criteria which can be applied also to the
case when the limit (19) is infinite.

Theorem 1. Let h be a positive continuously differentiable function satisfying
conditions (12), (14), and

lim
t→∞

Ω(t) = ∞. (23)

If there exists ε > 0 such that Eq. (16) is oscillatory, then Eq. (2) is also oscillatory,
i.e., Eq. (2) is oscillatory provided condition (17) holds.

Proof. Suppose, by contradiction, that Eq. (2) is nonoscillatory. Then there exists a
solution of the associated Riccati equation, and by Lemma 1, there exists a proper
solution v of the modified Riccati equation

v′+C(t)+ (p− 1)(r(t)+ r̃(t))1−qh−q(t)H(t,v) = 0. (24)

Lemma 2 implies that v(t)≥ 0 for large t. Since C(t) and H(t,v) are nonnegative, it
follows that v(t) is nonincreasing and hence there exists a finite limit limt→∞ v(t)≥
0. Integrating Eq. (24) and since v(t)≥ 0, we obtain

v(T )≥
∫ t

T
C(s)ds+(p− 1)

∫ t

T
(r(s)+ r̃(s))1−qh−q(s)H(s,v(s))ds.
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Consequently, since
∫ ∞ C(t)dt < ∞, letting t → ∞, we obtain
∫ ∞

(r(t)+ r̃(t))1−qh−q(t)H(t,v(t))dt < ∞.

Analogously to [7] we show that v(t)→ 0 as t → ∞. We have

(r(t)+ r̃(t))1−qh−q(t)H(t,v(t)) = (r(t)+ r̃(t))|h′(t)|pF(z(t)),

where F(z) = |z+1|q−qz−1 and z = v/Ω → 0 as t →∞. Hence F(z) = q(q−1)
2 z2+

o(z2) as z→ 0. This means that for ε > 0 there exists T1 such that for t > T1

(q− ε)(q− 1)
2

z2(t)< F(z(t)).

Hence (suppressing the integration argument t)

∞ > (p− 1)
∫ ∞

(r+ r̃)1−qh−qH(t,v)dt = (p− 1)
∫ ∞

(r+ r̃)|h′|pF(z)dt

>
q− ε

2

∫ ∞
(r+ r̃)|h′|pz2 dt =

q− ε
2

∫ ∞ v2

R
dt.

Condition
∫ ∞ R−1(t)dt = ∞ implies that limt→∞ v(t) = 0. Now, using the Taylor

polynomial of the function H(t,v) at v = 0, we have the following estimate (see [3,
Lemma 5]):

H(t,v) =
q(q− 1)

2
|Ω(t)|q−2v2(1+ o(1)), as v→ 0.

Consequently, to arbitrary ε > 0 there exists T2 > T1 such that

(q− ε)(q− 1)
2

|Ω(t)|q−2v2(t)≤ H(t,v(t)), t ≤ T2

and hence

q− ε
2

v2(t)
R(t)

≤ (p− 1)(r(t)+ r̃(t))1−qh−q(t)H(t,v(t)), t ≤ T2.

From Eq. (24) we have that v is a solution of the Riccati inequality

v′+C(t)+
q− ε

2
v2

R(t)
≤ 0, t ≤ T2

and this means that Eq. (16) is nonoscillatory by Lemma 1 (iii). This is a
contradiction. �	
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The next statement can be regarded as a complement of Proposition 2. In contrast
to that statement, we do not suppose conditions (13), (15). Here we are again
motivated by the perturbed Riemann–Weber equation since in the case h(t) =

t
p−1

p log1/p t, condition (15) (again with r̃(t) = o(1) as t→∞) is not satisfied if p< 2.

Theorem 2. Let h be a positive continuously differentiable function satisfying
conditions (14), (18), and (23). Then Eq. (2) is oscillatory.

Proof. The proof is based on the variational principle. Let T ∈ R be arbitrary and
define for T < t1 < t2 < t3 the function y∈W 1,p(T,∞) in the same way as in [5], i.e.,

y(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 t ∈ [T, t0],
f (t) t ∈ [t0, t1],
h(t) t ∈ [t1, t2],
g(t) t ∈ [t2, t3],
0 t ∈ [t3,∞),

where f is any continuously differentiable function satisfying f (t0) = 0, f (t1) =
h(t1) and g is the solution of Eq. (1) satisfying g(t2) = h(t2), g(t3) = 0.

This is a typical construction used in the variational principle and its idea was
introduced in the paper [10]. Assumptions (13), (15) are used in [5] to prove
nonnegativity of a solution of the modified Riccati equation. Here we use Lemma 2
instead of these conditions, so condition (13) is replaced by condition (15) and
condition (23) can be omitted. The idea of the proof is that the values t1 < t2 < t3
can be chosen in such a way that (10) holds. Technical computations are almost the
same as those in [5], so we omit them. �	

Remark 2. In Theorems 1, 2, Eq. (1) actually plays no role since h is any differen-
tiable function without any relationship to Eq. (1). However, in many applications,

h is a solution of some known equation, typically h(t) = t
p−1

p is a solution of the
“critical” Euler equation

(
Φ(x′)

)′
+

γp

t p Φ(x) = 0

(see [8]), or h(t) = t
p−1

p log1/p t is close to a solution of the Riemann–Weber
equation (21) (see [2]). In this situation, the term h[(rΦ(h′))′ + cΦ(h)] is zero
or “small” in the definition of the function C and then oscillation of (2) is really
formulated in terms of the perturbation functions r̃, c̃.

Now we apply our results to the perturbed Riemann–Weber equation (20).

We take h(t) = t
p−1

p log
1
p t and using the computations from [2] we obtain

Ω(t) = (1+ r̃(t))h(t)Φ(h′(t))

=

(
p− 1

p

)p−1

(1+ r̃(t)) log t

(
1+

1
(p− 1) logt

)p−1

,
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R(t) = (1+ r̃(t))h2(t)|h′(t)|p−2

=

(
p− 1

p

)p−2

(1+ r̃(t))t log t

(
1+

1
(p− 1) logt

)p−2

,

C(t) = A(t)+B(t), (25)

where

A(t) = h(t)Φ(h′(t))′+ hp(t)

(
γp

t p +
μp

t p log2 t

)

= t−1O(log−2 t),

B(t) = h(t)
[
r̃′(t)Φ(h′(t))+ r̃(t)(Φ(h′(t)))′

]
+ c̃(t)hp(t)

=

(
p− 1

p

)p−1

r̃′(t) log t

(
1+

1
(p− 1) logt

)p−1

+r̃(t)t−1 logt

(
−γp−

μp

log2 t
+O(log−3 t)

)
+ c̃(t)t p−1 logt.

Using the above computations and Theorems 1, 2, we can formulate the following
statement.

Corollary 1. Let C be given in Eq. (25) and suppose that

C(t)≥ 0 for large t,

∫ ∞ 1
(1+ r̃(t))t logt

dt = ∞, lim
t→∞

(1+ r̃(t)) logt = ∞.

(i) If
∫ ∞

C(t)dt < ∞

and

liminf
t→∞

∫ t ds
(1+ r̃(s))s log s

∫ ∞

t
C(s)ds >

1
2

(
p− 1

p

)p−1

,

then (20) is oscillatory.
(ii) If

∫ ∞
C(t)dt = ∞,

then (20) is oscillatory.
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Capillary Forces on Partially Immersed Plates

Robert Finn

1 Introduction

Writings describing the floating of objects on a liquid surface date from long prior
to the starting year of the currently accepted calendar. About 350 BC Aristoteles
described observations of objects that sink when fully submerged in water but which
nevertheless can be made to float at the water surface. That is in striking contrast
to the requirements for floating formulated by his countryman Archimedes during
the following century, which specifically exclude such behavior. Two thousand
years later the French physicist and priest Mariotte (1620–1684) observed and
attempted [1] to explain the remarkable tendency of two floating balls either to
attract or repel each other. In retrospect it cannot be surprising that the attempted
explanations were at once incomplete and inconsistent; it is now generally accepted
that such phenomena are closely linked with surface tension, the concept of which
was initially introduced over half a century following Mariotte’s decease. And an
adequate description could hardly be feasible without the Calculus, which may well
not have been accessible to that thinker during his lifetime.

Consistent and verifiable scientific clarification of such phenomena appears
initially in two “suppléments” [2, 3] on capillarity theory that Laplace added to
the tenth volume of his “mécanique céleste”, and which document in strongly
convincing terms the power of the magic new weapon bequeathed him by Leibniz
and by Newton. Among the many contributions of that œuvre, Laplace provides
quantitative calculations of the forces exerted on two parallel vertical plates, whose
surfaces may consist of possibly four distinct materials, partly immersed and
separated a prescribed distance in an unbounded liquid bath in the presence of a
downward gravity field. Although this is not strictly a “floating” phenomenon, it
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embodies some of the essential characteristics of that state of being; to my knowl-
edge there is as yet no satisfactory mathematical theory that applies adequately for
floating objects (although McCuan’s recent paper [4] does point in a promising
direction).

Laplace’s second “supplément” contains general expressions for the forces on the
plates in specific circumstances, and exhibits configurations for which the behavior
reverses from repelling to attracting when plates of specific materials approach each
other. These achievements were certainly amazing for their time and may well have
intimidated the remaining scientific community. Instead of inspiring an immediate
flood of further activity as one might expect, apparently no further writings on the
topic appeared (beyond some expositions) during the ensuing two centuries. Then
in 2010, in connection with his response to a question raised initially by Thomas
Young in a letter to Poisson about 1825 and then independently in an informal
email from Brian Storey in 2008, the present author approached the problem from a
different point of view [5], initially without knowledge of Laplace’s writings, basing
his discussion on a differential-geometric identity that may not have been known to
Laplace.

In a work now in preparation, Finn and Lu continue and largely complete the
material of [5], with a new discussion focusing on the geometric content of the
question, covering all occurring configurations, and delineating precise criteria for
changes of behavior. In what follows, we outline the essential features of that work.

2 Background Material

Partly in view of continuing controversy over underlying concepts of the theory
and chiefly as a courtesy to readers unfamiliar with classical surface tension theory,
we begin with an outline of that material. The following remarks reflect the
phenomenological approach adopted in [6].

We imagine two adjacent but distinct materials sharing a smooth surface interface
S. Figure 1 illustrates the case in which S is planar, but the construction encom-
passes also curved surfaces. We suppose that particles interior to each material are
subject to forces arising from immediately neighboring particles, which act only
within infinitesimal neighborhoods, but become infinite at each point roughly as
delta functions. The forces are to be isotropic interior to each material, so that
at an interior point of either material, they act equally in all directions and thus
will balance and cancel in an equilibrium configuration. However on the interface
S, the forces may depend on direction due to the differing adjacent materials; see
Fig. 1. Thus there may exist a net force acting normal to S, leading to infinitesimal
compression (or expansion) at the surface, with a resultant work e (surface energy)
per unit area created over S.

If the materials are both fluids, then we observe that the energy e per unit
area can be identified with a force σ per unit length called surface tension; this
basic observation was introduced in general terms by von Segner about 1750, and
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.

.S
e

Fig. 1 Surface interface S; forces acting interior to one of the materials or on S

C

S

Fig. 2 Action of surface tension on a curve C interior to S or on the boundary Σ of S

developed by Thomas Young in his 1805 paper as an underlying concept for a
general theory. σ is exerted on any curve C lying interior to S or on ∂S. If C is
interior, then the forces on one side cancel the corresponding forces on the opposite
side see Fig. 2. But if C ∈Σ≡ ∂S then σ pulls on C and tries to contract S.

This connection is made explicit by Young’s Discovery that if S separates two
fluids, then there is a pressure jump δp across S given by

δ p = 2σH, (1)

where H is the mean curvature of S, and also by the differential-geometric identity

∫

S
2HdS =

∮

Σ
nds (2)

where H is the mean curvature vector on S, and n is unit co-normal on Σ. Note that
(2) equates an integral of normals to S with an integral of vectors tangential to S.
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e1

e0

e2

liquid solid

air

Fig. 3 Contact angle γ at a triple interface

When (2) is multiplied by σ , it identifies the net effect of “capillary pressure” 2σ |H|
distributed over S and acting orthogonal to S, with the net effect of capillary force
σ per unit length acting in the co-normal direction n (orthogonal to Σ and tangential
to S) along Σ. Note that this interpretation does not apply when one or both of the
materials separated by S is a solid, as the δp of (1) no longer can be interpreted as
a pressure change.

In a typical configuration, a fluid surface abuts on a solid “support surface”
creating a “triple interface” involving one fluid/fluid interface and two fluid/solid
interfaces, as indicated in Fig. 3.

Theorem of Young/Gauss If the respective surface energy densities are e0, e1, e2

as in Fig. 3, then the fluid/fluid interface meets S in an angle γ determined by

cos γ =
e2− e1

e0
(3)

and thus the “contact angle” γ is a physical quantity depending only on the
materials, and in no way on body forces such as gravity or on the particular
geometry of the configuration.

Young originally claimed (without formal justification) that surface tensions at
fluid/solid interfaces can be introduced analogously to those at fluid/fluid interfaces,
and he asserted the validity of (3) with the energies replaced by tensions σ0, σ1,
σ2. Although that view is still commonly held (and exposited!), it is in this author’s
view not supportable and can lead to significant errors; see [7–12].
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Π1 Π2
g

γ11

γ21
γ22

γ12

Fig. 4 Two vertical plates of conceivably four distinct materials partly immersed in an infinite
fluid bath. The contact angle on each face is determined by the material of that face

3 Problem Formulation

Figure 4 shows the two vertical plates, partially immersed in an infinite liquid.
The plates are assumed to be mounted on horizontal rails, constraining them to
be vertical and with all faces wetted but permitting unrestricted lateral motion.
The (idealized) scale measures the lateral force F required to hold them at
prescribed distance 2a from each other. The fluid mass is to be connected below the
plates and in mechanical equilibrium, extending as indicated to infinity, and with
pressure p subject to Pascal’s Law p=−ρgh, with ρ = density, g= gravitational
acceleration, and h= height relative to a common rest level for the fluid at infinity.
(Under reasonable hypotheses, the existence of such a level can be proved.) Across
the liquid/air interface, there is a pressure jump according to (1). We assume that
the pressures have been normalized so that the air pressure is zero. Using [13],
the configuration can be shown to be identical in every plane parallel to that of
the figure, thus reducing the problem to that of finding a planar curve u(x) for the
height within a representative plane. The requirement of prescribed contact angle γ
forces the liquid to rise or fall between and outside the plates. Each plate may be
of different material on each side; thus we are faced with eight distinct solid/fluid
interfaces with (prescribed) energy coefficients e1 to e8. Additionally there is a
(disconnected) liquid/air interface with surface tension σ . Our object is to describe
the configuration quantitatively and determine the net attracting or repelling force
F in terms of the prescribed quantities.

Variational considerations based on the principle of virtual work lead to the
underlying equation of the liquid/air interface

(sinψ)x = κu (4)
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where ψ is inclination of the curve u(x), and κ =ρg/σ is the “capillarity constant.”
The left side of (4) can be recognized as the planar curvature of the solution curve,
thus imparting a clear geometrical substance to the problem. (Alternatively, (4) can
be obtained directly from Pascal’s Law of fluid pressures and from Young’s Law
(1).) The underlying integral identity (2) simplifies to

∫ p2

p1

kds = v1 + v2 (5)

Here k is planar curvature vector on a curve segment C joining the point p1 to p2,
and v1, v2 are exterior directed unit co-normal vectors at those two endpoints of C.
The proof of (5) is immediate from the observation that k= dv/ds when v is the unit
tangent vector dx/ds, with x the position vector on C.

We seek solutions of (4) on the three components of the solution curve, achieving
the contact angles determined from the four instances of the criterion (3) on the
exposed sides of the plates. Our problem is greatly simplified by the observation
that from the point of view of determining horizontal forces the two “outer” contact
angles facing the infinite domains lead in each case to the same net horizontal force
σ directed toward infinity. That is because on each “outer” segment one obtains
from (1) and from (5) that the horizontal component of the net outer tension force
on the plate is σsinγ . There is also a pressure force on that plate due to the lifted
fluid, of p = ρg

∫ u
0 hdh = 1

2 σκu2, where u is rise height above “rest position” at
infinity. From (4) we find, since tanψ = du/dx,

sinψ dψ = κu du (6)

which when integrated from infinity to the plate gives

1− sinγ =
1
2

κu2 (7)

Summing the net tension and pressure forces leaves only the single horizontal
force σ pulling toward infinity. Thus the horizontal effect of the outer domains is
always exactly that of an undisturbed fluid pulling outward with surface force σ .

We view (6) as an equation for determining u(ψ). Using the relation dx/dψ =
cotψ du/dψ we obtain a corresponding equation for x(ψ) and thus two equations
in parametric form for the sought solution u(x) of (4). The unique solution having
inclination ψα at a prescribed point (xα , uα) is determined by

x = xα +

∫ ψ

ψα

cos τ
κu

dτ

u2 = u2
α +

2
κ
(cos ψα − cos ψ) .

(8)
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If the solution extends to infinity, it is determined by the inclination ψα at a
prescribed point xα :

x = xα −
1√
2κ

∫ ψα

ψ

√
1+ cos τ cot τ dτ

u =

√
2
κ
(1− cos ψ).

(9)

There is a unique solution between the plates that meets them at prescribed
angles. It can be determined by a shooting method and can be routinely calculated
to arbitrary accuracy. We are interested here not in specific solutions but rather in
global characterization of solution behavior, which turns out to be singular in a
rather remarkable way.

4 Domains of Influence

We start by prescribing a contact angle γ2 on the plate Π2, 0≤ γ2 <π /2. The
solution given by (9) with ψα = (π /2) – γ2 determines a (unique) height u2 =√

2
κ (1− sin γ2), at which a solution I : u0+

2 (x) extending to negative infinity meets
Π2 in angle γ2; see Fig. 5. Restricting attention to the interval between the plates,
and assuming fluid surfaces extending to infinity on the outside of the plates, the
solution I yields zero net force between the two plates.

Retaining the angle γ2, let us move the contact point on Π2 upward, a distance
δ . Then by (4) the planar curvature of the new solution curve will exceed that of I,
so that it cannot contact that curve. The new curve will be defined as a graph only
within a finite interval, at the ends of which it becomes upwardly vertical, and it will
have a strict minimum at a height u0 > 0. If δ is small enough, the new solution
will still extend to Π1, and an attracting force F appears between the plates, with

F = ρgu2
0. (10)

As we allow δ to increase, we obtain a continuum of nonintersecting solutions
of (4) between the plates, all of which meet Π2 in angle γ2 and which meet Π1 in
successively smaller angles γ1 and yield increasing attractive forces, until we arrive
at a solution for which γ1 = 0. This corresponds to a finite interval of initial points
for (4) along Π2. Higher points correspond to exotic materials for which one or
more of the four ratios that occur in (3) exceeds unity in magnitude, and for which
the fluid wets the entire plate or detaches from the plate. We do not address such
configurations in the present work.

We encounter physically different behavior that can be relevant for common
materials if we allow negative δ . Initially we suppose |δ | small and observe that
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Fig. 5 (a, b) Sketch (not to scale) of barrier functions meeting Π2 in angle γ2. If 2a is large, then
V does not extend to Π1 and IV lies above V. If 2a is small, then IV lies below V. The barrier
properties interchange at a critical separation at which IV coincides with V
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the new solution curves must cross the x-axis, at an angle ψ0 �= 0. In every such
configuration, the plates repel each other, with a force

F = 2σ (1− cos ψ0) . (11)

To determine the range of δ for which repelling can be expected, we must
examine the global structure of the solution curves that meet Π2 in angle γ2. Two
major variants in what can occur are illustrated in Fig. 5a, b. In preparing these
figures, we have noted that the solution I has the character of a barrier, separating
solutions with qualitatively differing behavior. We introduce four further solution
curves with related barrier properties as follows:

II. The unique solution of (4) meeting Π2 in angle γ2 and passing through the
intersection point of Π1 with the x-axis, which it meets in an angle ψ0 > 0.

III. The unique solution of (4) meeting Π2 in angle γ2 and Π1 in angle γ1 =π –
γ2. This solution crosses the x-axis at the midpoint between the plates and is
symmetric relative to the crossing point.

IV. The unique solution of (4) meeting Π2 in angle γ2 and Π1 in angle π .
V. The counterpart u0−

2 (x) of I, meeting Π2 in angle γ2 and extending to x=+∞. V
is obtained from I via a succession of a lateral and a vertical reflection.

Restricting attention to those solutions of (4) meeting Π2 in angle γ2, the region
bounded by the two plates, I, and max{IV, V} is simply covered by those solution
curves. Those curves are precisely the ones that join the two plates and yield
repelling configurations. For any other solution meeting Π2 in angle γ2 and joining
the plates, the plates will attract each other.

Note that the net force between the plates remains uniformly bounded in all
repelling configurations. Attractions become unboundedly large with decreasing
plate separation. Given an attracting configuration, if the contact angles are fixed
and the plates allowed to approach each other, then the configuration remains
attracting, with the force becoming unbounded as the inverse square of the plate
separation.

Repelling configurations behave differently than attracting ones. The barrier
curve III continues to cross the x-axis at the midpoint between the plates as a→ 0
and hence remains repelling; one sees easily that the net force tends to the limit
2σ (1–sinγ2) �= 0. However, III is the unique solution curve with that property;
with decreasing a, attracting curves become rapidly more attracting, while every
repelling curve distinct from III eventually identifies with a portion of I or of V
(yielding zero net force) and then moves into the set of attracting curves, with the
positive minimum (or negative maximum) u0 becoming infinite to the order a–1.

Behavior that singular invites a closer look. We hold Π2 fixed and move Π1

toward it a distance δ , as indicated in Fig. 6. We focus attention on a solution
curve between I and III and observe that all the angles γ1 that appear in this range
correspond to inclinations ψ1 that also appear on the curve I. This latter curve
remains unchanged during motions of Π1. Thus there exists a suitable δ such that the
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Fig. 6 Sketch of solution curves S+
2 and S−2 in the range of repelling solutions that become

attracting with decreasing plate separation. S+
2 shifts through the barrier I; S−2 shifts through the

barrier V

inclination of I at x1 + δ is exactly the initial prescribed inclination γ1 – π /2. Since
the given solution and I already share the datum ψ2 = (π /2) – γ2 on Π2, an easily
proved uniqueness theorem shows that the solution determined between x1 + δ and
x2 coincides with I on that interval. In other words, when plates of materials for
which the contact angles yield a solution in the range between I and III are moved
toward each other, a positive separation will be attained for which no horizontal
force appears.

Bringing the plates still closer together yields attracting forces that grow rapidly,
as indicated above.

Note that this behavior occurs with curves that can be arbitrarily close to III, and
it occurs also in a corresponding “lower” neighborhood between III and V. Thus a
deleted neighborhood of solutions surrounding III pulls apart from III as the plates
come together, leaving III as the single (isolated) solution that retains its repelling
property for all plate separations.

There is a still further striking behavior, which becomes evident on introducing
the barrier II (Fig. 5), which meets Π2 in angle γ2 and passes through the zero
level on Π1. If we start with a solution S+

2 lying above II as in Fig. 6, and shift
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Π1 as indicated, we see that the initial contact angle on that particular solution has
increased due to the upward convexity of S+

2 ; to maintain the same γ1 on the plate,
we must therefore move upward on Πδ

1 to a different solution closer to I; this is
in agreement with the convergence to I just indicated. But now start with another
solution, still between I and III but below II. That means simply that the starting
point on Π1 will be negative. In this case the sense of convexity of S+

2 is initially
downward, and the identical reasoning now shows that the new curve of the family
that must be chosen to keep the same contact angle will be belowS+

2 . Thus, although
we have shown that the solutions converge to I before Πδ

1 reaches Π2, these solutions
move initially to positions further from I instead of closer to it.

The clue to clarification of this seemingly paradoxical behavior is the observation
that although the curves are moving downward, the initial points on the successive
{Π1} are moving upward, and they eventually rise to the zero level where the
convexity sense reverses.

This theorem is illustrated in Fig. 7a, b, for the particular case γ2 = 30◦, γ1 = 145◦

(for clarity in display of details, the x-axis scale has been expanded). In the initial
configuration, the initial height u1 is negative, and Fig. 7a shows the behavior in
this regime. The plate Π1 in varying positions is matched with the corresponding
solution for the given contact angles according to color. The dots (inserted by hand)
are at the intersection points. One sees that as predicted the dots rise as Π1 moves
toward Π2, reaching the zero level prior to reaching Π2. Once at that level, the rise
accelerates sharply as shown in Fig. 7b. This is as expected, for when the heights
uj are positive, the sense of curvature of the solution curves contributes to the rise
instead of working against it.

As a particular consequence of this behavior, we obtain from (11) that for a
“starting” curve as just described, as the plates are brought together, there will be
an initial interval in which the repelling force increases. The force will then achieve
a maximum at some intermediate position, then decrease to zero and reappear
as an attracting force increasing rapidly to infinity, with successively decreasing
separation of the plates.

The property of the barriers I and V to provide zero net force allows us to
construct configurations, for any prescribed γ2 in [0, π /2), for which the transition
from repelling to attracting occurs at arbitrary prescribed separation of the plates.
It suffices to choose for γ1 the angle with which I meets a plate Π1 situated at a
prescribed point x1 < x2.

The above discussion has been nominally limited to the case 0≤ γ2 < π /2. If
π /2< γ2≤π , we observe that a reflection in x= x2 followed by a reflection in the
x-axis leaves (4) invariant and changes γ2 to π – γ2. If γ2 = π /2, then every nontrivial
solution is attracting.
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Fig. 7 (a) Transition from repelling to attracting. The contact angles γ1, γ2 are chosen so that the
initial trajectory meets Π1 at a height u1 < 0. The successive trajectories fall but the contact points
initially rise and reach the level u= 0. (b) Continuation of the transition. When the contact points
become positive, the trajectories and the contact points both rise, the convergence accelerates,
and the contact point attains the barrier I prior to reaching Π2. When that happens, the solution
identifies with I. Further approach of Π1 to Π2 yields rapidly rising attracting forces
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Singular Problems for Integro-differential
Equations in Dynamic Insurance Models

Tatiana Belkina, Nadezhda Konyukhova, and Sergey Kurochkin

Abstract A second-order linear integro-differential equation with Volterra integral
operator and strong singularities at the endpoints (zero and infinity) is considered.
Under limit conditions at the singular points, and some natural assumptions, the
problem is a singular initial problem with limit normalizing conditions at infinity.
An existence and uniqueness theorem is proved and asymptotic representations
of the solution are given. A numerical algorithm for evaluating the solution is
proposed; calculations and their interpretation are discussed. The main singular
problem under study describes the survival (non-ruin) probability of an insurance
company on infinite time interval (as a function of initial surplus) in the Cramér–
Lundberg dynamic insurance model with an exponential claim size distribution and
certain company’s strategy at the financial market assuming investment of a fixed
part of the surplus (capital) into risky assets (shares) and the rest of it into a risk-free
asset (bank deposit). Accompanying “degenerate” problems are also considered that
have an independent meaning in risk theory.

1 Introduction

The important problem concerning the application of financial instruments in order
to reduce insurance risks has been extensively studied in recent years (see, e.g.,
[1,3,4], and references therein). In particular in [3,4] the optimal investing strategy
is studied for risky and risk-free assets in Cramér–Lundberg (C.-L.) model with
budget constraint, i.e., without borrowing.
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This paper complements and revises some results of [4]. The parametric singular
initial problem (SIP) for an integro-differential equation (IDE) considered here is a
part of the optimization problem stated and analyzed in [3, 4]: the solution of this
SIP gives the survival probability corresponding to the optimal strategy when the
initial surplus values are small enough. The singular problem under study is also
interesting both as an independent mathematical problem and for the models in risk
theory. We give more complete and rigorous analysis of this problem in comparison
with [4] and add some new “degenerate” problems having independent meaning in
risk theory. Some new numerical results are also discussed.

The paper is organized as follows. In Sect. 2 we set the main mathematical
problem and formulate the main results concerning solvability of this problem and
the solution behavior; we describe also two “degenerate” problems (when some
parameters in the IDE are equal to zero) and discuss their exact solutions. In Sect. 3
we give a rather brief description of the mathematical model for which the problem
in question arises (for detailed history, models’ description and derivation of the
IDE studied here, see [3, 4]). In Sect. 4 we describe our approach to the problem
and give brief proofs of main results (for some assertions, we omit the proofs since
they are given in [4]). In Sect. 5 we study an accompanying singular problem for
capital stock model (the third “degenerate” problem); the results of this section are
completely new. Numerical results and their interpretation are given in Sect. 6.

2 Singular Problems for IDEs and Their Solvability

2.1 Main Problem

The main singular problem under consideration has the form:

(b2/2)u2ϕ ′′(u)+ (au+ c)ϕ ′(u)−λ ϕ(u)

+(λ/m)
∫ u

0
ϕ(u− x)exp(−x/m)dx = 0, 0 < u < ∞, (1)

{| lim
u→+0

ϕ(u)|, | lim
u→+0

ϕ ′(u)|}< ∞, lim
u→+0

[cϕ ′(u)−λ ϕ(u)] = 0, (2)

0≤ ϕ(u)≤ 1, u ∈ R+, (3)

lim
u→∞

ϕ(u) = 1, lim
u→∞

ϕ ′(u) = 0. (4)

Here in general all the parameters a, b, c, λ , m are real positive numbers.
The second limit condition at zero is a corollary of the first one and IDE (1) itself.

For this IDE, conditions (2) imply limu→+0 [u2ϕ ′′(u)] = 0 providing a degeneracy
of the IDE (1) as u→+0: any solution ϕ(u) to the singular problem without initial
data (1), (2) must satisfy IDE (1) up to the singular point u = 0.
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The “truncated” problem (1)–(3) (constrained singular problem) always has the
trivial solution ϕ(u)≡ 0. A nontrivial solution is singled out by the additional limit
conditions at infinity (4).

In what follows we use notation

(Jmϕ)(u) =
1
m

∫ u

0
ϕ(u− x)exp(−x/m)dx =

1
m

∫ u

0
ϕ(s)exp(−(u− s)/m)ds, (5)

where Jm is a Volterra integral operator and Jm : C[0,∞)→ C[0,∞), C[0,∞) is the
linear space of continuous functions defined and bounded on R+.

For IDE (1), the entire singular problem on R+ was neither posed nor studied
before [4] and the present paper.

2.2 Formulation of the Main Results

The problem (1)–(4) may be rewritten in the equivalent parametrized form:

(b2/2)u2ϕ ′′(u)+ (au+ c)ϕ ′(u)−λ [ϕ(u)− (Jmϕ)(u)] = 0, u ∈ R+, (6)

lim
u→+0

ϕ(u) =C0, lim
u→+0

ϕ ′(u) = λC0/c, (7)

0≤ ϕ(u)≤ 1, u ∈ R+, (8)

lim
u→∞

ϕ(u) = 1, lim
u→∞

ϕ ′(u) = 0. (9)

Here C0 is an unknown parameter whose value must be defined.

Lemma 1. For IDE (6), let the values a, b, c, λ , m be fixed with b �= 0, c > 0, λ �= 0,
m > 0, a ∈ R. Then for any fixed C0 ∈ R the IDE SIP (6), (7) is equivalent to the
following singular Cauchy problem (SCP) for ODE:

(b2/2)u2ϕ ′′′(u)+
[
c+(b2+ a)u+ b2u2/(2m)

]
ϕ ′′(u)

+(a−λ + c/m+ au/m)ϕ ′(u) = 0, 0 < u < ∞, (10)

lim
u→+0

ϕ(u) = C0, lim
u→+0

ϕ ′(u) = λC0/c,

lim
u→+0

ϕ ′′(u) = (λ − a− c/m)λC0/c2. (11)

There exists a unique solution ϕ(u,C0) to SCP (10), (11) (therefore also to the
equivalent IDE SIP (6), (7)); for small u, this solution is represented by the
asymptotic power series
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ϕ(u,C0)∼C0

[

1+
λ
c

(

u+
∞

∑
k=2

Dkuk/k

)]

, u∼+0, (12)

where coefficients Dk are independent of C0 and may be found by formal substitution
of series (12) into ODE (10), namely from the recurrence relations

D2 = −[(a−λ )/c+ 1/m], (13)

D3 = −[D2(b
2 + 2a−λ + c/m)+ a/m]/(2c), (14)

Dk = −{Dk−1[(k− 1)(k− 2)b2/2+(k− 1)a−λ+ c/m]

+Dk−2[(k− 3)b2/2+ a]/m}/[c(k− 1)], k = 4,5, . . . . (15)

Theorem 1. For IDE (1), let all the parameters a, b, c, λ , m be fixed positive
numbers and let the inequality

2a/b2 > 1 (16)

be fulfilled. Then the following statements are valid:

1. There exists a unique solution ϕ(u) of the input singular linear IDE problem (1)–
(4) and it is a smooth (infinitely differentiable) monotone nondecreasing on R+

function.
2. The function ϕ(u) can be obtained as the solution ϕ(u,C0) of IDE SIP (6), (7),

namely, by solving the equivalent ODE SCP (10), (11) where the value C0 = C̃0

must be chosen to satisfy conditions at infinity (4) (as the normalizing condition);
for C̃0 defined in this way, the restriction 0 < ϕ(u,C̃0) < 1 is valid for any finite
u ∈ R+, i.e., for ϕ(u) = ϕ(u,C̃0), inequalities (3) are fulfilled tacitly.

3. If the inequality m(a−λ )+ c > 0 is fulfilled, then the solution ϕ(u) is concave
on R+; in particular, this is true when

c−λ m > 0. (17)

4. If the inequality m(a− λ ) + c ≤ 0 is true, then ϕ(u) is convex on a certain
interval [0, û] where û is an inflection point, û > 0.

5. For small u, due to Lemma 1 above, the solution ϕ(u) is represented by
asymptotic power series (12)–(15) where C0 = C̃0, 0 < C̃0 < 1.

6. For large u, the asymptotic representation

ϕ(u) = 1−Ku1−2a/b2
[1+ o(1)], u→ ∞, (18)

takes place with K = C̃0K̃ > 0 where in general the value K̃ > 0 (as well as the
value C̃0) cannot be determined using local analysis methods.
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2.3 The “Degenerate” Problems and Their Exact Solutions

A particular case of IDE (1) is considered “degenerate” when some of its parameters
are equal to zero.

2.3.1 The First “Degenerate” Case: a = b = 0, λ > 0, m > 0,
c > λ m > 0

For this case, the “degenerate” IDE problem

cϕ ′(u) − λ [ϕ(u)− (Jmϕ)(u)] = 0, u ∈ R+, (19)

cϕ ′(0) − λ ϕ(0) = 0, lim
u→∞

ϕ(u) = 1, (20)

is equivalent to the ODE problem with one parameter:

cϕ ′′(u)+ (c/m−λ )ϕ ′(u) = 0, u ∈ R+, (21)

ϕ(0) =C0, ϕ ′(0) = λC0/c, lim
u→∞

ϕ(u) = 1. (22)

Then we obtain C0 = C̃0 = 1−λ m/c, 0 < C̃0 < 1, and

ϕ(u) = ϕ(u,C̃0) = 1− λ m
c

exp

(
−c−λ m

mc
u

)
, u ∈ R+. (23)

If inequality (17) is not valid, i.e., c≤ λ m, then there is no solution to problem (19),
(20) [resp., to problem (21), (22)].

In what follows, function (23) is well known in classical C.-L. risk theory and
has an independent meaning (see further Sect. 3.1).

2.3.2 The Second “Degenerate” Case: b = 0, a > 0, c≥ 0, λ > 0, m > 0

For c > 0, the “degenerate” IDE problem

(au+ c)ϕ ′(u)−λ [ϕ(u)− (Jmϕ)(u)] = 0, u ∈ R+,

cϕ ′(0)−λ ϕ(0) = 0, limu→∞ ϕ(u) = 1,
(24)
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is equivalent to the parametrized ODE problem:

(au+ c)ϕ ′′(u)+ (a−λ + c/m+ au/m)ϕ ′(u) = 0, u ∈ R+,

ϕ(0) =C0, ϕ ′(0) = λC0/c, lim
u→∞

ϕ(u) = 1. (25)

This implies C0 = C̃0 = (a/λ )(c/a)λ/a
[
(a/λ )(c/a)λ/a+ Ic(0)

]−1
, 0 < C̃0 < 1,

ϕ(u) = ϕ(u,C̃0) = 1− Ic(u)
[
Ic(0)+ (a/λ )(c/a)λ/a

]−1
, u ∈ R+, (26)

where, taking into account the notation Γ(p,z) =
∫ ∞

z xp−1 exp(−x)dx, p > 0, for
incomplete gamma-function (see, e.g., [2]), we have

Ic(u) =
∫ ∞

u
(x+ c/a)λ/a−1 exp(−x/m)dx

= mλ/a exp
(

c/(am)
)

Γ
(

λ/a, u/m+ c/(am)
)
, u≥ 0. (27)

In particular we obtain the asymptotic representation when u→ ∞:

ϕ(u) = 1−m
[
(a/λ )(c/a)λ/a+ Ic(0)

]−1
uλ/a−1 exp(−u/m)[1+ o(1)]. (28)

For c = 0, the solution to the IDE problem on R+,

uϕ ′(u)− (λ/a)[ϕ(u)− (Jmϕ)(u)] = 0, lim
u→+0

ϕ(u) = 0, lim
u→∞

ϕ(u) = 1, (29)

can be found as a solution to the equivalent ODE problem:

u2ϕ ′′(u)+ (1−λ/a+ u/m)uϕ ′(u) = 0, u ∈ R+,

lim
u→+0

ϕ(u) = lim
u→+0

[uϕ ′(u)] = 0, lim
u→∞

ϕ(u) = 1. (30)

This implies the same formulas (26)–(28) with c = 0 where Γ(p) = Γ(p,0) is the
usual Euler gamma-function. In particular, using the formula

ϕ ′(u) = [mλ/aΓ(λ/a)]−1uλ/a−1 exp(−u/m), u≥ 0,

we obtain here: if a < λ then ϕ ′(0) = 0; if a = λ then ϕ ′(0) = 1/m and ϕ(u) =
1− exp(−u/m); if a > λ then the function ϕ ′(u) is unbounded as u → +0 but
integrable on R+.

This “degenerate” case has an independent meaning in risk theory (see further
Sect. 3.2).
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3 Origin of the Problem: The Cramér–Lundberg Dynamic
Insurance Models

3.1 The Classical C.-L. Insurance Model

Consider the classical risk process: Rt = u+ct−
Nt

∑
k=1

Zk, t ≥ 0. Here Rt is the surplus

of an insurance company at time t, u is the initial surplus, c is the premium rate;
{Nt} is a Poisson process with parameter λ defining, for each t, the number of
claims applied on the interval (0, t]; Z1,Z2, . . . is the series of independent identically
distributed random values with some distribution F(z) (F(0) = 0, EZ1 = m < ∞),
describing the sequence of claims; these random values are also assumed to be
independent of the process {Nt}. For this model, the positiveness condition for the
net expected income (“safety loading”) has the form (17).

Denote by τ = inf{t : Rt < 0} the time of ruin, then P(τ < ∞) is the probability
of ruin at the infinite time interval.

A classical result in the C.-L. risk theory [8]: under condition (17) and
assuming existence of a constant RL > 0 (“the Lundberg coefficient”) such that
equality

∫ ∞
0 [1−F(x)]exp(RLx)dx = c/λ > 0 holds, the probability of ruin ξ (u) as a

function of the initial surplus admits the estimate ξ (u) = P(τ < ∞)≤ exp(−RLu),
u≥ 0. Moreover, if the claims are exponentially distributed,

F(x) = 1− exp(−x/m), m > 0, x≥ 0, (31)

then RL = (c− λ m)/(mc) > 0, and the survival probability ϕ(u) = 1− ξ (u) is
given by the exact formula (23), i.e., coincides with the exact solution of the first
“degenerate” problem to which input singular problem (1)–(4) reduces formally as
a = b = 0 (see Sect. 2.3.1).

For c as a bifurcation parameter, the value c = λ m is critical: if c ≤ λ m then
ϕ(u)≡ 0, u ∈ R+.

3.2 The C.-L. Insurance Model with Investment
into Risky Assets

Now consider the case where the surplus is invested continuously into shares with
price dynamics described by geometric Brownian motion model:

dSt = St(adt + bdwt), t ≥ 0. (32)

Here St is the share price at time t, a is the expected return on shares, 0 < b is the
volatility, {wt} is a standard Wiener process.
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Denoting by Xt the company’s surplus at time t we get Xt = θt St , where θt is
the amount of shares in the portfolio. Then the surplus dynamics meets the relation
dXt = θt dSt + dRt . Taking into account (32), we obtain:

dXt = aXtdt + bXtdwt + dRt , t ≥ 0. (33)

In contrast with the classical model, condition (17) (the positiveness of “safety
loading”) is not assumed here.

For the dynamical process (33), the survival probability ϕ(u) satisfies on R+ the
following linear IDE (see, e.g., [3, 7] and references therein):

λ
∫ u

0
ϕ(u− z)dF(z)−λ ϕ(u)+ (au+ c)ϕ ′(u)+ (b2/2)u2ϕ ′′(u) = 0. (34)

From (34), assuming exponential distribution of claims (31) we get the initial IDE
(1) under study.

Assuming that there exists the solution ϕ(u) of IDE (1) representing the survival
probability as a function of initial surplus, the following statement (further called
FKP-theorem) was obtained in [7].

Theorem 2. Suppose b > 0 and the claims are distributed exponentially, i.e., (31)
is valid. Then:

1. If inequality (16) of “robustness of shares” is fulfilled, then the asymptotic
representation (18) holds with a certain constant K > 0.

2. If 2a/b2 < 1, then ϕ(u)≡ 0, u ∈ R+.

3.3 The C.-L. Model with Investment into a Risk-Free Asset

The model under study comprises a more general case where only a constant part
α (0 < α < 1) of the surplus is invested in shares (with the expected return μ and
volatility σ ) whereas remaining part 1−α is invested into a risk free asset (bank
deposit with constant interest rate r > 0): the case 0 < α < 1 may be reduced to the
case α = 1 by a simple change of the parameters (shares characteristics), namely
a = αμ +(1−α)r, b = ασ .

Moreover, when the surplus is invested entirely into a risk free asset (bank deposit
with constant interest rate), we obtain the second “degenerate” problem (with or
without premiums) to which the input singular problem (1)–(4) reduces formally as
b = 0. For a > 0, λ > 0, m > 0, c≥ 0, there exists the exact solution (26), (27) and
the asymptotic representation (28) is valid (for details, see Sect. 2.3.2).

Thus when the surplus is entirely invested into a risk free asset then the survival
probability is not equal to zero, for u > 0, even if premiums (insurance payments)
are absent (c = 0) and has a good asymptotic behavior as u→ ∞.

As far as we know formulas (26)–(28) are new for risk theory.
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4 On the Approach to Main Problem and Proofs of Main
Results

4.1 The Singular Problem for IDE: Uniqueness of the Solution
and Its Monotonic Behavior

As shown in Sect. 3, we can formulate the input singular IDE problem in the form
(6), (7), (9), where operator Jm is defined by (5), C0 is an unknown parameter whose
value must be found, and, for the solution to the problem (6), (7), (9), the restrictions
needed are (8).

Lemma 2. For IDE (6), let the values a, b, c, λ and m be fixed with c > 0, λ >
0, m > 0 whereas a and b are any real numbers (a,b ∈ R). Then the following
assertions are valid:

1. If there exists a solution ϕ1(u) = ϕ1(u,C0) to problem (6), (7), (9) with some
C0 > 0, then it is a unique solution to this problem.

2. Such ϕ1(u) satisfies restrictions (8), 0 < C0 < 1 and ϕ ′1(u) > 0 for any finite
u ∈ R+, i.e., ϕ1(u) is a monotone nondecreasing on R+ function.

Proof.

1. Supposing the opposite, let ϕ2(u) be any other solution to problem (6), (7), (9),
i.e., ϕ2(u) �≡ϕ1(u). Then two cases may occur: the first one with limu→+0 ϕ2(u)=
limu→+0 ϕ1(u) and the second one with limu→+0 ϕ2(u) �= limu→+0 ϕ1(u).

For the first case, it follows that there exists a nontrivial solution ϕ̃(u) of
IDE (6) satisfying conditions limu→+0 ϕ̃(u) = limu→∞ ϕ̃(u) = 0. Let 0 < ũ be
its maximum point: ϕ̃(ũ) = maxu∈[0,∞) ϕ̃(u)> 0 (if ϕ̃(u) takes only nonpositive
values, then we consider the solution−ϕ̃(u) instead). Then ϕ̃ ′(ũ) = 0, ϕ̃ ′′(ũ)≤
0. But from IDE (6) a contradiction follows:

(b2/2)ũ2ϕ̃ ′′(ũ) = λ [ϕ̃(ũ)−m−1
∫ ũ

0
ϕ̃(s)exp

(
− (ũ− s)/m

)
ds]

≥ λ ϕ̃(ũ)
[

1−m−1
∫ ũ

0
exp

(
− (ũ− s)/m

)
ds

]

= λ ϕ̃(ũ)exp(−ũ/m)> 0. (35)

For the second case, there exists a linear combination of solutions ϕ̂(u) =
c1ϕ1(u)+ c2ϕ2(u) such that ϕ̂(u) �≡ 1 and satisfies conditions limu→+0 ϕ̂(u) =
limu→∞ ϕ̂(u) = 1. If there exists a value û > 0 with ϕ̂(û)> 1, then the first case
argument is valid. Otherwise, the inequality ϕ̂(u) ≤ 1 ∀u ∈ R+ contradicts to
limu→+0 ϕ̂ ′(u) = λ/c > 0 which follows from (7).

2. The other assertions are proved analogously. �	
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4.2 SCPs for Accompanying Linear ODEs

4.2.1 Reduction of the Second-Order IDE to a Third-Order ODE

The known possibility of reducing the second-order IDE (6) to a third-order ODE is
important for further exposition. First, we note that

(Jmϕ)′(u) =
1
m

(
exp(−u/m)

∫ u

0
ϕ(x)exp(x/m)dx

)′

= [ϕ(u)− (Jmϕ)(u)]/m. (36)

Then differentiating IDE (6) in view of (36) gives a linear third-order IDE

(b2/2)u2ϕ ′′′(u)+ [(b2 + a)u+ c]ϕ ′′(u)+ (a−λ )ϕ ′(u)

+(λ/m)[ϕ(u)− (Jmϕ)(u)] = 0, u ∈R+, (37)

which also implies the limit condition

lim
u→+0

[cϕ ′′(u)+ (a−λ )ϕ ′(u)+ (λ/m)ϕ(u)] = 0. (38)

Together with the input limit condition (2), it implies the limit equality

lim
u→+0

[cϕ ′′(u)+ (a−λ + c/m)ϕ ′(u)] = 0. (39)

In order to remove the integral term, we add IDE (37) and initial IDE (6) multiplied
by 1/m and get the linear third-order ODE (10). Then the same limit condition (39)
must be fulfilled to provide a degeneration of this ODE as u→+0.

Suppose ψ(u) = ϕ ′(u) and rewrite ODE (10) in more canonical forms for
ODEs with pole-type singularities at zero and infinity (for classification of isolated
singularities of linear ODE systems and general theory of ODEs of this class, see,
e.g., the monographs [5, 6, 10] complementing each other). Now, for ψ(u), we have
to study the following singular ODEs: for small u, we need to consider the equation

(b2/2)u3ψ ′′(u)+
[
c+(b2+ a)u+ b2u2/(2m)

]
uψ ′(u)

+
[
(a−λ + c/m)u+ au2/m

]
ψ(u) = 0, u > 0, (40)

and for large u, we shall consider the same equation in the form

(b2/2)ψ ′′(u)+
[
c/u2 +(b2 + a)/u+ b2/(2m)

]
ψ ′(u)

+
[
(a−λ + c/m)/u2+(a/m)/u

]
ψ(u) = 0, u > 0. (41)

We see that both ODE (40) and equivalent ODE (41) have irregular (strong)
singularities of rank 1 as u→+0 and as u→ ∞.
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4.2.2 Singularity at Zero: Replacement of the SIP for IDE by an
Equivalent SCP for ODE

Proof of Lemma 1

First, we must show that the previous transformations permit us to replace the input
SIP (6), (7) for an IDE by the SCP (10), (11) for an ODE.

In the straight direction (from the IDE SIP to the ODE SCP), the statement is
evident. Now let ϕ̃(u) = ϕ̃(u,C0) be a solution of ODE SCP (10), (11). We have to
prove that ϕ̃(u) satisfies IDE (6).

Denote the left part of IDE (6) with the function ϕ̃(u) by g(u). We have to prove
that g(u) ≡ 0. Indeed, the way ODE (10) was derived means that g(u) meets the
first-order ODE

g′(u)+ g(u)/m = 0, 0≤ u < ∞,

with the general solution of the form g(u) = C̃ exp(−u/m) where C̃ is an arbitrary
constant. Since ϕ̃(u,C0) meets conditions (11), it follows from IDE (6) that g(0) =
0. This implies C̃ = 0, i.e., g(u)≡ 0.

The other statements of Lemma 1 follow from the results of [9] (see [4] for
details).

4.2.3 SCP at Infinity and Its Two-Parameter Family of Solutions

For ψ(u) = ϕ ′(u), we have an SCP at infinity for the second-order ODE (41) with
the conditions

lim
u→∞

ψ(u) = lim
u→∞

ψ ′(u) = 0. (42)

Using the known results for linear ODEs with irregular singularities, we obtain the
following assertions (more complete in comparison with FKP-theorem).

Lemma 3. For ODE (41), suppose that b �= 0, a > 0, m > 0 whereas λ and c are
arbitrary real numbers (λ ,c ∈ R). Then:

1. Any solution to ODE (41) satisfies conditions (42) so that SCP (41), (42) at
infinity has a two-parameter family of solutions ψ(u,d1,d2) where d1 and d2

are arbitrary constants.
2. For this family, the following representation holds:

ψ(u,d1,d2) = d1u−2a/b2
[1+ χ1(u)/u]

+d2u−2 exp(−u/m)[1+ χ2(u)/u)]; (43)
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here the functions χ j(u) have finite limits as u → ∞ and, for large u, can be
represented by asymptotic series in inverse integer powers of u,

χ j(u)∼
∞

∑
k=0

χ (k)
j /uk, j = 1,2, (44)

where the coefficients χ (k)
j may be found by substitution of (43), (44) in ODE

(41) ( j = 1,2, k≥ 0).
3. All solutions of the family (43) are integrable at infinity iff inequality (16) is

fulfilled.

For a detailed proof of Lemma 3, see [4].

Corollary 1. Under the assumptions of Lemma 3, all solutions of ODE (10) have
finite limits as u→ ∞ iff condition (16) is fulfilled.

Summarizing all results, we obtain the proof of Theorem 1.

5 The Accompanying Singular Problem for Capital Stock
Model (The Third “Degenerate” Case: c = 0, b �= 0, a > 0,
λ > 0, m > 0)

For this case, the input singular IDE problem has the form:

(b2/2)u2ϕ ′′(u)+ auϕ ′(u)−λ [ϕ(u)− (Jmϕ)(u)] = 0, u ∈ R+, (45)

lim
u→+0

ϕ(u) = lim
u→+0

[uϕ ′(u)] = 0, (46)

lim
u→∞

ϕ(u) = 1, lim
u→∞

ϕ ′(u) = 0, (47)

and restrictions (3) are needed for the solution.
The following lemma is analogous to Lemma 2 (with a similar proof).

Lemma 4. For IDE (45), let the values a, b, λ , and m be fixed with λ > 0, m > 0
whereas a and b are any real numbers (a,b ∈ R). Then the following assertions are
valid:

1. If there exists a solution ϕ1(u) to the problem (45)–(47), then it is a unique
solution to this problem.

2. Such ϕ1(u) satisfies restrictions (3) and ϕ ′1(u)> 0 for any finite u > 0, i.e., ϕ1(u)
is a monotone nondecreasing on R+ function.

Analogously to the previous approach, the singular IDE problem (45)–(47) is
equivalent to the following singular ODE problem:
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(b2/2)u3ϕ ′′′(u)+
[
b2 + a+ b2u/(2m)

]
u2ϕ ′′(u)

+(a−λ + au/m)uϕ ′(u) = 0, 0 < u < ∞, (48)

lim
u→+0

ϕ(u) = lim
u→+0

[uϕ ′(u)] = lim
u→+0

[u2ϕ ′′(u)] = 0, (49)

lim
u→∞

ϕ(u) = 1, lim
u→∞

ϕ ′(u) = lim
u→∞

ϕ ′′(u) = 0. (50)

First, consider SCP at regular (weak) singular point u = 0, i.e., SCP (48), (49)
introducing notation

μ1 = 1/2− a/b2+
√
(1/2− a/b2)2 + 2λ/b2, (51)

d1 = μ1 + a/b2, d2 = μ1 + 2a/b2− 1. (52)

The following lemma is analogous to Lemma 1.

Lemma 5. For IDE (45), let the values a, b, λ , m be fixed with b �= 0, λ > 0, m > 0,
a ∈ R. Then:

1. The IDE SIP (45), (46) is equivalent to the ODE SCP (48), (49).
2. There exists a one-parameter family of solutions ϕ(u,P1) to the ODE SCP (48),

(49) (therefore also to the equivalent IDE SIP (45), (46)) and the following
representation holds:

ϕ(u,P1) = P1

∫ u

0
sμ1−1η(s)ds; (53)

here P1 is a parameter, 0 < μ1 is defined by (51), and η(u) is a solution to SCP

u2η ′′(u)+ (2d1+ u/m)uη ′(u)+ (d2u/m)η(u) = 0, u > 0, (54)

lim
u→+0

η(u) = 1, lim
u→+0

[uη ′(u)] = 0, (55)

where d1 and d2 are defined by (52); there exists a unique solution η(u) to the
SCP (54), (55) and it is a holomorphic function at the point u = 0,

η(u) = 1+
∞

∑
k=1

Pk+1uk, |u| ≤ u0, u0 > 0, (56)

where the coefficients Pk+1 may be found by formal substitution of series (56)
into ODE (54), namely, from the recurrence relations:

P2 = −d2/(2md1), (57)

Pk+1 = −Pk(k− 1+ d2)/[mk(k− 1+ 2d1)], k = 2,3, . . . ; (58)

moreover, if D1 = limu→+0 ϕ ′(u,P1), then D1 = 0 when a < λ ; D1 = P1 when
a = λ ; and at last |D1|= ∞ when a > λ (but ϕ ′(u,P1) is integrable as u→+0).
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Summarizing the results and taking into account that Lemma 3 and Corollary 1
are valid for any c ∈ R, we obtain

Theorem 3. For IDE (45), let all the parameters a, b, λ , m be fixed positive
numbers and let inequality (16) of “robustness of shares” be fulfilled. Then the
following assertions are valid:

1. There exists a unique solution ϕ(u) of singular linear IDE problem (45)–(47);
it satisfies restrictions (3) and, for u > 0, is a smooth monotone nondecreasing
function.

2. Such ϕ(u) can be obtained by the formula

ϕ(u) =
∫ u

0
sμ1−1η(s)ds

/∫ ∞

0
sμ1−1η(s)ds, u≥ 0, (59)

where η(u) is defined in Lemma 5.
3. For finite u > 0, the solution ϕ(u) is represented by a convergent series which

can be obtained using formulas (59), (56)–(58).
4. If a > λ , then the solution ϕ(u) is concave on R+ with limu→+0 ϕ ′(u) = ∞ but

ϕ ′(u) is an integrable on R+ function.
5. If a ≤ λ , then ϕ(u) is convex on a certain interval [0, û] where û is an inflection

point, û > 0; moreover if a < λ , then limu→+0 ϕ ′(u) = 0 whereas if a = λ , then
limu→+0 ϕ ′(u) = 1/

∫∞
0 η(s)ds > 0.

6. For large u, the asymptotic representation (18) holds with K > 0 where in general
the value K > 0 cannot be determined using local analysis methods.

6 Numerical Examples and Their Interpretation

For the main case c > 0, our study shows that the input singular IDE problem (1)–
(4) may be reduced to the auxiliary ODE SCP (10), (11) with the parameter C0 to be
defined, 0 <C0 < 1. The asymptotic expansion of the solutions at zero (12) is used
to transfer the limit initial conditions (11) from the singular point u = 0 to a nearby
regular point u0 > 0; the derivatives of the solution may be evaluated by formal
differentiation of the representation (12). Consequently, a regular Cauchy problem
is to be solved starting from the point u0 > 0. The parameter C0 in (12) is evaluated
numerically to satisfy the condition limu→∞ ϕ(u) = 1.

For the additional case c = 0, the singular IDE problem (45)–(47) is equivalent
to the singular ODE problem (48)–(50). To solve this problem we use formula (59)
and the auxiliary SCP (54), (55). The convergent power series (56)–(58) is used to
transfer limit initial conditions (55) from the singular point u = 0 to a regular point
u0 > 0, and then a regular Cauchy problem is to be solved starting from this point.

Maple programming package was used as a numerical tool.
For all examples, we put m = 1, λ = 0.09, and for a > 0, b �= 0, the shares are

“robust”: 2a/b2 > 1 (Figs. 1–5).
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Fig. 1 The case c > λ m : c = 0.1; I: a = b = 0 (the first “degenerate” case with the exact
solution); C0 = ϕ(0) = 0.1, D1 = ϕ ′(+0) = 0.09; II: a = 0.02, b = 0.1; C0 = 0.295, D1 = 0.265
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Fig. 2 The case c < λ m : c = 0.02, b = 0.1; I: a = 0.02 (m(λ −a)> c: ϕ(u) has an inflection);
C0 = 0.00527, D1 = 0.0237; II: a = 0.1 (m(λ −a)< c: ϕ(u) is concave); C0 = 0.194, D1 = 0.872
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Fig. 3 The second “degenerate” case with premiums: b = 0, c = 0.02 (c < λ m); I: a = 0.02
(m(λ −a)> c); C0 = 0.00704, D1 = 0.0317; II: a = 0.1 (m(λ −a)< c); C0 = 0.2046, D1 =
0.9207
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Fig. 4 The second “degenerate” case without premiums: b = 0, c = 0; I: a = 0.02 (λ > a);
ϕ(0) = ϕ ′(0) = 0; II: a = 0.1 (λ < a); ϕ(0) = 0, ϕ ′(+0) = ∞
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Fig. 5 The third “degenerate” case (the capital stock model): c = 0, b = 0.1; I: a = 0.02 (λ > a);
ϕ(0) = ϕ ′(0) = 0, P1 = 0.059587; II: a = 0.1 (λ < a); ϕ(0) = 0, ϕ ′(+0) = ∞, P1 = 0.861816

7 Conclusions

The study shows that use of risky assets is not favorable for non-ruin with large
initial surplus values and constant structure of the portfolio. However, the study
of the cases when positiveness of the safety loading does not hold shows risky
assets to be effective for small initial surplus values: while ruin is inevitable in
the case without investing, the survival probability grows considerably as u grows
in presence of investing even if the premiums are absent (moreover, the second
derivative of the solution for small u is positive!). The study in [3, 4] of the
optimal strategy for exponential distribution of claims shows that the part of risky
investments should be O(1/x) as present surplus x tends to infinity.

Acknowledgements This work was supported by the Russian Fund for Basic Research: Grants
RFBR 10-01-00767 and RFBR 11-01-00219.

References

1. Azcue, P., Muler, N.: Optimal investment strategy to minimize the ruin probability of an
insurance company under borrowing constraints. Insur. Math. Econ. 44(1), 26–34 (2009)
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Oscillatory Properties of Solutions
of Generalized Emden–Fowler Equations

R. Koplatadze

Abstract This work deals with the study of oscillatory properties of solutions of
the equation

u(n)(t)+ p(t)
∣∣u(σ(t))

∣∣μ(t) signu(σ(t)) = 0,

where p ∈ Lloc(R+;R−), μ ∈ C(R+;(0,+∞)), σ ∈ C(R+;R+), and σ(t) ≥ t for
t ∈ R+. In this chapter, new sufficient (necessary and sufficient) conditions for
essentially nonlinear functional differential equations to have Property B are
established.

Keywords Oscillation • Functional differential equations • Property B

1 Introduction

The work with study of oscillatory properties of solutions of a differential equation
of the form

u(n)(t)+ p(t)
∣
∣u(σ(t))

∣
∣μ(t) signu(σ(t)) = 0, (1)

where

p ∈ Lloc(R+;R−), μ ∈C(R+;(0,+∞)), (2)

σ ∈C(R+;R+), and σ(t)≥ t for t ∈ R+. (3)
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Let t0 ∈ R+. A function u : [t0,+∞)→ R is said to be a proper solution of Eq. (1),
if it is locally absolutely continuous along with its derivatives up to the order n− 1
inclusive, sup{|u(s)| : s≥ t}> 0 for t ≥ t0 and it satisfies Eq. (1) almost everywhere
on [t0,+∞).

A proper solution u : [t0,+∞)→ R of the Eq. (1) is said to be oscillatory if it
has a sequence of zeros tending to +∞. Otherwise the solution u is said to be
nonoscillatory.

Definition 1.1. We say that the Eq. (1) has Property B if any of its proper solutions
is oscillatory or satisfies either

∣
∣u(i)(t)

∣
∣ ↓ 0, for t ↑+∞ (i = 0, . . . ,n− 1) (4)

or
∣∣u(i)(t)

∣∣ ↑+∞, for t ↑+∞ (i = 0, . . . ,n− 1), (5)

when n is even and either is oscillatory or satisfies (5), when n is odd.

In the case lim
t→+∞

μ(t) = 1, we call the differential equation (1) “almost linear,”

while liminf
t→+∞

μ(t) �= 1 or limsup
t→+∞

μ(t) �= 1, then we call Eq. (1) essentially nonlinear

generalized Emden–Fowler-type differential equation.
Oscillatory properties of “almost linear” equations are studied well enough in

[1,3–5,7]. In this chapter, essentially nonlinear differential equations of the type (1)
are considered with one of the following conditions being satisfied:

μ(t)≤ λ for t ∈ R+ (λ ∈ (0,1)) (6)

or

μ(t)≥ λ for t ∈ R+ (λ ∈ (0,1)). (7)

In the present chapter, under conditions (6) and (7), sufficient (necessary and
sufficient) conditions are established for the Eq. (1) to have Property B. Analogous
results for Emden–Fowler equations are given in the paper [6].

2 Some Auxiliary Lemmas

In the sequel, C̃loc([t0,+∞)) will denote the set of all functions u : [t0,+∞) →
R absolutely continuous on any finite subinterval of [t0,+∞) along with their
derivatives of order up to and including n− 1.

Lemma 2.1 ([2]). Let u ∈ C̃n−1
loc ([t0,+∞)), u(t) > 0, u(n)(t) ≥ 0 for t ≥ t0, and

u(n)(t) �≡ 0 in any neighborhood of +∞. Then there exist t1 ≥ t0 and � ∈ {0, . . . ,n}
such that l + n is even and
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u(i)(t)> 0 for t ≥ t1 (i = 0, . . . , �− 1),

(−1)i+�u(i)(t)≥ 0 for t ≥ t1 (i = �, . . . ,n).
(8�)

Remark 2.1. If n is even and � = 0, then in (80) it is meant that only the second
inequalities are fulfilled.

Lemma 2.2 ([2]). Let u ∈ C̃n−1
loc ([t0,+∞)) and (8�) be fulfilled for some � ∈

{1, . . . ,n− 2} with l+ n even. Then

∫ +∞

t0
tn−�−1u(n)(t)dt <+∞. (9)

If, moreover,
∫ +∞

t0
tn−�u(n)(t)dt =+∞, (10)

then there exists t∗ > t0 such that

u(i)(t)
t�−i ↓, u(i)(t)

t�−i−1 ↑ (i = 0, . . . , �− 1), (11i)

u(t)≥ t�−1

�!
u(�−1)(t) for t ≥ t∗, (12)

and

u(�−1)(t)≥ t
(n− �)!

∫ +∞

t
sn−�−1

∣
∣u(n)(s)

∣
∣ds+

+
1

(n− �)!

∫ t

t∗
sn−�∣∣u(n)(s)

∣
∣ds for t ≥ t∗. (13)

3 Necessary Conditions for the Existence of Solutions
of Type (8�)

Definition 3.1. Let t0 ∈ R+. By U�,t0 we denote the set of all proper solutions of the
equation (1) satisfying the condition (8�).

Theorem 3.1. Let the conditions (2), (3), and (6) be fulfilled, � ∈
{1, . . . ,n− 1} with �+ n even, and let

∫ +∞

0
tn−�(σ(t))(�−1)μ(t)|p(t)|dt =+∞, (14�)

∫ +∞

0
tn−�−1(σ(t))�μ(t)|p(t)|dt =+∞. (15�)
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If, moreover, U�,t0 �= ∅ for some t0 ∈ R+, then for any k ∈ N and δ ∈ [0,λ ], and
σ∗ ∈C([t0,+∞)) such that

t ≤ σ∗(t)≤ σ(t) for t ≥ t0, (16)

we have
∫ +∞

0
tn−�−1+λ−δ(σ∗(t))μ(t)−λ (σ(t))(�−1)μ(t)(ρ�,k(σ∗(t))

)δ
dt <+∞, (17)

where

ρ�,1(t) =

(
1−λ

�!(n− 1)!

∫ t

0

∫ +∞

s
ξ n−�−1+μ(ξ )−λ(σ(ξ ))(�−1)μ(ξ )

×|p(ξ )|dξ ds

) 1
1−λ

, (18�)

ρ�,i(t) =
1

�!(n− �)!

∫ t

0

∫ +∞

s
ξ n−�−1(σ(ξ ))(�−1)μ(ξ )

×
(
ρ�,i−1(σ(ξ ))

)μ(ξ )|p(ξ )|dξ ds (i = 2, . . . ,k). (19�)

Proof. Let t0 ∈ R+, � ∈ {1, . . . ,n− 1} and U�,t0 �= ∅. By definition of the set U�,t0 ,
the Eq. (1) has a proper solution u ∈ U�,t0 satisfying the condition (8�). By Eqs. (1),
(8�), and (14�), it is clear that the condition (10) holds. Thus by Lemma 2.2 the
conditions (11i)–(13) are fulfilled and

u(�−1)(t)≥ t
(n− �)!

∫ +∞

t
sn−�−1(u(σ(s))

)μ(s)|p(s)|ds

+
1

(n− �)!

∫ t

t∗
sn−�(u(σ(s))

)μ(s)|p(s)|ds for t ≥ t∗. (20)

By (12) from (20), we get

u(�−1)(t)≥ t
(n− �)!

∫ +∞

t
sn−�−1(u(σ(s))

)μ(s)|p(s)|ds

− 1
(n− �)!

∫ t

t∗
sd
∫ +∞

s
ξ n−�−1(u(σ(ξ ))

)μ(ξ )|p(ξ )|dξ

≥ 1
(n− �)!

∫ t

t∗

∫ +∞

s
ξ n−�−1(u(σ(ξ ))

)μ(ξ )|p(ξ )|dξ ds

≥ 1
�!(n− �)!

∫ t

t∗

∫ +∞

s
ξ n−�−1(σ(ξ ))(�−1)μ(ξ )

×
(
u(�−1)(σ(ξ ))

)μ(ξ )|p(ξ )|dξ ds. (21)
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Therefore, by Eqs. (3) and (11�−1), from (21) we have

u(�−1)(t)≥ 1
�!(n− �)!

∫ t

t∗

∫ +∞

s
ξ n−�−1+μ(ξ )(σ(ξ ))(�−1)μ(ξ )

×
(

u(�−1)(ξ )
ξ

)μ(ξ )
|p(ξ )|dξ ds for t ≥ t∗. (22)

On the other hand, by Eqs. (11�−1) and (15�) it is obvious that

u�−1(t)
t

↓ 0 for t ↑+∞. (23)

According to (23), without loss of generality, we can assume that u(�−1)(t)/t ≤ 1 for
t ≥ t∗. Since 0 < μ(t)≤ λ < 1, from (22) we have

u(�−1)(t) ≥ 1
�!(n− �)!

∫ t

t∗

∫ +∞

s
ξ n−�−1−λ+μ(ξ )(σ(ξ ))(�−1)μ(ξ )

×
(
u(�−1)(ξ )

)λ |p(ξ )|dξ ds. (24)

By (2.4�−1), it is obvious that

x′(t)≥ (u(�−1)(t))λ

�!(n− �)!

∫ +∞

t
ξ n−�−1−λ+μ(ξ )(σ(ξ ))(�−1)μ(ξ )|p(ξ )|dξ , (25)

where

x(t) =
1

�!(n− �)!

∫ t

t∗

∫ +∞

s
ξ n−�−1−λ+μ(ξ )(σ(ξ ))(�−1)μ(ξ )

×
(
u(�−1)(ξ )

)λ |p(ξ )|dξ ds. (26)

Thus, according to Eqs. (24) and (26), from (25) we get

x′(t)≥ xλ (t)
�!(n− �)!

∫ +∞

t
ξ n−�−1−λ+μ(ξ )(σ(ξ ))(�−1)μ(ξ )|p(ξ )|dξ for t ≥ t∗.

Therefore,

x(t)≥
(

1−λ
�!(n− �)!

∫ t

t∗

∫ +∞

s
ξ n−�−1−λ+μ(ξ )(σ(ξ ))(�−1)μ(ξ )|p(ξ )|dξ ds

) 1
1−λ

for t ≥ t∗.

Hence, according to Eqs. (24) and (26), we have

u(�−1)(t)≥ ρt∗,�,1(t) for t ≥ t∗, (27)
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where

ρt∗,�,1(t) =

(
1−λ

�!(n− �)!

∫ t

t∗

∫ +∞

s
ξ n−�−1−λ+μ(ξ )(σ(ξ ))(�−1)μ(ξ )

×|p(ξ )|dξ ds

) 1
1−λ

. (28)

Thus by Eqs. (20), (26), and (27), we get

u(�−1)(t)≥ ρt∗,�,k(t) for t ≥ t∗, (29)

where

ρt∗,�,k(t) =
1

�!(n− �)!

∫ t

t∗

∫ +∞

s
ξ n−�−1(σ(ξ ))(�−1)μ(ξ )

×
(
ρt∗,�,k−1(σ(ξ ))

)μ(ξ )|p(ξ )|dξ ds (k = 2,3, . . .). (30)

On the other hand, by Eqs. (3), (8�), (12), and (16) from (20), we have

u(�−1)(t)≥ t
�!(n−�)!

∫ +∞

t
sn−�−1(σ(s))(�−1)μ(s)(u(�−1)(σ(s))

)μ(s)|p(s)|ds

≥ t
�!(n−�)!

∫ +∞

t
sn−�−1(σ(s))(�−1)μ(s)(u(�−1)(σ∗(s))

)μ(s)|p(s)|ds

=
t

�!(n− �)!

∫ +∞

t
sn−�−1(σ(s))(�−1)μ(s)(σ∗(s))μ(s)

×
(

u(�−1)(σ∗(s))
σ∗(s)

)μ(s)
|p(s)|ds.

By Eqs. (11�−1) and (16), for any δ ∈ [0,λ ],

u(�−1)(t)≥ t
�!(n− �)!

∫ +∞

t
sn−�−1(σ(s))(�−1)μ(s)(σ∗(s))μ(s)−λ

×
(
u(�−1)(σ∗(s))

)δ (
u�−1)(s)

)λ−δ |p(s)|ds.

Therefore, according to (29), we have

u(�−1)(t)≥ t
�!(n− �)!

∫ +∞

t
sn−�−1(σ(s))(�−1)μ(s)(σ∗(s))μ(s)−λ×

×
(
ρt∗,�,k(σ∗(s)

)δ (
u(�−1)(s)

)λ−δ |p(s)|ds (31)

for t ≥ t∗ (k = 1,2, . . .).
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If δ = λ , then from (31)

∫ +∞

t∗
sn−�−1(σ(s))(�−1)μ(s)(σ∗(s))μ(s)−λ (ρt∗,�,k(σ∗(s))

)λ |p(s)|ds

≤ �!(n− �)!
u(�−1)(t∗)

t∗
≤ �!(n− �)!. (32)

Let δ ∈ [0,λ ). Then from (31)

(
u(�−1)(t)

)λ−δ ≥ tλ−δ

(�!(n−�)!)λ−δ

(∫ +∞

t
sn−�−1(σ(s))(�−1)μ(s)(σ∗(s))μ(s)−λ

×
(
ρt∗,�,k(σ∗(s)

)δ (
u�−1)(s)

)λ−δ |p(s)|ds

)λ−δ

for t ≥ t∗ (k = 1,2, . . .).

Thus we have

ϕ(t)
(∫ +∞

t ϕ(s)ds
)λ−δ ≥

1

(�!(n−�)!)λ−δ tn−�−1+λ−δ(σ(t))(�−1)μ(t)(σ∗(t))μ(t)−λ

×
(
ρt∗,�,k(σ∗(t)

)δ |p(t)| for t ≥ t∗ (k = 1,2, . . .),

where

ϕ(t) = tn−�−1(σ(t))(�−1)μ(t)(σ∗(t))μ(t)−λ(ρt∗,�,k(σ∗(t)
)δ (

u(�−1)(t)
)λ−δ |p(t)|.

From the last inequality, we get

−
∫ y(t)

y(t∗)

ds

sλ−δ ≥
1

(�!(n− �)!)λ−δ

∫ t

t∗
sn−�−1+λ−δ(σ(s))(�−1)μ(s)

× (σ∗(s))μ(s)−λ (ρt∗,�,k(σ∗(s))
)δ |p(s)|ds,

where

y(t) =
∫ +∞

t
ϕ(s)ds. (33)

Therefore,
∫ t

t∗
sn−�−1+λ−δ(σ(s))(�−1)μ(s)(σ∗(s))μ(s)−λ (ρt∗,�,k(σ∗(s))

)δ |p(s)|ds

≤ (�!(n− �)!)λ−δ
∫ y(t∗)

0

ds

sλ−δ . (34)
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By (33), without loss of generality we can assume that y(t∗)≤ 1. Thus from (34) we
have

∫ t

t∗
sn−�−1+λ−δ(σ(s))(�−1)μ(s)(σ∗(s))μ(s)−λ (ρt∗,�,k(σ∗(s))

)δ |p(s)|ds

≤ (�!(n− �)!)λ−δ
∫ 1

0

ds

sλ−δ =
(�!(n− �)!)λ−δ

1−λ + δ
for t ≥ t∗.

Passing to limit in the latter inequality, we obtain

∫ +∞

t∗
sn−�−1+λ−δ(σ(s))(�−1)μ(s)(σ∗(s))μ(s)−λ

×
(
ρt∗,�,k(σ∗(s)

)δ |p(s)|ds <+∞. (35)

Therefore, since

lim
t→+∞

ρ�,k(t)

ρt∗,�,k(t)
= 1 (k = 1,2, . . .),

by Eqs. (32) and (35), it is obvious that for any δ ∈ [0,λ ] and k ∈ N, (17) holds,
which proves the validity of the theorem. �	

Analogously we can prove

Theorem 3.2. Let the conditions (2), (3), (7), (14�), and (15�) be fulfilled, � ∈
{1, . . . ,n− 1} with �+ n even and U�,t0 �= ∅ for some t0 ∈ R+. Then for any k ∈ N
and δ ∈ [0,λ ],

∫ +∞

0
tn−�−1+δ(σ(t))(�−1)μ(t)(ρ̃�,k(σ(t))

)μ(t)−δ |p(t)|dt <+∞, (36)

where

ρ̃�,1(t) =

(
1−λ

�!(n− �)!

∫ t

0

∫ +∞

s
ξ n−�−1(σ(ξ ))(�−1)μ(ξ )|p(ξ )|dξ ds

) 1
1−λ

, (37�)

ρ̃�,i(t) =
1

�!(n− �)!

∫ t

0

∫ +∞

s
ξ n−�−1(σ(ξ ))(�−1)μ(ξ )

×
(
ρ̃�,i−1(σ(ξ ))

)μ(ξ )|p(ξ )|dξ ds, i = 2,3, . . . (38�)
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4 Sufficient Conditions for Nonexistence of Solutions
of the Type (8�)

Theorem 4.1. Let the conditions (2), (5), (6), (14�), and (15�) be fulfilled, where
� ∈ {1, . . . ,n−1} with �+n even, and there exist δ ∈ [0,λ ], k ∈ N, and σ∗ ∈C(R+)
satisfying the condition (16) such that
∫ +∞

0
tn−�−1+λ−δ(σ∗(t))μ(t)−λ (σ(t))(�−1)μ(t)(ρ�,k(σ∗(t))

)δ |p(t)|dt=+∞ (39�)

holds. Then for any t0 ∈ R+ we have U�,t0 = ∅, where ρ�,k is defined by Eqs. (18�)
and (19�).

Proof. Assume the contrary. Let there exist t0 ∈ R+ such that U�,t0 �= ∅ (see
Definition 3.1). Then the Eq. (1) has a proper solution u : [t0,+∞)→ R satisfying the
condition (8�). Since the conditions of Theorem 3.1 are fulfilled, for any δ ∈ [0,λ ],
k ∈ N, and σ∗ ∈C([t0,+∞)) satisfying the condition (16), the condition (17) holds,
which contradicts Eq. (39�). The obtained contradiction proves the validity of the
theorem. �	

Using Theorem 3.2, analogously we can prove

Theorem 4.2. Let the conditions (2), (3), (7), (14�), and (15�) be fulfilled, where
� ∈ {1, . . . ,n− 1} with �+ n even, and let there exist δ ∈ [0,λ ] and k ∈ N such that

∫ +∞

0
tn−�−1+δ(σ(t))(�−1)μ(t)(ρ̃�,k(σ(t))

)μ(t)−δ |p(t)|dt =+∞. (40�)

Then for any t0 ∈ R+ we have U�,t0 = ∅, where ρ̃�,k is defined by Eqs. (37�) and
(38�).

Theorem 4.3. Let the conditions (2), (3), (7), (15�) and let for some γ ∈ (0,1) the
condition

liminf
t→+∞

tγ
∫ +∞

t
sn−�−1(σ(s))(�−1)μ(s)|p(s)|ds > 0 (41�)

be fulfilled, where � ∈ {1, . . . ,n− 1} with �+ n even. If, moreover, there exist α > 1
such that

liminf
t→+∞

σ(t)
tα > 0 (42)

and either

α λ ≥ 1 (43)
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or, if αλ < 1, for some ε > 0

∫ +∞

0
tn−�−1+μ(t)

(
α(1−γ)
1−αλ −ε

)
(σ(t))(�−1)μ(t)|p(t)|dt =+∞, (44�)

then for any t0 ∈ R+ we have U�,t0 =∅.

Proof. It sufficient to show that the condition (40�) is satisfied for δ = 0 and for
some k ∈ N. Indeed, according to Eqs. (41�) and (4), there exist α > 1, c > 0, γ ∈
(0,1), and t1 ∈ [t0,+∞) such that

tγ
∫ +∞

t
sn−�−1(σ(s))(�−1)μ(s)|p(s)|ds≥ c for t ≥ t1 (45)

and

σ(t)≥ ctα for t ≥ t1. (46)

Choose ε > 0, k0 ∈ N, and c∗ ∈ (1.+∞) such that

(1− γ)(k0− 1)≥ 1
λ

when αλ ≥ 1, (47)

1+αλ + · · ·+(αλ )k0−2 ≥ 1
1−αλ

− ε
α(1− γ)

when αλ < 1 (48)

and

cλ i

∗

(
c

2�!(n− �)!(1− γ)(1+αλ+ · · ·+(αλ )i−2)

)1+λ+···+λ i−2

≥ 1 (49)

(i = 1, . . . ,k).

According to Eqs. (45) and (37�), it is obvious that lim
t→+∞

ρ̃�,1(t) = +∞. Therefore,

without loss of generality, we can assume that ρ̃�,1(t)≥ c∗ for t ≥ t1. Thus, by (45)
from (38�), we get

ρ̃�,2(t)≥
cλ
∗

�!(n− �)!

∫ t

t1

∫ +∞

s
ξ n−�−1(σ(ξ ))(�−1)μ(ξ )|p(ξ )|dξ ds

≥ cλ
∗ c

�!(n− �)!

∫ t

t1
s−γ ds =

cλ
∗ c

�!(n− �)!(1− γ)
(t1−γ − t1−γ

1 ).

Choose t2 > t1 such that

ρ̃�,2(t)≥
cλ
∗ ct1−γ

2�!(n− �)!(1− γ)
for t ≥ t2.
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Then, by Eqs. (7), (45), (46), and (49) from (38�), we have

ρ̃�,3(t)≥ cλ 2

∗

(
c

2�!(n− �)!(1− γ)(1+αλ )

)1+λ
t(1−γ)(1+αλ ) for t ≥ t3,

where t3 > t2 is a sufficiently large number. Therefore, for k0 ∈ N there exists tk0 ∈
R+ such that

ρ̃�,k0(t) ≥ cλ k0−1

∗

(
c

2�!(n− �)!(1− γ)(1+αλ + · · ·+(αλ )k0−2)

)1+λ+···+λ k0−2

×t(1−γ)(1+αλ+···+(αλ )k0−2
for t ≥ tk0 . (50)

Assume that (43) is fulfilled. Then, according to Eqs. (7), (41�), (47), and (50), it
is obvious that, if δ = 0 for k = k0, (40�) holds. In the case, where (43) holds, the
validity of the theorem has been already proved.

Assume now that αλ < 1 and for some ε > 0 (44�) is fulfilled. Then, by (48)
from (50) we have

(
ρ̃�,k0(σ(t))

)μ(t)≥c1tμ (t)( α(1−γ)
1−αλ −ε)

for t ≥ tk0 ,

where c1 > 0. Consequently, according to (44�), it is obvious that (40�) holds with
if δ = 0 and k = k0. The proof of the theorem is complete. �	

5 Differential Equations with Property B

Theorem 5.1. Let the conditions (2), (3), and (6) be fulfilled and for any � ∈
{1, . . . ,n− 1} with �+ n even Eqs. (14�) and (15�) hold. Let, moreover, there exist
δ ∈ [0,λ ], k ∈ N, and σ∗ ∈C(R+) satisfying the condition (16) such that Eq. (39�)
holds and

∫ +∞

0
tn−1|p(t)|dt =+∞ (51)

when n is even. Then Eq. (1) has Property B, where ρ�,k is defined by Eqs. (18�)
and (19�).

Proof. Let the Eq. (1) have a proper nonoscillatory solution u : [t0,+∞)→ (0,+∞)
(the case u(t)< 0 is similar). Then by Eqs. (2), (3), and Lemma 2.1, there exists � ∈
{0,1, . . . ,n} such that �+n is even and the condition (8�) holds. Since the conditions
of Theorem 4.1 are fulfilled for any � ∈ {1, . . . ,n− 1} with �+ n even, we have
� �∈ {1, . . . ,n−1}. As while proving Theorem 5.1, it can be shown that Eqs. (5) [(4)]
holds if �= n (if n is even and �= 0). Let �= n. Show that (5) be fulfilled. Indeed, by
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(2.1n), there exists c ∈ (0,1) and t1 > t0 such that u(t)≥ ctn−1 for t ≥ t1. According
to (3.2n−1), from Eq. (1) we have

u(n−1)(t)≥ cλ
∫ t

t1
(σ(s))(n−1)μ(s)|p(s)|ds→+∞ for t →+∞.

Therefore, (5) holds.
Let n is even and �= 0. Show that the condition (4) holds. If that is not the case,

then there exists c ∈ (0,1) such that u(t) ≥ c for sufficiently large t. According to
Eqs. (2.10) and (6), from Eq. (1) we have

n−1

∑
i=0

(n− i− 1)! ti
1

∣
∣u(i)(t1)

∣
∣≥

∫ t

t1
sn−1cμ(s)|p(s)|ds≥ cλ

∫ t

t1
sn−1|p(s)|ds, (52)

where t1 is a sufficiently large number. The inequality (52) contradicts the condition
(51). Therefore, the Eq. (1) has Property B. �	

Theorem 5.2. Let the conditions (2), (3), and (7) be fulfilled and for any � ∈
{1, . . . ,n− 1} with �+ n even, Eqs. (14�) and (15�) hold and

limsup
t→+∞

μ(t)<+∞. (53)

Let, moreover, there exist δ ∈ [0,λ ] and k ∈ N such that (40�) hold. Then Eq. (1) has
Property B, where ρ̃�,k is defined by Eqs. (37�) and (38�).

Proof. The proof of the theorem is analogous to that of Theorem 5.1. We have just
to use Theorem 4.2 instead of Theorem 4.1, and change λ by μ = sup{μ(t) : t ∈R+}
in the inequality (52). �	

Theorem 5.3. Let the conditions (2), (3), (6), (51), and

liminf
t→+∞

(σ(t))μ(t)

t
> 0 (54)

be fulfilled. If, moreover, there exist δ ∈ [0,λ ], k ∈ N, and σ∗ ∈C(R+) satisfying the
condition (16) such that for odd n (for even n) (4.11) [(4.12)] holds, then the Eq. (1)
has Property B, where ρ1,k (ρ2,k) is defined by (3.51) and (3.61) [(3.52) and (3.62)].

Proof. To prove the theorem, it suffices to show that the conditions of Theorem 5.1
are fulfilled. Indeed, according to Eqs. (4.11) and (54) [Eqs. (4.12) and (54)], it
is obvious that Eq. (39�) holds for any � ∈ {1, . . . ,n− 1} with �+ n even. Thus
according to Eqs. (51) and (54), all the conditions of Theorem 5.1 are fulfilled,
which proves the validity of the theorem. �	

Using Theorem 5.2, analogously we can prove

Theorem 5.4. Let the conditions (2), (3), (7), (51), (53), and (54) be fulfilled. Let,
moreover, there exist δ ∈ [0,λ ] and k ∈ N such that for odd (for even n) (4.21)
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[(4.22)] holds. Then the Eq. (1) has Property B, where ρ̃1,k (ρ̃2,k) is defined by
(3.241) and (3.251) [(3.242) and (3.252)].

Corollary 5.1. Let the conditions (2), (3), (6), (51), and (54) be fulfilled. If,
moreover,

∫ +∞

0
tn−2+μ(t)|p(t)|dt =+∞ (55)

for odd n, and
∫ +∞

0
tn−3+μ(t)(σ(t))μ(t)|p(t)|dt =+∞ (56)

for even n, then the Eq. (1) has Property B.

Proof. It suffices to note that by Eqs. (6), (51), (54)–(56), all the conditions of the
Theorem 5.3 are fulfilled with σ∗(t)≡ t and δ = 0. �	

Corollary 5.2. Let the conditions (2), (3), (6), (51), and (54) be fulfilled. Let,
moreover, for some k ∈ N

∫ +∞

0
tn−2(σ(t))μ(t)−λ (ρ1,k(σ(t))

)λ |p(t)|dt =+∞ (57)

hold when n is odd and
∫ +∞

0
tn−3(σ(t))2μ(t)−λ (ρ2,k(σ(t))

)λ |p(t)|dt =+∞ (58)

hold when n is even. Then the Eq. (1) has Property B, where ρ1,k (ρ2,k) is defined by
Eqs. (3.51) and (3.61) [(3.52) and (3.62)].

Proof. It suffices to note that by Eqs. (6), (54), (57), and (58), all the conditions of
Theorem 5.3 are fulfilled with σ∗(t) = σ(t) and δ = λ . �	

Corollary 5.3. Let the conditions (2), (3), (7), (51), and (54) be fulfilled. Let,
moreover, for some k ∈ N

∫ +∞

0
tn−2(ρ̃1,k(σ(t))

)μ(t)|p(t)|dt =+∞ (59)

hold when n is odd, and
∫ +∞

0
tn−3(σ(t))μ(t)(ρ̃2,k(σ(t))

)μ(t)|p(t)|dt =+∞ (60)

hold when n is even. Then the Eq. (1) has Property B, where ρ̃1,k (ρ̃2,k) is defined by
Eqs. (3.241) and (3.251) [(3.242) and (3.252)].

Proof. It suffices to note that by Eqs. (7), (54), (59), and (60), all the conditions of
Theorem 54 are fulfilled with δ = 0. �	
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Theorem 5.5. Let the conditions (2), (3), (7), (51), and (54) be fulfilled and (411)
[(412)] hold for odd n (for even n). If, moreover, there exists α ∈ (1,+∞) such that
(42) holds, then for the Eq. (1) to have Property B, it is sufficient that at least one of
the conditions (43) or, if αλ < 1, (441) [(442)] holds, for odd n (for even n).

Proof. According to Eqs. (4.31), (54), and (4.61) [(4.32), (54), and (4.62)], it is
obvious that for any � ∈ {1, . . . ,n− 2} with �+ n even, Eqs. (14�), (15�), and (44�)
hold. Assume that the Eq. (1) has a nonoscillatory solution u : [t0,+∞)→ (0,+∞)
satisfying to condition (8�). Then by Theorem 4.3, � �∈ {1, . . . ,n− 2}. Therefore,
� = n, or n is even and � = 0. In this case by Eqs. (15n−1) [(51)], it is obvious that
condition (5) [(4)] holds. Therefore, the Eq. (1) has Property B. �	

Theorem 5.6. Let the conditions (2), (3), (6), (15n−1), and

limsup
t→+∞

(σ(t))μ(t)

t
<+∞ (61)

be fulfilled. If, moreover, there exist δ ∈ [0,λ ], k ∈ N, and σ∗ ∈C(R+) satisfying the
condition (16) such that (39n−1) holds, then the Eq. (1) has Property B.

Proof. By virtue of Eqs. (2), (3), (6), (3.2n−1), (4.1n−2), and (61), the conditions of
the Theorem 5.1 are obviously satisfied. Therefore, according to that theorem, the
Eq. (1) has Property B. �	

The validity of the Theorem 5.7 below is proved similarly.

Theorem 5.7. Let the conditions (2), (3), (7), (15n−1), and (61) be fulfilled. If,
moreover, there exist δ ∈ [0,λ ] and k ∈ N such that (40n−2) holds, then the Eq. (1)
has Property B, where ρ̃n−1,k is defined by Eqs. (37n−1) and (38n−1).

Corollary 5.4. Let the conditions (2), (3), (6), (15n−1), and (61) be fulfilled and

∫ +∞

0
t(σ(t))(n−2)μ(t)−λ ρλ

n−2,1(σ(t))|p(t)|dt =+∞; (62)

then the Eq. (1) has Property B, where ρn−2,1 is defined by (3.5n−2).

Proof. It suffices to note that by Eqs. (2), (3), (6), (15n−1), (61), and (62), all the
conditions of the Theorem 5.6 are fulfilled with k = 1, δ = λ , and σ∗(t) = σ(t). �	

Corollary 5.4′. Let the conditions (2), (3), (6), (15n−1), and (61) be fulfilled and

liminf
t→+∞

tλ
∫ +∞

t
ξ 1+μ(ξ )−λ (σ(ξ ))(n−3)μ(ξ )|p(ξ )|dξ > 0. (63)

Then the condition

∫ +∞

0
t(σ(t))(n−2)μ(t)|p(t)|dt =+∞ (64)
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suffices the Eq. (1) to have Property B.

Proof. By Eqs. (63) and (18n−2), there exist t0 ∈ R+ and c > 0 such that

ρn−2,1(σ(t))≥ cσ(t) for t ≥ t0.

Hence, according to (64) the condition (62) holds, which proves the validity of the
corollary. �	

Corollary 5.5. Let the conditions (2), (3), (6), (15n−1), and (61) be fulfilled and

∫ +∞

0
t1+μ(t)(σ(t))(n−3)μ(t)|p(t)|dt =+∞. (65)

Then the Eq. (1) has Property B.

Proof. According to Theorem 5.6, it suffices to note that by (65) the condition
(4.1n−2) holds with δ = 0 and σ∗(t)≡ t. �	

Corollary 5.6. Let the conditions (2), (3), (7), (15n−1), and (61) be fulfilled and

∫ +∞

0
t1+λ (σ(t))(n−3)μ(t)|p(t)|dt =+∞. (66)

Then the Eq. (1) has Property B.

Proof. According to the Theorem 5.7, it suffices to note that by (66), the condition
(40n−1) holds with δ = λ . �	

Corollary 5.7. Let the conditions (2), (3), (7), (15n−1), and (61) be fulfilled and

∫ +∞

0
t(σ(t))(n−3)μ(t)(ρ̃n−2,1(σ(t))

)μ(t)|p(t)|dt =+∞. (67)

Then the Eq. (1) has Property B, where ρ̃n−2,1 is defined by (37n−1).

Proof. It is suffices to note that by condition (67), the condition (40n−1) holds with
δ = 0. �	

Analogously, to Corollary 5.4′ we can prove

Corollary 5.7′. Let the conditions (2), (3), (7), (15n−1), and (61) be fulfilled and

liminf
t→+∞

tλ
∫ +∞

t
ξ (σ(ξ ))(n−3)μ(ξ )|p(ξ )|dξ > 0. (68)

Then the condition (64) suffices the Eq. (1) to have Property B.

Theorem 5.8. Let the conditions (2), (3), (7), (15n−1), and (61) be fulfilled. If,
moreover, there exists α ∈ (1,+∞) such that the condition (42) holds, then for the
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Eq. (1) to have Property B, it is sufficient that at least one of the conditions (43) or
if αλ < 1 (44n−2) holds.

Proof. According the Theorem 4.3, it is sufficient to note that by Eqs. (61) and
(44n−2) for any � ∈ {1, . . . ,n− 1} with �+ n is even, (44�) holds. �	

6 Necessary and Sufficient Conditions

Theorem 6.1. Let n be even, the conditions (2), (3), and (6) be fulfilled, and

liminf
t→+∞

σ(t)

t
2−μ(t)

μ(t)

> 0. (69)

Then the condition (51) is necessary and sufficient for the Eq. (1) to have Property B.

Proof. Necessity. Assume that the Eq. (1) has Property B and

∫ +∞

0
tn−1|p(t)|dt <+∞. (70)

According to (70), by Lemma 4.1 [2] there exists c �= 0 such that the equation has
a proper solution u : [t0,∞)→ R satisfying the condition lim

t→+∞
u(t) = c. But this

contradicts the fact that the Eq. (1) has Property B.
Sufficiency. According to Eqs. (6) and (69), it is obvious that the condition (54)

holds. On the other hand, by Eqs. (51) and (69), the condition (56) holds. Thus,
since n is even, all the conditions of Corollary 5.1 are fulfilled, i.e., the Eq. (1) to
have Property B. �	

Corollary 6.1. Let n be even, the conditions (2), (3), and (6) be fulfilled, and

lim
t→+∞

μ(t) = λ (λ ∈ (0,1)), liminf
t→+∞

tμ(t)−λ > 0, liminf
t→+∞

σ(t)

t
2−λ

λ
> 0. (71)

Then the condition (51) is necessary and sufficient for the Eq. (1) to have Property B.

Remark 6.1. The condition (71) defines a set the functions σ for which the
condition (51) is necessary and sufficient. It turns out that the number 2−λ

λ is
optimal. Indeed, let ε > 0, λ ∈

(
1

1+ε ,1
)

and α ∈ (1,2). Consider the differential
equation (1) with

p(t) = α(α− 1) · · ·(α− n+ 1)t−n+α(1−μ(t)( 2−λ
λ −ε)),

σ(t) = t
2−λ

λ , t ≥ 1, lim
t→+∞

μ(t) = λ .

It is obvious that the condition (51) is fulfilled and
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liminf
t→+∞

σ(t)

t
2−λ

λ
= 0 and liminf

t→+∞

σ(t)

t
2−λ

λ −ε
> 0.

On the other hand, for even n, u(t) = tα is a solution of Eq. (1). Therefore, when n
is even, the Eq. (1) does not have Property B.

Theorem 6.2. Let the conditions (2), (3), and (6) be fulfilled and

limsup
t→+∞

σ(t)

t
1+μ(t)
2μ(t)

<+∞. (72)

Then the condition (3.2n−1) is necessary and sufficient for the Eq. (1) to have
Property B.

Proof. Necessity. Assume that the Eq. (1) has Property B and

∫ +∞

0
(σ(t))(n−1)μ(t)|p(t)|dt <+∞. (73)

According to (73), by Lemma 4.1 [2] there exists c �= 0 such that the Eq. (1) has a
proper solution u : [t0,∞)→ R satisfying the condition lim

t→+∞
u(n−1)(t) = c. But this

contradicts the fact that the Eq. (1) has Property B.
Sufficiency. By Eqs. (6) and (72), it is obvious that (61) holds. On the other

hand, by Eqs. (3.2n−1) and (72), the condition (65) holds. Thus, all conditions of
Corollary 5.5 are fulfilled, i.e., the Eq. (1) has Property B. �	

Analogously to Theorem 6.2, using the Corollaries 5.4′ and 5.6, we can prove
Theorems 6.3–6.4.

Theorem 6.3. Let the conditions (2), (3), (6), (61), and (63) be fulfilled. Then the
condition (15n−1) is necessary and sufficient for the Eq. (1) to have Property B.

Theorem 6.4. Let the conditions (2), (3), (7), and (61) be fulfilled. Then the
condition (15n−1) is necessary and sufficient for the Eq. (1) to have Property B.
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On Conforming Tetrahedralisations
of Prismatic Partitions

Sergey Korotov and Michal Křı́žek

Abstract We present an algorithm for conform (face-to-face) subdividing
prismatic partitions into tetrahedra. This algorithm can be used in the finite element
calculations and analysis.

Keywords Finite element method • Prismatic element • Tetrahedral mesh •
Linear elements

Mathematical Subject Classification: 65N50, 51M20

1 Introduction

Tetrahedral, prismatic, pyramidal, or block elements are usually used in finite
element approximations of various engineering three-dimensional problems. There-
fore, a natural question arises which of these elements are the most suitable for
a particular problem in a given domain (cf. [1, 3, 8, 9]). The use of several types of
elements enables us to compare the influence of the space discretisation on the finite
element solution.
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However, among various types of elements, tetrahedral elements are the most
popular for many reasons. For instance, if block trilinear elements are employed,
the discrete maximum principle need not be satisfied (see [5, 7]). But if each block
element is divided into six nonobtuse tetrahedra such that all of them contain the
spatial diagonal, then the stiffness matrix associated to linear elements has the
same size, and the discrete maximum principle is fulfilled for a large class of
nonlinear elliptic problems (see [4]). Moreover, the stiffness matrix associated with
linear finite elements has less nonzero diagonals than that one for trilinear block
or triangular prism elements. Another important reason for the use of tetrahedral
elements is their flexibility to describe complicated boundaries.

In this work we show how to conformly (face-to-face) subdivide the given
prismatic partition into tetrahedra as local subdivisions of prisms into tetrahedra
cannot be done independently from each other in order to get a face-to-face
tetrahedralisation.

2 Subdivision of Prismatic Partitions into Tetrahedra

By prism (or more precisely triangular prism) we shall mean a prism with two
parallel triangular faces and three rectangular faces.

In what follows we consider only bounded polyhedra Ω ⊂ R3 which can be
decomposed into prisms. Let Ph be a face-to-face partition of one such polyhedron
into prisms (see Fig. 1). Here h stands for the usual discretisation parameter, i.e., the
maximum diameter of all prisms from Ph.

Throughout this paper we will always consider only face-to-face partitions, and
therefore, the notion “face to face” will be sometimes omitted. In Sect. 2, we assume
that a partition Ph into it is evident from the definition of a prism that any partition
Ph into prisms consists of parallel layers of prisms. In the following we may
suppose these layers to be horizontal and we call the bottom plane of a layer its base
and the triangular face of a prism we call the base triangle of the prism. A more
general situation is treated in Sect. 3.

Fig. 1 Partition into prisms
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Fig. 2 Two subdivisions of rectangular faces of a prism

We shall consider such tetrahedralisations of Ph that the triangular faces of
the prisms are not cut. Hence, the different layers of prisms can be subdivided
independently into tetrahedra, and these altogether provide us with a conforming
tetrahedral mesh over Ω.

We shall subdivide each prism into three tetrahedra as marked in Fig. 2 (left).
We see that its rectangular faces are divided by diagonals into triangles and these
diagonals determine three tetrahedra in the subdivision. However, these diagonals
cannot be chosen arbitrarily. In Fig. 2 (right) we observe a division of three
rectangular faces of a prism which does not correspond to any partition of the prism
into tetrahedra. Therefore, we have to divide rectangular faces in the whole partition
carefully.

In the next theorem we show how to practically construct from a given prismatic
partition Ph a face-to-face tetrahedralisation, thus avoiding the situation illustrated
in Fig. 2 (right) (or its mirror image) when dividing rectangular faces by diagonals.

Theorem 2.1. For any conforming partition into prisms there exists a face-to-face
subdivision into tetrahedra.

Proof. From the beginning of this section we know that any partition of Ph

into prisms consists of parallel layers which can be tetrahedralised independently
(see Fig. 1). Consider one of such layers supposed to be horizontal and let Th be the
triangulation of its base corresponding to the partition Ph. Take an arbitrary vector
�v �= 0 in the plane containing the triangulation Th (for instance�v = (1,0,0)). Now
we define the orientation�e of each edge e of the triangulation Th such that

(�v,�e)≥ 0. (1)

If an edge e is perpendicular to�v, we may take an arbitrary orientation of�e. In this
way we get the planar digraph Gh = (N,E), where N is the set of nodes and E is the
set of the directed edges.

It is clear that Gh does not contain a directed circle of which edges form a triangle
of Th (cf. Fig. 2). Indeed, if, on the contrary,�e1,�e2,�e3 form a circle then�e1 +�e2 +
�e3 =�0. Taking the scalar product of both sides by �v and using (1), we get that �v is
perpendicular to the triangle with side vectors�e1,�e2,�e3, which is a contradiction.

�	
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Fig. 3 Non-allowed edge orientations

C

C’

B’

B

A

A’

Fig. 4 A possible orientation of edges of a triangular base that leads to a partition into three
tetrahedra

The algorithm can be summarised as follows:

1. Orient all edges in the triangulation of the base according to formula (1).
2. Subdivide all vertical rectangular faces in the direction defined by the orientation

of edges of the base as indicated in Fig. 4.

Remark 2.1. Non-allowed edge orientations are sketched in Fig. 3. In Fig. 4 we see
a partition of the prism ABCA′B′C′ into three tetrahedra different from that in the
left part of Fig. 2.

We demonstrate now that the family of tetrahedral meshes generated as above is
regular whenever the family of original prismatic meshes is regular as well.

Definition 2.1. A family of partitions F = {Th}h→0 of a polyhedron Ω into convex
elements is said to be regular (strongly regular) if there exists a constant κ > 0 such
that for any partition Th ∈F and any element T ∈ Th we have

κh3
T ≤meas T (κh3 ≤meas T ), (2)

where hT = diam T .

Remark 2.2. The above definition is equivalent to the inscribed ball condition
(see, e.g., [2, Sect. 16]) which is more complicated. Note also that the regularity of a
family of partitions into prisms is equivalent to Zlámal’s minimum angle condition
[2, p. 128] applied to triangular bases of all prisms provided the height of all prisms
is proportional to h.
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Theorem 2.2. If a family of partitions {Ph}h→0 of a polyhedron Ω into prisms
is regular (strongly regular), then the associated family of partitions {Th}h→0 into
tetrahedra is also regular (strongly regular).

Proof. It is evident that the volume of each of the three tetrahedra from Fig. 2 (left)
is equal to the one third of the volume of the prism. Therefore, if inequalities (2) hold
for prisms, then the same relations hold also for tetrahedra with another constant
κ ′ = κ/3. �	

Remark 2.3. Assume that a family of partitions of Ω into prisms is regular and that
Ω has Lipschitz boundary. Then by Theorem 2.2 the optimal interpolation properties
of tetrahedral elements in Sobolev space norms are satisfied.

3 Polyhedral Domains that Have No Lipschitz Boundary

In practice we meet sometimes polyhedral domains which do not have Lipschitz
boundary in the sense of Nečas [10, p. 17].

Let us point out that domains with Lipschitz boundaries often stand as an
important assumption in a number of useful theorems, such as various imbedding
and density theorems, trace theorem, and Poincaré-Friedrichs’ theorem. Many
authors then apply these theorems for polyhedral domains assuming (incorrectly)
that any polyhedral domain has Lipschitz boundary.

In the left part of Fig. 5 we observe a polyhedral domain whose boundary is not
Lipschitz (see [6, p. 48]) near points marked by black dots. In any neighbourhood
of these points the boundary is not a graph of a function. It can be expressed
only by means of a multivalued function in any coordinate system (whereas any
Lipschitz function is one-valued). Note that the polyhedral domain of Fig. 5 satisfies
the classical external (and also internal) cone condition.

The right part of Fig. 5 shows its partition into rectangular blocks and their
subdivision into triangular prisms. We see that this partition is somewhat different
from that described in the previous Sect. 2, and the subdivision into tetrahedra has
to be done carefully on the intersection of the two bars (see Theorem 2.1).

Fig. 5 Polyhedral domain whose boundary is not Lipschitz and its partition into triangular prisms
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Swarm Dynamics and Positive Dynamical
Systems

Ulrich Krause

Abstract In this paper we model swarm dynamics by a nonautonomous linear
system with row-stochastic matrices. It is shown that all birds approach the same
velocity if their local interaction has the property that its intensity decays not too
fast and its structure becomes not too loose. This mirrors in particular specific
flight regimes. The results obtained employ tools from positive discrete dynamical
systems.

1 Introduction

It is fascinating to watch swarms of starlings or formations of geese up in the
sky. How are birds able to coordinate each other in huge flocks or in orderly
formations? (For principles of organization among birds as well as for its biological
roots see the review [14]. For recent empirical research on swarm formations see
[1, 15]). Those questions were asked already 2000 years ago and are investigated
today in the field of swarm dynamics by means of mathematical models. But
swarm dynamics is not only about birds. In recent years researchers across different
disciplines—including biologists, computer scientists, engineers, physicists, and
mathematicians—developed models of astonishing similarity to understand beside
swarms of birds or schools of fish also opinion formation or traffic jams among
people as well as distributed computing in networks or self-organizing groups of
robots. (See references [3, 5–7, 17, 18] on birds, [9, 13] on opinion formation, and
[2, 11, 16] on robots.) Taken abstractly, the system under consideration consists
of autonomous agents without any central direction but using simple rules of
interaction which are local in the sense that each agent interacts only with a small
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set of “neighbors.” One main question on the dynamics of such a multi-agent system
is to find conditions under which the system is able to approach a stable pattern, in
particular a consensus or agreement among agents on a certain issue like velocity or
opinions.

In this paper Sect. 2 sets out a simple model of swarm dynamics in discrete time
driven by the simple rule that each agent (bird) at each time acts by taking a convex
combination of the actions of a few agents. Equivalently, the model can be described
as a nonautonomous linear system with row-stochastic matrices. Section 3 provides
results from positive dynamical systems which will be used later on to analyze to
swarm model set out. The main result used guarantees the convergence to consensus
if the intensity of interaction decays not “too fast” and the structure of interaction
becomes not “too loose.” Broadly speaking, a positive dynamical system in discrete
time and finite dimensions is about nonnegative matrices and the stability behavior
of infinite products of those. (See the monographs [8, 19].) More general, a positive
dynamical system in discrete time deals with linear or nonlinear self-mappings of
some convex cone in a Banach space and the stability of (inhomogeneous) iterations
of such mappings. Using tools from Sect. 3, in Sect. 4 a first result is obtained on the
swarm formation by local interaction. This result allows to consider a modified local
version of Cucker–Smale flocking which has been much studied in recent years.
Section 5 presents our second result on swarm formation which allows for different
regimes of local interaction. Of particular interest here is how the changing flight
formations of birds have to look like for getting still a swarm altogether. Thereby a
useful tool from positive dynamical systems is so-called Sarymsakov matrices and
their properties.

The author thanks a referee for helpful comments.

2 A Model of Swarm Dynamics

Consider a number of n birds moving in three-dimensional space and let xi(t) be
the position of bird i, for i = 1, . . . ,n, at time t. Assuming discrete time, that is,
t ∈ N = {0,1,2, . . .}, the velocity vi(t) ∈ R

3 of bird i at time is given by vi(t) =
xi(t + 1)− xi(t). As a central feature of a swarm we consider the phenomenon that
the velocities of the birds come close to each other. How do the birds achieve this?
What kind of self-organization leads to a “consensus on velocities”?

The computer scientist Reynolds [17] detected by computer simulations that
artificial birds which he called “boids” show the flocking behavior of natural birds
provided three rules of interaction are satisfied. One of his by now famous rules is
that of “alignment” which for a boid means to “steer towards the average heading of
local flockmates.” This rule we model as taking a convex combination of velocities,
that is

vi(t + 1) ∈ conv {v1(t), . . . ,vn(t)} (1)
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for each bird i ∈ {1, . . . ,n} and each t ∈ N, where conv M denotes the convex hull
of a set M. Denoting the coefficients for the convex combination in (1) by ai j(t) for
j = 1, . . . ,n, we can express rule (1) by vi(t +1) = ∑n

j=1 ai j(t)v j(t) where 0≤ ai j(t)
and ∑n

j=1 ai j(t) = 1 for all i. Thus (1) is equivalent to

v(t + 1) = A(t)v(t) for t = 0,1,2, . . . (2)

with v(t) being the column v(t) = (v1(t), . . . ,vn(t))′ and A(t) the row-stochastic
matrix (ai j(t))1≤i, j≤n. Dealing with birds, R3 is the natural space for the states v(t),
but considering other types of agents, a state space Rd with d≥ 1 can be appropriate.
The model (2), or (1), makes still sense. (Actually, for (1) to make sense the state
space is only required to be a so-called mixture space, that is, a space which allows to
form convex combinations of an abstract kind.) The “local flockmates” in Reynold’s
rule means that the convex combination in (1) involves only a subset /0 � S(i, t) ⊆
{1, . . . ,n}. Equivalently, for the ith row of A(t), one has ai j(t) > 0 if and only if
j ∈ S(i, t). The set S(i, t) can be interpreted as the set of birds with which bird i
interacts at time t, for example, in that bird i “sees” at time t all birds in S(i, t). The
central feature of velocities coming closer to each other we model more pointed as
velocities approaching a “consensus” in the course of time, that is

lim
t→∞

vi(t) = v∗ for all i ∈ {1, . . . ,n} (3)

for some v∗ ∈ R
3 and with respect to Euclidean topology. The model given by

(2) is a positive dynamical system in discrete time which is nonautonomous or time
variant. In what follows we will supply conditions for property (3) to hold in terms
of the structure and the intensity of interaction embodied in the matrices A(t). For
doing this we turn in the next section to tools from positive dynamical systems used
in opinion dynamics to address a consensus problem like (3).

3 Positive Dynamical Systems: Convergence to Consensus

Let a nonautonomous positive dynamical system

xi(t + 1) =
n

∑
j=1

ai j(t)x
j(t), 1≤ i≤ n, t ∈N (4)

be given with xi(t) ∈ R
d ,0≤ ai j(t),∑n

j=1 ai j(t) = 1.
Consider the following assumptions for system (4). For an infinite time sequence

t0 < t1 < t2 < .. . in N such that for some r,N ∈N� {0}

1≤ tm+1− tm ≤ r for all m≥ N,
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the following assumptions do hold:

(i) There exists a nonincreasing function α : R+ →]0,1] such that for A(t) =
(ai j(t))

A(t)≥ α(t)I for all t ≥ tN

(I the n×n-identity matrix, R+={r ∈ R | r ≥ 0}, ]0,1] = {r ∈ R | 0 < r ≤ 1}).
(ii) There exist finitely many nonnegative n × n-matrices Ai,1 ≤ i ≤ k, and a

mapping σ : N→{1, . . . ,k} such that

A(tm)≥ α(tm)Aσ(m) for all m ∈ N.

The following result is proved in [13].

Theorem 1. Suppose assumptions (i) and (ii) are satisfied and there exists
p ∈ N� {0} such that
the intensity of interaction decays not “too fast,” that is,

∫ ∞

1
α(t)prdt = ∞,

and the structure of interaction becomes not “too loose,” that is, for each m ∈N the
product Aσ(m+p)Aσ(m+p−1) . . .Aσ(m+1) is scrambling.

Then system (4) approaches consensus, that is,

lim
t→∞

xi(t) = x∗ for all 1≤ i≤ n with consensus x∗ ∈ R
d .

Furthermore, for two vectors of initial conditions x(0),y(0) leading to consensus x∗
and y∗, respectively, one has that

‖x∗ − y∗‖ ≤max{‖xi(0)− y j(0)‖ | 1≤ i, j ≤ n}

for any norm ‖ · ‖ on R
d.

Thereby, a nonnegative matrix A is called scrambling if for any two rows i and
j there exists a column k such that aik > 0 and a jk > 0 or, equivalently, AA′ is a
(strictly) positive matrix (cf. [8,19]). For the special case where tm =m for all m∈N

and k = 1, from Theorem 1 one obtains the following corollary (see also [12]).

Corollary 1. Suppose for system (4) that A(t) ≥ α(t)A for all t ∈ N and a
nonincreasing function α : R+ →]0,1]. If for some p ∈ N� {0} one has that∫ ∞

1 α(t)pdt = ∞ and A is a nonnegative matrix with positive diagonal for which the
power Ap is scrambling, then system (4) approaches consensus and the sensitivity
property as in Theorem 1 holds.
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For system (4) to approach a consensus the assumptions on the intensity and
structure of interaction are by no means necessary. There exist, however, examples
for which one of the assumptions is not satisfied and system (4) does not approach
a consensus (see [13]). The reader who wants to know more about the convergence
to consensus in opinion dynamics may consult [9].

4 Swarm Formation by Local Interaction

We now come back to the swarm model (2) of Sect. 2 given by v(t + 1) = A(t)v(t)
for t ∈ N. Let S(i, t) = { j | ai j(t) > 0} be the set of birds seen by i at time t.
From Corollary 1 of the previous section we obtain the following result on swarm
formation.

Theorem 2. Suppose each bird i sees always a set S(i) of birds (including itself),
that is, i ∈ S(i) ⊆ S(i, t) for all t and all i. Assume further of any two birds i and j
one sees the other or both see a third one, that is, S(i)∩S( j) �= /0 for all i≤ i, j ≤ n.
For the minimal interaction of birds at t ∈R+, that is,

α(t) = min{ai j(s) | s ∈ N,s≤ t,1≤ i≤ n, j ∈ S(i)},

assume that it is not weak in the sense that
∫ ∞

1 α(t)dt = ∞.
Then all birds approach a common velocity v�, that is limt→∞ vi(t) = v� for all

1≤ i≤ n.
Furthermore, if the initial velocities of all birds are close to each other, the

corresponding common velocities are close, too.

Proof. Define A = (ai j) by ai j = 1 for j ∈ S(i) and ai j = 0 otherwise. A has a
positive diagonal because of i ∈ S(i) and A is scrambled because of S(i)∩ (S( j) �= /0.
By the definition of α(t) we have that A(t)≥ α(t)A for all t. Obviously, α(t) is not
increasing in t and, by definition of S(i), we have that α(t) ∈]0,1]. The assumptions
of Corollary 1 being satisfied for p = 1 the conclusion of Theorem 2 follows. �	

We relate Theorem 2 to different models from the literature. In [20] a model
of self-driven particles in the plane is investigated by computer simulations. The
particles are driven with a constant absolute velocity and average the direction
of motion with particles in some neighborhood. Numerical evidence is given that
under a small noise all particles line up in the same direction. This model has
been analytically treated in [10, 11] where, in a more general context, conditions
are supplied to guarantee convergence to a consensus. (For an even more general
approach see [16].) In these models the structure of interaction is assumed to be
symmetric that is ai j(t)> 0 iff a ji(t)> 0, and the intensity of interaction is assumed
to be strictly positive bounded from below. Starting from [20], recently F. Cucker
and S. Smale developed a model which received much attention and to which we
now turn in more detail. (See the original articles [5, 6] as well as the subsequent
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articles [3, 4, 7, 18].) The discrete time version of so-called Cucker–Smale flocking
is given, beside

vi(t) = xi(t + 1)− xi(t), by

vi(t + 1)− vi(t) =
n

∑
i�= j=1

fi j(x(t))(v
j(t)− vi(t)) (5)

with intensities for j �= i

fi j(x) =
H

(1+ ‖xi− x j‖2)β with constants H > 0,β ≥ 0.

In this model the intensity of interaction is not bounded from below by a positive
constant and it may decay to zero.

Furthermore, each bird changes his velocity by a weighted sum of the differences
of its velocity with those of other birds. The weights decrease in a particular manner
with the distance between birds. Obviously, in this model interaction among birds
is symmetric and the interaction is global in that fi j(x) > 0 for all i �= j. We shall
modify model (5) by restricting on the one hand constant H to H ≤ 1

n but allowing
on the other hand local interaction, that is,

vi(t + 1)− vi(t) = ∑
j∈N(i)

fi j(x(t))(v
j(t)− vi(t)), (6)

where N(i) is a nonempty subset of {1, . . . ,n} which does not contain i. From
Theorem 2 we obtain the following result.

Corollary 2 (modified Cucker–Smale flocking). Assume for model (6) that i ∈
N( j) or j ∈N(i) or N(i)∩N( j) �= /0 for any two birds i and j. Then limt→∞ vi(t) = v�
for all 1 ≤ i ≤ n in case β ≤ 1

2 or the swarm remains bounded, that is, ‖xi(t)‖ ≤ c
for some constant c > 0 and all i, all t.

Proof. Define a matrix A(t) = (ai j(t)) by

ai j(t) =

⎧
⎨

⎩

fi j(x(t)) for j ∈ N(i)
1−∑k∈N(i) fik(x(t)) for j = i

0 otherwise.

From the definition of fi j(x) together with assumption H ≤ 1
n , we have that

∑
k �=i

f jk(x)≤ (n− 1)H ≤ n− 1
n

< 1 and, hence,

aii(t) = 1− ∑
k∈N(i)

fik(x(t))≥ 1−∑
k �=i

fik(x(t)) ≥ 1− n− 1
n

=
1
n
.
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Thus, A(t) is a nonnegative matrix such that

n

∑
j=1

ai j(t) = ∑
j∈N(i)

fi j(t)+ aii(t) = 1,

that is, A(t) is row stochastic for all t.
Furthermore, from (6) it follows

vi(t + 1) = ∑
j∈N(i)

fi j(x(t))v
j(t)+ (1− ∑

j∈N(i)

fi j(x(t)))v
i(t)

and, hence,

vi(t + 1) = ∑
j∈N(i)

ai j(t)v
j(t)+ aii(t)v

i(t) =
n

∑
j=1

ai j(t)v
j(t).

Thus system (6) is a swarm model of type (2).
Define S(i) = N(i)∪{i}. To apply Theorem 2 it remains to show for t ∈ R+ and

α(t) = min{ai j(s) | s ∈ N,s≤ t,1≤ i≤ n, j ∈ N(i)∪{i}}

that
∫ ∞

1 α(t)dt = ∞.
In case, the swarm remains bounded, for i �= j

fi j(s)≥
H

(1+(2c)2)β for all s and, because of aii(s)≥
1
n
,

it follows

α(t)≥min

{
H

(1+(2c)2)β ,
1
n

}
.

Therefore
∫ ∞

1 α(t)dt = ∞ for a bounded swarm.
For the case β ≤ 1

2 , from v(t+1)=A(t)v(t) with A(t) row stochastic we have that
‖vi(t + 1)‖ ≤ max1≤ j≤n‖v j(t)‖ for all i. For the max-norm therefore ‖v(t + 1)‖ ≤
‖v(t)‖ for all t. From xi(t + 1)− xi(t) = vi(t) it follows that

xi(t) = xi(0)+
t−1

∑
s=0

vi(s) and, hence, ‖xi(t)‖ ≤ ‖xi(0)‖+ ‖v(0)‖t.

Therefore, ‖xi(t)−x j(t)‖ ≤ ‖xi(0)‖+‖x j(0)‖+(‖v(0)‖+‖v(0)‖)t, and there exist
t0 and c > 0 such that

1+ ‖xi(s)− x j(s)‖2 ≤ ct2 for all t ≥ t0,s.
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Thus, α(t) ≥ min{ H
(ct2)β ,

1
n} for t ≥ t0. Since

∫ ∞
t0

dt
t2β = ∞ for β ≤ 1

2 this yields
∫ ∞

1 α(t)dt = ∞ which proves the corollary. �	

Corollary 2 shows, provided H ≤ 1
n , that for Cucker–Smale flocking the global

interaction can be weakened to local interaction. We may simply chose, for example,
in Corollary 2 N(i) = {k} for some k and all i. This means that all birds adjust
to some leading bird k. In that case interaction is neither symmetric nor global.
There are other nonsymmetric, non-global cases which correspond to certain
flight formations. In [5, 6] Cucker and Smale use different methods avoiding the
assumption H ≤ 1

n and which enable them to show for model (5) convergence
of velocities, and positions too, for β > 1

2 provided certain relations between
initial velocities and positions are met. For continuous time Cucker–Smale flocking
for H ≤ 1

n but without local interaction is investigated in [3] and a result as in
Corollary 2 for β ≤ 1

2 is proven.

5 Swarm Formation and Flight Regimes for
Time-Dependent Local Interaction

In Theorem 2 of the previous section, we assumed that the set S(i) of birds seen by
bird i does not change with time. Now we want to admit that these sets which mirror
the local interaction of the birds can depend on time. To do so we have to employ
instead of Corollary 1 the stronger Theorem 1. Swarm formation then is possible
in different flight regimes which we describe by using the Sarymsakov matrices
introduced by Hartfiel [8].

Let A be a nonnegative n× n-matrix, M a subset of {1, . . . ,n} and F(M) = {1≤
j ≤ n | ai j > 0 for some i ∈M}.

Definition 1 ([8]). A is a Sarymsakov matrix (or S-matrix, for short) if for any two
non-empty subsets M and M′ of {1, . . . ,n} from M∩M′ = /0 and
F(M)∩F(M′) = /0 it follows that

|M∪M′|< |F(M)∪F(M′)|,

where | · | denotes the number of elements of a finite set.

A weaker notion than that of an S-matrix is the following one which is easier
to interpret and which in the context of swarms turns out to be equivalent to an
S-matrix.

Definition 2. A nonempty subset M of {1, . . . ,n} is saturated if F(M) ⊆M and a
n×n-matrix A is coherent if any two saturated subsets have a nonempty intersection.
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The following lemma presents relationships among the concepts introduced.

Lemma 1. Consider the following properties for a nonnegative n× n-matrix A:

1. Scrambling.
2. S-matrix.
3. Some power is scrambling.
4. Coherent.

(i) The following implications hold:

1⇒ (2)⇒ (3)⇒ (4).

(ii) None of these implications can be reversed (not even for row-stochastic
matrices).

(iii) If A has a positive diagonal, then the properties (2), (3), and (4) are equivalent.

Proof.

(i) Suppose A is scrambling and M,M′ are two nonempty subsets of {1, . . . ,n}. To
i ∈ M, j ∈M′ there exists k such that aik > 0 and a jk > 0. Thus, k ∈ F(M)∩
F(M′). This proves (1)⇒ (2). The implication (2)⇒ (3) is a special case of
the following theorem of Hartfiel (Theorem 4.8 in [8]): The product of n− 1
Sarymsakov matrices (of order n) is scrambling. To see (3)⇒ (4) suppose Ap is
scrambling and M,M′ are two saturated subsets of {1, . . . ,n}. For i∈M, j ∈M′

there exists k such that a(p)
ik > 0 and a(p)

jk > 0. Therefore there exist sequences
(i1, . . . , ip−1) and ( j1, . . . , jp−1) such that

aii1 ·ai1i2 . . .aip−1,k > 0 and a j j1 ·a j1 j2 . . .a jp−1,k > 0.

Since M is saturated, it follows inductively that i1 ∈ M, i2 ∈ M, . . . , ip−1 ∈
M,k ∈ M. Similarly, k ∈ M′ and, hence, k ∈ M ∩M′. This shows that A is
coherent.

(ii) To see that the implication (1)⇒ (2) cannot be reversed in general, consider
the row-stochastic matrix

A =

⎡

⎣
1 0 0
1
2

1
2 0

0 1
2

1
2

⎤

⎦ .

A is not scrambled but it is an S-matrix. For nonempty sets M,M′, one has
F(M)∩F(M′) �= /0 with the exception M = {1},M′ = {3}. For the latter case
F(M) = M and F(M′) = {2,3} and, hence, |F(M)∪F(M′)| = |{1,2,3,}| >
|M∪M′|.
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Concerning the implication (2)⇒ (3), consider

A =

⎡

⎣
1 0 0
1 0 0
0 1 0

⎤

⎦ . Since A2 =

⎡

⎣
1 0 0
1 0 0
1 0 0

⎤

⎦

this power is scrambling. But A is not an S-matrix since for M = {3},M′ =
{1,2} one has that F(M) ∩ F(M′) = /0 but |F(M) ∪ F(M′)| = |{1,2}|
< |M∪M′|.

Finally, concerning (3)⇒ (4) let A =

[
0 1
1 0

]
. Since M = {1,2} is the only

saturated set matrix A must be coherent. But, of course, no power of A is
scrambling.

(iii) Let A be nonnegative with a positive diagonal. We show that (4) implies
(2). Let M,M′ be nonempty subsets of {1, . . . ,n} such that M ∩M′ = /0
and F(M) ∩ F(M′) = /0. Because of the positive diagonal M ⊆ F(M) and
M′ ⊆ F(M′). Suppose we had equality, M = F(M) and M′ = F(M′). Then M
and M′ are saturated and must have by (4) a nonempty intersection—which
is a contradiction. Therefore, M ∪M′

� F(M) ∪ F(M′) which implies that
|M∪M′|< |F(M)∪F(M′)| Thus, A must be an S-matrix. �	

Remark 1. In (iii) not all four properties need be equivalent as the first counter-
example in (ii) shows. Furthermore, the equivalences in (iii) need not hold in case
some but not all elements in the diagonal are positive. This is illustrated by

A =

⎡

⎣
1 0 0
1 0 0
0 1

2
1
2

⎤

⎦

which is coherent but not an S-matrix.

For the swarm model given by (2) consider now time-dependent local interaction as
described by the set S(i, t) = {1≤ j≤ n | ai j(t)> 0} of birds seen by bird i at time t.

Definition 3. The birds are said to form a coherent flight regime at t if the matrix
A(t) is coherent. Equivalently, if M is a (nonempty) subset of birds which contains
with each bird also all birds seen by it and M′ is another set of this kind, then
M∩M′ �= /0.

From Theorem 1 and Lemma 1 we obtain the following result on time-dependent
local interaction in swarm formation.

Theorem 3. Suppose i ∈ S(i, t) for all i, all t and suppose there is a time sequence
t0 < t1 < .. . in N with r = supm(tm+1 − tm) < ∞ such that the flight regime at
each tm is coherent. Assume further for the minimal interaction α(t) of birds at
t ∈ R+ defined as the minimum of min{ai j(tm) | tm ≤ t,1 ≤ i ≤ n, j ∈ S(i, tm)} and
min{aii(s) | 1 ≤ i≤ n,s ∈ N\ {t0, t1, . . .},s≤ t} that it is not weak in the sense that∫ ∞

1 α(t)(n−1)rdt = ∞.
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Then all birds approach a common velocity v∗, that is, limt→∞ vi(t) = v∗ for all
1 ≤ i ≤ n. Furthermore, if the initial velocities of all birds are close to each other,
the corresponding common velocities are close, too.

Proof. By definition of α(t) for t ∈ R+ the function α(·) is not increasing and
α(t) ∈ ]0,1] by definition of S(i,s) and assumption i ∈ S(i,s) for s ∈ N. Define for
m∈N a nonnegative matrix Aσ(m) by (Aσ(m))i j = 1 for j ∈ S(i, tm) and (Aσ(m))i j = 0
otherwise. Since the flight regime at tm is assumed to be coherent and i ∈ S(i, tm),
the matrix Aσ(m) is coherent and has a positive diagonal. There are only finitely
many different matrices Aσ(m) for m ∈ N. By Lemma 1 (iii) each of these matrices
is an S-matrix. By Hartfiel’s theorem (Theorem 4.8 in [8]) the product of (n− 1)
S-matrices of order n is scrambling. Thus, for p = n− 1 and any m ∈ N the
product Aσ(m+p) . . .Aσ(m+1) is a scrambling matrix. Finally, by definition of α(t)
we have that A(t) ≥ α(t)I for all t ∈ N and A(tm) ≥ α(tm)Aσ(m) for all m ∈ N and∫ ∞

1 α(t)prdt = ∞ for p = n− 1 by assumption. All the assumptions being satisfied
Theorem 1 yields the conclusion wanted. �	

It is a particular feature of Theorem 3 that for the birds to approach a common
velocity coordination as a coherent flight regime is required only from time to time
at periods tm. In between the birds need only to coordinate in the weak sense that the
matrix of the flight regime has a positive diagonal. A second interesting feature of
Theorem 3 is that the coherent flight regimes at special periods tm can change with
time as well as being of a quite diverse form at different time steps. To analyze the
latter in more detail we make the following definition.

Definition 4. For t ∈N given let C(t), the core at t, be the intersection of all subsets
of {1, . . . ,n} which are saturated with respect to F(M) = { j | ai j(t) > 0 for some
i ∈ M}. Furthermore, a sight chain at t from i to j is a sequence (i1, . . . , im) in N

such that ik+1 ∈ S(ik, t) for all 1≤ k ≤ m− 1 and i = i1, j = im.
Using these concepts we can characterize a coherent flight regime as follows.

Proposition 1. Let t ∈ N and A(t) with positive diagonal. Then a flight regime is
coherent (at t) if and only if from each bird there is a sight chain (at t) to a bird in
the core (at t).

Proof. Suppose first, the flight regime is coherent. Since intersections of saturated
sets are nonempty and saturated again, as can be easily seen, it follows that C(t) is
nonempty and saturated. From Lemma 1 (iii) it follows that some power A(t)p is
scrambling. Thus, for i, j given, there exist sight chains from i to k and j to k for
some k. Since C(t) �= /0 there is some j ∈C(t) and because C(t) is saturated we must
have that k ∈ C(t). That is, there is a sight chain from i to k ∈ C(t). Conversely, if
there exist from each bird a sight chain to a bird in the core then C(t) �= /0. Thus, for
any two saturated sets M and M′, we have /0 �=C(t)⊆M∩M′ which means that the
flight regime at t must be coherent. �	

In the following we shall use Proposition 1 to discuss various possibilities for the
coherent flight regimes assumed in Theorem 3. For this discussion we leave aside the
other assumptions, made in Theorem 3 on the minimal interaction among the birds.
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The latter would require to go more deeply into the relationship between positions
and velocities as connected by v(t) = x(t + 1)− x(t). (We did it for Cucker–Smale
flocking in Corollary 2 where, however, the flight regimes did not change with time.)

Consider first the case that the core is minimal, that is, it consists of a single bird,
say, 1. Examples are leadership, that is, j ∈ S(1, t) for all j �= i, or line formation,
that is i+ 1 ∈ S(i, t) for 1≤ i ≤ n− 1. Another example is the famous V-formation
of certain kinds of geese consisting of two line formations with 1 at the top. In
general, with 1 as the core, the flight regime is an echelon, a treelike, hierarchical
composition of V -formations. It need, however, not to be actually a (reversed) tree
since cycles of seeing among the birds may occur. For example, the flight regime
may consist of two cycles of the same or of different orientation.

The core can consist instead of a single bird also of a group of different birds.
For example of a group of birds forming a cycle (with respect to seeing each other).
Connected to this cycle could be the other birds in a treelike manner, including
some further cycles. (Whereas cycles seem not so relevant for birds, in particular
for geese, they seem to be important for fish schools.)

The types of flight regimes discussed may show up one after the other at different
periods tm during the flight of the swarm. For example, considering leadership the
leader can change from tm to tm+1. With a different leader the swarm can change
speed and direction of velocity. That is, the swarm can move around and may make
even a turn. This applies also to other types of flight regimes, an echelon may move
around still remaining an echelon. It is possible, however, an echelon becomes a line
formation in the course of time.

It should be mentioned that the structure of the swarm in terms of sight chains
does not imply necessarily a similar structure in terms of positions in space.
Such a correspondence, however, is possible, especially if the structure of sight
is treelike without cycles. Furthermore, “sight” is only a substitute for any kind
of communication, for example acoustic communication, among the birds. The
above discussion of flight regimes is driven by the question how birds coordinate
to approach a common velocity. There are many other reasons relevant for swarm
formation, in particular from biology or aerodynamics which we did not address in
this paper. (For such issues as well as for questions of factual coordination see the
profound survey [14]).)
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Periodic Solutions of Differential and Difference
Systems with Pendulum-Type Nonlinearities:
Variational Approaches

Jean Mawhin

Abstract We survey some recent results on the use of variational methods in
proving the existence and multiplicity of periodic solutions of systems of differential
equations of the type

(φ(q′))′ = ∇qF(t,q)+ h(t)

or systems of difference equations of the type

Δ(φ(Δq(n− 1))) = ∇qF(n,q)+ h(n) (n ∈ Z)

when φ belongs to a class of suitable homeomorphisms between an open ball and
the whole space and F is periodic in the components of q.

Keywords Periodic equations • Difference systems • Pendulum nonlinearities •
Variational methods

1 Introduction

For the periodic problem associated to classical systems of forced pendulum-type

q′′ = ∇qF(t,q)+ h(t), q(0) = q(T ), q′(0) = q′(T ), (1)

with F : [0,T ]×R
N → R and ∇qF : [0,T ]×R

N → R
N continuous, F periodic in

each variable q j, and h ∈ L1([0,T ],RN), the existence of at least one solution was
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proved through the direct method of the calculus of variations in [16,17], when h has
mean value zero. The results are easily extended to systems involving p-Laplacians,
as shown in [10].

When q′′ is replaced by a “relativistic” differential operator of the type
(

q′
√

1−|q′|2

)′
,

the scalar case was first considered in [3] and the case of a system was studied in
[4]. The existence of at least one solution was proved under the same conditions.
The result is proved in [4] for the more general problem

(
φ(q′)

)′
= ∇qF(t,q)+ h(t), q(0) = q(T ), q′(0) = q′(T ), (2)

when φ belongs to a suitable class of homeomorphisms between the open ball
B(a) ⊂ R

N of center 0 and radius a > 0 and R
N . We describe in Sect. 3 a slightly

different approach given in [1], based upon Szulkin’s critical point theory for C1

perturbations of lower semicontinuous convex functionals [22] and a new reduction
of the corresponding variational inequality to the differential system.

Using Lusternik-Schnirelmann theory in Hilbert manifolds [18] or variants of it,
Chang [5], Rabinowitz [20], and the author [8] have independently obtained results
which imply that problem (1) has at least N + 1 geometrically distinct solutions
for every h ∈ L2 with mean value zero (see also [17]). Notice that because of the
periodicity property of F , if q(t) is a solution of (1), the same is true for (q1(t)+
j1ω1,q2(t)+ j2ω2, . . . ,qN(t)+ jnωN) for any ( j1, j2, . . . , jN) ∈ Z

N , and hence two
solutions q and q̂ of (1) are called geometrically distinct if

q �≡ q̂ (mod ω je j, j = 1,2, . . . ,N).

This result is an extension of an earlier one of the author and Willem [16] who
proved, under the same conditions, the existence of at least two geometrically
distinct solutions, using the variant of the mountain pass lemma introduced in [15]
to treat the special case where N = 1, and in particular the forced pendulum problem

q′′+ μ sinq = h(t), q(0) = q(T ), q′(0) = q′(T ).

See [9] for a survey of this problem. Very recently, Bereanu and Torres [2] have
extended the mountain pass approach of [15] to obtain the existence of at least two
geometrically distinct solutions for problem (2) with N = 1. It is not clear if their
approach is applicable to system (2) with N ≥ 2, and, would it be the case, the
existence of two solutions only would be insured.

We describe in Sect. 4 some results of [11], showing that when h ∈ L1+ε has
mean value zero, problem (2) has at least N + 1 geometrically distinct solutions. To
do this, we reduce problem (2) to an equivalent Hamiltonian system. The advantage
of the Hamiltonian formulation with respect to the Lagrangian one used in [3, 4]
and presented in Sect. 4 is that the Hamiltonian action functional is defined on
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the whole space, so that the Hamiltonian system is trivially its Euler-Lagrange
equation. The price to pay in the Hamiltonian formalism is that the Hamiltonian
action functional is indefinite, excluding the obtention of existence results by
minimization and of multiplicity results through classical Lusternik-Schnirelmann
category. We use instead an abstract multiplicity result of Szulkin [23] for some
compact perturbations of an indefinite self-adjoint operator. Although its final result
is stated in terms of the classical cuplength of a finite-dimensional manifold, the
underlying technique in Szulkin’s paper is a more sophisticated concept of relative
category. Complete details for the results of Sects. 3 and 4 can be found in the
mentioned papers and in the survey [14].

The use of variational methods in the study of T-periodic solutions of systems of
second-order difference equations having a variational structure has been introduced
in 2003 by Guo and Yu in [6], and many variants and generalizations have been
given since, none of them dealing with periodic nonlinearities. See [12, 13] for
references. In [12], given a positive integer T , the existence of T-periodic solutions
of systems of difference equations of the form

Δφ [Δu(n− 1)] = ∇uF [n,u(n)]+ h(n) (n ∈ Z) (3)

i.e., of Z-sequences (u(n))n∈Z such that u(n + T ) = u(n) for all n ∈ Z and
verifying (3), has been proven by minimization of an associated real function,
when F and h verify conditions analog to the ones of the differential systems.
Here Δu(n) := u(n+ 1)− u(n) is the usual forward difference operator. By some
reduction to a Hamiltonian form and the use of Szulkin’s results [23], it has been
shown in [13] that system (3) has indeed at least N + 1 geometrically distinct T-
periodic solutions. Those results are described in Sect. 5.

2 Some Notations and Preliminary Results

In R
N , we denote the usual inner product by 〈·, ·〉 and corresponding Euclidian norm

by | · |. We denote the usual norm in Lp := Lp(0,T ;RN) (1 ≤ p ≤ ∞) by | · |p, set
C := C([0,T ],RN), C1 = C1([0,T ],RN), and W 1,∞ := W 1,∞([0,T ],RN). The usual
norm | · |∞ is considered on C and |v|1,∞ = |v|∞ + |v′|∞ is the norm on W 1,∞ and C1.
Each v ∈ L1 can be written v(t) = v+ ṽ(t), with

v := T−1
∫ T

0
v(t)dt,

∫ T

0
ṽ(t)dt = 0.

So, v is the mean value of v. One has, for any v ∈ L∞,

|ṽ|∞ ≤
T
4
|v′|∞. (4)
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For any integer T > 0, HT denotes the space of T-periodic Z-sequences in R
N , i.e.,

of mappings u :Z→R
N such that u(n+T) = u(n) for all n∈Z. HT is isomorphic to

(RN)T = R
NT and can be endowed with the inner product and corresponding norm

(u|v) :=
T

∑
j=1

〈u( j),v( j)〉, ‖u‖=
(

T

∑
j=1

|u( j)|2
)1/2

.

Equivalent norms are |u|1 = ∑T
j=1 |u( j)|, |u|∞ = max1≤ j≤T |u( j)|. For any u =

(u(n))n∈Z ∈ HT , we set u = T−1 ∑T
j=1 u( j) ∈ R

N , identify u with the corresponding
constant T-periodic sequence, and set

ũ := u− u, HT := {u ∈ HT : u = u}, H̃T := {u ∈HT : u = 0}.

Given a > 0, a homeomorphism φ : B(a)→ R
N is said to be of class R if φ(0) = 0,

φ = ∇Φ, with Φ : B(a)→ R of class C1 on B(a), continuous, strictly convex on
B(a), and such that Φ(0) = 0. If Φ∗ : RN → R is the Legendre-Fenchel transform
of Φ defined by

Φ∗(v) = 〈φ−1(v),v〉−Φ[φ−1(v)] = sup
u∈B(a)

{〈u,v〉−Φ(u)},

then Φ∗ is also strictly convex, and, with d := maxu∈B(a)Φ(u),

a|v|− d ≤Φ∗(v)≤ a|v| (v ∈ R
N), (5)

so that Φ∗ is coercive on R
n. Finally, Φ∗ is of class C1, φ−1 = ∇Φ∗, so that

v = ∇Φ(u) = φ(u), u ∈ B(a) ⇔ u = φ−1(v) = ∇Φ∗(v), v ∈ R
n.

3 Lagrangian Variational Approach for Periodic Solutions
of Differential Systems

A function F : [0,T ]×R
N →R is said to be of class P if F is continuous, F(t,0) = 0

for a.e. t ∈ [0,T ] (without loss of generality), ∇qF : [0,T ]×R
N → R

N exists and is
continuous, and there are some ω1 > 0, . . . ,ωN > 0 such that

F(t,q1, . . . ,qN) = F(t,q1 +ω1, . . . ,qN +ωN)

for all (t,q) ∈ [0,T ]×R
N . We consider the existence of solutions for the periodic

problem

(φ(q′))′ = ∇qF(t,q)+ h(t), q(0) = q(T ), q′(0) = q′(T ), (6)
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where h ∈ L1, φ is of class R and F is of class P. A solution of (6) is a function
u ∈C1, such that |u′|∞ < a, φ(u′) is differentiable a.e. and (6) is satisfied a.e.

The following variational setting for dealing with equations or systems of type (6)
was introduced in [1]. Define the convex subset K of W 1,∞ by

K := {v ∈W 1,∞ : |v′|∞ ≤ a, v(0) = v(T )},

and the function Ψ : C→ (−∞,+∞] by

Ψ(v) =

{
ϕ(v), if v ∈ K,

+∞, otherwise,

with ϕ : K →R given by

ϕ(v) =
∫ T

0
Φ(v′(t))dt, v ∈ K.

Obviously, Ψ is proper and convex. It is proved in [1] that Ψ is lower semicontinu-
ous on C and that K is closed in C. Next, define G : C→ R by

G(u) =
∫ T

0
[F(t,u(t))+ 〈h(t),u(t)〉]dt, u ∈C.

A standard reasoning shows that G is of class C1 on C and its derivative is given by

G′(u)(v) =
∫ T

0
〈∇F(t,u(t))+ h(t),v(t)〉dt, u,v ∈C.

Define the functional I : C → (−∞,+∞] by I =Ψ +G. As sum of a proper convex
lower semicontinuous function and of a C1 function, I has the structure required by
Szulkin’s critical point theory [22]. Accordingly, a function q ∈C is a critical point
of I if q ∈ K and satisfies the inequality

Ψ (v)−Ψ(q)+G′(q)(v− q)≥ 0, ∀v ∈C,

or, equivalently

∫ T

0
[Φ(v′(t))−Φ(q′(t))+ 〈∇F(t,q(t))+ h(t),v(t)− q(t)〉dt ≥ 0, ∀v ∈ K.

The following simple result is given in [22].



88 J. Mawhin

Lemma 1. Each local minimum of I is a critical point of I.

The following elementary lemma, proved in [1] by direct computation, is useful is
relating the critical points of I to the solutions of (6).

Lemma 2. For every f ∈ L1, the problem

(φ(q′))′ = q+ f (t), q(0) = q(T ), q′(0) = q′(T )

has a unique solution q f , also unique solution of the variational inequality

∫ T

0
[Φ(v′(t))−Φ(q′(t))+ 〈q+ f (t),v(t)− q(t)〉]dt ≥ 0, ∀v ∈ K,

and unique minimum over K of the strictly convex functional J defined on K by

J(q) =
∫ T

0

[
Φ(q′(t))+

|q|2
2

+ 〈 f (t),q(t)〉
]

dt.

The idea of proof of the result below first occurred in [3].

Proposition 1. If q is a critical point of I, then q is a solution of problem (6).

Proof. For q a critical point of I, let

fq := ∇F(·,q)+ h− q∈ L1.

Because of Lemma 2, the problem

(φ(w′))′ = w+ fq(t), w(0) = w(T ), w′(0) = w′(T ).

has a unique solution q#, which is also the unique solution of the variational
inequality

∫ T

0
[Φ(v′(t))−Φ(q#′(t))+ 〈q# + fu(t),v(t)− q#(t)]dt ≥ 0, ∀v ∈ K.

Since q is a critical point of I, we have

∫ T

0
[Φ(v′(t))−Φ(q′(t))+ 〈q+ fq(t),v(t)− q(t)〉]dt ≥ 0, ∀v ∈ K.

It follows by uniqueness that q = q#, and q solves problem (6). �	

The following result was first proved in the scalar case in [3] and in the vector
case in [4] using slightly different arguments.
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Theorem 1. If φ is of class R and F of class P, then, for any h ∈ L1 with h = 0,
problem (6) has at least one solution which minimizes I on C (or K).

Proof. Let

ρ := N1/2 max
1≤ j≤N

ω j, (7)

so that [0,ω1]× ·· ·× [0,ωN ] ⊂ B(ρ). Due to the periodicity of F(t, ·) and because
of h = 0, it holds

I(v+ j1ω1e1 + · · ·+ jNωNeN) = I(v)

for all v ∈ K and ( j1, . . . , jN) ∈ Z
N . Then, with K̂ρ := {u ∈ K : |u| ≤ ρ},

inf
K̂ρ

I = inf
K

I = inf
C

I,

and it suffices to prove that there is some q ∈ K̂ρ such that

I(q) = inf
K̂ρ

I. (8)

If v ∈ K̂ρ , we obtain, using (4),

|v|∞ ≤ |v|+ |ṽ|∞ ≤ ρ +
Ta
4
.

