
7

Finite-Difference Methods

In this chapter, we deal with finite-difference methods for parabolic partial dif-
ferential equations, including algorithms, stability and convergence analysis,
and extrapolation techniques of numerical solutions.

7.1 Finite-Difference Schemes

In this section, we will discuss the finite-difference methods for parabolic
partial differential equation problems (parabolic PDE problems). Usually, a
parabolic partial differential equation problem is formulated as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u+ g(x, τ),

xl ≤ x ≤ xu, 0 ≤ τ ≤ T,
u(x, 0) = f(x), xl ≤ x ≤ xu,
u(xl, τ) = fl(τ), 0 ≤ τ ≤ T,
u(xu, τ) = fu(τ), 0 ≤ τ ≤ T,

(7.1)

where a(x, τ) > 0 on the domain [xl, xu] × [0, T ] and the compatibility con-
ditions f(xl) = fl(0) and f(xu) = fu(0) hold. Though sometimes, a Euro-
pean option problem can be approximately formulated in such a way after
giving some approximate boundary condition on certain artificial boundary.
However, for most of the European option problems, the problems are in or
can be transformed into the following degenerate parabolic partial differential
equation problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u+ g(x, τ),

xl ≤ x ≤ xu, 0 ≤ τ ≤ T,

u(x, 0) = f(x), xl ≤ x ≤ xu,

(7.2)

where a(x, τ) ≥ 0 on the domain [xl, xu]× [0, T ],
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392 7 Finite-Difference Methods

{

b(xl, τ)− ∂a

∂x
(xl, τ) ≥ 0, 0 ≤ τ ≤ T,

a (xl, τ) = 0, 0 ≤ τ ≤ T,
(7.3)

and {

b(xu, τ)− ∂a

∂x
(xu, τ) ≤ 0, 0 ≤ τ ≤ T,

a (xu, τ) = 0, 0 ≤ τ ≤ T.
(7.4)

For example, the prices of vanilla European call/put options are solutions
of the problem

⎧
⎨

⎩

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0 , 0 ≤ S, 0 ≤ t ≤ T,

V (S, t) = max(±(S − E), 0), 0 ≤ S.

Through the transformation

⎧
⎪⎨

⎪⎩

ξ =
S

S + E
,

τ = T − t,
V (S, t) = (S + E)V (ξ, τ),

the problem is converted into

⎧
⎪⎪⎨

⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ ≤ 1, 0 ≤ τ ≤ T,
V (ξ, 0) = max(±(2ξ − 1), 0), 0 ≤ ξ ≤ 1,

where σ̄(ξ) = σ(Eξ/(1−ξ)). (For details, see Sect. 2.2.5.) Clearly, this problem
is in the form (7.2). Moreover, if a stochastic model

dS = udt+ wdX

is defined on [Sl, Su], and the conditions

{

u (Sl, t)− w(Sl, t)
∂

∂S
w(Sl, t) ≥ 0,

w (Sl, t) = 0

and {

u (Su, t)− w(Su, t)
∂

∂S
w(Su, t) ≤ 0,

w (Su, t) = 0
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Fig. 7.1. A mesh for finite-difference methods

hold, then prices of European-style derivatives on this random variable also
are solutions of the problem (7.2). (For details, see Sect. 2.4.)

To find an approximate solution of a partial differential equation problem
by finite-difference methods, we first divide the domain [xl, xu] × [0, T ] into
small subdomains using lines xm = xl + mΔx and τn = nΔτ , where Δx =
(xu − xl)/M , Δτ = T/N and M , N are positive integers. These lines form a
grid, and these points (xm, τn) are called grid points (see Fig. 7.1). We want
to find the approximate values of the solution on these grid points.

Let us look at the problem (7.2). First consider the case1

b(xl, τ) = 0, 0 ≤ τ ≤ T

and
b(xu, τ) = 0, 0 ≤ τ ≤ T.

In this case, the partial differential equation in the problem (7.2) degenerates
into an ordinary differential equation at each boundary, and the degenerate
parabolic problem (7.2) can be discretized in the following way.

Using forward difference for
∂u

∂τ
(xm, τn), second-order central difference

for
∂u

∂x
(xm, τn) and

∂2u

∂x2
(xm, τn) in the problem (7.2) at the point (xm, τn),

we have

1Because a(x, τ) ≥ 0 on [xl, xu] and a(xl, τ) = a(xu, τ) = 0, we have
∂a

∂x
(xl, τ) ≥ 0 and

∂a

∂x
(xu, τ) ≤ 0. Thus the inequality conditions in the con-

ditions (7.3) and (7.4) can be rewritten as b(xl, τ) ≥ ∂a

∂x
(xl, τ) ≥ 0 and

b(xu, τ) ≤ ∂a

∂x
(xu, τ) ≤ 0. Consequently, the two conditions below imply

∂a

∂x
(xl, τ) =

∂a

∂x
(xu, τ) = 0.
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u(xm, τn+1)− u(xm, τn)

Δτ
− Δτ

2

∂2u

∂τ2
(xm, η)

= anm

[
u(xm+1, τ

n)− 2u(xm, τn) + u(xm−1, τ
n)

Δx2
− Δx2

12

∂4u

∂x4
(ξ, τn)

]

+bnm

[
u(xm+1, τ

n)− u(xm−1, τ
n)

2Δx
− Δx2

6

∂3u

∂x3
(ξ̄, τn)

]

+cnmu(xm, τn) + gnm,

where

η ∈ (τn, τn+1), ξ ∈ (xm−1, xm+1), ξ̄ ∈ (xm−1, xm+1),

and anm, bnm, cnm, and gnm denote a(xm, τn), b(xm, τn), c(xm, τn), and g(xm, τn),

respectively. Dropping the term −Δτ

2

∂2u

∂τ2
(xm, η) from the left-hand side and

the two terms −anm
Δx2

12

∂4u

∂x4
(ξ, τn) and −bnm

Δx2

6

∂3u

∂x3
(ξ̄, τn) from the right-

hand side, and denoting the approximate solution of u(xm, τn) by un
m, we

obtain the following approximation to the partial differential equation in the
problem (7.2):

un+1
m − un

m

Δτ
= anm

un
m+1 − 2un

m + un
m−1

Δx2
+ bnm

un
m+1 − un

m−1

2Δx
+ cnmun

m + gnm,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1.

From the initial condition in problem (7.2), we have u0
m = f(xm), m =

0, 1, · · · ,M . Therefore, the degenerate parabolic problem (7.2) can be dis-
cretized by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+1
m =

(
anmΔτ

Δx2
+

bnmΔτ

2Δx

)

un
m+1 +

(

1− 2
anmΔτ

Δx2
+ cnmΔτ

)

un
m

+

(
anmΔτ

Δx2
− bnmΔτ

2Δx

)

un
m−1 + gnmΔτ,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1,
u0
m = f(xm), m = 0, 1, · · · ,M.

(7.5)

Here, we need to point out that because we discretize ordinary differential
equations at the boundaries, only un

0 appears in the equation for m = 0 and
only un

M for m = M . That is, because an0 = bn0 = anM = bnM = 0, un
−1 and un

M+1

actually do not appear in the equations above.
When un

m, m = 0, 1, · · · ,M are known, we can find un+1
m , m = 0, 1, · · · ,M

by difference scheme (7.5). Because u0
m, m = 0, 1, · · · ,M are given in the

scheme (7.5), this procedure can be done for n = 0, 1, · · · , N − 1 succes-
sively, and the approximate solution on all the grid points can be obtained.
This method is called an explicit finite-difference method. This is be-
cause when un

m has been obtained, one equation involves only one unknown,
so the unknown un+1

m can be computed from un
m−1, u

n
m and un

m+1 explicitly.
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Fig. 7.2. An explicit finite-difference discretization

Figure 7.2 gives a diagram for this procedure. When we have the approxima-
tion (7.5), we have dropped the terms

Δτ

2

∂2u

∂τ2
(xm, η)− anm

Δx2

12

∂4u

∂x4
(ξ, τn)− bnm

Δx2

6

∂3u

∂x3
(ξ̄, τn)

from the equations. These terms as a whole are called the truncation error
for scheme (7.5). Because the truncation error can be rewritten asO(Δx2, Δτ),
we say that for scheme (7.5), the truncation error is second order in Δx and
first order in Δτ .

Now let us discretize the problem (7.2) at the point (xm, τn+1/2). For
∂u

∂τ
(xm, τn+1/2), we use the central scheme. The derivative

∂u

∂x
(xm, τn+1/2)

is approximated first by the average of the values at the points (xm, τn) and
(xm, τn+1), and then the derivatives at these two points are discretized by

the central difference. The second derivative
∂2u

∂x2
(xm, τn+1/2) is dealt with

Fig. 7.3. An implicit finite-difference discretization
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similarly. Using this way, the degenerate parabolic problem (7.2) can be
approximated by the implicit finite-difference method:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
m − un

m

Δτ
=

a
n+1/2
m

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2

+
un
m+1 − 2un

m + un
m−1

Δx2

)

+
b
n+1/2
m

2

(
un+1
m+1 − un+1

m−1

2Δx
+

un
m+1 − un

m−1

2Δx

)

+
c
n+1/2
m

2
(un+1

m + un
m) + g

n+1/2
m ,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1,
u0
m = f(xm), m = 0, 1, · · · ,M.

(7.6)

From here, we see that each equation involves six grid points (see Fig. 7.3)
and that there are three unknowns. As we know, the error of a central differ-
ence is second order. For a function, the average of the values at the points
(xm, τn) and (xm, τn+1) is an approximate value at the point (xm, τn+1/2)
with an error of O(Δτ2) because it actually is the result obtained by the linear
interpolation. Therefore, the truncation error of this scheme is O(Δx2, Δτ2).

Similar to the scheme (7.5), because we actually discretize ordinary differ-
ential equations at the boundaries, the equations for m = 0 and m = M can
be written as

un+1
m − un

m

Δτ
=

c
n+1/2
m

2
(un+1

m + un
m) + gn+1/2

m ,

m = 0,M, n = 0, 1, · · · , N − 1.

Consequently, these equations actually do not involve un
−1 and un

M+1. Further-
more, the equations for m = 0 alone can determine un

0 , n = 1, 2, · · · , N from
u0
0. For un

M , the situation is similar. However, for un
m, m �= 0 and M , the

situation is different. We cannot determine un+1
m only from a few equations.

In order to obtain un+1
m , m = 1, 2, · · · ,M − 1, we have to solve a tridiagonal

system of linear equations, and each of un+1
m is determined by all the un

m.
Consequently, this method is called an implicit finite-difference method.

The problem (7.1) can be discretized similarly. The only difference is that
the partial differential equation should not be discretized for m = 0 and
m = M because the boundary conditions

u(xl, τ) = fl(τ)

and
u(xu, τ) = fu(τ)

provide the equations we need. When a(x, τ) is equal to a positive constant
a, b(x, τ) = 0, c(x, τ) = 0, and g(x, τ) = 0, i.e., for the heat conductivity
problem
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂τ
= a

∂2u

∂x2
, xl ≤ x ≤ xu, 0 ≤ τ ≤ T,

u(x, 0) = f(x), xl ≤ x ≤ xu,
u(xl, τ) = fl(τ), 0 ≤ τ ≤ T,
u(xu, τ) = fu(τ), 0 ≤ τ ≤ T,

(7.7)

corresponding to the explicit scheme (7.5), (7.7) can be approximated by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+1
m = αun

m+1 + (1− 2α)un
m + αun

m−1,
m = 1, 2, · · · ,M − 1,
n = 0, 1, · · · , N − 1,

un+1
0 = fl(τ

n+1), n = 0, 1, · · · , N − 1,
un+1

M = fu(τ
n+1), n = 0, 1, · · · , N − 1,

u0
m = f(xm), m = 0, 1, · · · ,M,

(7.8)

where

α =
aΔτ

Δx2
.

Similar to the implicit scheme (7.6), (7.7) can also be approximated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
m − un

m

Δτ
=

a

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2

+
un
m+1 − 2un

m + un
m−1

Δx2

)

,

m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,
un+1
0 = fl(τ

n+1), n = 0, 1, · · · , N − 1,
un+1

M = fu(τ
n+1), n = 0, 1, · · · , N − 1,

u0
m = f(xm), m = 0, 1, · · · ,M,

(7.9)

which is called the Crank–Nicolson scheme.
Since u(xl, τ) and u(xu, τ) are given, there are only M − 1 unknowns for

each time level, and the M − 1 equations in the difference scheme (7.9) can
be written together in matrix form:

Aun+1 = Bun + bn, (7.10)

where
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + α −α
2 0 · · · 0

−α
2 1 + α −α

2

. . .
...

0 −α
2

. . .
. . . 0

...
. . .

. . .
. . . −α

2
0 · · · 0 −α

2 1 + α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− α α
2 0 · · · 0

α
2 1− α α

2

. . .
...

0 α
2

. . .
. . . 0

...
. . .

. . .
. . . α

2
0 · · · 0 α

2 1− α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

un =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

un
1

un
2
...

un
M−2

un
M−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and bn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
2αu

n
0 + 1

2αu
n+1
0

0
...
0

1
2αu

n
M + 1

2αu
n+1
M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Now we consider the problem (7.2) for the case

b(xl, τ) > 0, 0 ≤ τ ≤ T

and
b(xu, τ) < 0, 0 ≤ τ ≤ T.

