7

Finite-Difference Methods

In this chapter, we deal with finite-difference methods for parabolic partial dif-
ferential equations, including algorithms, stability and convergence analysis,
and extrapolation techniques of numerical solutions.

7.1 Finite-Difference Schemes

In this section, we will discuss the finite-difference methods for parabolic
partial differential equation problems (parabolic PDE problems). Usually, a
parabolic partial differential equation problem is formulated as follows:

ou 0%u ou

E - a(x77)@ + b(I,T)% + C(IE,T)U + g(I,T),
rp<x<xY, 07T,

u(z,0) = f(z), 2 < v < a, (7.1)

U(ZEZ,T):fl(T), OSTSTv
u(xuvT):fu(T)v 0<7<T,

where a(z,7) > 0 on the domain [z, 2,] X [0,7] and the compatibility con-
ditions f(z;) = fi(0) and f(x,) = f.(0) hold. Though sometimes, a Euro-
pean option problem can be approximately formulated in such a way after
giving some approximate boundary condition on certain artificial boundary.
However, for most of the European option problems, the problems are in or
can be transformed into the following degenerate parabolic partial differential
equation problem:

ou 0%u ou
E - a(x77)@ + b(I,T)% + C(IE,T)U + g(I,T),
s <z<mz, 0<7<T, (7.2)

u(z,0) = f(z), x; <a < ay,
where a(x,7) > 0 on the domain [z, z,] x [0,T],
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Oa
b(xlaT) - %(Jfl,T) 2 07 0 S T S T7 (73)
a(x,7)=0, 0<7<T,
and
b da <0, 0<7<T
(.Tu,T) - %(Iu,’r) =Y, ST ) (74)
a(x,,7)=0, 0<7<T.

For example, the prices of vanilla European call/put options are solutions
of the problem

OV 1, L0V )4

- _ _ - _ = < <t <
oy T 50 ()87 S + (= Do)Soc —rV=0,0<8 0<t<T,
V(S,t) = max(£(S — E),0), 0< 5.

Through the transformation

S

€:7S+E’
T=T—t,

V(S,t) = (S+E)V(s,1),

the problem is converted into

ov 1 %V v _
9 552(5)52(1 - 5)26762 + (r— Do)&(1 — 5)875 —[r(1 = &) + Do&]V,

0<ELST, 07<LT,
V(f,O) = max(:i:(?f - 1)70)7 0<¢<LT,

where 5(§) = o(EE/(1-E)). (For details, see Sect. 2.2.5.) Clearly, this problem
is in the form (7.2). Moreover, if a stochastic model

dS = udt + wdX
is defined on [S;, S,], and the conditions

0
u (S, t) — w(Sl,t)%w(Sl,t) >0,
w(S;,t) =0

and 9
u (Sy,t) — w(Su,t)gw(Su,t) <0,
w(Sy,t) =0
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LTm

Fig. 7.1. A mesh for finite-difference methods

hold, then prices of European-style derivatives on this random variable also
are solutions of the problem (7.2). (For details, see Sect. 2.4.)

To find an approximate solution of a partial differential equation problem
by finite-difference methods, we first divide the domain [z, z,] % [0,7] into
small subdomains using lines x,, = x; + mAz and 7" = nAr, where Ax =
(xy —x1)/M, AT =T/N and M, N are positive integers. These lines form a
grid, and these points (z,,, ") are called grid points (see Fig. 7.1). We want
to find the approximate values of the solution on these grid points.

Let us look at the problem (7.2). First consider the case!

b(x;,7) =0, 0<7<T
and
by, 7) =0, 0<7<T.

In this case, the partial differential equation in the problem (7.2) degenerates
into an ordinary differential equation at each boundary, and the degenerate
parabolic problem (7.2) can be discretized in the following way.

Using forward difference for —(x,,,7"), second-order central difference

or
ou *u . .
for 6—(xm,7'") and ﬁ(xm,rn) in the problem (7.2) at the point (z,,7"),
x x
we have
'Because a(x,7) > 0 on [v;,2.] and a(x,7) = a(wy,7) = 0, we have

0 o] . . .. .
a—a(xl,T) >0 and a—a(xu,r) < 0. Thus the inequality conditions in the con-
z i

ditions (7.3) and (7.4) can be rewritten as b(x;,7) > %(l‘l,’l') > 0 and
b(zw,7) < %(zuﬂ') < 0. Consequently, the two conditions below imply %(azl, T) =

Oa
g(xu, 7)=0.
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W(Ton, 7" — w(Xp, T AT 0%u
( m ) ( m ) 2 (xm’n)
AT 2 Or
n u(xm—&-la Tn) - QU(LL’m, ) + U([L’m_l, Tn) ALL’Q 84 n
= fm Az? 12 9 &7
w(Tppgr, ™) — u(xm_l,T”) Az? 93
bn ’n
+om [ 2Ax 6 8:63( )
+er u(@m, ™) + g,
where
n S (Tn7,7_n+1)7 6 S (xm717mm+1)7 EE ($m71,$m+1),
and al', b7, ¢ . and g7 denote a(xm, ) b(@m, ™), c(@m, "), and g(xm, ™),
T 02
respectively. Dropping the term —TG—Z(xm, 7n) from the left-hand side and
T

4 3
b o (67 and b S T ) from dhe righ-

hand side, and denoting the approximate solution of wu(z,,, ") by ul,, we
obtain the following approximation to the partial differential equation in the
problem (7.2):

the two terms —a

n+1 n n _ n n _amn
Uy, — — Uy U1 2u +um—1 u

Uy _
AT = Axn; bin m+12Ax e+ g
m=0,1,--- M, n=01,---,N—1.
From the initial condition in problem (7.2), we have u), = f(x,,), m =

0,1,---, M. Therefore, the degenerate parabolic problem (7.2) can be dis-
cretized by

n am At bR AT an At
“mH:(Aa;? +2Aa:>“m+1+(1 21— A2 +c A’T)
ap At by AT
(AQ’Q o 2Ax )UZ*LI +9721A7-a (75)
m=0,1,--- M, n=0,1,--- ,N—1,
ud = f(xm), m=0,1,--- M.

m

Here, we need to point out that because we discretize ordinary differential
equations at the boundaries, only wug appears in the equation for m = 0 and

only u’y, for m = M. That is, because ag = b = a}, = b}, =0, u”| and u},
actually do not appear in the equations above.

When v, m = 0,1, , M are known, we can find «;**, m =0,1,--- | M
by difference scheme (7.5). Because u?, m = 0,1,--- , M are given in the
scheme (7.5), this procedure can be done for n = 0,1,--- ;N — 1 succes-

sively, and the approximate solution on all the grid points can be obtained.
This method is called an explicit finite-difference method. This is be-
cause when u;y has been obtained, one equation involves only one unknown,

so the unknown u%! can be computed from u?” uy, and uyy,, ; explicitly.

m—1r “m



7.1 Finite-Difference Schemes 395

x: The PDE is discretized at this point.

Tm

Fig. 7.2. An explicit finite-difference discretization

Figure 7.2 gives a diagram for this procedure. When we have the approxima-
tion (7.5), we have dropped the terms

AT 52 Az? 9t Az? PPu -

T 5o @) =l S5 S (6T — b S (6T

2 072 12 Ozt 6 O3

from the equations. These terms as a whole are called the truncation error
for scheme (7.5). Because the truncation error can be rewritten as O(Axz?, A7),
we say that for scheme (7.5), the truncation error is second order in Az and
first order in Ar.

Now let us discretize the problem (7.2) at the point (z,,,7"+/2). For

ou ou
(T, T"TY/?), we use the central scheme. The derivative a—(q:m,T”“/Q)
x

or

is approximated first by the average of the values at the points (z,,,7") and
(2, 7"1), and then the derivatives at these two points are discretized by

2
u

the central difference. The second derivative ﬁ(xm77n+1/2) is dealt with
x

x: The PDE is discretized at this point.

m—1

Tm

Fig. 7.3. An implicit finite-difference discretization
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similarly. Using this way, the degenerate parabolic problem (7.2) can be
approximated by the implicit finite-difference method:

ultt =l am/? upth — 2umt 4wl
AT ) Ax?
—2ur +ur
m+1
* Ax? )
—|—1 2 n+1 n+1 n n
n / (7 —:_1 m+—1 + U1 — Ump—1 (76)
2Ax
n+1/2
2 (um up) + gm 2
m=0,1, - M, n=01,--- ,N—1,
ud = f(xm), m=20,1,---, M.

From here, we see that each equation involves six grid points (see Fig. 7.3)
and that there are three unknowns. As we know, the error of a central differ-
ence is second order. For a function, the average of the values at the points
(T, ™) and (,,,,7""1) is an approximate value at the point (z,,,7"1/?)
with an error of O(A7?) because it actually is the result obtained by the linear
interpolation. Therefore, the truncation error of this scheme is O(Ax?, A7r?).

Similar to the scheme (7.5), because we actually discretize ordinary differ-
ential equations at the boundaries, the equations for m = 0 and m = M can
be written as
n n+1/2

Cm n n n
AT g )+ g2,

m=0M, n=01,---,N—1

Consequently, these equations actually do not involve u”; and u},_ . Further-
more the equations for m = 0 alone can determine u07 n=12-.--,N from

. For u},, the situation is similar. However, for u),, m # 0 and M, the
sltuatlon is different. We cannot determine ugj‘l only from a few equations.
In order to obtain u™, m =1,2,--- , M — 1, we have to solve a tridiagonal
system of linear equations, and each of ! is determined by all the u”,
Consequently, this method is called an implicit finite-difference method.

The problem (7.1) can be discretized similarly. The only difference is that
the partial differential equation should not be discretized for m = 0 and
m = M because the boundary conditions

u(xy, 7) = fi(7)
and

u(xuaT) = fu(T)
provide the equations we need. When a(z,7) is equal to a positive constant
a, b(x,7) = 0, ¢(x,7) = 0, and g(x,7) = 0, ie., for the heat conductivity
problem



@ 0%u

or a8x2’
u(z,0) = f(z),
u(zy, 7) = fi(7),
u(xuvT) = fu(T)v

7.1 Finite-Difference Schemes
r<x <z, 0<7<T,
2 ST < Ty,
0<7<T,
0<7<T,

397

(7.7)

corresponding to the explicit scheme (7.5), (7.7) can be approximated by

m=1,2,-,M—1,
n=01,---,N—1,
ungl _ fl(TnJrl) n = 0’ 1, ,N o 1’ (78)
u;\lﬁl :fu(Tn—H)v n=0,1, N —1,
ng:f(xm)a m:Oala '7M7
where
aAT
a= .
Ax?
Similar to the implicit scheme (7.6), (7.7) can also be approximated by
g = a (uphh = 2unt 4t
At 2 Ax?
Upp g1 — 2y, + U%l)
Az? ’ (7.9)
m=1,2-- ,M—1, n=01,--,N—1,
ug ™t = fi(rm ), n=01,-- ,N—1,
u?;rl = fu(7n+1)ﬂ n=0,1, N =1,
ugz:f(xm)v m:0717 ‘7M7

which is called the Crank-Nicolson scheme.

Since u(z;, 7) and u(z,,T) are given, there are only M — 1 unknowns for
each time level, and the M — 1 equations in the difference scheme (7.9) can
be written together in matrix form:

Au"t = Bu" +b", (7.10)

where
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[1+a -5 0 0
-5 1+a—-35
A = 0 _% 0 )
. . o
L0 0 —21+a]
l—-a & 0 - 0
3 1-03
B = 0 % 0 )
. . o
S
L 0 0 5 ]. 70&_
uf %au{)” + %aug‘H
uy 0
u” = and b" = :
u;&72 0
o + haugy!