This, together with |v′|∞ ≤ a, shows that K̂ρ is bounded in W 1,∞ and, by the
compactness of the embedding W 1,∞ ⊂C, the set K̂ρ is relatively compact in C. Let
{qn} ⊂ K̂ρ be a minimizing sequence for I. Passing to a subsequence if necessary,
we may assume that {qn} converges uniformly to some q ∈ K̂ρ . From the lower
semicontinuity of Ψ and the continuity of F on C, we obtain

I(q)≤ liminf
n→∞

I(qn) = lim
n→∞

I(qn) = inf
K̂ρ

I,

showing that (8) holds true. By Lemma 1 and Proposition 1, q is a solution of (6).
�	

For the use in examples, let us introduce the continuous mapping S : [0,T ]×
R

N → R
N by

S(t,u) := (μ1(t)sin u1,μ2(t)sinu2, . . . ,μN(t)sinuN) (μ j ∈ R, j = 1, . . . ,N), (9)
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where μ j : [0,T ]→ R is continuous ( j = 1, . . . ,N), so that

S(t,u) = ∇c(t,u) with c(t,u) :=
N

∑
j=1

μ j(t)(1− cosu j).

Example 1. For any T > 0 and any h ∈ L1 such that h = 0, the problem

(
q′

√
1−|q′|2

)′
+ S(t,q) = h(t), u(0) = u(T ), u′(0) = u′(T )

has at least one solution.
In particular, in the scalar case, the forced relativistic pendulum problem

(
q′

√
1− q′2

)′
+ μ sinq = h(t), q(0) = q(T ), q′(0) = q′(T )

has at least one solution for any μ ∈ R and T > 0 when h = 0.

4 Hamiltonian Variational Approach for Periodic Solutions
of Differential Systems

The change of variables ∇Φ(q′) = p, equivalent to q′ = ∇Φ∗(p), transforms
problem (6) into the equivalent one:

p′ = ∇qF(t,q)+ h(t), q′ = ∇Φ∗(p), p(0) = p(T ), q(0) = q(T ). (10)

With the Hamiltonian function H : [0,T ]×R
N×R

N → R defined by

H(t, p,q) = Φ∗(p)−F(t,q)−〈h(t),q〉,

where Φ∗ is the Legendre-Fenchel transform of Φ defined in Sect. 2, problem (10)
takes the Hamiltonian form

p′ =−∇qH(t, p,q), q′ = ∇pH(t, p,q), p(0) = p(T ), q(0) = q(T ).

Formally, system (10) is the Euler-Lagrange equation associated to the (action)
functionalA defined on a suitable space of T-periodic functions (p,q) by

A(p,q) =
∫ T

0

[
−〈p(t),q′(t)〉+Φ∗(p(t))−F(t,q(t))−〈h(t),q(t)〉

]
dt.
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If

J =

(
0 I
−I 0

)
,

denotes the 2N× 2N symplectic matrix, define (see, e.g., [19]) the space H1/2
# :=

H1/2
# (0,T ;R2N) as the space of functions z = (p,q) ∈ L2(0,T ;R2N) with Fourier

series z(t) = ∑k∈Z ekωtJ zk (ω = 2π/T ), such that zk ∈R
2N (k ∈ Z) and

|z|21/2 := ∑
k∈Z

(1+ |k|)|zk|2 <+∞.

With the corresponding inner product

(z|w) := ∑
k∈Z

(1+ |k|)〈zk,wk〉,

H1/2
# is a Hilbert space such that H1

# (0,T ;R2N) ⊂ H1/2
# ⊂ Ls(0,T ;R2N) for any

s ∈ [1,+∞).
By easy computations based on Fourier series and Cauchy-Schwarz inequality,

for (p,q), (u,v) smooth, the symmetric bilinear form

b[(p,q),(u,v)] :=−
∫ T

0
[〈p′(t),v(t)〉+ 〈u′(t),q(t)〉]dt

generating the quadratic form (p,q) �→
∫ T

0 [−2〈p(t),q′(t)〉]dt satisfies an inequality
of the form

|b[(p,q),u,v)]| ≤C|(p,q)|1/2|(u,v)|1/2.

Hence it can be extended to H1/2
# as a continuous bilinear form, still noted b, and the

linear self-adjoint operator A : H1/2
# → H1/2

# defined through Riesz’s representation
theorem by the relation

(A(p,q)|(u,v)) = b[(p,q),(u,v)] ((p,q),(u,v) ∈H1/2
# ) (11)

is continuous. In terms of Fourier series, with w = (u,v),

(A(p,q)|(u,v)) = 2π ∑
k∈Z

k〈zk,wk〉

and hence

(A(p,q)|(p,q)) = 2π ∑
k∈Z

k|zk|2.
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It is easily seen that the spectrum of A is made of the eigenvalues λk = 2π k
1+|k| (k ∈

Z), each of multiplicity 2N, and of the elements −2π , 2π in the essential spectrum.

Therefore, it is standard to show that H1/2
# = H−⊕H0⊕H+ (orthogonal sum with

respect to (·|·) and to L2), with H0 = ker A� R
2N , and, for z− ∈ H−, z+ ∈ H+,

(Az−|z−)≤−π |z−|21/2, (Az+|z+)≥ π |z+|21/2.

Furthermore the subspaces H− and H+ are invariant for A.
Using estimate (5), it is well known [19] that the assumptions on φ and F imply

that A is of class C1 on H1/2
# and that any critical point (p̂, q̂) of the functional

A(p,q) =−1
2
(A(p,q)|(p,q))+

∫ T

0
[Φ∗(p(t))−F(t,q(t))−〈h(t),q(t)〉]dt

is a (Carathéodory) solution of (10) (see, e.g., [19]).
Let E be a real Hilbert space with inner product (·|·) and norm ‖ · ‖ and V d a

compact d-dimensional C2-manifold without boundary. Let L : E → E be a bounded
linear self-adjoint operator to which there corresponds an orthogonal decomposition
E = E−⊕E0⊕E+ into invariant subspaces, with E0 = ker L, and ε > 0 such that

(Lx+|x+)≥ ε‖x+‖2 (x+ ∈ E+), (Lx−|x−)≤−ε‖x−‖2 (x− ∈ E−).

The following result is due to Szulkin [23].

Lemma 3. Let Ψ ∈C1(E×V d ,R) be given by Ψ(x,v) = 1
2 (Lx|x)−ψ(x,v), where

ψ ′ is compact. Suppose that ψ ′(E×V d) is a bounded set, E0 is finite dimensional
and, if dim E0 > 0, ψ(x0,v)→−∞ (or ψ(x0,v)→+∞) as ‖x0‖→∞, x0 ∈ E0. Then
Φ has at least cuplength (V d)+ 1 critical points.

The cuplength of X is the greatest number of elements of nonzero degree in the
cohomology H∗(X) of X with nonzero cup product, i.e., the largest integer m for
which there exists α j ∈ Hkj(X), 1 ≤ j ≤ m, such that k1, . . . ,km ≥ 1 and α1 ∪ . . .∪
αm �= 0 in Hk1+...+km(X). For the n-dimensional torus Tn, cuplength(Tn) = n [21].

Lemma 3 applied to a suitable reformulation ofA gives our multiplicity theorem.

Theorem 2. If φ is of class R and F of class P, then, for every h ∈ Ls (s > 1) with
h = 0, problem (2) has at least N + 1 geometrically distinct solutions.

Proof. The fact that F is of class P and h= 0 implies that, for any ( j1, . . . , jN)∈ Z
N ,

A(p,q1 + j1ω1e1, . . . ,qN + jNωNeN) =A(p,q).

To each critical point (p̂, q̂) of A on H1/2
# corresponds the orbit

(p̂, q̂1 + j1ω11, . . . , q̂N + jNωNeN) (( j1, . . . , jN) ∈ Z
N)
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of critical points, which can be considered as a single critical point lying on the
manifold E×T

N , with T
N the N-torus RN/(ω1Z, . . . ,ωNZ), and

E = {(p,q) ∈ H1/2
# : q = 0}.

Denoting by L : E → E the restriction to E of A given in (11), we have E = H−⊕
E0⊕H+, where E0 � R

N = {(p,0) ∈ R
2N : p ∈ R

N} = ker L. Hence, A has the
equivalent expression

1
2
(L(p, q̃)|(p, q̃)+

∫ T

0
[Φ∗(p(t))−F(t,q+ q̃(t))−〈h(t), q̃(t)〉]dt,

namely,

Ψ (x,v) =
1
2
〈L(p, q̃),(p, q̃)〉−ψ(p, q̃;q)

requested by Szulkin’s lemma with x = (p, q̃), v = q, considered as an element of
T

N , and

ψ(p, q̃;q) :=
∫ T

0
[F(t,q+ q̃(t))+ 〈h(t), q̃(t)〉−Φ∗(p(t))]dt.

Therefore, for any v, w̃,w, we have

(ψ ′(p, q̃;q)|(v, w̃;w))

=
∫ T

0
[〈∇qF(t,q+ q̃(t)),w+ w̃〉+ 〈h(t), w̃(t)〉− 〈φ−1(p(t)),v(t)〉]dt.

Because ∇qF(t, ·) and φ−1 have a bounded range, ψ ′ has a bounded range, and ψ ′ is

compact by the compact embedding of H1/2
# in Ls for any s≥ 1. On the other hand,

because of (5) and the fact that any (p, q̃) ∈ E0 has the form (p0,0) with p0 ∈ R
N ,

we have, for |p0| → ∞,

ψ(p0,q) =
∫ T

0
[−F(t,q)−Φ∗(p0)]dt =−T [F(·,q)+TΦ∗(p0)]→−∞.

All the assumptions of Lemma 3 being satisfied,Ψ has at least cuplength (TN)+1=
N + 1 critical points, i.e., A has at least N + 1 geometrically distinct critical points.

�	

Example 2. For any h∈ Ls (s > 1) such that h = 0 and S defined in (9), the problem

(
q′

√
1−|q′|2

)′
+ S(t,q) = h(t), q(0) = q(T ), q′(0) = q′(T )

has at least N + 1 geometrically distinct solutions.
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In particular, for any μ ∈R, T > 0 and h ∈ Ls (s > 1) such that h = 0, the forced
relativistic pendulum problem

(
q′

√
1− q′2

)′
+ μ sinq = h(t), q(0) = q(T ), q′(0) = q′(T )

has at least two geometrically distinct solutions.

Remark 1. A similar Hamiltonian approach has been recently used by Manásevich
and Ward [7] to give an alternative proof to the result of Brezis and the author
on the relativistic forced pendulum [3]. The existence of the corresponding critical
point for the associated Hamiltonian action is obtained using Rabinowitz’ saddle
point theorem [19].

5 Periodic Solutions of Systems of Difference Equations

In this section the function F :Z×R
N →R is said to be of class P if F is continuous,

F(n,0) = 0 for n ∈ Z, ∇qF : Z×R
N → R

N exists and is continuous, and there are
some ω1 > 0, . . . ,ωN > 0 such that

F(n,q1, . . . ,qN) = F(n,q1 +ω1, . . . ,qN +ωN)

for all (n,q) ∈ Z×R
N . For φ of class R and h ∈ HT , let us consider the problem

of the existence of T-periodic solutions of the system of difference equations, with
Δu(n) = u(n+ 1)− u(n),

Δφ [Δq(n− 1)] = ∇qF[n,q(n)]+ h(n) (n ∈ Z). (12)

When those assumptions hold, the real function

I(q) :=
T

∑
i=1
{Φ[Δq(i)]+F[i,q(i)]+ 〈h(i),q(i)〉}

is well defined on the closed convex subset K ⊂ HT defined by K := {u ∈ HT :
|Δu|∞ ≤ a}. We first state an easy necessary and sufficient condition for the
existence of a minimum to I.

Proposition 2. If φ is of class R and F of class P, I has a minimum over K if and
only if it has a minimizing subsequence (uk) in K such that (uk) is bounded.

Any minimizer q of I on K satisfies a variational inequality.
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Lemma 4. If q minimizes I over K, then, for all v ∈ K,

T

∑
i=1

{
Φ[Δv(i)]−Φ[Δq(i)]+ 〈∇qF [i,q(i)]+ h(i),v(i)− q(i)〉

}
≥ 0.

In order to show that any minimizer of I on K is indeed a solution of (12), we need
the following elementary lemma where, when appropriate, we identify R

N with the
subspace of HT made of constant sequences.

Lemma 5. If φ is of class R, then, for any e ∈ HT , the systemv

Δφ [Δq(n− 1)] = q+ e(n) (n ∈ Z)

has a unique T-periodic solution q̂e, which is also the unique solution of the
variational inequality

T

∑
i=1

{
Φ[Δv(i)]−Φ[Δ q̂e(i)]+ 〈q̂e + e(i),v(i)− q̂e(i)〉

}
≥ 0 ∀v ∈ HT .

We can relate, like in the case of differential systems, the minimizers of I on K to
the T-periodic solutions of system (12).

Proposition 3. If φ is of class R and F of class P, any minimizer of I on K is a
T-periodic solution of (12).

The existence of a minimum of I can be proved when h = 0, giving the following
existence result.

Theorem 3. If φ is of class R and F of class P, then, for any h∈HT such that h= 0,
system (12) has at least one T-periodic solutions which minimizes I over HT .

Proof. As F is of class P and h = 0, we have, for all ( j1, . . . , jN) ∈ Z
N ,

I(q1 + j1ω1e1, . . . ,qN + jNωNeN) = I(q1, . . . ,qn),

and hence infK I = infK̂ρ
I, where K̂ρ := {u ∈ K : |u| ≤ ρ} and ρ is given in (7). As

K̂ρ is closed and bounded in HT �R
NT , Weierstrass’ theorem implies the existence

of some q ∈ K̂ρ such that I(q) = infK̂ρ
I, so that q is a minimizer of I on K. The

result follows from Proposition 3. �	

To obtain the multiplicity result, we again write system (12) as a system of first-
order difference equations having a Hamiltonian structure through the change of
variables

∇Φ[Δq(n− 1)] = p(n) (n ∈ Z)

equivalent to

Δq(n− 1) = ∇Φ∗[p(n)] (n ∈ Z),
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with Φ∗ the Legendre-Fenchel transform of Φ . System (12) is equivalent to

Δ p(n) = ∇qF [n,q(n)]+ h(n), Δq(n) = ∇Φ∗[p(n+ 1)], (n ∈ Z). (13)

which has the Hamiltonian form for the Hamiltonian function H :Z×R
N×R

N →R

given by

H(n,u,v) = Φ∗(u)−F(n,v)−〈h(n),v〉

If we define the Hamiltonian action A : HT ×HT → R by

A(p,q) =−
T

∑
i=1

{〈Δ p(i),q(i)〉+Φ∗[p(i)]−F[i,q(i)]−〈h(i),q(i)〉},

it is standard to show that the critical points of A on HT ×HT correspond to the
T-periodic solutions of (13) and hence to the T-periodic solutions of (12).

Now the quadratic formQ defined on HT ×HT by

Q(p,q) =−2
T

∑
i=1

〈Δ p(i),q(i)〉 =−2(Δ p|q)

vanishes on HT ×HT and is indefinite, as shown easily, and the bilinear form b :
(HT ×HT )× (HT ×HT )→R defined by

b[(p,q),(u,v)] = (Δ p|v)− (Δu|q)

is symmetric, so that

(A(p,q)|(u,v)) =−(Δ p|v)− (Δu|q) ((p,q),(u,v) ∈HT ×HT ),

for some self-adjoint operator A : HT ×HT → HT ×HT and

1
2
(A(p,q)|(p,q)) =−(Δ p|q) = 1

2
Q(p,q).

The eigenvalues of A coincide with the eigenvalues of b and, using their Weber-
Poincaré-Fischer variational characterization, satisfy the following conditions.

Lemma 6. The eigenvalues of B (or b) can be written in a sequence

−λNT ≤−λNT−1 ≤ . . .≤−λ1 < λ0 = 0 < λ1 <≤ . . .≤ λNT−1 ≤ λNT .

The eigenspace of λ0 = 0 is HT ×HT and HT ×HT can be decomposed in an
orthogonal direct sum

HT ×HT = H−⊕H0⊕H+
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with H0 = HT ×HT and

Q(p−,q−)≤−λ1(‖p−‖2 + ‖q−‖2) ((p−,q−) ∈ H−)

Q(p+,q+)≥ λ1(‖p+‖2 + ‖q+‖2) ((p+,q+) ∈ H+).

Finally, the spaces H−, H0, H+ are invariant for B.

Notice that

A(p,q) =
1
2
(A(p,q)|(p,q))−

T

∑
i=1

[Φ∗[p(i+ 1)]−F[i,q(i)]−〈h(i),q(i)〉]

We apply Proposition 3 to a suitable reformulation of A to obtain the multiplicity
theorem corresponding to Theorem 2 in the differential case. The proof is similar
and details can be found in [13].

Theorem 4. Assume that φ is of class R and F of class P. Then, for every h ∈ HT

such that h = 0, problem (12) has at least N + 1 geometrically distinct solutions.

Example 3. For any positive integer T and h ∈ HT such that h = 0, the system

ΔφR[Δq(n− 1)]+ S[n,q(n)]= h(n) (n ∈ Z)

has at least N + 1 geometrically distinct T-periodic solutions. In particular, for any
μ ∈ R, positive integer T and h ∈HT such that h = 0, the equation

Δφ [Δq(n− 1)]+ μ sinq(n) = h(n) (n ∈ ZZ)

has at least two geometrically distinct T-periodic solutions.
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Two-Dimensional Differential Systems
with Asymmetric Principal Part

Felix Sadyrbaev

Abstract We consider the Sturm–Liouville nonlinear boundary value problem

{
x′ = f (t,y)+ u(t,x,y),
y′ =−g(t,x)+ v(t,x,y),

x(0)cosα− y(0)sinα = 0,
x(1)cosβ − y(1)sinβ = 0,

assuming that the limits limy→±∞
f (t,y)

y = f±, limx→±∞
g(t,x)

x = g± exist. Nonlineari-
ties u and v are bounded. The system includes various cases of asymmetric equations
(such as the Fučı́k one). Two classes of multiplicity results are discussed. The first
one is that of A. Perov–M. Krasnosel’skii; the second one has originated from the
works by L. Jackson–K. Schrader and H. Knobloch.

1 Introduction

The goal of this paper is to describe and discuss two approaches for investigation of
multiplicity of solutions for nonlinear boundary value problems of the type

{
x′ = f (t,y)+ u(t,x,y),
y′ =−g(t,x)+ v(t,x,y),

(1)
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where f and g are principal terms and u and v are bounded nonlinearities. Functions
f and g may be asymmetric functions in the meaning that f+ �= f− and g+ �= g−
(see the notation in Sect. 2).

This system is considered together with the Sturm–Liouville boundary condi-
tions

x(0)cosα− y(0)sinα = 0,
x(1)cosβ − y(1)sinβ = 0,

(2)

where 0≤ α < π , 0 < β ≤ π .

Remark 1. The interval [0,1] may be changed to [a,b] and the homogeneous
boundary conditions may be replaced by nonhomogeneous ones.

The following equations are included in the scheme (1), (2):

1. the quasi-linear problem

{
x′ = a(t)y+ u(t,x,y),
y′ =−b(t)x+ v(t,x,y);

(3)

2. the Fučı́k type equation

x′′ =−λ x++ μx−+ v(t,x,x′), (4)

or the equivalent system

{
x′ = y,
y′ =−λ x++ μx−+ v(t,x,y);

(5)

3. the equation with asymmetric principal part

x′′ =−g(x)+ v(t,x,x′), (6)

where lim
x→±∞

g(x)
x

= g±, in general g+ �= g−.

2 Perov’s Approach

Perov’s approach [5, Chap. 15] can be explained in the following way.
Consider the problem

x′′ =−g(x), x(0) = 0, x(π) = 0.
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Suppose that g(0) = 0 and

g(x)∼ k2x, x∼ 0,

g(x)∼ m2x, x∼ ∞,

where m �= k.
The problem has then at least 2|k−m| nontrivial solutions. This can be confirmed

by analyzing the (x,x′)-plane by the phase plane method. Indeed, consider the
Cauchy problems

x′′ =−g(x), x(0) = 0, x′(0) = γ.

Introduce polar coordinates as x = ρ sinϕ , x′ = ρ cosϕ . The above initial condi-
tions in polar coordinates are (for x′(0)> 0 and x′(0)< 0, respectively)

ϕ0(0) = 0, ρ(0) = γ > 0 or ϕπ(0) = π , ρ(0) = γ > 0.

Then ϕ0(1;γ) takes at least |m− k| values of the form π i (i is an integer) as γ varies
from 0 to +∞ thus producing at least |m− k| solutions to the problem. Similarly,
another at least |m−k| solutions can be obtained analyzing the behavior of ϕπ(1;γ):

(A1) Functions f , g, u, v are continuous and continuously differentiable in phase
variables x,y.

(A2) The uniform in t limits

lim
y→+∞

f (t,y)
y

= f+, lim
y→−∞

f (t,y)
y

= f−,

lim
x→+∞

g(t,x)
x

= g+, lim
x→−∞

g(t,x)
x

= g−

exist, where f± and g± are nonnegative.
(A3) u and v are bounded nonlinearities.
(A4) There exists a particular solution (the trivial one, for simple notation) of the

problem (1), (2).

Before to state the result we need to introduce some definitions.
Consider the linear system

{
x′ = a(t)x+ b(t)y,
y′ = c(t)x+ d(t)y.

(7)

Introduce polar coordinates

x = ρ sinϕ , y = ρ cosϕ .

The increase of ϕ(t) corresponds to clock-wise rotation in the phase plane.
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Definition 1. System (7) is k-oscillatory (k is a nonnegative integer) with respect
to the boundary conditions (2) if the angular function ϕ(t) with the initial condition
ϕ(0) = α satisfies the inequalities

β + kπ < ϕ(1)< β +(k+ 1)π . (8)

Consider the asymmetric system

{
x′ = f+(t)y+− f−(t)y−,
y′ =−g+(t)x++ g−(t)x−,

(9)

which is a limiting system for

{
x′ = f (t,y)+ u(t,x,y),
y′ =−g(t,x)+ v(t,x,y).

(10)

Introduce polar coordinates for (9) as

x = r sinΘ, y = r cosΘ.

Let Θ0 be defined by the initial condition Θ0(0) = α and Θπ be defined by the
condition Θπ(0) = α +π .

Definition 2. Asymmetric system (9) is called (m,n)-oscillatory (m and n are
positive integers) with respect to the boundary conditions (2) if the angular functions
Θ0(t) and Θπ(t) satisfy the inequalities

β +mπ < Θ0(1)< β +(m+ 1)π
β +(n+ 1)π < Θπ(1)< β +(n+ 2)π .

(11)

Lemma 1. Let m and n be the numbers in (11).
Then |m− n| ≤ 1.

Proof. Lemma 3.2 in [10] or, alternatively, proof is essentially that of Proposition
2.1 in [7]. �	

Remark 2. The examples exist for any possible case in Lemma 1. For instance,
m = 1 and n = 0 for the problem

x′′ =−(kπ)2x+, x(0) = 0, x(1) = 0,

where 1 < k < 2. The equation above is equivalent to the system

{
x′ = y,
y′ =−(kπ)2x+.
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Remark 3. The right sides in both systems (7) and (9) are positive homogeneous,
and differential equations for the angular functions ϕ(t) and Θ(t) do not depend on
ρ and r, respectively.

Theorem 1. Suppose the conditions (A1) to (A4) hold. Assume that

1. The variational system around the trivial solution

{
z′ = fy(t,0)w+ ux(t,0,0)z+ uy(t,0,0)w,
w′ =−gx(t,0)z+ vx(t,0,0)z+ vy(t,0,0)w

(12)

is k-oscillatory (in the sense of Definition 1).
2. The limiting system (9) is (m,n)-oscillatory (Definition 2).

Then the number N of nontrivial solutions to the problem (1), (2) satisfies the
estimate

N ≥ |m− k|+ |k− n|. (13)

Proof. Theorem 4.1 in [10] or, alternatively, the proof of Theorem 3.1 in [7] can be
adapted for the case under consideration. �	

3 Jackson–Schrader’s Approach

The approach described in the previous section is based on comparison of the
behaviors of nonlinearities in the right sides of a system around some specific
solution (the trivial one, for instance), and at infinity the approach we start to
describe now is based on the study of types of solutions to BVP.

We restrict ourselves to the boundary conditions

x(0) = 0, x(1) = 0. (14)

It is well known that the problem

x′′ = f (t,x,x′), x(0) = 0, x(1) = 0 (15)

is solvable if a continuous nonlinearity f is bounded. A solution x(t) is a C2-function
defined in the interval [0,1].

In case the right side f is an unbounded function, some specific conditions should
be imposed in order to guarantee the existence of a solution to the problem. One of
the suitable set of conditions in this case is the existence of the so-called lower and
upper functions α and β . Namely, the problem

x′′ = f (t,x), x(0) = 0, x(1) = 0 (16)



104 F. Sadyrbaev

is solvable if there exist regularly ordered upper and lower functions β and α (i.e.,
β ′′(t) ≤ f (t,β (t)), α ′′(t) ≥ f (t,α(t)), α ≤ β for t ∈ [0,1], α(0) ≤ 0 ≤ β (0),
α(1)≤ 0≤ β (1)).

Similar type results are valid for f = f (t,x,x′). Then additional Nagumo–
Bernstein type conditions are needed to ensure the solvability of the problem (one
may consult the book [1] and the article [2] for the related discussion).

It was observed by Jackson and Schrader [3] (also Knobloch [4] for different
boundary conditions) that in the above conditions more can be said about the
expected solution. Namely, a solution ξ (t) exists with the specific property that
it can be approximated by a monotone sequence of solutions {ξn} of auxiliary
boundary problems of the Dirichlet type.

As a result, the respective equation of variations

y′′ = fx(t,ξ (t),ξ ′(t))y+ fx′(t,ξ (t),ξ ′(t))y′, (17)

is disconjugate in the interval (0,1), that is, a solution of the Cauchy problem (17),

y(0) = 0, y′(0) = 1 (18)

has not zeros in (0,1).
This observation gave motivation for the following studies. Consider a quasi-

linear boundary value problem

x′′+λ x = F(t,x,x′), x(0) = 0, x(1) = 0, (19)

where F is bounded (and Lipschitzian, for technical reasons).

Definition 3. The linear part x′′+λ x is i-nonresonant with respect to the boundary
conditions x(0) = 0, x(1) = 0 if a solution of the Cauchy problem x′′+ λ x = 0,
x(0) = 0, x′(0) = 1 has exactly i zeros in (0,1) and x(1) �= 0.

Definition 4. A solution ξ (t) of the BVP (19) is an i-type solution if the difference
u(t;γ) = x(t;γ)− ξ (t) has exactly i zeros in (0,1) and u(1;γ) �= 0 for small (in
modulus) γ, where x(t;γ) is a solution of

x′′+λ x = F(t,x,x′), x(0) = 0, x′(0) = ξ ′(0)+ γ.

It was shown in [9] that if the linear part is i-nonresonant, then an i-type solution
ξ (t) exists. Then a solution y(t) of the respective equation of variations (if F has
partial derivatives)

y′′+λ y = Fx(t,ξ (t),ξ ′(t))y+Fx′(t,ξ (t),ξ ′(t))y′, y(0) = 0, y′(0) = 1

has not zeros in (0,1). The case y(1)= 0 is not excluded, however, and the respective
examples exist.
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This knowledge can be used to detect multiple solutions in BVPs. For instance,
in the work [8] the multiplicity of solutions for the problem

x′′ =−q(t)|x|psignx, x(0) = 0, x(1) = 0

was studied using the quasi-linearization process. Problems of the type

x′′+ k2x = trunc{k2x− q(t)|x|p signx}, x(0) = 0, x(1) = 0

were considered with different k, where the right side in the above line is the
appropriate truncation of the function k2x− q(t)|x|p signx. The multiplicity results
were established.

3.1 Equations with Asymmetrical Principal Part

Consider the problem with a piecewise linear left side (asymmetrical principal part)
in equation

x′′+λ x+− μx− = f (t,x,x′), x(0) = 0, x(1) = 0, (20)

where x+ = max{x,0}, x− = max{−x,0}, λ and μ are nonnegative parameters.
The respective homogeneous equation

x′′ =−λ x++ μx− (21)

is not linear, but it possesses the positive homogeneity property, that is, for α ≥ 0
the product αx(t) is a solution if x(t) does. The sum of two solutions x1(t) and x2(t)
need not to be a solution.

The natural question arises as is the problem (20) solvable if a continuous
function f is bounded.

To answer this question consider the problem

x′′ =−λ x++ μx−, x(0) = 0, x(1) = 0. (22)

A set ΣF of all nonnegative (λ ,μ) such that the problem (22) has a nontrivial
solution is called the Fučı́k spectrum.

It appears that the condition (λ ,μ) �∈ ΣF is not sufficient for solvability of the
problem (20) even for bounded f .

Example 1.

x′′+λ x+ =−1, x(0) = 0, x(1) = 0,

where λ = 4π2, μ = 0. A solution to the BVP does not exist.
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The solvability, however, can be proved for “good” regions as was claimed in [6].
To describe “good” regions recall that branches of the Fučı́k spectrum are given

by the relations:

F+
0 =

{(
λ ,μ

)
:

π√
λ

= 1, μ ≥ 0
}
,

F−0 =
{(

λ ,μ
)

: λ ≥ 0,
π
√μ

= 1
}
,

F+
2i−1 =

{
(λ ; μ) : i

π√
λ
+ i

π
√μ

= 1
}
,

F−2i−1 =
{
(λ ; μ) : i

π
√μ

+ i
π√
λ

= 1
}
,

F+
2i =

{
(λ ; μ) : (i+ 1)

π√
λ
+ i

π
√μ

= 1
}
,

F−2i =
{
(λ ; μ) : (i+ 1)

π
√μ

+ i
π√
λ

= 1
}
.

The Fučı́k spectrum is depicted in Fig. 1.
Let Di be a part of “good” region where solutions of the initial value problems

x′′ =−λ x++ μx−, x(0) = 0, x′(0) =±1

have exactly i zeros in (0,1). If (λ ,μ) is in a “good” region, these two solutions are
of opposite signs at t = 1, and this is important for solvability of the boundary value
problem (20).

A set D0 is a square below F−0 and to the left of F+
0 . A set D1 is a region bounded

by F−0 , F+
0 , and F±1 . A set D2 is a region bounded by F±1 and min{F+

2 ,F−2 } and so
on. A union of these regions is depicted in Fig. 2.

3.2 Solvability and Properties of a Solution

Consider the problem (20) with (λ ,μ) belonging to the “good” region.

Definition 5. A principal part x′′ + λ x+− μx− is k-nonresonant with respect to
boundary conditions x(0) = 0, x(1) = 0 if solutions of the Cauchy problems

x′′+λ x+− μx− = 0, x(0) = 0, x′(0) = 1

x′′+λ x+− μx− = 0, x(0) = 0, x′(0) =−1

have exactly k zeros in (0,1) and x(1) �= 0.
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Fig. 1 The first branches of the Fučı́k spectrum. If (λ ,μ) ∈ F+
k (resp., (λ ,μ) ∈ F−k ), then the

respective solution x(t) of the BVP (22) has exactly k zeros in the interval (0,1) and x′(0) > 0
(resp., x′(0) < 0)

Definition 6. A solution ξ (t) of the BVP (20) is called m+-type solution (resp.,
m−-type solution) if the difference u(t;γ) = x(t;γ)− ξ (t) has exactly m zeros
in (0,1) and u(1;γ) �= 0 for small positive (resp., negative) γ, where x(t;γ) is a
solution of

x′′+λ x+− μx− = f (t,x,x′), x(0) = 0, x′(0) = ξ ′(0)+ γ.

It is possible that m+ �= m−.

Example 2. Consider the equation

x′′+(2π− ε)2x+− (2π− ε)2x− = f (x),

where

f (x) =

⎧
⎨

⎩

p2, x > 1,
p2 x, 0≤ x≤ 1,
0, x < 0.
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Fig. 2 “Good” region (shaded) is a union of Dk. If (λ ,μ) is in some of Dk , then the problem (20)
with a bounded f is solvable

The solution ξ (t) ≡ 0 is 0+ and 1− solution of the problem (in the sense of
Definition 6), since neighboring solutions satisfy the asymmetric equation

x′′+[(2π− ε)2− p2]x+− (2π− ε)2 x− = 0,

where p and ε are chosen so that

0 < (2π− ε)2− p2 < π2, π2 < (2π− ε)2 < (2π)2.

Let us state now the result concerning the problem (20). We assume that f (t,x,x′)
in (20) is continuous and satisfies the Lipschitz conditions with respect to x and x′.
Therefore solutions of the equation in (20) continuously depend on the initial data.

Theorem 2. Boundary value problem (20) with k-nonresonant principal part has
k+-type solution and k−-type solution if a nonlinearity f is bounded.

Scheme of the proof.
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Step 1. Let S be a set of all solutions of BVP. We wish to prove that the set SI =
{γ ∈ R : x ∈ S, x′(0) = γ } is compact.
First, we prove that it is bounded.
For this, consider equation

x′′ =−λ x++ μx−+ f (t,x,x′) (23)

written in the form
⎧
⎪⎪⎨

⎪⎪⎩

dx
dt

= y,

dy
dt

=−q(x)+ f (t,x,y),

(24)

where q(x) = λ x+−μx−. We cannot use the standard Green’s function approach
since the principal part in (23) is not linear. We use polar coordinates instead.

Introduce polar coordinates (ρ(t),θ (t)) as

x(t) = ρ(t) sinθ (t), x′(t) = ρ(t) cosθ (t).

The expression for θ (t) is

dθ
dt

=
1
ρ
[ρ cos2 θ + q(ρ sinθ )sin θ + f (t,ρ sinθ ,ρ cosθ )sin θ ]

= cos2 θ + q(sinθ )sin θ +
1
ρ

f (t,ρ sinθ ,ρ cosθ )sinθ .
(25)

The term

1
ρ

f (t,ρ sinθ ,ρ cosθ )sinθ (26)

is negligibly small if ρ(t) stays in a complement of the circle of sufficiently large
radius for any t ∈ [0,1]. This is the case for solutions of (23) which satisfy the initial
conditions

x(0) = 0, x′(0) =±γ, (27)

if γ →+∞. This is a consequence of the following result.

Lemma 2. For solutions of the problems (23), (27) a function m(Δ) exists such that

m(γ)→+∞ as γ →+∞

and ρ(t)≥ m(γ) for any t ∈ [0,1].
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Lemma 2 follows from Lemma 15.1 in [5] since all solutions of (23) are
extendable to the interval [0,1]. The latter follows from quasi-linearity of the
principal part in (20) and boundedness of f .

Therefore if a set SI is not bounded, then solutions of the BVP have arbitrarily
large (in modulus) values γ = x′(0). The respective ρ(t) are arbitrarily large also and
the expression (26) is arbitrarily small. The angular functions θ (t) are close then to
the angular functions ϕ(t) of solutions of the system

⎧
⎪⎨

⎪⎩

dx
dt

= y,

dy
dt

=−q(x),
(28)

which is equivalent to the equation

x′′ =−λ x++ μx−.

The expression for ϕ(t) is

dϕ
dt

= cos2 ϕ + q(sinϕ)sin ϕ . (29)

Due to assumption on the principal part in (20), if ϕ(0) = 0, then ϕ(1) �= πn, where
n is an integer.

Hence a set SI is bounded. By continuous dependence of solutions of (20) on the
initial data, it is also closed, so compact in R.

Step 2. Let γmax be maximal element in SI. The respective solution ξmax(t) is k+-
type solution. Suppose this is not true, say, the number k of zeros of the difference
u(t;γ) = x(t;γ)− ξmax(t) is less than k+. Then, increasing γ to +∞ and taking
into account that x(t;γ) (and the difference u(t;γ) also) has exactly k+ zeros in
(0,1) and u(1;γ) �= 0 for large γ, one concludes that the number of zeros of
the difference x(t;γ)− ξmax(t) in the interval (0,1) increases as γ → +∞. Then,
due to continuous dependence of zeros on γ, there exists γ∗ > ξ ′max(0) such that
x(1;γ∗)−ξmax(1) = 0. Therefore x(1;γ∗) = 0 and x(t;γ∗) is also a solution of the
BVP (20). Then a contradiction with maximality of a solution ξmax(t) is obtained.
Similarly the case k > k+ can be treated.

Step 3. Let γmin be minimal element in SI. The respective solution ξmin(t) is k−-type
solution. The proof can be conducted in the same manner as that above.

Corollary 1. If a solution of BVP (20) is unique, then it is k+-type solution and at
the same time k−-type solution.

Corollary 2. If problem (20) has a solution which is m+-type solution and at the
same time n−-type solution, where m �= n, then problem has more solutions.
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4 Conclusion

The system (1) behaves like the variational system (12) in a neighborhood of
the trivial solution and like asymmetric system (9) for large values of x2 + y2.
This difference can be measured in terms of the angular function for solutions of
the system (1). There are multiple solutions to the problem (1), (2) if oscillatory
properties of the variational system and the limiting asymmetric system significantly
differ.

Quasi-linear problem (20) is solvable if the coefficients λ and μ in the principal
part are properly selected. In this case, a solution ξ (t) exists which reflects the
oscillatory properties of the principal part. If the problem is known to have a solution
with properties different of those of the principal part, then there are multiple
solutions to the problem.
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Hyperbolicity Radius of Time-Invariant Linear
Systems

T.S. Doan, A. Kalauch, and S. Siegmund

Abstract Hyperbolicity of linear systems of difference and differential equations
is a robust property. We provide a quantity to measure the maximal size of
perturbations under which hyperbolicity is preserved. This so-called hyperbolicity
radius is calculated by two methods, using the transfer operator and the input–output
operator.

Keywords Hyperbolicoty radius • Transfer operator • input-output operator

1 Introduction

Hyperbolicity is an important notion in the qualitative theory of dynamical systems
generated by difference equations yn+1 = f (yn) or differential equations ẏ(t) =
f (y(t)). Roughly speaking, a constant solution y∗ is said to be hyperbolic if for the
according linearization xn+1 = D f (y∗)xn or ẋ(t) = D f (y∗)x(t), respectively, there
exists a decomposition of the state space into a stable subspace and an unstable
subspace. In this paper we focus on linear systems xn+1 = Axn and ẋ(t) = Ax(t).

It is well known that hyperbolicity is robust, i.e., if one adds a small perturbation
to a given hyperbolic system, then the perturbed system is still hyperbolic (see,
e.g., Coppel [2]). We go one step further and discuss a measure of robustness of
hyperbolicity, namely, the hyperbolicity radius. It is a quantity which measures
the distance of a given hyperbolic system to the set of all nonhyperbolic systems.
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This radius was first discussed in [9] under the name “dichotomy radius”. More
precisely, using the characterization of hyperbolicity by admissibility, the authors
provide a lower bound for the hyperbolicity radius based on the norm of the input–
output operator for nonautonomous difference equations with a special type of
perturbation. In this paper we show that this lower bound is in fact equal to the
hyperbolicity radius for time-invariant systems.

In case that there are no unstable directions, i.e., the unstable subspace is trivial,
hyperbolicity reduces to stability. In this setting, the stability radius is introduced as
the distance of a given stable system to the set of all unstable systems. In contrast to
the hyperbolicity radius, the stability radius is a well-investigated notion, see, e.g.,
[1,3–6]. The stability radius can be calculated by means of the transfer operator. An
extension of this result to the hyperbolicity radius is given in this paper.

The paper is organized as follows. In Sect. 2 hyperbolicity is characterized
for systems of time-invariant linear difference and differential equations, and the
corresponding input–output operators are discussed. In Sect. 3, the hyperbolicity
radii are introduced and calculated by the transfer operator and by means of the
input–output operator, respectively.

To fix notation, let K=R or K=C and L2(Z,Kd) and L2(R,Kd) denote the set
of functions h : Z→ K

d and measurable functions g : R→ K
d , respectively, such

that

∞

∑
k=−∞

‖hk‖2 < ∞,

∫

R

‖g(t)‖2 dt < ∞,

where we use the Euclidean norm in K
d . For a matrix A ∈ C

d×d , let σ(A) denote
the spectrum of A. Define S1 := {z ∈ C

d : |z|= 1}.

2 Preliminaries

2.1 Systems of Time-Invariant Linear Difference Equations

For a matrix A ∈ R
d×d , the associated system of time-invariant linear difference

equations is of the form

xn+1 = Axn. (1)

System (1) is said to be hyperbolic if there exist an according invariant decomposi-
tion

R
d = S⊕U

(i.e., subspaces S and U such that AS⊂ S, AU ⊂U) and positive constants K,α such
that
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‖Anv‖ ≤ Ke−αn‖v‖ for all v ∈ S, n ∈ N,

‖Anv‖ ≥ 1
K

eαn‖v‖ for all v ∈U, n ∈ N.

In the following theorem, several characterizations of hyperbolicity are collected.

Theorem 1. For system (1), the following statements are equivalent:

(i) System (1) is hyperbolic.
(ii) The spectrum of A satisfies σ(A)

⋂
S

1 = /0.
(iii) For each s = {sk}k∈Z ∈ L2(Z,Cd) there exists a unique x = {xk}k∈Z ∈

L2(Z,Cd) satisfying

xn+1 = Axn + sn for all n ∈ Z. (2)

we say that L2(Z,Cd) is admissible.

Proof. See, e.g., [7]. �	

The rest of this subsection is devoted to introduce the notion of input–output
operator associated with a hyperbolic system. Suppose that system (1) is hyperbolic.
Let T be an invertible transformation in R

d×d such that

A = T

(
A1 0
0 A2

)
T−1, where Ai ∈ C

di×di , i = 1,2,

which satisfies that

|λ1|> 1 for all λ1 ∈ σ(A1), |λ2|< 1 for all λ2 ∈ σ(A2).

Define Q1 : Cd → C
d1 and Q2 : Cd → C

d2 by

Q1(x1, . . . ,xd)
T = (x1, . . . ,xd1)

T , Q2(x1, . . . ,xd)
T = (xd1+1, . . . ,xd)

T .

Lemma 1. Let B∈C
d×m, C∈C

n×d. Then, for each input u∈L2(Z,Cm) there exists
a unique output y ∈ L2(Z,Cn) satisfying the system

xn+1 = Axn +Bun,

yn+1 = Cxn.
(3)

This output is given by

yn =CT

(
−∑∞

k=n An−1−k
1 Q1T−1Buk

∑n−1
k=−∞ An−1−k

2 Q2T−1Buk

)

(4)

and satisfies that there exists M > 0 with
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‖y‖2 ≤M‖u‖2 for all u ∈ L2(Z,Cm).

Proof. According to Theorem 1(iii), (3) has a unique solution in L2(Z,Cn). On the
other hand, by (4) it can be easily seen that y is a solution of (3). Hence, it remains
to show that y ∈ L2(Z,Cn). Indeed, since |λ |< 1 for all λ ∈ σ(A2) and |λ |> 1 for
all λ ∈ σ(A1) it follows that there exist K,α > 0 such that

‖Am
2 ‖,‖A−m

1 ‖ ≤ Ke−αm for all m ∈ N. (5)

By the definition of y we have

‖yn‖2 ≤ ‖CT‖2‖T−1B‖2

(
∞

∑
k=n

‖An−1−k
1 ‖2‖uk‖2 +

n−1

∑
k=−∞

‖An−1−k
2 ‖2‖uk‖2

)

,

which together with (5) implies that

‖yn‖2 ≤ K‖CT‖2‖T−1B‖2

(
∞

∑
k=n

e−α(k+1−n)‖uk‖2 +
n−1

∑
k=−∞

e−α(n−1−k)‖uk‖2

)

.

Therefore,

∑
n∈Z
‖yn‖2 ≤ K‖CT‖2‖T−1B‖2 ∑

n∈Z

(
n

∑
k=−∞

e−α(n+1−k) +
∞

∑
k=n+1

e−α(k−1−n)

)

‖un‖2.

Hence,

‖y‖2 ≤ K
eα + 1
eα − 1

‖CT‖2‖T−1B‖2‖u‖2,

which completes the proof. �	

For given matrices B ∈ C
d×m, C ∈ C

n×d , the operator L : L2(Z,Cm)→ L2(Z,Cn)
defined by

(Lu)n :=CT

(
−∑∞

k=n An−1−k
1 Q1T−1Buk

∑n−1
k=−∞ An−1−k

2 Q2T−1Buk

)

is called the input–output operator associated to the hyperbolic system (1). Accord-
ing to Lemma 1, the operator L is well defined and bounded.
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2.2 Systems of Time-Invariant Linear Differential Equations

For a matrix A ∈ R
d×d , the associated system of time-invariant linear differential

equations is of the form

ẋ(t) = Ax(t). (6)

Systems (6) is said to be hyperbolic if there exists an according invariant decompo-
sition

R
d = S⊕U

(i.e., subspaces S and U such that etAS ⊂ S, etAU ⊂ U for all t ≥ 0) and positive
constants K, α with

‖etAv‖ ≤ Ke−αt‖v‖ for all v ∈ S, t ≥ 0,

‖etAv‖ ≥ 1
K

eαt‖v‖ for all v ∈U, t ≥ 0.

In the following theorem, several characterizations of hyperbolicity are formulated.

Theorem 2. For system (6), the following statements are equivalent:

(i) System (6) is hyperbolic.
(ii) The spectrum of A satisfies σ(A)

⋂
iR= /0.

(iii) For each s ∈ L2(R,Cd) there exists a unique solution x ∈ L2(R,Cd) satisfying

ẋ(t) = Ax(t)+ s(t) for all t ∈ R. (7)

Proof. See, e.g., [8]. �	

Similar to the above section, the input–output operator of the hyperbolic system
(6) with respect to the structure matrices B ∈ C

d×m and C ∈ C
n×d is the operator

L : L2(R,Cm)→ L2(R,Cn) defined by

Lu(t) :=CT

(
−
∫ ∞

t eA1(t−s)Q1T−1Bu(s) ds
∫ t
−∞ eA2(t−s)Q2T−1Bu(s) ds

)

,

where T is an invertible matrix which transforms matrix A into the form

T−1AT =

(
A1 0
0 A2

)
T−1 with Ai ∈ C

di×di , i = 1,2,

satisfying that

Reλ1 > 0 for all λ1 ∈ σ(A1), Reλ2 < 0 for all λ2 ∈ σ(A2),
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and Q1 : Cd →C
d1 and Q2 : Cd →C

d2 are defined by

Q1(x1, . . . ,xd)
T = (x1, . . . ,xd1)

T , Q2(x1, . . . ,xd)
T = (xd1+1, . . . ,xd)

T .

Analogously to Lemma 1, some fundamental properties of the input–output operator
are given as follows.

Lemma 2. Let B ∈ C
d×m, C ∈ C

n×d. Then, for each u ∈ L2(R,Cm) the unique
solution y ∈ L2(Z,Cn) satisfying the system

ẋ(t) = Ax(t)+Bu(t),

y(t) = Cx(t),
(8)

is y = Lu. Moreover, L is a bounded linear operator from L2(R,Cm) to L2(R,Cn).

Proof. Similar to the proof of Lemma 1. �	

3 Hyperbolicity Radius

According to Theorems 1 and 2, hyperbolicity is persistent under a small perturba-
tion. In the following, we introduce a quantity which measures the distance between
a given hyperbolic system to the set of all nonhyperbolic systems. For this purpose,
we discuss first the model of perturbed systems. Let B ∈ C

d×m, C ∈ C
n×d , and

Δ ∈C
m×n be given matrices. The corresponding structured perturbations of (1) and

(6), respectively, are given by

xn+1 = [A+BΔC]xn, (9)

and

ẋ(t) = [A+BΔC]x(t), (10)

where Δ ∈K
m×n is arbitrary.

Definition 1 (Hyperbolicity radius). Let B ∈ C
d×m, C ∈ C

n×d . Suppose that
(1)/(6) is hyperbolic. The number

dK(A;B,C) := inf{‖Δ‖ : system (9) / system (10) is not hyperbolic}

is called the hyperbolicity radius of (1)/(6) with respect to the structure matrices B
and C, respectively.

The rest of this section is devoted to establish a characterization of hyperbolicity
radius based on the norm of the input–output operator and the transfer matrix.
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3.1 Systems of Time-Invariant Linear Difference Equations

Consider a hyperbolic system of time-invariant linear difference equations

xn+1 = Axn

and let B∈C
d×m, C ∈C

n×d . We provide two methods to calculate the hyperbolicity
radius.

3.1.1 Characterization of the Hyperbolicity Radius by Transfer Operator

The operator defined by

G(s) =C(sI−A)−1B

is called transfer operator associated with (1).

Theorem 3. The hyperbolicity radius can be computed via the transfer operator by
means of

dC(A;B,C) =

[
max

θ∈[0,2π ]
‖G(eiθ )‖

]−1

.

Proof. Let Δ ∈ C
m×n satisfy that A + BΔC is not hyperbolic. Hence, there exist

0 �= x ∈ C
d and θ ∈ [0,2π ] such that

(A+BΔC)x = eiθ x,

which implies that

G(eiθ )ΔCx =Cx.

As a consequence, we get

dC(A;B,C)≥
[

max
θ∈[0,2π ]

‖G(eiθ )‖
]−1

.

To show the converse implication we need to construct a matrix Δ ∈C
m×n such that

‖Δ‖ ≤
[

max
θ∈[0,2π ]

‖G(eiθ )‖
]−1

, σ(A+BΔC)∩S1 �= /0. (11)
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For this purpose, we choose and fix an arbitrary θ ∈ [0,2π ]. The singular value
decomposition of the matrix G(eiθ ) is given as follows

G(eiθ ) =C(eiθ I−Δ)−1B =
n

∑
i=1

siuiv
∗
i ,

where ui ∈C
n×1,vi ∈C

m×1,‖ui‖= ‖vi‖= 1 and s1 > s2 > · · ·> sn are the singular
values of G(eiθ ). Define Δ = s−1

1 v1u∗1. Since s1 = ‖G(eiθ )‖ it follows that

‖Δ‖= ‖G(eiθ )‖−1.

On the other hand, an elementary computation yields that

eiθ ∈ σ(A+BΔC).

Since θ can be chosen arbitrarily, (11) is proved and the proof is complete. �	

3.1.2 Characterization of Hyperbolicity Radius by Input–Output
Operator

Theorem 4. The hyperbolicity radius can be computed via the input–output oper-
ator by means of

dC(A;B,C) =
1
‖L‖ .

Proof. We first show that

dC(A;B,C)≥ 1
‖L‖ . (12)

For this purpose, we choose and fix an arbitrary Δ ∈ C
d×d with ‖Δ‖ ≤ 1

‖L‖ and
consider the system

xn+1 = [A+BΔC]xn. (13)

According to Theorem 1, proving the hyperbolicity of (13) is equivalent to show that
the space L2(Z,Cd) is admissible. Choose and fix {sk}k∈Z ∈ L2(Z,Cd) and consider
the equation

xn+1 = [A+BΔC]xn+ sn, {xk}k∈Z ∈ L2(Z,Cd).
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This is equivalent to

xn+1−Axn = BΔCxn + sn for all n ∈ Z. (14)

We define R : L2(Z,Cd)→ L2(Z,Cd) by

(Ru)n = un+1−Aun for all n ∈ Z.

Clearly, R is a bounded linear operator and the inverse operator of R is determined
by

(R−1u)n = T

(
−∑∞

k=n An−1−k
1 Q1T−1uk

∑n−1
k=−∞ An−1−k

2 Q2T−1uk

)

.

For each matrix M ∈ C
p×q, we define the function M : L2(Z,Cq)→ L2(Z,Cp) by

(Mu)n = Mun for all n ∈ Z, u ∈ L2(Z,Cq).

Equation (14) becomes

R(I−R−1BΔC)x = s.

Note that L =CR−1B and hence, using the fact that ‖Δ‖‖L‖ ≤ 1, we obtain

(I−R−1BΔC)−1 = I+R−1BΔC+
∞

∑
k=1

R−1BΔ(LΔ)kC.

As a consequence, (14) has a unique solution and (12) is thus proved. In view of
Theorem 1, it remains to prove that

max
θ∈[0,2π ]

‖G(eiθ )‖ ≥ ‖L‖. (15)

For a fixed {uk}k∈Z ∈ L2(Z,Cm), we define the function f : [0,2π ]→ C
n by

f (θ ) = ∑
n∈Z

einθ (Lu)n.

By Parseval’s theorem, we get

‖Lu‖2 = ∑
n∈Z
‖(Lu)n‖2 =

1
2π

∫ 2π

0
‖ f (θ )‖2 dθ . (16)
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An explicit form of G(eiθ ) is given by

G(eiθ ) =CT

(
−∑∞

k=1 ei(k−1)θ A−k
1

∑∞
k=0 e−i(k+1)θ Ak

2

)

T−1B.

As a consequence, one has

f (θ ) = ∑
n∈Z

G(e−iθ )einθ un,

which together with (16) implies that

‖Lu‖2 ≤ 1
2π

∫ 2π

0
‖G(e−iθ )‖2‖∑

n∈Z
einθ un‖2 dθ

≤ max
θ∈[0,2π ]

‖G(eiθ )‖2‖u‖2,

which proves (15). �	

3.2 Systems of Time-Invariant Linear Differential Equations

Consider a hyperbolic system of time-invariant linear differential equations

ẋ = Ax

and let B ∈ C
d×m, C ∈ C

n×d . We again establish two methods to calculate the
hyperbolicity radius.

3.2.1 Characterization of Hyperbolicity Radius by Transfer Operator

The operator defined by

G(s) =C(sI−A)−1B

is called transfer operator associated with (6).

Theorem 5. The hyperbolicity radius can be computed via the transfer operator by
means of

dC(A;B,C) =

[
max
ω∈R

‖G(iω)‖
]−1

.
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Proof. Let Δ ∈ C
m×n satisfy that A+BΔC is not hyperbolic. Hence, there exists

0 �= x ∈ C
d and ω ∈R such that

(A+BΔC)x = iωx,

which implies that

G(iω)ΔCx =Cx.

As a consequence, we get

dC(A;B,C)≥
[

max
ω∈R

‖G(iω)‖
]−1

.

To show the converse implication we need to construct a matrix Δ ∈C
m×n such that

‖Δ‖ ≤
[

max
ω∈R

‖G(iω)‖
]−1

, σ(A+BΔC)∩ iR �= /0. (17)

For this purpose, we choose and fix an arbitrary ω ∈ R. The singular value
decomposition of the matrix G(iω) is given by

G(iω) =C(iωI−Δ)−1B =
n

∑
i=1

siuiv
∗
i ,

where ui ∈C
n×1, vi ∈C

m×1, ‖ui‖= ‖vi‖= 1, and s1 > s2 > · · ·> sn are the singular
values of G(iω). Define Δ = s−1

1 v1u∗1. Since s1 = ‖G(iω)‖, it follows that

‖Δ‖= ‖G(iω)‖−1.

On the other hand, an elementary computation yields

iω ∈ σ(A+BΔC).

Since ω can be chosen arbitrarily, (17) is proved. �	

3.2.2 Characterization of Hyperbolicity Radius by Input–Output
Operator

Theorem 6. The hyperbolicity radius can be computed via the input–output oper-
ator by means of

dC(A;B,C) =
1
‖L‖ .
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Proof. We first show that

dC(A;B,C)≥ 1
‖L‖ . (18)

For this purpose, we choose and fix an arbitrary Δ ∈ C
d×d with ‖Δ‖ ≤ 1

‖L‖ and
consider the system

ẋ(t) = [A+BΔC]x(t). (19)

According to Theorem 2, proving the hyperbolicity of (19) is equivalent to show
that the space L2(R,Cd) is admissible. Choose and fix s ∈ L2(R,Cd) and consider
the equation

ẋ(t) = [A+BΔC]x(t)+ s(t).

This is equivalent to

ẋ(t) = Ax(t)+BΔCx(t)+ s(t) for all t ∈ R. (20)

Let T be an invertible matrix which transforms matrix A into the following form

T−1AT =

(
A1 0
0 A2

)
T−1 with Ai ∈ C

di×di , i = 1,2,

which satisfies that

Reλ1 > 0 for all λ1 ∈ σ(A1), Reλ2 < 0 for all λ2 ∈ σ(A2).

We define R : L2(R,Cd)→ L2(R,Cd) by

Ru(t) = T

(
−
∫ ∞

t eA1(t−s)Q1T−1u(s) ds
∫ t
−∞ eA2(t−s)Q2T−1u(s) ds

)

.

Clearly, L =CRB, and a solution x ∈ L2(R,Rd) of (20) satisfies the equation

x = R(BΔCx+ s).

Using the fact that ‖Δ‖‖L‖< 1, we obtain that

x = (I−RBΔC)−1Rs

=

[

I +
∞

∑
k=0

RBΔ(LΔ)kC

]

Rs,
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which proves that (20) has a unique solution in L2(R,Rd), and (18) is shown. In
view of Theorem 5, it remains to prove that

max
ω∈R

‖G(iω)‖ ≥ ‖L‖. (21)

For a fixed u ∈ L2(R,Cm), let û denote its Fourier–Plancherel transformation, i.e.,

û(ω) :=
∫ ∞

−∞
u(x)e−ixω dx.

By Parseval’s theorem we get

‖Lu‖2 =
1

2π

∫ ∞

−∞
‖L̂u(ω)‖2 dω . (22)

On the other hand,

L̂u(ω) = G(iω)û(ω),

which together with (22) implies that

‖Lu‖2 =
1

2π

∫ ∞

−∞
G(iω)û(ω) dω .

Hence, (21) is shown and the proof is complete. �	
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Oscillation Criteria for Delay and Advanced
Difference Equations with Variable Arguments
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Abstract Consider the first-order delay difference equation

Δx(n)+ p(n)x(τ(n)) = 0, n≥ 0,

and the first-order advanced difference equation

∇x(n)− p(n)x(μ(n)) = 0, n≥ 1, [Δx(n)− p(n)x(ν(n)) = 0, n≥ 0],

where Δ denotes the forward difference operator Δx(n)= x(n+1)−x(n), ∇ denotes
the backward difference operator ∇x(n) = x(n)− x(n− 1), {p(n)} is a sequence
of nonnegative real numbers, {τ(n)} is a sequence of positive integers such that
τ(n)≤ n− 1, for all n≥ 0, and {μ(n)} [{ν(n)}] is a sequence of positive integers
such that

μ(n)≥ n+ 1 foralln≥ 1, [ν(n)≥ n+ 2 foralln≥ 0] .

The state of the art on the oscillation of all solutions to these equations is presented.
Examples illustrating the results are given.
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1 Introduction

The problem of establishing sufficient conditions for the oscillation of all solutions
of the first-order delay difference equation with constant arguments

Δx(n)+ p(n)x(n− k) = 0, n≥ 0 (E)

has been the subject of many investigations. See, for example, [2, 8, 9, 12–
17, 23, 26, 29, 34, 37, 38, 40, 43–45, 49–60, 64, 66, 67] and the references cited
therein. Recently this problem was also investigated for the delay difference and
the advanced difference equation with variable arguments of the form

Δx(n)+ p(n)x(τ(n)) = 0, n≥ 0 (E1)

and

∇x(n)− p(n)x(μ(n)) = 0, n≥ 1, [Δx(n)− p(n)x(ν(n)) = 0, n≥ 0], (E2)

where Δ denotes the forward difference operator Δx(n)= x(n+1)−x(n), ∇ denotes
the backward difference operator ∇x(n) = x(n)− x(n− 1), {p(n)} is a sequence
of nonnegative real numbers, {τ(n)} is a sequence of positive integers such that
τ(n)≤ n− 1, for all n≥ 0, and {μ(n)} [{ν(n)}] is a sequence of positive integers
such that

μ(n)≥ n+ 1 foralln≥ 1, [ν(n)≥ n+ 2 foralln≥ 0] .

See, for example, [1, 3–7, 10, 18, 26, 41–43, 65], and the references cited therein.
Strong interest in the Eqs. (E1) and (E2) is motivated by the fact that they

represent the discrete analogues of the delay

x′(t)+ p(t)x(τ(t)) = 0, t ≥ t0, (E1)
′

and the advanced differential equation

x′(t)− p(t)x(μ(t)) = 0, t ≥ t0, (E2)
′

where p,τ,μ ∈ C([t0,∞),R+), R+ = [0,∞), τ(t),μ(t) are nondecreasing τ(t) < t
and μ(t) > t for t ≥ t0 (see, for example, [11, 19–27, 30–33, 35, 36, 39, 46–48, 61–
63]).

By a solution of Eq. (E1) we mean a sequence x(n) which is defined for n≥min
{τ(n) : n ≥ 0} and which satisfies Eq. (E1) for all n ≥ 0. By a solution of Eq. (E2),
we mean a sequence of real numbers {x(n)} which is defined for n≥ 0 and satisfies
Eq. (E2) for all n ≥ 1 [n≥ 0]. (The definition of a solution to Eq. (E) is given
analogously.)
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As usual, a solution {x(n)} is said to be oscillatory if for every positive integer
n0 there exist n1,n2 ≥ n0 such that x(n1)x(n2)≤ 0. In other words, a solution {x(n)}
is oscillatory if it is neither eventually positive nor eventually negative. Otherwise,
the solution is called nonoscillatory.

In this paper our purpose is to present the state of the art on the oscillation of all
solutions to the above Eqs. (E),(E1), and (E2), especially in the case where

0 < liminf
n→∞

n−1

∑
i=n−k

p(i)≤
(

k
k+ 1

)k+1

and limsup
n→∞

n

∑
i=n−k

p(i)< 1

for Eq. (E),

0 < liminf
n→∞

n−1

∑
i=τ(n)

p(i)≤ 1
e

andlimsup
n→∞

n

∑
i=τ(n)

p(i)< 1

for Eq. (E1), and

limsup
n→∞

μ(n)

∑
i=n

p(i)

[

limsup
n→∞

ν(n)−1

∑
i=n

p(i)

]

< 1

for Eq. (E2).

2 Oscillation Criteria for Eq. (E)

In this section we study the delay difference equation with constant argument

Δx(n)+ p(n)x(n− k) = 0, n = 0,1,2, ..., (E)

where Δx(n) = x(n+ 1)− x(n), {p(n)} is a sequence of nonnegative real numbers,
and k is a positive integer.

In 1981, Domshlak [12] was the first who studied this problem in the case where
k = 1. Then, in 1989, Erbe and Zhang [23] established that all solutions of Eq. (E)
are oscillatory if

liminf
n→∞

p(n)>
kk

(k+ 1)k+1 (1)

or

limsup
n→∞

n

∑
i=n−k

p(i)> 1. (C1)



130 I.P. Stavroulakis

In the same year, 1989, Ladas et al. [37] proved that a sufficient condition for all
solutions of Eq. (E) to be oscillatory is that

liminf
n→∞

n−1

∑
i=n−k

p(i)>

(
k

k+ 1

)k+1

. (C2)

Therefore they improved the condition (1) by replacing the p(n) of Eq. (1) by the
arithmetic mean of p(n− k), . . . , p(n− 1) in Eq. (C2).

Concerning the constant kk

(k+1)k+1 in Eq. (1) it should be emphasized that, as it is

shown in [23], if

sup p(n)<
kk

(k+ 1)k+1 ,

then Eq. (E) has a nonoscillatory solution.
In 1990, Ladas [34] conjectured that Eq. (E) has a nonoscillatory solution if

n−1

∑
i=n−k

p(i)<

(
k

k+ 1

)k+1

holds eventually. However, a counterexample to this conjecture was given in 1994,
by Yu et al. [64].

It is interesting to establish sufficient oscillation conditions for the Eq. (E) in the
case where neither Eqs. (C1) nor (C2) is satisfied.

In 1995, the following oscillation criterion was established by Stavroulakis [51]:

Theorem 2.1 ([51]). Assume that

α0 := liminf
n→∞

n−1

∑
i=n−k

p(i)≤
(

k
k+ 1

)k+1

and

limsup
n→∞

p(n)> 1− α2
0

4
, (2)

then all solutions of Eq. (E) oscillate.

In 2004, the same author [52] improved the condition (2) as follows:

Theorem 2.2 ([52]). If 0 < α0 ≤
(

k
k+1

)k+1

, then either one of the conditions

limsup
n→∞

n−1

∑
i=n−k

p(i)> 1− α2
0

4
(C3)
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or

limsup
n→∞

n−1

∑
i=n−k

p(i)> 1−αk
0, (3)

implies that all solutions of Eq. (E) oscillate.

In 2006, Chatzarakis and Stavroulakis [2] established the following:

Theorem 2.3 ([2]). If 0 < α0 ≤
(

k
k+1

)k+1

and

limsup
n→∞

n−1

∑
i=n−k

p(i)> 1− α2
0

2(2−α0)
, (4)

then all solutions of Eq. (E) oscillate.

Also, Chen and Yu [8] obtained the following oscillation condition:

limsup
n→∞

n

∑
i=n−k

p(i)> 1−
1−α0−

√
1− 2α0−α2

0

2
. (C6)

3 Oscillation Criteria for Eq. (E1)

In this section we study the delay difference equation with variable argument

Δx(n)+ p(n)x(τ(n)) = 0, n = 0,1,2, . . . , (E1)

where Δx(n) = x(n+ 1)− x(n), {p(n)} is a sequence of nonnegative real numbers,
and {τ(n)} is a nondecreasing sequence of integers such that τ(n) ≤ n− 1 for all
n≥ 0 and limn→∞ τ(n) = ∞.

In 2008, Chatzarakis et al. [4] investigated for the first time the oscillatory
behavior of Eq. (E1) in the case of a general delay argument τ(n) and derived the
following theorem:

Theorem 3.1 ([4]). If

limsup
n→∞

n

∑
i=τ(n)

p(i)> 1, (D1)

then all solutions of Eq. (E1) oscillate.
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This result generalizes the oscillation criterion Eq. (C1). Also in the same year
Chatzarakis et al. [5] extended the oscillation criterion Eq. (C2) to the general case
of Eq. (E1). More precisely, the following theorem has been established in [5]:

Theorem 3.2 ([5]). Assume that

limsup
n→∞

n−1

∑
i=τ(n)

p(i)<+∞ (5)

and

α := liminf
n→∞

n−1

∑
i=τ(n)

p(i)>
1
e
. (D2)

Then all solutions of Eq. (E1) oscillate.

Remark 3.1. It should be mentioned that in the case of the delay differential
equation

x′(t)+ p(t)x(τ(t)) = 0, t ≥ t0, (E1)
′

it has been proved (see [30, 36]) that either one of the conditions

limsup
n→∞

t∫

τ(t)

p(s)ds > 1 (D1)
′

or

liminf
n→∞

t∫

τ(t)

p(s)ds >
1
e

(D2)
′

implies that all solutions of Eq. (E1)
′ oscillate. Therefore, the conditions (D1) and

(D2) are the discrete analogues of the conditions (D1)
′ and (D2)

′ and also the
analogues of the conditions (C1) and (C2) in the case of a general delay argument
τ(n).

Remark 3.2 ([5]). Note that the condition (5) is not a limitation since, if Eq. (D1)
holds, then all solutions of Eq. (E1) oscillate.

Remark 3.3 ([5]). The condition (D2) is optimal for Eq. (E1) under the assumption
that lim

n→+∞
(n− τ(n)) = ∞, since in this case the set of natural numbers increases

infinitely in the interval [τ(n),n− 1] for n→ ∞.
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Now, we are going to present an example to show that the condition (D2) is optimal,
in the sense that it cannot be replaced by the non-strong inequality.

Example 3.1 ([5]). Consider Eq. (E1), where

τ(n) = [β n], p(n) =
(

n−λ − (n+ 1)−λ
)
([β n])λ ,β ∈ (0,1),λ =− ln−1 β (6)

and [β n] denotes the integer part of β n.
It is obvious that

n1+λ
(

n−λ − (n+ 1)−λ
)
→ λ for n→ ∞.

Therefore

n
(

n−λ − (n+ 1)−λ
)
([β n])λ → λ

e
for n→ ∞. (7)

Hence, in view of Eqs. (6) and (7), we have

liminf
n→∞

n−1

∑
i=τ(n)

p(i) =
λ
e

liminf
n→∞

n−1

∑
i=[β n]

e
λ

i
(

i−λ − (i+ 1)−λ
)
([β i])λ .

1
i

=
λ
e

liminf
n→∞

n−1

∑
i=[β n]

1
i
=

λ
e

ln
1
β

=
1
e

or

liminf
n→∞

n−1

∑
i=τ(n)

p(i) =
1
e
. (8)

Observe that all the conditions of Theorem 3.2 are satisfied except the condition
(D2). In this case it is not guaranteed that all solutions of Eq. (E1) oscillate. Indeed,
it is easy to see that the function u = n−λ is a positive solution of Eq. (E1).

As it has been mentioned above, it is an interesting problem to find new sufficient
conditions for the oscillation of all solutions of the delay difference equation (E1),
in the case where neither Eqs. (D1) nor (D2) is satisfied.

In 2008, Chatzarakis et al. [4] derived the following theorem:

Theorem 3.3 ([4]). Assume that 0 < α ≤ 1
e . Then we have

(I) If

limsup
n→∞

n

∑
j=τ(n)

p( j)> 1−
(

1−
√

1−α
)2

, (9)

then all solutions of Eq. (E1) oscillate.
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(II) If in addition,

p(n)≥ 1−
√

1−α for all large n, (10)

and

limsup
n→∞

n

∑
j=τ(n)

p( j)> 1−α
1−

√
1−α√

1−α
, (11)

then all solutions of Eq. (E1) oscillate.

In 2008 and 2009, the above result was improved in [6, 7] as follows:

Theorem 3.4 ([6]).

(I) If 0 < α ≤ 1
e and

limsup
n→∞

n

∑
j=τ(n)

p( j)> 1− 1
2

(
1−α−

√
1− 2α

)
, (12)

then all solutions of Eq. (E1) oscillate.
(II) If 0 < α ≤ 6− 4

√
2 and in addition,

p(n)≥ α
2

for all large n, (13)

and

limsup
n→∞

n

∑
j=τ(n)

p( j) > 1− 1
4

(
2− 3α−

√
4− 12α +α2

)
, (14)

then all solutions of Eq. (E1) are oscillatory.

Theorem 3.5 ([7]). Assume that 0 < α ≤
√

2− 1, and

limsup
n→∞

n

∑
j=τ(n)

p( j)> 1− 1
2

(
1−α−

√
1− 2α−α2

)
, (C6)

′

then all solutions of Eq. (E1) oscillate.

Remark 3.4. In the case where the sequence {τ(n)} is not assumed to be nonde-
creasing, define (cf. [4–7])

σ(n) = max{τ(s) : 0≤ s≤ n,s ∈N} .



Oscillation Criteria for Delay and Advanced Difference Equations... 135

Clearly, the sequence of integers {σ(n)} is nondecreasing. In this case, Theo-
rems 3.1–3.5 can be formulated in a more general form. More precisely in the
conditions (D1), (D2), (11), (12), (14), and (C6)

′ the term τ(n) is replaced by σ(n).

Remark 3.5. Observe the following:

(i) When 0 < α ≤ 1
e , it is easy to verify that

1−α−
√

1− 2α−α2

2
>α

1−
√

1−α√
1−α

>
1−α−

√
1− 2α

2
> (1−

√
1−α)2,

and therefore, the condition (C6)
′ is weaker than the conditions (11), (12),

and (9).
(ii) When 0 < α ≤ 6− 4

√
2, it is easy to show that

1
4

(
2− 3α−

√
4− 12α +α2

)
>

1
2

(
1−α−

√
1− 2α−α2

)
,

and therefore in this case and when Eq. (13) holds, inequality (14) improves
the inequality (C6)

′ and especially, when α = 6−4
√

2� 0.3431457, the lower
bound in (C6)

′ is 0.8929094, while in Eq. (14) is 0.7573593.

Example 3.1 ([6]). Consider the equation

Δx(n)+ p(n)x(n− 2) = 0,

where

p(3n) =
1,474

10,000
, p(3n+ 1) =

1,488
10,000

, p(3n+ 2) =
6,715
10,000

, n = 0,1,2, . . . .

Here τ(n) = n− 2 and it is easy to see that

α0 = liminf
n→∞

n−1

∑
j=n−2

p( j) =
1,474

10,000
+

1,488
10,000

= 0.2962 <

(
2
3

)3

� 0.2962963,

and

limsup
n→∞

n

∑
j=n−2

p( j) =
1,474

10,000
+

1,488
10,000

+
6,715

10,000
= 0.9677.

Observe that

0.9677 > 1− 1
2

(
1−α0−

√
1− 2α0

)
� 0.967317794,
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that is, condition (12) of Theorem 3.4 is satisfied, and therefore all solutions
oscillate. Also, condition (C6)

′ is satisfied. Observe, however, that

0.9677 < 1, α0 = 0.2962 <

(
2
3

)3

� 0.2962963,

0.9677 < 1−
(

1−
√

1−α0

)2
� 0.974055774,

and therefore none of the conditions (D1), (D2), and (9) are satisfied.

If, on the other hand, in the above equation

p(3n) = p(3n+ 1) =
1,481

10,000
, p(3n+ 2) =

6,138
10,000

, n = 0,1,2, . . . ,

it is easy to see that

α0 = liminf
n→∞

n−1

∑
j=n−2

p( j) =
1,481

10,000
+

1,481
10,000

= 0.2962 <

(
2
3

)3

� 0.2962963,

and

limsup
n→∞

n

∑
j=n−2

p( j) =
1,481

10,000
+

1,481
10,000

+
6,138

10,000
= 0.91.

Furthermore, it is clear that p(n)≥ α0
2 for all large n. In this case

0.91 > 1− 1
4

(
2− 3α0−

√
4− 12α0+α2

0

)
� 0.904724375,

that is, condition (14) of Theorem 3.4 is satisfied, and therefore all solutions
oscillate. Observe, however, that

0.91 < 1, α0 = 0.2962 <

(
2
3

)3

� 0.2962963,

0.91 < 1−
(
1−

√
1−α0

)2 � 0.974055774,

0.91 < 1− 1
2

(
1−α0−

√
1− 2α0

)
� 0.934635588,

0.91 < 1− 1
2

(
1−α0−

√
1− 2α0−α2

0

)
� 0.930883291,

and therefore, none of the conditions (D1), (D2), (9), (12), and (C6)
′ are satisfied.
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4 Oscillation Criteria for Eq. (E2)

In this section, we study the advanced difference equation with variable argument

∇x(n)− p(n)x(μ(n)) = 0, n≥ 1, [Δx(n)− p(n)x(ν(n)) = 0, n≥ 0], (E2)

where ∇ denotes the backward difference operator ∇x(n) = x(n)− x(n− 1), Δ
denotes the forward difference operator Δx(n) = x(n + 1)− x(n), {p(n)} is a
sequence of nonnegative real numbers, and {μ(n)} [{ν(n)}] is a sequence of
positive integers such that

μ(n)≥ n+ 1 foralln≥ 1, [ν(n)≥ n+ 2 foralln≥ 0] .

In the special case where μ(n) = n + k, [ν(n) = n+ σ ] the advanced difference
equations (E2) take the form

∇x(n)− p(n)x(n+ k) = 0, n≥ 1, [Δx(n)− p(n)x(n+σ) = 0, n≥ 0] , (E
′
)

where k is a positive integer greater or equal to one and σ is a positive integer greater
or equal to two.

In [26], the advanced difference equation with constant argument

Δx(n)− p(n)x(n+σ) = 0, n≥ 0

is studied and proved that if

limsup
n→∞

n+σ−1

∑
i=n

p(i)> 1, (C
′
1)

or

liminf
n→∞

n+σ−1

∑
i=n+1

p(i)>

(
σ − 1

σ

)σ
, (C

′
2)

then all solutions oscillate.
Very recently, Chatzarakis and Stavroulakis [3] investigated for the first time

the oscillatory behavior of Eq. (E2) with variable argument and established the
following theorems:

Theorem 4.1 ([3]). Assume that the sequence {μ(n)} [{ν(n)}] is non-
decreasing. If
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limsup
n→∞

μ(n)

∑
i=n

p(i)

[

limsup
n→∞

ν(n)−1

∑
i=n

p(i)

]

> 1, (A1)

then all solutions of Eq. (E2) oscillate.

Theorem 4.2 ([3]). Assume that the sequence {μ(n)} [{ν(n)}] is nondecreasing,
and

liminf
n→∞

μ(n)

∑
i=n+1

p(i)

[

liminf
n→∞

ν(n)−1

∑
i=n+1

p(i)

]

= α.

If 0 < α ≤ 1, and

limsup
n→∞

μ(n)

∑
i=n

p(i)

[

limsup
n→∞

ν(n)−1

∑
i=n

p(i)

]

> 1−
(

1−
√

1−α
)2

, (15)

then all solutions of Eq. (E2) oscillate.
If 0 < α < (3

√
5− 5)/2, p(n)≥ 1−

√
1−α for all large n, and

limsup
n→∞

μ(n)

∑
i=n

p(i)

[

limsup
n→∞

ν(n)−1

∑
i=n

p(i)

]

> 1−α
(

1

3
√

1−α +α− 2
− 1

)
, (16)

then all solutions of Eq. (E2) oscillate.

In the special case of the advanced difference equation

∇x(n)− p(n)x(n+ k) = 0, n≥ 1, [Δx(n)− p(n)x(n+σ) = 0, n≥ 0] , (E
′
)

Theorems 4.1 and 4.2 lead to the following corollaries:

Corollary 4.1 ([3]). Assume that

limsup
n→∞

n+k

∑
i=n

p(i)

[

limsup
n→∞

n+σ−1

∑
i=n

p(i)

]

> 1, (A1)
′

then all solutions of Eq. (E
′
) oscillate.

Corollary 4.2 ([3]). Assume that

liminf
n→∞

n+k

∑
i=n+1

p(i)

[

liminf
n→∞

n+σ−1

∑
i=n+1

p(i)

]

= α0.
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If 0 < α0 ≤ 1/2, and

limsup
n→∞

n+k

∑
i=n

p(i)

[

limsup
n→∞

n+σ−1

∑
i=n

p(i)

]

> 1−
(

1−
√

1−α0

)2
, (4.1)′

then all solutions of Eq. (E
′
) oscillate.

If 0 < α0 < (3
√

5− 5)/2, p(n)≥ 1−
√

1−α0 for all large n, and

limsup
n→∞

n+k

∑
i=n

p(i)

[

limsup
n→∞

n+σ−1

∑
i=n

p(i)

]

> 1−α0

(
1

3
√

1−α0 +α0− 2
− 1

)
, (4.2)′

then all solutions of Eq. (E
′
) oscillate.

Remark 4.1. In the case where the sequence {μ(n)} [ν(n)] is not assumed to be
nondecreasing, define (cf. [3])

ξ (n) = max{μ(s) : 1≤ s≤ n,s ∈ N} , [ρ(n) = max{ν(s) : 1≤ s≤ n,s ∈ N}] .

Clearly, the sequence of integers {ξ (n)} [{ρ(n)}] is nondecreasing. In this case,
Theorems 4.1 and 4.2 can be formulated in a more general form. More precisely, in
the conditions (A1),(15), and (16),the term μ(n) [ν(n)] is replaced by ξ (n) [ρ(n)] .

Remark 4.2. When α → 0, then the conditions (15) and (16) of Theorem 4.2
reduce to

limsup
n→∞

μ(n)

∑
i=n

p(i)

[

limsup
n→∞

ν(n)−1

∑
i=n

p(i)

]

> 1,

that is, to the condition (A1). However, when 0 < α < (3
√

5− 5)/2 and p(n) ≥

1−
√

1−α, then we have

α
[

1

3
√

1−α +α− 2
− 1

]
>
(

1−
√

1−α
)2

which means that the condition (16) is weaker than the condition (15).

Example 4.1 ([3]). Consider the advanced difference equation

∇x(n)− p(n)x(n+ 1+[β n])= 0, n≥ 1, (17)

where

p(n) =

⎧
⎨

⎩

c
i , if i �= rn

96e−100
100e , if i = rn

, n = 1,2, . . . ,
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and

c =
1/e

ln(1+β )
, r = 2+

[
1
β

]
, β ∈ (0,1).

Equation (17) is of type (E2) with μ(n) = n+1+[β n]. Here, {p(n)} is a sequence of
positive real numbers, and {μ(n)} is a nondecreasing sequence of positive integers.

We will first show that

lim
n→∞

n+1+[β n]

∑
i=n+1

c
i
=

1
e
. (18)

Since c
i is nonincreasing, and taking into account the fact that

∫ b

b−1
f (x)dx ≥ f (b)≥

∫ b+1

b
f (x)dx,

where f (x) is a nonincreasing positive function, we have

n+1+[β n]

∑
i=n+1

c
i
≥ c

n+1+[β n]

∑
i=n+1

∫ i+1

i

ds
s

= c
∫ n+2+[β n]

n+1

ds
s

= c ln
n+ 2+[β n]

n+ 1

and

n+1+[β n]

∑
i=n+1

c
i
≤ c

n+1+[β n]

∑
i=n+1

∫ i

i−1

ds
s

= c
∫ n+1+[β n]

n

ds
s

= c ln
n+ 1+[β n]

n
.

It is easy to see that

lim
n→∞

(
c ln

n+ 2+[β n]
n+ 1

)
= lim

n→∞

(
c ln

n+ 1+[β n]
n

)
= c ln(1+β ) =

1
e
.

From the above it is clear that Eq. (18) holds. In particular, it follows that

lim
n→∞

rn+1+[β rn]

∑
i=rn+1

c
i
=

1
e
. (19)

Observe that

rn < rn + 1 < rn + 1+[β rn]< rn+1 forlargen. (20)

Indeed, for any integer n ≥ 0, we have [β rn] ≤ β rn and, since β rn

rn−1 → β < 1, as
n→ ∞, it holds that [β rn]< rn−1, for all large n. Hence, in view of r > 1, we have
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1+[β rn]< 1+ rn− 1 = rn < rn(r− 1) = rn+1− rn

or

rn + 1+[β rn]< rn+1 forlargen,

which proves Eq. (20). Thus, we get

rn+1+[β rn]

∑
i=rn+1

p(i) =
rn+1+[β rn]

∑
i=rn+1

c
i

foralllargen

and, because of Eq. (19),

lim
n→∞

rn+1+[β rn]

∑
i=rn+1

p(i) =
1
e
. (21)

Furthermore, since 96e−100
100e ≥ c

i for all large i, we obtain

n+1+[β n]

∑
i=n+1

p(i)≥
n+1+[β n]

∑
i=n+1

c
i

foralllargen,

which, by virtue of Eq. (18), gives

liminf
n→∞

n+1+[β n]

∑
i=n+1

p(i)≥ 1
e
. (22)

From Eqs. (21) and (22) it follows that

α = liminf
n→∞

n+1+[β n]

∑
i=n+1

p(i) =
1
e
. (23)

Next, we shall prove that

limsup
n→∞

n+1+[β n]

∑
i=n

p(i) =
1
e
+

96e− 100
100e

=
96

100
. (24)

Observe that

rn+1+[β rn]

∑
i=rn

p(i) =
96e− 100

100e
+

rn+1+[β rn]

∑
i=rn+1

p(i) foralllargen,
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and so, because of Eq. (21),

lim
n→∞

rn+1+[β rn]

∑
i=rn

p(i) =
96e− 100

100e
+

1
e
=

96
100

. (25)

Furthermore, we see that

lim
n→∞

(
ln(n+ 1+[β n])

lnr
− ln(n+ 1)

lnr

)
= lim

n→∞

(
ln n+1+[β n]

n+1

lnr

)

=
ln(1+β )

lnr
< 1,

which implies that

ln(n+ 1+[β n])
lnr

− ln(n+ 1)
lnr

< 1 forsufficientlylargen.

Hence, for each large n, there exists at most one integer n∗ so that

ln(n+ 1)
lnr

≤ n∗ ≤ ln(n+ 1+[β n])
lnr

or

ln(n+ 1)≤ n∗ lnr ≤ ln(n+ 1+[β n]),

i.e., such that

n+ 1≤ rn∗ ≤ n+ 1+[β n].

By taking into account this fact, we obtain

n+1+[β n]

∑
i=n

p(i)≤
n+1+[β n]

∑
i=n

c
i
+

96e− 100
100e

=
c
n
+

n+1+[β n]

∑
i=n+1

c
i
+

96e− 100
100e

for all large n. Combining the last inequality with Eq. (18), we have

limsup
n→∞

n+1+[β n]

∑
i=n

p(i)≤ 1
e
+

96e− 100
100e

=
96

100
. (26)

From Eqs. (25) and (26) we conclude that Eq. (24) is always valid. Thus,

limsup
n→∞

n+1+[β n]

∑
i=n

p(i) =
96

100
= 0.96 > 1−

(
1−

√
1−α

)2
� 0.957999636,
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that is, condition (15) of Theorem 4.2 is satisfied, and therefore all solutions of
Eq. (17) oscillate.

Example 4.2 ([3]). Consider the equation

∇x(n)− p(n)x(n+ 1) = 0, n≥ 1, (27)

where

p(2n− 1) =
1,474

10,000
, p(2n) =

8,396
10,000

, n≥ 1.

Equation (27) is of the type (E
′
) with k = 1 [σ = 2] . We have

α0 = liminf
n→∞

n+1

∑
i=n+1

p(i) =
1,474

10,000
= 0.1474

and

limsup
n→∞

n+1

∑
i=n

p(i) =
1,474

10,000
+

8,396
10,000

= 0.987.

Furthermore, since 1−
√

1−α0 � 0.076636582, we have p(n) > 1−
√

1−α0 for
every n≥ 1. Observe that

0.987 > 1−α0

[
1

3
√

1−α0 +α0− 2
− 1

]
� 0.986744342,

that is, condition (4.2)′ of Corollary 4.2 is satisfied, and therefore all solutions of
Eq. (27) oscillate. Observe, however, that

0.9677 < 1,

α0 =0.2962 <

(
2
3

)2

= 0.2962963,

0.9677 < 1−
(

1−
√

1−α0

)2
� 0.974055774,

and therefore none of the conditions (A1)
′, (C

′
1), (C

′
2) (since σ = 2), and (4.1)′ is

satisfied.

Acknowledgements The author would like to thank the referee for some useful comments.



144 I.P. Stavroulakis

References

1. Berezansky, L., Braverman, E., Pinelas, S.: On nonoscillation of mixed advanced-delay
differential equations with positive and negative coefficients. Comput. Math. Appl. 58,
766–775 (2009)

2. Chatzarakis, G.E., Stavroulakis, I.P.: Oscillations of first order linear delay difference equa-
tions. Aust. J. Math. Anal. Appl.3(1), 11 (2006) (Art.14)

3. Chatzarakis, G.E., Stavroulakis, I.P.: Oscillations of difference equations with gen-
eral advanced argument. Cent. Eur. J. Math. 10(2), 807–823 (2012). DOI: 102478/s
11533-011-0137-5

4. Chatzarakis, G.E., Koplatadze, R., Stavroulakis, I.P.: Oscillation criteria of first order linear
difference equations with delay argument. Nonlinear Anal. 68, 994–1005 (2008)

5. Chatzarakis, G.E., Koplatadze, R., Stavroulakis, I.P.: Optimal oscillation criteria for first order
difference equations with delay argument. Pacific J. Math. 235, 15–33 (2008)

6. Chatzarakis, G.E., Philos, Ch.G., Stavroulakis, I.P.: On the oscillation of the solutions to linear
difference equations with variable delay. Electron. J. Differ. Equ. 2008(50), 1–15 (2008)

7. Chatzarakis, G.E., Philos, Ch.G., Stavroulakis, I.P.: An oscillation criterion for linear difference
equations with general delay argument. Port. Math. 66, 513–533 (2009)

8. Chen, M.P., Yu, Y.S.: Oscillations of delay difference equations with variable coefficients.
In: Elaydi, S.N., et al. (eds.) Proceedings of First International Conference on Difference
Equations, pp. 105–114. Gordon and Breach (1995)

9. Cheng, S.S. Zhang, G.: “Virus” in several discrete oscillation theorems. Appl. Math. Lett. 13,
9–13 (2000)

10. Dannan, F.M., Elaydi, S.N.: Asymptotic stability of linear difference equations of advanced
type. J. Comput. Anal. Appl. 6, 173–187 (2004)

11. Diblik, J.: Positive and oscillating solutions of differential equations with delay in critical case.
J. Comput. Appl. Math. 88, 185–2002 (1998)

12. Domshlak, Y.: Discrete version of Sturmian Comparison Theorem for non-symmetric equa-
tions. Dokl. Azerb. Acad. Sci., 37, 12–15 (1981) (Russian)

13. Domshlak, Y.: Sturmian comparison method in oscillation study for discrete difference
equations, I. J. Differ. Int. Equ. 7, 571–582 (1994)

14. Domshlak, Y.: Delay-difference equations with periodic coefficients: sharp results in oscillation
theory. Math. Inequal. Appl. 1, 403–422 (1998)

15. Domshlak, Y.: Riccati difference equations with almost periodic coefficients in the critical
state. Dyn. Syst. Appl. 8, 389–399 (1999)

16. Domshlak, Y.: What should be a discrete version of the Chanturia-Koplatadze Lemma? Funct.
Differ. Equ. 6, 299–304 (1999)

17. Domshlak, Y.: The Riccati difference equations near ”extremal” critical states. J. Differ. Equ.
Appl. 6, 387–416 (2000)

18. Driver, R.D.: Can the future influence the present? Phys. Rev. D 19(3), 1098–1107 (1979)
19. Elbert, A., Stavroulakis, I.P.: Oscillations of first order differential equations with deviating

arguments. In: Recent Trends in Differential Equations, pp. 163–178. World Sci. Ser. Appl.
Anal. 1, World Science Publishing Co., Singapore (1992)

20. Elbert, A., Stavroulakis, I.P.: Oscillation and non-oscillation criteria for delay differential
equations. Proc. Am. Math. Soc.textbf123, 1503–1510 (1995)

21. Elsgolts, L.E.: Introduction to the Theory of Differential Equations with Deviating Arguments.
(Translated from the Russian by R. J. McLaughlin) Holden-Day, Inc., San Francisco (1966)

22. Erbe, L.H., Kong, Q., Zhang, B.G.: Oscillation Theory for Functional Differential Equations.
Dekker, New York (1995)

23. Erbe, L.H., Zhang, B.G.: Oscillation of discrete analogues of delay equations. Differ. Int. Equ.
2, 300–309 (1989)

24. Fukagai, N., Kusano, T.: Oscillation theory of first order functional differential equations with
deviating arguments. Ann. Mat. Pura Appl. 136, 95–117 (1984)



Oscillation Criteria for Delay and Advanced Difference Equations... 145

25. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population
Dynamics. Kluwer Academic Publishers, Dordrecht (1992)

26. Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications.
Clarendon Press, Oxford (1991)

27. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1997)
28. Hoag, J.T., Driver, R.D.: A delayed-advanced model for the electrodynamics two-body

problem. Nonlinear Anal. 15 , 165–184 (1990)
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Positive Solutions of Nonlinear Equations
with Explicit Dependence on the Independent
Variable

J.R.L. Webb

Abstract We discuss positive solutions of integral equations for problems that arise
from nonlinear boundary value problems. The boundary conditions can be either of
local or nonlocal type. We concentrate on the case where the nonlinear term f (t,u)
depends explicitly on t and this dependence is crucial. We give new fixed-point
index results using a comparison theorem for a class of linear operators related to
the u0-positive operators of Krasnosel’skiı̆. These are used to establish new results
on existence and nonexistence of positive solutions under some conditions which
can be sharp.

Keywords Positive solutions • Nonlocal boundary conditions • Fixed point index

1 Introduction

We investigate positive solutions of integral equations of the form

u(t) =
∫ 1

0
G(t,s) f (s,u(s))ds,

that arise from nonlinear boundary value problems (BVPs), for example,

u′′(t)+ f (t,u(t)) = 0, or u(4)(t) = f (t,u(t)), t ∈ (0,1),

subject to various boundary conditions (BCs) of local or nonlocal type. We are
interested in the case where f depends explicitly on t in a crucial way, especially
when it is not of the well-studied form g(t)h(u).
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Our work covers a general situation and can be applied to many different BVPs.
For example, for the above second-order differential equation, it includes BCs of
separated type, possibly with one or two nonlocal terms,

au(0)− bu′(0) = α[u], cu(1)+ du′(1) = β [u], (1)

with a,b,c,d nonnegative, ac+ bc+ ad > 0, and α[u], β [u] are linear functionals
on C[0,1] that are given by

α[u] =
∫ 1

0
u(s)dA(s), β [u] =

∫ 1

0
u(s)dB(s), (2)

involving Riemann–Stieltjes integrals with A,B functions of bounded variation, that
is dA,dB can be sign changing measures, provided some positivity hypotheses of
integral type hold; see, for example, [29,30]. This includes the local case when α,β
are identically 0. It treats multipoint and integral boundary conditions in a single
framework. The work can also be applied to equations of higher order with local or
nonlocal boundary conditions (see, for example, [30]) and to fractional differential
equations (see, for example, [17]).

Let C[0,1] denote the Banach space of continuous functions defined on [0,1]
endowed with the standard norm ‖u‖ = max{u(t) : t ∈ [0,1]}. Positive solutions
of such BVPs can be obtained by finding fixed points, in a suitable cone, of the
nonlinear integral operator

Nu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds, (3)

where the kernel G is the Green’s function for the problem. Under mild conditions
this defines a compact map N in C[0,1], and, when G ≥ 0, and f ≥ 0, some fixed-
point theory, such as the theory of fixed-point index in a sub-cone K of the cone
P = {u ∈C[0,1] : u(t)≥ 0} of nonnegative functions, can be applied to N.

A condition that is often satisfied and has proved useful in discussing positive
fixed points of N is the following one:

(C) There exist a nonnegative measurable function Φ with Φ(s) > 0 for a.e. s ∈
(0,1) and a continuous function c ∈ P\ {0} such that

c(t)Φ(s) ≤ G(t,s)≤Φ(s), for 0≤ t,s≤ 1. (4)

This condition was introduced in a slightly different form in [19]. For G continuous,
one possibility is to take Φ(s) = maxt∈[0,1] G(t,s), then the task is to determine a
good function c; taking c as large as possible leads to weaker conditions.

Many papers that use various fixed-point theories have discussed the case when
the nonlinear term is of the form f (t,u) = g(t)h(u), where g satisfies an integrability
condition but can have pointwise singularities, for example, [19, 20, 27, 28, 31, 32].
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In such a case it is convenient to incorporate the term g into the kernel of the integral
operator, that is, replace G(t,s) by G(t,s)g(s). When the nonlinearity is of the form
g(t) f (t,u), most previous works, for example, [4, 7, 16, 18, 23, 27, 30, 31], have
concentrated on using inequalities to reduce to the case when f does not depend
explicitly on t by considering hypotheses involving f (u) := supt∈[0,1] f (t,u) and
f (u) := inft∈[0,1] f (t,u).

Some fixed-point index results, which can be used to prove existence of positive
fixed points of N, have been obtained by using the related linear operator

Lu(t) :=
∫ 1

0
G(t,s)u(s)ds, (5)

which is typically compact and has spectral radius r(L) > 0, and comparing the
behavior of f (u)/u and f (u)/u, for u near 0, and for u near ∞, with μ(L) := 1/r(L).
By the Krein–Rutman theorem, r(L) is an eigenvalue of L with an eigenvector in P.
Then, μ(L) is called the principal characteristic value of L and is often called the
“principal eigenvalue” of the corresponding BVP.

Results which employ the “eigenvalue” and give existence of at least one positive
solution, and also multiplicity results, are known; see, for example, [7,27,29,31,32].

An example of an existence theorem where the conditions are sharp is as follows:
there is at least one positive solution if “the nonlinearity crosses the eigenvalue,”
that is,

either limsup
u→0+

f (u)/u < μ(L) and liminf
u→∞

f (u)/u > μ(L),

or liminf
u→0+

f (u)/u > μ(L) and limsup
u→∞

f (u)/u < μ(L). (6)

For local boundary conditions of separated type see, for example, [3]; for some
multipoint problems see [31, 32]; and for some quite general situations see [27, 29].
In this case conditions are also known, in terms of f and f , which give an arbitrary
finite number of positive solutions under suitable conditions on f ; see, for example,
[11, 27, 29].

In a recent paper [24] we gave a new fixed-point index result which depends
on the spectral radius of another related linear operator which applies on intervals
bounded away from 0 and ∞. This enabled us to give a new result, related to
the behavior of f , f , on the existence of two positive solutions under conditions
depending only on spectral radii of linear operators.

In this paper we shall extend the results of [24] to the situation where f depends
explicitly on t when this dependence is crucial.

The main contribution to the case when f depends explicitly on t, and is not
simply a multiplicative factor, has been by Lan [10, 12–14, 17]. However, there has
been a lack of examples for this case.
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Our method uses comparison results for a class of linear operators called u0

positive relative to two cones, introduced in [24], which is closely related to a
class studied by Krasnosel’skiı̆, [8,9]. We also give a new nonexistence result using
similar comparison arguments.

In the special case when a stronger positivity condition than (C) holds, we proved
in [25, 26] new existence results for multiple positive solutions under conditions
which depend solely on the principal characteristic value of the associated linear
operator, but this does not seem possible in the case studied here when only (C)
holds.

To use the new results requires being able to calculate r(L). The explicit
t dependence usually prevents simple calculations directly from the differential
equation, so some numerical method is required to obtain explicit constants. I work
with the integral equation and use a C program, that runs on a desktop pc, written
for me by my colleague Prof. K.A. Lindsay.

These new existence results are complementary to those of Lan; there are cases
when one type of result is applicable but not the other.

We give two examples to illustrate our new results. We obtain explicit constants
which show that our results can give improvements of Lan’s result and, because we
also have a nonexistence result, also can give a sharp conclusion.

2 Positive Linear Operators

A subset K of a Banach space X is called a cone if K is closed, and x,y∈K and α ≥ 0
imply that x+ y ∈ K and αx ∈ K, and K ∩ (−K) = {0}. We always suppose that
K �= {0}. A cone defines a partial order by x�K y ⇐⇒ y− x ∈ K. A cone is called
normal if there exists γ > 0 such that for all 0≤ x≤ y it follows that ‖x‖ ≤ γ‖y‖. A
cone is said to be reproducing if X = K−K and to be total if X = K−K.

For example, in the space C[0,1] of real-valued continuous functions on [0,1],
endowed with the usual supremum norm, ‖u‖ := sup{|u(t)| : t ∈ [0,1]}, the cone of
nonnegative functions P := {u∈C[0,1] : u(t)≥ 0} is well known (and easily shown)
to be reproducing and normal with normality constant γ = 1.

In a recent paper [24] we have given a modification of the notion u0-positive
linear operator due to Krasnosel’skiı̆ [8, 9]. We suppose that we have two cones in
X , K0 ⊂ K1 and we let � denote the partial order defined by the larger cone K1, that
is, x� y ⇐⇒ y− x ∈ K1. We say that L is positive if L(K1)⊂ K1,

Definition 2.1. A positive bounded linear operator L : X → X is said to be u0

positive relative to the cones (K0,K1), if there exists u0 ∈ K1 \ {0}, such that for
every u ∈ K0 \ {0} there are constants k2(u)≥ k1(u)> 0 such that

k1(u)u0 � Lu � k2(u)u0.
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This is stronger than requiring that L is positive and is satisfied if L is u0-positive on
K1 according to [6, 9] (take K0 = K1 in the definition above). The idea is to utilize
the extra properties satisfied by elements of the smaller cone but only use the weaker
ordering of the larger cone.

In [24] we proved the following comparison theorem which is similar to one of
Keener and Travis [6], which was a sharpening of some results of Krasnosel’skiı̆,
see [8, Sect. 2.5.5].

Theorem 2.1 ([24]). Let K0 ⊂ K1 be cones in a Banach space X, and let � denote
the partial order of K1. Suppose that L1,L2 are bounded linear operators and that
at least one is u0-positive relative to (K0,K1). If there exist

u1 ∈ K0 \ {0}, λ1 > 0, such that λ1u1 � L1u1, and

u2 ∈ K0 \ {0}, λ2 > 0, such that λ2u2  L2u2, (7)

and L1u j � L2u j for j = 1,2, then λ1 ≤ λ2.

We shall use this only for one compact linear operator L taking L1 = L2 = L to
obtain one part of the following result. Let r(L) denote the spectral radius of a linear
operator L.

Theorem 2.2. Let K0 ⊂ K1 be cones in a Banach space X and let L be a compact
positive linear operator:

(i) If there exist u1 ∈ K1 \ {0} and λ1 > 0 such that λ1u1 � Lu1, then r(L)≥ λ1.
(ii) Suppose that K1 is a total cone, L is u0-positive relative to (K0,K1), and L(K1)⊂

K0. If there exist u2 ∈K1 \{0} and λ2 > 0 such that λ2u2 Lu2, then r(L)≤ λ2.

Proof.

(i) By Theorem 2.5 of Krasnosel’skiı̆ [8] (a new short proof of this using fixed-
point index theory is given in [25]), L has an eigenfunction in K1 with an
eigenvalue λ ≥ λ1, hence r(L)≥ λ ≥ λ1. In fact the result (i) holds without the
compactness assumption by a known elementary argument, repeated in [25],
but L may have no real eigenvalues in that case.

(ii) We may suppose that r(L)> 0. As K1 is a total cone and L : K1→K1 is compact,
r(L) is an eigenvalue of L with eigenfunction ϕ ∈K1\{0} by the Krein–Rutman
theorem (see, for example [2]), that is, r(L)ϕ = Lϕ . Since L(K1)⊂K0 it follows
that ϕ ∈ K0. We may also assume u2 ∈ K0 by replacing it by Lu2 if necessary.
By the comparison Theorem 2.1, we obtain λ2 ≥ r(L). �	

3 Integral Equations and New Fixed-Point Index Results

Studying positive solutions of a BVP can be done by finding fixed points, in some
sub-cone K of the cone P= {u∈C[0,1] : u(t)≥ 0}, of the nonlinear integral operator
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Nu(t) =
∫ 1

0
G(t,s) f (s,u(s))ds. (8)

If the nonlinearity is of the form g(t) f (t,u) with a possibly singular term g (usually
integrable), then we may replace the kernel (Green’s function) G by G̃ = Gg, so in
the theory we only need to consider the form (8).

Under mild conditions this defines a compact map N in the space C[0,1], and,
when G≥ 0 and f ≥ 0, the theory of fixed-point index can often be applied to N to
prove existence of multiple positive solutions for the integral equation

u(t) =
∫ 1

0
G(t,s) f (s,u(s))ds.

The rather weak conditions that we now impose on G, f ,g are similar to ones in the
papers [27, 29, 31].

(C1) The kernel G≥ 0 is measurable, and for every τ ∈ [0,1] we have

lim
t→τ
|G(t,s)−G(τ,s)|= 0 for almost every (a.e.) s ∈ [0,1].

(C2) There exist a nonnegative function Φ ∈ L1 with Φ(s) > 0 for a.e. s ∈ (0,1)
and c ∈ P\ {0} such that

c(t)Φ(s) ≤ G(t,s)≤Φ(s), for 0≤ t,s≤ 1. (9)

For a subinterval J = [t0, t1] of [0,1], let cJ := min{c(t) : t ∈ J}; since c ∈
P\ {0}, there exist intervals J with cJ > 0.

(C3) The nonlinearity f : [0,1]× [0,∞)→ [0,∞) satisfies Carathéodory conditions,
that is, f (·,u) is measurable for each fixed u ≥ 0 and f (t, ·) is continuous for
a. e. t ∈ [0,1], and for each r > 0, there exists φ r such that

f (t,u)≤ φ r(t) for all u ∈ [0,r] and a.e. t ∈ [0,1], where Φφ r ∈ L1.

Clearly, (C1) is satisfied if G is continuous. A precursor of condition (C2) was used
in [19]. The condition (C2) is frequently satisfied by ordinary differential equations
with both local and nonlocal boundary conditions, with the function c positive on
(0,1); see, for example, [29] for a quite general situation.

For a subinterval J = [t0, t1] ⊆ [0,1] such that cJ := min{c(t) : t ∈ J} > 0, we
define cones Kc,KJ by

Kc := {u ∈ P : u(t)≥ c(t)‖u‖, t ∈ [0,1]}, (10)

KJ := {u ∈ P : u(t)≥ cJ‖u‖, t ∈ J}. (11)
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It is clear that Kc ⊂ KJ . When we consider the cone KJ , we will always suppose that
cJ > 0. These cones, especially the second, have been studied by many authors in
the study of existence of multiple positive solutions of BVPs. For the first cone we
mention [1, 15, 16]; for the second see, for example, [5, 27, 29, 31].

Let f (t,u) satisfy Carathéodory conditions. For 0 < r < R define functions by

Fr,R(t) := inf
u∈[r,R]

f (t,u)/u, Fr,R(t) := sup
u∈[r,R]

f (t,u)/u. (12)

We define corresponding linear operators by

Lr,Ru(t) :=
∫ 1

0
G(t,s)Fr,R(s)u(s)ds,

LJ
r,Ru(t) :=

∫ t1

t0
G(t,s)Fr,R(s)u(s)ds. (13)

Since Fr,R(t)≤ Fr,R(t)≤ supu∈[r,R] f (t,u)/r ≤ φR(t)/r for a.e t, and G(t,s)≤Φ(s),
using condition (C3) shows that these operators are well defined on C[0,1]. Standard
arguments show that they are compact; see, for example, [21, Proposition V.3.1].

We define FR,∞(t) and LR,∞ in the obvious way. We also want to consider the
case r = 0, that is, we want to define L0,ρ and L0,ρ for ρ > 0. Let F0,ρ(t) :=
supu∈(0,ρ ] f (t,u)/u, and suppose that ΦF0,ρ ∈ L1. Then we define

L0,ρ u(t) :=
∫ 1

0
G(t,s)F0,ρ(s)u(s)ds. (14)

Similarly we define L0,ρ u(t) when F0,ρ(t) := infu∈(0,ρ ] f (t,u)/u.

Lemma 3.1. For 0 ≤ r < R the compact linear operators LJ
r,R and Lr,R map P

into Kc.

Proof. The known argument is essentially the same for each operator; we include
the proof for one of them to illustrate the argument. For u ∈ P we have

LJ
r,Ru(t)≤

∫ t1

t0
Φ(s)Fr,R(s)u(s)ds,

hence ‖LJ
r,Ru‖ ≤

∫ t1
t0

Φ(s)Fr,R(s)u(s)ds; and also

LJ
r,Ru(t)≥ c(t)

∫ t1

t0
Φ(s)Fr,R(s)u(s)ds≥ c(t)‖LJ

r,Ru‖.

�	

Lemma 3.2. Suppose that cJ > 0 and that
∫

J Φ(s)Fr,R(s)ds > 0. Then r(LJ
r,R)> 0,

and hence by the Krein–Rutman theorem, r(LJ
r,R) is an eigenvalue of LJ

r,R with an
eigenfunction in Kc. Similarly r(Lr,R) is an eigenvalue of Lr,R with an eigenfunction
in Kc.
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Proof. Let 1̂ denote the constant function with value 1. Then we have

LJ
r,R1̂ 

(
cJ

∫ t1

t0
Φ(s)Fr,R(s)ds

)
1̂,

so by Theorem 2.5 of Krasnosel’skiı̆ [8], LJ
r,R has an eigenfunction in P with an

eigenvalue λ ≥ cJ
∫ t1

t0
Φ(s)Fr,R(s)ds > 0. Hence r(LJ

r,R) > 0 and, since P is a total
cone, the Krein–Rutman theorem then says that r(LJ

r,R)) is an eigenvalue of LJ
r,R with

an eigenfunction in P. As LJ
r,R maps P into Kc, the eigenfunction is in Kc. Similarly

we have

Lr,Rc(t) =
∫ 1

0
G(t,s)Fr,R(s)c(s)ds ≥

∫ 1

0
c(t)Φ(s)Fr,R(s)c(s)ds

so Lr,R has an eigenvalue λ ≥
∫ 1

0 Φ(s)Fr,R(s)c(s)ds > 0. �	

One reason for considering the operator LJ
r,Ru(t) =

∫ t1
t0

G(t,s)Fr,R(s)u(s)ds rather

than the “natural” operator Lr,Ru(t) =
∫ 1

0 G(t,s)Fr,R(s)u(s)ds is the following result:

Theorem 3.1. Suppose that cJ > 0 and
∫

J Φ(s)Fr,R(s)ds > 0. Then the linear
operator LJ

r,R is u0-positive relative to (Kc,P).

Proof. Let u ∈ Kc \ {0}. Then we have

LJ
r,Ru(t) =

∫

J
G(t,s)Fr,R(s)u(s)ds≤

(∫

J
G(t,s)Fr,R(s)ds

)
‖u‖,

and, since u ∈ Kc ⊂ KJ ,

LJ
r,Ru(t) =

∫

J
G(t,s)Fr,R(s)u(s)ds ≥

(∫

J
G(t,s)Fr,R(s)ds

)
cJ‖u‖.

Let u0(t) :=
∫

J G(t,s)Fr,R(s)ds, then u0(t)≥ cJ
∫

J Φ(s)Fr,R(s)ds > 0 so u0 ∈ P\{0}.
�	

Remark 3.1. It is not clear whether or not Lr,R is u0-positive relative to (Kc,P)
without some extra hypothesis. In some special cases, G satisfies the stronger
positivity condition

c0Φ(s)≤ G(t,s)≤Φ(s), for 0≤ t,s≤ 1, (15)

for a constant c0 > 0. We may then take J = [0,1] and then LJ
r,R = Lr,R is u0-positive

relative to (Kc,P), and Lr,R is also u0-positive relative to (Kc,P); in this case, see
[26]. Stronger results than we can prove in the present paper are possible for this
restricted case, as shown in [25, 26].
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For ρ > 0 define the open (relative to Kc) set Uρ = {u ∈ Kc : ‖u‖ < ρ}. Note that,
if u ∈ ∂Uρ (the boundary relative to Kc), then 0 ≤ u(t) ≤ ρ for all t ∈ [0,1] and
cJ ρ ≤ u(t)≤ ρ for t ∈ J.

We now give our new fixed-point index results. In the case when essentially there
is no explicit t dependence, with hypotheses similar to (C1),(C2),(C3), these results
were first proved in [31], with rather different arguments.

The first new result gives conditions so that the index equals one. It is typically
applied for ρ small which corresponds to the behavior of f (t,u)/u for u near 0.

Theorem 3.2. Suppose there exists ρ > 0 such that r(L0,ρ )< 1. Then

iKc(N,Uρ ) = 1. (16)

Proof. We claim that Nu �= σu for all u ∈ ∂Uρ and all σ ≥ 1, from which it follows
by standard properties of fixed-point index that iKc(N,Uρ) = 1; see, for example,
[2, 5]. If there exist σ ≥ 1 and u ∈ ∂Uρ with σu = Nu then 0 ≤ u(s) ≤ ρ for all
s ∈ [0,1] and ‖u‖= ρ , therefore we have

u(t) =
1
σ

Nu(t)≤
∫ 1

0
G(t,s) f (s,u(s))ds ≤

∫ 1

0
G(t,s)F0,ρ(s)u(s)ds,

that is, u� L0,ρ u. By Theorem 2.2 (i) this implies r(L0,ρ )≥ 1, which contradiction
proves the claim. �	

We next give a new result which depends on the behavior of f (t,u)/u for u very
large.

Theorem 3.3. Suppose there exists R > 0 such that r(LR,∞) < 1. Then there exists
R1 > R such that

iKc(N,UR1) = 1. (17)

Proof. We note that, since r(LR,∞)< 1 and LR,∞ maps P to P, I−LR,∞ is invertible
and maps P into P. We have f (t,u)≤ FR,∞(t)u for all u≥ R, hence

f (t,u)≤ FR,∞(t)u+φR(t) for all u≥ 0.

Let wR(t) :=
∫ 1

0 G(t,s)φR(s)ds and take R1 > ‖(I− LR,∞)−1(wR)‖. We claim that
σu �= Nu for all σ ≥ 1 and all u ∈ ∂UR1 . In fact, if not, there exists u with ‖u‖= R1

such that

u(t)≤
∫ 1

0
G(t,s) f (s,u(s))ds ≤

∫ 1

0
G(t,s)

(
FR,∞(s)u+φR(s)

)
ds,
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that is, u� LR,∞u+wR, hence u� (I−LR,∞)−1wR. As is well known, P is a normal
cone with normality constant 1, so this implies that ‖u‖ ≤ ‖(I−LR,∞)−1wR‖ which
contradicts the choice of R1. �	

Our third new result gives conditions so that the fixed-point index is zero. An
advantage of this result is that it depends on the behavior of f on an interval (in the
u variable) that can be bounded away from both zero and infinity.

Theorem 3.4. Suppose there exist a subinterval J with cJ > 0 and a constant ρ > 0
such that r(LJ

cJ ρ ,ρ)> 1. Then

iKc(N,Uρ ) = 0. (18)

Proof. We take e ∈ Kc \ {0} and we will show that u �= Nu+σe for all u ∈ ∂Uρ
and all σ ≥ 0, from which it follows by standard properties of fixed-point index that
iKc(N,Uρ) = 0. If not, there exist σ ≥ 0 and u ∈ ∂Uρ such that u = Nu+σe. Then
cJρ ≤ u(s)≤ ρ for s ∈ J, and we have

u(t) = Nu(t)+σe(t)≥
∫ 1

0
G(t,s) f (s,u(s))ds ≥

∫

J
G(t,s)FcJρ ,ρ(s)u(s)ds,

that is,

u LJ
cJ ρ ,ρ u.

By Theorem 2.2 (ii) this implies that r(LJ
cJ ρ ,ρ)≤ 1, which contradiction proves the

result. �	

We now state, in a changed notation from the original papers, the results of Lan
[10, 12, 13] that correspond to these ones. One of these results makes use of the
(relatively) open set Ωρ := {u ∈ Kc : minJ u(t) < cJ ρ} introduced by Lan in [11].
Note that, for u ∈ Ω ρ , ‖u‖ ≤ ρ , and if u ∈ ∂Ωρ (the boundary relative to Kc), then
minJ u(t) = cJρ and cJ ρ ≤ u(t) ≤ ρ for t ∈ J. We remark that we could use this
open set in place of Uρ in Theorem 3.4 above, the same proof is valid.

Theorem 3.5.

(a) Suppose there exists ρ > 0 such that f (t,u) ≤ ρ f ρ(t) for 0 ≤ u ≤ ρ , where
supt∈[0,1]

∫ 1
0 G(t,s) f ρ (s)ds < 1. Then iKc(N,Uρ ) = 1.

(b) Suppose there exist a subinterval J with cJ > 0 and ρ > 0 such that f (t,u) ≥
cJρ fρ(t) f or cJ ρ ≤ u≤ ρ , and t ∈ J, where inft∈J

∫
J G(t,s) fρ (s)ds > 1.

Then iKc(N,Ωρ ) = 0.

The original proofs of these results are in [10,12,13]. For completeness we give the
proofs here, using our notation, to illustrate the arguments.
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Proof.

(a) If there exist σ ≥ 1 and u ∈ ∂Uρ with σu = Nu then 0 ≤ u(s) ≤ ρ for all
s ∈ [0,1] and ‖u‖= ρ , therefore we have

u(t) =
1
σ

Nu(t)≤
∫ 1

0
G(t,s) f (s,u(s))ds ≤

∫ 1

0
G(t,s)ρ f ρ(s)ds.

Taking the supremum for t ∈ [0,1] gives ρ ≤ ρ supt∈[0,1]
∫ 1

0 G(t,s) f ρ (s)ds < ρ ,
which contradiction proves the claim.

(b) Let e ∈ Kc \ {0} and suppose that there exist σ ≥ 0 and u ∈ ∂Ωρ such that
u = Nu+σe. Then cJρ ≤ u(s)≤ ρ for s ∈ J, and for each t ∈ [0,1] we have

u(t) =
∫ 1

0
G(t,s) f (s,u(s))ds+σe(t)≥

∫

J
G(t,s)cJ ρ fρ(s)ds.

Taking the infimum over J gives

cJρ ≥ cJρ inf
t∈J

∫

J
G(t,s) fρ (s)ds > cJρ ,

a contradiction. �	

Remark 3.2.

(i) Note that, since ρ is at our disposal, the assumptions in (b) are equivalent to
the following: there exists ρ > 0 such that f (t,u) ≥ ρ f̃ρ(t) for ρ ≤ u ≤ ρ/cJ

where inft∈J
∫

J G(t,s) f̃ρ (s)ds> 1. This is a more useful form when a hypothesis
is made about the behavior of f (t,u)/u for all large u, and we consider J
approaching [0,1].

(ii) In the result (a) we can clearly take f ρ(t) = supu∈[0,ρ ] f (t,u)/ρ . Since,
for each t, f (t,u)/ρ ≤ f (t,u)/u for all u ∈ (0,ρ ], it would then follow
that f ρ (t) ≤ F0,ρ(t). Let L1u(t) :=

∫ 1
0 G(t,s) f ρ (s)u(s)ds, and

L2u(t) :=
∫ 1

0 G(t,s)F0,ρ(s)u(s)ds. Then Theorem 3.5 (a) requires ‖L1‖ < 1,
while Theorem 3.2 requires r(L2) < 1. In some cases, f ρ = F0,ρ , and then
Theorem 3.2 is an improvement of Theorem 3.5 (a); in some other cases
Theorem 3.5 (a) can be applied, but Theorem 3.2 cannot be applied. Similar
comments apply to Theorem 3.4 and Theorem 3.5 (b). This is why our new
results complement those of Lan.

4 Existence and Nonexistence of Positive Solutions

We have all the ingredients for an existence result for positive solutions. Let (C1)–
(C3) hold and f satisfy the conditions of the previous section. The first result gives
one positive solution.
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Theorem 4.1. Let J be a subinterval of [0,1] such that cJ > 0 and let 0 < ρ1 <
cJρ2 < ρ2. Suppose that

r(L0,ρ1)< 1 and r(LJ
cJρ2,ρ2

)> 1.

Then the integral operator N has at least one fixed point in Kc \ {0}.

Proof. By Theorem 3.2, iKc(N,Uρ1) = 1 and by Theorem 3.4, iKc(N,Uρ2) = 0.
By the additivity property of index this gives iKc(N,Uρ2 \Uρ1) = −1, and by the
solution property, N has a fixed point in Uρ2 \Uρ1 , hence is nontrivial. �	

Remark 4.1. Since iKc(N,Uρ1) = 1, there is a fixed point of N in Uρ1 ; this is
typically the zero solution, whose existence is usually obvious.

Because of the overlap of the intervals, it is not possible to have the conditions

r(LJ
cJ ρ1,ρ1

)> 1 and r(L0,ρ2)< 1,

so there is not a second set of conditions of this type for one positive solution.

We can obtain a result that does not involve J which gives one positive solution in
either of two cases. This is similar to the original result in [31] when there was no
relevant explicit t dependence. To do this we employ a result of Nussbaum, Lemma
2 of [22], which says that if Ln are compact linear operators and Ln → L in the
operator norm, then r(Ln)→ r(L). In particular, when c(t) > 0 for all t ∈ (0,1) we
may take J = [t0, t1] to be an arbitrary subinterval of (0,1), and letting t0 → 0 and
t1 → 1, we have r(LJ

cJρ ,ρ)→ r(L0,ρ) and r(LJ
R,R/cJ

)→ r(LR,∞).

Corollary 4.1. Suppose that c(t)> 0 for all t ∈ (0,1). Let 0 < ρ < R and suppose
that

either (i) r(L0,ρ)< 1 and r(LR,∞)> 1,

or (ii) r(L0,ρ)> 1 and r(LR,∞)< 1.

Then the integral operator N has at least one fixed point in Kc \ {0}.

Proof. Case (i) is similar to Theorem 4.1, so we only show (ii). By Theorem 3.4 and
the above remarks iKc(N,Uρ) = 0 and by Theorem 3.3, there is R1 > R sufficiently
large with iKc(N,UR1) = 1. By the additivity and existence properties of index, the
result follows. �	

The next result gives two positive solutions.

Theorem 4.2. Let J be a subinterval of [0,1] such that cJ > 0 and let 0 < ρ1 <
cJρ2 < ρ2 < ρ3 and suppose that

r(L0,ρ1)< 1, r(LJ
cJρ2,ρ2

)> 1, and r(Lρ3,∞)< 1.

Then the integral operator N has at least two fixed points in Kc \ {0}.
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Proof. By the additivity property we obtain

iKc(N,Uρ2 \Uρ1) =−1, iKc(N,Uρ3 \Uρ2) = 1,

so N has a fixed point in Uρ3 \Uρ2 and another in the disjoint set Uρ2 \Uρ1 . �	

Remark 4.2.

(a) There is a third solution in Uρ1 , typically zero.
(b) It is not possible to have the conditions

r(LJ
cJ ρ1,ρ1

)> 1, and r(L0,ρ2)< 1,

so there is not another theorem for the existence of two positive solutions.
However, in the special case when the stronger positivity condition (15) holds,
it is possible to have multiple positive solutions; see [25, 26] for details. This is
a big advantage but only can be proved in that restricted case,

(c) It is clear that we do not need to choose Fr,R(t) = infu∈[r,R] f (t,u)/u, and
Fr,R(t) = supu∈[r,R] f (t,u)/u, lower and upper bounds, respectively, suffice, but
choosing equalities give the most precise results.

With our comparison theorem we can also prove nonexistence results.

Theorem 4.3.

(i) Suppose that f (t,u) ≤ F(t)u for all u > 0, where ΦF ∈ L1. Let Lu(t) :=
∫ 1

0 G(t,s)F(s)u(s)ds and suppose that r(L) < 1. Then N has no nonzero fixed
point in Kc.

(ii) Suppose that c(t)> 0 for t ∈ (0,1) and that f (t,u)≥ F(t)u for all u > 0, where
ΦF ∈ L1. Let Lu(t) :=

∫ 1
0 G(t,s)F(s)u(s)ds and suppose that r(L) > 1. Then

N has no nonzero fixed point in Kc.

Proof. In case (i) suppose that u ∈ Kc \ {0} is a fixed point of N. Then

u = Nu� Lu,

and by Theorem 2.2 (i) this would imply r(L) ≥ 1, which contradiction proves the
result. In case (ii) we define LJu(t) :=

∫
J G(t,s)F(s)u(s)ds, and, using Nussbaum’s

result mentioned above, we select J ⊂ (0,1) so that r(LJ) > 1. By the proof of
Theorem 3.1, LJ is u0-positive relative to (Kc,P). Now if u ∈ Kc \ {0} is a fixed
point of N, then

u = Nu  Lu≥ LJu,

and by Theorem 2.2 (ii) this gives a contradiction. �	
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5 Illustrative Examples

We now give two examples to illustrate our results. The first example has a simple
but standard type of nonlinearity. We obtain a sharp result, whereas the results of
Lan give a less precise conclusion.

Example 5.1. Consider the BVP

u′′(t)+λ f (t,u(t)) = 0, t ∈ (0,1), with f (t,u) = (1− t)u2+ tu, (19)

where λ is a positive parameter, with boundary conditions

u(0) = 0, u(1) = 0. (20)

We will show that there is λ ∗ ≈ 18.956 such that the problem has at least one
(strictly) positive solution for each λ < λ ∗ and there is no positive solution for
λ > λ ∗. (Of course there is also the zero solution.) Thus, our result can be sharp.

The Green’s function for this problem is well known to be

G(t,s) =

{
s(1− t), if s≤ t,

t(1− s), if s > t.

Hence Φ(s) = s(1−s) and c(t)=min{t,1−t}. Let Nu(t) := λ
∫ 1

0 G(t,s) f (s,u(s))ds.
We have f (t,u)/u = (1−t)u+t and therefore F0,ρ(t) = (1−t)ρ+t and Fr,R(t) =
(1− t)r+t. Then we have

L0,ρ u(t) :=
∫ 1

0
G(t,s)((1− s)ρ + s)u(s)ds.

Let L0u(t) :=
∫ 1

0 G(t,s)su(s)ds. By the result of Nussbaum [22] mentioned above,
for an arbitrary ε > 0, ρ can be chosen so small that r(L0,ρ)− r(L0)< ε . Thus, by
Theorem 3.2, we may choose ρ sufficiently small so that iKc(N,Uρ) = 1 provided
λ r(L0)< 1, that is, λ < 1/r(L0). By a numerical calculation, 1/r(L0)≈ 18.956. For
any λ > 0, taking r,R sufficiently large makes r(Lr,R) as large as we wish. Hence
for every λ ∈ (0,1/r(L0)), there is at least one positive solution by Corollary 4.1.
By the nonexistence result, Theorem 4.3, since f (t,u)≥ tu for all u > 0, no positive
solution exists if λ > 1/r(L0).

Now we compare our conclusion with the one that can be obtained using Lan’s
result, Theorem 3.5 above. We have f ρ(t) = supu∈[0,ρ ] f (t,u)/ρ = (1− t)ρ + t.

Theorem 3.5 gives iKc(N,Uρ) = 1 if λ maxt∈[0,1]
∫ 1

0 G(t,s)((1− s)ρ + s)ds < 1. By

choosing ρ sufficiently small, it suffices to have λ maxt∈[0,1]
∫ 1

0 G(t,s)sds < 1. By a

Maple calculation this requires λ < 9
√

3≈ 15.588. For each λ in (0,9
√

3), choosing
R sufficiently large gives a zero index by part (b) of Theorem 3.5, and thus, Lan’s
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result gives existence of a positive solution for every λ ∈ (0,9
√

3). Lan does not
give a nonexistence result so does not have an upper bound on the possible allowed
λ . Thus in this example, we have a better result, and our constant is sharp. We note
that in this example

f (u) =

{
u, if u≤ 1,

u2 if u≥ 1,
f (u) =

{
u2, if u≤ 1,

u if u≥ 1.

Thus,

lim
u→0+

f (u)/u = 1, lim
u→∞

f (u)/u = 1,

lim
u→0+

f (u)/u = 0, lim
u→∞

f (u)/u = ∞,

and the results that use f , f do not apply: there is no “crossing of the eigenvalue,”
as is required in (6) in the Introduction.

Remark 5.1. For the problem with f (u) = u2 + u, with no explicit t dependence,
the corresponding result is as follows: Let Lu(t) :=

∫ 1
0 G(t,s)u(s)ds. By similar

arguments to the above, there is no positive solution for λ > 1/r(L), and for every
λ ∈ (0,1/r(L)), there is at least one positive solution. In this case, it is well known
that 1/r(L) = π2. Since, very roughly, u2+u is approximately double the “average”
of our f (t,u), the constant we found of 18.956 makes sense.

In the second example we have a result for existence of two positive solutions.

Example 5.2. Consider the BVP

u′′(t)+λ f (t,u(t)) = 0, t ∈ (0,1), with f (t,u) = (1− t)h(u)+ tu, (21)

where λ is a positive parameter and

h(u) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, if 0≤ u≤ 1,

8(u− 1)(9− u)/7, if 1 < u < 9,

0, if u≥ 9,

with boundary conditions

u(0) = 0, u(1) = 0.

We have the same Green’s function as in Example 5.1. We will show that there
are constants λ ∗ ≈ 3.482, λ ∗∗ ≈ 11.85 and λ ∗∗∗ ≈ 18.956 such that the problem
has no positive solution for λ < λ ∗, has at least two positive solutions for each
λ ∗∗ < λ < λ ∗∗∗, and has no positive solution for λ > λ ∗∗∗.
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Firstly we have F(t,u)≥ t for all u ≥ 0, so by Theorem 4.3, there is no positive
solution if λ r(L) > 1 where Lu(t) :=

∫ 1
0 G(t,s)su(s)ds, that is, if λ > 1/r(L) =

λ ∗∗∗ ≈ 18.956 (as in the previous example).
We also have h(u) ≤ 32u/7 so F(t,u) ≤ 32/7− 25t/7 for all u ≥ 0 so there is

no positive solution for λ r(L) < 1 where Lu(t) :=
∫ 1

0 G(t,s)(32/7− 25s/7)u(s)ds,
that is if λ < 1/r(L) = λ ∗ ≈ 3.482, by a numerical calculation.

For existence we note that F(t,u)= t for u∈ [0,1] and for u≥ 9 so two conditions
in Theorem 4.2 are satisfied for λ < 1/r(L).

We now choose J = [1/4,3/4] so that cJ = 1/4 and choose ρ2 = 8 so we are now
working on the interval [2,8]. As h(u)≥ u for u ∈ [2,8] we have FJ

cJρ2,ρ2
(t)≥ 1. By

a numerical calculation we find 1/r(LJ
2,8)≈ 11.85 so there are at least two positive

solutions for 1/r(L) = λ ∗∗∗ ≥ λ > λ ∗∗ = 1/r(LJ
2,8) ≈ 11.85. We cannot get high

accuracy for λ ∗∗ here because the numerical program used was only written for the
continuous case; here the cutoff introduces discontinuities. Using the comparison
Theorem 2.1, we can prove the definite bounds 11.81≤ 1/r(LJ

2,8)≤ 11.89.

In this example we easily see that, for f (u) := supt∈[0,1] f (t,u) and f (u) :=
inft∈[0,1] f (t,u),

f (u) =

⎧
⎪⎪⎨

⎪⎪⎩

u, if u≤ 9/8,

h(u), if 9/8≤ u≤ 8,

u, if u > 8.

f (u) =

⎧
⎪⎪⎨

⎪⎪⎩

h(u), if u≤ 9/8,

u, if 9/8≤ u≤ 8,

h(u), if u > 8.

Let Lu(t) :=
∫ 1

0 G(t,s)u(s)ds and L̃u(t) :=
∫ 3/4

1/4 G(t,s)u(s)ds. To get two solutions

using (D′1) of Theorem 5.12 of [24], we would need λ < 1/r(L) = π2 and λ >
1/r(L̃)≈ 11.85, an impossibility. Thus, those results do not apply.
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Existence Results for a System of Third-Order
Right Focal Boundary Value Problems

Patricia J.Y. Wong

Abstract We consider the following system of third-order three-point generalized
right focal boundary value problems

u′′′i (t) = fi(t,u1(t),u2(t), . . . ,un(t)), t ∈ [a,b]

ui(a) = u′i(ti) = 0, γiui(b)+ δiu′′i (b) = 0,

where i = 1,2, . . . ,n, γi ≥ 0, δi > 0 and 1
2 (a+b)< ti < b. By using a variety of tools

like Leray–Schauder alternative and Krasnosel’skii’s fixed point theorem, we offer
several criteria for the existence of fixed-sign solutions of the system. A solution
u = (u1,u2, . . . ,un) is said to be of fixed sign if for each 1 ≤ i ≤ n, θiui(t) ≥ 0 for
t ∈ [a,b] where θi ∈ {−1,1} is fixed. We also consider a related eigenvalue problem

u′′′i (t) = λ fi(t,u1(t),u2(t), . . . ,un(t)), t ∈ [a,b]

ui(a) = u′i(t
∗) = 0, γiui(b)+ δiu′′i (b) = 0,

where i = 1,2, . . . ,n, λ > 0, γi ≥ 0, δi > 0 and 1
2(a+ b)< t∗ < b. Criteria will be

established so that the above system has a fixed-sign solution for values of λ that
form an interval (bounded or unbounded). Explicit intervals for such λ will also be
presented. We include some examples to illustrate the results obtained.
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1 Introduction

In this paper we shall consider a system of third-order differential equations subject
to generalized right focal boundary conditions. To be precise, the system is

u′′′i (t) = fi(t,u1(t),u2(t), . . . ,un(t)), t ∈ [a,b]

ui(a) = u′i(ti) = 0, γiui(b)+ δiu′′i (b) = 0,
(1)

where i = 1,2, . . . ,n, and ti, γi, δi are fixed numbers with

1
2
(a+ b)< ti < b, γi ≥ 0, δi > 0, ηi ≡ 2δi + γi(b− a)(b+ a− 2ti)> 0.

A solution u= (u1,u2, . . . ,un) of (1) will be sought in (C[a,b])n =C[a,b]×C[a,b]×
·· ·×C[a,b] (n times). We say that u is a solution of fixed sign if for each 1≤ i≤ n,
we have θiui(t) ≥ 0 for t ∈ [a,b] where θi ∈ {1,−1} is fixed. In particular, if we
choose θi = 1, 1≤ i≤ n, then our fixed-sign solution u becomes a positive solution.
We remark that in many practical problems, it is only meaningful to have positive
solutions. Nonetheless our definition of fixed-sign solution is more general and gives
extra flexibility. By using a variety of tools like Leray–Schauder alternative and
Krasnosel’skii’s fixed point theorem, we shall offer several criteria for the existence
of fixed-sign solutions of the system (1).

We also consider an eigenvalue problem related to (1), namely,

u′′′i (t) = λ fi(t,u1(t),u2(t), . . . ,un(t)), t ∈ [a,b]

ui(a) = u′i(t
∗) = 0, γiui(b)+ δiu′′i (b) = 0,

(2)

where i = 1,2, . . . ,n and λ > 0. The numbers t∗, γi, δi are fixed constants with

1
2
(a+ b)< t∗ < b, γi ≥ 0, δi > 0, ηi ≡ 2δi + γi(b− a)(b+ a− 2t∗)> 0.

If, for a particular λ , the system (2) has a fixed-sign solution u = (u1,u2, . . . ,un),
then λ is called an eigenvalue and u a corresponding eigenfunction of the system.
Let E be the set of eigenvalues, i.e.,

E = {λ | λ > 0 such that the system (2) has a fixed-sign solution}.

We shall establish criteria for E to contain an interval and to be an interval (which
may either be bounded or unbounded). Upper and lower bounds for an eigenvalue
λ are also established. In addition explicit subintervals of E are obtained.
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Right focal boundary value problems have attracted much interests in recent
years. Existence of positive solutions to the two-point right focal boundary value
problem

(−1)3−ky′′′(t) = f (t,y(t)), t ∈ [0,1]

y( j)(0) = 0, 0≤ j ≤ k− 1; y( j)(1) = 0, k≤ j ≤ 2,

where k ∈ {1,2}, has been well discussed in the literature [1, 4]. The related
discrete problem can be found in [11, 18–20]. Work on a three-point right focal
problem, a special case of (1) when n = 1, δ1 = 1, γ1 = 0, is available in [6, 8].
Further, Anderson [7] has considered (1) when n = 1 and developed the Green’s
function for the boundary value problem. In our present work, we generalize the
problem considered in [7] to a system of boundary value problems, with very general
nonlinear terms fi, and we seek fixed-sign solutions of the system—this presents a
much more robust model for many nonlinear phenomena.

The paper is outlined as follows. Section 2 deals with the existence of fixed-sign
solutions of (1). In Sect. 3, the eigenvalue problem (2) is presented. Throughout, we
also include some examples to illustrate the results obtained. This chapter is based
on the work [21, 22]. Other work on fixed-sign solutions of third-order right focal
boundary value problems can be found in [23–26], while work on positive solutions
of boundary value problems is abundant, a sample includes [2–5, 9, 10, 12–15, 17]
and the references cited therein.

2 Existence of Fixed-Sign Solutions

In this section, we shall obtain the existence of one or two fixed-sign solutions of (1)
by using Leray–Schauder alternative and Krasnosel’skii’s fixed point theorem in a
cone, which are stated as follows:

Theorem 2.1 ([4]). Let B be a Banach space with D ⊆ B closed and convex.
Assume U is a relatively open subset of D with 0 ∈U and S : U →D is a continuous
and compact map. Then either

(a) S has a fixed point in U or
(b) There exists u ∈ ∂U and λ ∈ (0,1) such that u = λ Su.

Theorem 2.2 ([16]). Let B = (B,‖ ·‖) be a Banach space, and let C ⊂ B be a cone
in B. Assume Ω1,Ω2 are open subsets of B with 0 ∈ Ω1, Ω 1 ⊂ Ω2, and let S :
C∩ (Ω 2\Ω1)→C be a completely continuous operator such that either

(a) ‖Su‖ ≤ ‖u‖, u ∈C∩∂Ω1, and ‖Su‖ ≥ ‖u‖, u ∈C∩∂Ω2 or
(b) ‖Su‖ ≥ ‖u‖, u ∈C∩∂Ω1, and ‖Su‖ ≤ ‖u‖, u ∈C∩∂Ω2.

Then S has a fixed point in C∩ (Ω 2\Ω1).
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The next lemma gives the Green’s function of a related boundary value problem
and its properties. This lemma plays a very important role in obtaining the
subsequent results.

Lemma 2.1 ([7]). Let gi(t,s) be the Green’s function of the boundary value
problem

{
y′′′(t) = 0, t ∈ [a,b]

y(a) = y′(ti) = 0, γiy(b)+ δiy′′(b) = 0.

We have for t,s ∈ [a,b],

gi(t,s) =

⎧
⎪⎪⎨

⎪⎪⎩

s ∈ [a, ti] :

{
v1(t,s), t ≤ s
v2(t,s), t ≥ s

s ∈ [ti,b] :

{
v3(t,s), t ≤ s
v4(t,s), t ≥ s

(3)

where

v1(t,s) =
t− a

2
(2s− t− a)+

γi(t− a)
2ηi

(s− a)2(2ti− a− t),

v2(t,s) =
(s− a)2

2ηi
[ηi + γi(t− a)(2ti− a− t)],

v3(t,s) =
t− a
2ηi

(2ti− a− t)[2δi+ γi(b− s)2],

v4(t,s) =
t− a
2ηi

(2ti− a− t)[2δi+ γi(b− s)2]+
(t− s)2

2
.

Moreover, gi(t,s) has the following properties:

gi(t,s)≥ 0, t,s ∈ [a,b]; gi(t,s)> 0, t,s ∈ (a,b] (4)

gi(t,s) ≤ gi(ti,s), t,s ∈ [a,b] (5)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

for a fixed hi ∈ (0,b− ti),

gi(t,s)≥Migi(ti,s), t ∈ [ti− hi, ti + hi], s ∈ [a,b]

where Mi =
(ti− a+ hi)(ti− a− hi)

(ti− a)2 .

(6)
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Throughout, we shall denote u = (u1,u2, . . . ,un). Let the Banach space B =
(C[a,b])n be equipped with the norm

‖u‖= max
1≤i≤n

sup
t∈[a,b]

|ui(t)|= max
1≤i≤n

|ui|0,

where we let |ui|0 = supt∈[a,b] |ui(t)|, 1≤ i≤ n.
Define the operator S : (C[a,b])n → (C[a,b])n by

Su(t) = (S1u(t),S2u(t), . . . ,Snu(t)) , t ∈ [a,b], (7)

where

Siu(t) =
∫ b

a
gi(t,s) fi(s,u(s))ds, t ∈ [a,b], 1≤ i≤ n. (8)

Clearly, a fixed point of the operator S is a solution of the system (1).
Using Theorem 2.1, we obtain an existence criterion for a general solution (need

not be of fixed sign).

Theorem 2.3. Let fi : [a,b]×Rn → R, 1 ≤ i ≤ n be continuous. Suppose there
exists a constant ρ , independent of λ , such that ‖u‖ �= ρ for any solution u ∈
(C[a,b])n of the system

ui(t) = λ
∫ b

a
gi(t,s) fi(s,u(s))ds, t ∈ [a,b], 1≤ i≤ n, (9λ )

where 0 < λ < 1. Then, (1) has at least one solution u∗ ∈ (C[a,b])n such that
‖u∗‖ ≤ ρ .

Proof. Clearly, a solution of (9λ ) is a fixed point of the equation u = λ Su where S is
defined in (7), (8). Using the Arzelà–Ascoli theorem, we see that S is continuous and
completely continuous. Now, in the context of Theorem 2.1, let U = {u∈ B | ‖u‖<
ρ}. Since ‖u‖ �= ρ , where u is any solution of (9λ ) we cannot have conclusion (b) of
Theorem 2.1; hence, conclusion (a) of Theorem 2.1 must hold, i.e., the system (1)
has a solution u∗ ∈U with ‖u∗‖ ≤ ρ . �	

We shall now present the existence results of fixed-sign solutions. Let θi ∈
{1,−1}, 1 ≤ i ≤ n be fixed, and also fix the numbers hi and Mi [see (6)]. Define
the sets K̃ and K as follows:

K̃ = {u ∈ B | θiui(t)≥ 0, t ∈ [a,b], 1≤ i≤ n},

K=
{

u ∈ K̃
∣
∣ θ ju j(t)>0 for some j ∈ {1,2, · · · ,n} and some t ∈ [a,b]

}
=K̃\{0}.

Applying Theorem 2.3, we get the existence of a fixed-sign solution as follows.



170 P.J.Y. Wong

Theorem 2.4. Let the following hold:

(C1) For each 1≤ i≤ n, fi is continuous on [a,b]× K̃ with θi fi(t,u)≥ 0 for (t,u)∈
[a,b]× K̃ and θi fi(t,u)> 0 for (t,u) ∈ [a,b]×K.

(C2) For each 1≤ i≤ n,

θi fi(t,u)≤ qi(t)wi1(|u1|)wi2(|u2|) · · ·win(|un|), (t,u) ∈ [a,b]× K̃,

where qi, wi j, 1≤ j ≤ n are continuous, wi j : [0,∞)→ [0,∞) are nondecreas-
ing, and qi : [a,b]→ [0,∞).

(C3) There exists α > 0 such that for each 1≤ i≤ n,

α > diwi1(α)wi2(α) · · ·win(α),

where di = supt∈[a,b]
∫ b

a gi(t,s)qi(s)ds.

Then, (1) has a fixed-sign solution u∗ ∈ (C[a,b])n such that ‖u∗‖ < α, i.e., 0 ≤
θiu∗i (t)< α, t ∈ [a,b], 1≤ i≤ n.

Proof. To apply Theorem 2.3, we consider the system

ui(t) =
∫ b

a
gi(t,s) f̂i(s,u(s))ds, t ∈ [a,b], 1≤ i≤ n, (10)

where f̂i : [a,b]×Rn →R is defined by

f̂i(t,u1,u2, . . . ,un) = fi(t,θ1|u1|,θ2|u2|, . . . ,θn|un|), 1≤ i≤ n.

Noting (θ1|u1|,θ2|u2|, . . . ,θn|un|) ∈ K̃, by (C1) we see that the function f̂i is well
defined and is continuous. We shall show that (10) has a solution. For this, we
consider the system

ui(t) = λ
∫ b

a
gi(t,s) f̂i(s,u(s))ds, t ∈ [a,b], 1≤ i≤ n, (11λ )

where 0 < λ < 1. Let u ∈ (C[a,b])n be any solution of (11λ ) We can verify that
‖u‖ �= α, then it follows from Theorem 2.3 that (10) has a solution. Moreover, this
solution is of fixed sign and is also a solution of (1). �	

Theorem 2.4 provides the existence of a fixed-sign solution which may be trivial.
Our next result guarantees the existence of a nontrivial fixed-sign solution.

Theorem 2.5. Let (C1)–(C3) hold. Moreover, suppose

(C4) For each 1≤ j ≤ n and some i ∈ {1,2, . . . ,n} (i depends on j),

θi fi(t,u)≥ τi j(t)wi j(|u j|), (t,u) ∈ [t j− h j, t j + h j]×K

where τi j : [t j− h j, t j + h j]→ (0,∞) is continuous.
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(C5) There exists β > 0 such that for each 1≤ j ≤ n, the following holds for some
i ∈ {1,2, . . . ,n} (i depends on j and is the same i as in (C4)):

β ≤ wi j(Mjβ ) ·
∫ t j+h j

t j−h j

gi(σi j,s)τi j(s)ds

where σi j ∈ [a,b] is defined by

∫ t j+h j

t j−h j

gi(σi j,s)τi j(s)ds = sup
t∈[a,b]

∫ t j+h j

t j−h j

gi(t,s)τi j(s)ds.

Then, (1) has a fixed-sign solution u∗ ∈ (C[a,b])n such that

(a) α < ‖u∗‖ ≤ β and mint∈[t j−h j ,t j+h j ] θ ju∗j(t)> Mjα for some j ∈ {1,2, . . . ,n}, if
α < β .

(b) β ≤ ‖u∗‖< α and mint∈[t j−h j ,t j+h j ] θ ju∗j(t)≥Mjβ for some j ∈ {1,2, . . . ,n}, if
α > β .

Proof. The proof uses Theorem 2.2 with

C = {u ∈ B | for each 1≤ i≤ n, θiui(t)≥ 0 for t ∈ [a,b],

and mint∈[ti−hi,ti+hi] θiui(t)≥Mi|ui|0},

Ω1 = {u ∈ B | ‖u‖< α} and Ω2 = {u ∈ B | ‖u‖< β}, if α < β . �	

Using Theorems 2.4 and 2.5(a), we obtain the existence of two fixed-sign
solutions.

Theorem 2.6. Let (C1)–(C5) hold with α < β . Then, (1) has (at least) two fixed-
sign solutions u1,u2 ∈ (C[a,b])n such that

0≤ ‖u1‖< α < ‖u2‖ ≤ β

and

min
t∈[t j−h j ,t j+h j ]

θ ju
2
j(t)> Mjα for some j ∈ {1,2, . . . ,n}.

In Theorem 2.6 it is possible to have ‖u1‖ = 0. Applying Theorem 2.5 twice,
we get the next result that guarantees the existence of two nontrivial fixed-sign
solutions.