In this case, the PDE degenerates into hyperbolic partial differential equations
at the boundaries, and the first derivative there has to be discretized by a one-
sided difference. For example, if in the scheme (7.5) or (7.6), we use a one-sided
difference for the first derivative in the equations for m = 0 and m = M , we
can have the approximation we need. We call them the modified schemes (7.5)
and (7.6). However, here the way of discretizing the first derivative at m = 0 is
different from that at m = 1, namely, the discretization “jumps” from m = 0
to m = 1, so from the finite-difference equation at m = 0 to m = 1, the
coefficients do not satisfy the Lipschitz condition. This causes some problems
when doing stability analysis. A similar situation occurs from m = M − 1 to
m = M . In order to avoid the “jump,” we can approximate the degenerate
parabolic problem (7.2) by the explicit finite-difference method:

⎧
⎪⎨

⎪⎩

un+1
m − un

m

Δτ
= anm

un
m+1 − 2un

m + un
m−1

Δx2
+ Φn

m + cnmun
m + gnm,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1,
u0
m = f(xm), m = 0, 1, · · · ,M,

(7.11)
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where

Φn
m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bnm
−un

m+2 + 4un
m+1 − 3un

m

2Δx
, if bnm > 0,

0, if bnm = 0,

bnm
3un

m − 4un
m−1 + un

m−2

2Δx
, if bnm < 0

or by the implicit finite-difference method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
m − un

m

Δτ
=

a
n+1/2
m

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2

+
un
m+1 − 2un

m + un
m−1

Δx2

)

+Φ
n+1/2
m +

c
n+1/2
m

2
(un+1

m + un
m) + g

n+1/2
m ,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1,
u0
m = f(xm), m = 0, 1, · · · ,M,

(7.12)

where

Φn+1/2
m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
n+1/2
m

2

(
−un+1

m+2 + 4un+1
m+1 − 3un+1

m

2Δx

+
−un

m+2 + 4un
m+1 − 3un

m

2Δx

)

, if b
n+1/2
m > 0,

0, if b
n+1/2
m = 0,

b
n+1/2
m

2

(
3un+1

m − 4un+1
m−1 + un+1

m−2

2Δx

+
3un

m − 4un
m−1 + un

m−2

2Δx

)

, if b
n+1/2
m < 0.

Scheme (7.12) usually involves eight points, among them there are four un-
knowns (see Fig. 7.4). However, at boundaries there are three unknowns be-

cause a
n+1/2
0 = a

n+1/2
M = 0. When the partial differential equation is dis-

cretized in this way, the stability analysis can be done much easier. In the
paper [79] by Sun, Yan, and Zhu, the stability problem of scheme (7.12) has
been carefully studied. Clearly, the truncation error of the scheme (7.11) is
O(Δx2, Δτ) and that of the scheme (7.12) is O(Δx2, Δτ2).

Therefore, in order to find a solution, we can use either an explicit finite-
difference method or an implicit finite-difference method. From the next sec-
tion, we will see that for an explicit method, the step size Δτ must be less
than a constant times Δx2 for a stable computation. Thus, if a small Δx
must be adopted in order to have satisfying results, the computation could
take quite a long time. However, there is no restriction on the step size Δτ
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Fig. 7.4. Implicit eight-point finite-difference discretizations

for implicit finite-difference methods. This is the main advantage of implicit
methods over explicit methods.

A European-style derivative could involve several random state variables.
In this case, we need to discretize a multi-dimensional problem, which will be
dealt with in Chaps. 8 and 10. Usually, an American-style derivative prob-
lem can be formulated as a free boundary problem. Discretization of such a
problem will be discussed in Chap. 9.

7.2 Stability and Convergence Analysis

7.2.1 Stability

Stability is concerned with the propagation of errors. During the computation,
truncation errors are brought into approximate solutions at each step. Also
rounding errors are introduced into solutions all the time because any com-
puter has a finite number of digits for numbers. If for a given finite-difference
method, the errors are not magnified at each step in some norm, then we say
that the finite-difference method is stable. There are two different norms that
are often used in studying stability. Suppose

x = (x1, x2, · · · , xM−1)
T

is a vector with M − 1 components. The L∞ and L2 norms of the vector x
are defined as follows:

||x||L∞ = max
1≤m≤M−1

|xm|

and

||x||L2
=

(
1

M − 1

M−1∑

m=1

x2
m

)1/2

.
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Here, M − 1 could be any positive integer and is allowed to go to infinity.

Stability of Explicit Finite-Difference Methods for the Heat Equa-
tion. Consider the explicit finite-difference method (7.8) for the heat conduc-
tivity problem. Suppose an initial error e0m appears in computing f(xm) for
m = 1, 2, · · · ,M − 1. That is, instead of f(xm), f(xm) + e0m is given as the
initial value. We assume that there is no error from boundary conditions, that
is, e00 = e0M = 0. Let ũn

m,m = 0, 1, · · · ,M, n = 0, 1, · · · , N , be the computed
solution. We want to study how ũn

m is affected by e0m. This is usually referred
to as studying the stability of schemes with respect to initial values. Clearly,
ũn
m satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũn+1
m = αũn

m+1 + (1− 2α)ũn
m + αũn

m−1,
m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,

ũn+1
0 = fl(τ

n+1), n = 0, 1, · · · , N − 1,
ũn+1

M = fu(τ
n+1), n = 0, 1, · · · , N − 1,

ũ0
m = f(xm) + e0m, m = 0, 1, · · · ,M.

Let
enm = ũn

m − un
m, m = 0, 1, · · · ,M, n = 0, 1, · · · , N.

Taking the difference of the scheme (7.8) and this system, we get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

en+1
m = αenm+1 + (1− 2α)enm + αenm−1,
m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,

en+1
0 = 0, n = 0, 1, · · · , N − 1,
en+1
M = 0, n = 0, 1, · · · , N − 1,
e0m = e0m, m = 0, 1, · · · ,M.

(7.13)

For this scheme, we can analyze its stability in two ways. First, we show
that this scheme is stable in the maximum norm if α ≤ 1/2. In this case, all the
coefficients in the right-hand side of the finite-difference equation, α, 1−2α, α,
are nonnegative, so

|en+1
m | = |αenm+1 + (1− 2α)enm + αenm−1|

≤ α|enm+1|+ (1− 2α)|enm|+ α|enm−1|
≤ max

1≤m≤M−1
|enm|, m = 1, 2, · · · ,M − 1,

or
max

1≤m≤M−1
|en+1

m | ≤ max
1≤m≤M−1

|enm|,

where we have used the fact en0 = enM = 0, n = 0, 1, · · · , N . This is true for
any n. Therefore,

max
1≤m≤M−1

|enm| ≤ max
1≤m≤M−1

|e0m|
or
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||en||L∞ ≤ ||e0||L∞ .

Consequently, the difference scheme (7.8) is stable with respect to initial value
in the maximum norm. This method of analyzing stability is very simple.
Unfortunately, it seems that this method works only for explicit schemes with
positive coefficients on the right-hand side.

Now let us study the stability of scheme (7.8) in another way. Set

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− 2α α 0 · · · 0

α 1− 2α α
. . .

...

0 α 1− 2α
. . . 0

...
. . .

. . .
. . . α

0 · · · 0 α 1− 2α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, en =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

en1
en2
...
...

enM−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.14)

From the system (7.13), we see that between en+1 and en there is the following
relation:

en+1 = A1e
n.

Suppose λ is an eigenvalue of A1 and x = (x1, x2, · · · , xM−1)
T is an asso-

ciated eigenvector, i.e., we assume that λ and x satisfy the equation

A1x = λx.

Now let us find M − 1 linearly independent eigenvectors of A1 and their
associated eigenvalues. Define

x0 = xM = 0.

Then the equation above can be rewritten as

αxm−1 + (1− 2α)xm + αxm+1 = λxm, 1 ≤ m ≤ M − 1, (7.15)

or

αxm−1 + (1− 2α− λ)xm + αxm+1 = 0, 1 ≤ m ≤ M − 1. (7.16)

For the system (7.16) with arbitrary x0 and xM , let us try to find a solution
in the form

xm = μm, 0 ≤ m ≤ M. (7.17)

Substituting it into system (7.16), we have

[
α+ (1− 2α− λ)μ+ αμ2

]
μm−1 = 0, 1 ≤ m ≤ M − 1,

which can be reduced to one equation:

αμ2 + (1− 2α− λ)μ+ α = 0. (7.18)
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Denote the two roots of Eq. (7.18) by μ1 and μ2. It is clear that μ1 and μ2

should satisfy the following conditions:

μ1 + μ2 = − 1

α
(1− 2α− λ), μ1μ2 = 1.

Case one: μ1 = μ2 = μ∗. In this case,

xm = mμm
∗ , 0 ≤ m ≤ M,

also is a solution of the system (7.16). Substituting it into system (7.16) yields

α(m− 1)μm−1
∗ + (1− 2α− λ)mμm

∗ + α(m+ 1)μm+1
∗

= −αμm−1
∗ + αμm+1

∗ = αμm−1
∗ (μ2

∗ − 1) = 0, 1 ≤ m ≤ M − 1,

because of μ1μ2 = μ2
∗ = 1, so it is true that xm = mμm

∗ , 0 ≤ m ≤ M, is
another solution of the system (7.16) besides the solution (7.17) with μ = μ∗.
Thus for any c1 and c2,

xm = ( c1 + c2m )μm
∗ , 0 ≤ m ≤ M,

should be a solution of the system (7.16). It follows from x0 = xM = 0 that
c1 = c2 = 0. Consequently, xm ≡ 0, 1 ≤ m ≤ M − 1, which contradicts that
x = (x1, x2, · · · , xM−1)

T is an eigenvector.
Case two: μ1 �= μ2. In this case for any c1 and c2,

xm = c1μ
m
1 + c2μ

m
2 , 0 ≤ m ≤ M,

should be a solution of the system (7.16). It follows from x0 = xM = 0 that

c1 + c2 = 0, c1μ
M
1 + c2μ

M
2 = 0.

From these two relations we can obtain
(
μ1

μ2

)M

= −c2
c1

= 1 = ei2kπ, k being any integer.

Consequently,

μ1

μ2
= ei2ωk , ωk =

kπ

M
, k being any integer.

It is clear that k = k∗ and k = k∗ +M give the same solution. Thus we need
to set k = 0, 1, · · · ,M − 1 only. For k = 0, we have μ1 = μ2. As we have
pointed out, in this case we could not find any eigenvector. For k = 1, 2, · · · ,
or M − 1, we have

μ1

μ2
= ei2ωk . Combining this relation with μ1μ2 = 1 yields

μ
(k)
1 = eiωk , μ

(k)
2 = e−iωk .

For such a k, taking c1 = 1
2 and c2 = − 1

2 , we have the following eigenvector
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xωk
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2e

iωk − 1
2e

−iωk

1
2e

i2ωk − 1
2e

−i2ωk

...

...
1
2e

i(M−1)ωk − 1
2e

−i(M−1)ωk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

sinωk

sin 2ωk

...

...
sin(M − 1)ωk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.19)

The corresponding eigenvalue λωk
satisfies system (7.15), i.e.,

λωk
=

α sin (m− 1)ωk + (1− 2α) sin mωk + α sin (m+ 1)ωk

sin mωk

=
α sin mωk cos ωk + (1− 2α) sin mωk + α sin mωk cos ωk

sin mωk

= 1− 2α+ 2α cos ωk = 1− 4α sin2(ωk/2).

Here k = 1, 2, · · · ,M − 1, i.e., we have found M − 1 eigenvalues of A1 and
their associated eigenvectors. Because λωk

, k = 1, 2, · · · ,M − 1, are distinct
eigenvalues of the symmetric matrix A1, the M − 1 associated eigenvectors,
xωk

, k = 1, 2, · · · ,M − 1, are linearly independent.
As a consequence, any vector with M − 1 components can be expressed as

linear combination of xωk
, which means that an error e0 can be expressed as

e0 =

M−1∑

k=1

εωk
xωk

.

Substituting this expression into en+1 = A1e
n, we have

e1 = A1e
0 =

M−1∑

k=1

εωk
λωk

xωk

and furthermore

en =
M−1∑

k=1

εωk
λn
ωk
xωk

or in component form

enm =

M−1∑

k=1

εωk
λn
ωk

sinmωk, m = 1, 2, · · · ,M − 1.

As eigenvectors of a symmetric matrix A1, xωk
, k = 1, 2, · · · ,M − 1 are

orthogonal. Thus, from the expressions of e0 and en above, we have

||e0||L2
=

(
1

M − 1

M−1∑

m=1

ε2ωk
||xωk

||2L2

)1/2
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and

||en||L2 =

(
1

M − 1

M−1∑

m=1

ε2ωk
λ2n
ωk
||xωk

||2L2

)1/2

.

Consequently, we obtain
||en||L2

≤ ||e0||L2

if all the eigenvalues of A1 are in [−1, 1]. From what we have gotten the
following conclusion is obtained: if

0 ≤ α ≤ 1/2,

then we have the following inequality

−1 ≤ 1− 4α ≤ λωk
= 1− 4α sin2(ωk/2) ≤ 1, k = 1, 2, · · · ,M − 1,

which means that the computation is stable with respect to the initial value. If
α > 1/2, then when M is large enough, some of the eigenvalues of A1 must be
less than −1. Hence, if a component of e0 associated with such an eigenvalue
is not zero, then the corresponding component of en will be greater than the
component of e0 and go to infinity as n goes to infinity. Because the errors
are random variables, the εωk

corresponding to such an eigenvalue λωk
might

not be zero. Thus, the computation is unstable. This can be summarized as:
scheme (7.8) is stable if

α =
aΔτ

Δx2
≤ 1/2;

whereas the scheme is unstable if

α =
aΔτ

Δx2
> 1/2.

Stability of Implicit Finite-Difference Methods for the Heat Equa-
tion. The second method used above to analyze stability can be applied to
other cases, for example, implicit finite-difference methods. For an implicit
finite-difference scheme, suppose en satisfies

Aen+1 = Ben,

where A and B are two matrices, and A is invertible. Also, assume that the
following relations hold:

λωk
Axωk

= Bxωk
, k = 1, 2, · · · ,M − 1, (7.20)

where xωk
, k = 1, 2, · · · ,M − 1 are linear independent vectors. In this case,

this method still works: if all the λωk
∈ [−1, 1], then the scheme is stable; if

certain λωk
does not belong to [−1, 1], then the scheme is unstable. In fact,

any initial error can be expressed as
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e0 =
M−1∑

k=1

εωk
xωk

and because of the set of relations (7.20), we have

en =

M−1∑

k=1

εωk
λn
ωk
xωk

for any n. Therefore, the scheme is stable if and only if

|λωk
| ≤ 1

for all the ωk.
For the Crank–Nicolson scheme (7.9), A and B are given in Sect. 7.1. As

pointed out above, in order to study the stability, we need to find the solution
of

λAx = Bx.

