
6

Basic Numerical Methods

This chapter is devoted to the basic numerical methods. We first discuss var-
ious approximations, solution of systems, and eigenvalue problems. Then, we
describe how to determine the parameters in stochastic models.

6.1 Approximations

6.1.1 Interpolation

Linear Interpolation. Suppose that the values of a function f(x) are given
on the grid points xm, m = 0, 1, · · · ,M , where x0 < x1 < · · · < xM .
Sometimes, we may need to find the value of the function at other points.
A simple way to do this is to interpolate the function by using the known
values of the function. Let fm denote the value of the function f(x) at a
point xm, m = 0, 1, · · · ,M . We want to approximate the value f(x∗) for
x∗ ∈ (xm, xm+1). The simplest interpolation is to use a linear function to
approximate the function f(x) on the subinterval [xm, xm+1]. Let

p1(x) = a0 + a1x.

Using the conditions

p1(xm) = fm, p1(xm+1) = fm+1,

we find

a0 =
xm+1fm − xmfm+1

xm+1 − xm
, a1 =

fm+1 − fm
xm+1 − xm

.

Then, we have

p1(x) =
xm+1 − x

xm+1 − xm
fm +

x− xm

xm+1 − xm
fm+1.

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 6, © Springer Science+Business Media New York 2013

349

350 6 Basic Numerical Methods

Thus, we have the approximate value:

f(x∗) ≈ p1(x
∗) =

xm+1 − x∗

xm+1 − xm
fm +

x∗ − xm

xm+1 − xm
fm+1.

This is called the linear interpolation. If we do the interpolation for all subin-
tervals, then we obtain a piecewise linear function on the interval [x0, xM].

Higher Order Interpolation. If the function data indicates that the
function is smooth, then we can use a quadratic or Nth order interpolation to
get a better approximation. Assume that we have obtained the values fm−1,
fm, and fm+1. Let

p2(x) = a0 + a1x+ a2x
2.

Using the conditions

p2(xm−1) = fm−1, p2(xm) = fm, p2(xm+1) = fm+1,

we find

p2(x) =
(xm − x)(xm+1 − x)

(xm − xm−1)(xm+1 − xm−1)
fm−1 +

(x− xm−1)(xm+1 − x)

(xm − xm−1)(xm+1 − xm)
fm

+
(x− xm−1)(x− xm)

(xm+1 − xm−1)(xm+1 − xm)
fm+1.

Then, for any x∗ ∈ (xm−1, xm+1), f(x
∗) can be approximated by p2(x

∗). This
is called the quadratic interpolation.

In general, if fm, m = i, i+ 1, · · · , i+N , are known for an integer i, then
an Nth Lagrange interpolating polynomial can be obtained. For simplicity,
let i = 0 and write down the polynomial as follows:

pN(x) = ϕ0(x)f0 + ϕ1(x)f1 + · · ·+ ϕN(x)fN ,

where

ϕk(x) =
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xN)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xN)

for k = 0, 1, · · · , N . This approximation can be used for any x ∈ (x0, xN).
It is clear that the linear and quadratic interpolating polynomials are the
Lagrange interpolating polynomials with N = 1 and 2, respectively. For an
Nth Lagrange interpolating polynomial, the error is given by the following
theorem:

Theorem 6.1 If xm, m = 0, 1, · · · , N , are distinct numbers and f(x) is N+1
times continuous differentiable on [x0, xN], then for any x ∈ [x0, xN], there
exists a ξ ∈ [x0, xN], such that

f(x)− pN(x) =
f (N+1)(ξ)

(N + 1)!
(x− x0)(x− x1) · · · (x− xN).

6.1 Approximations 351

Therefore, the error of linear interpolation is O(Δx2), and the error of
quadratic interpolation is O(Δx3), where Δx = max

m
(xm+1 − xm).

Cubic Spline Interpolation. As we can see, linear interpolations result in
piecewise linear functions on the interval [x0, xM]: the function is smooth in
each subinterval [xm, xm+1], continuous in [x0, xM], but may not be smooth
in [x0, xM]. For quadratic interpolations, the situation is similar. Cubic spline
interpolation is the most commonly used piecewise polynomial approximation,
which is a cubic polynomial on each subinterval [xm, xm+1] and has a contin-
uous second derivative on the whole interval. The cubic spline interpolation
S(x) satisfies the following conditions:

(A) On the subinterval [xm, xm+1], S(x) = Sm(x) is a cubic polynomial,
m = 0, 1, · · · ,M − 1;

(B) S(xm) = fm, m = 0, 1, · · · ,M ;
(C) Sm(xm) = Sm−1(xm), S′

m(xm) = S′
m−1(xm), S′′

m(xm) = S′′
m−1(xm), m =

1, 2, · · · ,M − 1;
(D) S′′(x0) = S′′(xM) = 0, or other two conditions.

Let

Sm(x) = am+bm(x−xm)+cm(x−xm)2+dm(x−xm)3, m = 0, 1, · · · ,M−1.

Condition B, m = 0, 1, · · · ,M − 1, can be written as

am = Sm(xm) = fm, m = 0, 1, · · · ,M − 1.

Using condition C, we get
⎧
⎪⎪⎨

⎪⎪⎩

am = am−1 + bm−1hm−1 + cm−1h
2
m−1 + dm−1h

3
m−1,

bm = bm−1 + 2cm−1hm−1 + 3dm−1h
2
m−1,

cm = cm−1 + 3dm−1hm−1,
m = 1, 2, · · · ,M − 1,

(6.1)

where hm−1 = xm − xm−1. Define

aM = fM

and

cM = S′′(xM)/2.

Then, from the expression SM−1(x) and Condition B with m = M , we further
have

{
aM = aM−1 + bM−1hM−1 + cM−1h

2
M−1 + dM−1h

3
M−1,

cM = cM−1 + 3dM−1hM−1.
(6.2)

Rewrite the last relations in the sets of relations (6.1) and (6.2) as

dm−1 =
cm − cm−1

3hm−1
, m = 1, 2, · · · ,M, (6.3)

352 6 Basic Numerical Methods

and the first relations in the sets of relations (6.1) and (6.2) as

bm−1 =
am − am−1

hm−1
− cm−1hm−1 − dm−1h

2
m−1

=
am − am−1

hm−1
− cm−1hm−1 − cm − cm−1

3
hm−1, (6.4)

m = 1, 2, · · · ,M.

Substituting them into the second relation in the set of relations (6.1) yields
am+1 − am

hm
− cmhm − cm+1 − cm

3
hm

=
am − am−1

hm−1
− cm−1hm−1 − cm − cm−1

3
hm−1

+2cm−1hm−1 + (cm − cm−1)hm−1,

m = 1, 2, · · · ,M − 1,

or

umcm−1 + 2cm + vmcm+1=
1

hm−1 + hm

[
3(am+1 − am)

hm
− 3(am − am−1)

hm−1

]

,

m = 1, 2, · · · ,M − 1,

where um = hm−1/(hm−1 + hm) and vm = hm/(hm−1 + hm). This system is
equivalent to Conditions A–C. If Condition D is S′′(x0) = S′′(xM) = 0, we
have two other equations c0 = 0 and cM = 0. In this case the entire system
can be written in the following matrix form:

Ac = h, (6.5)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · · · · · · · 0
u1 2 v1 0 · · · 0
0 u2 2 v2 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

0 · · · 0 uM−1 2 vM−1

0 · · · · · · · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
...
...
cM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

h =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1

h0 + h1

(
3(a2 − a1)

h1
− 3(a1 − a0)

h0

)

...
1

hM−2 + hM−1

(
3(aM − aM−1)

hM−1

− 3(aM−1 − aM−2)

hM−2

)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Solving this linear system, we obtain cm, m = 0, 1, · · · ,M . Then dm, m =
0, 1, · · · ,M − 1, can be obtained from the set of relations (6.3) and bm, m =
0, 1, · · · ,M − 1, from the set of relations (6.4).

6.1 Approximations 353

The condition S′′(x0) = 0 could be replaced by S′(x0) = f ′(x0) or d0 = 0,
namely, assuming S0(x) = a0+b0(x−x0)+c0(x−x0)

2. At x = xM , the situation
is similar. If such a case appears, then the way to determine these coefficients
needs to be changed slightly. Here, assuming S′(x0) = f ′(x0) and dM−1 = 0,
we explain how to modify the way to determine these coefficients. Because
S′
0(x0) = b0, the coefficient b0 is known in this case, namely, b0 = f ′(x0).

From
{
a1 = a0 + b0h0 + c0h

2
0 + d0h

3
0,

c1 = c0 + 3d0h0,

we eliminate d0 and obtain

2c0 + c1 = 3

(
a1 − a0

h2
0

− b0
h0

)

= 3

(
a1 − a0

h2
0

− f ′(x0)

h0

)

.

This equation should replace the first equation in the system (6.5). From
dM−1 = 0 and the second equation in the set of relations (6.2), we have

cM−1 − cM = 0.

This equation should replace the last equation in the system (6.5). Solving the
modified system (6.5) yields cm, m = 0, 1, · · · ,M , for this case. As soon as all
the cm are obtained, dm, m = 0, 1, · · · ,M − 1, can be obtained from the set
of relations (6.3) and bm, m = 0, 1, · · · ,M − 1, from the set of relations (6.4).
For more about cubic spline interpolation, see books on numerical methods.

When we write a code to calculate the approximate value f(x∗) by
quadratic interpolation, in order to guarantee to use an interpolation, we need
to find a numberm such that x∗ ∈ [xm−1, xm+1]. This can be realized by using
a loop statement. If xm = mΔx,m = 0, 1, · · · ,M , then the expression

m = max

(

1,min

(

int

(
x∗

Δx
+ 0.5

)

,M − 1

))

will also always give such a number.

6.1.2 Approximation of Partial Derivatives

Finite-Difference Approximation. Here, we will discuss how derivatives
of a function u(x, t) at a point can be approximated by a linear combination of
values of the function at adjacent points. Let xm = a+mΔx and τn = nΔτ ,
where m is an integer and n is an integer or an integer plus a half.

