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Initial-Boundary Value and LC Problems

Evaluation of European-style derivatives can be reduced to solving initial value
or initial-boundary value problems of parabolic partial differential equations.
This chapter discusses numerical methods for such problems. If an Ameri-
can option problem is formulated as a linear complementarity problem, then
the only difference between solving a European option and an American
option is that if the solution obtained by the partial differential equation
does not satisfy the constraint at some point, then the solution of the PDE
at the point should be replaced by the value determined from the constraint
condition. Such methods are usually referred to as projected methods for
American-style derivatives. Therefore, the two methods are very close, and
we also study the projected methods in this chapter.

In this chapter, there are four sections. The first two sections are devoted
to explicit and implicit schemes, respectively. As we know, the derivative of the
function representing the payoff of an option usually is discontinuous. This fact
makes numerical methods inefficient. In many cases, an option problem can
be reduced to another problem that has either a smooth solution or a solution
with a weaker singularity than the solution of the option problem itself, and
the numerical solution of the new problem can be obtained efficiently. We call
such a method the singularity-separating method. In Sect. 8.3, we give several
examples to illustrate how such a method works. In the final section, we discuss
the pseudo-spectral method, which is very efficient if the solution is smooth.
Examples are given to explain this fact.

8.1 Explicit Methods

8.1.1 Pricing European Options by Using V , ξ, τ or u, x, τ̄
Variables

In Sect. 2.2.5, we obtained the formulation of the problem satisfied by a
call/put option on a finite domain:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

−[r(1− ξ) +D0ξ]V , 0 ≤ ξ ≤ 1, 0 ≤ τ ≤ T,

V (ξ, 0) = max(±(2ξ − 1), 0), 0 ≤ ξ ≤ 1,

(8.1)

where the sign “+” in ± corresponds to the call option and the sign “−” in
± the put option. Here, we assume that the volatility depends on S, so σ̄ is a
function of ξ in the equation. Let

⎧
⎨

⎩

ξm = mΔξ, m = 0, 1, · · · ,M,

τn = nΔτ, n = 0, 1, · · · , N,
(8.2)

where M and N are given integers, and Δξ = 1/M and Δτ = T/N . This
means that we use an M ×N equidistant mesh on the domain [0, 1]× [0, T ].
Let vnm denote the approximate value of V (ξ, τ) at ξ = ξm and τ = τn,
and {vnm} represent the set vnm, m = 0, 1, · · · ,M . Discretizing the partial
differential equation in the problem (8.1) at the point (ξm, τn) by scheme

(7.5), i.e., by using the forward difference for
∂V

∂τ
and the central difference

for
∂2V

∂ξ2
and

∂V

∂ξ
, we get

vn+1
m − vnm
Δτ

=
1

2
σ̄2
mξ

2
m(1− ξm)2

vnm+1 − 2vnm + vnm−1

Δξ2

+(r −D0)ξm(1− ξm)
vnm+1 − vnm−1

2Δξ

−[r(1− ξm) +D0ξm]vnm

or

vn+1
m =

1

2

[
σ̄2
mξ

2
m(1− ξm)2 − (r −D0)ξm(1− ξm)Δξ

]
αvnm−1

+[1− σ̄2
mξ

2
m(1− ξm)2α− (r(1− ξm) +D0ξm)Δτ ]vnm

+
1

2

[
σ̄2
mξ

2
m(1− ξm)2 + (r −D0)ξm(1− ξm)Δξ

]
αvnm+1,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1, (8.3)

where

α =
Δτ

Δξ2
.

In order for scheme (8.3) to be stable, we require

max
0≤m≤M

[σ̄2
mξ

2
m(1− ξm)2]

Δτ

2Δξ2
≤ 1

2
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because if this is true, then |λθ| ≤ 1 + O(Δτ) (see Problem 14 in Chap. 7).
In practice, we can replace this condition by a slightly stronger condition as
follows:

Δτ ≤ 16Δξ2

max
0≤m≤M

σ̄2
m

. (8.4)

Sometimes, for example, when a lookback option needs to be priced, the
value at a boundary is determined by a boundary condition which involves a

derivative. In such cases,
∂

∂ξ
needs to be discretized by a one-sided first or

second order scheme.
From the difference scheme (8.3), we know that when the values vnm−1,

vnm, and vnm+1 are given, vn+1
m can be obtained immediately. At a glance, it

appears that vn−1 and vnM+1 are needed when vn+1
0 and vn+1

M are calculated.
As pointed out in Sect. 7.1, because the coefficients of vn−1 and vnM+1 equal
zero, the values of vn−1 and vnM+1 will not be used. Therefore, if {vnm} is given,
then {vn+1

m } can be obtained by the difference scheme (8.3). According to the
initial condition given in the problem (8.1), we have

v0m = max(±(2ξm − 1), 0).

Therefore, from {v0m}, we can get {vnm}, n = 1, 2, · · · , N successively. Usually,
we need the value of V at a certain point S∗ at time zero. After {vN

m} have
been obtained, V (S∗, 0) can be found in the following way. First, we need
to find v(ξ∗, T ) by using the quadratic interpolation given in Sect. 6.1, where

ξ∗ =
S∗

S∗ + E
. Then, we can obtain V (S∗, 0) from v(ξ∗, T ) by

V (S∗, 0) = (S∗ + E)v(ξ∗, T ).

This method works not only for a constant σ but also for a variable σ, namely,
σ = σ(S), even σ = σ(S, t). In what follows, this scheme is referred to as the
explicit finite-difference method I, and its abbreviation is EFDI.

If σ is a constant, then an alternative way to find the approximate solution
of the European options is to use u, x, τ̄ variables. From Sect. 2.6.1, we know
that if E = 1, i.e., if the stock price and the option price has been divided
by the exercise price, then pricing a call/put option can be reduced to finding
u(x, τ̄), which is the solution of the problem:
⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ≤ 1

2σ
2T,

u(x, 0) = max(±(ex − 1), 0), −∞ < x <∞.

(8.5)

Here,

x = lnS + (r −D0 − σ2/2)(T − t), τ̄ = σ2(T − t)/2
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and
u(x, τ̄) = er(T−t)V (S, t).

Let xm = a+mΔx, a being a given number and τ̄n = nΔτ̄ , and let unm denote
the approximate value of u(xm, τ̄

n). Then, the partial differential equation can
be discretized by the difference scheme (7.8):

un+1
m = ᾱunm+1 + (1− 2ᾱ)unm + ᾱunm−1, (8.6)

where

ᾱ =
Δτ̄

Δx2
.

From Sect. 7.2.1, we know that in order for the scheme to be stable, we need
to require

ᾱ =
Δτ̄

Δx2
≤ 1

2
. (8.7)

x
a−N a+Nax

τ

x

Fig. 8.1. A triangle mesh (N = 5)

Suppose again that we need to find V (S∗, 0), i.e., we need to know
u
(
lnS∗ + (r −D0 − σ2/2)T, σ2T/2

)
. Assume that we will use N steps in τ̄

direction, i.e.,Δτ̄ =
σ2T

2N
. In order to find u

(
lnS∗ + (r −D0 − σ2/2)T, σ2T/2

)
,

we can use a triangle mesh (see Fig. 8.1): τ̄n = nΔτ̄ , n = 0, 1, · · · , N and for
each n, xm = lnS∗ + (r − D0 − σ2/2)T +mΔx, m = −N + n,−N + n +
1, · · · , N − n− 1, N − n. From the initial condition at τ̄ = 0, we have

u0m = max (±(exm − 1), 0) , m = −N,−N + 1, · · · , N − 1, N.

It is clear that when unm,m = −N+n,−N+n+1, · · · , N−n−1, N−n are given,
we can obtain un+1

m ,m = −N + n+ 1,−N + n+ 2, · · · , N − n− 2, N − n− 1.
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Therefore, starting from u0m,m = −N,−N + 1, · · · , N − 1, N , we can find
unm,m = −N + n,−N + n + 1, · · · , N − n − 1, N − n for n = 1, 2, · · · , N
successively. When we get uN0 , V (S∗, 0) can be calculated by

V (S∗, 0) = e−rTuN0

because V (S, t) = e−r(T−t)u(lnS + (r −D0 − σ2/2)(T − t), σ2(T − t)/2).

Table 8.1. Values of European put options (EFDI)

(E = 50, S = 48, r = 0.05, σ = 0.20, and D0 = 0)

Δτ T = 0.25 T = 0.50 T = 0.75 T = 1.00

0.01 2.7220 3.1163 3.4045 3.5852

0.001 2.7087 3.1275 3.3989 3.5910

0.0001 2.7083 3.1272 3.3986 3.5907

Exact 2.708349 · · · 3.127199 · · · 3.398586 · · · 3.590738 · · ·

Assume that we want to calculate the value of an option on a stock when
the stock price is $100 and the exercise price is $90. In this method above,
the stock price and the option price has been divided by E, so S∗ should
be 100/90, and the real option price should be obtained by 90 × V (S∗, 0).
This method is referred to as the explicit finite-difference method II, and its
abbreviation is EFDII.

Example 1: Using EFDI with

Δξ ≈
√

max
0≤m≤M

σ̄2
mΔτ/4,

we have solved European put problems using different Δτ . Numerical results
for T = 0.25, 0.5, 0.75, and 1.00 are listed in Table 8.1, and the other
problem parameters are also shown there. From the table we see that for
Δτ = 0.01, 0.001, and 0.0001, the error is about on the second, third, and
fourth decimal places.

8.1.2 Projected Methods for LC Problems

In Sect. 3.2, we saw that an American option problem could be formulated
as a linear complementarity problem. When the variables V , ξ, τ are adopted,
the linear complementarity problem is

⎧
⎪⎨

⎪⎩

min

(
∂V

∂τ
− Lξ V , V (ξ, τ)−max(±(2ξ − 1), 0)

)

= 0,

V (ξ, 0) = max(±(2ξ − 1), 0),

(8.8)
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where

Lξ =
1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
+ (r −D0)ξ(1− ξ)

∂

∂ξ
− [r(1− ξ) +D0ξ];

whereas if the variables u, x, τ̄ are used, the linear complementarity problem is

⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− g(x, τ̄)

)

= 0,

u(x, 0) = g(x, 0),

(8.9)

where

g(x, τ̄) = max
(
±(ex+(2D0/σ

2+1)τ̄ − e2rτ̄/σ
2

), 0
)
.

Such a formulation can be described in another way. Let us take the prob-
lem (8.9) as an example in order to explain it. Suppose that we have obtained
the solution at τ̄ = τ̄∗, u(x, τ̄∗). Starting from u(x, τ̄∗), we can find the so-
lution u(x, τ̄∗ +Δτ̄) in the following way. Let ũ(x, τ̄∗ +Δτ̄) be the solution
determined by an approximation to the equation

∂ũ

∂τ̄
− ∂2ũ

∂x2
= 0.

If

ũ(x, τ̄∗ +Δτ̄) ≥ g(x, τ̄∗ +Δτ̄)

at a point, then

u(x, τ̄∗ +Δτ̄) = ũ(x, τ̄∗ +Δτ̄);

otherwise
u(x, τ̄∗ +Δτ̄) = g(x, τ̄∗ +Δτ̄).

That is, for each x,

u(x, τ̄∗ +Δτ̄) = max (ũ(x, τ̄∗ +Δτ̄), g(x, τ̄∗ +Δτ̄)) .

Does the solution determined in this way satisfy all the requirements in the
problem (8.9)? When ũ(x, τ̄∗+Δτ̄) ≥ g(x, τ̄∗+Δτ̄), we have u(x, τ̄∗+Δτ̄) =

ũ(x, τ̄∗ +Δτ̄), u(x, τ̄∗ +Δτ̄) ≥ g(x, τ̄∗ +Δτ̄) and
∂u

∂τ̄
− ∂2u

∂x2
= 0, so the first

relation in the problem (8.9) holds; when ũ(x, τ̄∗ +Δτ̄) < g(x, τ̄∗ +Δτ̄), we

have u(x, τ̄∗ +Δτ̄) = g(x, τ̄∗ +Δτ̄) and
∂u

∂τ̄
− ∂2u

∂x2
=
∂g

∂τ̄
− ∂2g

∂x2
> 0, so the

first relation in the problem (8.9) also holds. Thus the first relation in the
problem (8.9) holds at any point. If the problem is formulated in the form
(8.8), the situation is the same.

Therefore, if an American option is formulated as a linear complementarity
problem, the difference between the numerical methods for European options
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and American options is not big. In fact, if the formulation (8.8) is used, then
we can compute the value of American options by

vn+1
m = max(ṽn+1

m , ±(2ξ − 1), 0), (8.10)

where

ṽn+1
m =

1

2

[
σ̄2
mξ

2
m(1− ξm)2 − (r −D0)ξm(1− ξm)Δξ

]
αvnm−1

+[1− σ̄2
mξ

2
m(1− ξm)2α− (r(1− ξm) +D0ξ)Δτ ]v

n
m

+
1

2

[
σ̄2
mξ

2
m(1− ξm)2 + (r −D0)ξm(1− ξm)Δξ

]
αvnm+1.

If the formulation (8.9) is adopted, then the computation is done by

un+1
m = max

(
ᾱunm+1 + (1− 2ᾱ)unm + ᾱunm−1, g(xm, τ̄

n+1)
)
. (8.11)

Table 8.2. American call option (PEFDII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100, T = 1,
and the exact solution is C = 9.94092345 · · · )

Numbers of time steps Results |Errors| CPU(s)

50 9.902768 0.038156 0.0003

100 9.921822 0.019102 0.0013

200 9.931367 0.009557 0.0053

400 9.936144 0.004780 0.0220

800 9.938533 0.002390 0.0880

Table 8.3. American put option (PEFDII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100, T = 1,
and the exact solution is P = 5.92827717 · · · )

Numbers of time steps Results |Errors| CPU(s)

50 5.911829 0.016448 0.0003

100 5.920472 0.007805 0.0013

200 5.924476 0.003801 0.0054

400 5.926424 0.001853 0.0220

800 5.927360 0.000917 0.0880

Finding the prices of American options in such a way is referred to as a
projected method in the book [84] by Wilmott, Dewynne, and Howison. We
call Eqs. (8.10) and (8.11) projected explicit finite-difference methods I and II,
respectively, and their abbreviations are PEFDI and PEFDII. Clearly, PEFDI
can be applied to the cases with both a constant σ and a variable σ, and
PEFDII is suitable only for the case that σ is a constant. In Tables 8.2 and 8.3,
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the results of call and put options on several meshes are given. The method
used is PEFDII. The error and the CPU time needed are also shown. In order
to have an error, we must have the exact solutions. The exact solution for
the American call and put option problems with these parameters are C =
9.94092345 · · · and P = 5.92827717 · · · , which are obtained by the SSM given
in Chap. 9. Here, the first nine digits are given, and it is enough to determine
the first few digits of the errors given in these tables. Computation is done on
a Space Ultra 10 computer. In this book, when a CPU time is mentioned, the
computation is done on such a computer if no other explanation is given.

8.1.3 Binomial and Trinomial Methods

This subsection is devoted to the binomial and trinomial methods. In these
methods, there is a lattice of possible asset prices. Thus, such methods are
also called lattice methods.

Binomial Methods. The binomial method is a simple and very effective
method for computing the option prices.

When the Black–Scholes equation is derived, a risk-free portfolio is estab-
lished. This idea can also be used to design numerical methods. Let Sn be the
given stock price at time tn, Sn+1 be the stock price at time tn+1 = tn +Δt,
and the possible values of Sn+1 be Sn+1,0 and Sn+1,1. Assume that the stock
pays dividends continuously and the dividend yield is D0. Therefore one share
of stock at time tn becomes eD0Δt shares at time tn+1. Let Vn be the price of
a derivative at time tn, and Vn+1,i be the price of the derivative at time tn+1

if the stock price is Sn+1,i, i = 0 and 1. That the portfolio

V −ΔS

is risk-free means that

Vn+1,0 −ΔeD0ΔtSn+1,0 = Vn+1,1 −ΔeD0ΔtSn+1,1 = (Vn −ΔSn) e
rΔt.

Therefore

Δ =
Vn+1,1 − Vn+1,0

Sn+1,1 − Sn+1,0
e−D0Δt

and

Vn = e−rΔt
(
Vn+1,0 −ΔeD0ΔtSn+1,0

)
+ΔSn

= e−rΔt

(

Vn+1,0 − Vn+1,1 − Vn+1,0

Sn+1,1 − Sn+1,0
Sn+1,0

)

+
Vn+1,1 − Vn+1,0

Sn+1,1 − Sn+1,0
e−D0ΔtSn

= e−rΔt

[
Sne

(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0
Vn+1,1

+

(

1− Sne
(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0

)

Vn+1,0

]

.
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Let

p =
Sne

(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0
, (8.12)

then we have

Vn = e−rΔt [pVn+1,1 + (1− p)Vn+1,0] . (8.13)

Suppose that in the real world, the stock price satisfies

dS = μSdt+ σSdX = μSdt+ σSφ
√
dt,

or
Sn+1 − Sn = μSnΔt+ σSnφ

√
Δt,

where φ is the standardized normal random variable. Using Itô’s lemma, this
model can be rewritten as

d lnS =

(

μ− σ2

2

)

dt+ σdX =

(

μ− σ2

2

)

dt+ σφ
√
dt,

or

lnSn+1 − lnSn =

(

μ− σ2

2

)

Δt+ σφ
√
Δt. (8.14)

According to this model, the number of possible prices of the stock at time
tn+1 is infinity. In the derivation above, we think that there are only two
possible values the price of the stock can take at time tn+1. Thus the random
variable φ is approximated by a binomial random variable. Let ψ denote this
binomial random variable. Because E[φ] = 0 and E[φ2] = Var[φ] + E2[φ] = 1,
it is natural to require E[ψ] = 0 and E[ψ2] = 1. Suppose that the two values
of ψ are ψ0 and ψ1 and that the probabilities of taking ψ0 and ψ1 are 1 − q
and q, respectively. Then the two conditions can be written as

⎧
⎨

⎩

(1− q)ψ0 + qψ1 = 0,

(1− q)ψ2
0 + qψ2

1 = 1.

From these two equations we can have
⎧
⎪⎪⎨

⎪⎪⎩

q =
−ψ0

ψ1 − ψ0
,

q =
1− ψ2

0

ψ2
1 − ψ2

0

.

Hence

−ψ0 =
1− ψ2

0

ψ1 + ψ0

or
ψ0ψ1 = −1.
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Therefore ψ0ψ1 = −1 is a necessary condition for E[ψ2] = 1 and E[ψ] = 0.
From the procedure of deriving this condition, it is easy to see that this
condition is also a sufficient condition for E[ψ2] = 1 if E[ψ] = 0. It is clear, if
we choose ψ0 and ψ1 so that

ψ0ψ1 = −1 +O(Δt)

and require E[ψ] = 0, then ψ is still a good approximate to φ.
Suppose that ψi is related to Sn+1,i, i = 0, 1. Thus we have

⎧
⎪⎪⎨

⎪⎪⎩

lnSn+1,0 = lnSn +

(

μ− σ2

2

)

Δt+ σψ0

√
Δt,

lnSn+1,1 = lnSn +

(

μ− σ2

2

)

Δt+ σψ1

√
Δt.

Let us choose
⎧
⎪⎪⎨

⎪⎪⎩

ψ0 = −1−
(

μ− σ2

2

)√
Δt/σ,

ψ1 = 1−
(

μ− σ2

2

)√
Δt/σ.

(8.15)

Because ψ0ψ1 = −1+

(

μ− σ2

2

)2

Δt/σ2, ψ is an approximate to φ. In this case

⎧
⎨

⎩

lnSn+1,0 = lnSn − σ
√
Δt,

lnSn+1,1 = lnSn + σ
√
Δt,

or
⎧
⎨

⎩

Sn+1,0 = Sne
−σ

√
Δt,

Sn+1,1 = Sne
σ
√
Δt.

(8.16)

Using the formulae (8.12), (8.13) and (8.16), we can evaluate the price of a
derivative if the stock price satisfies Eq. (8.14). This is called the binomial
method which was proposed by Cox, Ross, and Rubinstein in 1979 [22].

For ψ0 and ψ1, we can choose other expressions. For example (see the book
by McDonald [61]), let

⎧
⎪⎪⎨

⎪⎪⎩

ψ0 = −1−
(

μ− r +D0 − σ2

2

)√
Δt/σ,

ψ1 = 1−
(

μ− r +D0 − σ2

2

)√
Δt/σ.

(8.17)
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Because ψ0ψ1 = −1 +

(

μ− r −D0 − σ2

2

)2

Δt/σ2, ψ is an approximate

to φ. In this case ⎧
⎨

⎩

Sn+1,0 = Sne
(r−D0)Δt−σ

√
Δt,

Sn+1,1 = Sne
(r−D0)Δt+σ

√
Δt.

(8.18)

Generally, we can choose

⎧
⎪⎪⎨

⎪⎪⎩

ψ0 = −1−
(

μ− c− σ2

2

)√
Δt/σ,

ψ1 = 1−
(

μ− c− σ2

2

)√
Δt/σ.

(8.19)

In this case ⎧
⎨

⎩

Sn+1,0 = Sne
cΔt−σ

√
Δt,

Sn+1,1 = Sne
cΔt+σ

√
Δt,

(8.20)

and both the formulae (8.16) and (8.18) are in this form.
If p is determined by the formula (8.12), then we have

pSn+1,1 + (1− p)Sn+1,0

=
Sne

(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0
Sn+1,1 +

Sn+1,1 − Sne
(r−D0)Δt

Sn+1,1 − Sn+1,0
Sn+1,0

= e(r−D0)ΔtSn.

When 0 ≤ p ≤ 1, this relation can be interpreted as follows. When a derivative
is priced, the probability of the price at tn+1 being Sn+1,1 is p and the prob-
ability of the price at tn+1 being Sn+1,0 is 1 − p, and the expectation of the
stock price at tn+1 is e(r−D0)ΔtSn:

ED [Sn+1] = pSn+1,1+(1− p)Sn+1,0 = e(r−D0)ΔtSn = erΔte−D0ΔtSn, (8.21)

where we use ED as the notation for expectation in the case a derivative is
priced. In the front of Sn there is a factor e−D0Δt because the expectation of
the stock price should go down by a factor of e−D0Δt as one share of stock
at time tn becomes eD0Δt shares of stock at time tn+1, and there is another
factor erΔt because the expectation of the stock price should go up by a factor
of erΔt just like any risk-free investment. Because of this, we usually say that
ED [Sn+1] is the expectation of Sn+1 in the “risk-neutral” world. According
to the model for the stock price, we have

E[Sn+1] = Sn + μSnΔt =
(
eμΔt +O(Δt2)

)
Sn.