In Problem 7, for more general equations, readers are asked to find the eigen-
vectors and the eigenvalues. Here we only give the result. The result is as
follows. For this case, there are M − 1 linearly independent vectors given by
the expression (7.19) and the corresponding eigenvalues are

λωk
=

1
2α sin (m+ 1)ωk + (1− α) sinmωk + 1

2α sin (m− 1)ωk

− 1
2α sin (m+ 1)ωk + (1 + α) sinmωk − 1

2α sin (m− 1)ωk

=
(1− α) sinmωk + α sinmωk cosωk

(1 + α) sinmωk − α sinmωk cosωk

=
1− 2α sin2

ωk

2

1 + 2α sin2
ωk

2

, k = 1, 2, · · · ,M − 1,

where ωk = kπ/M . Because |λωk
| ≤ 1 for any ωk, the difference scheme (7.9)

is stable in the L2 norm.

Stability for Periodic Problems. In schemes (7.8) and (7.9), the values
are given at both boundaries, and during stability analysis, we assume that
there is no error at the boundaries. It is clear that this is not always the case.
Consider problems satisfying periodic conditions and assume un

m = un
m+M . In

this case, we only need to find un
m, m = 0, 1, · · · ,M − 1 for each time level. If

the coefficients of the problem are constant, then we can analyze the stability
in a similar way. Let us further assume that the solution satisfies the system:

a1u
n+1
m+1+a0u

n+1
m +a−1u

n+1
m−1 = b1u

n
m+1+b0u

n
m+b−1u

n
m−1, m = 0, 1, · · · ,M−1.

If enm is the error of un
m, then enm satisfy the same system. Thus, the system

for enm can be written as
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A2e
n+1 = B2e

n,

where we have used the conditions

en−1 = enM−1, enM = en0

and adopted the following notation:

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 0 · · · a−1

a−1 a0 a1
. . .

...

0 a−1 a0
. . . 0

...
. . .

. . .
. . . a1

a1 · · · 0 a−1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, en =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

en0
en1
...
...

enM−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 b1 0 · · · b−1

b−1 b0 b1
. . .

...

0 b−1 b0
. . . 0

...
. . .

. . .
. . . b1

b1 · · · 0 b−1 b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In order to study stability, we need to find the solution of the equation

λA2x = B2x.

This is left for readers to do as Problem 8. The result is as follows. For this
equation, the eigenvectors are

xθk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
eiθk

...

...
ei(M−1)θk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, k = 0, 1, · · · ,M − 1,

where θk = 2kπ/M and the eigenvalues are

λθk =
b1e

iθk + b0 + b−1e
−iθk

a1eiθk + a0 + a−1e−iθk
, k = 0, 1, · · · ,M − 1.

By using the relations e−iθk = ei(M−1)θk and eiMθk = 1, this result can be
shown by a straightforward calculation. If |λθk | ≤ 1, k = 0, 1, · · · ,M − 1,
then the method is stable. If |λθk | > 1 for some k, then the method is unstable.
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Because M can go to infinity, θk indeed can be any number in the interval
[0, 2π]. Therefore, if for any θ ∈ [0, 2π],

|λθ| =
∣
∣
∣
∣
b1e

iθ + b0 + b−1e
−iθ

a1eiθ + a0 + a−1e−iθ

∣
∣
∣
∣ ≤ 1, (7.21)

then the scheme is stable. Otherwise, the method is unstable. Such a method of
analyzing stability is usually called the von Neumann method and λθ is called
the amplification factor. This method gives a complete stability analysis for
periodic initial value problems with constant coefficients. For more general
case, this method can be performed in the following way. Assume

enm = λn
θ e

imθ, (7.22)

where θ can be any real number in the interval [0, 2π]. Substituting this ex-
pression into the finite-difference equation, we can find λθ. If all |λθ| ≤ 1, then
the scheme is stable; if some |λθ| > 1, then the scheme is unstable. For more
about this method, see the book [67] by Richtmyer and Morton and many
other books.

Stability Analysis in Practice. In practice, most problems have variable
coefficients. Therefore, the von Neumann method does not give a complete
stability analysis. However, it is still very useful. The von Neumann method
can be applied in practice in the following way.

Consider the following scheme with variable coefficients:

an1,mun+1
m+1 + an0,mun+1

m + an−1,mun+1
m−1

= bn1,mun
m+1 + bn0,mun

m + bn−1,mun
m−1, (7.23)

where for simplicity, we assume that only three points in the x direction are
involved. If more points are involved, the procedure is still the same. Suppose

|fn
m+1 − fn

m| < cΔx, |fn
m+1 − 2fn

m + fn
m−1| < cΔx2,

and
|fn+1

m − fn
m| < cΔτ

for f = a1, a0, a−1, b1, b0, and b−1. Assume that enm has the form (7.22).
Substituting this expression into the finite-difference equation (7.23) yields

λθ(xm, τn) =
bn1,mei(m+1)θ + bn0,meimθ + bn−1,mei(m−1)θ

an1,mei(m+1)θ + an0,meimθ + an−1,mei(m−1)θ
.

If for the amplification factor, we have

|λθ(xm, τn)| ≤ 1

for every point and the treatment of boundary conditions is reasonable, then
we can expect the scheme to be stable. Clearly, the condition |λθ(xm, τn)| ≤ 1
is equivalent to
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|bn1,meiθ + bn0,m + bn−1,me−iθ|2 − |an1,meiθ + an0,m + an−1,me−iθ|2 ≤ 0 (7.24)

if |an1,meiθ + an0,m + an−1,me−iθ|2 ≥ c̃ > 0, c̃ being a constant. The latter is
easier to use in practice than the former.

Let us analyze the stability of scheme (7.6) in this way. This scheme has
the form (7.23) with

an1,m = −
(
a
n+1/2
m

2Δx2
+

b
n+1/2
m

4Δx

)

Δτ,

an0,m = 1 +
a
n+1/2
m

Δx2
Δτ,

an−1,m = −
(
a
n+1/2
m

2Δx2
− b

n+1/2
m

4Δx

)

Δτ,

bn1,m = −an1,m,

bn0,m = 2− an0,m,

bn−1,m = −an−1,m.

Here, we assume
gn+1/2
m = cn+1/2

m = 0

because we analyze the stability with respect to initial values only and ignor-
ing a term of O(Δτ) in coefficients will have no effect on the conclusion on
stability. The left-hand side of the condition (7.24) for this scheme is

[−an1,meiθ + (2− an0,m)− an−1,me−iθ
] [−an1,me−iθ + (2− an0,m)− an−1,meiθ

]

−(an1,meiθ + an0,m + an−1,me−iθ)(an1,me−iθ + an0,m + an−1,meiθ)

= (an1,m)2 + (an0,m − 2)2 + (an−1,m)2 + 2an1,m(an0,m − 2) cos θ

+2(an0,m − 2)an−1,m cos θ + 2an1,man−1,m cos 2θ

− [(an1,m)2 + (an0,m)2 + (an−1,m)2 + 2an1,man0,m cos θ + 2an0,man−1,m cos θ

+2an1,man−1,m cos 2θ
]

= (an0,m − 2)2 − (an0,m)2 − 4an1,m cos θ − 4an−1,m cos θ

= −4a
n+1/2
m

Δx2
Δτ +

4a
n+1/2
m

Δx2
Δτ cos θ

=
4a

n+1/2
m

Δx2
Δτ(cos θ − 1).

This expression is always nonpositive. Therefore, the condition (7.24) is satis-
fied at every grid point. For scheme (7.6), there is no other boundary condition.
Consequently, the scheme is expected to be stable.

So far, we say that a scheme is stable with respect to initial values if the
error of the solution caused by the error in the initial condition is less than
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or equal to the error in the initial condition. However, generally speaking, we
say that a scheme is stable with respect to initial values if the error of the
solution caused by the error in the initial condition is less than c times the
error in the initial condition. c is a constant independent of Δx and Δτ , but
is allowed to be greater than one. That is, the error is allowed to increase by
a certain factor, but the factor must be bounded and independent of Δx and
Δτ . Therefore, we can take

|λθ(xm, τn)| ≤ 1 + c̄Δτ (7.25)

as a criterion for stability.2 In fact, if the inequality (7.25) holds for any θ,
then usually we can have

||en||L2
≤ (1 + c̄Δτ)||en−1||L2

≤ (1 + c̄Δτ)n||e0||L2
≤ ec̄nT/N ||e0||L2

for any n ≤ N , so the error increases at most by a factor ec̄T . Here we have
used the relation (1 + c̄Δτ)

1
c̄Δτ ≤ e for any positive Δτ .

Now let us study the stability of the difference scheme (7.5) by using the
criterion (7.25). We consider the stability with respect to initial values only, so
we can set gnm = 0. In this case, the scheme has the form (7.23) with an1,m = 0,
an0,m = 1, an−1,m = 0 and

bn1,m =
anmΔτ

Δx2
+

bnmΔτ

2Δx
,

bn0,m = 1− 2
anmΔτ

Δx2
+ cnmΔτ,

bn−1,m =
anmΔτ

Δx2
− bnmΔτ

2Δx
.

Therefore,

λθ(xm, τn) = bn1,meiθ + bn0,m + bn−1,me−iθ

= bn0,m +
(
bn1,m + bn−1,m

)
cos θ + i

(
bn1,m − bn−1,m

)
sin θ

= 1− 2
anmΔτ

Δx2
+ cnmΔτ + 2

anmΔτ

Δx2
cos θ + i

bnmΔτ

Δx
sin θ

= 1− 4
anmΔτ

Δx2
sin2

θ

2
+ cnmΔτ + i

bnmΔτ

Δx
sin θ.

If

max
anmΔτ

Δx2
≤ 1

2
or

Δτ

Δx2
≤ 1

2max anm
, (7.26)

2This criterion is equivalent to

|bn1,meiθ + bn0,m + bn−1,me−iθ|2 − |an
1,meiθ + an

0,m + an
−1,me−iθ|2 ≤ ¯̄cΔτ

if |an
1,meiθ + an

0,m + an
−1,me−iθ|2 ≥ c̃ > 0, c̃ being a constant, which is easier to use

in practice than the criterion (7.25).
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then

|λθ(xm, τn)|2 ≤ (1 + |cnm|Δτ)
2
+

(
bnmΔτ

Δx

)2

≤ (1 + |cnm|Δτ)
2
+

(bnm)
2

2max anm
Δτ

≤ (1 + |cnm|Δτ)
2
+ 2 (1 + |cnm|Δτ)

(bnm)
2

4max anm
Δτ

+

[
(bnm)

2

4max anm
Δτ

]2

=

[

1 + |cnm|Δτ +
(bnm)

2

4max anm
Δτ

]2

.

Thus, let c̄ = |cnm|+ (bnm)
2
/(4max anm), we have

|λθ(xm, τn)| ≤ 1 + c̄Δτ

and we can expect this scheme to be stable if inequality (7.26) holds.
In fact, the stability of scheme (7.6) with variable coefficients has been

proved rigorously in the paper [79] by Sun, Yan, and Zhu. By a similar method,
the stability of scheme (7.5) with variable coefficients can also be shown when
inequality (7.26) holds. If readers are interested in such a subject, please see
that paper and the book [97] by Zhu, Zhong, Chen, and Zhang.

7.2.2 Convergence

If a scheme is stable with respect to initial values, and the truncation error
of the scheme goes to zero as Δx and Δτ tend to zero, then the approximate
solution will usually go to the exact solution. Such a result is usually referred to
as the Lax equivalence theorem (see the book [67] by Richtmyer and Morton).
We are not going to prove this conclusion for general cases but explain this
result intuitively through proving this result for special cases.

Consider the explicit finite-difference method (7.8). We know that the
exact solution u(x, τ) satisfies the equation

u(xm, τn+1)

= αu(xm+1, τ
n) + (1− 2α)u(xm, τn) + αu(xm−1, τ

n) +ΔτRn
m(Δx2, Δτ),

m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,

where

Rn
m(Δx2, Δτ) =

Δτ

2

∂2u

∂τ2
(xm, η)− a

Δx2

12

∂4u

∂x4
(ξ, τn).
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Let enm be the error of the approximate solution on the point (xm, τn), that is,

enm = u(xm, τn)− un
m, m = 0, 1, · · · ,M, n = 0, 1, · · · , N.

Then, enm is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

en+1
m = αenm+1 + (1− 2α)enm + αenm−1 +ΔτRn

m(Δx2, Δτ),
m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,

en+1
0 = 0, n = 0, 1, · · · , N − 1,
en+1
M = 0, n = 0, 1, · · · , N − 1,
e0m = 0, m = 0, 1, · · · ,M.

Because en0 = enM = 0 for any n, the system can be written as

{
en+1 = A1e

n +ΔτRn(Δx2, Δτ), n = 0, 1, · · · , N − 1,
e0 = 0,

where en is a vector with M − 1 components enm, m = 1, 2, · · · ,M − 1 and

Rn(Δx2, Δτ) =

⎡

⎢
⎢
⎢
⎣

Rn
1 (Δx2, Δτ)

Rn
2 (Δx2, Δτ)

...
Rn

M−1(Δx2, Δτ)

⎤

⎥
⎥
⎥
⎦
.

Actually, en can be written as
∑n

k=1 e
n
(k). Here, for k = n,

en(n) = ΔτRn−1(Δx2, Δτ)

and for k = 1, 2, · · · , n− 1, en(k) is the solution of the following problem

{
en̄+1
(k) = A1e

n̄
(k), n̄ = k, k + 1, · · · , n− 1,

ek(k) = ΔτRk−1(Δx2, Δτ).

