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Interest Rate Derivative Securities

5.1 Introduction

This chapter is devoted to interest rate derivatives. Interest rate derivatives
are financial products derived from interest rates. There are various interest
rates that will be mentioned in this chapter. Here we first give the meaning
of each interest rate and derive some relations among them.

An N -year zero-coupon yield or an N -year spot interest rate is the interest
rate on an investment starting at time t and lasting for N years. The invest-
ment is a “pure” N -year investment with no intermediate payments. Assume
that the interest is compounded continuously. In this case, suppose that at
time t the N -year zero-coupon yield is Y (t, t+N), then the investor will get

eY (t,t+N)N

at the end of year N for each dollar invested. A zero-coupon yield curve is a
curve showing the relation between Y (t, t+N) and N .

A zero-coupon bond with a face value or a par value of one dollar is a
contract whose holder will get one dollar at the maturity of the contract from
its issuer. Let Z(t;T ) denote the money a person needs to pay in order to
have the contract with maturity date T at time t. Then, between Y (t, T ) and
Z(t;T ), there is the following relation

Z(t;T ) = e−Y (t,T )(T−t), (5.1)

or

Y (t, T ) =
− lnZ(t;T )

T − t
.

Suppose t ≤ T1 ≤ T2. An interest rate determined at time t for a period
[T1, T2] and paid at time T2 is called a forward interest rate. Let us denote
this rate by f(t, T1, T2) and again assume that the interest is compounded
continuously. Among f(t, T1, T2), Z(t;T1), and Z(t;T2), there is the following
relation:

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 5, © Springer Science+Business Media New York 2013

277



278 5 Interest Rate Derivative Securities

Z(t;T1) = Z(t;T2)e
f(t,T1,T2)(T2−T1),

or

f(t, T1, T2) =
1

T2 − T1
ln
Z(t;T1)

Z(t;T2)
. (5.2)

The reason is the following. If we borrow one dollar at time T1, then we
need to return ef(t,T1,T2)(T2−T1) dollars at time T2 according to the forward
interest rate at time t. At time t, the values of one dollar at time T1 and
ef(t,T1,T2)(T2−T1) dollars at time T2 should be the same, otherwise there is an
arbitrage opportunity.

An instantaneous forward interest rate F (t, T1) is the limit of f(t, T1, T2)
as T2 → T1, written as

F (t, T1) = lim
T2→T1

f(t, T1, T2) = lim
T2→T1

−[lnZ(t;T2)− lnZ(t;T1)]

T2 − T1

=
−1

Z(t;T1)

∂Z(t;T1)

∂T1
. (5.3)

This gives

Z(t;T ) = Z(t; t)e−
∫ T
t
F (t,u)du = e−

∫ T
t
F (t,u)du.

Furthermore, combining this expression for Z(t, T ) with the relation (5.1)
yields

Y (t, T ) =
1

T − t

∫ T

t

F (t, u)du. (5.4)

The limit of Y (t, T ) as T → t is called the instantaneous short rate (see [43]),
the short-term interest rate, the short rate, or the spot rate (see [84]), denoted
by r(t), so

r(t) = lim
T→t

Y (t, T ) = Y (t, t).

Because from Eq. (5.4) we also have

lim
T→t

Y (t, T ) = lim
T→t

1

T − t

∫ T

t

F (t, u)du = F (t, t),

we get

r(t) = Y (t, t) = F (t, t). (5.5)

Clearly, if Y (t, T ) is equal to a constant r, then

Z(t;T ) = e−r(T−t),

and
f(t, T1, T2) = F (t, T1) = F (t, t) = Y (t, t) = r(t) = r.
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In practice, the interest is often compounded discretely. If a loan of one
dollar is required to pay at an interest rate r̄ compounded m times per year,
then the amount of each payment is

r̄

m
.

For an investment with an interest rate r compounded continuously, the in-

terest payment for a period
1

m
years is

er/m − 1.