Theorem 2.7. Let (C1)–(C5) and (C5)|β=β̃ hold, where 0 < β̃ < α < β . Then, (1)

has (at least) two fixed-sign solutions u1,u2 ∈ (C[a,b])n such that

0 < β̃ ≤ ‖u1‖< α < ‖u2‖ ≤ β ,
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min
t∈[tk−hk,tk+hk]

θku1
k(t)≥Mkβ̃ and min

t∈[t j−h j ,t j+h j ]
θ ju

2
j(t)> Mjα

for some j,k ∈ {1,2, . . . ,n}.

Using Theorems 2.4 and/or 2.5 repeatedly, we can generalize Theorems 2.6
and 2.7 and obtain the existence of multiple fixed-sign solutions of (1).

Theorem 2.8. Assume (C1), (C2), and (C4) hold. Let (C3) be satisfied for α =
α�, �= 1,2, . . . ,k, and (C5) be satisfied for β = β�, �= 1,2, . . . ,m:

(a) If m = k+1 and 0 < β1 < α1 < · · ·< βk < αk < βk+1, then (1) has (at least) 2k
fixed-sign solutions u1, . . . ,u2k ∈ (C[a,b])n such that

0 < β1 ≤ ‖u1‖< α1 < ‖u2‖ ≤ β2 ≤ ·· ·< αk < ‖u2k‖ ≤ βk+1.

(b) If m = k and 0 < β1 < α1 < · · ·< βk < αk, then (1) has (at least) 2k− 1 fixed-
sign solutions u1, . . . ,u2k−1 ∈ (C[a,b])n such that

0 < β1 ≤ ‖u1‖< α1 < ‖u2‖ ≤ β2 ≤ ·· · ≤ βk ≤ ‖u2k−1‖< αk.

(c) If k = m+ 1 and 0 < α1 < β1 < · · · < αm < βm < αm+1, then (1) has (at least)
2m+ 1 fixed-sign solutions u0, . . . ,u2m ∈ (C[a,b])n such that

0≤ ‖u0‖< α1 < ‖u1‖ ≤ β1 ≤ ‖u2‖< α2 < · · · ≤ βm ≤ ‖u2m‖< αm+1.

(d) If k = m and 0 < α1 < β1 < · · ·< αk < βk, then (1) has (at least) 2k fixed-sign
solutions u0, . . . ,u2k−1 ∈ (C[a,b])n such that

0≤ ‖u0‖< α1 < ‖u1‖ ≤ β1 ≤ ‖u2‖< α2 < · · ·< αk < ‖u2k−1‖ ≤ βk.

Example 2.1. Consider the system of boundary value problems

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′′1 (t) = exp
(
|u1|1/7 + |u2|1/9

)
, t ∈ [0,1]

u′′′2 (t) = exp
(
|u1|1/6 + |u2|

)
, t ∈ [0,1]

ui(0) = u′i(0.55) = 0, ui(1)+ 0.5u′′i (1) = 0, i = 1,2.

(12)

Here, n = 2, a = 0, t1 = t2 = 0.55, b = 1, γ1 = γ2 = 1, δ1 = δ2 = 0.5, f1(t,u) =
exp

(
|u1|1/7 + |u2|1/9

)
, and f2(t,u) = exp

(
|u1|1/6 + |u2|

)
. Fix θ1 = θ2 = 1. Clearly,

(C1) holds. In (C2), let q1 = q2 = 1 and

w11(u1) = exp
(
|u1|1/7

)
, w12(u2) = exp

(
|u2|1/9

)
,

w21(u1) = exp
(
|u1|1/6

)
, w22(u2) = exp(|u2|) .
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Next, using the expression of gi(t,s) in (3), we compute that d1 = d2 = 101761
864000 .

Therefore, condition (C3) reduces to

α >
101761
864000

exp
(

α1/7 +α1/9
)

and α >
101761
864000

exp
(

α1/6 +α
)
.

By direct computation, the above inequalities are satisfied if α ∈ [0.8307,1.4421].
Hence, (C3) holds for any α ∈ [0.8307,1.4421].

In condition (C4), pick τi j = 1 for i, j ∈ {1,2}. Finally, since limz→∞
z

wi j(z)
=

0, i, j ∈ {1,2}, it is easy to choose β > α such that (C5) is fulfilled.
By Theorem 2.6, the system (12) has two nonnegative solutions u1,u2 ∈

(C[0,1])2 such that (from (12), it is clear that ‖u1‖ �= 0)

⎧
⎪⎪⎨

⎪⎪⎩

0 < ‖u1‖< α < ‖u2‖ ≤ β ,

min
t∈[0.55−h,0.55+h]

u2
j(t)>

(0.55+ h)(0.55− h)α
(0.55)2 for some j ∈ {1,2}

(13)

where h can be any number in (0,0.45). Since α can be any number in
[0.8307,1.4421], we further conclude from (13) that

⎧
⎪⎪⎨

⎪⎪⎩

0 < ‖u1‖< 0.8307 and ‖u2‖> 1.4421,

min
t∈[0.55−h,0.55+h]

u2
j(t)>

(0.55+ h)(0.55− h)(1.4421)
(0.55)2 for some j ∈ {1,2}

(14)

where h can be any number in (0,0.45).

3 Eigenvalue Problem

In this section, we shall consider the eigenvalue problem (2). To begin, let gi(t,s) be
the Green’s function of the boundary value problem

{
y′′′(t) = 0, t ∈ [a,b]

y(a) = y′(t∗) = 0, γiy(b)+ δiy′′(b) = 0.

Clearly, the properties of gi can be obtained from Lemma 2.1 with ti replaced by t∗.
In particular, (5) and (6) give

gi(t,s)≤ gi(t
∗,s), t,s ∈ [a,b] (15)
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

for a fixed h ∈ (0,b− t∗),

gi(t,s)≥Mgi(t∗,s), t ∈ [t∗ − h, t∗+ h], s ∈ [a,b]

where M =
(t∗ − a+ h)(t∗− a− h)

(t∗ − a)2 .

(16)

With the same Banach space and norm as in Sect. 2, we define the operator S :
(C[a,b])n → (C[a,b])n by (7) and

Siu(t) = λ
∫ b

a
gi(t,s) fi(s,u(s))ds, t ∈ [a,b], 1≤ i≤ n. (17)

Clearly, a fixed point of the operator S is a solution of the system (2).
Let θi ∈ {1,−1}, 1≤ i≤ n be fixed, and also fix the numbers h and M [see (16)].

Define the sets K̃ and K as in Sect. 2.

Lemma 3.1. Let the following hold:

(H1) For each 1 ≤ i ≤ n, assume that fi : [a,b]×Rn → R is an L1-Carathéodory
function, i.e., (i) the map t → fi(t,u) is measurable for all u∈Rn; (ii) the map
u→ fi(t,u) is continuous for almost all t ∈ [a,b]; and (iii) for any r > 0, there
exists μr ∈ L1[a,b] such that |u| ≤ r implies that | fi(t,u)| ≤ μr(t) for almost
all t ∈ [a,b].

Then, the operator S defined in (7), (17) is continuous and completely continuous.

The next result ensures S maps a cone C into itself. A fixed point of S in this cone
will be a fixed-sign solution of (2).

Lemma 3.2. Let the following hold:

(H2) For each 1≤ i≤ n, assume that

θi fi(t,u)≥0, u∈ K̃, a.e. t ∈ (a,b) and θi fi(t,u)>0, u∈K, a.e. t ∈ (a,b).

(H3) For each 1 ≤ i ≤ n, there exist continuous functions pi, ai, bi with pi : K̃ →
[0,∞) and ai,bi : (a,b)→ [0,∞) such that

ai(t)pi(u)≤ θi fi(t,u)≤ bi(t)pi(u), u ∈ K̃, a.e. t ∈ (a,b).

(H4) For each 1≤ i≤ n, the function ai is not identically zero on any nondegenerate
subinterval of (a,b), and there exists a number 0 < ρi ≤ 1 such that

ai(t)≥ ρibi(t), a.e. t ∈ (a,b).

Then, the operator S maps the cone C into itself, where

C = {u ∈ B | for each 1≤ i≤ n, θiui(t)≥ 0 for t ∈ [a,b],

and mint∈[t∗−h,t∗+h] θiui(t)≥Mρi|ui|0}.
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(Note that C ⊆ K̃. A fixed point of S obtained in C or K̃ will be a fixed-sign solution
of (2).)

Our first three results provide conditions for E to contain an interval and for E to
be an interval.

Theorem 3.1. Let (H1)–(H4) hold and let gi(ti,s)bi(s) ∈ L1[a,b], 1≤ i≤ n. Then,
there exists c > 0 such that the interval (0,c]⊆ E.

Proof. Let R > 0 be given. Define

c = R

⎧
⎪⎪⎨

⎪⎪⎩

[
max

1≤k≤n
sup
|uj | ≤ R

1≤ j ≤ n

pk(u1,u2, . . . ,un)

]∫ b

a
gi(ti,s)bi(s)ds

⎫
⎪⎪⎬

⎪⎪⎭

−1

. (18)

Let λ ∈ (0,c]. Denote C(R) = {u ∈ C | ‖u‖ ≤ R}. We shall prove that S(C(R)) ⊆
C(R). To begin, let u ∈C(R). By Lemma 3.2, we have Su ∈ C. Thus, it remains to
show that ‖Su‖ ≤ R. Using (18), we get for t ∈ [a,b] and 1≤ i≤ n

|Siu(t)| = θiSiu(t)

≤ λ
∫ b

a
gi(ti,s)bi(s)pi(u(s))ds

≤ λ
[

sup
|uj | ≤ R

1≤ j ≤ n

pi(u1,u2, · · · ,un)

]∫ b

a
gi(ti,s)bi(s)ds

≤ λ
[

max
1≤k≤n

sup
|uj | ≤ R

1≤ j ≤ n

pk(u1,u2, · · · ,un)

]∫ b

a
gi(ti,s)bi(s)ds

≤ c

[
max

1≤k≤n
sup
|uj | ≤ R

1≤ j ≤ n

pk(u1,u2, · · · ,un)

]∫ b

a
gi(ti,s)bi(s)ds = R.

It follows immediately that

‖Su‖ ≤ R.

Thus, we have shown that S(C(R))⊆C(R). Also, from Lemma 3.1 the operator S is
continuous and completely continuous. Schauder’s fixed point theorem guarantees
that S has a fixed point in C(R). Clearly, this fixed point is a fixed-sign solution
of (2), and therefore λ is an eigenvalue of (2). Since λ ∈ (0,c] is arbitrary, we have
proved that the interval (0,c]⊆ E. �	
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Lemma 3.3. Let (H1) and (H2) hold. Moreover, suppose

(H5) For each 1≤ i, j ≤ n, if |u j| ≤ |v j|, then for a.e. t ∈ (a,b),

θi fi(t,u1, . . . ,u j−1,u j,u j+1, . . . ,un)≤ θi fi(t,u1, . . . ,u j−1,v j,u j+1, . . . ,un).

Let λ ∗ ∈ E. Then, for any λ ∈ (0,λ ∗), we have λ ∈ E, i.e., (0,λ ∗]⊆ E.

Proof. Let u∗ = (u∗1,u
∗
2, . . . ,u

∗
n) be the eigenfunction corresponding to the eigen-

value λ ∗. Thus, we have

u∗i (t) = Siu
∗(t) = λ ∗

∫ b

a
gi(t,s) fi(s,u

∗(s))ds, t ∈ [a,b], 1≤ i≤ n. (19)

Define

K∗ =

{
u ∈ K̃

∣
∣
∣∣ for each 1≤ i≤ n, θiui(t)≤ θiu

∗
i (t), t ∈ [a,b]

}
.

For u ∈ K∗ and λ ∈ (0,λ ∗), applying (H2) and (H5) yields

0≤ θiSiu(t) = θi

[
λ
∫ b

a
gi(t,s) fi(s,u(s))ds

]

≤ θi

[
λ ∗

∫ b

a
gi(t,s) fi(s,u

∗(s))ds

]
= θiSiu

∗(t), t ∈ [a,b], 1≤ i≤ n,

where the last equality follows from (19). This immediately implies that the operator
S maps K∗ into K∗. Moreover, from Lemma 3.1 the operator S is continuous and
completely continuous. Schauder’s fixed point theorem guarantees that S has a fixed
point in K∗, which is a fixed-sign solution of (2). Hence, λ is an eigenvalue, i.e.,
λ ∈ E. �	

Using Lemma 3.3, we obtain the following:

Theorem 3.2. Let (H1), (H2), and (H5) hold. If E �= /0, then E is an interval.

The next result provides upper and lower bounds for an eigenvalue λ .

Theorem 3.3. Let (H2)–(H4) hold and let gi(ti,s)bi(s) ∈ L1[a,b], 1 ≤ i ≤ n.
Moreover, suppose

(H6) For each 1≤ i, j ≤ n, if |u j| ≤ |v j|, then

pi(u1, . . . ,u j−1,u j,u j+1, . . . ,un)≤ pi(u1, . . . ,u j−1,v j,u j+1, . . . ,un).

Let λ be an eigenvalue of (2) and u ∈ C be a corresponding eigenfunction with
qi = |ui|0, 1≤ i≤ n. Then, for each 1≤ i≤ n, we have

λ ≥ qi

pi(q1,q2, . . . ,qn)

[∫ b

a
gi(t

∗,s)bi(s)ds

]−1

(20)
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and

λ ≤ qi

pi(θ1Mρ1q1,θ2Mρ2q2, . . . ,θnMρnqn)

[∫ t∗+h

t∗−h
gi(t

∗,s)ai(s)ds

]−1

. (21)

We are now ready to establish criteria for E to be a bounded/unbounded interval.

Theorem 3.4. Let (H1)–(H6) hold and let gi(ti,s)bi(s) ∈ L1[a,b], 1 ≤ i ≤ n. For
each 1≤ i≤ n, define

FB
i =

{
p : K̃ → [0,∞)

∣
∣
∣
∣

|ui|
p(u1,u2, . . . ,un)

is bounded for u ∈Rn
}
,

F0
i =

{

p : K̃ → [0,∞)

∣
∣
∣
∣ lim

min1≤ j≤n |u j |→∞

|ui|
p(u1,u2, . . . ,un)

= 0

}

,

F∞
i =

{

p : K̃ → [0,∞)

∣
∣
∣∣ lim

min1≤ j≤n |u j |→∞

|ui|
p(u1,u2, . . . ,un)

= ∞

}

.

(a) If pi ∈ FB
i for each 1≤ i≤ n, then E = (0,c) or (0,c] for some c ∈ (0,∞).

(b) If pi ∈ F0
i for each 1≤ i≤ n, then E = (0,c] for some c ∈ (0,∞).

(c) If pi ∈ F∞
i for each 1≤ i≤ n, then E = (0,∞).

Proof.

(a) This is immediate from (21) and Theorems 3.1 and 3.2.
(b) Since F0

i ⊆ FB
i , 1 ≤ i≤ n, it follows from Case (a) that E = (0,c) or (0,c] for

some c ∈ (0,∞). In particular, c = supE. It can be shown that c = supE ∈ E ,
and this completes the proof for Case (b).

(c) Let λ > 0 be fixed. Choose ε > 0 so that

λ max
1≤i≤n

∫ b

a
gi(t

∗,s)bi(s)ds≤ 1
ε
.

By definition, if pi ∈ F∞
i , 1 ≤ i ≤ n, then there exists R = R(ε) > 0 such that

the following holds for each 1≤ i≤ n:

pi(u1,u2, . . . ,un)< ε|ui|, |u j| ≥ R, 1≤ j ≤ n.

We can prove that S(C(R)) ⊆ C(R). From Lemma 3.1 the operator S is con-
tinuous and completely continuous. Schauder’s fixed point theorem guarantees
that S has a fixed point in C(R). Clearly, this fixed point is a fixed-sign solution
of (2), and therefore λ is an eigenvalue of (2). Since λ > 0 is arbitrary, we have
proved that E = (0,∞). �	

In the next few theorems, we establish explicit subintervals of E . For each pi, 1≤
i≤ n introduced in (H3), we define
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p0,i = limsup
max1≤ j≤n |u j |→0

pi(u1,u2, . . . ,un)

|ui|
,

p
0,i

= liminf
max1≤ j≤n |u j |→0

pi(u1,u2, . . . ,un)

|ui|
,

p∞,i = limsup
min1≤ j≤n |u j |→∞

pi(u1,u2, . . . ,un)

|ui|
,

p∞,i
= liminf
|ui|→∞

pi(u1,u2, . . . ,un)

|ui|
.

It is assumed that p∞,i
yields a number (which can be infinite). Using Theorem 2.2,

we obtain the next two results.

Theorem 3.5. Let (H1)–(H4) hold and let gi(t∗,s)bi(s) ∈ L1[a,b], 1 ≤ i ≤ n. If λ
satisfies

σ1,i < λ < σ2,i, 1≤ i≤ n,

where

σ1,i =

[
p∞,i

Mρi

∫ t∗+h

t∗−h
gi(t

∗,s)ai(s)ds

]−1

and

σ2,i =

[
p0,i

∫ b

a
gi(t

∗,s)bi(s)ds

]−1

,

then λ ∈ E. Hence, (σ1,i,σ2,i)⊆ E, 1≤ i≤ n.

Theorem 3.6. Let (H1)–(H4) hold and let gi(t∗,s)bi(s) ∈ L1[a,b], 1 ≤ i ≤ n. If λ
satisfies

σ3,i < λ < σ4,i, 1≤ i≤ n,

where

σ3,i =

[
p

0,i
Mρi

∫ t∗+h

t∗−h
gi(t

∗,s)ai(s)ds

]−1

and

σ4,i =

[
p∞,i

∫ b

a
gi(t

∗,s)bi(s)ds

]−1

,

then λ ∈ E. Hence, (σ3,i,σ4,i)⊆ E, 1≤ i≤ n.
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Combining Lemma 3.3, Theorems 3.5 and 3.6, we get the next result.

Theorem 3.7. Let (H1)–(H5) hold and let gi(t∗,s)bi(s) ∈ L1[a,b], 1≤ i≤ n. Then,
(

0, max
1≤i≤n

σ2,i

)
⊆ E and

(
0, max

1≤i≤n
σ4,i

)
⊆ E.

Remark 3.1. For a fixed i ∈ {1,2, . . . ,n}, if pi is superlinear (i.e., p0,i=0 and
p∞,i

=∞) or sublinear (i.e., p
0,i

= ∞ and p∞,i = 0), then we conclude from Theo-

rems 3.5 and 3.6 that E = (0,∞), i.e., (2) has a fixed-sign solution for any λ > 0.
We remark that superlinearity and sublinearity conditions have also been discussed
for various boundary value problems in the literature for the single equation case
(n = 1); see, for example, [2–5, 12, 13, 19] and the references cited therein.

Example 3.1. Consider the system of boundary value problems
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′′1 (t) = λ
(|u1(t)|+ 1)2

|u2(t)|+ 1

[
t(t− 2)

(
t− 517

360

)
+ 1

]−1

, t ∈ [0,1]

u′′′2 (t) = λ
3(|u2(t)|+ 1)2

|u1(t)|+ 1

[
3t(t− 2)

(
t− 517

360

)
+ 3

]−1

, t ∈ [0,1]

ui(0) = u′i(0.55) = 0, ui(1)+ 0.5u′′i (1) = 0, i = 1,2.

(22)

In this example, n = 2, [a,b] = [0,1], ti = 0.55, γi = 1, δi = 0.5, i = 1,2,

f1(t,u1(t),u2(t)) =
(|u1(t)|+ 1)2

|u2(t)|+ 1

[
t(t− 2)

(
t− 517

360

)
+ 1

]−1

and

f2(t,u1(t),u2(t)) =
3(|u2(t)|+ 1)2

|u1(t)|+ 1

[
3t(t− 2)

(
t− 517

360

)
+ 3

]−1

.

Clearly, (H1) is satisfied. Fix θ1 = θ2 = 1. Then, (H2) is fulfilled. Next, choose

p1(u1,u2) =
(|u1|+ 1)2

|u2|+ 1
, p2(u1,u2) =

3(|u2|+ 1)2

|u1|+ 1
,

a1(t) = b1(t) =

[
t(t− 2)

(
t− 517

360

)
+ 1

]−1

,

a2(t) = b2(t) =

[
3t(t− 2)

(
t− 517

360

)
+ 3

]−1

.

Then, (H3) and (H4) (with ρ1 = ρ2 = 1) are satisfied. Moreover, we have
gi(ti,s)bi(s) ∈ L1[0,1], i = 1,2.
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By Theorem 3.1, there exists c > 0 such that

(o,c]⊆ E. (23)

On the other hand, it is easy to see that

p
0,1

= ∞, p∞,1 = 1, p
0,2

= ∞, and p∞,2 = 3.

Using expression (3), by direct computation we get

σ3,1 = σ3,2 = 0 and σ4,1 = σ4,2 = 13.7382. (24)

It follows from Theorem 3.6 that

(0,13.7382)⊆ E. (25)

In view of (25), we see that (23) holds for any positive c less than 13.7382.
Moreover, as an example, when λ = 6 ∈ (0,13.7382) ⊆ E, the system (22) has a
positive solution u = (u1,u2) given by

u1(t) = u2(t) = t(t− 2)

(
t− 517

360

)
. (26)

References

1. Agarwal, R.P.: Focal Boundary Value Problems for Differential and Difference Equations.
Kluwer, Dordrecht (1998)

2. Agarwal, R.P., Bohner, M., Wong, P.J.Y.: Positive solutions and eigenvalues of conjugate
boundary value problems. Proc. Edinb. Math. Soc.(series 2) 42, 349–374 (1999)

3. Agarwal, R.P., Henderson, J., Wong, P.J.Y.: On superlinear and sublinear (n, p) boundary value
problems for higher order difference equations. Nonlinear World 4, 101–115 (1997)

4. Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential, Difference and
Integral Equations. Kluwer, Dordrecht (1999)

5. Agarwal, R.P., Wong, P.J.Y.: Advanced Topics in Difference Equations. Kluwer, Dordrecht
(1997)

6. Anderson, D.: Multiple positive solutions for a three point boundary value problem. Math.
Comput. Model. 27, 49–57(1998)

7. Anderson, D.: Green’s function for a third-order generalized right focal problem. J. Math. Anal.
Appl. 288, 1–14 (2003)

8. Anderson, D., Davis, J.: Multiple solutions and eigenvalues for third order right focal boundary
value problems. J. Math. Anal. Appl. 267, 135–157 (2002)

9. Baxley, J.V., Carroll, P.T.: Nonlinear boundary value problems with multiple positive solutions.
Discrete Contin. Dyn. Syst. Suppl, 83–90 (2003)

10. Baxley, J.V., Houmand, C.R.: Nonlinear higher order boundary value problems with multiple
positive solutions. J. Math. Anal. Appl. 286, 682–691 (2003)

11. Davis, J.M., Henderson, J., Prasad, K.R., Yin, W.: Eigenvalue intervals for nonlinear right focal
problems. Appl. Anal. 74, 215–231 (2000)

12. Eloe, P.W., Henderson, J.: Positive solutions and nonlinear (k,n− k) conjugate eigenvalue
problems. Diff. Eqns. Dyn. Sys. 6, 309–317(1998)



Existence Results for a System of Third-Order Right Focal Boundary Value Problems 181

13. Erbe, L.H., Wang, H.: On the existence of positive solutions of ordinary differential equations.
Proc. Am. Math. Soc. 120, 743–748(1994)

14. Graef, J.R., Henderson, J.: Double solutions of boundary value problems for 2mth-order
differential equations and difference equations. Comput. Math. Appl. 45, 873–885 (2003)

15. Graef, J.R., Qian, C., Yang, B.: A three point boundary value problem for nonlinear fourth
order differential equations. J. Math. Anal. Appl. 287, 217–233 (2003)

16. Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. Noordhoff, Groningen (1964)
17. Lian, W., Wong, F., Yeh, C.: On the existence of positive solutions of nonlinear second order

differential equations. Proc. Am. Math. Soc. 124, 1117–1126 (1996)
18. Wong, P.J.Y.: Two-point right focal eigenvalue problems for difference equations. Dynam.

Systems Appl. 7, 345–364 (1998)
19. Wong, P.J.Y.: Positive solutions of difference equations with two-point right focal boundary

conditions. J. Math. Anal. Appl. 224, 34–58 (1998)
20. Wong, P.J.Y., Agarwal, R.P.: Existence of multiple positive solutions of discrete two-point right

focal boundary value problems. J. Difference Equ. Appl. 5, 517–540 (1999)
21. Wong, P.J.Y.: Contant-sign solutions for a system of generalized right focal problems.

Nonlinear Anal. 63, 2153–2163 (2005)
22. Wong, P.J.Y.: Eigenvalue characterization for a system of generalized right focal problems.

Dynam. Systems Appl. 15, 173–191 (2006)
23. Wong, P.J.Y.: Multiple fixed-sign solutions for a system of generalized right focal problems

with deviating arguments. J. Math. Anal. Appl. 323, 100–118 (2006)
24. Wong, P.J.Y.: Triple fixed-sign solutions for a system of third-order generalized right focal

boundary value problems. In: Proceedings of the Conference on Differential and Difference
Equations and Applications, 1139–1148, USA (2006)

25. Wong, P.J.Y.: On the existence of fixed-sign solutions for a system of generalized right focal
problems with deviating arguments. Discrete Contin. Dyn. Syst. Suppl, 1042–1051 (2007)

26. Wong, P.J.Y.: Eigenvalues of a system of generalized right focal problems with deviating
arguments. J. Comput. Appl. Math. 218, 459–472 (2008)



Forced Oscillation of Second-Order Impulsive
Differential Equations with Mixed Nonlinearities

A. Özbekler, and A. Zafer

Abstract In this paper we give new oscillation criteria for a class of second-order
mixed nonlinear impulsive differential equations having fixed moments of impulse
actions. The method is based on the existence of a nonprincipal solution of a related
second-order linear homogeneous equation.

Keywords Oscillation • Mixed nonlinear • Fixed moments • Impulse • Non-
principal

1 Introduction

Impulsive differential equations are of particular interest in many areas such as
biology, physics, chemistry, control theory, and medicine as they model the real
processes better than differential equations. Because of the lack of smoothness
property of the solutions the theory of impulsive differential equations is much
richer than that of differential equations without impulse. However, due to dif-
ficulties caused by impulsive perturbations, the theory is not well developed in
comparison with that of non-impulsive differential equations. For basic theory of
impulsive differential equations, we refer in particular to [3, 21]. Concerning the
oscillation theory for second-order impulsive differential equations, we refer in
particular to [2, 6, 13, 16–18] and the references therein.
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In this paper we derive oscillation criteria for solutions of nonlinear impulsive
equations of the form

(r(t)x′)′+
n

∑
k=1

qk(t)φk(x) = f (t), t �= θi;

Δr(t)x′+
n

∑
k=1

qi,kφk(x) = fi, t = θi,
(1)

where Δg(t) denotes the difference g(t+)− g(t−) with g(t±) = limτ→t± g(τ).
Our main purpose in this paper is to obtain an oscillation for Eq. (1) by

making use of nonprincipal solutions of a related second-order impulsive differential
equation

(r(t)z′)′+Q(t)z = 0, t �= θi;
Δr(t)z′+Qiz = 0, t = θi,

(2)

where

Q(t) =
n

∑
k=1

qk(t) and Qi =
n

∑
k=1

qi,k.

The existence of principal and nonprincipal solutions of Eq. (2) was shown by
present authors in [18] when the equation is nonoscillatory or equivalently has a
positive solution.

Theorem 1. If Eq. (2) has a positive solution on [a,∞), then it has two linearly
independent solutions u and v such that

lim
t→∞

u(t)
v(t)

= 0;

∫ ∞

a

1
r(t)u2(t)

dt = ∞,

∫ ∞

a

1
r(t)v2(t)

dt < ∞;

r(t)v′(t)
v(t)

>
r(t)u′(t)

u(t)
for t sufficiently large.

The functions u and v are called principal and nonprincipal solutions of Eq. (2),
respectively.

The use of principal and nonprincipal solutions in connection with oscillation
and asymptotic behavior of second-order differential equations could be found in
[1, 5, 8, 10, 14, 22, 26, 27]. For some extensions to Hamiltonian systems, half-linear
differential equations, dynamic equations, and impulsive differential equations, see
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also [4, 7, 8, 18, 19, 28]. In [18], we obtained oscillation criteria for nonhomoge-
neous linear impulsive equations by making use of a nonprincipal solution of the
corresponding homogeneous equation.

In the case when n = 2 and the impulses are absent, Eq. (1) reduces to

(r(t)x′)′+ p(t)F(x)− q(t)G(x) = f (t), t ≥ t0. (3)

Recently, the oscillation criteria obtained by Wong [27] have been extended to
Eq. (3) in [15]. The arguments there are based on the existence of a positive solution
of the related linear equation

(r(t)x′)′+[p(t)− q(t)]x = 0 (4)

when r, p,q, and f are continuous functions with r > 0, p≥ 0, and q ≥ 0 on [t0,∞).
Moreover, F and G ∈C(R,R) satisfy

(A1) xF(x)> 0 and xG(x)> 0 for x �= 0.

(A2) lim
|x|→∞

x−1F(x)> 1, lim
|x|→0

x−1F(x)< 1, lim
|x|→∞

x−1G(x)< 1, lim
|x|→0

x−1G(x)> 1.

The result is as follows.

Theorem 2. Suppose that Eq. (4) is nonoscillatory and let z(t) be a positive
solution of it satisfying

∫ ∞

a

1
r(s)z2(s)

ds < ∞ (5)

for some a sufficiently large, i.e., a nonprincipal solution. Let

β0 = max
x≥0
{x−F(x)}, α0 =−min

x≤0
{x−F(x)};

δ0 = max
x≤0
{x−G(x)}, γ0 =−min

x≥0
{x−G(x)}.

If

lim
t→∞

{H0(t)−N2(t)}=− lim
t→∞

{H0(t)+N1(t)}= ∞,

where

H0(t) :=
∫ t

a

1
r(s)z2(s)

(∫ s

a
z(τ) f (τ)dτ

)
ds, (6)

N1(t) :=
∫ t

a

1
r(s)z2(s)

(∫ s

a

[
β0 p(τ)+ γ0q(τ)

]
z(τ)dτ

)
ds,
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and

N2(t) :=
∫ t

a

1
r(s)z2(s)

(∫ s

a

[
α0 p(τ)+ δ0q(τ)

]
z(τ)dτ

)
ds,

then Eq. (3) is oscillatory.

Theorem 2 is applicable to equations of the form

(r(t)x′)′+ p(t)|x|β−1x− q(t)|x|γ−1x = f (t),

when

0 < γ < 1 < β .

In the limiting case β → 1+ and γ → 1−, the following theorem of Wong [27] is
recovered.

Theorem 3. Let z be a positive solution of (r(t)x′)′+ q̃(t)x = 0 satisfying Eq. (5)
and H0 be as defined in Eq. (6). If

lim
t→∞

H0(t) =− lim
t→∞

H0(t) = ∞,

then

(r(t)z′)′+ q̃(t)z = f (t)

is oscillatory.

More results concerning the oscillation of the Emden–Fowler equation

(r(t)x′)′+ q(t)|x|α−1x = f (t)

could be found in [9, 11, 12, 20, 23–25, 27].
Denote by PLC[t0,∞), t0 ∈R is fixed, the set of functions h : [t0,∞)→R such that

h is continuous on each interval (θi,θi+1), h(θ±i ) exist, and h(θi) = h(θ−i ) i ∈N.

Definition 1. By a solution of Eq. (1) on an interval [t∗,∞), t∗ ≥ t0, we mean a
function x ∈ C[t∗,∞) with x′, (rx′)′ ∈ PLC[t∗,∞) that satisfies Eq. (1) for≥ t∗.

Definition 2. A nontrivial solution x of Eq. (1) is called oscillatory if it has
arbitrarily large zeros; otherwise, it is called nonoscillatory. Equation (1) is called
oscillatory (nonoscillatory) if all of its solutions are oscillatory (nonoscillatory).

We recall that according to the Sturm’s separation theorem [16] every solution
of Eq. (2) is oscillatory (nonoscillatory) if there is one oscillatory (nonoscillatory)
solution of the equation.
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2 Main Results

Let Eq. (2) be nonoscillatory and z(t) its positive nonprincipal solution satisfying

∫ ∞

a

ds
r(s)z2(s)

< ∞. (7)

Note that the existence of such a solution is guaranteed by Theorem 1.
With regard to impulsive Eqs. (1) and (2), we assume throughout this work that

(i) r,qk,q, f ∈ PLC[t0,∞); r(t)> 0 and

qk(t)

{
≤ 0, k = 1,2, . . . ,m
≥ 0, k = m+ 1,m+ 2, . . .,n.

(8)

(ii) {θi} is a strictly increasing unbounded sequence of real numbers, θi ≥ t0; { fi},
{qi} and {qi,k} are real sequences and

qi,k

{
≤ 0, k = 1,2, . . . ,m
≥ 0, k = m+ 1,m+ 2, . . .,n.

(9)

(iii) (C1) sφk(s)> 0 for s �= 0, k = 1,2, . . . ,n;
(C2)

lim
|s|→∞

s−1φk(s)

{
< 1, k = 1,2, . . . ,m
> 1, k = m+ 1,m+ 2, . . .,n.

lim
|s|→0

s−1φk(s)

{
> 1, k = 1,2, . . . ,m
< 1, k = m+ 1,m+ 2, . . .,n.

Using (C1) and (C2), it is easy to find positive constants ρ j(k), j = 0,1,2,3, such
that

max
x≤0

Φk(x) = ρ0(k), min
x≥0

Φk(x) =−ρ1(k), k = 1,2, . . . ,m;

max
x≥0

Φk(x) = ρ2(k), min
x≤0

Φk(x) =−ρ3(k), k = m+ 1,m+ 2, . . .,n,
(10)

where

Φk(x) = x−φk(x).

In what follows, we define

S1(t) :=
m

∑
k=1

ρ1(k)Gk(t)−
n

∑
k=m+1

ρ2(k)Gk(t) (11)
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and

S2(t) :=
m

∑
k=1

ρ0(k)Gk(t)−
n

∑
k=m+1

ρ3(k)Gk(t), (12)

where

Gk(t) :=
∫ t

a

1
r(s)z2(s)

(∫ s

a
z(τ)qk(τ)dτ + ∑

a≤θi<s

z(θi)qi,k

)

ds.

Denote

H (t) :=
∫ t

a

1
r(s)z2(s)

(∫ s

a
z(τ) f (τ)dτ + ∑

a≤θi<s

z(θi) fi

)
ds. (13)

Theorem 4. Suppose that Eq. (2) is nonoscillatory and let z(t) be a positive
solution of it satisfying Eq. (7), i.e., a nonprincipal solution. If

lim
t→∞
{H (t)+S2(t)}=− lim

t→∞
{H (t)−S1(t)}= ∞, (14)

where S1, S1, and H are given, respectively, by Eqs. (11), (12), and (13), then
Eq. (1) is oscillatory.

Proof. Let x(t) be a solution of Eq. (1). The change of variable x = z(t)w transforms
Eq. (1) into

(r(t)z2w′)′ =

{

f (t)+
n

∑
k=1

qk(t)Φk(x)

}

z, t �= θi; (15)

Δw = 0, Δr(t)z2w′ =

{

fi +
n

∑
k=1

qi,kΦk(x)

}

z, t = θi. (16)

Since z(t) is a solution of Eq. (2), we can express w(t) by integration of Eq. (15) and
using Eq. (16) as follows:

w(t) = c1 + c2

∫ t

a

ds
r(s)z2(s)

+

∫ t

a

1
r(s)z2(s)

(∫ s

a
z(τ)

n

∑
k=1

qk(τ)Φk(x(τ))dτ

+ ∑
a≤θi<s

z(θi)
n

∑
k=1

qi,kΦk(x(θi))

)
ds+H (t), (17)

where c1 = w(a) and c2 = r(a)z2(a)w′(a) are constants.
It is not difficult to see from Eqs. (8), (9), (10), and (17) that if x(t)> 0 on [a,∞),

then
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w(t)≤ c1 + c2

∫ t

a

ds
r(s)z2(s)

+H (t)−S1(t) (18)

and that if x(t)< 0 on [a,∞), then

w(t)≥ c1 + c2

∫ t

a

ds
r(s)z2(s)

+H (t)+S2(t). (19)

Note that Eqs. (7), (14), (18), and (19) imply that

lim
t→∞

w(t) =− lim
t→∞

w(t) = +∞. (20)

Because z(t) is positive, Eq. (20) implies that x(t) has no definite sign on [a,∞),
namely, it is oscillatory.

Remark 1. If we pick q j(t) = 0 for all j = 2,3, . . . ,n− 1 and qi,k ≡ fi ≡ 0, then
Eq. (1) reduces to Eq. (3) and hence, we recover [15, Theorem 2.1].

When φk(x) = |x|αk−1x, 0 < α1 < · · · < αm < 1 < αm+1 < · · · < αn, then (iii) is
satisfied with

ρ0(k) = ρ1(k) = (1−αk)α
αk/(1−αk)
k > 0, k = 1,2, . . . ,m;

ρ2(k) = ρ3(k) = (αk− 1)ααk/(1−αk)
k > 0, k = m+ 1,m+ 2, . . .,n,

and we obtain the following oscillation criterion for equation

(r(t)x′)′+
n

∑
k=1

qk(t)|x|αk−1x = f (t), t �= θi;

Δr(t)x′+
n

∑
k=1

qi,k|x|αk−1x = fi, t = θi.
(21)

Theorem 5. Suppose that Eq. (2) is nonoscillatory and let z(t) be a positive
solution of it satisfying Eq. (7), i.e., a nonprincipal solution. If

lim
t→∞
{H (t)+S0(t)}=− lim

t→∞
{H (t)−S0(t)}= ∞, (22)

where

S0(t) :=
n

∑
k=1

(1−αk)α
αk/(1−αk)
k Gk(t),

then Eq. (21) is oscillatory.
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Remark 2. In view of

lim
β→1±

β β/(1−β ) = 1/e,

we have

lim
αk → 1−
(k=1,2,...,m)

(1−αk)α
αk/(1−αk)
k = lim

αk → 1+
(k=m+1,m+2,...,n)

(1−αk)α
αk/(1−αk)
k = 0,

and hence,

S0(t)→ 0 as αk → 1− (k = 1,2, . . . ,m)

and

S0(t)→ 0 as αk → 1+ (k = m+ 1,m+ 2, . . .,n).

Using these facts, we recover [18, Theorem 3.1] for equation

(r(t)z′)′+Q(t)z = f (t), t �= θi;
Δr(t)z′+Qiz = fi, t = θi.

(23)

It is clear that two special cases of Eq. (21) are Emden–Fowler-type superlinear
impulsive equation

(r(t)x′)′+
n

∑
k=m+1

qk(t)|x|αk−1x = f (t), t �= θi;

Δr(t)x′+
n

∑
k=m+1

qi,k|x|αk−1x = fi, t = θi,
(24)

and Emden–Fowler-type sublinear impulsive equation

(r(t)x′)′+
m

∑
k=1

qk(t)|x|αk−1x = f (t), t �= θi;

Δr(t)x′+
m

∑
k=1

qi,k|x|αk−1x = fi, t = θi.
(25)

Corollary 1. Suppose that Eq. (2) with qk(t) ≡ 0 and qi,k ≡ 0, k = 1,2, . . . ,m, is
nonoscillatory and let z(t) be a positive solution of it satisfying Eq. (7), i.e., a
nonprincipal solution. If

lim
t→∞
{H (t)+S01(t)}=− lim

t→∞
{H (t)−S01(t)}= ∞, (26)
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where

S01(t) :=
n

∑
k=m+1

(1−αk)α
αk/(1−αk)
k Gk(t),

then Eq. (24) is oscillatory.

Corollary 2. Suppose that Eq. (2) with qk(t) ≡ 0 and qi,k ≡ 0, k = m + 1,m +
2, . . . ,n, is nonoscillatory and let z(t) be a positive solution of it satisfying Eq. (7),
i.e., a nonprincipal solution. If

lim
t→∞
{H (t)+S02(t)}=− lim

t→∞
{H (t)−S02(t)}= ∞, (27)

where

S02(t) :=
m

∑
k=1

(1−αk)α
αk/(1−αk)
k Gk(t),

then Eq. (25) is oscillatory.

Finally we give an example to illustrate one of our results. Due to impulses, the
computation becomes quite tedious.

Example 1. Consider the Emden–Fowler-type sublinear impulsive equation

x′′ − |x|α−1x = 1, t �= ln(i+ 1), t ≥ 0, i ∈ N;

Δx′ − 12(i+ 1)
i(4i+ 5)

|x|α−1x = (−1)ii4, t = ln(i+ 1),
(28)

where α ∈ (0,1).
The related unforced impulsive equation

z′′ − z = 0, t �= ln(i+ 1), t ≥ 0, i ∈ N;

Δz′ − 12(i+ 1)
i(4i+ 5)

z = 0, t = ln(i+ 1)
(29)

is nonoscillatory with a nonoscillatory solution

z(t) = zi(t) = iet − i(i+ 1)(2i+ 1)
6

e−t , t ∈ (ln i, ln(i+ 1)], i ∈N.

It is easy to show that

∫ ∞

ln2

dt
z2(t)

=
∞

∑
k=2

∫ ln(k+1)

lnk

dt

z2
k(t)

=
∞

∑
k=2

18(2k+ 1)
k2(k2− 1)(4k+ 1)(4k+ 5)

∼= 0.0750772,

i.e., Eq. (7) is satisfied.
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Let {ln(is + 1)} be a subsequence of {ln(i+ 1)} so that s ∈ (ln(is), ln(is + 1)].
Then

∫ s

ln2
z(τ)(−1)dτ =−

is

∑
k=2

∫ ln(k+1)

lnk
zk(τ)dτ =−1

6

is

∑
k=2

(4k− 1) =−1
6
(is− 1)(2is− 3)

and

∑
ln2≤ln(k+1)<s

z(ln(k+ 1))
12(k+ 1)
k(4k+ 5)

= 2
is−1

∑
k=1

(k+ 1) = (is− 1)(is+ 2).

Define

Ψi(s) :=−1
6
(is− 1)(2is− 3)+ (is− 1)(is + 2) =

1
6
(is− 1)(4is+ 15),

then for n ∈ N sufficiently large, we have

G1,n =

∫ lnn

ln2

1
z2(s)

{
−
∫ s

ln2
z(τ)dτ + 12 ∑

ln2≤ln(k+1)<s

(k+ 1)z(ln(k+ 1))
k(4k+ 5)

}
ds

=
n−1

∑
k=2

∫ ln(k+1)

lnk

Ψk(s)

z2
k(s)

ds

=
1
6

n−1

∑
k=2

{
(k− 1)(4k+ 15)

∫ ln(k+1)

lnk

ds

z2
k(s)

}

=
n−1

∑
k=2

νk,

where

νk =
3(2k+ 1)(4k+ 15)

k2(k+ 1)(4k+ 1)(4k+ 5)
.

On the other hand

∫ s

ln2
z(τ)dτ =

is

∑
k=2

∫ ln(k+1)

lnk
zk(τ)dτ =

1
6

is

∑
k=2

(4k− 1) =
1
6
(is− 1)(2is− 3)
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and

∑
ln2≤ln(k+1)<s

(−1)kk4z(ln(k+ 1))

=
1
6

is−1

∑
k=1

(−1)kk5(4k+ 5)

=
(−1)is+1

24
(8i6s − 14i5s − 25i4s + 40i3s + 25i2s − 24is− 5+ 5(−1)is).

Define

Φi(s) :=
(−1)is+1

24
(8i6s − 14i5s − 25i4s + 40i3s + 25i2s − 24is− 5+ 5(−1)is)

+
1
6
(is− 1)(2is− 3).

For n ∈N sufficiently large, we get

Hn =

∫ lnn

ln2

1
z2(s)

{∫ s

ln2
z(τ)dτ + ∑

ln2≤ln(k+1)<s

(−1)kk4z(ln(k+ 1))

}
ds

=
n−1

∑
k=2

∫ ln(k+1)

lnk

Φk(s)

z2
k(s)

ds

=
n−1

∑
k=2

{
Φk(s)

∫ ln(k+1)

lnk

ds

z2
k(s)

}

=
n−1

∑
k=2

ηk +
n−1

∑
k=2

(−1)k+1ξk,

where

ηk =
3(2k+ 1)(2k− 3)

k2(k+ 1)(4k+ 1)(4k+ 5)

and

ξk =
3(2k+ 1)(8k6− 14k5− 25k4 + 40k3 + 25k2− 24k− 5+ 5(−1)k)

k2(k2− 1)(4k+ 1)(4k+ 5)
.

Since

∞

∑
k=2

νk
∼= 0.389354
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and

∞

∑
k=2

ηk
∼= 0.0343956,

we have

lim
t→∞
{H (t)+S02(t)} = lim

t→∞
{Hn +(1−α)αα/(1−α)G1,n}

= σ++ lim
t→∞

n−1

∑
k=2

(−1)k+1ξk

= ∞.

Similarly,

lim
t→∞
{H (t)−S02(t)} = lim

t→∞
{Hn− (1−α)αα/(1−α)G1,n}

= σ−+ lim
t→∞

n−1

∑
k=2

(−1)k+1ξk

= −∞,

where σ± = 0.0343956± 0.389354× (1−α)αα/(1−α).
Since the conditions of Corollary 2 are satisfied, we may conclude that every

solution of Eq. (28) is oscillatory for any choice of α ∈ (0,1).
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From the Poincaré–Birkhoff Fixed Point
Theorem to Linked Twist Maps: Some
Applications to Planar Hamiltonian Systems

Anna Pascoletti and Fabio Zanolin

Abstract We present some results about fixed points and periodic points for planar
maps which are motivated by the analysis of the twist maps occurring in the
Poincaré–Birkhoff fixed point theorem and in the study of geometric configurations
associated to the linked twist maps arising in some problems of chaotic fluid mixing.
Applications are given to the existence and multiplicity of periodic solutions for
some planar Hamiltonian systems and, in particular, to the second-order nonlinear
equation ẍ+ f (t,x) = 0.

Keywords Twist maps • Planar Hamiltonian systems • Fixed points • Periodic
solutions
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1 Introduction

The study of the existence and multiplicity of periodic solutions for Hamiltonian
systems represents a classical area of research which has been widely investigated.
In this paper we focus our attention to the case of nonautonomous planar Hamilto-
nian systems of the form

ẋ =
∂H
∂y

(t,x,y), ẏ =−∂H
∂x

(t,x,y) . (1)
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Such kind of equations are relevant not only for their intrinsic interest from the point
of view of the applications but also because they represent a common ground where
several different techniques, ranging from nonlinear analysis (for instance, critical
point theory) to the theory of dynamical systems, can compete in order to produce
new results.

Here and in what follows we suppose that H : R×R
2 → R is a continuous

function which is T -periodic in its first variable, that is,

H(t +T,x,y) = H(t,x,y), ∀ t,x,y,

and sufficiently smooth with respect to x and y in order to guarantee the uniqueness
of the solutions for the initial value problems associated to (1). Some discontinuities
in the t-variable may be allowed, provided that solutions are considered in the
Carathéodory sense [12]. For instance, in the frame of (1) we can study (in the
phase plane) the periodically perturbed scalar nonlinear second-order ODEs

ẍ+ f (x) = p(t) (2)

or

ẍ+ p(t) f (x) = 0, (3)

with f : R→ R a locally Lipschitz function and p : R→ R a T -periodic function
with p ∈ L1([0,T ]).

A classical approach for the search of periodic solutions to (1) is based on the
study of the existence and multiplicity of fixed points and periodic points for the
Poincaré map. Recall that the Poincaré map associated to (1) is a function which
maps a point z0 = (x0,y0) ∈ R

2 to the point

Φ(z0) := (x(T ;t0,z0),y(T ;t0,z0)),

where ζ (t) = (x(t;t0,z0),y(t;t0,z0)) is the solution of (1) satisfying the initial
condition ζ (t0) = z0. In order to have the above definition meaningful, we assume
that for the given initial point z0, the solution ζ (t) is defined for all t ∈ [t0, t0 +T ].
Usually, the natural choice t0 = 0 is made. In such a case we use the simplified
notation (x(t;z0),y(t;z0)) := (x(t;0,z0),y(t;0,z0)).

Since we assume the uniqueness of the solutions for the Cauchy problems
associated to (1), from the fundamental theory of ODEs, we know that Φ is
continuous and defined on an open subset Ω = domΦ ⊂ R

2. Actually Φ is a
homeomorphism of Ω onto Φ(Ω) which is also orientation-preserving and area-
preserving (this latter property follows from Liouville’s theorem and from the fact
that the right-hand side of (1) is given by a zero-divergence vector field).

An important tool to detect fixed points for area-preserving homeomorphisms of
the plane is given by the Poincaré–Birkhoff fixed point theorem. Such theorem deals
with the case of a planar annulus

A = A[a,b] := {(x,y) ∈ R
2 : a2 ≤ x2 + y2 ≤ b2} (4)
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which is subject to the action of an area-preserving homeomorphism φ : A→ A,
leaving the boundaries Ca := {(x,y) ∈ R

2 : x2 + y2 = a2} and Cb := {(x,y) ∈ R
2 :

x2 + y2 = b2} invariant. A crucial assumption of the theorem is the so-called twist
condition which asserts that the map φ rotates the points of Ca and Cb in different
directions. Under these conditions, Poincaré in [22] conjectured (and proved in some
situations) the existence of at least two fixed points for φ in the interior of A. The
first proof of the theorem was given by Birkhoff in [1] (see also [2, 4]). In [1] as
well as in [4] the proof is performed for the existence of at least one fixed point.
The existence of a second fixed point is taken as granted from a remark of Poincaré
concerning the fact that φ has zero fixed point index on A (rephrasing Poincaré’s
sentence [22, p. 377] in modern language). The need of a rigorous justification
for the existence of distinct fixed points led to further researches into this subject.
A proof for the existence of at least two fixed points was proposed by Birkhoff in
[3] in a more general setting. In more recent years, convincing and rigorous proofs
have been given by other authors, using improvements of Birkhoff argument [5],
or different approaches. The history of the “twist” theorem and its generalizations
and developments is quite interesting but impossible to summarize in few lines.
Generalizations of the theorem in various different directions, with the aim also of
providing a more flexible tool for the study of nonautonomous equations, have been
obtained. After about 100 years of studies on this topic, some controversial “proofs”
of its extensions have been settled only recently. We refer the interested reader to
[7] where the part of the story concerning the efforts of avoiding the condition of
boundary invariance is described. In this connection, we also recommend the recent
works by Martins and Ureña [16] and by Le Calvez and Wang [14] as well as the
references therein.

In the applications of the Poincaré–Birkhoff theorem to planar Hamiltonian
systems, usually one has to deal with annular regions homeomorphic to A having
inner and outer boundaries not necessarily invariant. Recent versions of the theorem
require that the inner and outer boundaries are strictly star-shaped with respect to
some point. The key fact, however, is the possibility to define a suitable lifting of
φ to a covering space of the annulus using the standard polar coordinates or some
modifications of them, for instance, suitably chosen action-angle variables. In the
sequel we need to consider annular regions which are not necessarily centered at
the origin. To this aim, we introduce the following notation. Given a point P ∈ R

2,
we define

A(P) = A[a,b;P] := P+A[a,b]

whose inner and outer boundaries will be named as

Ai(P) = P+Ca and Ao(P) = P+Cb .

A possible way to verify the twist condition for the Poincaré map of system (1)
is based on the study of some rotation numbers associated to its solutions. Such
rotation numbers provide some information about the displacement of the angular
coordinate.
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To begin with, we describe an elementary manner to introduce some rotation
numbers. We fix a point P = (xp,yp) and consider a system of polar coordinates
around P [typically, we will have P = 0 = (0,0)]. Suppose that for some z0 ∈ R

2,
the solution ζ (t;z0) = (x(t;z0),y(t;z0)) satisfies

ζ (t;z0) �= P, ∀t ∈ [0,τ],

for some τ > 0. Passing to the polar coordinates

x = xp +
√

2ρ cosθ , y = yp +
√

2ρ sinθ , (5)

we obtain

−θ̇(t) =
ẋ(t)(y(t)− yp)− ẏ(t)(x(t)− xp)

(x(t)− xp)2 +(y(t)− yp)2 ,

and thus we can define the number

rot(t,z0,P) :=
1

2π

∫ t

0

(y(s)− yp)
∂H
∂y (s,x(s),y(s))+ (x(s)− xp)

∂H
∂x (s,x(s),y(s))

(x(s)− xp)2 +(y(s)− yp)2 ds

for t ∈ [0,τ] and (x(t),y(t)) = (x(t;z0),y(t;z0)). The choice of the form (5) is not
a mandatory fact, even if it could be useful in some situations, since here we have
dxdy = dρ dθ .

The rotation number rot(t,z0,P) counts the number of windings of the solution
around the point P, in the clockwise sense, in the time interval [0, t].

If the above rotation number is defined for t = mT (for some integer m≥ 1) and
for all the points of an annulus A(P), the twist condition in the Poincaré–Birkhoff
theorem for the map φ = Φm can be expressed as follows:

{
rot(mT,z,P)> j, for z ∈ Ai(P)
rot(mT,z,P)< j, for z ∈ Ao(P)

(6)

(or viceversa), for some j ∈ Z. The existence of a fixed point for φ (coming from
the original version of the theorem or from some of its variants) provides a point w
in the interior of the annulus which is the initial point of a mT -periodic solution of
(1) and such that

rot(mT,w,P) = j. (7)

The additional information expressed by (7) can be exploited in order to obtain
multiplicity results or some precise information about the solution.

The study of twist maps is not only a crucial step in the applications of the
Poincaré–Birkhoff theorem to planar Hamiltonian systems. Twist maps naturally
appear in a broad number of situations (from KAM theory to the study of some
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geometrical configurations involving the presence of Smale’s horseshoes), and thus
they have been widely considered both from the theoretical point of view and for
their significance in various applications, which range from celestial mechanics to
fluid dynamics.

In the past decades a grown interest has been devoted to the study of the so-called
linked twist maps (from now on abbreviated as LTMs). A typical LTM of the plane,
as presented by Devaney in [8], can be described as a composition of the form

Ψ =Ψ k
2 ◦Ψ �

1 ,

where Ψ1 and Ψ2 act, respectively, in a twist manner on two different annuli A(P1)
and A(P2). Some authors also assume that both Ψ1 and Ψ2 perform on the boundaries
some rotations of angles which are multiple of 2π . In this way, the maps can be
extended as identities outside the annuli. This is not in contrast with (6) provided
that such multiples of 2π are not the same number j appearing in (6). In our setting
we do not need to extend Ψ1 and Ψ2 outside the respective annuli, and therefore no
further requests on the twist conditions will be added.

If A(P1) and A(P2) cross each other in a proper way, then Ψ has a rich dynamics.
The correct crossing of the two annuli A[a1,b1;P1] and A[a2,b2;P2] is usually
described by the relations

max{b2− a1,b1− a2}< dist(P1,P2)< a1 + a2

so that LTMs can be interpreted as a class of homeomorphisms of the two-disk
minus three holes [8] (see Fig. 1).

Examples of LTMs on some manifolds (like the sphere or the torus) have been
considered as well (see [24, 25] and the references therein). However, if, instead of
annuli of the form A(Pi), we have more general annular regions on which two twist
maps act, the linking conditions can be more general (see Fig. 2). LTMs in such
more general setting have been recently considered in [15].

A natural way to produce a twist-type Poincaré map associated to (1) occurs
when the nonautonomous system can be viewed as a perturbation of an autonomous
planar system presenting a center-like structure, as

ẋ =
∂H

∂y
(x,y), ẏ =−∂H

∂x
(x,y). (8)

Suppose that there exists a topological annulus A (that is a compact subset of R2

homeomorphic to a standard annulus A[a,b]) which is filled by closed (periodic)
orbits of system (8). Since the trajectories of (8) lie on the level lines of the
Hamiltonian, we can parameterize any orbit Γ in A by means of the value H (Γ ) =
c. Under mild assumptions on H (H of class C1 with ∇H (x,y) �= 0 for all
(x,y) ∈ A , see [13]) it is possible to prove the continuity of the function which
maps c into the period τc of the closed orbit in A all level c. One can also find a
compact interval [a,b] such that the inner and the outer boundaries of A correspond
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Fig. 1 Example of two standard linked annuli A1 and A2. For the figure we have taken Ai =
A[ai,bi,Pi] with P1 = (−5,0),P2 = (5,0),a1 = 6,b1 = 8,a2 = 6,b2 = 10. The sets Ã1 and Ã2 are
the annuli A1 and A2 viewed from the origin (in the figure below, the scale ratio between the two
axes is not respected). Since (0,0) is in the intersection of the bounded components of R2 \Ai (for
i = 1,2), using the usual polar coordinates (θ ,ρ) with respect to the origin, we can lift both A1
and A2 as 2π-periodic strips bounded between graphs of functions ρ = ρ(θ ). In this specific case,
we have Ãi = {(θ ,ρ) : xpi cosθ +(a2

i − x2
pi

sin2 θ )1/2 ≤ ρ ≤ xpi cosθ +(b2
i − x2

pi
sin2 θ )1/2}, for

Pi = (xpi ,0), i = 1,2

Fig. 2 Example of two linked planar topological annuli A1 and A2. Among the five rectangular
regions which result from the intersection of the two annuli, the four regions in darker color are
suitable for a generalized version of linked twist map theory as described in [15]), while the set
painted with zebra stripes does not fit in that framework
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to the level lines H = a and H = b (we can always enter in this situation possibly
replacing H with −H ). In this manner, the set A becomes a standard annulus
of the form in (4), with the level of the Hamiltonian playing the role of a radial
coordinate. Angular-type coordinates can be introduced using a normalized time
along the trajectories, counted from a suitable arc transversal to the annulus (such
arc is obtained as a flow line of the gradient system ż = ∇H (z)).

If we denote by ΦH the Poincaré map associated to (8), for a fixed time T > 0,
we can produce a twist condition on A , whenever

τa �= τb.

Indeed, suppose that τa < τb and let us fix m≥ 1 such that the set

Z(m) :=

]
mT
τb

,
mT
τa

[
∩Z

is nonempty. For each j ∈ Z(m) we have that the points of the inner boundary Ai

of A wind more than j times in the time interval [0,mT ]. On the other hand, the
points of the outer boundary Ao have a number of rotations strictly less than j. This
simple observation guarantees that a twist condition analogous to (6) holds for Φm

H
relatively to A . Such fact will imply a twist condition for Φm if the vector field in
(1) is sufficiently close to that of (8) on [0,mT ]×A . A recent investigation in this
direction using the Poincaré–Birkhoff fixed point theorem has been performed in
[11].

A possible way to produce a LTM configuration in the plane is given by a pair of
planar autonomous Hamiltonian systems which periodically switch back and forth
from one to the other. More precisely, let us fix T1 ,T2 > 0 with

T1 +T2 = T

and consider the systems

ẋ =
∂H1

∂y
(x,y), ẏ =−∂H1

∂x
(x,y), for t ∈ [0,T1[ (9)

and

ẋ =
∂H2

∂y
(x,y), ẏ =−∂H2

∂x
(x,y), for t ∈ [T1,T [ , (10)

repeating then such process in a periodic fashion (for an application to fluid mixing,
see [26, Appendix B]). Allowing a discontinuity for t ≡ 0 and t ≡ T1 (mod T ),
the resulting system may be interpreted as a special case of (1). We enter in the
generalized LTMs framework considered in [15] whenever there exist two annular
regions A1 and A2 filled by periodic orbits of systems (9) and (10), respectively,
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and such that A1 and A2 link each other in a suitable sense (see Fig. 2). Moreover,
appropriate twist conditions on each of the two annuli should be required.

The aim of this article is to briefly survey some applications of the topological
methods described above and also to present some new applications to planar
Hamiltonian systems, in particular to (2) and (3). Doing this, we will also present a
situation which, in some sense, is intermediate between the twist maps arising in the
applications of the Poincaré–Birkhoff theorem and the LTMs, namely, the so-called
bend-twist maps. Such class of twist maps has been recently considered by Tongren
Ding [10] in the analytic setting and studied for continuous functions on annular
domains in [21]. We also need to introduce the following definitions.

By a path γ in a topological space X we mean a continuous map from an interval
[t0, t1] into X . We also set γ̄ := γ([t0, t1]). Usually, and without loss of generality, we
take I := [0,1] as domain for the paths. An arc in X is the homeomorphic image of
I, that is, γ̄ for a one-to-one path γ in X .

Definition 1. Let X be a pathwise connected topological space and let A,B⊂ X be
two nonempty disjoint sets. Let also S ⊂ X . We say that S cuts the paths between A
and B if S∩ γ̄ �= /0, for every path γ : I → X such that γ(0) ∈ A and γ(1) ∈ B.

We write S : A � B to express the fact that S cuts the paths between A and B.

Definition 2. Let h : A[a,b]→ A := h(A[a,b]) ⊂ R
2 be a homeomorphism. The

set A is called a topological annulus. We decompose its boundary as ∂A =
Ai∪Ao, with Ai := h(Ca) and Ao := h(Cb), the inner and outer boundaries of A ,
respectively.

In the sequel, for simplifying the exposition, we present our result in the setting of
maps defined on a standard annulus of the form (4). They can be easily transferred
to the case of topological annuli.

2 Bend-Twist Maps

In the sequel we denote by Π the standard covering projection of R× ]0,+∞[ onto
R

2 \ {0}, defined by the polar coordinates Π(θ ,ρ) = (ρ cosθ ,ρ sinθ ). Let φ : A =
A[a,b]→R

2 \{0} be a continuous map admitting a lifting on R× [a,b] of the form

φ̃ : (θ ,ρ) �→ (θ +Θ(θ ,ρ),R(θ ,ρ)), (11)

where Θ ,R are continuous and real-valued functions which are 2π-periodic in the
θ -variable. According to the definition of lifting, we have that φ ◦Π = Π ◦ φ̃ .
Observe that Θ(θ ,ρ) is the same for any (θ ,ρ) ∈ Π−1(z). This allows to define
Θ(z) as Θ(θ ,ρ) for z = Π(θ ,ρ). The number Θ(z) is the angular displacement
performed by the map φ on the point z ∈ A. Modulo a scaling factor, it plays the
same role as the rotation number defined before. We also introduce an auxiliary
function ϒ giving the radial displacement
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ϒ (z) := ||φ(z)||− ||z||.

By the above positions, it follows that z ∈ A is a fixed point for φ if and only if

∃ j ∈ Z : Θ(z) = 2 jπ , and ϒ (z) = 0. (12)

If z1 and z2 solve (12) for different values of j, then they are distinct fixed points
of φ . We say that φ satisfies a twist condition on A if there exists j ∈ Z such that

Θ < 2 jπ on Ai =Ca and Θ > 2 jπ on Ao =Cb (13)

(or viceversa). For a twist map on A we define the set

Ω j
φ := {z ∈ A : Θ(z) = 2 jπ}.

In [10] Tongren Ding considers the case of a topological annulus A embedded in
the plane, having as its boundaries two simple closed curves which are star-shaped
with respect to the origin. It is assumed that there exists an analytic function f :
A →A ∗, with A ∗ ⊃A another starlike annulus and, moreover, that f satisfies the
twist condition (13). It is also observed that the set Ω f of the points in A where
Θ = 2 jπ contains at least a Jordan curve Γ which is not contractible in A . The
function f is called a bend-twist map if ϒ changes its sign on the curve Γ . Then, the
following theorem holds (see [10, Theorem 7.2, p. 188]):

Theorem 1. Let f : A → A ∗ be an analytic bend-twist map. Then it has at least
two distinct fixed points in A .

We notice that in Ding’s theorem, the assumptions that f is area-preserving and
leaves the annulus invariant are not needed. This represents a strong improvement
of the hypotheses required for the Poincaré–Birkhoff twist theorem. On the other
hand, the assumption that a given function is a bend-twist map does not seem easy
to be checked in the applications. For this purpose, the following corollary (see [10,
Corollary 7.3, p. 188]) provides more explicit conditions for the applicability of the
abstract result:

Corollary 1. Let f : A → A ∗ be an analytic twist map. If there are two disjoint
continuous curves Γ1 and Γ2 in A , each of them connecting the inner and the outer
boundaries of A and such that ϒ < 0 on Γ1 and ϒ > 0 on Γ2, then f is a bend-twist
map on A , and therefore it has at least two distinct fixed points.

Our aim is to reformulate the above results in a general topological setting in order to
obtain a version of Theorem 1 and Corollary 1 for general (not necessarily analytic)
maps. In order to simplify the exposition we consider the case in which the annulus
is A = A[a,b] := A. In this setting, the following result holds [20]:

Lemma 1. Let φ : A → R
2 \ {0} be a continuous map admitting a lifting of the

form (11) and satisfying the twist condition (13). Then the set Ω j
φ contains a closed
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connected set C j with the property that C j : Ai � Ao. Such set is essentially embedded
in A, that is, the inclusion iC j : C j → A, for iC j (x) = x, ∀x ∈C j, is not homotopic to
a constant map.

Our result corresponds to [10, Lemma 7.2, p. 185] for a general φ . The Jordan curve
Γ ⊂ Ω f considered in [10] in the analytic case is now replaced by the essential
continuum C j ⊂Ω j

φ . Following [10] we can now give the next definition.

Definition 3. Let φ : A→ R
2 \ {0} be a continuous map [admitting a lifting of the

form (11)] which satisfies the twist condition (13), for some j ∈ Z. We say that φ is
a bend-twist map in A if ϒ changes its sign on C j.

As a consequence of this definition, the following theorem, which is a version of
Theorem 1 for mappings which are not necessarily analytic, holds:

Theorem 2. Let φ : A→R
2 \{0} be a bend-twist map. Then it has a fixed point in

intX, with Θ = 2 jπ .

In [21] we have provided an example of a bend-twist map having only one fixed
point. To fully recover Ding’s theorem, one could slightly modify the definition
of bend-twist map, by observing that in the setting of Lemma 1, it is possible to
prove the existence of an essentially embedded closed connected set C j ⊂ A with
the property of being minimal with respect to the cutting property C j : Ai � Ao. For
such minimal set, it holds that any real-valued continuous map, which changes
its sign on it, vanishes at least twice on C j. Clearly, from the point of view of
the applications, the verification that ϒ changes its sign on a minimal set (whose
existence is guaranteed by Zorn’s lemma) is, perhaps, of little use. For this reason,
we provide the following topological version of Corollary 1 (see [21, Theorem 2.9]):

Theorem 3. Let φ : A→ R
2 \ {0} be a continuous map [admitting a lifting of the

form (11)] which satisfies the twist condition (6), for some j ∈ Z. If there are two
disjoint arcs Γ1 and Γ2 in A, both connecting Ai with Ao in A and such that ϒ < 0
on Γ1 and ϒ > 0 on Γ2, then φ has at least two distinct fixed points in intA with
Θ = 2 jπ .

Such result can be easily generalized as follows [21, Corollary 2.10]:

Theorem 4. Let φ : A→ R
2 \ {0} be a continuous map [admitting a lifting of the

form (11)] which satisfies the twist condition (6), for some j ∈ Z. Assume that there
exist 2k disjoint arcs (k ≥ 1), all of them connecting Ai with Ao in A. We label
these arcs in a cyclic order Γ1 ,Γ2 . . . ,Γn , . . .Γ2k ,Γ2k+1 = Γ1 and assume that ϒ < 0
on Γn for n odd and ϒ > 0 on Γn for n even (or viceversa). Then φ has at least 2k
distinct fixed points in intA, all the fixed points with Θ = 2 jπ .

Remark 1. The proofs of Theorems 3 and 4 are based on topological degree
arguments. Therefore, such results are stable with respect to small continuous
perturbations of the map φ . The assumption of area-preserving is not needed here
(see Remark 3).
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In the next section we investigate the different concepts discussed above
regarding twist maps in the setting of the second-order nonlinear ODEs with peri-
odic coefficients ẍ+ f (t,x) = 0 for some special cases of f . We will construct some
planar annular regions obtained by the level lines of some associated autonomous
Hamiltonian systems. In such a situation, the results that we have exposed for
the standard annulus A = A[a,b] must be translated to domains which are planar
topological annuli. Due to the topological nature of our results, such extension is
straightforward.

3 Applications

For the sake of brevity, we confine our applications to the case of (3). Analogous
results can be obtained for (2), as well as for related equations.

Let f : R→ R be a locally Lipschitz function and let F(x) :=
∫ x

0 f (s)ds. We
assume

f (0) = 0, f (s)s > 0 for s �= 0, F(s)→+∞ for s→±∞. (14)

As a consequence of (14) we have that for each μ > 0, the phase portrait of the
first-order planar system

ẋ = y, ẏ =−μ f (x) (15)

is that of a global center at the origin. For each c > 0, the energy level line

E c
μ := {(x,y) : Eμ(x,y) = c},

with

Eμ(x,y) :=
1
2

y2 + μF(x),

is a closed curve surrounding the origin, and it is also a periodic orbit of system
(15). The fundamental period τc

μ of E c
μ can be expressed as

τc
μ = 2

∫ β

α

dξ
√

2(c− μF(ξ ))
=

2
√μ

∫ β

α

dξ
√

2(F(β )−F(ξ ))
,

where the values

α = αc
μ < 0 < β = β c

μ
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are such that

μF(α) = μF(β ) = c.

With this respect, we introduce the following notation:

τ(u) := 2
∫ u

u−

dξ
√

2(F(β )−F(ξ ))
, for u− < 0 < u with F(u−) = F(u). (16)

The number τ(u) is the period of the orbit of (15) for μ = 1, passing through the
point (u,0). Hence a generic orbit of system (15) passing through the same point
has period τc

μ = τ(u)/√μ , with c = μF(u).
We consider now the nonautonomous equation (3) with a T -periodic weight

function p : R→ R which is a small perturbation of a T -periodic stepwise function
pB,C defined on [0,T [ as follows:

pB,C(t) :=

{
B, for t ∈ [0,T1[

C, for t ∈ [T1,T2[

with

T1 +T2 = T, and 0 < B <C.

We perform our analysis for the equation

ẍ+ pB,C(t) f (x) = 0 (17)

and its associate first-order system in the phase plane. All our results will be
extended to (3) for ||p− pB,C||L1(0,T) sufficiently small (see Remarks 2, 3, 4).

For a weight function like pB,C, it turns out that the study of (17) can be reduced
to the analysis of two planar Hamiltonian systems of the form (9) and (10), defining

H1(x,y) :=
1
2

y2 +BF(x) = EB(x,y), H2(x,y) :=
1
2

y2 +CF(x) = EC(x,y). (18)

Such Hamiltonian systems correspond to (15) for μ = B and for μ =C. Concerning
the dynamics, we take μ = B and follow (15) for t ∈ [0,T1[. At the time t = T1, we
change the parameter to the value μ =C and follow (15) on the time interval [T1,T [.
Due to the autonomous nature of the system, this corresponds to the study of the
behavior of the solutions on the time interval [0,T2[. Accordingly, the Poincaré map
Φ for (17) can be split as

Φ = ΦC ◦ΦB ,
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where ΦB is the Poincaré map associated with system (15) for μ = B and for the
time interval [0,T1] and, similarly, ΦC is the Poincaré map for (15) with μ =C and
[0,T2].

The results we are going to present apply to the search of T -periodic solutions, as
well as to subharmonics of order m. For the sake of simplicity we consider only the
case of T -periodic solutions. In order to produce a twist condition for Φ , we have
to find an annulus (centered at the origin) such that (6) holds (for m = 1). A natural
choice is an annular region defined by means of the energy level lines of (15). In our
case we have energy level lines for two systems. Hence, a possible approach would
be that of constructing an annulus and proving the twist condition for one of the two
systems (for instance, for μ = B) and then choose suitable assumptions ensuring
that the action of the second Poincaré map will not destroy the geometry.

Suppose there are u0,u1 > 0 such that τ(u0) �= τ(u1). This is always possible if
we are not in the case of an isochronous center. Just to fix a case of study, assume
that

0 < u0 < u1 and τ(u0)< τ(u1).

We take as the annulus A the set

A := {(x,y) : EB(u0,0)≤ EB(x,y)≤ EB(u1,0)}.

The set A is a topological annulus with strictly starlike boundaries (with respect to
the origin). If we describe the points of the plane by means of the modified polar
coordinates given by the angle θ and with the energy level EB playing the role of
a radial coordinate, we have that A = A[EB(u0,0),EB(u1,0)]. In order to check the
twist condition, we observe that the solutions of (15) for μ = B, which depart from
a point of energy c, make exactly k turns around the origin (in the clockwise sense)
at the time kτc

B. Hence, (6) (m = 1 and T = T1) is satisfied for some positive integer
j if and only if

√
B

T1

τ(u0)
> j >

√
B

T1

τ(u1)
. (19)

This provides a twist condition for the map ΦB. The twist condition will be satisfied
for the map Φ provided that the time T2 is not too large. Thus, we can conclude as
follows:

Theorem 5. Suppose that there exist 0 < u0 < u1 such that (19) holds. Then
there is T ∗2 = T ∗2 (C) > 0 such that (17) has at least two T-periodic solutions with
(x(0), ẋ(0)) ∈ intA , provided that T2 < T ∗2 .

Proof. We give a sketch of the proof. Since Φ is an area-preserving homeomor-
phism of the plane with Φ(0) = 0 and A is an annulus around the origin with
strictly star-shaped boundaries, we can apply a generalized version of the Poincaré–
Birkhoff theorem due to W.-Y. Ding [9], if the twist condition for Φ is satisfied.
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As observed above, this is true if ΦC does not destroy the twist condition given
by ΦB. This is guaranteed by the smallness of T2. �	

Remark 2. We notice that the conclusion of Theorem 5 is true also for (3) provided
that

||p− pB,C||L1(0,T) < ε

with ε > 0 a suitable constant depending on the parameters of (17). For an analogous
result concerning (2), see [6]. For the proof (as for the proof of Theorem 5) we
need a version of the Poincaré–Birkhoff theorem in which the assumption of the
invariance of the boundaries may not be satisfied. In our case, we rely on a version
of the theorem for strictly star-shaped boundaries [23], [27, Corollary 1].

As a next step, we propose, for the same equation, an application of the bend-
twist maps theorem. In this case we have the following:

Theorem 6. Suppose that there exist 0 < u0 < u1 such that (19) holds. Then there
is T #

2 = T #
2 (C) > 0 such that (17) has at least four T -periodic solutions with

(x(0), ẋ(0)) ∈ intA , provided that T2 < T #
2 .

Proof. We give a sketch of the proof. For a fixed angle ϑ , let Λϑ be the intersection
of the half-line Lϑ := {(ρ cosϑ ,ρ sinϑ) : ρ > 0}with the annulus. We are interested
in the motion of the points of Λϑ under the action of ΦC, and hence we consider
(15) for μ = C. Just to fix the ideas, suppose that ϑ ∈ ]0,π/2] (see Fig. 3). The
points of Λϑ move in the clockwise sense, and therefore they remain in the first
quadrant if T2 is sufficiently small. Now we consider the energy of the first system
evaluated along the solutions of the second one. This is given by the function E(t) :=

EB(x(t),y(t)). A differentiation yields to d E(t)
dt =−(C−B) f (x(t))y(t). Hence there

is an energy loss for EB as long as the solution remains in the first quadrant (or in the
third quadrant), while the energy increases in the second and in the fourth quadrant.
We have taken Λϑ in the first quadrant, and therefore ΦC(Λϑ ) will be still in the first
quadrant for T2 sufficiently small. In this case, we conclude that EB(ΦC(z))< EB(z),
for all z ∈ Λϑ . The bigger we take ϑ ∈ ]0,π/2], the larger T2 can be allowed. At this
point, we recall that the annulus A is invariant for the solutions of (15) for μ =B and
the energy EB is constant along such solutions. Hence, if we take Γ1 := Φ−1

B (Λϑ ),
we find that EB(Φ(z)) < EB(z) for each z ∈ Γ1. Since for the annulus A we have
taken EB as a radial coordinate, we conclude that ϒ < 0 on Γ1. In the same manner,
we can take Γ2 ,Γ3, and Γ4 in A such that the assumptions of Theorem 4 are satisfied
for k = 2.

Remark 3. We notice that the conclusion of Theorem 6 is true also for equation

ẍ+ cẋ+ p(t) f (x) = 0 (20)

provided that ||p− pB,C||L1(0,T ) < ε and |c| < ε with ε > 0, a suitable constant
depending on the parameters of (17).
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Fig. 3 As a comment to the proof of Theorem 6 we plot the phase portrait of system (15) for
different values of μ . In the present example we have taken f (x)= x/(1+x2) ,u0 = 3,u1 = 5,B= 1,
and C = 9.4. The scale ratio between x− y axis has been slightly modified

A natural question that arises now is what happens if we take also T2 large.
As explained in the Introduction, if we are able to produce a sufficiently large
twist for both the systems, then we can enter in the setting of generalized LTMs, as
considered in [15, 18, 19]. In this situation, we can construct two topological annuli
A1 and A2 filled by the periodic orbits of the system (15) for μ = B and μ = C,
respectively, which cross each other in an appropriate manner. For instance, if we
can take four positive numbers

0 < v0 < v1 < u0 < u1

such that

CF(v0)> BF(u1), (21)

then the intersection of the two annuli A1 := A[EB(u0,0),EB(u1,0)] and A2 :=
A[EC(v0,0),EC(v1,0)] consists of four rectangular regions, Ri for i = 1, . . . ,4, like
in Fig. 4. In this situation, the following result holds:

Theorem 7. Suppose that there exist 0 < v0 < v1 < u0 < u1, and let B,C such that
(21) holds. If

τ(u0) �= τ(u1) and τ(v0) �= τ(v1), (22)

then there exist T̄1 , T̄2 > 0 such that for each T1 ,T2 with T1 > T̄1 and T2 > T̄2, (17)
has at least one T -periodic solution with (x(0), ẋ(0)) ∈ Ri, for every i = 1, . . . ,4.
Moreover, in each of the Ri’s, there is chaotic dynamics.

The proof can be obtained from the arguments developed in [15, 19]. The term
“chaotic dynamics” is meant in the sense that inside each of the Ri, there is a
compact invariant set for the Poincaré map where Φ is semiconjugate to a full
Bernoulli shift on m≥ 2 symbols. To have a larger m (and hence a larger topological



212 A. Pascoletti and F. Zanolin

Fig. 4 Plotting of two annular regions A1 and A2 as required in the proof of Theorem 7. The
regions Ri (i = 1, . . . ,4) are painted in a darker color. In the present example we have taken
f (x),B,C as in Fig. 3 with v0 = 1,v1 = 2,u0 = 3,u1 = 5. The scale ratio between x− y axis has
been slightly modified. Since f (x)/x = 1/(1 + x2) is strictly decreasing on ]0,+∞), according
to Opial [17], we have that the time mapping u �→ τ(u) is strictly increasing on ]0,+∞). Hence
condition (22) is satisfied and we have chaotic dynamics in each of the four parts of A1∩A2 (for
T1 and T2 sufficiently large)

entropy), we have just to take larger values of T . As a consequence, on each of the
Ri’s, there are infinitely many periodic points of Φ , leading to the existence of
infinitely many subharmonics for (17).

Remark 4. We notice that the conclusion of Theorem 7 is true also for (20) for c
small and p(t) a small perturbation of pB,C(t).
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Pullback Attractors for NonAutonomous
Dynamical Systems

Marı́a Anguiano, Tomás Caraballo, José Real, and José Valero

Abstract We study a nonautonomous reaction-diffusion equation with zero
Dirichlet boundary condition, in an unbounded domain containing a nonautonomous
forcing term taking values in the space H−1, and with a continuous nonlinearity
which does not ensure uniqueness of solution. Using results of the theory of set-
valued nonautonomous (pullback) dynamical systems, we prove the existence of
minimal pullback attractors for this problem. We ensure that the pullback attractors
are connected and also establish the relation between these attractors.

Keywords Pullback attractor • Non-autonomous reaction-diffusion equation •
Set-valued dynamical system • Unbounded domain

1 Introduction

The understanding of the asymptotic behavior of dynamical systems is one of the
most important problems of modern mathematical physics. One way to treat this
problem for systems having some dissipativity properties is to analyze the existence
and structure of its global attractor. On some occasions, some phenomena are
modeled by nonlinear evolutionary equations which do not take into account all
the relevant information of the real systems. Instead, some neglected quantities
can be modeled as an external force which, in general, becomes time dependent.
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For this reason, nonautonomous systems are of great importance and interest. The
theory of pullback attractors is an important mathematical tool for studying the
qualitative behavior of infinite-dimensional dynamical systems. By using this theory
during the last few years, many results concerning attractors for evolution differential
equations have been obtained (see [2, 3, 8, 9, 12] among others). However, these
results cannot be applied to a wide class of initial-boundary problems, in which the
solution may not be unique. Good examples of such systems are differential inclu-
sions, variational inequalities, control infinite-dimensional systems, and also some
partial-differential equations as the three-dimensional Navier–Stokes equations or
the nonautonomous reaction-diffusion equations without uniqueness of solution.
For the qualitative analysis of the above-mentioned systems, from the point of
view of the theory of dynamical systems, it is necessary the theory for set-valued
nonautonomous dynamical systems.

The study of reaction-diffusion equations without uniqueness of solutions in a
bounded domain in the autonomous case or in the nonautonomous case under strong
uniformity properties on the time-dependent terms can be found in [5, 11], among
others. In the autonomous case, when the domain is unbounded, several studies
on the problem can be found, for instance, in [13, 14]. In this sense, our aim is to
consider a much more general problem.

Let Ω ⊂ R
N be a nonempty open set, not necessarily bounded, and suppose that

Ω satisfies the Poincaré inequality, i.e., there exists a constant λ1 > 0 such that

∫

Ω
|u(x)|2 dx≤ λ−1

1

∫

Ω
|∇u(x)|2 dx ∀u ∈ H1

0 (Ω) . (1)

Let us consider the following nonautonomous reaction-diffusion equation with zero
Dirichlet boundary condition in Ω :

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂ t
−Δu = f (x,u)+ h(t) in Ω × (τ,+∞),

u = 0 on ∂Ω × (τ,+∞),

u(x,τ) = uτ(x), x ∈Ω ,

(2)

where τ ∈ R, uτ ∈ L2 (Ω), h ∈ L2
loc(R;H−1 (Ω)), and f : Ω × R → R is a

Carathéodory function, that is, f (·,u) is a measurable function for any u ∈ R and
f (x, ·) ∈C(R) for almost every x∈Ω , and satisfies that there exist constants α1 > 0,
α2 > 0, and p≥ 2 and positive functions C1(x), C2(x) ∈ L1 (Ω) such that

| f (x,s)|
p

p−1 ≤ α1 |s|p +C1(x) ∀s ∈ R,a.e.x ∈Ω , (3)

f (x,s)s ≤−α2 |s|p +C2(x) ∀s ∈R,a.e.x ∈Ω , (4)

where these assumptions do not ensure uniqueness of solution of (2). Due to the
nonautonomous character of the problem, in Sect. 2, we developed a theory of
pullback attractors in the framework of set-valued problems. First, we recall some
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basic definitions for set-valued nonautonomous dynamical systems and establish
a sufficient condition for the existence of pullback attractors for these systems.
In Sect. 3 we prove the existence of solution of (2) and we show a sufficient
condition ensuring the existence of minimal pullback attractors in L2 (Ω).

2 Theory of Set-Valued Nonautonomous Dynamical Systems

The theory of set-valued nonautonomous dynamical systems is well established as
has been extensively developed over the last one and a half decades. We can find
results about this theory in the work of Caraballo and Kloeden [6], among others.
Most results in this section are slight modifications and generalizations of the results
of this paper.

Let X = (X ,dX) be a metric space, let P (X) denote the family of all nonempty
subsets of X , and let us denote R2

d :=
{
(t,s) ∈ R

2 : t ≥ s
}

.

Definition 1. A multivalued map U : R2
d × X → P (X) is called a multivalued

nonautonomous dynamical system (MNDS) on X if U(τ,τ,x) = {x}forallτ ∈
R, x ∈ X , and U(t,τ,x)⊂U(t,s,U(s,τ,x)) for all τ ≤ s≤ t, x ∈ X .

An MNDS is said to be strict if U(t,τ,x) = U(t,s,U(s,τ,x))forallτ ≤ s ≤ t,
x ∈ X .

Definition 2. An MNDS U on X is said to be upper semicontinuous if for all
t ≥ τ the mapping U(t,τ, ·) is upper semicontinuous from X into P(X), i.e., for
any x0 ∈ X and for every neighborhood N in X of the set U(t,τ,x0), there exists
δ > 0 such that U(t,τ,y)⊂N whenever dX(x0,y)< δ .

Let D be a class of sets parameterized in time, D̂ = {D(t) : t ∈ R} ⊂P(X).
We will say that the class D is inclusion-closed, if D̂ ∈ D and /0 �= D′(t) ⊂ D(t)

for all t ∈ R, imply that D̂′ = {D′(t) : t ∈ R} belongs to D .

Definition 3. We say that a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is pullback
D-absorbing for the MNDS U if for every D̂ ∈ D and every t ∈ R, there exists
τ(t, D̂)≤ t such that U(t,τ,D(τ)) ⊂ D0(t)forallτ ≤ τ(t, D̂).

Definition 4. The MNDS U is pullback asymptotically compact with respect to a
family B̂ = {B(t) : t ∈ R} ⊂P(X) (or pullback B̂-asymptotically compact) if for
all t ∈R and every sequence τn ≤ t tending to−∞, any sequence yn ∈U(t,τn,B(τn))
is relatively compact in X .

Definition 5. A family A = {A (t) : t ∈R} ⊂ P(X) is said to be a global
pullback D-attractor for the MNDS U if it satisfies:

1. A (t) is compact for any t ∈ R.
2. A is pullback D-attracting, i.e. limτ→−∞ distX(U(t,τ,D(τ)),A (t)) = 0 ∀t ∈ R,

for all D̂ ∈D .
3. A is negatively invariant, i.e., A (t)⊂U(t,τ,A (τ)), forany(t,τ) ∈ R

2
d .



220 M. Anguiano et al.

A is said to be a strict global pullback D-attractor if the invariance property in
the third item is strict, i.e., A (t) =U(t,τ,A (τ)), for(t,τ) ∈ R

2
d .

The main tool to prove the existence of an attractor is the concept of pullback-
omega-limit set.

Definition 6. For any family B̂ = {B(t) : t ∈ R} ⊂P(X), we define the pullback-

omega-limit set as the t-dependent set Λ(B̂, t) given by Λ(B̂, t)=
⋂

s≤t

⋃

τ≤s

U(t,τ,B(τ))
X
.

Now, we will establish a sufficient condition ensuring the existence of pullback
attractors with respect to a general universe D (as in [8]). When this universe
consists of bounded sets, the results have already been proved in [7]. This is our
main result in this section.

Theorem 1. Assume that D̂0 = {D0(t) : t ∈ R} ⊂P(X) is pullback D-absorbing
for an MNDS U, which is also pullback D̂0-asymptotically compact. Then, the family

AD = {AD(t) : t ∈ R} given by AD(t) =
⋃

D̂∈D Λ(D̂, t)
X

, t ∈ R, satisfies the
following properties:

1. For each t ∈ R the set AD(t) is a nonempty compact subset of X, and AD(t) ⊂
Λ(D̂0, t).

2. AD is pullback D-attracting and in fact is the minimal family of closed sets that
pullback attracts all elements of D .

3. If D̂0 ∈D , then AD(t) = Λ(D̂0, t)⊂ D0(t)
X
, for all t ∈ R.

4. If U is upper semicontinuous and with closed values, AD is a global pullback
D-attractor for U.

5. If U is upper semicontinuous, with closed and connected values, and for each
t ∈ R AD(t)⊂C(t), where Ĉ ∈D and C(t) is a connected subset of X, then AD

is connected, i.e., AD(t) is connected for any t ∈ R.
6. If D̂0 ∈ D , each D0(t) is closed, and the universe D is inclusion-closed, then

AD ∈D . If moreover U is upper semicontinuous and with closed values, AD is
the unique global pullback D-attractor belonging to D . In this case, if moreover
U is strict, then AD is a strict global pullback D-attractor for U.

Proof. See [1]. �	

We denote DX
F the universe of fixed nonempty bounded subsets of X , i.e., the class of

all families D̂ of the form D̂ = {D(t) =D : t ∈R}with D a fixed nonempty bounded
subset of X . In the particular case of considering the universe DX

F , the corresponding
minimal pullback DX

F -attractor for the process U is the pullback attractor defined by
Crauelet al. [10, Theorem 1.1, p. 311] and will be denoted ADX

F
. Then, it is easy to

conclude the following result.

Corollary 1. Assume that D̂0 = {D0(t) : t ∈ R} ⊂P(X) is pullback D-absorbing
for an MNDS U, which is also pullback D̂0-asymptotically compact, upper semi-
continuous, and with closed values. Then, if the universe D contains the universe
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DX
F , both attractors ADX

F
and AD exist, and the following relation holds:

ADX
F
(t)⊂AD(t) for allt ∈ R.

Remark 1. It can be proved (see [12]) that, under the assumptions of the preceding
corollary, if, moreover, for some T ∈R the set ∪t≤T D0(t) is a bounded subset of X ,
then ADX

F
(t) = AD(t) for all t ≤ T.

3 Existence of Pullback Attractors for (2)

The aim of this section is to show the existence of pullback attractors, which are
connected, in the phase space L2 (Ω) for the problem (2) using Theorem 1.

To do this we need a theorem on the existence of solutions of problem (2), which
we will see in the following subsection.

3.1 Existence of Solution

We state in this section a result on the existence of solutions of problem (2). First,
we give the definition of weak solution of it.

By |·|, ‖·‖ = |∇·|, ‖·‖∗, and ‖·‖Lp(Ω) we denote the norms in the spaces L2 (Ω),

H1
0 (Ω), H−1 (Ω), and Lp (Ω), respectively. We will use (·, ·) to denote the scalar

product in L2 (Ω) or [L2 (Ω)]N and 〈·, ·〉 to denote the duality product either between
H−1 (Ω) and H1

0 (Ω) or between Lp′ (Ω) and Lp (Ω), where p′ = p
p−1 is the

conjugate exponent of p.

Definition 7. A weak solution of (2) is a function u∈Lp(τ,T;Lp (Ω))∩L2
(
τ,T;H1

0 (Ω)
)

for all T > τ and such that

(u(t),w)+
∫ t

τ
(∇u(s),∇w)ds = (uτ ,w)+

∫ t

τ
〈 f (x,u(s))+h(s),w〉ds ∀ t ≥ τ, (5)

for all w ∈ Lp(Ω)∩H1
0 (Ω).

Theorem 2. Assume that Ω satisfies (1), h∈L2
loc(R;H−1 (Ω)) and f is Carathéodory

and satisfies (3) and (4). Then, for all τ ∈ R, uτ ∈ L2 (Ω), there exists at least one
weak solution u of (2).

Proof. See [1, 4]. �	
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3.2 Existence of Pullback Attractors

In this section we prove our main result. First, we need a priori estimates and a
continuity result.

3.2.1 A Priori Estimates and a Continuity Result

For each τ ∈R and uτ ∈ L2(Ω), let us denote S(τ,uτ) the set of all weak solutions of
(2) defined for all t ≥ τ . We define a multivalued map U : R2

d×L2(Ω)→P(L2(Ω))
by

U(t,τ,uτ) = {u(t) : u ∈ S(τ,uτ)} , τ ≤ t, uτ ∈ L2(Ω). (6)

It is easy to conclude the following results, whose proofs can be found in [1, 4].

Lemma 1. Under the assumptions of Theorem 2, the multivalued mapping U
defined by (6) is a strict MNDS on L2(Ω).

Now, we define the universe in P
(
L2 (Ω)

)
. We denote by Dλ1

the class of all
families D̂ = {D(t) : t ∈ R} ⊂ P

(
L2 (Ω)

)
such that D(t) ⊂ BL2(Ω)(0,rD̂(t)) and

limt→−∞ eλ1t r2
D̂
(t) = 0.

According to the notation introduced in the last section, DH
F will denote the class

of all families D̂ of the form D̂ = {D(t) = D : t ∈ R} with D a fixed nonempty
bounded subset of L2 (Ω).

Remark 2. We note that DH
F ⊂Dλ1

and both universes are inclusion-closed.

Lemma 2. Suppose that Ω satisfies (1) and suppose that f is Carathéodory and
satisfies (3) and (4). Let h = ∑N

i=1
∂hi
∂xi

, with hi ∈ L2
loc(R;L2 (Ω)) for all 1 ≤ i ≤ N,

such that

N

∑
i=1

∫ t

−∞
eλ1s |hi(s)|2 ds <+∞ ∀t ∈R. (7)

Then, the balls Bλ1
(t) = BL2(Ω)(0,Rλ1

(t)), where Rλ1
(t) is the nonnegative number

given for each t ∈ R by

R2
λ1
(t) = 2e−λ1t

N

∑
i=1

∫ t

−∞
eλ1s |hi(s)|2 ds+ 2λ−1

1 ‖C2‖L1(Ω) + 1, (8)

form a family B̂λ1
∈ Dλ1

which is pullback Dλ1
-absorbing for the MNDS U defined

by (6).
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From now on, for all m ≥ 1, we denote Ωm = Ω ∩
{

x ∈ R
N : |x|

RN < m
}
, where

|·|
RN denotes the Euclidean norm in R

N . We need the following results whose proofs
can be found in [1, 4].

Lemma 3. Under the assumptions in Lemma 2, for any real numbers t1 ≤ t2 and
any ε > 0, there exist T =T (t1, t2,ε, B̂λ1

)≤ t1 and M =M(t1, t2,ε, B̂λ1
)≥ 1 verifying

∫

Ω∩{|x|
RN≥2m}

u2 (x, t)dx≤ ε, ∀τ ≤ T , t ∈ [t1, t2], m≥M,

for any weak solution u ∈ S(τ,uτ) where uτ ∈ Bλ1
(τ).

Lemma 4. Under the assumptions in Lemma 2, let K be a relatively compact set in
L2 (Ω). Then, for all τ ≤ T and ε > 0 there exists M = M(τ,T,ε,K) such that

∫

Ω∩{|x|
RN≥2m}

u2 (x, t)dx≤ ε, ∀t ∈ [τ,T ], ∀m≥M,

for any u ∈ S(τ,uτ), where uτ ∈ K is arbitrary.

Further, we obtain a continuity result leading to the upper semicontinuity of the
MNDS U.

Proposition 1. Under the assumptions in Lemma 2, let τ ∈R and {un
τ}⊂ L2 (Ω) be

a sequence converging weakly in L2 (Ω) to an element uτ ∈ L2 (Ω). For each n≥ 1
let us fix un ∈ S(τ,un

τ). Then there exists a subsequence
{

uμ
}
⊂ {un} satisfying that

there exists u ∈ S(τ,uτ) such that

uμ (t)⇀ u(t)weaklyinL2 (Ω)∀t ≥ τ, (9)

uμ ⇀ uweaklyinL2(τ,T ;H1
0 (Ω)) ∀T > τ, (10)

uμ ⇀ uweaklyinLp(τ,T ;Lp (Ω)) ∀T > τ, (11)

f (x,uμ)⇀ f (x,u)weaklyinLp′(τ,T ;Lp′ (Ω)) ∀T > τ, (12)

uμ|Ωm
→ u|Ωm

stronglyin L2(τ,T ;L2 (Ωm)) ∀T > τ, ∀m≥ 1. (13)

Finally, if the sequence {un
τ} converges strongly in L2 (Ω) to uτ , then

uμ → ustronglyinL2 (τ,T ;L2 (Ω)
)
∀T > τ, (14)

and

uμ (t)→ u(t) stronglyinL2 (Ω) ∀t ≥ τ. (15)

Proof. This result can be proved in much the same way as Theorem 2 and using
Lemmas 3 and 4. �	
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3.2.2 Existence of the Global Pullback Attractor

Using the previous results we can prove the following lemma, which is necessary to
prove our main result.

Lemma 5. Under the assumptions in Lemma 2, the MNDS U defined by (6) is upper
semicontinuous, has closed values, and is pullback asymptotically compact with
respect to the family B̂λ1

defined in that lemma.

Now, we are ready to obtain the main result.

Theorem 3. Under the assumptions in Lemma 2, the MNDS U defined by (6)
possesses a unique pullback Dλ1

-attractor ADλ1
belonging to Dλ1

, which is strictly

invariant and connected and is given by ADλ1
(t) = Λ

(
B̂λ1

, t
)
, where B̂λ1

was

defined in Lemma 2. Moreover, there exists the minimal pullback DH
F -attractor,

ADH
F

, which is also connected, and we have the following relation:

ADH
F
(t)⊂ADλ1

(t)⊂ BL2(Ω)

(
0,Rλ1

(t)
)

forallt ∈ R. (16)

Proof. As a direct consequence of the preceding results, Theorem 1 and Corollary 1,
we obtain the existence of the unique pullback Dλ1

-attractor belonging to Dλ1
,

which is strictly invariant, and the minimal pullback DH
F -attractor for the MNDS

U defined by (6), and we also have the relation (16). Moreover, we can prove that
U(t,τ,uτ) has connected values in L2 (Ω) (see [1] for details of the proof). On the
other hand, as B̂λ1

is pullback Dλ1
-absorbing, taking into account that B̂λ1

∈ Dλ1
,

thanks to the third statement of Theorem 1 we have that all conditions of the fifth
statement of Theorem 1 are also satisfied. Then, we have that ADλ1

is connected.
Using similar arguments we have that ADH

F
is also connected. �	

Remark 3. If we also assume that supt≤0 e−λ1t ∑N
i=1

∫ t
−∞ eλ1s|hi(s)|2 ds < ∞, then we

have that ∪t≤T BL2(Ω)

(
0,Rλ1

(t)
)

is a bounded subset of L2 (Ω). Therefore, taking
into account Remark 1, we can deduce that ADH

F
(t) = ADλ1

(t) for all t ≤ T.
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Uniform Estimates and Existence of Solutions
with Prescribed Domain to Nonlinear
Third-Order Differential Equation

Irina Astashova

Abstract For differential equation of the third order with power nonlinearity,
uniform estimates of solutions with the same domain are obtained. The existence
of solutions with prescribed domain is proved.

Consider the differential equation

y′′′+ p(x,y,y′,y′′)|y|k−1y = 0, k > 1, (1)

the function p(x,y0,y1,y2) defined on R×R
3 is continuous in x and Lipschitz

continuous in y0,y1,y2 with

0 < p∗ ≤ p(x,y0,y1,y2)≤ p∗, (2)

where p∗, p∗ are positive constants.
Put β = k−1

3 > 0.

1 Uniform Estimates of Solutions

Theorem 1. For any k > 1, p∗ > 0, p∗ > p∗, h > 0 there exists a constant C > 0
such that for any p(x,y,y′,y′′) any solution y(x) to (1) satisfying the condition
|y(x0)| = h > 0 at some point x0 ∈ R cannot be extended to the interval (x0 −
C h−β ,x0 +C h−β ).
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Theorem 2. For any k > 1, p∗ > 0, p∗ > p∗ there exists a constant C > 0 such
that for any p(x,y,y′,y′′) and any solution y(x) to (1) defined on [−a,a], it holds
|y(0)| ≤ (C

a )
1/β .

Theorem 3. For any k > 1, p∗ > 0, p∗ > p∗ there exists a constant C > 0 such that
for any p(x,y,y′,y′′) and any solution y(x) to (1) defined on [a,b], it holds

|y(x)| ≤C min(x− a,b− x)−1/β . (3)

Remark 1. In [3] uniform estimates for positive solutions with the same domain to
the equation

y(n) +
n−1

∑
j=0

a j(x) y(i) + p(x) |y|k−1y = 0

with continuous functions p(x) and a j(x), n≥ 1, k > 1 were obtained. In [2] similar
uniform estimates for absolute values of all solutions to the equation

y(n) +
n−1

∑
j=0

a j(x) y(i) + p(x) |y|k = 0

were proved. See also [4].

Remark 2. The proof of Theorems 1–3 was published in [6]. For the case p(x,y0,
y1,y2) = 1, it was published in [5].

2 The Existence of Solutions with Prescribed Domain

Consider the differential equation (1) with the same propositions about the function
p(x,y0,y1,y2).

Definition 1. A solution y(x) has a resonance asymptote x = x∗ if

lim
x→x∗

y(x) = +∞, lim
x→x∗

y(x) =−∞.

2.1 Main Results

Theorem 4. Let y(x) be a solution to (1) defined on [x0,x∗) with the resonance
asymptote x = x∗. Then the position of the asymptote x = x∗ depends continuously
on y(x0), y′(x0), y′′(x0).
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Theorem 5. For any finite x∗ < x∗ there exists a non-extensible solution y(x) to (1)
defined on (x∗, x∗) with the vertical asymptote x = x∗ and the resonance asymptote
x = x∗.

Corollary 1. For any x∗ ∈ R there exists a Kneser solution (see the definition in
[8]) of (1) with the vertical asymptote x = x∗ defined on the interval (x∗,+∞) and
tending to 0 as x→+∞.

Corollary 2. For any x∗ ∈ R there exists a non-extensible solution y(x) of (1) with
the resonance asymptote x = x∗ defined on the interval (−∞, x∗) and tending to 0
as x→−∞.

Remark 3. Note that Corollaries 1 and 2 follow also from more general results from
[7] on the existence of a blow-up Kneser solution to equation (1).

Theorem 6. For any finite or infinite x∗ < x∗ there exists a non-extensible solution
y(x) of (1) with domain (x∗, x∗).

Remark 4. In [1,4] asymptotic behavior of all possible solutions to (1) is described.
The similar results for (1) of the second order were published in [9].

2.2 Proofs of Main Results

2.2.1 Lemmas for Theorem 4

Lemma 1. Suppose a solution y(x) to (1) satisfies, at some point x0, the inequalities

y(x0)≥ 0, y′(x0)> 0, y′′(x0)≥ 0.

Then y(x) has a local maximum at some point x′0 > x0 satisfying the following
estimates:

x′0− x0 ≤
(
μ y′(x0)

)− k−1
k+2 , (4)

y(x′0)>
(
μ y′(x0)

) 3
k+2 , (5)

y′′(x′0)<−
(
μ y′(x0)

) 2k+1
k+2 , (6)

where μ > 0 is a constant depending only on k, m, and M.

Proof. We may assume that x0 = 0 and put V = y′(0)
1

k+2 .
First consider the case

y′′(0)<V 2k+1.



230 I. Astashova

Let [0,x′1] be the longest possible segment with the inequality y′(x)≥ V k+2

2
satisfied

on it. Then we also have on this segment

y(x)>
V k+2 x

2
, y′′′(x)<−mV k2+2k 2−kxk,

V k+2

2
≤ y′(x)<V k+2 +V 2k+1x− mV k2+2k xk+2

2k(k+ 1)(k+ 2)
,

whence

m
(
V k−1x′1

)k+2

2k(k+ 1)(k+ 2)
−
(

V k−1x′1
)
− 1

2
< 0

and x′1 < rmkV−k+1, where rmk > 0 is the maximum root to the equation

2−km
k2 + 3k+ 2

rk+2− r− 1
2
= 0.

Since the derivative y′(x) changes from V k+2 to
V k+2

2
on the segment [0,x′1], there

exists a point x′′1 ∈ [0,x′1] with the inequality

y′′(x′′1)<−
V k+2

2rmkV−k+1 =−V 2k+1

2rmk

holding also for x > x′′1, while y(x) remains positive. This implies firstly that for
sufficiently small μ inequality (6) holds and secondly that the derivative y′(x)
vanishes at some point x′0 with

x′0− x′1 <
V k+2

2
· 2rmk

V 2k+1 = rmkV
−k+1.

This yields the inequality x′0 < 2rmkV−k+1 and for sufficiently small μ also
inequality (4).

Since on the segment [0,x′0] the second derivative changes from a negative value

to a nonnegative one, which is less than −V 2k+1

2rmk
, then at some point x′′′ ∈ [0,x′0],

we have

y′′′(x′′′)<− V 2k+1

2rmkx′0
<− V 3k

4r2
mk

,
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whence

y(x′0)≥ y(x′′′)>V 3(4M r2
mk

)− 1
k ,

yielding, for sufficiently small μ , inequality (5).
It remains to consider the case

y′′(0)≥V 2k+1.

Now by the similar methods we prove that at some point

x′′2 <

(
22k−1(2k+ 1)

my′′(0)k−1

) 1
2k+1

the second derivative y′′(x) becomes two times less than y′′(0) and then vanishes

at some point x′′3 < 2x′′2 <

(
24k(2k+ 1)

m

) 1
2k+1

V−k+1. At the same time the first

derivative increases and we obtain the situation from the previous case. �	

Lemma 2. Suppose a solution y(x) to (1) satisfies, at some point x′0, the inequalities

y(x′0)> 0, y′(x′0)≤ 0, y′′(x′0)≤ 0.

Then y(x) vanishes at some point x0 > x′0 with the following estimates:

x0− x′0 ≤
(
μ y(x′0)

)− k−1
3 , (7)

y′(x0)<−
(
μ y(x′0)

) k+2
3 , (8)

y′′(x0)<−
(
μ y(x′0)

) 2k+1
3 , (9)

where μ > 0 is a constant depending only on k, m, and M.

Proof. First as in the previous lemma we obtain the properties of the point where
the solution halves. Then we observe it vanishing. �	

Lemma 3. Under the conditions of Lemma 2 for any x1 > x0 with y(x1) = 0, it
holds

∣
∣y′(x1)

∣
∣> Q

∣
∣y′(x0)

∣
∣ , (10)

where Q > 1 is a constant depending only on k, m and M.
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Proof. First notice that between x0 and x1, there exists a point x′′0 , such that
y′′(x′′0) = 0 and y′(x′′0)≥ y′(x0)> 0. Hence

y′(x1)
2− y′(x0)

2 ≥ y′(x1)
2− y′(x′′0)

2 = 2
∫ x1

x′′0
y′(ξ )y′′(ξ )dξ

= 2
∫ x1

x′′0
y′′(ξ )dy(ξ ) = 2y(ξ )y′′(ξ )

∣
∣
∣
x1

x′′0
− 2

∫ x1

x′′0
y(ξ )dy′′(ξ )

=−2
∫ x1

x′′0
y(ξ )dy′′(ξ )=2

∫ x1

x′′0
p(ξ ,y(ξ ),y′(ξ ),y′′(ξ )) |y(ξ )|k+1 dξ .

(11)

Further, between x′′0 and x1, there exists a point x′0, such that y′(x′0) = 0 and,
according to Lemma 1,

y′′(x′′0)<−
(
μ y′(x′′0)

) 2k+1
k+2 .

Between x′′0 and x′0, there exists a point x′′1 with an intermediate value of the second

derivative: y′′(x′′1) = −
1
2

(
μ y′(x′′0)

) 2k+1
k+2 . Hence, between x′′0 and x′′1, there exists a

point x′′′0 , such that

y′′′(x′′′0 )≤− (μ y′(x′′0))
2k+1
k+2

2(x′0− x′′0)
<−1

2

(
μ y′(x′′0)

) 3k
k+2 ,

y(x′′′0 )≥
(

y(x′′′0 )

M

)− 1
k

>
(
μ y′(x′′0)

) 3
k+2 (2M)−

1
k .

Inequality sequence (11) can be continued taking into account that

∣∣y′′(x′′1)− y′′(x′′0)
∣∣>

1
2

(
μ y′(x′′0)

) 2k+1
k+2 ,

and y(x)> y(x′′′0 ) for any x ∈ [x′′1 ,x
′
0] :

y′(x1)
2− y′(x′′0)

2 = 2
∫ x1

x′′0
p(ξ ,y(ξ ),y′(ξ ),y′′(ξ )) |y(ξ )|k+1 dξ

≥ 2
∫ x′0

x′′1
p(ξ ,y(ξ ),y′(ξ ),y′′(ξ )) |y(ξ )|k+1 dξ

=−2
∫ x′0

x′′1
y(ξ )dy′′(ξ ) ≥ 2 · y(x′′′0 ) ·

∣
∣y′′(x′′1)− y′′(x′′0)

∣
∣

> 2 ·
(
μ y′(x′′0)

) 3
k+2 (2M)−

1
k · 1

2

(
μ y′(x′′0)

) 2k+1
k+2

= (2M)−
1
k
(
μ y′(x′′0)

)2
.
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So,

∣
∣y′(x1)

∣
∣>

√
y′(x′′0)

2 +(2M)−
1
k
(
μ y′(x′′0)

)2

=
∣
∣y′(x′′0)

∣
∣
√

1+(2M)−
1
k μ2 ≥

∣
∣y′(x0)

∣
∣
√

1+(2M)−
1
k μ2.

�	

2.2.2 Proof of Theorem 4

Proof. The three lemmas proved imply that if a solution y(x) to (1) satisfies at some
point x0 the inequalities

y(x0)≥ 0, y′(x0)> 0, y′′(x0)≥ 0,

then there exists a point x1 such that

x1− x0 ≤
(
μ ′ y′(x0)

)− k−1
k+2 ,

y(x1) = 0, y′(x1)<−Qy′(x0), y′′(x1)< 0,

where μ ′ > 0 and Q > 1 are constants depending only on k, m, and M.
At the point x1 we obtain the initial situation mirrored relative to the axis Ox. So

we can apply the same lemmas. Repeating the same procedure we obtain a sequence
of segments such that the solution keeps the same sign inside each of them. The
absolute value of the first derivative at the right boundary of the next segment is at
least Q > 1 times greater than for the previous one. Hence the length Lj of the jth
segment satisfies the inequality

Lj ≤
(
μ ′ y′(x0)

)− k−1
k+2 ,

and the maximum y∗j of |y(x)| on it satisfies the inequality

y∗j ≥
(
μ y′(x0)

) 3
k+2 Q

3
k+2 .

Thus, y∗j →+∞ as j→+∞ and

∞

∑
j=0

Lj ≤
(μ ′ y′(x0))

− k−1
k+2

1−Q−
k−1
k+2

<+∞. (12)

So, an estimate is obtained for the distance to the vertical asymptote depending
on the value of the derivative at the point with nonnegative values of y(x), y′(x),
and y′′(x).
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Now let y(x) be a solution to (1) with a resonance asymptote at the point x∗

and ε > 0. Consider a point x0 < x∗ with positive values of y(x), y′(x), and y′′(x)
and with y′(x0) sufficiently great to provide the estimate (12) be less than ε. These
properties remain true under sufficiently small changes of the three values. Hence
the resonance asymptote is not farther than at the point x0 + ε < x∗+ ε.

On the other hand, general properties of differential equations imply that if the
above changes are sufficiently small, then the solution can be extended up to the
point x∗ − ε. So, the resonance asymptote cannot be closer than at the last point.

Continuity of the resonance asymptote position is proved. �	

2.2.3 Proof of Theorem 5

Proof. Put

Δ = {(u,v) ∈ [−1,1]× [−1,1] : u < v} .

Consider the map Γ : R4 → Δ taking each quartet (x0, y0, y1, y2) ∈ R
4 to the pair

(tanhx∗, tanhx∗) ∈ Δ , where x∗ and x∗ are the left and right boundaries (may be
infinite) of the domain for the inextensible solution to (1) with initial data

y(x0) = y0, y′(x0) = y1, y′′(x0) = y2.

According to Theorem 4 the map Γ is continuous. We need to prove the inclusion
Γ (R4)⊃ Δ \ ∂Δ .

Suppose (u0,v0) ∈ Δ \ ∂Δ , i. e., −1 < u0 = tanhx∗ < v0 = tanhx∗ < 1. Now we
construct a loop L in R

4 such that its image Γ (L) ⊂ Δ surrounds the point (u0,v0).
The loop is composed of seven arcs:

L = L1∪L2∪L3∪L4∪L5∪L6∪L7.

First take a point (x1, 0, y′1, 0) ∈ R
4 with x1 =

x∗+ x∗

2
and sufficiently great y′1 > 0

providing the closure of the domain for the related solution y1(x) to be inside the
interval (x∗, x∗). Notice that y1(x)→−∞ near the left boundary of the domain for
y1(x) and the point (u1,v1) = Γ (x1, 0, y′1, 0) is located to the right of and below the
point (u0,v0), i. e., u1 > u0, v1 < v0.

Take sufficiently great y′′2 > 0, to provide the solution y2(x) with initial data
(x1, 0, y′1, y′′2) to tend to +∞ near the left boundary. Then there exists y′′3 ∈ [0,y′′2 ]
such that the solution y3(x) with initial data (x1, 0, y′1, y′′3) is oscillatory near both
boundaries.

The point Γ (x1, 0, y′1, y′′3) = (−1,v3) is located to the left of and below the point
(u0,v0), i. e., −1 < u0, v3 < v0.
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Define the first arc as

L1 =
{
(x1, 0, y′1, t y′′3) : 0≤ t ≤ 1

}

with the image Γ (L1) joining the points (u1,v1) and (−1,v3) strictly below the point
(u0,v0) due to the choice of y′1.

The second arc is defined as

L2 =
{
(xt , y3(xt), y′3(xt), y′′3(xt)) : 1≤ t ≤ 2

}
,

xt = x1 +(t− 1)(x2− x1) for 1≤ t ≤ 2,

x2 = x∗ − 1.

The image Γ (L2) coincides with the point (−1,v3) since L2 consists of initial data
at various points of the same oscillatory solution y3(x).

The third arc is defined as

L3 =
{
(x2, τt y3(x2), τt y′3(x2), τt y′′3(x2)) : 2≤ t ≤ 3

}
,

τt = 3− t for 2≤ t ≤ 3.

Its image Γ (L3) joins the point (−1,v3) with the point (−1,1) corresponding to the
trivial solution and passes strictly to the left of the point (u0,v0) due to the choice
of x2 < x∗.

Now put x3 = x∗+ 1 and define the next arc

L4 = {(x2 +(t− 3)(x3− x2), 0, 0, 0) : 3≤ t ≤ 4} ,

with the image Γ (L4) coinciding with the point (−1,1) since L4 consists of initial
data at various points of the same trivial solution.

Further, choose y4 < 0 and y′′4 < 0 such that the solution y4(x) with initial data
(x1, y4, y′1, y′′4) is a Kneser one. Due to the choice of y′1, the left boundary of its
domain is to the right of the point x∗.

Define the fifth arc as

L5 =
{
(x3, τt y4(x3), τt y′4(x3), τt y′′4(x3)) : 4≤ t ≤ 5

}
,

τt = t− 4 for 4≤ t ≤ 5.

Its image Γ (L4) joins the points (−1,1) and (u4,1), passing strictly above the point
(u0,v0) due to the choice x4 > x∗.

The sixth arc is define as

L6 =
{
(xt , y4(xt), y′4(xt), y′′4(xt)) : 5≤ t ≤ 6

}
,

xt = x3 +(t− 5)(x1− x3) for 5≤ t ≤ 6.

Since the arc L6 consists of initial data at various points for the same Kneser solution
y4(x), its image Γ (L6) coincides with the point(u4,1) located above and to the right
of the point (u0,v0), i. e., u4 > u0, 1 > v0.
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Finally, define the seventh arc as

L7 =
{
(x1, (7− t)y4, y′1, (7− t)y′′4) : 6≤ t ≤ 7

}
.

Its image Γ (L7) joins the points (u4,1) and (u1,v1) passing strictly to the right
of the point (u0,v0) due to the choice of y1.

The loop constracted is contractible in the space R
4 and is mapped by Γ to

another loop, which surrounds the point (u0, v0) and is contractible in the space
Γ (R4). This could not be possible if the point (u0, v0) did not belong to the image
Γ (R4). Thus, some point (x0, y0, y′0, y′′0) is mapped by Γ to the point (u0, v0), and
this concludes the proof of the theorem. �	

2.2.4 Proof of Corollaries and Theorem 6

Proof. The two corollaries are proved by limit considerations. A sequence of
solutions with two asymptotes is constructed, the first coinciding with the given
one and the second tending to the infinity needed. The sequence of the related initial
data at some point is bounded. The limit of any of its subsequence provides the
initial data of the solution requested. �	

Since the zero solution is defined on the whole axis (−∞,+∞), all above results
may be combined as Theorem 6.
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A Second-Order Difference Scheme
for a Singularly Perturbed
Reaction-Diffusion Problem

Basem S. Attili

Abstract We consider a singularly perturbed one-dimensional reaction-diffusion
three-point boundary value problem. To approximate the solution numerically,
we employ an exponentially fitted finite uniform difference scheme defined on a
piecewise uniform Shishkin mesh which is second order and uniformly convergent
independent of the perturbation parameter. We will present some numerical exam-
ples to show the efficiency of the proposed method.

Keywords Reaction-diffusion • Three-point BVPs • Finite difference • Singu-
larly perturbed • Exponentially fitted scheme

1 Introduction

The problem under consideration is a singularly perturbed semilinear reaction-
diffusion boundary value problem of the form

ε2y′′+ ε f (x)y′(x) = g(x,y), 0 < x < l, (1)

εy′(0) =Ψ(y(0)), y(l) = Φ(y(l1)), 0 < l1 < l, (2)

where 0 < ε $ 1, f (x) ≥ 0, g(x,y), Ψ(y), and Φ(y) are sufficiently smooth
functions on their respective domains. Also, 0 < k1 ≤ ∂g

∂y ≤ k2 < ∞, dΨ
dy ≥ k3 > 0,

∣∣
∣ dΦ

dy

∣∣
∣≤ κ < 1. This problem usually has boundary layers at the boundaries.

Singularly perturbed boundary value problems often arise in applied sciences
and engineering; for example, see Nayfeh [9]. Among the examples are reaction-
diffusion equations, control theory, and quantum mechanics (Shao [14] and Natesan
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[7]). A well-known fact is that the solution of such problems displays sharp
boundary or interior layers when the singular perturbation parameter ε is very small.
Numerically, the presence of the perturbation parameter leads to difficulties when
classical numerical techniques are used to solve such problems and convergence will
not be uniform. This is due to the presence of boundary layers in these problems;
see for example O’Malley [11]. Even in the case when only the approximate
solution is required, finite difference schemes and finite element methods produced
unsatisfactory results; see Samarski [13]. It was shown in [15] that the results of
using classical methods are also unsatisfactory even when a very fine grid is used.
This suggests having numerical methods where the error in the approximate solution
tends to zero as h−→ 0(N −→∞) independently of the parameter ε; that is, uniform
convergence is desired; see Attili [1, 2] and Kadalbajoo and Reddy [6]. Hence the
primary objective in singular perturbation analysis of such problems is to develop
asymptotic approximations to the true solution that are uniformly valid with respect
to the perturbation parameter.

Fitted schemes that allow the use of the meshes with an arbitrary distribution
of nodes can be found in Doolan et al. [5]. Special fitted schemes were used,
and some kind of regularization of the singularity was suggested by others before
applying special schemes of boundary value solvers; see Berger et al. [3], Caker
and Amiraliyev [4] and Natesan et al. [8]. Three-point boundary value problem
for singularly perturbed semilinear differential equations was considered by Vrabel
[16]. More on the singularly perturbed problems can be found in a book by
O’Malley [10] and Roos et al. [12].

The organization of this paper is as follows. We give some necessary bounds on
solutions in the next section. The numerical scheme will be derived and presented in
Sect. 3. Finally in Sect. 4 we give some numerical details and examples to illustrate
the method.

2 Bounds on the Solution

Rewritting (1)–(2) with f (x) = 0 and replacing ε2 by ε , in the form

εy′′+my(x) = g(x,y), m < 0, 0 < x < l,y′(0) = 0, y(l)− y(l1) = 0, 0 < l1 < l,
(3)

we will show that the solution of the resulting nonlinear boundary value problem has
an asymptotic behavior. The analysis is based on both the lower and upper solutions
of the problem. The following lemma gives such uniform bounds that help in the
analysis of the difference scheme which will be developed later.

Lemma 1. Let f (x) and g(x,y) be sufficiently smooth. Then the solution y(x) to
problem (1)–(2) satisfies the inequality

‖y(x)‖∞ < M0 (4)
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with ‖y(x)‖∞ = max0≤x≤l |y(x)| where

M0 =
1

1−κ

{
|Φ (0)|+κ

(
1
k3

∣
∣
∣∣Ψ (0)+

1
k1
‖g(x,0)‖

∣
∣
∣∣

)}

and

∣
∣y′(x)

∣
∣≤M

{
1+

1
ε

(
e
−γ1x

ε + e
−γ2(L−x)

ε

)}
, 0≤ x≤ l

with

γ1 =
√

f 2(0)+ 4k1 + f (0) and γ2 =
√

f 2(l)+ 4k1 + f (l). (5)

Proof. Rewrite problem (1)–(2) in the form

Ly = ε2y′′+ ε f (x)y′(x)− r(x)y(x) = h(x), 0 < x < l, (6)

L0y =−εy′(0)+ cy(0) = α, y(l)− ay(l1) = β , 0 < l1 < l, (7)

where

h(x) = g(x,0),r(x) =
∂g
∂y

(x,cy), 0 < c < 1

c =
∂Ψ
∂y

(η1,y(0)), 0 < η1 < 1, a =
∂Φ
∂y

(η2,y(0)), 0 < η2 < 1.

Using the maximum principle, with L and L0 as defined in (6) and (7) and v(x) ∈
C2[0, l], if L0v≥ 0, Lv(l)≥ 0, and Lv≤ 0, then v(x)≥ 0 for all x ∈ [0, l] and

|v(x)| ≤ 1
κ
|α|+ |v(l)|+ 1

k1
‖h(x)‖∞ , x ∈ [0, l] . (8)

Applying this result on problem (6)–(7), we have

|y(x)| ≤ 1
κ
|α|+ |y(l)|+ 1

k1
‖h(x)‖∞

and

|y(l1)| ≤
1
κ
|α|+ |y(l)|+ 1

k1
‖h(x)‖∞ , x ∈ [0, l] . (9)

From the boundary conditions, we have

|y(l)| ≤ |β |+κ |y(l1)| . (10)
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Combining (9) and (10), we obtain

|y(l)| ≤ 1
1−κ

{
|β |+κ

(
1
κ
|α|+ |y(l)|+ 1

k1
‖h(x)‖∞

)}
. (11)

As a result and from (7) and (8), we get (4) the required result. �	

3 Numerical Descretization

We start by considering ΔN to be any mesh on [0, l] which may be nonuniform
with ΔN = {x0 = 0 < x1 < x2 < · · ·< xN−1 < xN = l} with step size hi = xi− xi−1,
i = 1,2, . . . , N and ‖ΔN‖∞ = max0≤i≤N |hi|.

The difference scheme proposed is derived from the identity

1

αiĥi

∫ l

0
(Ly)φi (x)dx = 0, i = 1,2, . . . , N− 1, (12)

where φi (x) are some basis and ĥi =
hi + hi+1

2
. The basis functions are given as

solutions to the following differential equations, with fi = f (xi):
1.

εφ ′′ − fiφ ′ = 0; xi−1 < x < xi, φ (xi−1) = 0, φ (xi) = 1 (13)

which when solved leads to

φi1 (x) =
e

fi(x−xi−1)
ε − 1

e
fihi
ε − 1

; fi �= 0 and φi1 (x) =
x− xi−1

hi
; fi = 0. (14)

2.

εφ ′′ − fiφ ′ = 0; xi < x < xi+1 φ (xi) = 1, φ (xi+1) = 0 (15)

which when solved leads to

φi2 (x) =
1− e

− fi(xi+1−x)
ε

1− e
− fihi+1

ε

; fi �= 0 and
xi+1− x

hi+1
; fi = 0. (16)

Hence the basis we are going to use are

φi (x) =

⎧
⎨

⎩

φi1 (x) ; xi−1 < x < xi

φi2 (x) xi < x < xi+1

0 Otherwise
(17)

for i = 1,2, . . . , N− 1.
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The coefficients αi are given as αi = αi1 +αi2 where

αi1 =
1

ĥi

∫ xi

xi−1

φi1 (x)dx =

⎧
⎨

⎩

1
ĥi

(
ε
fi
+ hi

1−e
fihi
ε

)
; fi �= 0

1
ĥi

hi
2 fi = 0

(18)

αi2 =
1

ĥi

∫ xi+1

xi

φi2 (x)dx =

⎧
⎪⎨

⎪⎩

1
ĥi

(
hi+1

1−e
− fihi+1

ε
− ε

fi

)
; fi �= 0

1
ĥi

hi+1
2 fi = 0

. (19)

Then substituting in (12), using integration by parts, and rearranging, we obtain for
i = 1,2, . . .N− 1:

−ε2

αiĥi

∫ xi+1

xi−1

φ ′i (x)y′(x)dx+
ε fi

αiĥi

∫ xi+1

xi−1

φi (x)y′(x)dx− g(xi,yi)+ τi = 0. (20)

Notice that the first two parts of (20), the integrals, need evaluation, while the last
part τi is the truncation error and can be neglected in the proposed difference scheme
as usual. This truncation error is given as

τi =
ε

αiĥi

∫ xi+1

xi−1

[ fi− f (xi)]φi (x)y′(x)dx

− 1

αiĥi

∫ xi+1

xi−1

dx.φi (x)
∫ xi+1

xi−1

d
dx

(g(σ ,y(σ)))Ri (x,σ)dx, (21)

where Ri (x,σ) = T (x−σ)−T (xi−σ) and T (x−σ) =

{
1; x≥ σ
0; x < σ

.

The first two integrals simplify to

−ε2

αiĥi

∫ xi+1

xi−1

φ ′i (x)y′(x)dx+
ε fi

αiĥi

xi+1

xi−1

φi (x)y′(x)dx

= ε2

{
1
αi

[

1+
ĥi fi

2ε
(α2i−α1i)

]}

yxx,i + ε fiyxa,i, (22)

where α1i and α2i are as given in (18) and (19), respectively,

yxx,i =
1

ĥi

[
yi+1− yi

hi+1
− yi+1− yi

hi

]
and yxa,i =

1
2

[
yi+1− yi

hi+1
+

yi+1− yi

hi

]
. (23)

Having the formulas for αi, α1i, and α2i, then the coefficient of yxx,i in (22) can be
written as
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ci =
1
αi

[

1+
ĥi fi

2ε
(α2i−α1i)

]

=

⎧
⎪⎪⎨

⎪⎪⎩

ĥi fi
2ε

⎡

⎣
hi+1

(
e

fihi
ε −1

)
+hi

(
1−e

− fihi
ε

)

hi+1

(
e

fih/
ε −1

)
−hi

(
1−e

− fihi
ε

)

⎤

⎦ ; fi �= 0

1; fi = 0

.

(24)

Combining (22)–(24), we obtain for i = 1, 2, . . .N− 1

ε2ciyxx,i ++ε fiyxa,i− g(xi,yi)+ τi = 0. (25)

It remains to consider the boundary conditions. For the first part, consider

∫ x1

0
(Lu)φ0dx = 0 (26)

with φ0, as before, the solution of the second-order differential equation:

εφ ′′0 − f0φ ′0 = 0, x0 < x < x1 φ0(x0) = 1, φ0(x1) = 0. (27)

That is, for x0 < x < x1,

φ0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−e
− fi(x1−x)

ε

1−e
− fih1ε

; fi �= 0

x1−x
ĥ1

; fi = 0

0; Otherwise

. (28)

Again substituting into the differential equation and simplifying as we have done in
(22), we obtain

−εc0,0
y0− y1

h1
+Ψ (y0)+ c0,1g(x0,y0)− τ0 = 0, (29)

where

c0,0 =

⎧
⎨

⎩

f0h1

ε
(

1−e
− fih1

ε
) ; f0 �= 0

1; f0 = 0
, c0,1 =

⎧
⎨

⎩

f0h1

ε
(

1−e
− fih1

ε
) − 1

f0
; f0 �= 0

h1
2ε ; f0 = 0

(30)

and the truncation error

τ0 =

∫ x1

x0

[ f (x0)− f0]φ0 (x)y′(x)dx

− 1
ε

∫ xi+1

xi−1

dx.φ0 (x)
x1
x0

d
dx

(g(σ ,y(σ)))R0 (x,σ)dx, σε (x0, x1) . (31)
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For the second part of the boundary conditions, we have xN0 the closest to l1,
yN −Φ

(
yN0

)
+ τ1 = 0 where the truncation error τ1 =

(
y(l1)− y

(
xN0

))
φ ′ (η) ; η

between y(xN) and y(l1) .
Combining (25)–(27) and neglecting the truncation errors, we arrive at the

difference scheme given as

ε2ciyxx,i + ε fiyxa,i− g(xi,yi) = 0

−εc0,0
y0− y1

h1
+Ψ (y0)+ c0,1g(x0,y0) = 0

yN −Φ
(
yN0

)
= 0, i = 1,2, . . . ,N− 1, (32)

where ci, c0,0, and c0,1 are as given in (24) and (30).

4 Numerical Details and Examples

To implement the scheme given in (32), we start by subdividing the interval [0, l]
into three regions, namely, [0, a1] , [a1, l− a2], and [a2, l] . For the mesh choice and
in order to have an ε−uniform convergent scheme, we will use the Shishkin mesh.
Choose N1 = 4N a positive integer and divide the intervals [0, a1] and [a2, l] into

N =
N1

4
equal parts and the interval [a1, l− a2] into 2N equal parts with a1 and a2

given, respectively, by

a1 = min

{
l
4
,

ε lnN
γ1

}
and a2 = min

{
l
4
,

ε lnN
γ2

}
(33)

with γ1 and γ2 as given in Lemma 1 by (10)
For numerical testing, we used the following examples:

Example 1. We solved the example

ε2y′′+ ε (1+ cosπx)y′ −
(

1+ sin
(πx

2

))
y

= 2(επ)2 cos2πx+ επ (1+ cosπx)sin2πx−
(

1+ sin
(πx

2

))
sin2 2πx

y(0) = 0, y(1)− 0.5y(0.5) = 1. (34)

The numerical scheme converges and the results obtained are shown in Figs. 1 and 2.
Figure 1 gives the solution on the interval [0,1] and Fig. 2 gives the solution on
[0.9,1.0] to show the boundary layer area.
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Fig. 1 Example 1, the solution on [0,1]

0.15

0.10

0.94 0.96 0.98 1.00

0.05

0.92

Fig. 2 Example 1 where the boundary layer is enlarged

Example 2.

ε2y′′+ ε (1+ x)y′ − y− arctan(y+ x) = 0

subject to

−εy′(0)+ 2y(0)+ siny(0) = 0, y(1)− cos
πy(0.5)

4
= 1. (35)

The results obtained are given in Fig. 3 where the boundary layer is clear and
close to 1.
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Fig. 3 Example 2 showing the boundary layer
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Parametric Dependence of Boundary
Trace Inequalities

Giles Auchmuty

Abstract Some results about the dependence of the optimal constants in some
trace inequalities for H1-functions on a region Ω are described. These constants
are shown to be the primary Steklov eigenvalue of μI−Δ on the region. They are
related to the norm of an associated trace operator. In particular the eigenvalue is
shown to be a locally Lipschitz continuous function of μ , and its inverse is a convex
function of μ .

Keywords Robin eigenproblems • Steklov eigenproblems • Bases of Sobolev
spaces • Comparisons of eigenvalues • Spectral representations of weak solutions

1 Introduction

This paper will derive some qualitative properties of the best constant δ1(μ) for the
H1-trace inequality:

A(u,μ) :=
∫

Ω

[
|∇u|2 + μ |u|2

]
dx ≥ δ1(μ)

∫

∂Ω
ρ u2 dσ for all u ∈H1(Ω).

(1)

Here Ω is a bounded region in R
N with a boundary ∂Ω obeying the conditions

described below, ρ is a continuous probability density function on ∂Ω, and μ ≥ 0.
Our particular aim is to prove regularity and convexity/concavity properties of δ1(μ)
as a function of μ .
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Let Lp(Ω),H1(Ω) be the usual real Lebesgue and Sobolev spaces of functions
on Ω. The norm on Lp(Ω) is denoted ‖.‖p. H1(Ω) is a real Hilbert space under the

standard H1-inner product:

[u,v]1 :=
∫

Ω
[u(x).v(x) + ∇u(x) ·∇v(x)] dx. (2)

All derivatives here will be weak derivatives, ∇u is the gradient of the function u,
and the associated norm is denoted ‖u‖1,2.

We will treat these as problems posed in the space H1(Ω) and require some
regularity of the boundary ∂Ω. Namely, the trace results of Auchmuty [2] should
hold. These can be summarized as follows:

(B1): Ω is a bounded region in R
N and its boundary ∂Ω is the union of a finite

number of disjoint closed Lipschitz surfaces, each surface having finite surface
area.

The region Ω is said to satisfy Rellich–Kondrachov (RK) theorem provided the
imbedding of H1(Ω) into Lp(Ω) is compact for 1 ≤ p < pS for pS = 2N/(N− 2)
when N ≥ 3 or pS = ∞ when N = 2.

The region Ω is said to satisfy the L2-compact trace theorem provided the trace
map of H1(Ω) into L2(∂Ω,dσ) is compact. Our standard assumption will be

(B2): Ω is a region such that (B1), the RK theorem, and the L2-compact trace
theorem hold.

The notation of Evans [6] should be used for terms not defined here except that
a function is said to be positive if it is ≥ 0 everywhere; strictly positive it is strictly
greater than zero.

The assumption on the boundary weight function ρ will be

(B3): ρ is a continuous probability density function on the boundary ∂Ω.

That is, ρ is a continuous positive function on ∂Ω with
∫

∂Ω ρ dσ = 1. Let γ be
the usual trace map of H1(Ω) into L2(∂Ω,ρdσ). When (1) holds and is sharp, one
observes that the operator norm ‖γ‖ = δ1(μ)−1.

2 Steklov Eigenproblems

A Steklov eigenproblem is one where the eigenparameter appears solely in the
boundary condition. The associated Steklov eigenfunctions provide fundamental
information about the solution of Dirichlet-type boundary value problems for
associated linear elliptic operators on the region. They also may be used to describe
boundary trace operators and the Dirichlet to Neumann map of the problem. See
Auchmuty [1–3] for descriptions of such results.
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Here our interest is in the H1-Steklov eigenproblem of finding those δ such that
there are nontrivial solutions s ∈H1(Ω) satisfying

a(s,v; μ) :=
∫

Ω
[ ∇s ·∇v + μ sv ] dx = δ

∫

∂Ω
ρ sv dσ for all v ∈ H1(Ω).

(3)
Here μ ≥ 0; the case μ = 0 is called the harmonic Steklov eigenproblem and

has been extensively studied. See Bandle [4], Auchmuty [2], and their references
for more information. For μ > 0, the bilinear form a(., .; μ) is an equivalent inner
product on H1(Ω) to the usual one. The nontrivial solutions s of (3) are called
Steklov eigenfunctions of the linear operator Lμ := μI − Δ associated with the
Steklov eigenvalue δ .

Note that (3) is the weak form of the system:

Lμ s = μ s − Δs = 0 on Ω and Dνs = δ ρ s on ∂Ω. (4)

Here Dν s := ∇s·ν is the usual normal component of the gradient of s in the exterior
normal direction.

Eigenproblems like these were studied in [1] where it was shown that they have
a discrete spectrum with infinitely many positive eigenvalues δ j(μ) that diverge to
∞ as j increases. Each eigenvalue has finite multiplicity.

The smallest or primary, eigenvalue δ1(μ) may be characterized variationally in
a number of different ways. First it is related to the maximal value of a quadratic
boundary functional on a closed convex subset of H1(Ω). Define Cμ to be the subset
of H1(Ω) of all functions satisfying A(u,μ) ≤ 1 and consider the variational
problem of maximizing the functional b : H1(Ω)→ [0,∞) defined by

b(u) :=
∫

∂Ω
ρ u2 dσ

and evaluating

β (μ) := sup
u∈Cμ

b(u).

Results about this problem may be summarized as follows.

Theorem 2.1. Assume (B1)–(B3) hold and μ > 0. Then β (μ) is finite, and strictly
positive and there are functions ±s1(μ) in Cμ such that s1(μ) maximizes b on Cμ .
Inequality (1) holds with δ1(μ) := β (μ)−1.

Proof. First note that when μ > 0,A(.,μ) defined by (1) is an equivalent norm on
H1(Ω) so Cμ is a closed bounded convex set. The functional b is weakly continuous
as the trace map is compact. Hence the supremum β (μ) is finite, strictly positive,
and attained on Cμ . By homogeneity, one sees that

b(u) ≤ β (μ) A(u,μ) for all u ∈ H1(Ω).

The definition of δ1(μ) now yields (1). �	
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In particular take u≡ 1 in (1) to see that δ1(μ) ≤ μ |Ω|.

Theorem 2.2. Assume (B1)–(B3) hold and μ > 0. If s1(μ) maximizes b on Cμ ,
then s1(μ) is a Steklov eigenfunction of Lμ corresponding to the Steklov eigenvalue
δ1(μ).

Proof. This follows from Theorem 3.1 in [3] applied to this problem. In particular
Sect. 8 of that paper proves many further results for such Steklov eigenproblems.

�	

When v≡ 1 is substituted here, one sees that

μ
∫

Ω
s1(μ)dx = δ1(μ)

∫

∂Ω
ρ s1(μ)dσ (5)

which provides a useful formula for δ1(μ).
This characterization of the maximizer as a weak solution of (4) implies that each

s1(μ) is actually C∞ on Ω. It is continuous on Ω from Corollary 4.2 of Daners [5].
So Dν s1(μ) is continuous on the boundary ∂Ω when (B3) holds.

Given u ∈ H1(Ω), define u+(x) = max(u(x),0) and u−(x) = −min(u(x),0).
Then u+,u− are in H1(Ω), and their derivatives are given pointwise by well-known
formulae. The following result helps in evaluating the primary Steklov eigenvalue
of Lμ .

Theorem 2.3. Assume (B1)–(B3) hold and s1(μ) is a Steklov eigenfunction of Lμ
corresponding to the primary Steklov eigenvalue δ1(μ). Then |s1(μ)| is also a
Steklov eigenfunction corresponding to δ1(μ). If s1(μ) changes sign on Ω, then
both s1+(μ),s1−(μ) are Steklov eigenfunctions corresponding to δ1(μ).

Proof. When u∈H1(Ω) then |u| ∈H1(Ω) andA(|u|,μ) = A(u,μ), b(|u|) = b(u).
Thus, if s1(μ) maximizes b on Cμ , so does |s1(μ)|.

Suppose that s1 changes sign so that both s1+(μ),s1−(μ) are nonzero functions
in H1(Ω). Then using the essential disjointness of their supports, one sees that

A(s1,μ) = A(s1+(μ),μ)+A(s1−(μ),μ) ≥ δ1(μ) [b(s1+(μ))+ b(s1−(μ))]

from the fact that (1) holds. The first and last terms here are both equal to
δ1(μ)b(s1), so equality must hold throughout. Thus,

A(s1+(μ),μ) = δ1(μ)b(s1+(μ)) and A(s1−(μ),μ) = δ1(μ)b(s1−(μ)).

Hence both s1+(μ),s1−(μ) are eigenfunctions of (3) corresponding to δ1(μ). �	

It would be interesting to know whether there are Steklov eigenfunctions
corresponding to the eigenvalue δ1(μ) with μ > 0 that change sign. In this case
the primary eigenvalue will not be a simple eigenvalue.
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3 Unconstrained Variational Principles for δ1(μ)

Since the left-hand side of the inequality (1) is an increasing function of μ , it is
obvious that the optimal constant δ1(μ) will be an increasing positive function when
μ ≥ 0. Some better and different results may be proved by using an unconstrained
variational characterization of the Steklov eigenvalues and eigenfunctions.

Define the functionalF : H1(Ω)× [0,∞)→R by

F(u,μ) :=
1
2

∫

Ω

[
|∇u|2 + μ |u|2

]
dx −

[∫

∂Ω
ρ u2 dσ

]1/2

. (6)

Consider the problem of minimizing F(.,μ) on H1(Ω) and finding

α(μ) := inf
u∈H1(Ω)

F(u,μ).

The essential results about this unconstrained variational principle may be
summarized as follows.

Theorem 3.1. Assume (B1)–(B3) and μ > 0. Then α(μ) is finite and there are
minimizers ±û(μ) of F(.,μ) on H1(Ω). They satisfy the equation

∫

Ω
[ ∇u ·∇v + μ uv ] dx = δ

∫

∂Ω
ρ uv dσ for all v ∈ H1(Ω) (7)

with δ = b(û(μ))−1/2. Thus û(μ) = [δ1(μ)]−1/2 s1 where s1 is a maximizer of b on
Cμ and the minimal value α(μ) = − 1

2 β (μ).

Proof. The functions A(.,μ) and b are weakly l.s.c and weakly continuous on
H1(Ω), respectively, so F(.,μ) is weakly l.s.c. There are constants c0,c1, strictly
positive, such that

F(u,μ) ≥ c0‖u‖2
1,2 − c1‖u‖1,2 for all u ∈ H1(Ω)

with c0 =min(1,μ) and c1 depending on ‖ρ‖∞. Thus,F(.,μ) is coercive and attains
a finite infimum on H1(Ω).

The first variation of F(.,μ) at u is

δF(u,v; μ) = a(u,v; μ) − b(u)−1/2
∫

∂Ω
ρ uv dσ .

At a minimizer û(μ), this is zero for all v ∈H1(Ω) so (7) holds with δ as indicated.
Put v = û(μ) here then A(û(μ),μ) = b(û(μ))1/2 = δ−1. Thus, the critical
values of this functional are −1/[2δ (μ)]. This value is minimized at the primary
Steklov eigenvalue and then û(μ) = cs1(μ) with c2δ1(μ) = 1. The other claims of
the theorem now follow. �	
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The proof of this result shows that the nonzero critical points ofF(.,μ) on H1(Ω)
are Steklov eigenfunctions of the operator Lμ . Since the minimizer of F(.,μ) on
H1(Ω) corresponds to a Steklov eigenfunction s1 of Lμ for which the corresponding
Steklov eigenvalue is the least, we have the following properties of α(μ) and δ1(μ).

Theorem 3.2. Assume (B1)–(B3) and μ > 0. Then:

(i) α(μ) is a strictly negative and strictly increasing, concave function of μ .
(ii) β (μ) is strictly positive, strictly decreasing, and convex function on (0,∞).

(iii) δ1(μ) is a strictly positive, strictly increasing, and sublinear function of μ
on (0,∞).

α(μ), β (μ), and δ1(μ) are locally Lipschitz continuous functions on (0,∞).

Proof. The functional F(u,μ) is an affine function of μ for each u so α(μ) is a
concave functional on (0,∞). Since δ1(μ) > 0 for all μ > 0, the last part of the
preceding theorem implies that α(μ) is strictly negative. It is strictly increasing as
each F(u, .) with u nonzero is strictly increasing. Finally α is locally Lipschitz as it
is concave and finite on (0,∞).

From the previous theorem β (μ) = −2α(μ) so the results for β follow from
those for part (i).

The formula δ1(μ) = −1/(2α(μ)) yields the corresponding results for δ1(μ).
The inequality δ1(μ) ≤ μ |Ω| described above shows that δ1 is sublinear. �	

This result suggests that it is likely to be preferable to work with β (μ) rather
than δ1(μ) in many situations since it is a convex function of μ .

It would be of interest to improve these results about the asymptotics of α and
δ1 as μ → ∞. In particular do the asymptotics of these quantities reflect geometric
properties of the region Ω?
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On Properties of Third-Order Functional
Differential Equations

Blanka Baculı́ková and Jozef Džurina

Abstract The objective of this paper is to offer sufficient conditions for all
nonoscillatory solutions of the third-order functional differential equation

[
a(t)

[
x′(t)

]γ
]′′

+ p(t)xβ (τ(t)) = 0

tend to zero. Our results are based on the new comparison theorems. Studied
equation is in a canonical form, i.e.,

∫ ∞ a−1/γ(s)ds = ∞, and we consider both delay
and advanced case of it. The results obtained essentially improve and complement
earlier ones.

Keywords Third-order differential equations • Comparison theorem • Oscilla-
tion • Nonoscillation

1 Introduction

We are concerned with the oscillatory and asymptotic behavior of all solutions of
the third-order functional differential equations:

[
a(t)

[
x′(t)

]γ
]′′

+ p(t)xβ (τ(t)) = 0. (E)

In the sequel, we will assume a, p ∈C([t0,∞)), τ ∈C1([t0,∞)) and

(H1) γ , β are the ratios of two positive odd integers,
(H2) a(t)> 0, p(t)> 0, τ ′(t)> 0, lim

t→∞
τ(t) = ∞.
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Department of Mathematics, Technical University of Košice, Letná 9,
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Throughout the paper, we assume that (E) is in a canonical form, i.e.,

R(t) =
∫ t

t0
a−1/γ(s)ds→ ∞ as t → ∞.

By a solution of (E) we mean a function x(t) ∈ C1[Tx,∞), Tx ≥ t0, which has the
property a(t)(x′(t))γ ∈ C2([Tx,∞)) and satisfies (E) on [Tx,∞). We consider only
those solutions x(t) of (E) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We
assume that (E) possesses such a solution. A solution of (E) is called oscillatory if it
has arbitrarily large zeros on [Tx,∞) and otherwise it is called to be nonoscillatory.
Equation (E) is said to be oscillatory if all its solutions are oscillatory.

Recently, (E) and its particular cases (see enclosed references) have been
intensively studied. Various techniques were established for examination of such
equations. Especially comparison theorems seem to be very effective means by
the reason that they can reduce examination of third-order differential equation
to that of lower-order equations. In the papers [1–4, 7, 9] the authors compared
studied equation with a set of the first-order delay/advanced equation, in the sense
that oscillation of these first-order equations yields desired properties of third-order
equation.

In this paper we shall establish new comparison principles, we compare our
third-order equation with the second-order differential inequality, and this reduction
essentially simplifies investigation of the properties of our equation, forasmuch as
further we deal with the second-order inequality.