Because the error does not increase for the scheme (7.8) if α ≤ 1/2, ||en||L2

should not be greater than
∑n

k=1 Δτ ||Rk−1(Δx2, Δτ)||L2
. Noticing n ≤ T/Δτ ,

we see that enm goes to zero as Rk−1
m (Δx2, Δτ) tends to zero for k = 1, 2, · · · , n

and m = 1, 2, · · · ,M − 1. Hence, the approximate solution converges to the
exact solution as Δx and Δτ tend to zero and α stays less than 1/2 and
||en||L2

has an order of O(Δx2, Δτ). Usually, α = aΔτ/Δx2 stays constant as
Δx and Δτ tend to zero. Therefore, ||en||L2

= O(Δτ), and we say that the
scheme (7.8) converges with order of Δτ .

For implicit schemes, the situation is similar. Consider the Crank–Nicolson
scheme (7.9). The exact solution satisfies
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u(xm, τn+1)− u(xm, τn)

Δτ

=
a

2

[
u(xm+1, τ

n+1)− 2u(xm, τn+1) + u(xm−1, τ
n+1)

Δx2

+
u(xm+1, τ

n)− 2u(xm, τn) + u(xm−1, τ
n)

Δx2

]

+Rn
m(Δx2, Δτ2),

m = 1, 2, · · · ,M − 1,

where

Rn
m(Δx2, Δτ2)

= Δτ2
[
1

24

∂3u

∂τ3
(xm, η(1))− a

8

∂4u

∂x2τ2
(xm, η(2))

]

− Δx2a

12

∂4u

∂x4
(ξ, η(3)).

In this case, the error satisfies

Aen+1 = Ben +ΔτRn(Δx2, Δτ2),

where en and Rn(Δx2, Δτ2) are two (M − 1)-dimensional vectors with enm
and Rn

m(Δx2, Δτ2) as components, respectively, and A and B are given in
the difference scheme (7.10). Just like in the case of the scheme (7.8), en can
also be written as

∑n
k=1 e

n
(k). Here, for k = n,

en(n) = ΔτA−1Rn−1(Δx2, Δτ2)

and for k = 1, 2, · · · , n− 1, en(k) is the solution of the following problem:

{
Aen̄+1

(k) = Ben̄(k), n̄ = k, k + 1, · · · , n− 1,

ek(k) = ΔτA−1Rk−1(Δx2, Δτ2).

The Crank–Nicolson scheme is stable with respect to the initial value. Thus,
||en||L2 does not exceed

∑n
k=1 Δτ ||A−1Rk−1(Δx2, Δτ2)||L2 . Because

Aeωk
=
(
1 + 2α sin2

ωk

2

)
eωk

,

we see that 1+2α sin2(ωk/2) is an eigenvalue of A. Thus, 1/[1+2α sin2(ωk/2)]
is an eigenvalue of A−1. This means that A−1 always exists and that its norm
is bounded for any case. Consequently, ||en||L2

goes to zero as Δx and Δτ
tend to zero. In this case, we say that this scheme is convergent. Furthermore,
because ||en||L2 is of the order O(Δx2, Δτ2), we say that the scheme has a
second-order convergence or possesses a second-order accuracy.

For schemes with variable coefficients, from the stability with respect to
initial values and the consistency of a scheme, we also can have its convergence.
Here, we say that a scheme is consistent with the partial differential equation
if the truncation error of the scheme goes to zero as Δx and Δτ tend to zero.
In the paper [79] by Sun, Yan, and Zhu, some results on this issue are given.
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7.3 Extrapolation of Numerical Solutions

When a partial differential equation problem is discretized, a truncation error
is introduced that causes the numerical solution to have an error. What is
the relation between the truncation error and the error of the numerical solu-
tion? Intuitively, the answer should be that a term of O(Δxk1 , Δτk2) in the
truncation error causes an error of O(Δxk1 , Δτk2) in the numerical solution.
Here O(Δxk1 , Δτk2) denotes a term less than C

(
Δxk1 +Δxk2

)
, where C is

a constant. Let us illustrate this fact.
Consider the following problem

⎧
⎪⎨

⎪⎩

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u+ g(x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,
u(x, 0) = f(x), 0 ≤ x ≤ 1,

where b(0, τ) = a(0, τ) = ax(0, τ) = b(1, τ) = a(1, τ) = ax(1, τ) = 0 and
a(x, τ) ≥ 0. This problem can be approximated by

⎧
⎨

⎩

δτu
n+1/2
m = a

n+1/2
m δ2xu

n+1/2
m + b

n+1/2
m δ0xu

n+1/2
m + c

n+1/2
m u

n+1/2
m + g

n+1/2
m ,

0 ≤ m ≤ M, 0 ≤ n ≤ N − 1,
u0
m = f(xm), 0 ≤ m ≤ M.

(7.27)

Here,

δτu
n+1/2
m =

un+1
m − un

m

Δτ
,

δ2xu
n+1/2
m =

1

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+

un
m+1 − 2un

m + un
m−1

Δx2

)

,

δ0xu
n+1/2
m =

1

2

(
un+1
m+1 − un+1

m−1

2Δx
+

un
m+1 − un

m−1

2Δx

)

,

fn+1/2
m =

1

2

(
fn+1
m + fn

m

)
, f being u, a, b, c, g,

and the same notation will be used for other functions in what follows.
The truncation error of this scheme is O(Δx2) + O(Δτ2) everywhere; more
accurately, it is in the form

Pn+1/2
m Δx2 +Rn+1/2

m Δτ2 +O(Δx4 +Δτ4),

where P
n+1/2
m and R

n+1/2
m denote the values of two functions P (x, τ) and

R(x, τ) at x = xm and τ = τn+1/2. That is, the exact solution satisfies the
following equation:
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⎧
⎪⎪⎨

⎪⎪⎩

δτU
n+1/2
m = a

n+1/2
m δ2xU

n+1/2
m +b

n+1/2
m δ0xU

n+1/2
m +c

n+1/2
m U

n+1/2
m +g

n+1/2
m

+P
n+1/2
m Δx2 +R

n+1/2
m Δτ2 +O(Δx4 +Δτ4),

0 ≤ m ≤ M, 0 ≤ n ≤ N − 1,
u0
m = f(xm), 0 ≤ m ≤ M,

where Un
m stands for u(xm, τn). Suppose v1 and v2 are the solutions of the

problems
⎧
⎪⎨

⎪⎩

∂v1
∂τ

= a(x, τ)
∂2v1
∂x2

+ b(x, τ)
∂v1
∂x

+ c(x, τ)v1 + P (x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,
v1(x, 0) = 0, 0 ≤ x ≤ 1

and
⎧
⎪⎨

⎪⎩

∂v2
∂τ

= a(x, τ)
∂2v2
∂x2

+ b(x, τ)
∂v2
∂x

+ c(x, τ)v2 +R(x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,
v2(x, 0) = 0, 0 ≤ x ≤ 1,

respectively. Let V n
1,m and V n

2,m denote v1(xm, τn) and v2(xm, τn). Then,

⎧
⎨

⎩

δτV
n+1/2
1,m = a

n+1/2
m δ2xV

n+1/2
1,m +b

n+1/2
m δ0xV

n+1/2
1,m +c

n+1/2
m V

n+1/2
1,m +P

n+1/2
m

+O(Δx2 +Δτ2), 0 ≤ m ≤ M, 0 ≤ n ≤ N − 1,
V 0
1,m = 0, 0 ≤ m ≤ M,

and
⎧
⎨

⎩

δτV
n+1/2
2,m = a

n+1/2
m δ2xV

n+1/2
2,m +b

n+1/2
m δ0xV

n+1/2
2,m +c

n+1/2
m V

n+1/2
2,m +R

n+1/2
m

+O(Δx2 +Δτ2), 0 ≤ m ≤ M, 0 ≤ n ≤ N − 1,
V 0
2,m = 0, 0 ≤ m ≤ M.

Let us define

Wn
m = Un

m − un
m − V n

1,mΔx2 − V n
2,mΔτ2.

It is clear that Wn
m satisfies

⎧
⎨

⎩

δτW
n+1/2
m = a

n+1/2
m δ2xW

n+1/2
m + b

n+1/2
m δ0xW

n+1/2
m + c

n+1/2
m W

n+1/2
m

+O(Δx4 +Δx2Δτ2 +Δτ4), 0 ≤ m ≤ M, 0 ≤ n ≤ N − 1,
W 0

m = 0, 0 ≤ m ≤ M.

Because the scheme is stable with respect to the initial value and the nonho-
mogeneous term (see the paper [76] by Sun and the paper [79] by Sun, Yan,
and Zhu for the details of the proof) and O(Δx2Δτ2) can be expressed as
O(Δx4 +Δτ4), we have

|Un
m − un

m − V n
1,mΔx2 − V n

2,mΔτ2| ≤ O(Δx4 +Δτ4),
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or we can write this relation as

u(xm, τn)−un
m(Δx,Δτ) = v1(xm, τn)Δx2+ v2(xm, τn)Δτ2+O(Δx4+Δτ4),

that is,

un
m(Δx,Δτ) = u(xm, τn)− v1(xm, τn)Δx2 − v2(xm, τn)Δτ2

+O(Δx4 +Δτ4).
(7.28)

Here, we write un
m as un

m(Δx,Δτ) in order to indicate that the approximate
solution is obtained on a mesh with mesh sizes Δx and Δτ . For this case, the
error of a numerical solution is in the form

v1(xm, τn)Δx2 + v2(xm, τn)Δτ2 +O(Δx4 +Δτ4),

which has the same form as the truncation error given above. Similarly, if the
truncation error of a numerical scheme, including the algorithms for boundary
conditions, is

PΔx2 +QΔxΔτ +RΔτ2 +O(Δτ3),

i.e., the scheme is second order and stable, then the numerical solution can
be expressed as

un
m(Δx,Δτ) = u(xm, τn)− v1(xm, τn)Δx2 − v12(xm, τn)ΔxΔτ

−v2(xm, τn)Δx2 +O(Δτ3),
(7.29)

where O(Δτ3) means O(Δx3 +Δx2Δτ +ΔxΔτ2 +Δτ3) for simplicity.
Here, the approximate value is given only at the nodes. Now let us gen-

erate a function defined on the domain [0, 1] × [0, T ] by some type of inter-
polation. We assume that the interpolation function generated from the val-
ues on the nodes by an interpolation method is an approximation to f(x, τ)
with an error of O(Δτ3) for any smooth enough function f(x, τ). For exam-
ple, if we use quadratic interpolation, then the interpolation function gener-
ated has such a property. Let u(x, τ ;Δx,Δτ) denote such a function gener-
ated by u(xm, τn;Δx,Δτ). Because u(xm, τn;Δx,Δτ) consists of u(xm, τn)−
v1(xm, τn)Δx2−v12(xm, τn)ΔxΔτ−v2(xm, τn)Δτ2 and O(Δτ3), the interpo-
lation function also has two parts. One part is the interpolation function gener-
ated by u(xm, τn)−v1(xm, τn)Δx2−v12(xm, τn)ΔxΔτ−v2(xm, τn)Δτ2, which
we call u1(x, τ ;Δx,Δτ). The other part is generated by the term O(Δτ3),
which is denoted by u2(x, τ ;Δx,Δτ). Clearly,

u1(x, τ ;Δx,Δτ)− u(x, τ) + v1(x, τ)Δx2 + v12(x, τ)ΔxΔτ + v2(x, τ)Δτ2

is a term of O(Δτ3). The function u2(x, τ ;Δx,Δτ) is also a term of O(Δτ3).
Consequently, we have
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u(x, τ ;Δx,Δτ) = u1(x, τ ;Δx,Δτ) + u2(x, τ ;Δx,Δτ)
= u(x, τ)− v1(x, τ)Δx2 − v12(x, τ)ΔxΔτ − v2(x, τ)Δτ2

+O(Δτ3).

In this case, we can use the following technique to eliminate the error of
O(Δx2 +ΔxΔτ +Δτ2) if we have numerical solutions on a mesh with mesh
sizes Δx and Δτ and on a mesh with mesh sizes 2Δx and 2Δτ . Let us consider
a linear combination of the solutions on the two different meshes, which are
denoted by u(x, τ ;Δx,Δτ) and u(x, τ ; 2Δx, 2Δτ):

(1− d)× u(x, τ ;Δx,Δτ) + d× u(x, τ ; 2Δx, 2Δτ)
= u(x, τ)− v1(x, τ)(1− d+ 4d)Δx2 − v12(x, τ)(1− d+ 4d)ΔxΔτ

−v2(x, τ)(1− d+ 4d)Δτ2 +O(Δτ3).

If we choose d such that 1− d+ 4d = 0, that is, d = −1

3
, then

(1− d)× u(x, τ ;Δx,Δτ) + d× u(x, τ ; 2Δx, 2Δτ) = u(x, τ) +O(Δτ3).

Therefore,

1

3
[4u(x, τ ;Δx,Δτ)− u(x, τ ; 2Δx, 2Δτ)] (7.30)

is an approximate to u(x, τ) with an error of O(Δτ3).
However, for the approximation (7.27), the expression of the numerical

solution is in the form (7.28), and the extrapolation formula of numerical
solutions (7.30) gives an approximation to u(x, τ) with an error of O(Δτ4).
This is a special case. Generally speaking, if for a second-order scheme we
have three solutions un

m(Δx,Δτ), un
m(2Δx, 2Δτ), and un

m(4Δx, 4Δτ), then
we can have an approximation with an error of O(Δτ4). In order to do that,
we first generate an interpolation function from the values at these nodes
and require the interpolation with an error of O(Δτ4). This can be done, for
example, by cubic interpolation. Let u(x, τ ;Δx,Δτ), u(x, τ ; 2Δx, 2Δτ), and
u(x, τ ; 4Δx, 4Δτ) represent these functions. Then, consider a linear combina-
tion of them:

(1− d1 − d2)u(x, τ ;Δx,Δτ) + d1u(x, τ ; 2Δx, 2Δτ) + d2u(x, τ ; 4Δx, 4Δτ).

