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Basic Numerical Methods

This chapter is devoted to the basic numerical methods. We first discuss var-
ious approximations, solution of systems, and eigenvalue problems. Then, we
describe how to determine the parameters in stochastic models.

6.1 Approximations

6.1.1 Interpolation

Linear Interpolation. Suppose that the values of a function f(z) are given
on the grid points z,,, m = 0,1,--- , M, where zg < 1 < -+ < Ty.
Sometimes, we may need to find the value of the function at other points.
A simple way to do this is to interpolate the function by using the known
values of the function. Let f,, denote the value of the function f(z) at a
point x,,, m = 0,1,--- /M. We want to approximate the value f(z*) for
x* € (T, Tm41). The simplest interpolation is to use a linear function to
approximate the function f(z) on the subinterval [, Zm11]. Let

p1(x) = ag + aq .
Using the conditions
pl(mm) = f'rm pl(xm—&-l) = fm+17

we find

gCWL—l-lfm, *xm.fm—‘rl ay = fm,—i—l - fm
1= .

3

ag =

Tm+1 — Tm Tm+1 — Tm
Then, we have
Toi1 — T T — T
pi(z) = Im + Jm+1-
Tm+1 — Tm Tm+1 — Tm
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350 6 Basic Numerical Methods

Thus, we have the approximate value:

Tmg1 —X° ¥ —x
f@®) = pi(z”) = = fm + = fmt1-
Tm+1 — Tm Tm+1 — Tm

This is called the linear interpolation. If we do the interpolation for all subin-
tervals, then we obtain a piecewise linear function on the interval [z, ).

Higher Order Interpolation. If the function data indicates that the
function is smooth, then we can use a quadratic or Nth order interpolation to
get a better approximation. Assume that we have obtained the values f,,_1,
fm, and fr41. Let

p2(z) = ag + a1z + axx®.

Using the conditions
p2(Tm—1) = fi—1, P2(Tm) = fm, P2(Tmi1) = fint1,

we find

(@ — Tm—1) (@my1 — @)
(xm - xm—l)(xm+1 - im)

(T — x)(merl — )
Tm — xm—l)(xm+1 - xm—l)
(x — Tpmo1)(x — )

(merl - xmfl)(xmntl — Tm

m

p2(£) = ( fmfl +

Then, for any z* € (-1, Tm+1), f(2*) can be approximated by pa(z*). This
is called the quadratic interpolation.

In general, if f,,, m =id,i+1,--- 14+ N, are known for an integer i, then
an Nth Lagrange interpolating polynomial can be obtained. For simplicity,
let i = 0 and write down the polynomial as follows:

pn () = wo(z)fo + 1) fr + - + on(2) fn,

where
_ (@ozg)@—z1) (2 — @) (@ — @) - (T —ay)
or(r) =
(xr —xo)(xp —21) - (2 — Zp—1) (@ — Thg1) - (T — 2n)
for k = 0,1,---,N. This approximation can be used for any = € (zg,xy).

It is clear that the linear and quadratic interpolating polynomials are the
Lagrange interpolating polynomials with N = 1 and 2, respectively. For an
Nth Lagrange interpolating polynomial, the error is given by the following
theorem:

Theorem 6.1 Ifz,,, m=0,1,--- N, are distinct numbers and f(x) is N+1
times continuous differentiable on [z, x x|, then for any x € [zo,zy], there
exists a & € [z, x|, such that

_ S

1) = pol@) = Ty (2~ 2@ =) (@ =)
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Therefore, the error of linear interpolation is O(Axz?), and the error of
quadratic interpolation is O(Axz3), where Azr = max (T 41 — Tm)-
m

Cubic Spline Interpolation. As we can see, linear interpolations result in
piecewise linear functions on the interval [z, z,]: the function is smooth in
each subinterval [z,,, Z;,+1], continuous in [zg, z,,], but may not be smooth
in [xg,z,]. For quadratic interpolations, the situation is similar. Cubic spline
interpolation is the most commonly used piecewise polynomial approximation,
which is a cubic polynomial on each subinterval [2,,, ,,+1] and has a contin-
uous second derivative on the whole interval. The cubic spline interpolation
S(x) satisfies the following conditions:

(A) On the subinterval [z, Zm+1], S(z) = Sm(x) is a cubic polynomial,
m=0,1,-- ,M—1;

(B) S(!L‘m) = fm7 m = 0717"' 7M;

(C) Sm(xm) = Sm-1(xm), S5 (¥m) = Sp1(Tm), S (@m) = Sipq (@), m =
1,2,--- .M —1;

(D) S"(xg) = S"(xn) = 0, or other two conditions.

Let
S () = b (T—2)FCon (=2 ) Fdp (2 —2)%,  m=0,1,---  M—1.
Condition B, m =0,1,--- , M — 1, can be written as
am = Spm(Tm) = frn, m=0,1,--- M—1
Using condition C, we get

Ay = Q-1 + bmflhmfl + Cmflh?n_l + dmflhﬁn_la

b = bm—1 +2¢m—1hm—1 + 3dm71h72nfl7

Cm = Cm—1 T+ 3dm71hm717
m=1,2,-- ,M—1

)

where h,,—1 = Ty — Tym—1. Define
ay = fu
and
e = 8" (xy)/2.

Then, from the expression Sy, ,(x) and Condition B with m = M, we further
have

Gp = Gpn oy + 0y 1Ay + CM—lh%/1,1 + dM—lhi\i/[,la (6 2)
Car = Caroy +3dar sy '
Rewrite the last relations in the sets of relations (6.1) and (6.2) as
dm%:M, m=1,2--,M, (6.3)

3hm—1
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and the first relations in the sets of relations (6.1) and (6.2) as

Am — Am—1
hmfl
Am — Gm—1 Cm — Cm—1
—— —Cm_1thjm1 — —h
Ron—1 3
m=1,2,--- M.

2
bm—1 —cm—1hm—1 — dm—lhm_l

(6.4)

m—1;

Substituting them into the second relation in the set of relations (6.1) yields

Am+1 — Qm Cm+1 — Cm
— —Cphyy — ———h
Tom Cmitm 3

Am — Gm—1
om_ Tmel L h
hm—l m—1/tm—1 3
+2Cm71hm71 + (Cm - Cmfl)hmfla
m=12--- ,M-—1,

m

Cm — Cm—1
hmfl

or

3(am — am—1)
hmfl ’

1 3(am+1 - anL) _
hmfl +hm hm
m=1,2--,M—1,

where tuy, = hm—1/(hm—1 + hm) and vy = by /(h—1 + hyy). This system is
equivalent to Conditions A-C. If Condition D is S”(xg) = S”(x,) = 0, we
have two other equations ¢y = 0 and c¢,, = 0. In this case the entire system
can be written in the following matrix form:

UmCm—1 + 2¢y + UmCm+1 =

Ac = h, (6.5)
where
1 0 --- 0 ] co
Ul 2 (% 0 0 c1
0 U 2 V2 0
A= . ; c= s
0 0 up—r 2 vy
0 v vn- o0 1 Cr
- 0 -
]. <3(a2 — CLl) _ 3(&1 — a0)>
ho + hy hi ho
h= :
1 <3(aM - aM—l) _ 3(QM—1 - aM—2)>
Paro + har s Poar s Poar—s
0

Solving this linear system, we obtain ¢,,, m = 0,1,--
, M — 1, can be obtained from the set of relations (6.3) and b,,, m =

0,1,

0,1,---,M — 1, from the set of relations (6.4).

-, M. Then d,,, m =
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The condition S”(z¢) = 0 could be replaced by S’(z¢) = f'(x¢) or dy = 0,
namely, assuming So(z) = ag+bo(z—x0)+co(r—20)?. At = 2,,, the situation
is similar. If such a case appears, then the way to determine these coefficients
needs to be changed slightly. Here, assuming S’(z¢) = f'(xo) and d,,_, = 0,
we explain how to modify the way to determine these coefficients. Because
Si(xo) = bg, the coefficient by is known in this case, namely, by = f'(zo).
From

a1 = ag + boho + coh + dohj,
c1 =c¢o+ 3d0h0,

we eliminate dy and obtain

ai — ag bo a1 — ag f’(l‘o))
2c0+c1 =3 -—— ) =3 — .
o ( hg h()) ( hg ho

This equation should replace the first equation in the system (6.5). From
dy—, = 0 and the second equation in the set of relations (6.2), we have

Cr—1 —Cy = 0.

This equation should replace the last equation in the system (6.5). Solving the
modified system (6.5) yields ¢,,,, m = 0,1, -+, M, for this case. As soon as all
the ¢, are obtained, d,,, m = 0,1,--- , M — 1, can be obtained from the set
of relations (6.3) and b,,, m =0,1,--- , M — 1, from the set of relations (6.4).
For more about cubic spline interpolation, see books on numerical methods.