If

er/m − 1 =
r̄

m
,

that is,
r = m ln(1 + r̄/m),

then the two investments are equivalent. Suppose that a forward interest rate
at time t for the period [T1, T1 + 1/m] is an interest rate compounded m times
per year and we use f̄(t, T1, T1 + 1/m) to denote this forward interest rate.
Let f(t, T1, T1 + 1/m) be equivalent to the interest rate f̄(t, T1, T1 + 1/m).
Then we have

f(t, T1, T1 + 1/m) = m ln

(
1 +

f̄(t, T1, T1 + 1/m)

m

)

and the relation (5.2) can be rewritten as

m ln

(
1 +

f̄(t, T1, T1 + 1/m)

m

)
= m ln

(
Z(t;T1)

Z(t;T1 + 1/m)

)

or

f̄(t, T1, T1 + 1/m) = m

[
Z(t;T1)

Z(t;T1 + 1/m)
− 1

]
. (5.6)

This is the counterpart of the relation (5.2) for an interest rate compounded
m times per year. Actually, this relation can also be derived directly. For the
formulae (5.1) and (5.3)–(5.5), we can also have their counterparts for interest
rates compounded discretely.

As we know, the value of a bond is related to interest rates. There are many
other financial contracts related to interest rates, which are signed between
two parties, for example, a bank and a company. These are called interest
rate derivatives. For an equity option, a typical life span is 9 months or less.
In this case, the assumption of a short rate being a deterministic function of
t, even a constant, is acceptable. If this is not the case, it may be necessary to
consider a short rate as a random variable. For example, a life span of a bond
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may be 5 years, 10 years, even 30 years. Therefore, it is more realistic to deal
with a short-term interest rate as a random variable. An interest rate cannot
be traded on the market. In Chap. 2, we pointed out that there is a unknown
function called the market price of risk for a short rate in the governing
partial differential equation (PDE) for interest rate derivatives. Before using
such an equation to price a derivative security, one has to find this function.
From the mathematical point of view, to find a unknown function in the
partial differential equation is to solve an inverse problem. This function in
the PDE is determined by some data associated with solutions of the equation.
The values of zero-coupon bonds with various maturity dates on the market
or some other data can be taken as the data needed. Moreover, reducing the
randomness of a zero-coupon bond curve to the randomness of the short rate is
not a good approximation in many cases. Thus, describing the randomness of
a zero-coupon bond curve by the randomness of several interest rates, namely,
considering multi-factor models, is necessary.

Therefore, the rest of this chapter is organized as follows. In Sects. 5.2
and 5.3, the problem for a bond is formulated and for four special models,
explicit solutions are derived. In Sect. 5.4, we discuss the inverse problem
of determining the market price of risk and give a formulation of the inverse
problem so that the determination of the unknown function can be reduced to
solving such a problem. Then, we discuss bond options, swaps, swaptions, and
so forth in Sect. 5.5. Section 5.6 is devoted to multi-factor interest rate models,
especially, a three-factor model that can used in practice easily. Finally, two-
factor convertible bonds are discussed in Sect. 5.7.

5.2 Bonds

A bond is a long-term contract under which the issuer promises to pay the
holder a specified amount of money on a specified date. The specified amount
is called the face value of the bond, which is denoted by Z in this chapter,
and the specified date is named the maturity date T . Usually, the holder is
also paid a specified amount at fixed times during the life of the contract.
Such a specified amount is called a coupon. If there is no coupon payment,
the bond is known as a zero-coupon bond. Clearly, the bondholder must pay
a certain amount of money to the issuer when the bond is purchased. This
amount is called the upfront premium. In this section, we will mainly derive
the equations by which one can determine a fair value of the bond for any
time t, including the upfront premium.

5.2.1 Bond Values for Deterministic Short Rates

Let r be the interest rate for the shortest possible deposit, which is called the
short-term interest rate or, for short, the short rate in this book. For a short
period, r may be assumed to be a constant. For a long period, for example, a
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few years, it is unreasonable to consider r as a constant. As a starting point,
we assume that the short rate is a known function of t, i.e., r = r(t). Let V (t)
stand for the value of a bond with coupon rate k(t) at time t. Assume that
the return rate of a bond during the time interval [t, t+ dt] be the risk-free
short rate, so we have

dV + Zk(t)dt = r(t)V dt,

where Zk(t)dt is the coupon payment the bondholder receives during the time
interval. If the coupon is paid continuously, k(t) is a continuous function of t.
If it is paid at fixed times, k(t) is a linear combination of Dirac delta functions,
i.e., k(t) =

∑
i

kiδ (t− ti) , ti ≤ T . The relation above can also be written as

dV − r(t)V dt = −Zk(t)dt.