Using the Taylor expansion, we have1

u(xm, τn+1) = u(xm, τn) +Δτ
∂u

∂τ
(xm, τn) +

Δτ2

2

∂2u

∂τ2
(xm, η),

1In this book Δτ2 stands for (Δτ)2. For Δτ3, Δx2, Δx3 etc., the situation is
similar.

354 6 Basic Numerical Methods

where τn < η < τn+1. Then,

∂u

∂τ
(xm, τn) =

u(xm, τn+1)− u(xm, τn)

Δτ
− Δτ

2

∂2u

∂τ2
(xm, η).

If Δτ is small, we have

∂u

∂τ
(xm, τn) ≈ u(xm, τn+1)− u(xm, τn)

Δτ
.

This approximation is called the forward finite-difference approximation or

the forward difference for
∂u

∂τ
. Similarly, we can obtain the backward

difference

∂u

∂τ
(xm, τn) ≈ u(xm, τn)− u(xm, τn−1)

Δτ
.

Both forward and backward finite-difference approximations have errors of
first order in Δτ (first-order accurate). To obtain a second-order accurate
finite-difference approximation, we use the following Taylor expansions:

u(xm, τn+1) = u(xm, τn+1/2) +
Δτ

2

∂u

∂τ
(xm, τn+1/2)

+
Δτ2

8

∂2u

∂τ2
(xm, τn+1/2) +

Δτ3

48

∂3u

∂τ3
(xm, η1),

u(xm, τn) = u(xm, τn+1/2)− Δτ

2

∂u

∂τ
(xm, τn+1/2)

+
Δτ2

8

∂2u

∂τ2
(xm, τn+1/2)− Δτ3

48

∂3u

∂τ3
(xm, η2),

where τn+1/2 < η1 < τn+1 and τn < η2 < τn+1/2. Subtracting the second
equation from the first one, we get

∂u

∂τ
(xm, τn+1/2) =

u(xm, τn+1)− u(xm, τn)

Δτ
− Δτ2

24

∂3u

∂τ3
(xm, η3),

where τn < η3 < τn+1. Then, we have

∂u

∂τ
(xm, τn+1/2) ≈ u(xm, τn+1)− u(xm, τn)

Δτ
.

This approximation is called the central finite-difference approximation or a

central difference for
∂u

∂τ
.

Similarly, for
∂u

∂x
(xm, τn) we can have the following approximations

6.1 Approximations 355

∂u

∂x
(xm, τn) ≈ u(xm+1, τ

n)− u(xm−1, τ
n)

2Δx
,

∂u

∂x
(xm, τn) ≈ u(xm, τn)− u(xm−1, τ

n)

Δx

and

∂u

∂x
(xm, τn) ≈ u(xm+1, τ

n)− u(xm, τn)

Δx
.

The first one is second order and called the second-order central difference
for first derivatives. The second and third approximations are first order and
called the first-order one-sided difference. Sometimes, we also need the
following second-order one-sided differences:

∂u

∂x
(xm, τn) ≈ 3u(xm, τn)− 4u(xm−1, τ

n) + u(xm−2, τ
n)

2Δx

and

∂u

∂x
(xm, τn) ≈ −3u(xm, τn) + 4u(xm+1, τ

n)− u(xm+2, τ
n)

2Δx
.

For the approximation of the second-order partial derivative with respect
to x, we use the following Taylor expansions:

u(xm+1, τ
n) = u(xm, τn) +Δx

∂u

∂x
(xm, τn) +

Δx2

2

∂2u

∂x2
(xm, τn)

+
Δx3

6

∂3u

∂x3
(xm, τn) +

Δx4

24

∂4u

∂x4
(ξ1, τ

n),

u(xm−1, τ
n) = u(xm, τn)−Δx

∂u

∂x
(xm, τn) +

Δx2

2

∂2u

∂x2
(xm, τn)

−Δx3

6

∂3u

∂x3
(xm, τn) +

Δx4

24

∂4u

∂x4
(ξ2, τ

n),

where xm < ξ1 < xm+1 and xm−1 < ξ2 < xm. Adding these two equations,
we obtain

∂2u

∂x2
(xm, τn) =

u(xm+1, τ
n)− 2u(xm, τn) + u(xm−1, τ

n)

Δx2
− Δx2

12

∂4u

∂x4
(ξ3, τ

n),

where xm−1 < ξ3 < xm+1. Thus, we have the second-order central differ-
ence for second derivatives:

∂2u

∂x2
(xm, τn) ≈ u(xm+1, τ

n)− 2u(xm, τn) + u(xm−1, τ
n)

Δx2
.

356 6 Basic Numerical Methods

Sometimes, we also need to have an approximation to mixed second-order

partial derivatives. For
∂2u

∂x∂y
, we have

∂2u

∂x∂y
(xm, yl, τ

n) ≈ 1

2Δx

[
u(xm+1, yl+1, τ

n)− u(xm+1, yl−1, τ
n)

2Δy

−u(xm−1, yl+1, τ
n)− u(xm−1, yl−1, τ

n)

2Δy

]

,

where yl = b + lΔy, Δy being a small number. It is clear that this is a
second-order scheme, and this formula is called the second-order central
difference for mixed second-order partial derivatives.

Pseudo-Spectral Approximation. By using more points, we can also
construct higher order finite-difference approximations for the partial deriva-
tives. An alternative way to obtain higher order approximations for partial
derivatives is to use a pseudo-spectral method. To illustrate the method, we
consider the approximation to the partial derivatives with respect to x for a
fixed τ . Assume that we want to find the solution u in the interval 0 ≤ x ≤ 1.
Suppose we use non-equidistant nodes. For example, we can use the following
grid points

xm =
1

2

(
1− cos

mπ

M

)
, m = 0, 1, · · · ,M. (6.6)

These points are in [0, 1] and equal to (1 − x∗
m)/2, x∗

m being the extrema of
the Mth order Chebyshev polynomial TM (x). Here, the Mth order Chebyshev
polynomial is defined by TM (x) = cos(M cos−1 x). Assume that the solution
for a fixed τ is a polynomial in x with degree M . If we require the polynomial
to have a value u(xm) at x = xm, then we can determine the coefficients of the
polynomial, each of which is a linear combination of u(xi), i = 0, 1, · · · ,M .
Thus, the derivatives of the polynomial at the point xm is also a linear com-
bination of u(xi), i = 0, 1, · · · ,M , with coefficients depending on xm and xi.
Therefore,

∂u

∂x
(xm) =

M∑

i=0

Dx,m,iu(xi). (6.7)

This is an Mth order approximation to the derivative with respect to
x used in the pseudo-spectral method. If the grid points are given by the
expression (6.6), then Dx,m,i has the following expression:

6.1 Approximations 357

Dx,m,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm(−1)m+i

ci(xm − xi)
, m �= i,

−2M2 + 1

3
, m = i = 0,

1− 2xi

4xi(1− xi)
, m = i = 1, 2, · · · ,M − 1,

2M2 + 1

3
, m = i = M ,

(6.8)

where c0 = cM = 2 and ci = 1, i = 1, 2, · · · ,M − 1 (see [36]). Similarly, we
have

∂2u

∂x2
(xm) =

M∑

j=0

Dx,m,j
∂u

∂x
(xj)

=

M∑

j=0

Dx,m,j

[
M∑

i=0

Dx,j,iu(xi)

]

=

M∑

i=0

⎛

⎝
M∑

j=0

Dx,m,jDx,j,i

⎞

⎠u(xi)

=

M∑

i=0

Dxx,m,iu(xi), (6.9)

where

Dxx,m,i =

M∑

j=0

Dx,m,jDx,j,i. (6.10)

When the solution is very smooth, only a small M may be needed in order to
get a satisfying result. In such a case, its performance could be better than
the finite-difference approximations.

6.1.3 Approximate Integration

Trapezoidal Rule. The approximation of the integral
∫ b

a

f(x)dx

is needed in the numerical solution of integro-differential equations and some-
times in the numerical solution of partial differential equations. The sim-
plest method for the approximation is called the trapezoidal rule. Let
h = (b − a)/M , and xm = a + mh, m = 0, 1, · · · ,M . In the subinterval
[xm, xm+1], we use the linear function

358 6 Basic Numerical Methods

p1(x) =
xm+1 − x

h
f(xm) +

x− xm

h
f(xm+1)

to approximate f(x). Thus,

∫ xm+1

xm

f(x)dx ≈ 1

h

∫ xm+1

xm

[(xm+1 − x)f(xm) + (x− xm)f(xm+1)]dx

=
h

2
[f(xm) + f(xm+1)] .

Using this for all subintervals, we obtain

∫ b

a

f(x)dx =
M−1∑

m=0

∫ xm+1

xm

f(x)dx

≈
M−1∑

m=0

h

2
[f(xm) + f(xm+1)]

=
h

2

[

f(a) + 2

M−1∑

m=1

f(xm) + f(b)

]

.

The error of the trapezoidal rule is

− (b− a)h2

12
f ′′(ξ),

where ξ ∈ (a, b).

Simpson’s Rule. Simpson’s rule is a better approximation for the integral by
using the quadratic interpolation polynomial. In the subinterval [xm−1, xm+1],
we use

p2(x) =
(xm − x)(xm+1 − x)

(xm − xm−1)(xm+1 − xm−1)
f(xm−1)

+
(x− xm−1)(xm+1 − x)

(xm − xm−1)(xm+1 − xm)
f(xm)

+
(x− xm−1)(x− xm)

(xm+1 − xm−1)(xm+1 − xm)
f(xm+1)

to approximate f(x). Thus

∫ xm+1

xm−1

f(x)dx ≈ 1

2h2

∫ xm+1

xm−1

[(xm − x)(xm+1 − x)f(xm−1)

+2(x− xm−1)(xm+1 − x)f(xm)

+(x− xm−1)(x− xm)f(xm+1)]dx

=
h

3
[f(xm−1) + 4f(xm) + f(xm+1)].