That is, in the expression for the expectation of the stock price at time tn+1

in the real world, there is a factor about eμΔt in the front of Sn, which is
completely different from the case when we price derivatives.
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When Sn+1,0 and Sn+1,1 are given by Eq. (8.16), then

p =
Sne

(r−D0)Δt − Sne
−σ

√
Δt

Sneσ
√
Δt − Sne−σ

√
Δt

=
e(r−D0)Δt − e−σ

√
Δt

eσ
√
Δt − e−σ

√
Δt

(8.22)

and 0 ≤ p ≤ 1 is equivalent to e−σ
√
Δt ≤ e(r−D0)Δt ≤ eσ

√
Δt. The inequality

e(r−D0)Δt ≤ eσ
√
Δt might not hold for large Δt and p does not represent a

probability in this case. However this case usually does not occur in practice
because Δt would be small in real computation. When Sn+1,0 and Sn+1,1 are
given by the formula (8.18), then

p =
Sne

(r−D0)Δt − Sne
(r−D0)Δt−σ

√
Δt

Sne(r−D0)Δt+σ
√
Δt − Sne(r−D0)Δt−σ

√
Δt

=
1− e−σ

√
Δt

eσ
√
Δt − e−σ

√
Δt

(8.23)

and 0 ≤ p ≤ 1 always holds. Hence in this case p can always be interpreted as
the probability of the price being Sn+1,1 at tn+1.

In the “risk-neutral” world, the variance of Sn+1 is

VarD [Sn+1]

=
Sne

(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0

(
Sn+1,1 − e(r−D0)ΔtSn

)2

+
Sn+1,1 − Sne

(r−D0)Δt

Sn+1,1 − Sn+1,0

(
Sn+1,0 − e(r−D0)ΔtSn

)2

=
(
Sne

(r−D0)Δt − Sn+1,0

)(
Sn+1,1 − Sne

(r−D0)Δt
)

= S2
ne

2(r−D0)Δt ·
(

1− Sn+1,0

Sne(r−D0)Δt

)(
Sn+1,1

Sne(r−D0)Δt
− 1

)

= S2
ne

2(r−D0)Δt ·
(

Sn+1,0

Sne(r−D0)Δt
+

Sn+1,1

Sne(r−D0)Δt
− Sn+1,0Sn+1,1

S2
ne

2(r−D0)Δt
− 1

)

.

When Sn+1,0 and Sn+1,1 are given by the expression (8.20), both the formulae
(8.16) and (8.18) being in this form, the expression above can further be
written as:

VarD [Sn+1]

= S2
ne

2(r−D0)Δt
(
e−(r−D0−c)Δt−σ

√
Δt + e−(r−Dt0−c)Δt+σ

√
Δt

−e−2(r−D0−c)Δt − 1
)

= S2
ne

(r−D0+c)Δt
(
e−σ

√
Δt + eσ

√
Δt − e−(r−D0−c)Δt − e(r−D0−c)Δt

)

= S2
ne

(r−D0+c)Δt

[

1− σ
√
Δt+

1

2
σ2Δt− 1

6
σ3Δt3/2 + 1 + σ

√
Δt+

1

2
σ2Δt

+
1

6
σ3Δt3/2 − 1 + (r −D0 − c)Δt− 1− (r −D0 − c)Δt+O

(
Δt2
)
]

= S2
ne

(r−D0+c)Δt
[
σ2Δt+O

(
Δt2
)]

= S2
nσ

2Δt+O
(
Δt2
)
. (8.24)
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In the real world,

Var[Sn+1] = Var
[
Sn + μSnΔt+ σSnφ

√
Δt
]
= σ2S2

nΔt.

Therefore as Δt → 0 the variance of Sn+1 in the “risk-neutral” world will
tend to the variance of Sn+1 in the real world.

Now let us describe the complete method proposed by Cox, Ross, and
Rubinstein [22]. Define

d = e−σ
√
Δt (8.25)

and

u =
1

d
= eσ

√
Δt, (8.26)

then Sn+1,1 = Snu, Sn+1,0 = Snd, and Eqs. (8.22) and (8.13) can be rewrit-
ten as

p =
e(r−D0)Δt − d

u− d
(8.27)

and

V (Sn, nΔt)

= e−rΔt [pV (Sn+1,1, (n+ 1)Δt) + (1− p)V (Sn+1,0, (n+ 1)Δt)] .
(8.28)

Here V (S, t) is the value of an option.
Suppose the asset price at the current time t to be S, and we divide the

remaining life of the derivative security into N equal time subintervals with
time step Δt = (T − t)/N . At the first time level t + Δt, there are two
possible asset prices Su and Sd = Su−1. At the second time level t + 2Δt,
there are three possible asset prices, Su2, Sud = Sdu = S, and Sd2 = Su−2.
At the third time level t + 3Δt, there are four possible asset prices, Su3,
Su2d = Su, Sud2 = Su−1, and Sd3 = Su−3. In general, at the n-th time level
t + nΔt, there are n + 1 possible values of the asset price. Originally, at the
n-th time level, there should be 2n possible values of the asset price. However
since d = 1/u is required, many points are the same. For example, S, Su2d2,
Su4d4, · · · are the same point because d = 1/u. Hence the number of possible
values is greatly reduced. Let Sn,m,m = 0, 1, · · · , n, denote the n+1 possible
values of the asset price at the n-th time level from the smallest to the largest.
Then

Sn,m = Su2m−n, m = 0, 1, · · · , n. (8.29)

For N = 4, all the possible prices for each n are given in Fig. 8.2. This plot is
usually referred to as a tree or lattice of possible asset prices.

Assuming that we know the payoff function for our derivative security
and that it depends only on the values of the underlying asset at expiry, this
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Asset Price
0

t

S

uSdS

u2SSd2S

u3SuSdSd3S

d4S d2S u2S u4SS
At the fourth time level
there are five possible
values of the asset price.

Fig. 8.2. Tree of asset prices for a binomial model

enables us to value it at expiry, the N -th time level. If we are considering a
call, for example, we find

cN,m = max(SN,m − E, 0), m = 0, 1, · · · , N, (8.30)

where E is the exercise price and cN,m denotes the value of the call for the
m-th possible asset value SN,m at time-step N . For a put, we know that

pN,m = max(E − SN,m, 0), m = 0, 1, · · · , N, (8.31)

where pN,m denotes the value of the put for the m-th possible asset value SN,m

at expiry.
We can now find the expected value of the derivative security at the (N−1)-

th time level and for possible asset prices SN−1,m, m = 0, 1, . . . , N −1 because
we know that the probability of an asset price moving from SN−1,m to SN,m+1

during a time step is p and that the probability of it moving to SN,m is (1−p).
Using the discounting factor e−rΔt, we can obtain the value of the security at
each possible asset price for the (N − 1)-th time level. This procedure can be
applied to the n-th time level if the values of the option for the (n+1)-th time
level have been obtained, and the computational formula is Eq. (8.28) or, in
a general form,

Vn,m = e−rΔt(pVn+1,m+1 + (1− p)Vn+1,m), m = 0, 1, · · · , n. (8.32)

Here, Vn,m denotes the value of a European option at the n-th time level
and corresponding to asset price Sn,m. According to this formula, starting
from the payoff function, VN,m, m = 0, 1, · · · , N , we can recursively determine
Vn,m,m = 0, 1, · · · , n for n = N − 1, N − 2, · · · , 0, and the final value V0,0 is
the current value of the option.
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For American options, we can easily incorporate the possibility of early
exercise of an option into the binomial model. Because the price of an Amer-
ican call option must be greater than or equal to

max(Sn,m − E, 0), (8.33)

when calculating the price of an American call option, we need to replace the
formula (8.32) by

Cn,m = max
(
e−rΔt [pCn+1,m+1 + (1− p)Cn+1,m] , Sn,m − E, 0

)
(8.34)

at each point. Similarly, for an American put option, the formula is

Pn,m = max
(
e−rΔt [pPn+1,m+1 + (1− p)Pn+1,m] , E − Sn,m, 0

)
(8.35)

because the price of an American put option has to be at least

max(E − Sn,m, 0). (8.36)

From what has been described, we see that the entire computation can be
done in two steps. In the first step, we calculate all the Sn,m to be used.
Then, we find VN,m,m = 0, 1, · · · , N and calculate Vn,m,m = 0, 1, · · · , n
for n = N − 1, N − 2, · · · , 0 successively. When a European option is cal-
culated, only the SN,m,m = 0, 1, · · · , N , are used in order to find VN,m.
When an American option is evaluated, all the Sn,m are needed. However,
because Sn,m = Su2m−n = Su2(m−1)−(n−2) = Sn−2,m−1, we indeed only
need to calculate SN,m,m = 0, 1, · · · , N and SN−1,m,m = 0, 1, · · · , N − 1, i.e.,
Sum,m = −N,−N +1, . . . , N . For this method, the total number of nodes is
(N +2)(N +1)/2, so the execution time for computing all the Vn,m is O(N2).

If the method given in the book by McDonald [61] wants to be adopted,
instead of the formulae (8.25)–(8.27), (8.18) and (8.23) should be used. Also
the tree of asset prices is different. In this case we should define

Sn,m = Sen(r−D0)Δtu2m−n, m = 0, 1, · · · , n

with u = eσ
√
Δt.

Trinomial Methods. If σ depends on S, then u is not a constant. In this
case, generally speaking, at the n-th time level, there are 2n possible values
of the asset prices that need to be considered, and the total nodes and the
execution time will be very large if a binomial method is used. In order to
reduce the nodes for a problem with variable σ, we can use trinomial methods.
In a trinomial method, given a current asset value S, the asset value after a
time-step Δt can take any of the three values

Su, Sq, Sd,

where 0 ≤ d < q < u. Let pu be the probability of the value of the asset after
a time-step Δt being Su, pq be the probability of the value being Sq, and pd
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be the probability of the value being Sd. Because there are only three possible
cases, we must have

pu + pq + pd = 1, 0 ≤ pu ≤ 1, 0 ≤ pq ≤ 1, 0 ≤ pu ≤ 1.

When the binomial method is used for pricing call/put options, from the
expressions (8.21) and (8.24) we have

ED [Sn+1] = e(r−D0)ΔtSn

and

ED

[
S2
n+1

]
= VarD [Sn+1] + (ED [Sn+1])

2

= S2
nσ

2Δt+O(Δt2) + e2(r−D0)ΔtS2
n

= e[2(r−D0)+σ2]ΔtS2
n +O(Δt2).

Thus for pu, pq and pd, we require1

puu+ pqq + pdd = e(r−D0)Δt,

puu
2 + pqq

2 + pdd
2 = e(2(r−D0)+σ2)Δt.

Because there are three equations above for six unknowns, u, q, d, pu, pq,
pd, we can choose three parameters. In order that the number of the possible
asset prices is not 3n at the n-th time level, we can choose

d = 1/u and q = 1. (8.37)

Now there are only four parameters u, pu, pq, pd left. They should satisfy the
three conditions above. If u is given, then this is a linear system for pu, pq, pd
and can be solved for them easily. Its solution is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pu =
e(2(r−D0)+σ2)Δt − e(r−D0)Δt(q + d) + qd

(u− q)(u− d)
,

pq =
e(2(r−D0)+σ2)Δt − e(r−D0)Δt(d+ u) + du

(q − d)(q − u)
,

pd =
e(2(r−D0)+σ2)Δt − e(r−D0)Δt(u+ q) + uq

(d− u)(d− q)
.

(8.38)

Because they represent probabilities, we need to choose such a u that pu, pq
and pd all are nonnegative. If σ depends on S and t, then pu, pq and pd will
be different at different points. In this case, we need to choose such a u that
at all the points pu, pq and pd are nonnegative and the set of formulae (8.38)
can still be used.

1We also know that because the Black–Scholes equation holds, ED [Sn+1] =

e(r−D0)ΔtSn and ED

[
S2
n+1

]
= e[2(r−D0)+σ2]ΔtS2

n should be true (see Problem 39
of Chap. 2).
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Fig. 8.3. Lattice generated by a trinomial model

The details for evaluating derivative securities using a trinomial method
are nearly identical to the binomial method. The only major difference is that
the expected value of the security at the n-th time level depends on the three
possible values at the (n + 1)-th time level, and that at the n-th time level,
there are 2n+ 1 possible asset prices, which are

Sn,m = Sum,m = −n,−n+ 1, · · · , n.

In this case, the corresponding lattice is illustrated in Fig. 8.3. Let Vn,m be
the security price at Sn,m. Then, the formula for finding the expected value
of a security at time level n+ 1 is

ED [Vn+1,m] = puVn+1,m+1 + pqVn+1,m + pdVn+1,m−1

and the value of a European derivative security for Sn,m is

Vn,m = e−rΔt(puVn+1,m+1 + pqVn+1,m + pdVn+1,m−1),

and for American puts and calls we have

Pn,m = max
(
e−rΔt [puPn+1,m+1 + pqPn+1,m + pdPn+1,m−1] , E − Sn,m, 0

)
,

(8.39)

Cn,m = max
(
e−rΔt [puCn+1,m+1 + pqCn+1,m + pdCn+1,m−1] , Sn,m − E, 0

)
.

(8.40)

In Tables 8.4 and 8.5, we give binomial lattice approximations to American
call and put options when the formulae (8.25)–(8.28) are used. The errors and
the CPU times on a computer are also shown.
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Table 8.4. American call option [binomial method (8.25)–(8.28)]

(r = 0.1, σ = 0.2, D0 = 0.05, T = 1year, S = E = 100,
and the exact solution is C = 9.94092345 · · · )

Numbers of time steps Results |Errors| CPU(s)

50 9.902969 0.037955 0.0004

100 9.921921 0.019002 0.0013

200 9.931416 0.009507 0.0053

400 9.936168 0.004755 0.0220

800 9.938546 0.002378 0.0890

Table 8.5. American put option [binomial method (8.25)–(8.28)]

(r = 0.1, σ = 0.2, D0 = 0.05, T = 1year, S = E = 100,
and the exact solution is P = 5.92827717 · · · )

Numbers of time steps Results |Errors| CPU(s)

50 5.911020 0.017257 0.0004

100 5.920066 0.008211 0.0014

200 5.924273 0.004005 0.0053

400 5.926323 0.001955 0.0210

800 5.927309 0.000968 0.0880

8.1.4 Relations Between the Lattice Methods
and the Explicit Finite-Difference Methods

From the view point of PDEs, the procedure given by the formulae (8.12),
(8.13), and (8.20) can be understood in the following way. The value of any
derivative, V , satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0.

Let S̄ = Se−ct and V
(
S̄, t
)
= V (S, t) . Since

∂V

∂S
=
∂V

∂S̄
e−ct,

∂2V

∂S2
=
∂2V

∂S̄2
e−2ct,

and

∂V

∂t
=
∂V

∂t
+
∂V

∂S̄
Se−ct · (−c) ,

we have

∂V

∂t
+

1

2
σ2S̄2 ∂

2V

∂S̄2
+ (r −D0 − c) S̄

∂V

∂S̄
− rV = 0.
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Furthermore let us set x = ln S̄ and Ṽ (x, t) = V
(
S̄, t
)
. Noticing

∂V

∂S̄
=
∂Ṽ

∂x

1

S̄
,

∂2V

∂S̄2
=
∂2Ṽ

∂x2
1

S̄2
− 1

S̄2

∂Ṽ

∂x
,

and

∂V

∂t
=
∂Ṽ

∂t
,

we arrive at

∂Ṽ

∂t
+

1

2
σ2 ∂

2Ṽ

∂x2
+
(
r −D0 − c− σ2/2

) ∂Ṽ

∂x
− rṼ = 0. (8.41)

For this equation, we can have the following finite-difference scheme

Ṽ n+1
m − Ṽ n

m

Δt
+

1

2
σ2 Ṽ

n+1
m+1 − 2Ṽ n+1

m + Ṽ n+1
m−1

Δx2

+
(
r −D0 − c− σ2/2

) Ṽ n+1
m+1 − Ṽ n+1

m−1

2Δx
− rṼ n

m = 0,

or

Ṽ n
m =

1

1 + rΔt

[(
σ2

2

Δt

Δx2
+
r −D0 − c− σ2/2

2

Δt

Δx

)

Ṽ n+1
m+1

+

(

1− σ2Δt

Δx2

)

Ṽ n+1
m

+

(
σ2

2

Δt

Δx2
− r −D0 − c− σ2/2

2

Δt

Δx

)

Ṽ n+1
m−1

]

. (8.42)

Here Ṽ n
m denotes the value of Ṽ at xm = x̄+mΔx and tn = nΔt. If we choose

Δx = σ
√
Δt, (8.43)

then we have

Ṽ n
m =

1

1 + rΔt

[(
1

2
+
r −D0 − c− 1

2σ
2

2σ

√
Δt

)

Ṽ n+1
m+1

+

(
1

2
− r −D0 − c− 1

2σ
2

2σ

√
Δt

)

Ṽ n+1
m−1

]

. (8.44)

Now we show that a trinomial method (a binomial method) is close to an
explicit method (8.42) [an explicit method (8.44)]. First we will show that
the mesh here can overlap the lattices of trinomial and binomial methods.
Consider the case c = 0 and let x̄ = lnS∗, S∗ being the asset price at the
current time. In this case
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S(xm) = ex̄+mΔx = S∗ (eΔx
)m

.

Therefore, a uniform mesh on (x, t)-plane (see Fig. 8.4) corresponds to a
non-uniform mesh on (S, t)-plane (see Fig. 8.5), which overlaps the lattices
in Figs. 8.2 and 8.3 with u = eΔx and S = S∗. Consequently, this explicit
difference method can be understood as a trinomial method with a lattice in
Fig. 8.3 and as a binomial method with a lattice in Fig. 8.2 if the expression
(8.43) holds.

x
ln S∗

t

Fig. 8.4. A uniform mesh on (x, t)-plane

S0
S∗

t

Fig. 8.5. The mesh on (S, t)-plane corresponding to a uniform mesh
on (x, t)-plane
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Now let show that the difference between the formulae (8.13) and (8.44)
is very small. Let xm, Sn

m, and S̄n
m denote the x-coordinates, S-coordinates,

and S̄-coordinates of the m-point at time tn, respectively. Because

xm+1 = xm +Δx = xm + σ
√
Δt,

which means
ln S̄n+1

m+1 = ln S̄n
m + σ

√
Δt

or

ln
(
Sn+1
m+1e

−ctn+1
)
= ln

(
Sn
me−ctn

)
+ σ

√
Δt,

we have

Sn+1
m+1 = Sn

mec(t
n+1−tn)+σ

√
Δt = Sn

mecΔt+σ
√
Δt. (8.45)

Similarly,

Sn+1
m−1 = Sn

mecΔt−σ
√
Δt. (8.46)

Noticing that Sn+1
m+1, S

n+1
m−1 and Sn

m correspond to Sn+1,1, Sn+1,0 and Sn, we
have the relations (8.20). Therefore from the expression (8.12), we have

p =
Sne

(r−D0)Δt − Sne
cΔt−σ

√
Δt

SnecΔt+σ
√
Δt − SnecΔt−σ

√
Δt

=
e(r−D0−c)Δt − e−σ

√
Δt

eσ
√
Δt − e−σ

√
Δt

=
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(
1− σ

√
Δt+ 1

2σ
2Δt− 1

6σ
3Δt3/2

)
+O

(
Δt2
)

2σ
√
Δt+ 1

3σ
3Δt3/2 +O (Δt2)

=
σ
√
Δt
[
1 +
(
r −D0 − c− σ2/2

)√
Δt/σ + 1

6σ
2Δt+O

(
Δt3/2

)]

2σ
√
Δt
[
1 + 1

6σ
2Δt+O

(
Δt3/2

)]

=
1

2

[

1 +
(
r −D0 − c− σ2/2

)√
Δt/σ +

1

6
σ2Δt+O

(
Δt3/2

)]

×
[

1− 1

6
σ2Δt+O

(
Δt3/2

)]

=
1

2

[

1 +
r −D0 − c− 1

2σ
2

σ

√
Δt

]

+O
(
Δt3/2

)
.

Also the difference between e−rΔt and 1
1+rΔt is O(Δt2). Thus the formula

(8.13) is almost the same as the formula (8.44). Consequently, the method
given by the formulae (8.12), (8.13), and (8.20) is almost an explicit scheme
(8.44). Therefore, the binomial method and the trinomial method can be
understood as explicit finite-difference methods in some sense.

Finally we point out that because the convergence of the explicit scheme
here with Δt/Δx2 = σ−2 can be easily proved, the difference between
1
2

[
1 +

r−D0−c− 1
2σ

2

σ

√
Δt
]
and p is O

(
Δt3/2

)
, and the difference between e−rΔt

and 1
1+rΔt is O(Δt2), the convergence of the binomial method can also

be proved.
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The formulae (8.45) and (8.46) actually are the formula (8.20), so the
conclusion given here can be used for both the Cox–Ross–Rubinstein method
(See [22]) and the McDonald method (See [61]).

8.1.5 Examples of Unstable Schemes

As has been pointed out in Sect. 8.1.1, when the scheme (8.3) or (8.6) is
used, stability condition (8.4) or (8.7) is required. What will happen if these
conditions are violated?

0 20 40 60 80 100 120 140 160 180
−300

−200

−100

0

100

200

300
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c(
$)

European call, E=100, T=1, r=0.1, D0= Delta tau = 0.05, Delta xi = 0.01

Fig. 8.6. A unstable solution of EFDI
(The solution appears when Eq. (8.4) is violated. E = 100, T = 1,

r = 0.1, D0 = 0.05, σ = 0.2, Δτ = 0.05, and Δξ = 0.01.)

Let us try scheme (8.3) for a European call option with parameters
E = 100, T = 1, r = 0.1, D0 = 0.05, and σ = 0.2. Take Δτ = 0.05 and
Δξ = 0.01. The solution at t = 0 is shown in Fig. 8.6, where we see that rather
large oscillations develop. In this case, Δτ = 0.05 and 16Δξ2/σ2 = 0.04, so
condition (8.4) does not hold, and the scheme is unstable. We cannot get a
useful solution if such a set of Δτ and Δξ is adopted.
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8.2 Implicit Methods

8.2.1 Pricing European Options by Using V , ξ, τ Variables

The problem (8.1) can also be discretized by an implicit scheme, for example,
by scheme (7.6). In this case, the difference equations are

vn+1
m − vnm
Δτ

=
1

4
σ̄2
mξ

2
m(1− ξm)2

(
vn+1
m+1 − 2vn+1

m + vn+1
m−1

Δξ2
+
vnm+1 − 2vnm + vnm−1

Δξ2

)

+
1

2
(r −D0)ξm(1− ξm)

(
vn+1
m+1 − vn+1

m−1

2Δξ
+
vnm+1 − vnm−1

2Δξ

)

−1

2
[r(1− ξm) +D0ξm](vn+1

m + vnm),

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1. (8.47)

Like the explicit scheme case, vn−1 and vnM+1 do not appear in the equation.
For a fixed n, there are M + 1 equations in the following form:

amv
n+1
m−1 + bmv

n+1
m + cmv

n+1
m+1 = −amvnm−1 + (2− bm)vnm − cmv

n
m+1,

m = 0, 1, · · · ,M,

where

am =
[
(r −D0)m(1− ξm)− σ̄2

mm
2(1− ξm)2

]
Δτ/4,

bm = 1 + [σ̄2
mm

2(1− ξm)2 + r(1− ξm) +D0ξm]Δτ/2,

cm =
[−(r −D0)m(1− ξm)− σ̄2

mm
2(1− ξm)2

]
Δτ/4,

m = 0, 1, · · · ,M.