Now we consider the problem (7.2) for the case
b(z;,7) >0, 0<7<T

and
b(xy,7) <0, 0<7<T.

In this case, the PDE degenerates into hyperbolic partial differential equations
at the boundaries, and the first derivative there has to be discretized by a one-
sided difference. For example, if in the scheme (7.5) or (7.6), we use a one-sided
difference for the first derivative in the equations for m = 0 and m = M, we
can have the approximation we need. We call them the modified schemes (7.5)
and (7.6). However, here the way of discretizing the first derivative at m = 0 is
different from that at m = 1, namely, the discretization “jumps” from m = 0
to m = 1, so from the finite-difference equation at m = 0 to m = 1, the
coefficients do not satisfy the Lipschitz condition. This causes some problems
when doing stability analysis. A similar situation occurs from m = M — 1 to
m = M. In order to avoid the “jump,” we can approximate the degenerate
parabolic problem (7.2) by the explicit finite-difference method:

n+1 n n _ n n
Upy, — — Uy, _ n W41 2um + Um—1 L PN £y 4 gh
=a m CmUm 9m>s

n=01-,N—1,

(7.11)
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where A 5
—u o+ 4ul — 3ul
pn m+2 m+1 m if pr
m 2Ax ! m >0,
o =<0, it b, =0,
3ul — 4y n
pr SUm T Hmo Tz ey

2Ax ’

or by the implicit finite-difference method:

uptt — ol am™ 2 (it — 2untt
At 2 A2
+ng+1 — 2uy, + Uy,
A (7.12)
n+1/2 C:’ln+ / 7’L+1 n n+1/2
+¢7n + T(Um + um) + gm ,
m=0,1,---,M, n=0,1,--- ,N—1,
u?n:f(xm)7 m:071a" aMa
where
O TR MRV VAR (i
2 2Ax
—Up, o +4uy, 1 — 3uy, ) nt1/2
- o Vi by T >0,
+ 2Ax ! '
45%+1/2 =<0, if bzl-&-l/2 —0,
bnm""l/2 3U$L+1 _ 4un-',-_11 + un-‘,—_l2
2 2Ax
3up, — 4wl +up, o ] nt1/2
,if by T <0,
2Ax ) !

Scheme (7.12) usually involves eight points, among them there are four un-
knowns (see Fig. 7.4). However, at boundaries there are three unknowns be-
cause agH/ 2 = aﬁ_l/ * = 0. When the partial differential equation is dis-
cretized in this way, the stability analysis can be done much easier. In the
paper [79] by Sun, Yan, and Zhu, the stability problem of scheme (7.12) has
been carefully studied. Clearly, the truncation error of the scheme (7.11) is
O(Az?, At) and that of the scheme (7.12) is O(Az?, AT?).

Therefore, in order to find a solution, we can use either an explicit finite-
difference method or an implicit finite-difference method. From the next sec-
tion, we will see that for an explicit method, the step size A7 must be less
than a constant times Az? for a stable computation. Thus, if a small Az
must be adopted in order to have satisfying results, the computation could
take quite a long time. However, there is no restriction on the step size Ar
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T

x: The PDE is discretized at this point.
n+1 +1 n+1 n+1 n+1 n+1 n+1 n+1
um—l urnlz um+1 um+2 um’—? um’—l um’ um’+1
TTL
Up g Up Upgg Upigy Upy g Uy Upyr Upriy
z
T Ty

Fig. 7.4. Implicit eight-point finite-difference discretizations

for implicit finite-difference methods. This is the main advantage of implicit
methods over explicit methods.

A European-style derivative could involve several random state variables.
In this case, we need to discretize a multi-dimensional problem, which will be
dealt with in Chaps. 8 and 10. Usually, an American-style derivative prob-
lem can be formulated as a free boundary problem. Discretization of such a
problem will be discussed in Chap. 9.

7.2 Stability and Convergence Analysis

7.2.1 Stability

Stability is concerned with the propagation of errors. During the computation,
truncation errors are brought into approximate solutions at each step. Also
rounding errors are introduced into solutions all the time because any com-
puter has a finite number of digits for numbers. If for a given finite-difference
method, the errors are not magnified at each step in some norm, then we say
that the finite-difference method is stable. There are two different norms that
are often used in studying stability. Suppose

X = (3}'1,.’1}2,"' 7xM—1)T

is a vector with M — 1 components. The L., and Ly norms of the vector x
are defined as follows:

e = | _max_ fon

M—1 1/2
s = [ 22
RN B

m=

and
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Here, M — 1 could be any positive integer and is allowed to go to infinity.

Stability of Explicit Finite-Difference Methods for the Heat Equa-
tion. Consider the explicit finite- difference method (7.8) for the heat conduc-
tivity problem. Suppose an initial error e appears in computmg f(zy,) for
m =1,2,--- ,M — 1. That is, instead of f(acm)7 f(xy) + €2 is given as the
initial value We assume that there is no error from boundary conditions, that
is, e) = €Y, = 0. Let a”,,m =0,1,--- ,M,n = 0,1,--- , N, be the computed
solution. We want to study how ), is affected by €2 . T h1s is usually referred
to as studying the stability of schemes with respect to initial values. Clearly,
U satisfies

antl = ozumJrl + (1 —22)a?, + aun

m—1>
m=1,2-,M-—1, n=01,--,N—1
~n+1 fl( n+1)’ n = 0’1’.” ,N— 17
z{—&-l f(n+1)7 ’I’LZO,l,"',N 1
@), = f(xm) + €%, m=0,1,---, M

Let
e =t —ur, m=01,--- M, n=01---,N.

Taking the difference of the scheme (7.8) and this system, we get

entt = aell 4 + (1 —2a)el, + ael_,
m=1,2,---,M—1, n=0,1,---,N—1,
eg“ 0, n=0,1,---,N—1, (7.13)
entl =0, n=0,1,---,N —1,
e?n:egn, m=0,1,--- , M.

For this scheme, we can analyze its stability in two ways. First, we show
that this scheme is stable in the maximum norm if o < 1/2. In this case, all the
coefficients in the right-hand side of the finite-difference equation, a;, 1—2q, «,
are nonnegative, so

et = laen, g + (1 = 2a)ep, + aep, 4|
< afeg |+ (1= 2a)len, | + aler, |
S ‘6 |a m:1727"'7M_1a
1<m<M 1
or
n+1 < n

(max e < max e,

where we have used the fact ef = €7, =0, n =0,1,---,N. This is true for

any n. Therefore,

n < 0
emax lep| < _max ey,

or
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lle" . < 1le]]r..

Consequently, the difference scheme (7.8) is stable with respect to initial value
in the maximum norm. This method of analyzing stability is very simple.
Unfortunately, it seems that this method works only for explicit schemes with
positive coefficients on the right-hand side.

Now let us study the stability of scheme (7.8) in another way. Set

1-20 a0 - 0 o
1
a 1-2a « : ey
Ai=| 0 a4 1-2a. o0 |, €= |- (114
: . .. . a n:
0 0 a 1—2a| Crr—1

From the system (7.13), we see that between e" ™! and e there is the following

relation:
e"tl = Aje™.
Suppose A is an eigenvalue of A; and x = (21,22, -+ ,2p—1)7 is an asso-
ciated eigenvector, i.e., we assume that A and x satisfy the equation
Aix = Ax.

Now let us find M — 1 linearly independent eigenvectors of A; and their
associated eigenvalues. Define

Tog =z, = 0.
Then the equation above can be rewritten as
alm—1+ (1 = 20)Tm + @it = AT, 1<m<M-—1, (7.15)
or
Ty + (1 —2a—Nzym + oty =0, 1<m<M-—1. (7.16)

For the system (7.16) with arbitrary x¢ and x,,, let us try to find a solution
in the form
Tm =p", 0<m< M. (7.17)

Substituting it into system (7.16), we have
[a+(1—2a—)\)u+a,u2] pml=0, 1<m<M-1,
which can be reduced to one equation:

o+ (1—2a = Np+a=0. (7.18)
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Denote the two roots of Eq. (7.18) by w1 and pe. It is clear that puy and po
should satisfy the following conditions:
P +M2=—$(1—20‘—)\)a papz = 1.
Case one: (1] = 12 = . In this case,
T =mult, 0<m< M,
also is a solution of the system (7.16). Substituting it into system (7.16) yields
a(m = Dp ™+ (1 =20 = Nmpl + a(m + 1)pf*
= —op! toap ™ =ap (W -1) =0, 1<m<M-1,

because of e = p? = 1, so it is true that z,, = mu™, 0<m < M, is
another solution of the system (7.16) besides the solution (7.17) with p = ..
Thus for any ¢; and co,

Ty = (c1+com)ul’, 0<m <M,

should be a solution of the system (7.16). It follows from zo = x,, = 0 that
c¢1 = cg = 0. Consequently, z,, =0, 1 < m < M — 1, which contradicts that
X = (11,22, ,x,_1)7 is an eigenvector.

Case two: 1 # ps. In this case for any c¢; and co,

Ty = L7+ copy’, 0<m <M,
should be a solution of the system (7.16). It follows from xg = z,, = 0 that
cte=0, cap! +epd’ =0.

From these two relations we can obtain

M
(’m) =21 e?™ L being any integer.

H2 C1
Consequently,
; km
o e?k  wp = ——, k being any integer.
H2 M

It is clear that k = k* and k = k* + M give the same solution. Thus we need
toset Kk =0,1,---,M — 1 only. For kK = 0, we have u; = us. As we have
pointed out, in this case we could not find any eigenvector. For k =1,2,--- |

or M — 1, we have B ei2“r . Combining this relation with g = 1 yields
M2
,Ltgk) = ek, ,ugk) = e @k,

For such a k, taking ¢; = % and ¢y = f%, we have the following eigenvector
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1iwr 1 —iwg

le e sin wy,
1 i2wp —i2wy 5in 2
Le —Ze sin 2wy,
Xu, = = : . (7.19)
Lei(M—Tjw _ Lo=i(M—1)wy sin(M — 1)wy,

The corresponding eigenvalue A, satisfies system (7.15), i.e.,

asin (m — Dwg + (1 — 2«) sin mwy + asin (m + 1wy

Awy, =

sin mwy,

asin mwy, cos wy, + (1 — 2a) sin mwy, + asin mwy, cos wy,

sin mwyg

=1—2a+ 2acos wy = 1 — dasin®(wy/2).

Here k = 1,2,--- M — 1, i.e., we have found M — 1 eigenvalues of A; and
their associated eigenvectors. Because A, , k = 1,2,--- , M — 1, are distinct
eigenvalues of the symmetric matrix Ay, the M — 1 associated eigenvectors,
Xy, k=1,2,--- /M — 1, are linearly independent.