6.1 Approximations 359

Suppose that M is an even number and using this for all subintervals, we
obtain

∫ b

a

f(x)dx ≈ h

3

⎡

⎣f(a) + 2

M/2−1∑

m=1

f(x2m) + 4

M/2∑

m=1

f(x2m−1) + f(b)

⎤

⎦ .

The error of the Simpson’s rule is

− (b− a)h4

180
f (4)(ξ),

where ξ ∈ (a, b).

6.1.4 Least Squares Approximation

In Sect. 6.1.1 we discussed various interpolations. In those cases, all the given
points (xm, fm) are on the interpolation function. Here, we will discuss how
to find an approximate function satisfying the following two conditions:

(A) The number of parameters in the function is less than the number of
given points.

(B) Let the function have the “best fit” to those given points (xm, fm) in
some sense.

Let xm, m = 0, 1, · · · ,M , be distinct, and let M + 1 points (xm, fm) be
given. We want to find a product of a given function g(x) and a polynomial
of degree N < M

g(x)

N∑

n=0

anx
n

such that the value of the total least squares error

M∑

m=0

bm

[

fm − g(xm)

N∑

n=0

anx
n
m

]2

has a minimum, where bm, m = 0, 1, · · · ,M , are given positive numbers
called the weights. In order to minimize the least squares error, the neces-
sary conditions are

∂

∂ai

⎧
⎨

⎩

M∑

m=0

bm

[

fm − g(xm)

N∑

n=0

anx
n
m

]2
⎫
⎬

⎭

= −2
M∑

m=0

bm

[

fm − g(xm)
N∑

n=0

anx
n
m

]

g(xm)xi
m = 0,

i = 0, 1, · · · , N.

360 6 Basic Numerical Methods

This system can be written as

N∑

n=0

[
M∑

m=0

bmg2(xm)xn+i
m

]

an =

M∑

m=0

bmfmg(xm)xi
m, (6.11)

i = 0, 1, · · · , N.

It is a linear system for a0, a1, · · · , aN , which is usually known as the
system of normal equations. When x0, x1, · · · , xM are distinct, we can find
a0, a1, · · · , aN without any difficulty. This method is usually referred to as the
least squares method with weights.

6.2 Solution of Systems and Eigenvalue Problems

6.2.1 LU Decomposition of Linear Systems

One efficient method for solving linear systems is the LU decomposition, which
decomposes the matrix A into a product of a unit lower triangular matrix2

L and an upper triangular matrix U, i.e., A = LU. In this subsection, we
will give the details of the method for linear tridiagonal systems. For more
complicated systems, the procedure is similar.

Consider a general linear tridiagonal system

Ax = q, (6.12)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 c1
a2 b2 c2 0

. . .
. . .

. . .

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xm

⎤

⎥
⎥
⎥
⎦
, q =

⎡

⎢
⎢
⎢
⎣

q1
q2
...
qm

⎤

⎥
⎥
⎥
⎦
.

Let us discuss how to find the solution of this system. The first equation of
the system is

b1x1 + c1x2 = q1.

Let

u1 = b1, y1 = q1,

the equation above can be written as

u1x1 + c1x2 = y1. (6.13)

2A matrix A is called a unit lower triangular matrix if aii = 1 and aij = 0 for
i < j. If aij = 0 for i > j, then the matrix A is called an upper triangular matrix.

6.2 Solution of Systems and Eigenvalue Problems 361

Now suppose we have a relation in the form

ui−1xi−1 + ci−1xi = yi−1.

We put this relation and the ith equation of the system together and obtain
{
ui−1xi−1 + ci−1xi = yi−1,
aixi−1 + bixi + cixi+1 = qi.

Subtracting the first relation multiplied by ai/ui−1 from the second equation,
we can eliminate xi−1 and have another relation in the same form:

(

bi − ci−1
ai

ui−1

)

xi + cixi+1 = qi − yi−1
ai

ui−1

or

uixi + cixi+1 = yi,

where

ui = bi − ci−1ai
ui−1

,

yi = qi − yi−1ai
ui−1

.

Because we have Eq. (6.13) that is in this form, this procedure can be done
for i = 2, 3, · · · ,m successively and generates

uixi + cixi+1 = yi, i = 2, 3, · · · ,m− 1 (6.14)

and

umxm = ym. (6.15)

Because in the last equation of the system xm+1 does not appear, which
means cm = 0, the last relation is in the form Eq. (6.15) instead of the
set of equations (6.14). This procedure can be called elimination or forward
substitution.

When we obtain Eq. (6.15), we can have

xm =
ym
um

.

Furthermore, from Eq. (6.13) and the set of equations (6.14) we can get

xi =
yi − cixi+1

ui
, i = m− 1, · · · , 1

successively. This procedure is called back substitution. Through these two
procedures, we can obtain the solution of this system.

The elimination procedure can be written in matrix form

Lm−1 · · ·L2L1Ax = Ux = Lm−1 · · ·L1q = y, (6.16)

362 6 Basic Numerical Methods

where

Li =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

0 1
. . .

. . .
. . .

. . .
... 0 1

. . .
...

−li 1
. . .

0
. . .

. . .

. . .
. . . 0

0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 c1 0 · · · 0

0 u2 c2
. . .

...
...

. . .
. . .

. . . 0
...

. . . um−1 cm−1

0 · · · · · · 0 um

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...
ym

⎤

⎥
⎥
⎥
⎦
,

li equalling ai+1/ui and being in the ith column and the (i+ 1)th row of Li,
i = 1, 2, · · · ,m− 1.

Let

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0

l1 1 0
...

0 l2 1
. . .

...
...
. . .

. . .
. . . 0

0 · · · 0 lm−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is easy to see

Lm−1Lm−2 · · ·L1L = I.

Thus, we have

Lm−1Lm−2 · · ·L1 = L−1

and Eq. (6.16) can be written as

L−1Ax = Ux = L−1q = y.

Consequently,

Ax = LUx = q.

6.2 Solution of Systems and Eigenvalue Problems 363

This means that A can be decomposed into a unit lower triangular matrix
L multiplied by an upper triangular matrix U. The procedure of solving the
system is as follows. We first multiply the equation by L−1 so that the equation
becomes Ux = L−1q = y and then solve Ux = y to get x = U−1y. Because
these two procedures are easy to perform, the method is quite popular.

6.2.2 Iteration Methods for Linear Systems

An alternative to LU decomposition is iteration. Iteration methods are espe-
cially effective for large systems with sparse coefficient matrices. Consider the
linear system

Ax = q.

A may be decomposed as

A = D+ L+U

where

L =

⎡

⎢
⎢
⎢
⎣

0 · · · · · · 0
a2,1 0 · · · 0
...

. . .
. . .

...
am,1 · · · am,m−1 0

⎤

⎥
⎥
⎥
⎦
, U =

⎡

⎢
⎢
⎢
⎣

0 a1,2 · · · a1,m
...
. . .

. . .
...

0 . . . 0 am−1,m

0 · · · · · · 0

⎤

⎥
⎥
⎥
⎦
,

and D = diag{a1,1, a2,2, · · · , am,m}. Then, the linear system can be rewritten
as the following system,

x = D−1 [q− (L+U)x] ,

where we assume that D is invertible.

Jacobi Iteration. A simple way to find the solution is to use the following
iteration:

x(k+1) = D−1
[
q− (L+U)x(k)

]
, k = 0, 1, · · · ,

or in component form

x
(k+1)
1 =

1

a1,1
[q1 − (a1,2x

(k)
2 + · · ·+ a1,mx(k)

m)],

x
(k+1)
2 =

1

a2,2
[q2 − (a2,1x

(k)
1 + a2,3x

(k)
3 + · · ·+ a2,mx(k)

m)],

...

x(k+1)
m =

1

am,m
[qm − (am,1x

(k)
1 + · · ·+ am,m−1x

(k)
m−1)].

It is clear that in order to implement this iteration, an initial guess x(0) should
be given. This method is called the Jacobi iteration.

364 6 Basic Numerical Methods

Gauss–Seidel Iteration. In the Jacobi iteration, at the iteration step for

x
(k+1)
i , all the solutions x

(k+1)
1 , · · · , x(k+1)

i−1 have been obtained. Therefore, new
variables can be used in the iteration, namely, we can have the following
iteration:

x
(k+1)
1 =

1

a1,1
[q1 − (a1,2x

(k)
2 + · · ·+ a1,mx(k)

m)],

x
(k+1)
2 =

1

a2,2
[q2 − (a2,1x

(k+1)
1 + a2,3x

(k)
3 + · · ·+ a2,mx(k)

m)],

x
(k+1)
3 =

1

a3,3
[q3 − (a3,1x

(k+1)
1 + a3,2x

(k+1)
2 + a3,4x

(k)
4 + · · ·+ a3,mx(k)

m)],

...

x(k+1)
m =

1

am,m
[qm − (am,1x

(k+1)
1 + · · ·+ am,m−1x

(k+1)
m−1)]

or in matrix form

x(k+1) = D−1
[
q− Lx(k+1) −Ux(k)

]
.

This method is called the Gauss–Seidel iteration.

SOR (Successive Over Relaxation). The Gauss–Seidel iteration can be
modified in the following way: Take a combination of the previous value of x
and the current update (from the Gauss–Seidel method) as the next approx-
imation:

x(k+1) = (1− ω)x(k) + ωD−1
[
q− Lx(k+1) −Ux(k)

]
,

or in component form

x
(k+1)
1 = (1− ω)x

(k)
1 +

ω

a1,1
[q1 − (a1,2x

(k)
2 + · · ·+ a1,mx(k)

m)],

x
(k+1)
2 = (1− ω)x

(k)
2 +

ω

a2,2
[q2 − (a2,1x

(k+1)
1 + a2,3x

(k)
3 + · · ·+ a2,mx(k)

m)],

x
(k+1)
3 = (1− ω)x

(k)
3 +

ω

a3,3
[q3 − (a3,1x

(k+1)
1 + a3,2x

(k+1)
2 + a3,4x

(k)
4 + · · ·+

a3,mx(k)
m)],

...

x(k+1)
m = (1− ω)x(k)

m +
ω

am,m
[qm − (am,1x

(k+1)
1 + · · ·+ am,m−1x

(k+1)
m−1)].