Our results complement and extend earlier ones presented in [2–12].

Remark 1. All functional inequalities considered in this chapter are assumed to hold
eventually; that is, they are satisfied for all t large enough.

2 Main Results

We begin with the classification of the possible nonoscillatory solutions of (E).

Lemma 1. Let x(t) be a nonoscillatory solution of (E). Then x(t) satisfies,
eventually, one of the following conditions:

(C1) x(t)x′(t)< 0, x(t)
[
a(t) [x′(t)]γ

]′
> 0, x(t)

[
a(t) [x′(t)]γ

]′′
< 0.

(C2) x(t)x′(t)> 0, x(t)
[
a(t) [x′(t)]γ

]′
> 0, x(t)

[
a(t) [x′(t)]γ

]′′
< 0.

Proof. The proof follows immediately from the canonical form of (E). �	

To simplify formulation of our main results, we recall the following definition:

Definition 1. We say that (E) enjoys property (A) if every nonoscillatory solution
satisfies (C1).
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Property (A) of (E) has been studied by various author; see enclosed references.
We offer new technique for investigation property (A) of (E) based on comparison
theorems.

Remark 2. It is known that condition
∫ ∞

t0
p(s)ds = ∞ (1)

implies property (A) of (E). Consequently, in the sequel, we may assume that the
integral in (1) is convergent.

Now, we offer a comparison result in which we reduce property (A) of (E) to the
absence of certain positive solution of the suitable second-order inequality.

Theorem 1. If for some c ∈ (0,1) the second-order differential inequality

(
1

p1/β (t)

(
z′(t)

)1/β
)′

+ c
τ ′(t)τ1/γ(t)

a1/γ(τ(t))
z1/γ(τ(t)) ≤ 0 (E1)

has not any solution satisfying

z(t)> 0, z′(t)< 0,

(
1

p1/β (t)

(
z′(t)

)1/β
)′

< 0, (P1)

then (E) has property (A).

Proof. Assume the contrary: let x(t) be a nonoscillatory solution of (E), satis-
fying (C2). We may assume that x(t) > 0 for t ≥ t0. Using the monotonicity of[
a(t) [x′(t)]γ

]′
, we see that

a(t)
[
x′(t)

]γ ≥
∫ t

t1

[
a(s)

[
x′(s)

]γ
]′

ds≥
[
a(t)

[
x′(t)

]γ
]′
(t− t1)

≥ cγt
[
a(t)

[
x′(t)

]γ
]′
,

eventually, where c ∈ (0,1) arbitrary. Then evaluating x′(t) and integrating from t1
to t, we are lead to

x(t)≥ c
∫ t

t1

s1/γ

a1/γ(s)

([
a(s)

[
x′(s)

]γ
]′)1/γ

ds. (2)

Setting to (E), we get

[
a(t)

[
x′(t)

]γ
]′′

+ cβ p(t)

[∫ τ(t)

t1

s1/γ

a1/γ(s)

([
a(s)

[
x′(s)

]γ
]′)1/γ

ds

]β

≤ 0.
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Integrating from t to ∞, we see that y(t) =
[
a(t) [x′(t)]γ

]′
satisfies

y(t)≥ cβ
∫ ∞

t
p(s)

[∫ τ(s)

t1

u1/γ

a1/γ(u)
y1/γ(u)du

]β

ds. (3)

Let us denote the right-hand side of (13) by z(t). Then z(t) satisfies (P1), and
moreover,

(
1

p1/β (t)

(
z′(t)

)1/β
)′

+ c
τ ′(t)τ1/γ(t)

a1/γ(τ(t))
y1/γ(τ(t)) = 0.

Consequently, z(t) is a solution of the differential inequality (E1), which contradicts
our assumption. �	

Now we establish, some criteria for elimination of solutions of (E1) satisfying
(P1) to obtain sufficient conditions for property (A) of (E). We present these criteria
in general form and then we adapt them for (E1). We consider the noncanonical
differential inequality:

(
q(t)

(
u′(t)

)α)′
+ b(t)uδ(σ(t))≤ 0, (E2)

where

(H3) α , δ are the ratios of two positive odd integers.
(H4) q(t)> 0, b(t)> 0, σ ′(t)> 0, lim

t→∞
σ(t) = ∞.

Let us denote

ρ(t) =
∫ ∞

t
q−1/α(s)ds.

Theorem 2. Assume that δ > α and σ(t)≥ t. If

∫ ∞

t0
ρδ (σ(s))b(s)ds = ∞, (4)

then (E2) has not any solution satisfying

u(t)> 0, u′(t)< 0,
(

q(t)
(

u′(t)
)α)′

< 0. (5)

Proof. Let u(t) be a positive solution of (E2), such that (5) holds. An integration of
(E2) from t1 to t leads to

−u′(t)≥ 1

q1/α(t)

[∫ t

t1
b(s)uδ (σ(s))ds

]1/α
.
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Integrating again from σ(t) to ∞, we obtain

u(σ(t)) ≥
∫ ∞

σ(t)

1

q1/α(v)

[∫ v

t1
b(s)uδ (σ(s))ds

]1/α
dv

≥
∫ ∞

σ(t)

1

q1/α(v)
dv

[∫ t

t1
b(s)uδ (σ(s))ds

]1/α
.

That is,

uδ (σ(t))≥ ρδ (σ(t))

[∫ t

t1
b(s)uδ (σ(s))ds

]δ/α
.

Let us denote

F(t) =
∫ t

t1
b(s)uδ (σ(s))ds.

Then

uδ (σ(t))

Fδ/α(t)
b(t)≥ ρδ (σ(t))b(t).

Integrating from t2 > t1 to t, we have

∫ t

t2
ρδ (σ(s))b(s)ds ≤ F1−δ/α(t)

1− δ/α
− F1−δ/α(t2)

1− δ/α
≤ F1−δ/α(t2)

δ/α− 1
.

Letting t to ∞, we get a contradiction with (4). This finishes our proof. �	

Now, we are prepared to combine Theorem 1 together with Theorem 2. We set

α = 1/β , δ = 1/γ , σ(t) = τ(t), q(t) = p−1/β (t), and b(t) = c
τ ′(t)τ1/γ(t)

a1/γ(τ(t))
. Then it

is easy to check that ρ(t) = ρ1(t) =
∫ ∞

t
p(s)ds.

Theorem 3. Let β > γ , τ(t)≥ t. If

∫ ∞

t0

(
sρ1(s)
a(s)

)1/γ
ds = ∞, (6)

then (E) has property (A).

Proof. By Theorem 2, the condition

∫ ∞

t0
ρ1/γ

1 (τ(s))
τ ′(s)τ1/γ (s)

a1/γ(τ(s))
ds = ∞,

or simply (6) ensures that (E1) has not any solution satisfying (P1). The assertion
now follows from Theorem 1. �	



260 B. Baculı́ková and J. Džurina

Corollary 1. Assume that (E) enjoys property (A). If, moreover,

∫ ∞

t0

1

a1/γ(v)

(∫ ∞

v

∫ ∞

u
p(s)dsdu

)1/γ
dv = ∞, (7)

then every nonoscillatory solution of (E) tends to zero as t → ∞.

Proof. Since (E) has property (A), every nonoscillatory solution x(t) satisfies (C1).
We assume that x(t) is a positive and it follows from (C1) that there exists lim

t→∞
x(t) =

� ≥ 0. We claim that � = 0. Assume the contrary, i.e., � > 0. Integrating twice (E)
from t to ∞, we obtain

−a(t)
[
x′(t)

]γ ≥ �β
∫ ∞

t

∫ ∞

u
p(s)dsdu.

Extracting x′(t) and integrating once more from t1 to ∞, we get

x(t1)≥ �β/γ
∫ ∞

t1

1

a1/γ(v)

(∫ ∞

v

∫ ∞

u
p(s)dsdu

)1/γ
dv,

which contradicts condition (7). And we conclude that lim
t→∞

x(t) = 0. �	

Example 1. Consider the third-order nonlinear advanced differential equation

(
t
(
x′(t)

)3
)′′

+
a
t2 x5(λ t) = 0, t ≥ 1 (Ex1)

with a > 0 and λ ≥ 1. It is easy to check that both conditions (6) and (7) are
fulfilled, and then Theorem 3 implies that (Ex1) enjoys property (A), and moreover
Corollary 1 guarantees that every nonoscillatory solution of (Ex1) tends to zero as
t → ∞. For a = 30λ 5 one solution is x(t) = 1/t.

The criterion for property (A) presented in Theorem 3 has a very simple form, but
it does not take into account the gap between τ(t) and t. If the difference τ(t)− t is
large enough, we can offer another very simple criterion for deducing property (A).

We start with the following auxiliary result:

Lemma 2. Let τ(t) > t. Assume that x(t) satisfies (C2). Then for any constant k ∈
(0,1), it holds

∣
∣x(τ(t))

∣
∣≥ k

R(τ(t))
R(t)

∣
∣x(t)

∣
∣, (8)

eventually.
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Proof. Assume that x(t)> 0. The monotonicity of w(t) = a(t) [x′(t)]γ implies that

x(τ(t))− x(t) =
∫ τ(t)

t
x′(s)ds =

∫ τ(t)

t
w1/γ (s)a−1/γ(s)ds

≥ w1/γ (t)
∫ τ(t)

t
a−1/γ(s)ds = w1/γ(t)

[
R(τ(t))−R(t)

]
.

That is,

x(τ(t))
x(t)

≥ 1+
w1/γ(t)

x(t)

[
R(τ(t))−R(t)

]
. (9)

On the other hand, since x(t)→ ∞ as t → ∞, then for any k ∈ (0,1) there exists a t1
large enough, such that

kx(t)≤ x(t)− x(t1) =
∫ t

t1
w1/γ(s)a−1/γ(s)ds

≤ w1/γ(t)
∫ t

t1
a−1/γ(s)ds ≤ w1/γ(t)R(t)

or equivalently

w1/γ (t)
x(t)

≥ k
R(t)

. (10)

Using (10) in (9), we get

x(τ(t))
x(t)

≥ 1+
k

R(t)

[
R(τ(t))−R(t)

]
≥ k

R(τ(t))
R(t)

.

This completes the proof. �	

Theorem 4. Let τ(t)> t. If

∫ ∞

t0

Rβ (τ(s))p(s)

Rβ (s)
ds = ∞, (11)

then (E) has property (A).

Proof. Assume the contrary, let x(t) > 0 satisfies (C2). Then x(t) > � > 0. Setting
(8) into (E), we get

[
a(t)

[
x′(t)

]γ
]′′

+ kβ p(t)
Rβ (τ(t))

Rβ (t)
xβ (t)≤ 0.
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An integration from t1 to t yields

[
a(t1)

[
x′(t1)

]γ
]′
≥ (k�)β

∫ t

t1

Rβ (τ(s))p(s)

Rβ (s)
ds.

Letting t → ∞, we are led to a contradiction. �	

Example 2. Consider the third-order nonlinear advanced differential equation
(

t
(
x′(t)

)3
)′′

+
a
t2 x5(t2)= 0, t ≥ 1 (Ex2)

with a > 0. It is easy to check that both conditions (11) and (7) are fulfilled. Thus,
Theorem 4 together with Corollary 1 provides that every nonoscillatory solution of

(Ex2) tends to zero as t → ∞. For a =
(

2
7

)3 ( 20
7

)(
27
7

)
, one such solution is x(t) =

t−2/7.

Now, we turn our attention to the delayed form of (E). Let us denote

p1(t) =
p
(
τ−1(t)

)

τ ′
(
τ−1(t)

) . (12)

We are prepared to modify our previous results to cover also delay differential
equations.

Theorem 5. Let τ(t) < t. If for some c ∈ (0,1) the second-order differential
inequality

(
1

p1/β
1 (t)

(
z′(t)

)1/β
)′

+ c
t1/γ(t)

a1/γ(t)
z1/γ(t)≤ 0 (E3)

has not any solution satisfying

z(t)> 0, z′(t)< 0,

(
1

p1/β
1 (t)

(
z′(t)

)1/β
)′

< 0, (P2)

then (E) has property (A).

Proof. Assume the contrary, let x(t) be a positive solution of (E), satisfying (C2).
An integration of (E) from t to ∞ yields

[
a(s)

[
x′(s)

]γ
]′
≥
∫ ∞

t
p(s)xβ (τ(s))ds =

∫ ∞

τ(t)

p
(
τ−1(s)

)

τ ′
(
τ−1(s)

)xβ (s)ds

≥
∫ ∞

t

p
(
τ−1(s)

)

τ ′
(
τ−1(s)

)xβ (s)ds.



On Properties of Third-Order Functional Differential Equations 263

Using (2), one can see that y(t) =
[
a(t) [x′(t)]γ

]′
satisfies

y(t)≥ cβ
∫ ∞

t
p1(s)

[∫ s

t1

u1/γ

a1/γ(u)
y1/γ(u)du

]β

ds. (13)

Let us denote the right-hand side of (13) by z(t). Then z(t) satisfies (P2), and
moreover,

(
1

p1/β
1 (t)

(
z′(t)

)1/β
)′

+ c
t1/γ

a1/γ(t)
y1/γ(t) = 0.

Therefore, z(t) is a solution of the differential inequality (E2), which contradicts our
assumption. �	

If we put α = 1/β , δ = 1/γ , σ(t) = t, q(t) = p−1/β
1 (t), and b(t) = c

t1/γ

a1/γ(t)
, then

it is easy to verify that ρ(t) = ρ2(t) =
∫ ∞

t
p1(s)ds. Combining Theorem 5 together

with Theorem 2, we immediately have

Theorem 6. Let β > γ , τ(t)< t. If

∫ ∞

t0

(
sρ2(s)
a(s)

)1/γ
ds = ∞, (14)

then (E) has property (A).

Example 3. Consider the third-order nonlinear delay differential equation
(

t
(
x′(t)

)3
)′′

+
a
t2 x5(λ t) = 0, t ≥ 1, (Ex3)

where a > 0 and 0 < λ < 1. Since both conditions (14) and (7) hold, Theorem 6
together with Corollary 1 ensure that every nonoscillatory solution of (Ex3) tends to
zero as t → ∞. For a = 30λ 5 one solution is x(t) = 1/t.

3 Summary

In this paper, we have presented new comparison principles for deducing property
(A) of third-order differential equation from the properties the suitable second-order
delay differential inequality. Imposing additional condition, we have obtained also
criteria for all nonoscillatory solutions of (E) tend to zero. Our results can be applied
to both delay and advanced third-order differential equations. The criteria obtained
are easy verifiable, and each of them has been precedented by suitable illustrative
example.
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Our method essentially simplifies the examination of the third-order equations,
and what is more, it supports backward the research on the second-order de-
lay/advanced differential equations and inequalities.
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On the Structure of Two-Layer Cellular
Neural Networks

Jung-Chao Ban, Chih-Hung Chang, and Song-Sun Lin

Abstract Let Y⊆ {−1,1}Z∞×2 be the mosaic solution space of a two-layer cellular
neural network (TCNN). We decouple Y into two subspaces, say Y (1) and Y (2),
and give a necessary and sufficient condition for the existence of factor maps
between them. In such a case, Y (i) is a sofic shift for i = 1,2. This investigation is
equivalent to study the existence of factor maps between two sofic shifts. Moreover,
we investigate whether Y (1) and Y (2) are topological conjugate, strongly shift
equivalent, shift equivalent, or finitely equivalent via the well-developed theory in
symbolic dynamical systems. This clarifies, in a TCNN, each layer’s structure.

1 Introduction

Two-layer cellular neural networks (TCNNs) are large aggregates of analogue
circuits presenting themselves as arrays of identical cells which are locally coupled.
TCNNs have been widely applied in studying the signal propagation between
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neurons and in image processing, pattern recognition, and information technology
[3–5, 12–14]. A one-dimensional TCNN is realized in the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(1)i

dt
=−x(1)i + ∑

|k|≤d

a(1)k y(1)i+k + ∑
|k|≤d

b(1)k u(1)i+k + z(1),

dx(2)i

dt
=−x(2)i + ∑

|k|≤d

a(2)k y(2)i+k + ∑
|k|≤d

b(2)k u(2)i+k + z(2),

(1)

for some d ∈N, i∈ Z, where u(2)i = y(1)i ,u(1)i = ui,xi(0) = x0
i , and y = f (x) = 1

2 (|x+
1|− |x− 1|) are the output function. For 1 ≤ � ≤ 2, A(�) = (a(�)−d , · · · ,a

(�)
d ) is called

the feedback template, B(�) = (b(�)−d, · · · ,b
(�)
d ) is called the controlling template, and

z(�) is the threshold. The quantity x(�)i denotes the state of a cell Ci in the �th layer.

The stationary solutions x̄ = (x̄(�)i ) of (1) are essential for understanding the system,

and their outputs ȳ(�)i = f (x̄(�)i ) are called output patterns. Among the stationary
solutions, the mosaic solutions are crucial for studying the complexity of (1) [7–10].

A mosaic solution (x̄(�)i ) satisfies |x̄(�)i | > 1 for all i, �, and the output of a mosaic
solution is called a mosaic output pattern. In a TCNN system, the “status” of each
cell is taken as an input for a cell in the next layer except for those cells in the second
layer. The results that can be recorded are the output of the cells in the second layer.
Since the phenomena that can be observed are only the output patterns of the second
layer, the second layer of (1) is called the output layer, while the first layer is called
hidden layer.

Juang and Lin [7] and Ban et al. [2] investigated mosaic solutions systematically
and characterized the complexity of mosaic patterns via topological entropy. In the
present study, a pattern stands for a stationary solution for (1). Since the feedback
and controlling templates are spatially invariant, the global pattern formation is
thus completely determined by the so-called admissible local patterns. Hence,
investigation of admissible local patterns is essential for studying the complexity
of global patterns. The difficulty stems from the fact that the set of admissible
local patterns is constrained by the differential equation (1). Suppose B is a basic
set of admissible local patterns. The predicament is that there exists a subset of
{−1,1}Z(2d+1)×2 that cannot be realized via TCNNs. Such a constraint arises from
the so-called linear separation property. Hsu et al. [6] demonstrated that, for one-
layer CNNs without input, the parameter space can be divided into a finite number
of partitions such that any two sets of parameters in the same partition admit the
same basic set of admissible local patterns. This property remains true for TCNNs
[1,2]. Proposition 2.1 gives a brief introduction to the procedure for determining the
partitions of the parameter space of simplified TCNNs.

Suppose Y is the solution space of a TCNN. For � = 1,2, let Y (�) = {· · ·y(�)−1

y(�)0 y(�)1 · · ·} be the space which consists of patterns in the �th layer of Y. Then Y (2)

is called the output space and Y (1) is called the hidden space. There is a canonical
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projection φ (�) : Y → Y (�) for each �. It is natural to ask whether there exists a
relation between Y (1) and Y (2). The existence of map connecting Y (1) and Y (2) that
commutes with φ (1) and φ (2) means the decoupling of the solution space Y. More
precisely, if there exists π12 :Y (1)→Y (2) such that π12◦φ (1) = φ (2), then π12 enables
the investigation of structures between the output space and hidden space.

Ban et al. [2] demonstrated that the output space Y (2) is a one-dimensional sofic
shift. An analogous argument asserts that the hidden space Y (1) is also a sofic
shift. To study the existence of π12 : Y (1) → Y (2) is equivalent to illustrate the
existence between two sofic shifts. This elucidation gives a systematic strategy for
determining whether there exists a map between Y (1) and Y (2) via well-developed
theory in symbolic dynamical systems. Readers are referred to [11] for more details.

The following section analyzes simplified TCNNs. Some discussion and conclu-
sions are given in Sect. 3.

2 Simplified Two-Layer Cellular Neural Networks

A simplified TCNN is realized as the following:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(1)i

dt
=−x(1)i + a(1)y(1)i + a(1)r y(1)i+1 + z(1),

dx(2)i

dt
=−x(2)i + a(2)y(2)i + a(2)r y(2)i+1 + b(2)u(2)i + b(2)r u(2)i+1 + z(2).

(2)

Suppose y =

(
···y(2)−1y

(2)
0 y

(2)
1 ···

···y(1)−1y
(1)
0 y

(1)
1 ···

)
is a mosaic pattern. For i ∈ Z, y(1)i = 1 if and only if

x(1)i > 1. This derives

a(1) + z(1)− 1 >−a(1)r y(1)i+1. (3)

Similarly, y(1)i =−1 if and only if x(1)i <−1. This implies y(1)i =−1 if and only if

a(1)− z(1)− 1 > a(1)r y(1)i+1. (4)

The same argument asserts

a(2) + z(2)− 1 >−a(2)r y(2)i+1− (b(2)u(2)i + b(2)r u(2)i+1), (5)

and

a(2)− z(2)− 1 > a(2)r y(2)i+1 +(b(2)u(2)i + b(2)r u(2)i+1) (6)
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are the necessary and sufficient condition for y(2)i = −1 and y(2)i = 1, respectively.

Note that the quantity u(2)i in (5) and (6) satisfies |u(2)i | = 1 for each i. Define ξ1 :

{−1,1} → R and ξ2 : {−1,1}Z3×1 → R by ξ1(w) = a(1)r w and ξ2(w1,w2,w3) =

a(2)r w1 + b(2)w2 + b(2)r w3, respectively. Let B(1),B(2) represent the basic sets of
admissible local patterns of the first and second layer of (2). The set of admissible
local patterns B of (2) is then

B =

{
yyr

uur
:

yyr

uur
∈B(2) and uur ∈B(1)

}

.

Since we only consider mosaic patterns, a(1) + z(1)− 1 = −ξ1(y
(1)
r ) and a(1) +

z(1)− 1 = ξ1(y
(1)
r ) partition a(1)− z(1) plane into 9 regions, and a(2) + z(2)− 1 >

−ξ2(y
(2)
r ,u(2),u(2)r ) and a(2)+ z(2)−1 > ξ2(y

(2)
r ,u(2),u(2)r ) partition a(2)− z(2) plane

into 81 regions. The “order” of lines a(1)+ z(1)−1 = (−1)�ξ1(y
(1)
r ), �= 0,1, comes

from the sign of a(1)r . Thus, the parameter space {(a(1),a(1)r ,z(1))} is partitioned

into 2× 9 = 18 regions. Similarly, the parameter space {(a(2),a(2)r ,b(2),b(2)r ,z(2))}
is partitioned into 8×6×2×81= 7,776 regions. Each region associates a basic set
of admissible local patterns. This indicates the following proposition:

Proposition 2.1. Let P8 = {(a(1),a(1)r ,a(2),a(2)r ,b(2),b(2)r ,z(1),z(2))} be the param-
eter space of (2). There exists 139,968 regions in P such that any two sets of
templates that locate in the same region infer the same basic set of admissible local
patterns. Conversely, suppose B ⊆ {−1,1}Z2×2 comes from a simplified TCNN.
Then there exists a partition that admits B as its basic set of admissible local
patterns.

2.1 Ordering Matrix, Transition Matrix, and Graph

Proposition 2.1 demonstrates that each partition of the parameter space associates
with a collection of local patterns that allow for generalization of global patterns.
Hence the basic set of admissible local patterns plays an essential role for investigat-
ing TCNNs. This section studies the structure of admissible local patterns through
defining the ordering for each pattern.

Substitute mosaic patterns −1 and 1 as symbols − and +, respectively. Define
the ordering matrix X = (xpq)1≤p,q≤4 as a 4× 4 matrix consisting of all possible
choice of 2× 2 patterns. Suppose that B is given. The transition matrix T ≡ T (B)
is a 0− 1 matrix defined by T (p,q) = 1 if and only if xpq ∈B. A directed graph
G consists of a pair of two finite sets V and E , where V is the vertex set and E
is the edge set. For an edge e ∈ E , we sometimes denote e by e ≡ (i(e), t(e)) for
specificity. Here i(e), t(e) ∈ V are the initial and the terminal states of e. For each
transition matrix there associates a directed graph GT = (V ,E ). It is well known
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that a graph GT can induce a shift space XGT called a shift of finite type, where XGT

is defined by

XGT = {ξ = (ξ j) j∈Z ∈ V Z : ∃e j ∈ E such that i(e j) = ξ j, t(e j) = ξ j+1∀ j ∈ Z} (7)

According to the definition, each bi-infinite sequence in XGT describes a bi-infinite
walk on GT .

Let Y =

{
(

yi
ui

)

i∈Z
:

yiyi+1

uiui+1
∈B for i ∈ Z

}

be the solution space of (2). For

ease of notation, denote
y1y2

u1u2
by y1y2 % u1u2 and

y %u≡ y
u

=
· · ·y−2y−1y0y1y2 · · ·
· · ·u−2u−1u0u1u2 · · ·

, where y = (yi)i∈Z,u = (ui)i∈Z.

Define φ (1),φ (2) : Y→ {−,+}Z by φ (1)(y %u) = u and φ (2)(y %u) = y. Set Y (�) =
φ (�)(Y) for � = 1,2. Y (1) is called the hidden space, and Y (2) is called the output
space. Obviously the dynamical behavior of the output space Y (2) is influenced
by the hidden space Y (1). For instance, a phenomenon which cannot be seen in
one-layer CNNs is that Y (1) would break the symmetry of the entropy diagram of
Y (2) [2]. This motivates the study of the relation between Y (1) and Y (2).

2.2 Labeled Graph and Symbolic Transition Matrix

Ban et al. [2] show that Y (1),Y (2) are sofic shifts. The difference between a shift of
finite type and a sofic shift is that a shift of finite type comes from a directed graph,
while a sofic shift comes from a so-called labeled graph.

Definition 2.2. Suppose G = (V ,E ) is a directed graph with vertices V and edges
E and A is a finite alphabet. A labeled graph G is a pair (G,L ), and the labeling
L : E →A assigns to each edge e of G a label L (e) ∈A . The underlying graph
of G is G.

Suppose G = (G,L ) is a labeled graph. The shift space XG is called a sofic shift.
Moreover, we say that G is right-resolving if L ((v,w)) �= L ((v,w′)) for v ∈ V and
(v,w),(v,w′) ∈ E .

Assume that GT =(V ,E ) is the graph representation of (2). Let A = {α0,α1,α2,
α3} = {−−,−+,+−,++}. Define L (1),L (2) : E →A by

L (1)(e) = α2τ(i(e))+τ(t(e)), where τ(c) := c mod 2 (8)

L (2)(e) = α2[i(e)/2]+[t(e)/2], where [·] is the Gauss function. (9)
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These two labeling L (1) and L (2) define two labeled graphs G (1) = (GT ,L (1))
and G (2) = (GT ,L (2)), respectively. Ban et al. [2] demonstrated that Y (�) is a sofic
shift and Y (�) = XG (�) for �= 1,2.

It is seen that (L (�))∞ is conjugate to φ (�), where (L (�))∞ : XGT → XG (�) is
defined by (L (�))∞(ξ ) j = L (�)((ξ j,ξ j+1)) for j ∈ Z. The symbolic transition
matrix S(�) of G (�) is defined by

S(�)(p,q) =

{
α j, if T (�)(p,q) = 1 and L (�)((p,q)) = α j for some j;
∅, otherwise.

(10)

Herein ∅ means there exists no local pattern in B related to its corresponding entry
in the ordering matrix.

2.3 Classification of Hidden and Output Spaces

To investigate whether there is a relation between Y (1) and Y (2) turns out that
topological entropy provides some evidence for the existence of the map π : Y (1)→
Y (2) (or π ′ : Y (2) → Y (1)). For the rest of this section, we assume that h(Y (1)) =
h(Y (2)) unless otherwise stated, where h(X) indicates the topological entropy of X .

Suppose G (1) and G (2) are both right-resolving. First we consider a relation
between two shift spaces called finite equivalence.

Two shift spaces X and Y are finitely equivalent, denoted by X ∼F Y , if there
exists a shift of finite-type W together with finite-to-one factor maps φX : W → X
and φY : W → Y . We say that W is a common extension of X and Y , and the triple
(W,φX ,φY ) is a finite equivalence between X and Y .

Proposition 2.3. If G (1) and G (2) are both right-resolving, then Y (1) and Y (2) are
finitely equivalent.

A graph G is essential if for every vertex v there are edges e1,e2 such that i(e1) =
v and t(e2) = v. A necessary and sufficient condition thus follows for the case where
Y (1) and Y (2) are irreducible sofic shifts.

Theorem 2.4. Suppose Y (1),Y (2) are irreducible sofic shifts. If GT is an essential

graph, then Y (1) ∼= Y (2) if and only if PS(1) = S(2)P, where P =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠.

When L (1) and L (2) are both right-resolving, the common extension for Y (1)

and Y (2) is the original space Y. However, Y is no longer Y (1),Y (2)’s common
extension if either G (1) or G (2) is not right-resolving. For this reason, we need to
construct a real common extension W .
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Theorem 2.5. Suppose either G (1) or G (2) is not right-resolving. There exists
finite equivalence (W,φW (1) ,φW (2) ) between Y (1) and Y (2). Moreover, there exists
an integral matrix F such that FTG(1) = TG(2)F.

Given two integral matrices A ∈ R
m×m,B ∈ R

n×n. Suppose F ∈ R
m×n is an

integral matrix satisfies FA = BF . F is called factor-like if there is at most one
1s in each row of F . Let G = (G,L ) be a labeled graph and let w be a word of XG .
We say that w is a synchronizing word for G if all paths in G presenting w terminate
at the same vertex.

Proposition 2.6. Under the same assumption of Theorem 2.5, if F is factor-like,
then there exists π : W (1)→W (2) which preserves topological entropy. Moreover, if
all words of Y (1) of length N are synchronizing for some N ∈ N, then there exists a
factor map π : Y (1)→ Y (2) which preserves entropy.

Suppose there exists a factor map π from Y (2) to Y (1); it is natural to ask whether
π is invertible. That is, is π actually a conjugacy? To answer this question, we
introduce a definition first.

Let A and B be nonnegative integral matrices. An elementary equivalence from
A to B is a pair (R,S) of rectangular nonnegative matrices satisfying A = RS and
B = SR. In this case we write (R,S) : A∼∼∼ B. A strong shift equivalence from A to B
is a sequence of � elementary equivalences:

(R1,S1) : A = A0
∼∼∼ A1,(R2,S2) : A1

∼∼∼ A2, . . . ,(R�,S�) : A�−1
∼∼∼ A� = B

for some �. In this case we say that A is strong shift equivalent to B and write
A∼FSS B.

Williams classification theorem demonstrates that if A and B are nonnegative
integral matrices, then XA and XB are conjugate if and only if A and B are strong
shift equivalent. It is still hard to find a strong shift equivalence between TG

Y (1)
and

TG
Y (2)

. What we find instead is a weaker relation called shift equivalence.
Let A and B be nonnegative integral matrices. A shift equivalence from A to B is

a pair (R,S) of rectangular nonnegative integral matrices satisfying

AR = RB, SA = BS, A� = RS, B� = SR

for some �∈N. In this case we say that A is shift equivalent to B and write A∼FS B.
It follows directly that A∼FSS B implies A∼FS B.

Suppose A is an n× n nonnegative integral matrix. The eventual range of A
is defined by RA =

⋂∞
k=1Q

nAk, where Q
n is the n-dimensional rational space.

Let A be an n× n nonnegative integral matrix. The dimension group of A is
&A = {v ∈RA : vAk ∈ Z

nforsomek ≥ 0}. The dimension group automorphism δA

of A is the restriction of A to&A such that δA(v) = vA for v∈&A. We call (&A,δA)
the dimension pair of A. Moreover, we define the dimension semigroup of A to be
&+

A = {v ∈RA : vAk ∈ (Z+)nforsomek ≥ 0}. We call (&A,&+
A ,δA) the dimension

triple of A.
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Theorem 2.7 ([11, Theorem 7.5.8]). Let A and B be nonnegative integral matrices.
A∼FS B if and only if (&A,&+

A ,δA) is group isomorphic to (&B,&+
B ,δB).

Instead of demonstrating a strong shift equivalence between two matrices, it is
much easier to determine whether their dimension groups are isomorphic to one
another. Furthermore, the Jordan forms J(A),J(B) are necessary conditions for
A∼FS B.

Let A be an n× n integral matrix. The invertible part A× of A is the linear
transformation obtained by restricting A to its eventual range. That is, A× : RA→RA

is defined by A×(v) = vA.

Theorem 2.8 ([11, Theorem 7.4.10]). Suppose A and B are nonnegative integral
matrices. If A∼FS B, then J×(A) = J×(B), where J×(A) is the Jordan form of A×.

3 Discussion

The existence of a factor map between two subspaces depends on whether there
exists a factor map between their covering spaces. Note that a covering space of
a sofic shift is a shift of finite type. In other words, to classify the subspaces of a
solution space is equivalent to the classification of subshifts of finite type induced
by simplified TCNNs.

The above investigation can be extended to general TCNNs and n-layer CNNs
for n≥ 2. The illustration of general cases is ongoing.
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Linear Integral Equations with Discontinuous
Kernels and the Representation of Operators
on Regulated Functions on Time Scales

Luciano Barbanti, Berenice Camargo Damasceno, Geraldo Nunes Silva,
and Marcia Cristina Anderson Braz Federson

Abstract We present here the linear Cauchy–Stieltjes integral on regulated func-
tions with values in Banach spaces on time scales and represent a linear operator
on the space of the regulated functions by means of an appropriate kernel in the
integral.

Keywords Cauchy integral • Banach spaces • Regulated functions • Time scales

1 Introduction

This paper deals with solutions of the equation

Ay = u, (1)

with Y,Z Banach spaces and y ∈Y , u ∈ Z, where A is a linear operator from Y to Z.
We are interested in the case in which Y is a function space Y = F ([a,b]T,X)

(X is a Banach space) containing discontinuous functions, on a time scale T (that is,
T is a closed non-void subset of the real numbers R, and [a,b]T = [a,b]∩T in R).

Discontinuous functions arise in a natural way when we are describing phe-
nomenon in Mathematics, Physics, or Technology, as, for instance, in collision
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theory when the displacement changes suddenly the direction or even when
using the classical play operator with variable characteristics in the theory on
hysteresis [1].

The following are examples of Banach spaces containing discontinuous
functions:

1. The space of the regulated functions on time scales T : We say that f : [a,b]T→X
is regulated if there exists f (t+)[respectively f (t−)] whenever inf{s : s > t}=t
[respectively sup{s : s < t}= t]. In this case we write f ∈ G([a,b]T,X). If more-
over f (t−) = f (t) when sup{s : s < t} = t, then we write f ∈ G−([a,b]T,X).
Observe that both G([a,b]T,X) and G−([a,b]T,X) are Banach spaces if endowed
with the sup norm.

2. The spaces (on the time scale T= R) Lp([a,b],X),1≤ p < ∞ of the measurable
functions in the Bochner or Lebesgue sense or the space BV ([a,b],X) of
functions of bounded variation, the Sobolev spaces, etc.

The main purpose in this work is to represent the operator A in (1), A ∈ L
(G−([a,b]T,X),Z)), according the integral

A f (t) =
∫

[a,b]T
Dsα(s). f (s),

where the kernel α and the integral on time scales T itself are described below.

2 Time Scales

Settled in 1988 by Stefan Hilger [2] the Calculus on time scales was created to
unify the theory between the continuous and the discrete time dynamical systems.
The integral on time scales is the subject of several works in the literature [3, 4].
Here we take the notations of [3].

Considerations on the theory of integral (in the Riemann or in the generalized
Riemann senses) on time scales include, among others, the Riemann delta and nabla-
integral, alfa-integral, the Lebesgue and nabla-integrals, and the Henstock–Perron–
Kurzweil ones [3]. The work by Mozyrska–Pawluszewicz–TorresIt is more recent
(2009), [5], in which the Riemann–Stieltjes integral is considered.

Let us take a look at these integrals.

2.1 The Riemann–Stieltjes Integral on Time Scales T

Let T be the time scale and consider the continuous real-valued functions f ,g taking
values on the interval I = [a,b]T = [a,b]∩T (in R) with g strictly increasing and f
bounded. Let ℘[a,b]T be the set of all finite divisions of the interval [a,b]T, that is,
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P∈℘[a,b]T , P= {a= t0 < t1 < · · ·< tn = b}. The upper and lower Darboux–Stieltjes
sum for the P respect to f and g are

(the upper) U(P; f ;g) =
n
∑
j=1

sup[t j−1,t j ]T
f (t)Δg j and

(the lower) L(P; f ;g) =
n
∑
j=1

inf[t j−1,t j ]T f (t)Δg j,

where Δg j = g(t j)− g(t j−1) for j = 1,2, . . . ,n.
The upper and lower Darboux–Stieltjes�-integrals are, respectively, the numbers

(U)

∫ b

a
f (t)�g(t) = infP∈℘[a,b]T

=U(P; f ;g)

(L)
∫ b

a
f (t)�g(t) = supP∈℘[a,b]T

= L(P; f ;g).

If both the values are the same, we say that the Riemann–Stieltjes integral, denoted

in accordance with the authors in [5],
b∫

a
f (t)�g(t) is such common value.Looking

at this definition we observe that there are some difficulties inherent to the Darboux
sum used in it when dealing with noncontinuous functions. It is shown in the next
examples.

Example 1. Let

I= [−1,1]T =

{
1
2k ;k ∈ N

∗
}
∪
{
− 1

2k ;k ∈ N
∗
}
∪{0},

and define

g(t) =

{
1+ t, if t ∈ { 1

2k ,k ∈ N
∗}∪{0}

t, otherwise
,

f (t) =

{
1, if t ∈ { 1

2k ,k ∈ N
∗}∪{0}

0, otherwise
.

Then we have the following: there exist both
0∫

−1
f (t)�g(t) and

1∫

0
f (t)�g(t), but

1∫

−1
f (t)�g(t) is not defined.

Example 2. Let

I= [−1,1]T = {−1,0,1}

and f ,g : I→R, with
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g(1) = 1;g(0) = 0;g(−1) =−1; f (−1) = 1; f (0) = 0; f (1) = 4.

Then we have the following: the �-integral of f with respect to g does not exist.
In fact, the upper and lower Darboux–Stieltjes �-integrals are, respectively, the
numbers

U(P; f ;g) = 5

L(P; f ;g) = 0.

With the purpose, among others, to overcome these difficulties when discontinuous
functions are considered, it is necessary to stand a greater vision about the Riemann–
Stieltjes integral (reflected in a more general notion for extending it).

2.2 A Generalized Riemann–Stieltjes Integral
on Time Scales T

Here we introduce the right Cauchy–Stieltjes integral on time scales. The consider-
ations on this type of integral when introduced in the time scales environment are
appropriated for several reasons that are more and more evident with its use.

As shown in Example 1 the Riemann–Stieltjes integral may not exist if the
functions f and g have discontinuities at the same point 0. In Example 2, in which
I is discrete, it is shown that the continuity of f and g is not the issue. Moreover,
both the examples show that the Riemann–Stieltjes integral does not possess, in the
general, the additive property:

c∫

a

f (t)�g(t)+

b∫

c

f (t)�g(t) =

b∫

a

f (t)�g(t).

When using the Cauchy–Stieltjes integral, we will be retrieving these fundamental
properties.

Moreover by considering the right Cauchy–Stieltjes integral (see [6]), we have,
roughly speaking, a great degree of compatibility among the integral, the left
continuous functions in time scale T, and the kind of filtering convergence used
in the definition of the integral itself.

Consider as in Sect. 2.1 the class ℘[a,b]T of all partitions of I= [a,b]T.
Let us take f : (a,b) −→ X ,g : (a,b) −→ L(X ,W ),where W is a Banach space.

The (Cauchy) sum associated to

P = {a = t0, t1, . . . , tn = b} ∈℘[a,b]T

of f relatively to α is defined by
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σP( f ;α) =
n−1

∑
i=0

[α(ti+1)−α(ti)] · f (ti+1).

The (right) Cauchy–Stieltjes integral (rC− S) of f relatively to α , (rC− S)
∫
[a,b]T

Dsα(s). f (s)—or simply
∫
[a,b]T

Dsα(s). f (s)—is the value

∫

[a,b]T
Dsα(s). f (s) = lim

P∈℘[a,b]T

σP( f ;α),

provided it exists.
Recall that the expression limP∈℘[a,b]T

σP( f ;α) = z in a general topological space

means that for every neighborhoodV of z, there exists P0 ∈℘[a,b]T with σP( f ;α)∈V
whenever P ∈℘[a,b]T and P⊇ P0.

2.3 Existence of the (rC−S) Integral on Time Scales

To proceed let be the following definition.

Definition 1 (Semivariation). Let ℘[a,b]T , be the set of the partitions of [a,b]T and
P∈℘[a,b]T and α : [a,b]T −→ L(X ,W ). The function α is of bounded semivariation,
and we write α ∈ SV([a,b]T,L(X ,W )) if

SV [α] = supP∈℘[a,b]T
SVP[α]

with

SVP[α] = sup

{∥
∥
∥
∥

|P|

∑
i=1

[α(ti)−α(ti−1)]xi

∥
∥
∥
∥

W
;xi ∈ X ;‖xi‖< 1

}

and SV [α] is finite.

Observe that SV [α] is a semi-norm. It is a norm on the class of all α ∈
SV([a,b]T,L(X ,W )) with α(a) = 0. If α is such that satisfies these conditions, we
write α ∈ SV0([a,b]T,L(X ,W )).

In the following we recall some conditions on α and f for the existence of the
Cauchy–Stieltjes integral at right (r−CS)

∫
[a,b]T

dsα(s). f (s) as well as some of its
first properties.

Theorem 1 ([7], Theorem II.1(b)). For every time scale T, let f ∈ G−([a,b]T,X)
and α ∈ SV([a,b]T,L(X ,W )). Then Iα( f ) =

∫
[a,b]T

Dsα(s). f (s) ∈ W, and Iα ∈
L(G−([a,b],X),W ). Furthermore, ‖Iα‖ ≤ SV [α], and for every c∈ [a,b]T, we have

∫

[a,c]T
Dsα(s). f (s)+

∫

[c,b]T
Dsα(s). f (s) =

∫

[c,b]T
Dsα(s). f (s).
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Remark 1. Observe that in Examples 1 and 2 in Sect. 2.1, we have
∫
[−1,1]T

Dsα(s). f (s) = 1 and 4, respectively.

In the next section we are presenting the main results in this work.

2.4 Integral Representation for Linear Operators
on G−([a,b],X)

As seen in Theorem 1 above, every α ∈ SV ([a,b]T,L(X ,W )) defines the linear
continuous operator Iα on the space G−([a,b]T,X) with the use of the right
Cauchy–Stieltjes integral on time scales.

The next theorem shows a kind of converse situation that all the linear-
bounded operators A ∈ L(G−([a,b],X),W) can be represented by an operator Iα ∈
L(G−([a,b],X),W ) for a convenient α .

Theorem 2. Let X ,W be Banach spaces, and for every Z ⊂ R, the characteristic
function XZ:R→ L(X)

XZ =

{
Id if z ∈ Z
0 if z /∈ Z

.

Then

Λ : SV0([a,b]T,L(X ,W ))−→ L(G−([a,b],X),W )

with Λ(α) = Iα is an isometry of the first space onto the second one. Further,
α(t)x = Iα(X(a,t]Tx). Moreover,

A( f ) =
∫

[a,b]T
Dsα(s). f (s).

Proof. According to Theorem II.1(b) in [7], we have Λ well defined. Moreover, it is
linear and continuous and we have ‖Λ(α)‖ ≤ SV [α]. The operator Λ is one to one.
In fact, for α �= 0—remembering α(a)= 0—there are τ ∈ (a,b]T and x∈X such that
α(τ)x �= 0. Taking f (t) = χ(a,τ]x ∈G−([a,b]T,X) in this way we get Iα( f ) �= 0 and
so Iα because Iα( f ) = α(τ)x. To end the proof we only need to show that Λ is onto
and that ‖Λ(α)‖ ≥ SV [α]. The operator Λ is onto: given A ∈ L(G−([a,b]T,X),W ),
let us take as definition that

α(t)x = A(X(a,t]Tx).

We will show that Λ(α) = A. To achieve this it is sufficient to be showing that Λ(α)
and A are coincident on the total set {X(a,τ]Tx;τ ∈ (a,b]T} in G−([a,b]T,X). In fact,
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Λ(α)(X(a,τ]Tx) =
∫

[a,b]T
Dsα(s) ·X(α ,τ]T(s)x = α(τ)x = A(X(a,τ]Tx).

To end the proof, observe the definition of SV [α]. �	

2.5 Examples

Example 1 (The Operator Evaluation at a Point). Suppose X =W , t0 ∈ (a,b]T, and
A( f ) = f (t0). The mapping α is α(τ)x = A(X(a,t0]Tx) = X(t0,b]Tx. In this way,

f (t0) =
∫

[a,b]T
DsX(t0,b]T(s) f (s).

Example 2 (The Riemann Integral). Suppose X = W = R and the delta integral
on time scales in the Darboux sense on (a,b]T defined in a similar way as ([3],
Definition 2.1):

A( f ) =
∫

(a,b]T
f (s)ds.

Then,

α(τ)x = A(X(a,τ]Tx) =
∫

[a,b]T
DsX(a,τ]T(s)x = (τ− a)x.

Hence, A( f ) =
∫
[a,b]T

f (s)ds =
∫
[a,b]T

ds(s− a) · f (s).

Example 3 (The Dual of G−([a,b]T,X)). Take W as the field R or C, X a Banach
space, and X ′ its dual. We observe that according to Theorem 2, we can identify the
dual space G−([a,b]T,X)′ with the space SV0([a,b]T,X)′.

Notice that this result allows us to improve the one obtained in [1], for the case
T= R or C, in Hilbert spaces with the use of the Young integral.
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Strong Solutions to Buoyancy-Driven Flows
in Channel-Like Bounded Domains

Michal Beneš

Abstract We consider a boundary-value problem for steady flows of viscous
incompressible heat-conducting fluids in channel-like bounded domains. The fluid
flow is governed by balance equations for linear momentum, mass, and internal
energy. The internal energy balance equation of this system takes into account
the phenomena of the viscous energy dissipation and includes the adiabatic heat
effects. The system of governing equations is provided by suitable mixed boundary
conditions modeling the behavior of the fluid on fixed walls and open parts of the
channel. Due to the fact that some uncontrolled “backward flow” can take place at
the outlets of the channel, there is no control of the convective terms in balance
equations for linear momentum and internal energy, and consequently, one is not
able to prove energy type estimates. This makes the qualitative analysis of this
problem more difficult. In this paper, the existence of the strong solution is proven
by a fixed-point technique for sufficiently small external forces.

Keywords Navier-Stokes equations • Heat equation • Heat-conducting fluids
• Qualitative properties • Mixed boundary conditions

1 Introduction

Let Ω be a two-dimensional bounded domain with the boundary ∂Ω . Let ∂Ω =
Γ D ∪Γ N be such that ΓD and ΓN are open, not necessarily connected; the one-

dimensional measure of ΓD ∩ΓN is zero and ΓD �= /0 (ΓN =
⋃m

i Γ (i)
N , Γ (i)

N ∩Γ ( j)
N = /0

for i �= j). In a physical sense, Ω represents a “truncated” region of an unbounded
channel system occupied by a moving fluid. ΓD will denote the “lateral” surface and
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Ω

ΓD

ΓD
ΓD

ΓN

ΓN

ΓN

Fig. 1 Ω represents a “truncated” region of an unbounded channel system occupied by a fluid

ΓN represents the open parts of the region Ω . It is assumed that in-/outflow pipe
segments extend as straight pipes. All portions of ΓN are taken to be flat, and the
boundary ΓN and rigid boundary ΓD form a right angle at each point in which the
boundary conditions change their type (cf. Fig. 1). Moreover, we assume that all
parts of ΓD are smooth.

We are going to study the boundary-value problem for stationary buoyancy-
driven flows of viscous incompressible heat-conducting homogeneous fluids with
dissipative and adiabatic heating in Ω . The strong formulation of our problem is as
follows:

ρ(u ·∇)u−νΔu+∇π = ρ(1−α0θ )f in Ω , (1)

∇ ·u = 0 in Ω , (2)

cpρu ·∇θ −κΔθ −α1νe(u) : e(u) = ρα2θ f ·u in Ω , (3)

u = 0 on ΓD, (4)

θ = g on ΓD, (5)

−πn+ν(∇u)n = 0 on ΓN , (6)

∇θ ·n = 0 on ΓN . (7)

Here u = (u1,u2), π and θ denote the unknown velocity, pressure, and temperature,
respectively. Tensor e(u) denotes the symmetric part of the velocity gradient e(u) =
[∇u+(∇u)(]/2.

Data of the problem are as follows: f is a body force and g is a given function
representing the distribution of the temperature θ on ΓD. Positive constant material
coefficients represent the kinematic viscosity ν , density ρ , heat conductivity κ ,
specific heat at constant pressure cp, and thermal expansion coefficient of the fluid
α0. Coefficients α1 and α2 reflect the dissipation and adiabatic effects, respectively.
Here we suppose that all functions in (1)–(7) are smooth enough. For rigorous
derivation of the model we refer the readers to [5].

Due to the presence of the dissipative term α1νe(u) : e(u) in the energy
equation, (1)–(7) represent the elliptic system with strong nonlinearities without
appropriate general existence and regularity theory (cf. [2]). Moreover, because of
the “do-nothing” boundary condition (6), without any additional consideration on
the in-/output region of the channel, we are not able to prove an “a priori” estimate
for the convective terms in the system (see [6]). This makes the studied problem
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more difficult than in the frequently used case of Dirichlet boundary condition on
the whole boundary. The core of the main result of this work lies in the proof
of the existence of the strong solution (in the sense that the solution possesses
second derivatives) for sufficiently small external force f, nevertheless, without any
additional restrictions on the distribution of the temperature θ on ΓD described by
the function g.

Remark 1. Let us note that our results can be extended to the problem if we consider
the so-called “free surface” boundary condition on ΓN and replace (6) by (see [3,4])

−πn+ν[∇u+(∇u)(]n = 0.

However, to ensure the smoothness of the solution and exclude boundary singu-
larities near the points where the boundary conditions change their type, some
additional requirements on the geometry of the domain need to be introduced. This
means that ΓN and ΓD form an angle ω < π/4 at each point where the boundary
conditions change (see [9]).

2 Basic Notation and Some Function Spaces

Vector functions and operators acting on vector functions are denoted by boldface
letters. Throughout the paper, we will always use positive constants c, c1, c2, . . . ,
which are not specified and which may differ from line to line. For an arbitrary r ∈
[1,+∞], Lr(Ω) denotes the usual Lebesgue space equipped with the norm ‖ ·‖Lr(Ω),
and W k,p(Ω), k ≥ 0 (k need not to be an integer, see [8]), p ∈ [1,+∞], denotes the
usual Sobolev space with the norm ‖ · ‖W k,p(Ω). For simplicity we denote shortly

Wk,p ≡W k,p(Ω)2 and Lr ≡ Lr(Ω)2.
To simplify mathematical formulations we introduce the following notations:

au(u,v) := ν
∫

Ω
∇u : ∇vdΩ , (8)

b(u,v,w) := ρ
∫

Ω
(u ·∇)u ·wdΩ , (9)

aθ (θ ,ϕ) := κ
∫

Ω
∇θ ·∇ϕ dΩ , (10)

d(u,θ ,ϕ) := cpρ
∫

Ω
u ·∇θ ϕ dΩ , (11)

e(u,v,ϕ) := α1ν
∫

Ω
e(u) : e(v)ϕ dΩ , (12)

(u,v) :=
∫

Ω
u ·vdΩ , (13)

(θ ,ϕ)Ω :=
∫

Ω
θϕ dΩ . (14)
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In (8)–(14) all functions u,v,w,θ ,ϕ are smooth enough, such that all integrals on
the right-hand sides make sense. Let

Eu :=
{

u ∈C∞(Ω)2; divu = 0, suppu∩ΓD = /0
}

(15)

and

Eθ :=
{

θ ∈C∞(Ω ); suppθ ∩ΓD = /0
}

(16)

and Vk,p
u be the closure of Eu in the norm of W k,p(Ω)2, k ≥ 0 and 1 ≤ p ≤ ∞.

Similarly, let V k,p
θ be a closure of Eθ in the norm of W k,p(Ω). Then Vk,p

u and

V k,p
θ , respectively, are Banach spaces with the norms of the spaces W k,p(Ω)2 and

W k,p(Ω), respectively. Note that V1,2
u , V 1,2

θ , V0,2
u and V 0,2

θ , respectively, are Hilbert
spaces with scalar products (8), (10), (13) and (14), respectively. Further, define the
spaces

Du :=

{
u | f ∈ V0,2

u ,
1
ν

au(u,v) = (f,v) for all v ∈ V1,2
u

}
(17)

and

Dθ :=

{
θ | h ∈V 0,2

θ ,
1
κ

aθ (θ ,ϕ) = (h,ϕ)Ω for all ϕ ∈V 1,2
θ

}
, (18)

equipped with the norms

‖u‖Du := ‖f‖V0,2
u

and ‖θ‖Dθ := ‖h‖
V0,2

θ
, (19)

where u and f are corresponding functions via (17) and θ and h are corresponding
functions via (18).

The key embeddings

Du ↪→W2,2 (20)

and

Dθ ↪→W 2,2(Ω) (21)

(“↪→” denotes the continuous embedding) are consequences of assumptions on the
domain Ω and the regularity results for the steady Stokes system in channel-like
domains with “do-nothing” condition (see [1] Remark 2.2, and Corollary 2.3) and
the “classical” regularity results for the stationary linear heat equation (the Poisson
equation) with the mixed boundary conditions (see, for instance, [7]).
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3 Formulation of the Problem and the Main Result

Now we can formulate our problem. Suppose that f ∈ L2 and g ∈W 2,2(Ω). Find a
couple [u,θ ] such that u ∈Du, θ ∈ g+Dθ and the following system

au(u,v)+ b(u,u,v) = (ρ(1−α0θ )f,v), (22)

aθ (θ ,ϕ)+ d(u,θ ,ϕ)− e(u,u,ϕ) = (ρα2θ f ·u,ϕ)Ω (23)

holds for every [v,ϕ ] ∈V1,2
u ×V 1,2

θ . The couple [u,θ ] is called the strong solution to
the system (1)–(7).

Theorem 1 (Main result). Assume f ∈ L2 and g ∈W 2,2(Ω). Let ‖f‖L2 be “small
enough.” Then there exists the strong solution to the system (1)–(7).

4 Proof of the Main Result

For arbitrary fixed [u0,ϑ0] ∈ Du×Dθ we now consider the following problem: to
find a couple [u,ϑ ] ∈ Du×Dθ , such that

au(u,v) = (ρ(1−α0ϑ0)f,v)

−(ρα0gf,v)− b(u0,u0,v), (24)

aθ (ϑ ,ϕ)+ d(u,ϑ0 + g,ϕ)− e(u,u,ϕ) = (ρα2ϑ0f ·u0,ϕ)Ω

+(ρα2gf ·u0,ϕ)Ω − aθ (g,ϕ) (25)

for every [v,ϕ ]∈V1,2
u ×V 1,2

θ . In what follows we prove that the map K, K([u0,ϑ0])=
[u,ϑ ], has a fixed point (denoted again by [u,ϑ ]) in Du×Dθ . Consequently, the
couple [u,θ ] := [u,ϑ + g] is the strong solution to the system (1)–(7).

First, let us check that the right-hand sides in (24)–(25) are well defined. For an
arbitrary [u0,θ0] ∈ Du×Dθ we have

‖(ρ(1−α0ϑ0)f, ·)‖V0,2
u
≤ ρ‖(f, ·)‖

V0,2
u
+ρα0‖(ϑ0f, ·)‖

V0,2
u

≤ ρ‖(f, ·)‖
V0,2

u
+ρα0c1‖ϑ0‖Dθ ‖(f, ·)‖V0,2

u
, (26)

further

‖(ρα0gf, ·)‖
V0,2

u
≤ ρα0c1‖g‖W2,2(Ω)‖(f, ·)‖V0,2

u
(27)
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and

‖b(u0,u0, ·)‖V0,2
u
≤ ρ‖u0‖V0,∞

u
‖u0‖V1,2

u

≤ ρc1‖u0‖2
Du
. (28)

The inequalities (26)–(28) together with (19)–(20) yield the estimate for the solution
of (24)

‖u‖Du ≤ c(Ω ,ρ ,ν,α0)
(
‖(f, ·)‖V0,2

u
(1+ ‖g‖W2,2(Ω) + ‖ϑ0‖Dθ )+ ‖u0‖2

Du

)
. (29)

Now with u ∈ Du in hand, Du ↪→W2,2 [cf. (20)], we deal with (25). For the right-
hand side we derive the estimates

‖aθ (g, ·)‖V 0,2
θ
≤ c(Ω ,κ)‖g‖W2,2(Ω), (30)

‖(ρα2ϑ0f ·u0, ·)Ω‖V0,2
θ
≤ c(Ω ,ρ ,α2)‖(f, ·)‖V0,2

u
‖u0‖Du‖ϑ0‖Dθ (31)

and

‖(ρα2gf ·u0, ·)Ω‖V0,2
θ
≤ c(Ω ,ρ ,α2)‖(f, ·)‖V0,2

u
‖u0‖Du‖g‖W2,2(Ω). (32)

The inequalities (30)–(32) together with (19) and (21) yield the estimate for the
solution of (25)

‖ϑ‖Dθ ≤ c1(Ω ,κ)‖g‖W2,2(Ω)

+c2(Ω ,κ ,ρ ,α2)‖(f, ·)‖V0,2
u
(‖g‖W2,2(Ω) + ‖ϑ0‖Dθ )‖u0‖Du

+c3(Ω ,κ)
(
‖d(u,g+ϑ0, ·)‖V 0,2

θ
+ ‖e(u,u, ·)‖

V0,2
θ

)
, (33)

where the last two norms can be further estimated using (29) to obtain

‖d(u,g+ϑ0, ·)‖V 0,2
θ
≤ c1(Ω ,ρ ,cp)‖u‖Du(‖g‖W2,2(Ω) + ‖ϑ0‖Dθ )

≤ c2(Ω ,ρ ,cp,ν,α0)(‖g‖W2,2(Ω) + ‖ϑ0‖Dθ )
(
‖(f, ·)‖V0,2

u
(1+ ‖g‖W2,2(Ω) + ‖ϑ0‖Dθ )+ ‖u0‖2

Du

)
(34)

and (similarly)

‖e(u,u, ·)‖V 0,2
θ
≤ c1(Ω ,ν,α1)‖u‖2

Du

≤ c2(Ω ,ρ,ν,α0,α1)
(
‖(f, ·)‖V0,2

u
(1+‖g‖W 2,2(Ω)+‖ϑ0‖Dθ )+‖u0‖2

Du

)2
.

(35)
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Now denote by M(Ru,Rθ )⊂ X the bounded set (Ru,Rθ > 0)

M(Ru,Rθ ) :=
{
[w,υ ] ∈Du×Dθ ; ‖w‖Du ≤ Ru and ‖υ‖Dθ ≤ Rθ

}
. (36)

We are going to show that the map K,

K : Du×Dθ →Du×Dθ with K([u0,ϑ0]) = [u,ϑ ],

has a fixed point in M(Ru,Rθ ) for some positive numbers Ru and Rθ and provided
‖f‖V0,2

u
is “sufficiently small”. Taking Rθ sufficiently large and Ru together with

‖f‖
V0,2

u
sufficiently small, the estimates (29) and (33) imply

K : M(Ru,Rθ )→M(Ru,Rθ ). (37)

Moreover, our aim is to prove that ‖f‖
V0,2

u
, Rθ and Ru can be chosen in such a way

that, in addition to (37), K realizes contraction in M(Ru,Rθ ).
Let [u0,ϑ0], [ū0, ϑ̄0] ∈Du×Dθ and K([u0,ϑ0]) = [u,ϑ ],K([ū0, ϑ̄0]) = [ū, ϑ̄ ]. By

noting (19) we arrive at the estimates

‖u− ū‖Du ≤ c(ν)
(
‖b(u0− ū0, ū0, ·)‖V0,2

u

+‖b(u0,u0− ū0, ·)‖V0,2
u

+ ‖(ρα0(ϑ0− ϑ̄0)f, ·)‖V0,2
u

)
(38)

and

‖ϑ − ϑ̄‖Dθ ≤ c(κ)
(
‖(ρα2f(ϑ0− ϑ̄0) ·u0, ·)Ω‖V 0,2

θ

+ ‖(ρα2fϑ̄0 · (u0− ū0), ·)Ω‖V 0,2
θ

+ ‖(ρα2fg · (u0− ū0), ·)Ω‖V0,2
θ

+ ‖e(u,u− ū, ·)‖
V 0,2

θ
+ ‖e(u− ū, ū, ·)‖

V 0,2
θ

+‖d(u, ϑ̄0−ϑ0, ·)‖V 0,2
θ

+ ‖d(ū−u, ϑ̄0 + g, ·)‖
V0,2

θ

)
. (39)

Estimating all terms on the right-hand side of (38) one obtains [applying (20) and
(21)]

‖b(u0− ū0, ū0, ·)‖V0,2
u
≤ c(Ω ,ρ)‖u0− ū0‖Du‖ū0‖Du , (40)

‖b(u0,u0− ū0, ·)‖V0,2
u
≤ c(Ω ,ρ)‖u0‖Du‖u0− ū0‖Du , (41)

‖(ρα0(ϑ0− ϑ̄0)f, ·)‖V0,2
u
≤ c(Ω ,ρ ,α0)‖(f, ·)‖V0,2

u
‖ϑ0− ϑ̄0‖Dθ (42)

and consequently

‖u− ū‖Du ≤ c1(Ω ,ν,ρ)(‖u0‖Du + ‖ū0‖Du)‖u0− ū0‖Du

+ c2(Ω ,ν,ρ ,α0)‖(f, ·)‖V0,2
u
‖ϑ0− ϑ̄0‖Dθ . (43)
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Similarly, estimating all terms on the right-hand side of (39) one obtains

‖(ρα2f(ϑ0− ϑ̄0) ·u0, ·)Ω‖V0,2
θ
≤ c(Ω ,ρ ,α2)‖(f, ·)‖V0,2

u
‖ϑ0− ϑ̄0‖Dθ ‖ū0‖Du , (44)

‖(ρα2fϑ̄0 · (u0− ū0), ·)Ω‖V0,2
θ
≤ c(Ω ,ρ ,α2)‖(f, ·)‖V0,2

u
‖ϑ̄0‖Dθ ‖u0− ū0‖Du , (45)

‖(ρα2fg · (u0− ū0), ·)Ω‖V0,2
θ
≤ c(Ω ,ρ ,α2)‖(f, ·)‖V0,2

u
‖g‖W2,2(Ω)‖u0− ū0‖Du .

(46)

For the dissipative terms, we arrive at

‖e(u,u− ū, ·)‖
V 0,2

θ
≤ c(Ω ,ν,α1)‖u‖Du‖u− ū‖Du , (47)

‖e(u− ū, ū, ·)‖
V 0,2

θ
≤ c(Ω ,ν,α1)‖u− ū‖Du‖ū‖Du (48)

and finally

‖d(u, ϑ̄0−ϑ0, ·)‖V 0,2
θ
≤ c(Ω ,ρ ,cp)‖u‖Du‖ϑ̄0−ϑ0‖Dθ , (49)

‖d(ū−u,g+ ϑ̄0, ·)‖V 0,2
θ
≤ c(Ω ,ρ ,cp)‖ū−u‖Du(‖g‖W2,2(Ω) + ‖ϑ̄0‖Dθ ). (50)

Applying the estimates (44)–(50) into (39), we get

‖ϑ − ϑ̄‖Dθ ≤ c1(Ω ,ρ ,α2,κ)‖(f, ·)‖V0,2
u
(‖ϑ̄0‖Dθ +‖g‖W 2,2(Ω))‖u0− ū0‖Du

+
(

c2(Ω ,ρ ,α2,κ)‖(f, ·)‖V0,2
u
‖ū0‖Du + c3(Ω ,ρ ,cp,κ)‖u‖Du

)
‖ϑ0− ϑ̄0‖Dθ

+
(

c4(Ω ,ν ,α1,κ)(‖u‖Du+‖ū‖Du )+c5(Ω ,ρ ,cp,κ)(‖g‖W 2,2(Ω)+‖ϑ̄0‖Dθ )
)
‖ū−u‖Du .

(51)

Now we are ready to conclude that one can choose Rθ sufficiently large and Ru

together with ‖f‖
V0,2

u
sufficiently small, such that K maps M(Ru,Rθ ) into itself [as

a consequence of (29) and (33)] and realizes contraction in the set M(Ru,Rθ ) [as a
consequence of (43) and (51)]. Hence, we have a fixed point [u,ϑ ] = K([u,ϑ ]), and
the couple [u,θ ] := [u,ϑ + g] is the strong solution to the system (1)–(7).
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1 Introduction

When r ∈ (0,∞) and when L : R+×R
n×R

n → R is a function which admits a
partial differential with respect to the second (vector) variable, denoted by Lu, and a
partial differential with respect to the third (vector) variable, denoted by Lu′ , we can
formulate the following Euler–Lagrange differential equation:

Lu(t,u(t),u
′(t)) =−rLu′(t,u(t),u

′(t))+
d
dt

Lu′(t,u(t),u
′(t)), (1)

with an initial condition u(0) = x (Cauchy problem). Such equations arise in various
scientific fields: in the models of macroeconomic optimal growth [11,15,24] and in
the management of fisheries or of forests [16]. They appear as first-order necessary
condition of optimality for variational problems with an infinite-horizon criterion in
the form

J(u) :=
∫ ∞

0
e−rtL(t,u(t),u′(t))dt : (2)

see, for instance, [7–9].
When b : R→ R

n is a forcing term, we also consider the following equation:

Lu(t,u(t),u
′(t))+ rLu′(t,u(t),u

′(t))− d
dt

Lu′(t,u(t),u
′(t)) = b(t), (3)

ever with an initial condition u(0) = x. The aim of this paper is to study the bounded
solution of (3) when b is bounded, the almost periodic solutions of (3) when b is
almost periodic, and the asymptotically almost periodic solutions of (3) when b is
asymptotically almost periodic. About the almost periodic solutions, this variational
formalism is different to the so-called calculus of variations in mean developed in
[4–6], where the criterion uses a mean value instead an integral.

Now we briefly describe the contents of the paper. In Sect. 2 we precise the
function spaces that we use, and we establish several results on the density of certain
spaces into other spaces: spaces of bounded functions, spaces of almost periodic
functions, spaces of asymptotically almost periodic functions and a weighted
Sobolev space. In Sect. 3 we establish a variational principle for the bounded
solutions of (1). In Sect. 4 we establish a variational principle for the almost periodic
solutions of (1). In Sect. 5 we establish a variational principle for the asymptotically
almost periodic solutions of (1). In Sect. 6 we establish a variational principle for
some locally absolutely continuous solutions of (1) by using the weighted Sobolev
space previously considered. In Sect. 7 we establish that, for all x∈R

n, the set of the
forcing b which are bounded (respectively almost periodic, respectively asymptotic
almost periodic) for which there exists a bounded (respectively almost periodic,
respectively asymptotic almost periodic) solution u such that u(0) = x is dense
into the space of the bounded (respectively almost periodic, respectively asymptotic
almost periodic) functions with respect to an adapted norm.
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2 Function Spaces

The usual inner product on R
n is simply denoted by a point. x.y = ∑n

j=1 x jy j when
x = (x1, . . . ,xn) and y = (y1, . . . ,yn), and the associated Euclidean norm is denoted
as |x|=√x.x.

C0(R+,R
n) is the space of the continuous functions from R+ = [0,∞) into

R
n. Setting N∗ := N \ {0}, when k ∈ N∗ ∪ {∞}, Ck(R+,R

n) is the space of the
k-times differentiable functions from R+ into R

n. BC0(R+,R
n) is the space of

the bounded continuous functions from R+ into R
n; endowed with the norm

‖u‖∞ := supt∈R+
|u(t)|, it is a Banach space [3] (Proposition 1, p. 25). When

k ∈ N∗, BCk(R+,R
n) is the space of the functions u ∈ BC0(R+,R

n)∩Ck(R+,R
n)

such that u( j) = d ju
dt j ∈ BC0(R+,R

n) for all j = 1, . . . ,k; endowed with the norm

‖u‖BCk := ‖u‖∞ +∑k
j=1‖u( j)‖∞, it is a Banach space. C0

0(R+,R
n) is the space of

the functions u ∈C0(R+,R
n) such that limt→∞ u(t) = 0; it is a Banach subspace of

(BC0(R+,R
n),‖.‖∞). When k ∈N∗ ∪{∞}, Ck

0(R+,R
n) is the space of the functions

u∈C0
0(R+,R

n)∩Ck(R+,R
n) such that u( j) = d ju

dt j ∈C0
0(R+,R

n) for all j = 1, . . . ,k.
When Ω is a nonempty open subset of R, C0

c (Ω ,Rn) is the space of the
continuous functions from Ω into R

n which have a compact support. When k ∈
N∗ ∪ {∞}, Ck

c(Ω ,Rn) is the space of the k-times differentiable functions from Ω
into R

n which have a compact support. D ′(Ω) is the space of the distributions on
Ω [25]. S ′(R,R) denotes the space of the tempered distributions on R [21, 25].

When T ∈ (0,∞), P0
T (R+,R

n) denotes the space of the T -periodic continuous
functions from R+ into R

n, and P1
T (R+,R

n) denotes the space P0
T (R+,R

n) ∩
C1(R+,R

n).
AP0(R+,R

n) is the space of the Bohr almost periodic functions from R+ into
R

n [27, 28]; it is a Banach subspace of (BC0(R+,R
n),‖.‖∞) [28]. When M is a

Z-submodule ofR, AP0(R+,R
n;M) denotes the space of the functions which belong

to AP0(R+,R
n) such that their module of frequencies is included into M; it is a

Banach subspace of AP0(R+,R
n). When k ∈ N∗, APk(R+,R

n;M) is the space of
the functions u ∈ AP0(R+,R

n;M)∩Ck(R+,R
n) such that u( j) ∈ AP0(R+,R

n;M)
for all j = 1, . . . ,k. APk(R+,R

n;M) is a Banach subspace of (BCk(R+,R
n),‖.‖BCk).

AAP0(R+,R
n) is the space of the u ∈ BC0(R+,R

n) such that u = v+w where
v ∈ AP0(R+,R

n) and w ∈ C0
0(R+,R

n); it is a Banach subspace to BC0(R+,R
n)

[28]. The functions which belong to AAP0(R+,R
n) are so-called the asymptotically

almost periodic functions [27, 28]. When k ∈ N∗, AAPk(R+,R
n) is the space

of the u ∈ AAP0(R+,R
n)∩Ck(R+,R

n) such that their derivative u( j) belongs to
AAP0(R+,R

n) for all j = 1, . . . ,k; it is a Banach subspace of BCk(R+,R
n).

We denote by μ the Lebesgue measure on R+. We consider the function er :
R+ → R defined by er(t) := e−rt . Denoting by B(R+) the Borel σ -field of R+,
we define the finite positive measure ν : B(R+)→ R+ by setting ν(B) :=

∫
B erdμ

for all B ∈B(R+); er is the density of ν with respect to μ [1]. When p ∈ [1,∞),
Lp(R+,μ ;Rn) (respectively Lp(R+,ν;Rn)) denotes the Lebesgue space of the
measurable functions u : R+ → R

n such that |u|p is μ integrable (respectively ν
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integrable) on R+. The usual norm on Lp(R+,μ ;Rn) (respectively Lp(R+,ν;Rn))
is denoted by ‖.‖Lp(μ) (respectively ‖.‖Lp(ν)). Note that u ∈ L1(R+,ν;Rn) if and
only if eru ∈ L1(R+,μ ;Rn) and ‖u‖L1(ν) = ‖eru‖L1(μ). The inner product of the

Hilbert space L2(R+,ν;Rn) is (u,v)L2(ν) =
∫
R+

eru.vdμ = (
√

eru,
√

erv)L2(μ).

Remark 1. We have L2(R+,ν;Rn)⊂ L1(R+,ν;Rn), and for all u ∈ L2(R+,ν;Rn),
the following inequality holds: ‖u‖L1(ν) ≤ 1√

r
.‖u‖L2(ν).

Since the measure of a singleton, for μ and for ν , is equal to zero, we can
assimilate L2(R+,ν;Rn) and L2((0,∞),ν;Rn), and so when u = (u1, . . . ,un) ∈
L2(R+,ν;Rn), we can define the distributional derivative Du j of u j in D ′((0,∞),R),
and we can define the following weighted Sobolev space:

H1(R+,ν;Rn) := {u ∈ L2(R+,ν;Rn) : ∀ j = 1, . . . ,n, Du j ∈ L2(R+,ν;R)}.

Endowed with the inner product (u,v)H1(ν) := (u,v)L2(ν) + ∑n
j=1(Du j,Dv j)L2(ν),

H1(R+,ν;Rn) is a Hilbert space. Note that we have BC1(R+,R
n)⊂H1(R+,ν;Rn).

When u ∈ H1(R+,ν;Rn), it is easy to verify that u is locally absolutely continuous
on R+, and so the distributional derivatives Du j are represented by the ordinary
derivatives u′j (defined Lebesgue-almost everywhere) [25]. More deep properties of
this kind of space can be found in [2, 22].

Proposition 1. The following assertions hold:

(i) C0
0(R+,R

n) is dense into L2(R+,ν;Rn).
(ii) BC0(R+,R

n) is dense into L2(R+,ν;Rn).
(iii) AAP0(R+,R

n) is dense into L2(R+,ν;Rn).
(iv) C1

0(R+,R
n) is dense into H1(R+,ν;Rn).

(v) AAP1(R+,R
n) is dense into H1(R+,ν;Rn).

Proof. By using [14] (Théorème IV.12), we know that C0
c ((0,∞),Rn) is dense in

L2(R+,μ ;Rn). For f ∈ L2(R+,ν;Rn) and ε > 0. Then, since
√

er f ∈L2(R+,μ ;Rn),
there exists ϕ ∈ C0

c ((0,∞),Rn) such that ‖ϕ −√er f‖L2(μ) ≤ ε . Note that ψ :=
1√
er

ϕ ∈ C0
c ((0,∞),Rn), and that we have ‖ψ − f‖L2(ν) = ‖

√
erψ −

√
er f‖L2(μ) =

‖ϕ −√er f‖L2(μ) ≤ ε . And so we have proven that C0
c ((0,∞),Rn) is dense into

L2(R+,ν;Rn). Since C0
c ((0,∞),Rn)⊂C0

0((0,∞),Rn) we obtain the assertion (i).
Since C0

0((0,∞),Rn) ⊂ BC0(R+,R
n), the assertion (ii) is a consequence of (i).

Since C0
0((0,∞),Rn)⊂ AAP0(R+,R

n;M), the assertion (iii) is a consequence of (i).
By using [14] (Théorème VIII.6), we know that C1

c ((0,∞),Rn) is dense into
H1(R+,μ ;Rn) := {u ∈ L2(R+,μ ;Rn) : ∀ j = 1, . . . ,n, Du j ∈ L2(R+,μ ;R)}. We fix
u∈H1(R+,ν;Rn) and ε > 0. We set ε1 := ε√

1+(1+ r
2 )

2
. Since u∈H1(R+,ν;Rn), we

have
√

eru ∈ L2(R+,μ ;Rn), and for all j = 1, . . . ,n,
√

erDu j ∈ L2(R+,μ ;R). Note
that we have D(

√
eru j) =

−r
2
√

eru j +
√

erDu j ∈ L2(R+,μ ;R). Then there exists v∈
C1

c ((0,∞),Rn) such that ‖v−√eru‖L2(μ)≤ ε1 and ‖v′−(−r
2
√

eru+
√

erDu)‖L2(μ)≤
ε1 where Du = (Du1, . . . ,Dun). Note also that w := 1√

er
v ∈C1

c ((0,∞),Rn). We have
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‖w−u‖L2(ν) = ‖
√

erw−
√

eru‖L2(μ) = ‖v−
√

eru‖L2(μ) ≤ ε1. Since v′ = −r
2
√

erw+
√

erw′, we obtain |‖√erw′−
√

erDu‖L2(μ)−‖−r
2 (
√

erw−
√

eru)‖L2(μ)| ≤ ‖−r
2 (
√

erw

−√eru)+
√

erw′ −√erDu‖L2(μ) = ‖−r
2
√

erw+
√

erw′ − (−r
2
√

eru+
√

erDu)‖L2(μ)
= ‖v′ − (−r

2
√

eru+
√

erDu)‖L2(μ) ≤ ε1 that implies ‖√erw′ −
√

erDu‖L2(μ) ≤ ε1

+ r
2‖
√

erw−
√

eru‖L2(μ) ≤ ε1 +
r
2 ε1 = (1+ r

2 )ε1. Then we obtain ‖w− u‖H1(ν) ≤√
ε2

1 +(1+ r
2 )

2ε2
1 = ε. And so we have proven that C1

c ((0,∞),Rn) is dense into

H1(R+,ν;Rn). Since C1
c ((0,∞),Rn)⊂C1

0(R+,R
n), the assertion (iv) is proven.

Since C1
0((0,∞),Rn)⊂ AAP1(R+,R

n;M), the assertion (iv) implies (v). �	

When x ∈ R
n and when k ∈ {0,1,2}, we set

APk(R+,R
n;M,x) := {u ∈ APk(R+,R

n;M) : u(0) = x}, AAPk(R+,R
n,x) := {u ∈

AAPk(R+,R
n;M) : u(0) = x}, BCk(R+,R

n;x) := {u ∈ BCk(R+,R
n) : u(0) = x}

and H1(R+,ν;Rn;x) := {u ∈ H1(R+,ν;Rn) : u(0) = x}.

Proposition 2. Let M be a Z-submodule of R which is generated by at least two
Z-linearly independent real numbers, and let x be an arbitrary vector in R

n. The
two following assertions hold:

(i) AP0(R+,R
n;M) is dense into L2(R+,ν;Rn).

(ii) AP2(R+,R
n,M) and AP1(R+,R

n,M) are dense into H1(R+,ν;Rn).
(iii) AP2(R+,R

n;M,x) is dense into H1(R+,ν;Rn;x).
(iv) BC2(R+,R

n;x) is dense into H1(R+,ν;Rn;x).
(v) AAP2(R+,R

n,x) is dense into H1(R+,ν;Rn;x).
(vi) C1

c ((0,∞),Rn) is dense into H1(R+,ν;Rn;0).
(vii) H1(R+,ν;Rn;0) is dense into L2(R+,ν;Rn).

Proof. To prove the assertion (i), we will prove that the orthogonal subspace
to AP0(R+,R

n;M) in L2(R+,ν;Rn) is reduced to the singleton {0}. Let f =
( f1, . . . , fn) ∈ L2(R+,ν;Rn) be an orthogonal function to AP0(R+,R

n;M). We fix
j ∈ {1, . . . ,n}, then for all ϕ ∈ AP0(R+,R;M), we have

∫
R+

er f jϕdμ = 0. There-
fore, setting er(t) := 0 and f (t) := 0 when t < 0, for all λ ∈M, successively by tak-
ing ϕ(t) = cos(−λ t) and ϕ(t) = sin(−λ t), we obtain

∫
R+

er(t) f j(t)e−iλ tdμ(t) = 0,

i.e.
∫
R

er(t) f j(t)1R+(t)e
−iλ tdt = 0, i.e. F (ẽr f̃ j1R+)(λ ) = 0 for all λ ∈M, where F

denotes the Fourier transform, defined by F (φ)(λ ) :=
∫
R

φ(t)e−iλ t dt, and where
ẽr (respectively f̃ ) is the extension of er (respectively f ) to R by the value 0
on (−∞,0). Using [13] (Proposition 1, p. TG V.1) we know that M is dense in
R, and since F (er f j1R+) is continuous [26] (Theorem 1.1, p. 2), we obtain that
F (ẽr f̃ j1R+)(λ ) = 0 for all λ ∈ R. Then by using the uniqueness theorem on
Fourier transforms [26] (Corollary 1.22, p. 12), we obtain ẽr f̃ j1R+ = 0 Lebesgue-
a.e. on R. Therefore we obtain ẽr f̃ j = 0 μ-a.e. on R+, and then f j = 0 ν-a.e. on R+.
Consequently we have f = 0 in L2(R+,ν;Rn). And so the assertion (i) is proven.

To prove the assertion (ii), note that the density of AP2(R+,R
n;M) implies

this one of AP1(R+,R
n;M). And to prove the density of AP2(R+,R

n;M), we will
prove that the orthogonal subspace to AP2(R+,R

n;M) in H1(R+,ν;Rn) is reduced
to the singleton {0}. Let f ∈ H1(R+,ν;Rn) be orthogonal to AP2(R+,R

n;M).
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Then for all ϕ ∈ AP2(R+,R
n;M), we have

∫
R+

er f .ϕdμ +
∫
R+

er f ′.ϕ ′dμ = 0.
Considering the functions which have t �→ cos(−λ t) and t �→ sin(−λ t) as one
of their coordinates and the value 0 for their other coordinates, these functions
belong to AP2(R+,R

n;M) when λ ∈ M, and we obtain
∫ ∞

0 e−rt f j(t)e−iλ tdt +
∫ ∞

0 e−rt f ′j(t)e
−iλ t(−iλ )dt = 0, for all j = 1, . . . ,n, i.e.

∀λ ∈M,

∫ ∞

0
e−rt f (t)e−iλ tdt = iλ

∫ ∞

0
e−rt f ′(t)e−iλ t . (4)

Recall that when φ ∈ L1(R,Rn) (for the Lebesgue measure) with φ ′ ∈ L1(R,Rn)
then [26] (Theorem 1.7, p. 4), we have

∀λ ∈R, F (φ ′)(λ ) = iλF (φ)(λ ). (5)

Then (4) becomes

∀λ ∈M, F (ẽr f̃ )(λ ) = iλF (ẽr f̃ ′)(λ ). (6)

As a consequence of (5) we obtain ∀λ ∈ M, F ( d
dt (ẽr f̃ ))(λ ) = iλF (ẽr f̃ )(λ ).

For μ-almost all t ∈ R+, we have d
dt (e

−rt f (t)) = −re−rt f (t) + e−rt f ′(t), so that
for Lebesgue-almost all t ∈ R+, we have d

dt (e
−rt1R+(t) f (t)) =−re−rt1R+(t) f (t)+

e−rt1R+(t) f ′(t) that implies F ( d
dt (ẽr f̃ ))(λ ) = −rF (ẽr f̃ )(λ ) +F (ẽr f̃ ′)(λ ), for

all λ ∈M.Therefore we obtain iλF (ẽr f̃ )(λ ) = −rF (ẽr f̃ )(λ )+F (ẽr f̃ ′)(λ ), and
using (6) we have (iλ )2F (ẽr f̃ ′)(λ ) = −r(iλ )F (ẽr f̃ ′)(λ )+F (ẽr f̃ ′)(λ ), which
give [−(λ 2 + 1)+ i(rλ )]F (ẽr f̃ ′)(λ ) = 0, for all λ ∈M . Note that [−(λ 2 + 1)+
i(rλ )] �= 0 for all λ ∈ R that implies F (ẽr f̃ ′) = 0 on M, and using (6) we obtain
F (ẽr f̃ ) = 0 on M. And since F (ẽr f̃ ) is continuous on R, using the density of M
into R, we obtain F (ẽr f̃ ) = 0 on R. Then using the uniqueness theorem we obtain
ẽr f̃ = 0 Lebesgue-a.e. on R, and consequently er f = 0 μ-a.e. on R+, and since
er(t) > 0 for all t, we obtain f = 0 μ-a.e. on R+. And so we have proven that the
orthogonal of AP2(R+,R

n) in H1(R+,ν, ;Rn) is reduced to zero that implies that
the closure of AP2(R+,R

n) into H1(R+,ν, ;Rn) is equal to H1(R+,ν, ;Rn). So (ii)
is proven.

To prove (iii) we need to establish the following preliminary inequality:

|u(0)| ≤ ξ‖u‖H1
ν
, (7)

where u ∈ H1(R+,ν;Rn) and ξ ∈ (0,∞) is independent of u.
When u ∈ H1(R+,ν;Rn), u is locally absolutely continuous on R+, and con-

sequently the function er.u is also locally absolutely continuous on R+. Note
that (eru)′(t) = −r(eru)(t) + (eru′)(t) for μ-almost all t ∈ R+. Then we have
er(t)u(t) = u(0)+

∫ t
0(eru)′(s)ds = u(0)−r

∫ t
0(eru)(s)ds+

∫ t
0(eru′)(s)ds that implies

u(0) = er(t)u(t)+ r
∫ t

0(eru)(s)ds−
∫ t

0(eru′)(s)ds. Using the Lebesgue-dominated
convergence theorem, we know that limt→∞

∫ t
0(eru)(s)ds =

∫
R+

(eru)dμ and
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limt→∞
∫ t

0(eru′)(s)ds =
∫
R+

(eru′)dμ , and consequently γ := limt→∞(eru)(t) ex-
ists into R

n. If we suppose that γ �= 0, then there exists T ∈ R+ such that
‖(eru)(t)‖ ≥ 1

2‖γ‖ for all t ≥ T . Then we obtain
∫
R+
‖eru‖dμ = ∞ that is

impossible since eru∈ L1(R+,μ ;Rn). And so we necessarily have γ = 0 that implies
u(0)= r

∫
R+

erudμ−
∫
R+

eru′dμ , then we have |u(0)| ≤ r‖u‖L1
ν
+‖u′‖L1

ν
≤ r√

r
‖u‖L2

ν

+ 1√
r‖u

′‖L2
ν
≤ max{

√
r, 1√

r}(‖u‖L2
ν
+ ‖u′‖L2

ν
) ≤ max{

√
r, 1√

r}
√

2‖u‖H1
ν
. And so it

suffices to set ξ :=max{
√

r, 1√
r
}
√

2 to obtain (7). Now we fix u∈H1(R+,ν;Rn;x),

and by using (ii), there exists a sequence (v j) j into AP2(R+,R
n;M) such that

lim j→∞ ‖v j−u‖H1
ν
= 0. By inequality (5) we deduce lim j→∞ ‖v j(0)−u(0)‖= 0. We

set wj := v j− v j(0)+ u(0) for all j ∈ N. Then we have wj∈AP2(R+,R
n;M), and

since wj(0) = v j(0)−v j(0)+u(0)=u(0)=x, we obtain that wj∈AP2(R+,R
n;M,x).

The inequalities ‖wj − u‖H1
ν
≤ ‖v j − u‖H1

ν
+ ‖v j(0)− u(0)‖H1

ν
≤ ‖v j − u‖H1

ν
+

1
r ‖v j(0)− u(0)‖ imply lim j→∞ ‖v j− u‖H1

ν
= 0, and so AP2(R+,R

n;M,x) is dense

into H1(R+,ν;Rn;x), which prove (iii).
Since AP2(R+,R

n;M,x) ⊂ BC2(R+,R
n,x), the assertion (iv) is a straightfor-

ward consequence of (iii). Taking M = R, since AP2(R+,R
n;M,x) is included

in AAP2(R+,R
n,x), the assertion (v) is a consequence of (iii). The proof of

the assertion (vi) is similar to this one of the assertion (iv) of the previous
proposition. Since C1

c ((0,∞),Rn) is dense into L2(R+,ν;Rn), and since we have
C1

c ((0,∞),Rn)⊂ H1(R+,ν;Rn,0)⊂ L2(R+,ν;Rn), (vi) is a consequence of (v).
�	

We denote by P0
T (R+,R

n) the closure of P0
T (R+,R

n) in L2(R+,ν,Rn).

Proposition 3. The following assertions hold:

(i) If u ∈ P0
T (R+,R

n), then u(t +T ) = u(t) for μ-a.e. t ∈ R+.

(ii) P0
T (R+,R

n)∩C0
0(R+,R

n) = {0}. Consequently P0
T (R+,R

n) is not dense into
L2(R+,ν,Rn).

Proof. Note that the operator Δ : u �→ u(.+ T )− u is linear continuous from
L2(R+,ν;Rn) into itself. And so kerΔ is closed, and since P0

T (R+,R
n) ⊂ kerΔ ,

we also have P0
T (R+,R

n)⊂ kerΔ that proves (i).

If u ∈ P0
T (R+,R

n)∩C0
0(R+,R

n), then u is continuous and therefore the function
t �→ |u(t + T )− u(t)| is also continuous on R+, and this last function is locally
Lebesgue integrable on R+. Moreover, on each segment [a,b] ⊂ R+, its Lebesgue
integral is equal to its Riemann integral. By using (ii) we have

∫ b
a |u(t + T )−

u(t)|dt = 0 for all a < b in R+, and then we obtain |u(t + T )− u(t)| = 0 for all
t ∈ [a,b] that implies u(t + T ) = u(t) for all t ∈ R+. Since limt→∞ u(t) = 0, we
have ∀ε > 0,∃τε > 0,∀t ≥ τε , |u(t)| ≤ ε . We fix ε > 0 and we denote by kε the least
integer number greater than τε . Then, for all t ∈ [kε T,(kε +1)T ], we have |u(t)| ≤ ε .
When t ∈ [0,T ], we have u(t) = u(t + kε T ) that implies that |u(t)| ≤ ε . And so we
obtain supt∈[0,T ] |u(t)| ≤ ε . By doing ε → 0+, we obtain u(t) = 0 for all t ∈ [0,T ],
and then by using the periodicity, we obtain u = 0 that proves the assertion (ii). �	
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3 Variational Principle for Bounded Functions

In this section we establish a variational principle in the space BC1(R+,R
n). First

we recall a notion of [10]: F ∈U (R+×R
p,Rq) if and only if F ∈C0(R+×R

p,Rq),
F(.,x) ∈ BC0(R+,R

q) for all x ∈ R
p, and f satisfies the following condition:

∀K ∈Pc(R
p),∀ε > 0,∃δ = δ (K,ε) > 0,∀x ∈ K,∀y ∈ K,

|x− y| ≤ δ =⇒ sup
t∈R+

|F(t,y)−F(t,x)| ≤ ε,

where Pc(R
p) denotes the set of the compact subsets of Rp.

Adapting to our setting a result due to Blot et al. in [10] (Lemma 6, p. 710), we
obtain the following lemma:

Lemma 1. Let F ∈ U (R+×R
p,Rq). We assume that for all t ∈ R+, the partial

mapping F(t, .) is Fréchet differentiable on R
p, and its differential Fx belongs to

U (R+×R
p,L (Rp,Rq)).

Then the Nemytski operator NF : BC0(R+,R
p)→BC0(R+,R

q), defined by NF (u) :=
[t �→ F(t,u(t))], is of class C1, and for all u,h∈ BC0(R+,R

p), we have DNF(u).h =
[t �→ Fx(t,u(t)).h(t)].

We consider the following list of conditions:

(A1) L ∈U (R+×R
n×R

n,R).
(A2) For all t ∈R+, the partial differentials of L with respect to the second variable,

denoted by Lu, and with respect to the third variable, denoted by Lu′ , exist,
and moreover Lu ∈ U (R+×R

n×R
n,L (Rn,R)) and Lu′ ∈ U (R+×R

n×
R

n,L (Rn,R)).

Under these two conditions we consider the functional JBC : BC1(R+,R
n) → R

defined by

JBC(u) :=
∫ ∞

0
e−rtL(t,u(t),u′(t))dt =

∫

R+

erL(.,u,u′)dμ . (8)

Theorem 1. Under (A1)–(A2), JBC is of class C1 on BC1(R+,R
n). Fixing x ∈ R

n,
when u ∈ BC1(R+,R

n,x), we have DJBC(u) = 0 on BC1(R+,R
n,0) if and only if u

is a solution of the Euler–Lagrange equation (1) on R+ such that u(0) = x.

Proof. We consider the following mappings:

• j : BC1(R+,R
n) → BC0(R+,R

n)× BC0(R+,R
n) = BC0(R+,R

2n) defined by
j(u) := (u,u′).

• NL : BC0(R+,R
2n)→ BC0(R+,R) defined by NL(u,v)(t) := L(t,u(t),v(t)).

• Λ : BC0(R+,R)→ R defined by Λ(ϕ) :=
∫ ∞

0 e−rtϕ(t)dt.
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Since j is linear continuous, it is of class C1. By using Lemma 1, NL is of class C1.
Since Λ is linear continuous, it is of class C1. Since JBC = Λ ◦NL ◦ j1, JBC is of
class C1 as a composition of three C1 mappings. Moreover by using the chain rule
and Lemma 1, we obtain DJBC(u).h =Λ(DNL( j(u)). j(h) that implies DJBC(u).h =∫ ∞

0 (e−rtLu(t,u(t),u′(t)).h(t)+ e−rtLu′(t,u(t),u
′(t)).h′(t))dt. If DJBC(u) = 0, then,

for all h ∈ BC1(R+,R
n,0), we have

∫ ∞
0 e−rtLu(t,u(t),u′(t)).h(t)dt = −

∫ ∞
0 e−rt

Lu′(t,u(t),u
′(t)).h′(t)dt, and consequently this equality holds for all h ∈C∞

c ((0,∞),
R

n), so for all k = 1, . . . ,n and for all ϕ ∈C∞
c ((0,∞),R), we have

∫ ∞

0
e−rtLuk(t,u(t),u

′(t)).ϕ(t)dt =−
∫ ∞

0
e−rtLu′k

(t,u(t),u′(t)).ϕ ′(t)dt. (9)

So by using the distributional derivative definition [25], we have er.Luk(.,u,u
′) =

D(erLu′k
(.,u,u′)) (equality in D ′((0,∞),R)). Since erLuk(.,u,u

′) and erLu′k
(.,u,u′)

are continuous on (0,∞), by using [25] (Théorème III, p. 54), we obtain, for
all t ∈ (0,∞), e−rtLuk(t,u(t),u

′(t)) = d
dt (e

−rtLu′k
(t,u(t),u′(t))), and by using the

continuity of erLuk(.,u,u
′) and erLu′k

(.,u,u′) on R+, we obtain that for all t ∈
R+, e−rtLuk(t,u(t),u

′(t)) = d
dt (e

−rtLu′k
(t,u(t),u′(t))). Since er is C∞ on R+, we

obtain that erLu′k
(.,u,u′) is differentiable on R+ as a product of two differentiable

functions, and we deduce (1) from (9).
Conversely, we assume that u satisfies (1). Then, for all h ∈ BC1(R+,R

n),
using (9) and the dominated convergence theorem of Lebesgue on the sequence
(1[0,m](erLu(.u,u′).h+erLu′(.,u,u

′)))m∈N∗ , we have DJBC(u).h=
∫ ∞

0 (erLu(.,u,u′).h
+erLu′(.,u,u

′).h′)dt = limm→∞
∫ m

0 (erLu(.,u,u′).h+ erLu′(.,u,u
′).h′)dt. Using (1),

we have
∫ m

0 (er.Lu(.,u,u′).h + erLu′(.,u,u
′).h′)dt =

∫ m
0

d
dt (erLu′(.,u,u

′).h)dt =
e−rmLu′(m,u(m),u′(m)).h(m)−Lu′(0,u(0),u

′(0)).h(0) = e−rmLu′(m,u(m),u′(m)).
h(m), for all m∈N∗ by using h(0) = 0, and since the sequence (Lu′(m,u(m),u′(m)).
h(m))m is bounded, and limm→∞ e−rm = 0, we obtain that DJBC(u).h = 0. �	

Remark 2. Theorem 1 is an improvement at the nonautonomous case of a result of
Blot–Cartigny in [7].

4 Variational Principle for Almost Periodic Functions

In this section we establish a variational principle on the space AP1(R+,R
n;M).

First we recall that F ∈ APU(R+×R
p,Rq) when F ∈C0(R+×R

p,Rq) and when
f satisfies the following condition

∀K ∈P(Rp),∀ε > 0,∃�= �(K,ε)> 0,∀r ∈R+,∃τ ∈ [r,r+ �],

∀(t,x) ∈R+×R
p, |F(t + τ,x)−F(t,x)| ≤ ε;
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see [12, 27]. We say that F ∈ APU(R+×R
p,Rq;M) when F ∈ APU(R+×R

p,Rq)
and when the module of frequencies of F is included into M. Adapting to our setting
a result due to Blot et al. in [10] (Lemma 7, p. 710), and [19] (Theorem 4.5) on the
modules of frequencies, we obtain the following lemma:

Lemma 2. Let F ∈ APU(R+×R
p,Rq;M). We assume that for all t ∈ R+, the

partial mapping F(t, .) is Fréchet differentiable on R
p and its differential Fx belongs

to APU(R+×R
p,L (Rp,Rq));M).

Then the Nemytski operator N1
F : AP0(R+,R

p) → AP0(R+,R
q;M), defined by

N1
F(u) := [t �→ F(t,u(t))], is of class C1, and for all u,h ∈ AP0(R+,R

p;M), we
have DN1

F(u).h = [t �→ Fx(t,u(t)).h(t)].

When F is autonomous, such a result is established in [4] (Proposition 3, p. 12).
We consider the following list of conditions:

(A3) L ∈ APU(R+×R
n×R

n,R;M).
(A4) For all t ∈R+, the partial differentials of L with respect to the second variable,

denoted by Lu, and with respect to the third variable, denoted by Lu′ , exist, and
moreover Lu ∈APU(R+×R

n×R
n,L (Rn,R);M) and Lu′ ∈APU(R+×R

n×
R

n,L (Rn,R);M).

Under these two conditions we consider the functional JAP : AP1(R+,R
n;M)→ R

defined by

JAP(u) :=
∫ ∞

0
e−rtL(t,u(t),u′(t))dt =

∫

R+

erL(.,u,u
′)dμ . (10)

Theorem 2. Under (A3)–(A4), JAP is of class C1 on AP1(R+,R
n;M). Fixing x ∈

R
n, when u ∈ AP1(R+,R

n;M,x), DJAP(u) = 0 on AP1(R+,R
n;M,0) if and only if

u is a solution of the Euler–Lagrange equation (1) on R+ such that u(0) = x.

Proof. To prove that JAP is of class C1, we proceed like in a way which is similar
to this one of the proof of Theorem 1: we split JAP = Λ ◦ NL ◦ j1 where j1 :
AP1(R+,R

n)→AP0(R+,R
n)×AP0(R+,R

n) is j1(u) :=(u,u′), N1
L : AP0(R+,R

n×
R

n)→ AP0(R+,R) is N1
L(u,v) := [t �→ L(t,u(t),v(t))], and Λ 1 : AP0(R+,R)→ R

is Λ 1(ϕ) :=
∫ ∞

0 e−rtϕ(t)dt. And so by using Lemma 2 and the basic results of
the differential calculus, JAP = Λ 1 ◦N1

L ◦ j1 is of class C1. And so an analogous,
we obtain the formula of the differential of JAP which is analogous to this one of
DJBC in proof of Theorem1. Then, for all λ ∈M, since the functions t �→ cos(−λ t)
and t �→ sin(−λ t) belong to AP1(R+,R;M), we obtain the following relation:∫ ∞

0 e−rtLuk (t,u(t),u
′(t))e−iλ tdt = −

∫ ∞
0 e−rtLu′k

(t,u(t),u′(t))(−iλ )e−iλ tdt, i.e. for

all λ ∈M,
∫ ∞

0 e−rtLuk(t,u(t),u
′(t))e−iλ tdt = iλ

∫ ∞
0 e−rtLu′k

(t,u(t),u′(t))e−iλ tdt, that

is denoting by L̃uk the extension on R by the value 0 on (−∞,0) of the function
t �→ Luk (t,u(t),u

′(t)) and by L̃u′k
the extension on R by the value 0 on (−∞,0) of the

function t �→ Lu′k
(t,u(t),u′(t)), for all λ ∈M and for all k = 1, . . . ,n, F (ẽrL̃uk)(λ ) =

iλF (ẽrL̃u′k
)(λ ). Using the continuity of F (ẽrL̃uk) and of F (ẽrL̃u′k

) on R and the
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density of M into R, the previous equality holds for all λ ∈ R. Since we have
F (D(ẽrL̃u′k

)) = (i.idR)F (ẽr L̃u′k
), where D denotes the distributional derivative in

S ′(R,R), we have F (ẽrL̃uk) = F (D(ẽrL̃u′k
)). By the uniqueness theorem for the

Fourier transform of tempered distributions we obtain ẽrL̃uk = D(ẽrL̃u′k
) (equality

in S ′(R,R)), and consequently ẽrL̃uk = D(ẽrL̃u′k
) (equality in D ′(R,R)), i.e. using

the definition of the distributional derivative
∫
R

ẽrL̃uk ϕdt = −
∫
R

ẽrL̃u′k
ϕ ′dt for all

ϕ ∈C∞
c (R,R), we have

∫
R

ẽrL̃uk ϕdt =−
∫
R

ẽrL̃u′k
1R+ϕ ′dt for all ϕ ∈C∞

c ((0,∞),R),
so we obtain the equality (9). Proceeding like in the proof of Theorem 1, u satisfies
(1). The converse of the equivalence is proven like this one of assertion (i) of
Theorem 1. �	

5 Variational Principle for Asymptotically Almost Periodic
Functions

In this section we establish a variational principle on the space AAP1(R+,R
n).

First we recall, following Zaidman [28], that F ∈ AAPU(R+×R
p,Rq) when F

is continuous and when the following condition is fulfilled :

∀K ∈Pc(R
p),∀ε > 0,∃T = T (K,ε) > 0,∃�= �(K,ε)> 0,∀r ∈R+,

∃τ ∈ [r,r+ �],∀x ∈ K,∀t ≥ T, |F(t + τ,x)−F(t,x)| ≤ ε.

Then using a result due to Blot et al. (Theorem 8.5 in [12], p. 66), we obtain the
following lemma:

Lemma 3. Let F ∈ AAPU(R+×R
p,Rq;M). We assume that for all t ∈ R+, the

partial mapping F(t, .) is Fréchet differentiable onRp, and its differential Fx belongs
to AAPU(R+×R

p,L (Rp,Rq));M).
Then the Nemytski operator N2

F : AAP0(R+,R
p;M)→ AAP0(R+,R

q;M), defined
by N2

F(u) := [t �→ F(t,u(t))], is of class C1, and for all u,h ∈ AAP0(R+,R
p;M), we

have DN2
F(u).h = [t �→ Fx(t,u(t)).h(t)].

We introduce the following conditions:

(A5) L ∈ AAPU(R+×R
n×R

n,R).
(A6) For all t ∈R+, the partial differentials of L with respect to the second variable,

denoted by Lu, and with respect to the third variable, denoted by Lu′ , exist, and
moreover Lu ∈ AAPU(R+×R

n×R
n,L (Rn,R)) and Lu′ ∈AAPU(R+×R

n×
R

n,L (Rn,R)).

Under these two conditions we define the functional JAAP : AAP1(R+,R
n)→ R by

setting, for all u ∈ AAP1(R+,R
n),

JAAP(u) :=
∫ ∞

0
e−rtL(t,u(t),u′(t))dt. (11)
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Theorem 3. Under (A5)–(A6), JAAP is of class C1 on AAP1(R+,R
n). Fixing x∈R

n,
when u ∈ AAP1(R+,R

n,x), we have DJAAP(u) = 0 on AAP1(R+,R
n,0) if and only

if u is a solution of the Euler–Lagrange equation (1) on R+ such that u(0) = x.

Since C∞
c ((0,∞),R) ⊂ AAP1(R+,R,0), the proof of this theorem is similar to this

one of Theorem 1.

6 Variational Principle on a Weighted Sobolev Space

In this section we establish a variational principle on the space H1(R+,ν;Rn). We
need some additional assumptions.

(A7) For Lebesgue-almost all t ∈R+, L(t., ., .) is of class C1 on R
n×R

n, and for all
(x,y) ∈ R

n×R
n, L(.,x,y), Lu(.,x,y) and Lu′(.,x,y) are Lebesgue-measurable

on R+.
(A8) There exist α ∈ (0,∞) and β ∈ L1(R+,ν,R+) such that |Lu(t,x,y)| ≤α.(|x|+

|y|) + β (t) and |Lu′(t,x,y)| ≤ α.(|x| + |y|) + β (t) for all (t,x,y) ∈ R+×
R

n×R
n.

Note that (A7) means that L, Lu and Lu′ are Caratheodory functions. Under these
conditions we define the functional JH1(u) : H1(R+,ν,Rn)→ R by setting

JH(u) :=
∫ ∞

0
e−rtL(t,u(t),u′(t))dt, (12)

and we can formulate the following variational principle:

Theorem 4. Under (A7)–(A8), JH is of class C1 on H1(R+,ν,Rn). Fixing x ∈ R
n,

when u ∈ H1(R+,ν,Rn,x), we have DJH(u) = 0 on H1(R+,ν,Rn,0) if and only if
u is a locally absolutely continuous solution of the Euler–Lagrange equation (1) on
R+ such that u(0) = x.

Proof. To replace the measure of Lebesgue on a bounded subset of R
m by the

measure ν on R+ does not change the proof of Theorem 2.6, p. 14, in [18] (which
some parts are proved in [20]) that permits us to assert that the Nemytski operator
on L, N3

L : L2(R+,ν,Rn)×L2(R+,ν,Rn)→ L2(R+,ν,R), defined by N3
L(u,v)(t) :=

L(t,u(t),v(t)), is of class C1, and its differential is given by (DN3
L(u,v).(h,k))(t) =

Lu(t,u(t),v(t)).h(t)+Lu′(t,u(t),v(t)).k(t). Since the operator j3 : H1(R+,ν,Rn)→
L2(R+,ν,Rn)× L2(R+,ν,Rn) defined by j3(u) := (u,u′) and the functional Λ 3 :
L2(R+,ν,R)→ R defined by Λ 3(ϕ) :=

∫ ∞
0 e−rtϕ(t)dt are linear continuous, they

are of class C1. Since JH = Λ 3 ◦N3
L ◦ j3, JH is of class C1 on H1(R+,ν,Rn) as a

composition of C1 mappings. Moreover by using the chain rule of the differential
calculus, we obtain the following formula:

DJH(u).h =

∫ ∞

0
e−rt(Lu(t,u(t),u

′(t)).h(t)+Lu′(t,u(t),u
′(t)).h′(t))dt (13)
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for all u,h ∈ H1(R+,ν,Rn). For a solution u ∈ H1(R+,ν,Rn,x) of (1) such that
u(0)= x, then t �→ Lu′(t,u(t),u

′(t)) is locally absolutely continuous, and the equality
e−rtLu(t,u(t),u′(t)) =−rLu′(t,u(t),u

′(t))+ d
dt Lu′(t,u(t),u

′(t)) = d
dt (e

−rtLu′(t,u(t),
u′(t))) holds for μ-a.e. t ∈ R+. Therefore for all h ∈ C1

c ((0,∞),Rn), we ob-
tain

∫ ∞
0 e−rtLu(t,u(t),u′(t)).h(t)dt =

∫ ∞
0

d
dt (e

−rt .Lu′(t,u(t),u
′(t)))dt. Using the in-

tegration by parts for the absolutely continuous functions [23] (p. 54–55), for
all T > supsupp(h), we have

∫ T
0

d
dt (e

−rt .Lu′(t,u(t),u
′(t))).h(t)dt = 0−

∫ T
0 e−rt

Lu′(t,u(t),u
′(t)).h′(t)dt, and by using the Lebesgue-dominated convergence the-

orem, we obtain
∫ ∞

0
d
dt (e

−rtLu′(t,u(t),u
′(t))).h(t)dt = −

∫ ∞
0 e−rtLu′(t,u(t),u

′(t)).
h′(t)dt, and so we obtain

∫ ∞

0
e−rt(Lu(t,u(t),u

′(t)).h(t)+Lu′(t,u(t),u
′(t)).h′(t)dt = 0,

i.e. DJH(u).h = 0 for all h∈C1
c ((0,∞),Rn). Using Proposition 2, v, since C1

c ((0,∞),
R

n) is dense into H1(R+,ν,Rn,0), this last relation implies DJH(u).h = 0 for
all h ∈ H1(R+,ν,Rn,0). Conversely, we assume that DJH(u).h = 0 for all h ∈
H1(R+,ν,Rn,0), where u ∈ H1(R+,ν,Rn,x). Then using (13) we know that

∫ ∞

0
e−rtLu(t,u(t),u

′(t)).h(t)dt =−
∫ ∞

0
e−rtLu′(t,u(t),u

′(t)).h′(t))dt

for all h∈C1
c ((0,∞),Rn) and consequently for all h∈C∞

c ((0,∞),Rn). This last rela-
tion implies that D(erLu′(.,u,u

′)) = erLu(.,u,u′) in D ′((0,∞),Rn). Since
erLu(.,u,u′) ∈ L1((0,∞),Rn) the function erLu′(.u,u

′) is locally absolutely con-
tinuous on R+, and we have d

dt (e
−rtLu′(t,u(t),u

′(t))) = e−rtLu(t,u(t),u′(t)) for
μ-almost all t ∈ R+, and then u is a locally absolutely continuous solution of (1).

�	

7 Results on Forced Equations

When b∈ L2(R+,ν,Rn), to treat (2) we consider the functional Φb : H1(R+,ν,Rn)
→R defined by

Φb(u) := JH(u)− (u,b)L2
(ν)
. (14)

Note that introducing the function K : R+×R
n×R

n → R defined by K(t,x,y) :=
L(t,x,y)− x.b(t), we obtain

Φb(u) :=
∫ ∞

0
K(t,u(t),u′(t))dt. (15)

We consider the following conditions on L:

(A9) For all t ∈ R+, L(t, ., .) is convex on R
n×R

n.
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(A10) There exist α1 ∈ (0,∞) and β1 ∈ L1(R+,ν,R) such that L(t,x,y)≥α1(|x|2+
|y|2)+β1(t) for all (t,x,y) ∈ R+×R

n×R
n.

Lemma 4. Under (A7)–(A10), for all b ∈ L2(R+,ν,Rn) and for all x ∈ R
n, there

exists a locally absolutely continuous solution u of (2) on R+ such that u(0) = x.

Proof. First we verify that Φb is of class C1 on H1(R+,ν,Rn). Since u �→ (u,b)L2(ν)
is linear continuous, it is of class C1 on H1(R+,ν,Rn), and using Theorem 4, we
know that JH is of class C1 on H1(R+,ν,Rn). Then Φb is of class C1 as a difference
of two C1 functionals.

It is easy to see that the function K also satisfies the conditions (A7)–(A8), and so
using (15) we can use Theorem 4 on Φb (instead of JH). Then when we fix x ∈ R

n,
and when u ∈ H1(R+,ν,Rn,x), we obtain that DΦb(u) = 0 on H1(R+,ν,Rn,0)
if and only if Ku(t,u(t),u′(t))+ rKu′(t,u(t),u

′(t))− d
dt Ku′(t,u(t),u

′(t)) = 0 that is
exactly (2).

(A9) implies that Φb is convex on the closed affine set H1(R+,ν,Rn,x), and since
Φb is of class C1, using Theorem 1.2 in p. 49 of [17], we can assert that Φb is weakly
lower semicontinuous on H1(R+,ν,Rn,x). (A10) implies that Φb is coercive. Then
using Theorem 1.1 in p. 48 of [17], we know that there exists u ∈ H1(R+,ν,Rn,x)
such that Φb(u) = infΦb(H1(R+,ν,Rn,x)). Since H1(R+,ν,Rn,0) is the tangent
vector space of H1(R+,ν,Rn,x) with Φb of class C1, we obtain that DΦb(u) = 0 on
H1(R+,ν,Rn,0), and consequently u is a locally absolutely continuous solution of
(2) on R+ such that u(0) = x. �	

We introduce ‖.‖∗ : L2(R+,ν,Rn)→ R by setting

‖u‖∗ := sup{|(u,h)L2(ν)| : h ∈H1(R+,ν,Rn,0),‖h‖H1(ν) ≤ 1}. (16)

It is easy to verify that ‖.‖∗ is a norm on L2(R+,ν,Rn); using the density of
H1(R+,ν,Rn,0) into L2(R+,ν,Rn), we have the implication ‖u‖∗ = 0 =⇒ u = 0.
We can verify that the inequality ‖.‖∗ ≤ ‖.‖L2(ν) holds.

We also introduce the following condition:

(A11) L ∈C2(R+×R
n×R

n,R).

Theorem 5. Under (A1), (A2), and (A8)–(A11), for all x ∈ R
n, the set of the b

belonging to BC0(R+,R
n) such that there exists u∈ BC1(R+,R

n) solution of (2) on
R+ satisfying u(0) = x is dense into BC0(R+,R

n) with respect the norm ‖.‖∗.

Proof. When x ∈ R
n, we introduce the operator Tx : D(Tx)→ L2(R+,ν,Rn):

Tx(u) := Lu(.,u,u
′)+ rLu′(.u,u

′)− d
dt

Lu′(.u,u
′), (17)

where D(Tx)⊂H1(R+,ν,Rn,x) is the set of the u∈H1(R+,ν,Rn) such that Tx(u)
is well defined.
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After (A11) we have BC2(R+,R
n,x) ⊂ D(Tx). Since Tx(u) := Lu(.,u,u′) +

rLu′(.u,u
′)−Lu′t(.,u,u

′)−Lu′u(.,u,u
′).u′−Lu′u′(.,u,u

′).u′′ ∈BC0(R+,R
n), we have

Tx(BC2(R+,R
n,x)) ⊂ BC0(R+,R

n). (18)

Note that (A7) is a consequence of (A1)–(A2), and by using Lemma 4, we know
that for all b∈ L2(R+,ν,Rn), there exists u∈H1(R+,ν,Rn,x) such that Tx(u) = b,
and so we have

Tx is onto, i.e. Tx(D(Tx)) = L2(R+,ν,Rn). (19)

When u∈D(Tx) and h ∈H1(R+,ν,Rn,0), we have, using the integration by parts,

(Tx(u),h)L2(ν)

=

∫ ∞

0
e−rt(Lu(t,u(t),u

′(t))+ rLu′(t,u(t),u
′(t))− d

dt
Lu′(t,u(t),u

′(t))).h(t)dt

=

∫ ∞

0
e−rt(Lu(t,u(t),u

′(t)).h(t)+Lu′(t,u(t),u
′(t)).h′(t))dt = DJH(u).h,

and consequently for all u,v ∈D(Tx), we obtain

‖Tx(u)−Tx(v)‖∗
= sup{|DJH(u).h−DJH(v).h| : h ∈ H\E(R+,ν,Rn,0),‖h‖H1(ν) ≤ 1}

≤ sup{‖DJH(u)−DJH(v)‖L ‖h‖H1(ν) : h ∈ H1(R+,ν,Rn,0),‖h‖H1(ν) ≤ 1}

= ‖DJH(u)−DJH(v)‖L

that implies, since DJ is continuous, the following assertion:

Tx : (D(Tx),‖.‖H1(ν))→ (L2(R+,ν,Rn),‖.‖∗) is continuous. (20)

Let b∈ BC0(R+,R
n). Since BC0(R+,R

n)⊂ L2(R+,ν,Rn), after (18) we know that
there exists ub ∈ D(Tx) such that Tx(ub) = b. Since BC2(R+,R

n,x) is dense into
H1(R+,ν,Rn,x), BC2(R+,R

n,x) is dense into D(Tx), and therefore there exists
a sequence (u j) j in BC2(R+,R

n,x) such that lim j→∞ ‖u j − ub‖H1(ν) = 0. For all

j ∈ N, we set b j := Tx(u j). After (18) we know that b j ∈ BC0(R+,R
n) and that u j

is a solution of (2) on R+ for b j. Using (20) we have lim j→∞ b j = lim j→∞ Tx(u j) =
Tx(ub). And so the proof is complete. �	

The proofs of the two following theorems are similar to this one of Theorem 5:

Theorem 6. Under (A3), (A4), and (A8)–(A11), for all x ∈ R
n, the set of the b

belonging to AP0(R+,R
n;M) such that there exists u ∈ AP1(R+,R

n;M) solution of
(1) on R+ satisfying u(0) = x is dense into AP0(R+,R

n;M) with respect the norm
‖.‖∗.
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Theorem 7. Under (A5), (A6), and (A8)–(A11), for all x ∈ R
n, the set of the b

belonging to AAP0(R+,R
n) such that there exists u ∈ AAP1(R+,R

n) solution of (1)
on R+ satisfying u(0) = x is dense into AAP0(R+,R

n) with respect the norm ‖.‖∗.
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A Note on Elliptic Equations Involving
the Critical Sobolev Exponent

Gabriele Bonanno, Giovanni Molica Bisci, and Vicenţiu Rădulescu

Abstract In this work we obtain some existence results for a class of elliptic
Dirichlet problems involving the critical Sobolev exponent and containing a pa-
rameter. Through a weak lower semicontinuity result and by using a critical point
theorem for differentiable functionals, the existence of a precise open interval of
positive eigenvalues for which the treated problems admit at least one non-trivial
weak solution is established. The attained results represent a more precise version
of some contributions on the treated subject.

1 Introduction

In this we study the existence of one non-trivial weak solution for the following
elliptic Dirichlet problem:
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(Pμ,λ )

⎧
⎨

⎩
−Δpu = μ

(∫

Ω
|u(x)|p∗dx

)p/p∗−1

|u|p∗−2u+λ f (x,u) in Ω

u|∂Ω = 0,

where Ω is a bounded domain in R
N (N ≥ 2) with smooth boundary ∂Ω, 1< p <N,

Δpu := div(|∇u|p−2∇u) stands for the usual p-Laplace operator, p∗ := pN/(N− p)
and f : Ω×R → R is a Carathéodory function satisfying the subcritical growth
condition

| f (x, t)| ≤ a1 + a2|t|q−1, ∀(x, t) ∈Ω×R, (h∞)

where a1,a2 are non-negative constants and q ∈]1, pN/(N− p)[. Finally, λ and μ
are two real parameters, respectively, positive and non-negative.

Problem (P0,λ ) has been extensively studied during the last few years, where the
nonlinearity being a continuous function provided with certain growth properties at
zero and infinity, respectively. We just mention, in the large literature on the subject,
the papers [14, 15, 19]; see also the recent monograph by Kristály, Rădulescu and
Varga [16] as general reference for this topic.

When μ �= 0, the classical variational approach cannot be applied due to the
presence of the term

(∫

Ω
|u(x)|p∗dx

)p/p∗−1

|u|p∗−2u.

Indeed, the classical Sobolev inequality ensures that the embedding of the space
W 1,p

0 (Ω) into the Lebesgue space Lp∗(Ω) is continuous but not compact. Due to
this lack of compactness the classical methods cannot be used in order to prove
the weak lower semicontinuity of the energy functional associated to (Pμ,λ ). In our
setting we overcome this difficulty through a lower semicontinuity result obtained
by Montefusco in [17]. In this paper, bearing in mind the well-known inequality

(∫

Ω
|u(x)|p∗dx

)1/p∗

≤ 1

S1/p

(∫

Ω
|∇u(x)|pdx

)1/p

, ∀u ∈W 1,p
0 (Ω) (1)

where S is the best constant in the Sobolev inclusion W 1,p
0 (Ω) ↪→ Lp∗(Ω) (see

Sect. 2), fixing μ ∈ [0,S[ and requiring a suitable behaviour of the nonlinearity f
at zero, we determine a precise open interval of positive parameters λ , for which
problem (Pμ,λ ) admits at least one non-trivial weak solution in W 1,p

0 (Ω).
The proof of our main results are based on a recent abstract critical point theorem

proved by Bonanno and Candito in [1, Theorem 3.1, part (a)] which is substantially
a refinement of the variational principle established by Ricceri in [18]; see also
Bonanno and Molica Bisci [3, Theorem 2.1, part (a)].
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We explicitly observe that our results are a more precise form of the contributions
obtained by Faraci and Livrea in [13]. Indeed, in Theorem 3.1 of the cited paper,
fixing μ ∈ [0,S[, the authors proved the existence of a positive parameter ν∗μ such
that, for every λ ∈]0,ν∗μ [, the problem (Pμ,λ ) admits at least one non-trivial weak
solution. However, by using their approach, no concrete expression of this parameter
is given.

Here, through a different strategy previously developed by Bonanno and Molica
Bisci in [5], an explicit value of the parameter ν∗μ is presented. A particular case of
our results (see Theorem 3 and Remark 1 below) reads as follows.

Theorem 1. Let f : R → R be a continuous function satisfying the following
subcritical growth condition:

| f (t)| ≤ a1 + a2|t|p−1, ∀t ∈ R,

where a1,a2 are non-negative constants. Furthermore, assume that

lim
ξ→0+

∫ ξ

0
f (t)dt

ξ p =+∞. (h′0)

Then, for every μ ∈ [0,S[ there exists a positive number ν∗μ given by

ν∗μ :=
S− μ
a2S

(
ωN

meas(Ω)

)p/N

,

where ωN is the volume of the unit ball in R
N, such that, for every λ ∈]0,ν∗μ [, the

Dirichlet problem

(P̃μ,λ )

⎧
⎨

⎩
−Δpu = μ

(∫

Ω
|u(x)|p∗dx

)p/p∗−1

|u|p∗−2u+λ f (u) in Ω

u|∂Ω = 0,

admits at least one non-trivial weak solution uλ ∈W 1,p
0 (Ω). Moreover, one has that

lim
λ→0+

‖uλ‖= 0.

2 Abstract Framework and Main Results

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω and denote by X the

space W 1,p
0 (Ω) endowed with the norm
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‖u‖ :=
(∫

Ω
|∇u(x)|pdx

)1/p
.

Fixing q ∈ [1, p∗[, from the Sobolev embedding theorem, there exists a positive
constant cq such that

‖u‖Lq(Ω) ≤ cq‖u‖ , u ∈ X , (2)

and, in particular, the embedding X ↪→ Lq(Ω) is compact. Moreover, the best
constant that appears in inequality (1) is given by S = 1/cp, where

c =
1

N
√

π

⎛

⎜
⎜
⎝

N!Γ
(

N
2

)

2Γ
(

N
p

)
Γ
(

N + 1− N
p

)

⎞

⎟
⎟
⎠

1/N

η1−1/p, (3)

and

η :=
N(p− 1)

N− p
;

see, for instance, the quoted paper [20]. Let us define F(x,ξ ) :=
∫ ξ

0
f (x, t)dt, for

every (x,ξ ) ∈Ω×R, and consider the functional Eμ,λ : X → R given by

Eμ,λ (u) := Φμ(u)−λ Ψ(u), u ∈ X ,

where

Φμ(u) :=
1
p

∫

Ω
|∇u(x)|pdx− μ

p

(∫

Ω
|u(x)|p∗dx

)p/p∗

, Ψ(u) :=
∫

Ω
F(x,u(x))dx.

Fixing μ ∈ [0,S[, from the Sobolev inequality (1), it follows that

(
S− μ

pS

)
‖u‖p ≤Φμ(u)≤

‖u‖p

p
, (4)

for every u ∈ X . Furthermore, Montefusco, in [17], proved that Φμ is sequentially
weakly lower semicontinuous for μ ∈ [0,S[ and in this setting, since (1) holds, it is
also a coercive functional. Moreover, note that Eμ,λ ∈C1(X ,R) and a critical point
u ∈ X is a weak solution of the non-local problem

−Δpu = μ
(∫

Ω
|u(x)|p∗dx

)p/p∗−1

|u|p∗−2u+λ f (x,u) in Ω.
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Our main tool in order to obtain the existence of one non-trivial solution to problem
(Pμ,λ ) is the following critical point theorem.

Theorem 2. Let X be a reflexive real Banach space, and let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is (strongly) continuous, sequentially
weakly lower semicontinuous and coercive. Further, assume that Ψ is sequentially
weakly upper semicontinuous. For every r > infX Φ , put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

(

sup
v∈Φ−1(]−∞,r[)

Ψ (v)

)

−Ψ(u)

r−Φ(u)
.

Then, for each r > infX Φ and each λ ∈ ]0,1/ϕ(r)[, the restriction of Jλ := Φ −
λΨ to Φ−1(]−∞,r[) admits a global minimum, which is a critical point (local
minimum) of Jλ in X.

As pointed out in Introduction, this result is a refinement of the variational
principle of Ricceri; see the quoted paper [18]. Moreover, we recall that Theorem 2
has been used in order to obtain some theoretical contributions on the existence
of either three or infinitely many critical points for suitable functionals defined on
reflexive Banach spaces; see [2, 3]. As consequences of the above-cited results, on
the vast literature on the subject, we mention here some recent works [4, 6–12] on
the existence of weak solutions for some different classes of elliptic problems.

The main result reads as follows.

Theorem 3. Let f : Ω ×R→ R be a Carathéodory function with f (x,0) �= 0 in
Ω and satisfying condition (h∞). Then, for every μ ∈ [0,S[ there exists a positive
number ν∗μ given by

ν∗μ := qsup
γ>0

⎛

⎜
⎜
⎜
⎝

γ p−1

qa1c1

(
pS

S− μ

)1/p

+ a2cq
q

(
pS

S− μ

)q/p

γq−1

⎞

⎟
⎟
⎟
⎠
,

such that, for every λ ∈]0,ν∗μ [, the following elliptic Dirichlet problem

(Pμ,λ )

⎧
⎨

⎩
−Δpu = μ

(∫

Ω
|u(x)|p∗dx

)p/p∗−1

|u|p∗−2u+λ f (x,u) in Ω

u|∂Ω = 0,

admits at least one non-trivial weak solution uλ ∈ X. Moreover,

lim
λ→0+

‖uλ‖= 0

and the function λ → Eλ ,μ(uλ ) is negative and decreasing in ]0,ν∗μ [.
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Proof. Fix μ ∈ [0,S[ and λ ∈]0,ν∗μ [. Our aim is to apply Theorem 2 with X =

W 1,p
0 (Ω); Φ := Φμ and Ψ are the functionals introduced before. Since μ ∈ [0,S[,

Φ : X → R is a continuously Gâteaux differentiable and sequentially weakly
lower semicontinuous functional as well as the map Ψ : X → R is continuously
Gâteaux differentiable and sequentially weakly upper semicontinuous. Moreover,
Φ is coercive and clearly inf

u∈X
Φ(u) = 0. Thanks to the growth condition (h∞), one

has that

F(x,ξ )≤ a1|ξ |+ a2
|ξ |q

q
, (5)

for every (x,ξ ) ∈Ω×R. Since 0 < λ < ν∗μ , there exists γ > 0 such that

λ < ν�
μ(γ) :=

qγ p−1

qa1c1

(
pS

S− μ

)1/p

+ a2cq
q

(
pS

S− μ

)q/p

γq−1

. (6)

Now, set r ∈]0,+∞[ and consider the function

χ(r) :=

sup
u∈Φ−1(]−∞,r[)

Ψ(u)

r
.

Taking into account (5) it follows that

Ψ(u) =
∫

Ω
F(x,u(x))dx≤ a1‖u‖L1(Ω) +

a2

q
‖u‖q

Lq(Ω)
.

Then, due to (4), we get

‖u‖<
(

pSr
S− μ

)1/p

, (7)

for every u ∈ X and Φ(u)< r. Now, from (2) and by using (7), for every u ∈ X such
that Φ(u)< r, one has

Ψ(u)< c1a1

(
pS

S− μ

)1/p

r1/p + a2
cq

q

q

(
pS

S− μ

)q/p

rq/p.

Hence

sup
u∈Φ−1(]−∞,r[)

Ψ(u)≤ c1a1

(
pS

S− μ

)1/p

r1/p + a2
cq

q

q

(
pS

S− μ

)q/p

rq/p.
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Then

χ(r)≤ c1a1

(
pS

S− μ

)1/p

r1/p−1 + a2
cq

q

q

(
pS

S− μ

)q/p

rq/p−1, (8)

for every r > 0.
Hence, in particular

χ(γ p)≤ c1a1

(
pS

S− μ

)1/p

γ1−p + a2
cq

q

q

(
pS

S− μ

)q/p

γq−p. (9)

Now, observe that

ϕ(γ p) := inf
u∈Φ−1(]−∞,γ p[)

(

sup
v∈Φ−1(]−∞,γ p[)

Ψ(v)

)

−Ψ(u)

r−Φ(u)
≤ χ(γ p),

because u0 ∈Φ−1(]−∞,γ p[) and Φ(u0)=Ψ(u0) = 0, where u0 ∈X is the identically
zero function. In conclusion, bearing in mind (6), the above inequality together with
(9) gives

ϕ(γ p)≤ χ(γ p)≤ c1a1

(
pS

S− μ

)1/p

γ1−p + a2
cq

q

q

(
pS

S− μ

)q/p

γq−p <
1
λ
.

In other words,

λ ∈

⎤

⎥
⎥
⎥
⎦

0,
qγ p−1

qa1c1

(
pS

S− μ

)1/p

+ a2cq
q

(
pS

S− μ

)q/p

γq−1

⎡

⎢
⎢
⎢
⎣
⊆]0,1/ϕ(γ p)[.

Thanks to Theorem 2, there exists a function uλ ∈Φ−1(]−∞,γ p[) such that

E ′μ,λ (uλ ) = Φ′(uλ )−λ Ψ′(uλ ) = 0,

and, in particular, uλ is a global minimum of the restriction of Eμ,λ to Φ−1(]−
∞,γ p[). Further, since f (x,0) �= 0 in Ω, the function uλ cannot be trivial, that is,
uλ �= 0. Hence, for μ ∈ [0,S[ and for every λ ∈]0,ν∗μ [ the problem (Pμ,λ ) admits a
non-trivial solution uλ ∈X . From now, we argue in similar way of [13, Theorem 3.1]
in order to prove that ‖uλ‖ → 0 as λ → 0+ and that the function λ → Eμ,λ (uλ ) is
negative and decreasing in ]0,ν∗μ [. The proof is complete. �	
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Remark 1. Also when f (x,0) = 0 in Ω the statements of Theorem 3 are still true if,
in addition to assumption (h∞), the function f satisfies the following hypothesis:

There are a non-empty open set D ⊆ Ω and a set B ⊆ D of positive Lebesgue
measure such that

limsup
ξ→0+

infx∈B F(x,ξ )
ξ p =+∞ and liminf

ξ→0+

infx∈D F(x,ξ )
ξ p >−∞. (h0)

Condition (h0) ensures that the solution, achieved by using Theorem 3, is non-trivial.

Remark 2. In conclusion, we just mention that the technical approach adopted in
this manuscript has been used in different settings in order to obtain existence
and multiplicity results for several kinds of differential problems, for instance,
by Bonanno, Molica Bisci and Rădulescu in [8] for elliptic problems on compact
Riemannian manifolds without boundary and by D’Aguı̀ and Molica Bisci for an
elliptic Neumann problem involving the p-Laplacian; see [10].

Acknowledgements V. Rădulescu acknowledges the support through Grant CNCSIS PCCE-
8/2010 “Sisteme diferenţiale ı̂n analiza neliniară şi aplicaţii”.
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Sign-Changing Subharmonic Solutions
to Unforced Equations with Singular
φ -Laplacian

Alberto Boscaggin and Maurizio Garrione

Abstract We prove the existence of infinitely many subharmonic solutions (with a
precise nodal characterization) to the equation

( u′√
1− u′2

)′
+ g(t,u) = 0,

in the unforced case g(t,0)≡ 0. The proof is performed via the Poincaré–Birkhoff
fixed point theorem.

1 Introduction and Statement of the Main Result

In the very last years, an increasing attention has been devoted to the periodic
problem associated with scalar nonlinear differential equations of the type

(φ(u′))′+ g(t,u) = 0, (1)

being φ : ]− a,a[→ R (with 0 < a < +∞) an increasing global homeomorphism
satisfying φ(0) = 0, and g : R×R→ R a continuous function, which is T -periodic
in the first variable (for a fixed period T > 0). Since a<+∞, the differential operator
u �→ −(φ(u′))′ is called singular φ -Laplacian. As a model situation for (1), one
can consider the case corresponding to the relativistic acceleration, namely, φ(x) =

x√
1−x2

, leading to the equation
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( u′√
1− u′2

)′
+ g(t,u) = 0. (2)

Suitable assumptions on the function g(t,x), ensuring the existence of one or
“few” T -periodic solutions to (1) or (2), were introduced by various authors. In
particular, using both variational and topological tools, the cases when g(t,x)
satisfies some conditions at infinity (of Landesman–Lazer or Ahmad–Lazer–Paul
type, or sign assumptions; see, for instance, [1, 3]), or when g(t,x) is a pendulum-
like nonlinearity [2,4,10,11], have been extensively studied. We refer to [12] for an
exhaustive survey and a very wide bibliography about the subject.

In this brief note, we propose to consider the unforced case, namely, g(t,0)≡ 0,
adding an assumption on the behavior of g(t,x) near x = 0. For the second-
order equation u′′ + g(t,u) = 0, by means of the Poincaré–Birkhoff fixed point
theorem, this situation was shown to be the source of “many” sign-changing periodic
solutions, both harmonic (i.e., T -periodic see, e.g., [15]) and subharmonic (i.e., kT -
periodic for an integer k ≥ 2, see, e.g., [6]). Yet, to the best of our knowledge, there
are no results concerning (1) and (2) in this direction.

From now on, for simplicity we will limit ourselves to the investigation of (2).
Possible extensions to other φ -operators will be discussed in Remark 2. To motivate
our result, let us first consider the autonomous equation

( u′√
1− u′2

)′
+λ u = 0, (3)

being λ > 0 a real parameter. In this case, it is easily seen that the function

E(u,v) =
1√

1− v2
+

λ
2

u2− 1, u ∈R, |v|< 1,

is a first integral for (3), i.e., E(u(t),u′(t)) is constant whenever u(t) solves (3).
By a direct qualitative analysis in the phase-plane (u,u′), it turns out that all the
nontrivial solutions to (3) are periodic and wind the origin in the clockwise sense. A
computation of the time map (i.e., the time Tλ (c) needed for a solution (u(t),u′(t))
such that E(u(t),u′(t))≡ c to perform one revolution around the origin) yields

Tλ (c) = 4
∫
√

2c
λ

0

dξ
√

1− 4
(2c+2−λ ξ 2)2

, c > 0.

It can be seen that Tλ (c) is continuous and strictly increasing, with

lim
c→0+

Tλ (c) =
2π√

λ
, lim

c→+∞
Tλ (c) = +∞.
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Therefore, the intermediate value theorem implies that for every τ > 2π√
λ

, there exists
exactly one solution—modulo translations—to (3) of minimal period τ and having
exactly two zeros in the interval [0,τ[ .1 As a consequence, if k, j ≥ 1 are integer
numbers such that

2π√
λ

<
kT
j
, (4)

there exists exactly a kT -periodic solution uk, j(t) to (3) having 2 j zeros in the
interval [0,kT [ (of course, such a solution is not of minimal period kT when
j > 1; indeed, the definition of subharmonic solution needs some clarifications; see
Remark 1). Notice that the larger is the k, the greater is the number of integers j
satisfying (4).

Our goal is to extend such elementary considerations to the nonautonomous case,
by the use of the Poincaré–Birkhoff fixed point theorem, in the formulation by Ding
[8]. Roughly speaking, we are going to prove that for any fixed time interval [0,kT ],
with k a positive integer, “large” solutions to (2) do not complete a full revolution
around the origin. On the other hand, “small” solutions perform a finite number of
turns, depending on k. Thus, a twist condition for the kth iterate of the Poincaré map
associated with (2) will be fulfilled, giving the existence of subharmonic solutions
with a “low” number of zeros.

Here is the precise statement of our main result. From now on, we will suppose
that g(t,x) is locally Lipschitz continuous in the x-variable, uniformly in t.

Theorem 1. Assume that

(g0) g(t,0)≡ 0, and

liminf
x→0

g(t,x)
x

≥ q(t), uniformly in t ∈ [0,T ], (5)

for a suitable q ∈ L∞(0,T ) satisfying
∫ T

0 q(t)dt > 0;
(g∞) there exist α,β > 0 such that

|g(t,x)| ≤ α|x|+β , for every t ∈ [0,T ], x ∈ R. (6)

Then, there exists an integer k∗ ≥ 1 such that for every integer k ≥ k∗, there exists
another integer mk such that for every integer j relatively prime with k and such

that 1≤ j ≤mk, (2) has at least two subharmonic solutions u(1)k, j (t),u
(2)
k, j (t) of order

k (not belonging to the same periodicity class), with exactly 2 j zeros in the interval
[0,kT [ . Moreover, the following estimate for mk holds:

1Incidentally, observe that this situation is really different from the linear problem u′′+λ u = 0; in
particular, here resonance phenomena do not appear for any λ > 0 (see [1, Remark 6]).
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mk ≥ nk := E −
(

k
2π

∫ T
0 q(t)dt

√
esssup[0,T ]q(t)

)

, (7)

where for r > 0, we denote by E −(r) the greatest integer strictly less than r.

The result can be viewed as a variant of [6, Corollary 3.1] (see also [7, Theo-
rem 1.1]). However, while in [6] the low angular speed of large solutions came from
a sublinearity assumption on g(t,x), here it is provided by the differential operator
itself, so that g(t,x) is allowed to grow linearly at infinity.

Remark 1. We recall that as usual in this setting, by a subharmonic solution of order
k to (2), we mean a kT -periodic solution which is not lT -periodic for any integer
l = 1, . . . ,k− 1. Moreover, by periodicity class of a subharmonic u(t) of order k,
we mean the set {u(t),u(t +T ),u(t + 2T ), . . . ,u(t +(k− 1)T )}; since g(·,x) is T -
periodic, such functions are subharmonic solutions of order k to (2), as well.

Referring to the discussion about the autonomous case, together with formula
(4), notice that even if the minimal period of uk, j(t) is kT

j ≤ kT , the number kT is
indeed the minimal period in the class of the integer multiples of T whenever k, j are

relatively prime. Notice also that in general, we cannot exclude u(1)k, j (t)≡ u(2)k, j (t+σ)

for σ /∈ TN. Indeed, this is precisely what happens in the autonomous case, where
for k, j as in the statement, there exists a one-parameter family of subharmonics (all
the time translations of a fixed one).

Observe that the estimate (7) gives sharp information concerning the order of the
subharmonics produced, so that the following corollary dealing with the existence
of multiple T -periodic solutions can be stated.

Corollary 1. Denote by λh := ( 2πh
T )2, h = 0,1,2, . . . , the eigenvalues of the linear

differential operator u �→ −u′′, with T-periodic boundary conditions, and assume

(g′0) g(t,0)≡ 0 and, for suitable h≥ 1 and q > 0,

liminf
x→0

g(t,x)
x

≥ q > λh, uniformly in t ∈ [0,T ],

and (g∞) as in Theorem 1. Then, (2) has at least 2h T-periodic solutions. More
precisely, for every integer j such that 1 ≤ j ≤ h, (2) has at least two T-periodic
solutions with exactly 2 j zeros in the interval [0,T [ .

2 Proof of the Main Result and Further Remarks

As a preliminary, we briefly recall that for real numbers μ ,ν > 0 and a C 1-path
z : [t1, t2]→ R

2 such that z(t) �= 0 for every t ∈ [t1, t2], the modified rotation number
of z(t) = (u(t),v(t)) around the origin is defined as
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Rotμ,ν (z(t); [t1, t2]) =
√μν
2π

∫ t2

t1

v(t)u′(t)− u(t)v′(t)
μu(t)2 +νv(t)2 dt.

The choice μ = ν = 1 leads to the usual notion of rotation number (which we will
denote simply by Rot); the remarkable property which we will exploit (see [14]) is
that for every integer j,

Rot(z(t); [t1, t2])≶ j ⇐⇒ Rotμ,ν (z(t); [t1, t2])≶ j. (8)

We are now in a position to start the proof.

Proof (of Theorem 1). For simplicity of notation, let us set ϕr(x) = x√
1−x2

. Let us

write (2) as the equivalent planar Hamiltonian system

u′ = ϕ−1
r (v), v′ =−g(t,u). (9)

Notice that this leads us to work in the new plane (u,ϕr(u′)) and that the vector
field in (9) is defined for every (u,v)∈R

2. Moreover, there is uniqueness and global
continuability for the solutions to the initial value problems associated with (9). As
a consequence, the Poincaré map

Ψ : z̄ = (ū, v̄) ∈ R
2 �→ z(T ; z̄) = (u(T ; z̄),v(T ; z̄))

associated with (9) is well defined (here, by z(t; z̄) we mean the unique vector
solution to (9) such that z(0; z̄) = z̄); moreover, initial values (at time t = 0) of kT -
periodic solutions (for k ≥ 1 integer) to (9) correspond to fixed points of the kth
iterate of Ψ. To find such fixed points by means of the Poincaré–Birkhoff theorem,
we have to exhibit a gap between the rotation numbers of small and large solutions
to (9).

As a first step, define k∗ to be the least integer such that nk∗ ≥ 1 and fix k ≥ k∗.
Setting Q = esssup[0,T ]q(t), it is possible to choose δ ,η > 0 such that

k
√

1− δ
2π
√

Q

∫ T

0
(q(t)−η)dt > nk;

since (ϕ−1
r )′(0) = 1, and in view of (5), there exists r∗ > 0 such that

ϕ−1
r (v)v≥ (1− δ )v2 and g(t,u)u≥ (q(t)−η)u2, for t ∈ [0,T ], u2 + v2 ≤ (r∗)2.

Therefore, if z : [0,kT ]→R
2 solves (9) with 0 < |z(t)| ≤ r∗ for every t ∈ [0,kT ], we

have

Rot1, 1−δ
Q

(z(t); [0,kT ]) =

√
1− δ

2π
√

Q

∫ kT

0

ϕ−1
r (v(t))v(t)+ g(t,u(t))u(t)

u(t)2 + 1−δ
Q v(t)2

dt
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≥
√

1− δ
2π
√

Q

∫ kT

0

1−δ
Q (q(t)−η)v(t)2 +(q(t)−η)u(t)2

u(t)2 + 1−δ
Q v(t)2

dt

=
k
√

1− δ
2π
√

Q

∫ T

0
(q(t)−η)dt > nk.

Using the fact that in view of the uniqueness, nontrivial solutions to (9) never reach
the origin, it is easy to see that there exists r ∈ ]0,r∗] such that the previous relation
holds true whenever |z(0)|= r.

On the other hand, fix ε > 0 such that

kT
√

αε
2π

<
1
2

;

in view of the boundedness of ϕ−1
r , there exists Cε > 0 such that

ϕ−1
r (v)v≤ εv2 +Cε , for v ∈ R.

Using (6), it follows that if z : [0,kT ]→ R
2 solves (9) with z(t) �= 0 for every t ∈

[0,kT ], then

Rotα ,ε (z(t); [0,kT ]) =

√
αε

2π

∫ kT

0

ϕ−1
r (v(t))v(t)+ g(t,u(t))u(t)

αu(t)2 + εv(t)2 dt

≤
√

αε
2π

(
kT +

∫ kT

0

Cε +β |u(t)|
αu(t)2 + εv(t)2 dt

)
< 1,

provided that |z(t)| ≥ R∗ for a sufficiently large R∗. By standard compactness
arguments (the so-called elastic property), it is possible to find R ≥ R∗ such that
the previous relation holds true whenever |z(0)|= R.

In view of (8), a gap between the standard rotation numbers is produced on the
boundaries of the annulus {z ∈ R

2 | r ≤ |z| ≤ R}. We can thus conclude using
the Poincaré–Birkhoff fixed point theorem for Ψk as in [6], to find, for every

integer j with 1 ≤ j ≤ nk, two kT -periodic solutions u(i)k, j(t) (i = 1,2) to (2) with

Rot((u(i)k, j(t),ϕr(
d
dt u(i)k, j(t))); [0,kT ]) = j. It is clear that this implies the equality

j = Rot ((u(i)k, j(t),
d
dt u(i)k, j(t)); [0,kT ]), this latter being half the number of zeros of

u(i)k, j(t) in the interval [0,kT [ . �	

Example 1. Theorem 1 applies, for instance, to the equation

( u′√
1− u′2

)′
+ a(t)sinu = 0,
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which describes the motion of a relativistic pendulum in a space with periodically
varying gravity. Here, a : R → R is a continuous and T -periodic function, with∫ T

0 a(t)dt �= 0. Indeed, the case when a(t) has positive average directly fits in the
framework of Theorem 1, yielding the existence of sign-changing subharmonics
uk, j(t). On the other hand, if the average of a(t) is negative, one can perform the
change of variable x(t) = u(t) + π and apply Theorem 1, finding subharmonics
xk, j(t) oscillating around π . Notice also that with the same arguments as in [7,
Theorem 2.1], it is possible to show that the subharmonics produced take values
in the intervals ]−π ,π [ in the former case and ]0,2π [ in the latter.

Remark 2. The conclusion of Theorem 1 still holds (up to slightly modifying (7)) if
φ : ]− a,a[→ R (with 0 < a ≤ +∞) is an increasing homeomorphism, with locally
Lipschitz continuous inverse, such that φ(0) = 0 and

liminf
x→0

φ−1(x)
x

> 0, limsup
|x|→+∞

φ−1(x)
x

= 0. (10)

Observe, on one hand, that the case a = +∞ is not excluded; on the other hand,
notice that the second formula in (10) always holds if a < +∞. For instance,
φ(x) = x+ x3 and φ(x) = tanx satisfy these requirements, with a =+∞ and a = π

2 ,
respectively.

Remark 3. It is natural to wonder what kind of results could be proved, with similar
arguments, for the mean curvature equation (see again [12] and the references
therein)

( u′√
1+ u′2

)′
+ g(t,u) = 0. (11)

Let us consider first the autonomous case

( u′√
1+ u′2

)′
+λ u = 0, (12)

which admits the first integral

E(u,v) =− 1√
1+ v2

+
λ
2

u2 + 1, u,v ∈R.