As a consequence, any vector with M — 1 components can be expressed as

linear combination of x,,,, which means that an error e

0 can be expressed as

M-—1

0
e = E Ea Ky -
k=1

Substituting this expression into €"*t! = A e", we have

el = A’ =

and furthermore

M-—1
Z Ewp Awi, Xuwy,
k=1

M-1

n n

e = E Ewk)‘wkxwk
k=1

or in component form

M—1

eﬁlzg Ewp Ay, SINMUWE,  m=1,2,--+ M —1.

k=1

As eigenvectors of a symmetric matrix A;, x,,, k = 1,2,--- ,M — 1 are
orthogonal. Thus, from the expressions of € and €™ above, we have

1
0 _
leClle, = (M—l

M—1 1/2
5 sak||xwk|zz)
m=1
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and
-1

M 1/2
n _ 1 2 )\2” 2
||e ||L2 - M*l Z ‘ka wk||xwk|‘L2 .
m

=1

Consequently, we obtain
||en||L2 S ||eo||L2

if all the eigenvalues of A; are in [—1,1]. From what we have gotten the
following conclusion is obtained: if

0<a<1/2,
then we have the following inequality
—1<1—4a <A, =1—4dasin®(w,/2) <1, k=1,2,--- M —1,

which means that the computation is stable with respect to the initial value. If
a > 1/2, then when M is large enough, some of the eigenvalues of A; must be
less than —1. Hence, if a component of € associated with such an eigenvalue
is not zero, then the corresponding component of €™ will be greater than the
component of e’ and go to infinity as n goes to infinity. Because the errors
are random variables, the ¢, corresponding to such an eigenvalue )\, might
not be zero. Thus, the computation is unstable. This can be summarized as:
scheme (7.8) is stable if

aATt
= —<1/2:
T A2 S /%
whereas the scheme is unstable if
aAT
=—=>1/2.
Az? /

Stability of Implicit Finite-Difference Methods for the Heat Equa-
tion. The second method used above to analyze stability can be applied to
other cases, for example, implicit finite-difference methods. For an implicit
finite-difference scheme, suppose e” satisfies

Ae"! = Be”,

where A and B are two matrices, and A is invertible. Also, assume that the
following relations hold:

Au,Ax,, =Bxy,,, k=1,2,--- M—1, (7.20)

where x,,,, Kk =1,2,--- ;M — 1 are linear independent vectors. In this case,
this method still works: if all the A, € [—1,1], then the scheme is stable; if
certain A, does not belong to [—1, 1], then the scheme is unstable. In fact,
any initial error can be expressed as
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M—-1

0
e = E Eop Xy,
k=1

and because of the set of relations (7.20), we have

M—1

n n

e" = E Ewp Aoy, Xewy
k=1

for any n. Therefore, the scheme is stable if and only if
Au| <1

for all the wy.

For the Crank-Nicolson scheme (7.9), A and B are given in Sect. 7.1. As
pointed out above, in order to study the stability, we need to find the solution
of

AMx = Bx.

In Problem 7, for more general equations, readers are asked to find the eigen-
vectors and the eigenvalues. Here we only give the result. The result is as
follows. For this case, there are M — 1 linearly independent vectors given by
the expression (7.19) and the corresponding eigenvalues are

Lasin (m + Dwy + (1 — @) sinmwy, + Sasin (m — L)wy,

Ay, =
" —Lasin (m+ Dwg + (1+ @) sinmwg, — Sasin (m — 1wy,

(1 — @) sinmwy + a sin mwy, cos w,

(1 + ) sin mwy, — asin mwy, cos wy,

. o Wk
1 — 2asin? =

— . k=1,2,---

= M—-1
1—|—2asin2%

) 3

where wy, = kn/M. Because |\, | <1 for any wy, the difference scheme (7.9)
is stable in the Lo norm.

Stability for Periodic Problems. In schemes (7.8) and (7.9), the values
are given at both boundaries, and during stability analysis, we assume that
there is no error at the boundaries. It is clear that this is not always the case.

Consider problems satisfying periodic conditions and assume u;,, = u;, . ,,. In
this case, we only need to find u}},, m =0,1,--- , M — 1 for each time level. If

the coefficients of the problem are constant, then we can analyze the stability
in a similar way. Let us further assume that the solution satisfies the system:

+1 +1 +1 _ —
ayuy, o Faguy, a_yun Ty = byug, o +bouy, +b_yuy, , m=0,1,--- , M—1.

If e}, is the error of u;, then e}, satisfy the same system. Thus, the system

for €]}, can be written as
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A2en+1 = Bge",
where we have used the conditions
eﬁl = 63171’ ey = e(T)L

and adopted the following notation:

[ap a1 0 -+ a_ n
0 a1 1 er
n
a_1 ag a1 €1
_ . n o__ .
Ay = 0 a_y a9 - O y € =
. ap :
en
L a1 -~ 0 a_1 ap | M-1

and ) ;
bo by O -+ by
b,1 bo bl
Bo=100b_,0 - 0
o T,y
by -+ 0 by bo |

In order to study stability, we need to find the solution of the equation
)\AQX = BQX.

This is left for readers to do as Problem 8. The result is as follows. For this
equation, the eigenvectors are

1
eiek

ei(M—l)Qk

where 0, = 2kw/M and the eigenvalues are

b 10y b b —i6g
Aoy = - + 0+ 0re — k=01, ,M—1.
a1€'% 4+ ag + a—1e71%

By using the relations e~ = el(M =10 and ¢M% — 1, this result can be

shown by a straightforward calculation. If |N\g, | <1, &k =0,1,---,M — 1,
then the method is stable. If | Ag, | > 1 for some k, then the method is unstable.
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Because M can go to infinity, 6, indeed can be any number in the interval
[0, 2. Therefore, if for any 6 € [0, 27],

bleie —+ bo + b,le*ie
a6 +ag+a_je |~ 7’

Aol = (7.21)
then the scheme is stable. Otherwise, the method is unstable. Such a method of
analyzing stability is usually called the von Neumann method and Ag is called
the amplification factor. This method gives a complete stability analysis for
periodic initial value problems with constant coefficients. For more general
case, this method can be performed in the following way. Assume

en = Apelm? (7.22)

m

where 6 can be any real number in the interval [0, 27]. Substituting this ex-
pression into the finite-difference equation, we can find Ag. If all |\g| < 1, then
the scheme is stable; if some |Ag| > 1, then the scheme is unstable. For more
about this method, see the book [67] by Richtmyer and Morton and many
other books.

Stability Analysis in Practice. In practice, most problems have variable
coefficients. Therefore, the von Neumann method does not give a complete
stability analysis. However, it is still very useful. The von Neumann method
can be applied in practice in the following way.

Consider the following scheme with variable coefficients:

n n+1 n n+1 n n+1
al,mum+l + aO,mum + a—l,mum—l

= b?,m“ﬁ%—i—l + bg,munm + bﬁl,m“’?ﬁ—h (723)

where for simplicity, we assume that only three points in the x direction are
involved. If more points are involved, the procedure is still the same. Suppose

| fong1 — [l < cAuz, Loy —2f + fr | < cAx?,

and

[fott — ] < cAr
for f = a1, ap, a_1, b1, by, and b_y. Assume that e}, has the form (7.22).
Substituting this expression into the finite-difference equation (7.23) yields
b?mei(m-i-l)e + bgmeime + bﬁl mei(m—l)G

)\9 T ™) = T . . .
( m» ) aiz,mel(erl)()+a6t7me1m0+a7i17mel(mfl)0

If for the amplification factor, we have
|/\9(1'm;7-n)| <1

for every point and the treatment of boundary conditions is reasonable, then
we can expect the scheme to be stable. Clearly, the condition [Ag(zm,7™)] <1
is equivalent to
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‘b;’ll,meie + bg,m + b’r—Ll,rrLeii0|2 - |a’imei0 + a’g,m + a’zl,meiie‘Q S 0 (724)

if |a§"mei9 +ag., + a117m6—10‘2 > ¢ > 0, ¢ being a constant. The latter is
easier to use in practice than the former.

Let us analyze the stability of scheme (7.6) in this way. This scheme has

the form (7.23) with
n+1/2 n+1/2
" Am b,
m < 2Ax? + 4Ax ) Ar,

aq =
an+1/2
n m
aowm = ]. + TJ;QAT’
n+1/2 n+1/2
a” = dm___ / b~ : AT
—1m 2Az? 4Ax ’
no_ n
1,m = —A1,m»
n o _ n
0,m — 2- aO,mv
n _ n
b—l,m = TA_q ;-

Here, we assume
n+1/2 _ n+1/2 _
m - cm - O

because we analyze the stability with respect to initial values only and ignor-
ing a term of O(AT) in coefficients will have no effect on the conclusion on
stability. The left-hand side of the condition (7.24) for this scheme is

[7a?,mei0 + (2 - ag,m) - ar—Ll,meiiG] [70’711,7716710 + (2 - ag,m) - ar—Ll,meia]
_(a’;’ll.,meie + a’g,m + aﬁl,meiie)(aimeiw + a’g,m + a‘zl,meie)
= (a?,m)2 + (aOn,m - 2)2 + (aﬁl,'m)2 + Qa?,m(ag,m - 2) cos
+2(ag ,, —2)a”y ,, cos0 + 2ay,,a"y ,, cos 20
- [(a?,m)2 + (ag,m)Q + (a‘zl,m)2 + 2a‘Tll,rna‘g,rn cos + 2ag,ma711,m cos ¢
+2ay ,,a”y , cos 26
= (agm, — 2)% — (a&m)2 —4ay ,, cosf —4a”, ,, cost
4a;2+1/2 4(1ZZ|F1/2
=T AR AT + a2 ATt cosf
4an+1/2
m

= WAT(COS@ -1).

This expression is always nonpositive. Therefore, the condition (7.24) is satis-
fied at every grid point. For scheme (7.6), there is no other boundary condition.
Consequently, the scheme is expected to be stable.

So far, we say that a scheme is stable with respect to initial values if the
error of the solution caused by the error in the initial condition is less than
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or equal to the error in the initial condition. However, generally speaking, we
say that a scheme is stable with respect to initial values if the error of the
solution caused by the error in the initial condition is less than ¢ times the
error in the initial condition. ¢ is a constant independent of Az and Ar, but
is allowed to be greater than one. That is, the error is allowed to increase by
a certain factor, but the factor must be bounded and independent of Ax and
At. Therefore, we can take

Ao (X, 7™)| < 1+ AT (7.25)

as a criterion for stability.? In fact, if the inequality (7.25) holds for any @,
then usually we can have

le"lly < (1+EAT)[[e"H||s, < (1+EA7)"[[°]s, < TNl s,

for any n < N, so the error increases at most by a factor e“’. Here we have
used the relation (1 + eA7)#a7 < e for any positive Ar.

Now let us study the stability of the difference scheme (7.5) by using the
criterion (7.25). We consider the stability with respect to initial values only, so
we can set g;;, = 0. In this case, the scheme has the form (7.23) with a7 ,,, = 0,
ag,, =1,a"; ,, =0 and

_ap At by AT
Lm ™ A2 2Ax ]
n a At n
om =1—2 ZmQ + AT,
ap At b AT

Pim = Az2 2Az

Therefore,

)\G(xmv Tn) = ?,meie + bg,m + bzl,meiie

= b+ (B0 + 0", ) cos O+ (bF,, — by ,,) sind

a™ At n a™ At AT
=1-2 Zﬂ + ey AT + 2 2332 c089+1ﬁsm0
n A 0 b A

=1- 4a2x27 sin? 3 + AT +1 mAxT sin 6.

It A 1 A 1
a At T
m < — < 2
fax Ax?2 — 2 or Ar?2 — 2maxa?,’ (7.26)

2This criterion is equivalent to

i0 —i02 i0 —ig2 _ =
b me” 4+ b0 m + 021 me VT — alme” + agm + a1 e |7 < AT
if |a7f,mele +ag.m + aflyme_‘e\Q > ¢ > 0, ¢ being a constant, which is easier to use

in practice than the criterion (7.25).
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then

n A 2
Do 72 < (14 || Ar)? + (bm )

Ax
b )2
< (e an 4 nl g,
2maxal,
<(1+|cn|m)2+2(1+\cn|m)ﬂ
- m m 4maxal,
2
n\2
(bi7) Ar
4maxal,

n
4 maxa?,

2
1+ ey | AT + 7(1)7") AT‘|

Thus, let @ = |¢™ | + (b7)* /(4max a”), we have

Ao (m, 7™)| < 1+ AT

and we can expect this scheme to be stable if inequality (7.26) holds.

In fact, the stability of scheme (7.6) with variable coefficients has been
proved rigorously in the paper [79] by Sun, Yan, and Zhu. By a similar method,
the stability of scheme (7.5) with variable coefficients can also be shown when
inequality (7.26) holds. If readers are interested in such a subject, please see
that paper and the book [97] by Zhu, Zhong, Chen, and Zhang,.