In matrix form, we have

Avn+1 = qn,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 c0
a1 b1 c1 0

. . .
. . .

. . .

. . .
. . .

. . .

0 aM−1 bM−1 cM−1

aM bM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

vn =

⎡

⎢
⎢
⎢
⎣

vn0
vn1
...
vnM

⎤

⎥
⎥
⎥
⎦
, qn =

⎡

⎢
⎢
⎢
⎣

(2− b0)v
n
0 − c0v

n
1

−a1vn0 + (2− b1)v
n
1 − c1v

n
2

...
−aMvnM−1 + (2− bM )vnM

⎤

⎥
⎥
⎥
⎦
.
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The difference between an implicit method and an explicit method is that for
an implicit method, a linear system needs to be solved in order to get vn+1

from vn. This can be done by the LU decomposition or an iteration method
given in Sects. 6.2.1 and 6.2.2. The linear system here has a variable coefficient
matrix, however, it does not depend on time if σ does not depend on t. Thus,
the linear system can be solved with only slightly more cost compared to a
linear system with a constant coefficient matrix. It is clear that scheme (8.47)
can even be applied to the case when σ depends on S and t. We will refer
to this scheme as the implicit finite-difference scheme. From Problem 15 in
Chap. 7, we can expect this scheme to be stable without any condition on the
ratio Δτ/Δξ. In fact, in the paper by Sun, Yan, and Zhu [79], it is rigorously
proved that this scheme with variable coefficients is unconditionally stable.

When σ is a constant, we can also use the variables u, x and τ̄ . In this
case, the difference scheme (7.9) can be applied to the equation in problem
(8.5). However, when the scheme (7.9) is used for problem (8.5), we have
to modify the problem formulation slightly. Let the problem be defined on
a finite domain [xl, xu] and give an artificial boundary condition on each
boundary. From the expressions (2.19) and (2.23) in Sect. 2.2.5, we know at
S = 0, V (0, t) = V (0, T )e−r(T−t) and for S ≈ ∞, V (S, t) ≈ V (S, T )e−D0(T−t).
Therefore, noticing u(x, τ̄) = er(T−t)V (S, t), for S ≈ 0, i.e., x ≈ −∞ we have

u(x, τ̄) ≈ V (S, T )

and for S ≈ ∞, i.e., x ≈ ∞,

u(x, τ̄) ≈ V (S, T )e(r−D0)(T−t),

where x = lnS + (r − D0 − σ2/2)(T − t) and τ̄ = σ2(T − t)/2. These two
relations can be taken as artificial boundary conditions at x = xl and x = xu,
respectively, if xl is small enough and xu is large enough. For example, in
order to calculate a call option,

u(xl, τ̄) = 0 and u(xu, τ̄) = (exu−(2(r−D0)/σ
2−1)τ̄ − E)e2(r−D0)τ̄/σ

2

can be adopted as artificial boundary conditions. If the call option has param-
eters r = 0.1, D0 = 0.05, σ = 0.2, E = 1, and T = 1, we can let xl = ln 0.2
and xu = ln 2.3.

The method for solving European average strike and double average
options with continuous sampling is similar. However the transformations will
be different for the two different cases.

8.2.2 European Options with Discrete Dividends and Asian
and Lookback Options with Discrete Sampling

A holder of a stock usually obtains dividends on certain days, not continuously.
Thus, in practice, it is important to know how to price options on stocks with
discrete dividends. For Asian and lookback options, sampling is usually done
discretely even though the time interval between two samples is very small so
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it can be seen as being continuously. This subsection is devoted to discussing
how to evaluate European options with discrete dividends and European-style
Asian and lookback options with discrete sampling. We give details here only
for European options with discrete dividends and European average price
options with discrete sampling. For other cases, the prices can be obtained in
a similar way. Some results on such options are also given here.

European Options with Discrete Dividends. First, we work on
options on stocks with discrete dividends. Let V (S, t) be the price of an option
on stocks with discrete dividends. From Sect. 2.2.2, we know that V (S, t) is
the solution to the following problem:
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ [rS −D(S, t)]

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S,

(8.48)

where D(S, t) =
∑I

i=1Di(S)δ(t − ti) and Di(S) ≤ S for any S. The
meaning of the condition Di(S) ≤ S here is that the price of a stock at
any time should be greater than or equal to the dividend paid at that time.
From the problem (8.48), we know the following: At t �= ti, i = 1, 2, · · · , I, V
satisfies

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 ≤ S (8.49)

and at t = ti, i = 1, 2, · · · , or I, the equation

∂V

∂t
−Di(S)δ(t− ti)

∂V

∂S
= 0, 0 ≤ S

holds. From Sect. 2.5.2, we see that this equation gives

V (S, t−i ) = V
(
S −Di(S), t

+
i

)
. (8.50)

As we know from Sect. 2.2.5, through the transformation
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

τ = T − t,

V (ξ, τ) =
V (S, t)

S + Pm
,

(8.51)

Eq. (8.49) becomes

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ rξ(1− ξ)

∂V

∂ξ
− r(1− ξ)V , 0 ≤ ξ ≤ 1, (8.52)

where σ̄(ξ) = σ

(
Pmξ

1− ξ

)

, the final condition in the problem (8.48) is converted

into an initial condition of the form
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V (ξ, 0) =
1− ξ

Pm
VT

(
Pmξ

1− ξ

)

, 0 ≤ ξ ≤ 1 (8.53)

and the condition (8.50) is transferred to

V (ξ, τ+i ) =

[

1−Di

(
ξPm

1− ξ

)
1− ξ

Pm

]

V

⎛

⎜
⎜
⎝

Pmξ −Di

(
ξPm

1− ξ

)

(1− ξ)

Pm −Di

(
ξPm

1− ξ

)

(1− ξ)

, τ−i

⎞

⎟
⎟
⎠ .

(8.54)

Table 8.6. European and American options on stocks with discrete dividends

(r = 0.09, σ = 0.3, T = 0.5 year and E = 40.
There are two dividend payments and each pays 0.50.)

t1 = 1/12 and t2 = 4/12 t1 = 2/12 and t2 = 5/12
S European American European American

38 2.64 2.64 2.66 2.69
Call 40 3.70 3.70 3.72 3.77

42 4.95 4.95 4.97 5.03

38 3.86 4.08 3.87 4.02
Put 40 2.92 3.08 2.93 3.04

42 2.17 2.28 2.18 2.26

We solve the problem here using the following mesh. The mesh is still
uniform in ξ with Δξ = 1/M , but in the τ direction, the interval [0, T ] is
divided into N subintervals with τ = τn, n = 0, 1, · · · , N, where τ0 = 0 <
τ1 < · · · < τN−1 < τN = T , and suppose ti corresponds to τni

, i = 1, 2, · · · , I.
Furthermore, define n0 = 0 and nI+1 = N . Just like before, let vnm be an
approximate value of V at ξ = ξm and τ = τn and {vnm} denote vnm, m =

0, 1, · · · ,M . The problem can be solved in the following way. When {vn
+
i

m }
are known at τ+ni

, we can obtain {vn
−
i+1

m } at τ−ni+1
by a scheme approximating

Eq. (8.52), for example, the scheme (8.47). Then we use condition (8.54) to

interpolate {vn
+
i+1

m } from {vn
−
i+1

m }. At t = 0, the option values are the same
for t = 0− and t = 0+. Thus, from the initial condition (8.53), we can have

{vn
+
0

m }. Consequently, we can do the procedure of getting {vn
+
i+1

m } from {vn
+
i

m }
for i = 0, 1, · · · , I − 1 successively. As soon as we have {vn

+
I

m }, we can find

{vn
−
I+1

m }, that is, {vN
m} by scheme (8.47). For American options, the maximum

between v
n+
i+1

m and the constraint condition should be taken as the value of
the American option at τ = τ+ni+1

, i = 0, 1, · · · , I − 1.
In Table 8.6, we give some values of half-year European and American

options with two dividend payments. Each time, the dividend payment is
0.50 if the price of stock is greater than or equal to 0.50. If S < 0.50, we let
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Di(S) = S in the computation. The payments are given at times 1/12 and
4/12 or 2/12 and 5/12. In order to check if the results of European options
are correct, we can check if the put–call parity relation holds. For European
options on stocks with discrete dividends, the put–call parity relation is in
the form (3.44) in Chap. 3. For the case with S = 40 and the payment dates
t1 = 2/12 and t2 = 5/12, this relation is c(40, 0) + Ee−rT = p(40, 0) + 40 −
0.5
(
e−r·2/12 + e−r·5/12) . From the data given in Table 8.6, we have

c(40, 0) + Ee−rT = 3.72 + 40 · e−0.09·0.5 = 3.72 + 38.24 = 41.96,

p(40, 0) + 40− 0.5
(
e−r·2/12 + e−r·5/12

)
= 2.93 + 40

−0.5
(
e−0.09·2/12 + e−0.09·5/12

)
= 42.93− 0.97 = 41.96.

Thus, the put–call parity relation holds. In Hull’s book [43], an approximate
method to get c(S, t) is provided. It gives c(40, 0) = 3.67 for this case. The
numerical result here is 3.72, so it gives a very good estimate. From Table 8.6,
we know that for the case t1 = 1/12 and t2 = 4/12, the values of European
and American call options are the same. This is because E(1 − e−r(T−t2)) =
40 · (1 − e−0.09/6) = 0.60 > 0.5 and E(1 − e−r(t2−t1)) = 40 · (1 − e−0.09/4) =
0.89 > 0.5, where 0.5 is the dividend payment. When such inequalities hold, it
is impossible to have an optimal exercise price and the value of the American
option must be equal to the value of the European option (see Problem 15 in
Chap. 3 or the book [43] by Hull).

European Average Price Options with Discrete Sampling. Now we
give some details on how to price European average price options. Suppose
that sampling is done at t = t1, t2, · · · , tK , where 0 ≤ t1 < t2 < · · · < tK ≤ T .
Define

I =
1

K

∫ t

0

S (τ) f (τ) dτ,

where f(τ) =
K∑

i=1

δ (τ − ti) . It is clear that at t = T , I = A. Let the price of

a European average price option be V (S, I, t) and let E be the exercise price.
Then V (S, I, t) is the solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S

+
S

K

K∑

i=1

δ (t− ti)
∂V

∂I
− rV = 0, 0 ≤ S <∞, 0 ≤ I <∞, t ≤ T,

V (S, I, T ) = max (±(A− E), 0)

= max (±(I − E), 0) , 0 ≤ S <∞, 0 ≤ I <∞,

where the “+” and “−” in ± correspond to the call and put options, re-

spectively. Let η =
I − E

S
, W =

V

S
. In this case, the first three relations
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in the set of expressions (4.24) are still true and
∂V

∂I
=

∂W

∂η
. Also, from

V (S, I, T ) = max (±(I − E), 0), we have

W (η, T ) = max (±η, 0) .

Therefore, W (η, t) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

K

K∑

i=1

δ (t− ti)

]
∂W

∂η

−D0W = 0, −∞ < η <∞, t ≤ T,

W (η, T ) = max (±η, 0) , −∞ < η <∞.

(8.55)

Suppose t1 = 0 and let tK+1 = T > tK ; then the problem can be solved as
follows. Starting with fK+1,w = max(±η, 0), for i = K + 1,K, · · · , 2, succes-
sively, solve the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
+ 1

2σ
2η2

∂2W

∂η2
+ (D0 − r) η

∂W

∂η
−D0W = 0,

−∞ < η <∞, t+i−1 < t < t−i ,

W (η, t−i ) = fi,w(η), −∞ < η <∞

(8.56)

and obtain W (η, t−i−1) from W (η, t+i−1) by the jump condition

W
(
η, t−i

)
=W

(

η +
1

K
, t+i

)

. (8.57)

We want to solve this problem as an initial-value problem on a finite
domain. Thus, we introduce the following transformation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
η

|η|+ Pm
,

τ = T − t,

W (η, t) = (|η|+ Pm)u(ξ, τ),

(8.58)

where Pm > 0. From the expression (8.58), we have

sign(ξ) = sign(η), |ξ| ≤ 1, |η| = Pm|ξ|
1− |ξ| , η =

Pmξ

1− |ξ| , |η|+ Pm =
Pm

1− |ξ| ,

and
dξ

dη
=

|η|+ Pm − η · sign(η)
(|η|+ Pm)2

=
Pm

(|η|+ Pm)2
=

(1− |ξ|)2
Pm

.



8.2 Implicit Methods 473

Because

∂W

∂t
= −(|η|+ Pm)

∂u

∂τ
= − Pm

1− |ξ|
∂u

∂τ
,

∂W

∂η
=

∂

∂η
[(|η|+ Pm)u] = sign(η)u+ (η + |Pm|)∂u

∂ξ

dξ

dη

= sign(ξ)u+ (1− |ξ|)∂u
∂ξ
,

∂2W

∂η2
=

∂

∂ξ

[

(1− |ξ|)∂u
∂ξ

+ sign(ξ)u

]
dξ

dη
=

(1− |ξ|)3
Pm

∂2u

∂ξ2
,

from the PDE for W we have

Pm

1− |ξ|
∂u

∂τ
=
σ2Pmξ

2(1− |ξ|)
2

∂2u

∂ξ2

+

[

(D0 − r)
Pmξ

1− |ξ|
] [

sign(ξ)u+ (1− |ξ|)∂u
∂ξ

]

−D0
Pm

1− |ξ|u

or

∂u

∂τ
=
σ2ξ2(1− |ξ|)2

2

∂2u

∂ξ2
+ (D0 − r)ξ(1− |ξ|)∂u

∂ξ

+ [(D0 − r)|ξ| −D0]u, −1 < ξ < 1, 0 ≤ τ.

Thus, under this transformation, the problem (8.56) becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
=

1

2
σ2ξ2(1− |ξ|)2 ∂

2u

∂ξ2
+ (D0 − r)ξ(1− |ξ|)∂u

∂ξ

− [r|ξ|+D0(1− |ξ|)]u, −1 ≤ ξ ≤ 1, τ+i < τ < τ−i−1,

u(ξ, τ+i ) =
1− |ξ|
Pm

fi,w

(
Pmξ

1− |ξ|
)

,−1 ≤ ξ ≤ 1.

(8.59)

Here we have used the following relation:

u(ξ, τ+i ) =
W
(
η, t−i

)

|η|+ Pm
=

fi,w(η)

|η|+ Pm
=

1− |ξ|
Pm

fi,w

(
Pmξ

1− |ξ|
)

.

At ξ = 0, the PDE in the problem (8.59) degenerates into

∂u

∂τ
= −D0u.

Thus, the solution at ξ = 0 can be determined alone. Therefore, the problem
(8.59) can be divided into two problems:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
=

1

2
σ2ξ2(1− ξ)2

∂2u

∂ξ2
+ (D0 − r)ξ(1− ξ)

∂u

∂ξ

− [rξ +D0(1− ξ)]u, 0 ≤ ξ ≤ 1, τ+i < τ < τ−i−1,

u(ξ, τ+i ) =
1− ξ

Pm
fi,w

(
Pmξ

1− ξ

)

, 0 ≤ ξ ≤ 1

(8.60)

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
=

1

2
σ2ξ2(1− |ξ|)2 ∂

2u

∂ξ2
+ (D0 − r)ξ(1− |ξ|)∂u

∂ξ

− [r|ξ|+D0(1− |ξ|)]u, −1 ≤ ξ ≤ 0, τ+i < τ < τ−i−1,

u(ξ, τ+i ) =
1− |ξ|
Pm

fi,w

(
Pmξ

1− |ξ|
)

,−1 ≤ ξ ≤ 0.

(8.61)

Letting ξ1 = −ξ and u1(ξ1, τ) = u(ξ, τ), we have |ξ| = ξ1 for any ξ ∈ [−1, 0]

and ξ
∂u

∂ξ
= ξ1

∂u1
∂ξ1

. Thus, the problem (8.61) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u1
∂τ

=
1

2
σ2ξ21(1− ξ1)

2 ∂
2u1
∂ξ21

+ (D0 − r)ξ1(1− ξ1)
∂u1
∂ξ1

− [rξ1 +D0(1− ξ1)]u1, 0 ≤ ξ1 ≤ 1, τ+i < τ < τ−i−1,

u1(ξ1, τ
+
i ) =

1− ξ1
Pm

fi,w

(−Pmξ1
1− ξ1

)

, 0 ≤ ξ1 ≤ 1.

(8.62)

The formulation of the two problems are the same as the problem (8.1). Thus,
using the scheme (8.47), we can obtain u(ξ, τ−i−1) from u(ξ, τ+i ) for −1 ≤ ξ ≤ 1.

In order to have u(ξ, τ+i−1) from u(ξ, τ−i−1) for −1 ≤ ξ ≤ 1, we need to use the
jump condition:

u
(
ξ, τ+i

)
=

∣
∣
∣
Pmξ
1−|ξ| +

1
K

∣
∣
∣+ Pm

∣
∣
∣
Pmξ
1−|ξ|

∣
∣
∣+ Pm

u

⎛

⎝

Pmξ
1−|ξ| +

1
K

∣
∣
∣
Pmξ
1−|ξ| +

1
K

∣
∣
∣+ Pm

, τ−i

⎞

⎠ , (8.63)

which is another version of the jump condition (8.57) if the function u(ξ, τ)
is used instead of the function W (η, t). It is not difficult to rewrite the jump
condition (8.57) into the jump condition (8.63), which is left as a portion of
Problem 9. As soon as we have u(ξ, T+) when τ1 = T , that is, t1 = 0, we can
find

V (S, 0, 0) = SW (−E/S, 0) = S (E/S + Pm)u

( −E/S
E/S + Pm

, T

)

.

Because
dξ

dη
=

(1− |ξ|)2
Pm

> 0, when η varies from −∞ to ∞, ξ varies from

−1 to 1 monotonically. Thus, ξ(η) < ξ(η + 1/K) for any η; that is,
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ξ(η) =
η

|η|+ Pm
< ξ

(

η +
1

K

)

=
η +

1

K

|η + 1

K
|+ Pm

=

Pmξ
1−|ξ| +

1
K

∣
∣
∣
Pmξ
1−|ξ| +

1
K

∣
∣
∣+ Pm

.

Consequently, when ξ varies from 0 to 1,
Pmξ
1−|ξ|+

1
K

| Pmξ
1−|ξ|+

1
K |+Pm

varies from
1/K

1/K + Pm

to 1, and when ξ varies from −1 to 0,
Pmξ
1−|ξ|+

1
K

| Pmξ
1−|ξ|+

1
K |+Pm

varies from −1 to

1/K

1/K + Pm
. For an average price call option, we need to solve problems (8.60)

and (8.62) from τ+i to τ−i−1 and then use condition (8.63) for ξ ∈ [−1, 1],
i = K +1,K, · · · , 2, successively.2 For an average rate put option, u(ξ, 0) = 0
for ξ ∈ [0, 1], and so the solution of the problem (8.60) with the jump condition

Table 8.7. Prices of average price put options with discrete sampling

(T = 1, S = 100, r = 0.05, D0 = 0, σ = 0.2)

E Monthly Weekly Daily

90.0000 0.7861 0.6929 0.6694

92.5000 1.2239 1.1092 1.0800

95.0000 1.8162 1.6840 1.6501

97.5000 2.5823 2.4392 2.4023

100.0000 3.5345 3.3888 3.3512

102.5000 4.6771 4.5378 4.5020

105.0000 6.0068 5.8823 5.8506

107.5000 7.5132 7.4107 7.3850

110.0000 9.1810 9.1055 9.0871

Table 8.8. Prices of average price call options with discrete sampling

(T = 1, S = 100, r = 0, D0 = 0, σ = 0.2)

E Monthly Weekly Daily Continuously

90.0000 11.2304 11.0853 11.0487 11.0426

92.5000 9.3506 9.1760 9.1315 9.1240

95.0000 7.6595 7.4610 7.4102 7.4016

97.5000 6.1708 5.9566 5.9015 5.8922

100.0000 4.8888 4.6685 4.6118 4.6022

102.5000 3.8091 3.5922 3.5365 3.5271

105.0000 2.9194 2.7143 2.6618 2.6529

107.5000 2.2019 2.0148 1.9672 1.9592

110.0000 1.6350 1.4701 1.4284 1.4215

2In this case, the problem (8.60) with the jump condition (8.63) can be solved
independently and have an analytic solution (see Andreasen [3], Zhu [90], or Prob-
lem 32 in Chap. 2).
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Table 8.9. Comparison between two sampling-daily-average price call options

(T = 1, S = 100, r = 0, D0 = 0, σ = 0.2)

Money spent in the Money spent in the
case with E = 100 case with E = 90

A ≥ 100 104.61 > 101.05

100 > A > 96.44 4.61 +A > 101.05

A = 96.44 101.05 = 101.05

96.44 > A ≥ 90 4.61 +A < 101.05

90 > A 4.61 +A < 11.05 +A

(8.63) is zero. Thus, in order to obtain u

( −E/S
E/S + Pm

, T

)

, we only need to

solve the problem (8.62) and to use the jump condition (8.63) alternatively.
In Sect. 4.3.7, we have given some results on European average price

options with discrete sampling. Here we give more results for the European
average rate call and put options obtained by the method described here. In
Table 8.7 for the cases with sampling monthly, weekly, or daily, for S = 100,
the values of the average price put options with T = 1, r = 0.05, D0 =
0, σ = 0.2 are listed. In Table 8.8 for the cases with sampling monthly,
weekly, or daily, for S = 100, the values of the average price call options
with T = 1, r = 0, D0 = 0, σ = 0.2 are given. Here we assume that there are
12months, 52weeks, 360 days per year, which are not real. The error of the
results given in the table should be around 0.0001 because when a finer mesh
is used, the difference between the new value and the value given here is less
than 0.0001. In Table 8.8, the results of options with continuous sampling are
also given. From that table, we can see that the difference between the option
price with sampling daily and the option price with sampling continuously is
about 0.01.