By standard phase-plane analysis, it can be seen that for c ≥ 1, the solutions at
energy level E(u(t),u′(t)) ≡ c are not periodic (even more, they are not globally
extendable; for this reason, it is natural to investigate the existence of “nonclassical”
solutions, as in [5,13]). On the contrary, solutions with energy c∈ ]0,1[ are periodic,
with time map given by
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Tλ (c) = 4
∫
√

2c
λ

0

dξ
√

4
(2c−2−λ ξ 2)2 − 1

.

It can be seen that Tλ (c) is continuous and strictly decreasing, with

lim
c→0+

Tλ (c) =
2π√

λ
, lim

c→1−
Tλ (c) =

ζ√
λ
,

where ζ = 4
√

2
∫ 1

0
ξ 2√

1+ξ 2
√

1−ξ 2
dξ < 2π . Thus, for every τ ∈ ] ζ√

λ
, 2π√

λ
[ , the inter-

mediate value theorem implies the existence of exactly one—up to translations—
solution to (12) of minimal period τ and having exactly two zeros in the interval
[0,τ[ . Consequently, if k, j ≥ 1 are integer numbers such that

ζ√
λ

<
kT
j
<

2π√
λ
, (13)

there exists a kT -periodic solution uk, j(t) to (12) having 2 j zeros in the interval
[0,kT [ . Notice, on the one hand, that for λ > 0 fixed, a number theory argument
(see the proof of [9, Theorem 2.3]) implies that there are “many” k, j relatively
prime satisfying (13); on the other hand, letting λ → +∞, it is possible to see that
multiple T -periodic solutions appear.

It could be interesting to understand if a similar result holds true for the general
nonautonomous case (11).
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11. Marò, S.: Periodic solutions of a forced relativistic pendulum via twist dynamics to appear on
Topol. Methods Nonlinear Anal.

12. Mawhin, J.: Stability and bifurcation theory for non-autonomous differential equations (Ce-
traro, 2011), Lecture Notes in Math. 2065, to appear on Topol. Methods Nonlinear Anal.
Springer, Berlin, (2013), 103–184

13. Obersnel, F. Omari, P.: Multiple bounded variation solutions of a periodically perturbed sine-
curvature equation. Commun. Contemp. Math. 13, 863–883 (2011)

14. Rebelo, C., Zanolin, F.: Multiplicity results for periodic solutions of second order ODEs with
asymmetric nonlinearities. Trans. Amer. Math. Soc. 348, 2349–2389 (1996)

15. Zanini, C.: Rotation numbers, eigenvalues, and the Poincaré-Birkhoff theorem. J. Math. Anal.
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Nonlinear Difference Equations
with Discontinuous Right-Hand Side

Pasquale Candito and Roberto Livrea

Abstract A discrete nonlinear problem involving the p−Laplacian and with a
discontinuous right-hand side is studied. The existence of a precise open interval
of positive eigenvalues, for which it admits at least three solutions, is established.
The approach adopted is fully based on the variational methods developed in [14,15]
for non-smooth functions.

1 Introduction

Let 1 < p < +∞ and λ ∈ R+. Let N be a positive integer, qk ∈ R+
0 for all k ∈

[1,N] and let f : [1,N]×R→R be a measurable locally bounded function. Denote
with [1,N] the discrete interval {1, . . . ,N} and with Δuk−1 := uk−uk−1 the forward
difference operator; in this paper, we study the existence of multiple solutions for
the following nonlinear discrete Dirichlet problem with discontinuous nonlinearity:

(Dλ )

{
−Δ(|Δuk−1|p−2Δuk−1)+qk|uk|p−2uk∈λ [ f−(k,uk), f+(k,uk)], k∈[1,N],

u0 = uN+1 = 0,

where, for every k ∈ [1,N],

f−(k,uk) := lim
δ→0+

ess inf
|ζ−uk|<δ

f (k,ζ ) and f+(k,uk) := lim
δ→0+

esssup
|ζ−uk|<δ

f (x,ζ ).

When f is a continuous function, problem (Dλ ) has been investigated by many
authors; see [4,5,10,16,18]. Therefore, it is interesting to treat this type of problems
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requiring that f is only a measurable and locally bounded function. However, to the
best of our knowledge, for difference inclusions there are only few papers involving
the second-order difference operator. For instance, in [3], the existence of at least
one solution is obtained through the set-valued mapping theory, while in [20] it has
been used the same approach that we propose here to prove the existence of at least
three solutions for p = 2 and qk = 0 for every k ∈ [1,N].

Our main results are contained in Sect. 3. In particular, the conclusions of
Corollary 1 are new even for continuous nonlinearities. The approach followed is
fully variational as is described in Sect. 2; see Lemma 1.

Finally, to have general references on many important questions related to
difference equations and their applications to different fields of research, we cite
the monographs [1, 2, 17]; while for a survey on variational methods and difference
equations, see [8].

2 Preliminaries and Variational Framework

Let (X ,‖ · ‖) be a real Banach space; a function J : X → R is called coercive
whenever

lim
‖u‖→+∞

J(u) = +∞.

While J is said to be locally Lipschitz when for every u ∈ X , there corresponds a
neighbourhood U of u and a constant L≥ 0 such that

|J(v)− J(w)| ≤ L‖v−w‖,

for all v,w ∈U . As usual, X∗ denotes the dual space of X , and < ·, · > stands for
the duality pairing between X∗ and X . The generalised directional derivative of a
locally Lipschitz function J at the point u along the direction v is defined as follows:

J0(u;v) = limsup
w→ u t → 0+

J(w+ tv)− J(w)
t

.

Moreover, the generalised gradient of J at u is the following set:

∂J(u) = {u∗ ∈ X∗ :< u∗,v >≤ J0(u;v) ∀v ∈ X}.

We recall that if J is continuously Gâteaux differentiable at u, then J is locally
Lipschitz at u and ∂J(u) = {J′(u)}. Further, a point u ∈ X is said to be a
(generalized) critical point of the locally Lipschitz function J if 0X∗ ∈ ∂J(u),
namely,

J0(u;v)≥ 0,
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for all v ∈ X . Clearly, if J is a continuously Gâteaux differentiable at u, then u
becomes a (classical) critical point of J, that is, J′(u) = 0X∗ .

For an exhaustive overview on the non-smooth calculus, we mention the excellent
monographs [15, 19]. In [9] a three-critical-point theorem for locally Lipschitz and
coercive functionals has been given. Here we state a version of such result which
will be the main tool in order to achieve our conclusions.

Theorem 1. Let (X ,‖ · ‖) be a finite dimensional real Banach space and let Φ,Ψ :
X →R two locally Lipschitz functionals. Assume that Φ(0) =Ψ (0) = 0 and

(i1) There exist r > 0, u ∈ X with r < Φ(u) such that

sup
[Φ≤r]

Ψ < r
Ψ (u)
Φ(u)

,

where [Φ ≤ r] := {w ∈ S : Φ(w) ≤ r}.

Put

Λr :=

]
Φ(u)
Ψ(u)

,
r

sup[Φ≤r]Ψ

[

,

assume that

(i2) for each λ ∈Λr, Φ−λΨ is a coercive functional.

Then, for each λ ∈ Λr, the functional Φ −λΨ admits at least three critical points
with at least one belonging to [Φ < r] and another one in X \ [Φ ≤ r].

Consider now the N-dimensional Banach space S = {u : [0,N + 1] → R : u0 =
uN+1 = 0} endowed with the norm

‖u‖ :=

(
N+1

∑
k=1

|Δuk−1|p + qk|uk|p
)1/p

, ∀ u ∈ S,

and denoted by λ1 the first eigenvalue of the problem

{
−Δ(|Δuk−1|p−2Δuk−1) = λ |uk−1|p−2uk−1, k ∈ [1,N];
u0 = uN+1 = 0,

one has that

λ1 = min
u∈S\{0}

∑N+1
k=1 |Δuk−1|p

∑N
k=1 |uk|p

.

In particular, for p = 2 one has
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λk := 4sin2
( kπ

2(N + 1)

)
, ∀k ∈ [1,N]; (1)

see [10], being λk the eigenvalues of the matrix

A :=

⎛

⎜
⎜
⎜⎜
⎜
⎝

2 −1 0 . . . 0
−1 2 −1 . . . 0

. . . . . . . . .

0 . . . −1 2 −1
0 . . . 0 −1 2

⎞

⎟
⎟
⎟⎟
⎟
⎠

N×N

.

Let us define the following functionals:

Φ(u) :=
‖u‖p

p
, Ψ(u) :=

N

∑
k=1

F(k,uk), (2)

for every u ∈ S, where F(k, t) :=
∫ t

0 f (k,ξ )dξ for every (k, t) ∈ [1,N]×R.
It is simple to verify that Φ is continuously Gâteaux differentiable, while Ψ is

locally Lipschitz continuous.

Lemma 1. Assume that u ∈ S is a critical point of the functional Φ − λΨ , being
λ > 0. Then u is a solution of problem (Dλ ).

Proof. By the definition of critical point and in view of [15, Propositions 2.3.1 and
2.3.3], one has that

Φ ′(u)(v)≤ λΨ0(u;v)≤ λ
N

∑
k=1

F0((k,uk);vk) (3)

for every v ∈ S. Moreover, arguing as in the proof of [8, Lemma 39], we obtain that

N+1

∑
k=1

|Δuk−1|p−2Δuk−1Δvk−1 =−
N

∑
k=1

Δ(|Δuk−1|p−2Δuk−1)vk, (4)

for every v ∈ S. In particular, for every ξ ∈R and k ∈ [1,N], putting in (3) v = ξ ek,
where ek are the canonical unit vectors of RN , and taking in mind (4), we get

〈−Δ(|Δuk−1|p−2Δuk−1)+ qk|uk|p−2uk,ξ 〉R = Φ ′(u)(v)≤ λ F0((k,uk);ξ ),

namely,

−Δ(|Δuk−1|p−2Δuk−1)+ qk|uk|p−2uk ∈ λ ∂F(k,uk).

Finally, because it is well known that (see [15, Example 2.2.5])
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∂F(k,uk) = [ f−(k,uk), f+(k,uk)], ∀ k ∈ [1,N],

it follows that

−Δ(|Δuk−1|p−2Δuk−1)+ qk|uk|p−2uk ∈ [ f−(k,uk), f+(k,uk)], ∀ k ∈ [1,N].

Therefore, our conclusion is proved. �	

3 Main Results

Now, we give

Theorem 2. Let f : [1,N]×R→R be a measurable locally bounded function. Put

Q =
N

∑
k=1

qk, assume that:

( j1) There exist two positive constants c and d with c < d such that

∑N
k=1 sup

|ξ |≤c
F(k,ξ )

cp <
2p

(N + 1)p−1(2+Q)

∑N
k=1 F(k,d)

d p .

( j2) limsup
|ξ |→+∞

F(k,ξ )
|ξ |p ≤ λ1

pλ ∗ , for every k ∈ [1,N].

Then, for every

λ ∈Λ := ]λ∗,λ ∗[ :=

⎤

⎥
⎦

2+Q
p

d p

∑N
k=1 F(k,d)

,
2p

p(N + 1)p−1

cp

∑N
k=1 sup

|ξ |≤c
F(k,ξ )

⎡

⎢
⎣,

problem (Dλ ) admits at least three solutions, one with ‖u‖∞ ≤ c and one with

‖u‖∞ >
2c

[2p(N + 1)p+ ‖ q ‖∞ N(N + 1)p−1]
1/p

.

Proof. We apply Theorem 1, by putting X = S, r = (2c)p

p(N+1)p−1 , u = v ∈ S where v is
given by

vk =

{
d if k ∈ [1,N],
0 otherwise
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and Φ and Ψ are the two locally Lipschitz functionals introduced in (2). Since c < d

one has c <
(

N+1
2

)(p−1)/p
d and it results that ‖v‖> (pr)1/p, that is, Φ(u)> r.

Moreover, taking into account both

‖ u ‖∞:= max
k∈[1,N]

|uk| ≤
(N + 1)(p−1)/p

2
‖u‖

(see [11]) and condition ( j1), an easy computation ensures that

sup[Φ≤r]Ψ
r

≤
sup‖u‖≤(pr)1/p ∑N

k=1 F(k,uk)

r
≤ p(N + 1)p−1

2p

∑N
k=1 sup

|ξ |≤c
F(k,ξ )

cp

<
p

2+Q
∑N

k=1 F(k,d)
d p =

Ψ(v)
Φ(v)

.

Therefore, (i1) holds and Λ⊆ Λr.
From ( j2), fixed λ ∈Λ, there exist two constants a and ρ with a > 0 and ρ < λ1

pλ
such that

F(k,ξ )≤ ρ |ξ |p + a ∀ξ ∈R, k ∈ [1,N].

Now, arguing as in [8, Theorem 46], we verify (i2). Indeed, since

Ψ(u)≤ ρ
N

∑
k=1

|uk|p + aN ≤ ρ
λ1
‖u‖p+ aN.

Therefore, for every u ∈ S, we have

Φ(u)−λΨ(u)≥
(

1
p
−ρ

λ
λ1

)
‖u‖p− aN,

which implies that the functional Φ−λΨ is coercive.
So, the assumptions of Theorem 1 are satisfied and our conclusions follow from

Lemma 1. �	

Remark 1. We explicitly observe that Theorem 2 gives back [8, Theorem 49]
whenever f is a continuous function. In addition, if qk = 0 for every k ∈ [1,N], it
furnishes a more precise version of [12, Theorem 3.1]. Moreover, we point out that
( j2) is a slight generalisation of the analogous conditions adopted in [6, 12, 20] to
ensure the coercivity of the energy functional associated to the difference problem;
see also [13].

Corollary 1. Let α : [1,N]→ R be a nonnegative function with A := ∑N
k=1 αk > 0

and let g : R→R be a locally bounded and measurable function. Assume that:
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( j′1) There exists d > 0 such that g(t)> 0 for every 0 < |t|< d.

( j′′1 ) limsup
t→0+

g(t)
t

= 0.

( j′2) limsup
|t|→+∞

g(t)
t ≤ 0, ∀k ∈ [1,N].

Then, for each λ > 2+Q
2A

d2
∫ d

0 g(t)dt
, the problem

{
−Δ(Δuk−1)+ qkuk ∈ λ αk[g−(uk),g+(uk)], k ∈ [1,N]

u(0) = u(N + 1) = 0,

admits at least three solutions.

Proof. We see that our conclusion follows at once from Theorem 2 being f (k, t) =

αkg(t) for each (k, t) ∈ [1,N]×R and p = 2. Indeed, putting G(ξ ) =
∫ ξ

0 g(t)dt for
every ξ ∈R, by ( j′1), one has

G(d)> 0, sup
|ξ |≤c

G(ξ ) = G(c), ∀ c ∈ (0,d]. (5)

Fix λ > 2+Q
2A

d2

G(d) . By ( j′′1 ) there exists δ ∈ (0,d) such that

g(t)<
2

λ A(N + 1)
t ∀t ∈]0,δ [.

Hence, it results

A sup
t∈(0,δ )

G(t)
t2 ≤ 2

λ (N + 1)
. (6)

On the other hand we can observe that

2p

(N + 1)p−1(2+Q)

∑N
k=1 F(k,d)

d p =
4A

(N + 1)(2+Q)

G(d)
d2 >

2
λ (N + 1)

. (7)

Taking c ∈ (0,δ ) and combining (5)–(7), we have

∑N
k=1 sup

|ξ |≤c
F(k,ξ )

cp = A
sup|ξ |≤c G(ξ )

c2

< 4A
(N+1)(2+Q)

G(d)
d2

= 2p

(N+1)p−1(2+Q)

∑N
k=1 F(k,d)

d p ,

(8)

namely, assumption ( j1) holds.
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Fix now a positive number ε in the interval. From the definition of maximum
limit and the locally boundness of g, it is easy to verify that there exists M > 0
such that

g(t)< ε t +M ∀t ≥ 0 and g(t)> ε t−M ∀t ≤ 0.

Consequently, by integrating the previous conditions, we obtain that

G(t)≤ ε
2

t2 +M|t| ∀t ∈R. (9)

Hence, for every k ∈ [1,N], (9) implies that

limsup
|ξ |→+∞

F(k,ξ )
|ξ |p = αk limsup

|ξ |→+∞

G(ξ )
ξ 2 ≤ A

ε
2
,

and, by the arbitrary of ε > 0, it is clear that ( j2) holds too. Finally, we achieve
the conclusion applying Theorem 2 and observing that condition (8) ensures that
λ ∈ Λ. �	

Remark 2. We explicitly observe that if g−(0) > 0, then the solutions ensured by
Corollary 1 are all nontrivial, while if g is continuous at zero, one of such solutions
could be zero. Moreover, owing to [7, Theorem 2.2], the solutions of the problem
are positive whenever g is nonnegative and nontrivial, with g−(0)> 0.
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Pullback Attractors of Stochastic Lattice
Dynamical Systems with a Multiplicative Noise
and Non-Lipschitz Nonlinearities

Tomás Caraballo, Francisco Morillas, and José Valero

Abstract In this paper we study the asymptotic behavior of solutions of a first-order
stochastic lattice dynamical system with a multiplicative noise. We do not assume
any Lipschitz condition on the nonlinear term, just a continuity assumption together
with growth and dissipative conditions. Using the theory of multivalued random
dynamical systems we prove the existence of a pullback compact global attractor.

Keywords Stochastic lattice dynamical system • Pullback attractor • Multivalued
random dynamical system • Non-uniqueness of solutions

1 Introduction

This paper is devoted to the long-term behavior of the following stochastic lattice
differential equation:

dui(t)
dt

= ν(ui−1− 2ui+ ui+1)− fi(ui)+
N

∑
j=1

c jui ◦
dwj(t)

dt
, i ∈ Z, (1)
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where u = (ui)i∈Z ∈ �2, Z denotes the integer set, ν is a positive constant, fi is a
continuous function satisfying a dissipative condition, c j ∈ R, for j = 1, . . . ,N, and
wj are mutually independent Brownian motions, where ◦ denotes the Stratonovich
sense in the stochastic term.

Stochastic lattice differential equations arise naturally in a wide variety of
applications where the spatial structure has a discrete character, and uncertainties or
random influences, called noises, are taken into account (see [3, 7] for more details
on the importance of this model and for some references on it).

In Sect. 2, we introduce basic concepts concerning multivalued random dynam-
ical systems (MRDSs) and global random attractors. In Sect. 3, we show that the
stochastic lattice differential equation (1) generates a multivalued infinite dimen-
sional random dynamical system. The existence of the global pullback attractor is
stated in Sect. 4.

2 Multivalued Random Dynamical Systems

We recall now some basic definitions for set-valued non-autonomous and random
dynamical systems and formulate sufficient conditions ensuring the existence of a
pullback attractor for these systems.

A pair (Ω ,θ ) where θ = (θt)t∈R is a flow on Ω , that is, θ : R×Ω → Ω , and
satisfies that θ0 = idΩ and θt+τ = θt ◦ θτ =: θtθτ for t, τ ∈ R, is called a non-
autonomous perturbation.

Let P := (Ω ,F ,P) be a probability space. On this probability space, we
consider a measurable non-autonomous flow θ : (R×Ω ,B(R)⊗F )→ (Ω ,F ).

In addition, P is supposed to be ergodic with respect to θ . Hence, P is invariant
with respect to θt . The quadruple (Ω ,F ,P,θ ) is called a metric dynamical system.

Let X = (X ,dX) be a Polish space. Let D : ω → D(ω) ∈ 2X be a multivalued
mapping. The set of multifunctions D : ω → D(ω) ∈ 2X with closed and nonempty
images is denoted by C(X). Let also denote by Pf (X) the set of all nonempty closed
subsets of the space X . Thus, it is equivalent to write that D is in C(X), or D : Ω →
Pf (X) .

Let D : ω → D(ω) be a multivalued mapping in X over P . Such a mapping is
called a random set if the map ω �→ infy∈D(ω) dX(x,y) is a random variable for every
x ∈ X .

Definition 1. A multivalued map G : R+×Ω ×X → Pf (X) is called a multivalued
non-autonomous dynamical system (MNDS) if:

(i) G(0,ω , ·) = idX .

(ii) G(t + τ,ω ,x) ⊂ G(t,θτ ω ,G(τ,ω ,x)) (cocycle property) for all t,τ ∈ R
+,

x ∈ X ,ω ∈Ω .
It is called a strict MNDS if, in addition:
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(iii) G(t + τ,ω ,x) = G(t,θτ ω ,G(τ,ω ,x)) for all t,τ ∈R
+,x ∈ X ,ω ∈Ω .

An MNDS is called a MRDS if the multivalued mapping (t,ω ,x) �→G(t,ω ,x) is
B(R+)⊗F ⊗B(X) measurable.

Notice that for V ⊂ X , G(t,ω ,V ) is defined by G(t,ω ,V ) =
⋃

x0∈V G(t,ω ,x0).
A multivalued mapping D is said to be negatively, strictly, or positively invariant

for the MNDS G if D(θt ω)⊂,=,⊃ G(t,ω ,D(ω)) for ω ∈Ω , t ∈ R
+.

Let D be the family of multivalued mappings with values in C(X). We say that a
family K ∈D is pullback D-attracting if, for every D ∈D ,

lim
t→+∞

distX(G(t,θ−tω ,D(θ−tω)),K(ω)) = 0, for all ω ∈Ω .

B ∈ D is said to be pullback D-absorbing if for every D ∈ D , there exists
T = T (ω ,D)> 0 such that

G(t,θ−tω ,D(θ−tω))⊂ B(ω), for all t ≥ T. (2)

Let D be a set of multivalued mappings in C(X) satisfying the inclusion-closed
property: if we suppose that D ∈ D and D′ is a multivalued mapping in C(X) such
that D′(ω)⊂ D(ω) for ω ∈Ω , then D′ ∈D .

Definition 2. A family A ∈ D is said to be a global pullback D-attractor for the
MNDS G if it satisfies:

1. A (ω) is compact for any ω ∈Ω .
2. A is pullback D-attracting.
3. A is negatively invariant.

A is said to be a strict global pullback D-attractor if the invariance in (3) is strict.

A natural modification of this definition for MRDS is the following.

Definition 3. Suppose that G is an MRDS and suppose that the properties of
Definition 2 are satisfied. In addition, we suppose that A is a random set with
respect to Pc (the completion of P). Then A is called a random global pullback
D-attractor.

The next two general results were proved in [6].

Theorem 1. Suppose that the MNDS G(t,ω , ·) is upper-semicontinuous for t ≥ 0
and ω ∈ Ω . Let K ∈ D be a multivalued mapping such that the MNDS is pullback
D-asymptotically compact with respect to K, i.e., for every sequence tn → +∞,
ω ∈ Ω every sequence yn ∈ G(tn,θ−tn ω ,K(θ−tn ω)) is pre-compact. In addition,
suppose that K is pullback D-absorbing. Then, the set A given by

A (ω) :=
⋂

s≥0

⋃

t≥s

G(t,θ−tω ,K (θ−tω)) (3)
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is a pullback D-attractor. furthermore, A is the unique element from D with these
properties. In addition, if G is a strict MNDS, then A is strictly invariant.

Theorem 2. Let G be an MRDS. Under the assumptions in Theorem 1, let
ω �→G(t,ω ,K(ω)) be a random set for t ≥ 0 with respect to Pc. Assume also that
G(t,ω ,K(ω)) is closed for all t ≥ 0 and ω ∈Ω . Then the set A defined by (3) is a
random set with respect to Pc, so that it is a random global pullback D-attractor.

3 Stochastic Lattice Differential Equations

We consider a stochastic lattice differential equation

dui(t)
dt

= ν(ui−1− 2ui+ ui+1)− fi(ui)+
N

∑
j=1

c jui ◦
dwj(t)

dt
, i ∈ Z, (4)

where u = (ui)i∈Z ∈ �2, Z denotes the integer set, ν is a positive constant, fi is a
continuous function satisfying the assumptions below, c j ∈R, for j = 1, . . . ,N, and
wj are mutually independent two-sided Brownian motions on the same probability
space (Ω ,F ,P). Notice that system (4) is interpreted in integral form as

ui(t) = ui(0)+
∫ t

0
(ν(ui−1(s)− 2ui(s)+ ui+1(s))− fi(ui(s)))ds (5)

+
∫ t

0

N

∑
j=1

c jui(s)◦ dwj(t), i ∈ Z,

where the stochastic integral is understood in the sense of Stratonovich.

Assumptions on the Nonlinearity fi: Let fi : R → R satisfy the following
assumptions:

(H1) There exist c0 ∈ l1 and λ > 0 such that, for all x ∈ R, i ∈ Z, it holds that
fi (x)x≥ λ x2− c0,i.

(H2) There exist c1 ∈ l2, c1,i ≥ 0, and a continuous increasing function C (·) ≥ 0
such that, for all x ∈ R, i ∈ Z, it follows | fi (x)| ≤C (|x|) |x|+ c1,i.

(H3) The maps fi : R→ R, i ∈ Z, are continuous.

We now formulate system (4) as a stochastic differential equation in �2. Denote
by || · || the norm in the space �2, and by B,B∗,Cj , j = 1, . . . ,N, and A the linear
operators from �2 to �2 defined as follows. For u = (ui)i∈Z ∈ �2, and for each i ∈ Z,

(Bu)i = ui+1− ui, (B
∗u)i = ui−1− ui, (Cju)i = c jui, (Au)i =−ui−1 + 2ui− ui+1.
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Then, we have that A = BB∗ = B∗B, and (B∗u,v) = (u,Bv) for all u,v ∈ �2.
Therefore, (Au,u)≥ 0 for all u ∈ �2.

Let f̃ be the Nemytski operator associated to fi, that is, for u = (ui)i∈Z ∈ �2, let
f̃ (u) := ( fi(ui))i∈Z. Then, thanks to (H1)–(H2), this operator is well defined and

‖ f̃ (u)‖2
l2 = ∑

i∈Z
| fi(ui)|2 ≤ ∑

i∈Z
(C (|ui|) |ui|+ c1,i)

2 ≤ 2M (u)‖u‖2
l2 + ‖c1‖2

l2 , (6)

where M (u) = maxi∈ZC (|ui|).
Similar to (6), one can easily see that f̃ also satisfies:

f̃ (u,u)≥ λ ‖u‖2
l2 −‖c0‖l1 , ∀u ∈ l2, (7)

and f̃ : l2 → l2 is continuous and weakly continuous (see [7] for a similar proof).
System (4) with initial value u0 ≡ (u0

i )i∈Z ∈ �2 can be rewritten in �2 for t ≥ 0
and ω ∈Ω , as

u(t) = u0 +
∫ t

0
(−νAu(s)− f̃ (u(s)))ds+

N

∑
j=1

∫ t

0
Cju(s)◦ dwj(t). (8)

To prove that this stochastic equation (8) generates a random dynamical system, we
will transform it into a random differential equation in �2.

Let us consider the one-dimensional stochastic differential equation

dz =−α zdt + dw(t), (9)

for α > 0, where w(t) is a standard Brownian motion. This equation possesses
a random fixed point in the sense of random dynamical systems generating a
stationary solution known as the stationary Ornstein–Uhlenbeck process. More
properties on this process can be found in Caraballo et al. [5].

Let us consider α = 1 and denote by z∗j its associated Ornstein–Uhlenbeck
process corresponding to (9) with wj instead of w.

Then for any j = 1, . . . ,N we have a stationary Ornstein–Uhlenbeck process
generated by a random variable z∗j(ω) on Ω̄ j defined on the metric dynamical
system (Ω̄ j ,F j,P j,θ ). Now we set (Ω ,F ,P,θ ), where Ω = Ω̄1 × ·· · × Ω̄N ,
F =

⊗N
i=1 Fi, P= P1×P2×·· ·×PN, and θ is the flow of Wiener shifts.

Notice that operator Cj generates a strongly continuous semigroup (in fact,
group) of operators SC j(t). More precisely, SC j(t) is given by SCj (t)u = ecjtu, for

u ∈ �2, and, for simplicity, we denote δ (ω) :=
N
∑
j=1

c jz∗j(ω).

Thanks to the change of variable v(t) = e−δ (θt ω)u(t), where u is a solution to (8),
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dv(t) = e−δ (θt ω)du(t)−
N

∑
j=1

c je
−δ (θt ω)u(t)◦ dz∗j(θt ω)

=
(
−νAv(t)− e−δ (θtω) f̃ (eδ (θt ω)v(t))+ δ (θtω)v(t)

)
dt.

So we can consider the following evolution equation with random coefficients:

dv
dt

=−νAv+ δ (θtω)v− e−δ (θtω) f̃
(

eδ (θtω)v
)
, (10)

and initial condition v(0) = v0 ∈ H.
From (H1) to (H2), for every x ∈ R, we easily obtain

e−δ (θtω) fi

(
eδ (θt ω)x

)
x≥ λ x2− e−2δ (θtω)c0,i. (11)

Now we establish the following result.

Theorem 3. Let T > 0 and v0 ∈ H be fixed. Then, for every ω ∈Ω , (10) admits at
least a solution v(·,ω ,v0) ∈ C ([0,T ], �2).

Proof. The existence of at least one local solution follows the same arguments from
[7]. That this solution is global follows as in [3] (see also [8]). �	

Now, we say that u(·) = u(·,ω ,u0) is a solution of (8) [or (4)] if u(t) = eδ (θt ω)×
×v(t,ω ,e−δ (ω)u0) with v(·,ω ,e−δ (ω)u0) a solution of (10) with initial value u0.

Let S
(
v0,ω

)
be the set of all solutions to (10) corresponding to the initial datum

v0 ∈ l2 and ω ∈Ω .
We define the multivalued map G : R+×Ω × l2 → P

(
l2
)

as follows:

G
(
t,ω ,u0)=

{
eδ (θt ω)v(t) : v ∈S (e−δ (ω)u0,ω)

}
. (12)

Arguing in a standard way (see, e.g., [4]), we prove that (12) is an MNDS. Namely:

Lemma 1. The map G defined by (12) satisfies G(0,ω , ·)= Idl2 and G(t + τ,ω ,x)=
G(t,θtω ,G(τ,ω ,x)), for all t,τ ∈ R

+, x ∈ l2, ω ∈ Ω . Moreover, G is upper-
semicontinuous and possesses closed values.

4 Existence of Pullback Attractors

We now establish the existence of a global pullback attractor for the MNDS
generated by (4). As universe D we consider the family of multivalued mappings D
in l2 with D(ω) ⊂ Bl2 (0,ρ (ω)), the closed ball centered at zero and radius ρ (ω),

with sub-exponential growth, i.e., limt→±∞
log+ ρ(θt ω)

t = 0, ω ∈Ω .
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D is called the family of sub-exponentially growing multifunctions in C
(
l2
)
. The

properties on D given in Definition 2 also hold. Our main result is the next one.

Theorem 4. The MNDS G generated by (8) possesses a unique pullback attractor.

To prove this theorem we use Theorem 1 and proceed in the following way. We
first prove that there exists an absorbing set for G in D , and we then prove that the
asymptotic compactness holds, while the other properties follow from Lemma 1.

4.1 Existence of the Pullback Absorbing Set for the MNDS

We will construct now a pullback D-absorbing set K(ω) ∈D .
Let v(t) = v(t,ω ,u0e−δ (ω)) be the solution of (10) for some u0 ∈B(θ−tω). Then,

||v(t)||2 ≤ e−2λ t+2
∫ t

0 δ (θsω)ds||v0||2

+ ||c0||l1e−2λ t+2
∫ t

0 δ (θsω)ds
∫ t

0
e−2δ (θrω)+2λ r−2

∫ r
0 δ (θsω)dsdr.

Substituting ω by θ−tω and u0 by e−δ (θ−t ω)u0 in the expression of v(·),
∥
∥
∥v
(

t,θ−tω ,e−δ (θ−tω)u0

)∥∥
∥

2
≤ e−2λ t−2δ (θ−tω)+2

∫ 0
−t δ (θsω)ds||u0||2

+ ‖c0‖l1

∫ 0

−∞
e−2δ (θrω)+2λ r+2

∫ 0
r δ (θsω)dsdr.

Thanks to the properties of the Ornstein–Uhlenbeck process z∗, it follows that
∫ 0
−∞ e−2δ (θrω)+2λ r+2

∫ 0
r δ (θsω)dsdr < +∞. Noticing that for any u0 ∈ B(θ−tω), we

have u(t,θ−tω ,u0) = eδ (ω)v(t,θ−tω ,e−δ (θ−tω)u0), then

||u(t,θ−tω ,u0)||2 ≤ eδ (ω)e−2λ t−2δ (θ−tω)+2
∫ 0
−t δ (θsω)dsd(B(θ−tω))2

+ eδ (ω)‖c0‖l1

∫ 0

−∞
e−2δ (θsω)+λ s+2

∫ 0
s δ (θrω)drds,

where d (B(θ−tω)) denote the supremum of the norm of B(θ−tω).

Denoting by R2(ω) = eδ (ω) ‖c0‖l1
∫ 0
−∞ e−2δ (θsω)+λ s+2

∫ 0
s δ (θrω)drds, and notic-

ing that limt→+∞ eδ (ω)e−2λ t−2δ (θ−tω)+2
∫ 0
−t δ (θsω)dsd(B(θ−tω))2 = 0, it follows that

K(ω) = B�2(0,R(ω)) is a pullback D-absorbing set. We will now prove that K ∈D .
To this end, we have to check that limt→+∞ e−β tR(θ−tω) = 0. Indeed, observe that
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e−β tR2(θ−tω) = 2e−β teδ (θ−tω) ‖c0‖l1

∫ 0

−∞
e−2δ (θs−tω)+λ s+2

∫ 0
s δ (θr−t ω)drds

= 2e−β teδ (θ−tω) ‖c0‖l1

∫ −t

−∞
e−2δ (θsω)+λ (s+t)+2

∫−t
s δ (θrω)drds→ 0.

4.2 Asymptotic Compactness

We first need some estimates on the tails of the solutions.

Lemma 2. Let u0(ω)∈K(ω) (the set constructed in Sect. 4.1). Then for every ε>0,
there exist T (ε,ω) > 0 and N(ε,ω) > 0 such that any solution u(·) of (4) given by
u(t) = eδ (θt ω)v(t) with v(·) ∈S

(
u0 (θ−tω)e−δ (ω) ,θ−tω

)
satisfies

∑
|i|≥N(ε,ω)

∣
∣ui(t,θ−tω ,u0(θ−tω))

∣
∣2 ≤ ε, for all t ≥ T (ε,ω).

Proof. The proof follows the same lines of that one in, say [1, 3] or [2] amongst
others, in the single-valued case, but arguing (in a uniform way) for all solutions of
our problem associated to each initial value. See also [8] for more details. �	

Theorem 5. For ω ∈ Ω the set K(ω) is asymptotically compact, i.e., every
sequence pn ∈ G(tn,θ−tn ω ,K(θ−tn ω)), with tn → ∞, has a convergent subsequence
in �2.

Proof. Consider (tn)n∈N with limn→∞ tn = ∞ and pn ∈ G(tn,θ−tn ω ,K(θ−tn ω)).
Then, there exists xn ∈ K (θ−tω) such that pn ∈ G(tn,θ−tn ω ,xn). We will show that
{pn}n∈N possesses a convergent subsequence. Since K(ω) is a bounded absorbing
set, for large n, pn ∈ K(ω). Thus, there exists v ∈ �2 and a subsequence of {pn}n∈N
(still denoted by {pn}n∈N) such that{pn}n∈N→ v weakly in �2. Next, we show that
this weak convergence is actually strong, i.e., for each ε > 0 there is N∗(ε,ω) > 0
such that, for n≥ N∗(ε,ω), we have ||pn− v|| ≤ ε.

By Lemma 2, there exist N∗1 (ε,ω) > 0 and k1(ε,ω) > 0 such that for n > N∗1
∑|i|≥k1(ε,ω) |pn

i − vi|2 ≤ 1
8 ε2. On the other hand, since v ∈ �2, there exists k2(ε) such

that ∑|i|≥k2(ε) |vi|2 ≤ 1
8 ε2. Letting k(ε,ω) = max{k1(ε,ω),k2(ε)}, by the previous

weak convergence, we have for each |i| ≤ k(ε,ω) pn
i → vi, as n → ∞, which

implies that there exists N∗2 (ε,ω) > 0 such that, when n ≥ N∗2 (ε,ω), it follows
∑|i|≤k(ε) |pn

i |2 ≤ 1
2 ε2. Let N∗(ε,ω) = max{N∗1 (ε,ω),N∗2 (ε,ω)}. Then, from the

above estimates, we obtain for n≥ N∗(ε,ω):

||pn− v||2 = ∑
|i|≤k(ε)

|pn
i − vi|2 + ∑

|i|>k(ε)
|pn

i − vi|2

≤ 1
2

ε2 + 2 ∑
|i|>K(ε)

(
|pn

i |2 + |vi|2
)
≤ ε2.
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Hence, pn converges to v strongly. The proof is complete and we have thus proved
Theorem 4. �	

Remark 1. Our next objective is to prove that our MNDS G is, in fact, an MRDS and
possesses a random attractor, and particularly, that the previous pullback attractor is
also a random pullback attractor for G. But this is the topic of our paper [8].
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Discrete-Time Counterparts of Impulsive
Hopfield Neural Networks with Leakage Delays

Haydar Akça, Valéry Covachev, and Zlatinka Covacheva

Abstract A discrete-time counterpart of a class of Hopfield neural networks with
impulses and concentrated and infinite distributed delays as well as a small delay in
the leakage terms is introduced. Sufficient conditions for the existence and global
exponential stability of a unique equilibrium point of the discrete-time system
considered are obtained.

1 Introduction

Hopfield neural networks have found applications in a broad range of disciplines [4–
6] and have been studied both in the continuous- and discrete-time cases by many
researchers. Moreover, there are many real-world systems and natural processes that
behave in a piecewise continuous style interlaced with instantaneous and abrupt
changes (impulses). Signal transmission between the neurons causes time delays.
Therefore the dynamics of Hopfield neural networks with discrete or distributed
delays has a fundamental concern.
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It is known from the literature on population dynamics [1] that time delays in the
stabilizing negative feedback terms have a tendency to destabilize the system. Due
to some theoretical and technical difficulties [3], so far there have been very few
existing works with time delay in leakage (or “forgetting”) terms [1, 3, 7, 9].

Our goal in this paper is to introduce a discrete-time counterpart of a class of
Hopfield neural networks with impulses and concentrated and infinite distributed
delays as well as a small delay in the leakage terms, without essentially changing
its stability characteristics. Note that conditions of smallness of the leakage delays
have been introduced in [3, 7]. We obtain sufficient conditions for the existence and
global exponential stability of a unique equilibrium point of the resulting discrete-
time system.

2 Impulsive Continuous-Time Hopfield Neural Network:
Existence of a Unique Equilibrium

Consider an impulsive continuous-time neural network consisting of m elementary
processing units (or neurons) whose state variables xi (i = 1,m which henceforth
will stand for i = 1,2, . . . ,m) are governed by the system

dxi(t)
dt

= −aixi(t−σ)+
m

∑
j=1

bi j f j(x j(t))+
m

∑
j=1

ci jg j(x j(t− τi j))

+
m

∑
j=1

di jh j

(∫ ∞

0
Ki j(s)x j(t− s)ds

)
+ Ii, t > 0, t �= tk, (1)

Δxi(tk) = Bikxi(tk)+
∫ tk

tk−σ
ψik(s)xi(s)ds+ γik, i = 1,m, k ∈N, (2)

with initial values prescribed by piecewise continuous functions xi(s) = φi(s) which
are bounded for s ∈ (−∞,0]. In (1), σ > 0 denotes a delay in the stabilizing
(or negative) feedback term −ai(xi − σ), also called leakage or forgetting term
of the unit i; f j(·), g j(·), h j(·) denote activation functions; the parameters bi j,
ci j, di j are real numbers that represent the weights (or strengths) of the synaptic
connections between the jth unit and the ith unit; the real constant Ii represents an
input signal introduced from outside the network to the ith unit; τi j are nonnegative
real numbers whose presence indicates the delayed transmission of signals at time
t − τi j from the jth unit to the unit i; and the delay kernels Ki j incorporate the
fading past effects (or fading memories) of the jth unit on the ith unit. In (2),
Δxi(tk) = xi(t

+
k )− xi(t

−
k ) denote impulsive state displacements at fixed instants of

time tk (k ∈ N) involving integral terms whose kernels ψik : [tk − σ , tk]→ R are
measurable functions, essentially bounded on the respective interval. Here it is
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assumed that xi(t+k ) = lim
t→t+k

xi(t) and xi(tk) = xi(t−k ) = lim
t→t−k

xi(t), and the sequence of

times {tk}∞
k=1 satisfies 0 < t1 < t2 < · · ·< tk → ∞ as k→ ∞ and Δtk = tk− tk−1 ≥ θ ,

where θ > 0 denotes the minimum time interval between successive impulses. In
other words, the value θ > 0 means that the impulses do not occur too often.

The assumptions that accompany the impulsive network (1) and (2) are given as
follows:

A1. 0 < ai < 1/σ , i = 1,m.
A2. The activation functions f j ,g j,h j : R → R are Lipschitz continuous with

respective constants Fj,G j,Hj, j = 1,m.

A3. ai−Fi

m
∑
j=1
|b ji|−Gi

m
∑
j=1
|c ji|−Hi

m
∑
j=1
|d ji|> 0, i = 1,m.

A4. The kernels Ki j : [0,∞) → [0,∞) are bounded and piecewise continuous,
normalized by

∫ ∞
0 Ki j(s)ds = 1, and there exists a positive number μ such that∫ ∞

0 Ki j(s)eμs ds < ∞ for i, j = 1,m.

An equilibrium point of the impulsive network (1) and (2) is denoted by x∗ =
(x∗1,x

∗
2, . . . ,x

∗
m)

T whereby the components x∗i are governed by the algebraic system

aix
∗
i =

m

∑
j=1

bi j f j(x
∗
j)+

m

∑
j=1

ci jg j(x
∗
j)+

m

∑
j=1

di jh j(x
∗
j)+ Ii, i = 1,m, (3)

and satisfy the linear equations

(
Bik +

∫ tk

tk−σ
ψik(s)ds

)
x∗i + γik = 0, k ∈ N, i = 1,m. (4)

Lemma 1. Let ai > 0 (i = 1,m) and conditions A2, A3 be satisfied. Then system (3)
has a unique solution x∗ = (x∗1,x

∗
2, . . . ,x

∗
m)

T .

In other words, if ai > 0 (i = 1,m) and conditions A2–A4 are satisfied, the system
without impulses (1) has a unique equilibrium point x∗ = (x∗1,x

∗
2, . . . ,x

∗
m)

T .

Proof. In system (3) we perform the substitution yi = aix∗i , i = 1,m. Thus, we obtain
the system

yi = Φi(y)≡
m

∑
j=1

[
bi j f j

(
y j

a j

)
+ ci jg j

(
y j

a j

)
+ di jh j

(
y j

a j

)]
+ Ii, i = 1,m.

We can show that the mapping y �→ Φ(y) = (Φ1(y),Φ2(y), . . . ,Φm(y))T acts as

a contraction in the space R
m equipped with the norm ‖y‖ =

m
∑

i=1
|yi|. Thus, it

has a unique fixed point y∗. Then x∗ = (y∗1/a1,y∗2/a2, . . . ,y∗m/am)
T is the unique

equilibrium point of system (1). �	
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3 Formulation of a Discrete-Time Impulsive Analogue

Our goal in the present section is to introduce a discrete-time counterpart of system
(1) and (2) without essentially changing its stability characteristics. The leakage
terms −aixi(t−σ) in the right-hand side of (1) make it difficult to apply the semi-
discretization procedure described in [2, 8]. Instead, we will discretize all terms in
the right-hand side of (1).

Suppose that σ < θ . Let the positive integer N be sufficiently large, in particular,
such that

(
1+

1
N

)
aiσ < 1, i = 1,m,

(
1+

1
N

)
σ < θ . (5)

We choose a discretization step h = σ/N and denote by n =
[

t
h

]
the greatest integer

in t/h, κi j =
[

τi j
h

]
and, for brevity, xi(n) = xi(nh), n ∈ Z. We further replace the

integral term
∫ ∞

0 Ki j(s)x j(t−s)ds (i, j = 1,m) by a sum of the form
∞
∑

p=1
Ki j(p)x j(n−

p), where the discrete kernels Ki j(·), i, j = 1,m, satisfy the following condition:

A′4. Ki j(p)∈ [0,∞) are bounded for p∈N, normalized by
∞
∑

p=1
Ki j(p) = 1, and there

exists a number ν > 1 such that
∞
∑

p=1
Ki j(p)ν p < ∞.

Thus, we obtain the following discretization of the right-hand side of (1):

−aixi(n−N)+
m

∑
j=1

bi j f j(x j(n))+
m

∑
j=1

ci jg j(x j(n−κi j))

+
m

∑
j=1

di jh j

(
∞

∑
p=1
Ki j(p)x j(n− p)

)

+ Ii, n ∈ N, i = 1,m.

The negative sign of the first term makes difficult the use of Lyapunov’s functionals
as in [2, 8]. We eliminate this term by using for σ small enough the approximation

dxi

dt
(nh)≈ 1−Nhai

h
xi(n+ 1)− 1− (N+ 1)hai

h
xi(n)− aixi(n−N).

Let us recall that Nhai = σai < 1 by condition A1 and (N+1)hai =
(
1+ 1

N

)
σai < 1

by virtue of (5). Thus, we obtain the following discrete-time analogue of the system
without impulses (1):
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(1−Nhai)xi(n+ 1)

= (1− (N+ 1)hai)xi(n)+ h

(
m

∑
j=1

bi j f j(x j(n))

+
m

∑
j=1

ci jg j(x j(n−κi j))+
m

∑
j=1

di jh j

(
∞

∑
p=1

Ki j(p)x j(n− p)

)

+ Ii

)

, (6)

n∈N, i = 1,m, with initial values of the form xi(−�) = φi(−�) (�∈ {0}∪N), where
the sequences {φi(−�)}∞

�=0 are bounded for all i = 1,m.
Next we discretize the impulse conditions (2). If we denote nk =

[ tk
h

]
, k ∈ N, we

obtain a sequence of positive integers {nk}∞
k=1 satisfying 0< n1 < n2 < · · ·< nk→∞

as k → ∞ and Δnk = nk− nk−1 ≥
[ θ

h

]
− 1. With each such integer nk we associate

two values of the solution x(n), namely, x(nk) which can be regarded as the value
of the solution before the impulse effect and whose components are evaluated by
(6) and x+(nk) which can be regarded as the value of the solution after the impulse
effect and whose components are evaluated by the equations

x+i (nk)− xi(nk) =
nk

∑
�=nk−N

Bik�xi(�)+ γik, i = 1,m, k ∈ N, (7)

where Bik� are suitably chosen constants.
Further on we will call system (6) and (7) the discrete-time analogue of the

system with impulses (1) and (2).
The components of an equilibrium point x∗ = (x∗1,x

∗
2, . . . ,x

∗
m)

T of system (6) and
(7) must satisfy the (3) and

nk

∑
�=nk−N

Bik�x
∗
i + γik = 0. (8)

To ensure that systems (1), (2) and (6), (7) have the same equilibrium points if any,
we choose the constants Bik� so that

nk

∑
�=nk−N

Bik� = Bik +

∫ tk

tk−σ
ψik(s)ds, i = 1,m, k ∈ N.

Definition 1. The equilibrium point x∗ = (x∗1,x
∗
2, . . . ,x

∗
m)

T of system (6) and (7) is
said to be globally exponentially stable with a multiplier ρ if there exist constants
M > 1 and ρ ∈ (0,1), and any other solution x(n) = (x1(n),x2(n), . . . ,xm(n))T of
system (6) and (7) is defined for all n ∈N and satisfies the estimate

m

∑
i=1

|xi(n)− x∗i | ≤Mρn
m

∑
i=1

sup
�∈{0}∪N

|xi(−�)− x∗i |. (9)
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4 Main Results: Sufficient Conditions for Global
Exponential Stability of the Equilibrium Point

Theorem 1. Let system (6) and (7) satisfy conditions A1–A3, A′4, (5), and the
components of the unique equilibrium point x∗ = (x∗1,x

∗
2, . . . ,x

∗
m)

T of system (6)
satisfy (8). Then there exist constants M′ > 1 and λ ∈ (1,ν] such that any other
solution x(n) = (x1(n),x2(n), . . . ,xm(n))T of system (6) and (7) is defined for all
n ∈ N and satisfies the estimate

m

∑
i=1
|xi(n)− x∗i | ≤M′λ−n

i(1,n)

∏
k=1

B′k
m

∑
i=1

sup
�∈{0}∪N

|xi(−�)− x∗i |, (10)

i(1,n) =

{
0, n≤ n1,

max{k ∈ N : nk < n}, n > n1,
B′k = Bk

(
1+ c max

i=1,m
(1− cai)

−1

)
and

Bk = max
i=1,m

max

{∣∣1+Biknk

∣∣ , max
nk−N≤�≤nk−1

|Bik�|
}
, k ∈ N.

Proof. From the conditions of the theorem it follows that system (6) and (7) has
a unique equilibrium point x∗ = (x∗1,x

∗
2, . . . ,x

∗
m)

T . For any n ∈ N∪ {0}, from (6)
and (3), by virtue of condition A2, we derive the inequalities

(1−Nhai)|xi(n+ 1)− x∗i | ≤ (1− (N+ 1)hai)|xi(n)− x∗i |

+h
m

∑
j=1

{

|bi j|Fj |x j(n)− x∗j |+ |ci j|G j |x j(n−κi j)− x∗j |

+ |di j|Hj

∞

∑
p=1
Ki j(p)|x j(n− p)− x∗j|

}

, i = 1,m.

For λ ∈ [1,ν], let us denote yi(n) = λ n|xi(n)− x∗i |, n ∈ Z, and define a Lyapunov
functional V (·) by

V (n) =
m

∑
i=1

{

(1−σai)yi(n)+ h
m

∑
j=1

[

|ci j|G jλ κi j+1
n−1

∑
�=n−κi j

y j(�)

+ |di j|Hj

∞

∑
p=1

Ki j(p)λ p+1
n−1

∑
�=n−p

y j(�)

]}

. (11)

It is easy to see that V (n)≥ 0 for n ∈ N∪{0} and V (0)< ∞ by A′4. More precisely,

V (0)≤M
m

∑
i=1

sup
�∈N∪{0}

|xi(−�)− x∗i |, (12)
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where

M = max
i=1,m

{

1−σai+ h

[

Gi

m

∑
j=1

|c ji|λ κ ji+1 +Hi

m

∑
j=1

|d ji|
∞

∑
p=1

K ji(p)λ p+1

]}

.

Further on, we obtain

V (n+ 1)−V(n)≤−
m

∑
i=1

Ψi(λ )yi(n),

where Ψi(λ ) = hλ

(

ai−Fi

m
∑
j=1
|b ji|−Gi

m
∑
j=1
|c ji|λ κ ji−Hi

m
∑
j=1
|d ji|

∞
∑

p=1
K ji(p)λ p

)

−(λ −1)(1−σai). By condition A′4 the functions Ψi(λ ) (i = 1,m) are well defined

and continuous for λ ∈ [1,ν]. Moreover, Ψi(1) = h

(

ai−Fi

m
∑
j=1
|b ji| − Gi

m
∑
j=1
|c ji|

−Hi

m
∑
j=1
|d ji|

)

> 0, i = 1,m, by virtue of A′4 and A3. By continuity, for each

i = 1,m, there exists a number λi ∈ (1,ν] such that Ψi(λ ) ≥ 0 for λ ∈ (1,λi]. If
we denote λ0 = min

i=1,m
λi, then λ0 > 1 and Ψi(λ ) ≥ 0 for λ ∈ (1,λ0] and i = 1,m.

This implies V (n+ 1)≤ V (n) for n �= nk and V (nk + 1) ≤ V+(nk), where V+(nk)
contains |x+i (nk)− x∗i | instead of |xi(nk)− x∗i |. The above inequalities yield

V (n)≤
{

V+(nk) for nk < n≤ nk+1,

V (0) for 0 < n≤ n1.
(13)

From equalities (7) and (8), we find

|x+i (nk)− x∗i | ≤ Bk

nk

∑
�=nk−N

|xi(�)− x∗i |,

where the constants Bk were introduced in the statement of Theorem 1, and

V+(nk)≤ B′kV
+(nk−1)

for k ≥ 2 and, similarly, V+(n1)≤ B′1V (0).
Combining the last inequalities and (13), we derive the estimate

V (n)≤
i(1,n)

∏
k=1

B′kV (0). (14)
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Finally, from the inequalities

m

∑
i=1
|xi(n)− x∗i | ≤ max

i=1,m
(1− cai)

−1λ−nV (n),

(14) and (12) we deduce (10) with M′ = M max
i=1,m

(1−cai)
−1 and any λ ∈ (1,λ0]. �	

For three sets of additional assumptions, we show that inequality (10) implies
global exponential stability of the equilibrium point x∗ of the discrete-time system
(6) and (7).

Corollary 1. Let all conditions of Theorem 1 hold. Suppose that B′k ≤ 1 for all
sufficiently large values of k ∈ N. Then the equilibrium point x∗ of the discrete-time
system (6) and (7) is globally exponentially stable with multiplier 1/λ0.

Corollary 2. Let all conditions of Theorem 1 hold and limsup
n→∞

i(1,n)
n = p <+∞. Let

there exist a positive constant B such that B′k ≤ B for all sufficiently large values

of k ∈ N and Bp < λ0. Then for any ρ ∈
(

Bp

λ0
,1
)

the equilibrium point x∗ of the

discrete-time system (6) and (7) is globally exponentially stable with multiplier ρ .

Corollary 3. Let all conditions of Theorem 1 hold. Suppose that there exists a
constant μ ∈ (1,λ0) such that B′k ≤ μnk−nk−1 for all sufficiently large values of k∈N.
Then the equilibrium point x∗ of the discrete-time system (6) and (7) is globally
exponentially stable with multiplier μ/λ0.
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A Symmetric Quantum Calculus

Artur M.C. Brito da Cruz, Natália Martins, and Delfim F.M. Torres

Abstract We introduce the α,β -symmetric difference derivative and the α,
β -symmetric Nörlund sum. The associated symmetric quantum calculus is devel-
oped, which can be seen as a generalization of the forward and backward h-calculus.

1 Introduction

Quantum derivatives and integrals play a leading role in the understanding of
complex physical systems. The subject has been under strong development since
the beginning of the twentieth century [5–8,11]. Roughly speaking, two approaches
to quantum calculus are available. The first considers the set of points of study to
be the lattice qZ or hZ and is nowadays part of the more general time scale calculus
[1, 3, 9]; the second uses the same formulas for the quantum derivatives but the set
of study is the set R of real numbers [2,4,10]. Here we take the second perspective.

Given a function f and a positive real number h, the h-derivative of f is defined
by the ratio ( f (x+ h)− f (x))/h. When h→ 0, one obtains the usual derivative of
the function f . The symmetric h-derivative is defined by ( f (x+h)− f (x−h))/(2h),
which coincides with the standard symmetric derivative [12] when we let h→ 0.
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We introduce the α,β -symmetric difference derivative and Nörlund sum and
then develop the associated calculus. Such an α,β -symmetric calculus gives a
generalization to (both forward and backward) quantum h-calculus.

The text is organized as follows. In Sect. 2 we recall the basic definitions of
the quantum h-calculus, including the Nörlund sum, i.e., the inverse operation of
the h-derivative. Our results are then given in Sect. 3: in Sect. 3.1 we define and
prove the properties of the α,β -symmetric derivative, in Sect. 3.2 we define the α,
β -symmetric Nörlund sum, and Sect. 3.3 is dedicated to mean value theorems for the
α,β -symmetric calculus—we prove α,β -symmetric versions of Fermat’s theorem
for stationary points, Rolle’s, Lagrange’s, and Cauchy’s mean value theorems.

2 Preliminaries

In what follows we denote by |I| the measure of the interval I.

Definition 1. Let α and β be two positive real numbers, I ⊆ R be an interval with
|I|> α , and f : I → R. The α-forward difference operator Δα is defined by

Δα [ f ] (t) :=
f (t +α)− f (t)

α

for all t ∈ I\ [sup I−α,sup I], in case sup I is finite, or, otherwise, for all t ∈ I.
Similarly, for |I|> β the β -backward difference operator ∇β is defined by

∇β [ f ] (t) :=
f (t)− f (t−β )

β

for all t ∈ I\ [inf I, inf I +β ], in case infI is finite, or, otherwise, for all t ∈ I. We
call to Δα [ f ] the α-forward difference derivative of f and to ∇β [ f ] the β -backward
difference derivative of f .

Definition 2. Let I ⊆ R be such that a,b ∈ I with a < b and sup I = +∞. For f :
I → R we define the Nörlund sum (the α-forward integral) of f from a to b by

∫ b

a
f (t)Δα t =

∫ +∞

a
f (t)Δα t−

∫ +∞

b
f (t)Δα t,

where
∫ +∞

x
f (t)Δα t = α

+∞

∑
k=0

f (x+ kα) ,

provided the series converges at x = a and x = b. In that case, f is said to be
α-forward integrable on [a,b]. We say that f is α-forward integrable over I if it
is α-forward integrable for all a,b ∈ I.

Remark 1. If f : I→R is a function such that sup I <+∞, then we can easily extend
f to f̃ : Ĩ →R with sup Ĩ =+∞ by letting f̃ |I = f and f̃ |Ĩ\I = 0.
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Remark 2. Definition 2 is valid for any two real points a,b and not only for points
belonging to αZ. This is in contrast with the theory of time scales [1, 3].

Similarly, one can introduce the β -backward integral.

Definition 3. Let I be an interval of R such that a,b ∈ I with a < b and inf I =−∞.
For f : I →R we define the β -backward integral of f from a to b by

∫ b

a
f (t)∇β t =

∫ b

−∞
f (t)∇β t−

∫ a

−∞
f (t)∇β t,

where
∫ x

−∞
f (t)∇β t = β

+∞

∑
k=0

f (x− kβ ) ,

provided the series converges at x = a and x = b. In that case, f is said to be
β -backward integrable on [a,b]. We say that f is β -backward integrable over I if
it is β -backward integrable for all a,b ∈ I.

The β -backward Nörlund sum has similar results and properties as the α-forward
Nörlund sum.

3 Main Results

We begin by introducing in Sect. 3.1 the α,β -symmetric derivative; in Sect. 3.2 we
define the α,β -symmetric Nörlund sum, while Sect. 3.3 is dedicated to mean value
theorems for the new α,β -symmetric calculus.

3.1 The α,β -Symmetric Derivative

In what follows, α,β ∈ R
+
0 with at least one of them positive and I is an interval

such that |I|> max{α,β}. We denote by Iα
β the set

Iα
β =

⎧
⎪⎪⎨

⎪⎪⎩

I\([inf I, inf I+β ]∪ [sup I−α,sup I]) if inf I �=−∞∧ sup I �=+∞
I\([inf I, inf I+β ]) if inf I �=−∞∧ sup I =+∞

I\([sup I−α,sup I]) if inf I =−∞∧ sup I �=+∞
I if inf I =−∞∧ supI =+∞.

Definition 4. The α,β -symmetric difference derivative of f : I → R is given by

Dα ,β [ f ] (t) =
f (t +α)− f (t−β )

α +β

for all t ∈ Iα
β .
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Remark 3. The α,β -symmetric difference operator is a generalization of both
the α-forward and the β -backward difference operators. Indeed, the α-forward
difference is obtained for α > 0 and β = 0, while for α = 0 and β > 0, we obtain
the β -backward difference operator.

Remark 4. The classical symmetric derivative [12] is obtained by choosing β = α
and taking the limit α → 0. When α = β = h > 0, the α,β -symmetric difference
operator is called the h-symmetric derivative.

Remark 5. If α,β ∈ R
+, then Dα ,β [ f ] (t) =

α
α+β Δα [ f ] (t)+ β

α+β ∇β [ f ] (t), where
Δα and ∇β are, respectively, the α-forward and the β -backward differences.

The symmetric difference operator has the following properties:

Theorem 1. Let f ,g : I →R and c,λ ∈ R. For all t ∈ Iα
β , one has:

1. Dα ,β [c] (t) = 0.
2. Dα ,β [ f + g](t) = Dα ,β [ f ] (t)+Dα ,β [g] (t).
3. Dα ,β [λ f ] (t) = λ Dα ,β [ f ] (t).
4. Dα ,β [ f g] (t) = Dα ,β [ f ] (t)g(t +α)+ f (t−β )Dα ,β [g](t).
5. Dα ,β [ f g] (t) = Dα ,β [ f ] (t)g(t−β )+ f (t +α)Dα ,β [g](t).

6. Dα ,β

[
f
g

]
(t) =

Dα ,β [ f ] (t)g(t−β )− f (t−β )Dα ,β [g] (t)

g(t +α)g(t−β )
provided g(t +α)g(t−β ) �= 0.

7. Dα ,β

[
f
g

]
(t) =

Dα ,β [ f ] (t)g(t +α)− f (t +α)Dα ,β [g] (t)

g(t +α)g(t−β )
provided g(t +α)g(t−β ) �= 0.

Proof. Property 1 is a trivial consequence of Definition 4. Properties 2, 3, and 4
follow by direct computations:

Dα ,β [ f + g](t) =
( f + g)(t +α)− ( f + g)(t−β )

α +β

=
f (t +α)− f (t−β )

α +β
+

g(t +α)− g(t−β )
α +β

= Dα ,β [ f ] (t)+Dα ,β [g] (t) ;

Dα ,β [λ f ] (t) =
(λ f )(t +α)− (λ f ) (t−β )

α +β

= λ
f (t +α)− f (t−β )

α +β

= λ Dα ,β [ f ] (t) ;
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Dα ,β [ f g] (t) =
( f g)(t +α)− ( f g) (t−β )

α +β

=
f (t +α)g(t +α)− f (t−β )g(t−β )

α +β

=
f (t +α)− f (t−β )

α +β
g(t +α)+

g(t +α)− g(t−β )
α +β

f (t−β )

= Dα ,β [ f ] (t)g(t +α)+ f (t−β )Dα ,β [g](t) .

Equality 5 is obtained from 4 interchanging the role of f and g. To prove 6, we begin
by noting that

Dα ,β

[
1
g

]
(t) =

1
g (t +α)− 1

g (t−β )
α +β

=

1
g(t+α) −

1
g(t−β )

α +β

=
g(t−β )− g(t +α)

(α +β )g(t +α)g(t−β )
=−

Dα ,β [g](t)

g(t +α)g(t−β )
.

Hence,

Dα ,β

[
f
g

]
(t) = Dα ,β

[
f

1
g

]
(t) = Dα ,β [ f ] (t)

1
g
(t +α)+ f (t−β )Dα ,β

[
1
g

]
(t)

=
Dα ,β [ f ] (t)

g(t +α)
− f (t−β )

Dα ,β [g](t)

g(t +α)g(t−β )

=
Dα ,β [ f ] (t)g(t−β )− f (t−β )Dα ,β [g] (t)

g(t +α)g(t−β )
.

Equality 7 follows from simple calculations:

Dα ,β

[
f
g

]
(t) = Dα ,β

[
f

1
g

]
(t) = Dα ,β [ f ] (t)

1
g
(t−β )+ f (t +α)Dα ,β

[
1
g

]
(t)

=
Dα ,β [ f ] (t)

g(t−β )
− f (t +α)

Dα ,β [g] (t)

g(t +α)g(t−β )

=
Dα ,β [ f ] (t)g(t +α)− f (t +α)Dα ,β [g] (t)

g(t +α)g(t−β )
.

�	

3.2 The α,β -Symmetric Nörlund Sum

Having in mind Remark 5, we define the α,β -symmetric integral as a linear
combination of the α-forward and the β -backward integrals.
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Definition 5. Let f : R→R and a,b∈R, a < b. If f is α-forward and β -backward
integrable on [a,b], then we define the α,β -symmetric integral of f from a to b by

∫ b

a
f (t)dα ,β t =

α
α +β

∫ b

a
f (t)Δα t +

β
α +β

∫ b

a
f (t)∇β t.

The function f is α,β -symmetric integrable if it is α,β -symmetric integrable for
all a,b ∈ R.

Remark 6. Note that if α ∈ R
+ and β = 0, then

∫ b

a
f (t)dα ,β t =

∫ b

a
f (t)Δα t; if

α = 0 and β ∈R
+, then

∫ b

a
f (t)dα ,β t =

∫ b

a
f (t)∇β t.

The properties of the α,β -symmetric integral follow from the corresponding
α-forward and β -backward integral properties. It should be noted, however, that
the equality Dα ,β

[
s �→

∫ s
a f (τ)dα ,β τ

]
(t) = f (t) is not always true in the α,

β -symmetric calculus, despite both forward and backward integrals satisfy the cor-

responding fundamental theorem of calculus. Indeed, let f (t) =

{
1
2t ift ∈N,

0 otherwise.
Then, for a fixed t ∈ N,

∫ t

0
f (τ)d1,1τ =

1
2

∫ t

0
f (τ)Δ1τ +

1
2

∫ t

0
f (τ)∇1τ

=
1
2

(
+∞

∑
k=0

f (0+ k)−
+∞

∑
k=0

f (t + k)

)

+
1
2

(
+∞

∑
k=0

f (t− k)−
+∞

∑
k=0

f (0− k)

)

=
1
2

(
1+

1
2
+ · · ·+ 1

2t−1

)
+

1
2

(
1
2t +

1
2t−1 + · · ·+ 1

2

)

=
1
2

1− 1
2t

1− 1
2

+
1
4

1− 1
2t

1− 1
2

=
3
2

(
1− 1

2t

)

and D1,1

[
s �→

∫ s

0
f (τ)d1,1τ

]
(t)=

3
2

D1,1

[
s �→ 1− 1

2s

]
(t) =−3

2

1
2t+1 − 1

2t−1

2
=

9
2t+3 .

Therefore, D1,1

[
s �→

∫ s

0
f (τ)d1,1τ

]
(t) �= f (t).

3.3 Mean Value Theorems

We begin by remarking that if f assumes its local maximum at t0, then there exist
α,β ∈ R

+
0 with at least one of them positive, such that f (t0 +α) � f (t0) and

f (t0) � f (t0−β ). If α,β ∈ R
+, this means that Δα [ f ] (t) � 0 and ∇β [ f ] (t) � 0.
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Also, we have the corresponding result for a local minimum. If f assumes its local
minimum at t0, then there exist α,β ∈R

+ such that Δα [ f ] (t)� 0 and ∇β [ f ] (t)� 0.

Theorem 2 (The α,β -symmetric Fermat theorem for stationary points). Let f :
[a,b]→R be a continuous function. If f assumes a local extremum at t0 ∈ ]a,b[, then
there exist two positive real numbers α and β such that Dα ,β [ f ] (t0) = 0.

Proof. We prove the case where f assumes a local maximum at t0. Then there
exist α1,β1 ∈ R

+ such that Δα1 [ f ] (t0) � 0 and ∇β1
[ f ] (t0) � 0. If f (t0 +α1) =

f (t0−β1), then Dα1,β1
[ f ] (t0) = 0. If f (t0 +α1) �= f (t0−β1), then let us choose

γ = min{α1,β1}. Suppose (without loss of generality) that f (t0− γ) > f (t0 + γ).
Then, f (t0)> f (t0− γ)> f (t0 + γ), and since f is continuous, by the intermediate
value theorem, there exists ρ such that 0 < ρ < γ and f (t0 +ρ) = f (t0− γ).
Therefore, Dρ ,γ [ f ] (t0) = 0. �	

Theorem 3 (The α ,β -symmetric Rolle mean value theorem). Let f : [a,b]→ R

be a continuous function with f (a)= f (b). Then there exist α , β ∈R
+ and c∈ ]a,b[

such that Dα ,β [ f ] (c) = 0.

Proof. If f = const, then the result is obvious. If f is not a constant function, then
there exists t ∈ ]a,b[ such that f (t) �= f (a). Since f is continuous on the compact set
[a,b], f has an extremum M = f (c) with c∈ ]a,b[. Since c is also a local extremizer,
then, by Theorem 2, there exist α ,β ∈ R

+ such that Dα ,β [ f ] (c) = 0. �	

Theorem 4 (The α,β -symmetric Lagrange mean value theorem). Let f : [a,b]
→ R be a continuous function. Then there exist c ∈ ]a,b[ and α ,β ∈ R

+ such that

Dα ,β [ f ] (c) =
f (b)− f (a)

b−a .

Proof. Let function g be defined on [a,b] by g(t) = f (a)− f (t)+(t− a) f (b)− f (a)
b−a .

Clearly, g is continuous on [a,b] and g(a) = g(b) = 0. Hence, by Theorem 3, there
exist α , β ∈ R

+ and c ∈ ]a,b[ such that Dα ,β [g] (c) = 0. Since

Dα ,β [g](t) =
g(t +α)− g(t−β )

α +β

=
1

α +β

(
f (a)− f (t +α)+ (t +α− a)

f (b)− f (a)
b− a

)

− 1
α +β

(
f (a)− f (t−β )+ (t−β − a)

f (b)− f (a)
b− a

)

=
1

α +β

(
f (t−β )− f (t +α)+ (α +β )

f (b)− f (a)
b− a

)

=
f (b)− f (a)

b− a
−Dα ,β [ f ] (t) ,

we conclude that Dα ,β [ f ] (c) =
f (b)− f (a)

b−a . �	
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Theorem 5 (The α ,β -symmetric Cauchy mean value theorem). Let f ,g : [a,b]
→ R be continuous functions. Suppose that Dα ,β [g] (t) �= 0 for all t ∈ ]a,b[ and all

α , β ∈R
+. Then there exists ᾱ , β̄ ∈R

+ and c∈ ]a,b[ such that f (b)− f (a)
g(b)−g(a) =

Dᾱ ,β̄ [ f ](c)

Dᾱ ,β̄ [g](c)
.

Proof. From condition Dα ,β [g] (t) �= 0 for all t ∈ ]a,b[ and all α , β ∈ R
+

and the α,β -symmetric Rolle mean value theorem (Theorem 3), it follows that
g(b) �= g(a). Let us consider function F defined on [a,b] by F (t) = f (t)−
f (a)− f (b)− f (a)

g(b)−g(a) [g(t)− g(a)]. Clearly, F is continuous on [a,b] and F (a) = F (b).

Applying the α,β -symmetric Rolle mean value theorem to the function F , we
conclude that there exist ᾱ, β̄ ∈ R

+ and c ∈ ]a,b[ such that

0 = Dᾱ ,β̄ [F ] (c) = Dᾱ ,β̄ [ f ] (c)−
f (b)− f (a)
g(b)− g(a)

Dᾱ,β̄ [g] (c) ,

proving the intended result. �	
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Stability of Nonlinear Differential Systems
with Right-Hand Side Depending
on Markov’s Process

Irada Dzhalladova

Abstract In this paper we investigated sufficient conditions for stability of solu-
tions of systems of nonlinear differential equations with right-hand side depending
on Markov’s process. The basic role in proof has Lyapunov functions. Nontrivial
illustrative example is given.

Keywords Sufficient condition • Asymptotic stability of solution • Systems of
nonlinear differential equations • Markov’s process

1 Introduction

We deduced equations for definition of Lyapunov functions for non-linear system
of differential equations with right-hand side depending on stochastic Markov’s
process with finite value. Then we can find sufficient conditions of stability of
solutions.

2 Statement of the Problem

Let (Ω≡ {ω},ℑ,P,F≡ {Ft , t ≥ 0}) is probability basis [1]. We will study the
systems of differential equations for X(t)≡ X(t,ω)

dX(t)
dt

= F(t,X(t),ς(t)), (1)
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368 I. Dzhalladova

where dim X(t) = m. Together with (1), we consider an initial condition

X(0) = x0 ∈ Em,

where Em is m-dimensional Euclid space. We suppose that (1) has the zero solution,
i.e., F(t,0,ς(t)) ≡ 0. We suppose that ς(t) is Markov’s stochastic process, where,
takes values θ1, . . . ,θn with probability

pk(t) = P{ς(t) = θk}, k = 1,2, . . . ,n,

which satisfies the system of differential equation [5]

d pk(t)
dt

=
n

∑
s=1

aks(t)ps(t), k = 1,2, . . . ,n,

where continuous coefficients aks(t), k,s = 1, . . . ,n, satisfies known conditions
(see [5]):

n

∑
k=1

aks(t)≡ 0, aks(t)≥ 0, fork �= s, akk ≤ 0.

We suppose that vector functions

Fs(t,x)≡ F(t,x,θs), s = 1,2, . . . ,n, x = (x1,x2, . . . ,xn),

are continuous for t ≥ 0, ‖x‖ < ∞ and exist as solutions of partial systems of
differential equations

dx
dt

= Fs(t,x), s = 1,2, . . . ,n, ‖x‖< ∞,

and there are continuant for t ≥ 0. As ‖x‖, we denoted the Euclidean norm of
vector x.

Let positive definite function w(t,x,ς) satisfies condition [4]

λ1‖x‖2 ≤ ws(t,x,ς)≤ λ2‖x‖2, (2)

where 0 < λ1 ≤ λs, λ1,λ2 ∈ R, ς(t) = θk.
We introduce the description

ws(t,x) = w(t,x,θs), s = 1,2, . . . ,n.

Then we rewriting condition (2) as

λ1‖x‖2 ≤ ws(t,x)≤ λ2‖x‖2 s = 1,2, . . . ,n.
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We suppose that zero solution of system of differential equation (1) is asymptotically
stable in mean square for arbitrary realization of stochastic process ς(t) so that the
infinite integral

I =
∫ ∞

0

〈
‖X(τ)‖2〉dτ

converge, where 〈· · · 〉 is the symbol of mean (average) value. We define Lyapunov
function as (see [2, 3])

ν(t,x,ς(t)) =
∫ ∞

t
〈w(τ,X(τ),ς(τ))|X(t) = x〉dτ.

We define partial stochastic Lyapunov function as

νs(t,x) =
∫ ∞

t
〈w(τ,X(τ),ς(τ))|X(t) = x,ς(t) = θs〉dτ, s = 1,2, . . . ,n. (3)

Density of distribution f (t,x,ς) of continuous discrete stochastic process
(X(t),ς(t)) has the form

f (t,x,ς) =
n

∑
k=1

fk(t,x)δ (ς −θk),

where fk(t,x) are partial functions of distribution [3] and δ (·) is a Dirac function. If
functions νs(t,x) know from (3), and then a value of functional

ν =

∫ ∞

0
〈w(t,X(t),ς(t))〉dt

for X(t) = x,ς(t) = θs, then we can find using the formula [3]

ν =
∫

Em

n

∑
s=1

νs(0,x) fs(0,x)dx, dx≡ dx1 . . .dxm,

where Em is m-dimensional phase space of variables x1, . . . ,xm. Then true the more
general expression

∫ ∞

t
〈w(τ,X(τ),ς(t))〉dτ =

∫

Em

n

∑
s=1

νs(t,x) fs(t,x)dx. (4)
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3 Main Result

We deduce equation which satisfies partial stochastic Lyapunov functions νs(t,x)
from (3). Let argument t has infinitesimal increment h > 0. Then the Markov’s
stochastic process ς(t) during the time Δt = h > 0 with probability 1 + hass(t)
stay on state θs, and with probability haks(t), it goes over from state θs to state
θk for k �= s. In this case the solution of system (1) goes over from state x to state
x+ hFs(t,x).

So we have the equations

νs(t,x) = hws(t,x)

+νs

(

t + h,x+ hFs(t,x)+ h
n

∑
k=1

aks(t)νk(t + h,x+ hFs(t,x))+O(h2)

)

,

s = 1, . . . ,n, where O(·) is Landau symbol. Resolve this equations according to
power of h and compare coefficients by h. We get the system of partial differential
equations

∂νs(t,x)
∂ t

+
Dνs(t,x)

Dx
Fs(t,x)+ws(t,x)+

n

∑
k=1

aks(t)νk(t,x) = 0, (5)

s = 1, . . . ,n.
From (4) follows the theorem.

Theorem. Let’s some functions ws(t,x), s = 1, . . . ,n, which satisfies condition (2),
exist a solution νs(t,x), s = 1, . . . ,n, of system (5), where satisfies condition

λ3‖x‖2 ≤ νs(t,x)≤ λ4‖x‖2,

0 < λ3 ≤ λ4, λ3,λ4 ∈ R, s = 1, . . . ,n. Then the zero solution of system (1) is
uniformly asymptotically stable in mean square, in accordance with bounded infinite
integral

∫ ∞

t
〈w(τ,X(τ),ς(τ))|X(t) = x〉dτ ≤ λ4‖x‖2.

4 Particular Case

In autonomous case the system of (1) has the form

dX(t)
dt

= F(X(t),ς(t)) (6)
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and

Fs(x) = F(x,θs), s = 1,2, . . . ,n,

where ς(t) is homogenous Markov’s process with finite numbers of options. This
Markov’s process is defined by system of differential equations

d pk(t)
dt

=
n

∑
s=1

aks ps(t), k = 1, . . . ,n.

Partial stochastic Lyapunov functions are defined by forms

νs(t) =
∫ ∞

0
〈w(X(τ),ς(τ))|X(0) = x,ς(t) = θs〉dτ, s = 1, . . . ,n. (7)

Then system of (5) has the form

Dνs(x)
Dx

Fk(x)+ws(x)+
n

∑
k=1

aksνk(x) = 0, s = 1, . . . ,n. (8)

Suppose that we have positive definite functions ws(x), νs(x), s= 1, . . . ,n that satisfy
conditions

u1(x)≤ νs(x)≤ u2(x), u3(x)≤ ws(x)≤ u4(x),

where ui(x), i = 1,2,3,4 are continuous differential functions. From (7) follows
inequalities

∫ ∞

0
〈u4(X(t))〉dt ≥ 〈u1(X(0))〉 . (9)

∫ ∞

0
〈u3(X(t))〉dt ≤ 〈u2(X(0))〉 . (10)

From previous formulas follows the next theorem. If for some positive definite
functions ws(x), s = 1, . . . ,n, exist positive functions νs(x), s = 1, . . . ,n, where,
satisfies the system (8), then zero solution of system (6) asymptotically stable in
mean square and inequalities (9) and (10) holds.

5 Example

We decided the stability of solutions of system of differential equations

dX(t)
dt

=−β X(t)+F(X(t),ς(t)),β > 0,
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where ς(t) is stochastic Markov’s process. This process takes two values θ1,θ2 with
probability pk = P{ς(t) = θk}, k = 1,2, and satisfies the next system of equations
for λ > 0

d p1(t)
dt

=−λ p1(t)+λ p2(t),

d p2(t)
dt

= λ p1(t)−λ p2(t).

In this case the stochastic right-hand side has the form

F1(x) = F(x,θ1) =

(
−w1x2− x3

1
w1x1− x3

2

)
,

F2(x) = F(x,θ2) =

(
w2x2− x3

1
−w2x1− x3

2

)
,

where x = (x1,x2).
Solution: We define positive definite functions as

w1(x) = w2(x) = x2
1 + x2

2 +β−1(x4
1 + x4

2

)
.

Then it is easy to prove that the solution of (8) is positive definite functions:

ν1(x) = ν2(x) =
1

2β
(
x2

1 + x2
2

)
.

From convergence integral

ν =

∫ ∞

0

〈
x2

1(t)+ x2
2(t)+β−1(x4

1(t)+ x4
2(t)

)〉
dt

follows that converges to zero for n → +∞ not only the second moment but
also the forth moment of stochastic solutions. Then follows that zero solution is
asymptotically stable in mean square.
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Oscillation of Third-Order Differential
Equations with Mixed Arguments

Jozef Džurina and Blanka Baculı́ková

Abstract In this paper we establish new comparison theorems for deducing
property (A) and the oscillation of the third-order nonlinear functional differential
equation with mixed arguments

[
a(t)

[
x′(t)

]γ
]′′

+ q(t) f (x [τ(t)])+ p(t)h(x [σ(t)]) = 0

from the oscillation of a set of suitable first-order delay/advanced equations under
condition

∫ ∞ a−1/γ(s)ds = ∞.

Keywords Third-order differential equations • Comparison theorem • Oscilla-
tion • Nonoscillation

1 Introduction

We study property (A) and the oscillation of the third-order functional differential
equations

[
a(t)

[
x′(t)

]γ
]′′

+ q(t) f (x [τ(t)])+ p(t)h(x [σ(t)]) = 0, (E)

where a,q,τ, p,σ ∈C([t0,∞)), f ,h∈C((−∞,∞)), and we will always assume that

(H1) γ is the ratio of two positive odd integers,
(H2) a(t),q(t), p(t) are positive,
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(H3) τ(t)≤ t, σ(t)≥ t, τ(t), σ(t) nondecreasing, lim
t→∞

τ(t) = ∞,

(H4) x f (x)> 0, xh(x)> 0, f ′(x)≥ 0, and h′(x)≥ 0 for x �= 0.

We shall study canonical form of Eq. (E), i.e., it is assumed

∫ ∞

t0
a−1/γ(s)ds = ∞.

Moreover, in some results, we shall require the following additional assumptions

(H5) − f (−xy)≥ f (xy)≥ f (x) f (y) for xy > 0,
(H6) −h(−xy)≥ h(xy)≥ h(x)h(y) for xy > 0.

By a solution of Eq. (E) we mean a function x(t) ∈C1((Tx,∞)), Tx ≥ t0, which has
the property a(t)(x′(t))γ ∈C2((Tx,∞)) and satisfies Eq. (E) on [Tx,∞). We consider
only those solutions x(t) of Eq. (E) which satisfy sup{|x(t)| : t ≥ T} > 0 for all
T ≥ Tx. We assume that Eq. (E) possesses such a solution. A solution of Eq. (E) is
called oscillatory if it has arbitrarily large zeros on [Tx,∞); otherwise, it is called
to be nonoscillatory. Equation (E) is said to be oscillatory if all its solutions are
oscillatory.

Before we present a definition of property (A) of Eq. (E), we introduce classifi-
cation of the nonoscillatory solutions of Eq. (E).

Lemma 1. Let x(t) be a nonoscillatory solution of Eq. (E). Then x(t) satisfies one
of the following conditions:

(C2) x(t)x′(t)> 0, x(t)
[
a(t) [x′(t)]γ

]′
> 0, x(t)

[
a(t) [x′(t)]γ

]′′
< 0.

(C0) x(t)x′(t)< 0, x(t)
[
a(t) [x′(t)]γ

]′
> 0, x(t)

[
a(t) [x′(t)]γ

]′′
< 0,

eventually.

Proof. The result is a modification of the well-known lemma of Kiguradze (see,
e.g., [3, 8, 9]) and so its proof is left to the reader. �	

It is known (see, e.g., [7]) that the ordinary differential equation

x′′′(t)+ p(t)x(t) = 0

always possesses a nonoscillatory solution satisfying the case (C0) of Lemma 1.
Consequently, property (A) of Eq. (E) is defined as follows: We say that Eq. (E)
enjoys property (A) if its nonoscillatory solution x(t) satisfies (C0).

Our first aim is to exclude the case (C2) to establish criteria for property (A).
On the other hand, intended comparison theorems will permit us to eliminate also
the case (C0). Therefore, we will be able to present also new oscillation criteria
for Eq. (E).

Our technique is based on the comparison theorems in which we compare studied
equation with the first-order advanced/delayed equations, so that the oscillation
of these first-order equations yields studied properties of Eq. (E). This method
essentially simplifies the examination of the third-order differential equations.
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Remark 1. All functional inequalities considered in this chapter are assumed to hold
eventually, that is, they are satisfied for all t large enough.

2 Main Results

It is convenient to prove our main results by means of a series of lemmas, as
follows: The first one is recalled from [3] and presents a useful relationship between
an existence of positive solutions of the advanced differential inequality and the
corresponding advanced differential equation.

Lemma 2. Suppose p, σ , and h satisfy (H2), (H3), and (H4), respectively. If the
first-order advanced differential inequality

z′(t)− p(t)h(z(σ(t)))≥ 0 (1)

has an eventually positive solution, so does the advanced differential equation

z′(t)− p(t)h(z(σ(t))) = 0. (2)

The second one is recalled from [10] and shows equivalence between the existence
of a positive solution of the delay differential inequality and the corresponding delay
differential equation.

Lemma 3. Suppose q, τ , and f satisfy (H2), (H3), and (H4), respectively. If the
first-order delay differential inequality

z′(t)+ q(t) f (z(τ(t)))≤ 0 (3)

has an eventually positive solution, so does the delay differential equation

z′(t)+ q(t) f (z(τ(t))) = 0. (4)

Now, we are prepared to offer three new criteria for property (A) and then we extend
these results to cover also the oscillation of Eq. (E).

Theorem 1. If the first-order advanced differential equation

z′(t)− (t− t1)
1/γa−1/γ(t)

[∫ ∞

t
p(s)ds

]1/γ
h1/γ(z [σ(t)]) = 0 (E1)

is oscillatory, then Eq. (E) has property (A).
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Proof. Assume the contrary, let x(t) be a nonoscillatory solution of Eq. (E) satisfy-
ing (C2), for t ≥ t1. We may assume that x(t) is positive. It follows from Eq. (E) that

[
a(t)

[
x′(t)

]γ
]′′

+ p(t)h(x [σ(t)])≤ 0. (5)

Integrating Eq. (5) from t to ∞, one gets

(
a(t)

[
x′(t)

]γ
)′
≥
∫ ∞

t
p(s)h(x [σ(s)])ds≥ h(x [σ(t)])

∫ ∞

t
p(s)ds. (6)

On the other hand, since a(t) [x′(t)]γ is decreasing, it is easy to check that

a(t)
[
x′(t)

]γ ≥
∫ t

t1

(
a(s)

[
x′(s)

]γ
)′

ds≥
(

a(t)
[
x′(t)

]γ
)′
(t− t1). (7)

Using the last inequalities in Eq. (6), we find that x(t) is a positive solution of the
first-order advanced differential inequality

x′(t)≥ (t− t1)
1/γa−1/γ(t)

[∫ ∞

t
p(s)ds

]1/γ
h1/γ(z [σ(t)]).

By Lemma 2, we deduce that the corresponding differential equation (E1) has also
a positive solution, which is a contradiction. �	

Applying any criterion for the oscillation of Eq. (E1), we immediately get a sufficient
condition for property (A).

Corollary 1. Assume that

h1/γ(u)
u

≥ 1, |u| ≥ 1 (8)

and

liminf
t→∞

∫ σ(t)

t
(u− t1)

1/γa−1/γ(u)

[∫ ∞

u
p(s)ds

]1/γ
du >

1
e
. (9)

Then Eq. (E) has property (A).

Proof. It is easy to see Eq. (9) implies

∫ ∞

t0
(u− t1)

1/γ a−1/γ(u)

[∫ ∞

u
p(s)ds

]1/γ
du = ∞. (10)
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Taking into account Theorem 1, we shall show that Eq. (E1) is oscillatory. Assume
the converse; let Eq. (E1) have an eventually positive solution z(t). Then z′(t) > 0
and so z(σ(t))> c > 0. Integrating Eq. (E1) from t1 to t, we have

z(t) ≥
∫ t

t1
(u− t1)

1/γa−1/γ(u)

[∫ ∞

u
p(s)ds

]1/γ
h1/γ(z [σ(u)])du

≥ h1/γ(c)
∫ t

t1
(u− t1)

1/γa−1/γ(u)

[∫ ∞

u
p(s)ds

]1/γ
du,

which together with Eq. (10) ensures z(t) → ∞ as t → ∞. Therefore, z(t) ≥ 1,
eventually. Using Eq. (8) in Eq. (E1), we see that z(t) is a positive solution of the
differential inequality

z′(t)− (t− t1)
1/γa−1/γ(t)

[∫ ∞

t
p(s)ds

]1/γ
z [σ(t)]≥ 0. (11)

On the other hand, by Theorem 2.4.1 in [9], condition (9) guarantees that Eq. (11)
has no positive solutions. This is a contradiction and we conclude that Eq. (E) has
property (A). �	

Remark 2. Condition (8) imposed on the function h permits to set h(u) = uβ , β ≥ γ .
Note that the condition h1/γ(u)/u≥ 1, u �= 0 required in [6] does not allow it.

For our next result, we need an additional function α(t) ∈C1([t0,∞)) such that

α ′(t)≥ 0, α(t)< t, and α(σ(t)) > t. (12)

Theorem 2. Let (H6) hold. Assume that there exists a function α(t) ∈ C1([t0,∞))
such that Eq. (12) holds. If the first-order advanced differential equation

z′(t)−
{

h

[∫ σ(t)

α(σ(t))
a−1/γ(s)ds

]∫ ∞

t
p(s)ds

}
h
(

z1/γ (α [σ(t)])
)
= 0 (E2)

is oscillatory, then Eq. (E) has property (A).

Proof. Assuming the converse, we let x(t) to be a positive solution of Eq. (E)
satisfying (C2), eventually. Then, proceeding exactly as in the proof of Theorem 1,
we are led to Eq. (6). Furthermore, the monotonicity of y(t) = a(t) [x′(t)]γ > 0
implies

x(t)≥
∫ t

α(t)

(
a(s)

(
x′(s)

)γ
)1/γ

a−1/γ(s)ds

≥ y1/γ(α(t))
∫ t

α(t)
a−1/γ(s)ds, (13)
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eventually. Combining Eq. (13) together with Eq. (6), we find that

y′(t)≥
{

h

[∫ σ(t)

α(σ(t))
a−1/γ(s)ds

]∫ ∞

t
p(s)ds

}
h
(

y1/γ (α [σ(t)])
)
.

By Lemma 2, the corresponding differential equation (E2) also has a positive
solution. This contradicts our assumption and we conclude that Eq. (E) enjoys
property (A). �	

Using the similar arguments as in the proof of Corollary 1, we get the following
criterion for property (A) of Eq. (E).

Corollary 2. Assume that (H6), Eqs. (8) and (12) hold. If

liminf
t→∞

∫ α(σ(t))

t
h

[∫ σ(u)

α(σ(u))
a−1/γ(s)ds

](∫ ∞

u
p(s)ds

)
du >

1
e
, (14)

then Eq. (E) has property (A).

We offer another criterion for property (A) of Eq. (E) in which we employ the “delay
part” of Eq. (E).

Theorem 3. Assume that (H5) holds. If the first-order delay differential equation

z′(t)+ q(t) f

[∫ τ(t)

t1
a−1/γ(s)(s− t1)

1/γ ds

]
f
(

z1/γ [τ(t)]
)
= 0 (E3)

is oscillatory, then Eq. (E) has property (A).

Proof. Assume that Eq. (E) has not property (A). Then there has to exist its
nonoscillatory solution x(t) satisfying (C2). We may assume that x(t) > 0. Thus,
Eq. (E) implies

[
a(t)

[
x′(t)

]γ
]′′

+ q(t) f (x [τ(t)])≤ 0. (15)

It follows from Eq. (7) that y(t) =
(
a(t) [x′(t)]γ

)′
> 0 satisfies

x′(t)≥ y1/γ(t)

a1/γ(t)
(t− t1)

1/γ . (16)

Integrating the last inequality, from t1 to τ(t), we get, in view of the monotonicity
of y(t), that

x(τ(t))≥ y1/γ(τ(t))
∫ τ(t)

t1

(s− t1)1/γ

a1/γ(s)
ds. (17)
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Setting Eq. (17) into Eq. (15), we see that y(t) is a positive solution of the delay
differential inequality

y(t)+ q(t) f

[∫ τ(t)

t1
a−1/γ(s)(s− t1)

1/γ ds

]
f
(

y1/γ [τ(t)]
)
≤ 0.

It follows from Lemma 3 that the corresponding differential equation (E3) also has
a positive solution. This is a contradiction with our assumption for oscillation of
equation (E3). Therefore, we deduce that Eq. (E) has property (A). �	

Corollary 3. Assume that (H5) holds. If

f (u1/γ )

u
≥ 1, 0 < |u| ≤ 1 (18)

and

liminf
t→∞

∫ t

τ(t)
q(u) f

[∫ τ(u)

t1
a−1/γ(s)(s− t1)

1/γ ds

]
du >

1
e
. (19)

Then Eq. (E) has property (A).

Now, we offer three criteria for the elimination of the nonoscillatory solutions of
Eq. (E) satisfying the case (C2) of Lemma 1. Combining our outcoming results
together with our previous results, we get nine oscillatory criteria for Eq. (E).

For our next results, we employ an additional function ξ (t) ∈ C1([t0,∞)) such
that

ξ ′(t)≥ 0, ξ (t)> t, and τ(ξ (ξ (t)))< t. (20)

Theorem 4. Assume that there exists a function ξ (t) ∈ C1([t0,∞)) such that
Eq. (20) holds. Denote η1(t) = τ(ξ (ξ (t))). If the first-order delay equation

z′(t)+

{

a−1/γ(t)

[∫ ξ (t)

t

∫ ξ (u)

u
q(s)dsdu

]1/γ
}

f 1/γ (z[η1(t)]) = 0 (E4)

is oscillatory, then Eq. (E) has no nonoscillatory solution satisfying the (C0).

Proof. Assuming the converse, we let x(t) to be a positive solution of Eq. (E),
satisfying (C0). Integration of Eq. (15) from t to ξ (t) yields

(
a(t)

(
x′(t)

)γ )′ ≥
∫ ξ (t)

t
q(s1) f (x(τ(s1)))ds1

≥ f (x[τ(ξ (t))])
∫ ξ (t)

t
q(s1)ds1. (21)
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Integrating from t to ξ (t) once more, we get

−a(t)
(
x′(t)

)γ ≥
∫ ξ (t)

t
f (x[τ(ξ (s2))])

∫ ξ (s2)

s2

q(s1)ds1 ds2

≥ f (x[η1(t)])
∫ ξ (t)

t

∫ ξ (s2)

s2

q(s1)ds1 ds2.

This means that x(t) is a positive solution of the delay differential inequality

x′(t)+ a−1/γ(t)

[∫ ξ (t)

t

∫ ξ (u)

u
q(s)dsdu

]1/γ

f 1/γ (x[η1(t)])≤ 0.

Lemma 3 ensures that the corresponding differential equation (E4) has also a
positive solution satisfying the case (C0). This contradiction finishes the proof. �	

The following result is immediate.

Corollary 4. Assume that Eq. (18) holds and there is a function ξ (t) ∈C1([t0,∞))
such that Eq. (20) is satisfied. If

liminf
t→∞

∫ t

τ(t)
a−1/γ(v)

[∫ ξ (v)

v

∫ ξ (u)

u
q(s)dsdv

]1/γ

du >
1
e
, (22)

then Eq. (E) has no nonoscillatory solution satisfying (C0).

We are able to present another result for the elimination of (C0).

Theorem 5. Let (H5) hold. Assume that there exists a function ξ (t) ∈ C1([t0,∞))
such that Eq. (20) holds. Denote η2(t)= ξ (τ(ξ (t))). If the first-order delay equation

z′(t)+

{
f

[∫ η2(t)

τ(ξ (t))
a−1/γ(s)ds

]∫ ξ (t)

t
q(s)ds

}
f
(

z1/γ [η2(t)]
)
= 0 (E5)

is oscillatory, then Eq. (E) has no nonoscillatory solution satisfying (C0).

Proof. Assume that Eq. (E) possesses a positive solution x(t) satisfying (C0). It
follows from the monotonicity of y(t) =−a(t) [x′(t)]γ that

x(t)≥
∫ ξ (t)

t

[
−a1/γ(s)x′(s)

]
a−1/γ(s)ds≥ y1/γ(ξ (t))

∫ ξ (t)

t
a−1/γ(s)ds,

which together with Eq. (21) yields that y(t) is a positive solution of the delay
differential inequality

−y′(t)≥
{

f

[∫ η2(t)

τ(ξ (t))
a−1/γ(s)ds

]∫ ξ (t)

t
q(s)ds

}
f
(

y1/γ [η2(t)]
)
.
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By Lemma 3, we conclude that the corresponding differential equation (E5) has also
a positive solution. This contradiction finishes the proof. �	

Corollary 5. Let (H5) hold. Assume that Eq. (18) holds and there is a function
ξ (t) ∈C1([t0,∞)) such that Eq. (20) is satisfied. If

liminf
t→∞

∫ t

η2(t)

{
f

[∫ η2(u)

τ(ξ (u))
a−1/γ(s)ds

]∫ ξ (u)

u
q(s)ds

}
du >

1
e
, (23)

then Eq. (E) has no nonoscillatory solution satisfying (C0).

We provide the last one result for the exclusion of (C0).

Theorem 6. Let (H5) hold. Assume that there exists a function ξ (t) ∈ C1([t0,∞))
such that Eq. (20) holds. Denote η3(t)= ξ (ξ (τ(t))). If the first-order delay equation

z′(t)+

{

q(t) f

[∫ ξ (τ(t))

τ(t)

(
ξ (s)− s

)1/γ

a1/γ(s)
ds

]}

f
(

z1/γ [η3(t)]
)
= 0 (E6)

is oscillatory, then Eq. (E) has no nonoscillatory solution satisfying (C0).

Proof. Assume that Eq. (E) possesses a positive solution x(t) satisfying (C0). It is
easy to verify that since y(t) =

(
a(t) [x′(t)]γ

)′
> 0 is decreasing, it satisfies

−a(t)
[
x′(t)

]γ ≥
∫ ξ (t)

t

(
a(s)

[
x′(s)

]γ
)′

ds≥ y(ξ (t))
(
ξ (t)− t

)

or equivalently

−x′(t)≥ y1/γ(ξ (t))
a1/γ(t)

(
ξ (t)− t

)1/γ
.

An integration from t to ξ (t) yields

x(t)≥ y1/γ(ξ (ξ (t)))
∫ ξ (t)

t

(
ξ (s)− s

)1/γ

a1/γ(s)
ds. (24)

Setting Eq. (24) into Eq. (15), we see that

y′(t)+

{

q(t) f

[∫ ξ (τ(t))

τ(t)

(
ξ (s)− s

)1/γ

a1/γ(s)
ds

]}

f
(

y1/γ [η3(t)]
)
≤ 0.

By Lemma 3, the corresponding differential equation (E6) has also a positive
solution. This is a contradiction and the proof is complete. �	
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Corollary 6. Let (H5) hold. Assume that Eq. (18) holds and there is a function
ξ (t) ∈C1([t0,∞)), such that Eq. (20) is satisfied. If

liminf
t→∞

∫ t

η3(t)
q(u) f

[∫ ξ (τ(u))

τ(u)

(
ξ (s)− s

)1/γ

a1/γ(s)
ds

]

du >
1
e
, (25)

then Eq. (E) has no nonoscillatory solution satisfying (C0).

Picking up our previous theorems, we immediately get the following oscillation
criterion for Eq. (E).

Theorem 7. Assume that at least one of the Eqs. (E1)–(E3) is oscillatory and at the
same time at least one of the Eqs. (E4)–(E6) is oscillatory, then Eq. (E) is oscillatory.

We illustrate all our results in the following example:

Example 1. Consider the third-order nonlinear differential equation with mixed
arguments

(
t−1 (x′(t)

)3
)′′

+
q
t6 x3(β t)+

p
t6 x3(δ t) = 0, (26)

with q > 0, p > 0, 0 < β < 1, δ > 1. Setting α(t) = ωt, ω = (1+ δ)/(2δ ),
conditions (9), (14), (19) reduce to

p1/3 lnδ >
51/3

e
, (27)

pδ 4
(

1−ω4/3
)3

ln(β δ )>
(

4
3

)3 5
e
, (28)

qβ 5 ln

(
1
β

)
>

(
5
3

)3 1
e
, (29)

respectively. Then, by Corollaries 1–3, Eq. (26) enjoys property (A), provided that
at least one of the conditions (27)–(29) holds.

On the other hand, we set ξ (t) = λ t, with λ = (
√

β + 1)/(2
√

β ). Then
conditions (22)–(25) convert to

[
q

(
1− 1

λ 4

)(
1− 1

λ 5

)]3

ln

(
1

β λ 2

)
>

51/3

e
, (30)

qβ 4

λ

(
λ 5− 1

)(
λ 4/3− 1

)3
ln

(
1

β λ 2

)
>

(
4
3

)3 5
e
, (31)

qβ 5 (λ − 1)
(

λ 5/3− 1
)3

ln

(
1

β λ 2

)
>

(
5
3

)3 1
e
, (32)
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respectively. Then, by Theorem 7 and Corollaries 1–6, Eq. (26) is oscillatory,
provided that at least one of Eqs. (27)–(29) holds and at the same time at least one
of Eqs. (30)–(32) is satisfied. Therefore, considering all possible combinations, we
obtain nine independent oscillatory criteria for the studied equation.

3 Summary

In this paper, we have presented new comparison theorems for deducing property
(A) and the oscillation of Eq. (E) from the oscillation of a set of the suitable first-
order delay/advanced differential equation.

The presented method essentially simplifies the examination of the third-order
equations, and what is more, it supports backward the research on the first-order
delay/advanced differential equations. Our results here extend and complement
latest ones of Grace et al. [6], Agarwal et al. [1,2], Cecchi et al. [5], and the presents
authors [4].
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On Estimates for the First Eigenvalue
of the Sturm–Liouville Problem with Dirichlet
Boundary Conditions and Integral Condition

Svetlana Ezhak

Abstract Estimates of the first eigenvalue λ1 of the Sturm–Liouville problem with
Dirichlet boundary conditions and integral condition to the potential are obtained.

1 Introduction

Consider the Sturm–Liouville problem:

y′′(x)+σQ(x)y(x)+λ y(x) = 0, (1)

y(0) = y(1) = 0, (2)

where σ =±1, Q(x) is a nonnegative bounded function on [0,1] such that

∫ 1

0
Qα(x)dx = 1, α �= 0. (3)

A function y(x) is called a solution of problems (1) and (2) if it is defined on [0,1], it
satisfies condition (2), its derivative y′(x) is absolutely continuous, and equation (1)
holds almost everywhere on (0,1).

We estimate the first eigenvalue λ1 of this problem for different values of α .

Remark 1. The problem for the equation y′′(x) + λ Q(x)y(x) = 0, Q(x) being a
nonnegative bounded summable function on [0,1] satisfying (3), and condition (2)
was considered in [1]. The authors obtained the first eigenvalue λ1 of this problem
for different values of α .
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The problem for the equation y′′(x)−Q(x)y(x) + λ y(x) = 0, Q(x) ∈ Aα , and
conditions (2) was considered in [2]. But λ1 was investigated only for α ≥ 1.

Consider the functional

R[Q,y] =

∫ 1
0 y′2(x)dx−σ

∫ 1
0 Q(x)y2(x)dx

∫ 1
0 y2(x)dx

. (4)

According to the variation principle, we obtain

λ1 = inf
y(x)∈H1

0 (0,1)
R[Q,y],

where H1
0 (0,1) is a function space, defined on (0,1), satisfying (2) and having the

generalized derivative of the first order.
Put

mα = inf
Q(x)∈Aα

λ1, Mα = sup
Q(x)∈Aα

λ1,

where Aα is the set of the nonnegative bounded on [0,1] functions such that
∫ 1

0 Qα(x)dx = 1.

2 Results

Theorem 1. Case σ =−1.

1. If α > 1, then mα = π2, Mα < ∞, and there exist functions u(x) ∈ H1
0 (0,1) and

Q(x) ∈ Aα such that

inf
y(x)∈H1

0 (0,1)
R[Q,y] = R[Q,u] = Mα .

2. If α = 1, then m1 = π2, M1 = π2

2 + 1 + π
2

√
π2 + 4, and there exist functions

u(x) ∈ H1
0 (0,1) and Q(x) ∈ Aα such that

inf
y(x)∈H1

0 (0,1)
R[Q,y] = R[Q,u] = M1.

3. If 0 < α < 1, then mα = π2, Mα = ∞.
4. If α < 0, then mα > π2, Mα = ∞, and there exist functions u(x) ∈ H1

0 (0,1) and
Q(x) ∈ Aα such that

inf
y(x)∈H1

0 (0,1)
R[Q,y] = R[Q,u] = mα .
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Theorem 2. Case σ =+1.

1. If α > 1, then mα ≥ π2

2 , Mα = π2, and there exist functions u(x) ∈ H1
0 (0,1) and

Q(x) ∈ Aα such that

inf
y(x)∈H1

0 (0,1)
R[Q,y] = R[Q,u] = mα .

2. If α = 1, then M1 = π2, m1 = λ∗, where λ∗ ∈ (0,π2) is the solution to the equation

2
√

λ = tg
(√

λ
2

)
. Here m1 is attained at Q(x) = δ

(
x− 1

2

)
(Q(x) doesn’t belong

to H1
0 (0,1)).

3. If 1/2≤ α < 1, then mα =−∞, Mα = π2.
4. If 1/3≤ α < 1/2, then mα =−∞, Mα ≤ π2.
5. If 0 < α < 1/3, then mα =−∞, Mα < π2.
6. If α < 0, then mα =−∞, Mα < π2, and there exist functions u(x) ∈H1

0 (0,1) and
Q(x) ∈ Aα , such that

inf
y(x)∈H1

0 (0,1)
R[Q,y] = R[Q,u] = Mα .

3 Proofs of Some Results

Proof. Case σ =−1.

1. Note that mα ≥ π2 for any α , α �= 0.
2. Suppose α > 1. Consider the functional

G[y] =

∫ 1
0 y′2(x)dx+

(∫ 1
0 |y(x)|pdx

)2/p

∫ 1
0 y2(x)dx

, p =
2α

α− 1
. (5)

Using Hölder inequality and (3), we obtain

inf
y(x)∈H1

0 (0,1)
R[Q,y]≤ inf

y(x)∈H1
0 (0,1)

G[y]. (6)

Denote

m = m(α) = inf
y(x)∈H1

0 (0,1)
G[y].

From (6), we have Mα ≤ m. To prove Mα = m, we need the following lemma:
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Lemma. Suppose α > 1 (p = 2α
α−1 > 2) and m = infy(x)∈H1

0 (0,1)
G[y]. Then there

exists function u(x) ∈ H1
0 (0,1) which is positive on (0,1) satisfies the equation

u′′(x)− up−1(x)+mu(x) = 0, (7)

and the conditions

u(0) = u(1) = 0, (8)
∫ 1

0 up(x)dx = 1 (9)

such that m = G[u].

Main idea for lemma proof.

1. Note that G[y] ≥ 0 for any y(x) ∈ H1
0 (0,1). Put m = infy(x)∈H1

0 (0,1)
G[y]. Denote

Γ = {y(x) : y(x) ∈ H1
0 (0,1),

∫ 1
0 |y(x)|pdx = 1}.

We prove that there exists u(x) ∈ Γ such that G[u] = m.

(a) Note that for any y(x) ∈ Γ we have G[y] ≥ C‖y(x)‖2
H1

0 (0,1)
, when C—a

positive constant.
(b) A minimizing sequence for G[y] in some set of functions is called such

sequence {yk} that G[yk]→ m as k → ∞. We can show that the minimizing
sequence {yk} for G[y] exists in Γ .

(c) Let us prove that there exists such a function u(x) ∈ Γ that G[u] = m.
As {yk} is a bounded sequence in the separable Hilbert space H1

0 (0,1), it
contains a subsequence {zk} converging weakly in H1

0 (0,1) to some function
u(x) (it follows, e.g., from [1], Theorem 20, Chap. 1), and ‖u(x)‖2

H1
0 (0,1)

≤
1
C (m + 1). As the space H1

0 (0,1) is compactly embedded in the space
C(0,1), and it, in turn, is embedded in Lp(0,1), where p ≥ 1, there exists
a subsequence {uk} of the sequence {zk}, converging strongly in C(0,1).
Then the subsequence {uk} converges strongly in Lp(0,1) to the function
u(x). Hence,

G[uk] =

∫ 1
0 (u

′
k(x))

2dx+
(∫ 1

0 |uk(x)|pdx
)2/p

∫ 1
0 u2

k(x)dx
.

We have as k→ ∞
(∫ 1

0
|uk(x)|pdx

)2/p

→
(∫ 1

0
|u(x)|pdx

)2/p

,

∫ 1

0
u2

k(x)dx→
∫ 1

0
u2(x)dx.

We can show that ‖u(x)‖L2(0,1) �= 0.
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From the sequence {uk(x)}, we choose a subsequence {wk(x)} such
that w′k(x) converges weakly to u′(x) in L2(0,1). Such sequence {wk(x)}
exists, since u′k(x) is bounded in L2(0,1) (it follows from the bounded-
ness of the sequence {uk(x)} in H1

0 (0,1) and the definition of the norm
‖uk(x)‖H1

0 (0,1)
). Consider

∫ 1
0 (w

′
k(x))

2dx. This sequence has a finite inferior

limit as (w′k(x))
2 ≥ 0. Hence there exists a subsequence {vk(x)} of the

sequence {wk(x)}, such that

lim
k→∞

∫ 1

0
(v′k(x))

2dx = limk→∞

∫ 1

0
(w′k(x))

2dx.

We obtain the sequence {vk(x)} such that limk→∞ ‖v′k(x)‖L2(0,1) exists.
As v′k(x) converges weak to u′(x) in L2(0,1), then from [3], Theorem 7,

Chap. IV, we have

‖u′(x)‖L2(0,1) ≤ limk→∞‖v′k(x)‖L2(0,1) = lim
k→∞

‖v′k(x)‖L2(0,1).

As G[y] is a continuous functional in H1
0 (0,1), we obtain

G[u]≤
limk→∞

∫ 1
0 (v

′
k(x))

2dx+ limk→∞

(∫ 1
0 |vk(x)|pdx

)2/p

limk→∞

(∫ 1
0 v2

k(x)dx
) = lim

k→∞
G[vk] =m.

Therefore we have G[u]≤m. But since m= infy(x)∈H1
0 (0,1)

G[y], we get G[u]=
m.

2. Put u(x) ∈ Γ and G[u] = m. Let us prove that u(x) is positive on (0,1) and
satisfies (7)–(9).

Put z(x) ∈ H1
0 (0,1). Consider the function

g(t) =

∫ 1
0 (u

′(x)+ tz(x))2dx+
(∫ 1

0 |u(x)+ tz(x)|pdx
)2/p

∫ 1
0 (u(x)+ tz(x))2dx

,

where t ∈ R. Since g(0) = G[u] = infy(x)∈H1
0 (0,1)

G[y], then g′(0) = 0.

We differentiate g(t) and put t = 0. Since u(x) ∈ Γ and G[u] = m, we have

∫ 1

0
u′(x)z′(x)dx+

∫ 1

0
|u(x)|p−1z(x)signu(x)dx = m

∫ 1

0
u(x)z(x)dx. (10)

This equation holds for any z(x) ∈ H1
0 (0,1). If z(x) ∈ C∞

0 , then (10) means that
u′(x) has the generalized derivative

u′′(x) = |u(x)|p−1signu(x)−mu(x) = |u(x)|p−2u(x)−mu(x).
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Since u(x) is continuous on (0,1), u′′(x) is also continuous on (0,1). Hence,

∫ 1

0
u′(x)z′(x)dx = u′(x)z(x)|10−

∫ 1

0
u′′(x)z(x)dx,

u′(1)z(1)− u′(0)z(0)−
∫ 1

0
u′′(x)z(x)dx

=
∫ 1

0
|u(x)|p−1z(x)signu(x)dx−m

∫ 1

0
u(x)z(x)dx,

∫ 1

0
(u′′(x)−|u(x)|p−1signu(x)+mu(x))z(x)dx = 0.

As this equation holds for any z(x) ∈H1
0 (0,1), we have

u′′(x)−|u(x)|p−1signu(x)+mu(x) = 0. (11)

As G[u] =G[|u|], we can consider the sequence {uk(x)} and u(x) be nonnegative.
Besides, since u(x) ∈Γ , the existence of u(x) ∈H1

0 (0,1) satisfying (7) and (9) is
proved. We can show that u(x) is positive on (0,1) and satisfies (8).

To prove the existence and uniqueness of m, we investigate problems (7)–(9)
and obtain that m is the solution of the system of the equations

⎧
⎪⎨

⎪⎩

∫ H
0

du√
mH2−mu2− 2

p H p+ 2
p up

= 1
2 ,

∫ H
0

up(x)du√
mH2−mu2− 2

p H p+ 2
p up

= 1
2 ,

where H = maxx∈[0,1] u(x).
Lemma is proved. We prove that Mα = m. We have

m = G[u] =

∫ 1
0 u′2(x)dx+(

∫ 1
0 |u(x)|pdx)2/p

∫ 1
0 u2(x)dx

,

where u(x) satisfies (7)–(9).
On the other hand,

Mα = sup
Q(x)∈Aα

λ1 = sup
Q(x)∈Aα

inf
y(x)∈H1

0 (0,1)
R[Q,y]≤ m.

Since u(x) ∈ H1
0 (0,1) and u

2
α−1 (x) ∈ Aα , substituting these values for y(x) and

Q(x) in R[Q,y], we receive
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R[u
2

α−1 ,u] =

∫ 1
0 u′2(x)dx+

∫ 1
0 u

2
α−1 (x)u2(x)dx

∫ 1
0 u2(x)dx

=

∫ 1
0 u′2(x)dx+(

∫ 1
0 up(x)dx)2/p

∫ 1
0 u2(x)dx

= G[u] = m.

Thus we have the pair of functions Q(x) and y(x), so that the functional R[Q,y]
is equal to m. Hence Mα = m.

3. Suppose α = 1. Consider

L[y] =

∫ 1
0 y′2(x)dx+maxx∈[0,1] y

2(x)
∫ 1

0 y2(x)dx
. (12)

We have

inf
y(x)∈H1

0 (0,1)
R[Q,y]≤ inf

y(x)∈H1
0 (0,1)

L[y]. (13)

Let us prove that M1 =
π2

2 + 1+ π
2

√
π2 + 4.

Consider the function

Q∗(x) =

⎧
⎨

⎩

0, 0 < x < τ,
γ, τ < x < 1− τ,
0, 1− τ < x < 1,

and the function

y∗(x) =

⎧
⎨

⎩

sin
√γx, 0 < x < τ,

sin
√γτ, τ < x < 1− τ,

sin
√γ(1− x), 1− τ < x < 1,

where τ = π
2
√γ , γ = π2

2 + 1+ π
2

√
π2 + 4.

Note that y∗(x), (y∗(x))′ are continuous on [0,1], y∗(0) = y∗(1) = 0. The
function Q∗(x) satisfies (3). Thus, y∗(x) is the first eigenfunction for prob-
lems (1)–(3), with the potential Q(x) = Q∗(x), and γ be the first eigenvalue. Then
γ ≤M1 = supQ(x)∈Aα λ1. Since L[y∗] = γ , we have infy(x)∈H1

0 (0,1)
L[y]≤ γ .

Thus, we have a sequence of inequalities:

γ ≤M1 = sup
Q(x)∈Aα

λ1 = sup
Q(x)∈Aα

inf
y(x)∈H1

0 (0,1)
R[Q,y]≤

≤ sup
Q(x)∈Aα

inf
y(x)∈H1

0 (0,1)
L[y] = inf

y(x)∈H1
0 (0,1)

L[y]≤ γ.
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Hence, M1 = γ , and M1 is attained on the function Q∗(x).
�	

Remark 2. Note that we proved that constant M1 =
π2

2 +1+ π
2

√
π2 + 4 is the precise

estimation of λ1 from above. In [2] for M1 only, the result M1 ≤ π2

2 +1+ π
2

√
π2 + 4

was formulated. The result Mα < ∞ for α > 1 is also obtained in [2].

Remark 3. The others results of Theorem 1 were proved in [4]. Theorem 2 was
proved in [5].

Remark 4. In [2], the lemma was formulated, according to which λn = n2λ1

(
1
n2

)
.

Thus, the received results for λ1 are applicable and for estimations λn.
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Boundary Value Problems for Schrödinger
Operators on a Path Associated to Orthogonal
Polynomials

A. Carmona, A.M. Encinas, and S. Gago

Abstract In this work, we concentrate on determining explicit expressions, via
suitable orthogonal polynomials on the line, for the Green function associated
with any regular boundary value problem on a weighted path, whose weights are
determined by the coefficients of the three-term recurrence relation.

1 Introduction

In this work we analyze linear boundary value problems on a finite weighted path
associated with Schrödinger operators with nonconstant potential. In spite of its
relevance the Green function on a path has been obtained only for some boundary
conditions, mainly for Dirichlet conditions or more generally for the so-called
Sturm–Liouville boundary conditions; see [1–3, 5, 8]. Recently, some of the authors
have obtained the Green function on a path for general boundary value problems
related to Schrödinger operator with constant conductances and potential [4].

We aim here at determining explicit expressions, via suitable orthogonal polyno-
mials on the line, for the Green function associated with any regular boundary value
problem on a weighted path, whose weights are determined by the coefficients of
the three-term recurrence relation defining the polynomials. Our study is similar to
what is known for boundary value problems associated with ordinary differential
equations [6, Chaps. 7,11,12].
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The boundary value problems considered here are of two types. Corresponding
to the cases in which the boundary has either one or two vertices. In each case, it
is essential to describe the solutions of the Schröndinger equation on the interior
nodes of the path. We show that it is possible to obtain explicitly such solutions in
terms of the chosen orthogonal polynomials. As an immediate consequence of this
property, we can easily characterize those boundary value problems that are regular
and then we obtain their corresponding Green functions.

2 Schrödinger Operators and Orthogonal Polynomials

Let {An}∞
n=0 be a real positive sequence and {Bn}∞

n=0 a real sequence. Consider
{Rn}∞

n=0 be a sequence of real orthogonal polynomials satisfying the following
recurrence relation:

Rn(x) = (Anx+Bn)Rn−1(x)−CnRn−2(x), n≥ 2, (1)

where Cn = An
An−1

. If kn denotes the leading coefficient of Rn(x), then An = kn
kn−1

,

Cn =
knkn−2
k2

n−1
, for n≥ 2 and Π n

i=1Ci =
An
A0

.

Choosing a pair of initial polynomials R0(x) and R1(x), the recurrence relation
in Eq. (1) leads to a family of orthogonal polynomials and allows us to extend the
recurrence relation for n = 1. For instance, the families {Pn}∞

n=0 and {Qn}∞
n=0, such

that Q0(x) = P0(x) = 1, Q1(x) = A1x+ B1, and P1(x) =
A0

A0+A1
Q1(x), satisfy that

P−1(x) = P1(x) and Q−1(x) = 0. From now on, the families {Pn}∞
n=0 and {Qn}∞

n=0
will be called first-kind and second-kind orthogonal polynomials, respectively, as
for An = 2, Bn = 0, n ≥ 0, they are the Chebyshev polynomials of first and second
kind. On the other hand, consider a path Pn+2 with n+ 2 vertices, with vertex set
V = {0, . . . ,n+ 1} and let C (V ) be the vector space of real functions. Given c ∈
C (V ) such that c(k) > 0 for any k = 0, . . . ,n, we define the conductance on Pn+2

as c : V ×V → [0,+∞) such that c(k,k + 1) = c(k + 1,k) = c(k) and c(k,m) = 0
otherwise. The Schrödinger operator with potential q ∈ C (V ) is the self-adjoint
operator Lq : C (V )→ C (V ) defined by

Lq(u)(0) = c(0)[u(0)− u(1)]+ q(0)u(0),

Lq(u)(k) = c(k)[u(k)− u(k+ 1)]+ c(k− 1)[u(k)− u(k−1)]+q(k)u(k),

Lq(u)(n+ 1) = c(n)[u(n+ 1)− u(n)]+ q(n+1)u(n+1).

(2)

Thus, for a fixed x ∈ R, if we consider the recurrence relation of Eq. (1) and we

choose c(k) = A0
Ak+1

for each k = 0, . . . ,n and qx(k) =
A0(Ak+1x+Bk+1−1)

Ak+1
− A0

Ak
for each

k = 0, . . . ,n+ 1, the corresponding Schrödinger operator is given by
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Lqx
(u)(0) =

[
A0(A1x+B1)

A1
− 1

]
u(0)− A0

A1
u(1),

Lqx
(u)(k) = A0(Ak+1x+Bk+1)

Ak+1
u(k)− A0

Ak+1
u(k+ 1)− A0

Ak
u(k− 1), k = 1, . . . ,n,

Lqx
(u)(n+ 1) = A0(An+2x+Bn+2−1)

An+2
u(n+ 1)− A0

An+1
u(n).

If F = {1, . . . ,k}, given a f ∈ C (V ), the Schrödinger equation on F with data
f is Lqx

(u) = f on F . Analogously, the equation Lqx
(u) = 0 on F is called

homogeneous Schrödinger equation on F .
From now on, we consider only x �=−B1

A1
, i.e., such that P1(x) �= 0.

Lemma 1. Consider the functions u(k) = Pk(x) and v(k) = Qk(x), k ∈V. Then, for
any k ∈ V the Wronskian is w[u,v](k) = Ak+1

A0
P1(x), and hence, {u,v} is a basis of

the solution space of the homogeneous Schrödinger equation on F. Moreover, the
Green function of the homogenous Schrödinger equation is

gx [k,s] =
1

P1(x)
[Pk(x)Qs(x)−Ps(x)Qk(x)], k,s ∈V. (3)

Therefore, the general solution of the Schrödinger equation on F with data f ∈
C (V ) is determined by

u(k) = αPk(x)+β Qk(x)+
k

∑
s=1

gx[k,s] f (s), k ∈V,

where α,β ∈ R.

3 Two-Side Boundary Value Problems

Given di ∈ R, i ∈ ∂F = {0,1,n,n+ 1}, a linear boundary condition on F with
coefficients di is a linear map B : C (V )→R such that

B(u) = d0u(0)+ d1u(1)+ dnu(n)+ dn+1u(n+ 1), for any u ∈ C (V ).

A two-side boundary value problem on F consists in finding u ∈ C (V ) such that

Lqx
(u) = f on F, B1(u) = g1, B2(u) = g2, (4)

for given f ∈ C (V ) and g1,g2 ∈ R, where the boundary conditions B1 and B2

are linearly independent. The problem is semi-homogeneous when g1 = g2 = 0
and homogeneous if besides f = 0. Problem (4) is regular if the corresponding
homogenous boundary value problem has the null function as its unique solution.
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A function y ∈ C (V ) is a solution of the homogeneous boundary value problem
iff y = αu + β v, where α,β ∈ R and {u,v} is a basis of solutions of the
homogeneous equation on V , satisfies Bi(y) = αBi(u)+βBi(v) = 0, for i = 1,2.
Then, Problem (4) is regular iff B1(u)B2(v)−B2(u)B1(v) �= 0, and hence, it
also holds that the boundary value problem is regular iff for any data f ∈ C (V ),
g1,g2 ∈ R it has a unique solution. Moreover, for u(k) = Pk(x) and v(k) = Qk(x),
k ∈V ,

P
B
(x) = B1(u)B2(v)−B2(u)B1(v) = ∑

i, j∈B
pi ju(i)v( j) = P1(x) ∑

i< j
i, j∈B

pi, jgx[i, j],

where pi j = d1id2 j − d2id1 j for all i, j ∈ B = {0,1,n,n+ 1} and gx is the Green
function defined in Eq. (3). The following lemma shows that two-side boundary
problems can be restricted to the study of the semi-homogeneous ones.

Lemma 2. Consider α,β ,γ,δ ∈ R such that d j1α + d j2β + d j3γ + d j4δ = g j, for
j = 1,2, then u∈C (V ) verifies the Schrödinger equation Lqx

(u) = f on F, together
with the boundary conditions B1(u) = g1 and B2(u) = g2, iff the function v =
u−αε0−β ε1− γεn− δεn+1 verifies that

Lqx
(v) = f +

(
A0

A1
α− A0

A2
(A2x+B2)β

)
ε1 +

A0

A2
β ε2 +

A0

An
γεn−1

+

(
A0

An+1
δ − A0

An+1
(An+1x+Bn+1)γ

)
εn

on F and B1(u) = B2(u) = 0.

The solution of any regular semi-homogeneous boundary problem can be
obtained by considering its resolvent kernel; i.e., the function Gqx

∈ C (V ×F) s.t.

Lqx
(Gqx

(·,s)) = εs on F, B1(Gqx
(·,s)) = B2(Gqx

(·,s)) = 0, s ∈ F.

This function is called the Green function for Problem (4). Thus, for any f ∈ C (V ),
the unique solution of the semi-homogeneous boundary problem with data f is

u(k) =
n

∑
s=1

Gqx
(k,s) f (s).

Theorem 1. The boundary problem (4) is regular iff P
B
(x) �= 0, and then, its Green

function is given for any 1≤ s≤ n and 0≤ k ≤ n+ 1 by

Gqx
(k,s)=

P1(x)
P

B
(x)

[
pn,n+1

An+1

A0
gx[s,k]+

1

∑
i=0

n+1

∑
j=n

pi, jgx[k, i]gx[ j,s]

]
+

{
0, k ≤ s
gx[k,s], k ≥ s.
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Proof. Observe from Lemma 1 that for a fixed s ∈ F , k ∈V , the Green function Gqx

of the BVP Eq. (4) is given by

Gqx
(k,s) = a(s)Pk(x)+ b(s)Qk(x)+

{
0 if k < s,

gx[k,s] if k ≥ s.

Therefore for a fixed s ∈ F we just have to solve the system

(
B1(Pk(x)) B1(Qk(x))
B2(Pk(x)) B2(Qk(x))

)(
a(s)
b(s)

)
=−

(
B1(gx[k,s])
B2(gx[k,s])

)
.

For i = 1,2, we have Bi(gx[k,s]) = dingx[n,s]+ din+1gx[n+ 1,s], which implies

PB(x)a(s) =
1

∑
i=0

n+1

∑
j=n

pi jgx[ j,s]Qi(x)− pnn+1gx[n,n+ 1]Qs(x),

PB(x)b(s) = −
1

∑
i=0

n+1

∑
j=n

pi jgx[ j,s]Pi(x)+ pnn+1gx[n,n+ 1]Ps(x).

Finally we obtain

PB(x)
P1(x)

[a(s)Pk(x)+ b(s)Qk(x)] = pnn+1gx[n,n+ 1]gx[s,k]

+
1

∑
i=0

gx[i,k]

(
n+1

∑
j=n

gx[s, j]

)

. �	

In what follows we study the more usual boundary value problems appearing in the
literature with proper name; that is, unilateral, Dirichlet, and Neumann problems or
more generally, Sturm–Liouville problems.

The pair of boundary conditions (B1,B2) is called unilateral if either d1, j =
d2, j = 0 for any j ∈ {n,n+ 1} (initial value problem) or d1,i = d2,i = 0 for any
i ∈ {0,1} (final value problem). Any unilateral pair verifies that p0 j = p1 j = 0,

for j ∈ {n,n+1}, and thus, P
B
(x) = P1(x)

A0
(A1 p0,1 +An+1 pn,n+1). In addition, either

pn,n+1 = 0 and p0,1 �= 0 or pn,n+1 �= 0 and p0,1 = 0, since the boundary conditions are
linearly independent, which implies that unilateral boundary problems are regular.
Therefore, any unilateral pair is equivalent to either (u(0),u(1)) for initial value
problems or (u(n),u(n+ 1)) for final value problems.

Corollary 1. The Green function for the initial boundary value problem is given by

Gqx
(k,s) =

{
0, k ≤ s,
gx[k,s], k ≥ s,
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and the Green function for the final boundary value problem is

Gqx
(k,s) =

{
gx[s,k], k ≤ s,
0, k ≥ s,

where 1≤ s≤ n and 0≤ k ≤ n+ 1.

The boundary conditions are called Sturm–Liouville conditions, when d1 j = d2i = 0,
for i ∈ {0,1}, j ∈ {n,n+ 1}, that is, when

B1(u) = au(0)+ bu(1) and B2(u) = cu(n)+ du(n+ 1), (5)

where a,b,c,d ∈ R are such that (|a|+ |b|)(|c|+ |d|) > 0. The most popular
Sturm–Liouville conditions are the so-called Dirichlet boundary conditions, that
correspond to take b = c = 0, and Neumann boundary conditions, that correspond
to take b =−a and d =−c.

Corollary 2. Given a,b,c,d ∈R such that (|a|+ |b|)(|c|+ |d|)> 0 and the Sturm–
Liouville boundary conditions, then

P
B
(x) = a

[
d
(
Qn+1(x)−Pn+1(x)

)
+ c

(
Qn(x)−Pn(x)

)]

×b
[
P1(x)

(
dQn+1(x)+ cQn(x)

)
−Q1(x)

(
dPn+1(x)+ cPn(x)

)]
,

and the Green function for the Sturm–Liouville boundary value problem is

Gqx
(k,s) =

1
P1(x)PB

(x)

[
b
(
Q1(x)Pk(x)−Qk(x)P1(x)

)
+ a

(
Pk(x)−Qk(x)

)]

×
[(

dQn+1(x)+ cQn(x)
)
Ps(x)−

(
dPn+1(x)+ cPn(x)

)
Qs(x)

]
,

for any 0≤ k ≤ s≤ n and 1≤ s, whereas

Gqx
(k,s) =

1
P1(x)PB

(x)

[
b
(
Q1(x)Ps(x)−Qs(x)P1(x)

)
+ a

(
Ps(x)−Qs(x)

)]

×
[(

dQn+1(x)+ cQn(x)
)
Pk(x)−

(
dPn+1(x)+ cPn(x)

)
Qk(x)

]
,

for any n+ 1≥ k ≥ s≥ 1 and s≤ n.
As a consequence, the boundary polynomial for the Dirichlet problem is

P
B
(x) = ad

(
Qn+1(x)−Pn+1(x)

)
,

and hence, it is regular iff Qn+1(x) �= Pn+1(x), and the Green’s function is given by
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Gqx
(k,s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
Pk(x)−Qk(x)

)(
Qn+1(x)Ps(x)−Pn+1(x)Qs(x)

)

P1(x)
(
Qn+1(x)−Pn+1(x)

) , k ≤ s

(
Ps(x)−Qs(x)

)(
Qn+1(x)Pk(x)−Pn+1(x)Qk(x)

)

P1(x)
(
Qn+1(x)−Pn+1(x)

) , k ≥ s.

Finally, for Neumann boundary problem, the boundary polynomial is

P
B
(x) = ac

[(
1−Q1(x)

)(
Pn+1(x)−Pn(x)

)
−
(
1−P1(x)

)(
Qn+1(x)−Qn(x)

)]
,

and the Green function, Gqx(k,s), for the Neumann problem is

[
(1−Q1(x))Pk(x)−

(
1−P1(x)

)
Qk(x)

][
Qs(x)

(
Pn+1(x)−Pn(x)

)
−Ps(x)

(
Qn+1(x)−Qn(x)

)]

P1(x)
[(

1−Q1(x)
)(

Pn+1(x)−Pn(x)
)
−
(
1−P1(x)

)(
Qn+1(x)−Qn(x)

)]

for any 0≤ k ≤ s≤ n and 1≤ s, whereas
[
(1−Q1(x))Ps(x)−

(
1−P1(x)

)
Qs(x)

][
Qk(x)

(
Pn+1(x)−Pn(x)

)
−Pk(x)

(
Qn+1(x)−Qn(x)

)]

P1(x)
[(

1−Q1(x)
)(

Pn+1(x)−Pn(x)
)
−
(
1−P1(x)

)(
Qn+1(x)−Qn(x)

)]

for any n+ 1≥ k≥ s≥ 1 and s≤ n.

4 One-Side Boundary Problems

In this section we analyze one-side boundary value problems; i.e., the boundary
conditions are located at one side of the path Pn+2. So if we consider the vertex
subset F̂ = {0,1, . . . ,n}, the linear map B : C (V )→ R such that

B(u) = au(n)+ bu(n+ 1), for any u ∈ C (V )

is a linear one-side boundary condition on F̂ with coefficients a, b ∈ R, wherever
|a|+ |b|> 0. Moreover, a one-side boundary value problem on F̂ consists in finding
u ∈ C (V ) such that

Lqx
(u) = f on F̂ , B(u) = g, (6)

for a given f ∈ C (V ) and g ∈R. The problem is semi-homogenous when g = 0 and
homogeneous if, in addition, f = 0. Again, the one-side boundary value problem
is regular if the corresponding homogeneous problem has the null function as its
unique solution; equivalently, Eq. (6) is regular iff for any data f ∈ C (V )(V ) and
g ∈ R it has a unique solution. In this case, the Green function for the one-side
boundary value problem (6) is the function Gqx

∈ C (V × F̂) characterized by
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Lqx
(Gqx

(·,s)) = εs on F̂ , B(Gqx
(·,s)) = 0, for any s ∈ F̂ . (7)

The analysis of one-side boundary value problems can be easily derived from
the study of two-side boundary value problems by observing that Eq. (6) can be
rewritten as the following two-side Sturm–Liouville problem

Lqx
(u) = f , on F,

[
A0Q1(x)−A1

]
u(0)−A0u(1) = A1 f (0), B(u) = g. (8)

Therefore, we can reduce the analysis of one-side boundary value problems to the
analysis of semi-homogeneous Sturm–Liouville problems.

Lemma 3. Given g∈R, then for any f ∈C (V ) the function u∈C (V ) satisfies that

Lqx
(u) = f on F̂ and B(u) = g iff the function v = u+ A1

A0
f (0)ε1−

g(aεn + bεn+1)

a2 + b2

satisfies
[
A0Q1(x)−A1

]
v(0)−A0v(1) = B(v) = 0 and on F

Lqx
(v) = f +

A1 f (0)
A2

(
(A2x+B2)ε1− ε2

)

+
A0g

(a2 + b2)

((
a(An+1x+Bn+1)− b

) εn

An+1
− a

εn−1

An

)
.

Corollary 3. Given the one-side boundary value problem (6), then

P
B
(x) = A1

[(
P1(x)− 1

)(
bQn+1(x)+ aQn(x)

)
+ bPn+1(x)+ aPn(x)

]

and the Green function is

Gqx
(k,s) =

[
Qk(x)

(
1−P1(x)

)
−Pk(x)

]

P1(x)
[(

P1(x)− 1
)(

bQn+1(x)+ aQn(x)
)
+ bPn+1(x)+ aPn(x)

]

×
[(

bQn+1(x)+ aQn(x)
)
Ps(x)−

(
bPn+1(x)+ aPn(x)

)
Qs(x)

]

for any 0≤ k ≤ s≤ n, whereas

Gqx
(k,s) =

[
Qs(x)

(
1−P1(x)

)
−Ps(x)

]

P1(x)
[(

P1(x)− 1
)(

bQn+1(x)+ aQn(x)
)
+ bPn+1(x)+ aPn(x)

]

×
[(

bQn+1(x)+ aQn(x)
)
Pk(x)−

(
bPn+1(x)+ aPn(x)

)
Qk(x)

]

for any n+ 1≥ k ≥ s≥ 0 and s≤ n.
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Centers in a Quadratic System Obtained
from a Scalar Third Order Differential Equation

Adriana Buică, Isaac A. Garcı́a, and Susanna Maza

Abstract In this paper it is shown that (0,0,0) is a center for

ẋ = y, ẏ = z, ż =−1
a

z− a(2x+ 1)y− x(x+ 1)

and that (−1,0,0) is a center for

ẋ = y, ẏ = z, ż =−axz− 1
a

y− x(x+ 1),

(where a > 0) giving in this way a positive answer to questions raised in the
paper Analysis of a quadratic system obtained from a scalar third order differential
equation, Electron. J. Diff. Equat. 2010(161) (2010).

Keywords Inverse Jacobi multiplier • Center manifold • Center problem

1 Introduction and Statement of the Results

The starting point is the scalar third-order differential equation

...
x + f (x)ẍ+ g(x)ẋ+ h(x) = 0, (1)
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with f and g arbitrary polynomials of degree 1 and h a polynomial of degree 2.
Without loss of generality we can take h(x) = x(x+ 1) when h has two real zeros.
We will associate to (1) the quadratic differential systems in R

3

ẋ = y , ẏ = z , ż =− f (x)z− g(x)y− h(x) . (2)

A Hopf point of (2) is a singularity that possesses two complex eigenvalues±i with
zero real part and one nonzero real eigenvalue. System (2) having a singular point
of Hopf type at the origin has a local two-dimensional center manifold W c(0). This
manifold is invariant for (2) locally (only for sufficiently small |x| and |y|), and for
any k ≥ 1 there exists h̃ of class Ck near the origin such that

h̃(0,0) = 0, Dh̃(0,0) = 0,

Dh̃(x,y) being the Jacobian matrix of h̃, and

W c(0) = {(x,y, h̃(x,y)) ∈ R
3 : (x,y) in a small neighborhood of(0,0)}.

The center problem for system (2) at the Hopf type singularity consists in detecting
when the singular point becomes either a center or a focus for the flow of system (2)
restricted to the center manifold. We say that the singular point is a center of (2) if
all the orbits on W c(0) near the origin are periodic and a focus if they spiral around
it. The classical procedure for the solution to the center problem can be found in
[1, 4], while the projection method for the calculation of the Lyapunov constants is
given in [7].

Recall here that the Lyapunov constants are the coefficients of the Taylor series of
the displacement map (Poincaré return map minus the identity), so that its vanishing
is a necessary condition for having a center. But essentially, the main problem is the
following: Let R ⊂ R[λ ] be the ring of real polynomials whose variables are the
coefficients λ ∈ R

p of some polynomial differential family (2). The Bautin ideal
J is the ideal of R generated by all the Lyapunov constants. Using Hilbert’s basis
theorem, it follows that J is finitely generated. Thus, there are {B1,B2, . . . ,Br} ⊂ J
such that J= (B1,B2, . . . ,Br). Such a set of generators is called a basis of J when r
is the minimum number of the ideal generators. In this case, we say that r = dimJ.
For the concrete family of polynomial systems (2), an open problem nowadays is
the determination of J.

We recall that, by using the blow-up technique, the problem to characterize the
local phase portrait near an isolated singular point of a planar vector field can be
solved except when the singularity is monodromic; that is, it is either a focus or a
center.

Some aspects of the dynamics of system (2) are studied in [5]. Under conditions
on the set of parameters, the origin and the point (−1,0,0) are Hopf points of
system (2). The authors of [5] prove that the first three Lyapunov coefficients vanish
at these Hopf points; hence, they conjecture that they are centers. In this work,
analyzing the vector field (2) with the techniques developed in [3], we show two
families of centers, solving in this way the two conjectures formulated in [5]. We
have the following result:
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Theorem 1. Consider the following four-parameter family of quadratic differential
systems in R

3

ẋ = y , ẏ = z , ż =− f (x)z− g(x)y− h(x) , (3)

where f (x) = a1x+ a0, g(x) = b1x+ b0, and h(x) = x(x+ 1) and the parameters
(a0,a1,b0,b1) ∈ R

4. We have the following center conditions:

(i) The point (0,0,0) is a center of system (3) if b0 > 0, a0 = 1/b0, a1 = 0, and
b1 = 2b0.

(ii) The point (−1,0,0) is a center of system (3) if a0 = b1 = 0, b0 = 1/a1, and
a1 > 0.

The proof of Theorem 1 is based on the properties of an inverse Jacobi multiplier
of system (3) as studied in [3]. Since this proof is based on the main results of the
preprint [3], we write in the last section of this paper an appendix in order to give
an alternative self-contained proof of Theorem 1.

We shortly present the properties of the inverse Jacobi multiplier function
developed in [3] below.

Let D ⊆ R
n be an open subset and Y = ∑n

i=1 fi(x)∂xi be a C1(D) vector field
with x = (x1, . . . ,xn) ∈ D. A C1 function V : D→ R is said to be an inverse Jacobi
multiplier of Y if it is not locally null and it satisfies the linear first-order partial
differential equation

Y V =V divY ,

here divY = ∑n
i=1 ∂ fi(x)/∂xi is the divergence of the vector field Y . A good

reference to the theory of inverse Jacobi multipliers is [2]. See also [6] for a
summary. The next result is a simple consequence of the main results proved in
[3].

Corollary 1 ([3]). Assume that the linear part of the analytic vector field Y in R
3

has the block diagonal representation

C =

(
A 0
0 λ

)
, A =

(
0 −1
1 0

)
,

where λ ∈ R\{0}. Then the origin is a center for Y if and only if there exists a
local analytic inverse Jacobi multiplier V (x,y,z) of Y near the origin having the
following Taylor expansion

V (x,y,z) = z+ · · · , where the dots indicate terms of order two or higher.
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2 Proof of Theorem 1

The singularities of (3) are p0 = (0,0,0) and p1 = (−1,0,0). In addition, these
singular points are Hopf points in the following cases:

• Taking b0 > 0, a0 = 1/b0, the origin of system (3) has associated eigenvalues
−1/b0 and ±i

√
b0.

• Taking a0− a1 < 0 and (a0− a1)(b0− b1) = −1, the singularity (−1,0,0) of
system (3) has associated eigenvalues a1− a0 and ±i/

√
a1− a0.

Under the parameter restrictions b0 > 0, a0 = 1/b0, a1 = 0, and b1 = 2b0 of
statement (i), system (3) possesses the inverse Jacobi multiplier:

V (x,y,z) = z+ b0 x(x+ 1).

This can be easily seen by verifying that this function is a solution of the linear
partial differential equation:

y
∂V
∂x

+ z
∂V
∂y
− (z/b0 + b0 (2x+ 1)y+ x(x+ 1))

∂V
∂ z

=−V/b0.

We do the linear change of variables

(x,y,z)→ 1

1+ b3
0

⎛

⎜
⎝
−b0 0 b3

0

−b5/2
0 −(1+ b3

0)b
1/2
0 −b3/2

0
b0 0 1

⎞

⎟
⎠

⎛

⎝
x
y
z

⎞

⎠

and the rescaling of time t →−
√

b0 t bringing the linear part of (3) at the origin to
its canonical form. In short, system (3) is written in the form

ẋ = −y+
1

1+ b3
0

(
b1/2

0 x2 + 2b2
0xy− 2b5

0yz− b13/2
0 z2

)
,

ẏ = x+
1

1+ b3
0

(
−b−1

0 x2− 2b1/2
0 xy+ 2b7/2

0 yz+ b5
0z2
)
, (4)

ż = b−3/2
0 z+

1

1+ b3
0

(
b−5/2

0 x2 + 2b−1
0 xy− 2b2

0yz− b7/2
0 z2

)
,

having the inverse Jacobi multiplier:

V (x,y,z) = z+(x− b3
0z)2/(b0(1+ b3

0)).

Applying Corollary 1, the origin is a center of system (4) and consequently of
system (3) proving statement (i).
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Under the parameter restrictions a0 = b1 = 0, b0 = 1/a1, and a1 > 0 of statement
(ii), system (3) possesses the inverse Jacobi multiplier:

V (x,y,z) = 1+ x+ a1z.

This can be easily seen by verifying that this function is a solution of the linear
partial differential equation:

y
∂V
∂x

+ z
∂V
∂y
− (a1 xz+ y/a1 + x(x+ 1))

∂V
∂ z

=−a1 xV.

Firstly, we translate the singular point (−1,0,0) to the origin with the change
(x,y,z)→ (x+ 1,y,z). After, we do the linear change of variables

(x,y,z)→ 1

1+ a3
1

⎛

⎜
⎝
−a2

1 0 1

−a1/2
1 a−1/2

1 + a5/2
1 −a3/2

1
a2

1 0 a3
1

⎞

⎟
⎠

⎛

⎝
x
y
z

⎞

⎠

and the rescaling of time t → a−1/2
1 t bringing the linear part of the system to

canonical form. In short we obtain that system (3) becomes

ẋ = −y+
1

a7/2
1

z(a3
1x− z) ,

ẏ = x− a1xz+
z2

a2
1

, (5)

ż =
z(a2

1 + a3
1x− z)

√
a1

.

The origin of this system is trivially a center because W c(0) = {z = 0} and the
system reduced to the center manifold is the linear center ẋ = −y, ẏ = x. Then
statement (ii) is proved. Other proof of this fact follows applying Corollary 1,
because an inverse Jacobi multiplier of this system is V (x,y,z) = z.

3 Appendix

In this section we present an alternative proof of Theorem 1. We start with the
explicit knowledge of an inverse Jacobi multiplier V (x,y,z) in all the cases, as
stated before. Next the main idea is first to obtain from V the explicit expression
of an analytic center manifold W c(0) and finally to check that the singularity of the
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reduced system to the center manifold is in fact a center. We only do this procedure
in the proof of statement (i) of Theorem 1 because statement (ii) has been trivially
proved without resorting to [3].

To prove statement (i) of Theorem 1 we must study the center problem at the
origin for the equivalent system (4). Recall that this system admits the inverse
Jacobi multiplier V (x,y,z) = b0(1+ b3

0)z +(x− b3
0z)2. Therefore, {V(x,y,z) = 0}

defines an invariant algebraic surface of (4) which passes through the origin and is
tangent to the plane {z = 0} at this point. In particular, this means that this invariant
surface is tangent to the center eigenspace, the (x,y)-plane, at the origin; hence, in a
neighborhood of the origin forms a local center manifold. Indeed, solving V = 0 for
z and inserting into the first two equations in (4), we obtain the following expression
of the reduced system (4) to the center manifold in local coordinates:

ẋ = P(x,y) =−y+
1

4b7/2
0 (1+ b3

0)
f+(x)g(x,y),

ẏ = Q(x,y) = x+
1

4b5
0(1+ b3

0)
f−(x)g(x,y),

where f±(x) =±1±b3
0∓

√
1+ b3

0

√
1+ b3

0− 4b2
0x and g(x,y) =−1−b3

0 +4b2
0x+

√
1+ b03

√
1+ b3

0− 4b2
0x+ 4b7/2

0 y. It is straightforward to check that the function

v(x,y) =
√

1+ b3
0− 4b02x is an inverse integrating factor of this reduced system;

that is, the rescaled system ẋ = P(x,y)/v(x,y), ẏ = Q(x,y)/v(x,y) is Hamiltonian.
Since v(x,y) is a nonvanishing analytic function near the origin, this implies that the
reduced system to the center manifold possesses a local analytic first integral around
the origin. Hence, the origin becomes a center.
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Three Solutions for Systems of n Fourth-Order
Partial Differential Equations

Shapour Heidarkhani

Abstract In this paper, we shall establish the existence of at least three weak
solutions for a class of systems of n fourth-order partial differential equations
coupled with Navier boundary conditions. The technical approach is fully based
on a very recent three critical points theorem.