Here, ω is a real number. This method usually is called the method of
successive over relaxation (SOR). When ω = 1, it is the Gauss–Seidel iteration.
The parameter ω should be chosen so that the method will converge and work
better than the Gauss–Seidel iteration. The following result has been proved:

6.2 Solution of Systems and Eigenvalue Problems 365

Theorem 6.2 If A is a symmetric positive definite matrix and 0 < ω < 2,
then the method of successive over relaxation will converge for any initial
vector x.

Practical computation shows that this method also works for some
nonsymmetric linear systems if ω is chosen properly. For many cases, this
method gives faster convergence than the Gauss–Seidel iteration if ω ∈ (1, 2).
We would like to point out that in the books by Golub and Loan [35] and
Saad [71], there are some other iteration methods that can also be used for
solving linear systems in Chaps. 8–10. Interested readers are referred to these
books.

6.2.3 Iteration Methods for Nonlinear Systems

In the numerical solution of partial differential equations, the resulting algebraic
systems are sometimes nonlinear. In this section, we discuss three iteration
methods for the nonlinear systems.

Newton’s Method. Consider the following nonlinear system,

f1(x1, x2, · · · , xn) = 0,

f2(x1, x2, · · · , xn) = 0,

...

fn(x1, x2, · · · , xn) = 0.

Let

x =

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xn

⎤

⎥
⎥
⎥
⎦
, f(x) =

⎡

⎢
⎢
⎢
⎣

f1(x)
f2(x)

...
fn(x)

⎤

⎥
⎥
⎥
⎦
.

Then, the nonlinear system has the form

f(x) = 0.

Suppose x(0) = [x0
1, x

0
2, · · · , x0

n]
T is a good initial guess to the true solution

x∗ = [x∗
1, x

∗
2, · · · , x∗

n]
T , i.e.,

δx = x∗ − x(0) = [δx1, δx2, · · · , δxn]
T

is small in norm. Then, for i = 1, 2, · · · , n
0 = fi(x

∗
1, x

∗
2, · · · , x∗

n) = fi(x
0
1 + δx1, x

0
2 + δx2, · · · , x0

n + δxn)

≈ fi(x
0
1, x

0
2, · · · , x0

n) +

n∑

k=1

∂fi(x
0
1, x

0
2, · · · , x0

n)

∂xk
δxk.

366 6 Basic Numerical Methods

In matrix form, we have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f1(x
(0))

∂x1

∂f1(x
(0))

∂x2
· · · ∂f1(x

(0))

∂xn

∂f2(x
(0))

∂x1

∂f2(x
(0))

∂x2
· · · ∂f2(x

(0))

∂xn· · · · · · · · · · · ·
∂fn(x

(0))

∂x1

∂fn(x
(0))

∂x2
· · · ∂fn(x

(0))

∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

δx1

δx2

...
δxn

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎣

f1(x
(0))

f2(x
(0))
...

fn(x
(0))

⎤

⎥
⎥
⎥
⎦
≈ 0,

or

Jf (x
(0)) · δx+ f(x(0)) ≈ 0,

where Jf (x
(0)) denotes the above Jacobian matrix. Solving for δx we get

δx ≈ −[Jf (x
(0))]−1f(x(0))

or

x∗ ≈ x(0) − [Jf (x
(0))]−1f(x(0)).

This means that the vector

x(1) = x(0) − [Jf (x
(0))]−1f(x(0))

will be a better approximation to the solution x∗. In general, suppose x(k)

has been obtained, then

x(k+1) = x(k) − [Jf (x
(k))]−1f(x(k)). (6.17)

When n = 1, it is an equation, not a system:

x(k+1) = x(k) − f(x(k))/f ′(x(k)). (6.18)

This iteration method is called Newton’s method. Because finding an inverse
of a matrix is time consuming, in the real computation, Newton’s method has
the form

{
Jf (x

(k))y = −f(x(k)),
x(k+1) = x(k) + y.

Newton’s method converges locally with second order. More precisely, it
can be proved that the following result holds.

Theorem 6.3 Let x∗ be a solution of f(x) = 0. Assume that Jf (x
∗) is not

singular, and that fi(x) has continuous second-order partial derivatives near
x∗. Then, if x(0) is close enough to x∗, Newton’s method converges and

∥
∥
∥x(k+1) − x∗

∥
∥
∥
∞

≤ C
∥
∥
∥x(k) − x∗

∥
∥
∥
2

∞
.

6.2 Solution of Systems and Eigenvalue Problems 367

Generalized Secant Method. One of weaknesses of Newton’s method for
solving nonlinear systems is that the Jacobian matrix must be computed at
each iteration. The Jacobian matrix associated with a system f(x) = 0 requires
n2 partial derivatives to be evaluated. In many situations, the exact evaluation
of the partial derivatives is inconvenient. This difficulty can be overcome by
using finite-difference approximations to the partial derivatives. For example,

∂fi(x1, x2, · · · , xn)

∂xk

≈ 1

Δxk
[fi(x1, · · · , xk +Δxk, · · · , xn)− fi(x1, · · · , xk, · · · , xn)],

k = 1, 2, · · · , n,

where Δxk is small in absolute value. This approximation, however, still re-
quires at least n2 function evaluations to be performed in order to approximate
the Jacobian and does not decrease the amount of calculations. Actually, if we
have f(x) at n+1 points, then we usually can have an approximate Jacobian
at some point. Suppose that we have x(l) and f(x(l)), l = k−n, k−n+1, · · · , k.
Because

[
f(x(k−n))− f(x(k)), f(x(k−n+1))− f(x(k)), · · · , f(x(k−1))− f(x(k))

]

≈ Jf (x
(k))

[
x(k−n) − x(k),x(k−n+1) − x(k), · · · ,x(k−1) − x(k)

]
,

we have

Jf (x
(k))

≈
[
f(x(k−n))− f(x(k)), f(x(k−n+1))− f(x(k)), · · · , f(x(k−1))− f(x(k))

]

×
[
x(k−n) − x(k),x(k−n+1) − x(k), · · · ,x(k−1) − x(k)

]−1

.

Therefore, Newton’s method can be modified to

x(k+1) = x(k) −
[
x(k−n) − x(k),x(k−n+1) − x(k), · · · ,x(k−1) − x(k)

]

×
[
f(x(k−n))− f(x(k)), f(x(k−n+1))− f(x(k)),

· · · , f(x(k−1))− f(x(k))
]−1

f(x(k)). (6.19)

Consequently, if we have n + 1 guesses x(l), l = 0, 1, · · · , n, and the values
of the function f(x) at these points, then we can do the iteration (6.19) for
k = n, n+1, · · · and at each iteration we spend very little time to calculate a
Jacobian. Of course, it needs to be guaranteed that the matrix

[
f(x(k−n))− f(x(k)), · · · , f(x(k−1))− f(x(k))

]

368 6 Basic Numerical Methods

is invertible. If during the iteration this matrix is not invertible, we need to
find the guess x(k+1) that is close to x(k) in another way, for example, by
changing a component of x(k) a little bit. In practice, it happens very seldom.

If n = 1, then the vectors x and f become scalars x and f and the itera-
tion (6.19) becomes

x(k+1) = x(k) − (x(k−1) − x(k))f(x(k))

f(x(k−1))− f(x(k))
. (6.20)

Thus, if we have two initial guesses x(0) and x(1), we can do this iteration
starting from k = 1. This method is called the secant method, and the it-
eration (6.19) is referred to as the generalized secant method. Under some
conditions, for the iteration (6.19) we can prove that the following relation
holds:
∥
∥
∥x(k+1) − x∗

∥
∥
∥
∞

≤ C
∥
∥
∥x(k) − x∗

∥
∥
∥
2

∞
+ C sup

1≤l≤n

∥
∥
∥x(k−l) − x(k)

∥
∥
∥
∞

∥
∥
∥f(x(k))

∥
∥
∥
∞

for k = n, n+ 1, · · · , where C is a constant (see [97]).

Bisection Method and Modified Secant Method. Consider the case n =
1 and suppose x

(k−1)
1 and x

(k−1)
2 be a pair of guess for the (k− 1)th iteration

with the property f
(
x
(k−1)
1

)
·f
(
x
(k−1)
2

)
< 0. Set x̄(k) = 1

2

(
x
(k−1)
1 + x

(k−1)
2

)
.

If f
(
x̄(k)

) · f
(
x
(k−1)
1

)
> 0, then let x

(k)
1 = x̄(k) and x

(k)
2 = x

(k−1)
2 ; otherwise,

let x
(k)
1 = x

(k−1)
1 and x

(k)
2 = x̄(k). Because x̄(k) always replaces the component

x
(k−1)
i with the condition f

(
x̄(k)

) · f
(
x
(k−1)
i

)
> 0, i = 1 or 2, f

(
x
(k)
1

)
·

f
(
x
(k)
2

)
< 0 still holds. It is clear that

∣
∣
∣x

(k)
2 − x

(k)
1

∣
∣
∣ =

1

2

∣
∣
∣x

(k−1)
2 − x

(k−1)
1

∣
∣
∣ .

Thus the method is always convergent. For the secant method, if f
(
x
(k−1)
1

)
·

f
(
x
(k−1)
2

)
< 0 holds, then we can make a modification on choosing a pair

of guess, so that f
(
x
(k)
1

)
· f

(
x
(k)
2

)
< 0. In this way the convergence of the

modified secant method is also guaranteed.

Broyden’s Method. There are some other ways to avoid calculating the
Jacobian for each iteration except for the first iteration. Another weakness of
Newton’s method is that an n×n linear system has to be solved at each itera-
tion, which usually requires O(n3) arithmetic calculations. Here, we introduce
Broyden’s method, which avoids calculating the Jacobian at each iteration and
reduces the number of arithmetic calculations to O(n2) at each iteration if we
get the inverse of the matrix for the first iteration.