Suppose that a company will buy a certain amount of some raw material
every day during the next year. Let A be the average price of the raw material
the company paid during this period. Usually, the company does not want A
to be much higher than the price today S. It is clear that the company cannot
control the price on the market. However, if the company purchases certain
units of sampling-daily-average price call options on such a raw material, then
the company will get some money from exercising these call options when A
is higher than E, so it will be guaranteed that the money spent on this raw
material will be less than a certain level. From Table 8.8, we can see that when
today’s price of the raw material is $100, the company needs to pay $4.61 in
order to buy a sampling-daily-average price call option with E = 100. Thus,
the money spent on each unit of the raw material is $ 4.61 + 100 = $104.61
if A ≥ 100 or $ 4.61 + A if A < 100, which means that the money spent on
each unit of the raw material is not greater than $104.61. When an option
with E = 90 is purchased, the money spent on each unit of the raw material
is not greater than $11.05 + 90 =$101.05 because the premium for the call
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option for this case is $11.05 (see Table 8.8). Which choice is better? This is
determined by what you want. When the option with E = 90 is purchased,
the maximum money spent is lower than that for the case with E = 100, but
the money spent for lower A is higher than that for the case with E = 100.
Table 8.9 shows you this fact.

Table 8.10. Double average call option prices on four meshes (D0 < r)

(T = 1, S = 100, r = 0.05, D0 = 0, σ = 0.2,
T1s = 0.1, T1e = 0.5, K1 = 5, Ts = 0.6, Te = 1.0, K = 5, Pm = 0.4,

the payoff = max

(
I

K
− I1

K1
, 0

)
, and the exact solution = 5.872133 · · · )
CPU Results without CPU

Mesh sizes Results |Errors| times extrapolation |Errors| times

200× 20 5.870320 0.001813 0.0042 5.869883 0.002250 0.0020

400× 40 5.871861 0.000272 0.0094 5.871367 0.000766 0.0077

800× 80 5.872133 0.000000 0.0282 5.871942 0.000191 0.0203

1, 600× 160 5.872126 0.000007 0.0928 5.872080 0.000053 0.0745

Table 8.11. Double average call option prices on four meshes (D0 > r)

(T = 1, S = 100, r = 0.05, D0 = 0.1, σ = 0.2,
T1s = 0.1, T1e = 0.5, K1 = 5, Ts = 0.6, Te = 1.0, K = 5, Pm = 0.2,

the payoff = max

(
I

K
− I1

K1
, 0

)
, and the exact solution = 3.244201 · · · )
CPU Results without CPU

Mesh sizes Results |Errors| times extrapolation |Errors| times

200× 20 3.241122 0.003079 0.0052 3.235091 0.009110 0.0030

400× 40 3.244162 0.000039 0.0116 3.241894 0.002307 0.0084

800× 80 3.244263 0.000062 0.0321 3.243671 0.000530 0.0217

1, 600× 160 3.244196 0.000005 0.1009 3.244064 0.000137 0.0813

Some Results of Double Average Call Options. For European-style
other Asian and lookback options with discrete sampling, the method is simi-
lar. That is, the problem is solved by numerical schemes for partial differential
equations and interpolation alternately. For details of the methods, see the pa-
pers by Andreasen [3] and Zhu [90]. Some results for such options are given
in Sects. 4.3.7 and 4.4.7. Here we give some results for two double average
call options, to show the effect of the extrapolation technique and how the
approximate solutions converge to exact solutions in Tables 8.10 and 8.11. In
Table 8.10 D0 = 0.1 > r = 0.05, and in Table 8.11 D0 = 0 < r = 0.05. There
are 10 samplings at t = 0.1, 0.2, · · · , 1.0. From these tables, we can see that
the extrapolation technique greatly improves the rate of convergence and the
accuracy, with about 25% extra CPU time.
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8.2.3 Projected Direct Methods for the LC Problem

As seen in Sect. 8.2.1, using implicit finite-difference methods for European
options is straightforward. From Sect. 8.1.2, if an American option is formu-
lated as a linear complementarity problem, then there is not a big difference
between explicit finite-difference methods for European and American op-
tions. The implicit methods for American options are also only a little more
complicated than the methods for European options.

Suppose we use a direct method to solve the system related to an American
call option, which is formulated as the problem (8.8). Assuming that the
partial differential equation holds everywhere and using scheme (8.47), we
have a system in the form:

amv̄
n+1
m−1 + bmv̄

n+1
m + cmv̄

n+1
m+1 = qnm, m = 0, 1, 2, · · · ,M. (8.64)

Actually, v̄n+1
−1 and v̄n+1

M+1 do not appear in the system because

a0 = cM = 0.

It is clear that the solution of the system (8.64) may not be the solution of the
American option. However, we can find the solution of the American option
with the aid of the system (8.64).

Similar to what we did in Sect. 6.2.1, if we let

u0 = b0, y0 = qn0 , (8.65)

and

um = bm − cm−1am
um−1

, ym = qnm − ym−1am
um−1

, m = 1, 2, · · · ,M, (8.66)

then the equations in system (8.64) can be rewritten as

v̄n+1
m =

ym − cmv̄
n+1
m+1

um
, m =M,M − 1, · · · , 0, (8.67)

where the relation with m =M actually is

v̄n+1
M =

yM

uM

because cM = 0. From the derivation, we know that the relations in the
system (8.67) with m = 0, 1, · · · ,Mf are equivalent to the equations in the
system (8.64) with m = 0, 1, · · · ,Mf , where Mf is any positive integer less
than or equal to M . Obviously, v̄n+1

m may not be greater than or equal to
max(2ξm−1, 0). Therefore, we need to find the value of the American option by

vn+1
m = max

(
v̄n+1
m , 2ξm − 1, 0

)
, m = 0, 1, · · · ,M (8.68)
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Table 8.12. American call option (PIFDI)

(r = 0.05, σ = 0.2, D0 = 0.1, S = E = 100, T = 1,
and the exact solution is C = 5.92827717 · · · )

Meshes Results by Eq. (8.68) |Errors| Results by Eq. (8.69) |Errors|
50× 50 5.752424 0.175853 5.760096 0.168181

100× 100 5.878708 0.049569 5.884210 0.044067

200× 200 5.914582 0.013695 5.917403 0.010874

400× 400 5.924045 0.004132 5.925541 0.002736

800× 800 5.926810 0.001467 5.927574 0.000703

1, 600× 1, 600 5.927706 0.000571 5.928097 0.000180

3, 200× 3, 200 5.928032 0.000245 5.928230 0.000047

or by

vn+1
m = max

(
ym − cmv

n+1
m+1

um
, 2ξm − 1, 0

)

, m =M,M − 1, · · · , 0, (8.69)

successively. This method is referred to as the projected implicit finite-
difference method I (PIFDI).

Is there any difference between the formulae (8.68) and (8.69)? The answer
is yes. Let us explain this. As we know from Sect. 3.3.1, there is only one free
boundary for a call option. It is natural to expect that when the formula
(8.68) is used, there exists an Mf so that vn+1

m = v̄n+1
m for m = 0, 1, · · · ,Mf

and vn+1
m = max(2ξm − 1, 0) for m =Mf +1,Mf +2, · · · ,M . When v̄n+1

m are
determined, we assume all the equations in the system (8.64) to hold. Even
though form =Mf+1,Mf+2, · · · ,M we do not take v̄n+1

m as solutions so that
the constraint condition is satisfied, vn+1

m , m = 0, 1, · · · ,Mf are determined
under the assumption of all the equations in the system (8.64) holding. For
the formula (8.69), the situation is different. We assume that for m =M,M−
1, · · · ,Mf + 1, vn+1

m = max(2ξm − 1, 0) and for m =Mf ,Mf − 1, · · · , 0,

vn+1
m =

ym − cmv
n+1
m+1

um
.

In this case, we only use the relations in the expression (8.67) with m =
Mf ,Mf − 1, · · · , 0, which are equivalent to the equations in the system (8.64)
with m = Mf ,Mf − 1, · · · , 0. Therefore, we only assume that the equations
in the system (8.64) hold for m = Mf ,Mf − 1, · · · , 0. Consequently, this is
closer to what the situation should be. In Table 8.12, results obtained by the
formulae (8.68) and (8.69) and their errors are listed. You can see that on the
same mesh, the error of the results obtained by the formula (8.68) is greater
than the formula (8.69) and that the smaller the mesh size, the greater the
difference. Even though the formula (8.68) can be used to obtain the price
of American options, it brings some error that can be avoided if the formula
(8.69) is used. However, if the free boundary is far away from S = E, then in
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the region S ≈ E, the difference of the solutions obtained by the two direct
methods is very small.

When an implicit scheme is used to solve problem (8.9), we need to choose
the lower and upper bounds of the computational domain and give some
artificial boundary conditions at these two boundaries because we cannot do
computation on an infinite domain. Let the lower and upper bounds be xl
and xu. For a call option, we assume u(xl, τ̄) = 0 and u(xu, τ̄) = g(xu, τ̄), and
for a put option, u(xl, τ̄) = g(xl, τ̄) and u(xu, τ̄) = 0. As soon as we set these
conditions, the problem (8.9) can be discretized and solved in the same way
as described above for the problem (8.8). This method is referred to as the
projected implicit finite-difference method II (PIFDII).

In Tables 8.13 and 8.14, the values of American call and put options
obtained by PIFDII are given. When we do computation, we take

xl = ln(Sl/E)− |(r −D0 − σ2/2)T |

and

xu = ln(Su/E) + |(r −D0 − σ2/2)T |.
For the call option, Sl = 20 and Su = 230, and for the put, Sl = 80 and
Su = 350. There, we also give a solution with an error less than 10−8 in each
table, which is obtained by the SSM given in Chap. 9. Therefore, we can have
the errors of the solutions on different meshes. The CPU time used is also
given, so you can have a notion about the performance of the method.

Table 8.13. American call option (PIFDII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100, T = 1,
and the exact solution is C = 9.94092345 · · · )

Meshes Results |Errors| CPU(s)

100× 25 9.928528 0.012396 0.0025

200× 50 9.937831 0.003093 0.0096

400× 100 9.940151 0.000773 0.0400

800× 200 9.940729 0.000194 0.1700

1, 600× 400 9.940875 0.000048 0.6700

Table 8.14. American put option (PIFDII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100, T = 1,
and the exact solution is P = 5.92827717 · · · )

Meshes Results |Errors| CPU(s)

100× 25 5.922275 0.006002 0.0025

200× 50 5.926394 0.001883 0.0094

400× 100 5.927654 0.000623 0.0400

800× 200 5.928050 0.000227 0.1700

1, 600× 400 5.928188 0.000089 0.6700
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8.2.4 Projected Iteration Methods for the LC Problem

As we know, there are two types of methods to solve a linear system: iteration
methods and direct methods. Similarly, there are two ways to solve the system
related to American options. We discussed direct methods in the last subsec-
tion. Now let us study an iteration method. We still consider call options and
use the system (8.64). This problem can be solved by a method similar to
the SOR method for a system of linear equations given in Sect. 6.2.2. Any
equation in the system (8.64) can be rewritten as

v̄n+1
m = (1− ω)v̄n+1

m +
ω

bm

(
qnm − amv̄

n+1
m−1 − cmv̄

n+1
m+1

)
,

where ω is a constant. The value of the American option vn+1
m satisfies the

relation above if v̄n+1
m > max(2ξm−1, 0) or equal to max(2ξm−1, 0) otherwise.

Therefore, for vn+1
m we have the following relations:

vn+1
m = max

(

(1− ω)vn+1
m +

ω

bm

(
qnm − amv

n+1
m−1 − cmv

n+1
m+1

)
, 2ξm − 1, 0

)

,

m = 0, 1, · · · ,M.

We use an iteration method for finding its solution. Let v
(k)
m be the k-th

iteration of vn+1
m , and the relation above can be rewritten in the following

iteration form:

v(k+1)
m = max

(

(1− ω)v(k)m +
ω

bm

(
qnm − amv

(k+1)
m−1 − cmv

(k)
m+1

)
, 2ξm − 1, 0

)

,

(8.70)

where ω ∈ (0, 2). Let v
(0)
m = vnm for m = 0, 1, · · · ,M . As soon as we have v

(k)
m

for all m, the (k + 1)-th iterative value of vn+1
m can be obtained by equality

(8.70) for m = 0, 1, · · · ,M successively, starting from k = 0. When

1

M + 1

M∑

m=0

(
v(k)m − v(k+1)

m

)2
≤ ε2,

where ε2 is a small number given according to the required accuracy, we can

stop the iteration because for any m, v
(k)
m and v

(k+1)
m are very close to each

other. This method is referred to as the projected successive over relaxation
method I (PSORI). If the formulation (8.9) is adopted, after setting the values
of xl, xu and the artificial boundary conditions, we can have a similar method
and the corresponding method is referred to as PSORII. The details of the
PSORII are left for readers to write as Problem 14.

In Tables 8.15 and 8.16, the prices of American call and put options on
several meshes obtained by PSORII are given. The corresponding errors, CPU
times, and ε2 are also listed. All the parameters are the same as those given in
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Table 8.15. American call option (PSORII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100,
and the exact solution is C = 9.94092345 · · · )

Meshes Results |Errors| CPU(s) ε2

100× 25 9.929351 0.011573 0.0240 10−8

200× 50 9.938037 0.002887 0.1100 0.5 · 10−9

400× 100 9.940202 0.000721 0.5300 0.25 · 10−10

800× 200 9.940743 0.000181 2.7500 0.125 · 10−11

1, 600× 400 9.940878 0.000046 20.000 0.6125 · 10−13

Table 8.16. American put option (PSORII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100,
and the exact solution is P = 5.92827717 · · · )

Meshes Results |Errors| CPU(s) ε2

100× 25 5.922349 0.005928 0.0180 10−8

200× 50 5.926410 0.001867 0.0960 0.5 · 10−9

400× 100 5.927651 0.000626 0.6100 0.25 · 10−10

800× 200 5.928048 0.000230 5.2200 0.125 · 10−11

1, 600× 400 5.928188 0.000089 46.300 0.6125 · 10−13

Tables 8.13 and 8.14. The only difference between the results here and there
is the way we solved the system.

Comparing Tables 8.13 and 8.14 with Tables 8.15 and 8.16 shows that
the CPU time here is longer. This implies that the cost of PSORII method
is greater than the PIFDII method for this case. However, we need to point
out that for most of multi-dimensional problems, the iteration methods may
be better than the direct methods even though here we show that the direct
method is better than the iteration method for one-dimensional problems.

8.2.5 Comparison with Explicit Methods

Explicit methods are usually very simple and very easy to use. The main prob-
lem of explicit methods is the stability requirement. For the explicit method
(8.6), the stability requirement is

ᾱ ≤ 1

2
or Δτ̄ ≤ 1

2
Δx2.

Thus, if the accuracy of the solution requires a small Δx, then a much smaller
Δτ̄ must be taken in order to satisfy the stability condition, which slows
down the computation. For implicit methods, no such restrictions are needed,
and we can let Δτ̄/Δx = constant. Therefore, if we require higher accuracy,
an implicit scheme will give a better performance. This can be seen in the
following way.

Suppose we solve the problem (8.5) by the explicit scheme (8.6) and the
implicit scheme (7.9). Assume that for the scheme (8.6) Δτ̄ = αΔx2, where
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α is a constant not greater than 1/2 and that for the scheme (7.9), Δτ̄ =
βΔx, where β is a constant. For the explicit scheme (8.6), the amount of
computational work is

We =
ae

Δτ̄Δx
=

ae
αΔx3

,

and the error is

E = beτ̄Δτ̄ + bexΔx
2 = (beτ̄α+ bex)Δx

2,

where ae, beτ̄ , and bex are three parameters related to scheme (8.6) and the
solution. From these two relations for the scheme (8.6), we have the relation
between the amount of work and the error required:

We =
ae[beτ̄α+ bex]

3/2

α
E−3/2.

For the scheme (7.9),

Wi =
ai

Δτ̄Δx
=

ai
βΔx2

and

E = biτ̄Δτ̄
2 + bixΔx

2 = (biτ̄β
2 + bix)Δx

2,

where ai, biτ̄ , and bix are three parameters related to scheme (7.9) and the
solution. Here, we assume that a direct method is used for solving the linear
system. Therefore, the relation between the amount of work and the error
required is

Wi =
ai(biτ̄β

2 + bix)

β
E−1.

Usually, ai is greater than ae because for the scheme (7.9) a linear system
needs to be solved at each time step. Consequently, when E is not too small,
it is possible that Wi is greater than We for the same E, which means that
the scheme (8.6) is better than the scheme (7.9). When the solution is much
smoother in the τ̄ -direction than in the x-direction, the scheme (7.9) might
be better than the scheme (8.6) even if E is not very small. This is because in
this case for the scheme (7.9) we can choose a big β such that biτ̄β

2 is close
to bix, which makes Wi smaller, but for the scheme (8.6) we cannot take this
advantage because of the stability requirement. However, when E is small
enough, then Wi must be less than We. This can be seen from comparing
Tables 8.2 and 8.3 with Tables 8.13 and 8.14. The tables show that for the
American call problem with the parameters given there, in order to reach an
error about 0.003, the CPU time for the scheme (8.6) is about 0.06 and the
CPU time for the scheme (7.9) is about 0.01.
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8.2.6 Two-Asset Options

Sometimes two assets are involved in an option problem. In this case, usually
a two-dimensional problem needs to be solved. As shown in Sect. 4.5.4, pricing
a two-asset option can be reduced to solving Eq. (4.79) with final condition
(4.80). This problem is a final-value problem. In order to use the scheme
(7.46), we need to introduce a new variable τ = T − t and modify Eq. (4.79)
into an equation with independent variables ξ, θ and τ . Let us call the new
equation the modified Eq. (4.79). The modified Eq. (4.79) can be discretized
by scheme (7.46). For a two-asset call option, the final condition is

V (S1, S2, T ) = max(E1 − S1, E2 − S2, 0),

and for a two-asset put option, the final condition is

V (S1, S2, T ) = max(S1 − E1, S2 − E2, 0).

Under the coordinate system (ξ, θ, t) introduced in Sect. 4.5.4, letting τ =T−t,
and instead of V , using w =

V

S + Pm
as a dependent variable, S being

ξPm

1− ξ
,

these two conditions become

w(ξ, θ, 0) =
1

√(
S1

P1

)2

+

(
S2

P2

)2

+ Pm

max (E1 − S1, E2 − S2, 0) (8.71)

Table 8.17. Prices of a European two-asset call option

(r = 0.02, D01 = 0.01, D02 = 0.01, σ1 = 0.2,
σ2 = 0.15, ρ = 0.8, E1 = 100, E2 = 95, and T = 1)

S1 S2 Price

95.0 90.0 6.76

97.5 92.5 8.22

100.0 95.0 9.84

102.5 97.5 11.61

105.0 100.0 13.52

Table 8.18. Prices of a European two-asset put option

(r = 0.02, D01 = 0.01, D02 = 0.01, σ1 = 0.2,
σ2 = 0.15, ρ = 0.8, E1 = 100, E2 = 95, and T = 1)

S1 S2 Price

95.0 90.0 11.29

97.5 92.5 9.78

100.0 95.0 8.41

102.5 97.5 7.19

105.0 100.0 6.11
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and

w(ξ, θ, 0) =
1

√(
S1

P1

)2

+

(
S2

P2

)2

+ Pm

max (S1 − E1, S2 − E2, 0) , (8.72)

respectively. Here P1, P2, and Pm are parameters, and

S1 = P1
ξPm

1− ξ
cos θ,

S2 = P2
ξPm

1− ξ
sin θ.

About the value of the parameters P1, P2, Pm, we can let

P1 = E1, P2 = E2, Pm = 1.

Using the initial condition (8.71) or (8.72) and scheme (7.46) obtained by
discretizing the modified Eq. (4.79), we can get the price of a European two-
asset call or put option. Some values of such options are listed in Tables 8.17
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and 8.18. These results are obtained by a 400× 600× 400 mesh, which means
that

Δξ = 1/400, Δθ = 1/600, Δτ = 1/400.

Computation is also done on the 800 × 1, 200 × 800 mesh; the results to two
decimal places are the same except for the case of the put option with S1 = 95
and S2 = 90. For this case, on the 800×1, 200×800 mesh, the result is 11.28,
and on the 400× 600× 400 mesh, the result is 11.29. In order to give readers
an idea as to what solutions of two-asset put options look like, the value of a
two-asset put option for (S1, S2) ∈ [0, 200]× [0, 200] is shown in Fig. 8.7.

8.3 Singularity-Separating Method

In this section, we will discuss how to make numerical methods more efficient.
Generally speaking, the smoother the solution, the smaller the truncation er-
ror. Therefore, if the solution is smooth, even on a coarse mesh, the numerical
result is still quite good. Suppose that the solution we need to find is not very
smooth but has a certain type of singularity caused by the final condition.
Also, we assume that there is an analytic expression that satisfies the same
final condition and the same equation or a similar equation. If both the final
conditions and the equations are the same, their singularities caused by the
final conditions are the same, and the difference between them is a smooth
function; if only the final conditions are the same, they possess similar singu-
larities, and the difference between them is usually smoother than the solution
we need to find. In both cases, we can first compute the difference using nu-
merical methods and then have our solution by adding the analytic expression
and the difference together. Such a method or technique will be referred to
as singularity-separating method (SSM), or singularity-separating technique,
in this book. Because computing the difference is quite efficient, we can have
the solution quite efficiently. Of course, there is some extra work in order to
compute the difference. However, from the examples we are going to show,
such a way can truly make numerical methods more efficient. In this section,
we will give some details of the method for European double moving barrier
options, European vanilla option with variable volatilities, Bermudan options,
European Parisian options, European average price options, two-factor vanilla
options, and two-factor convertible bonds with D0 = 0. Indeed, the method
can be used for many more cases, including multi-factor derivative securities.

8.3.1 Barrier Options

If the option has a fixed barrier and σ, r, and D0 are constants, we can find
analytic solutions of barrier options (see Sect. 4.2). However, if the option has
two moving barriers, analytic solutions may not exist even if σ, r, and D0 are
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constants, and we may need to rely on numerical methods for pricing such an
option. Here, we discuss how to make numerical methods more efficient.

The price V (S, t) of a double moving barrier call option with rebates sat-
isfies the equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

V (S, T ) = max(S − E, 0), f(T ) ≤ S ≤ g(T ),

V (f(t), t) = 0, 0 ≤ t ≤ T,

V (g(t), t) = g(t)− E, 0 ≤ t ≤ T,

(8.73)

where f(t) and g(t) are the locations of the lower and upper barriers with

f(t) < E and g(t) > E,

and we assume that at the lower barrier, there is no rebate and at the upper
barrier, the rebate is

g(t)− E.