Multiplying both sides of the equation by e
∫ T
t
r(τ)dτ , which is usually referred

to as the integrating factor, yields

e
∫ T
t
r(τ)dτ [dV − r(t)V dt] = −Zk(t)e

∫ T
t
r(τ)dτdt.

The left-hand side actually is d
(
e
∫ T
t
r(τ)dτV

)
. Therefore, we have

∫ T

t

d
(
e
∫ T
t
r(τ)dτV

)
= V (T )− e

∫ T
t
r(τ)dτV (t) = −Z

∫ T

t

k(τ̄)e
∫ T
τ̄
r(τ)dτdτ̄

and

V (t) = e−
∫ T
t
r(τ)dτ

[
V (T ) + Z

∫ T

t

k(τ̄)e
∫ T
τ̄
r(τ)dτdτ̄

]

= V (T )e−
∫ T
t
r(τ)dτ

[
1 +

∫ T

t

k(τ̄)e
∫ T
τ̄
r(τ)dτdτ̄

]
, (5.7)

where we have used the condition Z = V (T ). For a zero-coupon bond, k(t) = 0
and

V (t) = V (T )e−
∫ T
t
r(τ)dτ = Ze−

∫ T
t
r(τ)dτ .

From the right-hand side, we see that the value of V (t) depends on T . How-
ever, this dependence is suppressed in this expression. In order to express this
dependence explicitly, the relation above can be rewritten as

V (t;T ) = V (T ;T )e−
∫ T
t
r(τ)dτ , (5.8)

where V (T ;T ) = Z.
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At time t, the values of zero-coupon bonds with various maturities can
be obtained from the market, i.e., V (t;T ) with a fixed t and various T is
observable. Suppose we have such a function. Differentiating the formula (5.8)
with respect to T yields

∂V (t;T )

∂T
= −V (T ;T )e−

∫ T
t
r(τ)dτr(T ) = −V (t;T )r(T )

and

r(T ) =
−1

V (t;T )

∂V (t;T )

∂T
.

This means that the short rate at time T can be determined by the value and
the slope of the function V (t;T ). It is clear that r(T ) does not depend on
Z. Let Z = 1, then comparing the expression for r(T ) and the formula (5.3)
yields

F (t, T ) = r(T )

and

Z(t;T ) = e−
∫ T
t
r(u)du (5.9)

if Z = 1. Also for a zero-coupon bond,

V (t;T )

V (T ;T )
= Z(t;T ).

Thus, from the relation (5.1) we have

Y (t, T ) =
− lnZ(t;T )

T − t
=

− ln (V (t;T )/V (T ;T ))

T − t
, (5.10)

which is usually called the yield of a bond during the time interval [t, T ].
A plot of Y against the time to maturity, T − t, is called the yield curve. The
dependence of the yield on T − t is called the term structure of interest rates.
The historical data on bonds are usually given in the form of yields for various
T − t.

5.2.2 Bond Equations for Random Short Rates

It will be more realistic to consider the short rate r as a random variable.
Suppose

dr = u(r, t)dt+ w(r, t)dX. (5.11)

From Sect. 2.3, we know that the value of a bond as a short rate derivative,
V (r, t), satisfies Eq. (2.34) with only one random variable r:

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + kZ = 0, (5.12)
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where kZ is the coupon payment and λ = λ(r, t) is the market price of risk
for r. For a bond the value at maturity date T is a constant Z, i.e.,

V (r, T ) = Z. (5.13)

If the short rate model satisfies the conditions (2.39) and (2.40), then no
boundary condition is needed, i.e., Eq. (5.12) with the final condition (5.13)
has a unique solution.

5.3 Some Explicit Solutions of Bond Equations

There exist many short rate models. Here, we discuss the following model
(see [84]):

dr = [μ̄(t)− γ̄(t)r] dt+
√
α(t)r − β(t)dX, (5.14)

where α(t), β(t), γ̄(t), and μ̄(t) are given functions of t. Several important
models, for example, the Vasicek model (see [81]), the Cox–Ingersoll–Ross
model (see [23]), the Ho–Lee model (see [41]), and the Hull–White model (see
[44]) possess this form. For the models in the form (5.14), the determination
of the value of a zero-coupon bond can be reduced to solving two ordinary
differential equations. Sometimes we can find analytic solutions or the solution
can be expressed in terms of integrals with known integrands. Such a solution
is referred to as an explicit solution here.