Suppose that an initial approximation x(0) is given, and x(1) is computed
by Newton’s method

6.2 Solution of Systems and Eigenvalue Problems 369

x(1) = x(0) − [Jf (x
(0))]−1f(x(0)).

In order to get x(2), we replace the matrix Jf (x
(1)) in Newton’s method by a

matrix A1 satisfying

A1(x
(1) − x(0)) = f(x(1))− f(x(0))

and
A1z = Jf (x

(0))z whenever (x(1) − x(0))Tz = 0.

From these conditions, it can be proved that

A1 = Jf (x
(0)) +

f(x(1))− f(x(0))− Jf (x
(0))(x(1) − x(0))

∥
∥
∥x(1) − x(0)

∥
∥
∥
2

2

(x(1) − x(0))T .

Using this matrix in place of Jf (x
(1)), we have

x(2) = x(1) −A−1
1 f(x(1)).

In general, suppose we have x(i−1), x(i) and Ai−1, then we can have x(i+1) by

Ai = Ai−1 +
y(i) −Ai−1s

(i)

∥
∥
∥s(i)

∥
∥
∥
2

2

(s(i))T ,

and

x(i+1) = x(i) −A−1
i f(x(i)),

where y(i) = f(x(i)) − f(x(i−1)) and s(i) = x(i) − x(i−1). However, at each
iteration step, the linear system

Ais
(i+1) = −f(x(i))

still needs to be solved. To further improve the method, we need the following
theorem.

Theorem 6.4 If A ∈ R
n×n is nonsingular, x,y ∈ R

n, and yTA−1x �= −1,
then A+ xyT is also nonsingular, moreover,

(A+ xyT)−1 = A−1 − A−1xyTA−1

1 + yTA−1x
.

This theorem suggests a simple way to find the inverse of Ai. By setting

A = Ai−1,

x =
y(i) −Ai−1s

(i)

∥
∥
∥s(i)

∥
∥
∥
2

2

,

y = s(i),

A+ xyT = Ai

370 6 Basic Numerical Methods

in the above theorem, we have

A−1
i = A−1

i−1 −

A−1
i−1

⎛

⎜
⎝
y(i) −Ai−1s

(i)

∥
∥
∥s(i)

∥
∥
∥
2

2

(s(i))T

⎞

⎟
⎠A−1

i−1

1 + (s(i))TA−1
i−1

⎛

⎜
⎝
y(i) −Ai−1s

(i)

∥
∥
∥s(i)

∥
∥
∥
2

2

⎞

⎟
⎠

= A−1
i−1 −

(A−1
i−1y

(i) − s(i))(s(i))TA−1
i−1

∥
∥
∥s(i)

∥
∥
∥
2

2
+ (s(i))TA−1

i−1y
(i) −

∥
∥
∥s(i)

∥
∥
∥
2

2

= A−1
i−1 +

(s(i) −A−1
i−1y

(i))(s(i))TA−1
i−1

(s(i))TA−1
i−1y

(i)
.

This computation requires only O(n2) arithmetic calculations because it in-
volves only matrix-vector multiplications. Therefore, we have the following
Broyden’s method:

• Given initial guess x(0), compute A−1
0 = [Jf (x

(0))]−1 and x(1).
• For i = 1, 2, · · · , do the following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y(i) = f(x(i))− f(x(i−1)), s(i) = x(i) − x(i−1),

A−1
i = A−1

i−1 +
(s(i) −A−1

i−1y
(i))(s(i))TA−1

i−1

(s(i))TA−1
i−1y

(i)
,

x(i+1) = x(i) −A−1
i f(x(i)).

(6.21)

Broyden’s method reduces a large amount of work from Newton’s method.
However, the quadratic convergence of Newton’s method is lost. For Broyden’s
method, we have

lim
i→∞

∥
∥
∥x(i+1) − x∗

∥
∥
∥

∥
∥
∥x(i) − x∗

∥
∥
∥

= 0.

This type of convergence is called superlinear. For more about Broyden’s
method, see books on numerical methods.

6.2.4 Obtaining Eigenvalues and Eigenvectors

In this subsection, we will discuss how to get eigenvalues and eigenvectors of
a square matrix, especially, a symmetric matrix. Before that, we introduce
some basic tools we will need.

Consider an m×m matrix in the form

6.2 Solution of Systems and Eigenvalue Problems 371

Hm = Im − αvvT ,

where Im is an m ×m identity matrix, v is an m-dimensional vector, and α
is a number. Obviously, Hm is a symmetric matrix. We also want Hm to be
orthogonal, namely,

HT

mHm = (Im − αvvT) (Im − αvvT)

= Im − 2αvvT + α2vvTvvT

= Im − (
2α− α2vTv

)
vvT = Im.

Therefore, we require

α =
2

vTv

and

Hm = Im − 2

vTv
vvT . (6.22)

The matrix defined by the expression (6.22) is called a Householder matrix.
We are especially interested in the Householder matrix satisfying

Hmx = βe1, (6.23)

where x = [x1, x2, · · · , xm]
T
is an m-dimensional vector, β is a number whose

value may depend on the components of x, and e1 = [1, 0, · · · , 0]T . Because

Hmx = x− 2

vTv
vvTx = x− 2vTx

vTv
v = βe1,

we have

u ≡ 2vTx

vTv
v = x− βe1 (6.24)

and

uTx = xTx− βx1, uTu = xTx− 2βx1 + β2.

Therefore, we further obtain

Hmx =

(

Im − 2

vTv
vvT

)

x =

(

Im − 2

uTu
uuT

)

x

= x− 2uTx

uTu
u =

(

1− 2uTx

uTu

)

x+
2uTx

uTu
βe1.

Because we want the relation (6.23) to hold, we require

1− 2uTx

uTu
= 1− 2 (xTx− βx1)

xTx− 2βx1 + β2
= 0

or

β = ±
√
xTx. (6.25)

372 6 Basic Numerical Methods

Usually, we take the + sign so that the first component of the vector Hmx is
nonnegative. In this case

Hm = Im − 2

uTu
uuT = Im − 1

β(β − x1)
uuT , (6.26)

where u and β are given by the expressions (6.24) and (6.25).
An n× n matrix

A =

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

⎤

⎥
⎥
⎥
⎦

is called an upper triangular matrix if aij = 0 for i > j and an upper
Hessenberg matrix if aij = 0 for i > j + 1. Because a Householder matrix
defined by the expression (6.26) has the property (6.23), it can be used to
reduce a matrix A to an upper triangular matrix or an upper Hessenberg
matrix, which will be described below. Based on this fact, we can have the
so-called QR algorithm for finding the eigenvalues of a matrix.

The first step of the QR algorithm for finding the eigenvalues of a matrix
A is to reduce the matrix to an upper Hessenberg matrix. Let Pk be an n×n
matrix in the form:

Pk =

[
Ik 0
0 Hn−k

]

,

where k is equal to 0, 1, · · · , or n − 2, Hn−k is an (n − k) × (n − k) matrix
defined by the expression (6.26). Clearly, Pk is a Householder matrix. Suppose
that after using k − 1 Householder transformations, A is changed to

Ak−1 = (P1 · · ·Pk−1)
TA(P1 · · ·Pk−1) =

⎡

⎣
C11 C12 C13

C21 C22 C23

0 C32 C33

⎤

⎦ ,

where
[
C11 C12

C21 C22

]

is a k × k upper Hessenberg matrix and C32 is a column vector. Now let us
define Ak = PT

kAk−1Pk, and from the forms of Ak−1 and Pk we have

Ak = PT

kAk−1Pk = PkAk−1Pk =

⎡

⎣
C11 C12 C13Hn−k

C21 C22 C23Hn−k

0 Hn−kC32 Hn−kC33Hn−k

⎤

⎦ .

If we take C32 as x and determine Hn−k, then we arrive at

Hn−kC32 =
[
β, 0, · · · , 0]T .

6.2 Solution of Systems and Eigenvalue Problems 373

Therefore, the (k + 1) × (k + 1) submatrix at the upper-left corner of Ak is
an upper Hessenberg matrix, and the procedure can continue for k + 1. For
k = 1, this procedure can be done. Consequently, we can do this procedure
from k = 1 to n− 2, and finally obtain an upper Hessenberg matrix:

An−2 = (P1 · · ·Pn−2)
TA(P1 · · ·Pn−2). (6.27)

Now let us discuss the second step. If the procedure above starts from P0

and a matrix is multiplied only by PT

k from the left-hand side, then we will
obtain an upper triangular matrix with nonnegative main diagonal entries.
Therefore, for any matrix B, we can find an orthogonal matrix QT such that
QTB = R or B = QR, where R is an upper triangular matrix with nonneg-
ative main diagonal entries. This procedure is called QR factorization. Using
the QR factorization and letting B1 = An−2, we have the following iteration:

Bk = QkRk,

Bk+1 = RkQk = QT

kBkQk (6.28)

for k = 1, 2, · · · . That is, first get Qk and Rk from Bk and then multiplying
Rk by Qk from the right-hand side yields Bk+1. For this iteration, we have
the following relation

Bk+1 = QT

kBkQk = QT

k · · ·QT

1An−2Q1 · · ·Qk

= (Q1 · · ·Qk)
T
An−2 (Q1 · · ·Qk)

= (P1 · · ·Pn−2Q1 · · ·Qk)
T
A (P1 · · ·Pn−2Q1 · · ·Qk) ,

or

Bk+1 = ST

kASk,

where

Sk = P1 · · ·Pn−2Q1 · · ·Qk.

Let B and S be the limits of Bk+1 and Sk as k → ∞ respectively, then we have

B = STAS.

The goal of the iteration is to find an upper triangular matrix that is similar
to A, so that we can have the eigenvalues of A from the main diagonal entries
of the upper triangular matrix. From the relation (6.28), we can see as follows.
First, we get an upper triangular matrix by multiplying an orthogonal matrix
from the left-hand side, but in order to let the new matrix be similar to the
old one, multiplying the same orthogonal matrix from the right-hand side is
needed, which may destroy the goal of finding an upper triangular matrix.
However, under certain conditions it will be proved that the limit B is an
upper triangular matrix. Therefore, we may reach our goal at the end of the
iteration.