7.2.2 Convergence

If a scheme is stable with respect to initial values, and the truncation error
of the scheme goes to zero as Az and A7 tend to zero, then the approximate
solution will usually go to the exact solution. Such a result is usually referred to
as the Lax equivalence theorem (see the book [67] by Richtmyer and Morton).
We are not going to prove this conclusion for general cases but explain this
result intuitively through proving this result for special cases.
Consider the explicit finite-difference method (7.8). We know that the
exact solution u(x, 7) satisfies the equation
w(zp, T

= au(Tmi1, ") + (1 = 20) (X, 7") + qt(Tpp—1, 7)) + ATRZT(A.ZE, AT),
m=1,2- M—-1, n=01,---,N—1,

where

AT 02u Az? 0%y
n 2 _ g n
Ry (Ax*, AT) = 5 92 (Tm,n) —a 19 8x4(§’T )-
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Let e?, be the error of the approximate solution on the point (z,,,7"), that is,

n o __ n n _ _
er = (@, ") —upy, m=0,1,--- M, n=0,1,---,N.

Then, e}, is the solution of the problem

entl = aep 1+ (1 —2a)ep, +aep, | + ATR™ (Ax?, A7),
1

m=1,2,---,M—1, n=0,1,--- /N —1,
ettt =0, n=0,1,---,N—1,
entl =0, n=0,1,--- ,N—1,
eV =0, m=0,1,---, M.
Because e = e}, = 0 for any n, the system can be written as
e"tl = Aje"” + ATR"(Az?, A7), n=0,1,---,N —1,
e’ =0,
where e” is a vector with M — 1 components e}y, m =1,2,--- , M — 1 and
RY(Az?, AT)
R3(Az?, AT)
R"(Az? A7) = )
RY_(Az?, A7)
Actually, €™ can be written as ZZ:I ef‘k). Here, for k = n,
€(n) = ATR™ Y (Az?, AT)
and for k=1,2,--- ,n—1, e?k) is the solution of the following problem

e?,:gl = Ale?k), A=kk+1---,n—1,
efy) = ATR*1(Aa?, Ar).

Because the error does not increase for the scheme (7.8) if a« < 1/2, ||e"]|.,
should not be greater than >, _; A7||R*~1(Az?, A7)||,,. Noticingn < T/Ar,
we see that e”, goes to zero as RF~1(Az?, A7) tends to zero for k = 1,2,--- ,n
and m = 1,2,--- ;M — 1. Hence, the approximate solution converges to the
exact solution as Az and A7 tend to zero and « stays less than 1/2 and
|[e"||., has an order of O(Ax?, Ar). Usually, a = aAr/Az? stays constant as
Az and At tend to zero. Therefore, ||€"||., = O(AT), and we say that the
scheme (7.8) converges with order of Ar.

For implicit schemes, the situation is similar. Consider the Crank—Nicolson
scheme (7.9). The exact solution satisfies
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W( T, T — (@, T)

At
a [u(zmy1, 7" = 2u(T, 7" + w(@mo1, 7 )
2 Ax?
u($m+17 Tn) - 2u(xm7 Tn) + u(xm—lv Tn)
_|_
Ax?
m=1,2- , M—1

+ R (Ax?, AT?),

)

where

R (Az?, AT?)
1 &3u

4 2, o4
_ A2 77(%7“”(1))7(1 0*u _ Azfad'u
-

gm(l’m, 77(2))] 12 %(57 77(3))-

In this case, the error satisfies
Ae! = Be" + ATR™(A2?, AT?),

where " and R"(Axz?, A7?) are two (M — 1)-dimensional vectors with e,
and R? (Axz?, A7?) as components, respectively, and A and B are given in
the difference scheme (7.10). Just like in the case of the scheme (7.8), €™ can
also be written as 37)_, efy,. Here, for k =n,

e?n) = ArATIR! (A:c2, ATQ)

and for k=1,2,--- ,n—1, e?k) is the solution of the following problem:
Ae?,j)l =Bef,), n=kk+1--,n-1,
eé“k) = ATATIRF 1 (A22, AT?).

The Crank—Nicolson scheme is stable with respect to the initial value. Thus,
|l€"[|., does not exceed Y, _; Ar||[ATIR*"1(A22, A7?)||,,. Because

Ae,, = (1 + 2arsin? %) €ups

we see that 142a sin”(wy,/2) is an eigenvalue of A. Thus, 1/[1+42a sin®(wy,/2)]
is an eigenvalue of A~!. This means that A~! always exists and that its norm
is bounded for any case. Consequently, ||€™||., goes to zero as Az and At
tend to zero. In this case, we say that this scheme is convergent. Furthermore,
because ||e"||., is of the order O(Az?, A7?), we say that the scheme has a
second-order convergence or possesses a second-order accuracy.

For schemes with variable coefficients, from the stability with respect to
initial values and the consistency of a scheme, we also can have its convergence.
Here, we say that a scheme is consistent with the partial differential equation
if the truncation error of the scheme goes to zero as Az and A7 tend to zero.
In the paper [79] by Sun, Yan, and Zhu, some results on this issue are given.
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7.3 Extrapolation of Numerical Solutions

When a partial differential equation problem is discretized, a truncation error
is introduced that causes the numerical solution to have an error. What is
the relation between the truncation error and the error of the numerical solu-
tion? Intuitively, the answer should be that a term of O(Axz*1, Ark2) in the
truncation error causes an error of O(Az*1, Ar*2) in the numerical solution.
Here O(Az*1, Ar*2) denotes a term less than C (Az™ + Az*2), where C is
a constant. Let us illustrate this fact.
Consider the following problem
2
% = a(z, 7‘)% + b(.’L‘,T)% +c(z, T)u+ g(z,7),
0<z<1, 0<7<T,
u(z,0) = f(z), 0<xz<1,

where b(0,7) = a(0,7) = a,(0,7) = b(1,7) = a(l,7) = a,(1,7) = 0 and
a(z,7) > 0. This problem can be approximated by

n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2
Srum P = a2y 2y 2 s a2 P2yt gn/

T%m m b
0<m<M, 0<n<N-1,
u = f(xm), 0<m< M.
(7.27)
Here,
5 un+1/2 _ u:“er+1 B urrln
T%m AT )
1
§2un+1/2 — 1 upth = 2uptt 4 up + U1 — 2y, + Uy
rom 2 Ax? Ax? ’

2 2Ax 2Ax

n+l _ n+l n _.n
§ n+1/2 1 Up+1 Upm—1 + Um+1 Up—1
0z Uy, 2 )

1
frz — 5 (frtt 4+ fr),  f being u,a,b,c,g,

and the same notation will be used for other functions in what follows.
The truncation error of this scheme is O(Ax?) + O(A7?) everywhere; more
accurately, it is in the form

Ppt 2 Ax® + RUFVZ AT 4 O(Axt + AT,

where Pp™/? and Ris™/? denote the values of two functions P(z,7) and
R(z,7) at = x,,, and 7 = 7"T1/2, That is, the exact solution satisfies the

following equation:
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SUMHE = a2 bt 20, U2 g U 2 g g2
+PZ£+1/2A$2 + RZ{H/QATQ + O(Ax* + ATY),
0<m<M, 0<n<N-1,
uf, = f(xm), 0<m<M,
where U stands for u(z,,, 7). Suppose v; and vy are the solutions of the

problems

2
% = a(fE,T)% + b(ﬂU,T)% + c(z, 7)v1 + P(x,7T),
0<z<1, 07T,
”U1(.’£,0):0, 0<z<1
and
81}2 (92’1)2

G b(x,T)% + ez, T)vs + Rz, 7),
0<z<1 0<7<T,
va(z,0) =0, 0<z<1,

respectively. Let V7", and V3", denote vi(zy,,7") and va(xy,,7"). Then,

(571/1?;1/2 _ aZH/Q(Sngnntl/Q+b$;r1/260$\/1’?7:1/2+c"m+1/2V1";1/2+P7%H/2

+O(Am2+ATQ), 0<m< M, OSﬁSN—l,
VP, =0, 0<m<M,
and
57‘/27:11/2 = azﬂ/%gv;;l/z+b%+1/250z‘/27:11/2+C%+1/2V27,17:1/2+R%H/2
+0(Az? + AT?), 0<m<M 0<n<N-1,

Let us define
Wy =Up —upy, — Vi, Ax® = V' AT,
It is clear that W) satisfies
5TW71’71+1/2 _ Cl:}n+1/25§Wq:;+l/2 + b%+1/260$WTrTLL+1/2 + C;’Ln+l/2W£L1+l/2

+O(Ax* + A2 A% + AtY), 0<m <M, 0<n<N-1,
w9 =0, 0<m< M.

Because the scheme is stable with respect to the initial value and the nonho-
mogeneous term (see the paper [76] by Sun and the paper [79] by Sun, Yan,
and Zhu for the details of the proof) and O(Ax?A7?) can be expressed as
O(Az* + At*), we have

R —ully — Vi, Ad? = V3 AT?| < O(Ax* + ArY),



416 7 Finite-Difference Methods

or we can write this relation as
W(Ty, ) —ul, (A, AT) = v1 (24, T")sz + v (T4, T")A72 + O(Ax4 + AT4),
that is,

ul (Ax, AT) = w(@pm, ™) — 01 (T, T) A2? — vo (T4, ) AT?

+O(Azt + AT, (7.28)

Here, we write u!, as u”,(Az, A7) in order to indicate that the approximate
solution is obtained on a mesh with mesh sizes Ax and Ar. For this case, the
error of a numerical solution is in the form

V1 (T, TV AZ? + Vo (@, TV AT? + O(Az* + AT?),

which has the same form as the truncation error given above. Similarly, if the
truncation error of a numerical scheme, including the algorithms for boundary
conditions, is

PAz? + QAz AT + RAT? + O(AT?),

i.e., the scheme is second order and stable, then the numerical solution can
be expressed as

ul (Az, AT) = w(@p, ™) — 01 (T, T) A2? — v19(@4, T") AT AT

— 09 (Tyn, T") A? + O(AT3), (7.29)

where O(A73) means O(Ax? + Ax? At + Az Ar? + A73) for simplicity.

Here, the approximate value is given only at the nodes. Now let us gen-
erate a function defined on the domain [0, 1] x [0,7] by some type of inter-
polation. We assume that the interpolation function generated from the val-
ues on the nodes by an interpolation method is an approximation to f(z,7)
with an error of O(A73) for any smooth enough function f(z, 7). For exam-
ple, if we use quadratic interpolation, then the interpolation function gener-
ated has such a property. Let u(x, 7; Az, A7) denote such a function gener-
ated by u(x,,, 7"; Az, A1). Because u(xy,, 7"; Az, AT) consists of u(z,, ") —
01 (Tn, ") A2 — 012 (X, T) AT AT — 03 (21, 7)) AT? and O(AT3), the interpo-
lation function also has two parts. One part is the interpolation function gener-
ated by w(zp, 7) =01 (T, T) Az — 012 (2, T) AT AT — 05 (T, T) AT2, Which
we call uy(x,7; Az, At). The other part is generated by the term O(A7T3),
which is denoted by wus(z, 7; Az, AT). Clearly,

uy (x, 75 Ax, A1) — u(z, 7) + v1 (2, T)Ax2 + via(, T) Az AT 4 vo(, T)A7'2

is a term of O(A7?). The function us(z, 7; Az, A7) is also a term of O(AT?).
Consequently, we have
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u(x, 7; Ax, A1) = uy (v, 75 Ax, A7) 4+ ug(z, 75 Az, A1)
= u(x,7) —v1(x, 7)Ar? — v12(2, T) AT AT — vo(z, T) AT?