If we choose d1and d2 such that
{
1− d1 − d2 + 22d1 + 42d2 = 0,
1− d1 − d2 + 23d1 + 43d2 = 0,

which gives
⎧
⎪⎨

⎪⎩

d1 = −12

21
,

d2 =
1

21
,
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then all the terms of O(Δτ2) and the terms of O(Δτ3) in

(1− d1 − d2)u(x, τ ;Δx,Δτ) + d1u(x, τ ; 2Δx, 2Δτ) + d2u(x, τ ; 4Δx, 4Δτ)

are eliminated. Therefore

1

21
[32u(x, τ ;Δx,Δτ)− 12u(x, τ ; 2Δx, 2Δτ) + u(x, τ ; 4Δx, 4Δτ)] (7.31)

gives an approximation to u(x, τ) with an error of O(Δτ4) for any second-
order scheme.

Here, we need to point out that in order to obtain an approximate solution
with an error of O(Δτ3), it is not necessary for bothΔx1/Δx2 andΔτ1/Δτ2 to
equal two, where Δx1, Δτ1 are mesh sizes for one mesh and Δx2, Δτ2 for the
other. For example, if we have a solution on a 12× 16 mesh and a solution on
a 9× 12 mesh, then we still can obtain an approximate solution with an error
of O(Δτ3) by using extrapolation. Furthermore, if there exist solutions on
15×20, 12×16, and 9×12 meshes, then we can have an approximate solution
with an error of O(Δτ4) by using extrapolation. These are left as a problem
for the reader to prove. Generally speaking, when a scheme has an error of
Δxk1 and Δτk2 and we know solutions on two meshes, the extrapolation can

be used if
Δxk1

1

Δτk2
1

=
Δxk1

2

Δτk2
2

, where Δxi and Δτi, i = 1, 2, are mesh sizes used

in order to obtain the two solutions. For example, if k1 = 2 and k2 = 1,
then when solutions on a 20× 20 mesh and a 40× 80 mesh are obtained, this

technique can also be used because

(
1
20

)2

1
20

=
( 1
40 )

2

1
80

(see Problem 16).

The technique of generating more accurate results by combining several
numerical results, which is similar to Richardson’s extrapolation in numerical
methods for ordinary differential equations, is referred to as the extrapolation
technique of numerical solutions in next few chapters. Finally we need to point
out that this technique works if the solution is smooth, but may not work if
the solution is not smooth enough.

7.4 Two-Dimensional Degenerate Parabolic Equations

Generally speaking, the coefficients of PDEs are variable, and so the difference
equations also have variable coefficients. For such a case, the theoretical analy-
sis of numerical methods is more complicated. In this section, for some type of
two-dimensional degenerate parabolic equations and for a special but popular
scheme, a complete theoretical analysis of numerical methods is given.

Consider the following two-dimensional degenerate parabolic partial
differential equation:
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∂u

∂τ
= a11(x, y, τ)

∂2u

∂x2
+ 2a12(x, y, τ)

∂2u

∂x∂y
+ a22(x, y, τ)

∂2u

∂y2
+ b1(x, y, τ)

∂u

∂x

+b2(x, y, τ)
∂u

∂y
+c(x, y, τ)u+g(x, y, τ), (x, y)∈Ω, 0≤τ≤T, (7.32)

with the initial condition

u(x, y, 0) = f(x, y), (x, y) ∈ Ω, (7.33)

where

Ω = {(x, y) | xl ≤ x ≤ xu, yl ≤ y ≤ yu},

a11(x, y, τ)
∣
∣
∣
x=xl or xu

= 0, a22(x, y, τ)
∣
∣
∣
y=yl or yu

= 0, (7.34)

b1(x, y, τ)
∣
∣
∣
x=xl or xu

= 0, b2(x, y, τ)
∣
∣
∣
y=yl or yu

= 0, (7.35)

∂a11(x, y, τ)

∂x

∣
∣
∣
x=xl or xu

= 0,
∂a22(x, y, τ)

∂y

∣
∣
∣
y=yl or ,yu

= 0, (7.36)

and the matrix
(
a11(x, y, τ) a12(x, y, τ)
a12(x, y, τ) a22(x, y, τ)

)

is semi-positive (nonnegative); i.e., for any X ∈ R and Y ∈ R, we have

a11(x, y, τ)X
2 + 2a12(x, y, τ)XY + a22(x, y, τ)Y

2 ≥ 0. (7.37)

The matrix of the coefficients of second derivatives is semi-positive, so a212 ≤
a11a22. Thus, when a11 = 0 or a22 = 0, we have a12 = 0. Thus, from the
expression (7.34), we have

a12(x, y, τ)
∣
∣
∣
x=xl or xu

= 0, a12(x, y, τ)
∣
∣
∣
y=yl or yu

= 0. (7.38)

Taking the partial derivative of the first and second relations in the result
(7.38) with respect to y and x, respectively, we can further have

∂a12(x, y, τ)

∂y

∣
∣
∣
x=xl or xu

= 0,
∂a12(x, y, τ)

∂x

∣
∣
∣
y=yl or yu

= 0. (7.39)

Denote

c1 = max
(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂2a11(x, y, τ)

∂x2

∣
∣
∣
∣ , c2 = max

(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂2a12(x, y, τ)

∂x∂y

∣
∣
∣
∣ ,

c3 = max
(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂2a22(x, y, τ)

∂y2

∣
∣
∣
∣ , c4 = max

(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂b1(x, y, τ)

∂x

∣
∣
∣
∣ ,

c5 = max
(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂b2(x, y, τ)

∂y

∣
∣
∣
∣ , c6 = max

(x,y,τ)∈Ω×[0,T ]
|c(x, y, τ)| ,
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and set

c = c1 + 2c2 + c3 + c4 + c5 + 2c6. (7.40)

In Sect. 2.4.3, for more general problems we have obtained the following
inequality:

∫∫

Ω

u2(x, y, τ)dxdy ≤ ec̄T
[∫∫

Ω

f 2(x, y)dxdy

+

∫ τ

0

(∫∫

Ω

g2(x, y, s)dxdy
)
ds

]

, 0 ≤ τ ≤ T,

where c̄ is a constant determined by the bounds of the coefficients of the PDE
and their derivatives. Of course, for the problem here, such an inequality holds.
In this section, we are going to prove that for the numerical solutions obtained
by a special but popular scheme, such an inequality still holds.

7.4.1 The Crank–Nicolson Difference Scheme and a Preliminary

Lemma

Take three positive integers M,N , and K. Set h1 = (xu − xl)/M, h2 = (yu −
yl)/N,Δτ = T/K, and denote

xm = xl +mh1, 0 ≤ m ≤ M,

yn = yl + nh2, 0 ≤ n ≤ N,

τk = kΔτ, 0 ≤ k ≤ K,

Ωh = {(xm, yn) | 0 ≤ m ≤ M, 0 ≤ n ≤ N},
ΩΔτ = {τk | 0 ≤ k ≤ K}.

Let V = {u | u = {umn, 0 ≤ m ≤ M, 0 ≤ n ≤ N}} be the grid function
space on Ωh. If u ∈ V, we introduce the following notation:

δxum+ 1
2 ,n

= 1
h1
(um+1,n − umn), Δxumn = 1

2h1
(um+1,n − um−1,n),

δyum,n+ 1
2
= 1

h2
(um,n+1 − umn), Δyumn = 1

2h2
(um,n+1 − um,n−1),

δ2xumn = 1
h2
1
(um+1,n − 2umn + um−1,n),

δ2yumn = 1
h2
2
(um,n+1 − 2umn + um,n−1).

It is obvious that

Δxumn =
1

2
(δxum+ 1

2 ,n
+ δxum− 1

2 ,n
), δ2xumn =

1

h1
(δxum+ 1

2 ,n
− δxum− 1

2 ,n
),

Δyumn =
1

2
(δyum,n+ 1

2
+ δyum,n− 1

2
), δ2yumn =

1

h2
(δyum,n+ 1

2
− δyum,n− 1

2
).

For any u ∈ V, and v ∈ V, their inner product is defined by
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(u, v) = h1h2

[
M−1∑

m=1

N−1∑

n=1

umnvmn +
1

2

M−1∑

m=1

(um0vm0 + umNvmN)

+
1

2

N−1∑

n=1

(u0nv0n + uMnvMn) +
1

4
(u00v00 + uM0vM0 + u0Nv0N + uMNvMN)

]

(7.41)

and the norm of a grid function is defined by

‖u‖ =
√

(u, u).

It is also obvious that the definition of the inner product can also be written
in another form:

(u, v) =
1

4
h1h2

M−1∑

m=0

N−1∑

n=0

(
umnvmn + um+1,nvm+1,n

+um,n+1vm,n+1 + um+1,n+1vm+1,n+1

)
. (7.42)

We also define the grid function U on Ωh ×ΩΔτ as follows:

Uk
mn = u(xm, yn, τ

k), 0 ≤ m ≤ M, 0 ≤ n ≤ N, 0 ≤ k ≤ K.

In what follows, we use the following notations:

U
k+ 1

2
mn =

1

2
(Uk+1

mn + Uk
mn), τk+

1
2 =

1

2
(τk + τk+1)

and

(a11)
k+ 1

2
mn = a11(xm, yn, τ

k+ 1
2 ), (a12)

k+ 1
2

mn = a12(xm, yn, τ
k+ 1

2 ),

(a22)
k+ 1

2
mn = a22(xm, yn, τ

k+ 1
2 ), (b1)

k+ 1
2

mn = b1(xm, yn, τ
k+ 1

2 ),

(b2)
k+ 1

2
mn = b2(xm, yn, τ

k+ 1
2 ), c

k+ 1
2

mn = c(xm, yn, τ
k+ 1

2 ),

g
k+ 1

2
mn = g(xm, yn, τ

k+ 1
2 ), fmn = f(xm, yn).

Suppose problem (7.32)–(7.33) has a smooth solution u(x, y, τ). Applying
the Taylor expansion, we can obtain

1

Δτ
(Uk+1

mn − Uk
mn) = (a11)

k+ 1
2

mn δ2xU
k+ 1

2
mn + 2(a12)

k+ 1
2

mn ΔxΔyU
k+ 1

2
mn

+(a22)
k+ 1

2
mn δ2yU

k+ 1
2

mn + (b1)
k+ 1

2
mn ΔxU

k+ 1
2

mn + (b2)
k+ 1

2
mn ΔyU

k+ 1
2

mn

+c
k+ 1

2
mn U

k+ 1
2

mn + g
k+ 1

2
mn +R

k+ 1
2

mn ,

0 ≤ m ≤ M, 0 ≤ n ≤ N, 0 ≤ k ≤ K − 1 (7.43)
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and there exists a constant c0 such that

|Rk+ 1
2

mn | ≤ c0(h
2
1 + h2

2 +Δτ2),

0 ≤ m ≤ M, 0 ≤ n ≤ N, 0 ≤ k ≤ K − 1. (7.44)

Omitting the small term R
k+ 1

2
mn in the expression (7.43) and writing down the

initial condition on Ωh:

U0
mn = fmn, 0 ≤ m ≤ M, 0 ≤ n ≤ N, (7.45)

we have for the problem (7.32)–(7.33) the following difference scheme:

1

Δτ
(uk+1

mn − uk
mn) = (a11)

k+ 1
2

mn δ2xu
k+ 1

2
mn + 2(a12)

k+ 1
2

mn ΔxΔyu
k+ 1

2
mn

+(a22)
k+ 1

2
mn δ2yu

k+ 1
2

mn + (b1)
k+ 1

2
mn Δxu

k+ 1
2

mn + (b2)
k+ 1

2
mn Δyu

k+ 1
2

mn + c
k+ 1

2
mn u

k+ 1
2

mn

+g
k+ 1

2
mn , 0 ≤ m ≤ M, 0 ≤ n ≤ N, 0 ≤ k ≤ K − 1, (7.46)

u0
mn = fmn, 0 ≤ m ≤ M, 0 ≤ n ≤ N. (7.47)

The following lemma will be used for the analysis of the difference scheme.

Lemma 7.1. Let u ∈ V. Then we have
(
a
k+ 1

2
11 δ2xu, u

)
+ 2
(
a
k+ 1

2
12 ΔxΔyu, u

)
+
(
a
k+ 1

2
22 δ2yu, u

)

+
(
b
k+ 1

2
1 Δxu, u

)
+
(
b
k+ 1

2
2 Δyu, u

)
+
(
ck+

1
2u, u

)
≤ c

2
‖u‖2, (7.48)

where c is defined by the expression (7.40).

Section 7.4.2 is devoted to the proof of this lemma.

7.4.2 ‡The Proof of the Preliminary Lemma

We will estimate each term in the inequality (7.48). For simplicity, we omit
the superscript.

Proposition 7.1 For
(
a11δ

2
xu, u

)
and

(
a22δ

2
yu, u

)
, we have the following

inequalities:
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B1 ≡ (a11δ2xu, u
)

≤ −h1h2

[
M−1∑

m=1

N−1∑

n=1

(a11)mn

(δxum− 1
2 ,n

)2 + (δxum+ 1
2 ,n

)2

2

+
1

2

M−1∑

m=1

(a11)m0

(δxum− 1
2 ,0

)2 + (δxum+ 1
2 ,0

)2

2

+
1

2

M−1∑

m=1

(a11)mN

(δxum− 1
2 ,N

)2 + (δxum+ 1
2 ,N

)2

2

]

+
1

2
c1‖u‖2

≤ −h1h2

M−1∑

m=1

N−1∑

n=1

[

(a11)mn

(δxum− 1
2 ,n

)2 + (δxum+ 1
2 ,n

)2

2

]

+
1

2
c1‖u‖2.