374 6 Basic Numerical Methods

In order to find the eigenvectors of A, we first need to find the eigenvectors
of B. As soon as we find the eigenvectors of B, the eigenvectors of A can be
obtained through multiplying the eigenvectors of B from the left-hand side
by S. If A is symmetric, then B is diagonal and every column of S is an
eigenvector of A.

For the convergence of the iteration we have

Theorem 6.5 Assume that the eigenvalues of B1 have distinct absolute val-
ues, and X−1 has an LU decomposition, where X is the matrix of eigenvectors.
Then, Bk converges to an upper triangular matrix.

Proof. Suppose X has the decomposition

X = QxRx,

whereQx is orthogonal andRx is upper triangular with positive main diagonal
entries. Then, we have

Bk
1 = XΛkX−1 = X(ΛkLΛ−k)ΛkU

= QxRx(I+Ek)Λ
kU

= Qx(I+RxEkR
−1
x)RxΛ

kU,

where Λ is the Jordan canonical matrix of B1 and Ek = ΛkLΛ−k − I → 0 as
k → ∞ because we assume |λ1| > |λ2| > · · · |λn|, |λi| being an eigenvalue of
B1. Let

I+RxEkR
−1
x = Q(k)R(k),

where Q(k) is orthogonal and R(k) is upper triangular with positive main
diagonal entries. Obviously,

Q(k) → I, R(k) → I.

Let D and Du be diagonal matrices defined by

D = diag(λ1/|λ1|, · · · , λn/|λn|),
Du = diag(u11/|u11|, · · · , unn/|unn|),

where uii, i = 1, · · · , n, are the main diagonal entries of U. Then, we have

Bk
1 = QxQ

(k)R(k)RxΛ
kU

= (QxQ
(k)DuD

k)(D−kD−1
u R(k)RxΛ

kU).

Because a product of two upper triangular matrices is an upper triangular
matrix, and because a main diagonal entry of the new matrix is the product
of the corresponding main diagonal entries in each original matrix, this is a QR
decomposition of Bk

1 and the upper triangular matrix D−kD−1
u R(k)RxΛ

kU
has positive main diagonal entries. On the other hand, it can be shown that

Bk
1 = Q̂kR̂k,

6.2 Solution of Systems and Eigenvalue Problems 375

where

Q̂k = Q1 · · ·Qk, R̂k = Rk · · ·R1.

In fact

Bk = Q̂T

k−1B1Q̂k−1

or

B1Q̂k−1 = Q̂k−1Bk = Q̂k−1QkRk = Q̂kRk.

Multiplying R̂k−1 from the right-hand side on both sides of the relation
Q̂kRk = B1Q̂k−1, we get

Q̂kR̂k = B1Q̂k−1R̂k−1

and furthermore we obtain

Q̂kR̂k = B1Q̂k−1R̂k−1 = B2
1Q̂k−2R̂k−2 = · · · = Bk

1 .

Therefore, we have another QR decomposition of Bk
1 . Because the QR decom-

position is unique, we have

Q̂k = QxQ
(k)DuD

k, R̂k = D−kD−1
u R(k)RxΛ

kU.

Therefore,

Bk+1 = (DT)kDT

u(Q
(k))TQT

xB1QxQ
(k)DuD

k

= (DT)kDT

u(Q
(k))TQT

xQxRxΛR−1
x Q−1

x QxQ
(k)DuD

k

= (DT)kDT

u(Q
(k))TRxΛR−1

x Q(k)DuD
k.

Because Q(k) → I and an inverse of an upper triangular matrix is still an
upper triangular matrix, Bk+1 converges to an upper triangular matrix.
�

From the proof, we can see that it is not necessary for B1 to be an upper
Hessenberg matrix. Having a Hessenberg matrix at the first step is for the
practical reason of reducing computational cost. If Bk is in upper Hessenberg
form, then Bk+1 is also in upper Hessenberg form. Thus, in the entire iteration
process, we deal with upper Hessenberg matrices. For an upper Hessenberg
matrix, the amount of computational work at each step of the QR factorization
is O(n2), which is much smaller than O(n3) for a full matrix. In order to make
computation faster, we can also speed up the convergence of theQR algorithm
by combining the shifting technique. In addition, there are some other methods
for finding eigenvalues of a matrix, for example, the Jacobi algorithm. For more
about the QR algorithm, the details of the shifting technique, and other
methods, see books on matrix computation, for example, the book [35] by
Golub and Loan.

376 6 Basic Numerical Methods

6.3 Determination of Parameters in Models

In order to price an option on a specified underlying asset, we must have a
model for the asset. We can have various models, and we have to determine
the parameters in the model before pricing. In this section, we will discuss
how to determine the parameters in models from the market data.

6.3.1 Constant Variances and Covariances

Assume that the stochastic process of an asset price S can be described by

dS = adt+ bdX,

where a and b are constants and dX is a Wiener process. Because we assume
that the parameters in the stochastic process do not depend on time, we can
determine a and b according to the historical data. Clearly,

E [dS] = adt

and

Var [dS] = E
[
(dS − adt)2

]
= E

[
(bdX)2

]
= b2dt,

that is,

a =
1

dt
E [dS]

and

b2 =
1

dt
Var [dS] .

Suppose that from the market, we have the values of the asset price S at time
ti = T1 + (i− 1)dt, i = 1, 2, · · · , I +1. From any statistics textbook, we know
that the mean and variance of dS can be approximated by

E [dS] ≈ 1

I

I∑

i=1

dSi =
1

I

I∑

i=1

(Si+1 − Si)

and

Var [dS] ≈ 1

I − 1

I∑

i=1

[

Si+1 − Si − 1

I

I∑

i=1

(Si+1 − Si)

]2

.

Thus, we have the estimates for a and b2 as follows:

a ≈ 1

Idt

I∑

i=1

(Si+1 − Si) (6.29)

and

6.3 Determination of Parameters in Models 377

b2 ≈ 1

(I − 1)dt

I∑

i=1

[

Si+1 − Si − 1

I

I∑

i=1

(Si+1 − Si)

]2

=
1

(I − 1)dt

⎡

⎣
I∑

i=1

(Si+1 − Si)
2 − 1

I

(
I∑

i=1

(Si+1 − Si)

)2
⎤

⎦ . (6.30)

Now suppose

dS = μSdt+ σSdX

and let us discuss how to find μ and σ from the market data. Because dS =
μSdt+ σSdX can be written as

d lnS = (μ− σ2/2)dt+ σdX,

then we can estimate μ and σ2 by

σ2 ≈ 1

(I − 1)dt

⎡

⎣
I∑

i=1

(lnSi+1 − lnSi)
2 − 1

I

(
I∑

i=1

(lnSi+1 − lnSi)

)2
⎤

⎦

≈ 1

(I − 1)dt

⎡

⎣
I∑

i=1

(
Si+1 − Si

Si

)2

− 1

I

(
I∑

i=1

Si+1 − Si

Si

)2
⎤

⎦ (6.31)

and

μ− σ2/2 ≈ 1

Idt

I∑

i=1

(lnSi+1 − lnSi) ≈ 1

Idt

I∑

i=1

Si+1 − Si

Si

or

μ ≈ 1

Idt

I∑

i=1

Si+1 − Si

Si
+ σ2/2. (6.32)

Here, we have used the approximate relation

lnSi+1 − lnSi ≈ Si+1 − Si

Si
.

Suppose that there are two stochastic processes:

dS1 = a1dt+ b1dX1

and

dS2 = a2dt+ b2dX2,

where a1, b1, a2, and b2 are constants, dX1, dX2 are two Wiener processes
correlated with E [dX1dX2] = ρdt. Assume that we have the values of the
asset prices S1 and S2 at time ti = T1 + (i− 1)dt, which are denoted by S1,i

and S2,i, i = 1, 2, · · · , I + 1. We can have estimates for a1, b1, a2, and b2 by

378 6 Basic Numerical Methods

the formulae (6.29) and (6.30). Now let us discuss how to estimate ρ from S1,i

and S2,i, i = 1, 2, · · · , I + 1. Because

E [dX1dX2] = E

[
dS1 − a1dt

b1
× dS2 − a2dt

b2

]

=
1

b1b2

{
E [dS1dS2]− a1a2dt

2
}
,

we have

ρ =
1

b1b2dt

{
E [dS1dS2]− a1a2dt

2
}
.

From statistics, we know

E [dS1dS2] ≈ 1

I − 1

I∑

i=1

(S1,i+1 − S1,i) (S2,i+1 − S2,i) ,

so we have

ρ ≈ 1

b1b2dt

[
1

I − 1

I∑

i=1

(S1,i+1 − S1,i) (S2,i+1 − S2,i)− a1a2dt
2

]

. (6.33)

On the market, the data are given hourly, daily, and so forth, and only
on workdays. Suppose we use the data given daily and the adopted time
unit is year. When doing the computation, we should think that dt between
two successive workdays is always equal to 1/Iw, where Iw is the number of
workdays per year.

6.3.2 Variable Parameters

From Figs. 1.1–1.7, we can see that the assumption of the volatility being
constant might not be a good assumption. For example, Figs. 1.1 and 1.2
show that the prices of IBM and GE stocks have less volatilities if the price is
lower. Therefore, we assume that volatilities are functions of stock prices S.
That is, the stochastic process of S is described by

dS = a (S) dt+ b (S) dX,

where a (S) and b (S) are functions of S to be determined. Because we do not
assume the dependence of the parameters on time t, we can still determine
a (S) and b (S) from the historical data.