+O(AT).

In this case, we can use the following technique to eliminate the error of
O(Ax? + Az At + A7?) if we have numerical solutions on a mesh with mesh
sizes Azx and A7 and on a mesh with mesh sizes 2Az and 2A7. Let us consider
a linear combination of the solutions on the two different meshes, which are
denoted by u(x, 7; Az, Ar) and u(z, 7; 24z, 2A7):

(1—=d) x u(x,7; Az, AT) + d x u(x, 732402, 2A7)
=u(z,7) —v1(z,7)(1 — d+ 4d) Az? — vio(z, 7)(1 — d + 4d) Az AT
—vg(z, 7)(1 — d + 4d) AT? + O(AT3).

1
If we choose d such that 1 —d+ 4d = 0, that is, d = —3 then

(1 —d) x u(z, 7; A, A1) +d x u(z, 75242, 2A7) = u(x, ) + O(AT?).

Therefore,
%[élu(ac7 T3 Az, A1) — u(x, 7; 2Ax, 2A7)) (7.30)
is an approximate to u(x, ) with an error of O(A73).

However, for the approximation (7.27), the expression of the numerical
solution is in the form (7.28), and the extrapolation formula of numerical
solutions (7.30) gives an approximation to u(x,7) with an error of O(AT?).
This is a special case. Generally speaking, if for a second-order scheme we
have three solutions u? (Az, A7), ul (2Ax,2A7), and ul, (4Ax,4A7), then
we can have an approximation with an error of O(A7*). In order to do that,
we first generate an interpolation function from the values at these nodes
and require the interpolation with an error of O(A7*). This can be done, for
example, by cubic interpolation. Let u(z, 7; Az, A7), u(x, 7;2Az,2A7), and
u(x, 7;4Ax, 4AT) represent these functions. Then, consider a linear combina-
tion of them:

(1 —dy — do)u(x, 7; Az, A1) + dyu(z, 75242, 2A7) + dou(x, 7; 4 Az, 4AT).
If we choose diand dy such that

1—d1—d2+22d1+42d2:0,
1 —dy —dy+23dy + 43dy = 0,

which gives
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then all the terms of O(A7?) and the terms of O(A73) in
(1 —=dy — do)u(z, 7; Az, A1) + dyu(x, 73 242, 2A7) + dou(x, 7; 4Ax, 4AT)
are eliminated. Therefore
1

51 [B2u(x, 7; Az, A1) — 12u(x, 75242, 2A7) + u(x, 7;4A2,4A7)]  (7.31)

gives an approximation to u(z,7) with an error of O(A7?*) for any second-
order scheme.

Here, we need to point out that in order to obtain an approximate solution
with an error of O(A73), it is not necessary for both Az /Axg and Aty /AT, to
equal two, where Axq, Am; are mesh sizes for one mesh and Az, A for the
other. For example, if we have a solution on a 12 x 16 mesh and a solution on
a 9 x 12 mesh, then we still can obtain an approximate solution with an error
of O(A73) by using extrapolation. Furthermore, if there exist solutions on
15 x 20, 12 x 16, and 9 x 12 meshes, then we can have an approximate solution
with an error of O(A7%) by using extrapolation. These are left as a problem
for the reader to prove. Generally speaking, when a scheme has an error of
AzF and ATk]: and wekknow solutions on two meshes, the extrapolation can

1 1
be used if Azlle = Azi ,
Ary? Ary?
in order to obtain the two solutions. For example, if ky = 2 and ky = 1,
then when solutions on a 20 x 20 mesh and a 40 x 80 mesh are obtained, this

where Ax; and Ar;, i = 1,2, are mesh sizes used

12 142
technique can also be used because @ = @ (see Problem 16).

The technique of generating more2gccuratescl)results by combining several
numerical results, which is similar to Richardson’s extrapolation in numerical
methods for ordinary differential equations, is referred to as the extrapolation
technique of numerical solutions in next few chapters. Finally we need to point
out that this technique works if the solution is smooth, but may not work if

the solution is not smooth enough.

7.4 Two-Dimensional Degenerate Parabolic Equations

Generally speaking, the coefficients of PDEs are variable, and so the difference
equations also have variable coefficients. For such a case, the theoretical analy-
sis of numerical methods is more complicated. In this section, for some type of
two-dimensional degenerate parabolic equations and for a special but popular
scheme, a complete theoretical analysis of numerical methods is given.

Consider the following two-dimensional degenerate parabolic partial
differential equation:
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@—a (z T)@+2CL (z T)ﬂ—l—a (z T)@—t—b(x T)%
87_ = a11\T, Y, 8:82 12\, Y, 8m8y 22T, Y, 3y2 1\, Y, ax
0
Hbae, )G e,y Twkg(e,y 7). (5,y)€R, 0STST,  (732)
with the initial condition
u(z,y,0) = f(z,y), (x,y) €2, (7.33)
where
Q={(z,y) |z <z <zu,yu <y < yul,
a1 (z,y, T =0, age(x, ,T‘ =0, 7.34
11( y ) z=x; O x, 22( Y ) y=y; OI y, ( )
bi(z,y, T —0, bo(z, ,T’ —0, 7.35
1( Y ) x=x; O x, 2( Y ) y=y; OI y, ( )
8011(%%7) aaQ?(x?va)
or x=x; OI x, ’ 5’y y=y; OI ,y, ’ ( )

and the matrix

(au(a:,y,T) a12($,y77')>

@12 (J?, Y, T) @22 (.73, Y, T)
is semi-positive (nonnegative); i.e., for any X € R and Y € R, we have
a1 (z,y, 7) X2 4 2a12(2,y, ) XY + age(2,y,7)Y? > 0. (7.37)

The matrix of the coefficients of second derivatives is semi-positive, so a?, <
aiiage. Thus, when a1 = 0 or ass = 0, we have ajo = 0. Thus, from the
expression (7.34), we have

= 07 a12(1“7y77-)’ =0. (738)

a12('ra Y, T) Y=y OT y
=Y u

rx=x; O x,

Taking the partial derivative of the first and second relations in the result
(7.38) with respect to y and z, respectively, we can further have

a b ) a ) b
Sara(@,9,7) 0, dara(z,9,7) 7)‘ —0.  (7.39)
8y r=x; O x, ox y=y; OI y,
Denote
820/11(:1773/77) 82a12(x7y77)
cl = max — Cy = max _
(z,y,7)€N2X[0,T] 0x? (z,y,7)ENX[0,T] 81‘6y
52(122(1‘72/77) abl(xay77—)
c3 = max —, cy = max —_—
(z,y,7)ENRX[0,T] 8y2 (z,y,7)ENX[0,T] ox
abz(%yﬂ')
5 = max —= 7, cg = max le(z,y,7)],
(z,y,7)€2x[0,T] dy (2,y,7)€2[0,T]
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and set
c=c1+2c+c3+ca+ 5+ 2. (7.40)

In Sect. 2.4.3, for more general problems we have obtained the following
inequality:

//Q u?(z,y, 7)drdy < e [//QfQ(UC,y)dxdy
+ /OT (/Agz(x,y,s)dxdy)ds] 0<r<T

where ¢ is a constant determined by the bounds of the coefficients of the PDE
and their derivatives. Of course, for the problem here, such an inequality holds.
In this section, we are going to prove that for the numerical solutions obtained
by a special but popular scheme, such an inequality still holds.

7.4.1 The Crank—Nicolson Difference Scheme and a Preliminary
Lemma

Take three positive integers M, N, and K. Set hy = (xy, — x;)/M, ha = (yu —
y1)/N, At = T/K, and denote

Ty =21 +mhy, 0<m < M,
Yn =Y +nha, 0<n <N,
T =kAr, 0<k<K

On = {(@m,yn) |0 <m < M,0<n < N},
Qpr ={m" |0 <k < K}.

Let V = {u|u={tmn,0<m < M,0<n<N}} be the grid function
space on {2;,. If w € V, we introduce the following notation:

5xum+%7n = hil(um+1,n - umn)7 Aptmn = T;ln(um+1,n - Um—l,n)a
6yum,n+% = }%Q(Um,n-‘rl - umn)7 Ayumn = i(um,n-&-l - umm—l)y
5gumn = hig(um+1,n - 2umn + umfl,n)7
6§umn = %(um,n+1 — 2Umn + um,n—l)-

It is obvious that

1
2
Amumn = 7(5mum+%,n + 6-'Eum—%,n)7 61”"’” = h71(5$um,+%,n - 5mum—l,n)v

1

2 2

1 9 1

AyUpn, = 5(6y“m,n+% + (Syum,n—%)v 5yumn = E(éyum,n+% — 5yum,n—%)'

For any u € V, and v € V, their inner product is defined by
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M—-1nNn—-1 M—
1
(u U = hihs g E UmnVUmn + 5 § umOUmO + umNUmN)
m=1n=1 m=1

- 1
§ UonVon + UMnUMn) + Z(UOOUOO + Unr0Va0 + UonVon + UMNUMN)

I\DM—

(7.41)
and the norm of a grid function is defined by
l[ull = v/ (u, u).

It is also obvious that the definition of the inner product can also be written
in another form:

M—1nN-—-1

(u U) 7h1 h2 Z Z (umnvmn + Um+1,nUm+1,n

m=0 n=0

+um7n+1vm7n+1 + um+1,n+1vm+1,n+l> . (742)
We also define the grid function U on 25 x 24, as follows:
Uk =uw@m,yn, ™), 0<m<M, 0<n<N, 0<k<K.

In what follows, we use the following notations:

1

k+1 1 1
Unn® = (UM 4 UR), 778 = S (7% )
and
k+3 1 k43 1
(all)mnj = a11(Tm, Yn, T +;), (@12)mn® = 012($m,yn,7k+;)a
k+3 1 k43 1
(a22)mn2 22 (xma yna ]H_é )7 (bl)mn2 = (xma Yn, Tk+§ )7
k+3 k+% ktl
(b2)71nn = by (T, Y, THHE), Cmn® = (T, Yn, 7" 2),
k+id
gmn2 = g(ﬂfma yn77k+2)a fmn = f(-rmayn)-

Suppose problem (7.32)—(7.33) has a smooth solution u(z,y, 7). Applying
the Taylor expansion, we can obtain

1
o (USAY = U,) = (nn ) B2Umh? + 21z Ao AU

+(a22)k+252Uk+2 +(b1)k+2A Uk""z +(b2)k+2A Uk+2

k4L
“+c mttz Ung + gmn2 + RthQ 5

0<m<M, 0<n<N, 0<k<K-1 (7.43)



422 7 Finite-Difference Methods

and there exists a constant ¢y such that

1
IRNZ| < co(h2 + h2 + Ar?),
0<m<M, 0<n<N, 0<k<K-1. (7.44)

1
Omitting the small term R,]ij;f in the expression (7.43) and writing down the
initial condition on 2:

Uon:fmnv 0<m<M, 0<n<N, (7.45)

we have for the problem (7.32)—(7.33) the following difference scheme:

1 k k k+3
E(uijj%l - ufnn) (all)mtzz 532; thz + 2(a12)mn A Ayuth
+(a22)mn 55 7]:;;,2 +( )k+2A umn2 +( )k+2A umn2 +Ck+2 }:ntf
tghnt, 0<m<M, 0<n<N, 0<k<K-1, (7.46)
W = frms 0<m <M, 0<n<N. (7.47)

The following lemma will be used for the analysis of the difference scheme.

Lemma 7.1. Let u € V. Then we have
(all 2 52u, u) +2 (‘112 Ay Ayu u) + <a22 252u u)
+ (blerEAmu,u) + (b§+§Ayu, u) + (ck+§u,u) < §Hu||2, (7.48)

where ¢ is defined by the expression (7.40).