When we write a code to calculate the approximate value f(z*) by
quadratic interpolation, in order to guarantee to use an interpolation, we need
to find a number m such that £* € [z,,—1, Z;n+1]. This can be realized by using
a loop statement. If x,,, = mAz,m =0,1,--- , M, then the expression

m = max <1,min <int < ‘T +0.5) M — 1>)
Az

will also always give such a number.

6.1.2 Approximation of Partial Derivatives

Finite-Difference Approximation. Here, we will discuss how derivatives
of a function u(z, t) at a point can be approximated by a linear combination of
values of the function at adjacent points. Let x,, = a + mAx and 7" = nAr,
where m is an integer and n is an integer or an integer plus a half.

Using the Taylor expansion, we have'
ou AT? 0%

n+1y _ n n -
W( T, 7)) = w(@pm, T )—i—ATaT(xm,T )+—2 572 (Zmy M),

n this book Ar? stands for (A7)2. For Ar3, Az? Az® etc., the situation is
similar.
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where 7" < n < 7"+, Then,

ou W@, ") —u(@m, ") AT 0Pu

E@mﬂ- )= AT 2 0r2 (@ m)-

If A7 is small, we have

ou w(xpy,, 7H)

7(«I7n7 Tn) ~

or

— (T, ")
At

This approximation is called the forward finite-difference approximation or

the forward difference for —gu Similarly, we can obtain the backward
T
difference

ou o WX, ™) — WXy, 771
— (T, ™) & A .

or

Both forward and backward finite-difference approximations have errors of
first order in A7 (first-order accurate). To obtain a second-order accurate
finite-difference approximation, we use the following Taylor expansions:

AT Ou
n+1 n+1/2 el
T ) ) + 2 87‘ (l‘m;
AT3 03
n+1/2
T )+ 48 8’7'3 (.Tm,’l']]_),

T7l+1/2)

= (X, T T"+1/2)

AT? 0%u

8 37’2(mm’
AT Ou

n+1l/2y =0 Y%

) 2 aT(mm’
AT? 9% 41 AT3 93
ar g4 ntl/2y 27 Y

g oo™ T TR 8

U( Ty,

(T, T") = w(@m, T
(‘rﬂ%"h)a

where 7712 <y < 7t and ™ < 1y < 7*FY/2. Subtracting the second
equation from the first one, we get

ou

(2, 7712 = W( T, TY) — (@, ™) B A2 93
my -
-

AT 51 973 T ),

where 77 < 3 < 7""1. Then, we have

@( n+1/2) - U(Z’m,Tn-Fl) —U(x'm,T")
gr T - AT
This approximation is called the central finite-difference approximation or a

0
central difference for a—u
T

0
Similarly, for a—u(xm, 7™) we can have the following approximations
x
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Ou n u(merlv Tn) - u(xmfly T”)
%(xm’T )~ 2Ax ’
ou n WXy, T) — w(XTpy—1, ™)
%(xm’ T ) ~ AJJ
and
ou s W Ty, ™) — u(T,, )
%(xm’T )~ Az

The first one is second order and called the second-order central difference
for first derivatives. The second and third approximations are first order and
called the first-order one-sided difference. Sometimes, we also need the
following second-order one-sided differences:

ou s B, ™) —Au(Tm—1,T") + W( X2, TT)
%(xmﬂ— )~ 2Ax
and
@((E Tn) ~ _3u(xmv Tn) + 4’U,(£L'm+1, Tn) - U(xm+2a Tn)
ox "™ 2Azx '

For the approximation of the second-order partial derivative with respect
to x, we use the following Taylor expansions:

n ou - Az? 0%
W1, ™) = W ) + Ar S (@, T + S

Ox
Az? &3u ny Azt 0 n
TR
0 Az? 92
W Xm—1,7") = u(Tpm, 7") — Awa—Z(xm,T”) + Tma—;;(xm, ")
Az 93u e Azt 0 n
T6 o Tt g g T,

where z,, < & < Tymy1 and T, 1 < & < T,,. Adding these two equations,
we obtain

T Tn)

@(x ) = W(Tnp1, T") = 20( X, T) + W( X1, T™) B Az? @
ox2™ Ax? 12 Oz4

<§3v7—n)’

where x,,—1 < €3 < Ty,4+1. Thus, we have the second-order central differ-
ence for second derivatives:

82u( "y W(Tmp1, T") = 20(Zp, 7)) + W( X1, T™)
5 (@, ") & :
Ox? Ax?
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Sometimes, we also need to have an approximation to mixed second-order

partial derivatives. For ———, we have
0xdy
&u (@ )~ L Tu@mt1, Y141, 7") — w(@ms1, 41-1,7")
oxoy " b 2Azx 2Ay
U(Tm—1, Y141, 7") — W(@p—1,Yi-1,7")

2Ay ’

where y; = b+ [Ay, Ay being a small number. It is clear that this is a
second-order scheme, and this formula is called the second-order central
difference for mixed second-order partial derivatives.

Pseudo-Spectral Approximation. By using more points, we can also
construct higher order finite-difference approximations for the partial deriva-
tives. An alternative way to obtain higher order approximations for partial
derivatives is to use a pseudo-spectral method. To illustrate the method, we
consider the approximation to the partial derivatives with respect to = for a
fixed 7. Assume that we want to find the solution u in the interval 0 < z < 1.
Suppose we use non-equidistant nodes. For example, we can use the following
grid points
~1n T 0,1, M 6.6

xm—2( cosM), m=0,1,---, M. (6.6)
These points are in [0, 1] and equal to (1 — z%,)/2, a, being the extrema of
the Mth order Chebyshev polynomial Ty, (z). Here, the Mth order Chebyshev
polynomial is defined by Ths(x) = cos(M cos™! x). Assume that the solution
for a fixed 7 is a polynomial in = with degree M. If we require the polynomial
to have a value u(z,,) at © = x,,, then we can determine the coefficients of the
polynomial, each of which is a linear combination of u(x;), ¢ = 0,1,--- , M.
Thus, the derivatives of the polynomial at the point x,, is also a linear com-
bination of u(z;), i = 0,1,--- , M, with coefficients depending on ., and x;.
Therefore,

O )3 Dyl (6.7)
Oz Tm —; z,m,iU\Tq). .

This is an Mth order approximation to the derivative with respect to
x used in the pseudo-spectral method. If the grid points are given by the
expression (6.6), then D, ,,; has the following expression:
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Ci(mm - Z'i)’ " 7& "
2M?% +1
—— 5 m=1=0,
Dym,i = 19 (6.8)
N —i=1,2, M —1,
4z;(1 — ;)
2M?% +1
T—’_’ m=1i=M,

where ¢ = ¢y, =2 and ¢; = 1,1 =1,2,--- ,M — 1 (see [36]). Similarly, we
have

0%u M ou
@(IM) = J;) Da:,m,j%(xj)

M M
= Z Dz,m,j [Z ijzu(xz)‘|
j=0 i=0

M M

= Z Z D;c,m,jDa:,j,i u(xl)
i=0 \ j=0
M

= Z Dy o iv(x;), (6.9)
=0

where
wwmz ZD:E m,j :vjz (610)

When the solution is very smooth, only a small M may be needed in order to
get a satisfying result. In such a case, its performance could be better than
the finite-difference approximations.

6.1.3 Approximate Integration

Trapezoidal Rule. The approximation of the integral

/ab f(z)dx

is needed in the numerical solution of integro-differential equations and some-
times in the numerical solution of partial differential equations. The sim-
plest method for the approximation is called the trapezoidal rule. Let
h = (b-a)/M, and z,, = a + mh, m = 0,1,--- , M. In the subinterval
[, ZTm+1], we use the linear function
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xm+1—mf T— Ty,

pi(z) = A (zm) + h f(@mt1)

to approximate f(z). Thus,

/: flayis ~ / (@i = 2)f (@) + (@ = 2n) f (2 41)
— g [f(zm) + f(@ms1)] -

Using this for all subintervals, we obtain

b M-1 Tm+1
/ flx)dx = Z/ flx)dx
a m=0 7 Tm
M—1

2 3 M) + )
m=0 s
Fla)+2> " flam)+ f)] -

m=1

h

T2

The error of the trapezoidal rule is

(b — a)h2 "
— 1),

where £ € (a,b).