Because the derivative of the payoff function max(S−E, 0) is discontinuous
at S = E, the solution V (S, t) at t ≈ T and S ≈ E is not very smooth.
Therefore, the error of numerical solutions in the region around t = T and
S = E is relatively large compared with that in the region far away from this
point. In order to make the numerical solution better, we introduce a new
function

V (S, t) = V (S, t)− c(S, t),

where c(S, t) is the price of the vanilla call option. Because c(S, t) also satisfies
the partial differential equation and the final condition in problem (8.73),
V (S, t) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

V (S, T ) = 0, f(T ) ≤ S ≤ g(T ),

V (f(t), t) = −c(f(t), t), 0 ≤ t ≤ T,

V (g(t), t) = g(t)−E− c(g(t), t), 0 ≤ t ≤ T.

(8.74)

The derivative of V (S, t) at t ≈ T and S ≈ E is very smooth, so the error
of the numerical solution of V (S, t) is usually smaller than that of V (S, t).
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Therefore, in order to get a better V (S, t), we can first obtain the numerical
solution of V (S, t) and then have V (S, t) by adding V (S, t) and c(S, t) together.
We refer to this procedure as the singularity-separating method (SSM) or the
singularity-separating technique for European barrier options. The reason is as
follows. The derivative of V (S, t) is discontinuous at t = T and S = E. Thus,
we say that V (S, t) has some weak singularity. The function V (S, t), which
will be determined numerically, is smooth. Therefore, the weak singularity has
been “separated” from the numerical computation. The CPU time of getting
V (S, t) is slightly longer than that of getting V (S, t) directly because c(f(t), t)
and c(g(t), t) need to be computed in order to get V (S, t). Because the error
is smaller, we can usually expect better performance, i.e., we can usually
expect to have the same accuracy by spending less CPU time or to spend the
same CPU time for a better accuracy. Consequently, the singularity-separating
technique can usually improve the performance.

Both V (S, t) and V (S, t) are solutions of the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ū

∂t
+

1

2
σ2S2 ∂

2ū

∂S2
+ (r −D0)S

∂ū

∂S
− rū = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

ū(S, T ) = f̄1(S), f(T ) ≤ S ≤ g(T ),

ū(f(t), t) = b̄l(t), 0 ≤ t ≤ T,

ū(g(t), t) = b̄u(t), 0 ≤ t ≤ T.

(8.75)

The only difference between the two cases is the functions in the final condition
and in the boundary conditions. Thus, no matter whether the singularity-
separating technique is used, we need a numerical method for problem (8.75)
in order to have V (S, t).

Problem (8.75) is a typical moving boundary problem. In order to convert
it into a problem with fixed boundaries and transfer the final condition to an
initial condition, we use the following transformation:

⎧
⎨

⎩

η =
S − f(t)

g(t)− f(t)
,

τ = T − t.

(8.76)

Let

u(η, τ) = u(η(S, t), T − t) = ū(S, t),

F (τ) = F (T − t) = f(t),

G(τ) = G(T − t) = g(t).
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Because

∂ū

∂t
=
∂u

∂η

∂η

∂t
+
∂u

∂τ

∂τ

∂t

= − 1

g − f

[
df

dt
+ η

(
dg

dt
− df

dt

)]
∂u

∂η
− ∂u

∂τ

=
1

G− F

[
dF

dτ
+ η

(
dG

dτ
− dF

dτ

)]
∂u

∂η
− ∂u

∂τ
,

∂ū

∂S
=

1

G(τ)− F (τ)

∂u

∂η
,

∂2ū

∂S2
=

1

[G(τ)− F (τ)]2
∂2u

∂η2
,

u(η, τ) is the solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= Lη1u, 0 ≤ η ≤ 1 0 ≤ τ ≤ T,

u(η, 0) = f1(η), 0 ≤ η ≤ 1,

u(0, τ) = bl(τ), 0 ≤ τ ≤ T,

u(1, τ) = bu(τ), 0 ≤ τ ≤ T,

(8.77)

where

Lη1 =
1

2

(
Sσ

G− F

)2
∂2

∂η2
+

{
S

G− F
(r −D0)

+
1

G− F

[
dF

dτ
+ η

(
dG

dτ
− dF

dτ

)]}
∂

∂η
− r,

f1(η) = f̄1 (F (0) + η[G(0)− F (0)]) ,

bl(τ) = b̄l(T − τ),

bu(τ) = b̄u(T − τ).

The problem (8.77) can be solved by explicit finite-difference schemes or
implicit finite-difference schemes and even by pseudo-spectral methods. Here,
we give some results to explain the effect of this technique if implicit finite-
difference methods are used.

We have solved an identical problem by scheme (7.6) in two different ways:
with and without SSM. In Table 8.19, the results, the errors, and the CPU time
in seconds for four meshes are given. There, N ×M in the column “Meshes”
stands for a mesh that has N + 1 nodes in the t-direction (the τ -direction)
and M + 1 nodes in the S-direction (the η-direction). The lower and upper
knock-out boundaries are

f(t) = 0.9Ee−0.1t and g(t) = 1.6Ee0.1t.
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Table 8.19. Implicit methods with and without the SSM

(S = 95, T = 1, E = 100, σ = 0.25, r = 0.1, D0 = 0,
f(t) = 0.9Ee−0.1t, g(t) = 1.6Ee0.1t, the rebate = g(t)− E,

and the exact solution is 6.8441468 · · · )
Without SSM With SSM

Meshes Solution |Errors| CPU Solution |Errors| CPU

12× 48 6.845973 0.001826 0.00039 6.843292 0.000855 0.00049

25× 100 6.844623 0.000476 0.0019 6.844205 0.000058 0.0019

50× 200 6.844187 0.000040 0.0062 6.844163 0.000016 0.0063

100× 400 6.844167 0.000020 0.0221 6.844150 0.000003 0.0221

There, the results both with and without SSM are given. In order to give
errors, we have to find the exact solution. To our knowledge, no analytic
solution for such a problem has been found. Therefore, we take a very accurate
approximate solution as an exact solution. For this case, the exact solution
is 6.8441468 · · · (here the eight digits are correct). From there, we can see
that the result with SSM is clearly better than without SSM on the same
mesh whereas the CPU time difference between the two cases is very small.
Therefore, the advantage of the singularity-separating technique is obvious for
this case. As we know, if the error ≈ aΔτα = a(T/N)α (suppose Δτ/Δη =
constant), then we say that the convergence rate is O(Δτα). From Table 8.19,
we can see that when N is doubled, the error of the implicit finite-difference
method with the singularity-separating technique decreases by a factor of
about 4. This implies that the convergence rate of this method is O(Δτ2).

In what follows, we give an intuitive explanation on why the singularity-
separating method can improve the numerical results. The functions computed
numerically for the methods with and without the singularity-separating tech-
nique are plotted in Figs. 8.8 and 8.9 respectively. In each figure, there are six
curves, which correspond to t = 0, 0.2, 0.4, 0.6, 0.8, 1.0. In Fig. 8.9, the func-
tions are not as smooth as those in Fig. 8.8, especially, the derivative of the
function for t = 1 in Fig. 8.9 is discontinuous. Therefore, when the singularity-
separating technique is used, the truncation is smaller.

When there is no rebate at the upper barrier, such a method can still
improve the performance. This is left for the reader to study (see Problem 16).
For the case discussed in this subsection, the singularity is removed completely.
For the European options with discrete dividends and some other cases, the
singularity can also be completely removed in the same way. In many other
cases, the singularity cannot be completely separated but can be made much
weaker. In the next several subsections, we will discuss how the SSM works
for other cases.
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8.3.2 European Vanilla Options with Variable Volatilities

When σ is a constant, for European vanilla options we can get their prices
by the Black–Scholes formulae. However, it seems that the assumption of σ
being a constant needs to be modified. One of the modifications is to let σ
be a function of S. In this case, in order to evaluate an option, we usually
need to solve a partial differential equation problem numerically. In order to
overcome the problem caused by the discontinuous derivative in the payoff,
we can do the following.

Let us consider call options. Their prices c(S, t) are solutions of the
problem:

⎧
⎪⎨

⎪⎩

∂c

∂t
+

1

2
σ2(S)S2 ∂

2c

∂S2
+ (r −D0)S

∂c

∂S
− rc = 0, 0 ≤ S, t ≤ T,

c(S, T ) = max(S − E, 0), 0 ≤ S.

Suppose that cE(S, t;σ(E)) is the price of the option with the volatility at
S = E, σ(E), i.e., cE(S, t;σ(E)) satisfies

⎧
⎪⎨

⎪⎩

∂cE
∂t

+
1

2
σ2(E)S2 ∂

2cE
∂S2

+ (r −D0)S
∂cE
∂S

− rcE = 0, 0 ≤ S, t ≤ T,

cE(S, T ) = max(S − E, 0), 0 ≤ S.

Let c̄(S, t) = c(S, t)−cE(S, t;σ(E)). Then, c̄(S, t) is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂c

∂t
+

1

2
σ2(S)S2 ∂

2c

∂S2
+ (r −D0)S

∂c

∂S
− rc = f(S, t),

0 ≤ S, t ≤ T,

c̄(S, T ) = 0, 0 ≤ S,

(8.78)

where

f(S, t) =
1

2

[
σ2(E)− σ2(S)

]
S2 ∂

2cE
∂S2

=
1

2σ(E)
√
2π(T − t)

[
σ2(E)− σ2(S)

]
Se−(D0(T−t)+d2

1/2) (8.79)

and

d1 =

{

ln(S/E) +

[

r −D0 +
1

2
σ2(E)

]

(T − t)

}/[
σ(E)

√
T − t

]
.

This problem is defined on an infinite domain. In order to convert it into a
problem on a finite domain with a bounded solution, we use the following
transformation:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ =
S

S + E
,

τ = T − t,

c(S, t) = (S + E)V (ξ, τ).

Finally, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

− [r(1− ξ) +D0ξ]V + f̄(ξ, τ), 0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) = 0, 0 ≤ ξ ≤ 1,

(8.80)

where
σ̄(ξ) = σ(ξE/(1− ξ)),

f̄(ξ, τ) =
−f(S, t)
S + E

=
1

2σ(E)
√
2πτ

[
σ̄2(ξ)− σ2(E)

]
ξe−(D0τ+d2

1/2)

and

d1 =

{

ln
ξ

1− ξ
+

[

r −D0 +
1

2
σ2(E)

]

τ

}/
[
σ(E)

√
τ
]
.

In order to do some computation, we need the function σ(S) or σ̄(ξ). For
the Japanese yen–U.S. dollar exchange rate, we determine the function by
the method in Sect. 6.3.2. In order to avoid approximating a function on an
infinite domain, a new variable ξ = S/(S + Pm) is introduced. Because the
exchange rate is around 0.01, we set Pm = 0.01. Using the data of 1990–
2000 from the market (see the curve in Fig. 1.5), we find the maximum and
minimum values, Smax = 0.01232741616 and Smin = 0.00625390870. The
corresponding values of ξ are

ξl =
Smin

Smin + Pm
= 0.384763371, ξu =

Smax

Smax + Pm
= 0.552120141.

Assume that the function σ̄(ξ) is in the form:

σ̄(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cl + al

[

1−
(
ξ

ξl

)200
]

, 0 ≤ ξ < ξl,

a0 + a1ξ + a2ξ
2 + a3ξ

3, ξl ≤ ξ ≤ ξu,

cu + au

[

1−
(

1− ξ

1− ξu

)200
]

, ξu ≤ ξ ≤ 1,
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where cl, al, a0, a1, a2, a3, cu, au are eight parameters to be determined.
Taking the data of 1990–2000 from the market, using the method described
in Sect. 6.3.2 with g(ξ) ≡ 1 and setting M = 7, we find the values of a0, a1,
a2, a3:

a0 = −10.7848, a1 = 72.8005, a2 = −161.134, a3 = 118.208.

Then, requiring the continuity of the function at ξ = ξl and ξ = ξu up to the
first derivative yields

cl = 0.104667, al = −0.00250664, cu = 0.185335, au = 0.00665520.

In Fig. 8.10, this function is plotted as a solid line, and the circles are the
volatilities for different S obtained by statistics.
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Fig. 8.10. The volatility function for Japanese yen–U.S. dollar exchange rate

As soon as we have this function, we can evaluate the price of options on
the Japanese yen–U.S. dollar exchange rate. Discretizing problem (8.80) by the
difference scheme (7.6) and solving the linear system by the LU decomposition,
we can find the price. In Fig. 8.11, the solid line gives the value of the European
call option. There, we also compare different models. Another model is to let
the volatility be a constant. Using the same data, we find σ = 0.1165. The
dashed line in Fig. 8.11 gives the option price for this model obtained by
the Black–Scholes formula. The maximum difference of the results between
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the two models is more than 30% if S ∈ [0.0115, 0.0125]. If we assume σ to
take the value of σ(E) (the result for this case is given by the dotted line in
Fig. 8.11), the maximum difference is more than 8% for S ∈ [0.0115, 0.0125].
Therefore, among the results obtained by using different models, there is quite
a big difference. In our computation for the model with variable volatility, the
numerical method is quite efficient because we are calculating the difference
numerically. For this example problem, on a 60×4 mesh for the option price at
S = E , the error is 6 × 10−5E when the SSM is used and 1 × 10−3E when
the SSM is not used.

Finally, we would like to point out that unlike the barrier options, in this
case the weak singularity is not removed completely. However, the singularity
is weakened so the SSM still succeeds as shown above. Let us explain this

matter as follows. Because
∂2cE
∂S2

has some singularity at the point T = t

and S = E, the function f(S, t) =
1

2

[
σ2(E)− σ2(S)

]
S2 ∂

2cE
∂S2

also has some

singularity. However, because the term σ2(E)−σ2(S) is equal to zero at S = E,

the singularity of f(S, t) at that point is much weaker than that of
∂2cE
∂S2

. In

Figs. 8.12 and 8.13, f(S, t) used in this example and
∂2cE
∂S2

for t = T − 0.01,

T − 0.001, T − 0.0001 are plotted, respectively. Noticing the maximum value
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of |f(S, t)| is about 3.5 × 10−4 and the value of
∂2cE
∂S2

could be very large,

reaching 2× 104 at t = T − 0.0001, we can see that the singularity of f(S, t)

at that point is truly weaker than that of
∂2cE
∂S2

. Because the singularity of

f(S, t) is quite weak and the singularity of c̄(S, t) is weaker than f(S, t), the
function c̄(S, t) is quite smooth. This is an important reason to guarantee the
success of the SSM.

8.3.3 Bermudan Options

A Bermudan option is an option that can be exercised early, but only on
predetermined dates. It is clear that the holder of a Bermudan option has more
rights than the holder of a European option and less rights than the holder
of an American option, just like the fact that Bermuda is situated between
America and Europe. This is how the option got its name. If we use projected
methods, it is easy to price. Here, we suggest some more efficient methods.
Assume the expiry of the option to be T and suppose the option can be
exercised at time t = T1, T2, · · · , TK = T , where Tk = kT/K, k = 1, 2, · · · ,K.

Let us consider a Bermudan call option with D0 > 0 and a vari-
able σ(S), and denote its value by Cb(S, t). Define T0 = 0 and assume
T0 < T1 < · · · < TK . Then, Cb(S, t) is a solution of K successive problems:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Cb

∂t
+

1

2
σ2(S)S2 ∂

2Cb

∂S2
+ (r −D0)S

∂Cb

∂S
− rCb = 0,

0 ≤ S, Tk−1 < t < Tk,

Cb(S, T
−
k ) = max(Cb(S, T

+
k ),max(S − E, 0)), 0 ≤ S,

(8.81)

k = K,K − 1, · · · , 1
with Cb(S, T

+
K ) = max(S − E, 0). Clearly, at t = TK , Cb(S, T

−
K ) = max(S −

E, 0) for S ∈ [0,∞). At t = Tk, k = K − 1,K − 2, · · · , 1, the whole interval
[0,∞) is divided into two parts [0, S∗

k ] and (S∗
k ,∞). On [0, S∗

k ], Cb(S, T
+
k ) ≥

max(S − E, 0) and on (S∗
k ,∞), Cb(S, T

+
k ) < max(S − E, 0). Because these

functions are nonnegative and continuous, S∗
k ≥ E and Cb(S

∗
k , T

+
k ) = S∗

k −E.
Therefore, the final condition of each problem above can be written as

Cb(S, T
−
k ) =

⎧
⎨

⎩

Cb(S, T
+
k ), if 0 ≤ S ≤ S∗

k ,

S − E, if S∗
k < S.

Because a European call option with a constant volatility has a closed-
form solution, just like what we did in the last subsection, we consider the
difference between the Bermudan call option and the European call option
with a constant volatility σ(E) and denote the difference by
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C̃b = Cb − cE(S, t;σ(E)).

It is clear that C̃b satisfies the partial differential equation in problem (8.78).
At t = Tk, we have

C̃b(S, T
−
k ) =

⎧
⎨

⎩

C̃b(S, T
+
k ), if 0 ≤ S ≤ S∗

k ,

S − E − cE (S, Tk;σ(E)) , if S∗
k < S.

Therefore, C̃b is the solution of the following K successive problems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C̃b

∂t
+

1

2
σ2(S)S2 ∂

2C̃b

∂S2
+ (r −D0)S

∂C̃b

∂S
− rC̃b = f(S, t),

0 ≤ S, Tk−1 < t < Tk,

C̃b(S, T
−
k ) = max

(
C̃b(S, T

+
k ),max(S − E, 0)− cE(S, Tk;σ(E))

)
,

0 ≤ S,

(8.82)

k = K,K − 1, · · · , 1
with C̃b(S, T

+
K ) = 0. This problem can be solved in a way similar to

what we have used to find the solution of a European option with dis-
crete dividends in Sect. 8.2.2. The only difference is that using jump con-
ditions should be replaced by taking the maximum between C̃b(S, T

+
k ) and

max(S − E, 0)− cE(S, t;σ(E)) at these specified times.
In many cases, this method can be further improved by doing the following.

For k = K − 1,K − 2, · · · , 1, let us define K − 1 polynomials of degree J :
fk(S) = a0,k +a1,kS+ · · ·+aJ,kS

J on [S∗∗
k , S∗

k ], which satisfies the conditions
fk(S

∗
k) = S∗

k −E and fk(S
∗∗
k ) = 0. Besides satisfying these two conditions, we

choose these coefficients a0,k, a1,k, · · · , aJ,k and S∗∗
k ∈ [0, S∗

k ] such that the
norm of the function

⎧
⎨

⎩

Cb(S, T
−
k ), if 0 ≤ S < S∗∗

k ,

Cb(S, T
−
k )− fk(S), if S

∗∗
k ≤ S < S∗

k

is as small as possible. It is clear that the function

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if 0 ≤ S < S∗∗
k ,

fk(S), if S∗∗
k ≤ S < S∗

k ,

S − E, if S∗
k ≤ S

is a good approximation to Cb(S, T
−
k ). For k = K, if we define S∗

k = S∗∗
k = E,

then the function defined above is equal to Cb(S, T
−
K ). Therefore, we assume

the function above to be defined for k = K,K − 1, · · · , 1.
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Consider the problems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cb
∂t

+
1

2
σ2(S∗

k)S
2 ∂

2cb
∂S2

+ (r −D0)S
∂cb
∂S

− rcb = 0,

0 ≤ S, Tk−1 < t < Tk,

cb(S, T
−
k ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if 0 ≤ S < S∗∗
k ,

fk(S), if S∗∗
k ≤ S < S∗

k ,

S − E, if S∗
k ≤ S.

(8.83)

Noticing that for any integer n, we have (see Problem 39 in Chap. 2)

1√
2πb

∫ d

c

Sne−(ln(S/a)+b2/2)
2
/2b2 dS

S

= ane(n
2−n)b2/2

[

N

(
ln(d/a) + (1/2− n)b2

b

)

−N
(
ln(c/a) + (1/2− n)b2

b

)]

,

we can find a closed-form solution of problem (8.83) (see Problem 48 in
Chap. 2)

cb(S, t) =

J∑

n=0

{
an,kS

ne[(n−1)r−nD0+(n−1)nσ2(S∗
k)/2](Tk−t)

×
[
N
(
d∗k − nσ(S∗

k)
√
Tk − t

)
−N

(
d∗∗k − nσ(S∗

k)
√
Tk − t

)]}

+Se−D0(Tk−t)
[
1−N

(
d∗k − σ(S∗

k)
√
Tk − t

)]
− Ee−r(Tk−t)[1−N(d∗k)],

(8.84)

where t ∈ (Tk−1, Tk) and

d∗k =

[

ln(S∗
k/S)−

(

r −D0 − 1

2
σ2(S∗

k)

)

(Tk − t)

]/(
σ(S∗

k)
√
Tk − t

)
,

d∗∗k =

[

ln(S∗∗
k /S)−

(

r −D0 − 1

2
σ2(S∗

k)

)

(Tk − t)

]/(
σ(S∗

k)
√
Tk − t

)
.

It is easy to see that for t ∈ (TK−1, TK ], cb represents the price of the European
option with a constant volatility σ(S∗) = σ(E) because S∗ = E at time t = T ,
that is, cb(S, t) is equal to cE(S, t;σ(E)) for this period.

At the point S = S∗
k and t = Tk, the singularity of the solution of the

problem (8.83) is very close to that of the problem (8.81). Therefore, the
function

Cb = Cb − cb
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is smooth near this point for t ∈ (Tk−1, Tk) and its value is quite small if
Tk − Tk−1 is not big. This function satisfies the following equation and con-
dition:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Cb

∂t
+

1

2
σ2(S)S2 ∂

2Cb

∂S2
+ (r −D0)S

∂Cb

∂S
− rCb =

1

2
(σ2(S∗

k)− σ2(S))S2 ∂
2cb
∂S2

, 0 ≤ S, Tk−1 < t < Tk,

Cb(S, T
−
k ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cb(S, T
−
k ), if 0 ≤ S < S∗∗

k ,

Cb(S, T
−
k )− fk(S), if S

∗∗
k ≤ S < S∗

k ,

0, if S∗
k ≤ S.

(8.85)

Therefore, in order to have Cb(S, T
+
k−1), we can first find Cb(S, T

+
k−1) by

solving the problem (8.85) from t = Tk to Tk−1 and then obtain Cb(S, T
+
k−1)

by
Cb(S, T

+
k−1) = Cb(S, T

+
k−1) + cb(S, T

+
k−1).

Because for a variable σ the partial differential equation in the problem
(8.85) is nonhomogeneous and the right-hand side is quite complicated, the
amount of computation of solving the problem (8.85) is greater than solving
the problem (8.81) on the same mesh. However, in order to have a solution
with the same accuracy, the number of mesh points needed for the problem
(8.85) is much smaller than the problem (8.81). It is expected that in order to
reach the same accuracy, solving the problem (8.85) is better. If σ = constant,
then the problem (8.85) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Cb

∂t
+

1

2
σ2S2 ∂

2Cb

∂S2
+ (r −D0)S

∂Cb

∂S
− rCb = 0,

0 ≤ S, Tk−1 < t < Tk,

Cb(S, T
−
k ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cb(S, T
−
k ), if 0 ≤ S < S∗∗

k ,

Cb(S, T
−
k )− fk(S), if S

∗∗
k ≤ S < S∗

k ,

0, if S∗
k ≤ S.