Section 7.4.2 is devoted to the proof of this lemma.

7.4.2 ¥The Proof of the Preliminary Lemma

We will estimate each term in the inequality (7.48). For simplicity, we omit
the superscript.

Proposition 7.1 For (alléﬁu,u) and (aggégu,u), we have the following
inequalities:
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B, = (a1152u u)

ot m—— n)2+ 6Ium l1’L)2
<""”[zzau R
m=1n=1
M—1 2 2
m—10)" + (02Up 1)
5 oL
+= 7; a11)m B)
Ry L )2 (Outtyyr 1 y)? 1
m—f,N T¥m+5,N + 2
+= 7; a11)m 5 "‘201”“”
pd = (6 um—l n)2 + (5 u’m—i— n) ].
ZZ[an el
(7.49)
and
By = (a2252u u)
M—1N-—1 mn—l2+ 5umn
<hh2[zza2m By
m=1n=1
5 yUon—1)° + (Oyug pit)
+—= z a22)o 5
1 e (6 u ,n71)2 + (6 n+ ) 1
+3 n:1(1122)Mn L 3 e +§C3||UH2
M—1nN—1 ((5 m 1)2+(5 U 1)2 1
Yy¥m,n—3 Yy¥mn+s3 2
S 7h1hQ’mZ:1 7;1 l(a22)m,7l 2 2 + 563”’&” .
(7.50)
Proof. Because (a11)on = (a11)mun = 0 for n = 0,1,--- , N, some terms in

the inner product are zero. Thus, the expression of (auégu, u) is

M—1N-—1
By = (andzu,u) = hihy [Z > (a11)mn 02t Umn
m=1n=1
1 M—1 1 M—1
+§ Z (all)mO 6ium0 Um0 + 5 Z (all)mN 6iumn UmnN
m=1 m=1

(7.51)
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Averaging the following two equalities:

M—1
hl Z (all)mn 6gumn Umn
m=1
M—
= Z a11)mn (0 wlmy L n O um_éyn)umn
m=1
M—1 M—2
= (all)mn 6wum+%7n Umn — Z (all)m-i—l,n 5wum+%7n Um+1,n
m=1 m=0
M—1 M—1
= (all)mn 6wum+%7n Umn — Z (all)m-i—l,n 5wum+%7n Um+1,n
m=0 m=0
M—1
= (all)mn 6wum+%7n (umn - um-i—l,n)
m=
M—1
+ [(all)mn - (all)m-i-l,n] 5wum+%7n Um+1,n
m=0
M—1 M—1
=—h (all)mn((smum.q_%,n)Q —hy Z (d’zall)m_t,_%m 6acum+%)n Um+1,n
m=1 m=0
and
M—1
hl Z (all)mn 63umn Umn
m=1
M—1
= (all)mn(amum-i-%,n — 0y L ) lmn
m=1
M M—1
= Z (all)m—l,n 5zum_%7n Um—1,n — Z (all)mn 5zum_%7n Umn
m=2 m=1
M M
= Z (all)m—l,n 6wum_%7n Um—1,n — Z (all)mn 6wum_%7n Umn
m=1 m=1
M
- (all)mn ) Upy—1 (um 1,n umn)
m=1

M
+ Z [(all)m—l,n - (all)mn] 5xum_%7n Um—1,n

M—1 M—1

=—h Z (all)mn(5wum—l,n)2 —h Z (6$a11)m+%,n 5wum+%,n Umn,

m=1 m=0
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we have
M—1
h1 Z (all)mn 5§umn Umn,
m=1
iy (6CE’u’mfl n)2 + ((sCEUerl n)2
=—h mZ::l(an)mn - D) =
M—1
—hy Z (6xa11)m+%,n 6$um+%,n um+é,n
m=0
iy ((SI’u’mfl n)2 + ((SiEuerl n)2
=—h mZ::l(an)mn - D) =
1 M—1
_5 Z (6$a11)m+%,n (ugn—&-l,n - u?n,n)
m=0
iy ((SI’u’mfl n)2 + ((SiEuerl n)2
=—h mZ::l(an)mn - D) =
1 M—1
+§[ Z ((5$a11)m+%,n - (5$a11)m—%,n) u?nn
m=1

+(5$a11)%,nu(2)n - (53¢a11)M—%,nu§4n}

M-l (Optlyy_1 )% + (Gpu 41 )2
m—3,n r¥m+5,n
< -hy mzzjl(an)mn 5
1 1 iy 1
+§C1h1 <2U%n + mZ:lufnn + 2ufm> )
Here we have used the relations

< cihy,

‘(6$a’11)m+%,n - (6$a’11)m7%,n

1 1
[(6z011) 1 | < 501/117 1(62011) -1 | < iclhh
which hold because of

82a11 (l‘, Y, T)
Ox?

aa/ll ($7 Y, T)
ox z=z; OT z,

c1 = max and =0.

(@ m)e2x[0,7]

t

Inserting the above equality into the equality (7.51), we obtain the inequality
(7.49).

It is clear that for the second inequality in Proposition 7.1, the proof is
almost the same as the proof for the first one. The concrete proof is omitted
here. W
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Proposition 7.2
By = (a12A:Ayu, u)

M—1N—-1
< —1h1h2 Z Z a12 mn |:5 um+ ,n Jyum n—l +5 Upp— L n 4 um n—f
m=1n=1
1
Oty Syt ey Oty 0 Oyt ey | + 0l (7.52)
Proof. Because a;3 = 0 on all the boundary points, the expression of

(a12A; Ayu, u) can be written as follows:

M—1N-—1
B2 = h1h2 Z Z(a12)mn(AxAyu)mnumn
m=1n=1

M—1N—-1

hlhz > (a12)mn (5 Oyl 3 1+ a0yl 1 1
m=1n=1
008yt i} + OOyt } ) U
1 M—1nNn—1
- Z |:h1h2 Z Z(a12)m,n 5r5yum_§7n_% Umn
m=1n=1
M—1nN—-1
+hiho Z Z(alg)mn 0,0 Uyl p 1 Umn
m=1n=1
M—1nN—-1
+h1h2 Z(alg)mn (deyum_f n+§ Umn
m=1n=1
M—1nN—-1
+hihs (a12)mn 515yum+%1n+% Unn
m=1n=1
1
= 1(321 + B2z + Baz + Boa). (7.53)

For By1, we have

By = hihy g E (a12)mn 020 yUm—1n—1 Umn

m=1n=1

N—1m—1

= ho Z Z (a12)mn(6yum,n—% - 5yum71,n7%)umn

n=1m=1

N—1 [M—1 M—2
= h2 E § (a12)mn 6yum’n7% Umn— § (a12)m+1,n 6yum’nf% Um+1,n

n=1 |m=1 m=0

n=1 Lm=0 m=0

N—1 [M—1 M—1
= h2 E § (a12)mn 6yum’n7% Umn— § (a12)m+1,n 6yum’nf% Um+1,n
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1wt
ha Z [Z a12)mn
M—1

+Z (@12)m

M—1N-—1

1
m,nfg

(a12)m+1,n] 5yum’n7 % Um+1 ,n}

(umn - um+1,n)

—hihs Z Z(am)mn 6mum+%}n 6yum’n7%

m=1n=1
M—1N-—1

_h1h2 E E (6ma12)m+%’n 5yum’n7% um+1,n .

m=0n=1

have

M—-1nN-1

B22 = h1h2 Z Z(a12)mn 5x5yum+%’n7% Umn

m=1n=1
N—1m—1
= E a’12 mn(5 uerl nff - 5yum,n—%)umn
n=1m=1
N—1 [MmM—1
= h2 (a12)mn 5yum+17n7% Umn

= 2 (@12)mn Syuy,

- (a12)mn (Syum,nfl (’U/m’n -

m=1
N—1 M
= ha Z [(@12)m
n=1 Lm=1
M—1
m=1
N—1
= hs —h
n=1 m=1
M—1
—h1 Z(am
m=1
N—1 [MmM—1
= —hihy > (ar2)
n=1 Lm=1
M—1
+ (60za

,nfl um”ﬂ

2

427

(7.54)
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M—1nN—-1

= —hihs E g (a12)mn 6wum_%7n 5yum,n_%
m=1n=1
M—-1nNn—-1

—hihs Z Z (5xa12)m+%7n OyUnmt1n—i Umn - (7.55)

m=0 n=1

We can see that during deriving the equalities (7.54) and (7.55), the sub-
scripts n and n— 3 are unchanged. Thus, from the equalities (7.54) and (7.55),
for Bosz and Bay, we can have

M—1nN—-1

Bas = —hihs E E (a12)mn 5zum+%,n 5yum,n+%
m=1n=1
M—1nN—-1

—hiho Z Z (5za12)m+%7n 5yum’n+% Um+1,n 3 (7.56)

m=0 n=1

M—1N—-1

By = —hihy g § (@12)mn Oty 1 Oyt oy
m=1n=1
M—1nN—-1

—hihs Z Z (61a12)m+%,n 5yum+1,n+% Umn - (757)

m=0n=1

Putting the second terms in the last expressions of Bsy, Bao, Bog, and Bay in
the expressions (7.54)—(7.57) together yields

M—1N-—1
—hahs Y (02012) g1 (gt g3 F Oyt s 1)ttt
m=0n=1
M—1N—1
—hihs E E (0212) iy 130 Oyl 1 et F Oythn 1 g 1)t
m=0n=1
M—1nN—-1

= _hl Z Z (5a:a12)m+%’n [(um,nJrl - um,nfl)uerl,n

m=0 n=1
+(um+1,n+l - um+1,n71)umn]
M—1nN—-1
=—h g g (axa12)m+%)n (um—i-l,n-',-lumn + U n+1Um+1,n
m=0 n=1
—Um+1,n—1Umn — um,nfluerl,n)
M—1 [Nn—1
- _hl § E (5za12)m+%,n (um+1,n+1umn + um,nJrluerl,n)
m=0 Ln=0
N—1

- Z (5ma12)m+%7n+1 (um+1,num,n+1 + umnum+1,n+1)
n=0
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M—1N—-1
- h1h2 § § (5y§wa12)m+%7n+% (um+1,n+1umn + um,n+lum+1,n)
m=0 n=0
M—1nN—-1
2 2 2 2
02h1h2 E E (um+1,n+1 + Umn + um,n+1 + um+1,n)
m=0 n=0

calful*. (7.58)

<

N’ | —

Here we have used (5ma12)m+%,0 = (0pa12) = 0 and another form of the

’"L-‘r%,N
definition of inner product (7.42).
Thus, inserting the equalities (7.54)—(7.57) into the expression (7.53) and

using the inequality (7.58), we get

M—1nN—1

B2 = _*h1h2 Z Z a12 mn (6 unl+2 n 4 um n—l + 5 um—%,n 5yum,n—%

m=1n=1
+5ﬂ¢um+%,n 5yum,n+% + 596um—%,n 5yum,n+%>

M—1N-—1

_7h1h2 Z Z (5 a12 m+ n(é mnf— +(5 yUm, nJr%)uerl,n

m=0n=1

M—1N-—1

—7h1hgzz (6za12) m+ n(é Uy i1 9 1—|—(5 Yl t1ngd L) U,

m=0n=1

M—1N-—1

_7h1h222 aig mn((S Upyy 1 Oy Uy ,—|—5 Uy —ndumnfé

m=1n=1

IN

1
+6Ium+%,n 5yum,n+% + 9 U1 ,m 5 yUm n+%) + 502”“”2' n

Proposition 7.3 For (byAyu,u) and (baAyu,u), we have

1
B, = (biAzu,u) < §C4||7.LH2 (7.59)
and
1 2
Bs = (b2Ayu, u) < geslull” (7.60)
Proof. Because (b1)o,n, = (b1)a,n forn=0,1,--- , N, the concrete expression

for (b1 Ayu,u) is

M—1

B4:hlh2 ii bl mnA umnumn+1z bl mOA Um0 Um0

M—1

Z (bl)mN AmUmN Umn
m=1

+

|~
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For any n, we have

M—1
hl Z (bl)mn Alumn Umn
m=1
1 M—1
= ) Z (bl)mn(um+1,n - um—l,n)umn
=1
1 M—1 M—2
= 5 < (bl)’mnumnum-‘rl,n - Z (bl)m+1,numnum+1,n>
m=1 m=0
1 M—1
= _ihl (5wb1)m+l n UmnUm+1,n
3
m=0