Simpson’s Rule. Simpson’s rule is a better approximation for the integral by
using the quadratic interpolation polynomial. In the subinterval [, -1, Zm 1],
we use
(Tm — 2)(Tmy1 — )
T — Tm—1)(Tmt1 — Tm—1)
(= 2m1)(Tmi1 — ) F(m)
(Tm — Tm-1)(Tm+1 — Tm) "
(T —2m1)(T — )

($m+1 - xmfl)($m+1 - mm)

pZ(:I;) = ( f(xmfl)

+

+ f(xm+1)

to approximate f(z). Thus

/:MH f(x)dx =~ # /Im+1 [(Zm — 2)(@ma1 — 2) f(Tm_1)

m—1 Tm—1

+2(2 = Tm-1)(Tm+1 — ) f(Tm)
—|—(sc — :L‘mfl)(l‘ - xm)f($m+1)]d$

— g[f(xm_l) +4f(xm) + f(@mer)]-
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Suppose that M is an even number and using this for all subintervals, we
obtain

b h M/2—1 M/2
/ f@)de ~ 5 | f(a) +2 > f@am) +4) f(@amo1) + f(b)
a m=1 m=1

The error of the Simpson’s rule is

U a) b= ah” py gy,

where £ € (a,b).

6.1.4 Least Squares Approximation

In Sect. 6.1.1 we discussed various interpolations. In those cases, all the given
points (2, fm) are on the interpolation function. Here, we will discuss how
to find an approximate function satisfying the following two conditions:

(A) The number of parameters in the function is less than the number of
given points.

(B) Let the function have the “best fit” to those given points (%, fmm) in
some sense.

Let x,,, m = 0,1,---, M, be distinct, and let M + 1 points (2, fm) be
given. We want to find a product of a given function g(x) and a polynomial
of degree N < M

N
x) Z anz"”
n=0
such that the value of the total least squares error
M N 2
m=0 n=0
has a minimum, where b,,, m = 0,1,---, M, are given positive numbers

called the weights. In order to minimize the least squares error, the neces-
sary conditions are

N 2
&lz 7nZ: b l - g(an) 7; anz?ﬂ]
M N A
= -2 Z bm lfm - g(:cm) Z aﬂz?n] g(xm)xin = O’
n=0

m=0

i=0,1,---,N.
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This system can be written as

N M ) M ]
Z lz bmgz(xm)zfnﬂ‘| Ap = Z bmfmg(xm)zim (6-11)

n=0 Lm=0 m=0
1=0,1,---,N.
It is a linear system for ag,ai,--- ,an, which is usually known as the
system of normal equations. When zq, x1, - -+, x)s are distinct, we can find
ag,a1,- - ,ay without any difficulty. This method is usually referred to as the

least squares method with weights.

6.2 Solution of Systems and Eigenvalue Problems

6.2.1 LU Decomposition of Linear Systems

One efficient method for solving linear systems is the LU decomposition, which
decomposes the matrix A into a product of a unit lower triangular matrix?
L and an upper triangular matrix U, i.e., A = LU. In this subsection, we
will give the details of the method for linear tridiagonal systems. For more
complicated systems, the procedure is similar.

Consider a general linear tridiagonal system

Ax =q, (6.12)
where

by e -

as bQ C2 0 1 q

Z2 q2

A= , X = ;4=

0 Um—1 bm—1 Cm—1 Lm qm

- a/m bm -

Let us discuss how to find the solution of this system. The first equation of
the system is

bizy +c1x2 = q1.
Let
up =b, Y1 =aq,
the equation above can be written as
uiry + c1T3 = 1. (6.13)

2A matrix A is called a unit lower triangular matrix if a;; = 1 and a;; = 0 for
it < j.If a;; =0 for ¢ > j, then the matrix A is called an upper triangular matrix.
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Now suppose we have a relation in the form
Ui—1Ti—1 + C—1T5 = Yi—1.
We put this relation and the ith equation of the system together and obtain

Ui—1Ti—1 + Ci—1T; = Yi—1,
a;iTi—1 + bz + cixip1 = qi.

Subtracting the first relation multiplied by a;/u;—1 from the second equation,
we can eliminate x;_; and have another relation in the same form:

a; a;
bi —ci—1 Ti + CiTir1 = ¢ — Yi—1
Ui—1 Ui—1
or
Ui Ty + CiTit1 = Y,
where
Ci—10;
u; = by — ——,
Ui—1
_ Yi—105
Yi=qi— .
Uj—1

Because we have Eq. (6.13) that is in this form, this procedure can be done

for i = 2,3,--- ,m successively and generates
UiT; + CiTip1 =Y, 1=2,3,--- ,m—1 (6.14)
and
U Tm = Ym - (6.15)

Because in the last equation of the system z,,,1 does not appear, which
means ¢,, = 0, the last relation is in the form Eq. (6.15) instead of the
set of equations (6.14). This procedure can be called elimination or forward
substitution.

When we obtain Eq. (6.15), we can have

_ Ym
Uy,

Tm

Furthermore, from Eq. (6.13) and the set of equations (6.14) we can get

e
xi:u’ i=m—1,---,1
Us
successively. This procedure is called back substitution. Through these two
procedures, we can obtain the solution of this system.

The elimination procedure can be written in matrix form

Lm,1 "-LQLlAX: Ux = Lm,1 "'qu:y7 (616)
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where

1 0 07
01°
Li 0 ! ’
—1; 1
0 .
.0
L0 0 1]
_Ul C1 0 0 1
0 Ug C2 (4
) Y2
U: : '.. '.. '.. 0 s y = . R
: Um—1 Cm—1 Ym
_0 ...... 0 U, |

l; equalling a;41/u; and being in the ¢th column and the (i 4+ 1)th row of L;,
i=1,2,---,m—1.

Let
(1.0 0 --- 0]
i 1.0
L=101 1
S . 0
[0+ 0 Iy 1]

It is easy to see

Lp-1Lp—o---LiL =1.
Thus, we have

L, _1Lpy_o---Li =L}
and Eq. (6.16) can be written as

L 'Ax=Ux=L!q=y.
Consequently,
Ax =LUx =q.
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This means that A can be decomposed into a unit lower triangular matrix
L multiplied by an upper triangular matrix U. The procedure of solving the
system is as follows. We first multiply the equation by L' so that the equation
becomes Ux = L~ 'q = y and then solve Ux =y to get x = U~ ly. Because
these two procedures are easy to perform, the method is quite popular.

6.2.2 Iteration Methods for Linear Systems

An alternative to LU decomposition is iteration. Iteration methods are espe-
cially effective for large systems with sparse coefficient matrices. Consider the
linear system

Ax =q.

A may be decomposed as

where
0 -+ --- 0 Oaio - aim
ag1 0 -+ 0 )
L= . . . . ) U = ’
. 0 0 Am—1,m
Ama = Gmm—1 0 0 - v --- 0
and D = diag{a1,1,a2,2, - , Gm,m }. Then, the linear system can be rewritten

as the following system,
x =D [q— (L+U)x|,
where we assume that D is invertible.

Jacobi Iteration. A simple way to find the solution is to use the following
iteration:

x(k+1) — p-1 [q—(L+U)x(k) . k=01,

or in component form

(k+1) _ 1 (k)

2y = — [ = (a1028” + -+ aymal)),
aii
1
:z:ékH) = r[(h - (112,113§k) + a2,3$:(3k) + ot ag maly))],
2,2
L |
it = —— g — (@12t oz )]

It is clear that in order to implement this iteration, an initial guess x(°) should
be given. This method is called the Jacobi iteration.
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Gauss—Seidel Iteration. In the Jacobi iteration, at the iteration step for
acgkﬂ), all the solutions mgkﬂ), e ,x;ﬁ?) have been obtained. Therefore, new
variables can be used in the iteration, namely, we can have the following

iteration:

1
oY = =g — (1228 + -+ a1 mald)),
ai,i
1
xék+1) = T[QQ — (CI,Q 11‘(1 b + a2’3.’17ék) + -+ a2,mx1(7]'f))]7
2,2
1
a:g’““) = a—[q?, — (a371x§k+1) + a3,2$gk+ ) + as xfl ) +o 4+ as,mxﬁff))],
!
1‘5rlf+1) = [Qm - (am 1xlk+1) +oeee Tt am,m—lm,(-,]ji_i))]

Am,m

or in matrix form
x(k+D) — p~! [q — Lx(+D — Ux(k)} .

This method is called the Gauss—Seidel iteration.