(7.49)

and

B3 ≡ (a22δ2yu, u
)

≤ −h1h2

[
M−1∑

m=1

N−1∑

n=1

(a22)mn

(δyum,n− 1
2
)2 + (δyum,n+ 1

2
)2

2

+
1

2

N−1∑

n=1

(a22)0n
(δyu0,n− 1

2
)2 + (δyu0,n+ 1

2
)2

2

+
1

2

N−1∑

n=1

(a22)Mn

(δyuM,n− 1
2
)2 + (δyuM,n+ 1

2
)2

2

]

+
1

2
c3‖u‖2

≤ −h1h2

M−1∑

m=1

N−1∑

n=1

[

(a22)mn

(δyum,n− 1
2
)2 + (δyum,n+ 1

2
)2

2

]

+
1

2
c3‖u‖2.

(7.50)

Proof. Because (a11)0n = (a11)Mn = 0 for n = 0, 1, · · · , N , some terms in
the inner product are zero. Thus, the expression of

(
a11δ

2
xu, u

)
is

B1 =
(
a11δ

2
xu, u

)
= h1h2

[
M−1∑

m=1

N−1∑

n=1

(a11)mn δ2xumn umn

+
1

2

M−1∑

m=1

(a11)m0 δ2xum0 um0 +
1

2

M−1∑

m=1

(a11)mN δ2xumn umN

]

.

(7.51)
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Averaging the following two equalities:

h1

M−1∑

m=1

(a11)mn δ2xumn umn

=

M−1∑

m=1

(a11)mn(δxum+ 1
2 ,n

− δxum− 1
2 ,n

)umn

=

M−1∑

m=1

(a11)mn δxum+ 1
2 ,n

umn −
M−2∑

m=0

(a11)m+1,n δxum+ 1
2 ,n

um+1,n

=

M−1∑

m=0

(a11)mn δxum+ 1
2 ,n

umn −
M−1∑

m=0

(a11)m+1,n δxum+ 1
2 ,n

um+1,n

=

M−1∑

m=0

(a11)mn δxum+ 1
2 ,n

(umn − um+1,n)

+

M−1∑

m=0

[(a11)mn − (a11)m+1,n] δxum+ 1
2 ,n

um+1,n

= −h1

M−1∑

m=1

(a11)mn(δxum+ 1
2 ,n

)2 − h1

M−1∑

m=0

(δxa11)m+ 1
2 ,n

δxum+ 1
2 ,n

um+1,n

and

h1

M−1∑

m=1

(a11)mn δ2xumn umn

=

M−1∑

m=1

(a11)mn(δxum+ 1
2 ,n

− δxum− 1
2 ,n

)umn

=

M∑

m=2

(a11)m−1,n δxum− 1
2 ,n

um−1,n −
M−1∑

m=1

(a11)mn δxum− 1
2 ,n

umn

=

M∑

m=1

(a11)m−1,n δxum− 1
2 ,n

um−1,n −
M∑

m=1

(a11)mn δxum− 1
2 ,n

umn

=
M∑

m=1

(a11)mn δxum− 1
2 ,n

(um−1,n − umn)

+

M∑

m=1

[(a11)m−1,n − (a11)mn] δxum− 1
2 ,n

um−1,n

= −h1

M−1∑

m=1

(a11)mn(δxum− 1
2 ,n

)2 − h1

M−1∑

m=0

(δxa11)m+ 1
2 ,n

δxum+ 1
2 ,n

umn,
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we have

h1

M−1∑

m=1

(a11)mn δ2xumn umn

= −h1

M−1∑

m=1

(a11)mn

(δxum− 1
2 ,n

)2 + (δxum+ 1
2 ,n

)2

2

−h1

M−1∑

m=0

(δxa11)m+ 1
2 ,n

δxum+ 1
2 ,n

um+ 1
2 ,n

= −h1

M−1∑

m=1

(a11)mn

(δxum− 1
2 ,n

)2 + (δxum+ 1
2 ,n

)2

2

−1

2

M−1∑

m=0

(δxa11)m+ 1
2 ,n

(
u2
m+1,n − u2

m,n

)

= −h1

M−1∑

m=1

(a11)mn

(δxum− 1
2 ,n

)2 + (δxum+ 1
2 ,n

)2

2

+
1

2

[M−1∑

m=1

(
(δxa11)m+ 1

2 ,n
− (δxa11)m− 1

2 ,n

)
u2
mn

+(δxa11) 1
2 ,n

u2
0n − (δxa11)M− 1

2 ,n
u2

Mn

]

≤ −h1

M−1∑

m=1

(a11)mn

(δxum− 1
2 ,n

)2 + (δxum+ 1
2 ,n

)2

2

+
1

2
c1h1

(
1

2
u2
0n +

M−1∑

m=1

u2
mn +

1

2
u2

Mn

)

.

Here we have used the relations
∣
∣
∣(δxa11)m+ 1

2 ,n
− (δxa11)m− 1

2 ,n

∣
∣
∣ ≤ c1h1,

|(δxa11) 1
2 ,n

| ≤ 1

2
c1h1, |(δxa11)M− 1

2 ,n
| ≤ 1

2
c1h1,

which hold because of

c1 = max
(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂2a11(x, y, τ)

∂x2

∣
∣
∣
∣
t

and
∂a11(x, y, τ)

∂x

∣
∣
∣
x=xl or xu

= 0.

Inserting the above equality into the equality (7.51), we obtain the inequality
(7.49).

It is clear that for the second inequality in Proposition 7.1, the proof is
almost the same as the proof for the first one. The concrete proof is omitted
here.
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Proposition 7.2

B2 ≡ (a12ΔxΔyu, u)

≤ −1

4
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn

[
δxum+ 1

2 ,n
δyum,n− 1

2
+ δxum− 1

2 ,n
δyum,n− 1

2

+δxum+ 1
2 ,n

δyum,n+ 1
2
+ δxum− 1

2 ,n
δyum,n+ 1

2

]
+

1

2
c2‖u‖2. (7.52)

Proof. Because a12 = 0 on all the boundary points, the expression of
(a12ΔxΔyu, u) can be written as follows:

B2 = h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn(ΔxΔyu)mnumn

=
1

4
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn

(
δxδyum− 1

2 ,n− 1
2
+ δxδyum+ 1

2 ,n− 1
2

+δxδyum− 1
2 ,n+

1
2
+ δxδyum+ 1

2 ,n+
1
2

)
umn

=
1

4

[
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum− 1
2 ,n− 1

2
umn

+h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum+ 1
2 ,n− 1

2
umn

+h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum− 1
2 ,n+

1
2
umn

+h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum+ 1
2 ,n+

1
2
umn

]

≡ 1

4
(B21 +B22 +B23 +B24). (7.53)

For B21, we have

B21 = h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum− 1
2 ,n− 1

2
umn

= h2

N−1∑

n=1

M−1∑

m=1

(a12)mn(δyum,n− 1
2
− δyum−1,n− 1

2
)umn

= h2

N−1∑

n=1

[
M−1∑

m=1

(a12)mn δyum,n− 1
2
umn−

M−2∑

m=0

(a12)m+1,n δyum,n− 1
2
um+1,n

]

= h2

N−1∑

n=1

[
M−1∑

m=0

(a12)mn δyum,n− 1
2
umn−

M−1∑

m=0

(a12)m+1,n δyum,n− 1
2
um+1,n

]
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= h2

N−1∑

n=1

[M−1∑

m=0

(a12)mn δyum,n− 1
2
(umn − um+1,n)

+
M−1∑

m=0

[(a12)mn − (a12)m+1,n] δyum,n− 1
2
um+1,n

]

= −h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxum+ 1
2 ,n

δyum,n− 1
2

−h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum,n− 1
2
um+1,n . (7.54)

For B22, we have

B22 = h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum+ 1
2 ,n− 1

2
umn

= h2

N−1∑

n=1

M−1∑

m=1

(a12)mn(δyum+1,n− 1
2
− δyum,n− 1

2
)umn

= h2

N−1∑

n=1

[
M−1∑

m=0

(a12)mn δyum+1,n− 1
2
umn

−
M∑

m=1

(a12)mn δyum,n− 1
2
um,n

]

= h2

N−1∑

n=1

[
M∑

m=1

[(a12)m−1,n − (a12)m,n] δyum,n− 1
2
um−1,n

−
M−1∑

m=1

(a12)mn δyum,n− 1
2
(um,n − um−1,n)

]

= h2

N−1∑

n=1

[

−h1

M∑

m=1

(δxa12)m− 1
2 ,n

δyum,n− 1
2
um−1,n

−h1

M−1∑

m=1

(a12)mn δxum− 1
2 ,n

δyum,n− 1
2

]

= −h1h2

N−1∑

n=1

[
M−1∑

m=1

(a12)mn δxum− 1
2 ,n

δyum,n− 1
2

+
M−1∑

m=0

(δxa12)m+ 1
2 ,n

δyum+1,n− 1
2
um,n

]
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= −h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxum− 1
2 ,n

δyum,n− 1
2

−h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum+1,n− 1
2
um,n . (7.55)

We can see that during deriving the equalities (7.54) and (7.55), the sub-
scripts n and n− 1

2 are unchanged. Thus, from the equalities (7.54) and (7.55),
for B23 and B24, we can have

B23 = −h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxum+ 1
2 ,n

δyum,n+ 1
2

−h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum,n+ 1
2
um+1,n ; (7.56)

B24 = −h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxum− 1
2 ,n

δyum,n+ 1
2

−h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum+1,n+ 1
2
umn . (7.57)

Putting the second terms in the last expressions of B21, B22, B23, and B24 in
the expressions (7.54)–(7.57) together yields

−h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(δyum,n− 1
2
+ δyum,n+ 1

2
)um+1,n

−h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(δyum+1,n− 1
2
+ δyum+1,n+ 1

2
)umn

= −h1

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

[(um,n+1 − um,n−1)um+1,n

+(um+1,n+1 − um+1,n−1)umn]

= −h1

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(um+1,n+1umn + um,n+1um+1,n

−um+1,n−1umn − um,n−1um+1,n)

= −h1

M−1∑

m=0

[
N−1∑

n=0

(δxa12)m+ 1
2 ,n

(um+1,n+1umn + um,n+1um+1,n)

−
N−1∑

n=0

(δxa12)m+ 1
2 ,n+1 (um+1,num,n+1 + umnum+1,n+1)

]
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= h1h2

M−1∑

m=0

N−1∑

n=0

(δyδxa12)m+ 1
2 ,n+

1
2
(um+1,n+1umn + um,n+1um+1,n)

≤ 1

2
c2h1h2

M−1∑

m=0

N−1∑

n=0

(
u2
m+1,n+1 + u2

mn + u2
m,n+1 + u2

m+1,n

)

= 2c2‖u‖2. (7.58)

Here we have used (δxa12)m+ 1
2 ,0

= (δxa12)m+ 1
2 ,N

= 0 and another form of the

definition of inner product (7.42).
Thus, inserting the equalities (7.54)–(7.57) into the expression (7.53) and

using the inequality (7.58), we get

B2 = −1

4
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn

(
δxum+ 1

2 ,n
δyum,n− 1

2
+ δxum− 1

2 ,n
δyum,n− 1

2

+δxum+ 1
2 ,n

δyum,n+ 1
2
+ δxum− 1

2 ,n
δyum,n+ 1

2

)

−1

4
h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(δyum,n− 1
2
+ δyum,n+ 1

2
)um+1,n

−1

4
h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(δyum+1,n− 1
2
+ δyum+1,n+ 1

2
)umn

≤ −1

4
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn

(
δxum+ 1

2 ,n
δyum,n− 1

2
+ δxum− 1

2 ,n
δyum,n− 1

2

+δxum+ 1
2 ,n

δyum,n+ 1
2
+ δxum− 1

2 ,n
δyum,n+ 1

2

)
+

1

2
c2‖u‖2.

Proposition 7.3 For (b1Δxu, u) and (b2Δyu, u), we have

B4 ≡ (b1Δxu, u) ≤ 1

2
c4‖u‖2 (7.59)

and

B5 ≡ (b2Δyu, u) ≤ 1

2
c5‖u‖2. (7.60)

Proof. Because (b1)0,n = (b1)M,n for n = 0, 1, · · · , N , the concrete expression
for (b1Δxu, u) is

B4 = h1h2

[
M−1∑

m=1

N−1∑

n=1

(b1)mn Δxumn umn +
1

2

M−1∑

m=1

(b1)m0 Δxum0 um0

+
1

2

M−1∑

m=1

(b1)mN ΔxumN umN

]

.
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For any n, we have

h1

M−1∑

m=1

(b1)mn Δxumn umn

=
1

2

M−1∑

m=1

(b1)mn(um+1,n − um−1,n)umn

=
1

2

(
M−1∑

m=1

(b1)mnumnum+1,n −
M−2∑

m=0

(b1)m+1,numnum+1,n

)

= −1

2
h1

M−1∑

m=0

(δxb1)m+ 1
2 ,n

umnum+1,n

≤ 1

2
c4h1

(1

2
u2
0n +

M−1∑

m=1

u2
mn +

1

2
u2

Mn

)
.

Adding them together yields

B4 ≤ 1

2
c4‖u‖2.

It is easy to see that changing x to y and m to n during the derivation
above, we can prove the second inequality in Proposition 7.3. Thus, we have
proved the conclusion we need.

Proposition 7.4

B6 ≡ (cu, u) ≤ c6‖u‖2. (7.61)

Proof. Since |ckmn| ≤ c6, it is easy to see the validity of the inequality (7.61).