If a short rate model is in the form (5.14) and we take

λ (r, t) = λ̄(t)
√
α(t)r − β(t), (5.15)

then Eq. (5.12) can be written as

∂V

∂t
+

1

2
[α(t)r − β(t)]

∂2V

∂r2
+ [μ(t)− γ(t)r]

∂V

∂r
− rV = 0, (5.16)

where

μ(t) = μ̄(t) + λ̄(t)β(t) (5.17)

and

γ(t) = γ̄(t) + λ̄(t)α(t). (5.18)

Here, we let k = 0 because we are going to determine the value of a zero-

coupon bond. Because the coefficients of
∂2V

∂r2
and

∂V

∂r
are linear functions in

r, the solution of Eq. (5.16) with the condition (5.13) has the following form

V (r, t) = ZeA(t,T )−rB(t,T ) (5.19)
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with

A(T, T ) = 0 (5.20)

and

B(T, T ) = 0. (5.21)

In fact, because the conditions (5.20) and (5.21) hold, we have

V (r, T ) = Z.

Substituting the expression (5.19) into Eq. (5.16) yields

dA

dt
− r

dB

dt
+

1

2
[α(t)r − β(t)]B2 − [μ(t)− γ(t)r]B − r = 0.

If the sum of the terms independent of r is equal to zero, i.e.,

dA

dt
− 1

2
β(t)B2 − μ(t)B = 0

and the sum of all coefficients of r is equal to zero, i.e.,

−dB
dt

+
1

2
αB2 + γ(t)B − 1 = 0,

then the expression (5.19) is a solution to a zero-coupon bond. These two
equations above, which can be rewritten as

dA

dt
=

1

2
β(t)B2 + μ(t)B (5.22)

and
dB

dt
=

1

2
α(t)B2 + γ(t)B − 1, (5.23)

have unique solutions satisfying the conditions (5.20) and (5.21). Thus, it is
true that Eq. (5.16) with the condition (5.13) has a solution in the form (5.19)
satisfying the conditions (5.20) and (5.21), and the solution of the problem
can be reduced to solving the two ordinary differential equations (5.22) and
(5.23) with the conditions (5.20) and (5.21).

5.3.1 Analytic Solutions for the Vasicek and Cox–Ingersoll–Ross
Models

If α, β, γ, μ in Eqs. (5.22) and (5.23) are constant, then we can find analytic
expressions for A and B.When A and B have such expressions, the expression
(5.19) gives an analytic solution for a zero-coupon bond. In this case, Eq. (5.23)
can be rewritten as

dB

B2 +
2γ

α
B − 2

α

=
α

2
dt. (5.24)
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Since

B2 +
2γ

α
B − 2

α
=

(
B +

γ − ψ

α

)(
B +

γ + ψ

α

)
,

where

ψ =
√
γ2 + 2α, (5.25)

using the method of partial fraction decomposition, we can have

1

B2 +
2γ

α
B − 2

α

=

α

2ψ

B +
γ − ψ

α

−
α

2ψ

B +
γ + ψ

α

.

Noticing this relation, we can easily find the solution to Eq. (5.24) by inte-
grating both sides of the equation:

∫ B(T,T )

B(t,T )

dB

B2 +
2γ

α
B − 2

α

=
α

2ψ

[∫ 0

B(t,T )

dB

B + (γ − ψ)/α
−
∫ 0

B(t,T )

dB

B + (γ + ψ)/α

]

=
α

2ψ

[
ln

(γ − ψ) /α

B + (γ − ψ)/α
− ln

(γ + ψ) /α

B + (γ + ψ)/α)

]

=
α

2

∫ T

t

dt =
α

2
(T − t).