SOR (Successive Over Relaxation). The Gauss—Seidel iteration can be
modified in the following way: Take a combination of the previous value of x
and the current update (from the Gauss—Seidel method) as the next approx-
imation:

x*+) = (1 — w)x® 4 wD™! |q — Lx*+D —Ux®| |

or in component form

w
2 = (1 - wa? + a1 1 = (a1,228" + - + a1 mal®)),
w
2F = (1 - wal? + 4o 2 = (a2125" Y + ag g2 + -+ a5, mall)],

s

xz())kJrl) — (1 - w)al ) L[qg (s, lmngrl) +ass x( +1) +as, gg( ) p g

as,3
a3,mx£7]’f))]’
28 = (1 - w)z® + (g — (@mazt™™ + a1
Qm,m

Here, w is a real number. This method usually is called the method of
successive over relaxation (SOR). When w = 1, it is the Gauss—Seidel iteration.
The parameter w should be chosen so that the method will converge and work
better than the Gauss—Seidel iteration. The following result has been proved:
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Theorem 6.2 If A is a symmetric positive definite matriz and 0 < w < 2,
then the method of successive over relaxation will converge for any initial
vector X.

Practical computation shows that this method also works for some
nonsymmetric linear systems if w is chosen properly. For many cases, this
method gives faster convergence than the Gauss—Seidel iteration if w € (1,2).
We would like to point out that in the books by Golub and Loan [35] and
Saad [71], there are some other iteration methods that can also be used for
solving linear systems in Chaps. 8-10. Interested readers are referred to these
books.

6.2.3 Iteration Methods for Nonlinear Systems

In the numerical solution of partial differential equations, the resulting algebraic
systems are sometimes nonlinear. In this section, we discuss three iteration
methods for the nonlinear systems.

Newton’s Method. Consider the following nonlinear system,

fl(xlny;"' axn) = 07

fa(x1, 29, ,xn) =0,

fn(l'l,I'Q, e axn) = O

Let

T f1(x)

o iﬂ.z o = fzfx)

Tn fn(x)

Then, the nonlinear system has the form
f(x) =0.
Suppose x(0) = (29,29, ,29]7 is a good initial guess to the true solution
x* =[x}, 25, ,ak]", e,
ox =x* —x(0 = [0x1, 029, -, 0xy,]"

is small in norm. Then, for i =1,2,--- ,n

0= fi(ey, a5, - ,a)) = fi(a? +5$1,x8+5x2,-~- ,x%—l—chn)

n
ofi(x9,29,--- 20
~ fl(x(f’xg’ 7552) + E 74( 17827 ) n)(sxk

Tk

k=1
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In matrix form, we have

[0A(x™) 0fx)  9f(xD)]

Oy O Oy, Sy f1(x)
0f2(x) 9f>(x) 0D | by F2(x(©)
8:61 81'2 8(En . + : %0,

3fn. (.>.<(0)) o) fn. (.>.c(0>) ) fn.(x(o)) S, Fr(x©)
0y Jra o Oy,

or
Jf(x(0)> SOx f(X(O)) ~ 0,
where J¢(x(?)) denotes the above Jacobian matrix. Solving for dx we get
ox ~ —[Jp(x )7 (x?)
or
x* a2 x(0 — [Je(xO)] 1 (xO).
This means that the vector
x(1) — x(0) _ [_]f(x(o))rlf(x(o))

will be a better approximation to the solution x*. In general, suppose x*)
has been obtained, then

x*+D) = x0) 3 (x B~ (x ). (6.17)
When n = 1, it is an equation, not a system:
2040 = o — f(a)/ (@), (615)

This iteration method is called Newton’s method. Because finding an inverse
of a matrix is time consuming, in the real computation, Newton’s method has
the form

{( D)y = )

(1) Z x(b) 4y

Newton’s method converges locally with second order. More precisely, it
can be proved that the following result holds.

Theorem 6.3 Let x* be a solution of f(x) = 0. Assume that Jg(x*) is not
singular, and that f;(x) has continuous second-order partial derivatives near
x*. Then, if x) is close enough to x*, Newton’s method converges and

2

men x| < CHX(k) _

o0
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Generalized Secant Method. One of weaknesses of Newton’s method for
solving nonlinear systems is that the Jacobian matrix must be computed at
each iteration. The Jacobian matrix associated with a system f(x) = 0 requires
n? partial derivatives to be evaluated. In many situations, the exact evaluation
of the partial derivatives is inconvenient. This difficulty can be overcome by
using finite-difference approximations to the partial derivatives. For example,

afi(x1,$27 e »xn)
(‘)xk

1
%Tm[fz(xh T+ Az, - - ’xn)—fi(gjl,... STyt 71771,)]7
k:l’z’... R

where Az, is small in absolute value. This approximation, however, still re-
quires at least n? function evaluations to be performed in order to approximate
the Jacobian and does not decrease the amount of calculations. Actually, if we
have f(x) at n+ 1 points, then we usually can have an approximate Jacobian
at some point. Suppose that we have x) and f(x), 1 = k—n,k—n+1,--- , k.
Because

[EGE) = (x), £(F7H0) — g (x8), o (D) — £(xB)]

~ Je(x®) [x<k—n) —x(®) b=ntl) _ () L (k=) x<k>] ,

we have
_]f(x(k))
~ [f(x(k—")) — £ (x®)), (DY () L f (DY) - f(x(k))}
" {X(k—m xR sglb=n 1) ) L (k=) x(k)} -
Therefore, Newton’s method can be modified to
<1 — (k) _ [Xw—n) — x () (b=t l) () (1) x(k)}

B ) = (), £ ) — (M),

-1

D) — (x| E(x), (6.19)
Consequently, if we have n + 1 guesses x(), [ = 0,1,--- ,n, and the values
of the function f(x) at these points, then we can do the iteration (6.19) for
k=n,n+1,--- and at each iteration we spend very little time to calculate a

Jacobian. Of course, it needs to be guaranteed that the matrix

fxE=m)y — f(x®)), . F(xkD) - f(x(k))}
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is invertible. If during the iteration this matrix is not invertible, we need to
find the guess x(**1) that is close to x*) in another way, for example, by
changing a component of x(¥) a little bit. In practice, it happens very seldom.
If n =1, then the vectors x and f become scalars x and f and the itera-
tion (6.19) becomes
o @D — o) ) 620
fla®=1) — fa®) - '
Thus, if we have two initial guesses z(©) and z(*), we can do this iteration
starting from k£ = 1. This method is called the secant method, and the it-
eration (6.19) is referred to as the generalized secant method. Under some
conditions, for the iteration (6.19) we can prove that the following relation
holds:

204D — o

2

Hx(k+1) —x*|| < C’Hx(k) —x*|| +C sup [x*7D - x(’“)H Hf(x(’“) H
o0 0 1<I<n os} [e's]
for k=n,n+1,---, where C is a constant (see [97]).

Bisection Method and Modified Secant Method. Consider the case n =
1 and suppose x%kil) and xékil) be a pair of guess for the (k — 1)th iteration

with the property f (m<k71)>-f (xékil)) < 0. Set z(F) = ( (k=1) | o (k 1))
If f (_ ) f (I(k b ) > 0, then let Ig ) = f(k) and zé ) — (k D, otherw1se
(k) — 5’“ D and xék) = z(®) Because z(*) always replaces the component
Ek 1) with the condition f (g’c(k)) - f (xl(k*l)) >0, i=1or?2 f (xgk)) .
f (xék)) < 0 still holds. It is clear that

let z;

k k ) (k=1 k—1
-] -3t

Thus the method is always convergent. For the secant method, if f (x§k71)> .

f (x(k 2 ) < 0 holds, then we can make a modification on choosing a pair

of guess, so that f (:cgk)) - f (asgk)) < 0. In this way the convergence of the

modified secant method is also guaranteed.

Broyden’s Method. There are some other ways to avoid calculating the
Jacobian for each iteration except for the first iteration. Another weakness of
Newton’s method is that an n x n linear system has to be solved at each itera-
tion, which usually requires O(n?) arithmetic calculations. Here, we introduce
Broyden’s method, which avoids calculating the Jacobian at each iteration and
reduces the number of arithmetic calculations to O(n?) at each iteration if we
get the inverse of the matrix for the first iteration.

Suppose that an initial approximation x(©) is given, and x(*) is computed
by Newton’s method



6.2 Solution of Systems and Eigenvalue Problems 369
x(1) — x(0) _ [Jf(x(o))]*lf(x(o)).
In order to get x(?), we replace the matrix J¢(x(?)) in Newton’s method by a
matrix A; satisfying
Al(X(l) _ X(O)) - f(x(l)) _ f(X(O))

and
Az = Je(x )z whenever (xV) —x(©)7z = 0.

From these conditions, it can be proved that
f(xM) — £(x(O) — Jp(xO)(x — x(0)

Ay =3 (x) + 2
=]
2

(x(D — Oy,

Using this matrix in place of J¢(x()), we have
x(? — x() _ Al_lf(x(l)).