Keywords Three solutions • Critical point • Variational methods • (p1, . . . ,pn)-
biharmonic • Navier boundary value problem

1 Introduction

In this work, based on a recent three critical points theorem due to Bonanno and
Marano [5], we study the existence of at least three weak solutions for the nonlinear
elliptic system of n fourth-order partial differential equations under Navier boundary
conditions

{
Δ(|Δui|pi−2Δui)−αiΔpiui +βi|ui|pi−2ui = λ Fui(x,u1, . . . ,un) in Ω ,

ui = Δui = 0 on ∂Ω
(1)

for 1≤ i≤ n, where Δpiui = div(|∇ui|pi−2∇ui) is the pi-Laplacian operator, αi and βi

for 1≤ i≤ n are positive constants, Ω ⊂R
N(N ≥ 1) is a nonempty bounded open set

with smooth boundary ∂Ω , pi > max{1, N
2 } for 1≤ i≤ n, λ > 0, F : Ω ×R

n → R

is a function such that F(., t1, . . . , tn) is continuous in Ω for all (t1, . . . , tn) ∈ R
n,
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F(x, ., . . . , .) is C1 in R
n for every x ∈Ω and F(x,0, . . . ,0) = 0 for all x ∈Ω , and Ft

denotes the partial derivative of F with respect to t. System (1) is called (p1, . . . , pn)-
biharmonic.

There seems to be increasing interest in studying fourth-order boundary value
problems, because the static form change of beam or the sport of rigid body can be
described by a fourth-order equation, and specially a model to study traveling waves
in suspension bridges can be furnished by the fourth-order equation of nonlinearity,
so it is important to Physics. In [11], Lazer and Mckenna have pointed out that
this type of nonlinearity furnishes a model to study traveling waves in suspension
bridges. More general nonlinear fourth-order elliptic boundary value problems have
been studied [1–4, 6–10, 12–14] in recent years.

Here and in the next section, X will denote the Cartesian product of n Sobolev
spaces W 2,pi(Ω)∩W 1,pi

0 (Ω) for i = 1, . . . ,n, i.e., X = (W 2,p1(Ω)∩W 1,p1
0 (Ω))×

. . .× (W 2,pn(Ω)∩W 1,pn
0 (Ω)) endowed with the norm ‖(u1, . . . ,un)‖ = ∑n

i=1 ‖ui‖pi ,

where ||ui||pi =(
∫

Ω |Δui(x)|pidx+αi
∫

Ω |∇ui(x)|pidx+βi
∫

Ω |ui(x)|pidx)1/pi for 1≤
i≤ n.

We say that u = (u1, . . . ,un) is a weak solution to system (1) if u = (u1, . . . ,un) ∈
X and
∫

Ω

n

∑
i=1

(
|Δui(x)|pi−2Δui(x)Δvi(x) + αi|∇ui(x)|pi−2∇ui(x)∇vi(x)

+ βi|ui(x)|pi−2ui(x)vi(x)
)

dx

− λ
∫

Ω

n

∑
i=1

Fui(x,u1(x), . . . ,un(x))vi(x)dx = 0

for every (v1, . . . ,vn) ∈ X . For other basic notations and definitions, we refer the
reader to [18].

2 Main Results

First we here recall for the reader’s convenience Theorem 2.6 of [5] (see also [15–
17] for related results) which is our main tool to transfer the existence of three
solutions of system (1) into the existence of critical points of the Euler functional:

Theorem 1 (see [5, Theorem 2.6]). Let X be a reflexive real Banach space,
let Φ : X −→ R be a sequentially weakly lower semicontinuous, coercive, and
continuously Gâteaux differentiable whose Gâteaux derivative admits a continuous
inverse on X∗, and let Ψ : X −→ R be a sequentially weakly upper semicontinuous
and continuously Gâteaux differentiable functional whose Gâteaux derivative is
compact. Assume that there exist r ∈R and u1 ∈ X with 0 < r < Φ(u1), such that
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(i) supu∈Φ−1(]−∞,r])Ψ(u)< rΨ (u1)
Φ(u1)

.

(ii) For each λ ∈Λr :=]Φ(u1)
Ψ (u1)

, r
supu∈Φ−1(]−∞,r])Ψ (u) [, the functional Φ−λΨ is coercive.

Then, for each λ ∈ Λr, the functional Φ − λΨ has at least three distinct critical
points in X .

Let us recall that for 1≤ i≤ n, W 1,pi
0 (Ω) is compactly embedded in C0(Ω ) if pi >

N and that for 1 ≤ i ≤ n, W 2,pi(Ω) is compactly embedded in C0(Ω ) if pi >
max{1, N

2 }. Put

k = max

⎧
⎨

⎩
sup

ui∈W 2,pi (Ω)∩W
1,pi
0 (Ω)\{0}

maxx∈Ω |ui(x)|pi

||ui||pi
pi

; for 1≤ i≤ n

⎫
⎬

⎭
. (2)

For pi > max{1, N
2 } for 1 ≤ i ≤ n, since the embedding W 2,pi(Ω)∩W 1,pi

0 (Ω) ↪→
C0(Ω) for 1 ≤ i ≤ n is compact, one has k < +∞. For all γ > 0 we denote by K(γ)
the set

{

(t1, . . . , tn) ∈ Rn :
n

∑
i=1

|ti|pi

pi
≤ γ

}

. (3)

Now, we formulate our main result as follows:

Theorem 2. Assume that there exist a positive constant r and a function w =
(w1, . . . ,wn) ∈ X such that

(A1) ∑n
i=1

||wi||
pi
pi

pi
> r.

(A2)
∫

Ω sup(t1,...,tn)∈K(kr) F(x, t1, . . . , tn)dx < (r ∏n
i=1 pi)

∫
Ω F(x,w1(x),...,wn(x))dx

∑n
i=1 ∏n

j=1, j �=i
p j ||wi||

pi
pi

,

where K(kr) = {(t1, . . . , tn)|∑n
i=1

|ti|pi

pi
≤ kr} [see (3)] and k is given by (2).

(A3) km(Ω) limsup|t1|→+∞,..., |tn|→+∞
F(x,t1,...,tn)

∑n
i=1

|ti|
pi

pi

<

∫
Ω sup(t1,...,tn)∈K(kr) F(x,t1,...,tn)dx

r uni-

formly with respect to x ∈ Ω , where m(Ω) is the Lebesgue measure of the
set Ω .

Then, for each

λ∈Λ1 :=

⎤

⎥
⎥
⎦

∑n
i=1 ∏n

j=1, j �=i
p j ||wi||

pi
pi

∏n
i=1 pi∫

Ω F(x,w1(x), . . .,wn(x))dx
,

r
∫

Ω sup(t1,...,tn)∈K(kr)F(x, t1, . . . , tn)dx

⎡

⎢
⎢
⎣ ,

system (1) admits at least three distinct weak solutions in X.

Proof. Put Φ(u) = ∑n
i=1

||ui||
pi
pi

pi
and Ψ(u) =

∫
Ω F(x,u1(x), . . . ,un(x))dx for each

u = (u1, . . . ,un) ∈ X . Of course, Φ is a continuously Gâteaux differentiable and
sequentially weakly lower semi-continuous functional whose Gâteaux derivative
admits a continuous inverse on X∗, andΨ is a sequentially weakly upper semicontin-
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uous and continuously Gâteaux differentiable functional whose Gâteaux derivative
is compact (for details, see [10, Theorem 2.3]). In particular, the derivatives at the
point u = (u1, . . . ,un) ∈ X are the functionals Φ ′(u),Ψ ′(u) ∈ X∗, given by

Φ ′(u)(v) =
∫

Ω

n

∑
i=1

|Δui(x)|pi−2Δui(x)Δvi(x)dx

+αi

∫

Ω

n

∑
i=1
|∇ui(x)|pi−2∇ui(x)∇vi(x)dx

+βi

∫

Ω

n

∑
i=1

|ui(x)|pi−2ui(x)vi(x)dx

and

Ψ ′(u)(v) =
∫

Ω

n

∑
i=1

Fui(x,u1(x), . . . ,un(x))vi(x)dx

for every v = (v1, . . . ,vn) ∈ X , respectively. From (A1) we get 0 < r < Φ(w). From
(2) for each (u1, . . . ,un) ∈ X , supx∈Ω |ui(x)|pi ≤ k||ui||pi

pi for i = 1, . . . ,n, then

sup
x∈Ω

n

∑
i=1

|ui(x)|pi

pi
≤ k

n

∑
i=1

||ui||pi
pi

pi
(4)

for each u = (u1, . . . ,un) ∈ X , and so using (4), we obtain

Φ−1(]−∞,r]) = {(u1, . . . ,un) ∈ X ;Φ(u1, . . . ,un)≤ r}

=

{

(u1, . . . ,un) ∈ X ;
n

∑
i=1

||ui||pi
pi

pi
≤ r

}

⊆
{

(u1, . . . ,un) ∈ X ;
n

∑
i=1

|ui(x)|pi

pi
≤ kr for all x ∈Ω

}

;

therefore, owing to the Assumption (A2), we have

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
(u1,...,un)∈Φ−1(]−∞,r])

∫

Ω
F(x,u1(x), . . . ,un(x))dx

≤
∫

Ω
sup

(t1,...,tn)∈K(kr)
F(x, t1, . . . , tn)dx

< r

∫
Ω F(x,w1(x), . . . ,wn(x))dx

∑n
i=1

||wi||
pi
pi

pi

= r
Ψ(w)
Φ(w)

.
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Furthermore, from (A3) there exist two constants τ, η ∈ R with τ <∫
Ω sup(t1,...,tn)∈K(kr) F(x,t1,...,tn)dx

r such that

km(Ω)F(x, t1, . . . , tn)≤ τ
n

∑
i=1

|ti|pi

pi
+η for all x ∈Ω and for all (t1, . . . , tn) ∈ Rn.

Fix (u1, . . . ,un) ∈ X . Then

F(x,u1(x), . . . ,un(x))≤
1

km(Ω)

(

τ
n

∑
i=1

|ui(x)|pi

pi
+η

)

for all x ∈Ω . (5)

Now, in order to prove the coercivity of the functional Φ−λΨ , first we assume that
τ > 0. So, for any fixed λ ∈ Λ1, from (4) and (5) we have

Φ(u)−λΨ(u) =
n

∑
i=1

||ui||pi
pi

pi
−λ

∫

Ω
F(x,u1(x), . . . ,un(x))dx

≥
n

∑
i=1

||ui||pi
pi

pi
− λ τ

km(Ω)

(
n

∑
i=1

1
pi

∫

Ω
|ui(x)|pidx

)

− λ η
k

≥
n

∑
i=1

||ui||pi
pi

pi
− λ τ

km(Ω)

(

km(Ω)
n

∑
i=1

||ui||pi
pi

pi

)

− λ η
k

=
n

∑
i=1

||ui||pi
pi

pi
−λ τ

n

∑
i=1

||ui||pi
pi

pi
− λ η

k

≥
(

1− τr
∫

Ω sup(t1,...,tn)∈K(kr) F(x, t1, . . . , tn)dx

)
n

∑
i=1

||ui||pi
pi

pi
− λ η

k
,

and thus,

lim
‖u‖→+∞.

(Φ(u)−λΨ(u)) = +∞,

On the other end, if τ ≤ 0, clearly, we get lim‖u‖→+∞(Φ(u)− λΨ(u)) = +∞.
Both cases lead to the coercivity of functional Φ −λΨ . Therefore, we can apply
Theorem 1. Taking into account that the weak solutions of system (1) are exactly
the solutions of equation Φ ′(u1, . . . ,un) − λΨ ′(u1, . . . ,un) = 0, it follows the
conclusion. �	

Now we want to present a verifiable consequence of the main result where the test
function w is specified.
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Following the construction given in [13], fix x0 ∈Ω and pick r1, r2 with 0< r1 <
r2 such that S(x0,r1)⊂ S(x0,r2)⊆Ω , where S(x0,ri) denotes the ball with center at
x0 and radius of ri for i = 1,2.

Put

ωi =ωi(N, pi,r1,r2) =
2π

N
2

Γ (N
2 )

∫ r2

r1

|(N+2)ξ 2−(N+1)(r1+r2)ξ +Nr1r2|piξ N−1dξ

(6)

for 1≤ i≤ n,

ϑi = ϑi(N, pi,r1,r2) =

∫

S(x0,r2)\S(x0,r1)

∣
∣d(x,x0)(l2− (r1 + r2)l + r1r2)

∣
∣pi dx (7)

for 1≤ i≤ n, where l =
√

∑N
i=1(xi− x0

i )
2 and d(x,x0) = ∑N

i=1(xi− x0
i ), and

κi = κi(N, pi,r1,r2) =
2π N

2

(12)piΓ (N
2 )

( rN
1

N
+

∫ r2

r1

∣
∣
∣
(

3(ξ 4− r4
2)− 4(r1 + r2)(ξ 3− r3

2)

+6r1r2(ξ 2− r2
2)
)∣∣∣

pi
ξ N−1dξ

)
(8)

for 1≤ i≤ n.

Corollary 1. Assume that there exist two positive constant ν and τ with

n

∑
i=1

(
(12τ)pi ∏n

j=1, j �=i
p j

(r2− r1)3pi(r1 + r2)pi
(ωi +αiϑi +βiκi)

)

>
ν
k

such that

(B1) F(x, t1, . . . , tn)≥ 0 for each (x, t1, . . . , tn) ∈ (Ω \ S(x0,r1))× [0,τ]n.

(B2)
∫

Ω sup(t1,...,tn)∈K( ν
∏n

i=1 pi
) F(x, t1, . . . , tn)dx < ν

k

∫
S(x0 ,r1)

F(x,τ ,...,τ)dx
(

∑n
i=1

(12τ)pi ∏n
j=1, j �=i

p j

(r2−r1)
3pi (r1+r2)

pi
(ωi+αiϑi+βiκi)

) ,

where ωi, ϑi, and κi are given by (6), (7), and (8), respectively, and

K( ν
∏n

i=1 pi
)={(t1, . . . , tn)|∑n

i=1
|ti|pi

pi
≤ ν

∏n
i=1 pi

} [see (3)].

(B3) km(Ω) limsup|t1|→+∞,..., |tn|→+∞
F(x,t1,...,tn)

∑n
i=1

|ti|
pi

pi

<

∫
Ω sup(t1,...,tn)∈K( ν

∏n
i=1 pi

) F(x,t1,...,tn)dx

ν
k∏n

i=1 pi

uniformly with respect to x ∈Ω . Then, for each

λ ∈Λ2 :=

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

⎛

⎝∑n
i=1

(12τ)pi ∏n
j=1, j �=i

p j

(r2−r1)
3pi (r1+r2)

pi
(ωi+αiϑi+βiκi)

⎞

⎠

∏n
i=1 pi∫

S(x0 ,r1)
F(x,τ , . . . ,τ)dx

,

ν
k∏n

i=1 pi∫
Ω sup(t1,...,tn)∈K( ν

∏n
i=1 pi

) F(x, t1, . . . , tn)dx

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

,

system (1) has at least three weak solutions in X.
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Proof. We put w(x) = (w1(x), . . . ,wn(x)) such that for 1≤ i≤ n,

wi(x) =

⎧
⎪⎨

⎪⎩

0 if x ∈Ω \ S(x0,r2)
τ(3(l4−r4

2)−4(r1+r2)(l
3−r3

2)+6r1r2(l
2−r2

2))
(r2−r1)3(r1+r2)

if x ∈ S(x0,r2)\ S(x0,r1)

τ if x ∈ S(x0,r1)

(9)

and r = ν
k ∏n

i=1 pi
. We have

∂wi(x)
∂xi

=

{
0 if x ∈Ω \ S(x0,r2)∪S(x0,r1)
12τ(l2(xi−x0

i )−(r1+r2)l(xi−x0
i )+r1r2(xi−x0

i ))
(r2−r1)3(r1+r2)

if x ∈ S(x0,r2)\ S(x0,r1)

and

∂ 2wi(x)

∂x2
i

=

{
0 if x ∈Ω \ S(x0,r2)∪S(x0,r1)
12τ(r1r2+(2l−r1−r2)(xi−x0

i )
2/l−(r2+r1−l)l)

(r2−r1)3(r1+r2)
if x ∈ S(x0,r2)\ S(x0,r1)

and so

N

∑
i=1

∂wi(x)
∂xi

=

{
0 if x ∈Ω \ S(x0,r2)∪S(x0,r1)
12τ(l2d(x,x0)−(r1+r2)ld(x,x

0)+r1r2d(x,x0))
(r2−r1)3(r1+r2)

if x ∈ S(x0,r2)\ S(x0,r1)

and

N

∑
i=1

∂ 2wi(x)

∂x2
i

=

{
0 if x ∈Ω \ S(x0,r2)∪S(x0,r1)
12τ((N+2)l2−(N+1)(r1+r2)l+Nr1r2))

(r2−r1)3(r1+r2)
if x ∈ S(x0,r2)\ S(x0,r1).

It is easy to see that w = (w1, . . . ,wn) ∈ X and, in particular, one has

||wi||pi
pi
=

(12τ)pi

(r2− r1)3pi(r1 + r2)pi
(ωi +αiϑi +βiκi) (10)

for 1 ≤ i ≤ n. However, taking into account that ∑n
i=1 ∏n

j=1, j �=i
p j(σi + αiθi +

βiρi)τ pi > ν
k , we see that ∑n

i=1
||wi||

pi
pi

pi
> r, which is Assumption (A1).

Since 0≤ wi(x)≤ τ for each x ∈Ω for 1≤ i≤ n, the condition (B1) ensures that

∫

Ω\S(x0,r2)
F(x,w1(x), . . . ,wn(x))dx+

∫

S(x0,r2)\S(x0,r1)
F(x,w1(x), . . . ,wn(x))dx≥ 0.

(11)
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Moreover, from (B2), (10), and (11), we have

∫

Ω
sup

(t1,...,tn)∈K( ν
∏n

i=1 pi
)

F(x, t1, . . . , tn)dx <
ν
∫

S(x0 ,r1)
F(x,τ , . . .,τ)dx

k ∑n
i=1

(
(12τ)pi ∏n

j=1, j �=i
p j

(r2−r1)
3pi (r1+r2)

pi
(ωi +αiϑi +βiκi)

)

≤ ν
k

∫
Ω F(x,w1(x), . . . ,wn(x))dx

∑n
i=1 ∏n

j=1, j �=i
p j||wi||pi

pi

= (r
n

∏
i=1

pi)

∫
Ω F(x,w1(x), . . .,wn(x))dx

∑n
i=1 ∏n

j=1, j �=i
p j||wi||pi

pi

,

namely, the Assumption (A2) is satisfied. Also, from (B3) we arrive at (A3). Hence,
using Theorem 2, we have the desired conclusion. �	

Finally, we point out the following remarkable consequence of Corollary 1.

Corollary 2. Let F : Rn → R be a C1-function such that F(0, . . . ,0) = 0. Assume
that there exist two positive constant ν and τ with

n

∑
i=1

(
(12τ)pi ∏n

j=1, j �=i
p j

(r2− r1)3pi(r1 + r2)pi
(ωi +αiϑi +βiκi)

)

>
ν
k

such that

(C1) F(t1, . . . , tn)≥ 0 for each (t1, . . . , tn) ∈ [0,τ]n.

(C2) m(Ω )max(t1,...,tn)∈K( ν
∏n

i=1 pi
) F(t1, . . . , tn)< ν

k

rN
1

πN/2
Γ (1+N/2)F(τ ,...,τ)

(

∑n
i=1

(12τ)pi ∏n
j=1, j �=i

p j

(r2−r1)
3pi (r1+r2)

pi
(ωi+αiϑi+βiκi)

) .

(C3) km(Ω) limsup|t1|→+∞,..., |tn|→+∞
F(t1,...,tn)

∑n
i=1

|ti |
pi

pi

<

m(Ω)max(t1,...,tn)∈K( ν
∏n

i=1 pi
) F(t1,...,tn)

ν
k∏n

i=1 pi

uniformly with respect to x ∈Ω . Then, for every

λ ∈Λ3 :=

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(

∑n
i=1

(12τ)pi ∏n
j=1, j �=i

p j

(r2−r1)
3pi (r1+r2)

pi
(ωi+αiϑi+βiκi)

)

∏n
i=1 pi

rN
1

πN/2

Γ (1+N/2)F(τ , . . . ,τ)
,

ν
k∏n

i=1 pi

m(Ω )max(t1 ,...,tn)∈K( ν
∏n

i=1 pi
) F(t1, . . . ,tn)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

systems

{
Δ(|Δui|pi−2Δui)−αiΔpiui +βi|ui|pi−2ui = λ Fui(u1, . . . ,un) in Ω ,

ui = Δui = 0 on ∂Ω

for 1≤ i≤ n admit at least three weak solutions in X.
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Proof. Set F(x, t1, . . . , tn) = F(t1, . . . , tn) for all x ∈ Ω and ti ∈ R for 1 ≤ i ≤ n.
Clearly, from (C1) and (C3), we arrive at (B1) and (B3), respectively. In particular,

since m(S(x0,r1)) = rN
1

πN/2

Γ (1+N/2) , Assumption (C2) follows that Assumption (B2) is
fulfilled. So, we have the conclusion by using Corollary 2. �	
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The Fučı́k Spectrum: Exploring the Bridge
Between Discrete and Continuous World

Gabriela Holubová and Petr Nečesal

Abstract In this paper, we would like to point out some similarities of interesting
structures of Fučı́k spectra for continuous and discrete operators. We propose a
simple algorithm that allows us to complete the reconstruction of the Fučı́k spectrum
in the case of small order matrices. Finally, we point out some properties of the
Fučı́k spectrum in general unifying terms and concepts.

Keywords Fucik spectrum • Scalar differential operators • Matrices • Hilbert
lattice • Convex cone • Inadmissible areas

1 Introduction

In this paper, we review the Fučı́k spectrum of several linear operators L, i.e., the set

Σ(L) :=
{
(α,β ) ∈ R

2 : Lu = αu+−β u− has a nontrivial solution
}
, (1)

where u+ and u− denote the positive and the negative parts of u. Our goal is to
figure out some interesting common phenomena concerning the structure of the
Fučı́k spectrum for operators L defined on both finite and infinite dimensional
spaces. Let us note that for α = β , the problem Lu = αu+ − β u− reads as the
linear eigenvalue problem Lu = λ u with λ = α = β , thus {(λ ,λ ) ∈ R

2 : λ ∈
σ(L)} ⊂ Σ(L), where σ(L) denotes the point spectrum of L. The Fučı́k spectrum
was introduced by Fučı́k [2] and Dancer [1] in the study of the solvability of
sublinear boundary value problems. According to our best knowledge, R. Švarc
was the first one who investigated the Fučı́k spectrum for matrices, recall here at
least [10,11]. Among other results, R. Švarc shows in details how to reconstruct the
nontrivial Fučı́k spectrum for a 4× 4 matrix.
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2 The Fučı́k Spectrum for Scalar Differential Operators

In this section, we recall the Fučı́k spectra of three particular differential operators
on L2(0,π). For any u = u(x) ∈ L2(0,π), we define u+(x) = max{u(x),0} and
u−(x) = max{−u(x),0} for a.e. x ∈ (0,π).

Example 1. Let us consider the following differential operator with nonlocal
boundary condition

Lηu(x) := −u′′(x),

dom(Lη ) :=

{
u ∈ H2(0,π) : u(0) = 0, (1−η)u(π)+η

∫ π

0
u(x)dx = 0

}
.

For η = 0, the operator Lη stands for the self-adjoint differential operator with
Dirichlet boundary conditions, for which the corresponding Fučı́k spectrum Σ(Lη )
is well known and is given as the union of countably many curves given by

n√
α + n√

β
= 1, n−1√

α + n√
β
= 1, n√

α + n−1√
β
= 1, n∈N (see Fig. 1, left). For η > 0, the

operator Lη is non-self-adjoint, the Fučı́k spectrum consists of two smooth curves
C+ and C− such that C+ ∩ C− =

{
(λ ,λ ) : R2 : λ ∈ σ(Lη )

}
(see [8] for detailed

description of these curves).

Example 2. Let us denote by P := {0,η ,ξ ,π} the partition of the interval [0,π ]
and let us define the following four-point differential operator

L4u(x) :=−u′′(x), dom(L4) :=
{

u ∈ H2(P) : Bi(u) = 0, i = 1, . . . ,6
}
,

where (note that u = (u1,u2,u3))

B1(u) := u2(ξ )− u3(ξ ), B3(u) := u′2(ξ )− u′3(ξ ), B5(u) := u′1(0)− u′3(ξ ),
B2(u) := u1(η)− u2(η), B4(u) := u′1(η)− u′2(η), B6(u) := u1(η)− u3(π).

a

b

a

b

a

b

a

b

S (Lh ), h = 1S (Lh ), h = 0.85S (Lh ), h = 0.5S (Lh ), h = 0

Fig. 1 The Fučı́k spectrum of Lη for various settings of η
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a

b

a

b

a

b

S (L4)S (L4)S (L4)

a

b

S (L4)

Fig. 2 The Fučı́k spectrum of L4 for various settings of ξ and η

a

b

a

b

a

b

S (L4
∗)S (L4

∗)S (L4
∗)

a

b

S (L4
∗)

Fig. 3 The Fučı́k spectrum of L∗4 for various settings of ξ and η

The complete explicit analytic description of the Fučı́k spectrum of L4 is provided in
[3, 4] (see Fig. 2). The adjoint operator L∗4 of L4 is a four-point differential operator

L∗4u(x) =−u′′(x), dom(L∗4) =
{

u ∈ H2(P) : B∗i (u) = 0, i = 1, . . . ,6
}
,

where the adjoint boundary terms are given by

B∗1(u) = u2(ξ )− u3(ξ )+ u1(0), B∗4(u) = u′1(η)− u′2(η)+ u′3(π),
B∗2(u) = u1(η)− u2(η), B∗5(u) = u′1(0),
B∗3(u) = u′2(ξ )− u′3(ξ ), B∗6(u) = u3(π).

Hence, the Fučı́k spectrum problems for both operators L4 and L∗4 read as

⎧
⎪⎨

⎪⎩

u′′+αu+−β u− = 0,

u′(0) = u′(ξ ),
u(η) = u(π),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′+αu+−β u− = 0,

u′(0) = u(π) = 0, u(η) = u(π),
u(η−) = u(η+), u′(η−) = u′(η+)− u(π),
u(ξ−) = u(ξ+)+ u(0), u′(ξ−) = u′(ξ+).

Figure 3 contains examples of the Fučı́k spectrum of L∗4 for the same settings of
inner points ξ and η as for L4 in Fig. 2. Notice that the structures of Σ(L4) and Σ(L∗4)
differ essentially in spite of the fact that σ(L4) = σ(L∗4). For more details see [5].
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3 The Fučı́k Spectrum for Matrices

In this section, we consider L as a linear operator on the finite dimensional space
R

n, n ∈ N, i.e., L is represented by a real n× n matrix A. For any u ∈ R
n, we define

u± := [u±1 , . . . ,u
±
n ]

t with u+i := max{ui,0} and u−i := max{−ui,0} for i = 1, . . . ,n.
Let S be the set of all n-dimensional vectors s such that si = ±1, i = 1, . . . ,n. Then
we have

Σ(A) =
⋃

s∈S

Σs(A), Σ(A)⊂ Θ(A) :=
⋃

s∈S

Θs(A),

Σs(A) :=
{
(α,β ) ∈R

2 : [A−αχ(s+)−β χ(s−)]u = 0 has a nontrivial
solution u such that uisi ≥ 0 for i = 1, . . . ,n} ,

Θs(A) :=
{
(α,β ) ∈R

2 : [A−αχ(s+)−β χ(s−)]u = 0 has a nontrivial
solution u} ,

where χ(s+) and χ(s−) are characteristic diagonal matrices, which have only
nonzero entries equal to 1 if and only if the corresponding component of s is +1
or −1, respectively.

In the case of 2×2 matrices, we have Θ(A) = Θ++∪Θ+−∪Θ−+∪Θ−−, where

Θ++ =
{
(α,β ) ∈ R

2 : (a−α)(d−α) = bc
}
,

Θ+− =
{
(α,β ) ∈ R

2 : (a−α)(d−β ) = bc
}
,

Θ−+ =
{
(α,β ) ∈ R

2 : (a−β )(d−α) = bc
}
,

Θ−− =
{
(α,β ) ∈ R

2 : (a−β )(d−β ) = bc
}
,

A =

[
a b
c d

]
,

and there are ten qualitatively different types of the Fučı́k spectrum Σ(A) (see
Fig. 4). In the case of a general n×n matrix A, we use the following procedure. For
fixed s ∈ S and α ∈ R, we look for all β ∈ R such that the generalized eigenvalue

a

b

a

b

a

b

a

a a a a

a

a

b b

b b b b b

Fig. 4 The Fučı́k spectrum Σ (A) (black) and the set Θ(A) (gray) for 2×2 matrices
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AD :=

2 − 1

− 1 2
. . .

. . .
. . . − 1

− 1 2
a

b

Q ( A6
D)

a

b

a

b

S ( A6
D)S ( A6

D)

Fig. 5 The set Θ(AD
6) and the Fučı́k spectrum Σ (AD

6)⊂ Θ(AD
6)

aa

b b

S ( H9)

S ( H5)S ( H4)

S ( H3)S ( H2)

Fig. 6 The Fučı́k spectrum of the n×n Hilbert matrices Hn for n = 2,3,4,5,9

problem [A−αχ(s+)]u = β χ(s−)u has a nontrivial solution u with uisi ≥ 0 for
i= 1, . . . ,n. The computational complexity of this procedure is exponential, we have
to solve 2n generalized eigenvalue problems.

Example 3. Let us consider the three-diagonal matrix AD
n, which is the discrete

equivalent of the continuous Dirichlet differential operator. Its set Θ(AD
n) and the

Fučı́k spectrum Σ(AD
n) are illustrated in Fig. 5 for n = 6. Let us note that the

Fučı́k curves lose some properties typical for the continuous case, e.g., convexity
(for details, see [9]).

Example 4. The Hilbert matrix Hn with entries Hi j =
1

i+ j−1 is an example of the
operator, for which the Fučı́k spectrum Σ(Hn) ⊂ Θ(Hn) has almost the same rich
structure as the set Θ(Hn) (see Fig. 6).

Let us close this section by simple examples which demonstrate that it is quite
complicated to obtain the global description of the Fučı́k spectrum structure even
in the case of small matrices.1

1There are more than 300 qualitatively different patterns of the Fučı́k spectrum for 3×3 matrices
(cf. the simple situation of 2×2 matrices in Fig. 4).
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=

1 1 . . . 1
2 2 . . . 2
...

... . . .
...

5 5 . . . 5
aaaa

bbbb
S ( A5)

A5

S (A5) S (A5 + P ) S (A5 + P )

Fig. 7 The Fučı́k spectrum of A5 and of the perturbed matrix A5 +P

aaaa

bbbb

S ( ( A9
D) −1)S ( A

−
9
D)S ( A

∼
9
D)S (A9

D)

Fig. 8 The change of the Fučı́k spectrum of AD
9 if we modify the eigenvalues of AD

9 and leave their
eigenvectors

Example 5. Let us consider the 5× 5 matrix A5 with entries Ai j = i, which has two
eigenvalues 0 and 15 and the eigenvalue 0 has the geometric multiplicity 4. The
Fučı́k spectrum consists of 16 curves, two of them are straight lines going through
the point (15, 15) and the remaining 14 curves emanate from the origin (0,0). If
we perturb A5 by a diagonal matrix P = diag(0.01,0.02,0.03,0.04,0.05), then the
structure of the Fučı́k spectrum changes qualitatively. The matrix A5 +P has five
distinct simple eigenvalues which give arise to 10 curves going through the diagonal
α = β . Moreover, there are other 20 curves of the Fučı́k spectrum Σ(A5 +P) which
do not intersect the diagonal. Both Fučı́k spectra Σ(A5) and Σ(A5 +P) are depicted
in Fig. 7.

Example 6. Let us consider the Jordan decomposition of the matrix AD
n = VJV−1,

where J is the Jordan matrix (see Example 3 for the definition of AD
n). If we multiply

the Jordan matrix J by ε > 0, it is straightforward to predict how the Fučı́k spectrum
Σ(AD

n) changes to Σ(ÃD
n), where ÃD

n = V(εJ)V−1. Such a modification of J changes
only the scale of the axes (see Fig. 8 for n = 9). Similarly, the change of J to
J + εI, ε �= 0, causes only the shift of the origin of the axes. Qualitatively more
complicated and unpredictable situation appears if we shift only one eigenvalue
of J or if we take the inverse matrix J−1. See Fig. 8 for the Fučı́k spectrum of
ĀD

9 = V(J + diag(0,0,0,ε,0, . . . ,0))V−1, ε �= 0, and the Fučı́k spectrum of the
inverse matrix (AD

9)
−1 = VJ−1V−1. In both cases, the Fučı́k spectra Σ(ĀD

9) and
Σ((AD

9)
−1) significantly differ from Σ(AD

9) in spite of the fact that there is an obvious
transformation between the point spectra σ(AD

9), σ(ĀD
9), and σ((AD

9)
−1).
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4 Properties of the Fučı́k Spectrum in General

We can link the previous continuous and discrete examples and treat the Fučı́k
spectrum in a general setting. For this purpose, let H be an arbitrary Hilbert space
over the field of real numbers R ordered by a closed convex cone K such that
(H,〈·, ·〉 ,K) is a Hilbert lattice (see [7]). Thus, for any element u ∈ H, we can
define its positive and negative parts by u+ := PK(u) and u− :=−P−K(u), where PK

denotes the orthogonal projection onto K. Further, we consider an arbitrary linear
operator L : dom(L) ⊂ H → H with dom(L) dense in H. In this setting, we can
again study the structure of the Fučı́k spectrum Σ(L) defined by (1).2 In particular,
for any general operator L, it is possible to detect areas, where the Fučı́k spectrum
Σ(L) cannot be located (for more details and other properties of Σ(L), see [6]):

1. Let λ ∈ R be the principal eigenvalue of the adjoint operator L∗, i.e., L∗v = λ v
with v ∈ Int(K). Then

{(α,β ) ∈R
2 : (α−λ )(β −λ )< 0} ∩ Σ(L) = /0.

2. Let ε �∈ σ(L) and let us denote d(ε) :=
∥
∥(L− εI)−1

∥
∥−1

. Then

{
(ε− td(ε),ε + td(ε)) ∈R

2 : t ∈ (−1,1)
}
∩ Σ(L) = /0.

Illustration of the inadmissible areas given by the above properties is provided in
Figs. 1 and 4–9 (see the regions bounded by orange dashed curves).

Acknowledgement The authors were supported by the Ministry of Education, Youth and Sports of
the Czech Republic, Research Plan MSM4977751301, by grant ME09109 (program KONTAKT)
and partially by the European Regional Development Fund (ERDF), project “NTIS—New
Technologies for Information Society”, European Centre of Excellence, CZ.1.05/1.1.00/02.0090.

aaaa

b b b b

Fig. 9 Examples of Fučı́k spectra with strange structures for 5× 5 matrices: bifurcations off the
diagonal, isola formations, etc

2Let us note that examples in Sect. 2 are treated in H = L2(0,π) ordered by K = {u ∈ H : u =
u(x) ≥ 0 a.e. x ∈ (0,π)}, and examples in Sect. 3 are treated in H =R

n ordered by K = (R+)
n.
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The Displacement of a Sliding Bar Subject
to Nonlinear Controllers
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It is our pleasure to dedicate this paper to Professor Ravi
Agarwal.

Abstract We discuss the existence of positive solutions for a fourth-order
differential equation subject to nonlinear and nonlocal boundary conditions, which
models a sliding bar. Our approach allows the involved nonlinearity to be singular.
Our main ingredient is the theory of fixed-point index.

1 Introduction

In this note we discuss the existence of positive solutions for the ODE

u(4)(t) = g(t) f (t,u(t)), t ∈ (0,1), (1)

subject to the nonlocal, nonlinear boundary conditions (BCs)

u′(0)+H1(α1[u]) = 0, θ1u′(1)+ u(ξ1) = H2(α2[u]), (2)

u′′′(0) = 0, θ2u′′′(1)+ u′′(ξ2) = 0, (3)

where, for i= 1,2, ξi ∈ [0,1], Hi is a continuous function and αi is a linear functional
on the space C[0,1] given by a Stieltjes integral, namely, αi[u] =

∫ 1
0 u(s)dAi(s).
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This type of BCs is fairly general and includes, when Hi(w) = (w), m-point and
integral BCs, namely, αi[u] = ∑m

j=1 α ju(η j) and αi[u] =
∫ 1

0 αi(s)u(s)ds; in the case
of fourth-order equations, nonlocal and nonlinear conditions are widely studied
objects; see, for example, [6, 9, 11, 15, 19, 20, 24, 27–29] for nonlocal BCs and
[1–5, 7, 15, 25] for nonlinear BCs and references therein.

One motivation for studying the boundary value problem (BVP) (1)–(3) is that
it occurs in the deformations of an elastic beam of length 1, when we suppose that,
along its length, a load is added to cause deformations and that the beam has some
feedback controllers. For example, the six-point BCs

u′(0)+H1(u(ξ3)) = θ1u′(1)+u(ξ1)−H2(u(ξ4)) = u′′′(0) = θ2u′′′(1)+u′′(ξ2) = 0

mean that the shear force vanishes at t = 0 and at t = 1 is related to the bending
moment in another point of the beam; moreover, some other sensors provide
feedback control to the angular attitude at t = 0 and at t = 1.

Here we prove the existence of multiple positive solutions of (1)–(3) under
suitable oscillatory behavior of f . Our approach is to rewrite the BVP (1)–(3) as
a perturbed Hammerstein integral equation of the form

u(t) = γ1(t)H1(α1[u])+ γ2(t)H2(α2[u])+
∫ 1

0
k(t,s)g(t) f (s,u(s))ds.

This type of perturbed integral equation, with f nonsingular, has been studied in
[12]. Lan [23] studied the Hammerstein case with a singular f , and his results were
exploited in [14], where the Hammerstein integral equation was perturbed by two
linear perturbations.

We prove our results by means of the classical fixed-point index theory and make
use of results and ideas from the papers [12–14, 23, 26].

2 The Boundary Value Problem

We firstly consider the BVP, studied by GI and Webb in [17],

−u′′(t) = g(t) f (t,u(t)), u′(0) = 0, θu′(1)+ u(ξ ) = 0, (4)

where ξ ∈ [0,1]. The solution of the BVP (4) can be written as

u(t) =
∫ 1

0
kθ ,ξ (t,s)g(s) f (s,u(s))ds, (5)
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where

kθ ,ξ (t,s) = θ +

{
ξ − s, s≤ ξ
0, s > ξ

−
{

t− s, s≤ t

0, s > t.

It is known (see [17]) that the case θ + ξ > 1 leads to the existence of positive
solutions.

We now utilize the integral formulation (5) to build a new Green’s function that
will be useful in the sequel.

Lemma 1. Let θ1 + ξ1 > 1 and θ2 + ξ2 > 1. The Green’s function k(t,s) for the
linear fourth-order BVP

u(4)(t) = y(t), t ∈ (0,1),
u′(0) = 0, u′′′(0) = 0, θ1u′(1)+ u(ξ1) = 0, θ2u′′′(1)+ u′′(ξ2) = 0

(6)

is given by

k(t,s) = θ2
(
θ1 +

ξ 2
1

2
− t2

2

)
− θ1

2
(1− s)2 +

{
(θ1 +

ξ 2
1
2 −

t2

2 )(ξ2− s), s≤ ξ2

0, s > ξ2

−
{

1
6 (ξ1− s)3, s≤ ξ1

0, s > ξ1

+

{
1
6(t− s)3, s≤ t

0, s > t.
(7)

Moreover, for (t,s) ∈ [0,1]× [0,1], we have

c1k(0,s)≤ k(t,s) ≤ k(0,s) := Φ(s),

where

c1 := 1− 1

2θ1 + ξ 2
1

.

Proof. The Green’s function k(t,s) for the fourth-order problem (6), in a similar
way as in [8], is given by

k(t,s) =
∫ 1

0
kθ1,ξ1

(t,v)kθ2,ξ2
(v,s)dv.

Since

kθ1,ξ1
(t,v)kθ2,ξ2

(v,s) = θ1θ2+θ1(ξ2− s)χ[0,ξ2]
(s)−θ1(v− s)χ[0,v](s)

+θ2(ξ1−v)χ[0,ξ1](v)+(ξ2−s)χ[0,ξ2](s)χ[0,ξ1](v)

−(ξ1−v)(v−s)χ[0,v](s)χ[0,ξ1](v)−θ2(t−v)χ[0,t](v)

−(t−v)(ξ2− s)χ[0,ξ2](s)χ[0,t](v)+(t−v)(v−s)χ[0,v](s)χ[0,t](v),
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we obtain (7). A suitable upper bound for k(t,s) is given by maxt∈[0,1] k(t,s) for each
fixed s. Since

(∂/∂ t)k(t,s) =−
∫ 1

0
kθ2,ξ2

(v,s)dv

is nonpositive in [0,1]× [0,1], the maximum for each fixed s occurs when t = 0. By
evaluating

min
t,s∈[0,1]

k(t,s)
k(0,s)

=
k(1,1)
k(0,1)

= 1− 1

2θ1 + ξ 2
1

,

we obtain the sharp value of c1. �	

We can now introduce two auxiliary functions γ1 and γ2, so that we may seek
solutions of the BVP (1)–(3) as solutions of the integral equation

u(t) = γ1(t)H1(α1[u])+ γ2(t)H2(α2[u])+
∫ 1

0
k(t,s)g(s) f (s,u(s))ds := T (u), (8)

where k(t,s) is as in (7).
Let γ1(t) := θ1 + ξ1− t and γ2(t) := 1 be the unique solutions of

γ(4)1 (t) =0, γ ′1(0)+ 1 = γ ′′′1 (0) = θ1γ ′1(1)+ γ1(ξ1) = θ2γ ′′′1 (1)+ γ ′′1 (ξ2) = 0,

γ(4)2 (t) =0, γ ′2(0) = γ ′′′2 (0) = θ1γ ′2(1)+ γ2(ξ1)− 1 = θ2γ ′′′2 (1)+ γ ′′2 (ξ2) = 0.

Note that ‖γ1‖= θ1 +ξ1 and γ1(t)≥ c2‖γ1‖ and γ2(t)≥ c3‖γ2‖ for t ∈ [0,1], where

c2 := (1− 1
θ1 + ξ1

), c3 := 1.

In the sequel of the paper we assume the following assumptions:

• There exist constants 0 ≤ r1 < r2 such that f (t,u) : [0,1]× [r1,r2]→ [0,∞) is
continuous.

• gΦ ∈ L1[0,1], g≥ 0 almost everywhere, and
∫ 1

0 Φ(s)g(s)ds > 0.
• H1,H2 are positive continuous functions such that there exist h11,h12,h21,h22 ∈

[0,∞) with

h11v≤ H1(v)≤ h12v and h21v≤ H2(v)≤ h22v,

for every v≥ 0.
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• α1[·], α2[·] are positive bounded linear functionals on C[0,1] given by

αi[u] =
∫ 1

0
u(s)dAi(s), i = 1,2,

involving Stieltjes integrals with positive measures dAi.
• h12α1[γ1]< 1, h22α2[γ2]< 1.
• D2 := (1 − h12α1[γ1])(1 − h22α2[γ2])− h12h22α1[γ2]α2[γ1] > 0. This implies

D1 := (1− h11α1[γ1])(1− h21α2[γ2])− h11h21α1[γ2]α2[γ1]> 0.

The assumptions above enable us to use the cone

K =
{

u ∈C[0,1] : min
t∈[0,1]

u(t)≥ c‖u‖
}
,

where

c = min{c1,c2,c3}= 1− 1
θ1 + ξ1

,

a type of cone firstly used by Krasnosel’skiı̆(see, e.g., [21]) and Guo (see, e.g,). [10].
Since the operator T is not well defined on C[0,1], we extend f in a similar way

to that of Lan [23] and define f̃ (t,u) : [0,1]× [0,∞)→ [0,∞) as

f̃ (t,u) :=

⎧
⎪⎪⎨

⎪⎪⎩

f (t,r1), if 0≤ u≤ r1,

f (t,u), if r1 ≤ u≤ r2,

f (t,r2), if r2 ≤ u < ∞

and consider the operator

T̃ u(t) := γ1(t)H1(α1[u])+ γ2(t)H2(α2[u])+
∫ 1

0
k(t,s)g(s) f̃ (s,u(s))ds.

First of all, note that T̃ maps K into K and is compact and, by construction,

T̃ u = Tu for u ∈C(r1,r2),

where

C(r1,r2) = {u ∈ K : r1 ≤ u(t)≤ r2 for t ∈ [0,1]}.

Clearly, fixed points of T̃ in C(r1,r2) provide solutions to the original problem. For
our index calculations we shall use the following open bounded sets (relative to K):

Kρ = {u ∈ K : ‖u‖< ρ}, Vρ = {u ∈ K : min
t∈[0,1]

u(t)< ρ}.
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Note that Kρ ⊂Vρ ⊂ Kρ/c. The set Vρ was introduced in [18] and is equal to the set
called Ωρ/c in [22]. We make use of the following numbers:

f̃ 0,ρ := sup
0≤u≤ρ , 0≤t≤1

f̃ (t,u)
ρ

, f̃ρ ,ρ/c := inf
ρ≤u≤ρ/c, 0≤t≤1

f̃ (t,u)
ρ

,

1
m

:= sup
t∈[0,1]

∫ 1

0
k(t,s)g(s)ds,

1
M

:= inf
t∈[0,1]

∫ 1

0
k(t,s)g(s)ds,

and use the notation

Ki(s) :=
∫ 1

0
k(t,s)dAi(t).

We utilize the following Lemma from [12], which provides conditions on the value
of the fixed-point index on some sets.

Lemma 2 ([12]).

1. Assume that there exists ρ > 0 such that

f̃ρ ,ρ/c

((c2‖γ1‖
D1

(1− h21α2[γ2])+
c3‖γ2‖

D1
h11α2[γ1]

)∫ 1

0
K1(s)g(s)ds

+
(c2‖γ1‖

D1
h21α1[γ2]+

c3‖γ2‖
D1

(1− h11α1[γ1])
)∫ 1

0
K2(s)g(s)ds+

1
M

)
> 1.

(9)

Then the fixed-point index, iK(T̃ ,Vρ), is 0.
2. Assume that there exists ρ > 0 such that

f̃ 0,ρ
((‖γ1‖

D2
(1− h22α2[γ2])+

‖γ2‖
D2

h12α2[γ1]
)∫ 1

0
K1(s)g(s)ds

+
(‖γ1‖

D2
h22α1[γ2]+

‖γ2‖
D2

(1− h12α1[γ1])
)∫ 1

0
K2(s)g(s)ds+

1
m

)
< 1. (10)

Then iK(T̃ ,Kρ) = 1.

The above Lemma leads to the following new result on existence of multiple positive
solutions for (8).

Theorem 1. Equation (8) has one positive solution in C(r1,r2) if either of the
following conditions hold:

(S1) There exist ρ1,ρ2 with r1 ≤ cρ1 < ρ1 < ρ2 ≤ cr2 such that (10) is satisfied for
ρ1 and (9) is satisfied for ρ2.
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(S2) There exist ρ1,ρ2 with r1 ≤ ρ1 < cρ2 < ρ2 ≤ r2 such that (9) is satisfied for
ρ1 and (10) is satisfied for ρ2.

Equation (8) has two positive solutions in C(r1,r2) if one of the following conditions
hold:

(O1) There exist ρ1,ρ2,ρ3 with r1 ≤ cρ1 < ρ1 < ρ2 < cρ3 < ρ3 ≤ r2 such that (10)
is satisfied for ρ1, (9) is satisfied for ρ2, and (10) is satisfied for ρ3.

(O2) There exist ρ1,ρ2,ρ3 with r1 ≤ ρ1 < cρ2 < cρ3 < ρ3 ≤ cr2 such that (9) is
satisfied for ρ1, (10) is satisfied for ρ2, and (9) is satisfied for ρ3.

Remark 1. By similar arguments it is possible to state results valid for three or more
positive solutions (see, for example, [22]) and for nonlinearities with more than one
singularity (see [13]).

2.1 Example

We consider the BVP

u(4)(t) = g(t) f (t,u(t)), u′(0)+H1(u(ξ3)) = θ1u′(1)+ u(ξ1)−H2(u(ξ4)) = 0,

u′′′(0) = 0, θ2u′′′(1)+ u′′(ξ2) = 0,

where ξ3,ξ4 ∈ [0,1] and the functions Hi are defined as in [16], namely,

Hi(w) =

{ 1
4iw, 0≤ w≤ 1,
1
8iw+ 1

8i , w≥ 1.

In this case we have h11 = 1/8, h12 = 1/4, h21 = 1/16, and h22 = 1/8. By fixing
ξ1 = 1/5, ξ2 = 4/5,ξ3 = 2/5,ξ4 = 3/5,θ1 = 5/6,θ2 = 2/7, we obtain by direct
calculation

1/m = max
t∈[0,1]

∫ 1

0
k(t,s)ds = max

t∈[0,1]

{23809
63000

− 53t2

175
+

t4

24

}
=

23809
63000

,

1/M = min
t∈[0,1]

∫ 1

0
k(t,s)ds =

3677
31500

,

α1[γ1] =
19
30

, α1[γ2] = 1, α2[γ1] =
13
30

, α2[γ2] = 1,

∫ 1

0
K1(s)ds=

∫ 1

0
k(ξ3,s)ds=

104117
315000

,

∫ 1

0
K2(s)ds=

∫ 1

0
k(ξ4,s)ds=

43201
157500

.
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The conditions (10) and (9) read f̃ 0,ρ1 < 0.8269 and f̃ρ2,ρ2/c > 2.2525. Since (S1)
holds, from Theorem 1 it follows that this BVP has a nontrivial solution in K. A
nonlinearity that verifies (S1), for example, is the function

f (t,u) =

{
1/(256u), u≤ 1/4,
u3, u > 1/4,

with the choice r1 = 11/465, ρ1 = 11/15, ρ2 = 8/5, and r2 ≥ 248/5.
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Abstract Bifurcation Theorems and Applications
to Dynamical Systems with Resonant
Eigenvalues

Vladimir Jaćimović

Abstract We reconsider the abstract bifurcation theorem stated in Andronov et al.
(Teoriya Kolebaniy, 1959) and investigate some known and unknown corollaries.
We focus on the case of Fredholm operators with zero index and find out that
the main result is meaningful only for certain dimensions of the critical subspace
(namely, 1, 2, 4, and 8). This particularity is due to certain algebraic and topological
aspects of the problem. Finally, we provide some interesting applications to the
system of ODE’s and abstract integral equation.

1 Introduction

Interest in the concept of bifurcation in science is steadily growing, mainly due to
the rising number of applications. In particular, it has been observed that numerous
important phenomena and mechanisms in science can be explained in terms of
bifurcation theory.

Hopf bifurcation is probably one of the most studied cases of bifurcation
phenomena. One reason is that Hopf bifurcation is very often observed in various
dynamical systems, with very different applications. Hopf bifurcation theorem for
ODEs is first stated in classical papers by Hopf [10] and Andronov et al. [3]. In the
consequent decades Hopf bifurcation for ODE’s has been studied in many details
and this mathematical theory can be considered as completed by the 1970s.

However, Hopf bifurcation appears not only in the systems described by ODE’s.
On the contrary, Hopf bifurcation in infinite-dimensional dynamical systems has
attracted attention of mathematicians until present time. Early theorems on Hopf
bifurcation for semigroups are stated in [7, 13]. More details and applications to
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functional differential equations can be found in [8]. At the same time, other authors
have studied existence of Hopf bifurcation in some Navier–Stokes equations and
reaction-diffusion systems (see, for instance, [11, 14]).

Taking into account such different contexts where bifurcations (including Hopf
bifurcation) can appear, one fairly general method of dealing with such problems is
by proving abstract bifurcation theorems and applying it to various dynamical sys-
tems in appropriate functional setting. For infinite-dimensional dynamical systems,
one typically needs additional technical tools, such as center manifold reduction
(see [5, 8, 16]).

That is the approach we will adopt here. Namely, in the next section we will state
bifurcation theorem for the abstract problem with Fredholm zero index operator.
Further investigation demonstrates that this theorem is meaningful only for certain
dimensions of critical subspace (1, 2, 4, or 8). In Sect. 3, we will employ this
theorem to obtain abstract Hopf bifurcation theorem [2] and “bifurcation from
simple eigenvalue” [6]. Besides, our abstract theorem covers two more cases that
are not treated in the literature (at least, to our knowledge). In the last section,
we briefly consider applications of abstract theorem to the system of ODE’s and
AIE (abstract integral equations), the last being example of infinite-dimensional
dynamical system.

2 Abstract Bifurcation Theorem

Let X and Y be the Banach spaces and F : Rs×X → Y a smooth map. Consider the
equation

F(μ ,x) = 0, (1)

and suppose that x0 ∈ X is the solution of Eq. (1), that is, F(μ ,x0) = 0,∀μ ∈ Rs.
The point (μ0,x0) is called a bifurcation point of Eq. (1) if there exists a sequence

{(μk,xk)}⊂ Rs×X converging to (μ0,x0) and such that F(μk,xk) = 0,∀k = 1,2, . . . .
From the Implicit Function Theorem it follows that (μ0,x0) can be bifurcation

point only if ∂F
∂x (μ0,x0) is not invertible. Therefore, violation of Implicit Function

Theorem conditions is a simple necessary condition for existence of bifurcation.
We start by standard assumptions:

(A1) The map F is C2 in the neighborhood of the point (μ0,x0).
(A2) F(μ ,x0) = 0, ∀μ ∈ Rs.

Set: V = Ker ∂F
∂x (μ0,x0) and R = Im ∂F

∂x (μ0,x0).
Denote by W a complementary subspace of V in X and by Z a complemen-

tary subspace of R in Y .
Then one has

X =V ⊕W,Y = R⊕Z.
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Introduce two more assumptions:
(A3) dimV = dimZ = m �= 0, with some finite integer m.
(A4) In addition, assume that s = m (i.e., the number of parameters equals the

dimension of kernel and the codimension of image).

Note that assumption (A3) restricts our consideration to the case when ∂F
∂x (μ0,x0)

is Fredholm operator with the zero index.
Throughout the paper we will assume that each finite-dimensional vector space

is equipped with an inner product denoted by 〈·, ·〉.
For each y ∈ Z, we define the linear operator Ay : Ker ∂F

∂x (μ0,x0)→ Rs by the
following relation:

〈η ,Ayh〉= 〈y,P ∂ 2F
∂ μ∂x

(μ0,x0)[η ,h]〉, ∀η ∈ Rs.

The following two theorems are stated in [12]:

Theorem 1. Under assumptions (A1)–(A4), if

rankAy = m, ∀y ∈ Z, y �= 0,

then (μ0,x0) is a bifurcation point for the Eq. (1).

Theorem 2. Under the assumptions (A1)–(A4), the case rankAy = m, ∀y ∈ Z \{0}
is possible only if m = 1,2,4,8.

Note that the first theorem is corollary of more general abstract bifurcation theorem
stated in [4].

3 Corollaries: Bifurcation from Simple Eigenvalue
and Abstract Hopf Bifurcation Theorem

We start this section by reformulating Theorem 1 in the way that will be more
convenient for further discussion.

Denote by P projection onto subspace Z parallel to R.

Theorem 3. Suppose F satisfies (A1)–(A4) and set vector parameter μ =
(μ1, . . . ,μm)

T . Moreover, assume that for any nonzero vector v ∈V, vectors

P
∂ 2F

∂x∂ μ1
(μ0,x0)v,P

∂ 2F
∂x∂ μ2

(μ0,x0)v, . . . ,P
∂ 2F

∂x∂ μm
(μ0,x0)v (2)

are linearly independent.
Then (μ0,x0) is bifurcation point for F.
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In the setting, adopted by introducing assumptions (A3) and (A4), Theorem 3 is
just a modification of Theorem 1. This formulation also provides better insight
into Theorem 2. Indeed, notice that Eq. (2) can be viewed as linear vector fields
on Z. Recalling celebrated Adams theorem [1] about maximal number of linearly
independent vector fields on spheres, we conclude that the assumption about linear
independence of Eq. (2) can hold only if m = ρ(m), i.e., when m = 1,2,4, or 8.
(Here ρ(m) is Adams number.)

Hence, there are essentially four cases covered by the Theorem 3. In the rest of
this section we demonstrate that the first two cases (m= 1 and m = 2) yield classical
results from bifurcation theory.

Case m = 1: Bifurcation from Simple Eigenvalue
Consider Theorem 3 for the case dimV = m = 1. In that case μ is a scalar

parameter, and we require the projection P ∂ 2F
∂x∂ μ (μ0,x0)v to be linearly independent

(i.e., nonzero) vector for v ∈V . Therefore,

P
∂ 2F

∂x∂ μ
(μ0,x0)v �= 0, v ∈ Ker

∂F
∂x

(μ0,x0),

where P stands for the projection onto complementary subspace of Im ∂F
∂x (μ0,x0).

This further implies that

∂ 2F
∂x∂ μ

(μ0,x0)v /∈ Im
∂F
∂x

(μ0,x0). (3)

Thus, when dimV = dimZ = 1, Theorem 3 transfers into classical theorem on
“bifurcation from simple eigenvalue” (see [7]), stating that Eq. (3) is a sufficient
condition for bifurcation.

Case m = 2: Abstract Hopf Bifurcation Theorem
Consider the case when dimV = m = 2. Then μ = (μ1,μ2)

T is two-dimensional
vector parameter, and Theorem 3 requires two vector fields

P
∂ 2F

∂x∂ μ1
(μ0,x0)v and P

∂ 2F
∂x∂ μ2

(μ0,x0)v

to be linearly independent.
This yields interesting bifurcation result, named an abstract Hopf bifurcation

theorem in the book [2]. In the same book, the classical Hopf bifurcation theorem for
the system of ODE’s is derived from abstract Hopf bifurcation theorem. Application
of the abstract bifurcation theorem to the bifurcation of small periodic orbits in
the system of ODE’s requires reformulating the original problem in terms of
appropriate function spaces. Also, in order to prove classical Hopf bifurcation by
applying Theorem 3, one needs two parameters. This is usually achieved by explicit
introduction of the internal parameter ω corresponding to the frequency of the
periodic orbits (along with external parameter μ).
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Cases m = 4 and m = 8: Resonant Bifurcations
The cases when m = 4 and m = 8 are more involved and (unlike the first two

cases) do not transfer into classical facts from the bifurcation theory. In particular,
these cases arise when the linearization of dynamical system has purely imaginary
eigenvalues of geometric multiplicities 2 and 4 (i.e., center manifold is of real
dimension 4 and 8), respectively. For these cases, Theorem 3 requires higher number
of (external or internal) parameters and satisfaction of some special conditions on
parameters that can be seen as an analogue of transversality condition in classical
Hopf bifurcation theorem. As these cases require cumbersome calculations we limit
ourselves to some examples of finite- and infinite-dimensional dynamical systems
exhibiting bifurcations at resonant pairs of purely imaginary eigenvalues. This is
exposed in the next section.

Remark: Relation to the Hopf Invariant
We just briefly mention that Theorem 3 obviously relates bifurcations under

consideration to the famous Hopf invariant (named after Hopf [9]). Indeed, it is
well known that linearly independent vector fields on spheres are closely related to
important topological concepts such as Hopf map and Hopf fibrations of spheres. In
particular, the case m = 2 would correspond to the famous Hopf fibration:

S3 S1

−→ S2.

This unexpected relation can be relevant for the possible physical applications.
Hopf fibration is known to be an adequate model for description of many important
phenomena observed in physics, including classical mechanics and quantum infor-
mation theory. For some interesting examples, see [15]. However, we will study this
relation and some physical applications in detail elsewhere.

4 Application to ODE’s and AIE

In this section we briefly demonstrate some applications of abstract bifurcation
theorems to the systems of ODE’s and AIE (abstract integral equations). We omit
almost all calculations and techniques and focus on the result only.

We restrict our consideration to the case m = 4 only. Examples with m = 8 can be
studied in analogous way, but calculations are cumbersome in that case (involving
matrices 8× 8).

We will apply Theorem 1 to the system of 4 ODE’s in the simple form that would
be sufficient for further application to AIE. Employing Theorem 1 to formulate the
bifurcation result for the system of ODE’s in more general form would lead to the
certain technical difficulties. The most important is that (since eigenvalue ±iω0 is
not simple) one cannot guarantee differentiability of eigenvalues and eigenvectors
w.r. to parameters. Nevertheless, Theorem 1 can be applied in straightforward way
for any given system of ODE’s.
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Let us start with the system of 4 ODE’s in the form

ẋ = M(σ ,η ,ν)x+G(x). (4)

Here, x = (x1,x2,x3,x4)
T is four-dimensional vector, G : R4 → R4 is C2 mapping,

and M is matrix depending on three scalar parameters:

M(σ ,η ,ν) =

⎛

⎜
⎜
⎝

a11(σ) ω0 a13(η) a14(ν)
−ω0 a22(σ) a23(ν) a24(η)

a31(η) a32(ν) a33(σ) ω0

a41(ν) a42(η) −ω0 a44(σ)

⎞

⎟
⎟
⎠ .

The ω0 > 0 is a constant. Introducing assumptions on G and M:

(B1) G(0) = 0; dG(0) = 0.
(B2) For the critical values of parameters σ0,η0 and ν0, the matrix M(σ0,η0,ν0)

has two pairs of purely imaginary eigenvalues, namely,

M(σ0,ω0,η0,ν0) =

⎛

⎜
⎜
⎝

0 ω0 0 0
−ω0 0 0 0

0 0 0 ω0

0 0 −ω0 0

⎞

⎟
⎟
⎠ .

Notice that the matrix M(σ0,η0,ν0) has two pairs of purely imaginary
eigenvalues ±iω0, hence the non-resonance condition (crucial for classical
Hopf bifurcation) is violated.

(B3) Finally, we introduce the last assumption, which is an analogue of the
transversality condition in classical Hopf bifurcation:

c1(a
′
11(σ0)+ a′22(σ0)) = a′33(σ0)+ a′44(σ0) �= 0;

c2(a
′
13(η0)+ a′24(η0)) = a′31(η0)+ a′42(η0) �= 0;

c3(a
′
32(ν0)− a′41(ν0)) = a′14(ν0)− a′23(ν0) �= 0,

where c1,c2, and c3 are arbitrary real constants satisfying c1 < 0, c2 =−c3 > 0
or c1 =−1, c2 > 0, c3 < 0.

Lemma 1. Suppose (B1)–(B3) are satisfied. Then for ε sufficiently small there exist
C1-functions σ∗(ε),ω∗(ε),η∗(ε), and ν∗(ε), taking values in R and C1-function
x∗(ε), taking values in C(R,Rn), such that:

(a) At parameter values σ = σ∗(ε),η = η∗(ε), and ν = ν∗(ε), x∗(ε)(t) is a
nontrivial periodic solutions of Eq. (4) with periods 2π

ω∗(ε) .

(b) σ∗(0) = σ0,ω∗(0) = ω0,η∗(0) = η0,ν∗(0) = ν0.
(c) The amplitude of the orbit x∗(ε)(t) tends to 0 as ε → 0.
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The proof of Lemma is application of Theorem 1 in appropriate functional setting.
First of all, define nonlinear operator:

F(x,μ ,ω ,η ,ν) = ω ẋ−M(μ ,η ,ν)−G(x)

on the space of C1
0 [0,

2π
ω0
] of continuously differentiable, four-dimensional vector

functions, that are 2π
ω0

-periodic and vanish at 0 and 2π
ω0

. Hence, the problem is stated

in the form (1), where μ = (σ ,ω ,η ,ν) and F : R4×C1
0 [0,

2π
ω0
]→C0[0, 2π

ω0
].

The remaining part of the proof consists in differentiating operator F at critical
point in order to construct 4×4 matrix Ay of an operator Ay and verifying that Ay is
regular for all y = (y1,y2,y3,y4)

T �= 0. However, we omit these calculations here in
order to proceed with the application of abstract theorems to the infinite-dimensional
dynamical system.

We consider the system described by AIE. We will rely on technique and
notations exposed in [8]. In particular, we employ “sun-star” machinery and
corresponding notations to describe adjoint semigroup. Hence, we write AIE in the
following form:

u(t) = T (t− s)u(s)+
∫ t

s
T,∗(t− τ)R(u(τ),σ ,η ,ν)dτ. (5)

Here, u(·) ∈ X , X is a real Banach space, T is C0-semigroup on X , while σ ,η ,ν are
three scalar parameters. Note that we consider the case of finite delay s. Nonlinearity
in Eq. (5) is given by the mapping R(·, ·) : X ×R3 → X,∗. We demand R to be C2-
smooth in both variables.

Assume that u(·) ≡ 0 is an equilibrium solution of Eq. (5) for all values of
parameters, namely:

(C1) R(0,σ ,η ,ν) = 0, for all σ ,η ,ν ∈ R.
Furthermore, consider the critical values of parameters:

(C2) DuR(0,σ0,η0,μ0) = 0.
Denote by A generator of the semigroup T and assume:

(C3) A has exactly two pairs of purely imaginary eigenvalues ±iω0, and the
eigenspace corresponding to these two pairs of eigenvalues has real dimen-
sion 4.

Denote by φ1,φ2 linearly independent eigenvectors of A at the eigenvalue
±iω0. Also, let φ,1 ,φ,2 ∈ X, be linearly independent eigenvectors of A∗ at
iω0. We can choose eigenvectors in such a way to have

〈φ,1 ,φ1〉= 〈φ,2 ,φ2〉= 1;

〈φ,2 ,φ1〉= 〈φ,1 ,φ2〉= 0.

(C4) Finally, assume that
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c1Re〈φ,1 ,Dσ DuR(0,σ0,η0,ν0)φ1〉= Re〈φ,2 ,Dσ DuR(0,σ0,η0,ν0)φ2〉 �= 0;

c2Re〈φ,1 ,DηDuR(0,σ0,η0,ν0)φ2〉= Re〈φ,2 ,Dη DuR(0,σ0,η0,ν0)φ1〉 �= 0;

c3Im〈φ,2 ,DνDuR(0,σ0,η0,ν0)φ1〉= Im〈φ,1 ,DνDuR(0,σ0,η0,ν0)φ2〉 �= 0;

where c1,c2, and c3 are real constants satisfying c1 < 0, c2 = −c3 > 0 or
c1 =−1, c2 > 0, c3 < 0.

Lemma 2. Suppose (C1)–(C4) are satisfied. Then, for ε sufficiently small, there
exist C1-functions σ∗(ε),ω∗(ε),η∗(ε), and ν∗(ε) taking values in R and C1-
function x∗(ε), taking values in C(R,Rn), such that:

(a) At parameter values σ = σ∗(ε),η = η∗(ε), and ν = ν∗(ε), x∗(ε)(t) is a
nontrivial periodic solutions of Eq. (4) with periods 2π

ω∗(ε) .

(b) σ∗(0) = σ0,ω∗(0) = ω0,η∗(0) = η0,ν∗(0) = ν0.
(c) The amplitude of the orbit x∗(ε)(t) tends to 0 as ε → 0.

As we pointed out in the Introduction, one needs some additional technique to deal
with infinite-dimensional dynamical systems. Fortunately, methods of reduction of
this system to center manifold in order to obtain finite-dimensional system are ready,
with all tricky aspects more or less successfully treated. We present the lines of the
proof here, omitting almost all technicalities. Necessary details are explained in [8].

The idea of the proof is to decompose the space X according to the spectrum of
A and to use center manifold reduction to pass to finite-dimensional system. In our
case it will be the system described by four real ODE’s that can be written as two
complex ODE’s. After that we can refer to previous Lemma.

In fact, subspace X0, that is, tangent to center manifold, corresponds to eigenval-
ues ±iω0. We will represent this four-dimensional real subspace by two complex
basis vectors in the following way:

X0 = {z1φ1 + z̄1φ̄1 + z2φ2 + z̄2φ̄2|z1,z2 ∈C}

in order to get system of two complex ODE’s for complex-valued functions z1

and z2:

ż1 = (iω0 + 〈φ,1 ,D1R(0,μ0,η0,ν0)φ1〉)z1 + 〈φ,1 ,D1R(0,μ0,η0,ν0)φ̄1〉z̄1

+〈φ,1 ,D1R(0,μ0,η0,ν0)φ2〉z2 + 〈φ,1 ,D1R(0,μ0,η0,ν0)φ̄2〉z̄2;

ż2 = 〈φ,2 ,D1R(0,μ0,η0,ν0)φ1〉z1 + 〈φ,2 ,D1R(0,μ0,η0,ν0)φ̄1〉z̄1

+(iω0 + 〈φ,2 ,D1R(0,μ0,η0,ν0)φ2〉)z2 + 〈φ,2 ,D1R(0,μ0,η0,ν0)φ̄2〉z̄2.

Decomposing this system as system of 4 real-valued ODE’s, we can apply previous
Lemma and obtain desired result. In particular, one can find out that assumption
(A3) transfers into (B4).
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Oscillation of Difference Equations
with Impulses

Fatma Karakoç

Abstract This paper is concerned with a second-order linear impulsive difference
equation with continuous variable. Sufficient conditions for the oscillation of
impulsive difference equation are obtained.

Keywords Oscillation • Difference equation • Impulse • Continuous variable

AMS Subject Classification: 34K11, 34K45

1 Introduction

In this paper we consider second-order linear impulsive difference equations of the
form

Δ2
τ x(t)+Δτx(t)+ x(t)+ p(t)x(t−σ) = 0, t �= tn, (1)

x(t+n )− x(t−n ) = Lnx(t−n ), n ∈N= {1,2, . . .}, (2)
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where Δτ x(t) = x(t + τ)− x(t); τ,σ are positive constants; x(t+n ) = lim
t→t+n

x(t), and

x(t−n ) = lim
t→t−n

x(t), p ∈ C(R+,R+), R+ = (0,∞), 0 < t1 < t2 < .. . < tn < tn+1 <

.. .are fixed points with lim
n→∞

tn =+∞, {Ln} is a sequence of positive real numbers.

It is well known that impulsive equations appear as a natural description of
the observed evolution phenomena of several real-world problems [6, 7]. There
has been rich literature on the oscillation of impulsive differential equations [1–
4]. On the other hand, in recent years oscillation of difference equations with
continuous variables has been investigated intensively [8, 10–14]. But to the best
of our knowledge, there has been only a few works on the oscillation of impulsive
difference equations with continuous variables [5, 9].

In this paper, our aim is to establish sufficient conditions for the oscillation of
second-order impulsive difference equation with continuous variable. We shall con-
struct a nonimpulsive inequality, and using it we shall obtain sufficient conditions
for the oscillation.

Definition 1. A function x : [−σ ,∞)→R is called a solution of Eqs. (1) and (2) if

(a) For t �= tn, n ∈ N, x is continuous and satisfies Eq. (1).
(b) For t = tn, x(t+n ) and x(t−n ) exist and satisfy Eq. (2) with x(t−n ) = x(tn).

Definition 2. If a function x(t) is positive (negative) for all large values of t, then it
is said that x(t) is eventually positive (negative). A solution x(t) of Eqs. (1) and (2)
is called oscillatory if it is neither eventually positive nor eventually negative.

2 Main Results

Let x(t) be a solution of Eqs. (1) and (2). Define

z(t) = x(t) ∏
0≤tm<t

(1+Lm)
−1, t ≥ 0.

As usual, the symbol ∏
a≤tm<b

am denotes the product of members of the sequence

{am} over m such that tm ∈ [a,b)∩{tn : n ∈ N}. If [a,b)∩{tn : n ∈ N}= /0 or a > b,
then we use the convention that ∏

a≤tm<b
am = 1.

It can be seen that the function z(t) is continuous at tk, k = 1,2, . . . Indeed,

z(t−k ) = x(t−k ) ∏
0≤tm<t−k

(1+Lm)
−1

= z(tk),

and
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z(t+k ) = x(t+k ) ∏
0≤tm<t+k

(1+Lm)
−1

= x(t+k ) ∏
0≤tm<tk

(1+Lm)
−1(1+Lk)

−1

= z(tk),

where we have used the impulse condition (2).

Define

v(t) =
1
τ

t+2τ∫

t+τ

z(u)du, t ≥ 0. (3)

Lemma 1. If x(t) is an eventually positive solution of Eqs. (1) and (2), then
v(t)> 0, and v′(t)≤ 0 eventually.

Proof. Let x(t)> 0 for t ≥ T, here T is a sufficiently large number. Then it is clear
that v(t)> 0 for t ≥ T . From Eq. (3) we obtain

v′(t) =
1
τ
[z(t + 2τ)− z(t + τ)]

=
1
τ ∏

T≤tm<t+τ
(1+Lm)

−1

[

x(t + 2τ) ∏
t+τ≤tm<t+2τ

(1+Lm)
−1− x(t + τ)

]

. (4)

Now from Eq. (1), we have

x(t + 2τ)− x(t+ τ)< 0.

Since 0 < ∏
t+τ≤tm<t+2τ

(1+Lm)
−1 ≤ 1, we also have

x(t + 2τ) ∏
t+τ≤tm<t+2τ

(1+Lm)
−1 < x(t + τ). (5)

Using Eqs. (4) and (5), we obtain v′(t)< 0 for t ≥ T, t �= tm. Since v(t) is continuous,
it follows that v′(t)≤ 0 for t ≥ T. �	

Remark 1. If x(t) is eventually negative solution of Eqs. (1) and (2), then v(t)< 0,
and v′(t)≥ 0 eventually.
Let σ = kτ +θ , k ∈ N, θ ∈ [0,τ), and q(t) = min p(s)

t+τ≤s≤t+2τ
.

Lemma 2. If x(t) is an eventually positive solution of Eqs. (1) and (2), then v(t)
defined by Eq. (3) eventually satisfies the inequality
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v(t + 2τ)− v(t+ τ) ∏
T≤tm<t+3τ

(1+Lm)+ v(t)+ q(t)v(t− kτ)≤ 0. (6)

Proof. Let x(t)> 0, t ≥ T . Then from Eq. (3) we get

v(t+2τ)−v(t+τ) ∏
T≤tm<t+3τ

(1+Lm)+v(t)+q(t)v(t−σ)

≤ 1
τ

⎧
⎨

⎩

t+2τ∫

t+τ

x(u+2τ)du−
t+2τ∫

t+τ

x(u+τ)du+

t+2τ∫

t+τ

x(u)du+

t+2τ∫

t+τ

p(u)x(u−σ)du

⎫
⎬

⎭
= 0.

(7)
On the other hand, in view of Lemma 1, we have

v(t−σ)≥ v(t− kτ).

Using the above inequality, we easily obtain Eq. (6) from Eq. (7). The proof is
complete. �	

Remark 2. Let x(t) be an eventually negative solution of Eqs. (1) and (2). Then v(t)
defined by Eq. (3) eventually satisfies the inequality

v(t + 2τ)− v(t+ τ) ∏
T≤tm<t+3τ

(1+Lm)+ v(t)+ q(t)v(t− kτ)≥ 0.

Theorem 1. Assume that the following conditions are satisfied:
(H1) limsup

t→∞
∏

T≤tm<t+3τ
(1+Lm) = L < ∞.

(H2) liminf
t→∞

q(t) = K > Lk+2 (k+1)k+1

(k+2)k+2 .

Then every solution of Eqs. (1) and (2) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of Eqs. (1) and
(2). We may assume without any loss of generality that x(t) is eventually positive.
From Eq. (6), we have

v(t + 2τ)
v(t + τ)

− ∏
T≤tm<t+3τ

(1+Lm) ≤ −q(t)
v(t− kτ)
v(t + τ)

= −q(t)
k

∏
j=0

v(t− jτ)
v(t− ( j− 1)τ)

. (8)

Define

α(t) =
v(t)

v(t + τ)
, t ≥ T.
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Since v′(t)≤ 0, it is clear that α(t)≥ 1. From Eq. (8), we have

1
α(t + τ)

+ q(t)
k

∏
j=0

α(t− jτ)≤ ∏
T≤tm<t+3τ

(1+Lm). (9)

In view of (H1) and (H2), inequality (9) implies that α(t) is bounded. Let β =
liminf

t→∞
α(t). Taking the inferior limit on both sides of Eq. (9), we obtain

1+Kβ k+2 ≤ β L.

This inequality implies that

β >
1
L

and
Kβ k+2

β L− 1
≤ 1. (10)

Using the fact that

min
β> 1

L

β k+2

β L− 1
=

1
Lk+2

(k+ 2)k+2

(k+ 1)k+1 ,

we obtain from Eq. (10) that

1
Lk+2

(k+ 2)k+2

(k+ 1)k+1 ≤
1
K
,

which however contradicts (H2). If x(t) is an eventually negative solution of Eqs. (1)
and (2), we can lead to a contradiction by similar method. The proof is complete.

�	

Theorem 2. In addition to (H1), assume that the following condition is satisfied:

limsup
t→∞

q(t)> Lk+2. (11)

Then every solution of Eqs. (1) and (2) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of Eqs. (1) and
(2). We may assume without any loss of generality that x(t) is eventually positive.
From Eq. (6), we have

v(t + 2τ)≤ v(t + τ) ∏
T≤tm<t+3τ

(1+Lm). (12)

Using Eq. (12), we obtain
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v(t + τ)≤ v(t− kτ)
k+1

∏
i=1

∏
T≤tm<t−(i−3)τ

(1+Lm).

Now using the above inequality from Eq. (6), we get

q(t)v(t− kτ) ≤ v(t + τ) ∏
T≤tm<t+3τ

(1+Lm)

≤ v(t− kτ) ∏
T≤tm<t+3τ

(1+Lm)
k+2.

From the last inequality, we have

q(t)≤ ∏
T≤tm<t+3τ

(1+Lm)
k+2. (13)

Taking the superior limit on both sides of Eq. (13), we obtain

limsup
t→∞

q(t)≤ Lk+2,

which however contradicts Eq. (11). If x(t) is an eventually negative solution of
Eqs. (1) and (2), we can lead to a contradiction by the similar method. The proof is
complete. �	

Remark 3. If x(t+n ) = x(t−n ) for all n ∈ N, then L = 1 and the assertions of
Theorems 1 and 2 are valid for nonimpulsive equation.

Corollary 1. Assume that
∞
∑

m=1
Lm < ∞, and K >

(k+ 1)k+1

(k+ 2)k+2 , then every solution of

Eqs. (1) and (2) is oscillatory.

Corollary 2. Assume that
∞
∑

m=1
Lm < ∞. If limsup

t→∞
q(t) > 1, then every solution of

Eqs. (1) and (2) is oscillatory.

Example 1. Consider the linear impulsive difference equation with continuous
variable

⎧
⎨

⎩

Δ2
1/2x(t)+Δ1/2x(t)+ x(t)+ (e−t + 2)x(t− 1

3 ) = 0, t �= tn,

x(t+n )− x(t−n ) =
1

n(n+ 1)
x(tn), tn = n, n ∈N,

(14)

where τ = 1/2, σ = 1/3, p(t) = e−t + 2, Ln =
1

n(n+ 1)
, n ∈ N. By Corollary 1,

every solution of Eq. (14) is oscillatory.
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On Estimates of the First Eigenvalue
for the Sturm–Liouville Problem
with Symmetric Boundary Conditions
and Integral Condition

Elena Karulina

Abstract We consider the Sturm–Liouville problem with symmetric boundary
conditions and an integral condition. We estimate the first eigenvalue λ1 of this
problem for different values of the parameters.

1 Introduction

Consider the Sturm–Liouville problem:

y′′ − q(x)y+λ y = 0, (1)

{
y′(0)− k2y(0) = 0,
y′(1)+ k2y(1) = 0,

(2)

where q(x) belongs to the set Aγ (γ �= 0) of nonnegative bounded summable
functions on [0,1] such that

∫ 1

0
qγ(x)dx = 1.

We estimate the first eigenvalue λ1(q) of this problem for different values of γ and k.
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According to the variation principle λ1(q) = inf
y∈H1(0,1)\{0}

R(q, y), where

R(q, y) =

1∫

0
y′2(x)dx+

1∫

0
q(x)y2(x)dx+ k2

(
y2(0)+ y2(1)

)

1∫

0
y2(x)dx

. (3)

Put mγ = inf
q∈Aγ

λ1(q), Mγ = sup
q∈Aγ

λ1(q).

Remark 1. Dirichlet problem for the Eq. (1), q(x) ∈ Aγ , was considered in [3, 7].
Different problems for the equation y′′+λ q(x)y = 0, q(x) ∈ Aγ was considered in
[2, 6].

2 Results

Theorem 1. The following assertions are valid:

1. If γ ∈ (−∞,0)∪ (0,1), then Mγ =+∞.
2. If γ = 1, then M1 = ξ∗, where ξ∗ is the solution to the equation

arctan k2√
ξ
= ξ−1

2
√

ξ
.

3. Suppose γ > 1, then

(a) For k = 0, we have Mγ = 1, and this estimate is attained at q(x)≡ 1.
(b) For k �= 0, we have the following inequalities:

Mγ ≤ 1+ 2k2, Mγ ≤ π2 + 2,

and there exist such functions u(x) ∈ H1(0,1) and q∗(x) ∈ Aγ that R(q∗,u) =
Mγ .

Theorem 2. The following assertions are valid:

1. If γ > 1, then mγ = λ 0
1 , where λ 0

1 is the first eigenvalue of the problem for the
equation y′′+λ y = 0 with conditions (2) and this estimate is attained by y(x) =

C1 cos
√

λ 0
1 x+C2 sin

√
λ 0

1 x, where C2 =C1k2/
√

λ 0
1 .

2. Suppose γ > 0, then

(a) For all k, we have mγ ≤ π2.

(b) For k→ ∞, we have mγ → π2, also mγ ≥ π2− 4π2

k2 +O
(

1
k4

)
.

3. If γ ≤ 1, then mγ ≥ 1/4.
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3 Proofs of Some Results

Theorem 1 and proposition 3 of the Theorem 2 were proved in [4,5]. Here we prove
propositions 1 and 2 of the Theorem 2.

Suppose γ > 1 and k �= 0. Let us prove that mγ = λ 0
1 , where λ 0

1 is the first
eigenvalue of the problem for the equation y′′+λ y = 0 with conditions (2).

Proof. Consider Sturm–Liouville problem

y′′(x)+λ y(x) = 0, (4)

with conditions (2). Let λ 0
1 be the first eigenvalue of this problem.

According to the variation principle, λ 0
1 = inf

y∈H1(0,1)\{0}
R(0, y), where

R(0, y) =

1∫

0
y′2(x)dx+ k2

(
y2(0)+ y2(1)

)

1∫

0
y2(x)dx

.

For problem (1), (2), we estimate the first eigenvalue λ1 using λ 0
1 :

λ1(q) = inf
y∈H1(0,1)\{0}

R(q,y)≥ inf
y∈H1(0,1)\{0}

R(0,y) = λ 0
1 .

Therefore mγ = inf
q(x)∈Aγ

λ1(q)≥ λ 0
1 .

On the other hand, we have

mγ = inf
q∈Aγ

(
inf

y∈H1(0,1)\{0}
R(q, y)

)
≤ inf

q∈Aγ

⎛

⎜
⎜⎜
⎝

1∫

0
y1
′2dx+ k2

(
y2

1(0)+ y2
1(1)

)

1∫

0
y2

1dx

+

+

1∫

0
q(x)y2

1dx

1∫

0
y2

1dx

⎞

⎟⎟
⎟
⎠

= inf
q∈Aγ

(
λ 0

1 +

1∫

0
q(x)y2

1dx

1∫

0
y2

1dx

)
≤ λ 0

1 +

1∫

0
qε(x)y2

1dx

1∫

0
y2

1dx

,

where y1(x) = C1 cos
√

λ 0
1 x +C2 sin

√
λ 0

1 x is the first eigenfunction of problem
(4), (2),

qε(x) =

{
ε−1/γ , 0 < x < ε,
0, ε < x < 1.
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Note that constants N1, N2 exist such that N1≥ (y1(x))
2≥N2 > 0 at x∈ [0,1]. Hence

λ 0
1 +

1∫

0
qε(x)y2

1dx

1∫

0
y2

1dx

≤ λ 0
1 +

N1

N2
· ε1−1/γ → λ 0

1 as ε → 0.

Therefore, mγ = λ 0
1 . �	

Suppose γ > 0. Let us prove that mγ → π2 as k→ ∞.

(a) First let us prove that if γ > 0, then mγ ≤ π2.

Proof. Put

yδ (x) =

{
sin πx

δ , 0 < x < δ ,
0, δ < x < 1

and qδ (x) =

{
0, 0 < x < δ ,
(1− δ )−

1
γ , δ < x < 1,

where δ → 1− 0.

Then we have R(qδ , yδ ) =
π2

2δ + 0+ k2 sin2 π
δ

δ/2
.

Therefore we obtain

mγ = inf
q∈Aγ

[
inf

y∈H1(0,1)\{0}
R(q, y)

]
≤ R(qδ , yδ )→ π2 as δ → 1− 0.

�	

(b) Now let us prove that if γ > 0, then mγ → π2 as k→ ∞.

Proof. Consider λ 0
1 —the first eigenvalue of problem (4), (2), which at k2 > π/2 is

the minimal positive solution for the equation

tan
√

λ =
2
√

λk2

λ − k4 . (5)

This solution tends to π2− 0 as k → ∞. Since mγ ≥ λ 0
1 , we get that mγ → π2 as

k→ ∞.
Note that λ 0

1 → 0 as k2 → 0. �	

Suppose γ > 0. Let us prove that mγ ≥ π2− 4π2

k2 +O
(

1
k4

)
as k→ ∞.

Proof. Let us make in Eq. (5) the change of variables z = 1/k2, t =
√

λ , then this
equation has the form

tant =− 2tz
1− t2z2 . (6)
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The function F(z, t) = tan t +
2tz

1− t2z2 is continuous with all its derivatives at the

point (z0, t0) = (0, π), is equal to zero at this point, and its derivative Ft
′(z0, t0) �= 0.

Therefore in some neighbourhood of the point (z0, t0), there exists a unique solution
t(z) of the Eq. (6), and function t(z) is continuous with all its derivatives of any order.

Hence in a neighbourhood of the point (z0, t0) we have Taylor formula:

t(z) = t(z0)+
t ′(z0)

1!
(z− z0)+ · · ·+

t(n−1)(z0)

(n− 1)!
(z− z0)

n−1 +O((z− z0)
n)

for any n ∈N. We find the coefficients for the first two terms:

t(z0) = t0 = π , t ′(z0) =−
Fz
′(z0, t0)

Ft
′(z0, t0)

=−2π .

So we obtain t(z) = π− 2πz+O(z2).

Therefore we get mγ ≥ t2 = π2− 4π2

k2 +O

(
1
k4

)
as k→ ∞. �	

4 Appendix

It’s possible to construct the graphs representing the dependence of mγ and Mγ from
k2 for different values of γ (Figs. 1–4). Moreover, in the cases where we can’t obtain
the accurate estimates, we can define the regions in the k2Oλ -plane, which mγ and
Mγ belong to. For constructing of these graphs we need the propositions of the
Theorems 1 and 2 and some additional estimates.

k2

λ

π2

π2+1

1

1/4

mγ
c

λ1
1

λ1
0

mγ

Mγ = ∞

Fig. 1 γ < 0
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λ1
1

λ1
0

k2

π2

π2+1

1

1/4

mγ
c

mγ

Mγ = ∞
λ

Fig. 2 γ ∈ (0;1)

m1

λ1
1

M1

λ1
0

k2

π2

π2+1

Μ1 = 1

1/4

m1
c

M1
c

λ

Fig. 3 γ = 1

1. Let λ 0
1 (k

2) be the minimal eigenvalue for the problem y′′+λ y = 0 with condi-
tions (2), and λ 1

1 (k
2) be the minimal eigenvalue for the problem y′′ − y+λ y = 0

with conditions (2). These functions are continuous by k2, increase by k2 and
tend to the minimal eigenvalues for the corresponding Dirichlet problems (see
[1]). The function λ 0

1 (k
2) was considered in the propositions 1 and 2 of the

Theorem 2, and note that λ 1
1 = λ 0

1 + 1.
So for all γ we have

Mγ ≥ λ 1
1 ≥ mγ ≥ λ 0

1 .
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1+
2k

2

Mγ
c

M1
c

Mγ
λ1
1

mγ =
 λ1

0

k2

π2

π2+1

Μγ = 1

λ

Fig. 4 γ > 1

2. We have

λ1 = inf
y∈H1(0,1)\{0}

1∫

0
y′2(x)dx+

1∫

0
q(x)y2(x)dx+ k2

(
y2(0)+ y2(1)

)

1∫

0
y2(x)dx

≤ inf
y∈H0

1 (0,1)\{0}

1∫

0
y′2(x)dx+

1∫

0
q(x)y2(x)dx+ k2

(
y2(0)+ y2(1)

)

1∫

0
y2(x)dx

= inf
y∈H0

1 (0,1)\{0}

1∫

0
y′2(x)dx+

1∫

0
q(x)y2(x)dx

1∫

0
y2(x)dx

= λ c
1 ,

where λ c
1 is the minimal eigenvalue for the Dirichlet problem for Eq. (1),

where q(x) ∈ Aγ . Therefore mγ ≤ mc
γ and Mγ ≤ Mc

γ , where mc
γ and Mc

γ are the
corresponding estimates for λ c

1 , obtained for all γ in [3].
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On Polyhedral Estimates for Trajectory Tubes
of Differential Systems with a Bilinear
Uncertainty

Elena K. Kostousova

Abstract The paper deals with the state estimation problem in control theory
under set-membership uncertainty. We consider linear systems of ordinary differ-
ential equations (ODE) with parallelepiped-valued uncertainties in initial states
and interval uncertainties in coefficients of the system. As a result we have the
uncertainty of the bilinear type and essentially nonlinear problem. We construct
internal and external estimates for trajectory tubes of such systems. Using discrete-
time approximations and techniques of the “polyhedral calculus” and passing to
the limit in the discrete-time estimates, we obtain nonlinear ODE systems which
describe the evolution of the parallelotope-valued estimates for reachable sets (time
cross-sections of the trajectory tubes). The main results are obtained for internal
estimates. The properties of the obtained ODE systems are investigated; existence
and uniqueness of solutions and also nondegeneracy of estimates are established.
Results of numerical simulations are presented.

1 Introduction

The problem of constructing trajectory tubes is an essential theme in control theory
under set-membership uncertainty [16]. Since practical construction of these tubes
may be cumbersome, different numerical methods are devised for this cause, in
particular methods based on approximations of sets either by arbitrary polytopes
with a large number of vertices or by unions of points. Such methods may require
much calculations, especially for large dimension systems.

Another techniques use ellipsoidal calculus, interval analysis or “polyhedral
calculus”, the latter of which operates with parallelepipeds and parallelotopes as
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basic sets and extends, in this sense, the interval analysis (see, e.g. [3, 6, 8–10, 14–
17, 19] and references therein). Fair results in this area were obtained for linear
systems with set-valued additive uncertain inputs.

It is also important to study linear systems when system matrices are uncertain
too. This leads to the bilinear uncertainty and additional difficulties due to nonlin-
earity of the problem (in particular, reachable sets, i.e. cross-sections of trajectory
tubes, can be non-convex). There are some results for such systems with different
types of bounds on uncertainties (see, e.g. [2, 4, 7]), including constructing external
ellipsoidal estimates (in particular, [3, 19]) and external interval (or box-valued)
estimates (e.g. [9, 15, 17]).

We construct polyhedral (parallelepiped-valued and parallelotope-valued) esti-
mates for reachable sets and trajectory tubes of differential systems with parallele-
piped-valued uncertainties in initial states and interval uncertainties in coefficients
of the system. The work continues the researches [11–13]. In contrast to classical
interval analysis [1], faces of our estimates may be not parallel to the coordinate
planes. The main results are obtained for internal estimates. Using discrete-time
approximations, techniques of the “polyhedral calculus” and passage to the limit, we
obtain nonlinear systems of ordinary differential equations (ODE) which describe
the evolution of the internal parallelotope-valued estimates for reachable sets. The
properties of the obtained ODE systems are investigated; existence and uniqueness
of solutions and also nondegeneracy of estimates are established. ODE for external
estimates were obtained earlier [11]. Here they are rewritten, for unification, in the
form for parallelotopes. Results of numerical simulations are presented.

The following notation is used below: Rn is n-dimensional vector space;( is the
transposition symbol; ‖x‖2 = (x(x)1/2, ‖x‖∞ = max1≤i≤n |xi| are vector norms for
x= (x1,x2, . . . ,xn)

( ∈R
n; ei=(0, . . . ,0,1,0, . . . ,0)( is the unit vector oriented along

the axis 0xi (the unit stands at i-position); e=(1,1, . . . ,1)(; Rn×m is the space of real
n×m-matrices A = {a j

i }= {a j} (with columns a j); I is the unit matrix; 0 is the zero
matrix (vector); AbsA= {|a j

i |} for A= {a j
i }; diagπ , diag{πi} is the diagonal matrix

A with ai
i = πi (πi are the components of the vector π); detA is the determinant of

A ∈ R
n×n.

2 Problem Formulation

Consider the system (x ∈ R
n is the state)

ẋ = A(t)x+w(t), t ∈ T = [0,θ ], (1)

where the input (control) w(t) ∈ R
n is a given Lebesgue measurable function; the

initial state x(0) = x0 ∈ R
n and the measurable matrix function A(t) ∈ R

n×n are
unknown but subjected to given set-valued constraints

x0 ∈X0, (2)
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A(t) ∈A (t) = {A ∈ R
n×n|A(t)≤ A≤ A(t)}, a.e. t ∈ T, (3)

the matrix functions A(t), A(t) are assumed to be continuous. Matrix and vector
inequalities (≤,<,≥,>) here and below are understood componentwise. The
interval constraints (3) can be rewritten in the form

A(t) ∈A (t) = {A|Abs(A− Ã(t))≤ Â(t)}, Ã = (A+A)/2, Â = (A−A)/2. (4)

Let X (t) = X (t,0,X0) be a reachable set of system (1)–(3) at time t > 0 that
is the set of those points x ∈ R

n, for each of which there exists a pair {x0,A(·)}
that satisfies (2), (3) and generates a solution x(·) of (1) that satisfies x(t) = x. The
multivalued function X (t), t ∈ T , is known as the trajectory tube X (·).

We presume the given set X0 to be a parallelepiped (then the sets X (t) are
not obliged to be parallelepipeds) and look for external and internal parallelepiped-
valued or parallelotope-valued (shorter, polyhedral) estimates P±(t) for X (t).

By a parallelepiped P(p,P,π )⊂R
n we mean a set such that P =P(p,P,π )=

{x ∈ R
n|x = p+∑n

i=1 piπiξi, ‖ξ‖∞ ≤ 1}, where p ∈ R
n; P={pi} ∈ R

n×n is such
that detP �= 0, ‖pi‖2 = 1}1; π ∈ R

n, π ≥ 0. It may be said that p is the centre of
the parallelepiped; P is the orientation matrix; pi are the “directions”; and πi are the
values of its “semi-axes”. We call a parallelepiped nondegenerate if all πi > 0.

By a parallelotope P[p, P̄] ⊂ R
n we mean a set P = P [p, P̄] = {x ∈ R

n| x =
p+ P̄ξ , ‖ξ‖∞ ≤ 1}, where p ∈R

n and the matrix P̄ = { p̄i} ∈R
n×m, m≤ n, may be

singular. We call a parallelotope P nondegenerate, if m = n and det P̄ �= 0.
Each parallelepiped P(p,P,π ) is a parallelotope P [p, P̄] with P̄ = Pdiagπ ,

and each nondegenerate parallelotope is a parallelepiped with P = P̄diag{‖ p̄i‖−1
2 },

πi = ‖ p̄i‖2 or, in a different way, with P = P̄, π = e, where e = (1,1, . . . ,1)(.
We call P an external (internal) estimate for Q ⊂ R

n if P ⊇Q (P ⊆Q).

Assumption 1. The set X0 =P0 =P[p0, P̄0] =P(p0,P0,π0) is a parallelepiped.

Problem 1. Find some external P+(t) and internal P−(t) polyhedral
(parallelotope-valued) estimates2 for reachable sets X (t): P−(t) ⊆ X (t) ⊆
P+(t), t ∈ T .

3 Auxiliary Discrete-Time Systems: Primary Estimates

We will obtain differential equations for the estimates. We follow arguments similar
to [16]. The first step in this way is to construct estimates for reachable sets X [k]

1The normality condition ‖pi‖2 = 1 may be omitted to simplify formulas (particulary, it ensures
the uniqueness of the representation of a parallelepiped with nonzero values of semi-axes).
2Our estimates will satisfy the generalised semigroup property [16] which is analogues to the well-
known semigroup property for X (t).
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of auxiliary discrete-time systems (the Euler approximations of the initial system):

x[k] = A[k]x[k−1]+w[k], k = 1,2, . . . ,N; x[0] ∈P0;

w[k] = hN
∫ tk

tk−1
w(τ)dτ;

A[k] ∈A [k] = {I+ hNA |A ∈A (tk−1)},

(5)

where tk = khN , hN = θN−1. It is known that X [k] satisfy the recurrence relations

X [k] = A [k]◦X [k− 1]+w[k], k = 1,2, . . . ,N, X [0] = P0, (6)

which involve some operation with sets (multiplying an interval matrix A = {A ∈
R

n×n|A≤ A≤ A} on a set X ⊂ R
n): A ◦X = {y ∈ R

n|y = Ax, A ∈A ,x ∈X }.
Therefore we can calculate polyhedral estimates for X [k] if we are able to

construct primary external and internal polyhedral estimates for A ◦P , where P
is a parallelotope. The ways of constructing such estimates are described in [11–
13]. Then we have recurrence relations [11–13] for polyhedral estimates P±[k]
for X [k]. Passing to the limit as N → ∞ (hN → 0) we obtain the corresponding
nonlinear ODE systems for parallelotopes P±(t). These equations are considered
below.

4 Internal Estimates

The formal passage to the limit for P−[k] gives the following ODE system which
describes the dynamics of parallelotopes P−(t) = P [p−(t), P̄−(t)]:

d p−

dt
= Ã(t) p−+w(t), p−(0) = p0; (7)

dP̄−

dt
=
(
Ã(t)+ diagα(t, P̄−;J(t))

)
P̄−, P̄−(0) = P̄0,

αi(t, P̄−;J(t)) = â ji
i (t)η ji(t, P̄

−)/(ei((Abs P̄−)e), i = 1,2, . . . ,n,

η(t, P̄−) = max{0,Abs p−(t)−(Abs P̄−)e}

(8)

(the operation of maximum is understood componentwise). Here { j1, j2, . . . , jn}= J
is an arbitrary permutation of numbers {1,2, . . . ,n}. Let J be the set of all Lebesgue
measurable vector functions J(·) with values J(t) being arbitrary permutations of
numbers {1,2, . . . ,n}.

Theorem 1. Let all the assumptions about system (1), (2), and (4), mentioned
above, be satisfied and P0 be a nondegenerate parallellotope (det P̄0 �= 0). Then
system (7) and (8) has a unique solution on T = [0,θ ] whatever is J(·) ∈ J, and
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parallelotopes P−(t) = P[p−(t), P̄−(t)] are internal nondegenerate estimates for
the reachable sets X (t) of system (1), (2), and (4): P−(t)⊆X (t), t ∈ T.

Sketch of the Proof. Since there is an operation of division in (8), we obtain
estimates which show that solutions of (8) cannot leave some domain where the
Caratheodory conditions are satisfied and the right-hand side of (8) is Lipschitz in
state variables. Then the existence, uniqueness and extendability of a solution follow
from the known results [5, pp. 7, 8, 10]. The mentioned estimates also guarantee
that det P̄(t) �= 0. The proof of the inclusion P−(t) ⊆ X (t) is similar to [10,
Theorem 4.1] with applying constructions from the proof of [13, Theorem 3.3]. �	

Remark 1. Obviously, we have X (t) ⊇ X 0(t) ≡ P0−(t), t ∈ T , where X 0(t)
are reachable sets of system (1) under assumptions x0 ∈P0 and A(·) ≡ Ã(·), and
parallelotopes P0−(t) are determined by (7) and (8) when α ≡ 0. We call these
parallelotopes P0−(t) trivial internal estimates for X (t).

Compare estimates P−(t) satisfying (7) and (8) with P0−(t) in the sense of
volume. We would remind that volume of a nondegenerate parallelotope P =
P[p, P̄]⊂ R

n is equal to volP = 2n|det P̄|.

Corollary 1. Under conditions of Theorem 1 we have

(i) volP−(t)=volP0−(t) exp ψ(t), t∈T, where ψ(t)=
∫ t

0 e(α(τ, P̄−(τ);J(τ))dτ .
Therefore volP−(t)≥ volP0−(t); and volP−(t)> volP0−(t) iff ψ(t)> 0.

(ii) If it is turned out that P−(t) - 0 for all t ∈ T, then P−(t)≡P0−(t), t ∈ T .

Remark 2. We can choose J(·) in different ways. A simple way is to apply a “local”
optimisation. Fix a natural number N and introduce a grid TN of times τk = khN ,
k = 0,1, . . . ,N, hN = θN−1. Let us, for each τk ∈ TN , solve the optimisation problem
e(α(τk, P̄−(τk);J) → maxJ over all possible permutations J = { j1, j2, . . . , jn}
assuming that P̄−(τk) has already been found. Then we can sequentially construct
the piecewise constant function J(t) ≡ J(τk) ∈ ArgmaxJ e(α(τk, P̄−(τk);J), t ∈
[τk,τk+1), k = 0,1, . . . ,N− 1, and find P̄−(·). Note that the described procedure is
not obliged to give the estimates P−(t) with maximal volume even if N → ∞.

5 External Estimates

In [11], the ODE systems of two types were obtained for external estimates for X (t)
in the form of parallelepipeds P+(t) =P(p+(t),P(t),π+(t)), where P(t) ∈R

n×n,
t ∈ T , is an arbitrary continuously differentiable matrix function such that

detP(t) �= 0, t ∈ T. (9)

For the unification with the description of the internal estimates, let us rewrite the
mentioned ODE systems in the form for parallelotopes and make it only for more
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accurate estimates of the II type. Consider the following ODE system:

d p+

dt
= ṖP−1 p++P(Φ(+)−Φ(−))/2+w, p+(0) = p0;

dP̄+

dt
=ṖP−1P̄++Pdiag

(
(Φ(+)+Φ(−))/2

)
, P̄+(0)=P(0)diag

(
Abs(P(0)−1P̄0)e

)
,

where Φ(±)
i = max

ξ∈Ξ±
i

(
±P−1(Ã−ṖP−1)x+Abs(P−1)ÂAbsx

)
i,

x = p++ P̄+ξ ; Ξ±i = {ξ |ξ ∈ E(P[0, I]), ξi =±1}, i = 1,2, . . . ,n,
(10)

symbol E(P) denotes the set of all vertices of a parallelotope, namely, the set of
points of the form x = p+∑m

i=1 p̄iξi, ξi ∈ {−1,1}.

Theorem 2. Let all the above assumptions be satisfied and P(t) ∈ R
n×n be an

arbitrary continuously differentiable function satisfying (9). Then the system (10)
has a unique solution on T , and the sets P+(t) = P[p+(t), P̄+(t)] are the external
estimates for the reachable sets X (t) of system (1), (2), and (4): X (t) ⊆P+(t),
t ∈ T.

Remark 3. In fact, Theorem 2 describes the whole family of estimates where the
function P(·) is a parameter. Some heuristic ways of choosing P(·) were indicated in
[11] (in particular, to find P(·) from relations Ṗ = Ã(t)P, P(0) = P0, or put P(t)≡ I).

6 Examples

Consider some examples of constructing the estimates. The estimates were calcu-
lated using the Euler approximations (5) with N = 100 (in fact, the estimates for
X [k] are presented in figures below). But it would be emphasised that different
schemes of approximation can be used for solving the obtained differential systems
and finding the estimates. Some more examples can also be found in [11–13].

Example 1. Let Ã(t)≡
[
−0.5 2

1 −0.5

]
; Â(t)≡

[
0 1.5

0.5 0

]
; w(t)≡ 0; P0 =P((1,1.5)(, I,

(0.05,0.05)(). The system of such type may be interpreted as the Richardson
arms race model [18] known in political science. Figure 1a presents tubes formed
by external and internal estimates for X [k]. Figure 1b shows the initial set P0

(dashed line), three external estimates for X [N] (thin lines) and the internal one.
For comparing, the trivial internal estimate P0−[N] is shown too (dashed line).
The reachable set belongs to the intersection of external estimates and contains the
internal ones.
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Fig. 1 External and internal estimates for X [·] (a) and X [N] (b) in Example 1

Example 2. Let Ã ≡

⎡

⎣
−1 0 5
1 −1 0
0 1 −1

⎤

⎦; Â ≡

⎡

⎣
0 0 3
0 0 0
0 0 0

⎤

⎦; w ≡ (−0.6,−0.4,−0.2)(; P0 =

P((1,1,1)(, I,(0.2,0.2,0.2)(). The system of such type may be interpreted as a
simple ecological model of dynamics of a number of microorganisms which have
3 stages of development, provide division at the last stage and produce from 2 to 8
descendants [20, p. 112]. Estimates for X [·] and X [N] are shown in Fig. 2 which
is similar to Fig. 1. Since parallelotopes in this problem are three-dimensional, we
present their two-dimensional projections on coordinate plains.

It must be admitted that the proposed estimates may turn out to be rather conser-
vative. But we can calculate them easily via integration of the ODE, and they can
give useful information, while it is hard to calculate exact reachable sets. Improved
external (possibly nonconvex) estimates in the form of the union of parallelotopes
can be constructed for the case of systems with constant coefficients [11].
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Analysis and Computational Approximation
of a Forward–Backward Equation Arising
in Nerve Conduction

P.M. Lima, M.F. Teodoro, N.J. Ford, and P.M. Lumb

Abstract This paper is concerned with the approximate solution of a nonlinear
mixed-type functional differential equation (MTFDE) arising from nerve conduc-
tion theory. The equation considered describes conduction in a myelinated nerve
axon. We search for a solution defined on the whole real axis, which tends to given
values at ±∞.The numerical algorithms, developed previously by the authors for
linear problems, were upgraded to deal with the case of nonlinear problems on
unbounded domains. Numerical results are presented and discussed.

Keywords Mixed-type functional differential equation • Asymptotic analysis
• Newton method • Nerve conduction

1 Introduction

This paper is concerned with a nonlinear MTFDE of the form

RCv′(t) = f (v(t))+ v(t− τ)+ v(t + τ)− 2v(t), (1)

P.M. Lima (�)
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Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
e-mail: plima@math.ist.utl.pt

M.F. Teodoro
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where R and C are constants and f is a given function, as described below. We are
interested in a solution of (1), increasing on ]−∞,∞[, which satisfies the conditions

lim
t→−∞

v(t) = 0, lim
t→∞

v(t) = 1, v(0) = 0.5. (2)

The problem (1) and (2) was analysed in [1–3], where its physical meaning is
explained in detail. The unknown v represents the transmembrane potential at a
node in a myelinated axon. The function f reflects the current-voltage model, which
is given by

f (v) = bv(v− a)(1− v), (3)

where b > 0 and 0 < a < 1/2. R and C are respectively the nodal resistivity
and the nodal capacity. The mathematical formulation can be derived from an
electric circuit model which assumes the so-called pure saltatory conduction (PSC).
This means that the myelin has such high resistance and low capacitance that it
completely insulates the membrane; therefore, if a node is sufficiently stimulated
and its transmembrane potential reaches a certain threshold level, ionic currents are
generated which excite the neighbouring node. As a consequence, this node also
attains the mentioned threshold potential. In this way, the process propagates across
the nerve axon, giving the impression of an excitation jumping node to node.

In the cited work of Chi, Bell and Hassard the problem (1) and (2) was thoroughly
investigated, both from the analytical and numerical point of view. A computational
algorithm was proposed and the first numerical results (as far as we are aware) have
been obtained for a nonlinear MTFDE.

In this paper, we continue the analytical and numerical investigation of (1),
called the discrete Fitzhugh-Nagumo equation. In Sect. 2, we analyse the asymptotic
behaviour of its solutions at infinity. In Sect. 3, we discuss the computational
methods for its numerical approximation. In Sect. 4, we present some numerical
results and we finish with some conclusions in Sect. 5.

2 Asymptotic Approximation at Infinity

Since in the next section we describe computational methods for the numerical
solution of the given problem, it is necessary to study the asymptotic behaviour of
the required solution at infinity, so that we can define the domain where this solution
needs to be computed.

An extensive analysis of this behaviour has been provided in [3], so here we will
just recall the main results from that paper.
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Let us first consider the case where t →−∞. According to the conditions (2),
v(−∞) = 0, so that in order to linearise (1) about this point, we first use the Taylor
expansion for function f :

f (v) = f (0)+ v f ′(0)+
v2

2
f ′′(0)+O(v3) = v f ′(0)+

v2

2
f ′′(0)+O(v3),

where f is given by (3).
As usual, in order to obtain a characteristic equation for (1) at −∞, we must

replace f by the main term of its Taylor expansion and assume that v is replaced by

w1(t) = ε1eλ (t+L), (4)

where L is a sufficiently large parameter and ε1 is an estimate for v1(−L). In this
way we obtain the equation

λ + 2− f ′(0)− 2cosh(λ τ) = 0. (5)

This equation has two real roots; since we are interested in a function w1 that tends
to 0 at −∞, we choose the positive one, which we denote by λ1.

The case where t →∞ can be handled in an analogous way. In this case, we have
the following Taylor expansion for f :

f (v) = (v− 1) f ′(1)+
(v− 1)2

2
f ′′(1)+O((v− 1)3).

Moreover, as t →+∞, we assume that v is replaced by

w2(t) = 1− ε2eλ (t−L), (6)

where ε2 is an estimate of 1−v2(L). In this way we obtain the characteristic equation

λ + 2− f ′(1)− 2cosh(λ τ) = 0. (7)

In this case we choose the negative root of the characteristic equation λ2, in order to
have w2(t)→ 1, as t →+∞.

Now we have obtained two representations of the solution of our problem (4)
and (6), which can be used to approximate the solution, for t < −L and t > L,
respectively, where L is a sufficiently large number. According to the form of (1),
L must be a multiple of the delay τ; in our computations we have used L = 2τ or
L = 3τ , which is large enough to obtain a reasonable accuracy.

These representations of the solution are used in the computational methods to
replace the boundary conditions (2). In the next section we will show how this can
be achieved.
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3 Computational Methods

3.1 Numerical Methods for Linear Boundary Value Problems

Boundary value problems (BVP) for linear mixed-type functional differential
equations (MTFDE) have been developed in [5–7, 9]. In these papers, we have
considered equations of the form

x′(t) = α(t)x(t)+β (t)x(t− 1)+ γ(t)x(t+ 1), (8)

where x is the unknown function and α , β , γ are known functions. MTFDEs of the
considered form contain deviating (advanced and delayed) arguments and for this
reason are known also as forward–backward equations.

The authors of [4] have developed a new approach to the analysis of the au-
tonomous case. They have analysed MTFDEs as BVP, that is, they have considered
the problem of finding a differentiable solution on a certain real interval [0,k− 1],
given its values on the intervals [−1,0] and (k−1,k]. Assuming that such a solution
exists, they have introduced a numerical algorithm to compute it. In [9], a numerical
algorithm based on the collocation method was proposed for the solution of such
BVPs. In [6, 7] these methods were extended to the nonautonomous case, and a
new algorithm, based on the least squares method, was introduced. In [5], a new
numerical algorithm was proposed, based on the decomposition of the solution
into a growing and a decaying component. This approach, which is based on the
analytical results of [8], provides a way of reducing the ill conditioning of the BVP.

The algorithm developed in [6, 9], which will be applied to the solution of
the present problem, is based on the so-called ODE approach: the solution is
sought as the sum of two terms, one of which is defined from the initial data
(boundary conditions and equation) and the other one must be computed as a linear
combination of known basis functions (usually splines). Using the method of steps,
the problem of computing this term can be reduced to the solution of a BVP for a
kth order ODE (k is the length of the interval where the solution must be computed).
This last problem can be solved by standard methods of numerical analysis, such
as the collocation or the finite elements method. As shown in [6], the error of these
methods, when applied to linear equations such as (8) on a bounded interval, is of
order h2.

The numerical method described in this paper, although based on this approach,
has two new features: (1) it allows us to deal with problems on the whole real axis
(where the boundary conditions are given at infinity) and (2) nonlinear equations are
considered. In the next sections we will explain how to handle this case.
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3.2 Numerical Solution by the Newton Method

Once we know the approximate solution of the equation for t ≥ L and t ≤ −L (as
described in Sec. 2), the problem is reduced to a BVP on [−L,L], where L is a
multiple of τ .

The nonlinear problem can be reduced to a sequence of linear problems by means
of the Newton method.

In the ith iteration of the Newton method, we have to solve a linear equation of
the form:

RCv′i+1(t)− f ′(vi)(vi+1(t)− vi(t))−L(vi+1(t)) = f (vi(t)), t ∈ [−L,L], (9)

where

L(v(t)) = v(t + τ)+ v(t− τ)− 2v(t).

We search for a monotone solution vi+1 which satisfies the boundary conditions

vi+1(t) = w1(t), t ∈ [−L− τ,−L],
vi+1(t) = w2(t), t ∈ [L,L+ τ],

(10)

where w1 and w2 are given by (4) and (6), respectively.
In order to compute an initial approximation v0, which enables the convergence

of the Newton iteration process, we need the values of λ1,λ2,τ , ε1 and ε2.
These values can be obtained by solving a system of five nonlinear equations:

λ1 + 2−F′(0)− 2cosh(λ1τ) = 0
λ2 + 2−F′(1)− 2cosh(λ2τ) = 0
limt→0− v(t) = 1/2
limt→0+ v(t) = 1/2
limt→0− v′(t) = limt→0+ v′(t).

(11)

The values of v in this system are computed, using the method of steps and assuming
that v satisfies the obtained asymptotic expansions, when t < −L and t > L. More
precisely, if v(t) is defined at [−L− τ,−L] by (10), then we can define it on the
interval [−L,−L+ τ] and on the following intervals using the recurrence formula:

v(t + τ) = 2v(t)+RCv′(t)− v(t− τ)+ g(v(t)), (12)

where g(v) = − f (v), if v is the solution of the nonlinear equation (1), and g(v) =
− f (vi)− f ′(vi)(v− vi), if v is the solution of the Newton iterates (9) (here vi is the
preceding iterate).
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In the same way, starting from the definition of v at [L,L+τ] by (10), this function
can be defined on [L− τ,L] by the “backwards” formula:

v(t− τ) = 2v(t)+RCv′(t)− v(t + τ)+ g(v(t)). (13)

The system (11) is solved again at each iterate of the Newton method, in order to
update the parameter values.

4 Numerical Results

The algorithm was implemented in the form of a MATLAB code. In this section we
present and discuss some numerical results.

The test case considered in our computations is one of the cases discussed in
[3]. We consider (1), with R =C = 1, where f is defined by (3), with a = 0.05 and
b = 15. In this case, by solving system (11), with L = 2τ , we obtain λ1 = 5.98,
λ2−=−6.35, ε1 = 0.00794, ε2 = 0.00635 and τ = 0.360.

The graphs of some Newton iterates of the solution are displayed in Fig. 1.
For comparison, we have solved the problem numerically using two finite

intervals: with L = 2τ and L = 3τ .
In Table 1, we display the results with L = 2τ . We denote by N the number

of grid points at each subinterval of length τ in the collocation method and by h
the corresponding stepsize, so that h = τ/N. Let vh be the approximate solution,

−1.6 −0.8 0 0.8 1.6
0

0.5

1

first iterate
second iterate
seventh iterate

Fig. 1 Graphs of some Newton iterates vi for the considered test case
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Table 1 Estimates of errors
and convergence orders, for
the solution (first two
columns) and for its
derivative (last two columns),
in the case L = 2τ

N ε p ε p

20 8.510 E-5 1.89 1.999 E-3 1.99
40 2.178 E-5 1.97 5.046 E -4 1.98
80 5.482 E-6 1.99 1.265 E-4 1.99
160 1.373 E-6 2.00 3.164 E-5 1.99

Table 2 Estimates of errors
and convergence orders, for
the solution (first two
columns) and for its
derivative (last two columns),
in the case L = 3τ

N ε p ε p

20 8.440 E-6 1.93 1.821 E-4 1.45
40 2.150 E-6 1.97 5.068 E -5 1.85
80 5.422 E-7 1.99 1.312 E-5 1.95
160 1.360 E-7 1.99 3.324 E-6 1.98

obtained with stepsize h. Then, as a measure of the error we use the Euclidean
2-norm εh = ‖vh−v2h‖2. As an estimate of the convergence order, as usual, we take

p =
log2(εh)

log2(ε2h)
.

In Table 2, we display analogous results, obtained with L = 3τ .
In the overall scheme, the error depends upon the choices of h and L. When we

solve the problem numerically on [−L,L], we assume that v(−L) = ε1, according
to (4), and v(L) = 1− ε2, according to (6). Taking into account the linearisation
process the error of this approximation is of order ε2

1 , in the first case, and ε2
2 , in the

second. Therefore the choice of L imposes a limitation on the overall accuracy of the
scheme and limits the benefit of reducing the error of the collocation method, which
is O(h2), beyond the point at which the error in the numerical scheme is smaller
than the error introduced by the choice of L. Since the values of ε1 and ε2 are not
known a priori, the value of L must be adjusted experimentally, and it depends on
the values of a and b. For the case illustrated by Tables 1 and 2, a choice of L = 3τ
yields a sufficiently small error that the convergence rate of the collocation method
is recovered in the estimates.

In both cases, the numerical results suggest that the convergence order of the
collocation method is 2, which is in agreement with the theoretical results obtained
in [6, 7].

An important issue that can be analysed from the numerical results for (1) is the
dependence of the propagation speed of the nerve impulses on the parameters a,b of
the function f . As remarked in [3], the propagation speed is inversely proportional
to the delay τ , which is computed by our algorithm. In Table 3, we observe how this
parameter varies with a and b.

From Table 3 we conclude that the propagation speed (inverse of τ ) increases
with b and when a tends to 0, which is in agreement with the previously obtained
results (see [3]).
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Table 3 The dependence of
τ on a and b a b = 10 b = 12 b = 14 b = 16

0 0.459649 0.435100 0.403125 0.377948
0.02 0.483611 0.454817 0.421840 0.398989
0.04 0.512678 0.464581 0.445605 0.410900
0.06 0.547146 0.499670 0.462720 0.439170
0.08 0.567360 0.527444 0.490468 0.470200
0.10 0.610765 0.565340 0.530310 0.499321

5 Conclusions

The numerical experiments have shown that the Newton method provides a fast
iterative scheme and with convergence from a good initial approximation.

The numerical results also suggest that the collocation method provides second-
order convergence, as was observed earlier for linear problems.

Comparing with numerical algorithms used by other authors to solve similar
problems (in particular, [3]), the present algorithm has the advantage that the
convergence of the iteration process does not require the use of the continuation
method (where the algorithm is first applied to a test problem with known exact
solution and then this problem is transformed into the target one, by smoothly
changing a certain parameter).

In the near future we intend to improve the algorithm and to carry out new
numerical investigations of the problem.
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Multiple Solutions for a Class of Degenerate
Quasilinear Elliptic Systems

G.A. Afrouzi and S. Mahdavi

Abstract Some existence and multiplicity results of weak solutions are established
for a class of degenerate quasilinear elliptic system by using Ekeland’s variational
principle, the Mountain Pass Theorem and the Critical Point Theory.

1 Introduction

Let us consider the problem

− div(h1(x)|∇u|p−2∇u) = λ a(x)|u|p−2u+ γr(x)α|u|α−2u|v|β in Ω

−div(h2(x)|∇v|q−2∇v) = μ b(x)|v|q−2v+ γr(x)β |u|α |v|β−2v in Ω

u = v = 0 on ∂Ω (1)

where Ω is a bounded smooth domain in RN ; λ ,μ and γ are nonnegative parameters;
0 ≤ a,b ∈ L∞(Ω) are weight functions; 1 < p,q < ∞ if N = 1,2 or 1 < p,q < N if
N ≥ 3 and α , β are positive constants satisfying α

p + β
q = 1.

We observe that there exists a vast literature on nonuniformly nonlinear elliptic
problems in bounded or unbounded domains. Many authors studied the existence
of solutions for such problems (equations or systems); for instance, see [5–7]. We
also observe that nonlinear boundary conditions have only been considered in recent
years (see [2–4]).
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In [1] Afrouzi et al. motivated by the paper of Ou and Tang [10] in which
Laplacian system was discussed, obtained three solutions for

−Δpu = λ a(x)|u|p−2u+Fu(x,u,v) in Ω

−Δqv = μb(x)|v|q−2v+Fv(x,u,v) in Ω (2)

as the parameter λ and μ approach λ1 and μ1 from the left, respectively. Inspired
by [1] and [11], we have the goal in this paper of extending these results to some
degenerate elliptic systems.

Let h1,h2 be positive weight functions a.e. in Ω such that

h1 ∈ L1
loc(Ω), h−s

1 ∈ L1(Ω), s ∈ (
N
p
,∞)∩ [ 1

p− 1
,∞) , (3)

h2 ∈ L1
loc(Ω), h−s′

2 ∈ L1(Ω), s′ ∈ (
N
q
,∞)∩ [ 1

q− 1
,∞) . (4)

We define W 1,p
0 (Ω ,h1)

(
W 1,q

0 (Ω ,h2)

)
as being the completion of C∞

0 (Ω) with

respect to the norm defined by

‖u‖h1,p = (

∫

Ω
h1(x)|∇u|pdx)

1
p

(
‖v‖h2,q = (

∫

Ω
h2(x)|∇v|qdx)

1
q

)
∀u ∈C∞

0 (Ω)

and set H =W 1,p
0 (Ω ,h1)×W 1,q

0 (Ω ,h2). It is clear that H is a reflexive Banach space
under the norm ‖w‖H = ‖u‖h1,p + ‖v‖h2,q for all w = (u,v) ∈ H. We shall assume
that, unless otherwise stated, integrals are over Ω . We recall some facts about the
homogeneous degenerate eigenvalue problem

− div(h1(x)|∇u|p−2∇u) = λ a(x)|u|p−2u in Ω

u = 0 on ∂Ω (5)

where Ω is a bounded domain in RN , 1< p≤N and h1 satisfy (3). With the number
s given in (3) we define

ps =
ps

s+ 1
, p∗s =

N ps

N− ps
=

N ps
N(s+ 1)− ps

> p.

We assume that the coefficient function a satisfy

meas{x ∈Ω : a(x)> 0}> 0, a ∈ L
r1

r1−P , for some p≤ r1 < p∗s .



Multiple Solutions for a Class of Degenerate Quasilinear Elliptic Systems 487

The author in [9] established the existence of sequence of positive eigenvalues
{λk}k∈N where λk is determined by the following way. Let

M1 =

{
u ∈W 1,p

0 (Ω ,h1)

∣
∣∣
∣

∫
a(x)|u|pdx = 1

}
,

I1(u) =
∫

h1(x)|∇u|pdx u ∈W 1,p
0 (Ω ,h1)

then

λk = inf
A1∈∑k

sup
u∈A1

I1(u) , (6)

where ∑k = {A1⊂M1 : there exists a continuous, odd and surjective h : Sk−1→A1}
and Sk−1 denotes the unit sphere in Rk. It has been proved in Chap. 3 of [8]

that the principal eigenvalue λ1 is simple and isolated and all eigenfunctions
corresponding to λ1 do not change sign in Ω . It is obvious that

∫
h1(x)|∇u|pdx≥ λ1

∫
a(x)|u|pdx ∀u ∈W 1,p

0 (Ω ,h1) . (7)

Similarly, we consider the eigenvalue problem

− div(h2(x)|∇v|q−2∇v) = μb(x)|v|q−2v in Ω

v = 0 on ∂Ω (8)

where h2 satisfy condition (4), meas{x ∈ Ω : b(x) > 0} > 0, b ∈ L
r2

r2−q , for some

q≤ r2 < q∗s′ where q∗s′ =
Nqs′

N(s′+1)−qs′ > q. Let

M2 =

{
v∈W 1,q

0 (Ω ,h2)
∣∣
∫

b(x)|v|qdx=1
}
, I2(u) =

∫
h2(x)|∇v|qdx v∈W 1,q

0 (Ω ,h2).

By a standard argument, problem (8) has a sequence of eigenvalues with the
variational characterization

μk = inf
A2∈∑′k

sup
v∈A2

I2(v) , (9)

where ∑′k = {A2 ⊂M2 : there exists a continuous, odd and surjective h : Sk−1 →
A2}. We also have

∫
h2(x)|∇v|qdx≥ μ1

∫
b(x)|v|qdx ∀v ∈W 1,q

0 (Ω ,h2) . (10)
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Besides, the corresponding normalised eigenfunction ϕ1 belongs to W 1,p
0 (Ω ,h1) and

ψ1 belongs to W 1,q
0 (Ω ,h2). Let

W ′ = {(u,v) ∈ H
∫

Ω
a|ϕ1|p−2ϕ1u = 0,

∫

Ω
b|ψ1|q−2ψ1v = 0}.

We can easily prove that W ′ is complementary subspace of W = 〈ϕ1〉 × 〈ψ1〉.
Therefore we have the direct sum H = W ⊕W ′. The main results in this paper are
the following theorems.

Theorem 1. For λ < λ1 and μ < μ1 sufficiently close to λ1 and μ1, problem (1)
has at least three solutions.

Theorem 2. For λk < λ < λk+1 and μk < μ < μk+1, problem (1) has at least one
solution.

2 Preliminaries

Let I : H → R be the functional defined by

I(u,v) =
1
p

∫
h1(x)|∇u|pdx+

1
q

∫
h2(x)|∇v|pdx− λ

p

∫
a(x)|u|pdx

−μ
q

∫
b(x)|v|qdx− γ

∫
r(x)|u|α |v|β dx . (11)

We see that I ∈C1(H,R) and (u,v) ∈H is a weak solution of problem (1) if and
only if (u,v) is a critical point of I. It is well known that the following lemma holds.

Lemma 1 ([12, Lemma 2.1]). Assume that Ω is a bounded domain in RN and the
weight h1 satisfy (3). Then the following embeddings hold:

(i) W 1,p
0 (Ω ,h1(x)) ↪→ Lp∗s (Ω) continuously for 1 < p∗s < N.

(ii) W 1,p
0 (Ω ,h1(x)) ↪→ Lr(Ω) compactly for r ∈ [1, p∗s ).

Putting

U := {u ∈W 1,p
0 (Ω ,h1);

∫
Ω a|ϕ1|p−2ϕ1udx = 0},

V := {v ∈W 1,q
0 (Ω ,h2);

∫
Ω b|ψ1|q−2ψ1vdx = 0}.

U and V are closed subspace, and W 1,p
0 (Ω ,h1) = U ⊕〈φ1〉 and W 1,q

0 (Ω ,h2) =
V ⊕〈ψ1〉 hold. Moreover, we set

λ = inf
u∈U\{0}

‖u‖h1,p

‖u‖p
Lp

, μ = inf
v∈V\{0}

‖v‖h2,q

‖v‖q
Lq

. (12)
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We can show that λ1 < λ and μ1 < μ by contradiction. Since λ1 ≤
‖u‖h1,p

‖u‖p
Lp

holds for

each u �= 0, we assume that λ1 = λ , i.e. λ = inf
u∈W 1,p

0 (Ω ,h1)\{0}
‖u‖h1,p

‖u‖p
Lp

.

Then, we may suppose that there exist {un}n ⊂U and u ∈W 1,p
0 (Ω ,h1) such that

‖un‖Lp = 1, limn→∞ ‖un‖h1,p = λ and

un ⇀ u ∈W 1,p
0 (Ω ,h1); hence, un → u in Lp . (13)

Since U is weakly closed and un strongly converges to u in Lp, u ∈ U and
‖u‖Lp = 1 hold. Using weak lower semicontinuity of the norm and the variational
characterization of λ1, we get

λ1 ≤ ‖u‖h1,p ≤ lim
n→∞

inf‖un‖h1,p = λ = λ1

which implies that u =±ϕ1. This contradicts±ϕ1 �∈U. Analogously, we can prove
μ1 < μ .

3 Proof of Theorems

We will prove Theorem 1 by using Ekeland’s variational principal and the Mountain
Pass Theorem.

Proof. The proof will be divided into four steps.

Step 1. The functional I is coercive in H, I is bounded from below on W ′ and there
is a constant m, independent of λ ,μ , such that infW ′ I ≥ m.
For λ < λ1 and μ < μ1, from the definition of λ1, μ1, (18) and Young’s inequality,
we get

I(u,v)≥ 1
p
(1− λ

λ1
− γ‖r(x)‖∞αSp

1)
∫

Ω
h1(x)|∇u|pdx

+
1
q
(1− μ

μ1
− γ‖r(x)‖∞β Sq

2)
∫

Ω
h2(x)|∇v|qdx.

where S1,S2 are the embedding constants of W 1,p
0 (Ω ,h1) ↪→ Lp(Ω) , W 1,q

0

(Ω ,h2) ↪→ Lq(Ω), respectively. Letting γ = 1
2 min{ λ1−λ

λ1‖r(x)‖∞αSp
1
, μ1−μ

μ1‖r(x)‖∞β Sq
2
}, it

follows that I is coercive in H. Similarly, from (16), we obtain

I(u,v)≥ 1
p
(1− λ1

λ
− γ‖r(x)‖∞αSp

1)

∫

Ω
h1(x)|∇u|pdx

+
1
q
(1− μ1

μ
− γ‖r(x)‖∞β Sq

2))

∫

Ω
h2(x)|∇v|qdx.
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Let γ = 1
2 min{ λ−λ1

λ‖r(x)‖∞αSp
1
, μ−μ1

μ‖r(x)‖∞β Sq
2
}; hence, I is coercive in W and I is

bounded from below on W ′, and, moreover, there is a constant m, independent of
λ ,μ , such that infW ′ I ≥ m.

Step 2. If λ < λ1 and μ < μ1 are sufficiently close to λ1, μ1, we have t−1 < 0 < t+1 ,
t−2 < 0 < t+2 such that I(t±1 ϕ1, t

±
2 ψ1)< m.

Step 3. If λ < λ1, the functional I satisfies the (PS) condition.
If {zn} = {(un,vn)} is a (PS) sequence of I, {(un,vn)} must be bounded. Then
passing to a subsequence if necessary, there exists z = (u,v) ∈ H such that

(un,vn)⇀ (u,v) weakly in H, (un,vn)→ (u,v) strongly in Lp(Ω)×Lq(Ω).

So there exists a strictly decreasing subsequence εn, limn→∞ εn = 0 such that

|I′(un,vn)(un− u,0)|=
∣
∣
∫

h1(x)|∇un|p−2∇un∇(un− u)dx

−λ
∫

a(x)|un|p−2un(un− u)dx−αγ
∫

r(x)|u|α−1|v|β (un− u)dx|

≤ εn‖(un− u,0)‖H . (14)

Since un → u in Lp(Ω), vn → v in Lq(Ω), we have

lim
n→∞

∫
a(x)|un|p−2un(un−u)dx ≤ lim

n→∞
‖a‖ r1

r1−p

(∫
|un|r1 dx

) p−1
r1
(∫

|un−u|r1 dx

) 1
r1

= 0 . (15)

∫
r(x)|u|α−1|v|β (un−u)dx ≤

(∫
|un|pdx

) α−1
p
(∫

|v|qdx

) β
q
(∫

|un−u|pdx

) 1
p

→0 (16)

Combining (14) with (15) and (16), we get

lim
n→∞

∫
h1(x)|∇un|p−2∇un(∇un−∇u)dx = 0.

Subtracting
∫

h1(x)|∇u|p−2∇u(∇un−∇u)dx

(which converges to zero as n tends to infinity), we conclude that

lim
n→∞

∫
h1(x)(|∇un|p−2∇un−|∇u|p−2∇u)(∇un−∇u)dx = 0 , (17)

Hölder’s inequality, and substituting zn = h
1
p
1 un,z = h

1
p
1 u in Lemma in [11], we

obtain ‖un− u‖h1,p → 0, for p > 1, as n → ∞, that is, un → u in W 1,p
0 (Ω ,h1) as

n→ ∞. Similarly , we obtain vn → v in W 1,q
0 (Ω ,h2) as n→ ∞.
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Consequently, the functional I satisfies the (PS) condition λ < λ1, μ < μ1. In
addition, let

∑
±

= {z ∈ H : z =±(t1ϕ1, t2ψ1)+w with t1, t2 > 0 and w ∈W ′}.

I satisfies (PS)c,∑+
and (PS)c,∑− for all c < m.

Let {zn} ⊂ ∑+ satisfy I(zn) → c < m and I′(zn) → 0 an n → ∞. Since I is
coercive, there is z ∈ H such that ‖zn‖H → ‖z‖H strongly in H. If z ∈ ∂ ∑+ = W ′,
from infW ′ I ≥ m, we get Iλ (zn)→ c≥ m, which is impossible. Hence z ∈ ∑+ and I
satisfies the (PS)c,∑+

condition. Similarly we have that (PS)c,∑− holds for all c < m.
If λ < λ1,μ < μ1 is sufficiently close to λ1, we get−∞< inf∑± I <m, which implies
that I is bounded below in ∑+. Consequently, from Ekeland’s variational principle,
there exists {zn} ⊂ ∑+ such that I(zn)→ inf∑± I and I′(zn)→ 0 as n → ∞. Since
I satisfies (PS)c,∑+

for all c < m, there is z+ ∈ ∑+ such that I(z+) = inf∑+
I, that

is, the infimum is attained in ∑+. A similar conclusion holds in ∑−. So I has two
distinct critical points, denoted by z+,z−.

As in [10],we can obtain the third critical point z of I by applying Mountain Pass
Theorem such that I(z) = c≥ m. �	

Proof. To prove Theorem 2, we will verify the functional I satisfying the condition
of Theorem 3 in [11]. Following similar argument as in step 3, we may prove that
the functional I satisfies the Cerami condition.

It follows from definition of λk and μk, there exist A1 ∈∑k and A2 ∈∑′k such that
supu∈A1

I1(u) = m1 ∈ (λk,λ ) and supv∈A2
I2(v) = m2 ∈ (μk,μ), respectively.

From (11), we obtain

I(t
1
p u, t

1
q v) ≤ t

p

∫
h1(x)|∇u|pdx+

t
q

∫
h2(x)|∇v|qdx

− tλ
p

∫
a(x)|u|pdx− tμ

q

∫
b(x)|v|qdx

+|γ
∫

r(x)|t
1
p u|α |t

1
q v)|β dx| ≤ t

p
(m1−λ + γ‖r(x)‖∞αSp

1 m1)

+
t
q
(m2− μ + γ‖r(x)‖∞β Sq

2m2) (18)

for (u,v) ∈ A1×A2, t > 0. Set

FK+1 = {u ∈W 1,p
0 (Ω ,h1) :

∫
h1(x)|∇u|pdx≥ λk+1

∫
a(x)|u|pdx}

F ′K+1 = {v ∈W 1,q
0 (Ω ,h2) :

∫
h2(x)|∇v|qdx≥ μk+1

∫
b(x)|v|qdx}.
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For (u,v) ∈ FK+1×F ′K+1 we have

I(u,v)≥ (
1
p
− λ

pλk+1
− γ‖r(x)‖∞αSp

1

p
)

∫
h1(x)|∇u|pdx+

(
1
q
− μ

qμk+1
− γ‖r(x)‖∞β Sq

2

q
)

∫
h2(x)|∇v|qdx (19)

Let γ = 1
2 min{ λ−m1

m1‖r(x)‖∞αSp
1
, μ−m2

m2‖r(x)‖∞β Sq
2
,

λk+1−λ
λk+1‖r(x)‖∞αSp

1
,

μk+1−μ
μk+1‖r(x)‖∞β Sq

2
}. Then we

get

β := in f(u,v)∈FK+1×F ′K+1
I(u,v) (20)

and set T > 0 such that

α := max
(u,v)∈A1×A2,t≥T

I(t
1
p u, t

1
q v)< β (21)

by (18), (19). Now let TA := {(t
1
p u, t

1
q v) : (u,v) ∈ A1×A2, t ≥ T}. Set Q = Bk(Bk

represents the closed unit ball in Rk), ∂Q = Sk−1, Γ = {h ∈ C0(Sk−1,H) : h is odd
and h(Sk−1) ⊂ TA}. For any h ∈ Γ, (20), (21) we obtain h(Sk−1)∩ (FK+1×F ′K+1)

= /0 which shows that Γ is a subset of C(Sk−1,H\(FK+1×F ′K+1)). Let Γ∗ = {h ∈
C0(Bk,H) : h|Sk−1 ∈ Γ}. Then Γ∗ is nonempty, and h(Bk)∩ (FK+1×F ′K+1) �= /0 for
all h ∈ Γ∗. In fact by the definition of ∑k,∑′k, there exist continuous odd surjection
h1 : Sk−1→ A1, h2 : Sk−1→A2. So we can define h : Sk−1→ A1×A2 by h= (h1,h2).
Define h : Bk →H by h(ts) = tTh(s) for any s∈ Sk−1 and any t ∈ [0,1]. Thus h∈ Γ∗.
If there exists (u,v) ∈ h(Bk) such that

∫
a(x)|u|pdx = 0,

∫
b(x)|v|qdx = 0, we get

h(Bk)∩ (FK+1×F ′K+1) �= /0. Otherwise we consider the map ĥ : Sk → E by

ĥ(x1, . . . ,xk+1) =

{
π o h(x1, . . . ,xk) xk+1 ≥ 0
−π o h(−x1, . . . ,−xk) xk+1 < 0

(22)

where π(u,v) = ( u∫
a(x)|u|pdx ,

v∫
b(x)|v|qdx ). It is not difficult to verify that ĥ(Sk) ∈

FK+1×F ′K+1. Therefore,
∫

h1(x)|∇u0|pdx≥ λk+1

∫
a(x)|u0|pdx,

∫
h2(x)|∇v0|qdx≥ μk+1

∫
b(x)|v0|qdx

for some (u0,v0) ∈ ĥ(Sk), i.e. (u0,v0) ∈ FK+1×F ′K+1. Notice that π o h(x) ∈ FK+1×
F ′K+1 implies that h(x) ∈ FK+1×F ′K+1. Then h(Bk)∩ {FK+1×F ′K+1} �= /0. Hence
Sk and FK+1×F ′K+1 are Γ−linking. The condition of Theorem (2.5) is satisfied. So
Theorem 2 holds for λk < λ < λk+1,μk < μ < μk+1 with the critical value

c := inf
h∈Γ∗

sup
x∈Bk

I(h(x)). �	



Multiple Solutions for a Class of Degenerate Quasilinear Elliptic Systems 493

References

1. Afrouzi, G.A., Mahdavi, S.: Naghizadeh, Z., Existence of multiple solutions for a class of
(p,q)-Laplacian systems. Nonlinear Anal. 72, 2243–2250 (2010)
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3. Bonanno, G., Molica Bisci, G., Rǎdulescu, V.: Infinitely many solutions for a class of nonlinear
eigenvalue problems in Orlicz-Sobolev spaces. C. R. Acad. Sci. Paris, Ser. I 349, 263–268
(2011)
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A Symmetric Nörlund Sum with Application
to Inequalities

Artur M.C. Brito da Cruz, Natália Martins and Delfim F.M. Torres

Abstract Properties of an α,β -symmetric Nörlund sum are studied. Inspired in
the work by Agarwal et al., α,β -symmetric quantum versions of Hölder’s, Cauchy–
Schwarz’s and Minkowski’s inequalities are obtained.

1 Introduction

The symmetric derivative of function f at point x is defined as limh→0( f (x+ h)−
f (x− h))/(2h). The notion of symmetrically differentiable is interesting because if
a function is differentiable at a point, then it is also symmetrically differentiable, but
the converse is not true. The best-known example of this fact is the absolute value
function: f (x) = |x| is not differentiable at x = 0 but is symmetrically differentiable
at x = 0 with symmetric derivative zero [6].

Quantum calculus is, roughly speaking, the equivalent to traditional infinitesimal
calculus but without limits [4]. Therefore, one can introduce the symmetric quantum
derivative of f at x by ( f (x + h)− f (x− h))/(2h). As in any calculus, it is then
natural to develop a corresponding integration theory.
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The main goal of this paper is to study the properties of a general symmetric
quantum integral that we call, due to the so-called Nörlund sum [4], the α,β -
symmetric Nörlund sum.

The paper is organised as follows. In Section 2 we define the forward and
backward Nörlund sums. Then, in Section 3, we introduce the α,β -symmetric
Nörlund sum and give some of its properties. We end with Section 4, proving α,β -
symmetric versions of Hölder’s, Cauchy–Schwarz’s and Minkowski’s inequalities.

2 Forward and Backward Nörlund Sums

This section is dedicated to the inverse operators of the α-forward and β -backward
differences, α > 0, β > 0, defined, respectively, by

Δα [ f ] (t) :=
f (t +α)− f (t)

α
, ∇β [ f ] (t) :=

f (t)− f (t−β )
β

.

Definition 1. Let I ⊆R be an interval such that a,b∈ I with a < b and sup I =+∞.
For f : I → R and α > 0 we define the Nörlund sum (the α-forward integral) of f
from a to b by

∫ b

a
f (t)Δα t =

∫ +∞

a
f (t)Δα t−

∫ +∞

b
f (t)Δα t,

where
∫ +∞

x
f (t)Δα t = α

+∞

∑
k=0

f (x+ kα), provided the series converges at x = a and

x = b. In that case, f is said to be α-forward integrable on [a,b]. We say that f is
α-forward integrable over I if it is α-forward integrable for all a,b ∈ I.

Until Definition 2 (the backward/nabla case), we assume that I is an interval of
R such that sup I = +∞. Note that if f : I → R is a function such that sup I < +∞,
then we can extend function f to f̃ : Ĩ →R, where Ĩ is an interval with sup Ĩ =+∞,
in the following way: f̃ |I = f and f̃ |Ĩ\I = 0.

Using the techniques of Aldwoah in his Ph.D. thesis [2], it can be proved that the
α-forward integral has the following properties:

Theorem 1. If f ,g : I → R are α-forward integrable on [a,b], c ∈ [a,b], k ∈ R,
then:

1.
∫ a

a
f (t)Δα t = 0.

2.
∫ b

a
f (t)Δα t =

∫ c

a
f (t)Δα t +

∫ b

c
f (t)Δαt, when the integrals exist.

3.
∫ b

a
f (t)Δα t =−

∫ a

b
f (t)Δα t.

4. k f is α-forward integrable on [a,b] and
∫ b

a
k f (t)Δα t = k

∫ b

a
f (t)Δα t.
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5. f + g is α-forward integrable on [a,b] and

∫ b

a
( f + g)(t)Δα t =

∫ b

a
f (t)Δα t +

∫ b

a
g(t)Δα t.

6. If f ≡ 0, then
∫ b

a
f (t)Δαt = 0.

Theorem 2. Let f : I → R be α-forward integrable on [a,b]. If g : I → R is a
nonnegative α-forward integrable function on [a,b], then f g is α-forward integrable
on [a,b].

Proof. Since g is α-forward integrable, then both series α ∑+∞
k=0 g(a+ kα) and

α ∑+∞
k=0 g(b+ kα) converge. We want to study the nature of series α ∑+∞

k=0 f g(a+ kα)
and α ∑+∞

k=0 f g(b+ kα). Since there exists an order N ∈N such that | f g(b+ kα)|�
g(b+ kα) and | f g(a+ kα)|� g(a+ kα) for all k>N, then both α ∑+∞

k=0 f g(a+ kα)
and α ∑+∞

k=0 f g(b+ kα) converge absolutely. The intended conclusion follows. �	

Theorem 3. Let f : I → R and p > 1. If | f | is α-forward integrable on [a,b], then
| f |p is also α-forward integrable on [a,b].

Proof. There exists N ∈N such that | f (b+ kα)|p � | f (b+ kα)| and | f (a+ kα)|p �
| f (a+ kα)| for all k > N. Therefore, | f |p is α-forward integrable on [a,b]. �	

Theorem 4. Let f ,g : I → R be α-forward integrable on [a,b]. If | f (t)|� g(t) for
all t ∈ {a+ kα : k ∈ N0}, then for b ∈ {a+ kα : k ∈ N0} one has

∣∣
∣
∣

∫ b

a
f (t)Δα t

∣∣
∣
∣�

∫ b

a
g(t)Δα t.