From this we have

B + (γ + ψ) /α

B + (γ − ψ)/α
=
γ + ψ

γ − ψ
eψ(T−t)

or

B =

γ + ψ

α
eψ(T−t) − γ + ψ

α

1− γ + ψ

γ − ψ
eψ(T−t)

=
2
[
eψ(T−t) − 1

]
(γ + ψ) eψ(T−t) − (γ − ψ)

, (5.26)

where we have used the relation ψ2−γ2 = 2α. After we find B, from Eq. (5.22)
we have

∫ A(T,T )

A(t,T )

dA = A (T, T )−A(t, T )

=

∫ T

t

(
1

2
βB2 + μB

)
dt
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or

A(t, T ) = −1

2
β

∫ T

t

B2dt− μ

∫ T

t

Bdt.

Using the relation (5.24), we can obtain the results of
∫ T
t
Bdt and

∫ T
t
B2dt

easily as follows:

∫ T

t

Bdt =

∫ 0

B(t,T )

2B/α

B2 + 2γB/α− 2/α
dB

=
2

α

∫ 0

B(t,T )

[− (γ − ψ) /(2ψ)

B + (γ − ψ)/α
+

(γ + ψ) /(2ψ)

B + (γ + ψ)/α

]
dB

= −γ − ψ

αψ
ln

(γ − ψ) /α

B + (γ − ψ) /α
+
γ + ψ

αψ
ln

(γ + ψ)/α

B + (γ + ψ) /α

and

∫ T

t

B2dt =
2

α

∫ 0

B(t,T )

B2

B2 + 2γB/α− 2/α
dB

=
2

α

∫ 0

B(t,T )

(
1− 2γB/α

B2 + 2γB/α− 2/α
+

2/α

B2 + 2γB/α− 2/α

)
dB

=
2

α

∫ 0

B(t,T )

(
1 +

γ(γ − ψ)/(αψ)

B + (γ − ψ)/α
− γ(γ + ψ)/(αψ)

B + (γ + ψ)/α

+
1/ψ

B + (γ − ψ)/α
− 1/ψ

B + (γ + ψ)/α

)
dB

=
2

α

{
−B +

[
γ (γ − ψ)

αψ
+

1

ψ

]
ln

(γ − ψ) /α

B + (γ − ψ) /α

−
[
γ(γ + ψ)

αψ
+

1

ψ

]
ln

(γ + ψ) /α

B + (γ + ψ) /α

}

=
2

α

{
−B − γ − ψ

(γ + ψ)ψ
ln

(γ − ψ) /α

B + (γ − ψ) /α

+
(γ + ψ)

(γ − ψ)ψ
ln

(γ + ψ) /α

B + (γ + ψ) /α

}
.

Therefore

A =
β

α
B +

[
β (γ − ψ)

α (γ + ψ)ψ
+ μ

γ − ψ

αψ

]
ln

(γ − ψ) /α

B + (γ − ψ) /α

−
[
β(γ + ψ)

α (γ − ψ)ψ
+ μ

γ + ψ

αψ

]
ln

(γ + ψ)/α

B + (γ + ψ) /α
(5.27)
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and

V (r, t)=Z

[
B + (γ − ψ) /α

(γ − ψ)α

]β(ψ−γ)/α(γ+ψ)ψ+μ(ψ−γ)/αψ

×
[
B + (γ + ψ) /α

(γ + ψ) /α

]β(γ+ψ)/α(γ−ψ)ψ+μ(γ+ψ)/αψ
e(β/α−r)B . (5.28)

This is a solution of a zero-coupon bond suitable for all the models (5.14)
with constant α, β, γ̄, and μ̄ as long as we choose the market price of risk in
the form λ (r, t) = λ̄

√
αr − β. The parameters α, β, γ̄, and μ̄ can be obtained

from the data on the short rate on the market. However λ̄, a parameter in the
expression of the market price of risk, cannot be determined from the data on
the short rate and should be obtained from the other data on the market. For
example, λ̄ can be determined from the yield function on the market by the

least squares method, i.e., by choosing λ̄ so that

∫ T

t

[
Y (t, T ; λ̄)−Ỹ (t−T )

]2
dT

is minimized, or

∫ T

t

[
Y
(
t, T ; λ̄

)− Ỹ (t, T )
] ∂Y (t, T ; λ̄)

∂λ̄
dT = 0. (5.29)