In general, suppose we have x(~1 x() and A;_1, then we can have x("+1) by

y@ — A;_ s

A=A 1+ —
%m
2

(=),

and
<+ — (@) _ Ai_lf(x(i)),
where y( = f(x®) — f(x0~1) and s» = x(?) — x(=1 However, at each
iteration step, the linear system
AsUTD = _f(x()

still needs to be solved. To further improve the method, we need the following
theorem.

Theorem 6.4 If A € R™™" is nonsingular, x,y € R", and y"A~'x # —1,
then A + xy” is also nonsingular, moreover,

A lxy" AL

A Dl AT T
(A +xy7) 1+yTA-1x

This theorem suggests a simple way to find the inverse of A;. By setting

A=A,
oy - Ays®
Y _Zis

%@
2
y =s,

A+xy"=A;
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in the above theorem, we have

v — A, s

Az_—ll N (S(i))T Az'_—ll
Hsu)
A;1 = A;—ll v
@ _A._,s®
i — y i—18
L+ ()AL |
Hsu)
2
a1 (AL y® —s)(sD)TAY
i—1 @) 2 ] P ) 2
Pl oo~
L 89 AT yM) (M)A,

(G0) A0

This computation requires only O(n?) arithmetic calculations because it in-
volves only matrix-vector multiplications. Therefore, we have the following
Broyden’s method:

e Given initial guess x(*), compute Ay' = [J¢(x(?)]~! and x(V).
e Fori=1,2,---, do the following:

(s — ALy D))" AT
GOy A Ly
x(HD) = x(0) — A7 (x®).

(6.21)

ATl =AT

Broyden’s method reduces a large amount of work from Newton’s method.
However, the quadratic convergence of Newton’s method is lost. For Broyden’s
method, we have

Hx(i-‘rl) _ X*
lim

i—00 HX('L) — x*

=0.

This type of convergence is called superlinear. For more about Broyden’s
method, see books on numerical methods.

6.2.4 Obtaining Eigenvalues and Eigenvectors

In this subsection, we will discuss how to get eigenvalues and eigenvectors of
a square matrix, especially, a symmetric matrix. Before that, we introduce
some basic tools we will need.

Consider an m x m matrix in the form
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H, =1, —avv",

where I,,, is an m X m identity matrix, v is an m-dimensional vector, and «
is a number. Obviously, H,, is a symmetric matrix. We also want H,,, to be
orthogonal, namely,

H H, =1, —avw’)d, —avv’)
=1, — 2avv” + a’vvivv?
=1, — (Qa — a2VTV) v =1,,.

Therefore, we require

2
o =
viv
and
2 T
H,=1I,—- —vv". (6.22)
vTv

The matrix defined by the expression (6.22) is called a Householder matrix.
We are especially interested in the Householder matrix satisfying

H,x= Bela (623)
where X = [11, 22, ,2,,]" is an m-dimensional vector, 3 is a number whose
value may depend on the components of x, and e; = [1,0,---,0]". Because

2 2vTx
H,x=x— —vvix=x— v = fBeq,
vy vy
we have
2vTx
= v=x— (e 6.24
vTy el ( )
and

u'x =x"x — Bz;, uTu=x"x- 20z + (%

Therefore, we further obtain

2 2
H,,x= (Im - VVT) X = <Im - uuT> x
viv u’u

2u”x ( 2uTx) 2u”x
=X — u=(1- X+ fbe;.
T u’u

u’u u’u
Because we want the relation (6.23) to hold, we require

_ 2u'x _1 2 (x*x — 1) —0

1 _
u’u xTx — 2Bz + 32

or

8 =+VxTx. (6.25)
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Usually, we take the + sign so that the first component of the vector H,,x is
nonnegative. In this case

2 1
H, =1, —uu’ =1, - ——uu”, 6.26
u’u B(B — 1) (6.26)

where u and (3 are given by the expressions (6.24) and (6.25).
An n x n matrix

a1 @12 -+ Ain
a1 a22 *+- A2n
an,1 Gn2 *°° Ann
is called an upper triangular matrix if a;; = 0 for ¢ > j and an upper

Hessenberg matrix if a;; = 0 for ¢ > j + 1. Because a Householder matrix
defined by the expression (6.26) has the property (6.23), it can be used to
reduce a matrix A to an upper triangular matrix or an upper Hessenberg
matrix, which will be described below. Based on this fact, we can have the
so-called QR algorithm for finding the eigenvalues of a matrix.

The first step of the QR algorithm for finding the eigenvalues of a matrix
A is to reduce the matrix to an upper Hessenberg matrix. Let Py be an n x n
matrix in the form:

Iy 0
Pk’ - |: 0 an:| )
where k is equal to 0,1,--+, or n — 2, H,,_ is an (n — k) x (n — k) matrix

defined by the expression (6.26). Clearly, Py, is a Householder matrix. Suppose
that after using £ — 1 Householder transformations, A is changed to

Ci1 C12 Cy3
A1 =(P1---Pp_1)TAP1---Pp_q1) = | Co1 C22 Ca3 |,
0 Cszz Css
where
[Cu C12]
Ca1 Cao

is a k x k upper Hessenberg matrix and Css is a column vector. Now let us
define A, = P[A;_ 1Py, and from the forms of A;_; and P}, we have

Cll C12 C13Hn—k
Ay =P{A;,_ 1P, =PpA;,_ 1P, =|Cs Co CysH,,
0 H,_;Cs; H,,_1C33H,,_,

If we take C3o as x and determine H,,_, then we arrive at

Hn—kCSQ = [ﬁ, 0, ety O]T
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Therefore, the (k4 1) x (k + 1) submatrix at the upper-left corner of Ay is
an upper Hessenberg matrix, and the procedure can continue for k + 1. For
k = 1, this procedure can be done. Consequently, we can do this procedure
from k =1 to n — 2, and finally obtain an upper Hessenberg matrix:

Apo=P1 P, o)"AP,---P,_,). (6.27)

Now let us discuss the second step. If the procedure above starts from Py
and a matrix is multiplied only by P} from the left-hand side, then we will
obtain an upper triangular matrix with nonnegative main diagonal entries.
Therefore, for any matrix B, we can find an orthogonal matrix Q" such that
Q"B = R or B = QR, where R is an upper triangular matrix with nonneg-
ative main diagonal entries. This procedure is called QR factorization. Using
the QR factorization and letting By = A,,_5, we have the following iteration:

B = QiRy,
Bi+1 = RiQr = Q;BirQx (6.28)

for k =1,2,---. That is, first get Qx and Ry from By and then multiplying
Ry by Qi from the right-hand side yields By,1. For this iteration, we have
the following relation

Bit1 =Q;BiQr=Q) - QTA, 2Qq - Qi
=(Q1-Qr)" Ap_2(Q1---Qp)
=(P1Pyp2Qi-Qr) AP P, 2Q1--Qp),

or
Bjy1 = SLASy,
where

Sk =P1---Pr2Qi-- Qs

Let B and S be the limits of By1 and S, as k — oo respectively, then we have
B =S"AS.

The goal of the iteration is to find an upper triangular matrix that is similar
to A, so that we can have the eigenvalues of A from the main diagonal entries
of the upper triangular matrix. From the relation (6.28), we can see as follows.
First, we get an upper triangular matrix by multiplying an orthogonal matrix
from the left-hand side, but in order to let the new matrix be similar to the
old one, multiplying the same orthogonal matrix from the right-hand side is
needed, which may destroy the goal of finding an upper triangular matrix.
However, under certain conditions it will be proved that the limit B is an
upper triangular matrix. Therefore, we may reach our goal at the end of the
iteration.
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In order to find the eigenvectors of A, we first need to find the eigenvectors
of B. As soon as we find the eigenvectors of B, the eigenvectors of A can be
obtained through multiplying the eigenvectors of B from the left-hand side
by S. If A is symmetric, then B is diagonal and every column of S is an
eigenvector of A.

For the convergence of the iteration we have

Theorem 6.5 Assume that the eigenvalues of By have distinct absolute val-
ues, and X~ has an LU decomposition, where X is the matriz of eigenvectors.
Then, By, converges to an upper triangular matriz.

Proof. Suppose X has the decomposition
X = QZERwa

where Q,, is orthogonal and R, is upper triangular with positive main diagonal
entries. Then, we have

Bf = XA*X ™! = X(A*LA ")A*U

= Q,R.(I+E;)A"U

= Q.(I+R,E.R;)R,AU,
where A is the Jordan canonical matrix of By and E, = AFLA=% -1 — 0 as
k — oo because we assume |A1| > [Ag| > -+ |\, |[\i] being an eigenvalue of
Bl. Let

I+R,E.R;'=Q®RM,

where Q) is orthogonal and R(®) is upper triangular with positive main
diagonal entries. Obviously,

Q¥ -1, RW 5 1.