M—1

1
_§C4h1( u0n+Zumn fu )

Adding them together yields

A

1
By < §C4||UH2-

It is easy to see that changing = to y and m to n during the derivation
above, we can prove the second inequality in Proposition 7.3. Thus, we have
proved the conclusion we need. R

Proposition 7.4
Bg = (cu,u) < cgllul|?. (7.61)

Proof. Since |ck,, | < cg, it is easy to see the validity of the inequality (7.61).
|

The proof of Lemma 7.1 Based on these inequalities and noticing the
matrix

<a11(9c,y,7) au(wm))

ar2(z,y,T) az(r,y,T)
is semi-positive, we can prove the lemma immediately. Adding the relations
(7.49), (7.52), (7.50), (7.59), (7.60), and (7.61), then using the inequality
(7.37), we get
B1+2Bs+ Bs + By + Bs + Bg

1
< §(c1 +2¢ + €3 + ¢4 + ¢5 + 2c6) ||ul|®

M—1nN—1

—*h1h2 Z Z { ail mn{ um—%,n)2 + 2(6$um+%,n)2}

m=1n=1
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+2(0’12)77”1 |:5$um+%,n 5yum,n—% + 5Ium—%,n 6yum,n—%
+6$um+%,n 6yum,n+% + 61“’77;—%,'@ 6yum,n+%:|

+(a22)mn [2(5y“m n*%)Q + 2(6yum’n+%)2} }

M—1nN—1
= ohl? = g 5

m=1n=1

[(G11)mn(5zum+%,n)2 +2(a12)mn 52um+%,n (syum,nf%

+(a22)mn(6yum,n—%)2:
n :(all)mn(éwum_§ )2+ 2(12)mn Opthyy 1 Syttt
+(@22)mn Byt )’

+ (‘111)mn(éacum-i-%,n)2 + 2(a12)mn 61um+%,n 5yum,n+%

+(a22)mn(6yum,n+% )2_

+ _(all)mn((sm“m—g ) + 2(a12)mn 5zum——,n Oy, nti

+(a22)mn<6yum,n+%)2} }
< Sllul

This completes the proof of Lemma 7.1. (]

7.4.3 *Solvability and Stability

In this subsection, we will prove the solvability and stability of the two-
dimensional finite-difference scheme (7.46)—(7.47).

Theorem 7.1 If At < 1/c¢, then the difference scheme (7.46)—-(7.47) is
uniquely solvable.

Proof. Suppose {uf, | 0 < m < M,0 < n < N} has been determined.
Then the difference scheme (7.46) is a linear system about {uftl |0 < m <
M,0 <n < N}. Consider its homogeneous system

1 1 gl 1 kg
E“ﬁ# = 5(011) W2 ouf il 4+ (a12)mn Ay Ayultt + 2(a22) n? Gyttt
ek A+ Lok Ayttt ¢ L

0<m<M, 0<n<N. (7.62)
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Taking the inner product of equality (7.62) with 2u**1 and using Lemma 7.1,
we have

2 = (o) A2, 1) 2 (ana) 4D A, a1 01
4 ((a22)k+%5§uk+1’uk+l) i ((bl)k+%Amuk+17uk+1)
I ((bQ)k+%Ayuk+1’uk+l) i <6k+%uk+l’uk+1)
< Sl (7.63)
If AT < 1/c, then |[u**1| = 0. This completes the proof. B
Theorem 7.2 If A7 < 2/[3(1 + ¢)], then the solution to the difference
scheme (7.46)—(7.47) satisfies

k
3
a1 < VT () + SAT ST g E ), 0< k<K~ 1 (764)
=0

Proof. Taking the inner product of Eq. (7.46) with uF*z and using Lemma
7.1, we have

s (P = )

_ <(a1 Yerdg2yitd gk )+2<(a12) FA A Utk )
+((a22)k+252 Fth ok %) (b1 k+2A uFtE bt )

) (k+2u uk-&-%) n (gk+%7uk+%)

§2|| uF |2 4 ||g’“+2||2 2|| W2 0<k <K -1,

+ ((bg)k+5Ayuk+5 ukte

from which we further obtain
[+ < ()2 + (1 + ) Arfluf* 2|2 + Ar|lght |2

1+e¢ 1
< k12 + 5 Ar (b2 + ) + Arflg™E 2,

0<k<K-1.
1+c¢ . . .
If1- TAT > (, then the inequality can be rewritten as
1
DRI g W E— R
- 1- %AT 1-— %AT

1+ HeAr
1—eAr =
1+C %AT. Let us take C' = 3; then we can easily find that the corresponding

It is clear that for C' > 2, when A7 is small enough, we can have
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condition for A7 is At < 2/[3(c+ 1)] and that in this case 1 — Lr¢Ar > 2.
Thus, when A7 < 2/[3(c + 1)], we have

1
e < (14 2D Ay i 1 Sarjg e o<k<kon

From this discrete Gronwall inequality, we finally arrive at

k
. 3
2 < XTI 2+ AT g E 2], 0< k< K -1
=0

This completes the proof. B
The method used here to prove the stability is usually called the energy
method for stability analysis.

7.4.4 *Convergence

For the convergence of the finite-difference scheme (7.46)—(7.47), we have

Theorem 7.3 Let {UF .} be the solution of the problem (7.32)-(7.33) and
{uk Y be the solution of Eqs. (7.46)-(7.47). Denote
ek, =Uk —uk 0<m<M, 0<n<N, 0<k<K.

mn?

If AT <2/[3(c+1)], then we have

u u T
|eF 1) < e3(0+1)T/4\/3($ xl)z(y w) co (R + h3 + A7?),

0<kE<K-1.

Proof. Subtracting the equalities (7.46) and (7.47) from the equalities
(7.43) and (7.45), respectively, we obtain the error equations

1 k4l 1 1 1
k41 k +35 ¢2 k+ k+ k+
E(enﬁz = €mn) = (a11)mn® 6z€mn® + 2(a12)mn® Az Ayemn’

k+i oo k+i k41 k+3
+(a22)mn2 5y6mn2 + (bl)mn2 A:cemnz

k+3 k+3 k+3% k+3 k+3
+(b2)mn2 Ayemn2 + Cmn” €mn” + R s

0<m<M, 0<n<N, 0<k<K-—1, (7.65)

e =0, 0<m<M, 0<n<AN\. (7.66)
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Taking the inner product of the system (7.65) with eF+3 and using Lemma 7.1,
we have

1
o (IeH 12 = fle*|?)

= ((a11)k+252 k+2 6k+ ) 2 ((a12 %Amﬂy6k+%,6k+%>
n ((a22)k+252 bty ohtd ) (bl k+2A bty k3 )
+ ((bz)H?AyeH? e %> (c’”%e’“rl ’“+%) + (RH%,@’”%)
1 1
< IR 4 SIRNEP 4+ 5P, o<k <K -1,

from which we further get
le" 12 < ek |2 + (1 + o) Arleht 2|2 + Ar||RM 22
< M7 + TEC ar (k|7 + 7 + Ar RSP,
0<k<K-1.

Using the condition (7.44) and when Ar < 2/[3(c + 1)], we can rewrite this
inequality as
3(c+1)
2
3 1
< (1+ 2D ar) e
3 2
i(xu —21)(Yu — yl)coAT(h2 +h3+ Ar ) )
0<k<K-L1

3
e < (1+ A7)t |2 + SAT| R

The Gronwall inequality gives

_ _ 2
||6k‘+1H2 S 63(c+1)T/23(1;u Il)z(yu yl)TC%(h%+h%+AT2> , O S k S K—l,

or

— —y)T
||€k+1|| < e3(c+1)T/4\/3(37u l‘l)(Qyu yl) co (hg —l—h%—i—ATz),
0<k<K-—1.

This completes the proof. B

For the solution to the difference scheme (7.46)—(7.47), we can also use
the extrapolation technique to improve the accuracy of the numerical solu-
tions when solutions are smooth. The idea is the same as what is described
in Sect. 7.3. Based on the results given in this subsection, some theoretical
conclusions on the extrapolation technique can be obtained. For details, see
the paper [78] by Sun and Zhu.
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Problems

Table 7.1. Problems and Sections

Problems ‘ SectionsHProblems ‘ Sections ‘ ‘ Problems ‘ Sections‘

1-5 7.1 6-15 7.2 16-18 7.3
19-21 7.4

1. *Let f denote f(mAxz,nAr). Find the truncation error of the explicit
difference scheme

untt — LUy = 2upy,
AT oo Ax?
ur = ur
LT
to the parabolic partial differential equation
ou 0%u ou
— =a(x, 7)== + b, 7)— + ¢(x, T)u.
L =l ) 5 + b, T) o+ e, )

2. Show that the truncation error of the Crank—Nicolson scheme for the heat
equation at the point (z,,,7"*/?) is in the following form:

&n®),

1 9%u a 0 Az2a 0*u
2| =Y 1y _ & @y =22 2Y "
Ar [24 ar3 (@m,m7) 8 92072 S 12 924

where € € (Tym_1,Tms1), 7™ € (7", 7"1), k = 1,2,3, and a is the
conductivity coefficient in the heat equation.

3. *Let f denote f(mAz,nA7). Find the truncation error of the implicit
difference scheme

1 n+1/2 n+1 n+1 n+1
wt —ugy ot (a2t cunty | un - 2 g

m
AT 2 Ax? Ax?

n+1/2 n+1 n+1 n n
+bm <um+1 = U1 U1 — um—l)

2 2Ax + 2Ax

1/2
et

g (e )

to the parabolic partial differential equation

2
gu _ a(m,r)@ + b(x,T)%

+ c(z, T)u.
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The heat equation
ou  0%u

or  0a?

can also be discretized by

! = _ g (M = 20 R g (e — 20
At Ax? Ax?

or

n+1 n+1 n+1 n+ly _ ,n n n n
Uy~ — 90[(Um+1 - 2u7n + um—l) = Up, + (1 - 9)a(um+1 - 2um + um—l)’

where 0 < 0 <1 and a = AT/AJC2. This scheme is called the 8-scheme.
It is clear that when 6 = 0, the scheme reduces to the explicit scheme and
when 0 = 1/2, the scheme becomes the Crank—Nicolson scheme. Show
that the order of truncation error of the 8—scheme is

O ((1—20) AT + AT? + A2?).
(Hint: Discretize the partial differential equation at x = z,, and 7 =
70

Consider the parabolic partial differential equation

ou 0%u ou
5 = a(l‘,T)@ + b(JL‘,T)% + c(z, T)u,

which is defined for « € [0,1] and 7 > 0. Here a(z,7) > 0 holds and we

da
suppose that — is bounded. Assuming that u(x,7) is given, we want to

determine u(x,f—i— At) with At > 0 for x € [0, 1].

(a) Under what conditions on a(x,7) and b(x, 7) a boundary condition is
needed and under what conditions no boundary condition is needed
atz=0and x =17

(b) Suppose that an explicit scheme will be used. How do we determine
u(0,7 + Ar) and u(1,7 + A7) if no boundary condition should be
given?