Proof. Since b ∈ {a+ kα : k ∈ N0}, there exists k1 such that b = a+ k1α . Thus,

∣
∣∣
∣

∫ b

a
f (t)Δα t

∣
∣∣
∣=

∣
∣
∣∣
∣
α

+∞

∑
k=0

f (a+ kα)−α
+∞

∑
k=0

f (a+(k1 + k)α)

∣
∣
∣∣
∣

=

∣
∣
∣
∣∣
α

+∞

∑
k=0

f (a+ kα)−α
+∞

∑
k=k1

f (a+ kα)

∣
∣
∣
∣∣
=

∣
∣
∣
∣∣
α

k1−1

∑
k=0

f (a+ kα)

∣
∣
∣
∣∣

� α
k1−1

∑
k=0

| f (a+ kα)|� α
k1−1

∑
k=0

g(a+ kα)

= α
+∞

∑
k=0

g(a+ kα)−α
+∞

∑
k=k1

g(a+ kα) =

∫ b

a
g(t)Δα t. �	

Corollary 1. Let f ,g : I →R be α-forward integrable on [a,b] with b = a+kα for
some k ∈ N0.

1. If f (t)� 0 for all t ∈ {a+ kα : k ∈ N0}, then
∫ b

a f (t)Δαt � 0.
2. If g(t)� f (t) for all t ∈ {a+ kα : k ∈ N0}, then

∫ b
a g(t)Δα t �

∫ b
a f (t)Δα t.
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We can now prove the following fundamental theorem of the α-forward calculus.

Theorem 5 (Fundamental Theorem of Nörlund Calculus). Let f : I → R be
α-forward integrable over I. Let x ∈ I and define F (x) :=

∫ x
a f (t)Δα t. Then,

Δα [F ] (x) = f (x). Conversely,
∫ b

a Δα [ f ] (t)Δα t = f (b)− f (a).

Proof. If G(x) =−
∫ +∞

x f (t)Δα t, then

Δα [G] (x) =
G(x+α)−G(x)

α
=
−α ∑+∞

k=0 f (x+α + kα)+α ∑+∞
k=0 f (x+ kα)

α

=
+∞

∑
k=0

f (x+ kα)−
+∞

∑
k=0

f (x+(k+ 1)α) = f (x) .

Therefore, Δα [F ] (x) = Δα
(∫ +∞

a f (t)Δα t−
∫+∞

x f (t)Δαt
)
= f (x). Using the def-

inition of α-forward difference operator, the second part of the theorem is also a
consequence of the properties of Mengoli’s series. Since

∫ +∞

a
Δα [ f ] (t)Δα t = α

+∞

∑
k=0

Δα [ f ] (a+ kα) = α
+∞

∑
k=0

f (a+ kα +α)− f (a+ kα)

α

=
+∞

∑
k=0

(
f (a+(k+ 1)α)− f (a+ kα)

)
=− f (a)

and
∫ +∞

b Δα [ f ] (t)Δα t =− f (b), it follows that

∫ b

a
Δα [ f ] (t)Δα t =

∫ +∞

a
f (t)Δα t−

∫ +∞

b
f (t)Δα t = f (b)− f (a) .

�	

Corollary 2 (α-Forward Integration by Parts). Let f ,g : I → R. If f g and
f Δα [g] are α-forward integrable on [a,b], then

∫ b

a
f (t)Δα [g] (t)Δα t = f (t)g(t)

∣∣
∣
∣

b

a
−
∫ b

a
Δα [ f ] (t)g(t +α)Δα t.

Proof. Since Δα [ f g] (t) = Δα [ f ] (t)g(t +α)+ f (t)Δα [g] (t), then

∫ b

a
f (t)Δα [g] (t)Δαt =

∫ b

a

(
Δα [ f g] (t)−Δα [ f ] (t)g(t +α)

)
Δα t

=

∫ b

a
Δα [ f g] (t)Δα t−

∫ b

a
Δα [ f ] (t)g(t +α)Δαt

= f (t)g(t)

∣
∣∣
∣

b

a
−
∫ b

a
Δα [ f ] (t)g(t +α)Δα t. �	



A Symmetric Nörlund Sum with Application to Inequalities 499

Remark 1. Our study of the Nörlund sum is in agreement with the Hahn quantum
calculus [2, 3, 5]. In [4]

∫ b
a f (t)Δαt = α [ f (a)+ f (a+α)+ · · ·+ f (b−α)] for

a < b such that b− a ∈ αZ, α ∈ R
+. In contrast with [4], our definition is valid

for any two real points a,b and not only for those points belonging to the time scale
αZ. The definitions (only) coincide if the function f is α-forward integrable on
[a,b].

Similarly, we introduce the β -backward integral.

Definition 2. Let I be an interval of R such that a,b ∈ I with a < b and inf I =−∞.
For f : I →R and β > 0 we define the β -backward integral of f from a to b by

∫ b

a
f (t)∇β t =

∫ b

−∞
f (t)∇β t−

∫ a

−∞
f (t)∇β t,

where
∫ x

−∞
f (t)∇β t = β

+∞

∑
k=0

f (x− kβ ), provided the series converges at x = a and

x = b. In that case, f is called β -backward integrable on [a,b]. We say that f is
β -backward integrable over I if it is β -backward integrable for all a,b ∈ I.

The β -backward Nörlund sum has similar results and properties as the α-forward
Nörlund sum. In particular, the β -backward integral is the inverse operator of ∇β .

3 The α,β -Symmetric Nörlund Sum

We define the α,β -symmetric integral as a linear combination of the α-forward and
the β -backward integrals.

Definition 3. Let f : R→R and a,b∈R, a < b. If f is α-forward and β -backward
integrable on [a,b], α,β ≥ 0 with α + β > 0, then we define the α,β -symmetric
integral of f from a to b by

∫ b

a
f (t)dα ,β t =

α
α +β

∫ b

a
f (t)Δα t +

β
α +β

∫ b

a
f (t)∇β t.

Function f is α,β -symmetric integrable if it is α,β -symmetric integrable for all
a,b ∈R.

Remark 2. Note that if α ∈ R
+ and β = 0, then

∫ b

a
f (t)dα ,β t =

∫ b

a
f (t)Δα t and

we do not need to assume in Definition 3 that f is β -backward integrable; if α = 0

and β ∈ R
+, then

∫ b

a
f (t)dα ,β t =

∫ b

a
f (t)∇β t and we do not need to assume that

f is α-forward integrable.
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Example 1. Let f (t) = 1/t2. Then
∫ 3

1

1
t2 d2,2t =

10
9

.

The α,β -symmetric integral has the following properties:

Theorem 6. Let f ,g : R→ R be α,β -symmetric integrable on [a,b]. Let c ∈ [a,b]
and k ∈ R. Then:

1.
∫ a

a
f (t)dα ,β t = 0.

2.
∫ b

a
f (t)dα ,β t =

∫ c

a
f (t)dα ,β t +

∫ b

c
f (t)dα ,β t, when the integrals exist.

3.
∫ b

a
f (t)dα ,β t =−

∫ a

b
f (t)dα ,β t.

4. k f is α,β -symmetric integrable on [a,b] and
∫ b

a
k f (t)dα ,β t = k

∫ b

a
f (t)dα ,β t.

5. f + g is α,β -symmetric integrable on [a,b] and

∫ b

a
( f + g)(t)dα ,β t =

∫ b

a
f (t)dα ,β t +

∫ b

a
g(t)dα ,β t.

6. f g is α,β -symmetric integrable on [a,b] provided g is a nonnegative function.

Proof. These results are easy consequences of the α-forward and β -backward
integral properties. �	

The next result follows immediately from Theorem 3 and the corresponding β -
backward version.

Theorem 7. Let f : R→R and p > 1. If | f | is α,β -symmetric integrable on [a,b],
then | f |p is also α,β -symmetric integrable on [a,b].

Theorem 8. Let f ,g : R → R be α,β -symmetric integrable functions on [a,b],
A := {a+ kα : k ∈N0} and B := {b− kβ : k ∈N0}. For b ∈ A and a ∈ B one
has:

1. If | f (t)|� g(t) for all t ∈A ∪B, then

∣
∣
∣∣

∫ b

a
f (t)dα ,β t

∣
∣
∣∣�

∫ b

a
g(t)dα ,β t.

2. If f (t)� 0 for all t ∈A ∪B, then
∫ b

a
f (t)dα ,β t � 0.

3. If g(t)� f (t) for all t ∈A ∪B, then
∫ b

a
g(t)dα ,β t �

∫ b

a
f (t)dα ,β t.

Proof. It follows from Theorem 4 and Corollary 1 and the corresponding β -
backward versions. �	

In Theorem 9 we assume that a,b ∈ R with b ∈ A := {a+ kα : k ∈N0} and
a ∈B := {b− kβ : k ∈ N0}, where α,β ∈ R

+
0 , α +β �= 0.

Theorem 9 (Mean Value Theorem). Let f ,g : R → R be bounded and α,β -
symmetric integrable on [a,b] with g nonnegative. Let m and M be the infimum and
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the supremum, respectively, of function f . Then, there exists a real number K satis-

fying the inequalities m � K � M such that
∫ b

a
f (t)g(t)dα ,β t = K

∫ b

a
g(t)dα ,β t.

Proof. Since m � f (t) � Mforallt ∈ R and g(t) � 0, then mg(t) � f (t)g(t) �
Mg(t) for all t ∈ A ∪B. All functions mg, f g and Mg are α,β -symmetric
integrable on [a,b]. By Theorems 6 and 8, m

∫ b
a g(t)dα ,β t �

∫ b
a f (t)g(t)dα ,β t �

M
∫ b

a g(t)dα ,β t. If
∫ b

a g(t)dα ,β t = 0, then
∫ b

a f (t)g(t)dα ,β t = 0; if
∫ b

a g(t)dα ,β t > 0,

then m�
∫ b

a f (t)g(t)dα,β t
∫ b

a g(t)dα,β t
�M. Therefore, the middle term of these inequalities is equal

to a number K, which yields the intended result. �	

4 α,β -Symmetric Integral Inequalities

Inspired in the work by Agarwal et al. [1], we now present α,β -symmetric versions
of Hölder, Cauchy–Schwarz and Minkowski inequalities. As before, we assume that
a,b ∈ R with b ∈ A := {a+ kα : k ∈ N0} and a ∈B := {b− kβ : k ∈ N0}, where
α,β ∈R

+
0 , α +β �= 0.

Theorem 10 (Hölder’s Inequality). Let f ,g : R→ R and a,b ∈ R with a < b. If
| f | and |g| are α,β -symmetric integrable on [a,b], then

∫ b

a
| f (t)g(t)|dα ,β t �

(∫ b

a
| f (t)|p dα ,β t

) 1
p
(∫ b

a
|g(t)|q dα ,β t

) 1
q

, (1)

where p > 1 and q = p/(p− 1).

Proof. For α,β ∈ R
+
0 , α +β �= 0, the following inequality holds: α

1
p β

1
q � α

p + β
q .

Without loss of generality, suppose that

(∫ b

a
| f (t)|p dα ,β t

)(∫ b

a
|g(t)|q dα ,β t

)
�= 0

(note that both integrals exist by Theorem 7). Set ξ (t) = | f (t)|p /
∫ b

a | f (τ)|
p dα ,β τ

and γ (t) = |g(t)|q /
∫ b

a |g(τ)|
q dα ,β τ . Since both functions α and β are α,β -

symmetric integrable on [a,b], then

∫ b

a

| f (t)|
(∫ b

a | f (τ)|
p dα ,β τ

) 1
p

|g(t)|
(∫ b

a |g(τ)|
q dα ,β τ

) 1
q

dα ,β t =
∫ b

a
ξ (t)

1
p γ (t)

1
q dα ,β t

�
∫ b

a

(
ξ (t)

p
+

γ (t)
q

)
dα ,β t

=
1
p

∫ b

a

(
| f (t)|p

∫ b
a | f (τ)|

p dα ,β τ

)

dα ,β t +
1
q

∫ b

a

(
|g(t)|q

∫ b
a |g(τ)|

q dα ,β τ

)

dα ,β t = 1. �	

The particular case p = q = 2 of (1) gives the Cauchy–Schwarz inequality.
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Corollary 3 (Cauchy–Schwarz’s Inequality). Let f ,g : R→ R and a,b ∈R with
a < b. If f and g are α,β -symmetric integrable on [a,b], then

∫ b

a
| f (t)g(t)|dα ,β t �

√(∫ b

a
| f (t)|2 dα ,β t

)(∫ b

a
|g(t)|2 dα ,β t

)
.

We prove the Minkowski inequality using Hölder’s inequality.

Theorem 11 (Minkowski’s Inequality). Let f ,g : R→R and a,b, p ∈R with a <
b and p > 1. If f and g are α,β -symmetric integrable on [a,b], then

(∫ b

a
| f (t)+ g(t)|p dα ,β t

) 1
p

�
(∫ b

a
| f (t)|p dα ,β t

) 1
p

+

(∫ b

a
|g(t)|p dα ,β t

) 1
p

.

Proof. If
∫ b

a
| f (t)+ g(t)|p dα ,β t = 0, then the result is trivial. Suppose that

∫ b

a
| f (t)+ g(t)|p dα ,β t �= 0.

One has

∫ b

a
| f (t)+ g(t)|p dα ,β t =

∫ b

a
| f (t)+ g(t)|p−1 | f (t)+ g(t)|dα ,β t

�
∫ b

a
| f (t)| | f (t)+ g(t)|p−1 dα ,β t +

∫ b

a
|g(t)| | f (t)+ g(t)|p−1 dα ,β t.

Applying Hölder’s inequality (Theorem 10) with q = p/(p− 1), we obtain

∫ b

a
| f (t)+ g(t)|p dα ,β t �

(∫ b

a
| f (t)|p dα ,β t

) 1
p
(∫ b

a
| f (t)+ g(t)|(p−1)q dα ,β t

) 1
q

+

(∫ b

a
|g(t)|p dα ,β t

) 1
p
(∫ b

a
| f (t)+ g(t)|(p−1)q dα ,β t

) 1
q

=

[(∫ b

a
| f (t)|p dα ,β t

) 1
p

+

(∫ b

a
|g(t)|p dα ,β t

) 1
p
](∫ b

a
| f (t)+g(t)|(p−1)q dα ,β t

) 1
q

.

Therefore,

∫ b
a | f (t)+g(t)|p dα ,β t

(∫ b
a | f (t)+g(t)|(p−1)q dα ,β t

) 1
q

�
(∫ b

a
| f (t)|p dα ,β t

) 1
p

+

(∫ b

a
|g(t)|p dα ,β t

)
1
p .

�	
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Our α,β -symmetric calculus is more general than the standard h-calculus. In
particular, all our results give, as corollaries, results in the classical quantum h-
calculus by choosing α = h > 0 and β = 0.
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Numerical Range and Bifurcation Points
of a Family of Rational Function

Helena Melo and João Cabral

Abstract Using the Numerical Range Theory we make some interesting observa-
tions about the behavior of the dynamics of the family of rational function fλ (x)
given by

fλ (x) = 1− 2λ
x2 +λ − 4

in the neighborhood of the bifurcation point.
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1 Introduction

The goal of this work is to propose an alternative new study for the family of real
rational maps

fλ (x) = 1− 2λ
x2 +λ − 4

(1)

applying the Numerical Range Theory to the dynamics of the map f λ through
iteration.
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If we replace 4+λ by a, and replace 4−λ by b, then we obtain

f (x) =
x2− a
x2− b

. (2)

Let

F =

⎡

⎢⎢
⎣

a0 a1 a2 0
0 a0 a1 a2

b0 b1 b2 0
0 b0 b1 b2

⎤

⎥⎥
⎦ , (3)

as described in Milnor [2]. Each map f, in the space Rat2, can be expressed as

f (z) =
p(z)
q(z)

=
a0x2 + a1x+ a2

b0x2 + b1x+ b2
(4)

where a0 and b0 are not simultaneously zero and p(z), q(z) have no common roots.
Milnor [2] states that we can obtain a rough description of the topology of this
space Rat2 that can be identified with the Zariski open subset of complex projective
5-space consisting of all points

(a0 : a1 : a2 : b0 : b1 : b2) ∈CP5 (5)

for which the resultant res(p,q) = det(F) is nonzero.
By Melo and Cabral [1] we can build the matrix

B =

[
A O2

O2 A

]
(6)

such that A =

[
1 −a
1 −b

]
and O2 is the null matrix of order 2.

Using the Numerical Range Theory, W(A) is the numerical range of the matrix
A that can be defined as

W (A) =
w∗.A.w
w∗.w

,w ∈ C
n\(0, . . . ,0)
︸ ︷︷ ︸

n

(7)

where w∗ is the transpose conjugate of w.
We have W(A) = W(B) as an important result (see Melo and Cabral [1] for

proper demonstration), and the boundary curve of A, ∂W(A), is a curve of class
two, in this case, an ellipse, whose two foci coincide with the eigenvalues of A.

Replacing again a by 4+λ and b by 4−λ , we obtain the matrix Aλ where

Aλ =

[
1 −λ − 4
1 λ − 4

]
. (8)
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2 Merging the Map fλ in the Numerical Range of Matrix Aλ

In the real rational maps (1) we take a particular case making 0< λ < 4, with λ ∈R.
This map f λ has domain D = R\{±√4−λ} and has images on the set

D̂ = (−∞,1)∪
[

4+λ
4−λ ,+∞

)
.

Let

Λ = D× D̂ (9)

and

graph( fλ ) = {(x,y) ∈ R
2 : x ∈ D,y = fλ (x)}. (10)

So, the set graph(fλ ) is the typical plot of the map fλ (x) in R
2.

Let

C = {v ∈ C
2 : v = (x, i fλ (x))}, (11)

Ψ = {z ∈ C : z =
v∗.Aλ .v

v∗.v
,v �= 0,v ∈C}, (12)

and the functions

θ : D −→ Λ
x �−→ (x, fλ (x))

(13)

V : Λ −→ C
(x, fλ (x)) �−→ (x, i fλ (x))

(14)

Ξ : C −→ Ψ
(x, i fλ (x)) �−→ zλ (x).

(15)

So, we can define the function

ελ (x) =

⎧
⎨

⎩

Ξ ◦V ◦θ (x) , if x ∈ D
1 , if x ∈ {−∞,∞}.

−4+λ , if x ∈ {−
√

4−λ ,+
√

4−λ}.
(16)

By Rayleigh quotient we obtain the elements of set Ψ, the complex numbers
zλ (x), as in Fig. 1,

zλ (x) =

[
x − if λ (x)

]
.Aλ .

[
x

if λ (x)

]

[
x − if λ (x)

]
.

[
x

if λ (x)

] . (17)
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Fig. 1 The set Ψ⊂C

Fig. 2 The set W(A)⊂ C

Fig. 3 Ψ⊂W(A)

Figure 2 is the representation of the numerical range of the matrix Aλ , and Fig. 3
shows clearly that the set Ψ is a subset of the numerical range of the matrix Aλ .

The function zλ (x) is a complex function such that gλ (x) = Re(zλ (x)), the real
part of zλ (x), and hλ (x) = Im(zλ (x)), the imaginary part of zλ (x), so
zλ (x) = gλ (x)+ ihλ (x).

The functions

gλ (x) =
−(4−λ )(λ + 4)2 +(4−λ )(12+λ )x2− 3(4−λ )x4+ x6

(x2−λ − 4)2 + x2(x2 +λ − 4)2 (18)
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and

hλ (x) =
(5+λ )((λ 2− 16)x+ 8x3− x5)

(x2−λ − 4)2 + x2(x2 +λ − 4)2 (19)

where 0 < λ < 4, with λ ∈ R, are continuous functions, so zλ (x) is continuous in
C∪{∞}.
Let

Ω =

⎧
⎪⎨

⎪⎩

(
x− 3−λ

2

)2

(
5−λ

2

)2 +
y2

(
5+λ

2

)2 = 1,(x,y) ∈ R
2,0 < λ < 4

⎫
⎪⎬

⎪⎭
(20)

that can be represented also in C as
{

z ∈ C :
∣
∣
∣z− −3+λ+i2

√
5λ

2

∣
∣
∣+

∣
∣
∣z− −3+λ−i2

√
5λ

2

∣
∣
∣= 5+λ ,0 < λ < 4

}
. (21)

So zλ (x) = gλ (x)+ ihλ (x) is one element of Ω.
Since each element x ∈ R∪{∞} is transformed by ελ (x) through zλ (x) continu-

ously in Ω, which is continuous also, then all values of the real line have a match in
Ω covering all Ω. So Ω is dense.

The fλ (x) elements are related also with Ω through the construction of zλ (x)
giving us a way to analyze the dynamics of fλ (x), not in the real axis but in Ω.

Analyzing the function gλ (x) we have maximum values at

x2 = −x8 = −
√

4+λ
x4 = −x6 = −

√
4+ 2λ −

√
16λ + 5λ 2

and minimum values at

x1 = −x9 = −
√

4+ 2λ +
√

16λ + 5λ 2

x3 = −x7 = −
√

4−λ
x5 = 0

see Fig. 4.
As demonstrated in Melo and Cabral [1], the zeros of fλ (x) are the relative

maximum of gλ (x), and the relative minimum of fλ (x) or discontinuities of fλ (x)
are relative minimums of gλ (x). This way we can associate the monotonicity of
fλ (x) and the monotonicity of gλ (x).

On the real axis, we can organize these values as such:

−∞ < x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8 < 1 < x9 <+∞.
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Fig. 4 Abscissas of maximum and minimum of gλ (x)

Fig. 5 Graph(ελ (x))

With some calculus we obtain

zλ (x2) = zλ (x8) = 1+ 0i
zλ (x3) = zλ (x5) = zλ (x7) =−4+λ + 0i
zλ (x1) = gλ 1 + ihλ 1,

where gλ 1 = Re(zλ (x1)) �= 0, and hλ 1 = Im(zλ (x1)) �= 0,

zλ (x9) = zλ (x1)

zλ (x4) = gλ 2 + ihλ 2,

where gλ 2 = Re(zλ (x4)) �= 0, and hλ 2 = Im(zλ (x4)) �= 0,

zλ (x6) = zλ (x4).

We can observe this complex values represented in Ω as showed in Fig. 5.
Through the transformation Ξ ◦ V , we have a relation between Λ and Ψ,

and if a generic element of Ψ is also reciprocally an element of Ω, then
Ψ = Ω = graph(ελ (x)).
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3 Association Between (x, fλ (x)) and (gλ (x),hλ (x))

Let Ê be the ordered set of the nonzero critical points of gλ (x) that are not zeros or
discontinuous of fλ (x); thus, Ê = {x1,x4,x6,x9}.

Each value x ∈ R∪{∞} is transformed by ε(x) in one point of Ω (see Fig. 6).
The image of -∞ is clearly ελ (−∞) = 1+ 0i, and walking through the real line,

following the natural order of the real values, ελ (x) will walk in the arch of the
ellipse Ω following the counterclockwise orientation until x pass through the first
element of Ê . Then the walk in Ω will be clockwise, restoring the counterclockwise
order after x pass through the second element of Ê and so on, until +∞ where
ελ (+∞) = 1+ 0i.

The orientation of the rotation, the walk, of ελ (x), in Ω is related by (−1)φ ,
where φ is the sum of elements of Ê that x cross in the real line.

For example, the orientation of the walk of Ê in Ω is (−1)0 =+1, positive, when
the walk of x in the real line doesn’t cross any element of Ê . And the orientation of
the walk of ελ (x) in Ω is (−1)3 = −1, negative, when the walk of x in the real line
cross three elements of Ê.

Let Î1 = [−∞,x1], Î2 =(x1,x4], Î3 =(x4,x6], Î4 =(x6,x9], and Î5 =(x9,∞]. So Fig. 7
shows the representation on Ω of ελ (Î1), Fig. 8 shows ελ (Î2), and so on (Fig. 9).

x x1 x4 x6 x9
zl(x3)

zl(x6)

zl(x4)
el(x )

zl(x1)

zl(x2)

zl(x9)

−∞

Fig. 6 Walking on the ελ (x)

Fig. 7 ελ (Î1)
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Fig. 8 ελ (Î2)

Fig. 9 ελ (Î3)

4 The Border Collision Bifurcation

The fixed point of the real rational function fλ (x) in Ψ is the complex number

[
x −ix

]
.Aλ .

[
x
ix

]

[
x −ix

]
.

[
x
ix

] =
−3+λ

2
+ i
−5−λ

2
. (22)

Let gλ (x) =
−3+λ

2 .
We have the solutions x′,x′′ and x′′′, respectively: (Fig. 10)

x′ = 13−3λ+ 3√k+
3√

k2

3 3√k

x′′ = 13−13i
√

3−(3−3i
√

3)λ+2
√

k+
3√

k2+i
√

3
3√

k2

6 3√k

x′′′ = 13+13i
√

3−(3+3i
√

3)λ+2
√

k+
3√

k2−i
√

3
3√

k2

6 3√k

(23)

where k = 35+ 18λ + 3
√

3
√
−36+ 103λ−λ 2 +λ 3.

The value of x is a real number if and only if k �= 0 and−36+103λ−λ 2+λ 3≥ 0.
With these conditions we have (Fig. 11)
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Fig. 10 ελ (Î4)

Fig. 11 ελ (Î5)

Fig. 12 Border collision bifurcation in λ ′

λ ′ =
1
3

(

1− 308 3

√
2

47+ 1017
√

113
+

1
2

3
√

47+ 1017
√

113

)

,

or λ ′ ≈ 0.35028855281187055.
With this value of λ ′, we have a border collision bifurcation as showed in Fig. 12.
If 0 < λ < λ ′, the real rational function has three fixed points. If λ = λ ′, then

exist two fixed points, but if λ ′< λ < 4, there is only one fixed point. Figures 13, 14,
and 15 showed that.
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Fig. 13 0 < λ < λ ′

Fig. 14 λ = λ ′

Fig. 15 λ ′ < λ < 4

In resume the value of λ ′ where there is a border collision bifurcation indicates
how many fixed point has the real rational function.

Figure 16 shows the position of the complex number zλ (x) by the variation of λ .
We observed that the curve obtained by zλ (x6) intersects the curve obtained by

the value that represents the fixed point:

zλ (x
′) =

−3+λ
2

.

We build a 3D model where we can see the border bifurcation points as geometric
places in R

3 that correspond to the intersection of the lines. In Fig. 16 we can see
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0

0

0

2

1

2

3

4

−4

−2

−2

−4
-3+l  
2

zl(0 )=4 - l

zl(x6)

zl(x4)
zl(x1)

zl(x ′)=

zl(x9)

zl(±∞) =1
l

Fig. 16 0 < λ < 4,λ ∈R

an example of the presence of one of these bifurcation points. We intend to build a
more generic model that will describe, as accurate as possible, the dynamics of this
family of maps.
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Existence of Solutions for a Class of Semilinear
Elliptic Systems via Variational Methods

G.A. Afrouzi and M. Mirzapour

Abstract This is concerned with the existence of solutions to a class of semilinear
elliptic systems of the form

⎧
⎨

⎩

−div(a(x)∇u) = λ Fu(x,u,v) inΩ ,

−div(b(x)∇v) = λ Fv(x,u,v) inΩ ,

u = v = 0 on∂Ω ,

where the domain Ω is a bounded domain in RN(N > 2). Using variational
argument, we prove some existence results based on the Minimum principle and
Mountain pass theorem of A. Ambrosetti and P. Rabinowitz.

Keywords Semilinear elliptic systems • Variational methods • Minimum
principle • Mountain pass theorem

1 Preliminaries

In this paper, we deal with the existence of solutions to a class of semilinear elliptic
systems of the form
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⎧
⎨

⎩

−div(a(x)∇u) = λ Fu(x,u,v) inΩ ,

−div(b(x)∇v) = λ Fv(x,u,v) inΩ ,

u = v = 0 on∂Ω ,

(1)

where the domain Ω is a bounded domain in RN(N > 2), the weights a(x), b(x) are
measurable nonnegative weights on Ω , (Fu,Fv) = ∇F stands for the gradients of F
in the variables (u,v) ∈ R2, and λ is a parameter.

Recently, many authors have studied the existence of nontrivial solutions for
such problems (see [4–8, 11–13] and their references) because several physical
phenomena related equilibrium of continuous media are modeled by these elliptic
problems (see [3]).

In [14], N.B. Zographopoulos studied a class of degenerate potential semilinear
elliptic systems of the form

⎧
⎨

⎩

−div(a(x)∇u) = λ μ(x)|u|γ−1|v|δ+1u inΩ ,

−div(b(x)∇v) = λ μ(x)|u|γ+1|v|δ−1v inΩ ,

u = v = 0 on∂Ω ,

(2)

where λ ∈ R, the exponents γ,δ are positive, and μ(x) may change sign. He proved
the existence of at least one solution for the system (2) under suitable assumption
on the data. Let λ1 be the first eigenvalue of the system (2) (see [14] for μ(x)≡ 1).
Then λ1 > 0 and is given by

λ1 = inf
(u,v)∈W\{(0,0)}

∫
Ω ( γ+1

p a(x)|∇u|2 + δ+1
q b(x)|∇v|2)dx

∫
Ω |u|γ+1|v|δ+1dx

, (3)

where γ,δ satisfying the condition (F1) below. The associated eigenfunction (u0,v0)
is componentwise nonnegative and is unique (up to multiplication by a nonzero
scalar) (see [6]).

In recent paper [2], G.A. Afrouzi et al. have studied the existence of solutions for
semilinear problem (1) under conditions:

(F1) There exist positive constant c1,c2 such that

|Ft(x, t,s)| ≤ c1tγsδ+1, |Fs(x, t,s)| ≤ c2tγ+1sδ

for all (t,s) ∈ R2, a.e. x ∈Ω and some γ,δ > 1 with γ+1
p + δ+1

q = 1 and γ + 1 <

p < 2∗s , δ + 1 < q < 2∗s .
(F2) There exist positive constant c and 2 < α,β < 2∗s such that

|F(x, t,s)| ≤ c(1+ |t|α + |s|β ).

(F3) There exist R > 0, θ and θ ′ with 1
2∗s

< θ ,θ ′ < 1
2 such that

0 < F(x, t,s)≤ θ tFt(x, t,s)+θ ′sFs(x, t,s)
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for all x ∈Ω and |t|, |s| ≥ R.
(F4) There exist α > 2, β > 2 and ε > 0 such that

|F(x, t,s)| ≤ c(|t|α + |s|β )

for all x ∈Ω and |t|, |s| ≤ ε.

The condition (F1) plays an important role in proving the existence of solution
by using the Minimum principle (see [10, p. 4, theorem 1.2]) and (F2)− (F4) in
proving that the functional satisfies the geometry of the Mountain pass theorem of
A. Ambrosetti and P. Rabinowitz [3].

Motivated by the results in [9], our main goal in this paper is to illustrate how
the ideas in [7, 13] can be applied to handle the problem of existence of nontrivial
solution for system (1) without the conditions (F2)− (F4).

Throughout this work, we assume the weights a, b ∈ L1
loc(Ω), a−s, b−s ∈

L1(Ω), s ∈ (N
2 ,∞)∩ [1,∞).With the number s we define

2s =
2s

s+ 1
, 2∗s =

N2s

N− 2s
=

N2s
N(s+ 1)− 2s

> 2.

We define the Hilbert spaces W 1,2
0 (Ω ,a) and W 1,2

0 (Ω ,b) as the closures of C∞
0 (Ω)

with respect to the norms

‖u‖2
a =

∫

Ω
a(x)|∇u|2dx for all u ∈C∞

0 (Ω),

‖v‖2
b =

∫

Ω
b(x)|∇v|2dx for all v ∈C∞

0 (Ω).

Set W =W 1,2
0 (Ω ,a)×W 1,2

0 (Ω ,b). It is clear that W is a Hilbert space under the norm

‖(u,v)‖W = ‖u‖a + ‖v‖b for all (u,v) ∈W,

and with respect to the scalar product

〈ϕ ,ψ〉W =

∫

Ω
(a(x)∇ϕ1∇ψ1 + b(x)∇ϕ2∇ψ2)dx

for all φ = (ϕ1,ϕ2), ψ = (ψ1,ψ2) ∈W (see [1]).
Then W is a uniformly convex space. Moreover, the continuous embedding

W ↪→ (W 1,2s)2

holds with 2s =
2s

s+1 (cf. Example1.3, [9]), and we have the Sobolev’s embedding

W ↪→ (L2∗s (Ω))2. We notice that the compact embedding

W ↪→ Lr(Ω)×Lt(Ω)
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holds provided that 1≤ r, t < 2∗s .
Next, we assume that F(x, t,s) is a C1−functional on Ω × [0,∞)× [0,∞)→ R,

satisfying the hypothesis:

(F5)

limsup
|(t,s)|→0

2λ F(x, t,s)

|t|γ+1|s|δ+1
< λ1 < liminf

|(t,s)|→∞

2λ F(x, t,s)

|t|γ+1|s|δ+1

where λ1 is defined by (3).

Definition 1. We say that (u,v) ∈W is a weak solution of system (1) if and only if
∫

Ω
(a(x)∇u∇ϕ + b(x)∇v∇ψ)dx = λ

∫

Ω
(Fu(x,u,v)ϕ +Fv(x,u,v)ψ)dx

for all (ϕ ,ψ) ∈W.

The functional corresponding to problem (1) is

Iλ (u,v) =
1
2

∫

Ω
(a(x)|∇u|2 + b(x)|∇v|2)dx−λ

∫

Ω
F(x,u,v)dx. (4)

It is easy to see that the functional I(u,v) is well defined and is of class C1 in W.
Thus, weak solutions of (1) are exactly the critical points of the functional Iλ .

Now, we can describe our main results as follows:

Theorem 1. Suppose that the condition (F1) is satisfied. Then there exists a
constant λ > 0 such that for all λ < λ , system (1) has a weak solution.

Theorem 2. In addition suppose that the condition (F1),(F5) are satisfied. Then
for λ ≤ λ1 problem (1) has a nontrivial solution.

2 Proof of Theorem 1

We need to prove the following Lemmas and then apply the Minimum principle.

Lemma 1 (see [2]). The functional Iλ given by (4) is weakly lower semicontinuous
in W.

To prove this Lemma, we suppose that a sequence {(um,vm)} converges weakly to
(u,v) in W . By the weak lower semicontinuity of the norms in the spaces W 1,2

0 (Ω ,a)

and W 1,2
0 (Ω ,b), we deduce that

liminf
m→∞

∫

Ω

[
a(x)|∇um|2 + b(x)|∇vm|2

]
dx≥

∫

Ω

[
a(x)|∇u|2 + b(x)|∇v|2

]
dx. (5)

Next using the Mean value theorem and Holder’s inequality, we prove that
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lim
m→∞

∫

Ω
F(x,um,vm)dx =

∫

Ω
F(x,u,v)dx. (6)

Lemma 2 (see [2]). The functional Iλ given by (4) is coercive and bounded below
in W.

Proof. By (F1), there exists c3 > 0 such that for all (t,s) ∈ R2 and a.e. x ∈ Ω , we
have

|F(x, t,s)| ≤ c3|t|γ+1|s|δ+1.

Using the Young’s inequality and embedding theorems on the term
∫

Ω F(x,u,v)dx,
we can write

Iλ (u,v)≥
(1

2
−λ c

γ + 1
p

)
‖u‖2

a +
(1

2
−λ c

δ + 1
q

)
‖v‖2

b,

where c is a positive constant. Let λ = min
{

p
2c(γ+1) ,

q
2c(δ+1)

}
> 0; then for all λ <

λ , we conclude that Iλ (u,v)→ ∞, provided that ‖(u,v)‖→ ∞. �	

By Lemmas (1) and (2), applying the Minimum principle, the functional Iλ
attains its minimum, and thus system (1) admits at least one weak solution.

3 Proof of Theorem 2

In the following we prove two Lemmas to construct the geometry of the Mountain
pass theorem due to Ambrosetti and Rabinowitz [3].

Lemma 3. The functional Iλ given by (4) satisfies the Palais-Smale condition in W.

Proof. Let {(um,vm)} be a Palais-Smale sequence for the functional Iλ ; thus there
exists c4 > 0 such that

|Iλ (um,vm)| ≤ c4 forany m ∈ N, (7)

and there exists a strictly decreasing sequence {εm}∞
m=1, limm→∞ εm = 0, such that

|〈I′λ (um,vm),(ξ ,η)〉| ≤ εm‖(ξ ,η)‖ for any m ∈ N and for any (ξ ,η) ∈W.
(8)

By Lemma (2), we deduce that Iλ is coercive; relation (7) implies that the sequence
{(um,vm)} is bounded in W . Since W is a Hilbert space, there exists (u,v) ∈W such
that, passing to subsequence, still denote by {(um,vm)}, it converges weakly to (u,v)
in W and strongly in Lp(Ω)×Lq(Ω).

Choosing (ξ ,η) = (um− u,0) in (8), we have
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∣
∣
∣
∫

Ω
a(x)|∇um|∇(um− u)−λ

∫

Ω
Fu(x,um,vm)(um− u)

∣
∣
∣≤ εm‖um− u‖. (9)

Using the condition (F1) combined with Holder’s inequality, we conclude that
∫

Ω
Fu(x,um,vm)|um− u|dx ≤ c1

∫

Ω
|um|γ |vm|δ+1|um− u|dx

≤ c1‖um‖γ
Lp‖vm‖δ+1

Lq ‖um− u‖Lp. (10)

It follows from relations (9) and (10) that

lim
m→∞

∫

Ω
a(x)|∇um|∇(um− u)dx = 0

subtracting
∫

Ω
a(x)|∇u|(∇um−∇u)dx,

we obtain

0 = lim
m→∞

∫

Ω
a(x)(|∇um|− |∇u|)(∇um−∇u)dx≥ lim

m→∞
(‖um‖a−‖u‖a)

2 ≥ 0,

which implies that ‖um‖a →‖u‖a. The uniform convexity of W 1,2
0 (Ω ,a) yields that

um converges strongly to u in W 1,2
0 (Ω ,a). Similarly, we obtain vm→ v in W 1,2

0 (Ω ,b)
as n→ ∞. �	

By Lemma (3), we obtain that the functional Iλ satisfies (PS)-condition (compact-
ness condition). Now we verify that the functional Iλ has the geometry of the
Mountain pass theorem.

Lemma 4. Under assumptions (F1) and (F5) the functional Iλ satisfies:

(i) There exists ρ , σ > 0 such that ‖(u,v)‖H = ρ implies I(u,v)≥ σ > 0.
(ii) There exists (z1,z2) ∈W such that ‖(z1,z2)‖H > ρ and I(z1,z2)≤ 0.

Proof. (i) From the left-hand side of (F5), there exists ρ > 0 such that

λ F(x,u,v)<
1
2

λ1|u|γ+1|v|δ+1

provided that ‖u‖a + ‖v‖b = ρ which will be chosen later.
By (3) and the variational characterization of the principle eigenvalue λ1,

we have

λ
∫

Ω
F(x,u,v)dx ≤ 1

2

[γ + 1
p

∫

Ω
a(x)|∇u|2dx+

δ + 1
q

∫

Ω
b(x)|∇v|2dx

]
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≤ 1
2

max{ γ + 1
p

,
δ + 1

q
}
(
||u||2a + ||v||2b

)

≤ 1
2

(
‖u‖2

a + ‖v‖2
b

)
.

Then, there exist σ , ρ > 0 such that I(u,v)≥ σ > 0 if ‖u‖a + ‖v‖b = ρ .
(ii) From the right-hand side of (F5), we get for ε > 0 and t sufficiently large that

λ F(x, tu0, tv0) ≥ (λ1 + ε)t2+γ+δ |u0|γ+1|v0|δ+1

≥ (λ1 + ε)t2|u0|γ+1|v0|δ+1,

where (u0,v0) is the eigenfunction pair corresponding to the principle eigenvalue
λ1. Then

I(tu0, tv0) =
t2

2
(‖u0‖2

a + ‖v0‖2
b)−λ

∫

Ω
F(x, tu0, tv0)dx

≤ t2

2
(‖u0‖2

a + ‖v0‖2
b)− (λ1 + ε)t2

∫

Ω
|u0|γ+1|v0|δ+1dx

≤ −t2ε
∫

Ω
|u0|γ+1|v0|δ+1dx.

We conclude that

I(tu0, tv0)→−∞ as t →+∞,

and thus there exists a constant t0 large enough such that I(t0u0, t0v0)< 0. �	

Consequently, the functional Iλ has a nonzero critical point, and the nonzero
critical point of Iλ is precisely the nontrivial solution of problem (1).
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Periodic Boundary Value Problems For Systems
of First-Order Differential Equations
with Impulses

M. Mohamed, H.S. Ahmad, and M.S.M. Noorani

Abstract In this paper, we prove the existence and uniqueness for systems of
first-order impulsive differential equations with periodic boundary conditions.
To establish such results, sufficient conditions of limit forms are given.

Keywords Periodic boundary value problems • Impulsive equations • Fixed-
point theory

1 Introduction

In recent years, the solvability of the periodic boundary value problems (PBVPs for
short) of first-order impulsive differential equations was studied by many authors;
see the pioneer solutions on the theory of impulsive differential equations [1, 2, 6,
15], the papers, and the references there in [5, 7–9, 13]. Motivated by the studies in
[3, 16], we study the existence and uniqueness of solutions to the following first-
order differential system with periodic boundary conditions

x′(t)+ a(t)x(t) = F(t,x(t)), a.e. t ∈ [0,N], t �= t1, (1)

x(0) = x(N),0 < N ∈ R, (2)
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where

F : [0,N]×Rn → Rn iscontinuouson (t, p) ∈ [0,N]\{t1}×Rnandpossibly

nonlinear,a(t) ∈C([0,N],R) with α(t) =
∫ t

0 a(t)dt �= 0. (3)

For the sake of simplicity (as in [3]), we consider only one impulse at t = t1 ∈ (0,N).
An arbitrary finite number of impulses can be addressed similarly. The impulse at
t = t1 is given by a continuous function I1 : Rn → Rn with

x(t+1 ) = x(t−1 )+ I1(x(t1)), t1 ∈ (0,N), t1 fixed, (4)

using the notation x(t−1 ) := limt→t−1
x(t) and x(t+1 ) := limt→t+1

x(t). We assume that

F(t+1 ,x) := limt→t+1
F(t,x) and F(t−1 ,x) := limt→t−1

F(t,x)

both exist with F(t−1 ,x) = F(t1,x).
This article is organized as follows. Section 2 presents some preliminary ideas

associated with the impulsive BVP (1)–(4). Sections 3 and 4 contain the main
results of the paper and are devoted to the existence and uniqueness of solutions
to (1)–(4). There, sufficient conditions of limit forms are developed and applied,
in conjunction with Schaeffer’s theorem (see[10], Theorem 4.4.12) and contraction
mapping theorem (see[10], Theorem 3.4.10) to prove the existence and uniqueness
of solutions to (1)–(4). The sufficient conditions of limit forms to establish
such results introduced by Zhang and Yan [16] are generalized to the impulsive
problems (1)–(4). The new results complement and extend those of [3, 4, 11, 12] in
the sense that sufficient conditions of limit forms are given to establish the results
of existence and uniqueness of solutions, whereas the theorem in [14] permitted
superlinear growth of ‖ F(t, p) ‖ in ‖ p ‖ in (1); our results apply to systems of
impulsive BVPs as in [3], unlike the papers [4, 11, 12]. The main idea rely on novel
differential inequalities and a priori bound on solutions to a certain family of integral
operator equations, with the operator being compact.

2 Preliminary Results

We introduce and denote the Banach space PC([0,N];Rn) by

PC([0,N];Rn) := {u : [0,N]→ Rn,u ∈C([0,N]\t1;Rn),uisleftcontinuousatt = t1,

the right− hand limit u(t+1 ) exists}

with norm

‖ x ‖=
( n

∑
i=1
| xi |2

) 1
2 , | xi |= max0≤t≤N | xi(t) |, i = 1, · · · ,n.

If x,y ∈ Rn, then < x,y > denotes the usual inner product.



PBVP for Systems of First-Order Differential with Impulses 527

Lemma 1 (Schaeffer’s theorem [6,Theorem 4.4.12). ] Let X be a normed space
and T:X→ X be a completely continuous map. If the set

S := {x ∈ X : x = λ Tx,λ ∈ [0,1]} (5)

is bounded, then T has at least one fixed point.

In this section the impulsive BVP (1)–(4) is reformulated as an appropriate integral
equation so that potential solutions to the integral equation will be solutions to the
impulsive BVP (1)–(4). The motivation of this approach is to define a suitable
operator, with fixed-point of the operator corresponding to the solution of the
BVP (1)–(4).

The following results are included to keep the paper self-contained for the benefit
of the reader.

Lemma 2. Consider the impulsive BVP (1)–(4) with α(N) �= 0,α(t) =
∫ t

0 a(s)ds �= 0
for t ∈ [0,N]. Let F : [0,N]×Rn → Rn and I1 : Rn → Rn both be continuous.

(i) If x ∈ PC1([0,N];Rn) is a solution of (1)–(4), then

x(t) =
∫ N

0
g(t,s)F(s,x(s))ds+ g(t, t1)I1(x(t1)), t ∈ [0,N], (6)

where

g(t,s) =

⎧
⎨

⎩

e−[α(t)−α(s)]

1−e−α(N) , 0≤ s≤ t ≤ N
e−[α(N)+α(t)−α(s)]

1−e−α(N) , 0≤ t < s≤ N
. (7)

(ii) If x ∈ PC([0,N];Rn) satisfies (6), then x ∈ PC1([0,N];Rn) and x is a solution
of (1)–(4).

Proof. The proof follows similar lines to that of [11], Lemma 2.1. (i) Let x ∈
PC1([0,N];Rn) and from (1) consider

d
dt
(xeα(t)) = eα(t)x′+ eα(t)a(t)x = eα(t)F(t,x),

where the multiplication of the (possibly) vector values x,x′ and F by the scalar-
valued eα(t) is done in a component-wise fashion. Integrating the above expression
from t1 to t with t ∈ (t1,N), we have

x(t)eα(t) = x(t+1 )eα(t1) +

∫ t

t1
eα(s)F(s,x(s))ds.

A similar integration from 0 to t1 shows that

x(t−1 )eα(t1) = x(0)+
∫ t1

0
eα(s)F(s,x(s))ds.
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Hence, adding the two previous expressions, we then have

x(t)eα(t) = x(0)+ x(t+1 )eα(t1)− x(t−1 )eα(t1) +
∫ t

0
eα(s)F(s,x(s))ds

= x(0)+ eα(t1)I1(x(t1))+
∫ t

0
eα(s)F(s,x(s))ds. (8)

Letting t = N in the previous and using the boundary conditions, we obtain

x(N)eα(N) = x(0)+ eα(t1)I1(x(t1))+
∫ N

0
eα(s)F(s,x(s))ds

= eα(N)(x(0)).

A rearrangement then gives

x(0) =
eα(t1)

eα(N)− 1
I1(x(t1))+

1

eα(N)− 1

∫ N

0
eα(s)F(s,x(s))ds,

which is substituted in (8) and a rearrangement leads to (6). �	

(ii) Let x∈PC([0,N];Rn) be a solution to (6). Since F is continuous, it is easy to see
that x∈PC1([0,N];Rn). To verify that x also satisfies the impulsive BVP (1)–(4)
just differentiate (6).

Lemma 3. Consider the impulsive BVP (1)–(4) with α(t) =
∫ t

0 a(s)ds �= 0 for
t ∈ [0,N]. Let F : [0,N]×Rn → Rn and I1 : Rn → Rn both be continuous. Let g be
defined as in Lemma 2 and consider the mapping T : PC([0,N];Rn)→PC([0,N];Rn)
defined by

T x(t) :=
∫ N

0
g(t,s)F(s,x(s))ds+ g(t, t1)I1(x(t1)), t ∈ [0,N]; (9)

If T has a fixed-point p, that is, T p = p for some p ∈ PC([0,N];Rn), then this fixed-
point p is also a solution to the impulsive BVP (1)–(4).

Proof. The result immediately follows from Lemma 2. Obviously, from (7), there
is a constant G such that

max0≤s,t≤N,t �=t1 | g(t,s),g(t, t1) |= G. (10)

Our topologically inspired fixed-point theorem that will be used to guarantee the
existence of at least one fixed-point of T requires that T be a compact map [10],
pp. 54–55. We now illustrate that this is true for the above T in (9). �	

Lemma 4. Consider the impulsive BVP (1)–(4) with α(N) �= 0,α(t) =
∫ t

0 a(s)ds �= 0
for t ∈ [0,N]. Let F : [0,N]×Rn → Rn and I1 : Rn → Rn both be continuous. Then
T : PC([0,N];Rn) → PC([0,N];Rn) is completely continuous, where T is define
in (9).
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Proof. (i) Let xn,x ∈ A and limn→∞xn = x. Then for t ∈ [0,N],

‖ T xn(t)−Tx(t) ‖ ≤
∫ N

0
g(t,s) ‖ F(s,xn(s))−F(s,x(s)) ‖ ds

+g(t, t1)[I1(xn(t))− I1(x(t))]

≤ G
∫ N

0
‖ F(s,xn(s))−F(s,x(s)) ‖ ds+[I1(xn(t))−I1(x(t))].

Since F : [0,N]×Rn → Rn and I1 : Rn → Rn both be continuous, we have

‖ T xn−Tx ‖→ 0, as n→ ∞.

That is, T is continuous. (ii) Let A ⊂ PC([0,N];Rn) be a bounded set, that is,
there is an L > 0 such that for any {xn} ∈ A, ‖ xn(t) ‖≤ L. Since F : [0,N]×Rn →
Rn and I1 : Rn → Rn both be continuous, there exists constants K1,K such that
‖ F(t,xn(t)) ‖≤ K, | I1(xn(t1)) |≤ K1 for all n where t ∈ [0,N].

‖ T xn(t) ‖ ≤ ‖
∫ N

0
g(t,s)F(s,xn(s))ds ‖+ ‖ g(t, t1)I1(xn(t1)) ‖

≤ K
∫ N

0
‖ g(t,s) ‖ ds+K1 ‖ g(t, t1) ‖

≤ KNG+K1G.

This shows that T (A) is a bounded set of PC([0,N],Rn). Since A is a bounded
subset of PC([0,N],Rn), the set T (A) is relatively compact. Hence, T is com-
pletely continuous operator. �	

3 Existence

In this section we obtain some new existence results for (1)–(4). The ideas use:

Theorem 1. Assume that (3) holds and one of the following conditions holds:

(i) ‖ F(t,x) ‖ is bounded on [0,N]×Rn.
(ii) There exist function V ∈C1(Rn, [0,∞)) and bounded function h(t,x)∈C([0,N]×

Rn;Rn) such that for t ∈ [0,N] and λ ∈ (0,1] uniformly,

lim‖x‖→∞ in f
<.V (x(t)),λ F(t,x(t))− a(t)x(t)>+ ‖ h(t,x(t)) ‖

λ ‖ F(t,x(t)) ‖ > 0 (11)

and

limx→∞
I1(x)

x
=W. (12)
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Then boundary value problem (1)–(4) has at least one solution.

Proof. From Lemma 3, we see that BVP (1)–(4) is equivalent to the integral (6). Let
us define T : PC([0,N];Rn)→ PC([0,N];Rn) by

Tx(t) =
∫ N

0
g(t,s)F(s,x(s))ds+ g(t, t1)I1(x(t1)), t ∈ [0,N]. (13)

Now we apply Schaeffer’s theorem to prove that BVP (1)–(4) has at least one
solution. Hence, we need to prove that the set

Sλ := {x ∈ PC([0,N];Rn) : x = λ Tx,λ ∈ [0,1]} (14)

is a bounded set with the bound being independent of λ ∈ [0,1]. Then we can con-
clude existence of at least one fixed point x ∈ PC([0,N];Rn) of T . In consequently,
from Lemma 3 , BVP (1)–(4) has at least one solution x ∈ PC([0,N];Rn). From
Lemma 3 and (13), it is easy to see that x = λ T x is equivalent to BVP

x′(t)+ a(t)x(t) = λ F(t,x(t)), a.e. t ∈ [0,N], t �= t1, (15)

x(0) = x(N) (16)

x(t+1 ) = x(t−1 )+λ I1(x(t1)), t ∈ (0,N), t1 fixed. (17)

If (11) holds, suppose that λ = 0, then x = 0; if λ ∈ (0,1], assume, for the sake of
contradiction, that Sλ is unbounded. Thus, there exists {xn(t)} ∈ Sλ for t ∈ [0,N]
such that limn→∞ ‖ xn(t) ‖= ∞ and limn→∞ ‖ F(t,xn(t)) ‖= ∞. Hence, from (11)
there exists constant N > 0 satisfying that for n > N and t ∈ [0,N] and λ ∈ (0,1]
uniformly,

<.Vn(t),λ F(t,xn(t))− a(t)xn(t)>+h(t,xn(t))
λ F(t,xn(t))

≥ δ > 0, (18)

where δ is independent of λ ∈ (0,1]. In view of (12), there is an n≥ N, such that

I1(xn)≤ (W + ε)xn.

Taking into account (10), (17), and (18), we have that for each n≥ N, t ∈ [0,N] λ ∈
(0,1],

‖ xn(t) ‖= λ ‖ Txn ‖ ≤ λG ‖ F(s,xn)ds ‖ +λ ‖ I1(xn(t1)) ‖

≤ G
δ

∫ N

0

[
<.V (xn(s)),λF(s,xn(s))−a(s)xn(s)>ds

+
∫ N

0
‖ h(s,xn(s)) ‖

]
+λ ‖ I1(xn(t1)) ‖

≤ G
δ

[∫ N

0

d
ds

V (xn(s))ds+
∫ N

0
‖ h(s,xn(s)) ‖

]
+λ ‖ I1(xn(t1)) ‖
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=
G
δ
[V (xn(N))−V (xn(0))]+

G
δ

∫ N

0
‖ h(s,xn(s)) ‖ ds+ ‖ I1(xn(t1)) ‖

≤ G
δ

∫ N

0
‖ h(s,xn(s)) ‖ ds+(W+ε)xn

which contradict that h(t,x(t)) is bounded on [0,N]×Rn. Therefore, Sλ is bounded
and P is independent of λ ∈ [0,1]. This proves that the BVP (1)–(4) has at least one
solution. The proof is complete. �	

In particular, choose, respectively, V (x) = e‖x‖ and V (x) =‖ x ‖α ,α ≥ 2; from
Theorem 1, the following result can be obtained. ([16]) In Theorem 1, replace (11)
by the condition below; then Theorem 1 is still valid, where

lim‖x‖→∞ in f
e‖x‖/ ‖ x ‖< x(t),λ F(t,x(t))−a(t)x(t)>+ ‖ h(t,x(t)) ‖

λ ‖ F(t,x(t)) ‖ > 0 (19)

lim‖x‖→∞ in f
α‖ x ‖α−2<x(t),λ F(t,x(t))−a(t)x(t)>+ ‖ h(t,x(t)) ‖

λ ‖ F(t,x(t)) ‖ > 0. (20)

Proof. We only proof the corollary for (19) only. The proof for (20) is given in [16].
Let V (x) = e‖x‖. Since

d
dt
‖ x ‖= ∑n

i xix′

‖ x ‖ ,

it follows that

d
dt

V (x(t)) =
e‖x‖

‖ x ‖ < x(t),x′(t)> =
e‖x‖

‖ x ‖ < x(t),λ F(t,x(t))− a(t)x(t)> .

The proof is complete. �	

4 Uniqueness

In this section, we will establish uniqueness results of the solutions of the BVP
(1)–(4). Consider the Banach space X defined in Sect. 1. Assume that F(t,x) satisfies
Lipschitz condition with respect to x; that is, there exists constant L such that

‖ F(t,x)−F(t,y) ‖ ≤ L1 ‖ x− y ‖, t ∈ [0,N]

| I1(x)− I1(y) | ≤ L2 | x− y | (21)

hold for any (t,x),(t,y) ∈ [0,N]×Rn.

Theorem 2. Assume that (1) and (21) hold and G(L1N+L2)< 1 where G is defined
by (10). Then the BVP (1)–(4) has exactly one solution.
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Proof. Let us define T : PC([0,N];Rn)→ PC([0,N];Rn) by (13). Consider the map

Tx(t) :=
∫ N

0
g(t,s)F(s,x(s))ds+ g(t, t1)I1(x(t1)), t ∈ [0,N]; (22)

Ty(t) :=
∫ N

0
g(t,s)F(s,y(s))ds+ g(t, t1)I1(y(t1)), t ∈ [0,N]. (23)

Then

‖ T x(t)−Ty(t)) ‖ ≤
∫ N

0
|g(t,s)| ‖ [F(s,x(s))−F(s,y(s))] ‖ ds

+|g(t, t1)[I1(x(t1))−I1(y(t1))]|

≤
∫ N

0
GL1 ‖ x(s)−y(s) ‖ ds+GL2|x(t1)−y(t1)|

= GL1 ‖ x−y ‖ N+GL2|x(t1)−y(t1)|

≤ G(L1N+L2) ‖ x−y ‖

Hence, ‖ T x(t)−Ty(t) ‖ ≤ ‖ x− y ‖ where G(L1N +L2)< 1. This implies that T is
contractive mapping. By the fixed-point theorem of Banach, the map T has unique
fixed point. �	

5 Example

In this section we consider the scalar-valued differential equation as an example.

Example 1. Consider the impulsive BVP given by

x′ − tx = x3 + t2 (24)

x(0) = x(1) (25)

x(t+1 ) = x(t−1 )+ 3x(t1), (26)

where x is scalar-valued and two given functions, V (t,x) = x+5 and h(t,x) = 1−x.
The above BVP has at least one solution.

Proof.

<.V (x(t)),λ F(t,x(t))−a(t)x(t)>+ ‖ h(t,x(t)) ‖
λ ‖ F(t,x(t)) ‖ =

<1,λ (x3+t2)+tx >+ | 1−x |
λ | x3+t2 |

=
λ (x3+t2)+tx+ | 1−x |

λ | x3+t2 |

=
λ (x3+t2)+tx

λ | x3+t2 | +
| 1−x |

λ |x3+t2 |
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Taking the limit as x→ ∞,

limx→∞

[
λ (x3+t2)+tx
λ | x3 + t2 | +

| 1−x |
λ | x3+t2 |

]
= limx→∞

λ (x3+t2)+tx
λ | x3+t2 | +limx→∞

| 1−x |
λ | x3+t2 |

= 1+ 0 = 1 > 0

Also,

limx→∞
I1(x)

x
= limx→∞

3x
x

= 3 > 0.

Thus, all of the conditions of Theorem 1 hold and the solvability follows. �	
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Numerical Methods for Multi-term Fractional
Boundary Value Problems

N.J. Ford and M.L. Morgado

Abstract This paper discusses the issues of existence and uniqueness of solution
and the structural stability of boundary value problems for multi-term fractional
differential equations. For the numerical solution of such problems we propose a
shooting algorithm.

1 Introduction

Recently, in [7], we have investigated boundary value problems for single-term
fractional differential equations. We have established sufficient conditions for the
existence and uniqueness of the solution of problems of the form

Dα
∗ y(t) = f (t,y(t)), t ∈ [0,T ] (1)

y(a) = ya, (2)

where we have considered Dα y(t) as the derivative of order α , 0 < α < 1, of y(t)
in the Caputo sense, f is a continuous function on a suitable domain satisfying
a Lipschitz condition with respect to its second argument, and a > 0. The case
where a = 0 had been studied previously in [3]. In that case, problem (1) and (2)
corresponds to an initial value problem, and according to the results obtained
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in both papers, we see that there are substantial differences in the analysis and
in the numerical treatment of the two cases: a = 0 or a �= 0. When a �= 0,
the approximate solution was obtained by using a shooting algorithm. To be more
precise, we have considered the initial value problem

Dα
∗ y(t) = f (t,y(t)), t ∈ [0,T ]

y(0) = y0,

and for a certain value of y0, we have determined its numerical solution using
standard initial value problem solvers. Then we used an iterative scheme to find the
appropriate y0, for which the solution of the initial value problem passes through the
point (a,ya).

When instead of (1), we have a multi-term differential equation, that is, we
have a differential equation involving different orders of derivatives of the unknown
function y, the approach used to provide an analytical and numerical analysis is to
reduce it to a system of low-order single-term equations. That was the technique
used in [6], where the authors considered initial value problems of the form

Dα y(t) = f (t,y(t),Dβ1 y(t),Dβ2y(t), . . . ,Dβny(t)), t ∈ [0,T ] (3)

y(k)(0) = y(k)0 , k = 0, . . . ,/α0− 1, (4)

where α > β1 > β2 > .. . > βn, α − β1 ≤ 1, β j − β j−1 ≤ 1, 0 < βn ≤ 1 and Dα

denotes the Caputo differential operator of order α /∈ N ([1]), which is defined by
Dα y(t) :=RL Dα(y− T [y])(t) where T [y] is the Taylor polynomial of degree 1α2
for y, centered at 0, and RLDα is the Riemann-Liouville derivative of order α [8].
The latter is defined by RLDα := D/α0J/α0−α , with Jβ being the Riemann-Liouville
integral operator,

Jβ y(t) :=
1

Γ(β )

∫ t

0
(t− s)β−1y(s)ds,

and D/α0 is the classical integer order derivative. Here, 1α2 denotes the biggest
integer smaller than α , and /α0 represents the smallest integer greater than or equal
to α .

In that paper, the authors proved that if all the orders of the derivatives appearing
in (3) are rational numbers, and defining N = αM, M the least common multiple of
the denominators of α , β1, . . . ,βn and γ = 1/M, problem (3) and (4) is equivalent to
the following system of equations:

Dγ y1(t) = y2(t), . . . ,D
γyN−1(t) = yN(t)

Dγ yN(t) = f

(
t,y β1

γ +1
(t), . . . ,y βn

γ +1
(t)

)
, (5)

together with conditions
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y j(0) =

{
y(k)0 , if j = kM+ 1 for some k ∈N

0 ,else,
(6)

in the following sense:

• Whenever Y = (y1, . . . ,yN)
T with y1 ∈ C/α0[0,T ] is the solution of (5)–(6), the

function y= y1 solves the multi-term equation (3) and satisfies the conditions (4).
• Whenever y ∈C/α0[0,T ] is a solution of (3)–(4), the vector-valued function Y =

(y1, . . . ,yN)
T satisfies the system (5) and the conditions (6).

Note that, as a consequence of the definition of the Caputo differential operator,
y j(0) must vanish whenever, for any k ∈ N, j �= kM + 1. The following lemma was
proved in [4]:

Lemma 1. Let y ∈ Ck[0,T ] for some T > 0 and some k ∈ N, and let 0 < q < k,
q /∈ N. Then Dqy(0) = 0.

Here, we intend to extend the results obtained in all of these papers, when
considering multi-term boundary value problems of the form

Dα y(t) = f (t,y(t),Dβ1 y(t),Dβ2y(t), . . . ,Dβny(t)), t ∈ [0,T ] (7)

y(k)(a) = y(k)a k = 0, . . . ,/α0− 1, (8)

where a > 0 and α > β1 > β2 > .. . > βn, α−β1 ≤ 1, β j−β j−1 ≤ 1, 0 < βn ≤ 1.
The paper is organized in the following way: in Sect. 2 we reduce our problem

into a system of low-order equations, establishing sufficient conditions for the
existence and uniqueness of the solution. In Sect. 3 we propose a numerical
algorithm to approximate the solution of problems (7) and (8). We end with some
numerical results and some conclusions.

2 Existence, Uniqueness, and Structural Stability

If all the orders of the derivatives appearing in (7) are rational numbers, following
the approach in [6], we can easily transform problem (7) and (8) into an equivalent
system of equations with lower order. Let M be the least common multiple of the
denominators of the derivatives appearing in the equation; define γ = 1/M and N =
αM. We can then state the following result:

Theorem 1. Equation (7) equipped with conditions (8) is equivalent to the system
of N equations (5) together with conditions

y j(a) =

{
y(k)a , if j = kM+ 1 for some k ∈ N

y( j)
a ,else,

(9)

where y( j)
a are suitable constants, in the following sense:
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• Whenever Y = (y1, . . . ,yN)
T with y1 ∈ C/α0[0,a] is the solution of (5), (9), the

function y = y1 solves the multi-term equation (7) and satisfies the conditions (8).
• Whenever y ∈C/α0[0,a] is a solution of (7)–(8), the vector-valued function Y =

(y1, . . . ,yN)
T satisfies the system (5) and the conditions (9).

Proof. This theorem is a simple generalization of Theorem 2.1 in [6] to the case
where a > 0. �	

Note that in system (5) all the differential equations have derivatives with order
between zero and one; therefore, it is useful to recall the results obtained in [7].
In that paper we proved that if the function f in (1) is continuous and satisfies
a Lipschitz condition with Lipschitz constant L > 0 with respect to its second
argument, and if 2Laα

Γ(α+1) < 1, then the boundary value problem (1) and (2) has a

unique solution on [0,a]. We have also proved that, in that case, problem (1) and (2)
is equivalent to the following integral equation:

y(t) = y(a)− 1
Γ(α)

∫ a

0
(a− s)α−1 f (s,y(s))ds+

1
Γ(α)

∫ t

0
(t− s)α−1 f (s,y(s))ds.

(10)

As pointed out in [7], after proving the existence of y(0), existence and
uniqueness results for t > a could be inherited from the corresponding initial value
problem theory.

In what follows, we extend these results to multi-order fractional differential
equations. The existence and uniqueness results are immediate, taking into account
Theorem 1.

Theorem 2 (Existence and uniqueness (muti-term, commensurate orders)).
Let the continuous function f in (7) satisfy a uniform Lipschitz condition, with
Lipschitz constant L, in all its arguments except for the first on a suitable domain
D. Assume that α , β1, . . . ,βn ∈ Q and 2Laγ

Γ (γ+1) < 1. Then, problem (7) and (8) has a

unique continuous solution on an interval [0,T ] of the real line.

When we have non-commensurate orders, as pointed out in [6], there is no system
of fractional equations that exactly corresponds to the original problem, and to
overcome this difficulty, we use the well-known fact that any real number can be
approximated arbitrarily closely by a rational number. Hence, we can approximate
a fractional differential equation with nonrational orders in its derivatives by a
fractional differential equation whose orders, being rational, are as close as we
choose to the original orders.

In order to do that, we need to be sure that under small variations in the orders of
the derivatives α and β j in (7), a uniform bound on the change in the solution can
be provided in any compact interval.

For the sake of simplicity, we shall now consider the case where we have only two
orders of derivatives in (7), and α ≤ 2, that is, we consider the following problem:
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Dα y(t) = f (t,y(t),Dβ y(t)), 0 < β < α ≤ 2 (11)

y(a) = ya, y′(a) = y(1)a . (12)

The generalization to multi-order fractional differential equations is straightforward.
Similarly to our approach in [7], we begin by recalling a well-known result in
Fractional calculus.

Lemma 2. If the function f is continuous, then the initial value problem

Dα y(t) = f (t,y(t),Dβ y(t)), 0 < β ≤ 1 < α ≤ 2

y(0) = y0, y′(0) = y(1)0

is equivalent to the following Volterra integral equation

y(t) = y(0)+ y′(0)t +
1

Γ (α)

∫ t

0
(t− s)α−1 f (s,y(s),Dβ y(s))ds. (13)

If the conditions of Theorem 2 are fulfilled, the solution of problem (11) and (12)
exists and is unique and continuous on [0,a]. In particular, y(0) and y′(0) exist and
are unique, and taking (13) into account, they are given by

y(0) = y(a)− ay′(a)+
a

Γ(α− 1)

∫ a

0
(a− s)α−2 f (s,y(s),Dβ y(s))ds−

− 1
Γ(α)

∫ a

0
(a− s)α−1 f (s,y(s),Dβ y(s))ds

y′(0) = y′(a)− 1
Γ(α− 1)

∫ a

0
(a− s)α−2 f (s,y(s),Dβ y(s))ds,

and therefore, one can conclude that the boundary value problem (11) and (12) is
equivalent to the following integral equation:

y(t) = y(a)+ y′(a)(t− a)− (t− a)
Γ(α− 1)

∫ a

0
(a− s)α−2 f (s,y(s),Dβ y(s))ds−

− 1
Γ(α)

∫ a

0
(a− s)α−1 f (s,y(s),Dβ y(s))ds+ (14)

+
1

Γ(α)

∫ t

0
(t− s)α−1 f (s,y(s),Dβ y(s))ds.

We have just proved the following theorem:

Theorem 3. Assume that all the conditions of Theorem 2 are satisfied. Then, the
boundary value problem (11) and (12) is equivalent to the integral equation (14).
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Therefore, as happens in the single-term case (see [7]), here we also have
an exact correspondence between boundary and initial value problems, and it
follows that properties such as existence and uniqueness of the solution in the
non-commensurate case and structural stability can be inherited from the initial
value theory (see [6]) allowing us to conclude the following result.

Theorem 4 (Structural stability). Let y and z be the unique solutions of the
following BVPs:

Dα y(t) = f (t,y(t),Dβ1 y(t),Dβ2y(t), . . . ,Dβny(t)), t ∈ [0,T ]

y(k)(a) = y(k)a , k = 0, . . . ,/α0− 1,

and

Dα̃ z(t) = f (t,z(t),Dβ̃1 z(t),Dβ̃2 z(t), . . . ,Dβ̃nz(t)), t ∈ [0,T ]

z(k)(a) = y(k)a , k = 0, . . . ,/α0− 1,

respectively, where |α− α̃|< ε and
∣
∣
∣β j− β̃ j

∣
∣
∣< ε , j = 1, . . . ,n. Then

‖y− z‖L∞[0,T ] = O(ε), ε → 0.

3 Numerical Methods and Results

Now, we present a numerical algorithm for the solution of multi-term BVPs (7) and
(8). Our approach is based on the equivalence of such problems with a system of
equations of lower order, as explained in Sect. 2.

Let us explain our approach through an example. Consider the linear test problem

D2y(t)+D0.5y(t)+ y(t) = t3 + 6t+
3.2t2.5

Γ(0.5)
, 0≤ t ≤ 1 (15)

y(0.1) = 0.001,y′(0.1) = 0.03

whose analytical solution is known and given by y(t) = t3.
First, we convert this problem into the equivalent linear system of equations

D0.5y1(t) = y2(t), D0.5y2(t) = y3(t), D0.5y3(t) = y4(t)

D0.5y4(t) = −y1(t)− y2(t)+ t3 + 6t+
3.2t2.5

Γ(0.5)
(16)

together with the conditions

y1(0.1) = 0.001, y2(0.1) = y2a, y3(0.1) = 0.03, y4(0.1) = y4a,
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Fig. 1 Absolute errors using method 1 (left) and method 2 (right) with h= 1/20 (black), h = 1/40
(gray) and h = 1/80 (light gray)

Table 1 Values of the
absolute error at t = 1 and
estimates of the convergence
order (EOC)

h Method 1 EOC Method 2 EOC

1/10 0.0871717 0.0720353
1/20 0.0309596 1.49 0.0267395 1.43
1/40 0.0110865 1.48 0.00970896 1.46
1/80 0.00396478 1.48 0.00348684 1.48

where y2a and y4a are unknown constants.
Since the solution of (15) is unique, y1(0), y2(0), y3(0) and y4(0) exist and

are unique, and moreover, taking Lemma 1 into account, we must have y2(0) =
y4(0) = 0.

Therefore, given the initial value problem (16) equipped with the conditions

y1(0) = y10, y2(0) = 0, y3(0) = y30, y4(0) = 0,

we can determine its approximate solution, say (ỹ1, ỹ2, ỹ3, ỹ4), using any standard
numerical initial solver. Finally, we adjust the unknowns y10, y30, y2a and y4a in
order to be satisfied the following system of equations:

e1 := ỹ1(0.1)− 0.001= 0, e2 := ỹ2(0.1)− y2a = 0
e3 := ỹ3(0.1)− 0.03= 0, e4 := ỹ4(0.1)− y4a = 0.

In our numerical experiments we have used the Adams method ([5]) and the
fractional backward difference method ([2]) to solve the initial value problems.
From now on, we will denote these methods by method 1 and method 2, respectively.
In Fig. 1 we present the absolute error at the discretization points. In Table 1 we can
observe the expected convergence order of the two methods.

4 Conclusions

In this paper we propose an algorithm for the numerical solution of multi-term
fractional boundary value problems. The idea is to rewrite the problem as an
equivalent system of differential equations of lower order. This is also useful to
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provide results on the existence and uniqueness of solutions and on the important
issue of structural stability. For lack of space, here we do not illustrate numerically
the effect on the solution resulting from a perturbation in the order of the derivative;
however, it may be remarked that a small change on the order of the derivative
can have several consequences such as increasing of the size of the system and
reducing of the order of convergence of the numerical method (since the order of the
derivatives of the system may decrease significantly). Thus, it should be noticed that
when solving a given problem numerically, it will be necessary to balance several
factors, such as the approximation of the order of the derivative and the choice of
the step-size h in the numerical method.
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Ciência e Tecnologia, through grant SFRH/BPD/46530/2008.
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Topological Structures for Studying Dynamic
Equations on Time Scales

Bonita A. Lawrence and Ralph W. Oberste-Vorth

Abstract We construct the topological framework within which we can study the
solution space for a given dynamic equation on time scales. We call these the
Hausdorff-Fell topologies. The space of finite time scales is dense in the space of all
time scales under the Hausdorff-Fell topology. The natural projection from solutions
to their domains is a homeomorphism when all solutions are unique.

Keywords Time scales • Dynamic equations • Hyperspaces • Hausdorff-Fell
topology

1 Introduction

A time scale is a nonempty closed subset of the real numbers. Stefan Hilger
developed the calculus on times scales in 1988 in [5]. For real-valued functions
on a time scale, Hilger defined the Δ-derivative. Let T be a time scale and let t ∈ T

with t < supT. Suppose that f : T→R is a function. The Δ-derivative of f at t, if it
is defined, is denoted

f Δ(t).

We do not give details here; [1] is a thorough introduction to the calculus on time
scales. The Δ-derivative does not always exist. However, if a function, f , is Δ-
differentiable at x, then the Δ-derivative is well known in two cases: when the time
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scale is either R or Z. If T= R, then

f Δ(t) = f ′(t);

the Δ-derivative is the usual derivative. If T= Z, then

f Δ(t) = Δ f (t);

the Δ-derivative is the difference operator.
Generalizing differential and difference equations, we are interested in equations

with Δ-derivatives in place of derivatives and differences. These are called dynamic
equations.

Suppose we wish to study a given dynamic equation such as the following initial
value problem:

xΔ = f (t,x), x(t0) = x0, (1)

where f : A×B→R is continuous. The solution function, x(t), depends on the time
scale, T: T is a subset of A, and is the domain of x. We would like to examine how
the solution of (1) depends on the time scale.

How are the solutions of the initial value problem (1) related and changing as the
time scale changes? Consider the following example.

Example 1. In [7], we considered

xΔ = 4x
(

3
4 − x

)
, x(0) = x0. (2)

On the Eulerian time scales, μZ+, for 0 < μ ≤ 1, solving Eq. (2) is equivalent to
iterating

Lμ(x) = 4μx
(

3μ+1
4μ − x

)
.

For μ = 1, we have

L1(x) = 4x(1− x)

defined on Z. On the other hand, as μ tends to 0, the solutions tend towards
the solution of the logistic differential equation on R+. For 0 < μ ≤ 1, Lμ is
topologically conjugate to

Qc(x) = x2 + c,

where c = 1
4(1− 9μ2). Every μ ∈ (0,1] corresponds to exactly one c ∈

[
−2,1/4

)
:

c =−2 ⇐⇒ μ = 1 and c→ 1/4asμ → 0.

This example shows that the solutions of differential and difference equations can
be related by passing through the time scales. In this particular example, all of the
dynamics of real quadratic polynomials are displayed!



Topological Structures for Studying Dynamic Equations on Time Scales 545

In Example 1, the domain of the solutions on Eulerian time scales is treated as a
parameter of a family of dynamical systems. We do not know what happens when
non-Eulerian time scales (i.e., not μZ) are allowed. Nonunique solutions can make
things even more complicated.

This suggests the following approach. For any given initial value problem, treat
the time scales as a parameter. Let CL(R) denote the set of all time scales and let
S denote the set of all solutions of the initial value problem on all possible time
scales. Consider the canonical projection:

S
⏐
⏐
Dπ

CL(R).

(3)

That is, an element of S , a solution x : T→R, projects to its domain, T. What can
we say about this projection, especially when there are nonunique solutions? Under
what conditions is there unique lifting? Can we follow two different paths from
the same starting point (a solution on the initial time scale) to different solutions
following the same path of time scales? Can a loop in CL(R) lift to a path that is not
a loop? How can this approach help us to understand the changes in dynamics of
solutions caused by changes in their time scales? In order to make sense of these
questions, we must first discuss the topologies on these sets.

From the point of view of applications, the topological properties of the space of
time scales should be important.

2 Hyperspace Topologies

Given a topological space X , researchers in hyperspace theory use the following
notation:

CL(X) = {A⊂ X |A �= /0andAisclosedinX } .

We are especially interested in the set of time scales, CL(R), and the set of real-
valued functions on time scales.

There are several well-known topologies in use in hyperspace theory. Among
these are the Hausdorff metric topology (for a metric space) introduced in [4] and
the Vietoris topology introduced in [9]. See [6] for a good introduction to these
hyperspace topologies.

We need a topology on CL(R) that makes sense from a dynamical systems point
of view. It has been noted that neither the topology induced by the Hausdorff metric
nor the hit-and-miss topology described by Vietoris satisfies this condition. Consider
the following sequences as (see [7]).

(1) [−n,n] does not converge to R with respect to the Hausdorff metric.
(2) Z+ 1

n does not converge to Z with respect to the Vietoris topology.
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We need to specify the topologies on the space of time scales and its space of
real-valued functions, where we find the space of solutions of a dynamic equation
parameterized by the domain.

Let us briefly move to a more general setting.

Definition 1. A hyperspace is a set of nonempty closed subsets of a topological
space X . The set of all nonempty closed subsets of X is denoted CL(X). We also use
the notation CL(X) = CL(X)∪{ /0}.

For example, CL(R) is the set of all time scales and CL(R) = CL(R)∪{ /0} is the
set of all closed subsets of R, including all time scales and the empty set.

From here on, let X be a metric space. We give two equivalent ways of describing
the dynamically appropriate topology on CL(X).

Firstly, a dynamical point of view suggests that the limit, T, of a sequence {Tn}
in CL(X) should be defined by the following:

(1) If t ∈ T, then every open set U such that t ∈U intersects all but finitely many
Tn’s.

(2) If every open set U containing t intersects infinitely many Tn’s, then t ∈ T.

This is sometimes called L-convergence (see [6]). The topology generated by L-
convergence (in the sense that closed sets contain their sequential limit points) is
sometimes called the Hausdorff topology since these properties were studied in [4].

Secondly, the hit-and-miss nature of the Vietoris topology leads to the Fell
topology (see [2]). The Fell topology on CL(X) is generated by the “hit sets” U−

for all open subsets U of X and the “miss sets” V+ for all cocompact subsets V of
X . That is, every closed set A in U− intersects the open set U and every closed set
A in V+ misses the compact set X−V :

U− = {A ∈ CL(X)|A∩U �= /0}

and

V+ = {A ∈ CL(X)|A⊂V}

= {A ∈ CL(X)|A∩ (X−V) = /0}.

It was shown in [8] that the Hausdorff and Fell topologies agree.

Theorem 1. Let X be metrizable. Let {Tn} be a sequence in CL(X). {Tn}
converges to T in the Fell topology if and only if {Tn} L converges to T.

Hence, we call this topology the Hausdorff-Fell topology on CL(X). By con-
vergence in CL(X), we will mean convergence with respect to the Hausdorff-Fell
topology on CL(X).
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3 The Role of Finite Time Scales

A time scale is totally discrete if all of its points are isolated (it has no accumulation
points). These correspond with variable step-size Euler’s methods of first-order
differential equations. We denote the subspace of totally discrete time scales in
CL(R) by CLD(R).

It was shown in [3] that with respect to the Hausdorff metric, CLD(R) is dense
in CL(R).

We can improve on this in the Hausdorff-Fell topology. We denote the subspace
of finite time scales in CL(R) by CLF(R). So,

CLF(R)⊂ CLD(R)⊂ CL(R).

Theorem 2. CLF(R) is dense in CL(R).

Proof. Choose a time scale T ∈ CL(R). We will construct a sequence {Tn } in
CLF(R) that L converges to T.

Fix n. Set Sn = T∩ [−n,n]. Consider the collection of open intervals

N

(
t,

1
n

)
=

(
t− 1

n
, t +

1
n

)

for all t ∈ Sn. Since Sn is compact, there exist t1n , t2n , . . . , tkn such that

N

(
t1n ,

1
n

)
,N

(
t2n ,

1
n

)
, . . . ,N

(
tkn ,

1
n

)

covers Sn. Set Tn = { t1n , t2n , . . . , tkn }.
It is easy to verify that {Tn } L converges to T. �	

There are many interesting facts about CL(X) and CL(X) with the Hausdorff-
Fell topology. For example:

• If X is Hausdorff, then CL(X) is compact and CL(X) is the one-point compacti-
fication of CL(X).

• If X is compact metric space, then the Hausdorff metric topology, Vietoris
topology, and Hausdorff-Fell topology are equivalent.

This generalizes to metric spaces. From the point of view of applications,
Theorem 2 may not be surprising. It is impractical to do more than finitely many
computations even when examining asymptotic behavior. In practice, using the
Hausdorff metric or the Vietoris topology on a large but bounded subset ofR suffices
and is much the same.
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4 The Space of Continuous Functions on Time Scales

Recall that for topological spaces X and Y , a subbasis for the compact-open topology
on the set, C(X ,Y ), of continuous functions from X to Y is

S(K,U) = { f ∈C(X ,Y ) | f (K)⊂U }

for all compact subset K of X and open subsets U of Y .
Since we are interested in function spaces over variable domains, we must unite

the standard function spaces. For a closed subset K of X , a function f : K → Y can
be thought of as a partial function from X to Y—the domain of definition is K rather
than X . By a partial mapping, we will mean a continuous partial function. The set
of all partial mappings from X to Y is

Cp(X ,Y ) = ∪{C(K,Y ) |K ∈ CL(X) } .

So, Cp(R,R) is the space of all continuous real-valued functions on time scales.
Suppose that X and Y are metric spaces. So X ×Y is metrizable. We wish to

give a topology on Cp(X ,Y ) that is consistent with the compact-open topology on
C(X ,Y ).

Consider the function Gr : Cp(X ,Y ) → CL(X × Y ) that sends each partial
mapping to its graph. Note that Gr is injective. We can pull back the Hausdorff-
Fell topology on CL(X×Y) to give a topology on Cp(X ,Y ).

In this sense, we can consider the topology of the solution space of an initial
value problem on dynamic equations on time scales. For example, the following is
true by design:

Theorem 3. Let B be a subset of CL(R). If the initial value problem (1) has unique
solutions for all T ∈B and S is the set of all such solutions, then the projection π
in (3) maps S homeomorphically onto B.

No examples that are more complicated are understood.
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Existence of Nonoscillatory Solutions
of the Discrete FitzHugh-Nagumo System

Ana Pedro and Pedro Lima

Abstract In this work, we are concerned with a system of two functional differ-
ential equations of mixed type (with delays and advances), known as the discrete
Fitzhugh-Nagumo equations, which arises in the modeling of impulse propagation
in a myelinated axon:

C dv
dt (t) =

1
R (v(t + τ)− 2v(t)+ v(t− τ))+ f (v(t))−w(t)

dw
dt = σv(t)− γw(t).

(1)

In the case γ = σ = 0, this system reduces to a single equation, which is well
studied in the literature. In this case it is known that for each set of the equation
parameters (within certain constraints), there exists a value of τ (delay) for which
the considered equation has a monotone solution v satisfying certain conditions at
infinity. The main goal of the present work is to show that for sufficiently small
values of the coefficients in the second equation of system (1), this system has a
solution (v,w) whose first component satisfies certain boundary conditions and has
similar properties to the ones of v, in the case of a single equation. With this purpose
we linearize the original system as t→−∞ and t→∞ and analyze the corresponding
characteristic equations. We study the existence of nonoscillatory solutions based on
the number and nature of the roots of these equations.
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Keywords Discrete Fitzhugh-Nagumo equations • Non-oscillatory solutions
• Mixed-type functional-differential equations

1 Introduction

The modeling of propagation of impulses in nerve axons was started in the works
of FitzHugh [5, 6] and J.Nagumo and his co-authors [10]. In the particular case
of myelinated axons, studied by J. Bell, for example, in [1] and [2], the nerve
membrane is insulated by a substance called myelin; therefore only a small part
of it is exposed to the extracellular medium at the nodes of Ranvier. In this case,
the propagation of nerve impulses may be modeled by the following system of
differential-difference equations:

C dvk
dt = 1

R (vk+1− 2vk + vk−1)+ f (vk)−wk
dwk
dt = σvk− γwk,

(2)

where vk and wk are the potential and the recovery variables, respectively, at the k-th
node of Ranvier (k is an integer). System (2) was derived from the so-called HH-
model, introduced by Hodgkin and Huxley [7], which describes the excitation and
flow of electric current through a nerve fiber. The HH-model consists of a system
of four ODEs with four unknowns, which of them has a certain physical meaning.
In order to make this system more tractable analytically, FitzHugh [5] has reduced
it to a system of two equations, which in the case of space discretization yields
system (2). Therefore, this last system is not derived directly from physiological
principles and not all its variables can be identified physically. However it contains
much of the relevant behavior expected in physiological models. As said above vk

describes the membrane potential, while wk is responsible for “accommodation and
refractoriness” [5]. Moreover, R and C in the first equation can be identified with
axoplasmical resistance and nodal membrane capacitance, respectively, while γ and
σ are positive constants used to describe the dynamics of the recovery processes.
The function f represents a current-voltage relation and is given by

f (v) = bv(1− v)(v− a), (3)

where b is positive, 0 < a < 1/2. Assuming that the Ranvier nodes are identical and
uniformly spaced (with internodal length L) and that the impulse propagates at a
certain constant speed θ , we must have

vk(t) = vk+1(t + τ),

where τ = L/θ . Then, omitting the index k, system (2) may be written as a system
of mixed-type functional differential equations
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C dv
dt (t) =

1
R (v(t + τ)− 2v(t)+ v(t− τ))+ f (v(t))−w(t)

dw
dt = σv(t)− γw(t).

(4)

The case γ = σ = 0 in (2) and (4) has been subject of detailed analysis.
Physically, this corresponds to the case where the variation of the recovery
variable w is negligible and the system reduces to a single mixed-type functional
differential equation. In [2] sufficient conditions on the parameters of the equation
are given so that it has a unique monotone solution v, which satisfies the following
conditions:

lim
t→−∞

v(t) = 0, lim
t→∞

v(t) = 1, v(0) =
1
2
. (5)

In [3], a numerical method was proposed and numerical results were presented for
this equation.

Concerning system (4), as far as we know, there are few available results
about the existence of nonoscillatory solutions. The main purpose of the present
paper is to analyze this problem, starting with the case where γ and σ are close
to zero (i.e. considering that the recovery variable w changes slowly). With this
purpose, we linearize the system at its stationary points and study the corresponding
characteristic equations.

The outline of this paper is as follows: in Sect. 2, we present some results of
Oscillation theory for linear systems of mixed-type functional differential equations.
In Sect. 3 we apply the obtained results to system (4) after linearizing it at its
stationary points. Finally, in Sect. 4 we present some conclusions.

2 Oscillation Theory for Systems of Linear Mixed-Type
Functional Differential Equations

An important part of the analysis of linear functional differential equations is
devoted to the problem of existence of oscillatory and nonoscillatory solutions
of such equations. Recently, some works have been devoted to the oscillatory
behaviour of linear systems of mixed-type functional differential equations [4, 11].
For our purposes we will need only one result on a particular case, which is
concerned with systems of two equations, with one delay and one advance. The
possibility of extending this result to a more general context will be considered in a
separate paper.

The result that we will apply in Sect. 3 of this paper may be formulated as the
following theorem.

Theorem 1. Consider a system of two mixed-type functional differential equations
of the form:
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dx
dt

(t) = Ax(t− r)+Bx(t+ τ)+Dx(t), t ∈ IR (6)

where A,B,D are 2× 2 real-valued matrices and r and τ are positive constants.
Suppose the following conditions are satisfied:

1. Det A = Det B =0.
2. Tr(A) and Tr(B) are different from 0 and have the same sign.

Then system (6) has at least one nonoscillatory solution.

Proof. We begin by noting that the characteristic equation of the considered system
has the form

F(λ ,τ,r) = λ 2−Q2(λ )exp(−2λ r)−Q1(λ )exp(−λ r)−

R2(λ )exp(2λ τ)−R1(λ )exp(λ τ)− S exp(λ (−r+ τ))−Q0(λ ) = 0,

(7)

where

Q2(λ ) =−DetA, R2(λ ) =−DetB,

Q1(λ ) = λ (a11 + a22)+ a21d12 + a12d21− a11d22− d11a22,

R1(λ ) = λ (b11 + b22)+ b21d12 + b12d21− b11d22− d11b22,

Q0(λ ) = λ (d11 + d22)−DetD,

S =−a11b22− b11a22 + a21b12 + a12b21.

Our argument is based on the fact that, under the conditions of the theorem,
for sufficiently large λ we have sign(F(λ ,τ,r)) = −sign(F(−λ ,τ,r)). Actually,
from condition 1 it follows that Q2(λ ) = R2(λ ) = 0. In this case, as |λ | → ∞,
the function F(λ ,τ,r) is dominated by either R1(λ )exp(λ τ),Q1(λ )exp(−λ r) or
S exp(λ (−r + τ)). Concerning the term with S, as λ → ±∞, it may decay or
grow exponentially, but in this case, it grows slower than the terms with Q1(λ )
or R1(λ ). Suppose now that Tr(A) > 0 ; then, by condition 2, Tr(B)> 0; hence, as
λ → −∞,Q1(λ )exp(−λ r) tends to −∞ and R1(λ )exp(λ τ) tends to 0; therefore
F(λ ,τ,r) → +∞. On the other hand, as λ → +∞, R1(λ )exp(λ τ) tends to +∞
and Q1(λ )exp(−λ r) tends to 0; therefore F(λ ,τ,r)→−∞. In the same way, one
shows that if Tr(A) < 0, Tr(B) < 0 we have F(λ ,τ,r)→ −∞, as λ → −∞, and
F(λ ,τ,r)→+∞, as λ →+∞.

In any case, this means that F(λ ,τ,r) has at least one real root and therefore
system (6) has at least one nonoscillatory solution.
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3 Application to the Discrete FitzHugh-Nagumo System

The stationary points of the discrete Fitzhugh-Nagumo system (4) are the roots of
the system

{
f (v)−w = 0,
σv− γw = 0.

(8)

This system may be also written in the form

{
w = f (v),
w = σv

γ .
(9)

Let us assume that γ > 0 and 0 ≤ σ
γ < δ , where δ is a sufficiently small positive

constant. From Fig. 1 we easily conclude that, besides the trivial solution v =
0,w = 0, system (8) has also the non-zero solution (v∗,w∗), such that a < v∗ < 1,
w∗ = f (v∗). As σ → 0, we have v∗ → 1, w∗ → 0, so that in the limit case we
obtain v = 1,w = 0. Assuming that the stationary point (v∗,w∗) exists, we search
for a monotone solution of the FitzHugh-Nagumo equations which satisfies the
conditions:

limt→−∞ v(t) = limt→−∞ w(t) = 0,
limt→+∞ v(t) = v∗, limt→+∞ w(t) = w∗.

(10)

0.2 0.4 0.6 0.8 1.0
v

0.5

1.0

w

a v∗

Fig. 1 Finding the roots of system (8) in the case a = 0.25, b = 15, γ = 1, σ = 0.5. The curve is
the graphic of f (v) and the straight line represents w = σ

γ v. The point v∗ is the closest to (1,0) root
of the system
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We will now write the linear systems resulting from the linearization of (4) at
(0,0) and (v∗,w∗). In matrix form, this system can be written as

[ dv
dt
dw
dt

]
=

[ 1
R 0
0 0

][
v(t− τ)
w(t− τ)

]
+

[ 1
R 0
0 0

][
v(t + τ)
w(t + τ)

]
+

[ −2
R + c −1

σ −γ

][
v(t)
w(t)

]
, (11)

where c = f ′(0), in the case of the stationary point (0,0), and c = f ′(v∗), in the
case of the stationary point (v∗,w∗). For system (11) we obtain the characteristic
equation:

λ 2− λ + γ
R

exp(−λ τ)− λ + γ
R

exp(λ τ)−λ
[
(
−2
R

+ c− γ)
]
+γ

[
(

2
R
− c)

]
+σ = 0.

(12)

We are interested in a solution of the original system which satisfies the boundary
conditions (10). If such a monotone solution exists, (12) must have at least one
positive root, in the case of c= f ′(0), and one negative root, in the case of c= f ′(v∗).

We begin with the case γ = σ = 0. In this case, as we have remarked above, the
system reduces to a single equation. The asymptotic behavior of the solutions of this
equation was analysed, for example, in [3].

The characteristic equation may then be reduced to the form:

λ 2− λ
R
(exp(−λ τ)+ exp(λ τ))−λ

[
(− 2

R
+ c)

]
= 0, (13)

where c = f ′(0), in the case of the stationary point v = 0, and c = f ′(1), in the case
of the stationary point v = 1. As remarked in the cited paper, in both cases Eq. (13)
has a positive and a negative root, which makes possible to obtain the asymptotic
behaviour of a monotone solution. Let us denote by λ+ the positive root of Eq. (13)
(in the case of c = f ′(0)) and by λ− the negative root of Eq. (13) (in the case of
c = f ′(1)). Then a monotone solution of the considered equation, if exists, must
have the asymptotic behavior:

v(t) =C1 exp(λ+t)(1+ o(1)), as t →−∞; (14)

v(t) =C2 exp(λ−t)(1+ o(1)), ast → ∞, (15)

where C1 and C2 are constants.
Analogously in the case of system (4) we are looking for a nonoscillatory

solution, which must have the asymptotic behavior

[
v(t)
w(t)

]
=

[
a1 exp(λ+t)(1+ o(1))
a2 exp(λ+t)(1+ o(1))

]
, as t →−∞; (16)
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and

[
v(t)
w(t)

]
=

[
v∗ − b1 exp(λ−t)(1+ o(1))
w∗ − b2 exp(λ−t)(1+ o(1))

]
, as t → ∞. (17)

In (16), λ+ is a positive root of Eq. (12) with c = f ′(0), while in (17) λ− is a
negative root of the same equation with c = f ′(w∗). Therefore, the existence of
a nonoscillatory solution of system (4), having the asymptotic behaviour defined
by (16) and (17), depends on the existence of the characteristic roots λ− and λ+.
It is much more difficult to establish the existence of such roots in the case of a
system than in the case of a single equation (when γ = σ = 0).

Let us now verify that the linear system (11) satisfies the conditions of Theorem
of Sect. 2. Actually, we have Det(A) = Det(B) = 0 and Tr(A) = Tr(B) = 1/R.
Therefore, each of the mentioned systems has at least a nonoscillatory solution or,
by other words, Eq. (12) has at least one real root.

Moreover, in the case γ = σ = 0 we know that Eq. (13) has exactly three real
roots: λ1 < 0, λ2 = 0 and λ3 > 0.

Let us now consider σ and γ such that
√

σ2 + γ2 < M (where M is sufficiently
small); then, in the case c = f ′(0) Eq. (12) still has at least one real root λ+, as
needed for the construction of the solution to the nonlinear system. Consider now
the case where c = f ′(w∗), where w∗ is a root of system (8). In order to guarantee
that this system has a root of the needed form we must have 0 < σ/γ < δ , where
δ is a certain constant. Therefore we must consider only pairs (γ,σ) which satisfy
this condition. Moreover, there exists a constant M′ > 0 such that if

√
σ2 + γ2 <

M′, Eq. (12) still has, at least, one negative root λ−. In conclusion, combining the
inequalities

√
σ2 + γ2 < min(M,M′) and 0 < σ/γ < δ , we obtain the conditions on

γ and σ under which the roots λ− and λ+ exist.
As known from the case γ = σ = 0 (without recovery process) the existence of

nonoscillatory solutions to Eq. (4) assures the existence of a traveling wave to the
system of Eq. (2), propagating with a certain constant speed. The above analysis
shows that such a traveling wave may exist also in the case where the second
equation is considered, provided that the intensity of the recovery processes does
not become too large. In particular, σ (which corresponds to the growing rate of the
recovery variable wk) should be sufficiently small compared with γ (the decay rate
for the same variable).

4 Examples and Conclusions

A computational algorithm was implemented in Mathematica to obtain numerical
approximations of system (4). This algorithm is based in the same ideas as the nu-
merical method described in [9], for the case of a single equation (γ = σ = 0). This
numerical method, on its turn, results from the application to nonlinear problems
of an approach previously developed for linear forward-backward equations [8].
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Fig. 2 Graphics of the functions v (upper line) and w (lower line) for the given example

First we fix an initial value v0 for v, such that v0 is a monotone function, v0 → 0,
as t → −∞ and v0 → v∗,as t → +∞. With this purpose, we have set v0(t) =
v∗
2

(
tanh(λ0

2 t)+ 1
)

, where λ0 is the positive characteristic root of the problem

with γ = σ = 0. Then, assuming that v = v0 and solving the second equation of
system (4), we obtain an initial approximation for w: w0(t) = σe−γt ∫ t

−∞ v0(s)eγsds.
Finally, assuming that w =w0, the first equation of system (4) is solved numerically,
using the algorithm described in [9], thus obtaining approximations of v, λ−,λ+ and
τ . This computation is then iterated until the norm of the difference between two
successive iterates is sufficiently small.

Next we present a numerical example which was solved using this algorithm.
The algorithm is still being improved with respect to accuracy, so that the numerical
results we present are still rough approximations. However, they give at least a
correct idea of the qualitative behavior of the solution.

Example 1. Let us consider the case where a = 0.05, b = 15, σ = 0.2, γ = 1,R =
C = 1. We need to analyze the asymptotic behavior of the solutions of system (4) in
this case. In order to obtain the stationary point (v∗,w∗), we must solve system (8).
The needed root of the system in this case is v∗ = 0.985751,w∗= 0.19715.

For the given example, after two iterations we obtain the approximate following
values:

λ+ = 6.498, λ− =−6.403, τ = 0.34096.

The graphics of the corresponding numerical approximations of v and w are
displayed in Fig. 2.

The results of our analysis, confirmed by this numerical example, lead us to the
following conclusions.
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In the case of small values of σ ,γ , γ �= 0, the Fitzhugh-Nagumo discrete equations
have a stationary point (v∗,w∗) such that v∗ ≈ 1, w∗ = σ

γ v∗. At this stationary
point, the characteristic equation has a negative root, indicating the existence of
a nonoscillatory solution (v(t),w(t)), which tends to (v∗,w∗) as t → ∞.

For the same values of σ ,γ the characteristic equation at the stationary point
(0,0) has a positive root, indicating the existence of a nonoscillatory solution
(v(t),w(t)) of the discrete FitzHugh-Nagumo equations, which tends to (0,0) as
t →−∞.

An interesting feature of the numerical results is that in the presence of recovery
processes, v may not be monotone (although tending monotonically to w∗ at
infinity). While in the case of γ = σ = 0, this function is increasing on the whole real
axis, and when the recovery processes are taken into consideration, the numerical
approximation of v gives a function that attains a maximum at a certain point and
then decreases monotonically to w∗.

In the near future, we intend to continue the investigation of oscillatory and
nonoscillatory behavior of mixed-type functional differential systems. On the other
hand, based on this analysis, we plan to improve the described computational
method for the approximation of the discrete Fitzhugh-Nagumo system.
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Abstract We investigate the extinction phenomena for some linear combinations
of components of the vector-valued solutions to classes of semilinear parabolic
systems. The crucial assumption on simultaneous splitting of the matrix-valued
elliptic operators and the nonlinear source term allow us to uncouple the systems
into a linear part and a scalar nonlinear equation depending on the solutions of
the linear part. We propose necessary conditions and sufficient conditions on the
existence of the extinction time for the solutions. We recapture as particular case
previous results and apply our abstract theorem to a class of 3×3 systems appearing
as models in chemical engineering.
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1 Introduction and Statement of the New Results

Broadly speaking, the aim of this paper is to study the (non)existence of extinction
solutions of parabolic initial boundary value problems to generalise the aforemen-
tioned results for general classes of parabolic systems of the following type:
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∂t�u+A�u = �f (t,x,�u), t > 0,x ∈Ω (1)

�u(0,x) = �u0(x), x ∈Ω (2)

and boundary conditions either of Dirichlet-type

�u(t,x) = �g(t,x), x ∈ ∂Ω (3)

or the Robin-type

∂ν�u+B�u(t,x) = �g(t,x), x ∈ ∂Ω, t > 0, (4)

where Ω ⊂ R
n is an open bounded domain with smooth boundary ∂Ω, �u =

(u1, . . . ,ud), �f = ( f1, . . . , fd) smooth and are real-valued, and ν = νx, x∈ ∂Ω, stands
for the unit outer normal vector to ∂Ω. Let Md( respectively Mk×l) be the space d×d
( k× l) real matrices; A stands for a second-order d× d matrix-valued operator

A = A(x,∂x) = {Aμν(x,∂x)}d
μ,ν=1, Aμν(x,∂x)v =

n

∑
j,k=1

∂x j (a
μν
jk (x)∂xk v) (5)

with aμν
jk ∈C∞(Ω̄ : Md(R)), aμν(x) := {aμν

jk } j,k=1,...,n, μ ,ν = 1, . . . ,d, are symmet-
ric, and, in the case of Robin-type boundary conditions,

B = B(x) = {bμν(x)}d
μ,ν=1. (6)

We define the principal symbol {Aμν;0(x,ξ )}d
j,k=1 of Aμν(x,∂x) by

Aμν;0(x,ξ ) =
n

∑
j,k=1

aμν
jk (x)(−iξ j)(−iξk) =−

n

∑
j,k=1

aμν
jk (x)ξ jξk (7)

and the principal symbol A0(x,ξ ) = {Aμν;0(x,ξ )}d
μ,ν=1. We assume that the system

is uniformly parabolic ([7, 8]), namely, the eigenvalues λ�(x,ξ ), � = 1, . . . ,d of
A0(x,ξ ) are simple and positive and belong to C∞(Ω̄× R

n \ 0), are positively
homogeneous of order 2 and for some C > 0 satisfy the uniform ellipticity condition

C−1|ξ |2 ≤ λ�(x,ξ )≤C|ξ |2, x ∈ Ω̄,ξ ∈R
n \ 0. (8)

Remark 1.1. Let A = −A0Δ, A0 ∈ Md(R). Then A is elliptic if the eigenvalues of
A0 are positive and distinct. We also recapture as particular cases the elliptic 2× 2
systems considered in [17, 18].

Parabolic systems of reaction-diffusion type model a great number of physical
and chemical phenomena. Among properties of the vector solution of the system,
blow-up phenomena has been widely investigated ([9, 10, 12, 16]).
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Another important property is the phenomena of the “extinction in finite time” for
the solution, i. e. there exists a time t∗> 0 (extinction time) such that for every t ≥ t∗

u(x, t)≡ 0

([14,15]). As a model case we consider a system appearing in chemical engineering:

∂t u1− μΔu1 = um
1 e−1/u2g(u3) (9)

∂t u2−νΔu2 = qum
1 e−1/u2g(u3) (10)

∂t u3−ρΔu3 = pum
1 e−1/u2g(u3) (11)

where m,μ ,ν,ρ , p,q are positive constants, g is smooth negative function and u j,
j = 1,2,3 are required to be positive. It is a kinetic model of an irreversible reaction
involving two reactant species with concentration u1,u2 and the temperature u3.
Systems (9)–(11) are an extension of the case 2× 2 considered in [17, 18]. For the
case of one equation, we refer to the paper [1], where the extinction is investigated
for the porous medium equation with absorption (m < 1)(see also [2, 3, 5]). Other
results for the extinction time t∗ are obtained in [13] in a very general contest. There
the authors Ragnedda, Vernier-Piro and Vespri consider a class of singular parabolic
problems with Dirichlet boundary conditions and derive estimate from above and
from below for the L2-norm of the solution in terms of the extinction time t∗ and the
asymptotic behaviour when the solution approaches t∗.

This paper is organised as follows: In Sect. 2 we propose sufficient conditions
for reducing initial boundary value problem (1),(2) with (3) or (4) to uncoupling
normal forms. Section 3 deals with necessary condition for extinction of some
linear combinations of the components u1(t,x), . . . ,ud(t,x), while Sect. 4 proposes
sufficient conditions.

2 Reduction to Uncoupled Normal Form

We assume the following condition on the degeneracy of the right-hand side: there
exists a unitary vector �κ ∈ R

d such that

�f (t,x,z) = f (t,x,z)�κ, t ≥ 0,x ∈ Ω̄,z ∈ R
d (12)

where

f (t,x,z) = ‖�f (t,x,z)‖, t ≥ 0,x ∈ Ω̄,z ∈ Rd . (13)

Clearly (12) is equivalent to say that

�f (t,x,z) ⊥ Γ, t ≥ 0, x ∈Ω, z ∈ R
d (14)
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where the hyperplane Γ is orthogonal to �κ, namely,

Γ := {�r ∈ R
d ; �κ ·�r = 0}. (15)

We denote by πΓ the orthogonal projection on Γ

πΓ : Rd −→ Γ, (16)

clearly, for every�r we have the following uniquely determined decomposition:

�r = πΓ(�r)+ (�r ·�κ)�κ, �r ∈ R
d . (17)

Next, we introduce the second condition for the uncoupling of the system into a
linear (d− 1)× (d− 1) system and a scalar nonlinear equation.

We suppose that there exists a nonsingular matrix Q = {Qμν}d
μ,ν=1 such that

QA(x,∂x)Q
−1 =

(
Ã(x,∂x) 0d−1×1

01×d−1 L(x,∂x)

)
, (18)

Q�κ = �ed =

⎛

⎜
⎜⎜
⎝

0
...
0
1

⎞

⎟
⎟⎟
⎠

(19)

and in the case of Robin-type boundary conditions,

QB(t,x)Q−1 =

(
B̃(t,x) 0d−1×1

01×d−1 b(t,x)

)
, t ≥ 0,x ∈ ∂Ω, (20)

where Ã(x,∂x) is (d − 1)× (d− 1) matrix-valued elliptic operator, L is a second-
order scalar elliptic operator and B̃(t,x) ∈C([0,+∞[×∂Ω : Md−1(R)), b ∈ B̃(t,x) ∈
C([0,+∞[×∂Ω : R).

We observe that, by standard linear algebra arguments, (18), (19) lead to

Q =

(
Q′

�κtr

)
, (21)

where Q′ ∈M(d−1)×d(R) while the last row (qd1, . . . ,qdd) coincides with �κtr .
We will use the change of the variables�v = Q�u.
Now we state the first main result of our paper.

Theorem 2.1. Assume that (12), (18), (19), (20) hold. Then �u(t,x) satisfies the
system (1) iff �v(t,x) = (�v′(t,x),vd(t,x)) satisfies the following uncoupled systems:
linear (respectively, semilinear) for �v′(t,x) (respectively, vd):
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∂t�v′+ Ã(x,∂x)�v′ = 0, t ≥ 0, x ∈Ω (22)

with initial data

�v′(0,x)) = �v′
0
(x) := Q′�u0(x), x ∈Ω (23)

and Dirichlet boundary condition

�v′(t,x) = �h′(t,x) := Q′�g(t,x), t ≥ 0,x ∈Ω (24)

or the corresponding Robin-type boundary condition

∂ν�v′(t,x)+ B̃�v′(t,x) = �h′ := Q′�g(t,x), t ≥ 0,x ∈Ω (25)

(respectively:

∂t vd +L(x,∂x)vd = g�v′(t,x,vd) :=
(

Q�f (t,x,Q−1�v(t,x))
)

d
t ≥ 0,x ∈Ω (26)

vd(0,x)) = v0
d(x) := �κ ·�u0(x), x ∈Ω (27)

with the Dirichlet boundary condition

vd(t,x) = hd(t,x) := �κ ·�g(t,x), t ≥ 0,x ∈Ω (28)

or the corresponding Robin-type boundary condition

∂νvd(t,x)+ b(t,x)vd(t,x) = hd(t,x) := �κ ·�g(t,x), t ≥ 0,x ∈Ω.) (29)

Proof. Set

�v(t,x) = Q�u(t,x), �u(t,x) = Q−1�v(t,x). (30)

In particular, (19), (30) and the orthogonality condition (15) yield that

�v(t,x) := Q�u(t,x) =

(
�v′(t,x)
vd(t,x)

)
, t ≥ 0, x ∈Ω, (31)

�v′ := Q′ ·�u(t,x) ∈R
d−1, t ≥ 0, x ∈Ω, (32)

vd(t,x) = �κ ·�u(t,x). (33)

On the other hand, since Q is orthogonal, we have

Q′ ·�κ = 0 ∈ R
d−1. (34)
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Plugging (30) into the system (1) and applying Q−1 to (1), we get, using the
hypotheses (18), (19), that

∂t�v+QAQ−1�v = ∂t�v+

(
Ã(x,∂x) 0d−1×1

01×d−1 L(x,∂x)

)
�v

= Q�f (t,x,Q−1�v(t,x)) = f (t,x,Q−1�v(t,x))Q�κ = f (t,x,Q−1�v(t,x))�ed (35)

which proves the uncoupling of the system into a linear part and a scalar nonlinear
one. Similarly, in the case of Robin-type boundary condition, using (20), we obtain
(25), (29). The proof is complete. �	

Remark 2.2. As a particular case, we capture the systems of two equations consid-
ered by Van Der Mee and Vernier-Piro [17]. Next, we point out that the system of 3
equations (9), (10), (11) satisfies (12) while (18), (19) hold, and as a consequence,
the system can be uncoupled, iff μ = ν = ρ .

3 Necessary Condition for the Existence of Extinction

The uncoupling of the system allows us to obtain immediately a necessary condition
for the existence of extinction solution of the nonlinear component vd(t,x).

Proposition 3.1. Suppose that vd(t,x) = 0 for some t ≥ t∗ > 0. Then

(
Q�f (t,x,Q−1(�v′(t,x),0)tr)

)

d
≡ 0

for some solutions of the linear part.

Proof. We transform the problem for vd and observe that in the case clearly the
necessary condition is given by

Fd(t,x,(v
′(t,x),0))≡ 0,

where �F(t,x,�v(t,x)) = (F1(t,x,�v(t,x)), . . . ,Fd(t,x,�v(t,x)))tr = Q�f (t,x,Q−1�v(t,x)).
�	

4 Existence of Extinction Time

In this section we prove that the extinction phenomena may occur only for vd

plus linear combination of v1, . . . ,vd−1, solutions of the linear system. Moreover,
in the framework of the L2 spaces, we introduce conditions on data sufficient for the
solution to vanish in finite time, deriving an upper bound for the extinction time.
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We have the following result.

Theorem 4.1. Consider the system (1), with fixed initial data (2) and zero Dirichlet
boundary condition. Suppose that

�u′(t,x) = Q−1
(
�v′(t,x)

0

)
(36)

be fixed solution of the linear system. Set

�uκ(t,x) = vd(t,x)�κ = (�κ ·�u(t,x))�κ. (37)

Suppose that w �→ g�v′(t,x,w), defined in (26), is monotone decreasing function
satisfying for some C =C�v′ > 0, δ ∈]0,1[ the following estimate:

g�v′(t,x,w) ≤−C|w|1−δ . (38)

Then |�uκ(t,x)|= |vd ||�κ| vanishes at some finite time t∗ with t∗ bounded by

t∗ ≤C1|�uκ,0|δC(Ω), (39)

where C1 > 0 is independent of the initial data.

Proof. We pass to the scalar equation for vd . We observe that the condition (39)
implies that g�v′ is bounded by a monotone decreasing function. Arguing as in [1], in
Sect. 3 and in [17], if Ū(t) is the solution of the problem

{
Ūt ≤−C|Ū |1−δ

Ū(0) = |�uκ,0|C(Ω),

then Ū(t) is a super solution of the analogous problem for vd , with no diffusion
term. If Ū vanishes at time T ∗, after an integration, we easily see that

T ∗ ≤ 1
Cδ
|�uκ,0|δC(Ω). (40)

By comparison principle also vd ( and |�uκ(t,x)|) vanishes at time t∗ ≤ T ∗ and (39)
is proved. �	

Example 4.2. Suppose that the nonlinear term is given by

�f (t,x,�u) =−(�κ�u)|�κ�u|m−1,

where m > 0. Then the extinction occurs if m < 1, while for m≥ 1 the extinction in
finite time does not occur.

We can provide also an abstract extinction in the framework of the L2 spaces
under additional conditions on A and the nonlinear term.
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Proposition 4.3. Suppose that the elliptic matrix-valued operator is symmetric,
namely,

(A�w,�w)L2(Ω) ≥ β‖�w(t, .)‖2
L2(Ω), w ∈ H1

0 (Ω), β > 0, (41)

and the nonlinear term satisfies the following dissipation-type estimate:

�f (t,x,z) · z≤−C|z|2−δ , t ≥ 0,x ∈ Ω̄,z ∈ R
d (42)

for some C > 0, δ ∈]0,1[. Then, if �u(t,x) is a solution as in the previous theorem
which belongs to C([0,+∞[: (H1

0 (Ω))d), then �u(t,x) vanishes for t ≥ t∗ with t∗

bounded by

t∗ ≤ 1

γ|Ω| δ
2

||�u0||δL2(Ω)
(43)

where γ > 0 is independent of the initial data.

Proof. The argument is standard. We have, after multiplying the system by �u and
then integrating over Ω,

1
2

d
dt
(‖�u(t, .)‖2

L2(Ω))+ (A�u,�u)L2(Ω) = (�f (t, .,�u(t, .),�u(t, .))L2(Ω) (44)

and obtain, in view of (41), (42), the estimate

d
dt
(‖�u(t, .)‖2

L2(Ω)) ≤ −C1‖�u(t, .)‖2−δ
L2−δ (Ω)

. (45)

Clearly ‖�u(t, .)‖L2(Ω) is decreasing and

lim
t→t∗

‖�u(t, .)‖L2(Ω) ≥ 0, t∗ =: sup{t > 0 : u(t, .) �≡ 0}. (46)

Integration from 0 to t leads to

‖�u(t, .)‖2
L2(Ω) ≤ ‖�u

0‖2
L2(Ω)−C1

∫ t

0
‖�u(τ, .)‖2−δ

L2−δ (Ω)
dτ. (47)

The Hölder inequality implies

‖�u(t, .)‖2
L2−δ (Ω)

≤ |Ω|
δ

2−δ ‖�u(t, .)‖2
L2(Ω). (48)

Thus, combining (48) and (47), we obtain

‖�u(t, .)‖2
L2−δ (Ω)

≤ |Ω|
δ

2−δ
(
‖�u0‖2

L2(Ω)−C1

∫ t

0
‖�u(τ, .)‖2−δ

L2−δ (Ω)
dτ
)
. (49)
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Setting ω(t) =
∫ t

0
‖�u(τ, .)‖2−δ

L2−δ (Ω)
dτ , with q =

2
2− δ

> 1, (49) becomes

ω ′(t) ≤ |Ω| δ
2

(
‖�u0‖2

L2(Ω)−C1ω(t)
)1/q

. (50)

Since ω(0) = 0 and ω(t) < ‖�u0‖2
L2(Ω)/C1, t < t∗, by setting C0 = ||�u0‖2

L2(Ω)
, then

integration of the differential inequality and the identity

∫ C0/C1

0

(
‖�u0‖2

L2(Ω)−C1η
)−1/q

dη =
2

δC1
||�u0||δL2(Ω)

(51)

implies the desired estimate (43). �	

Remark 4.4. We note that nonlinearity with sublinear growth near 0 might lead to
problems with the uniqueness of the solution (e.g. cf. [4] for semilinear parabolic
equations with nonlinear term with sublinear growth; see also [6, 11] and the
references therein for the role of the sublinear growth for the existence of compactly
supported solitary waves). Finally, we mention that more general results will be
given in a future work.
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Conjugacy of Discrete Semidynamical Systems
in the Neighbourhood of Invariant Manifold

Andrejs Reinfelds

Abstract The conjugacy of discrete semidynamical system and its partially decou-
pled discrete semidynamical system in Banach space is proved in the neighbourhood
of the trivial invariant manifold.

The conjugacy for noninvertible mappings in Banach space was considered by B.
Aulbach and B. M. Garay [1–3]. For noninvertible mappings in a complete metric
space, it was extended and generalized by A. Reinfelds [4–8]. In this paper we
consider the case when the linear part of the noninvertible mapping depends on the
behaviour of variables in the neighbourhood of the invariant manifold.

Definition 1. Two discrete semidynamical systems Sn,T n : X→ X (n ∈ N) are
conjugate, if there exists a homeomorphism H : X→X such that

Sn ◦H(x) = H ◦T n(x).

Definition 2. Two mappings S,T : X→X are conjugate, if there exists a homeo-
morphism H : X→ X such that

S ◦H(x) = H ◦T (x).

It is easily verified that two discrete semidynamical systems Sn and T n, generated by
mappings S and T , are conjugate if and only if the mappings S and T are conjugate.

Let E and F be Banach spaces, B(a) = {r ∈ F | |r| ≤ a} and a > 0. Consider the
following mapping S : E×B(a)→ E×B(a) defined by

x1 = g(x)+Ψ(x,r) = X(x,r)
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r1 = A(x)r+Φ(x,r) = R(x,r), (1)

where derivative of diffeomorphism g : E→ E is uniformly continuous ‖Dg(x)−
Dg(x′)‖ ≤ ω(|x− x′|), supx ‖A(x)‖+ ε < 1, mappings A, Ψ, and Φ are Lipschitzian

‖A(x)−A(x′)‖ ≤ γ|x− x′|,

|Ψ(x,r)−Ψ(x′,r′)| ≤ ε(|x− x′|+ |r− r′|),

|Φ(x,r)−Φ(x′,r′)| ≤ ε(|x− x′|+ |r− r′|)

and Φ(x,0) = 0.

Theorem 1. If supx(‖(Dg(x))−1‖‖A(x))‖)+ 4ε supx ‖(Dg(x))−1‖ < 1, then there
exists a continuous map v : E×B(δ )→ E that is Lipschitzian with respect to the
second variable and such that the mappings (1) and

x1 = X(x,0)

r1 = R(x+ v(x,r),r) (2)

are conjugated in a small neighbourhood of the invariant manifold r = 0.

We will seek the mapping establishing the conjugacy of (1) and (2) in the form

H(x,r) = (x+ v(x,r),r).

We get the following functional equation:

X(x+ v(x,r),r) = X(x,0)+ v(X(x,0),R(x+ v(x,r),r)) (3)

or equivalently

v(x,r) = (Dg(x))−1 (Dg(x)v(x,r)−X(x+ v(x,r),r)

+ X(x,0)+ v(X(x,0),R(x+ v(x,r),r))) .

The proof of the theorem consists of four lemmas.

Lemma 1. The functional equation (3) has a unique solution in M1.

Proof. The set of continuous maps v : E×B(δ )→ E

M =

{

v ∈ C(E×B(δ ),E)

∣
∣
∣
∣
∣

sup
x,r

|v(x,r)|
|r | <+∞

}

becomes a Banach space if we use the norm ‖v‖= supx,r
|v(x,r)|
|r | . The set

M1 =
{

v ∈M | ‖v‖ ≤ 1 and |v(x,r)− v(x,r′)| ≤ |r− r′|
}

is a closed subset of the Banach space M .
Let us consider the mapping v �→L v, v ∈M1 defined by the equality
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L v(x,r) = (Dg(x))−1v(X(x,0),R(x+ v(x,r),r))

+(Dg(x))−1 (Dg(x)v(x,r)− g(x+ v(x,r))−Ψ(x+ v(x,r),r)+ g(x)+Ψ(x,0)).

First we obtain

|L v(x,r)| ≤ ‖(Dg(x))−1‖(|R(x+ v(x,r),r)|+(ω(|r|)+ 2ε)|r|)

≤ ‖(Dg(x))−1‖(‖A(x)‖+ 3ε+ω(|r|)+ γ|r|) |r|.

Here we used Hadamard’s lemma

g(x′)− g(x) =
∫ 1

0
Dg(x+θ (x′ − x))dθ (x′ − x).

Next we get

|L v(x,r)−L v(x,r′)| ≤ ‖(Dg(x))−1‖|R(x+ v(x,r),r)−R(x+ v(x,r′),r′)|

+‖(Dg(x))−1‖|Dg(x)(v(x,r)− v(x,r′))− g(x+ v(x,r))+ g(x+ v(x,r′))|

+‖(Dg(x))−1‖|Ψ(x+ v(x,r),r)−Ψ(x+ v(x,r′),r′)|

≤ ‖(Dg(x))−1‖
(
‖A(x)‖+ 4ε+ω(max{|r|, |r′|})+ 2γ max{|r|, |r′|}

)
|r− r′|.

In addition,

|L v(x,r)−L v′(x,r)| ≤ ‖(Dg(x))−1‖|R(x+ v(x,r),r)−R(x+ v′(x,r),r)|

+‖(Dg(x))−1‖|v(X(x,0),R(x+ v(x,r),r))− v′(X(x,0),R(x+ v(x,r),r))|

+‖(Dg(x))−1‖|Dg(x)(v(x,r)− v′(x,r))− g(x+ v(x,r))+ g(x+ v′(x,r))|

+‖(Dg(x))−1‖|Ψ(x+ v(x,r),r)−Ψ(x+ v′(x,r),r)|

≤ ‖(Dg(x))−1‖(‖A(x)‖+ 3ε+ω(|r|)+ 2γ|r|)‖v− v′‖|r|.

We choose δ > 0, where max{|r|, |r′|}= δ ≤ a, such that

sup
x
(‖(Dg(x))−1‖‖A(x)‖)+ (4ε+ω(2δ )+ 4γδ )sup

x
‖(Dg(x))−1‖< 1.

Then ‖L v‖ ≤ 1, |L v(x,r)−L v(x,r′)| ≤ |r− r′|, the mapping L is a contraction
and consequently the functional equation (3) has unique solution in M1. �	

Next we will prove that the mapping H is a homeomorphism in the small
neighbourhood of the invariant manifold r = 0. Let us consider the functional
equation

X(x+ v1(x,r),0) = X(x,r)+ v1(X(x,r),R(x,r)) (4)
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or equivalently

v1(x,r) = (Dg(x))−1 (Dg(x)v1(x,r)−X(x+ v1(x,r),0)

+ X(x,r)+ v1(X(x,r),R(x,r))) .

Lemma 2. The functional equation (4) has a unique solution in M2.

Proof. The set

M2 = {v ∈M | ‖v‖ ≤ 1}

is a closed subset of the Banach space M .
Let us consider the mapping v1 �→L v1, v1 ∈M2 defined by the equality

L v1(x,r) = (Dg(x))−1v1(X(x,r),R(x,r))

+(Dg(x))−1(Dg(x)v1(x,r)−g(x+ v1(x,r))−Ψ(x+ v1(x,r),0)+g(x)+Ψ(x,r)).

We have

|L v1(x,r)| ≤ ‖(Dg(x))−1‖(|R(x,r)|+ω(|r|)+ 2ε) |r|

= ‖(Dg(x))−1‖(‖A(x)‖+ 3ε+ω(|r|)) |r|.

We obtain

|L v1(x,r)−L v′1(x,r)|

≤ ‖(Dg(x))−1‖|Dg(x)(v1(x,r)− v′1(x,r))− g(x+ v1(x,r))+ g(x+ v′1(x,r))

−Ψ(x+ v1(x,r),0)−Ψ(x+ v′1(x,r),0)|

+|(Dg(x))−1(v1(X(x,r),R(x,r))− v′1(X(x,r),R(x,r)))|

≤ ‖(Dg(x))−1‖(‖A(x)‖+ω(|r|)+ 2ε)‖v1− v′1‖|r|.

We get ‖L v1‖ ≤ 1, L is a contraction and consequently the functional equation (4)
has a unique solution in M2. �	

Consider the mapping G defined by equality G(x,r) = (x+ v1(x,r),r).

Lemma 3. G◦H = id.

Proof. Let us consider the functional equation

X(x+ v2(x,r),0) = X(x,0)+ v2(X(x,0),R(x+ v(x,r),r)) (5)

or equivalently

v2(x,r) = (Dg(x))−1 (Dg(x)v2(x,r)−X(x+ v2(x,r),0)

+ X(x,0)+ v2(X(x,0),R(x+ v(x,r),r))) .
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It is easily verified that the functional equation (5) has a trivial solution. Let us prove
the uniqueness of the solution in M3, where

M3 = {v2 ∈M | ‖v2‖ ≤ 2}

is a closed subset of the Banach space M . We get

|v2(x,r)| ≤ ‖(Dg(x))−1‖|Dg(x)v2(x,r)− g(x+ v2(x,r))+ g(x)|

+‖(Dg(x))−1‖|Ψ(x+ v2(x,r),0)−Ψ(x,0)|

+‖(Dg(x))−1‖|v2(X(x,0),R(x+ v(x,r),r))|

≤ ‖(Dg(x))−1‖(‖A(x)‖+ 2ε+ω(‖v2‖|r|)+ γ‖v2‖|r|))‖v2‖|r|.

It follows that v2(x,r)≡ 0. The mapping w1 ∈M3, where

w1(x,r) = v(x,r)+ v1(x+ v(x,r),r)

also satisfies the functional equation (5). Using the change of variables x �→ x+
v(x,r) in (4), we get

X(x+w1(x,r),0) = X(x+ v(x,r),r)+ v1(X(x+ v(x,r),r),R(x+ v(x,r),r)).

Using (3), we obtain

X(x+w1(x,r),0) = X(x,0)+ v(X(x,0),R(x+ v(x,r),r))

+v1(X(x,0)+ v(X(x,0),R(x+ v(x,r),r)),R(x+ v(x,r),r))

= X(x,0)+w1(X(x,0),R(x+ v(x,r),r)).

Consequently, we have

v(x,r)+ v1(x+ v(x,r),r) = 0.

We obtain that G◦H = id. �	

Lemma 4. H ◦G = id.

Proof. The set of continuous maps v3 : E×B(δ )×B(δ )→ E

N =

{

v3 ∈ C(E×B(δ )×B(δ ),E)

∣
∣∣
∣
∣

sup
x,r,z

|v3(x,r,z)|
max(|r |, |z− r |) < ∞

}

becomes a Banach space if we use the norm ‖v3‖= supx,r,z
|v3(x,r,z)|

max (|r |,|z−r |) . The set

N1 =
{

v3 ∈N | ‖v3‖ ≤ 1 and |v3(x,r,z)− v3(x,r,z
′)| ≤ |z− z′|

}

is a closed subset of the Banach space N .
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Let us consider the functional equation

X(x,r)+ v3(X(x,r),R(x,r),R(x+ v3(x,r,z),z)) = X(x+ v3(x,r,z),z) (6)

or equivalently

v3(x,r,z) = (Dg(x))−1 (Dg(x)v3(x,r,z)− g(x+ v3(x,r,z))+ g(x)

+Ψ(x,r)−Ψ(x+ v3(x,r,z),z)+ v3(X(x,r),R(x,r),R(x+ v3(x,r,z),z))).

Let us consider the mapping v3 �→L v3, v3 ∈N1 defined by the equality

L v3(x,r,z) = (Dg(x))−1 (Dg(x)v3(x,r,z)− g(x+ v3(x,r,z))+ g(x)

−Ψ(x+ v3(x,r,z),z)+Ψ(x,r)+ v3(X(x,r),R(x,r),R(x+ v3(x,r,z),z))).

We obtain

|L v3(x,r,z)| ≤ ‖(Dg(x))−1‖(ω(max{|r |, |z− r |})+ 2ε)max{|r |, |z− r |}

+‖(Dg(x))−1‖max{|R(x,r)|, |R(x+ v3(x,r,z),z)−R(x,r)|}

≤ ‖(Dg(x))−1‖(‖A(x)‖+ 4ε)max{|r |, |z− r |}

+‖(Dg(x))−1‖(ω(max{|r |, |z− r |})+ γ|z|)max{|r |, |z− r |}.

In addition,

|L v3(x,r,z)−L v3(x,r,z
′)|

≤ ‖(Dg(x))−1‖|Dg(x)(v3(x,r,z)−v3(x,r,z
′))−g(x+v3(x,r,z))+g(x+v3(x,r,z

′))|

+‖(Dg(x))−1‖|Ψ(x+v3(x,r,z),z)−Ψ(x+v3(x,r,z
′),z′)|

+‖(Dg(x))−1‖|R(x+ v3(x,r,z),z)−R(x+ v3(x,r,z
′),z′)|

≤ ‖(Dg(x))−1‖(ω(max{|r |, |z−r |, |z′−r |})+ 2ε)|z− z′|

+‖(Dg(x))−1‖(‖A(x)‖+ 2ε+ 2γ max{|r |, |z |, |z′ − r |})|z− z′|

= ‖(Dg(x))−1‖(‖A(x)‖+ 4ε)|z− z′|

+‖(Dg(x))−1‖(ω(max{|r |, |z− r |, |z′ − r |})+ 2γ max{|r |, |z |, |z′ − r |})|z− z′|.

Let v3 ∈N1 and v′3 ∈N1∪N2 where

N2 =

{

v′3 ∈N

∣
∣∣
∣
∣

sup
x, |r|≤δ , |z|≤δ

|v′3(x,r,z)| ≤ 2δ and |v3(x,r,z)−v3(x,r,z
′)|≤|z−z′|

}

.

We have

|L v3(x,r,z)−L v′3(x,r,z)|



Conjugacy of Discrete Semidynamical Systems 577

≤ ‖(Dg(x))−1‖|Dg(x)(v3(x,r,z)−v′3(x,r,z))−g(x+v3(x,r,z))+g(x+v′3(x,r,z))|

+‖(Dg(x))−1‖|Ψ(x+ v3(x,r,z),z)−Ψ(x+ v′3(x,r,z),z)|

+‖(Dg(x))−1‖|v3(X(x,r),R(x,r),R(x+ v3(x,r,z),z))

−v′3(X(x,r),R(x,r),R(x+ v3(x,r,z),z))|

+‖(Dg(x))−1‖|v′3(X(x,r),R(x,r),R(x+ v3(x,r,z),z))

−v′3(X(x,r),R(x,r),R(x+ v′3(x,r,z),z))|

≤ ‖(Dg(x))−1‖(ω(max{|r |, |r− z |,2δ})+ ε)‖v3− v′3‖max{|r |, |z− r |}

+‖(Dg(x))−1‖max{|R(x,r)|, |R(x+ v3(x,r,z),z)−R(x,r)|}‖v3− v′3‖

+‖(Dg(x))−1‖|R(x+ v3(x,r,z),z)−R(x+ v′3(x,r,z),z)|

≤ ‖(Dg(x))−1‖(ω(2δ )+ ε)‖v3− v′3‖max{|r |, |z− r |}

+‖(Dg(x))−1‖(‖A(x)‖+ 2ε+ γ |z |)‖v3− v′3‖max{|r |, |z− r |}

+‖(Dg(x))−1‖(ε + γ |z |)‖v3− v′3‖max{|r |, |z− r |}

= ‖(Dg(x))−1‖(‖A(x)‖+ 4ε+ω(2δ )+ 2γ |z |)‖v3− v′3‖max{|r |, |z− r |}.

Then ‖L v3‖ ≤ 1, |L v3(x,r,z)−L v3(x,r,z′)| ≤ |z− z′|, the mapping L is a
contraction and consequently the functional equation (6) has a unique solution in
N1. Moreover, this solution is also unique in the closed subset N2. Let us note that

v3(x,r,r) = 0.

The mapping w2 ∈N2, where

w2(x,r,z) = v1(x,r)+ v(x+ v1(x,r),z)

satisfies (6). Using the change of variables (x,r) �→ (x+ v1(x,r),z) in (3) we get

X(x+w2(x,r,z),z) = X(x+ v1(x,r),0)+ v(X(x+ v1(x,r),0),R(x+w2(x,r,z),z)).

Using (4) we obtain

X(x+w2(x,r,z),z) = X(x,r)+ v1(X(x,r),R(x,r))

+v(X(x,r)+ v1(X(x,r),R(x,r)),R(x+w2(x,r,z),z))

= X(x,r)+w2(X(x,r),R(x,r),R(x+w2(x,r,z),z)).

Consequently, we have

v1(x,r)+ v(x+ v1(x,r),r) = 0.

It follows that H ◦G = id.
Finally we conclude that the mapping H is a homeomorphism establishing a

conjugacy of the noninvertible mappings (1) and (2). �	
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Γ -Convergence of Multiscale Periodic Energies
Depending on the Curl of Divergence-Free Fields

Hélia Serrano

Abstract We study the Γ -convergence of a sequence of multiscale periodic
quadratic energies, depending on the curl of solenoidal fields, whose associated
Euler–Lagrange equations are the vector potential formulation of the stationary
Maxwell equations, which may describe the magnetic properties of a multiscale
periodic composite material.

1 Introduction

In this contribution, we are interested in the explicit characterization of the Γ -limit
density of sequences of quadratic energies with linear perturbations of the type

Eε(u) =
∫

Ω

(
Aε(x)

2
curlu(x) · curlu(x)− bε(x) · curlu(x)

)
dx, (1)

where Ω is an open bounded set in R
3; Aε : Ω → R

3×3 is of the form

Aε(x) = A
(

x,
x
ε

)
,

for some 3× 3-matrix-valued function A(x,y) Q-periodic in the second variable,
with Q = (0,1)3, such that there exist constants β > α > 0 for which α|ρ |2 ≤
A(x,y)ρ ·ρ ≤ β |ρ |2 for every ρ ∈R

3; and bε : Ω → R
3 is given by
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bε(x) = b
(

x,
x
ε
,

x
ε2

)
,

for some vector-valued function b ∈ L2(Ω ×R
3×R

3;R3) Q-periodic in the second
and third variables. The energies Eε are well defined in the Hilbert space X(Ω)
given by

X(Ω) =
{

w ∈ L2(Ω ;R3) : curlw ∈ L2(Ω ;R3), divw = 0 in Ω , w ·n = 0 on ∂Ω
}
,

where n stands for the outward normal vector to ∂Ω , with the norm ‖w‖2
X(Ω) =

‖w‖2
L2 + ‖curlw‖2

L2 , see [9].
Our aim is to study the asymptotic behaviour, as the parameter ε goes to 0, of the

family of quadratic functionals Eε whose quadratic and linear coefficients, Aε and
bε , respectively, oscillate in different length scales. For such purpose we study the
Γ -convergence of the sequence {Eε} and focus on the explicit characterization of
the coefficients of the Γ -limit density. The Γ -convergence of sequences of periodic
functionals defined in spaces of divergence-free fields, and not depending on the
curl operator, was firstly addressed in [3] (see also [8]) through the usual machinery
of Γ -convergence. The non-periodic case was studied in [17] through the study of
the div-Young measures (see [15]) associated with non-periodic sequences of fields
(see [13, 16] in the case of curl-free fields).

Notice that, for each ε > 0, if uε is a minimizer of Eε in X(Ω), then it is the
solution of the second-order boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

curl(Aε(x)curluε(x)) = curlbε(x) in Ω
div uε = 0 in Ω
uε ·n = 0 on ∂Ω

(Aε curluε)×n = bε ×n on ∂Ω ;

(2)

see [4]. Thus, if we are able to represent explicitly the Γ -limit of the sequence of en-
ergies Eε , we may represent the homogenized problem and characterize the effective
coefficients associated with the previous family of boundary value problems. In this
way, the main motivation to study the Γ -convergence of quadratic functionals of the
form (1) comes from the homogenization of second-order boundary value problems
of type (2). On the other hand, the boundary value problem (2) may be considered
as the vector potential formulation of a magnetostatic problem describing the
magnetic properties of a composite anisotropic material in a perfect conducting
media. Precisely, for each ε > 0, the field uε may be considered as the magnetic field
of a composite material occupying a region Ω and with a periodic microstructure
of relative size ε , subject to a current density of type curlbε and with magnetic
permeability με = A−1

ε ; see [10].
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2 Preliminaries

In this section, we will present some basic concepts as well as some results
used throughout this contribution, namely, the notion of Γ -convergence of integral
functionals (see [5–7]), the definition of multiscale Young measures (see [2,14]) and
the concept of multiscale convergence (see [1, 11]).

Definition 1. The sequence of functionals Eε defined in X(Ω) is said to Γ -converge
(with respect to the weak topology in X(Ω)) to the functional E if, for any u in
X(Ω), it holds:

1. For every sequence {uε} ⊂ X(Ω) such that uε ⇀ u in X(Ω) we have

liminf
ε↘0

Eε(uε) ≥ E(u).

2. There exists a sequence {uε} ⊂ X(Ω) such that uε ⇀ u in X(Ω) and

lim
ε↘0

Eε(uε) = E(u).

Following the ideas introduced in [13] to study the Γ -convergence through the
Young measures associated with relevant sequences, here we will study the Γ -
convergence of the sequence {Eε} through a special type of Young measures: the
multiscale Young measures associated with divergence-free fields.

Definition 2. A family of probability measures {μx,y,z}x∈Ω ,(y,z)∈Q2 supported on R
3

is said to be the multiscale Young measure associated with the sequence of functions
uε : Ω →R

3 if the joint Young measure θ = {θx}x∈Ω associated with the sequence

{(
uε(·),

〈 ·
ε

〉
,
〈 ·

ε2

〉)}
,

may be decomposed, for a.e. x ∈Ω and (y,z) ∈ Q2, as θx = μx,y,z⊗ dz⊗ dy, where
〈w〉 ∈ Q stands for the fractional part of w ∈ R

3.

The following proposition will be the starting point to prove the lower limit
inequality in the definition of Γ -convergence.

Proposition 1 (see [12]). If {μx,y,z}x∈Ω ,(y,z)∈Q2 is the multiscale Young measure
associated with the sequence {uε}, then

liminf
ε↘0

∫

Ω
ψ
(

x,
〈 x

ε

〉
,
〈 x

ε2

〉
,uε(x)

)
dx≥

∫

Ω

∫

Q2

∫

R3
ψ(x,y,z,ρ) dμx,y,z(ρ) dzdydx,

for every Carathéodory function ψ : Ω ×R
3×R

3×R
3 → R bounded from below.

The notion of multiscale Young measure is intimately related with the notion of
multiscale convergence.
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Definition 3. The sequence {uε} ⊂ L2(Ω ;R3) is said to be multiscale convergent
to a function u0 ∈ L2(Ω ×Q2;R3) if, for any function ϕ ∈ L2

[
Ω ;Cper(Q2;R3)

]
, it

holds

lim
ε↘0

∫

Ω
uε(x) ·ϕ

(
x,

x
ε
,

x
ε2

)
dx =

∫

Ω

∫

Q2
u0(x,y,z) ·ϕ(x,y,z) dz dy dx.

The multiscale limit u0 of a sequence {uε} may be defined as the first moment
of the multiscale Young measure associated with it, as follows.

Proposition 2 (see [14]). Let {uε} be a multiscale convergent sequence and u0 be
its multiscale limit. If {μx,y,z}x∈Ω ,(y,z)∈Q2 is the multiscale Young measure associated

with {uε}, then u0 : Ω×Q2 →R
3 is the first moment of {μx,y,z}x∈Ω ,(y,z)∈Q2 given by

u0(x,y,z) =
∫

R3
ρ dμx,y,z(ρ).

Here, we are particularly interested in the multiscale convergence of sequences
of divergence-free fields.

Proposition 3 (see [1]). A function u0 ∈ L2
[
Ω ;L2

per(Q
2;R3)

]
is the multiscale limit

of a sequence of divergence-free functions {uε} ⊂ L2(Ω ;R3) if and only if

divz u0(x,y,z) = 0,
∫

Q
divy u0(x,y,z) dz = 0,

∫

Q2
divx u0(x,y,z) dz dy = 0.

We will focus on sequences of curls of divergence-free functions, that is, for
any sequence of divergence-free functions vε =

(
v1

ε ,v
2
ε ,v

3
ε
)
, we will consider the

sequence {curlvε} where

curlvε =

(
∂v3

ε
∂x2

− ∂v2
ε

∂x3
,

∂v1
ε

∂x3
− ∂v3

ε
∂x1

,
∂v2

ε
∂x1

− ∂v1
ε

∂x2

)
.

Proposition 4. Let {vε} be a bounded sequence in H1(Ω ;R3) such that divvε = 0
in Ω and vε · n = 0 on ∂Ω , for every ε > 0. If {vε} converges weakly to v in
H1(Ω ;R3), then:

(i) {vε} multiscale converges to v.
(ii) There exist functions v1 : Ω × Q → R

3 and v2 : Ω × Q2 → R
3, with∫

Q
curly v1(x,y)dy = 0 and

∫

Q
curlz v2(x,y,z)dz = 0, such that {curlvε} mul-

tiscale converges to curlv+ curly v1 + curlz v2.
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3 Main Result

In this section, we present and prove our main result on the characterization of the
Γ -limit density of sequences of periodic quadratic integral functionals depending
on the curl of divergence-free fields.

Theorem 1. Let A(x,y) = (ai j(x,y)) be a symmetric 3× 3-matrix-valued function
such that ai j ∈ L∞(Ω ×Q) are Q-periodic in the second variable, and there exist
constants β > α > 0 for which α|ρ |2 ≤ A(x,y)ρ · ρ ≤ β |ρ |2, for every ρ ∈ R

3.
Let b ∈ L2(Ω ×Q2;R3) be Q-periodic in the second and third variables. Then, the
sequence of energies Eε defined in X(Ω) by

Eε(u) =

∫

Ω

(
A
(
x, x

ε
)

2
curlu(x) · curlu(x)− b

(
x,

x
ε
,

x
ε2

)
· curlu(x)

)

dx

Γ -converges to the functional E defined in X(Ω) by

E(u) =

∫

Ω

(
A0 (x)

2
curlu(x) · curlu(x)− b0(x) · curlu(x)+ c(x)

)
dx.

The homogenized coefficient A0 : Ω → R
3×3 is given by

A0(x) =
∫

Q
A(x,y)(I3 + curlyV (x,y))dy,

where I3 stands for the 3×3-identity matrix, and curly V (x,y) = (curlyvi(x,y))1≤i≤3

is also a 3× 3-matrix with vi solution of

{
curly (A(x,y)(ei + curly vi(x,y)) ) = 0 in Q

vi(x, ·) ∈ H1
0 (Q;R3).

The effective linear coefficient b0 : Ω →R
3 is defined by

b0(x) =
∫

Q2
(A(x,y)curly w(x,y)− b(x,y,z)) · (I3 + curlyV (x,y))dz dy,

where w is the solution of the unit cell problem

{
curly (A(x,y)curly w(x,y)) = curly

(∫
Q b(x,y,z)dz

)
in Q

w(x, ·) ∈ H1
0 (Q;R3).
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The independent term c : Ω → R is

c(x) =
∫

Q2

(
A(x,y)

2
(curly w(x,y)+ curlz w̃(x,y,z))− b(x,y,z)

)
·

(curly w(x,y)+ curlz w̃(x,y,z))) dz dy,

where w̃ is the solution of the unit cell problem

{
curlz (A(x,y)curlz w̃(x,y,z)) = curlz b(x,y,z) in Q

w̃(x,y, ·) ∈ H1
0 (Q;R3).

Proof. In order to prove the Γ -convergence result, we will proceed in two steps
according to the definition of Γ -convergence.
First step: Let u be in X(Ω), and let {uε} be any weak convergent sequence to u
in X(Ω). Since the sequence {curluε} converges weakly to curlu in L2(Ω ;R3), we
know there exists a multiscale Young measure μ = {μx,y,z}x∈Ω ,(y,z)∈Q2 associated
with it. Thus, if we apply Proposition 1, it follows that

liminf
ε↘0

∫

Ω

(
A
(
x, x

ε
)

2
curluε(x) · curluε(x) − b

(
x,

x
ε
,

x
ε2

)
· curluε(x)

)

dx ≥

≥
∫

Ω

∫

Q

∫

Q

∫

R3

(
A(x,y)

2
ρ ·ρ − b(x,y,z) ·ρ

)
dμx,y,z(ρ) dz dy dx.

Now, we may apply the Jensen inequality so that

∫

R3

(
A(x,y)

2
ρ ·ρ − b(x,y,z) ·ρ

)
dμx,y,z(ρ) ≥

≥ A(x,y)
2

ϕ(x,y,z) ·ϕ(x,y,z) − b(x,y,z) ·ϕ(x,y,z),

where we have defined the function ϕ : Ω ×Q2 → R
3 as the barycenter of μ , i.e.,

ϕ(x,y,z) =

∫

R3
ρ dμx,y,z(ρ).

Since the sequence {curluε} multiscale converges to ϕ in L2(Ω ×Q2;R3), it turns
out that the multiscale limit ϕ may be written as

ϕ(x,y,z) = curlu(x)+ curly u1(x,y)+ curlz u2(x,y,z)

for some functions u1 : Ω ×Q→R
3 and u2 : Ω ×Q2 →R

3. In this way, we have
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liminf
ε↘0

∫

Ω

(
A
(
x, x

ε
)

2
curluε(x) · curluε(x) − b

(
x,

x
ε
,

x
ε2

)
· curluε(x)

)

dx ≥

≥
∫

Ω

∫

Q2

(
A(x,y)

2
(curlu(x)+curly u1(x,y)+curlz u2(x,y,z)) ·(curlu(x)+curlyu1(x,y)

+ curlzu2(x,y,z))− b(x,y,z) · (curlu(x)+ curly u1(x,y)+ curlz u2(x,y,z)))dz dydx.