Let D and D,, be diagonal matrices defined by

D = diag(A1/|A1], - A/ Anl),

Du = diag(U11/|U11|, e aunn/‘unnDy
where u;;, t =1,--- ,n, are the main diagonal entries of U. Then, we have

B} = Q.QWR®R,A"U
= (Q.Q®D,D*)(D*D'RPR,A ).

Because a product of two upper triangular matrices is an upper triangular
matrix, and because a main diagonal entry of the new matrix is the product
of the corresponding main diagonal entries in each original matrix, this is a QR

decomposition of B} and the upper triangular matrix D~*D; 'R®R,A*U
has positive main diagonal entries. On the other hand, it can be shown that

B} = QiRy,
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where
Q:=Q: Qi R, =Ry Ry
In fact
Br=Qf_B1Qi1
or

B1Q 1 = Qi_1By = Qv_1QxRy = QiR;.

Multiplying 3k_1 from the right-hand side on both sides of the relation
QiR = B1Qg—1, we get

QiR = B1Q; 1Ry
and furthermore we obtain
QiR; = B1Q; 1Ry = BIQ; 2Ry o = --- = BY.

Therefore, we have another QR decomposition of BY. Because the QR decom-
position is unique, we have

Q. = Q.Q¥D,D*, R, =D *D;'R®R,AFU.
Therefore,

Bi+1 = (D")FDI(Q®)"QIB:Q.Q"D,D*
= (D")*D2(Q")"QrQ,R.AR;'Q;'Q.Q"D,D*
= (D")*DL(QW)"R,AR; QW D,D".

Because Q*) — I and an inverse of an upper triangular matrix is still an
upper triangular matrix, Bgy1 converges to an upper triangular matrix. 0O

From the proof, we can see that it is not necessary for By to be an upper
Hessenberg matrix. Having a Hessenberg matrix at the first step is for the
practical reason of reducing computational cost. If By is in upper Hessenberg
form, then By is also in upper Hessenberg form. Thus, in the entire iteration
process, we deal with upper Hessenberg matrices. For an upper Hessenberg
matrix, the amount of computational work at each step of the QR factorization
is O(n?), which is much smaller than O(n?) for a full matrix. In order to make
computation faster, we can also speed up the convergence of the QR algorithm
by combining the shifting technique. In addition, there are some other methods
for finding eigenvalues of a matrix, for example, the Jacobi algorithm. For more
about the QR algorithm, the details of the shifting technique, and other
methods, see books on matrix computation, for example, the book [35] by
Golub and Loan.
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6.3 Determination of Parameters in Models

In order to price an option on a specified underlying asset, we must have a
model for the asset. We can have various models, and we have to determine
the parameters in the model before pricing. In this section, we will discuss
how to determine the parameters in models from the market data.

6.3.1 Constant Variances and Covariances

Assume that the stochastic process of an asset price S can be described by
dS = adt + bd X,

where a and b are constants and dX is a Wiener process. Because we assume
that the parameters in the stochastic process do not depend on time, we can
determine a and b according to the historical data. Clearly,

E [dS] = adt
and
Var [dS] = E [(dS — adt)?] = E [(bdX)?] = b%dt,
that is,
1
= _—E
S B1dS)]
and
b = lVar [dS]
Cdt ’

Suppose that from the market, we have the values of the asset price S at time
=T+ (i—1)dt,i=1,2,--- , I+ 1. From any statistics textbook, we know
that the mean and variance of dS can be approximated by

I I

BldS]~ 7 Yo dsi = 1 (St — )

and

I
E z+l

Thus, we have the estimates for ¢ and b? as follows:

'\«M—‘

I
Var [dS] =~ Z Sit1 —

o~ L Z(SH1 -5 (6.29)

and
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I 1 Jd 2
s dt;[ =i 13500 - )
i+1 —

i=1 =1
I 2
it (z ) 60

i=1

wH

Now suppose
dS = pSdt + ocSdX

and let us discuss how to find p and o from the market data. Because dS =
wSdt + 0SdX can be written as

dinS = (u — 0%/2)dt + 0d X,

then we can estimate y and o? by

(ln Si+1 In S

'\«\P—‘

I 2
<Z (InS;41 —In Si)>

i=

)
[\V]
0
~
! —
~
S~—
QL
&
HM~

1

=

i

1 i Sii—Si\? 1 Sis1 ’
~ T= 1)t |- 1 <+Si > -7 (Z > (6.31)

i= =1

and
1< 1 =St — 8
2 i+1 — O
— 2~ — In S; 1 _
oo Idt;(ns’“ n ) ~ Idtz S;
or
1 =81 — S
i+l — O 2
~— _— 2. .32
s Idt; 5, T/ (6:32)
Here, we have used the approximate relation
1nSi+1 — IHSZ ~ %

Suppose that there are two stochastic processes:
dSy = ardt + b1d X,
and
dSs = asdt + bad X,

where a1, b1, as, and bs are constants, dX;, dXo are two Wiener processes
correlated with E[dX;dX5] = pdt. Assume that we have the values of the
asset prices S1 and Sy at time t* = Ty + (i — 1)dt, which are denoted by S ;
and So;, %1 =1,2,---,1 4+ 1. We can have estimates for a;, b1, a2, and by by



378 6 Basic Numerical Methods

the formulae (6.29) and (6.30). Now let us discuss how to estimate p from Sy ;
and Sy;,1=1,2,--- ,1 + 1. Because

dSl - aldt dSQ — agdt 1
E X =

EldXdXs5| = _ -
[dX1dXs] by by b1bs

{E[dS1dSs] — arazdt®}

we have

P {E [dSlng] — a1a2dt2} .

= bybydt

From statistics, we know

I
1
E [dS1dSs] ~ 71 Z (S1i41 — S1,i) (S2,i41 — S2,4)

i=1

so we have

1 1
bibodt | I —1

~
~

Z (Sl,i+1 - Slﬂ‘) (5271'4_1 — 5271') — alagdtQ . (633)

i=1

I

On the market, the data are given hourly, daily, and so forth, and only
on workdays. Suppose we use the data given daily and the adopted time
unit is year. When doing the computation, we should think that dt¢ between
two successive workdays is always equal to 1/I,,, where I, is the number of
workdays per year.

6.3.2 Variable Parameters

From Figs.1.1-1.7, we can see that the assumption of the volatility being
constant might not be a good assumption. For example, Figs.1.1 and 1.2
show that the prices of IBM and GE stocks have less volatilities if the price is
lower. Therefore, we assume that volatilities are functions of stock prices S.
That is, the stochastic process of S is described by

dS = a(S)dt+b(S)dX,

where a (S) and b (S) are functions of S to be determined. Because we do not
assume the dependence of the parameters on time ¢, we can still determine
a (S) and b (S) from the historical data.

Again, suppose that we have I 4 1 prices of an asset from the market: S;,
1=1,2,--- , T+ 1. Let Spax and Sy be the maximum and minimum values
among them. Set S,y = Swmin — € + M (Smax — Smin +€) /(M +1), m =
0,1,---, M + 1, where ¢ is a small positive number. Clearly, S(o) = Smin — €
and S(pr41) = Smax- The entire interval (S(O), S(M+1)] is divided into M + 1
subintervals (S(m,l), S(m)} ym=1,2--- M+ 1. Every S; belongs to one of
these subintervals. Consider S;, i = 1,2,--- ,I. If S; € (S(m_l), S(m)}, then
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we say that S; belongs to the set S(,,). Let I,, be the number of elements in
M+1

the set Sgy,y. It is clear that ) I,, = I. For each set S(,), we can have a
m=1

mean a,,) and a variance b%m) by the formulae (6.29) and (6.30).