(8.86)

The partial differential equation in the problem (8.86) is a homogeneous equa-
tion. Hence, the amount of computation of solving the problem (8.86) is very
close to that of solving the original problem (8.81).

Sometimes, the singularities at the points S = S∗
k and t = Tk, k =

K − 1,K − 2, · · · , 1, are quite weak and far away from the region S ≈ E.
Therefore, these singularities only cause small errors in the region S ≈ E.
Also, [S∗∗

k , S∗
k ] is not a small interval, so fk(S) may not be a good approxima-

tion to Cb(S, T
−
k ). In this case, using the method described at the beginning

of this subsection might be better.
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Table 8.20. Bermudan call option prices (r < D0)

(S = 100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, K = 4,
and the exact solution = 5.77654 · · · )

Implicit method SSM

Mesh sizes Results |Errors| CPU(s) Results |Errors| CPU(s)

24× 24 5.0474 0.7291 0.0002 5.8564 0.0799 0.0014

36× 36 5.4507 0.3258 0.0005 5.7788 0.0023 0.0019

48× 48 5.6143 0.1622 0.0008 5.7881 0.0116 0.0028

60× 60 5.6732 0.1033 0.0013 5.7845 0.0080 0.0037

72× 72 5.7069 0.0696 0.0018 5.7833 0.0068 0.0048

84× 84 5.7332 0.0433 0.0024 5.7833 0.0068 0.0061

96× 96 5.7362 0.0403 0.0032 5.7809 0.0044 0.0073

108× 108 5.7479 0.0286 0.0039 5.7807 0.0042 0.0086

120× 120 5.7543 0.0222 0.0049 5.7797 0.0032 0.0101

132× 132 5.7599 0.0166 0.0059 5.7804 0.0039 0.0119

144× 144 5.7592 0:0173 0.0073 5.7800 0.0035 0.0134

156× 156 5.7649 0.0116 0.0082 5.7799 0.0034 0.0152

168× 168 5.7674 0.0091 0.0096 5.7790 0.0025 0.0172

180× 180 5.7659 0.0106 0.0109 5.7784 0.0019 0.0190

Table 8.21. Bermudan call option prices (r > D0)

(S = 100, E = 100, T = 1, r = 0.1, D0 = 0.05, σ = 0.2, K = 12,
and the exact solution = 9.940918 · · · )

Implicit method SSM

Mesh sizes Results |Errors| CPU(s) Results |Errors| CPU(s)

24× 24 9.1488 0.7922 0.0003 9.9411 0.0002 0.0017

36× 36 9.6261 0.3148 0.0006 9.9410 0.0001 0.0026

48× 48 9.7704 0.1705 0.0011 9.9410 0.0001 0.0037

60× 60 9.8333 0.1076 0.0015 9.9409 0.0000 0.0049

72× 72 9.8667 0.0742 0.0020 9.9409 0.0000 0.0062

84× 84 9.8866 0.0543 0.0027 9.9409 0.0000 0.0075

96× 96 9.8995 0.0414 0.0034 9.9409 0.0000 0.0090

108× 108 9.9082 0.0327 0.0043 9.9409 0.0000 0.0105

120× 120 9.9145 0.0264 0.0052 9.9409 0.0000 0.0121

In what follows, we give some examples. Consider a Bermudan call option
with r = 0.05, D0 = 0.1, and Tk = k/4, k = 1, 2, 3, 4. The price of the option
is evaluated by two different ways. One is to solve problem (8.81) by the
implicit method (7.6) and the other is to take J = 6 and solve problem (8.86)
by difference scheme (7.6). For S = 100, the results obtained by the two ways,
the errors, and CPU times needed on a Pentium III 800MHz computer are
given in Table 8.20. From there, we can see that for this case in order to have
a result with an error about 10−2 (the corresponding relative error to E is
10−4), CPU time needed is about 0.003 s if the singularity-separating method
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described here is used, and CPU time needed is about 0.01 s if the singularity-
separating method is not used. Therefore, even though on an identical mesh,
the CPU time needed for the SSM is much longer, overall the SSM is still fast
for a fixed accuracy.
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Fig. 8.14. Prices of American, Bermudan, and European call options
(E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4)

The next example is a Bermudan option with r = 0.1, D0 = 0.05, and
Tk = k/12, k = 1, 2, · · · , 12. The other parameters are the same as those for
the first example. In this case, the singularities at the points S = S∗

k and
t = Tk, k = K − 1,K − 2, · · · , 1, are weak and we choose cE(S, t;σ(E)) as
cb and solve problem (8.82) by the difference scheme (7.6). The results for
S = 100 are given in Table 8.21. When the SSM is not used, the errors are
close to those in the first example. However, when the SSM is used, the errors
are even much less than those in the first example due to the very small value
of Cb.

In Fig. 8.14, the price of the first Bermudan call option is given as a
function of S. The prices of the American and European call options are
also given there. The figure shows that the price of the Bermudan option
is less than the price of the American option and greater than the price of
the European option, and it is quite close to the price of the corresponding
American option. The financial reason of this fact is as follows. As has been
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pointed out at the beginning of this subsection, the holder of a Bermudan
option has more rights than a holder of a European option and less rights
than a holder of an American option. Thus, the money paid by the holder of
the Bermudan option should be greater than the price of a European option
and less than the price of an American option.

The symmetry relations also hold for Bermudan options, which is left for
readers to prove. Therefore, we only need to study numerical methods for
Bermudan call options. In order to obtain the price of a put option, we first
solve a corresponding call option problem and then find the price of the put
option by the symmetry relation.

8.3.4 European Parisian Options

Let us take a European Parisian up-and-out call option with continuous
sampling as an example to show how the singularity-separating method works
for Parisian options.

Suppose cp is the price of the Parisian up-and-out call option. From
Sect. 4.2.4, we see that cp(S, td, t) is the solution of problem (4.6):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cp
∂t

+
1

2
σ2S2 ∂

2cp
∂S2

+ (r −D0)S
∂cp
∂S

+H(S −Bu)
∂cp
∂td

− rcp = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td, 0 ≤ t ≤ T,

cp(S, td, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max(S − E, 0), 0 ≤ S < Bu, td = 0,

S − E, Bu ≤ S, 0 ≤ td < Td,

0, Bu ≤ S, td = Td,

cp(Bu, td, t) = cp(Bu, 0, t), td ∈ (0, Td), 0 ≤ t ≤ T,

cp(S, Td, t) = 0, Bu ≤ S, 0 ≤ t ≤ T.

Let c(S, t) be the price of the European vanilla call option and define

c̄p(S, td, t) = cp(S, td, t)− c(S, t).

Because c(S, t) does not depend on td, it is clear that c(S, t) also satisfies the
partial differential equation in the problem (4.6). Therefore, c̄p(S, td, t) is the
solution of the following problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c̄p
∂t

+
1

2
σ2S2 ∂

2c̄p
∂S2

+ (r−D0)S
∂c̄p
∂S

+H(S−Bu)
∂c̄p
∂td

− rc̄p = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td, 0 ≤ t ≤ T,

c̄p(S, td, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ S < Bu, td = 0,

0, Bu ≤ S, 0 ≤ td < Td,

E − S, Bu ≤ S, td = Td,

c̄p(Bu, td, t) = c̄p(Bu, 0, t), td ∈ (0, Td), 0 ≤ t ≤ T,

c̄p(S, Td, t) = −c(S, t), Bu ≤ S, 0 ≤ t ≤ T.

(8.87)

Because cp(S, td, t) and c(S, t) have the same singularity at the point S = E
and t = T , c̄p is quite smooth near S = E and t = T , that is, the singularity
has been separated. Therefore, it is expected that on the same mesh, the error
of the numerical results obtained by solving the problem (8.87) is smaller than
that obtained by solving the problem (4.6). Tables 8.22 and 8.23 (see [58]) give
the results and the relative errors when the SSM is not used and when it is
used, respectively. From there, we can see that the results with the SSM are
much better than the results without the SSM.

Problem (8.87) is a two-dimensional problem. However, it can be solved by
a modified one-dimensional method. Let us explain why this problem can be
solved like a one-dimensional problem. Because there is no second derivative

in the td-direction, the coefficient of
∂c̄p
∂td

is positive or zero, and the boundary

condition is given at td = Td, for a fixed time t∗ the solution of the problem
can be obtained from td = Td to td = 0 successively. Suppose the value of
c̄p for t = t∗ and td ≥ t∗d has been obtained. We want to find the value of
c̄p for t = t∗ and td = t∗d − Δtd with a positive Δtd. Because the value at
t = t∗ and td = t∗d is known, the value at t = t∗ and td = t∗d − Δtd can be
found by solving a one-dimensional problem on an (S, t)-plane. This can be
done by various methods. After transforming the problem to one defined on

Table 8.22. Numerical solutions for Parisian up-and-out call options

(r = 0.1, D0 = 0.05, σ = 0.25, E = 100, T = 0.5, Bu = 150, and Td = 0.02)

S = 100 S = 120 S = 150

Meshes Solutions |Errors| Solution |Errors| Solution |Errors|
200× 100 7.4139 1.08 · 10−3 15.3107 7.79 · 10−3 5.0574 3.73 · 10−2

300× 150 7.4067 1.08 · 10−4 15.2886 6.33 · 10−3 4.9389 1.30 · 10−2

400× 200 7.4059 – 15.1924 – 4.8754 –
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Table 8.23. Numerical solutions for Parisian up-and-out call options (with SSM)

(r = 0.1, D0 = 0.05, σ = 0.25, E = 100, T = 0.5, Bu = 150, and Td = 0.02)

S = 100 S = 120 S = 150

Meshes Solutions |Errors| Solution |Errors| Solution |Errors|
200× 100 7.3943 1.76 · 10−4 15.2016 5.13 · 10−4 4.9232 2.09 · 10−2

300× 150 7.3936 8.16 · 10−5 15.1947 5.92 · 10−5 4.8251 5.18 · 10−4

400× 200 7.3930 – 15.1938 – 4.8226 –

a finite domain by the transformation (2.17), the partial differential equation
can be discretized by scheme (7.6) at interior points, and the right boundary
point and the solution can be found from these finite-difference equations.
The results given in this subsection are obtained by using a method that is
a little different from what we have described here. For details, see the paper
[58] by Luo and Wu.

When σ is a function of S, the SSM method can still be used. However, a
European vanilla call option has a closed-form solution only when σ is a con-
stant. Therefore, we do not have a closed-form solution for the corresponding
European vanilla call option. In this case, we can consider the difference be-
tween the Parisian call option and the vanilla call option with a constant
volatility σ(E). This difference satisfies a nonhomogeneous equation (for de-
tails, see Sect. 8.3.2), but we still can expect that the SSM will make the
computation more efficient.

8.3.5 European Average Price Options

In the last few subsections, we always computed the difference between an op-
tion and the corresponding vanilla option with a constant volatility. However,
other functions can also be used as long as they have a similar singularity,
and even they may be better. In this subsection, we give such an example.

From Eq. (4.20), we know that if sampling is done continuously, then the
European-style Asian option may be modeled by the following partial differ-
ential equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+
S

T

∂V

∂I
− rV = 0, (8.88)

where

I =
1

T

∫ t

0

S(τ)dτ.

Let us consider an average price call option whose final condition is

V (S, I, T ) = max(I − E, 0). (8.89)
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Zhang3 in his paper [88] proposed to solve the problem in the following way.
By letting (see Sect. 4.3.4)

η =
I − E

S
and W (η, t) =

V (S, I, t)

S
,

the two-dimensional equation (8.88) can be converted into a one-dimensional
equation:

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r)η +
1

T

]
∂W

∂η
−D0W = 0

and the final condition becomes

W (η, T ) = max(η, 0).

Because the equation
dη

dt
= (D0 − r)η +

1

T
has solutions in the form

ηe−(r−D0)(T−t) +
1

(r −D0)T

(
1− e−(r−D0)(T−t)

)
= constant,

introducing the transformation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ = ηe−(r−D0)(T−t) +
1

(r −D0)T

(
1− e−(r−D0)(T−t)

)
,

τ = T − t,

W (η, t) = e−D0τf(ξ, τ),

(8.90)

we can get rid of the first derivative of W and the function W , and we arrive
at an initial value problem of a heat equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f

∂τ
− 1

2
σ2

[

ξ − 1

(r −D0)T
(1− e−(r−D0)τ )

]2
∂2f

∂ξ2
= 0,

−∞ < ξ <∞, 0 ≤ τ ≤ T,

f(ξ, 0) = max(ξ, 0), −∞ < ξ <∞.

(8.91)

The initial condition f(ξ, 0) = max(ξ, 0) is not smooth at the point ξ = 0.
To separate the singularity, the problem that is obtained by setting ξ = 0 in
the above equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f̃0
∂τ

− σ2

2(r −D0)2T 2

(
1− e−(r−D0)τ

)2 ∂2f̃0
∂ξ2

= 0,

−∞ < ξ <∞, 0 ≤ τ ≤ T,

f̃0(ξ, 0) = max(ξ, 0), −∞ < ξ <∞

(8.92)

3In his paper, he assumes D0 = 0. However, it is not difficult to generalize that
result to the case with D0 �= 0.
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is considered. Introducing a new variable τ1(τ) by

dτ1 =
σ2

2(r −D0)2T 2

(
1− e−(r−D0)τ

)2
dτ with τ1(0) = 0,

which gives

τ1(τ) =

∫ τ

0

σ2

2(r −D0)2T 2

(
1− e−(r−D0)τ

)2
dτ

=
σ2

4(r −D0)3T 2

[
2(r −D0)τ + 4e−(r−D0)τ − e−2(r−D0)τ − 3

]
,

(8.93)

and letting f0(ξ, τ1) = f̃0 (ξ, τ(τ1)), we obtain the following parabolic problem

⎧
⎪⎨

⎪⎩

∂f0
∂τ1

− ∂2f0
∂ξ2

= 0, −∞ < ξ <∞, 0 ≤ τ1 ≤ τ1(T ),

f0(ξ, 0) = max(ξ, 0), −∞ < ξ <∞.

(8.94)

The solution of this problem is given by

f0(ξ, τ1) =

∫ ∞

0

ξT
2
√
πτ1

e−(ξT−ξ)2/4τ1dξT = ξN

(
ξ√
2τ1

)

+

√
τ1
π
e−ξ2/4τ1 .

(8.95)

This analytic formula gives quite a good approximation to the prices of Eu-
ropean average price call options. That is, the value of the difference between
f(ξ, τ) and f0 (ξ, τ1(τ)),

f1(ξ, τ) = f(ξ, τ)− f0 (ξ, τ1(τ)) , (8.96)

is quite small. If we want to have more accurate results, we need to find
f1(ξ, τ). This function satisfies the following equation and initial condition:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂f1
∂τ

− 1

2
σ2

[

ξ − 1

(r −D0)T

(
1− e−(r−D0)τ

)
]2
∂2f1
∂ξ2

=
σ2ξ e−ξ2/4τ1

4
√
πτ1

×
[

ξ − 2

(r −D0)T

(
1− e−(r−D0)τ

)
]

, −∞ < ξ <∞, 0 ≤ τ ≤ T,

f1(ξ, 0) = 0, −∞ < ξ <∞.
(8.97)

The function f1(ξ, τ) is smooth, and its value is quite small compared with
f(ξ, τ), so in order to get a very good numerical solution, we need only a very
coarse mesh. In this way, we can find quite accurate solutions very fast. The
problem (8.97) is defined on an infinite domain. In order to convert the infinite
domain into a finite domain, we can introduce the following transformation:
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ξ1 =
1

2

(
ξ

|ξ|+ Pm
+ 1

)

and u(ξ1, τ) =
f1(ξ, τ)

|ξ|+ Pm
.

After this transformation, the problem for u(ξ1, τ) is defined on [0, 1]× [0, T ]
in the (ξ1, τ)-space and can be solved by scheme (7.6).

We can also take the difference between the price of a European-style
Asian option and the price of a European vanilla option and do the numerical
computation. However, the performance might not be as good as the method
here. The reason is that the difference in the method given here is smaller
than the difference between the price of a European-style Asian option and
the price of a European vanilla option. This can be roughly explained as
follows. Consider the following linear parabolic problem:

⎧
⎪⎨

⎪⎩

∂u

∂τ
= a2

∂2u

∂ξ2
+ a1

∂u

∂ξ
+ a0u+ g(ξ, τ), −∞ < ξ <∞, 0 ≤ τ ≤ T,

u(ξ, 0) = f(ξ), −∞ < ξ <∞.

Suppose that ũ is an approximate solution by a numerical method on a certain
mesh. It is clear that v = u/10 is the solution of the problem:

⎧
⎪⎨

⎪⎩

∂v

∂τ
= a2

∂2v

∂ξ2
+ a1

∂v

∂ξ
+ a0v + g(ξ, τ)/10, −∞ < ξ <∞, 0 ≤ τ ≤ T,

v(ξ, 0) = f(ξ)/10, −∞ < ξ <∞.

Let ṽ be the approximate solution of this problem by using the same method
on the same mesh. Just like the relation between u and v, we have ṽ = ũ/10.
Thus, v − ṽ = (u − ũ)/10, which means that the smaller the solution, the
smaller the error of approximate solutions. Therefore, when we choose an
analytic solution, we should let the analytic solution be as close to the desired
solution as possible. In this way, we can have a better performance.

8.3.6 European Two-Factor Options

In Sect. 8.3.2, we pointed out that the assumption of the volatility being
constant might need to be modified. One possible modification is to let the
volatility be a given function of S. In Sect. 8.3.2, we discussed how to solve such
a problem. Another possible modification is to allow the volatility to be a ran-
dom variable, i.e., the volatility is stochastic. This subsection is devoted to
studying how to solve this problem. In this case, option prices depend on two
random variables. In what follows, such an option will be referred to as a
two-factor option, and we will call an option a one-factor option if only the
stock price is considered as a random variable.

Now let us discuss how to evaluate quickly such a European vanilla option
or American vanilla option with D0 = 0. We assume that the asset price S and
the stochastic volatility are governed by the following two stochastic processes
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⎧
⎨

⎩

dS = μSdt+ σSdX1, 0 ≤ S,

dσ = p(σ, t)dt+ q(σ, t)dX2, σl ≤ σ ≤ σu,
(8.98)

where dX1 and dX2 are two Wiener processes. These two random variables
could be correlated and E[dX1dX2] = ρdt.

As we have seen in Sect. 2.4.1, in order to guarantee σ ∈ [σl, σu], p and q in
the model for the volatility need to satisfy the following reversion conditions:

⎧
⎨

⎩

p(σl, t)− q(σl, t)
∂q(σl, t)

∂σ
≥ 0,

q(σl, t) = 0

(8.99)

and ⎧
⎨

⎩

p(σu, t)− q(σu, t)
∂q(σu, t)

∂σ
≤ 0,

q(σu, t) = 0.

(8.100)

It is clear that if
∂q(σl, t)

∂σ
and

∂q(σu, t)

∂σ
are bounded, then the conditions

(8.99) and (8.100) are simplified into

⎧
⎨

⎩

p(σl, t) ≥ 0,

q(σl, t) = 0
(8.101)

and ⎧
⎨

⎩

p(σu, t) ≤ 0,

q(σu, t) = 0.
(8.102)

Suppose V (S, σ, t) is the value of an option depending on two random vari-
ables S and σ. From Sect. 2.3, such an option satisfies the following equation:

∂V

∂t
+ LS,σV = 0, (8.103)

where LS,σ is an operator defined by

LS,σ =
1

2
σ2S2 ∂2

∂S2
+ ρσSq

∂2

∂S∂σ
+

1

2
q2

∂2

∂σ2

+(r −D0)S
∂

∂S
+ (p− λq)

∂

∂σ
− r. (8.104)

Consider a two-factor European vanilla call option problem, and let its value
be c(S, σ, t). Because the volatility model satisfies the reversion conditions, no
boundary conditions need to be given at the boundaries σ = σl and σ = σu.
Therefore, the value of the two-factor European vanilla call option is the
solution of the following final-value problem:
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⎧
⎨

⎩

∂c

∂t
+ LS,σc = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

c(S, σ, T ) = max(S − E, 0), 0 ≤ S, σl ≤ σ ≤ σu.

(8.105)

In order to make the computed solution smoother, which will make nu-
merical methods more efficient, we let

c(S, σ, t) = c(S, σ, t)− c1(S, σ, t) (8.106)

on the entire computational domain. c1(S, σ, t) is the price of the one-factor
European vanilla call option, that is, the price of the European vanilla call op-
tion with a parameter σ. Here, we denote the value of this option by c1(S, σ, t)
instead of c(S, t) in order to indicate explicitly its dependence on σ and to
explain that it is the price of the one-factor model. From Sect. 2.6.5, we know
that its expression is given by

c1(S, σ, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2),

where

N(z) =
1√
2π

∫ z

−∞
e−ξ2/2dξ,

d1 =

[

ln
Se−D0(T−t)

Ee−r(T−t)
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)
,

d2 = d1 − σ
√
T − t.

Because c1(S, σ, t) satisfies the Black–Scholes equation, the difference c is the
solution of the following final-value problem:
⎧
⎨

⎩

∂c

∂t
+ LS,σc = f(S, σ, t), 0 ≤ S, σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

c(S, σ, T ) = 0, 0 ≤ S, σl ≤ σ ≤ σu,

(8.107)

where

f(S, σ, t) = −ρσSq ∂
2c1

∂S∂σ
− 1

2
q2
∂2c1
∂σ2

− (p− λq)
∂c1
∂σ

.

From the expressions of c1(S, σ, t), noticing

∂c1
∂S

= e−D0(T−t)N(d1),

∂d1
∂σ

=
√
T − t−

[

ln
Se−D0(T−t)

Ee−r(T−t)
+

1

2
σ2(T − t)

]/

(σ2
√
T − t)

=
√
T − t− d1

σ
,

∂d2
∂σ

=
∂d1
∂σ

−√
T − t = −d1

σ
,

N ′(z) =
1√
2π

e−z2/2,
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we can easily find
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c1
∂σ

= Se−D0(T−t)N ′(d1)
∂d1
∂σ

− Ee−r(T−t)N ′(d2)
∂d2
∂σ

= S
√
T − t e−D0(T−t)N ′(d1),

∂2c1
∂σ2

= S
√
T − t e−D0(T−t)N ′′(d1)

∂d1
∂σ

= −S√T − t e−D0(T−t)d1N
′(d1)

∂d1
∂σ

,

∂2c1
∂S∂σ

= e−D0(T−t)N ′(d1)
∂d1
∂σ

.