Again, suppose that we have I + 1 prices of an asset from the market: Si,
i = 1, 2, · · · , I + 1. Let Smax and Smin be the maximum and minimum values
among them. Set S(m) = Smin − ε + m (Smax − Smin + ε) / (M + 1), m =
0, 1, · · · ,M + 1, where ε is a small positive number. Clearly, S(0) = Smin − ε

and S(M+1) = Smax. The entire interval
(
S(0), S(M+1)

]
is divided into M + 1

subintervals
(
S(m−1), S(m)

]
,m = 1, 2, · · · ,M + 1. Every Si belongs to one of

these subintervals. Consider Si, i = 1, 2, · · · , I. If Si ∈
(
S(m−1), S(m)

]
, then

6.3 Determination of Parameters in Models 379

we say that Si belongs to the set S(m). Let Im be the number of elements in

the set S(m). It is clear that
M+1∑

m=1
Im = I. For each set S(m), we can have a

mean a(m) and a variance b2(m) by the formulae (6.29) and (6.30).

The variance b2(m) is an approximate variance of the random variable S

at S = (S(m−1) + S(m))/2, m = 1, 2, · · · ,M + 1. We define S(m−1/2) =
(
S(m−1) + S(m)

)
/2, so b(S(m−1/2)) ≈ b(m). Because S is defined on [0,∞),

b(S) is a function on [0,∞). However, it is not convenient to approximate
the function b(S) defined on an infinite interval. Hence we introduce a
transformation

ξ =
S

S + Pm
,

where Pm is a positive number. This transformation maps [0,∞) to [0, 1).
Therefore, we assume that b (S) is in the form b̄(ξ) and find b̄(ξ) on the interval
[0, 1). It is clear that b(m) should be an approximation to b̄

(
ξ(m−1/2)

)
, where

ξ(m−1/2) =
S(m−1/2)

S(m−1/2) + Pm
. Now the problem is reduced to finding a function

b̄(ξ) such that the points
(
ξ
(m−1/2)

, b(m)

)
, m = 1, 2, · · · ,M +1, are as close to

b̄(ξ) as possible. Assume

b̄ (ξ) = g (ξ)

N∑

n=0

anξ
n,

where N < M and g (ξ) is a given function, for example, g (ξ) = 1 or
Pmξ

1− ξ
.

Under this assumption, using the points

(

ξ
(m− 1

2)
, b(m)

)

, m = 1, 2, · · · ,M +1

and taking the weights bm = Im/I, we can find a0, a1, · · · , aN by the least
squares method with weights in Sect. 6.1.4. As soon as we find b̄ (ξ), we have
b (S) by

b (S) = g

(
S

S + Pm

) N∑

n=0

an

(
S

S + Pm

)n

.

If b(S) < 0 in some small regions, then a local modification is needed in order
to guarantee b(S) ≥ 0 for all S ∈ [0,∞). For a (S), the method is similar.

Now let us discuss the case involving several stochastic processes. For
simplicity, suppose we have two stochastic processes governed by

dS1 = a1(S1)dt+ b1(S1)dX1

and

dS2 = a2(S2)dt+ b2(S2)dX2

380 6 Basic Numerical Methods

with E [dX1dX2] = ρdt, ρ being a constant. Using the method given above,
we can find a1(S1), b1(S1), a2(S2), and b2(S2). Because we assume that ρ is
a constant, it can be determined by

ρ =
1

dt
E [dX1dX2]

=
1

dt
E

[
dS1 − a1(S1)dt

b1(S1)
× dS2 − a2(S2)dt

b2(S2)

]

≈ 1

(I − 1)dt

I∑

i=1

[
S1,i+1 − S1,i − a1(S1,i)dt

b1(S1,i)
× S2,i+1 − S2,i − a2(S2,i)dt

b2(S2,i)

]

.

Problems

Table 6.1. Problems and Sections

Problems Sections Problems Sections Problems Sections

1–6 6.1 7–14 6.2 15 6.3

1. Suppose xm = mΔx.
(a) Find the order of the error of the following approximate function

u(x) ≈ xm+1 − x

Δx
u(xm) +

x− xm

Δx
u(xm+1)

by the Taylor expansion. Here x ∈ [xm, xm+1] .
(b) Find the order of the error of the following approximate function

u(x) ≈ (x− xm)(x− xm+1)

2Δx2
u(xm−1)

− (x− xm−1)(x− xm+1)

Δx2
u(xm)

+
(x− xm−1)(x− xm)

2Δx2
u(xm+1)

by the Taylor expansion. Here x ∈ [xm−1, xm+1] and xm−1 < xm <
xm+1.

2. *Show that from
⎧
⎨

⎩

am = am−1 + bm−1hm−1 + cm−1h
2
m−1 + dm−1h

3
m−1,

bm = bm−1 + 2cm−1hm−1 + 3dm−1h
2
m−1,

cm = cm−1 + 3dm−1hm−1, m = 1, 2, · · · ,M − 1,

Problems 381

and {
aM = aM−1 + bM−1hM−1 + cM−1h

2
M−1 + dM−1h

3
M−1,

cM = cM−1 + 3dM−1hM−1,

the following relation can be derived:

hm−1

hm−1 + hm
cm−1 + 2cm +

hm

hm−1 + hm
cm+1

=
1

hm−1 + hm

[
3(am+1 − am)

hm
− 3(am − am−1)

hm−1

]

,

m = 1, 2, · · · ,M − 1.

3. Consider the cubic spline problem. Suppose that the derivative is given
at x = xM , instead of assuming cM = 0. Derive the equation which should
replace the equation cM = 0 in the system for c0, c1, · · · , cM .

4. Suppose xm = mΔx, yl = lΔy, and τn = nΔτ . Find the expression of the
error of each of the following approximations:

(a) u(xm, τn+1/2) ≈ u(xm, τn+1) + u(xm, τn)

2
;

(b)
∂u

∂τ
(xm, τn) ≈ u(xm, τn+1)− u(xm, τn)

Δτ
;

(c)
∂u

∂τ
(xm, τn+1/2) ≈ u(xm, τn+1)− u(xm, τn)

Δτ
;

(d)
∂u

∂x
(xm, τn) ≈ u(xm+1, τ

n)− u(xm, τn)

Δx
;

(e)
∂u

∂x
(xm, τn) ≈ u(xm+1, τ

n)− u(xm−1, τ
n)

2Δx
;

(f)
∂u

∂x
(xm, τn) ≈ 3u(xm, τn)− 4u(xm−1, τ

n) + u(xm−2, τ
n)

2Δx
;

(g)
∂2u

∂x2
(xm, τn) ≈ u(xm+1, τ

n)− 2u(xm, τn) + u(xm−1, τ
n)

Δx2
;

(h)

∂2u

∂x∂y
(xm, yl, τ

n) ≈ 1

2Δx

[
u(xm+1, yl+1, τ

n)− u(xm+1, yl−1, τ
n)

2Δy

−u(xm−1, yl+1, τ
n)− u(xm−1, yl−1, τ

n)

2Δy

]

.

5. The Chebyshev polynomial of first kind with degree N is defined by

TN (y) = cos
(
N cos−1 y

)
,

where N is an integer and y ∈ [−1, 1]. Let

yj = cos
jπ

N
, j = 0, 1, · · · , N.

382 6 Basic Numerical Methods

Show

(a) Tk+1(y)− 2yTk(y) + Tk−1(y) = 0, k ≥ 1.
(b) TN(y) is a polynomial of degree N for any nonnegative integer.

(c)
dTN (yj)

dy
=

⎧
⎪⎪⎨

⎪⎪⎩

N2, j = 0,

0, j = 1, 2, · · · , N − 1,

(−1)
N+1

N2, j = N ;

(d)
d2TN (yj)

dy2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N2
(
N2 − 1

)

3
, j = 0,

(−1)
j+1

N2

(
1− y2j

) , j = 1, 2, · · · , N − 1,

(−1)
N
N2

(
N2 − 1

)

3
, j = N ;

(e)
d3TN (yj)

dy3
=

(−1)
j+1

3N2yj
(
1− y2j

)2 , j = 1, 2, · · · , N − 1.

6. Let

hj (y) =
(−1)

j+1 (
1− y2

)
T ′

N (y)

cjN2 (y − yj)
, j = 0, 1, · · · , N,

where TN (y) is the Chebyshev polynomial of first kind with degree N ,
yj = cos jπ

N , j = 0, 1, · · · , N, and

cj =

⎧
⎨

⎩

2, j = 0,
1, j = 1, 2, · · · , N − 1,
2, j = N.

(a) Show

hj(yi) =
(−1)

j+1 (
1− y2i

)
T ′

N (yi)

cjN2 (yi − yj)
= δij , i, j = 0, 1, · · · , N,

where δij is the Kronecker delta.
(b) Define

dij =
dhj (yi)

dy
, i, j = 0, 1, · · · , N.

Show that

Problems 383

dij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)
i+j

ci
cj (yi − yj)

, i �= j,

2N2 + 1

6
, i = j = 0,

− yj

2
(
1− y2j

) , i = j = 1, 2, · · · , N − 1,

−2N2 + 1

6
, i = j = N.

(c) Let f1(yj) denote the values of the function f1(y) at y = yj , j =
0, 1, · · · , N . Show that

pN1(y) =

N∑

j=0

hj(y)f1(yj)

is an interpolation polynomial with degree N for f1(y) on [−1, 1] and

dpN1(yi)

dy
=

N∑

j=0

dijf1(yj).

(d) Define x = (1− y)/2 or y = 1− 2x. Let f(xj) denote the values of the
function f(x) at x = xj , j = 0, 1, · · · , N . Show that

pN(x) =

N∑

j=0

hj(1− 2x)f(xj)

is an interpolation polynomial with degree N for f(x) on [0, 1] and

dpN(xi)

dx
=

N∑

j=0

Dijf(xj),

where

Dij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)
i+j

ci
cj (xi − xj)

, i �= j,

−2N2 + 1

3
, i = j = 0,

1− 2xj

4xj (1− xj)
, i = j = 1, 2, · · · , N − 1,

2N2 + 1

3
, i = j = N.

384 6 Basic Numerical Methods

7. Derive the formulae of the LU decomposition method for the following
almost tridiagonal system

Ax = q,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 c1 d1
a2 b2 c2 0 d2

. . .
. . .

. . .
...

. . .
. . .

. . .
...

0 am−1 bm−1 dm−1

am dm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

x =

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xm

⎤

⎥
⎥
⎥
⎦
, q =

⎡

⎢
⎢
⎢
⎣

q1
q2
...
qm

⎤

⎥
⎥
⎥
⎦
.