The variance b%m) is an approximate variance of the random variable S
at S = (S(m—l) + S(m))/Q, m = 1,2,--- ,M + 1. We define S(m—1/2) =
(S(m—1) + S(m)) /2, 80 b(S(m—1/2)) = b(m). Because S is defined on [0, 00),
b(S) is a function on [0,00). However, it is not convenient to approximate
the function b(S) defined on an infinite interval. Hence we introduce a
transformation

S

R EON

where P,, is a positive number. This transformation maps [0,00) to [0,1).
Therefore, we assume that b (S) is in the form b(¢) and find b(¢) on the interval
[0,1). It is clear that b(,,) should be an approximation to E(f(m_l/g)), where
(m-1/2)
Stm—-1/2) + Pm
b(€) such that the points (f(mflm,b(m)), m=1,2,---,M+1, are as close to

b(&) as possible. Assume

E(m-1/2) = . Now the problem is reduced to finding a function

B N
(&) =9 ant™,
n=0

P&

1-¢&

Under this assumption, using the points <§( " b(m)>7 m=12-- ,M+1
m-3

where N < M and g (§) is a given function, for example, g (§) =1 or

and taking the weights b,, = I,,,/I, we can find ag,aq,- - ;any by the least
squares method with weights in Sect. 6.1.4. As soon as we find b (£), we have
b(S) by

=) S ()

n=0

If 5(S) < 0 in some small regions, then a local modification is needed in order
to guarantee b(S) > 0 for all S € [0,00). For a (S), the method is similar.

Now let us discuss the case involving several stochastic processes. For
simplicity, suppose we have two stochastic processes governed by

dSl = al(Sl)dt -+ bl(Sl)Xm
and

dSy; = CLQ(SQ)dt + b2(SQ)dX2
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with E [dX1dX2] = pdt, p being a constant. Using the method given above,
we can find a1(S1), b1(51), a2(S2), and ba(S2). Because we assume that p is
a constant, it can be determined by

1
= —E|[dX;dX
p= 2 EldX1dXs]
o l |:dSl — al(Sl)dt % dSQ — ag(Sg)dt
dt b1 (51) b2(52)
N 1 i |:Sl,i+1 — 81, —a1(S1,)dt » S2,i+1 — S2,i — az(S2,4)dt
(I — 1)dt P bl (Slz) bQ(SQ’i)
Problems

Table 6.1. Problems and Sections

lPrOblems‘SectionsHProblems‘SectionsHProblems‘Sections‘
[ 16 [ 61 || 714 [ 62 ] 15 [ 63 |

1. Suppose z,,, = mAzx.
(a) Find the order of the error of the following approximate function

T — Ty,

Az

Tl — &
u(z) = 22 (a,) +

AI’ U(.’Em+1 )

by the Taylor expansion. Here = € [, Zm11] -
(b) Find the order of the error of the following approximate function

(1[,’ B xm)(m B xm+1)u($m_1)

u(x) ~ 5 A2
L — Tm— T — Tm
e S
T — Tm_1)(T — T,

by the Taylor expansion. Here & € [2y—1, Zimy1] and Tp—1 < 24 <

Tm41-
2. *Show that from

Ay = App—1 + bm—lhm—l + Cm—lhgn_l + dm—lhfn,_h
bm = bmfl + 2Cm71hm71 + 3dm71h7271717
Cm = Cm—1+3dm_1hm_1, m=1,2,---  M—1,
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and ) 5
Gpy = Aprq + by 1hp o + Cl\l—lhqu_l + deth_u
M = Caro1 + 3dar—1 g,

the following relation can be derived:

Rom—1 m
T 7 tm- 2 m 5 7 ©“m
hmfl"'hm,C e +hm71+hmc i
_ 1 3(am+1 - am) _ 3(am - am—l)
hm—l + hm hm hm,1 ’

m=1,2--,M-1.

. Consider the cubic spline problem. Suppose that the derivative is given
at x = x,,, instead of assuming c,, = 0. Derive the equation which should
replace the equation ¢,, = 0 in the system for cg,c1, -, cuy-

. Suppose x,, = mAz, y; = [Ay, and 7" = nAr. Find the expression of the
error of each of the following approximations:

WX, V) + U2, )

(8) Wy 71/2) . ;
(0) 2 0,7y o M) 0, T,
T T
ou (X, V) — u(p, )
(€) = (wm,7"T/2) & ;
or AT
ou W(Tpg1, ") — ULy, T")
(@) P ~ : ;
(e) ?(ﬂsmxn) ~ u(me’Tn)Qg u(mmfl’TH);
x x
ou 3u(Tm, ™) — du(Tpm—1,7") + U(XTpy—2, T™)
) o (@m, ™) = ;
or 2Ax
0%u n W(Tg1, T") — 20(Tp, T) + w(Xpy—1, T™)
(g) @(Zm,’r )"\” ALI}Q )
(h)
O (Tm, 1, ™) & L u(@ms1, Y41, 7") — w(@ms1, Y11, 7")
0x0y 2Ax 2Ay
C @1, Y4, ™) — (T, -1, )
2Ay

. The Chebyshev polynomial of first kind with degree N is defined by
Ty (y) = cos (Ncos_1 y) .
where N is an integer and y € [—1,1]. Let

yj:cos%, 7=0,1,---,N.
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Show

(@) Thrr1(y) = 2yT(y) + Tha(y) = 0, k > 1.
(b) Tx(y) is a polynomial of degree N for any nonnegative integer.

N?, J=0,
(©) dTJZi(Z/j): 0, j=1,2,--- ,N—1,
Y
( 1)N+1N2a J:N7
N?2 (N2 -1
(3 ), J=0,
2 . -1 j+1N2
(d) dTNgyJ)— ( ) 2 ) 3_1727 '7N_1,
dy (1_yj)
(-)N N2 (N2 -1
3( )7 J=N;
d3 Ty (y; -1 j+13N2y< )
(e) dN:g]):( ) 2\ 2 ]’ ]:17277N_1
Y (1-97)

6. Let

) (1 -¢?) TS )
N (y—y;)

where Ty (y) is the Chebyshev polynomial of first kind with degree N,

yj =cos %, j=0,1,--- N, and

h]<y): j:O71a"'7N7

2, j=0,
;=<1 j=12,--,N-1,
2, j=N.

(a) Show

(=) (1= y2) TY () o
h(yZ): : :61”7 Z7j:Oala"'7N7
! ¢;iN? (yi — y;) ’

where d;; is the Kronecker delta.
(b) Define

dij: ‘7 i?j:O717"'7N'

Show that
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)Te i
cj(yv yj)’ 7
2N? +1 o
7, Z:]: b
dij = 6,
’ yi] Z:]:1727' 7N_17
2(127%)
2N 1
%, i=j=N.

(c) Let fi(y;) denote the values of the function fi(y) at y = y;, j =
0,1,---, N. Show that

N
pra(y) =D hy(y) f1(ys)
j=0
is an interpolation polynomial with degree N for fi(y) on [—1,1] and

de1 i
y Zdl_]fl y]

(d) Define x = (1—y)/2 or y = 1—2z. Let f(x;) denote the values of the
function f(z) at x = x;, j =0,1,---, N. Show that

N
z) =Y hi(1—22)f(x;)
j=0

is an interpolation polynomial with degree N for f(z) on [0, 1] and

de ZDzjf l‘j

where

Ve
cj (@i — x])
2N?% +1 o
T 9 t=7]=VY,

Dij = 1, ’
7J7 1_32172a" 7N_1>
dz; (1 — ;)
2N2 +1
—3 1=j=N.
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7. Derive the formulae of the LU decomposition method for the following
almost tridiagonal system

Ax =q,
where
_bl C1 d1 1
as bQ C2 0 d2
A= )
0 A —1 bm—l dm—l
i U Ay
1o q1
T2 q2
X = 5 q =
T, dm

8. Suppose that we already have a solver for solving tridiagonal system:

Ax =q,
where
by 1 T q1
az by c2 0 T2 P
A=| L ox=| |, a=
0 Am—1 bmfl Cm—1 Tm—1 dm—1
[07%%% bm Tm dm

In order to solve the following almost tridiagonal system

Ax =q,
where
a1 b b1 1
as b2 C2 0 as bg C2 0
A: '.. '.- '.. or A: '.. s
0 Gm—1 bm—l Cm—1 0 Gm—1 bm—l Cm—1
U by Cm Um by Cm

we can convert it to a tridiagonal system and solve the new system by the
existing solver. Design such a method.

9. *Describe the Jacobi iteration, the Gauss—Seidel iteration, and the method
of successive over relaxation for an n x n system of linear equations.



10.

11.

12.

13.

14.

15.
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*Suppose f(z) = 0 is a nonlinear equation. Derive the iteration formu-
lae of Newton’s method and the secant method for solving the nonlinear
equation.
(a) For each of the following methods, describe the details of the method
and its advantage and disadvantage:
i. The secant method;
ii. The bisection method;
iii. The modified secant method.
(b) Based on the methods in part a), design an efficient and robust method
of finding a root of the equation f(z) = 0.
Suppose

f(x(l)) — f(X(O)) — Je(xO)(x(M — X(O))

2
-]

Ay =Je(x?) + (xM —xOn7,

2

Show that the following relations hold:
Al(X(l) _ X(0)) - f(X(l)) _ f(X(O))
and
Az = Je(x)z  whenever (xV) —x(©)7z = 0.