(8.108)

As we see from the problem (8.105), the derivative of c(S, σ, t) with respect
to S is discontinuous at t = T and S = E. However, the problem (8.107) shows
the derivative of c(S, σ, t) with respect to S to be identically equal to zero at
t = T . Therefore, when a numerical method is used, the truncation error for
the problem (8.107) will be much smaller than the problem (8.105). This is
why we consider the formulation (8.107) instead of the formulation (8.105).

The final-value problem (8.107) is defined on an infinite domain. In order
to convert it into a problem on a finite domain, we introduce the following
transformation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

σ = σ,

τ = T − t,

u(ξ, σ, τ) =
c(S, σ, t)

S + Pm
.

(8.109)

In the {ξ, σ, τ}-space, we need to solve a problem on the domain [0, 1] ×
[σl, σu]× [0, T ]. This is a finite domain, and it is easy to construct numerical
methods to solve the problem on this domain. From the expression (8.109),
we have

c(S, σ, t) = (S + Pm)u(ξ, σ, τ) =
Pm

1− ξ
u(ξ, σ, τ) and

dξ

dS
=

(1− ξ)2

Pm
.

Therefore, among the derivatives of c and u, there are the following relations:

∂c

∂t
= − Pm

1− ξ

∂u

∂τ
,

∂c

∂S
= (1− ξ)

∂u

∂ξ
+ u,

∂c

∂σ
=

Pm

1− ξ

∂u

∂σ
,



512 8 Initial-Boundary Value and LC Problems

∂2c

∂S2
=

(1− ξ)3

Pm

∂2u

∂ξ2
,

∂2c

∂S∂σ
= (1− ξ)

∂2u

∂ξ∂σ
+
∂u

∂σ
,

∂2c

∂σ2
=

Pm

1− ξ

∂2u

∂σ2
.

Substituting them into the partial differential equation in the problem (8.107)
yields

∂u

∂τ
= a1

∂2u

∂ξ2
+ a2

∂2u

∂ξ∂σ
+ a3

∂2u

∂σ2
+ a4

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u+ a7,

where

a1 =
1

2
σ2ξ2(1− ξ)2, a2 = ρσqξ(1− ξ),

a3 =
1

2
q2, a4 = (r −D0)ξ(1− ξ),

a5 = p− (λ− ρσξ)q, a6 = −[r(1− ξ) +D0ξ],

a7 = −f(ξPm/(1− ξ), σ, T − τ)(1− ξ)/Pm

= ρσξq e−D0(T−t)N ′(d1)
∂d1
∂σ

− 1

2
q2ξ

√
T − t e−D0(T−t)d1N

′(d1)
∂d1
∂σ

+(p− λq)ξ
√
T − t e−D0(T−t)N ′(d1)

=
1√
2π
ξe−D0τ−d2

1/2 [q(
√
τ − d1/σ)(ρσ − q

√
τd1/2) + (p− λq)

√
τ ] .

Therefore, the problem (8.107) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂τ
= a1

∂2u

∂ξ2
+ a2

∂2u

∂ξ∂σ
+ a3

∂2u

∂σ2
+ a4

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u+ a7,

0 ≤ ξ ≤ 1, σl ≤ σ ≤ σu, 0 ≤ τ ≤ T,

u(ξ, σ, 0) = 0, 0 ≤ ξ ≤ 1, σl ≤ σ ≤ σu.

(8.110)

Once we have u(ξ, σ, τ), we can get the value of the two-factor European
call option by

c(S, σ, t) = c(S, σ, t) + c1(S, σ, t)

= (S + Pm)u

(
S

S + Pm
, σ, T − t

)

+ c1(S, σ, t).
(8.111)
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As we have pointed out in Sect. 2.4.4, when the reversion conditions (8.99)
and (8.100), and conditions (ii) and (iii) in Theorem 2.2 hold, it has been
proved that the final value problem (8.110) has a unique solution. In this
case it is not difficult to design a well-posed numerical method to solve this
problem.

The following is such a numerical method for problem (8.110). Let unm,i

be the approximate value of u at ξ = mΔξ, σ = σl + iΔσ, and τ = nΔτ ,
where Δξ = 1/M , Δσ = (σu−σl)/I, and Δτ = 1/N , M , I, N being integers.
This partial differential equation can be discretized by the following scheme.
If σ �= σl and σ �= σu, at a point (ξm, σi, τ

n+1/2) the partial differential equa-
tion in the problem (8.110) can be discretized by the following second-order
approximation:

un+1
m,i − unm,i

Δτ

=
a1

2Δξ2
(
un+1
m+1,i − 2un+1

m,i + un+1
m−1,i + unm+1,i − 2unm,i + unm−1,i

)

+
a2

8ΔσΔξ
(un+1

m+1,i+1 − un+1
m+1,i−1 − un+1

m−1,i+1 + un+1
m−1,i−1

+unm+1,i+1 − unm+1,i−1 − unm−1,i+1 + unm−1,i−1)

+
a3

2Δσ2
(un+1

m,i+1 − 2un+1
m,i + un+1

m,i−1

+unm,i+1 − 2unm,i + unm,i−1) (8.112)

+
a4
4Δξ

(un+1
m+1,i − un+1

m−1,i + unm+1,i − unm−1,i)

+
a5
4Δσ

(un+1
m,i+1 − un+1

m,i−1 + unm,i+1 − unm,i−1)

+
a6
2
(un+1

m,i + unm,i) + a7, m = 0, 1, · · · ,M, i = 1, 2, · · · , I − 1.

Here, all the coefficients a1–a7 should be evaluated at the point (ξm, σi, τ
n+1/2)

in order to guarantee second-order accuracy.
At the boundaries σ = σl and σ = σu, due to q = 0 the partial differential

equation in the problem (8.110) becomes

∂u

∂τ
= a1

∂2u

∂ξ2
+ a4

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u+ a7,

which possesses hyperbolic properties in the σ-direction. From the reversion

conditions, we see a5 = p − (λ − ρσξ)q = p ≥ p − q
∂q

∂σ
≥ 0 at the boundary

σ = σl and a5 = p− (λ−ρσξ)q = p ≤ p− q ∂q
∂σ

≤ 0 at σ = σu. These facts tell

us that the value of u on the boundaries σ = σl and σ = σu can be determined
by the value of u inside the domain. Hence, we can approximate the partial
differential equation in the problem (8.110) at the boundaries σ = σl and
σ = σu by
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un+1
m,0 − unm,0

Δτ

=
a1

2Δξ2
(un+1

m+1,0 − 2un+1
m,0 + un+1

m−1,0 + unm+1,0 − 2unm,0 + unm−1,0)

+
a4
4Δξ

(un+1
m+1,0 − un+1

m−1,0 + unm+1,0 − unm−1,0) (8.113)

+
a5
4Δσ

(−un+1
m,2 + 4un+1

m,1 − 3un+1
m,0 − unm,2 + 4unm,1 − 3unm,0)

+
a6
2
(un+1

m,0 + unm,0) + a7,

m = 0, 1, · · · ,M

and

un+1
m,I − unm,I

Δτ

=
a1

2Δξ2
(un+1

m+1,I − 2un+1
m,I + un+1

m−1,I + unm+1,I − 2unm,I + unm−1,I)

+
a4
4Δξ

(un+1
m+1,I − un+1

m−1,I + unm+1,I − unm−1,I) (8.114)

+
a5
4Δσ

(3un+1
m,I − 4un+1

m,I−1 + un+1
m,I−2 + 3unm,I − 4unm,I−1 + unm,I−2)

+
a6
2
(un+1

m,I + unm,I) + a7,

m = 0, 1, · · · ,M

respectively. Here,
∂u

∂σ
is discretized by one-sided second-order scheme in order

for all the node points involved to be in the computational domain. a1 and
a4–a7 are also evaluated at the point (ξm, σi, τ

n+1/2), i = 0 or I. When
unm,i, m = 0, 1, · · · ,M , i = 0, 1, · · · , I are known, from the difference scheme

(8.112)–(8.114) we can determine un+1
m,i , m = 0, 1, · · · ,M , i = 0, 1, · · · , I. The

initial condition gives u0m,i, m = 0, 1, · · · ,M , i = 0, 1, · · · , I. Therefore, we
can do this procedure for n = 0, 1, · · · , N − 1 successively and finally find
uNm,i, m = 0, 1, · · · ,M , i = 0, 1, · · · , I.

In Fig. 8.15, the price of a European call option obtained in this way is
given. The mesh used is 20×20×20, where the first, second, and third numbers
are M , I, and N , respectively. The parameters of the problem are given in
the figure and the parameter functions are
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Fig. 8.15. The price of a two-factor European call option

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p = a(b− σ), σl ≤ σ ≤ σu,

q = c

1−
(

1− 2
σ − σl
σu − σl

)2

1− 0.975

(

1− 2
σ − σl
σu − σl

)2 σ, σl ≤ σ ≤ σu,

ρ = 0.2,

λ = d+ eσ, σl ≤ σ ≤ σu,

where a = 0.1, b = 0.06, c = 0.12, d = 0, e = 0, σl = 0.05, and σu = 0.8.
When the singularity-separating technique is not adopted, the scheme

above can also be used. In that case,

a7 = 0 and u(ξ, σ, 0) = max(2ξ − 1, 0).

In order to give some idea about the performance of the method described
in this subsection, we list the values of the option obtained by the method
here with and without using extrapolation technique in Tables 8.24 and 8.25
for S = 50 and σ = 0.2. When these results were computed, for the first
five coarser meshes, the linear systems were solved by the LU decomposition
method and for the last three finer meshes, the Gauss–Seidel iteration was
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Table 8.24. SSM with and without extrapolation technique

(S = 50, E = 50, T = 1, σ = 0.2, r = 0.1, D0 = 0.05,
a = 0.1, b = 0.06, c = 0.12, d = 0, and e = 0.

The exact solution is 4.848069 · · · .)
Without extrapolation With extrapolation

Meshes Solution |Errors| Solution |Errors|
10× 10× 10 4.8143085 0.033761 – –

20× 20× 20 4.8361039 0.011966 4.8433691 0.004700

40× 40× 40 4.8460151 0.002054 4.8493188 0.001249

80× 80× 80 4.8476154 0.000454 4.8481488 0.000079

160× 160× 160 4.8479592 0.000110 4.8480738 0.000004

320× 320× 320 4.8480421 0.000027 4.8480697 Less than 10−6

640× 640× 640 4.8480626 0.000007 4.8480694 Less than 10−6

960× 960× 960 4.8480664 0.000003 4.8480694 Less than 10−6

Table 8.25. Implicit method with and without extrapolation technique

(S = 50, E = 50, T = 1, σ = 0.2, r = 0.1, D0 = 0.05,
a = 0.1, b = 0.06, c = 0.12, d = 0, and e = 0.

The exact solution is 4.848069 · · · .)
Without extrapolation With extrapolation

Meshes Solution |Errors| Solution |Errors|
10× 10× 10 3.1774889 1.670580 – –

20× 20× 20 4.2406270 0.607442 4.5950063 0.253063

40× 40× 40 4.7179697 0.130100 4.8770840 0.029015

80× 80× 80 4.8171183 0.030951 4.8501678 0.002098

160× 160× 160 4.8404088 0.007661 4.8481722 0.000103

320× 320× 320 4.8461590 0.001910 4.8480758 0.000006

640× 640× 640 4.8475923 0.000477 4.8480700 0.000001

960× 960× 960 4.8478575 0.000212 4.8480697 Less than 10−6

used in order to solve the linear systems. From the tables, we see that the
exact solution up to the sixth decimal place is 4.848069, which we obtained
by a very fine mesh. Therefore, we can find out the errors of the results
up to the sixth decimal place, which are also listed there. From the results
without extrapolation in Table 8.24, it can be seen that this method has
a second order accuracy because the error is reduced by a factor of about
1/4 when the mesh size is reduced by a factor of 1/2 (see the errors for the
meshes 20 × 20 × 20, · · · , 640 × 640 × 640). Table 8.24 also shows that for a
20× 20× 20 mesh with extrapolation, the error relative to E is 0.0047/50 ≈
10−4 and that the error relative to the option value is 0.0047/4.848069 ≈ 10−3.
In practice, requiring such accuracy is reasonable. The CPU time on a Pentium
III 800MHz computer is 0.07 s. If the singularity-separating technique is not
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used, in order to reach a similar accuracy, the mesh is between 40×40×40 and
80×80×80 and the CPU time is between 1 to 8 s and close to 8 s, respectively.
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Fig. 8.16. The price of a two-factor European put option

Noticing

∂p1
∂σ

=
∂c1
∂σ

,
∂2p1
∂σ2

=
∂2c1
∂σ2

,
∂2p1
∂S∂σ

=
∂2c1
∂S∂σ

,

where p1 is the price of the one-factor put option, we see that the difference
between the two-factor and one-factor put options is also the solution of the
problem (8.110). Therefore, in order to have the price of a European put
option, we proceed as follows. First solving problem (8.110), then we can have
the put price by

p(S, σ, t) = (S + Pm)u

(
S

S + Pm
, σ, T − t

)

+ p0(S, σ, t).

In Fig. 8.16, the price of a two-factor European put option obtained by this
way is shown. The parameters of the problem and the parameter functions are
the same as these for the two-factor European call option. Also, for European
vanilla options, both the put–call parity relation and the put–call symmetric
relation exist. The put–call parity relation still is
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Fig. 8.17. An unstable solution of implicit schemes
(Variation of u with respect to S on the line σ = 0.05 at t = 0. E = 50,
T = 2, r = 0.1, and D0 = 0.05. The solution is on a 80× 40× 80 mesh.)

p(S, σ, t) = c(S, σ, t)− Se−D0(T−t) + Ee−r(T−t). (8.115)

When we calculate put option prices without using SSM, this relation can be
used to check the correctness of the code to some extent. First, we compute
the prices of a call option and a put option with the same parameters. Then,
the results are substituted into the put–call parity relation to see if it holds.
If it holds with a small error, then the code most likely gives correct results;
if the relation does not hold, then the code must have some problems.

Finally, we give an example to explain that if the reversion conditions are
not satisfied, then the final-value problem (8.110) is not well-posed and we
cannot determine the solution using only the partial differential equation and
the final condition in the problem (8.110). Consider a problem with a = 1,
b = 0, c = 0.012, d = 0, e = 0, and T = 2. The other parameters are the
same as before. We still use the numerical method above to find the numerical
solution. In Fig. 8.17, we give the variation of u with S on the line σ = σl
at time t = 0. From there, we can see some “nonphysical” oscillations, which
means that the computation is unstable even though an implicit scheme is
used. This indicates that for this case, the solution is not determined only
by the partial differential equation and final condition. The reason is that a
proper boundary condition is needed at the boundary σ = σl because the
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inequality condition in the condition (8.101) is not satisfied at σ = σl due to
b = 0 < σl = 0.05. If a reasonable condition cannot be given, then an artificial
boundary condition has to be added. If the artificial boundary condition is
not proper, then one will encounter some difficulty during computation.

8.3.7 Two-Factor Convertible Bonds with D0 = 0

If D0 = 0, then the convertible bond problem has no free boundary, and the
problem has the same form as a European-style two-factor derivative problem
does. The only difference is that the another random variable is the spot
interest rate instead of the volatility. In order to make numerical methods
more efficient, there are also two things we need to deal with. The first thing
is the weak singularity generated by a discontinuous derivative of the payoff
function. In order to separate this singularity, we can calculate numerically the
difference between the values of two-factor and one-factor convertible bonds
for the case D0 = 0. We will not give the method here because it is similar to
the method for two-factor options and the method for two-factor convertible
bonds with D0 �= 0, which will be given in Sect. 9.1.2. The second thing is that
the problem is defined on an infinite domain. Through a transformation similar
to expression (8.109), the problem can be converted into a problem similar
to problem (8.110) and the solution can be obtained by numerical methods
efficiently. The details are similar to what we have done for two-factor options
and left for readers to complete (Problem 26).

8.4 Pseudo-Spectral Methods

After the singularity-separating method is used, the solution to be com-
puted numerically (the difference between the original unknown solution and a
closed-form solution) is quite smooth. In this case, the pseudo-spectral method
might be another good choice for computing the difference numerically. The
basic principle of the method was discussed in Chap. 6. In this subsection,
we give some details when the pseudo-spectral method is applied to problems
(7.1) and (7.2).

Let us take M + 1 grid points xm, m = 0, 1, · · · ,M , on [0, 1] and assume
that the values of a function u(x) for any xm are given. Then, the values
of the derivatives of u(x) can be expressed as linear combinations of u(xm).
Especially, if xm is given by the expression (6.6), then the first derivative is
approximated by the formula (6.7):

∂u

∂x
(xm) =

M∑

i=0

Dx,m,iu(xi)
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and the second derivative by expression (6.9):

∂2u

∂x2
(xm) =

M∑

i=0

Dxx,m,iu(xi),

where Dx,m,i and Dxx,m,i are given by the formulae (6.8) and (6.10), respec-
tively. Consequently, the PDE in the problem (7.2) can be approximated by

un+1(xm)− un(xm)

Δτ

=
1

2

[

a
n+ 1

2
m

M∑

i=0

Dxx,m,iu
n+1(xi) + b

n+ 1
2

m

M∑

i=0

Dx,m,iu
n+1(xi) + c

n+ 1
2

m un+1(xm)

]

+
1

2

[

a
n+ 1

2
m

M∑

i=0

Dxx,m,iu
n(xi) + b

n+ 1
2

m

M∑

i=0

Dx,m,iu
n(xi) + c

n+ 1
2

m un(xm)

]

+g
n+ 1

2
m ,

m = 0, 1, · · · ,M, (8.116)

where un+1(xm) = u (xm, (n+ 1)Δτ). Just like the implicit finite-difference
method, if un(xm), m = 0, 1, · · · ,M are given, we can determine un+1(xm),
m = 0, 1, · · · ,M by the linear system (8.116). However, the matrix of the
current system is a full matrix, and the CPU time needed for solving this
system is longer than the implicit finite-difference method if M is the same.
When the solution is very smooth, only a smallM might be needed in order to
get a satisfying result. In such a case, its performance could be better than the
implicit finite-difference method. This numerical method is referred to as the
implicit pseudo-spectral method for one-dimensional problems.

Table 8.26. Pseudo-spectral methods

(S = 95, T = 1, E = 100, σ = 0.25, r = 0.1, D0 = 0,
f(t) = (0.9− 0.05t)E, g(t) = (1.6 + 0.05t)E, and

the rebate = g(t)− E. The exact solution is 6.43129316 · · · .)
Without SSM With SSM

Meshes Solutions |Errors| CPU Solution |Errors| CPU

7× 50 6.454922 0.023629 0.0007 6.431842 0.000549 0.0014

7× 100 6.454789 0.023596 0.0015 6.431438 0.000145 0.0022

7× 200 6.454755 0.023462 0.0028 6.431426 0.000133 0.0043

8× 50 6.438364 0.007071 0.0010 6.431351 0.000058 0.0014

8× 100 6.438227 0.006934 0.0019 6.431305 0.000012 0.0028

8× 200 6.438193 0.006900 0.0038 6.431293 0.0000005 0.0058

9× 50 6.404701 0.026592 0.0013 6.431350 0.000057 0.0021

9× 100 6.404555 0.026738 0.0024 6.431304 0.000011 0.0036

9× 200 6.404518 0.002678 0.0044 6.431292 0.000001 0.0065
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If we consider problem (7.1), the only difference is that instead of the
partial differential equation being discretized at xm, m = 0, 1, · · · ,M , now
it is discretized at xm, m = 1, 2, · · · ,M − 1, and these equations and the
boundary conditions given in the problem (7.1) form the entire system we
need.

Table 8.26 gives some results obtained by the implicit pseudo-spectral
method described above withM = 7, 8, 9. The corresponding time steps used
areΔτ = 1/N , N = 50, 100, 200, respectively. In the column “Meshes,”M×N
is given. The problem is a double barrier call option whose lower and upper
knock-out boundaries are f(t) = (0.9 − 0.05t)E and g(t) = (1.6 + 0.05t)E.
The other parameters are given in the table. When the computation is done,
the independent variable x is defined by

x =

S

E + S
− f(t)

E + f(t)

g(t)

E + g(t)
− f(t)

E + f(t)

.

The exact solution for this case is 6.43129316 · · · , where the nine digits given
are correct. When we have the exact solution, we can have the error of the
solution, which is also given. The CPU time in seconds is also shown in order
to see the performance.

In Table 8.26, both the results with and without the SSM are listed. From
there, we can see that if the SSM is not used, the result obtained by using
higher order polynomials might be worse than the results obtained by using
lower order polynomials. However, it shows that when the pseudo-spectral
method is combined with the singularity-separating technique, the higher
the polynomial order, the better the result. Hence, the result of the pseudo-
spectral method with the singularity-separating technique is much better than
without it. Consequently, if the pseudo-spectral method is adopted, then com-
bining it with SSM is essential. In Figs. 8.8 and 8.9, the functions computed
when SSM is used and not used are shown, respectively. As pointed out, the
functions in Fig. 8.9 are not as smooth as those in Fig. 8.8, especially, the
derivative of the function for t = 1 in Fig. 8.9 is discontinuous. Therefore,
the pseudo-spectral method does not provide a good performance for this
case. However, if the singularity-separating technique is used, then the func-
tions determined numerically are always very smooth, which can be seen from
Fig. 8.8. In this case, the performance of the pseudo-spectral method is very
good, and in certain cases it may even be better than the second-order im-
plicit finite-difference methods because a pseudo-spectral method can be un-
derstood as a high-order difference method. In Fig. 8.18, the performances of
the implicit finite-difference method and the implicit pseudo-spectral method
with the singularity-separating technique are compared, which confirms this
conclusion.
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Fig. 8.18. Comparison between an implicit scheme and a pseudo-spectral method

The idea described here also works for double moving barrier put options
with rebates and many other cases. For details, see the paper [92] by Zhu and
Abifaker.

In Sect. 8.3, we pointed out that two-dimensional European-style deriva-
tive problems and American-style derivative problems that do not have free
boundaries could be written in the form (8.110). The pseudo-spectral method
can also be applied to such a problem. When this method is combined with
the singularity-separating method, a good performance can be expected. For
details of this method for two-dimensional case, see Chap. 9.

Problems

Table 8.27. Problems and sections

Problems Sections Problems Sections Problems Sections

1–7 8.1 8–15 8.2 16–27 8.3

28–29 8.4

1. *Suppose that we determine the price of an American vanilla call/put
option through solving the following problem:
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⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− g(x, τ̄)

)

= 0, −∞ < x <∞, τ̄ ≥ 0,

u(x, 0) = g(x, 0), −∞ < x <∞,

where
g(x, τ̄) = max

(
±(ex+(2D0/σ

2+1)τ̄ − e2rτ̄/σ
2

), 0
)
.

Describe a numerical method for solving this problem by using an explicit
scheme.