Here, Ỹ (t, T ) is the yield function observed on the market, whereas according
to the expressions (5.10) and (5.19), the function Y (t, T ; λ̄) is given by

Y
(
t, T ; λ̄

)
=
rB(t, T ; λ̄)−A(t, T ; λ̄)

T − t
, (5.30)

where A(t, T ; λ̄) and B(t, T ; λ̄) are given by the expressions (5.26) and (5.27),
respectively, but the dependence of A and B on λ̄ is expressed explicitly here.
If the value of yield is only available discretely on the market, then we can

find a λ̄ such that
∑
i

[
Y (t, Ti; λ̄)− Ỹ (t, Ti)

]2
is minimized, or

∑
i

[
Y (t, Ti; λ̄)− Ỹ (t, Ti)

] ∂Y (t, Ti; λ̄)

∂λ̄
= 0. (5.31)

As soon as we have λ̄, the (5.16) with constant α, β, γ, and μ can be used
to determine the value of any other short rate derivative. Generally speaking,
it is impossible to fit the entire yield curve by choosing only one parameter.
This is a drawback of such a model.

For some special models, for example, the Vasicek model (see [81]) and the
Cox–Ingersoll–Ross model (see [23]), the expression can be simplified. Let us
do this for these two models.

The Vasicek model is in the form

dr = (μ̄− γ̄r) dt+
√

−βdX, β < 0, γ̄ > 0.
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Therefore, the expressions (5.26) and (5.27) with

α = 0, μ = μ̄+ λ̄β

and
γ = γ̄

give B and A for this model. In this case, the expression (5.26) becomes1

B =
eγ(T−t) − 1

γ eγ(T−t) =
1

γ
(1− e−γ(T−t)). (5.32)

However, the expression (5.27) cannot be used for calculation because of α =
0. In order to have an expression for A that can be used for calculation, we
need to find the limit of the expression (5.27) as α → 0 or solve Eq. (5.22)
with B given by the expression (5.32) directly. Let us solve Eq. (5.22) directly.
Putting the expression (5.32) into Eq. (5.22), we have:

A(T, T )−A(t, T ) =

∫ A(T,T )

A(t,T )

dA

=

∫ T

t

[
β

2γ2

(
1− e−γ(T−t)

)2
+
μ

γ

(
1− e−γ(T−t)

)]
dt

=

∫ T

t

[
β

2γ2

(
1− e−γ(T−t)

)(
−e−γ(T−t)

)

+

(
β

2γ2
+
μ

γ

)(
1− e−γ(T−t)

)]
dt

=

[
β

4γ3

(
1− e−γ(T−t)

)2
+

(
β

2γ2
+
μ

γ

)(
t− 1

γ
e−γ(T−t)

)]∣∣∣∣
T

t

= − β

4γ3

(
1− e−γ(T−t)

)2
+

(
β

2γ2
+
μ

γ

)
(T − t)

−
(

β

2γ2
+
μ

γ

)
1

γ

(
1− e−γ(T−t)

)
.

Because of A(T, T ) = 0, we obtain

A = −
(

β

2γ2
+
μ

γ

)
(T − t) +

(
β

2γ2
+
μ

γ

)
B +

βB2

4γ
. (5.33)

Consequently

V (r, t) = Ze−(β/2γ2+μ/γ)(T−t)+(β/2γ2+μ/γ−r)B+βB2/4γ

= Ze−(β/2γ2+μ/γ)(T−t)+(β/2γ2+μ/γ−r)(1−e−γ(T−t))/γ+β(1−e−γ(T−t))
2
/4γ3

.

(5.34)

1This expression can also be obtained by integrating Eq. (5.23) with α = 0
directly, and for the case α = 0, this direct way of finding the solution is easier.
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This is the value of a zero-coupon bond if the Vasicek model is adopted. As
pointed out above, the solution (5.34) can also be obtained by finding the
limit of the solution (5.28). This is left to readers as Problem 7.