Prove that if A € R™*™ is nonsingular, x,y € R”, and y"TA~'x # —1,
then A + xy” is also nonsingular, moreover,

1T A —1
(A+xy") t=A""1— 7?_’_ ;(ZAI:X .
(a) *Show
H,x = Pex,
where
X = [21,20,  ,Tm]",
B =Vx'x,
H,=1 ! uu”
T BB =)

u being x — fe;.

(b) *Using the result in part a), design a method to obtain an orthogonal
matrix Q from A such that A = QR, where R is an upper triangular
matrix with nonnegative diagonals.

*Assume that the volatility of a stock is a function of the stock price.

Describe a method determining the function from the market data.
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Projects

General Requirements

(A) Submit a code or codes in C or C*" that will work on a computer

the instructor can get access to. At the beginning of the code, write
down the name of the student and indicate on which computer it
works and the procedure to make it work.

(B) Each code should use an input file to specify all the problem

parameters and the computational parameters and an output file to
store all the results. In an output file, the name of the problem, all
the problem parameters, and the computational parameters should be
given, so that one can know what the results are and how they were
obtained. The input file should be submitted with the code.

(C) Submit results in form of tables. When a result is given, always

provide the problem parameters and the computational parameters.

1. Cumulative Distribution Functions and Black—Scholes Formulae.

Write five functions:

(a)

double N(double z)

for computing approximate values of the cumulative distribution func-
tion for the standardized normal variable by using the expression given
in a footnote of Sect. 2.6.3, where z is the independent variable.

e Give the values of N(z) for z = —-2,-1,0,1,2.

double BS(double S, double E, double tau, double r, double D0, dou-
ble sigma, char option),

which gives prices of the European options by using Black—Scholes

formulae (see Sect. 2.6.5). When the value of the character ‘option’ is

equal to ‘¢’ or ‘C’, the value of the European call needs to be evaluated.

Otherwise, the value of the European put needs to be evaluated.

e For European call and put options, give the results for the cases:
S =100, £ = 95,100,105, T =1, r = 0.1, Dy = 0.05, 0 = 0.2.

e For European call and put options, give the results for the cases:
S =100, £ = 95,100,105, T'=1, r = 0.05, Dg = 0.1, 0 = 0.2.

double BS_bar(double xi, double E, double tau, double r, double DO,
double sigma, char option)

This function gives the value of ¢(&,7) = ¢(S,t)/(S + E) or p(§,7) =
p(S,1)/(S + E).
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e For ¢ = 0.5128,0.5000,0.4878, £ = 95,100,105, 7 = 1, » = 0.1,
Dy = 0.05, 0 = 0.2, calculate the results of ¢(&,7) and p(&, 7) by
this function.

(d) double N_2(double x1, double x2, double rho)

for computing approximate values of the cumulative distribution func-

tion for the bivariate standard normal distribution by using the ex-

pression given in a footnote of Sect. 4.5.3, where x1, x2 and rho are

parameters.

e Give the values of Na(x1, 2, p) for the following sets of (z1,x2, p):
(0.6,0.5,0.6), (0.4,0.5,0.8), (0.3,0.4,—0.6), (0.5,0.7,—0.8).

(e) double BS_2(double S1, double S2, double E, double tau, double r,
double D01, double D02, double sigmal, double sigma2, double rho,
char option)

which gives prices of the European call option on the maximum of two

assets and the European put option on the minimum of two assets by

using the closed-form solutions (4.76) and (4.77) given in Sect. 4.5.3.

When the value of the character ‘option’ is equal to ‘¢’ or ‘C’, the value

of the European call needs to be evaluated. Otherwise, the value of

the European put needs to be evaluated.

e Find the prices of the European call option on the maximum of two
assets for the following parameter sets of (S, Sa, E, 7,7, Do1, Do2,
01,02, p,option):

(100, 100, 100, 1.0,0.02,0.01,0.01, 0.20, 0.20, 0.8, ¢),
(100, 105, 100, 1.0,0.02,0.01,0.01,0.20, 0.15,0.8, ¢),
(100,105, 100, 1.0, 0.02, 0.01,0.01,0.15,0.20,0.8, ¢),
(100, 95,100,1.0,0.02,0.01,0.01,0.20,0.15,0.8,c),
(100, 95,100,1.0,0.02,0.01,0.01,0.15,0.20,0.8,c).

e Find the prices of the European put option on the minimum of two
assets for the following parameter sets of (S, S2, E, 7,7, Do1, Doa,
01,02, p,option):
(100, 100, 100, 1.0,0.02,0.01,0.01, 0.20, 0.20, 0.8, p),
(100,105, 100, 1.0,0.02,0.01,0.01,0.20, 0.15,0.8, p),
(100, 105,100, 1.0, 0.02,0.01,0.01,0.15,0.20,0.8, p),
(100, 95,100,1.0,0.02,0.01,0.01,0.20,0.15,0.8,p),
(100, 95,100,1.0,0.02,0.01,0.01,0.15,0.20,0.8,p).
2. Quadratic Interpolation and LU Decomposition of a Tridiagonal

System.
For the quadratic interpolation method (see Sect. 6.1.1), write a function
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double Interpolation(double x, int M, double *y)

Suppose that z, M, and y,, = y(zm,),m = 0,1,..., M, are given,
where z,, = m/M. This function gives an approximate value of
y(x) by quadratic interpolation. The concrete method is as follows.
If # < 1/2M, then interpolate or extrapolate y(x) by (xo,vo0), (€1,y1),
(x2,y2), if &y —1/2M < 2z < xp +1/2M, m = 1,2,--- M — 1,
then interpOIate y(w) by (xm—lv ym—1)7 (l‘m, ym)’ ('rm-l-lv ym+1)7 and if
Xy —1/2M < x, then interpolate or extrapolate y(x) by (Tar_o, Ynr—2),
(xlw—17ylw—l)7 (xlvfayl\/l)'
e Let M = 5 and the six components from yy to ys are 0.0,
0.008, 0.064, 0.216, 0.512, 1.0. Calculate the values of y(z) for
x = —0.1,0.45,1.01 by this function.

For LU decomposition (see Sect. 6.2.1), write two functions:

(b)

int LUT (int m, double *a, double *b, double *c, double *q, double *x).

Suppose that we have a tridiagonal system (6.12). The number of
unknowns is given in the integer ‘m’. The nonhomogeneous term g¢; is
given in q[i-1] (the ith component of the array ‘q’). The coefficients
a;, b;, and ¢; are given in the ith component of the arrays ‘a’, ‘b’,
and ‘c’, respectively. Write a function to solve the system by using the
method described in Sect. 6.2.1. If all the u; are not equal to zero,
then the code should return an integer number 0 and gives the value
of the ith unknown in the ith component of the array x. If one of u;
is equal to zero, then the solution(s) of the system cannot be found
by the method (or the system has no solution), and the code should
return an integer number 1. The values in the arrays ‘a’, ‘b’ ‘c’, and
‘q’ are required unchanged.
o Let m =4, a3 = a3 = ag = —048, by = by = b3 = by = 1,
Cl = Cp = C3 = —049, q1 = 0027 gz = 005, q3 — 008, and
qa = 2.56. Find the solution of the system (6.12).

int LUAT(int m, double *a, double *b, double *c, double *q,
double *x)

This is a solver for an almost tridiagonal system by LU decomposition.
The almost tridiagonal system is in the following form:

Ax =q,
where
al b1 C1
ag bg C2 0

A:

0 Gm—1 bm—l Cm—1
Gm by Cm
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This function calculates x if m, a,b, ¢, and q are given. Require m,

a, b, c, and q unchanged.

e Let m=5,a={1.75-0.48,-0.48,—-0.48,0.25}, b = {-0.5,1,1,
1,-0.5}, ¢ = {0.25,-0.49, —0.49, —0.49,1.75}, g = {1.5,0.05, 0.08,
0.11,7.5}, calculate the result of x by this function.



	6 Basic Numerical Methods
	6.1 Approximations
	6.1.1 Interpolation
	6.1.2 Approximation of Partial Derivatives
	6.1.3 Approximate Integration
	6.1.4 Least Squares Approximation

	6.2 Solution of Systems and Eigenvalue Problems
	6.2.1 LU Decomposition of Linear Systems
	6.2.2 Iteration Methods for Linear Systems
	6.2.3 Iteration Methods for Nonlinear Systems
	6.2.4 Obtaining Eigenvalues and Eigenvectors

	6.3 Determination of Parameters in Models
	6.3.1 Constant Variances and Covariances
	6.3.2 Variable Parameters

	Problems
	Projects