2. As we know, an American lookback strike put option is the solution of
the following linear complementarity problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

(

−∂W
∂t

− LηW, W −max (η − β, 0)

)

= 0, 1 ≤ η, t ≤ T,

W (η, T ) = max (η − β, 0) , 1 ≤ η,

∂W

∂η
(1, t) = 0, t ≤ T,

where we assume that β ≥ 1 and the operator Lη to be defined by

Lη ≡ 1

2
σ2η2

∂2

∂η2
+ (D0 − r) η

∂

∂η
−D0.

Convert this problem into a problem on [0, 1] and with an initial condition,
and design an explicit method with a first-order accuracy in time and a
second-order accuracy in space for solving the new problem.

3. Suppose that ψ is a binomial random variable and its two values are ψ0

and ψ1. Show the following:
(a) If E[ψ] = 0 and E[ψ2] = 1, then ψ0ψ1 = −1.
(b) If E[ψ] = 0 and ψ0ψ1 = −1, then E[ψ2] = 1.
(c) If E[ψ] = 0 and ψ0ψ1 = −1 +O(Δt), then E[ψ2] = 1 +O(Δt).

4. (a) *Derive the binomial methods proposed by Cox, Ross, and Rubinstein
and by McDonald.

(b) *Can the parameter p in the Cox–Ross–Rubinstein binomial method
always represent a probability? Find out when it can and when it
cannot. Can the parameter p given in the book by McDonald always
represent a probability? Find out when it can and when it cannot.

5. From the Black–Scholes equation, we know that when a derivative security
is priced, the value of the stock price at time tn, Sn, and the value at time
tn+1, Sn+1, have the following relations:

ED [Sn+1] = e(r−D0)ΔtSn

and

ED

[
S2
n+1

]
= e[2(r−D0)+σ2]ΔtS2

n,
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where Δt = tn+1 − tn (see Problem 39 of Chap. 2). Thus if the possible
values of Sn+1 are Sn+1,0 = Sn/u and Sn+1,1 = uSn, and the probabili-
ties of Sn+1 being Sn+1,0 and the probabilities of Sn+1 being Sn+1,1 are
1− p and p, respectively, then in a binomial method, u and p should be
determined by

⎧
⎨

⎩

pu+ (1− p)u−1 = e(r−D0)Δt,

pu2 + (1− p)u−2 = e[2(r−D0)+σ2]Δt.

If Δt is very small, this problem can be approximated by

⎧
⎨

⎩

pu+ (1− p)u−1 = 1 + (r −D0)Δt,

pu2 + (1− p)u−2 = 1 + [2(r −D0) + σ2]Δt.

(a) Find u and p for both cases (suppose u > 1).
(b) Consider a more general system

⎧
⎨

⎩

pu+ (1− p)u−1 = 1 + (r −D0)Δt+O(Δt2),

pu2 + (1− p)u−2 = 1 + [2(r −D0) + σ2]Δt+O(Δt2).

Show that if u and p are determined by such a system, then we always
have

u = eσ
√
Δt +O

(
Δt3/2

)

and

p =
1

2

[

1 +

√
Δt

σ

(

r −D0 − 1

2
σ2

)]

+O
(
Δt3/2

)
.

(Hint: When you derive the expression for p, write u as 1 + σ
√
Δt +

σ2Δt/2 + cΔt3/2 +O(Δt2), c being a constant.)
6. *Describe the binomial methods for solving American vanilla call/put

options
7. *Show that the Cox–Ross–Rubinstein binomial method for European op-

tions almost is an explicit difference scheme for the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2 ∂

2V

∂y2
+

(

r −D0 − 1

2
σ2

)
∂V

∂y
− rV = 0,

−∞ < y <∞, t ≤ T,

V (y, T ) = max(±(ey − 1), 0), −∞ < y <∞,

where y = lnS, S being the price of the stock and assume E = 1.
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8. Show that the relation

V (S, t−i ) = V (S −Di(S), t
+
i )

becomes

V (ξ, τ+i )

=

[

1−Di

(
Pmξ

1− ξ

)
1− ξ

Pm

]

V

⎛

⎜
⎜
⎝

Pmξ −Di

(
Pmξ

1− ξ

)

(1− ξ)

Pm −Di

(
Pmξ

1− ξ

)

(1− ξ)

, τ−i

⎞

⎟
⎟
⎠

under the transformation
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

τ = T − t,

V (ξ, τ) =
V (S, t)

S + Pm
.

9. (a) Show that the jump condition

W
(
η, t−i

)
=W

(
η + J, t+i

)

becomes

u
(
ξ, τ+i

)
=

∣
∣
∣
Pmξ
1−|ξ| + J

∣
∣
∣+ Pm

∣
∣
∣
Pmξ
1−|ξ|

∣
∣
∣+ Pm

u

⎛

⎝

Pmξ
1−|ξ| + J

∣
∣
∣
Pmξ
1−|ξ| + J

∣
∣
∣+ Pm

, τ−i

⎞

⎠

under the transformation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
η

|η|+ Pm
,

τ = T − t,

W (η, t) = (|η|+ Pm)u(ξ, τ),

where Pm > 0.
(b) Suppose that the jump condition for W (η, t) is

W
(
η, t−i

)
=W

(
η + J, t+i

)

and introduce the transformation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
η

|η|+ Pm(η)
,

τ = T − t,

W (η, t) = (|η|+ Pm(η))u(ξ, τ),
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where

Pm(η) =

⎧
⎨

⎩

Pmr, if η > 0,

Pml, if η < 0.

Here Pmr > 0 and Pml > 0. Find the jump condition for u(ξ, τ).
10. *Suppose that we determine the price of an American vanilla call/put

option through solving the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
∂V

∂τ
− LξV , V (ξ, τ)−max(±(2ξ − 1), 0)

)

= 0, 0 ≤ ξ ≤ 1,

τ ≥ 0,

V (ξ, 0) = max(±(2ξ − 1), 0), 0 ≤ ξ ≤ 1,

where

Lξ =
1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
+ (r −D0)ξ(1− ξ)

∂

∂ξ
− [r(1− ξ) +D0ξ].

Describe a numerical method for solving this problem by using a second
order implicit scheme. (Discuss the discretization of the problem only.)

11. As we know, an American average strike call option is the solution of the
following linear complementarity problem:

⎧
⎪⎨

⎪⎩

min

(

−∂W
∂t

− La,tW, W (η, t)−max (α− η, 0)

)

= 0, 0 ≤ η, t ≤ T,

W (η, T ) = max (α− η, 0) , 0 ≤ η,

where α ≈ 1 and

La,t =
1

2
σ2η2

∂2

∂η2
+

[

(D0 − r) η +
1− η

t

]
∂

∂η
−D0.

Convert this problem into a problem on a finite domain and with an initial
condition, and design an implicit second-order method for solving this new
problem. (Discuss the discretization of the problem only.)

12. Based on the partial differential equation

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ rξ(1− ξ)

∂V

∂ξ
− r(1− ξ)V ,

design an implicit method for the LC problem of American options with
discrete dividends.
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13. *Suppose that the scheme

vn+1
m − vnm
Δτ

=
1

4
σ̄2
mξ

2
m(1− ξm)2

(
vn+1
m+1 − 2vn+1

m + vn+1
m−1

Δξ2
+
vnm+1 − 2vnm + vnm−1

Δξ2

)

+
1

2
(r −D0)ξm(1− ξm)

(
vn+1
m+1 − vn+1

m−1

2Δξ
+
vnm+1 − vnm−1

2Δξ

)

−1

2
[r(1− ξm) +D0ξm](vn+1

m + vnm)

is used for solving an American call option problem. Design a projected
direct method, which you think is most accurate, to find the solution at
each time step.

14. *Consider the following LC problem:

⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− g(x, τ̄)

)

= 0, −∞ < x <∞, τ̄ ≥ 0,

u(x, 0) = g(x, 0), −∞ < x <∞,

where
g(x, τ̄) = max

(
±(ex+(2D0/σ

2+1)τ̄ − e2rτ̄/σ
2

), 0
)
.

Suppose an implicit finite-difference method based on such a formulation is
used for solving an American option problem. Design an iteration method
similar to the SOR method for a linear system to find the solution of the
problem at each time step.

15. *The heat equation
∂u

∂τ
= a

∂2u

∂x2

can be approximated by the explicit first-order scheme

un+1
m − unm
Δτ

= a
unm+1 − 2unm + unm−1

Δx2

or the implicit second-order scheme (the Crank–Nicolson scheme)

un+1
m − unm
Δτ

=
a

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+
unm+1 − 2unm + unm−1

Δx2

)

.

When do we choose the explicit first-order scheme and when do we use the
implicit second-order scheme? Why should we choose the implicit second-
order scheme if we need highly accurate results?
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16. (a) Find a closed-form solution of the problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂cu
∂t

+
1

2
σ2S2 ∂

2cu
∂S2

+ (r−D0)S
∂cu
∂S

− rcu=0, 0 ≤ S, 0 ≤ t ≤ T,

cu(S, T ) =

⎧
⎨

⎩

max(S − E, 0), if 0 ≤ S < g(T ),

0, if g(T ) ≤ S.

Here we assume g(T ) > E.
(b) Consider the following European barrier option problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

V (S, T ) = max(S − E, 0), f(T ) ≤ S ≤ g(T ),

V (f(t), t) = 0, 0 ≤ t ≤ T,

V (g(t), t) = 0, 0 ≤ t ≤ T,

where S = f(t) and S = g(t) are the locations of the lower and upper
barriers with f(t) < E and g(t) > E. Assume that we need to find the
solution by numerical methods. Design a SSM for this problem based
on the result given in part (a) . (Here the problem can be defined on
a non-rectangular domain.)

17. Suppose that η1, η2, and p are given, where 0 < η1 < η2, 2η2 − η1 < 1,
and p > 1. Set η3 = 2η2− η1 and let f(η) be a function on [0, 1] satisfying
the condition f(0) = 0 and its derivative be equal to

fη (η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d, 0 ≤ η < η1,

a (η − η2)
4
+ b (η − η2)

2
+ c, η1 ≤ η < η3,

d, η3 ≤ η ≤ 1.

Here d = a (η2 − η1)
4
+ b (η2 − η1)

2
+ c, which guarantees fη(η) is contin-

uous at η = η1. From the definition of η3, we know η2 − η1 = η3 − η2, so
fη(η) is also continuous at η = η3.
(a) Assume that the following three conditions hold:

(i)
fη (η2)

fη (η1)
=

c

a (η2 − η1)
4
+ b (η2 − η1)

2
+ c

= p,

(ii) fηη (η1) = 4a (η1 − η2)
3
+ 2b (η1 − η2) = 0,

(iii) f (1) = 1.
Find the expressions of a, b, and c as functions of η1, η2, η3, and p and
show that f(η) is an increasing function on [0, 1] in this case.
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(b) Find the expression of f(η).
(c) When solving a PDE/OPE problem, a variable mesh can be realized

by using transformation. Suppose that the independent variable in a
PDE/ODE problem is η and a new variable is introduced by setting
ξ = f(η). How should we choose the parameters in the function f(η)
if we want to let the mesh size in the region near the point η = 0.4 is
about 1/10 of the mesh size in the regions [0, 0.2] and [0.6, 1]?

18. Let c̄(ξ, τ) = c(S, t)/(S + Pm) and p̄(ξ, τ) = p(S, t)/(S + Pm), where
ξ = S/(S + Pm) and τ = T − t. Derive the expressions of c̄(ξ, τ) and
p̄(ξ, τ) and find the limits of c̄(ξ, τ) and p̄(ξ, τ) as ξ tends to 0 and 1. Also
write down the formulae for the case Pm = E.

19. Suppose that V (S, t) satisfies the following jump condition at t = ti:

V (S, t−i ) = V (S −Di(S), t
+
i )

and that V0(S, t) is continuous at t = ti. Define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

τ = T − t,

u(ξ, τ) =
V (S, t)− V0(S, t)

S + Pm
,

u0(ξ, τ) =
V0(S, t)

S + Pm
,

where Pm is a positive number. Show that the following jump condition
for u(ξ, τ) holds:

u
(
ξ, τ+i

)

=

[

1− 1− ξ

Pm
Di

(
ξPm

1− ξ

)]

⎡

⎢
⎢
⎣u

⎛

⎜
⎜
⎝

Pmξ −Di

(
ξPm

1− ξ

)

(1− ξ)

Pm −Di

(
ξPm

1− ξ

)

(1− ξ)

, τ−i

⎞

⎟
⎟
⎠

+u0

⎛

⎜
⎜
⎝

Pmξ −Di

(
ξPm

1− ξ

)

(1− ξ)

Pm −Di

(
ξPm

1− ξ

)

(1− ξ)

, τi

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦− u0 (ξ, τi) .

20. Design a SSM for European vanilla options with discrete dividends and a
constant volatility, and formulate the problem as a problem defined on a
finite domain and with an initial condition.

21. *Design a SSM for Bermudan options with variable volatilities and for-
mulate the problem as a problem defined on a finite domain and with an
initial condition.
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22. Suppose r and D0 are constant and σ = σ(S). Derive the symmetry
relations for Bermudan options.

23. *Find a transformation to convert an average price call option problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+
S

T

∂V

∂I
− rV = 0,

0 ≤ S, 0 ≤ I, t ≤ T,

V (S, I, T ) = max(I − E, 0), 0 ≤ S, 0 ≤ I,

where

I =
1

T

∫ t

0

S(τ)dτ,

into the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f

∂τ
− 1

2
σ2

[

ξ − 1

(r −D0)T
(1− e−(r−D0)τ )

]2
∂2f

∂ξ2
= 0,

−∞ < ξ <∞, 0 ≤ τ ≤ T,

f(ξ, 0) = max(ξ, 0), −∞ < ξ <∞.

24. Find a closed-form solution of the problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f̃0
∂τ

− σ2

2(r −D0)2T 2

(
1− e−(r−D0)τ

)2 ∂2f̃0
∂ξ2

= 0,

−∞ < ξ <∞, 0 ≤ τ ≤ T,

f̃0(ξ, 0) = max(ξ, 0), −∞ < ξ <∞.

25. Convert the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂f1
∂τ

− 1

2
σ2

[

ξ − 1

(r −D0)T

(
1− e−(r−D0)τ

)
]2
∂2f1
∂ξ2

=
σ2ξ e−ξ2/4τ1

4
√
πτ1

×
[

ξ − 2

(r −D0)T

(
1− e−(r−D0)τ

)
]

, −∞ < ξ <∞, 0 ≤ τ ≤ T,

f1(ξ, 0) = 0, −∞ < ξ <∞.

into a problem defined on [0, 1] and with an initial condition, and design
an implicit second-order scheme for the new problem.

26. By using the transformation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

r = r,

τ = T − t,

u(ξ, r, τ) =
Bc(S, r, t)

n (S + Pm)
,
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the two-factor convertible bond problem for non-dividend stocks
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc

∂t
+

1

2
σ2S2 ∂

2Bc

∂S2
+ ρσSw

∂2Bc

∂S∂r
+

1

2
w2 ∂

2Bc

∂r2
+ rS

∂Bc

∂S

+(u− λw)
∂Bc

∂r
− rBc + kZ = 0,

0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T,

Bc(S, r, T ) = max(Z, nS), 0 ≤ S, rl ≤ r ≤ ru

can be converted into a problem on a finite domain with a bounded final
condition. The one-factor convertible zero-coupon bond problem for non-
dividend stocks

⎧
⎪⎨

⎪⎩

∂bc
∂t

+
1

2
σ2S2 ∂

2bc
∂S2

+ rS
∂bc
∂S

− rbc = 0, 0 ≤ S, 0 ≤ t ≤ T,

bc(S, r, T ) = max(Z, nS), 0 ≤ S

has the following solution:

nc(S, t;Z/n) + e−r(T−t)Z,

where c(S, t;Z/n) is the price of a call option with an exercise price Z/n.
Find the partial differential equation and the final condition the difference
between the two bonds should satisfy. Convert the derived problem into
a problem on a finite domain and with an initial condition by using the
transformation above, and briefly describe a second-order implicit scheme
for the new problem.

27. Suppose that c(S, σ, t) and p(S, σ, t) are solutions of the following problems

⎧
⎨

⎩

∂c

∂t
+ LS,σc = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

c(S, σ, T ) = max(S − E, 0), 0 ≤ S, σl ≤ σ ≤ σu

and
⎧
⎨

⎩

∂p

∂t
+ LS,σp = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

p(S, σ, T ) = max(E − S, 0), 0 ≤ S, σl ≤ σ ≤ σu,

where LS,σ is an operator defined by

LS,σ =
1

2
σ2S2 ∂2

∂S2
+ρσSq

∂2

∂S∂σ
+
1

2
q2

∂2

∂σ2
+(r−D0)S

∂

∂S
+(p−λq) ∂

∂σ
−r.

Show that the following put–call parity relation

c(S, σ, t)− p(S, σ, t) = Se−D0(T−t) − Ee−r(T−t)
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holds by the superposition principle. (Hint: Let u denote c(S, σ, t) −
p(S, σ, t). Show that u is the solution of the problem

⎧
⎨

⎩

∂u

∂t
+ LS,σu = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

u(S, σ, T ) = S − E, 0 ≤ S, σl ≤ σ ≤ σu

and that Se−D0(T−t) − Ee−r(T−t) is also the solution of this problem.)
28. *Convert the following double moving barrier call option problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

V (S, T ) = max(S − E, 0), f(T ) ≤ S ≤ g(T ),

V (f(t), t) = 0, 0 ≤ t ≤ T,

V (g(t), t) = g(t)− E, 0 ≤ t ≤ T

into a problem that has a smooth solution and an initial condition, and
design an implicit pseudo-spectral method for the new problem.

29. For the new problem obtained in Problem 26, design an implicit pseudo-
spectral method.

Projects

General Requirements

(A) Submit a code or codes in C or C++ that will work on a computer
the instructor can get access to. At the beginning of the code, write
down the name of the student and indicate on which computer it
works and the procedure to make it work.

(B) Each code should use an input file to specify all the problem param-
eters and the computational parameters for each computation and
an output file to store all the results. In an output file, the name
of the problem, all the problem parameters, and the computational
parameters should be given, so that one can know what the results
are and how they were obtained. The input file should be submitted
with the code.

(C) If not specified, for each case two results are required. For the first
result, a 20× 12 mesh should be used.(In this case, the error of the
solution might be quite large.) For the second result, the accuracy
required is 0.01, and the mesh used should be as coarse as possible.

(D) Submit results in form of tables or figures. When a result is given,
always provide the problem parameters and the computational pa-
rameters.
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1. Explicit Method (8.3). Suppose that σ, r are constants and the
dividends are given discretely or continuously. Write a code for European,
Bermudan, and American calls and puts.

• For American call and put options, give the results for the case:
S = 100, E = 100, T = 0.75, r = 0.1, D0 = 0.05, and σ = 0.3.

• For Bermudan call and put options, give the results for the case:
S = 100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4
(see Sect. 8.3.3).

• For European call and put options, give the results for the cases:
S = 100, E = 95, 100, 105, T = 1, r = 0.1, σ = 0.2, and two divi-
dend payments of $1.25 paid at t = 2months and t = 8months. D(S)
is defined by

D(S) =

⎧
⎨

⎩

S if S ≤ d,

d if S > d,

where d is the dividend payment.
• Taking the European call option with E = 100, T = 1, r = 0.1,

D0 = 0.05, σ = 0.2 as an example, show that the explicit method (8.3)
is unstable if Δτ is too large. For this problem, only one example is
required. Plot the S-c curve with t = 0.

2. Binomial Methods (8.28) with the formulae (8.25)–(8.27) and
Eq. (8.28) with the formulae (8.18) and (8.23). Suppose that σ,
r, D0 are constants. Write a code for European, Bermudan, and American
calls and puts. For this problem, instead of the result on a 20× 12 mesh,
a result with Δt = T/12 is required.

• For European call and put options, give the results for the cases:
S = 100, E = 95, 100, 105, T = 1, r = 0.1, D0 = 0.025, and σ = 0.2.

• For Bermudan call and put options, give the results for the case:
S = 100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4.

• For American call and put options, give the results for the case:
S = 100, E = 100, T = 0.75, r = 0.1, D0 = 0.05, and σ = 0.3.

3. Implicit Method (8.47) for Vanilla Options (Solving the Corre-
sponding System by Direct Methods). Suppose that σ, r, and D0

are constants. Write a code for European, Bermudan, and American calls
and puts.

• For European call and put options, give the results for the cases:
S = 100, E = 95, 100, 105, T = 1, r = 0.1, D0 = 0.025, and σ = 0.2.

• For Bermudan call and put options, give the results for the case:
S = 100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4.

• For American call and put options, give the results for the case:
S = 100, E = 100, T = 0.75, r = 0.1, D0 = 0.05, and σ = 0.3.

4. Implicit Method (8.47) for European Average Price Options
with Discrete Sampling (Solving the Corresponding System by
Direct Methods). Suppose that σ, r, and D0 are constants. Write a
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code for European average price call and put options with various discrete
samplings.

• For European average price call and put options with sampling daily,
give the results for the cases: S = 100, E = 90, 95, 100, 105, 110, T = 1,
r = 0.05, D0 = 0.025, and σ = 0.2. (The results on a 20× 12 mesh are
not required.)

• For European average price call and put options with sampling weekly,
give the results for the cases: S = 100, E = 90, 95, 100, 105, 110,
T = 0.5, r = 0.05, D0 = 0.0, and σ = 0.2. (The results on a 20 × 12
mesh are not required.)

• For European average price call and put options with samplingmonthly,
give the results for the cases: S = 100, E = 90, 95, 100, 105, 110, T = 1,
r = 0.0, D0 = 0.0, and σ = 0.3.

5. Singularity-Separating Implicit Method with Scheme (8.47).
Suppose that σ, r are constants and the dividends are given discretely or
continuously. Write a code for Bermudan calls and puts with continuous
dividends and a code for European vanilla calls and puts with discrete
dividends. Calculate the difference between the value of the option and
the closed-form solution of a corresponding European vanilla option nu-
merically. In order to calculate the price of a Bermudan put, Compute a
corresponding call first and then obtain the value of the Bermudan put
by using the symmetry relation.

• For Bermudan call options, give the results for the case: S = 100,
E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4. For
Bermudan put options, give the results for the case: S = 100, E = 100,
T = 1, r = 0.1, D0 = 0.05, σ = 0.2, and K = 12.

• For European call and put options, give the results for the cases:
S = 100, E = 95, 100, 105, T = 1, r = 0.1, σ = 0.2, and two divi-
dend payments of $1.25 paid at t = 2months and t = 8months. D(S)
is defined by

D(S) =

⎧
⎨

⎩

S if S ≤ d,

d if S > d,

where d is the dividend payment.
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