The proof of Lemma 7.1 Based on these inequalities and noticing the
matrix

(
a11(x, y, τ) a12(x, y, τ)
a12(x, y, τ) a22(x, y, τ)

)

is semi-positive, we can prove the lemma immediately. Adding the relations
(7.49), (7.52), (7.50), (7.59), (7.60), and (7.61), then using the inequality
(7.37), we get

B1 + 2B2 +B3 +B4 +B5 +B6

≤ 1

2
(c1 + 2c2 + c3 + c4 + c5 + 2c6)‖u‖2

−1

4
h1h2

M−1∑

m=1

N−1∑

n=1

{
(a11)mn

[
2(δxum− 1

2 ,n
)2 + 2(δxum+ 1

2 ,n
)2
]
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+2(a12)mn

[
δxum+ 1

2 ,n
δyum,n− 1

2
+ δxum− 1

2 ,n
δyum,n− 1

2

+δxum+ 1
2 ,n

δyum,n+ 1
2
+ δxum− 1

2 ,n
δyum,n+ 1

2

]

+(a22)mn

[
2(δyum,n− 1

2
)2 + 2(δyum,n+ 1

2
)2
]}

=
c

2
‖u‖2 − 1

4
h1h2

M−1∑

m=1

N−1∑

n=1

{

[
(a11)mn(δxum+ 1

2 ,n
)2 + 2(a12)mn δxum+ 1

2 ,n
δyum,n− 1

2

+(a22)mn(δyum,n− 1
2
)2
]

+
[
(a11)mn(δxum− 1

2 ,n
)2 + 2(a12)mn δxum− 1

2 ,n
δyum,n− 1

2

+(a22)mn(δyum,n− 1
2
)2
]

+
[
(a11)mn(δxum+ 1

2 ,n
)2 + 2(a12)mn δxum+ 1

2 ,n
δyum,n+ 1

2

+(a22)mn(δyum,n+ 1
2
)2
]

+
[
(a11)mn(δxum− 1

2 ,n
)2 + 2(a12)mn δxum− 1

2 ,n
δyum,n+ 1

2

+(a22)mn(δyum,n+ 1
2
)2
]}

≤ c

2
‖u‖2.

This completes the proof of Lemma 7.1. �

7.4.3 ‡Solvability and Stability

In this subsection, we will prove the solvability and stability of the two-
dimensional finite-difference scheme (7.46)–(7.47).

Theorem 7.1 If Δτ < 1/c, then the difference scheme (7.46)–(7.47) is

uniquely solvable.

Proof. Suppose {uk
mn | 0 ≤ m ≤ M, 0 ≤ n ≤ N} has been determined.

Then the difference scheme (7.46) is a linear system about {uk+1
mn | 0 ≤ m ≤

M, 0 ≤ n ≤ N}. Consider its homogeneous system

1

Δτ
uk+1
mn =

1

2
(a11)

k+ 1
2

mn δ2xu
k+1
mn + (a12)

k+ 1
2

mn ΔxΔyu
k+1
mn +

1

2
(a22)

k+ 1
2

mn δ2yu
k+1
mn

+
1

2
(b1)

k+ 1
2

mn Δxu
k+1
mn +

1

2
(b2)

k+ 1
2

mn Δyu
k+1
mn +

1

2
c
k+ 1

2
mn uk+1

mn ,

0 ≤ m ≤ M, 0 ≤ n ≤ N. (7.62)
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Taking the inner product of equality (7.62) with 2uk+1 and using Lemma 7.1,
we have

2

Δτ
‖uk+1‖2 =

(
(a11)

k+ 1
2 δ2xu

k+1, uk+1
)
+ 2
(
(a12)

k+ 1
2ΔxΔyu

k+1, uk+1
)

+
(
(a22)

k+ 1
2 δ2yu

k+1, uk+1
)
+
(
(b1)

k+ 1
2Δxu

k+1, uk+1
)

+
(
(b2)

k+ 1
2Δyu

k+1, uk+1
)
+
(
ck+

1
2uk+1, uk+1

)

≤ c

2
‖uk+1‖2. (7.63)

If Δτ < 1/c, then ‖uk+1‖ = 0. This completes the proof.

Theorem 7.2 If Δτ ≤ 2/[3(1 + c)], then the solution to the difference

scheme (7.46)–(7.47) satisfies

‖uk+1‖2 ≤ e3(c+1)T/2
(
‖u0‖2 + 3

2
Δτ

k∑

l=0

‖gl+ 1
2 ‖2
)
, 0 ≤ k ≤ K − 1. (7.64)

Proof. Taking the inner product of Eq. (7.46) with uk+ 1
2 and using Lemma

7.1, we have

1

2Δτ

(‖uk+1‖2 − ‖uk‖2)

=
(
(a11)

k+ 1
2 δ2xu

k+ 1
2 , uk+ 1

2

)
+ 2
(
(a12)

k+ 1
2ΔxΔyu

k+ 1
2 , uk+ 1

2

)

+
(
(a22)

k+ 1
2 δ2yu

k+ 1
2 , uk+ 1

2

)
+
(
(b1)

k+ 1
2Δxu

k+ 1
2 , uk+ 1

2

)

+
(
(b2)

k+ 1
2Δyu

k+ 1
2 , uk+ 1

2

)
+
(
ck+

1
2uk+1, uk+ 1

2

)
+
(
gk+

1
2 , uk+ 1

2

)

≤ c

2
‖uk+ 1

2 ‖2 + 1

2
‖gk+ 1

2 ‖2 + 1

2
‖uk+ 1

2 ‖2, 0 ≤ k ≤ K − 1,

from which we further obtain

‖uk+1‖2 ≤ ‖uk‖2 + (1 + c)Δτ‖uk+ 1
2 ‖2 +Δτ‖gk+ 1

2 ‖2

≤ ‖uk‖2 + 1 + c

2
Δτ
(
‖uk‖2 + ‖uk+1‖2

)
+Δτ‖gk+ 1

2 ‖2,
0 ≤ k ≤ K − 1.

If 1− 1 + c

2
Δτ > 0, then the inequality can be rewritten as

‖uk+1‖2 ≤ 1 + 1+c
2 Δτ

1− 1+c
2 Δτ

‖uk‖2 + Δτ

1− 1+c
2 Δτ

‖gk+ 1
2 ‖2.

It is clear that for C̄ > 2, when Δτ is small enough, we can have
1 + 1+c

2 Δτ

1− 1+c
2 Δτ

≤
1+C̄ 1+c

2 Δτ. Let us take C̄ = 3; then we can easily find that the corresponding
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condition for Δτ is Δτ ≤ 2/[3(c + 1)] and that in this case 1 − 1+c
2 Δτ ≥ 2

3 .
Thus, when Δτ ≤ 2/[3(c+ 1)], we have

‖uk+1‖2 ≤
(
1 +

3(c+ 1)

2
Δτ
)
‖uk‖2 + 3

2
Δτ‖gk+ 1

2 ‖2, 0 ≤ k ≤ K − 1.

From this discrete Gronwall inequality, we finally arrive at

‖uk+1‖2 ≤ e3(c+1)T/2
[
‖u0‖2 + 3

2
Δτ

k∑

l=0

‖gl+ 1
2 ‖2
]
, 0 ≤ k ≤ K − 1.

This completes the proof.
The method used here to prove the stability is usually called the energy

method for stability analysis.

7.4.4 ‡Convergence

For the convergence of the finite-difference scheme (7.46)–(7.47), we have

Theorem 7.3 Let {Uk
mn} be the solution of the problem (7.32)–(7.33) and

{uk
mn} be the solution of Eqs. (7.46)–(7.47). Denote

ekmn = Uk
mn − uk

mn, 0 ≤ m ≤ M, 0 ≤ n ≤ N, 0 ≤ k ≤ K.

If Δτ ≤ 2/[3(c+ 1)], then we have

‖ek+1‖ ≤ e3(c+1)T/4

√
3(xu − xl)(yu − yl)T

2
c0
(
h2
1 + h2

2 +Δτ2
)
,

0 ≤ k ≤ K − 1.

Proof. Subtracting the equalities (7.46) and (7.47) from the equalities
(7.43) and (7.45), respectively, we obtain the error equations

1

Δτ
(ek+1

mn − ekmn) = (a11)
k+ 1

2
mn δ2xe

k+ 1
2

mn + 2(a12)
k+ 1

2
mn ΔxΔye

k+ 1
2

mn

+(a22)
k+ 1

2
mn δ2ye

k+ 1
2

mn + (b1)
k+ 1

2
mn Δxe

k+ 1
2

mn

+(b2)
k+ 1

2
mn Δye

k+ 1
2

mn + c
k+ 1

2
mn e

k+ 1
2

mn +R
k+ 1

2
mn ,

0 ≤ m ≤ M, 0 ≤ n ≤ N, 0 ≤ k ≤ K − 1, (7.65)

e0mn = 0, 0 ≤ m ≤ M, 0 ≤ n ≤ N. (7.66)
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Taking the inner product of the system (7.65) with ek+
1
2 and using Lemma 7.1,

we have

1

2Δτ

(‖ek+1‖2 − ‖ek‖2)

=
(
(a11)

k+ 1
2 δ2xe

k+ 1
2 , ek+

1
2

)
+ 2
(
(a12)

k+ 1
2ΔxΔye

k+ 1
2 , ek+

1
2

)

+
(
(a22)

k+ 1
2 δ2ye

k+ 1
2 , ek+

1
2

)
+
(
(b1)

k+ 1
2Δxe

k+ 1
2 , ek+

1
2

)

+
(
(b2)

k+ 1
2Δye

k+ 1
2 , ek+

1
2

)
+
(
ck+

1
2 ek+1, ek+

1
2

)
+
(
Rk+ 1

2 , ek+
1
2

)

≤ c

2
‖ek+ 1

2 ‖2 + 1

2
‖Rk+ 1

2 ‖2 + 1

2
‖ek+ 1

2 ‖2, 0 ≤ k ≤ K − 1,

from which we further get

‖ek+1‖2 ≤ ‖ek‖2 + (1 + c)Δτ‖ek+ 1
2 ‖2 +Δτ‖Rk+ 1

2 ‖2

≤ ‖ek‖2 + 1 + c

2
Δτ
(
‖ek‖2 + ‖ek+1‖2

)
+Δτ‖Rk+ 1

2 ‖2,
0 ≤ k ≤ K − 1.

Using the condition (7.44) and when Δτ ≤ 2/[3(c + 1)], we can rewrite this
inequality as

‖ek+1‖2 ≤
(
1 +

3(c+ 1)

2
Δτ
)
‖ek‖2 + 3

2
Δτ‖Rk+ 1

2 ‖2

≤
(
1 +

3(c+ 1)

2
Δτ
)
‖ek‖2

+
3

2
(xu − xl)(yu − yl)c

2
0Δτ
(
h2
1 + h2

2 +Δτ2
)2

,

0 ≤ k ≤ K − 1.

The Gronwall inequality gives

‖ek+1‖2 ≤ e3(c+1)T/2 3(xu − xl)(yu − yl)T

2
c20

(
h2
1+h2

2+Δτ2
)2

, 0 ≤ k ≤ K−1,

or

‖ek+1‖ ≤ e3(c+1)T/4

√

3
(xu − xl)(yu − yl)T

2
c0
(
h2
1 + h2

2 +Δτ2
)
,

0 ≤ k ≤ K − 1.

This completes the proof.
For the solution to the difference scheme (7.46)–(7.47), we can also use

the extrapolation technique to improve the accuracy of the numerical solu-
tions when solutions are smooth. The idea is the same as what is described
in Sect. 7.3. Based on the results given in this subsection, some theoretical
conclusions on the extrapolation technique can be obtained. For details, see
the paper [78] by Sun and Zhu.
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Problems

Table 7.1. Problems and Sections

Problems Sections Problems Sections Problems Sections

1–5 7.1 6–15 7.2 16–18 7.3

19–21 7.4

1. *Let fn
m denote f(mΔx, nΔτ). Find the truncation error of the explicit

difference scheme

un+1
m − un

m

Δτ
= anm

un
m+1 − 2un

m + un
m−1

Δx2

+bnm
un
m+1 − un

m−1

2Δx
+ cnmun

m

to the parabolic partial differential equation

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u.

2. Show that the truncation error of the Crank–Nicolson scheme for the heat
equation at the point (xm, τn+1/2) is in the following form:

Δτ2
[
1

24

∂3u

∂τ3
(xm, η(1))− a

8

∂4u

∂x2∂τ2
(xm, η(2))

]

− Δx2a

12

∂4u

∂x4
(ξ, η(3)),

where ξ ∈ (xm−1, xm+1), η(k) ∈ (τn, τn+1), k = 1, 2, 3, and a is the
conductivity coefficient in the heat equation.

3. *Let fn
m denote f(mΔx, nΔτ). Find the truncation error of the implicit

difference scheme

un+1
m − un

m

Δτ
=

a
n+1/2
m

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+

un
m+1 − 2un

m + un
m−1

Δx2

)

+
b
n+1/2
m

2

(
un+1
m+1 − un+1

m−1

2Δx
+

un
m+1 − un

m−1

2Δx

)

+
c
n+1/2
m

2
(un+1

m + un
m)

to the parabolic partial differential equation

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u.
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4. The heat equation

∂u

∂τ
=

∂2u

∂x2

can also be discretized by

un+1
m − un

m

Δτ
= θ

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2

)

+(1−θ)

(
un
m+1 − 2un

m + un
m−1

Δx2

)

or

un+1
m − θα(un+1

m+1 − 2un+1
m + un+1

m−1) = un
m +(1− θ)α(un

m+1 − 2un
m + un

m−1),

where 0 ≤ θ ≤ 1 and α = Δτ/Δx2. This scheme is called the θ–scheme.
It is clear that when θ = 0, the scheme reduces to the explicit scheme and
when θ = 1/2, the scheme becomes the Crank–Nicolson scheme. Show
that the order of truncation error of the θ–scheme is

O
(
(1− 2θ)Δτ +Δτ2 +Δx2

)
.

(Hint: Discretize the partial differential equation at x = xm and τ =
τn+θ.)

5. Consider the parabolic partial differential equation

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u,

which is defined for x ∈ [0, 1] and τ ≥ 0. Here a(x, τ) ≥ 0 holds and we

suppose that
∂a

∂x
is bounded. Assuming that u(x, τ) is given, we want to

determine u(x, τ +Δτ) with Δτ > 0 for x ∈ [0, 1].
(a) Under what conditions on a(x, τ) and b(x, τ) a boundary condition is

needed and under what conditions no boundary condition is needed
at x = 0 and x = 1?

(b) Suppose that an explicit scheme will be used. How do we determine
u(0, τ + Δτ) and u(1, τ + Δτ) if no boundary condition should be
given?