*Consider the three-point explicit finite-difference scheme:

’Ulz;’_l = amufn,1 +bmuz7l + C'mu:-fﬂH»h m = 1727' o >M - 1u
where a,, > 0,b,, =1 —a,, — ¢ >0, ¢;, > 0 and ag = cpy = 0. Show

max  [u™ < max |u

n
1<m<M—1 1<m<M—1 ml

This means that the numerical procedure is stable under the maximum
norm.
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7. Consider the equation
Mx =Bx or A 'Bx=)\x,
where A and B are (M — 1) x (M — 1) matrices and their concrete ex-
pressions are
fag a1 0 --- 0
ai ap ar

A= 0 a a().'~0

. .~a1
_O 0 ai ao |
and

(bg b1 0 --- 0]

by bo by .

B= 0 by bo 0

T Ty
L0 -+ 0 b bo|

Find M — 1 linearly independent eigenvectors of A~'B and their associ-

ated eigenvalues.
8. Consider the equation

AAQX = BQX
or
AS'Box = \x,

where Ay and By are M x M matrices and their concrete expressions are

[ ap aip 0 --- a_1
a_1 ap ap
Ay = 0 a_1 ap o0
aj
| a1 - 0 a—1 ap |
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and
[ by by O - by ]
by by by :
Bo=1100b_,0 - 0
TR
by - 0 by by |

Find M linearly independent eigenvectors of A, 'B, and their associated
eigenvalues.
9. (a) Consider an M x M matrix

ab 0 -0 .- 0 b
ba b 0 oo - 0
0

A —
0 vv vn- 0 b ab
b O «-v - 0 b a

Suppose a = ¢ + 2/h? and b = —1/h?. Show that its eigenvalues are

4 0;
Aj=q+ ﬁsin2gj, j=0,1,--- M — 1, where §; = j%, and the
corresponding eigenvectors are

1
cos 0; M
v; = cos 20; 7 j0,17~-~,int<2>,
cos (M —1)0;
and
0
sinHj M
V= Sln29] 5 ]:lnt<2>+177M_1’
sin(M —1)0;

respectively, where int - | the integer part of -

(b) Find the eigenvalues and eigenvectors of A1
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11.

12.

13.
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2 1
(¢) Suppose a = % + 2 and b = 4 ~ 72 find the eigenvalues and eigen-
vectors of A and A~1.
*Consider the explicit scheme
u?nJrlA*uZL:aum ?2+um 17 m:1,2,~~-,M71
T x

with uf ™ = fi(7"*1) and u}f' = f.(7"*1). Determine when it is stable
with respect to initial values in Ly norm and when it is unstable. (Suppose
a>0.)

*Consider the implicit scheme

B Az? Az?

uptt —ull, _a Uzszll — 2uptt + Uﬁfl U1 = 2Upy + Uy g
— + R
AT 2
m=1,2--,M-1

with ug t' = fi(7"1) and u} " = f,(7"*1). Show that it is always stable
with respect to initial values in Lo norm. (Suppose a > 0.)

By using the von Neumann method, show that for periodic problems, the
f—scheme for the heat equation

i o (w2 )
=ur+(1-0)a (u;iHrl —2up + U;qu)

is stable for all a > 0 if % < A < 1 and that it is stable for 0 < o <

1 1
— <<=
2(1—-20) ~~Y<3
Consider the following parabolic partial differential equation:
@—a @4—2& Lzu +a 82u+ba —H)a
or  Moa? 2ozoy o2 Tt ox T P oy’

where a1 (2,y,7) > 0,a22 (v,y,7) > 0,a12 (2,9, 7) = p12 (z,y,T) \/ar1azz
with p12 € [—1,1], and by, by are any functions of z,y, 7. This equation
can be approximated by

(i)

k+1 _ Kk
m,n m,n

At

kt3 k+1 k41 k+1 k k k
Ay ,m,n um+1,n - 2u'm n + U — 1,n + um+1,n - 2um,n + um—l,n
2 Az? Ax?
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k+1 k+1 k+1 k+1
+ak+% um+1,n+1 - um+1,n—1 - um—l,n+1 =+ um—l,n—l
12,m,n 4A$Ay
k k k k
+um+1,n+1 B um+1,n—1 = Um—1,n+1 + um—l,n—l
4Ax Ay
kt3 k+1 k1l o, kt1 k k k
+a22,m,n Wiy 41 _2um,n + Ui n—1 + U, n+1 _2U’m,n + Um,n—1
2 Ay? Ay?
k+% k41 k+1 k k
+ 1,mn [ Ymtin = Um—1n + Um+1,mn — Um—1,n
2 2Ax 2Ax
ket k+1 k41 k
+b2,m,n um,n+1 - um,nfl + um,nJrl - um,nfl or
2 2Ay 2Ay
)
k+1 k
um,n — Umn
AT
k+% k+1 E+1 k+1 k k
o Aimn [ UYmtin — 2um,n + Um—1,n Um4+1,m — 2um,n + Um—1,n
2 Az? Ax?
k+1 k+1 k+1 k+1
+ak+% um+1,n+1 - um+1,n71 - umfl,nJrl + umfl,nfl
12,m,n 4A$Ay
k k k k
+um+1,n+1 - um—i—l,n—l - unz—l,n+1 + um—l,n—l
4Az Ay
ket k+1 k+1 o k1 k k k
+a22,m,n um,7z+1 _2um n + um,n—l + um,n+1 _2um,n + um,n—l
2 Ay? Ay?
Y Y
ket 3 k+1 k+1 k+1
+ 1,m,n —Upton + 4um+17n - 3um,n
2 2Ax
k k k
_um+2,n + 4um+1,n - 3um,n
2Ax
k+ 5 k41 k+1 k41 k k k
+b2,m,n 3um,n 74um,n71 + um,n72 + 3um,n_4um,n71 + um,n72
2 2Ay 2Ay

if by (x,y,7) > 0 and by (x,y,7) < 0. By the von Neumann method,
show that they are stable.
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(Hint:

(a) First show that the amplification factor A can be written as A =
14+a+1b
1—a—ib

(b) Then show that |A|> < 1 is equivalent to |1 —a —ib|> — |1 +a +ib]? =
—4q > 0.

(c) Finally show —4a > 0 by using the following inequalities: (i) A% +
B% 4+ 2pAB = (A+pB)* + B2 (1 —p?) > 0 if |p| < 1; (ii) cos26 —
dcosf+3=2(cosf —1)>>0.)
14. *Show that if

e 22, (1 — x,,)%02, AT < 17
0<m<M 2 Az?2 — 2
then for the scheme with variable coefficients
wttl —qn 1 ur g —2ul +ult
m mo_ 7[xm(1 _ xm)am]Q m—+1 m m—1
AT 2 Ax?

ul —u
+ (r — Do)rm(1 — xm)%

—[r (1 =2m) + Dowm] up,,

the condition |Ag(zy,, 7™)| < 14 O(AT) is satisfied for any x,, = m/M €
[0,1]. (When you prove this result, you should derive the stability condi-
tion for explicit schemes by yourself.)

15. For the scheme with variable coefficients

n+l _ . n
U, U,

AT
1 1
:1[1, (1 -z )5_ ]2 u::;:—l - 2u%+1 + u?ntl + u?n—i—l - 2U:Ln + uzz—l
4 e Ax? Ax?
1 wttl —
“(r—D 1— m—+1 m—1 m+1 m—1
T3 = Dojem(l = am) ( 2Ar | 94z
1
) [r (1= @) + Dowm] (up™ + up,),
show that the condition |[Ag(zm,7")] < 14 O(Ar7) is satisfied for any
Tm € [0, 1].
16. (a) Consider the explicit difference scheme
u?n+1 - u?n _ an u?n—‘,—l - 2“?}1 + u?n,—l bn UZ+1 - u:‘n—l + Cn un
AT m Ax? m 2Ax mem

to the parabolic partial differential equation
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18.

19.
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Assume that its stability with respect to initial value and non-
homogeneous term is proved under certain conditions. Show that

for its solution, under these conditions there is the following rela-
2

A
tion: u (z, 7; Az, AT) = u(z,7) + a (m, T Ax) AT + O(AT?), where
-
2
|O(A7?)| < ¢A7T?, ¢ being bounded as At — 0 with A—I = constant.
T
Suppose we have two such approximate solutions u (z, 7; Az, A7) and
u(x,7; Az /2, At/4). Find a linear combination
(1—d)xu(x,7; Az, A1) +d X u(z,7; Az /2, AT /4)

such that it is an approximate solution with an error of O(A7?).
Assume that an approximate solution u (z, 7; Az, A7) has the follow-
ing expression:
u(x, 7; Ax, A1)
Az

Ax
:u(x,7)+a(x,T;AT> AT2+b($,T§AT> AP+ 0 (ATY),

Where u (CC, 7 ) 1S the eXaC( S()lutl()n. SU[)[)()Se that we ha\/e 1W() ap[)l"()X—
1mate S()l 1t101S: 5 7 s T T A an(l 5 7 sy Ty T ) l ln(i a llnear

combination

1 T 1T
(1—d)><u<$,7'712a16)+d><u<$77'79a12)

such that it is an approximate solution with an error of O(A73).

. . . 1 T
Suppose that there is another approximate solution u | z, 7; 530 )
Find a linear combination

do % '1T+d>< '1T+d>< 1T
0 u\r,T; 15720 1 u\r,T; 12716 2 u $7T79712

such that it is an approximate solution with an error of O(A7*), where
do=1—dy —ds.

*Explain why, how and when the extrapolation technique will improve the
accuracy of numerical solutions.

Let V = {u|u = (ug,u1, - ,up—1,un)} be the grid function space on
On={zm | tm =214+mh,0<m < M,h = (z, —x;)/M}. For any u € V,
and v € V, introduce the inner product

M—1
1 1
(u,v) =h <2U0’Uo + E U U, + 2UM'UM>

m=1
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and norm

[ull = v/ (u, ).

In addition, denote

1

Aw m = 57
= on

2
(a) Suppose

1
(um+1 - um—l)a 6ium = 7(um+1 - 2Ufm + um—l)-

443

a(z) € CBay,x,], a(x) >0, a(z)=alz,) =d () =d(x,) =0

and

Prove
2 1 2
(a(5$u, u) < §cl||u\| .

(b) Suppose

b(z) e CWxy, x,],  blay) = blzy) =0, max |0/ (x)

T <T<Ty

Prove

1
(bAzu,u) < 502||u||2.

20. Suppose that (alg)on = (alg)Mn = (alg)mo = (alg)mN = 0. Show

M—1nN—-1

hihao Z Z(am)mn 6x5yum_%7n+% Umn

m=1n=1
M—1nNn—1

= —hihs Z Z(aw)mn 5wum+%,n 5yum,n+%

m=1n=1
M—1nN—1

—hihs Z Z (5xa12)m+%’n 5yum,n+% Um+1,n

m=0 n=1

and

by a direct calculation.

= C3.
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21. Suppose {uk } is the solution of the difference scheme

1 1 1 1
A—(ufn+1 —uk) = a(xm)éiufn+2 + b(mm)AIu:j"‘ + c(ycm)u,];Jr2
.
9@, ™ E), 0<m<M, 0<k<K-1,
u?n:f(xm)a 0<m< M,
1
where up, ? = 2 (uf, +ukFh) and
a(z) € CP[ay, z], b(z) € CWxy, z,],
a(r) >0, alx;) =a(z,) =d(x;) =d(z,) =blz;) = b(z,) =0,
" _ / _ _
, ax la" ()] = e, , ax [b'(x)] = ca, o hax le(x)] = es,

¢ =c1+ ¢+ 2cs, AT <2/[3(c+1)].

Prove

k
3
b2 < e DT <||f||2 + ALY ||gl+%||2> L OSKSK -1
1=0
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