Noticing that B does not depend on λ̄ in this case, we have

Y (t, T ; λ̄) =
rB (t, T )−A(t, T ; λ̄)

T − t

=

(
β

2γ2
+
μ

γ

)
(T − t)−

(
β

2γ2
+
μ

γ
− r

)
B − βB2

4γ

T − t

=

(
β

2γ2
+
μ̄

γ

)
(T − t)−

(
B

2γ2
+
μ̄

γ
− r

)
B − βB2

4γ

T − t

+
λ̄β(T − t−B)

γ (T − t)

and
∂Y

∂λ̄
(t, T ; λ̄) =

β(T − t−B)

γ(T − t)
.

Hence, Eq. (5.29) becomes a linear equation for λ̄. From the linear equation,
we see that λ̄ is given by

∫ T

t

⎡
⎢⎢⎣

(
β

2γ2
+
μ̄

γ

)
(T − t)−

(
B

2γ2
+
μ̄

γ
− r

)
B − βB2

4γ

T − t
− Ỹ

⎤
⎥⎥⎦ T − t−B

(T − t)
dT

−β
γ

∫ T

t

(T − t−B)
2

(T − t)
2 dT

.

(5.35)

Because only λ̄ is chosen, the yield curve cannot be fitted entirely. Another
problem of this model is that r may be negative.

In order to rectify this problem, Cox, Ingersoll, and Ross (see [23]) pro-
posed another model:

dr = (μ̄− γ̄r)dt+
√
αrdX. (5.36)

This is also in the form (5.14) and β = 0 here. In this case, the solution for a
zero-coupon bond is

V (r, t) = Z

[
B + (γ − ψ) /α

(γ − ψ)/α

]μ(ψ−γ)/αψ [
B + (γ + ψ) /α

(γ + ψ) /α

]μ(γ+ψ)/αψ
e−rB .
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Here, B is given by the expression (5.26), i.e.,

B =
2
(
eψ(T−t) − 1

)
(γ + ψ) eψ(T−t) − (γ − ψ)

,

μ = μ̄

and
γ = γ̄ + λ̄α,

where λ̄ is a parameter in the expression (5.15) for the market price of risk.
However, the solution can have another form. Because

A (T, T )−A(t, T ) =

∫ A(T,T )

A(t,T )

dA =

∫ T

t

μBdt

= μ

∫ T

t

2
(
eψ(T−t) − 1

)
(γ + ψ) eψ(T−t) − (γ − ψ)

dt,

noticing A(T, T ) = 0 and setting ξ = eψ(T−t), we have

A(t, T )

= −μ
∫ T

t

2
(
eψ(T−t) − 1

)
(γ + ψ) eψ(T−t) − (γ − ψ)

dt = μ

∫ 1

ξ

2(ξ − 1)dξ

[(γ + ψ)ξ − (γ − ψ)]ψξ

=
2μ

ψ(γ + ψ)

∫ 1

ξ

[ −2ψ/(γ − ψ)

ξ − (γ − ψ)/(γ + ψ)
+

(γ + ψ)/(γ − ψ)

ξ

]
dξ

=
−4μ

γ2 − ψ2
[ln(ξ − (γ − ψ)/(γ + ψ))− (γ + ψ) ln ξ/2ψ]|1ξ

=
2μ

α
[ln(1− (γ − ψ)/(γ + ψ))− ln(ξ − (γ − ψ)/(γ + ψ))

+(γ + ψ) ln ξ/2ψ]

= ln

(
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

)2μ/α

.

Therefore, we have a solution

V (r, t) = Z

[
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

]2μ/α
e−rB , (5.37)

which is the form given in the paper by Cox, Ingersoll, and Ross. It can be
proved that the two expressions are identical. This is left to readers to prove
as Problem 9.

In this case

Y (t, T ; λ̄) =

2
(
eψ(T−t) − 1

)
r

(γ + ψ)eψ(T−t) − (γ − ψ)
− 2μ

α
ln

(
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

)

T − t
,
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where γ = γ̄ + λ̄α and ψ =
√
γ2 + 2α, so the dependence of Y (t, T ; λ̄) on λ̄

is quite complicated.
As we have stated, in order to use the partial differential equation (5.16)

to price the value of other derivatives, we need to determine λ̄ so that we can

have γ = γ̄+ λ̄α. For example, we can obtain λ̄ by solving Eq. (5.29). Because
the dependence of Y (t, T ; λ̄) on λ̄ in this case is quite complicated, Eq. (5.29)
has to be solved numerically. Just like the Vasicek model, generally speaking,
it is impossible to “build” the entire term structure of the short rate into a
parameter λ̄.