8. Suppose that we already have a solver for solving tridiagonal system:

Ax = q,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1 c1
a2 b2 c2 0

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

...
xm−1

xm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q1
q2
...

qm−1

qm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In order to solve the following almost tridiagonal system

Ax = q,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 b1 c1
a2 b2 c2 0

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm cm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

or A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1 c1
a2 b2 c2 0

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm cm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

we can convert it to a tridiagonal system and solve the new system by the
existing solver. Design such a method.

9. *Describe the Jacobi iteration, the Gauss–Seidel iteration, and the method
of successive over relaxation for an n× n system of linear equations.

Problems 385

10. *Suppose f(x) = 0 is a nonlinear equation. Derive the iteration formu-
lae of Newton’s method and the secant method for solving the nonlinear
equation.

11. (a) For each of the following methods, describe the details of the method
and its advantage and disadvantage:
i. The secant method;
ii. The bisection method;
iii. The modified secant method.

(b) Based on the methods in part a), design an efficient and robust method
of finding a root of the equation f(x) = 0.

12. Suppose

A1 = Jf (x
(0)) +

f(x(1))− f(x(0))− Jf (x
(0))(x(1) − x(0))

∥
∥
∥x(1) − x(0)

∥
∥
∥
2

2

(x(1) − x(0))T .

Show that the following relations hold:

A1(x
(1) − x(0)) = f(x(1))− f(x(0))

and

A1z = Jf (x
(0))z whenever (x(1) − x(0))Tz = 0.

13. Prove that if A ∈ R
n×n is nonsingular, x,y ∈ R

n, and yTA−1x �= −1,
then A+ xyT is also nonsingular, moreover,

(A+ xyT)−1 = A−1 − A−1xyTA−1

1 + yTA−1x
.

14. (a) *Show

Hmx = βe1,

where

x = [x1, x2, · · · , xm]
T
,

β =
√
xTx,

Hm = Im − 1

β(β − x1)
uuT ,

u being x− βe1.

(b) *Using the result in part a), design a method to obtain an orthogonal
matrix Q from A such that A = QR, where R is an upper triangular
matrix with nonnegative diagonals.

15. *Assume that the volatility of a stock is a function of the stock price.
Describe a method determining the function from the market data.

386 6 Basic Numerical Methods

Projects

General Requirements

(A) Submit a code or codes in C or C++ that will work on a computer
the instructor can get access to. At the beginning of the code, write
down the name of the student and indicate on which computer it
works and the procedure to make it work.

(B) Each code should use an input file to specify all the problem
parameters and the computational parameters and an output file to
store all the results. In an output file, the name of the problem, all
the problem parameters, and the computational parameters should be
given, so that one can know what the results are and how they were
obtained. The input file should be submitted with the code.

(C) Submit results in form of tables. When a result is given, always
provide the problem parameters and the computational parameters.

1. Cumulative Distribution Functions and Black–Scholes Formulae.

Write five functions:

(a) double N(double z)

for computing approximate values of the cumulative distribution func-
tion for the standardized normal variable by using the expression given
in a footnote of Sect. 2.6.3, where z is the independent variable.
• Give the values of N(z) for z = −2,−1, 0, 1, 2.

(b) double BS(double S, double E, double tau, double r, double D0, dou-
ble sigma, char option),

which gives prices of the European options by using Black–Scholes
formulae (see Sect. 2.6.5). When the value of the character ‘option’ is
equal to ‘c’ or ‘C’, the value of the European call needs to be evaluated.
Otherwise, the value of the European put needs to be evaluated.
• For European call and put options, give the results for the cases:

S = 100, E = 95, 100, 105, T = 1, r = 0.1, D0 = 0.05, σ = 0.2.
• For European call and put options, give the results for the cases:

S = 100, E = 95, 100, 105, T = 1, r = 0.05, D0 = 0.1, σ = 0.2.

(c) double BS bar(double xi, double E, double tau, double r, double D0,
double sigma, char option)

This function gives the value of c̄(ξ, τ) = c(S, t)/(S + E) or p̄(ξ, τ) =
p(S, t)/(S + E).

Projects 387

• For ξ = 0.5128, 0.5000, 0.4878, E = 95, 100, 105, τ = 1, r = 0.1,
D0 = 0.05, σ = 0.2, calculate the results of c̄(ξ, τ) and p̄(ξ, τ) by
this function.

(d) double N 2(double x1, double x2, double rho)

for computing approximate values of the cumulative distribution func-
tion for the bivariate standard normal distribution by using the ex-
pression given in a footnote of Sect. 4.5.3, where x1, x2 and rho are
parameters.
• Give the values of N2(x1, x2, ρ) for the following sets of (x1, x2, ρ):

(0.6, 0.5, 0.6), (0.4, 0.5, 0.8), (0.3, 0.4,−0.6), (0.5, 0.7,−0.8).

(e) double BS 2(double S1, double S2, double E, double tau, double r,
double D01, double D02, double sigma1, double sigma2, double rho,
char option)

which gives prices of the European call option on the maximum of two
assets and the European put option on the minimum of two assets by
using the closed-form solutions (4.76) and (4.77) given in Sect. 4.5.3.
When the value of the character ‘option’ is equal to ‘c’ or ‘C’, the value
of the European call needs to be evaluated. Otherwise, the value of
the European put needs to be evaluated.
• Find the prices of the European call option on the maximum of two

assets for the following parameter sets of (S1, S2, E, τ, r,D01, D02,
σ1, σ2, ρ, option):

(100, 100, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.20, 0.8, c),

(100, 105, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.15, 0.8, c),

(100, 105, 100, 1.0, 0.02, 0.01, 0.01, 0.15, 0.20, 0.8, c),

(100, 95, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.15, 0.8, c),

(100, 95, 100, 1.0, 0.02, 0.01, 0.01, 0.15, 0.20, 0.8, c).

• Find the prices of the European put option on the minimum of two
assets for the following parameter sets of (S1, S2, E, τ, r,D01, D02,
σ1, σ2, ρ, option):

(100, 100, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.20, 0.8, p),

(100, 105, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.15, 0.8, p),

(100, 105, 100, 1.0, 0.02, 0.01, 0.01, 0.15, 0.20, 0.8, p),

(100, 95, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.15, 0.8, p),

(100, 95, 100, 1.0, 0.02, 0.01, 0.01, 0.15, 0.20, 0.8, p).

2. Quadratic Interpolation and LU Decomposition of a Tridiagonal
System.
For the quadratic interpolation method (see Sect. 6.1.1), write a function

388 6 Basic Numerical Methods

(a) double Interpolation(double x, int M, double *y)

Suppose that x, M , and ym = y(xm),m = 0, 1, . . . ,M , are given,
where xm = m/M . This function gives an approximate value of
y(x) by quadratic interpolation. The concrete method is as follows.
If x < 1/2M , then interpolate or extrapolate y(x) by (x0, y0), (x1, y1),
(x2, y2), if xm − 1/2M ≤ x < xm + 1/2M , m = 1, 2, · · · ,M − 1,
then interpolate y(x) by (xm−1, ym−1), (xm, ym), (xm+1, ym+1), and if
xM −1/2M ≤ x, then interpolate or extrapolate y(x) by (xM−2, yM−2),
(xM−1, yM−1), (xM , yM).
• Let M = 5 and the six components from y0 to y5 are 0.0,

0.008, 0.064, 0.216, 0.512, 1.0. Calculate the values of y(x) for
x = −0.1, 0.45, 1.01 by this function.

For LU decomposition (see Sect. 6.2.1), write two functions:

(b) int LUT(int m, double *a, double *b, double *c, double *q, double *x).

Suppose that we have a tridiagonal system (6.12). The number of
unknowns is given in the integer ‘m’. The nonhomogeneous term qi is
given in q[i-1] (the ith component of the array ‘q’). The coefficients
ai, bi, and ci are given in the ith component of the arrays ‘a’, ‘b’,
and ‘c’, respectively. Write a function to solve the system by using the
method described in Sect. 6.2.1. If all the ui are not equal to zero,
then the code should return an integer number 0 and gives the value
of the ith unknown in the ith component of the array x. If one of ui

is equal to zero, then the solution(s) of the system cannot be found
by the method (or the system has no solution), and the code should
return an integer number 1. The values in the arrays ‘a’, ‘b’, ‘c’, and
‘q’ are required unchanged.
• Let m = 4, a2 = a3 = a4 = −0.48, b1 = b2 = b3 = b4 = 1,

c1 = c2 = c3 = −0.49, q1 = 0.02, q2 = 0.05, q3 = 0.08, and
q4 = 2.56. Find the solution of the system (6.12).

(c) int LUAT(int m, double *a, double *b, double *c, double *q,
double *x)

This is a solver for an almost tridiagonal system by LU decomposition.
The almost tridiagonal system is in the following form:

Ax = q,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 b1 c1
a2 b2 c2 0

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm cm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Projects 389

This function calculates x if m, a,b, c, and q are given. Require m,
a,b, c, and q unchanged.
• Let m = 5, a = {1.75,−0.48,−0.48,−0.48, 0.25}, b = {−0.5, 1, 1,

1,−0.5}, c = {0.25,−0.49,−0.49,−0.49, 1.75}, q = {1.5, 0.05, 0.08,
0.11, 7.5}, calculate the result of x by this function.

	6 Basic Numerical Methods
	6.1 Approximations
	6.1.1 Interpolation
	6.1.2 Approximation of Partial Derivatives
	6.1.3 Approximate Integration
	6.1.4 Least Squares Approximation

	6.2 Solution of Systems and Eigenvalue Problems
	6.2.1 LU Decomposition of Linear Systems
	6.2.2 Iteration Methods for Linear Systems
	6.2.3 Iteration Methods for Nonlinear Systems
	6.2.4 Obtaining Eigenvalues and Eigenvectors

	6.3 Determination of Parameters in Models
	6.3.1 Constant Variances and Covariances
	6.3.2 Variable Parameters

	Problems
	Projects