6. *Consider the three-point explicit finite-difference scheme:

un+1
m = amun

m−1 + bmun
m + cmun

m+1, m = 1, 2, · · · ,M − 1,

where am ≥ 0, bm = 1− am − cm ≥ 0, cm ≥ 0 and a0 = cM = 0. Show

max
1≤m≤M−1

|un+1
m | ≤ max

1≤m≤M−1
|un

m|.

This means that the numerical procedure is stable under the maximum
norm.
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7. Consider the equation

λAx = Bx or A−1Bx = λx,

where A and B are (M − 1) × (M − 1) matrices and their concrete ex-
pressions are

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 0 · · · 0

a1 a0 a1
. . .

...

0 a1 a0
. . . 0

...
. . .

. . .
. . . a1

0 · · · 0 a1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 b1 0 · · · 0

b1 b0 b1
. . .

...

0 b1 b0
. . . 0

...
. . .

. . .
. . . b1

0 · · · 0 b1 b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Find M − 1 linearly independent eigenvectors of A−1B and their associ-
ated eigenvalues.

8. Consider the equation

λA2x = B2x

or

A−1
2 B2x = λx,

where A2 and B2 are M ×M matrices and their concrete expressions are

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 0 · · · a−1

a−1 a0 a1
. . .

...

0 a−1 a0
. . . 0

...
. . .

. . .
. . . a1

a1 · · · 0 a−1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and

B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 b1 0 · · · b−1

b−1 b0 b1
. . .

...

0 b−1 b0
. . . 0

...
. . .

. . .
. . . b1

b1 · · · 0 b−1 b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Find M linearly independent eigenvectors of A2
−1B2 and their associated

eigenvalues.
9. (a) Consider an M ×M matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b 0 · · · · · · 0 b
b a b 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 b a b
b 0 · · · · · · 0 b a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Suppose a = q + 2/h2 and b = −1/h2. Show that its eigenvalues are

λj = q +
4

h2
sin2

θj
2
, j = 0, 1, · · · ,M − 1, where θj = j 2π

M , and the

corresponding eigenvectors are

vj =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
cos θj
cos 2θj

...
cos (M − 1) θj

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, j = 0, 1, · · · , int
(
M

2

)

,

and

vj =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
sin θj
sin 2θj

...
sin (M − 1) θj

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, j = int

(
M

2

)

+ 1, · · · ,M − 1,

respectively, where int

(
M

2

)

is the integer part of
M

2
.

(b) Find the eigenvalues and eigenvectors of A−1.
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(c) Suppose a =
q

2
+

2

h2
and b =

q

4
− 1

h2
, find the eigenvalues and eigen-

vectors of A and A−1.
10. *Consider the explicit scheme

un+1
m − un

m

Δτ
= a

un
m+1 − 2un

m + un
m−1

Δx2
, m = 1, 2, · · · ,M − 1

with un+1
0 = fl(τ

n+1) and un+1
M = fu(τ

n+1). Determine when it is stable
with respect to initial values in L2 norm and when it is unstable. (Suppose
a > 0.)

11. *Consider the implicit scheme

un+1
m − un

m

Δτ
=

a

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+

un
m+1 − 2un

m + un
m−1

Δx2

)

,

m = 1, 2, · · · ,M − 1

with un+1
0 = fl(τ

n+1) and un+1
M = fu(τ

n+1). Show that it is always stable
with respect to initial values in L2 norm. (Suppose a > 0.)

12. By using the von Neumann method, show that for periodic problems, the
θ–scheme for the heat equation

un+1
m − θα

(
un+1
m+1 − 2un+1

m + un+1
m−1

)

= un
m + (1− θ)α

(
un
m+1 − 2un

m + un
m−1

)

is stable for all α > 0 if
1

2
≤ θ ≤ 1 and that it is stable for 0 < α ≤

1

2(1− 2θ)
if 0 < θ <

1

2
.

13. Consider the following parabolic partial differential equation:

∂u

∂τ
= a11

∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ b1

∂u

∂x
+ b2

∂u

∂y
,

where a11 (x, y, τ) ≥ 0, a22 (x, y, τ) ≥ 0, a12 (x, y, τ) = ρ12 (x, y, τ)
√
a11a22

with ρ12 ∈ [−1, 1], and b1, b2 are any functions of x, y, τ . This equation
can be approximated by

(i)

uk+1
m,n − uk

m,n

Δτ

=
a
k+ 1

2
11,m,n

2

(
uk+1
m+1,n − 2uk+1

m,n + uk+1
m−1,n

Δx2
+

uk
m+1,n − 2uk

m,n + uk
m−1,n

Δx2

)
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+a
k+ 1

2
12,m,n

(
uk+1
m+1,n+1 − uk+1

m+1,n−1 − uk+1
m−1,n+1 + uk+1

m−1,n−1

4ΔxΔy

+
uk
m+1,n+1 − uk

m+1,n−1 − uk
m−1,n+1 + uk

m−1,n−1

4ΔxΔy

)

+
a
k+ 1

2
22,m,n

2

(
uk+1
m,n+1−2uk+1

m,n + uk+1
m,n−1

Δy2
+
uk
m,n+1−2uk

m,n + uk
m,n−1

Δy2

)

+
b
k+ 1

2
1,m,n

2

(
uk+1
m+1,n − uk+1

m−1,n

2Δx
+

uk
m+1,n − uk

m−1,n

2Δx

)

+
b
k+ 1

2
2,m,n

2

(
uk+1
m,n+1 − uk+1

m,n−1

2Δy
+

uk
m,n+1 − uk

m,n−1

2Δy

)

or

(ii)

uk+1
m,n − uk

m,n

Δτ

=
a
k+ 1

2
11,m,n

2

(
uk+1
m+1,n − 2uk+1

m,n + uk+1
m−1,n

Δx2
+

uk
m+1,n − 2uk

m,n + uk
m−1,n

Δx2

)

+a
k+ 1

2
12,m,n

(
uk+1
m+1,n+1 − uk+1

m+1,n−1 − uk+1
m−1,n+1 + uk+1

m−1,n−1

4ΔxΔy

+
uk
m+1,n+1 − uk

m+1,n−1 − uk
m−1,n+1 + uk

m−1,n−1

4ΔxΔy

)

+
a
k+ 1

2
22,m,n

2

(
uk+1
m,n+1−2uk+1

m,n + uk+1
m,n−1

Δy2
+
uk
m,n+1−2uk

m,n + uk
m,n−1

Δy2

)

+
b
k+ 1

2
1,m,n

2

(
−uk+1

m+2,n + 4uk+1
m+1,n − 3uk+1

m,n

2Δx

+
−uk

m+2,n + 4uk
m+1,n − 3uk

m,n

2Δx

)

+
b
k+ 1

2
2,m,n

2

(
3uk+1

m,n−4uk+1
m,n−1 + uk+1

m,n−2

2Δy
+
3uk

m,n−4uk
m,n−1 + uk

m,n−2

2Δy

)

if b1 (x, y, τ) ≥ 0 and b2 (x, y, τ) ≤ 0. By the von Neumann method,
show that they are stable.



Problems 441

(Hint:
(a) First show that the amplification factor λ can be written as λ =

1 + a+ ib

1− a− ib
.

(b) Then show that |λ|2 ≤ 1 is equivalent to |1− a− ib|2 − |1+ a+ ib|2 =
−4a ≥ 0.

(c) Finally show −4a ≥ 0 by using the following inequalities: (i) A2 +

B2 + 2ρAB = (A+ ρB)
2
+ B2

(
1− ρ2

) ≥ 0 if |ρ| ≤ 1; (ii) cos 2θ −
4 cos θ + 3 = 2 (cos θ − 1)

2 ≥ 0.)
14. *Show that if

max
0≤m≤M

x2
m(1− xm)2σ̄2

m

2

Δτ

Δx2
≤ 1

2
,

then for the scheme with variable coefficients

un+1
m − un

m

Δτ
=

1

2
[xm(1− xm)σ̄m]2

un
m+1 − 2un

m + un
m−1

Δx2

+ (r −D0)xm(1− xm)
un
m+1 − un

m−1

2Δx
− [r (1− xm) +D0xm]un

m,

the condition |λθ(xm, τn)| ≤ 1 +O(Δτ) is satisfied for any xm = m/M ∈
[0, 1]. (When you prove this result, you should derive the stability condi-
tion for explicit schemes by yourself.)

15. For the scheme with variable coefficients

un+1
m − un

m

Δτ

=
1

4
[xm(1− xm)σ̄m]2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+

un
m+1 − 2un

m + un
m−1

Δx2

)

+
1

2
(r −D0)xm(1− xm)

(
un+1
m+1 − un+1

m−1

2Δx
+

un
m+1 − un

m−1

2Δx

)

− 1

2
[r (1− xm) +D0xm] (un+1

m + un
m),

show that the condition |λθ(xm, τn)| ≤ 1 + O(Δτ) is satisfied for any
xm ∈ [0, 1].

16. (a) Consider the explicit difference scheme

un+1
m − un

m

Δτ
= anm

un
m+1 − 2un

m + un
m−1

Δx2
+ bnm

un
m+1 − un

m−1

2Δx
+ cnmun

m

to the parabolic partial differential equation

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u.



442 7 Finite-Difference Methods

Assume that its stability with respect to initial value and non-
homogeneous term is proved under certain conditions. Show that
for its solution, under these conditions there is the following rela-

tion: u (x, τ ;Δx,Δτ) = u(x, τ) + a

(

x, τ ;
Δx2

Δτ

)

Δτ +O(Δτ2), where

∣
∣O(Δτ2)

∣
∣ ≤ cΔτ2, c being bounded as Δτ → 0 with

Δx2

Δτ
= constant.

(b) Suppose we have two such approximate solutions u (x, τ ;Δx,Δτ) and
u (x, τ ;Δx/2, Δτ/4). Find a linear combination

(1− d)× u (x, τ ;Δx,Δτ) + d× u (x, τ ;Δx/2, Δτ/4)

such that it is an approximate solution with an error of O(Δτ2).
17. (a) Assume that an approximate solution u (x, τ ;Δx,Δτ) has the follow-

ing expression:

u (x, τ ;Δx,Δτ)

= u (x, τ) + a

(

x, τ ;
Δx

Δτ

)

Δτ2 + b

(

x, τ ;
Δx

Δτ

)

Δτ3 +O
(
Δτ4
)
,

where u (x, τ) is the exact solution. Suppose that we have two approx-

imate solutions: u

(

x, τ ;
1

12
,
T

16

)

and u

(

x, τ ;
1

9
,
T

12

)

. Find a linear

combination

(1− d)× u

(

x, τ ;
1

12
,
T

16

)

+ d× u

(

x, τ ;
1

9
,
T

12

)

such that it is an approximate solution with an error of O(Δτ3).

(b) Suppose that there is another approximate solution u

(

x, τ ;
1

15
,
T

20

)

.

Find a linear combination

d0 × u

(

x, τ ;
1

15
,
T

20

)

+ d1 × u

(

x, τ ;
1

12
,
T

16

)

+ d2 × u

(

x, τ ;
1

9
,
T

12

)

such that it is an approximate solution with an error of O(Δτ4), where
d0 = 1− d1 − d2.

18. *Explain why, how and when the extrapolation technique will improve the
accuracy of numerical solutions.

19. Let V = {u |u = (u0, u1, · · · , uM−1, uM )} be the grid function space on
Ωh = {xm | xm = xl+mh, 0 ≤ m ≤ M,h = (xu−xl)/M}. For any u ∈ V,
and v ∈ V, introduce the inner product

(u, v) = h

(
1

2
u0v0 +

M−1∑

m=1

umvm +
1

2
uMvM

)
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and norm

‖u‖ =
√

(u, u).

In addition, denote

Δxum =
1

2h
(um+1 − um−1), δ2xum =

1

h2
(um+1 − 2um + um−1).

(a) Suppose

a(x) ∈ C(2)[xl, xu], a(x) ≥ 0, a(xl) = a(xu) = a′(xl) = a′(xu) = 0

and

max
xl≤x≤xu

|a′′(x)| = c1.

Prove
(
aδ2xu, u

) ≤ 1

2
c1‖u‖2.

(b) Suppose

b(x) ∈ C(1)[xl, xu], b(xl) = b(xu) = 0, max
xl≤x≤xu

|b′(x)| = c2.

Prove

(bΔxu, u) ≤ 1

2
c2‖u‖2.

20. Suppose that (a12)0n = (a12)Mn = (a12)m0 = (a12)mN = 0. Show

h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum− 1
2 ,n+

1
2
umn

= −h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxum+ 1
2 ,n

δyum,n+ 1
2

−h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum,n+ 1
2
um+1,n

and

h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum+ 1
2 ,n+

1
2
umn

= −h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxum− 1
2 ,n

δyum,n+ 1
2

−h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum+1,n+ 1
2
umn

by a direct calculation.
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21. Suppose {uk
m} is the solution of the difference scheme

1

Δτ
(uk+1

m − uk
m) = a(xm)δ2xu

k+ 1
2

m + b(xm)Δxu
k+ 1

2
m + c(xm)u

k+ 1
2

m

+ g(xm, τk+
1
2 ), 0 ≤ m ≤ M, 0 ≤ k ≤ K − 1,

u0
m = f(xm), 0 ≤ m ≤ M,

where u
k+ 1

2
m = 1

2

(
uk
m + uk+1

m

)
and

a(x) ∈ C(2)[xl, xu], b(x) ∈ C(1)[xl, xu],

a(x) ≥ 0, a(xl) = a(xu) = a′(xl) = a′(xu) = b(xl) = b(xu) = 0,

max
xl≤x≤xu

|a′′(x)| = c1, max
xl≤x≤xu

|b′(x)| = c2, max
xl≤x≤xu

|c(x)| = c3,

c = c1 + c2 + 2c3, Δτ ≤ 2/[3(c+ 1)].

Prove

‖uk+1‖2 ≤ e3(c+1)T/2

(

‖f‖2 + 3

2
Δt

k∑

l=0

‖gl+ 1
2 ‖2
)

, 0 ≤ k ≤ K − 1.
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