If we take the infimum overall functions u1 and u2 in the last inequality, then

liminf
ε↘0

∫

Ω

(
A
(
x, x

ε
)

2
curluε(x) · curluε(x)− b

(
x,

x
ε
,

x
ε2

)
· curluε(x)

)

dx ≥

≥
∫

Ω
φ(x,curlu(x)) dx,

where the function φ : Ω ×R
3 →R is given by

φ(x,ρ) =

inf

{∫

Q2

(
A(x,y)

2
(ρ+curlyu1(x,y)+curlz u2(x,y,z)) · (ρ+curlyu1(x,y)+curlzu2(x,y,z))

− b(x,y,z) · (ρ + curlyu1(x,y)+ curlz u2(x,y,z))) dz dy :

u1 ∈ L2 [Ω ;H1
0 (Q;R3)

]
, u2 ∈ L2 [Ω ×Q;H1

0 (Q;R3)
]}

.

Notice that, for fixed x ∈Ω and ρ ∈R
3 and fixed u2, the infimum u1 is a solution of

the unit cell problem

{
curly (A(x,y)(ρ + curly u1(x,y))) = curly

(∫
Q b(x,y,z)dz

)
in Q

u1(x, ·) ∈ H1
0 (Q;R3).

If we rewrite the infimum as u1(x,y) = ∑3
i=1 vi(x,y)ρi + w(x,y), where vi is the

solution of

{
curly (A(x,y)(ei + curly vi(x,y))) = 0 in Q

vi(x, ·) ∈ H1
0 (Q;R3),

for every i = 1,2,3, and w is the solution of

{
curly (A(x,y)curly w(x,y)) = curly

(∫
Q b(x,y,z)dz

)
in Q

w(x, ·) ∈ H1
0 (Q;R3),

then we may rewrite the density φ as
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φ(x,ρ) =
∫

Q2

(
A(x,y)

2

(

ρ +
3

∑
i=1

curly vi(x,y)ρi + curly w(x,y)+ curlz u2(x,y,z)

)

·

(

ρ +
3

∑
i=1

curly vi(x,y)ρi + curly w(x,y)+ curlz u2(x,y,z)

)

− b(x,y,z) ·
(

ρ +
3

∑
i=1

curly vi(x,y)ρi + curly w(x,y)+ curlz u2(x,y,z)

))

dz dy,

where u2(x,y, ·) is the solution of problem

{
curlz (A(x,y)curlz u2(x,y,z)) = curlz b(x,y,z) in Q

u2(x,y, ·) ∈ H1
0 (Q;R3).

After some calculations, we conclude that the function φ may be written as the
quadratic form

φ(x,ρ) =
A0(x)

2
ρ ·ρ− b0(x) ·ρ + c(x)

where A0, b0 and c were defined previously. Therefore, we have achieved the lower
bound estimate: liminf

ε↘0
Eε(uε)≥ E(u).

Second step: For each u ∈ X(Ω), let us take the minimizers u1 and u2 so that, for
a.e. x ∈Ω ,

φ(x,curlu(x)) =
∫

Q2

(
A(x,y)

2
(curlu(x)+ curly u1(x,y)+ curlz u2(x,y,z)) ·

(curlu(x)+ curly u1(x,y)+ curlz u2(x,y,z))

− b(x,y,z) · (curlu(x)+ curly u1(x,y)+ curlz u2(x,y,z))) dz dy.

We may define the sequence of functions uε : Ω →R
3 by putting uε(x) = u(x)+

εu1
(
x, x

ε
)
+ε2u2

(
x, x

ε ,
x

ε2

)
so that the sequence {curluε} converges weakly to curlu

in L2(Ω ;R3), as well as {divuε} converges weakly to divu in L2(Ω). Moreover,
{curluε} multiscale converges to curlu+ curly u1 + curlz u2 in L2(Ω ×Q2;R3). In
this way, we know there exists a sequence {vε} in H1(Ω ;R3) such that divvε = 0
in Ω , and the norm ‖vε − uε‖H1(Ω ;R3) goes to 0 as ε vanishes. Taking into account
this sequence, we get the equality

lim
ε→0

Eε(vε ) =
∫

Ω
φ(x,curlu(x)) dx.�	
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A Geometric Proof of the Existence of Two
Solutions of the Bahri–Coron Problem

Norimichi Hirano and Naoki Shioji

Abstract We give a proof of Clapp and Weth’s existence theorem of two pairs of
nontrivial solutions of the Bahri–Coron problem by using the degree theory.

1 Introduction

We consider the Bahri-Coron problem
{
−Δu = |u|2∗−2u in Ω,

u = 0 in ∂Ω,
(1)

where Ω is a bounded domain in R
N (N ≥ 3) whose boundary is smooth and 2∗ =

2N/(N− 2). By Pohožaev’s identity [15], we know that if Ω is star shaped, then
problem (1) does not have a nontrivial solution. In the case that Ω has a nontrivial
topology, Coron [4] and Bahri and Coron [1, 2] showed the existence of a positive
solution. Recently, Clapp and Weth [3] showed that under the same assumptions of
the theorem in [4], problem (1) has at least two pairs of nontrivial solutions.

Theorem 1 (Clapp–Weth). Let N ∈N with N ≥ 3, let R2 >R1 > 0, and let Ω ⊂R
N

be a bounded domain such that ∂Ω is smooth,

Ω ⊃ {x ∈R
N : R1 < |x|< R2} and {x ∈R

N : |x|< R1} \Ω �= /0.
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If R2/R1 is large enough, then problem (1) has at least two pairs of nontrivial
solutions.

In order to prove their result, they used a topological tool “fixed point transfer”
given in [7]. We note that Ge, Musso, and Pistoia [8, Theorem 1.2] showed that
problem (1) has some pairs of sign-changing solutions if Ω has two sufficiently
small holes; see also [8, Theorem 1.1]. Quite recently, the authors [9] studied the
existence of two pairs of nontrivial solutions in the case that Ω is a contractible
domain. In such a case, the existence of a positive solution was studied by
Dancer [5], Ding [6], and Passaseo [14].

Theorem 2 (Hirano–Shioji). Let N ∈N with N ≥ 3, let R2 > R1 > 0, and let Ω̃ ⊂
R

N be a bounded domain such that ∂Ω̃ is smooth,

Ω̃ ⊃ {x ∈ R
N : R1 < |x|< R2} and 0 �∈ Ω̃ .

If η0 > 0 is small enough and Ω is a domain such that ∂Ω is smooth and

Ω̃η0 ⊂Ω and Ω ⊂ Ω̃0,

then problem (1) has at least two pairs of nontrivial solutions, where

Ω̃η = Ω̃ \ {x = (x′,xN) ∈ R
N : xN ≥ 0, |x′| ≤ η} for η ∈ [0,∞).

They used the degree theory [10–13] instead of the fixed point transfer. In this
article, we give a proof of Theorem 1 by the method employed in [9].

2 Proof of Theorem 1

For each nonempty open subset G⊂R
N , we consider thatD1,2

0 (G) is the completion
of C∞

0 (G) with respect to the inner product
∫

G ∇u(x)∇v(x)dx for u,v ∈C∞
0 (G). We

denote by (u,v) and ‖u‖ the inner product of u,v ∈ D1,2
0 (RN) and the norm of u ∈

D1,2
0 (RN). We can consider that D1,2

0 (G) ⊂ D1,2
0 (RN) by the zero extension. We

define a functional I
RN :D1,2

0 (RN)→R by

I
RN (u) =

∫

RN

(
1
2
|∇u(x)|2− 1

2∗
|u(x)|2∗

)
dx, u ∈ D1,2

0 (RN),

and we set its Nehari manifold as follows:

N
RN =

{
u ∈ D1,2

0 (RN)\ {0} :
∫

RN
|∇u(x)|2dx =

∫

RN
|u(x)|2∗dx

}
.
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We set c∞ = inf{IRN (u) : u ∈NRN}. For each (ε,z) ∈ (0,∞)×R
N, we set

Uε,z(x) = (N(N− 2))
N−2

4

(
ε

ε2 + |x− z|2

)N−2
2

for x ∈ R
N .

The following is obtained by Weth [16].

Proposition 1 (Weth). There exists ε1 ∈ (0,c∞) such that I
RN does not have a

critical point u ∈ D1,2
0 (RN) such that I

RN (u) ∈ (c∞,2c∞ + ε1].

Throughout this article, we consider u−(x) = min{u(x),0}. We define

N̂RN =
{

u ∈ NRN : u+ �= 0, u− �= 0
}
,

N
RN ,∗ =

{
u ∈ N

RN : u+,u− ∈ N
RN

}
.

We set

τ(u) =
(∫

Ω̃ |∇u(x)|2dx
∫

Ω̃ |u(x)|2
∗dx

) 1
2∗−2

for each u ∈ D1,2
0 (RN)\ {0},

T (u) = τ(u)u(∈ NRN ) for each u ∈ D1,2
0 (RN)\ {0},

T∗(u) = T (u+)+T (u−)(∈ NRN ,∗) for each u ∈ N̂RN ,

α(t,v) = T ((1− t)v++ tv−) for each (t,v) ∈ [0,1]×N
RN ,∗.

We define μ ∈C(N̂RN ,(0,1)) by α(μ(u),T∗(u)) = u for each u ∈ N̂RN . We note

μ(α(t,v)) = t for each (t,v) ∈ (0,1)×N
RN ,∗. (2)

For the proofs of Lemmas 1–3, see [9, Lemmas 2, 4, and 5]. Although the
corresponding lemmas in [9] were studied on a bounded set Ω̃(⊂ R

N), the proofs
work similarly.

Lemma 1. For each ε > 0, there exists δ > 0 such that ‖u−T∗(u)‖ < ε for each
u ∈ N̂RN satisfying IRN (u)≤ 3c∞ and |μ(u)− 1/2|< δ .

Lemma 2. There exist ε2 ∈ (0,ε1) and C1 > 0 such that

inf
w∈N

RN ,∗
‖u−w‖ ≥ 2C1

for each u ∈ N̂
RN satisfying |I

RN (u)− 2c∞| ≤ ε2 and |μ(u)− 1/2|= 1/4.
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Since they considered I
RN instead of IΩ̃ in [9, Lemma 4], for the lemma above,

the concentration compactness argument in [9, Lemma 4] should be modified as
follows: there exist {λ 1

n },{λ 2
n } ⊂ (0,∞), {z1

n},{z2
n} ⊂R

N such that {λ i
n} converges

to an element of [0,∞] for i = 1,2, {zi
n} converges to an element of RN or |zi

n| → ∞
for i = 1,2,

max

{
λ 1

n

λ 2
n
,

λ 2
n

λ 1
n
,
|z1

n− z2
n|√

λ 1
n λ 2

n

}

→ ∞,

∥∥
∥v+n −Uλ 1

n ,z1
n

∥∥
∥→ 0 and

∥∥
∥v−n +Uλ 2

n ,z2
n

∥∥
∥→ 0.

With this modification, the proof of [9, Lemma 4] works similarly.
By Lemma 1 and the previous lemma, we can choose δ1 ∈ (0,1/4) such that

‖u−T∗(u)‖ ≤C1 for each u ∈ N̂RN with IRN (u)≤ 3c∞ and |μ(u)− 1/2| ≤ δ1.

Lemma 3. There exist ε0 ∈ (0,ε2) and δ0 ∈ (0,δ1) such that

I
RN (α(t,T∗(u)))≤ 2c∞

for each t ∈ [0,1] with |t−1/2| ≥ δ1 and u∈ N̂RN satisfying IRN (u)≤ 2c∞+ε0 and
|μ(u)− 1/2| ≤ δ0.

We set δ2 = 1/4, μi = 1/2− δi and μi = 1/2+ δi for i = 0,1,2, and

C2 = sup

{
2
(
‖u‖+(Nc∞)

− 2
N−2 ‖u‖2∗−1

)
: u ∈ N̂

RN ,

IRN (u)≤ 3c∞,

∣
∣
∣
∣μ(u)−

1
2

∣
∣
∣
∣≤ δ2

}
,

C3 = inf

⎧
⎪⎨

⎪⎩

(2∗ − 2)2

(
2+ 2∗(Nc∞)

− 2
N−2 ‖u‖2∗−2

)2

∣
∣
∣ ∂

∂ t IRN (α(t,T∗(u)))
∣
∣
t=μ(u)

∣
∣
∣
2

∥
∥
∥ ∂

∂ t α(t,T∗(u))
∣
∣
t=μ(u)

∥
∥
∥

2 :

u ∈ N̂RN , IRN (u)≤ 3c∞, δ0 ≤
∣∣
∣
∣μ(u)−

1
2

∣∣
∣
∣≤ δ2

⎫
⎪⎬

⎪⎭
.

By preparing similar lemmas as [9, Lemmas 6–8], we can find that C2 and C3 are
positive real numbers. Without loss of generality, we may assume

2ε0 ≤
C1C3

C2
.
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Let R2,R1, and Ω satisfy the assumptions of Theorem 1 and let R2/R1 be
sufficiently large. We fix n ∈ R

N such that |n| < R1 and n �∈ Ω. By [3, Lemma 5]
and its proof, we can find two disjoint ε0/3-punctured subdomains AR1,R0 and AR0,R2

of Ω, where R0 =
√

R1R2 and Ar,R = {x ∈ R
N : r < |x| < R}. For the definition of

the ε-punctured subdomain of Ω, see [3, Definition 1]. From the definition, there
are closed balls B1,B2 ⊂ R

N associated with AR1,R0 ,AR0,R2 , respectively, and by the
proof of [3, Lemma 3], we may assume that {x ∈ R

N : |x| ≤ R1} ⊂ B1 ⊂ B2.
We set I(u) = I

RN (u) in D1,2
0 (Ω), N = N

RN ∩D1,2
0 (Ω), N̂ = N̂

RN ∩D1,2
0 (Ω),

andN∗ =NRN ,∗ ∩D
1,2
0 (Ω). We define

β (u) =
∫

Ω x |u(x)|2∗dx
∫

Ω |u(x)|2
∗dx

for u ∈ D1,2
0 (Ω)\ {0}.

We set

Γ1 = {γ ∈C(B1,N ) : β (γ(x)) �= n ∀x ∈ ∂B1, deg(β ◦ γ; IntB1,n) �= 0},

c1 = inf
γ∈Γ1

max
x∈B1

I(γ(x)) and c = inf{I(u) : u ∈ N , β (u) = n},

where deg(β ◦ γ; IntB1,n) stands for the Brouwer degree of β ◦ γ : B1 → R
N . For

the definition of this Brouwer degree, see [11, 12]. We note that the method in [11]
to define the Brouwer degree with the Tietze extension theorem will be used later.
We can infer that

c∞ < c≤ c1 ≤ c∞ +
ε0

3
.

If problem (1) has two pairs of nontrivial solutions, there is nothing to prove. So
we assume that it has at most one pair of nontrivial solutions. We can show that
it has a positive solution u0 of (1) with I(u0) = c1; see [3, 9]. It yields that ±u0

are the only pair of nontrivial solutions of (1). We give the proof of Theorem 1 by
contradiction.

We set

β+(u) = β (u+) and β−(u) = β (u−) for u ∈ N̂ .

We choose c0 such that c∞ < c0 < c. By [3, Lemma 4], we can find g ∈ C(B1×
B2;N∗) which satisfies

(g1) I(g(x,y))≤ 2c∞ + 2ε0/3 for each (x,y) ∈ B1×B2.
(g2) I(g(x,y))≤ c1 + c0 for each (x,y) ∈ ∂ (B1×B2).
(g3) I(g(x,y)+)≤ c0 and β+(g(x,y)) = x for each (x,y) ∈ ∂B1×B2.
(g4) I(g(x,y)−)≤ c0 and β−(g(x,y)) = y for each (x,y) ∈ B1× ∂B2.

We set ϕ ∈C(B1×B2×
[

μ2,μ2

]
,N̂ ) by

ϕ(x,y, t) = α(t,g(x,y)) for (x,y, t) ∈ B1×B2×
[

μ2,μ2

]
.
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We define σ̃ ∈C([0,∞)×ϕ(B1×B2×
[

μ2,μ2

]
),N ) by

σ̃(0,u) = u,
∂
∂ s

σ̃(s,u) =−∇N I(σ̃(s,u))

for (s,u) ∈ [0,∞)×ϕ(B1×B2×
[

μ2,μ2

]
). We also define σ : [0,∞)×ϕ(B1×B2×

[
μ2,μ2

]
)→N by

σ(s,u) =

{
σ̃(s,u) if I(σ̃(s,u))> c1 + c0,

σ̃(min{t ≥ 0 : I(σ̃ (t,u))≤ c1 + c0},u) if I(σ̃(s,u))≤ c1 + c0

for (s,u) ∈ [0,∞)×ϕ(B1×B2×
[

μ2,μ2

]
).

For the proof of the following lemma, see [9, Lemma 12].

Lemma 4. There hold the following:

(σ1) σ ∈C([0,∞)×ϕ(B1×B2×
[

μ2,μ2

]
),N ).

(σ2) I(σ(s,u)) ≤ I(σ(s′,u)) for all s,s′ ∈ [0,∞) and u ∈ ϕ(B1×B2×
[

μ2,μ2

]
)

with s≥ s′ ≥ 0.
(σ3) There exists s0 > 0 such that I(σ(s0,u)) ≤ c1 + c0 for all u ∈ ϕ(B1× B2×[

μ2,μ2

]
).

(σ4) σ(s,u) = u for all s∈ [0,∞) and u∈ϕ(B1×B2×
[

μ2,μ2

]
) with I(u)≤ c1+c0.

(σ5) σ(s,u) ∈ N̂ and μ(σ(s,u)) ∈
[

μ2,μ2

]
for all s ∈ [0,∞) and u ∈ ϕ(B1×B2×

[
μ2,μ2

]
).

We set

ϕs(x,y, t) = σ(s,ϕ(x,y, t)) for (s,x,y, t) ∈ [0,s0]×B1×B2×
[

μ2,μ2

]
.

From (2), (g3), and (g4), we can see that

r (β+,β−,μ)◦ϕ0(x,y, t)+ (1− r)(x,y, t) �= (n,n,1/2)

for each (x,y, t)∈ ∂ (B1×B2×
[

μ2,μ2

]
), which yields deg((β+,β−,μ)◦ϕ0; IntB1×

IntB2×
(

μ2,μ2

)
,(n,n,1/2)) = 1. Since from (g2) and (σ3), we have (β+,β−,μ)◦

ϕs(x,y, t) �= (n,n,1/2) for each (s,x,y, t) ∈ [0,s0]× ∂ (B1×B2×
[

μ2,μ2

]
), by the

homotopy invariance of the Brouwer degree, we have
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deg((β+,β−,μ)◦ϕs0; IntB1× IntB2×
(

μ2,μ2

)
,(n,n,1/2)) = 1.

Now, we give our proof of Theorem 1.

Proof of Theorem 1. Let ε > 0. By Lemma 1, we can choose δ ∈ (0,δ1) such that

I((ϕs0(x,y, t))
+)≥ I(T ((ϕs0(x,y, t))

+))− ε,

for each (x,y, t) ∈ B1×B2×
(

μ2,μ2

)
with |μ((ϕs0(x,y, t))

+)− 1/2| ≤ δ , and

I((ϕs0(x,y, t))
−)≥ c− ε

for each (x,y, t)∈ B1×B2×
[

μ2,μ2

]
with |β−(ϕs0(x,y, t))−n| ≤ δ . We choose ξ ∈

(0,min{δ ,min(x,y,t)∈∂G |(β+,β−,μ)◦ϕs0(x,y, t)−(n,n,1/2)|}/2) and ψ ∈C∞(B1×
B2×

[
μ2,μ2

]
,R2N+1) such that

max
(x,y,t)∈B1×B2×[μ2,μ2 ]

∣
∣ψ(x,y, t)− (β+,β−,μ)◦ϕs0(x,y, t)

∣
∣ ≤ ξ .

By the homotopy invariance of the Brouwer degree, we have

deg(ψ ; IntB1× IntB2×
(

μ2,μ2

)
,(n,n,1/2)) = 1.

We write ψ = (ψ+,ψ−,ψμ). Since (ψ−,ψμ)∈C∞(B1×B2×
[

μ2,μ2

]
,R2N+1), we

can choose (n′, t ′) ∈ IntB2×
(

μ2,μ2

)
such that |n′ − n| ≤ δ/2, |t ′ − 1/2| ≤ δ/2

and (n′, t ′) is a regular value of (ψ−,ψμ) and (ψ−,ψμ)|∂ (B1×B2×[μ2,μ2 ]). We set

G = (ψ−,ψμ)
−1(n′, t ′).

Then G is an N-dimensional, smooth submanifold of B1× B2×
[

μ2,μ2

]
whose

boundary is ∂B1×{(n′, t ′)}. Since for each (x,y, t) ∈ G,

|μ(ϕs0(x,y, t))− 1/2| ≤ |μ(ϕs0(x,y, t))−ψμ(x,y, t)|+ |t ′ − 1/2| ≤ δ ,

|β−(ϕs0(x,y, t))−n′| ≤ |β−(ϕs0(x,y, t))−ψ−(x,y, t)|+ |n′ −n| ≤ δ ,

we have

I((ϕs0(x,y, t))
+)≥ I(T ((ϕs0(x,y, t))

+))− ε for each (x,y, t) ∈ G,
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and

I((ϕs0(x,y, t))
−)≥ c− ε for each (x,y, t) ∈G.

Since G⊂ B1×B2×
[

μ2,μ2

]
), ∂G = ∂B1×{(n′, t ′)} and (n′, t ′) is a regular value

of (ψ−,ψμ)|∂ (B1×B2×[μ2,μ2 ]), we can find an N-dimensional, orientable, compact

C∞-manifold G̃ ⊂ R
2N+1 such that G ⊂ G̃, ∂ G̃ = /0 and ∂ (G̃ \G) = ∂G. For each

f ∈ C(G,RN) with n �∈ f (∂G), we define E( f ) ∈ C(G̃,SN) as follows. For such f ,
take a small open ball V ⊂ B1 such that its center is n and V ∩ f (∂G) = /0. Since we
can naturally consider RN ⊂ SN and SN \V is homeomorphic to [0,1]N , by the Tietze
extension theorem, we can extend the mapping f |∂G to f̃ ∈C(G̃\ IntG,SN \V). We
define E( f ) ∈C(G̃,SN) by

E( f )(x) =

{
f (x,y, t) if (x,y, t) ∈G,

f̃ (x,y, t) if (x,y, t) ∈ G̃\G.

Then by similar lines as those in [9], we can show deg(E(ψ+|G);G̃,SN) �= 0 and
deg(E(β ◦ (T (ϕ+

s0
)|G));G̃,SN) �= 0. For the definition of these Brouwer degrees,

see [10,13]. We note that these values of the degrees do not depend on the extensions
in E(·) by the homotopy invariance. We set

Γ2 = {γ ∈C(G,N ) : γ = T (ϕ+
s0
) on ∂G, deg(E(β ◦ γ);G̃,SN) �= 0},

c2 = inf
γ∈Γ2

max
(x,y,t)∈G

I(γ(x,y, t)).

Since T (ϕ+
s0
)|G ∈ Γ2, I(T (ϕ+

s0
)|G(x,n′, t ′)) = I(g(x,n′)+) ≤ c0 for each x ∈ ∂B1

from (g3) and we assumed that there is only one positive solution, we can infer
c2 = c1, which yields max(x,y,t)∈G I(T (ϕ+

s0
)|G(x,y, t))≥ c1. Hence, we have

max
(x,y,t)∈B1×B2×[μ2,μ2 ]

I(ϕs0(x,y, t)) ≥ max
(x,y,t)∈G

I(ϕs0(x,y, t))

≥ max
(x,y,t)∈G

I((ϕs0(x,y, t))
+)+ min

(x,y,t)∈G
I((ϕs0(x,y, t))

−)

≥ max
(x,y,t)∈G

I(T (ϕ+
s0
)|G(x,y, t))− ε + c− ε ≥ c1 + c− 2ε.

From the arbitrariness of ε > 0, we have

max
(x,y,t)∈B1×B2×[μ2,μ2 ]

I(ϕs0(x,y, t))≥ c1 + c,

which contradicts (σ3). Thus, we have shown that problem (1) has at least two pairs
of solutions. �	
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Period-Two Solutions to Some Systems
of Rational Difference Equations

Walter S. Sizer

Abstract We consider period-two solutions to various cases of the difference
equations xn+1 = A+Bxn+Cyn

D+Exn+Fyn
, yn+1 = J+Kxn+Lyn

P+Qxn+Ryn
. We give several examples of

period-two solutions and in some cases categorize prime period-two solutions. We
also apply our techniques to a single second-order rational difference equation to
get circumstances leading to a prime period-two solution.

Keywords Difference equations • Periodic solutions

1 Introduction

Camouzis et al. in [1] ask whether there are prime period-two solutions to 55
special cases of the pair of rational difference equations xn+1 =

A+Bxn+Cyn
D+Exn+Fyn

, yn+1 =
J+Kxn+Lyn
P+Qxn+Ryn

,wherex0,y0 > 0, all constants are greater than or equal to 0, constants
in each numerator and in each denominator are not all 0, and no numerator is a
scalar multiple of its denominator. In Sect. 2 we give examples of several period-
two solutions to these equations, noting cases of prime period two, and in Sect. 3
we give results which show negative answers for all the 55 special cases mentioned
in [1] and show how the examples with prime period-two solutions in Sect. 2 were
obtained. Section 4 looks at the case where we allow initial conditions to be 0. In
Sect. 5 we apply the approach of Sect. 3 to a single second-order rational difference
equation inx.
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2 Examples of Period-Two Solutions

We give several examples of period-2 solutions.

Example 1. Any equilibrium solutions will be period-two solutions. It should be
noted that some solutions with xn, yn in equilibrium involve complex equations, as
with xn+1 =

5+6xn+11yn
4+3xn+yn

, yn+1 =
2+4xn+3yn
3 +xn +2yn

, x0 = 3, y0 = 2.

Example 2. For the equation xn+1 = K
xn

, every solution is periodic of period 2. If

x0 �=
√

K, the solution has prime period 2. A similar result holds for y.

Example 3. If xn has period 2, for example, xn+1 = K
xn

, and yn+1 = xn, (and with
y0 = x1) then the system has period 2. The numbers in the sequence of yn’s are the
same as in the sequence of xn’s but with a shift of subscript.

Example 4. The equations xn+1 = kyn, yn+1 = 1
k xn give period-2 solutions for all

values of x0,y0. If x0 �= 1
k y0, the solution has prime period 2. If k = 1, the two

sequences are the same but with a shift of subscript.

Example 5. The equations xn+1 = K
yn

, yn+1 = K
xn

are periodic of period 2 for all
choices of x0 and y0. The numbers in the two sequences will be different if x0 �= y0,
and the sequences will be of prime period two if x0 �= K

y0.

Example 6. The equations xn+1 =
√

Kxn
yn

, yn+1 =
K
yn

have every solution periodic of

period 2 and have prime period 2 unless y0 =
√

K.

Example 7. The equations xn+1 =
10

2xn+yn
, yn+1 =

8
xn+

4
3 yn

, with x0 = 3andy0 = 4(so

x1 = 1, y1= 4
3 ), give a prime period-2 solution. Some other choices of x0, y0 will not

give period-2 solutions to these equations.

Example 8. The equations xn+1 =
6
xn
, yn+1 =

√
12yn

1+xn
,with x0 = 2 , have period 2 for

any value of y0. In general the period-2 sequence x0,x1, x0, x1, . . . and the equation
yn+1 =

Lyn
P+Qxn

, give a period-2 solution for any y0 provided (P+Qx0)(P+Qx1) =

L2. Example 6 is also of this type, but with the roles of the variables reversed.

Example 9. Suppose xn+1 = 2
xn

with x0 = 1(so x1 = 2 and the x’s are periodic of

prime period 2). Suppose yn+1 = 2+xn+yn
3+2xn

with y0 = 23
34 . Then the solution in y is

periodic of prime period 2 (as is readily checked – and y1 =
25
34 ). For other values of

y0 solutions are not periodic of period 2.

Example 10. Suppose xn+1 = 6
xn

with x0 = 2 (so x1 = 3 and the x’s are periodic

of prime period 2). Let yn+1 = 5yn
2+xn+3yn

with y0 = 1
6 . Then the solution in y is

periodic of prime period 2 (again, readily checked, with y1 = 5
27 ), and solutions

are not periodic of period 2 for other values of y0.
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Example 11. Suppose xn+1 = 4
xn

with x0 = 4 (so x1 = 1 and the x’s are periodic

of prime period 2). Suppose yn+1 =
2+xn +yn

3+2xn+4yn
. There is only one value of y0 > 0

giving a period 2 solution, and this is y0 = 1
2 . Setting y0 = 1

2 , however, gives an
equilibrium for y.

Example 12. Suppose xn+1 = 2+3xn
2+xn

, yn+1 = 4+xn
5yn

, x0 = 2. We get a period-2
solution for all values of y0; the x’s are constant and the second equation is

equivalent to yn+1 =
6
5

yn
.

Example 13. Let xn+1 =
xn+6yn

2+ 5
2 xn+yn

, yn+1 =
8xn+3yn

2+xn+
11
2 yn

, with x0 = 1and y0 = 2. This

is easily seen to generate sequences of prime period 2 in both variables. These initial
values are the only ones with that property.

3 General Results

We derive results about sequences giving period-two solutions by actually starting
by assuming we have prime period-two solutions and asking what the equations
can look like that give these sequences. Thus, let a,b, a,b, . . . and c, d, c, d, . . . be
two prime period-two sequencesof positive real numbers. We ask what conditions
on A, B, C, D, E , F ,J,K,L,P,Q,R (all assumed greater than or equal to 0) allow
these sequences to appear as recursive sequences defined by the equations xn+1 =
A+Bxn+Cyn
D+Exn+Fyn

, yn+1 =
J+Kxn+Lyn
P+Qxn+Ryn

.

Theorem 1. If a− band c− d have opposite signs, there are numerous choices for
parameters which give these sequences as solutions to the recursive equations.

Proof. Assume a, b,a,b , . . . and c, d, c, d, . . . arise from the given equations. Then
a = A+Bb+Cd

D+Eb+Fd , or

Da+Eab+Fad = A+Bb+Cd. (1)

Also, b = A+Ba+Cc
D+Ea+Fc , or

Db+Eab+Fcb = A+Ba+Cc. (2)

Subtracting (2) from (1) gives

D(a− b) +F(ad− bc) = B(b− a)+C(d− c),or

F(ad− bc) = (B+D)(b− a)+C(d− c). (3)

Any values of A, B, C, D, E , and F which satisfy (1) and (3), in conjunction
with an equation giving the sequence c, d, c, d, . . . , will give the first sequence as
a solution. If a− b, c− d have opposite signs one can choose B, D, and C to be
any positive numbers satisfying the property that (B+D)(b− a)+C(d− c)has the
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same sign asad−bc. One can then solve to get a positive value of F , which leads to
Eq. (3) being true. Substituting these into Eq. (1) and choosing A positive and large
enough to guarantee that E will be positive then gives a solution to (1) and (2).

A similar analysis with the equation for yn+1 =
J+Kxn+Lyn
P+Qxn+Ryn

leads to equations

Q(cb− ad) = K(b− a)+ (L+P)(d− c), (4)

and

Pc+Qcb+Rcd = J +Kb+Ld. (5)

Again, if a− b, c− d have opposite signs there are many solutions. �	

Theorem 2. If a− b, c− d have the same sign, one of the following is true:

(a) The first equation reduces to xn+1 =
T
xn

.

(b) The second equation reduces to yn+1 =
S
yn

.

(c) The equations are xn+1 =
A

Exn+Fyn
, yn+1 =

J
Qxn+Ryn

, and these are equivalent to
the equations in (a) and (b).

Proof. Assume a− b, c− d have the same sign. Assume both are positive. We
consider three cases.

Case (i): bc− ad > 0.
In Eq. (4) the left-hand side is greater than or equal to 0, and the right-hand side
is less than or equal to 0. The only possibility for the equation to be true is to
have K, L, P, and Q all equal to 0. This gives result (b).

Case (ii): bc− ad < 0.
In this case Eq. (3) forces B, C, D, and F to all be 0, and we get (a).

Case (iii): bc = ad.
In this case Eq. (4) forces K, L, and P to all be 0, and Eq. (3) forces B, C, and D
to all be 0. Thus we get the two equations in (c). Note also that a

c = b
d ; call this

value W. Thena=W c and b=W d (and so xn =Wyn for all n, yn =
1
W xn for all n).

Thus xn+1 = A
Exn+Fyn

= A
Exn+

F
W xn

, and the equation is equivalent to xn+1 = T
xn

.

Likewise, the equation for yn+1 is equivalent to yn+1 =
S
yn

.

This proof is easily adapted to the case where both a− band c− d are negative.
�	

Note that in the situations leading to cases (a) and (b) above – where bc−ad �= 0
– there are again numerous choices of the coefficients which lead to prime period-
two sequences for the other variables.

In [1] the question is asked whether some systems covered by our equations have
prime period-two solutions. The authors specify in these systems which coefficients
are 0 and which are nonzero. In all the cases asked about, either C or K is zero. The
solution of these problems is derived from the following result.
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Theorem 3. If C (or K) is 0, one of the following is true:

(a) The first equation reduces to xn+1 =
T
xn

.

(b) The second equation reduces to yn+1 =
S
yn

.

(c) The equations are xn+1 =
A

Exn+Fyn
, yn+1 =

J
Qxn+Ryn

, and these are equivalent to
the equations in (a) and (b).

Proof. Assume C = 0 and a> b. Then the right side of Eq. (3) is less than or equal to
0, so ad−bc≤ 0 or B=D=F =C = 0. The second possibility gives conclusion (a);
in the first situation, by Eq. (4), d−c≥ 0 (actually d > c as the sequence is assumed
to have prime period 2)or L = P = K = 0and cd−ab = 0. The latter situation gives
(b) or (c) as in the proof of Theorem 2, and the former gives a contradiction: d > c
and a > bbut ad− bc≤ 0.

The proof if K = 0is similar. �	

None of the systems asked about in [1] satisfy the conclusion of Theorem 3, so
none of the systems have prime period-two solutions.

4 With an Initial Condition Equal to 0

Interesting results also appear if we relax the restrictions on initial conditions, just
requiring that x−1, x0,y−1,y0 ≥ 0. If we require prime period-two solutions inonly
one variable, we get as one possibility the equations xn+1 = Bxn

D+Exn+Fyn
, yn+1 =

J+Kxn
Qxn+Ryn

,with x0 = 0, y0 > 0, y0 �=
√

J
R . This gives the sequence of xi’s equal to all

0’s and the sequence of yi’s equal to y0, J
Ry0

,y0, J
Ry0

, . . . .
The more interesting case is the one requiring both sequences to have prime

period 2. We may assume then that the sequence of xi’s is 0,a, 0, a, . . . , and
the sequence of yi’s is c,d,c,d, . . . , where the values of a,c, and d are as yet
undetermined. The equation for x2 gives 0 = A+Ba+Cd

D+Ea+Fd , and since the parameters
are all nonnegative and a > 0, d ≥ 0, we see that A and B are both 0. Since the
numerator does not have all parameters equal to 0, this also means C �= 0, and thus
d = 0.

Since d = 0 and we assume both sequences have prime period 2, this means
c �= 0. An argument like the one in the last paragraph but working with the equation
for y1 then gives us J = L = 0andK �= 0.

The equations for x1 and y2 are then a= Cc
D+Fc and c= Ka

P+Qa .. Solving for a and c

gives c = KC−PD
PF+QC and then a = Cc

D+Fc . Thus, if A = B = J = L = 0 and KC−PD > 0,
we get the desired nonnegative solutions as shown. We have already seen that if we
get solutions 0,a,0,a, . . . in xi and c, 0,c, 0, . . . in yi, then A = B = J = L = 0and
KC−PD > 0.

The condition KC−PD > 0is unchanged if we interchange the roles of x and y,
so nothing is gained by considering the sequence of xi’s to be 0, a, 0,a, . . . and the
sequence of yi’s to be c,0,c, 0, . . . .
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Also note that, given fixed values of a and c greater than 0, we can choose C,D,
andF in numerous ways so that a = Cc

D+Fc , and then choosing Pand Q > 0 as we

like finds a value K so that c = KC−PD
PF+QC . Thus, we get numerous pairs of equations

giving these prime period-2 solutions.
We have established the following result:

Theorem 4. The equations xn+1 = A+Bxn+Cyn
D+Exn+Fyn

, yn+1 = J+Kxn+Lyn
P+Qxn+Ryn

have prime pe-
riod 2 solutions 0,a,0,a, . . . and c,0, c,0, . . . with a,c > 0 if and only if A = B = J =
L = 0 and KC−PD > 0. Solutions of this sort are the only ones where one initial
condition is 0 and both sequences have prime period two.

Proof. See above. �	

Example 14. The equations xn+1 =
4yn

2+7xn+6yn
, yn+1 =

5xn
3+8xn+5yn

,with initial condi-

tions x0 = 0, y0 =
7

25 , give prime period-2 solutions with x1 =
7

23 , y1 = 0.

5 A Single Second-Order Rational Equation

In light of the interest of Radin [3] in prime period-two solutions of a single second-
order rational difference equation, we show how our approach can be adapted to this
situation. Consider the equation

xn+1 =
A+Bxn +Cxn−1

D+Exn +Fxn−1
, (6)

with initial conditions x−1 and x0 positive, and all coefficients nonnegative,
neither numerator nor denominator identically zero, and the numerator not a scalar
multiple of the denominator. Again, starting from a prime period-two sequence s, t,
s, t, . . ., we ask what equations of the form (5) give rise to the sequence. We get

Theorem 5. Given any prime period-two sequence s, t, s, t, . . . , there are many,
varied choices of A, B, C, D, E, F which give rise to that sequence using Eq. (5).

Proof. Suppose the given sequence satisfies Eq. (5). Then
t = A+Bs+Ct

D+Es+Ft , or

Dt +Est +Ft2 = A+Bs+Ct, (7)

and likewise,

Ds+Est +Fs2 = A+Bt +Cs. (8)

Subtracting and simplifying we get

(B+D)(t− s)+F(t− s)(t + s) = C(t− s). (9)
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Thinking of s and t as fixed and the capital letters as variables, any solution to (7)
and (9) gives a pair of equations leading to the given sequence. Since t �= s, we can
divide Eq. (9) by t− s and rearrange it to get

F(t + s) = C−B−D. (10)

Choosing B, C, and D positive with C > B + D makes the right side of (10)
positive, so we can solve for F and get a positive value. Given these values of D, B,
C, and F , we can choose E so that the left side of (7) is greater than Bt +Cs, thus
assuring that Awill also be positive. �	

Example 15. Consider the equation xn+1 =
2+2xn+8xn−1
3+5xn+xn−1

. Then initial values x−1 = 1,
x0 = 2give a prime period-two solution.

For further treatment of prime period-two solutions of this equation, see Kulen-
ovic and Ladas [2].

We would like to thank the referee for suggesting the problem described in
Sect. 4.
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Effect of Roughness on the Flow of a Fluid
Against Periodic and Nonperiodic Rough
Boundaries

J. Casado-Dı́az, M. Luna-Laynez, and F.J. Suárez-Grau

Abstract In this paper we study the asymptotic behavior of a viscous fluid in a
domain with a slightly and periodic rough boundary. Assuming the Navier condition
on the rough boundary, we prove that if the roughness is not strong enough, then it
makes appear a new term in the limit equation. Finally, we study this phenomenon
in the case of a rough domain not necessarily periodic assuming a very general
condition on the rough boundary.

Keywords Stokes equation • Rough boundary • Navier condition

1 Introduction

In [8] it was considered a viscous fluid in a rough domain Ωε with an impermeable
rough boundary Γε described by

x3 =−εΨ
(

x′

ε

)
, ∀x′ ∈ ω ,

(along this paper a point x ∈ R
3 is decomposed as x = (x′,x3) with x′ ∈ R

2 and
x3 ∈ R) with ω a bounded open set of R2 and Ψ a smooth periodic function such
that

Span
({

∇Ψ (z′) : z′ ∈R
2})= R

2. (1)
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Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla,
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Assuming that the velocity uε of the fluid satisfies the Navier condition,

uε(x) ∈ Tε(x), on Γε ,
∂uε
∂ν

(x)+ γuε(x) ∈ Tε(x)
⊥, on Γε , (2)

where ν denotes the unitary outside normal vector to Ωε on Γε , Tε(x) the tangent
space in the point x ∈ Γε , and γ a nonnegative friction constant, it was proved in the
limit that the velocity u of the fluid vanishes on the boundary, i.e., it satisfies the
adherence condition u = 0 on ω×{0}.

This result has been generalized in [2] for a nonperiodic boundary described by

x3 = Φε (x
′), ∀x′ ∈ ω ,

where Φε converges weakly-∗ to zero in W 1,∞(ω) and it is such that the support of
the Young’s measure associated to ∇Φε contains two linearly independent vectors.
Remark that this last condition implies that ∇Φε does not converge to zero in
L1(ω)2.

Our goal in Sect. 2 is to generalize the result in [8] to the case of a viscous fluid
confined in a domain Ωε defined by

Ωε =

{
x = (x′,x3) ∈ ω×R : −δε Ψ

(
x′

ε

)
< x3 < 1

}
, (3)

with a slightly rough boundary Γε defined by

Γε =

{
x = (x′,x3) ∈ ω×R : x3 =−δε Ψ

(
x′

ε

)}
, (4)

where ω ⊂ R
2 is a Lipschitz bounded open set, Ψ ∈W 2,∞

loc (R2) is periodic of period

Z′ = (0,1)2, and δε > 0 satisfies lim
ε→0

δε

ε
= 0.

Remark that in our case Φε = δεΨ( x′
ε ) converges strongly to zero in W 1,∞(ω)

and therefore the results in [2] do not apply.
Assuming the Navier boundary condition (2) on the oscillating boundary Γε of

period ε and amplitude δε (with δε $ ε), and denoting by

λ = lim
ε→0

δε

ε
3
2

∈ [0,+∞], (5)

(the limit exists at least for a subsequence) we show

• If λ =+∞ and (1) holds, then the Navier and adherence boundary conditions are
asymptotically equivalent. This extends the result obtained in [8] for δε = ε to
the case when δε/ε tends to zero and δε/ε

3
2 tends to infinity.

• If λ = 0, the roughness is so small that it has no effect on the limit problem.
• If λ ∈ (0,+∞), the roughness is not strong enough to obtain the adherence

condition, but it is large enough to make appear a new friction term. Namely,
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denoting by T (x) the tangent space in the point x ∈ ω × {0}, we obtain the
following Navier boundary condition in the limit,

u3(x)∈T (x), on ω×{0}, −∂3u′(x)+γu′(x)+λ 2Ru′(x) ∈ T⊥(x), on ω×{0},

where R ∈ R
2×2 is a symmetric and nonnegative matrix. The new term λ 2R is

similar to the strange term obtained by D. Cioranescu and F. Murat in [13] for
the homogenization of Dirichlet problems in perforated domains.

In relation with this last case, it has been studied in [5] the asymptotic behavior
of viscous fluids confined in general rough domains, not necessarily periodic. In the
particular case of a domain with a rough bottom described by

x3 =Ψε(x
′), ∀x′ ∈ ω ,

with Ψε converging weakly-∗ to zero in W 1,∞(ω), the results in [5] imply that there
exist μ a nonnegative Borel measure, which vanishes in the sets of capacity zero
and can be infinity in compact sets of ω , and H a μ-measurable matrix evaluated
function such that the limit boundary condition is given by

u3(x)∈ T (x), on ω×{0}, −∂3u′(x)+γu′(x)+Hu′μ(x)∈ T⊥(x), on ω×{0}.

Our results provide an example where the extra term Hu′μ is not zero. We refer
to [3, 4] for other examples of different nature for a ribbed boundary described by
x3 = εΨ ( x1

ε ).

The results obtained in Sect. 2 show that the Navier boundary condition provides
a new term in the limit equation. In Sect. 3 we study this phenomenon for domains
not necessarily periodic. At the place of the Stokes system for a sequence of
linear elliptic systems of M equations posed in varying open sets Ωε ⊂ R

N with
a boundary condition similar to (2), where Tε(x) is replaced by an arbitrary linear
space Vε(x) ⊂ R

M . This abstract formulation has the advantage that it contains
a lot of classical boundary conditions. For instance, this permits us to study the
asymptotic behavior of linear elliptic systems in rough domains Ωε where we
impose Dirichlet and Neumann boundary conditions on varying subsets of ∂Ωε .
This problem has been studied in [6, 7] for Ωε = Ω fixed.

The resultsof Sect. 3 can be extended to viscous fluids. For the particular choice
Vε(x) = Tε (x), it would recover the results in [5].

2 Asymptotic Behavior of a Viscous Fluid in the Rough
Domain Ωε Defined by (3)

Given f ∈L2(ω×R)3, we consider the following Stokes system posed in Ωε defined
by (3) satisfying the Navier condition on Γε defined by (4), and adherence conditions
on the rest of the boundary ∂Ωε \Γε ,
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⎧
⎨

⎩

−Δuε +∇pε = f in Ωε , divuε = 0 in Ωε

uε ∈ Tε , on Γε ,
∂uε
∂ν

+ γuε ∈ T⊥ε , on Γε , uε = 0 on ∂Ωε \Γε .
(6)

We prove the following existence and uniqueness result.

Theorem 1. The system (6) has a unique solution (uε , pε) ∈ H1(Ωε)
3× L2

0(Ωε)
(L2

0(Ωε) denotes the space of functions in L2(Ωε) whose integral in Ωε is zero).
Moreover, we prove that there exists C > 0 such that

‖uε‖H1(Ωε )3 + ‖pε‖L2(Ωε ) ≤C, ∀ε > 0.

Proof. See [15]. �
Our aim is to investigate the asymptotic behavior of the solution (uε , pε). As a

consequence of Theorem 1, letting ε → 0, we may infer that there exist u∈H1(Ω)3

and p ∈ L2(Ω) such that

uε ⇀ u in H1(Ω)3, pε ⇀ p in L2(Ω), with Ω = ω× (0,1).

Then, our goal becomes identifying the limit problem satisfied by (u, p), which
is given in the following theorem.

Theorem 2. The couple (u, p) is the unique solution of

{
−Δu+∇p = f in Ω , divu = 0 in Ω
u = 0 on ∂Ω \Γ ,

(7)

plus a boundary condition for u on Γ = ω ×{0} which depends on the parameter
λ defined by (5). More precisely we have

(i) If λ = 0, then

u3 ∈ T on Γ , −∂3u′+ γu′ ∈ T⊥ on Γ . (8)

(ii) If λ ∈ (0,+∞), then defining (φ̂ i, q̂ i), i = 1,2 as a solution of

⎧
⎪⎪⎨

⎪⎪⎩

−Δzφ̂ i +∇zq̂
i = 0, divz φ̂ i = 0 in R

2× (0,+∞)

φ̂ i
3(z

′,0)+ ∂ziΨ (z′) = 0, ∂z3(φ̂
i)′(z′,0) = 0, a.e. z′ ∈ R

2

φ̂ i(.,z3), q̂ i(.,z3) periodic of period Z′, a.e. z3 ∈ (0,+∞)

φ̂ i ∈H1(Z′ × (0,+∞))3, q̂ i ∈ L2(Z′ × (0,+∞)),

(9)

and R ∈ R
2×2 by

Ri j =

∫

Z′×(0,+∞)
Dzφ̂ i : Dzφ̂ j dz, ∀ i, j ∈ {1,2}, (10)
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we have

u3 ∈ T on Γ , −∂3u′+ γu′+λ 2Ru′ ∈ T⊥ on Γ . (11)

(iii) If λ =+∞, then defining

W = Span({∇Ψ(z′) : z′ ∈ Z′})⊥, (12)

we have

u3 ∈ T, on Γ , u′ ∈W, on Γ , −∂3u′+ γu′ ∈W⊥, on Γ (13)

Proof. See [15]. It is based on an original adaptation of the unfolding method, [1,9,
12], which is very related to the two-scale convergence method. �	

Remark 1. For λ = 0, Theorem 2 shows that the roughness of Γε is very slight and
so the solution (uε , pε) of (6) behaves as if Γε coincides with the plane boundary Γ .
For λ ∈ (0,+∞) (critical size), the boundary condition satisfied by the limit u of uε
on the tangent space to Γ contains the new term λ 2Ru′. In this case, the effect of the
roughness of Γε is not worthless and it makes to appear this new term in the limit.
Finally, for λ = +∞ the roughness of Γε is so strong that the limit u of uε does not
only satisfies the condition u3 ∈ T , i.e., u3 = 0, on Γ , but also its tangent velocity
on Γ , u′, is orthogonal to the vectors ∇Ψ(z′), with z′ ∈ Z′. In particular, if the space
W defined by (12) has dimension 0, then u satisfies the adherence condition u = 0
on Γ .

Remark 2. The case λ ∈ (0,+∞) can be considered as the general one. In fact, if λ
tends to zero or infinity in (11), we get (8) or (13), respectively.

Remark 3. Theorem 2 provides an approximation of (uε , pε) in the weak topology
of H1(Ω)3×L2(Ω). We refer to [9] for corrector results, i.e., strong approximation
of the solution of the Stokes system (6), and to [11] for error estimates between the
solution and its corrector.

Remark 4. The asymptotic behavior of viscous fluids confined in a thin domain of
height hε with a rough boundary described by (4), such that δε $ ε $ hε , has been
considered in [10], where we obtain a Reynolds system in the limit which shows
that near the rough bottom Γε the behavior of the fluid is similar to the one obtained

in Theorem 2 but with λ replaced by λthin = lim
ε→0

δε h1/2
ε

ε3/2
. Remark that λ = λthin if

hε = 1.
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3 Asymptotic Behavior of Elliptic Partial System
in General Rough Domains

In the previous section we have shown that the Navier boundary condition for the
Stokes system provides a new term in the limit problem. In this section we study
this phenomenon for linear elliptic systems in rough domains Ωε ⊂ R

N , where Ωε
is not necessarily a periodic structure.

We consider a sequence of Lipschitz open sets Ωε ⊂ R
N which converges to a

Lipschitz open set Ω ⊂ R
N in the following sense: For every ρ > 0, there exists

ε0 > 0 such that for every ε ∈ (0,ε0), we have

Ω ρ− = {x ∈Ω : d(x,∂Ω) > ρ} ⊂Ωε ⊂
{

x ∈ R
N : d(x,Ω )< ρ

}
= Ω ρ+

. (14)

We denote by Ω̃ an open set containing strictly Ω .
In Ωε , we consider the following homogenization problem:

{
−divADuε = f in Ωε
uε ∈Vε , ∀x ∈ ∂Ωε , ADuε ·ν ∈V⊥ε , ∀x ∈ ∂Ωε ,

(15)

where A belongs to L∞(Ω̃ ;TM×N) (TM×N is the space of linear applications from
the space of matrices MM×N into itself), Vε is an arbitrary sequence of functions
from ∂Ωε into the set of linear subspaces of R

M , ν denotes the unitary outside
normal vector to Ωε on ∂Ωε , and the second member f is a function in L2(Ω̃)M .

We also assume the following ellipticity condition: there exists α > 0 such that

⎧
⎨

⎩
α‖v‖2

H1(Ωε )M ≤
∫

Ωε
ADv : Dvdx,

∀v ∈ H1(Ωε )
M, v ∈Vε , a.e. x ∈ ∂Ωε .

Observe that this ellipticity condition is written in an integral form instead of a
pointwise one. This is more convenient for systems where the pointwise and integral
ellipticity conditions are not equivalent. In particular it permits to deal with the
linear elasticity system, where the tensor only depends on the symmetric part of the
derivative.

Assuming that Vε(x) = Tε(x), with Tε(x) the tangent space in the point x ∈ ∂Ωε ,
the oscillating boundary condition in (15) is equivalent to the Navier boundary
condition [see (2)] considered in Sect. 2. Some other choices of Vε are also
interesting, see [15]. For example, taking Sε an arbitrary subset of ∂Ωε , and
defining Vε as Vε(x) = {0} for x ∈ Sε , and Vε(x) = R

N for x ∈ ∂Ωε \ Sε , the
problem represents the homogenization of elliptic partial systems with Dirichlet
and Neumann conditions on varying subsets of the boundary.

Our main result in this section is the following theorem.
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Theorem 3. There exist a subsequence of ε , still denoted by ε , a Borel measure
μ in ∂Ω which vanishes on the sets of null capacity, a μ-measurable function R :
∂Ω →MM×M, with

Rξ ·ξ ≥ 0, |Rξ ·η | ≤ β (Rξ ·ξ ) 1
2 (Rη ·η) 1

2 , ∀ξ ,η ∈ R
N , μ-a.e. in ∂Ω ,

for some β > 0, and an application V from ∂Ω into the set of linear subspaces of
R

M, satisfying

α‖v‖2
H1(Ω)M ≤

∫

Ω
ADv : Dvdx+

∫

∂Ω
Rv · vdμ , ∀v ∈ H1(Ω)M, v ∈V q.e. on ∂Ω ,

with the following property: For every f ∈ L2(Ω)M, the unique solution of (15)
converges weakly in H1(Ω ρ−), for every ρ > 0, to the unique solution u ∈H1(Ω)M

of problem

⎧
⎪⎨

⎪⎩

−divADu = f in Ω
u ∈V, q.e. x ∈ ∂Ω ,

∫

∂Ω
Ru ·udμ <+∞

ADu ·ν +Ruμ ∈V⊥, q.e. in ∂Ω .

(16)

Proof. The proof is given in [15]. It is based on a representation theorem strongly
related with the one given in [14]. �	

Using the ideas considered to prove Theorem 3, and assuming that Ωε satisfies
the uniform cone condition (see [5]), we can prove the following result relative to
the asymptotic behavior of viscous fluids in rough domains not necessarily periodic.

Theorem 4. There exist a measure μ , a μ-measure function R, and an application
V in the statements of Theorem 3 such that for every f ∈ L2(Ω̃)M, the unique
solution of

⎧
⎨

⎩

−Δuε + uε +∇pε = f in Ωε , divuε = 0 in Ωε

uε ∈Vε on ∂Ωε ,
∂uε
∂ν

+ γ uε ∈V⊥ε on ∂Ωε
(17)

converges weakly in H1(Ω ρ−)3×L2(Ω ρ−), for every ρ > 0, to the unique solution
(u, p) ∈ H1(Ω)3×L2(Ω) of problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Δu+ u+∇p= f in Ω
u ∈V, q.e. in x ∈ ∂Ω ,

∫

∂Ω
Ru ·udμ <+∞

∂u
∂ν

+ γu+Ruμ ∈V⊥, q.e. in ∂Ω .

Remark 5. For the particular choice Vε(x) = Tε (x) for every x ∈ ∂Ωε , we would
recover the results given in [5].
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A Double Complex Construction and Discrete
Bogomolny Equations

Volodymyr Sushch

Abstract We study discrete models which are generated by the self-dual Yang–Mills
equations. Using a double complex construction, we construct a new discrete analog
of the Bogomolny equations. Discrete Bogomolny equations, a system of matrix-
valued difference equations, are obtained from discrete self-dual equations. The
gauge invariance of the discrete model is established.

Keywords Discrete model • Difference equations • Bogomolny equations
• Yang-Mills equations

1 Introduction

This work is concerned with discrete model of the SU(2) self-dual Yang–Mills
equations described in [11]. It is well known that the self-dual Yang–Mills equations
admit reduction to the Bogomolny equations [1]. Let A be an SU(2)-connection
on R

3. This means that A is an su(2)-valued 1-form and we can write

A =
3

∑
i=1

Ai(x)dxi, (1)

where Ai : R3 → su(2). Here su(2) is the Lie algebra of SU(2). The connection A is
also called a gauge potential with the gauge group SU(2) (see [8] for more details).
Given the connection A, we define the curvature 2-form F by

F = dA+A∧A, (2)
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where∧ denotes the exterior multiplication of differential forms. Let Φ :R3→ su(2)
be a scalar field (a Higgs field). The Bogomolny equations are a set of nonlinear
partial differential equations, where unknown is a pair (A,Φ). These equations can
be written as

F = ∗dAΦ, (3)

where ∗ is the Hodge star operator on R
3 and dA is the covariant exterior differential

operator. This operator is defined by the formula

dAΩ = dΩ+A∧Ω+(−1)r+1Ω∧A,

where Ω is an arbitrary su(2)-valued r-form.
Let us now consider the connection A on R

4. We define A to be

A =
3

∑
i=1

Ai(x)dxi +Φ(x)dx4, (4)

where Ai and Φ are independent of x4. In other words, the scalar field Φ is identified
with a fourth component A4 of the connection A. It is easy to check that if the pair
(A,Φ) satisfies Eq. (3), then the connection (4) is a solution of the self-dual equation

F = ∗F. (5)

In fact, the Bogomolny equations can be obtained from the self-dual equations by
using dimensional reduction from R

4 to R
3 [1].

The aim of this paper is to construct a discrete model of Eq. (3) that preserves the
geometric structure of the original continual object. This means that speaking of a
discrete model, we mean not only the direct replacement of differential operators
by difference ones but also a discrete analog of the Riemannian structure over
a properly introduced combinatorial object. The idea presented here is strongly
influenced by the book by Dezin [3]. Using a double complex construction, we
construct a new discrete analog of the Bogomolny equations. In much the same way
as in the continual case, these discrete equations are obtained from discrete self-
dual equations. The gauge invariance of the discrete model is proved. We continue
the investigations [10,11], where discrete analogs of the self-dual and anti-self-dual
equations on a double complex are studied. It should be noted that there are many
other approaches to discretization of Yang–Mills theories. As the list of papers
on the subject is very large, we content ourselves by referencing the works [2, 4–
7, 9]. In these papers some other discrete versions of the Bogomolny equations are
studied.
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2 Double Complex Construction

The double complex construction is described in [10]. For the convenience of the
reader we briefly repeat the relevant material from [10] without proofs. Let the
tensor product C(n) =C⊗ . . .⊗C of a 1-dimensional complex C be a combinatorial
model of the Euclidean space R

n. The 1-dimensional complex C is defined in the
following way. Let C0 denote the real linear space of 0-dimensional chains generated
by basis elements xi (points), i ∈ Z. It is convenient to introduce the shift operator τ
in the set of indices by

τi = i+ 1.

We denote the open interval (xi, xτi) by ei. We regard the set {ei} as a set of
basis elements of the real linear space C1 of 1-dimensional chains. Then the 1-
dimensional complex (combinatorial real line) is the direct sum of the spaces
introduced above: C = C0⊕C1. The boundary operator ∂ on the basis elements
of C is given by

∂xi = 0, ∂ei = xτi− xi. (6)

The definition is extended to arbitrary chains by linearity.
Multiplying the basis elements xi and ei of C in various ways, we obtain the basis

elements of C(n). Let s(r)k = sk1 ⊗ . . .⊗ skn , where k = (k1, . . . ,kn) and ki ∈ Z, be
an arbitrary r-dimensional basis element of C(n). The product contains exactly r of
1-dimensional elements eki and n− r of 0-dimensional elements xki . The superscript
(r) also uniquely determines an r-dimensional basis element of C(n). For example,
the 1-dimensional ei

k and 2-dimensional ε i j
k basis elements of C(3) can be written as

e1
k = ek1⊗ xk2⊗ xk3 , e2

k = xk1 ⊗ ek2⊗ xk3 , e3
k = xk1 ⊗ xk2⊗ ek3 ,

ε12
k = ek1 ⊗ ek2⊗ xk3 , ε13

k = ek1 ⊗ xk2⊗ ek3 , ε23
k = xk1 ⊗ ek2⊗ ek3 ,

where k = (k1,k2,k3) and ki ∈ Z.
Now we consider a dual object of the complex C(n). Let K(n) be a cochain

complex with gl(2,C)-valued coefficients, where gl(2,C) is the Lie algebra of the
group GL(2,C). We suppose that the complex K(n), which is a conjugate of C(n),
has a similar structure: K(n) = K⊗ . . .⊗K, where K is a dual of the 1-dimensional
complex C. We will write the basis elements of K as xi, ei. Then an arbitrary basis
element of K(n) is given by sk = sk1 ⊗ . . .⊗ skn , where ski is either xki or eki . For an
r-dimensional cochain ϕ ∈ K(n), we have

ϕ = ∑
k

∑
r

ϕ(r)
k sk

(r), (7)

where ϕ(r)
k ∈ gl(2,C). We will call cochains forms, emphasizing their relationship

with the corresponding continual objects, differential forms.
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We define the pairing operation for arbitrary basis elements εk ∈C(n), sk ∈ K(n)
by the rule

< εk, ask >=

{
0, εk �= sk

a, εk = sk, a ∈ gl(2,C).
(8)

Here for simplicity the superscript (r) is omitted. The operation (8) is linearly
extended to cochains.

The operation ∂ induces the dual operation dc on K(n) in the following way:

< ∂εk, ask >=< εk, adcsk > . (9)

For example, if ϕ is a 0-form, i.e., ϕ = ∑k ϕkxk, where xk = xk1 ⊗ . . .⊗ xkn , then

dcϕ = ∑
k

n

∑
i=1

(Δiϕk)e
k
i , (10)

where ek
i is the 1-dimensional basis elements of K(n) and

Δiϕk = ϕτik−ϕk. (11)

Here the shift operator τi acts as

τik = (k1, . . . ,τki, . . . ,kn).

The coboundary operator dc is an analog of the exterior differentiation operator d.
Introduce a cochain product on K(n). We denote this product by ∪. In terms of

the homology theory this is the so-called Whitney product. For the basis elements
of 1-dimensional complex K, the ∪-product is defined as follows:

xi∪ xi = xi, ei∪ xτi = ei, xi∪ ei = ei, i ∈ Z,

supposing the product to be zero in all other cases. By induction we extend this
definition to basis elements of K(n) (see [10] for details). For example, for the
1-dimensional basis elements ek

i ∈ K(3) we have

ek
1∪ eτ1k

2 = εk
12, ek

1∪ eτ1k
3 = εk

13, ek
2∪ eτ2k

3 = εk
23,

ek
2∪ eτ2k

1 = −εk
12, ek

3∪ eτ3k
1 =−εk

13, ek
3∪ eτ3k

2 =−εk
23. (12)

To arbitrary forms the ∪-product be extended linearly. Note that the components of
forms multiply as matrices. It is worth pointing out that for any forms ϕ ,ψ ∈ K(n),
the following relation holds:

dc(ϕ ∪ψ) = dcϕ ∪ψ +(−1)rϕ ∪dcψ , (13)

where r is the dimension of a form ϕ . For the proof we refer the reader to [3].
Relation (13) is a discrete analog of the Leibniz rule for differential forms.
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Let us now together with the complex C(n) consider its “double,” namely, the
complex C̃(n) of exactly the same structure. Define the one-to-one correspondence

∗ : C(n)→ C̃(n), ∗ : C̃(n)→C(n) (14)

in the following way:

∗ : s(r)k →±s̃(n−r)
k , ∗ : s̃(r)k →±s(n−r)

k , (15)

where s̃(n−r)
k = ∗sk1 ⊗ . . .⊗∗skn and ∗ski = ẽki if ski = xki and ∗ski = x̃ki if ski =

eki . We let the plus sign in (15) if a permutation of (1, . . . ,n) with (1, . . . ,n)→
((r), . . . ,(n− r)) is representable as the product of an even number of transpositions
and the minus sign otherwise.

The complex of the cochains K̃(n) over the double complex C̃(n) has the same
structure as K(n). Note that forms ϕ ∈ K(n) and ϕ̃ ∈ K̃(n) have both the same
components. The operation (14) induces the respective mapping

∗ : K(n)→ K̃(n), ∗ : K̃(n)→ K(n) (16)

by the rule: < c̃, ∗ϕ >=< ∗c̃, ϕ >, < c, ∗ψ̃ >=< ∗c, ψ̃ >, where c ∈C(n), c̃ ∈
C̃(n), ϕ ∈K(n), ψ̃ ∈ K̃(n). For example, for the 2-dimensional basis elements εk

i j ∈
K(3) we have

∗εk
12 = ẽk

3, ∗εk
13 =−ẽk

2, ∗εk
23 = ẽk

1. (17)

This operation is a discrete analog of the Hodge star operation. Similarly to the
continual case, we have ∗ ∗ϕ = (−1)r(n−r)ϕ for any discrete r-form ϕ ∈ K(n).

Finally, for convenience we introduce the operation

ι̃ : K(n)→ K̃(n), ι̃ : K̃(n)→ K(n) (18)

by setting ι̃sk
(r) = s̃k

(r), ι̃ s̃k
(r) = sk

(r). It is easy to check that the following hold:

ι̃∗ = ∗ι̃, ι̃dc = dcι̃, ι̃ϕ = ϕ̃ , ι̃ ι̃ϕ = ϕ , ι̃(ϕ ∪ψ) = ι̃ϕ ∪ ι̃ψ ,

where ϕ ,ψ ∈ K(n).

3 Discrete Bogomolny Equations

Let us consider a discrete su(2)-valued 0-form Φ ∈ K(3). We put

Φ = ∑
k

Φkxk, (19)
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where Φk ∈ su(2) and xk = xk1 ⊗ xk2 ⊗ xk3 is the 0-dimensional basis element of
K(3), k = (k1,k2,k3), ki ∈ Z. We define a discrete SU(2)-connection A to be

A = ∑
k

3

∑
i=1

Ai
kek

i , (20)

where Ai
k ∈ su(2) and ek

i is the 1-dimensional basis element of K(3).
On account of (7), an arbitrary discrete 2-form F ∈ K(3) can be written as

follows:

F = ∑
k

∑
i< j

Fi j
k εk

i j = ∑
k

(
F12

k εk
12 +F13

k εk
13 +F23

k εk
23

)
, (21)

where Fi j
k ∈ gl(2,C) and εk

i j is the 2-dimensional basis element of K(3). Define a
discrete analog of the curvature form (2) by

F = dcA+A∪A. (22)

By the definition of dc (9) and using (12) we have

dcA = ∑
k

∑
i< j

(ΔiA
j
k−Δ jA

i
k)ε

k
i j , (23)

A∪A = ∑
k

∑
i< j

(Ai
kA j

τik
−A j

kAi
τ jk)ε

k
i j . (24)

Recall that Δi is the difference operator (11). Combining (23) and (24) with (21),
we obtain

Fi j
k = ΔiA

j
k−Δ jA

i
k +Ai

kA j
τik
−A j

kAi
τ jk. (25)

It should be noted that in the continual case the curvature form F takes values
in the algebra su(2) for any su(2)-valued connection form A. Unfortunately, this is
not true in the discrete case because, generally speaking, the components Ai

kA j
τik
−

A j
kAi

τ jk
of the form A∪ A in (22) do not belong to su(2). For a definition of the

su(2)-valued discrete curvature form, we refer the reader to [11].
Define a discrete analog of the exterior covariant differential operator dA as

dc
Aϕ = dcϕ +A∪ϕ +(−1)r+1ϕ ∪A,

where ϕ is an arbitrary r-form (7) and A is given by (20) . Then for the 0-form (19),
we obtain

dc
AΦ = dcΦ+A∪Φ−Φ∪A. (26)
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Using (10) and the definition of ∪, we can rewritten (26) as follows:

dc
AΦ = ∑

k

3

∑
i=1

(ΔiΦk +Ai
kΦτik−ΦkAi

k)e
k
i . (27)

Applying the operation ∗ (16) to this expression and by (17) we find

∗ dc
AΦ = ∑

k

(Δ1Φk +A1
kΦτ1k−ΦkA1

k)ε̃
k
23

−∑
k

(Δ2Φk +A2
kΦτ2k−ΦkA2

k)ε̃
k
13

+∑
k

(Δ3Φk +A3
kΦτ3k−ΦkA3

k)ε̃
k
12. (28)

Now suppose that Φ in the form (19) is a discrete analog of the Higgs field. Then
the discrete analog of the Bogomolny equation (3) is given by the formula

F = ι̃ ∗ dc
AΦ, (29)

where ι̃ is the operation (17). From (21) and (28) it follows immediately that Eq. (29)
is equivalent to the following difference equations:

F12
k = Δ3Φk +A3

kΦτ3k−ΦkA3
k,

F13
k = −Δ2Φk−A2

kΦτ2k +ΦkA2
k ,

F23
k = Δ1Φk +A1

kΦτ1k−ΦkA1
k . (30)

Consider now the discrete curvature form (22) in the 4-dimensional case, i. e.,
F ∈ K(4). The discrete analog of the self-dual Eq. (5) can be written as follows:

F = ι̃ ∗F. (31)

By the definition of ∗ for the 2-dimensional basis elements εk
i j ∈ K(4), we have

∗εk
12 = ε̃k

34, ∗εk
13 =−ε̃k

24, ∗εk
14 = ε̃k

23,

∗εk
23 = ε̃k

14, ∗εk
24 =−ε̃k

13, ∗εk
34 = ε̃k

12.

Using this we may compute ∗F:

∗F = ∑
k

(
F12

k ε̃k
34−F13

k ε̃k
24 +F14

k ε̃k
23 +F23

k ε̃k
14−F24

k ε̃k
13 +F34

k ε̃k
12

)
.
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Then Eq. (31) becomes

F12
k = F34

k , F13
k =−F24

k , F14
k = F23

k . (32)

Let the discrete connection 1-form A ∈ K(4) be given by

A = ∑
k

3

∑
i=1

Ai
kek

i +∑
k

Φkek
4, (33)

where Ai
k ∈ su(2), Φk ∈ su(2) and k = (k1,k2,k3,k4), ki ∈ Z. Note that here we put

A4
k = Φk and Φk are the components of the discrete Higgs field. Suppose that the

connection form (33) is independent of k4, i.e.,

Δ4Ai
k = 0, Δ4Φk = 0 (34)

for any i = 1,2,3 and k = (k1,k2,k3,k4). Substituting (34) into (25) yields

Fi4
k = ΔiΦk +Ai

kΦτik−ΦkAi
k, i = 1,2,3.

Putting these expressions in Eq. (32) we obtain Eq. (30).
Thus, we have the following:

Theorem 1. The discrete Bogomolny equation (29) and the discrete self-dual
Eq. (31) are equivalent.

Let us consider the SU(2)-valued 0-form

h = ∑
k

hkxk, (35)

where hk ∈ SU(2) and xk = xk1 ⊗ xk2 ⊗ xk3 is the 0-dimensional basis element
of K(3). By analogy with classical Yang–Mills theories, we define a gauge
transformation for the discrete potential A ∈ K(3) and discrete field Φ ∈ K(3) as

A′ = h∪dch−1 + h∪A∪h−1, (36)

Φ′ = h∪Φ∪h−1, (37)

where h−1 is the 0-form with inverse components (inverse matrices) of h. Suppose
that the components hk ∈ SU(2) of (35) satisfy the following conditions:

hτ1τ2k = hτ3k, hτ1τ3k = hτ2k, hτ2τ3k = hτ1k (38)

for all k = (k1,k2,k3), ki ∈ Z. It is easy to check that the set of forms (35) satisfying
conditions (38) is a group under ∪-product.
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Theorem 2. The discrete Bogomolny equation (29) is invariant under the gauge
transformation (36) and (37), where h satisfies condition (38).

Proof. Rewrite Eq. (29) in the form

ι̃ ∗F− dc
AΦ = 0. (39)

The proof is based on Theorem 4.3 and Lemma 4.6 in [11]. Under the transformation
(36) the curvature form (22) changes as

F ′ = h∪F ∪h−1.

Using conditions (38) and Lemma 4.6 of [11] we have

ι̃ ∗F ′ = ι̃ ∗ (h∪F∪h−1) = h∪ ι̃ ∗F ∪h−1. (40)

Since dch∪h−1 =−h∪dch−1 by (13), (26), (36), and (37), we compute

dc
A′Φ

′ = dc
A′(h∪Φ∪h−1) = h∪dcΦ∪h−1

+ h∪A∪Φ∪h−1− h∪Φ∪A∪h−1 = h∪dc
AΦ∪h−1. (41)

Comparing (40) and (41) we obtain

ι̃ ∗F ′ − dc
A′Φ

′ = h∪ (ι̃ ∗F− dc
AΦ)∪h−1.

Thus, if the pair (A,Φ) is a solution of Eq. (29), then (A′,Φ′) is also a solution
of (29). �	
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Pseudo-Differential Equations on Manifolds
with Non-smooth Boundaries

Vladimir B. Vasilyev

Abstract We discuss the different variants of multidimensional Riemann boundary
problem and suggest to use wave factorization to obtain solvability conditions for
pseudo-differential equations in model non-smooth domains.

Keywords Pseudo-Differential equation • Riemann boundary problem • Wave
factorization

1 Classical Case

The classical Riemann boundary problem in its simplest form [4], is to find
piecewise analytic function, more precisely the function which is analytic in upper
and lower complex plane and which satisfies the linear relation on a straight real
line

Φ+(t) = G(t)Φ−(t)+ g(t), t ∈ R. (1)

If Φ(z), z ∈ C\R is analytic function, then Φ±(t) denote its boundary values on
R (z = x+ iy, y→ 0±), G(t) is called coefficient of the Riemann problem, and g(t)
and G(t) are given functions on R.

The solution of the problem (1) is constructed with the help of factorization of
function G and Cauchy-type integral (one-dimensional singular integral):

Φ(z) =
1

2π i

+∞∫

−∞

ϕ(t)
z− t

dt, z ∈ C\R. (2)
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Re z

Im z

Fig. 1 One-dimensional case

Definition 1. Factorization of function G(t) is called its representation in the form

G(t) = G+(t)G−(t), (3)

where the functions G±(t) admit analytic continuation in upper and lower complex
half-plane.

Key point for solving the problem (1) takes the formulas for limit boundary values
for integral (2) and Sokhotski formulas

Φ+(t)−Φ−(t) = ϕ(t),

Φ+(t)+Φ−(t) =
1
π i

v.p.

+∞∫

−∞

ϕ(t)
t− τ

dτ. (4)

The last integral is treated in principal value sense and is called Hilbert transform
of function ϕ :

(Hϕ)(t) =
1
π i

v.p.

+∞∫

−∞

ϕ(t)
t− τ

dτ. (5)

This problem permits a series of multidimensional generalizations. I will talk on
these variants step by step.

2 Generalizations

For one-dimensional case the upper and lower half-plane is a set of complex
numbers of the type

R± iR+,

Im z⊂ R+, and R± is unique simplest one-dimensional cone.
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K2

K3

K1

K4

x1

x2

Fig. 2 Two-dimensional case

For two-dimensional case the situation is more complicated. The first generaliza-
tions were related to so-called bicylindrical domains [8, 11].

In this picture the imaginary part of two-dimensional bicylindrical domains is
shown, and the two-dimensional Riemann problem is stated by the following way.
We seek a function Φ(z1,z2) which is analytic in the four domains of complex space
C2 of type R2 + iKm, m = 1,2,3,4 (these domains are called radial tube domains
over the cones Km [7, 19]), and for which their boundary values (there are four
boundary values in this case) satisfy the linear relation

A(x1,x2)Φ++(x1,x2)+B(x1,x2)Φ−+(x1,x2)+

+C(x1,x2)Φ−−(x1,x2)+D(x1,x2)Φ+−(x1,x2) = f (x1,x2), (6)

(x1,x2) ∈ R2.

Although for one-dimensional case the problem (1) is completely solvable by the
Cauchy-type integral (2), the two-dimensional analogue of Cauchy-type integral

Φ(z1,z2) =
1

4π2

∫

R2

ϕ(t1, t2)dt1dt2
(t1− z1)(t2− z2)

(7)

doesn’t help for solving the problem (6).
For some special cases only it is possible constructing the solution with the help

of the integral (7).
Another variant of multidimensional generalization of the Riemann problem was

suggested by V.S. Vladimirov [18] (I will use the picture 2), which coincides with
the problem (1) in one-dimensional case and is formulated by the following way.
Finding the function Φ(z1,z2) which is analytic in radial tube domains [7,19] T (K1),
T (K2) over the cones K1, K2, respectively, and for which boundary values satisfy the
linear relation

Φ++(x1,x2) = G(x1,x2)Φ−−(x1,x2)+ g(x1,x2), (x1,x2) ∈ R2, (8)

but this statement for such problem doesn’t take into account the domains T (K2),
T (K4).
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All these problems mentioned above were solved by factorization method,
namely, by function decomposition into the product of two factors admitting an
analytic continuation into appropriate domain. In this way the different functional
classes for solution were described, this sufficient factorization conditions were
obtained, but in my point of view, no one from this multidimensional generalizations
had future development and serious application.

I will describe now one variant of multidimensional Riemann problem and will
show what consequences we can have stating from this statement and existence of a
special factorization.

So, for simplicity, we consider the space L2(R2) and the space A(R2) which
is consisting of analytic functions in radial tube domain T (K1) and satisfying the
condition [7, 19]

sup
y∈K1

∫

R2

| f (x+ iy)|2dx <+∞.

B(R2) is an orthogonal complement of A(R2) in the space L2(R2), so that

A(R2)⊕B(R2) = L2(R2).

Further, the statement of multidimensional Riemann problem is a precise copy
of (1):

Φ+(t) = G(t)Φ−(t)+ g(t), t ∈ R2 (9)

with the one difference, the function Φ+ is sought in A(R2), and the function Φ− is
sought in the space B(R2).

3 Equations

It was shown [21, 22] such statement for multidimensional boundary Riemann
problem must give certain meaning to studying solvability of pseudo-differential
equations in model non-smooth domains. If we consider the pseudo-differential
equation

(Au)(x) = f (x), x ∈ D, (10)

in multidimensional domain D ⊂ Rm, m ≥ 2, for which its boundary is a smooth
surface, then a model problem is the equation in the half-space:

(Au)(x) = f (x), x ∈Rm
+ . (11)
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Fig. 3 Transformation of cone

Here A stands for a pseudo-differential operator with symbol non-depending on
the pole x (the equation with “frozen coefficients”). Equation (2) in Fourier images
is reduced to one-dimensional singular integral equation with the parameter ξ ′ =
(ξ1, . . . ,ξm−1), i.e., to the Riemann problem (1) which is solved by factorization
method. This situation is studied in detail in papers’ series of M.I. Vishik and G.I.
Eskin [3, 16, 17], is fixed algebraically by L. Boutet de Monvel [1], and moved up
to index theorem (see also S.Rempel, B.-W. Schulze [13]). But existence of one
conical point only on a boundary forbids to use this theory.

I wrote many times on another approach to studying solvability for pseudo-
differential equations in domains with conical points and wedges, but now I would
like to speak on principal difference of my papers from other authors (V.G. Maz’ya
[5, 6], B.A. Plamenevski [9, 10], B.-W. Schulze [14], and many others).

In all papers the conical domain (see Fig. 3) is treated as the direct product of a
circle and a half-axis (but in my point of view, it is a cylinder, see for example [12]),
then they apply the Mellin transform on half-axis, and the initial problem is reduced
to a problem in a domain with a smooth boundary with operator-valued symbol.
That follows further it is like the generalization of well-known results on operator
symbol case. Of course, my approach is generalization also, but it is a generalization
on dimension space, and the principal difference is that I don’t divide the cone, and
it is treated as an emergent thing.

In this way we meet the multidimensional Riemann boundary problem men-
tioned above; it permits to construct very interesting theory of pseudo-differential
equations and boundary value problems in domains, for which their boundaries have
singularities of “cone” and “wedge” type.

Let Ca
+ = {x ∈ Rm : xm > a|x′|, x′ = (x1, . . . ,xm−1), a > 0} be a cone in

m-dimensional space,
∗
Ca
+ be a conjugate cone, and Ca

− =−Ca
+, T (

∗
C a
+) be a radical

tube domain over the cone Ca
+ [7,19]. The model pseudo-differential equation in the

cone Ca
+ is the equation of type

(Au)(x) = f (x), x ∈Ca
+, (12)
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where A is pseudo-differential operator with the symbol A(ξ ), ξ ∈ Rm, satisfying
the condition

c1 ≤ |A(ξ )(1+ |ξ |)−α| ≤ c2, (13)

c1, c2 are positive constants, and α ∈ R is roughly speaking the order of a
pseudo-differential operator.

Definition 2. Wave factorization of a symbol A(ξ ) with respect to Ca
+ is called its

representation in the form

A(ξ ) = A �=(ξ )A=(ξ ),

and the factors A �=(ξ ), A=(ξ ) have satisfy the following conditions:

(1) A �=(ξ ), A=(ξ ) are defined on Rm without maybe the points {ξ ∈ Rm : aξ 2
m =

|ξ ′|2}.
(2) A �=(ξ ), A=(ξ ) admit an analytical condition into radial tube domains T (

∗
Ca
±)

over the cones
∗
Ca
± respectively which satisfy the estimates

∣
∣∣A±1
�= (ξ + iτ)

∣
∣∣≤ c(1+ |ξ |+ |τ|)±æ,

∣
∣
∣A±1
�= (ξ − iτ)

∣
∣
∣≤ c(1+ |ξ |+ |τ|)±(α−æ), τ ∈

∗
Ca
+.

The number æ ∈R is called index of wave factorization.
Existence of wave factorization permits to obtain the solution of multidimen-

sional Riemann problem (9) by the special integral

(Gmu)(x) = lim
τ→0+

∫

Rm

u(y′,ym)dy′dym

(|x′ − y′|2− a2(xm− ym + iτ)2)m/2
. (14)

The integral Gm is a multidimensional analogue of the Cauchy-type integral
(more precisely, its limit case corresponding to boundary values). It looks as a
convolution which kernel is Fourier image of Ca

+-indicator. But this multiplier is
not integrable function, and we need to go out into complex plane to destroy the
divergence (see [15]). Definition (14) is one of the possible definitions for such
singular integral. Of course, it is very desirable to give this definition for real
variables (as principal value type of Cauchy integral like one-dimensional case),
but I would like to note such definition was used in classical papers [2].

So, what can we obtain for solvability of Eq. (12), if we have wave factorization
for the symbol A(ξ ) ?

I will enumerate main conclusions which we can obtain (see [21, 22] for details)
starting from existence of wave factorization for the symbol A(ξ ). We consider
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Sobolev–Slobodetski space Hs(Ca
+) (there are functions from Hs(Rm) with support

in Ca
+). We study Eq. (3) in the space Hs(Ca

+), and the right-hand side is fixed in the
space Hs−α

0 (C0
+) [21, 22].

(1) The index of wave factorization determines fully the solvability cases for
Eq. (12). If the solution is unique (æ− s = δ , |δ |< 1/2), then it can be written
by integral (14). For the case æ−s = n+δ , n∈ Z, n> 0, |δ |< 1/2, there are
many solutions, but we have the formula for a general solution which includes
2n arbitrary functions from corresponding Sobolev–Slobodetski spaces. Last,
æ− s = n+ δ , n ∈ Z, n > 0, |δ | < 1/2, Eq. (3) is overdetermined, and the
solvability conditions are given.

(2) There are many interesting applied problems, particularly, the diffraction
problem of a spatial wave on a plane screen, and the problem of indentation
of a wedge-shaped punch into elastic half-space. These problems are reduced
to two-dimensional Eq. (12) for which the wave factorization for its symbol
is constructed explicitly. Earlier these problems solved approximately, or
solution’s construction was very hard.

(3) It is very problematic that wave factorization exists for every symbol A(ξ )
satisfying (13). The author proved the class of such symbols is very wide.
But we can’t give the constructive algorithm for wave factorization in this time
although in one-dimensional case (3), such factorization can be constructed by
Cauchy-type integral (2).

(4) Although we have pessimistic point (3), the optimistic point (2) permits to
construct wave factorization needed for two-dimensional case and the Lapla-
cian, and taking into account point (1) to consider the classical Dirichlet and
Neumann problems in a plane case. By transformations series (first Fourier, then
Mellin transforms), the boundary value problems were reduced to equivalent
system of linear algebraic equations. The unique solvability was verified
by direct calculation for determinant needed. For a general case the unique
solvability condition for such system of linear algebraic equation was called
angle (conical) Shapiro–Lopatinski condition.

These results from (1) to (4) show the direction to more complicated singularities,
so-called “thin” singularities.

These cases include such situations like plane cut in a space. The first preliminary
sketches are presented in [23], and the author hopes to obtain something like (1)–(4)
in this case also.

From my point of view any singularity corresponds to a certain distribution. It
will be the distribution

aΓ(m/2)

2π m+2
2

1
(
|ξ ′|2− a2 (ξm + i0)2

)m/2
, (15)

for the cone Ca
+, Γ is Euler function [21, 22].
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y = j (x)

y = y (x)

y

x

D

Fig. 4 Outer cusp point

If we try to find a limit under a → +∞, then we must obtain the distribution
corresponding to singularity of one-dimensional cut (as a ray) in a plane. I calculated
these limits for some cases both two-dimensional and multidimensional and ob-
tained some interesting formulas. I give some of these results (see [23] for details).

4 Thin Singularities

Let us consider a two-dimensional domain of out cusp point (see Fig. 4) with
vanishing angle, so that the functions ϕ(x),ψ(x) are continuously differentiable on
[0,+∞) and ϕ ′(0) = ψ ′(0) = 0. Obviously such domain will be diffeomorphic to
R2 \ [0,+∞). Indeed the diffeomorphism for origin’s neighborhood can be defined
by the formulas

{
ξ = x

η = y−ϕ(x)

for the points from the first quadrant and
{

ξ = x
η = y−ψ(x)

for the points from the fourth quadrant, but the points from second and third
quadrants must be in their own places. The Jacobian for such transformation will
be the following:
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D(ξ ,η)
D(x,y)

=

∣∣
∣
∣

1 0
−ϕ ′(x) 1

∣∣
∣
∣ ,

D(ξ ,η)
D(x,y)

=

∣∣
∣
∣

1 0
−ψ ′(x) 1

∣∣
∣
∣

for the second and fourth quadrants and equals to 1 for the second and third
quadrants. The Jacobian is continuous in origin’s neighborhood and equals to 1 at
the origin.

If in the origin’s neighborhood we transfer to coordinates (ξ ,η), then the singular
integral operator with Calderon–Zygmund kernel

u(x) �−→
∫

D

K(x,x− y)u(y)dy

is quasi-equivalent [21] to the operator

u(x) �−→
∫

R2

K(0,ξ −η)u(η)dη .

Because for invertibility of the last operator we need nothing excluding elliptic-
ity, if we construct for the Lebesgue integrable functions, for example, L2(R2) ),
then we conclude the question on Noether property for the operator considered is
solved. According to [21] it can be shown that ellipticity condition implies the index
of such operator is vanishing.

If we consider the domain with singularity of inner cusp point type (see Fig. 5),
then obviously the previous arguments don’t work, and we suggest to use some
“asymptotical” ideas. Such singularity can be treated as a limit case of cone when
its size tends to zero. Here we give initial conclusions and results related to this
approach.

y

x

y = j (x)

a = cot a
a

Fig. 5 Inner cusp point and approximating cone
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We begin from two-dimensional case. The problem is to know what is Fourier
image of multiplication operator on characteristic function of positive half-axis y.
Analytically this multiplier is

m(x,y) =

{
1, x = 0, y > 0,
0, in other cases.

It is obviously a priori the Fourier image for such multiplier is a convolution
operator for some distribution, and the distribution must be homogeneous of
order−2.

The angle of size α is the set {(x,y) ∈ R2 : y > a|x|}, a = cot α , and then we
need the asymptotic (α → 0), i.e., a → ∞. The distribution corresponding to such
multiplier is [21, 22]

1
2 δ (ξ )+Ka (ξ1,ξ2) ,

Ka (ξ1,ξ2) =
a

2π2
1

ξ 2
1−a2(ξ2+i0)2

, (16)

where ξ = (ξ1,ξ2), δ (ξ ) is Dirac mass function.
We need to find

lim
a→∞

a
2π 2

1

ξ 2
1 − a2 ξ 2

2

in distribution sense. Let ϕ (ξ ) ∈ S
(
R2
)
(Schwartz class of infinitely differentiable

rapidly decreasing at infinity functions), and then we have [23]

Theorem 1. The following formula holds:

lim
a→∞

a
2π2

1

ξ 2
1 − a2ξ 2

2

=
i

2π
P

1
ξ1
⊗ δ (ξ2) , (17)

where the notation for distribution P is taken from V.S. Vladimirov’s book [20], and
⊗ denotes the direct product of distributions.

So distribution (17) is that corresponds to half-infinite crack (of course with mass
supplement).

If we find another asymptotic for distribution (16) a→ 0, then we have

lim
a→∞

a
2π2

1

ξ 2
1 − a2ξ 2

2

=
1

2π i
δ (ξ1)⊗P

1
ξ2

, (18)

and it corresponds to half-plane case (see [3]).
Now we will speak on another asymptotic related to multi-wedge angle. The

simplest variant of such angle is the following: {x ∈ R3 : x3 > a |x1|+b |x2|}, and
we have two parameters a,b. If the parameters tend to 0 or ∞, we obtain new types
of thin singularities.
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The distribution corresponding to such angle is [21, 22]

Ka,b (ξ1,ξ2,ξ3) =
4 iab

(2π)3

ξ3(
ξ 2

1 − a2ξ 2
3

)(
ξ 2

2 − b2ξ 2
3

) .

We consider the different relations between a and b.

Theorem 2. The following formula holds:

lim
b→∞

4 iabξ3

(2π)3 (ξ 2
1 − a2ξ 2

3

) (
ξ 2

2 − b2ξ 2
3

) =
i

2π
δ (ξ1)⊗P

1
ξ2
⊗ δ (ξ3) .

Analogously one can obtain

Theorem 3. The equality

lim
a→∞

4 iabξ3

(2π)3 (ξ 2
1 − a2ξ 2

3

) (
ξ 2

2 − b2ξ 2
3

) =
i

2π
P

1
ξ1
⊗ δ (ξ2)⊗ δ (ξ3)

is valid.

Theorem 4. The equality

lim
b→0

4 iab

(2π)3

ξ3(
ξ 2

1 − a2ξ 2
3

) (
ξ 2

2 − b2ξ 2
3

) = δ (ξ2)⊗Ka (ξ1,ξ3)

is valid

[see formula (16)].

Theorem 5. The equality

lim
a→0

4 iab

(2π)3

ξ3(
ξ 2

1 − a2ξ 2
3

) (
ξ 2

2 − b2ξ 2
3

) = δ (ξ1)⊗Kb (ξ2,ξ3)

holds.

Theorem 6. The equality

lim
a→ 0
b→ 0

4 iab

(2π)3

ξ3(
ξ 2

1 − a2ξ 2
3

) (
ξ 2

2 − b2ξ 2
3

) ==
1

2π i
δ
(
ξ ′
)
⊗P

1
ξ3

, ξ ′ = (ξ1,ξ2) ,

holds.

The last result corresponds to half-space case x3 > 0 [3].



636 V.B. Vasilyev

5 Conclusion

The author hopes such experiments will help to explain how to formulate the
Noether property condition for multidimensional singular integral and pseudo-
differential equations in domains with singularities mentioned. As we see the limit
operator is more simple than initial ones. It may be this point will permit to find
convenient form for these conditions.
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Positive Solutions for a Kind of Singular
Nonlinear Fractional Differential Equations
with Integral Boundary Conditions

Junfang Zhao and Hairong Lian

Abstract In this paper, we study the following fractional differential equation:

Dα
0+u(t)+ f (t,u(t),(φu)(t),(ψu)(t)) = 0, 0 < t < 1,

with integral boundary condition:

u(0) = 0, u(1) =
∫ 1

0
g(s)u(s)ds,

where 1 < α < 2;(φu)(t) =
∫ t

0 γ(t,s)u(s)ds;(ψu)(t) =
∫ t

0 δ (t,s)u(s)ds;0 <
∫ 1

0 g(s)
u(s)ds < 1; f satisfies the Carathéodory conditions on [0,1]×B, B = (0,+∞)×
[0,+∞)2; f is positive; f (t,x,y,z) is singular at x = 0; and Dα is the standard
Riemann–Liouville fractional derivative. By using the fixed point theorems on
cones, we get the existence of positive solution.

Keywords Positive solution • Fractional differential equation • Singular • Bound-
ary value problem

1 Introduction

In this paper, we are concerned with the following fractional differential equation
with integral boundary conditions:

Dα u(t)+ f (t,u(t),(φu)(t),(ψu)(t)) = 0, 0 < t < 1, (1)

u(0) = 0, u(1) =
∫ 1

0
g(s)u(s)ds, (2)
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where 1 < α < 2;(φu)(t) =
∫ t

0 γ(t,s)u(s)ds;(ψu)(t) =
∫ t

0 δ (t,s)u(s)ds;
0 <

∫ 1
0 g(s)sα−1ds < 1; f satisfies the Carathéodory conditions on [0,1]×B,

B = (0,+∞)× [0,+∞)× [0,+∞); f is positive; f (t,x,y,z) is singular at x = 0; and
Dα is the standard Riemann–Liouville fractional derivative.

Fractional differential equations have been of great interest recently. It is caused
both by the intensive development of the theory of fractional calculus and by the
applications of such constructions in various sciences such as physics, mechanics,
chemistry, and engineering. For details, see the references therein.

In [5], Bai and Lü investigate the existence and multiplicity of positive solutions
for nonlinear fractional differential equation boundary value problem:

Dα
0+u(t)+ f (t,u(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,

where 1 < α ≤ 2 is a real number and Dα
0+ is the standard Riemann–Liouville

differentiation. By means of some fixed point theorems on cone, they get the
existence and multiplicity results of positive solutions.

In [4], Bashir and Sivasundaram study the existence and uniqueness of solutions
for a four-point nonlocal boundary value problem of nonlinear integro-differential
equations of fractional order q ∈ (1,2]:

{ cDqx(t)+ f (t,x(t),(φx)(t),(ψx)(t)) = 0, 0 < t < 1,

x′(0)+ ax(η1) = 0, bx′(1)+ x(η2) = 0, 0 < η1 ≤ η2 < 1,

where cD is Caputo’s fractional derivative. Their results are based on some standard
fixed point theorems.

In [1], Agarwal, O’regan, and Stanek investigate the existence of positive
solutions for the singular fractional boundary value problem:

{
Dα u(t)+ f (t,u(t),Dμu(t)) = 0, 0 < t < 1,

u(0) = u(1) = 0,

where 1 < α < 2,0 < μ ≤ α− 1, Dα is the standard Riemann–Liouville fractional
derivative. By means of a fixed point theorem on a cone, the existence of positive
solutions is obtained.

For more references on fractional differential equations, we refer the readers to
[2, 3, 6–11].

Motivated by the papers mentioned above, in this paper, we considered

Dα
0+u(t)+ f (t,u(t),(φu)(t),(ψu)(t)) = 0, 0 < t < 1,
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with integral boundary condition:

u(0) = 0, u(1) =
∫ 1

0
g(s)u(s)ds,

where 1 < α < 2,(φu)(t) =
∫ t

0 γ(t,s)u(s)ds,(ψu)(t) =
∫ t

0 δ (t,s)u(s)ds,
0 <

∫ 1
0 g(s)u(s)ds < 1.

We will assume throughout:

(H1) f ∈ Car([0,1]×B), B = (0,∞)× [0,+∞)× [0,+∞), limx→0+ f (t,x,y,z) = ∞
for a.e. t ∈ [0,1] and all y ∈ R, and there exists a positive constant m such that
f (t,x,y,z) ≥ m(1− t)2−α for a.e. t ∈ [0,1] and all (x,y,z) ∈B.

(H2) f fulfills the estimate f (t,x,y,z) ≤ γ(t)(q(x)+ p(x)+ p(1)+w(y)+ v(z)) for
a.e. t ∈ [0,1] and all (x,y,z) ∈ B, where γ ∈ L1[0,1];q,w,v ∈ C[0,∞] are
positive; q is nonincreasing and p,w,v are nondecreasing. Further,

∫ 1
0 γ(t)q(K(1− tα−1))dt < ∞, K = m

2Γ (α−1) , lim
x→∞

p(x)+w(x)+v(x)
x = 0.

2 Background Materials and Some Lemmas

In this section, for convenience, we present the main definitions for fractional
calculus theory. These definitions can be found in the recent literature.

Definition 2.1. The fractional integral of order α > 0 of a function y : (0,+∞)→ R
is given by

Iα
0+y(t) =

1
Γ (α)

∫ t

0
(t− s)α−1y(s)ds

provided the right side is pointwise defined on (0,+∞).

Definition 2.2. The fractional derivative of order α > 0 of a continuous function
y : (0,+∞)→ R is given by

Dα
0+y(t) =

1
Γ (n−α)

(
d
dt
)n
∫ t

0

y(s)
(t− s)α−n+1 ds,

where n = [α]+ 1, provided that the right side is pointwise defined on (0,+∞).

Lemma 2.1. Let α > 0. If we assume u ∈ C(0,1)∩ L(0,1), then the fractional
differential equation

Dα
0+u(t) = 0

has u(t) = C1tα−1 +C2tα−2 + · · · + CNtα−N ,Ci ∈ R, i = 1,2, · · · ,N as unique
solutions where N is the smallest integer equal to or greater than α .
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As Dα
0+Iα

0+u = u for all u ∈ C(0,1) ∩ L(0,1). From Lemma 2.1 we deduce the
following law of composition.

Lemma 2.2. Assume that u ∈C(0,1)∩L(0,1) with a fractional derivative of order
α > 0 that belongs to C(0,1)∩L(0,1). Then

Iα
0+Dα

0+u(t) = u(t)+C1tα−1 +C2tα−2 + · · ·+CNtα−N ,

for some Ci ∈ R, i = 1,2, · · · ,N, has u(t) = C1tα−1 +C2tα−2 + · · ·+CNtα−N ,Ci ∈
R, i = 1,2, · · · ,N, as unique solutions, where N is the smallest integer equal to or
greater than α .

In the following, we present Green’s function of fractional differential equation
boundary value problem.

Lemma 2.3. Given y ∈ L1[0,1] and 1 < α ≤ 2, the unique solution for

Dα
0+u(t)+ y(t) = 0, 0 < t < 1, (3)

u(0) = 0, u(1) =
∫ 1

0 g(s)u(s)ds, (4)

is

u(t) =
∫ 1

0
G(t,s)y(s)ds, (5)

where

G(t,s) =
1
ρ

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1− s)α−1−
∫ 1

s
g(τ)(s− τ)α−1dτ, 0≤ t ≤ s≤ 1,

(1− s)α−1−
∫ 1

s
g(τ)(s− τ)α−1dτ

− (1−
∫ 1

0
g(s)sα−1ds)(t− s)α−1, 0≤ s≤ t ≤ 1,

(6)

and ρ = Γ (α)(1−
∫ 1

0 g(s)sα−1ds).

Proof We may apply Lemma 2.1 to reduce Dα
0+u(t)+ y(t) = 0 to an equivalent

integral equation

u(t) =−Iα
0+y(t)+ c1tα−1 + c2tα−2,

for some c1, c2 ∈ R. Consequently, the general solution of Eq. (3) is

u(t) =−
∫ t

0

(t− s)α−1

Γ (α)
y(s)ds+ c1tα−1 + c2tα−2. (7)
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By (4), there is c2 = 0, then we have

u(t) =−
∫ t

0

(t− s)α−1

Γ (α)
y(s)ds+ c1tα−1.

And so we have
∫ 1

0
g(t)u(t)dt =

∫ 1

0
g(t)

[
−(
∫ t

0

(t− s)α−1

Γ (α)
y(s)ds+ c1sα−1)

]
dt. (8)

Letting t = 1, we find that

u(1) =−
∫ 1

0

(1− s)α−1

Γ (α)
y(s)ds+ c1. (9)

By the boundary condition we have

c1 =
1

Γ (α)(1−
∫ 1

0 g(s)sα−1ds)

(∫ 1

0
[(1− s)α−1−

∫ 1

s
g(τ)(τ − s)α−1dτ]y(s)ds

)
.

(10)

Substituting (10) into (7), we get

u(t) =
1

Γ (α)

[

−
∫ t

0
(t− s)α−1y(s)ds+

1

1−
∫ 1

0 g(s)sα−1ds
(∫ 1

0
[(1− s)α−1−

∫ 1

s
g(τ)(τ− s)α−1dτ]y(s)ds

)]

=
1
ρ

∫ 1

0
G(t,s)y(s)ds,

(11)

where G(t,s) is as defined by (6). The proof is complete. �	

Lemma 2.4. Suppose 0 <
∫ 1

0 g(s)sα−1ds < 1, then:

(i) G(t,s)> 0, t,s ∈ (0,1).
(ii) G(t,s)< G(s,s).
(iii) max

0≤t,s≤1
G(t,s)≤ 1, t,s ∈ [0,1].

Proof (i) If 0≤ t ≤ s≤ 1,

(1− s)α−1−
∫ 1

s
g(τ)(τ− s)α−1dτ = (1− s)α−1−

∫ 1

s
g(τ)τα−1(1− s

τ
)α−1dτ

≥ (1− s)α−1− (1− s)α−1
∫ 1

0
g(τ)τα−1dτ

= (1− s)α−1(1−
∫ 1

0
g(τ)τα−1dτ)> 0.
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It is clear here that G(t,s)≤ G(s,s).
If 0≤ s≤ t ≤ 1,

(1− s)α−1−
∫ 1

s
g(τ)(τ− s)α−1dτ− (1−

∫ 1

0
g(s)sα−1ds)(t− s)α−1

> (1− s)α−1(1−
∫ 1

0
g(τ)τα−1dτ)− (1−

∫ 1

0
g(s)sα−1ds)tα−1(1− s

t
)α−1

= (1− s)α−1(1−
∫ 1

0
g(s)sα−1ds)(1− tα−1)> 0.

And it is also clear here that G(t,s)≤ G(s,s). �	

Lemma 2.5. If u(t) is the solution to BVP (3) and (4), then

(i) u(t)≥ 0.
(ii) u(t)≥ (1− tα−1)(1−

∫ 1
0 g(t)tα−1ds)‖u‖.

Proof

(i) Since u(t) is the solution to BVP (3) and (4), therefore,

u′(t) =− 1
Γ (α− 1)

∫ t

0
(t− s)α−2y(s)ds < 0;

thus, u(t) is strictly decreasing on (0,1], and so u(t) ≥ u(1), t ∈ [0,1]. By the
boundary condition, we have

u(1) =
∫ 1

0
g(s)u(s)ds≥ u(1)

∫ 1

0
g(s)ds≥ 0;

therefore, u(t)≥ 0, t ∈ [0,1].
(ii) Since u(t) is the solution to BVP (3) and (4), then by Lemma 2.3 and by the

proof of Lemma 2.4 , we have

u(t) =
∫ 1

0
G(t,s)y(s)ds

≥ 1− tα−1

Γ (α)

∫ 1

0
(1− s)α−1y(s)ds

≥ 1− tα−1

Γ (α)

∫ 1

0

(1− s)α−1

G(s,s)
G(s,s)y(s)ds

≥ 1− tα−1

Γ (α)

∫ 1

0

(1− s)α−1

G(s,s)
G(s,s)y(s)ds

≥ (1− tα−1)(1−
∫ 1

0
g(t)tα−1dt)‖u‖.

(12)

The proof is complete. �	
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Lemma 2.6. Let positive constants m and K be as in (H1) and (H2) and let r ∈
L1[0,1]and r(t)≥ m(1− t)2−α for a.e. t ∈ [0,1]. Then

∫ 1

0
G(t,s)r(s)ds≥ K(1− tα−1) for t ∈ [0,1]. (13)

Proof From the proof of Lemma 2.4, we can see that

G(t,s)≥ 1
Γ (α)

(1− s)α−1(1− tα−1), for t,s ∈ [0,1]. (14)

Thus, we have

∫ 1

0
G(t,s)r(s)ds≥ m

∫ 1

0
G(t,s)(1− s)2−αds

≥ m
Γ (α)

(1− tα−1)
∫ 1

0
(1− s)α−1(1− s)2−αds

=
m

2Γ (α)
(1− tα−1),

(15)

denote K = m
2Γ (α) , then this completes the proof. �	

3 Auxiliary Regular Problem

In this section, we consider the following auxiliary boundary value problem.
Since (1) is a singular equation, we use regularization and sequential techniques

for the existence of a positive solution of problem (1) and (2). For this end, for each
n ∈ N, define fn by the formula

fn(t,x,y,z) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t,x,y,z) if x≥ 1
n
,

f (t,
1
n
,y,z) if 0 < x <

1
n
.

Then fn ∈Car([0,1]×B∗), B∗ = [0,∞)3 = [0,∞)× [0,∞)× [0,∞), and conditions
(H1) and (H2) give

fn(t,x,y)≤ η(t)(q(
1
n
)+ p(x)+ p(1)+w(y)+ v(z))

for a.e.t ∈ [0,1] and all (x,y,z) ∈B∗,

⎫
⎬

⎭
(16)
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fn(t,x,y)≤ η(t)(q(x)+ p(x)+ p(1)+w(y)+ v(z))

for a.e.t ∈ [0,1] and all (x,y,z) ∈B∗.

}

(17)

We discuss the regular fractional differential equation:

Dα
0 u(t)+ fn(t,u(t),(φu)(t),(ψu)(t)) = 0. (18)

Let X = C[0,1] be equipped with the norm ‖u‖ = max0≤t≤1 |u(t)|. Then X is a
Banach space. Define the cone P⊂ X by P = {u ∈ X ,u(t)≥ 0 for t ∈ [0,1]}.

In order to prove that the problem has a positive solution, we define an operator
Tn on P by the formula

(Tnu)(t) =
∫ 1

0
G(t,s) fn(s,un(s),(φun)(s),(ψun)(s))ds. (19)

The properties of the operator Tn are given in the following lemma.

Lemma 3.1. Let (H1) and (H2) hold. Then Tn : P → P and Tn is a completely
continuous operator.

Proof Let u ∈ P and let μ(t) = fn(t,un(t),(φun)(t),(ψun)(t)) for a.e. t ∈ [0,1].
Then μ ∈ L1[0,1] because fn ∈Car([0,1]×B∗), and μ is positive. Thus Tn : P→ P.

In order to prove that Tn is a continuous operator. Let {un} ⊂ P be a convergent
sequence and let limm→∞ ‖um− u‖∗ = 0. Then u ∈ P and ‖um‖∗ ≤ S for m ∈ N,
where S is a positive constant. Keeping in mind that fn ∈Car([0,1]×B∗), we have

lim
m→∞

fn(t,um(t),(φum)(t),(ψum)(t))

= fn(t,u(t),(φu)(t),(ψu)(t)) for a.e.t ∈ [0,1]. (20)

Since by (16) and (17),

0 < fn(t,um(t),(φum)(t),(ψum)(t))≤ η(t)(q(
1
n
)+ p(S)+ p(1)+w(S)+ v(S)),

(21)

the Lebesgue dominated convergence theorem gives

lim
m→∞

∫ 1

0
| fn(t,um(t),(φum)(t),(ψum)(t))− fn(t,u(t),(φu)(t),(ψu)(t))|dt = 0.

(22)

Now we deduce from (22) Lemma 2.3

|(Tnum)(t)− (Tnu)(t)| ≤ E
∫ 1

0
| fn(s,um(s),(φum)(s),(ψum)(s))

− fn(s,u(s),(φu)(s),(ψu)(s))|ds (23)
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that limm→∞ ‖Tnum − Tnu‖∗ = 0, which proves that Tn is a continuous operator.
Finally, let Ω ⊂ P be bounded in X and let ‖u‖∗ ≤ L for all u ∈ Ω , where L is a
positive constant. In view of fn ∈Car([0,1]×B∗), there exists ν ∈ L1[0,1] such that

0 < fn(t,u(t),(φu)(t),(ψu)(t))≤ ν(t) for a.e. t ∈ [0,1] and all u ∈Ω . (24)

Then

|(Tnu)(t)| ≤ E
∫ 1

0
fn(s,u(s),(φu)(s),(ψu)(s))ds≤ E‖ν‖L

for t ∈ [0,1] and u∈Ω . Hence ‖Tnu‖ ≤ E‖ν‖L for u ∈Ω , and so Tn(Ω) is bounded
in X . Let 0≤ t1 < t2 ≤ 1. Then

|(Tnu)(t2)− (Tnu)(t1)|

=
1

Γ (α)
|
∫ t1

0
(t1− s)α−1 fn(s,u(s),(φu)(s),(ψu)(s))ds

−
∫ t2

0
(t2− s)α−1 fn(s,u(s),(φu)(s),(ψu)(s))ds|

=
1

Γ (α)
|
∫ t1

0
[(t1− s)α−1− (t2− s)α−1] fn(s,u(s),(φu)(s),(ψu)(s))

−
∫ t2

t1
(t2− s)α−1 fn(s,u(s),(φu)(s),(ψu)(s))|

≤ 1
Γ (α)

(∫ t1

0

(
(t1− s)α−1− (t2− s)α−1

)
ν(s)ds+(t2− t1)

α−1
∫ t2

t1
ν(s)ds

)
.

(25)

Let us choose an arbitrary ε > 0. Since the function tα−1 is uniformly continuous
on [0,1] and |t − s|α−1 on [0,1]× [0,1], there exists δ > 0 such that for each 0 ≤
t1 < t2 ≤ 1, t2− t1 < δ , 0 ≤ s ≤ t1, we have (t2 − t1)α−1 < ε, 0 < (t1 − s)α−1−
(t2− s)α−1 < ε . Then, for u ∈ Ω and 0 ≤ t1 < t2 ≤ 1, t2− t1 < min{δ , α−1

√
ε}, we

conclude from inequality (25) that the inequality

|(Tnu)(t2)− (Tnu)(t1)|<
ε

Γ (α)
‖ν‖L

holds. Hence the sets of functions Tn(Ω) is bounded in C[0,1] and equicontinuous
on [0,1]. Consequently, Tn(Ω) is relatively compact in X by the Arzelà–Ascoli
theorem. We have proved that Tn is a completely continuous operator. �	

The next result follows immediately from Lemma 2.1.

Lemma 3.2. Let (H1) and (H2) hold. Then any fixed point of the operator Tn is a
solution of problem (3) and (4).
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Lemma 3.3. Let Y be a Banach space and P ⊂ Y be a cone in Y . Let Ω1, Ω2 be
bounded open balls of Y centered at the origin with Ω1 ⊂ Ω2. Suppose that T :
P∩ (Ω2 \Ω1)→ P is a completely continuous operator such that

‖Ax‖ ≥ ‖x‖ for x ∈ P∩∂Ω1, ‖Ax‖ ≤ ‖x‖ for x ∈ P∩∂Ω2

hold. Then A has a fixed point in P∩ (Ω2 \Ω1).

In the following, we will give the existence result for the regular problem (18)
and (2).

Lemma 3.4. Let (H1) and (H2) hold. Then problem (18) and (2) has a solution.

Proof By Lemmas 3.1 and 3.2, Tn : P → P is completely continuous and u is a
solution of problem (18) and (2) if u solves the operator equation u = Tnu. In order
to apply Lemma 3.3, we separate the proof into two steps:

Step 1. Let

Ω1 = {u ∈ X : ‖u‖∗ < K},

where K is as in (H2). It follows from Lemma 2.3 and from the definition of Tn

that (Tnu)(t)≥ K(1− tα−1) for t ∈ [0,1] and u ∈ P, and consequently,

‖Tnu‖∗ ≥ ‖u‖∗, for u ∈ P∩∂Ω1. (26)

Step 2. Inequality (16) and Lemma 2.3 imply that for u ∈ P,

|(Tnu)(t)| ≤
∫ 1

0
η(s)(q(

1
n
)+ p(u(s))+ p(1)+w((φu)(s))+ v((ψu)(s)))ds

≤ (q(
1
n
)+ p(‖u‖)+ p(1)+w(‖φu‖)+ v(‖ψu‖))‖η‖L.

(27)
Hence, for u ∈ P, the inequality

‖Tnu‖∗ ≤ (q(
1
n
)+ p(‖u‖)+ p(1)+w(‖φu‖)+ v(‖ψu‖))‖η‖L (28)

is fulfilled. Since lim
x→∞

p(x)+w(x)+v(x)
v = 0 by (H2), there exists Q > 0 such that

(q(
1
n
)+ p(‖u‖)+ p(1)+w(‖φu‖)+ v(‖ψu‖))‖η‖L≤ S. (29)

Let

Ω2 = {u ∈ X : ‖u‖∗ < S}.
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Then

‖Tnu‖∗ ≤ ‖u‖∗, for u ∈ P∩Ω2. (30)

Applying Lemma 3.3, we conclude from (26) and (30) that Tn has a fixed point in
P∩ (Ω2 \Ω1). Consequently, problem (18) and (2) has a solution by Lemma 3.2.

�	

Lemma 3.5. Let (H1) and (H2) hold. Let un be a solution of problem (18) and (2).
Then the sequence {un} is relatively compact in C[0,1].

Proof Denote μ(t) = fn(t,un(t),(φun)(t),(ψun)(t)). We note that

un(t) =
∫ 1

0
G(t,s) fn(s,un(s),(φun)(s),(ψun)(s))ds, t ∈ [0,1], n ∈N. (31)

It follows from Lemma 2.6 that

un(t)≥ K(1− tα−1) for t ∈ [0,1], n ∈N. (32)

Therefore,

fn(t,un(t),(φun)(t),(ψun)(t))≤ η(t)(q(K(1− tα−1))

+p(un(t))+ p(1)+w((φun)(t))+ v((ψun)(t))) (33)

for a.e. t ∈ [0,1] and n ∈ N. Now, by (31) and Lemma 2.3,

un(t)≤M+(p(‖un‖)+ p(1)+w(‖φun‖)+ v(‖ψun‖))‖η‖L, (34)

for t ∈ [0,1] and n ∈ N, where

M =

∫ 1

0
η(t)q(K(1− tα−1))dt < ∞. (35)

In particular,

‖un‖∗ ≤M+(p(‖un‖∗)+ p(1)+w(‖φun‖∗)+ v(‖ψun‖∗))‖η‖L, (36)

for n ∈ N. Since limx→∞
p(x)+w(x)+v(x)

x = 0, there exists S > 0 such that

M+(p(x)+ p(1)+w(x)+ v(x)‖η‖L < x for x≥ Q. (37)

Therefore

‖un‖∗ < Q for n ∈ N. (38)

Hence the sequence {un} is bounded in C[0,1].
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Now, we prove that {un} is equicontinuous on [0,1]. Let 0≤ t1 < t2 ≤ 1. Then

|un(t2)− un(t1)|= |
∫ 1

0
(G(t2,s)−G(t1,s)) fn(s,u(s),(φu)(s),(ψu)(s))ds|

=
1

Γ (α)
|
∫ t1

0
(t1− s)α−1

−
∫ t2

0
(t2− s)α−1 fn(s,un(s),(φun)(s),(ψun)(s))ds|

=
1

Γ (α)
|
∫ t1

0
[(t1− s)α−1− (t2− s)α−1] fn(s,u(s),(φu)(s),(ψu)(s))

−
∫ t2

t1
(t2− s)α−1 fn(s,un(s),(φun)(s),(ψun)(s))|

≤ 1
Γ (α)

(∫ t1

0

(
(t1− s)α−1− (t2− s)α−1

)
ν(s)ds

+(t2− t1)
α−1

∫ t2

t1
ν(s)ds

)
.

(39)

We proceed analogously to the proof of Lemma 3.1. Let us choose an arbitrary ε > 0.
Then there exists δ0 > 0 such that for each 0≤ t1 < t2≤ 1, t2−t1 < δ0 and 0≤ s≤ t1,
we have tα−1

2 −tα−1
1 < ε, (t2−s)α−1−(t1−s)α−1 < ε . Let 0< δ <min{δ0,

α−1
√

ε}.
Now, using the inequality

0< fn(t,un(t),(φun)(t),(ψun)(t))≤η(t)(q(K(1−tα−1))+p(S)+p(1)+w(S)+v(S))
(40)

for a.e. t ∈ [0,1] and all n ∈ N, we conclude from (39) that for 0≤ t1 < t2 ≤ 1, t2−
t1 < δ , and n ∈ N, the following inequalities are fulfilled:

|u(t2)− u(t1)| ≤
ε

Γ (α)

(∫ 1

0
(1− t)α−1η(t)(q(K(1− tα−1))+ p(S)+ p(1)+w(S)

+v(S))dt +
∫ t2

0
η(t)(q(K(1− tα−1))+p(S)+p(1)+w(S)+v(S))dt

)

<
2ε

Γ (α)

∫ 1

0
η(t)(q(K(1− tα−1))+ p(S)+ p(1)+w(S)+ v(S))dt.

(41)

As a result, {un} is equicontinuous on [0,1]. Hence, {un} is relatively compact in
C[0,1] by the Arzela–Ascoli theorem. The proof is complete. �	
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4 The Existence of Positive Solutions

Theorem 4.1. Let (H1) and (H2) hold. Then BVP (1) and (2) has a positive solution
u and

u(t)≥ K(1− tα−1) for t ∈ [0,1]. (42)

Proof Lemmas 3.4 and 3.5 guarantee that BVP (18) and (2) has a solution un

satisfying (32) and {un} is relatively compact in C[0,1]. Hence there exist u∈ X and
a subsequence {ukn} of {un} such that limn→∞ ukn = u in X . Consequently, u ∈ P, u
satisfies (42), and

lim
n→∞

fkn(t,ukn(t),(φukn)(t),(ψukn)(t))

= f (t,u(t),(φu)(t),(ψu)(t)) for a.e. t ∈ [0,1]. (43)

Since {un} fulfills (38), where Q is a positive constant, it follows from inequality
(38) and from Lemma 2.3 that the inequality

0≤G(t,s) fkn (s,ukn(s),(φukn )(s),(ψukn)(s))

≤ η(s)(q(K(1− sα−1))+ p(S)+ p(1)+w(S)+ v(S)) (44)

holds for a.e. s ∈ [0,1] and all t ∈ [0,1], n ∈ N. Hence

lim
n→∞

∫ 1

0
G(t,s) fkn (s,ukn(s),(φukn )(s),(ψukn)(s))ds

=
∫ 1

0
G(t,s) f (s,u(s),(φu)(s),(ψu)(s))ds (45)

for t ∈ [0,1] by the Lebesgue dominated convergence theorem. Now, passing to the
limit as n→ ∞ in

ukn(t) =
∫ 1

0
G(t,s) fkn(s,ukn(s),(φukn )(s),(ψukn)(s))ds, (46)

we have

u(t) =
∫ 1

0
G(t,s) f (s,u(s),(φu(s),(ψu)(s))ds for t ∈ [0,1]. (47)

Consequently, u is a positive solution of problem (1) and (2) by Lemma 2.3, the
proof is complete. �	
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5 Example

In this section, we will give an example to illustrate our main results.

Example 5.1.

⎧
⎪⎨

⎪⎩

Dα u(t)+ f (t,u(t),(φu)(t),(ψu)(t))) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∫ 1

0
g(s)u(s)ds,

(48)

where f (t,x,y,z) = 1
(1−t)2/3 (

1
xλ + xμ + yν + zω ), μ < 1, 0 < ν < 1, 0 < ω < 1.

Clearly, f satisfies all the conditions in Theorem 4.1. So (48) has a positive
solution u.
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5. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional
differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

6. Benchohra, M., Berhoun, F.: Impulsive fractional differential equations with variable times.
Comput. Math. Appl. 59, 1245–1252 (2010)

7. Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value
problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204, 468–477
(2008)

8. Rehman, M., Khan, R.A.: Existence and uniqueness of solutions for multi-point boundary
value problems for fractional differential equations. Appl. Math. Lett. 23, 1038–1044 (2010)

9. Tatar, N.: On a boundary controller of fractional type. Nonlinear Anal. 72, 3209–3215 (2010)
10. Zhong, W., Lin, W.: Nonlocal and multiple-point boundary value problem for fractional

differential equations. Appl. Math. Comput. 59, 1345–1351 (2010)
11. Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for fractional neutral differential equations

with infinite delay. Nonlinear Anal. 71, 3249–3256 (2009)



Functional Aspects of the Hardy Inequality:
Appearance of a Hidden Energy

J.L. Vázquez and N.B. Zographopoulos

Abstract We obtain new insights into the Hardy inequality and the evolution
problem associated to it. Surprisingly, the connection of the energy of the new
formulation with the standard Hardy functional is nontrivial, due to the presence
of a Hardy singularity energy. This corresponds to a loss for the total energy.
The problem arises when the equation is posed in a bounded domain.

We also consider an equivalent problem with inverse square potential on an
exterior domain. The extra energy term is then present as an effect that comes from
infinity, a kind of hidden energy. In this case, in an unexpected way, this term is
additive to the total energy, and it may even constitute the main part of it.

1 Introduction

In this paper we present some results of [24]; we contribute new results on the
Hardy inequality posed in a bounded domain or in an exterior domain of RN and
on the corresponding parabolic evolution. The motivation came from a functional
difficulty we found in the work [26], where the following singular evolution problem
was studied:
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⎧
⎪⎨

⎪⎩

ut = Δu+ c∗
u
|x|2 , x ∈Ω, t > 0,

u(x,0) = u0(x), for x ∈Ω,

u(x, t) = 0 in ∂Ω, t > 0 .

(1)

with critical coefficient c∗ = (N− 2)2/4. The space dimension is N ≥ 3 and Ω is a
bounded domain in R

N containing 0, or Ω =R
N . More precisely, the authors in [26]

studied the well posedness and described the asymptotic behavior of (1). Moreover,
they obtained improved Hardy inequalities and completed the study of the spectrum
of the associated eigenvalue problem. This problem is closely connected with the
Hardy inequality:

∫

Ω
|∇u|2 dx >

(
N− 2

2

)2 ∫

Ω

u2

|x|2 dx, (2)

which is well known to hold for any u ∈ C∞
0 (Ω). For Hardy-type inequalities and

related topics, we refer to [7, 13, 21–23]. Due to this connection, c∗, which is the
best constant in the inequality, is also critical for the basic theory of the evolution
equation. Indeed, the usual variational theory applies to the subcritical cases: ut =
Δu+ cu/|x|2 with c < c∗, using the standard space H1

0 (Ω), and a global in time
solution is then produced. On the other hand, there are no positive solutions of the
equation for c > c∗ (instantaneous blowup), [4,9,20]. In the critical case we still get
existence, but the functional framework changes; this case serves as an example of
interesting functional analysis and more complex evolution.

In order to analyze the behavior of the solutions of Problem (1) in [26], the Hardy
functional

IΩ[φ ] :=
∫

Ω
|∇φ |2 dx−

(
N− 2

2

)2 ∫

Ω

φ2

|x|2 dx (3)

is considered as the Dirichlet form naturally associated to the equation. This form is
positive and different lower bounds have been obtained; for Hardy and Hardy-type
inequalities we refer to [1, 2, 6, 8, 12, 14–19, 26] and the references therein. Note
that the expression is finite for u ∈ H1

0 (Ω), but it can also be finite as an improper
integral for other functions having a strong singularity at x = 0, due to cancelations
between the two terms. To take this possibility into account, the Hilbert space H
was introduced in [26] as the completion of the C∞

0 (Ω) functions under the norm

||φ ||2H(Ω) = IΩ[φ ], φ ∈C∞
0 (Ω). (4)

According to Sect. 5 of [26], this space allows us to define in a natural way
a self-adjoint extension of the differential operator L(u) := −Δu− c∗ u/|x|2 (the
Friedreich extension) and then to use standard theory to generate a semigroup and
describe the solutions using the spectral analysis. The study of the spectrum leads
to an associated elliptic eigenvalue problem, the solution of which turns out to be a
classical problem in separation of variables.
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1.1 Problem with the Singularities

The separation of variable analysis produces some singular solutions. In particular,
the maximal singularity (corresponding to the first mode of separation of variables)
behaves like |x|−(N−2)/2 near x = 0, and this function is not in H1

0 (Ω). Now, this
solution must belong to the space H associated to the quadratic form, hence, the
conclusion H �=H1

0 (Ω). We recall that this is a peculiar phenomenon of the equation
with critical exponent c∗=(N−2)2/4. For values of c< c∗, the maximal singularity
is still in H1

0 (Ω).
However, we have realized that with the proposed definition of H, there exists a

problem with the solutions of the evolution problem having the maximal singularity.
The verification is quite simple in the case where Ω = B1, the unit ball in R

N

centered at the origin. Then, the minimization problem

min
u∈H

||u||2H
||u||2

L2

(5)

has as a solution the function e1(r) = r−(N−2)/2 J0(z0,1 r), r = |x|, J0 is the Bessel
function with J0(0) = 1, up to normalization, and z0,1 denotes the first zero of J0.
This function plays a big role in the asymptotic behavior of general solutions of
Problem (1). The minimum value of (5) is μ1 = z2

0,1. Moreover, the quantity IB1(e1)
is well defined as a principal value. Assuming that

||e1||2H = IB1(e1), (6)

from the definition of H, for any ε > 0, we should find a C∞
0 -function φ , such that

||e1 − φ ||2H < ε . However, we may prove that ||e1 − φ ||2H ≥ c > 0, for any C∞
0 -

function φ , which is a contradiction. Thus, we see that e1 fails to be in H, since
it cannot be approximated by C∞

0 -functions and this will happen for every function
with the maximal singularity.

Therefore, under the assumption (6), the space H seems not to be correctly
defined in [26] to apply the rest of the theory, since there exists a problem in dealing
with very singular behavior near x = 0 that is not covered by approximation with
infinitely smooth functions. Actually, this was our first impression.

1.2 New Results

1. The examination of the difficulty shows that the proposed norm IΩ is too
detailed near the singularity and produces a topology that is too fine to allow
the convergence of φn ∈ C∞

c (Ω) to e1. By means of a transformation already

proposed in [8], we obtain a more suitable norm N that is equivalent to I1/2
Ω on

C0(Ω) but is gross enough near the singular point. In this way, we are able to
define a possibly larger closure, which we call H , that contains all the functions
needed for constructing the evolution.
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We proceed next to reexamine the above-mentioned difficulty. We will show
that the spaces H and H are indeed the same. What is different is the norm that
was implicitly assumed to be acting in H for solutions that do not necessarily

vanish at x = 0, which in principle seemed to be I1/2
Ω taken in the sense of

principal value. When both terms of IΩ become infinite, the correct definition
of the norm is a particular limit that we call the cutoff limit. This is explained
in Sect. 2 where we examine the connection of the new norm with the Hardy
functional; the difference is characterized in terms of a certain value, the Hardy
singularity energy (HS energy for short) that we precisely define. We think that
the existence of the two different norms that coincide on C1

c (Ω \ {0}) is quite
interesting and was unexpected for us.

2. In Sect. 3 we discuss a result which has its own interest: the Critical Caffarelli–
Kohn–Nirenberg Inequalities, in a bounded domain. It was well known (see [11])
that these inequalities are related to the Hardy inequality with c < c∗. The critical
case is as expected related with the Hardy inequality with c = c∗. The proper
functional setting that we had to consider for Problem (1) leads us naturally to
these critical inequalities. We also give the connection of this new space with the
Sobolev space D1,2(RN), with the use of a proper transformation.

3. In Sect. 4 we explore the existence of an analogue of the Hardy singularity energy
for problems posed in exterior domains. The Kelvin transform suggests that the
most natural problem to study is the following:

⎧
⎪⎪⎨

⎪⎪⎩

|y|−4 wt(y, t) = Δw(y, t)+ c∗
w(y, t)
|y|2 , y ∈ Bc

δ , t > 0,

w(y,0) = w0(y), for y ∈ Bc
δ ,

w(y, t) = 0 for |y|= δ , t > 0 ,

(7)

where c∗ = (N−2)2/4 is the critical coefficient, Bc
δ = R

N\Bδ (0) is the standard
exterior domain, and δ > 0. Without loss of generality we take δ = 1.

Problem (7) has the striking property that the Hardy functional posed in the
exterior domain is not necessarily a positive quantity; we will show that for functions
which vanish at ∂Bc

δ (0) and behaving at infinity like |y|−(N−2)/2, it may be negative.
We avoid the difficulty by basing our existence theory on the unitary equivalence via
the Kelvin transform. Results concerning subcritical potentials and/or Hardy-type
inequalities, in the case of unbounded domains, may be found in [2, 5, 14, 16, 17].

The novel feature of the bounded domain, namely, the HS energy term, does exist
also in the case of the exterior domain, but it appears at infinity. Besides, there is a
big difference with the bounded domain case since in this case the new energy is not
only additive to the total energy involved in the evolution; it may even represent the
main part of it. The energy term at infinity looks to us like a “hidden” energy. This
seems to be the first study of an evolution problem with such curious properties in
an exterior domain.

Some further results on Hardy-type inequalities and the related hidden energies
are contained in the forthcoming work [25].
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2 Proper Functional Setting: Bounded Domain Case

We start the study by analyzing the case of a bounded domain Ω⊂ R
N , N ≥ 3.

2.1 Transformation and Definition of Spaces

The way we follow to address the difficulty mentioned in the introduction and to
properly pose Problem (1) is to introduce a more convenient variable by means of
the formula

u(x) = |x|−(N−2)/2 v(x). (8)

We will write the transformation as u = T (v). Clearly, this is an isometry from the
space X = L2(Ω) into the space X̃ = L2(dμ ,Ω), dμ = |x|2−Ndx. Many arguments
of [26] were also based on transformation (8), which was first used in [8] and then
in many papers concerning results on Hardy’s inequalities. The great advantage of
this formula is that it simplifies IΩ(u), at least for smooth functions, into

I1(v) :=
∫

Ω
|x|−(N−2)|∇v|2 dx . (9)

It is easy checked that IΩ(u) = I1(v) for functions u ∈ C∞
0 (Ω). However, the

equivalence fails for functions with a singularity like |x|−(N−2)/2 at the origin, as
we have hinted before and will explain below in detail. Our proposal is to use this
formulation for the definition of the new space, H . An important observation is that
when u(x, t) is a solution of equation (1), then v satisfies the following associated

equation: vt = |x|N−2 ∇ ·
(
|x|−(N−2) ∇v

)
, with clear equivalence for x �= 0. This last

form gives the clue to the proper variational formulation to be followed here. First,
the space associated to this equation through the quadratic form (9) is defined as the
weighted space H̃ =W 1,2

0 (dμ ,Ω), which is the completion of the C∞
0 (Ω) functions

under the norm

||v||2
H̃

=

∫

Ω
|x|−(N−2) |∇v|2 dx . (10)

Following the usual procedure of the Calculus of Variations, we take an appropriate
base space which is X̃ = L2(dμ ,Ω), and then the quadratic form (9) has as form
domain the subspace H̃ where I1(v) is finite. Then, it can be proved that L(v) =

−|x|N−2 ∇ ·
(
|x|−(N−2)∇v

)
is a positive self-adjoint operator in the space D(L) =

{v ∈ H̃ : L(v) ∈ X̃}. It is also known that D(L1/2) = H̃ . Hence, the variational
approach works for v. See further analysis below.

We translate these results to the original framework. H is defined as the
isometric space of H̃ = W 1,2

0 (|x|−(N−2)dx,Ω) under the transformation T given
by (8). In other words, H is defined as the completion of the set
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{
u = |x|− N−2

2 v, v ∈C∞
0 (Ω)

}
= T (C∞

0 (Ω)),

under the norm N(u) = ‖u‖H defined by

||u||2H =

∫

Ω
|x|−(N−2) |∇(|x| N−2

2 u)|2 dx. (11)

2.2 Connection of Space H with the Hardy Functional

By Hardy functional we refer to IΩ(u) defined in (3) with the integral defined in
the sense of principal value around the origin when both separate integrals diverge.
Denote by Bε the ball centered at the origin with radius ε and by Bc

ε its complement
in Ω. Assume now that u ∈H , so that v = |x|(N−2)/2 u ∈ H̃ . Then, we have that

IBc
ε [u] =

∫

Bc
ε
|∇u|2 dx−

(
N− 2

2

)2 ∫

Bc
ε

u2

|x|2 dx. (12)

By change of variables and integration by parts the following remarkable formula is
obtained:

IBc
ε [u] =

∫

Bc
ε
|∇v|2 |x|2−Ndx+

N− 2
2

ε−(N−1)
∫

Sε
v2 dS , (13)

where dS is the surface measure. Next, we denote by Λε the quantity:

Λε(u) =
N− 2

2
ε−(N−1)

∫

Sε
v2 dS =

N− 2
2

ε−1
∫

Sε
u2 dS

that represents a kind of Hardy energy at the singularity. It is clear that

lim
ε→0

∫

Bc
ε
|∇v|2 |x|2−Ndx = ||v||2

H̃
.

In order to take the limit ε → 0, in (12) we distinguish the following cases:

• If u∈H1
0 (Ω), then u∈H and we have Λ(u) := limε→0 Λε(u) = 0; thus, the limit

as ε → 0, in (12), gives the well-known formula IΩ[u] = ||v||2H̃ := N2(u), which

holds for any u ∈ H1
0 (Ω). Note that the converse is not true: if Λ(u) = 0, it does

not imply that u ∈ H1
0 (Ω). For example, take a function u such that v behaves at

zero like (− log |x|)−1/2.
• If v∈ H̃ is such that lim|x|→0 v2(x) = v2(0) exists as a real positive number, then

u ∈H but u �∈ H1
0 (Ω). In this case Λ(u) = N(N−2)

2 ωN v2(0), where ωN denotes
the Lebesgue measure of the unit ball in R

N . Λ(u) is then a well-defined positive
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number and (12) implies that IΩ[u] = ||v||2H̃ +Λ(u). We note that this is the case
of e1 and the case of the minimizer of the improved Hardy–Sobolev inequality;
see [27], in the radial case. As it will be clear, this is the case for the minimizers of

min
u∈H

||u||2H
||u||qLq

, 1≤ q <
2N

N− 2
. (14)

• If v∈ H̃ is such that v at zero is bounded but the limx→0 v2(x) does not exist, i. e.,
v oscillates near zero. For example, let v ∼ sin((− log |x|)a) , |x| → 0. Then, v
belongs in H̃ if 0 < a < 1/2, so u = |x|−(N−2)v ∈H . In this case, the limit L(u)
does not exist, since it oscillates, and from (12) we have that the same happens
to the Hardy functional, in the sense that

lim
ε→0

(
IBc

ε [u]−Λε(u)
)
= ||v||2

H̃
. (15)

• If v∈ H̃ is such that limx→0 v2(x)=∞. For example, let v∼ (− log |x|)a, |x| → 0.
Then, v belongs in H̃ if 0 < a < 1/2, so u = |x|−(N−2)v ∈H . It is clear that
Λ(u) = ∞, and from (12) we have that the same happens to the Hardy functional,
in the sense that (15) holds.

Note that in all cases Λε is a nonnegative quantity, for every ε > 0 and so is IBc
ε [u].

As a consequence, we obtain a generalized form of the Hardy inequality valid in the
limiting case of (15), when the Hardy functional is not defined or is infinite. We do
not know if there is any physical meaning for the singularity energy we have found.
It looks like an energy defect at the singularity.

2.3 The Spaces H and H Are the Same

We recall that H was introduced as the completion of the C∞
0 (Ω) functions under the

norm I1/2
Ω . The proof of H =H relies on showing that the set C∞

0 (Ω\{0}) is a dense
set in both spaces and on observing that the two norms coincide on that subset. The
following lemma follows from [11, Lemma 2.1], which studies the subcritical case.

Lemma 1. Holds that C∞
0 (Ω\{0}) is a dense set in H.

Next we will prove that the C∞
0 (Ω\{0})-functions are also dense in H̃ and hence

in H . The special cutoff functions that are dense in H̃ are the ones that allow to
prove that {0} has zero capacity in two space dimensions.

Lemma 2. The C∞
0 (Ω\{0})-functions are dense in H̃ .

From Lemmas 1 and 2 we have that the spaces H and H may both be defined
as the closure of C∞

0 (Ω\{0})-functions, with respect to (4) and (11), respectively.
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However, for such functions these two norms are equal, i. e., ||w||2H = IΩ(w), for
any w ∈C∞

0 (Ω\{0}). Thus,

Proposition 1. The spaces H and H coincide.

For the space H̃ , which is defined by (10), we have that

Lemma 3. The space H̃ contains all the functions that satisfy v|∂Ω = 0 and
||v||H̃ < ∞.

2.4 On the Norm of H

Let us examine further the definition of the norm N that will be considered for the
space H = H . We know that the norms I1/2

Ω and N coincide on functions H1
0 (Ω)

and also that IΩ(u) is larger than N2(u) = ‖u‖2
H when they differ. More precisely,

||u||2H = lim
ε→0

(
IBc

ε [u]−Λε(u)
)
. (16)

Now, if for any u ∈ H, we consider a sequence of cutoff approximations uε(x) =
ρε(x)u(x) with ρε as in Lemma (2), then ‖uε‖H = IΩ(uε)

1/2 and uε → u in H. The
limit value ‖u‖2

H = limε→0 ‖uε‖2
H is what we call the cutoff value of the Hardy

functional and produces the correct norm on H.
As a conclusion, the space H as it is defined in Vazquez–Zuazua [26] is a well-

defined space, as the completion of C∞
0 (Ω)-functions with respect to the norm

||φ ||2H = IΩ(φ), φ ∈C∞
0 (Ω). In this space there exist “bad functions,” such that IΩ(u)

defined as an improper integral does not coincide with the limit of the sequence
of cutoff approximations. Even more, it can happen that the principal value of the
integrals in IΩ is not well defined, either oscillating or infinite. For example, let
u behave at the origin as |x|−(N−2)/2; for this function, the quantity IΩ(u) is well
defined, but its norm in H is not IΩ(u), but it is equal to IΩ(u)−Λ(u). For the

normalized first eigenfunction e1, the norm is not I1/2
Ω (e1), but

||e1||2H = IΩ(e1)−Λ(e1) = IΩ(e1)−
N(N− 2)

2
ωN = μ1.

As a result the minimization problem (5) and the following one minu∈H IΩ(u)/||u||2L2

are not the same, since the first admits a minimizer while the other does not.

2.5 Application to the Evolution Problem

We now justify that the results described in [26] for the solutions of Problem (1)
hold in the space H defined in (11), with Ω a bounded domain of RN , N ≥ 3. It
is clear that this space is a Hilbert space and, as stated in [26, Theorem 2.2], H is
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imbedded continuously in the Sobolev space W 1,q(Ω), 1≤ q< 2. Thus, the compact
imbedding H ↪→ Lp(Ω), 1 ≤ p < 2N

N−2 holds. Moreover, we may justify that all
the results concerning the spectrum of the related eigenvalue problem given in [26]
hold for H .

The weak formulation (or the energy equation) of (1) is the following:

1
2

∫
u2

t =−||u||2H =− lim
ε→0

(
IBc

ε [u]−Λε(u)
)

for every u ∈ H. The space H is really the energetic space.

3 Further Properties of the Spaces

We observe that the above imbeddings give the following corollary, which completes
the results obtained in [10] (see also [11]) concerning the Caffarelli–Kohn–
Nirenberg Inequalities, in a bounded domain, in the limiting case where a = N−2

2 .

Corollary 1 (Critical Caffarelli–Kohn–Nirenberg Inequalities). Assume that vn

is a bounded sequence in H̃ . Then un = |x|−(N−2)/2 vn is a bounded sequence in
H . The compact imbeddings imply that up to some subsequence, un converges in
Lq(Ω) to some u. Thus, we obtain the compact imbeddings

H̃ ↪→ Lq(|x|−q(N−2)/2dx,Ω), for any 1≤ q <
2N

N− 2
. (17)

Then, for every 0≤ s≤ N−2
2 q, we further obtain the compact imbeddings

H̃ ↪→ Lq(|x|−sdx,Ω), for any 1≤ q <
2N

N− 2
. (18)

Remark 1. In (17) it is clear that q cannot reach 2N
N−2 . For this value of q, the best

that we can have are improved Hardy–Sobolev inequalities; see [3, 15, 27] and the
references therein.

In addition, we can relate these spaces, in the radial case, with the space
D1,2(RN). If we denote by Hr(Ω), H̃r, and D1,2

r (RN) the subspaces of H , H̃ ,
and D1,2(RN), respectively, which consist of radial functions, we have that

Proposition 2. For some function v ∈ H̃r(BR) we set

v(|x|) = w(t), t =

(
− log

(
|x|
R

))− 1
N−2

. (19)

Then, v ∈ H̃r(BR) if and only if w ∈D1,2
r (RN) and
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||v||H̃r(BR)
= (N− 2)−1 ||w||

D1,2
r (RN)

. (20)

Observe that (20) is independent of the radius R, and in the case where N = 3, the
norm in H̃r(BR) coincides with the norm in D1,2

r (RN). Similarly we may argue for
the space Hr. Transformation (19) was used in [27]. For a discussion concerning the
construction of such transformations for Hardy-type inequalities, we refer to [25].

3.1 Nonexistence of H1
0 -Minimizers

The above transformations provide us with an extra argument concerning the
nonexistence of H1

0 -minimizers. We will prove that these minimizers belong to H,
they do not belong to H1

0 , and their behavior at the origin is exactly |x|−(N−2)/2.

Proposition 3. The minimizers of (14) cannot exist in H1
0 (Ω) and behave at the

origin like |x|−(N−2)/2.

As mentioned before, the case of e1 and the minimizer of the improved
Hardy–Sobolev inequality (in the radial case) behave at the origin like |x|−(N−2)/2.
Thus, the Hardy functional for these functions is a well-defined positive number,
although it does not represent their H-norm. These functions do not belong to
the “worst” cases, where IΩ is not well defined or is infinite. As in the case of
e1, we emphasize the fact that the minimization problem (14) and the following
minu∈H IΩ(u)/||u||qLq are not the same.

4 The Case of the Exterior Domain

We consider Problem (7) describing the evolution (up to some weight) of the Hardy
potential in an exterior domain. We may fix δ = 1. Our arguments will be based
on the unitary equivalence with the previous problem posed on a ball. For that we
use the Kelvin transform in the form u(x) = |y|N−2 w(y), y = x/|x|2. These formulas
transform solutions u(x, t) of Problem (1), i. e.,

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = Δu(x, t)+ c∗
u(x, t)
|x|2 , x ∈ B1(0), t > 0,

u(x,0) = u0(x), for x ∈ B1(0),
u(x, t) = 0 in ∂B1(0), t > 0 ,

(21)

defined in the unit sphere B1(0) into solutions w(y, t) of Problem (7) posed in Bc
1(0),

its complement in R
N . We will write the transformation as u = K (w).
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4.1 Basic Properties

We will address the questions of existence of solutions for Problem (7) by means of
this equivalence that will also be used as a clue to the proper variational formulation
that will be followed. As we saw, the functional space which corresponds to (21) is
H with norm given in (16). Our proposal is to use this formulation for the definition
of the new space, W . The space W is defined as the isometric space of H under the
Kelvin transformation. In other words, W is defined as the completion of the set

{
w(y) = |y|−N+2 u

(
y
|y|2

)
, u ∈C∞

0 (B1(0)), |y| ≥ 1

}
,

under the norm ‖w‖W defined by ||w||2W = limε→0
(
IB1(0)\Bε [u]−Λε(u)

)
,u = K (w).

The first eigenpair of the corresponding eigenvalue problem is μ1 = z2
0,1, ẽ1 =

|y|−(N−2)/2 J0

(
z0,1
|y|

)
. The well posedness of (7) in the space W is understood

through the unitary equivalence with H. The existence, uniqueness, and stabilization
results of Problem (21) apply for Problem (7).

4.2 Hardy Functional

Next, we investigate the connection of the space W with the Hardy functional, IBc
1(0)

,
defined as

IBc
1(0)

[φ ] =
∫

RN\B1(0)
|∇φ |2 dx−

(
N− 2

2

)2 ∫

RN\B1(0)

φ2

|x|2 dx , (22)

which is positive for any compactly supported φ ∈C∞(Bc
1(0)) that vanishes on the

boundary. We denote by Iε and by I1/ε the Hardy functional defined on B1(0)\Bε
and B1/ε(0)\B1(0), respectively.

Lemma 4. We have the following fundamental relation:

Iε [u] = I1/ε [w]+ 2Λ1/ε(w) , (23)

where

Λ1/ε(w) =
N− 2

2
ε
∫

∂B1/ε(0)
w2 dS .

Moreover, it is clear that if u = K (w), then Λε (u) = Λ1/ε(w).

When we apply these results to functions in the class W (by density), we are able
to give the following unexpected definition of the norm of W ,
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||w||2W = lim
ε→0

(
I1/ε [w]+Λ1/ε(w)

)
. (24)

So, the weak formulation (or the energy equation) of (7) translates into

1
2

∫
w2

t =−||w||2W =− lim
ε→0

(
I1/ε [w]+Λ1/ε(w)

)
,

for every w ∈W .

4.3 Conclusions and Remarks

1. We have shown that a correcting term also appears as in the energy analysis of
the problem posed in the exterior domain. Actually, the correcting term has the
same absolute value as the Hardy singularity energy considered in the problem
in a bounded domain, but now it represents a kind of energy at infinity. However,
there is a big difference from the bounded domain case since in this case the
singular energy acts in an additive way to the usual Hardy integral.

2. Moreover, this new term may be the main part of the total energy, since I1/ε may
be also a negative quantity: we do the calculations for the normalized ẽ1 and we
get that I

RN\B1(0)(ẽ1) = 5.76− N(N−2)
2 ωN , which is negative for N = 3.

3. As a conclusion, we can say that Λ is a hidden energy that “comes” from infinity
and is not only a gain of the total energy but it may represent the main part of the
total energy.
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