5.3.2 Explicit Solutions for the Ho–Lee and Hull–White Models

In order to fit the entire term structure of interest rates, it seems to be neces-
sary to require λ̄ to be dependent on t or r. If λ̄ depends on t, then for some
models in the form (5.14), the solution of a zero-coupon bond can explicitly
be expressed by elemental functions and integrals with known integrands. We
refer to such a solution as an explicit solution or a closed-form solution. The
Ho–Lee model (see [41])

dr = μ̄(t)dt+
√

−βdX (5.38)

and the Hull–White model (see [44])

dr = (μ̄(t)− γ̄r)dt+
√
−βdX (5.39)

are such models. We note that the Hull–White model is an extension of the
Ho–Lee model and the Vasicek model. For the Hull–White model, B(t, T ) is
the same as for the Vasicek model, given by the expression (5.32):

B(t, T ) =
1

γ
(1− e−γ(T−t)),

where

γ = γ̄.

Let γ → 0, we have

B(t, T ) = T − t, (5.40)

which is the expression of B(t, T ) for the Ho–Lee model. For both of them,
Eq. (5.22) is in the form

dA

dt
=

1

2
βB2 + μ(t)B,

where μ(t) is given by the expression (5.17):

μ(t) = μ̄(t) + λ̄(t)β.
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Here, we assume that the market price of risk is λ(r, t) = λ̄(t)
√−β. From the

ordinary differential equation above, we can find

A(t, T ) = −1

2
β

∫ T

t

B2(τ, T )dτ −
∫ T

t

μ(τ)B(τ, T )dτ

and
V (r, t) = Ze−

1
2β

∫ T
t
B2(τ,T )dτ−∫ T

t
μ(τ)B(τ,T )dτ−rB(t,T ). (5.41)

Here, B is given by the expression (5.32) or the expression (5.40), depending
on which model is used. Therefore, if λ̄ is given, we can find V (r, t) without
any difficulties.

In practice, we need to find λ̄(t) from some data on the market, for exam-
ple, a given yield function Y (t, T ). In order to do this, we rewrite the solution
(5.41) as

lnV (r, t) = lnZ − 1

2
β

∫ T

t

B2(τ, T )dτ −
∫ T

t

μ(τ)B(τ, T )dτ − rB(t, T )

or if we require that the solution (5.41) fits the yield function on the market,
we furthermore have

∫ T

t

μ(τ)B(τ, T )dτ = Y (t, T )(T − t)− 1

2
β

∫ T

t

B2(τ, T )dτ − rB(t, T ), (5.42)

where we have used the definition of the yield (5.10). If we define

F1(t, T ) ≡ Y (t, T )(T − t)− 1

2
β

∫ T

t

B2(τ, T )dτ − rB(t, T ) (5.43)

and substitute (1 − e−γ(T−τ))/γ for B on the left-hand side of Eq. (5.42), it
becomes

1

γ

∫ T

t

μ(τ)(1− e−γ(T−τ))dτ = F1(t, T ).

Differentiating both sides of this relation with respect to T twice yields

μ(T ) =
∂2F1(t, T )

∂T 2
+ γ

∂F1(t, T )

∂T
, (5.44)

which is the function μ(t) for the Hull–White model. After having the function
μ(t), we can obtain λ̄(t) immediately by

λ̄(t) =
1

β
[μ(t)− μ̄(t)]

if we want. Therefore, for the Hull–White model, we can find a function for
the market price of risk for r such that the entire term structure of interest
rate can be fitted. For the Ho–Lee model, in order to do this, we can use the
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same formula with γ = 0, so in the expression (5.43) B = T − t. Because
in these models the entire term structure of interest rate is built into the
function λ̄(t), these two models are often referred to as no-arbitrage interest
rate models. The difference between them is that the Hull–White model has
the mean reversion property that an interest rate model should have, whereas
the Ho–Lee model does not. However, even though the Hull-White model
has the mean reversion property, r is still defined on (−∞,∞) because the
coefficient of dX in the model is a constant.

5.4 Inverse Problem on the Market Price of Risk

As we saw in Sect. 5.3, for some special interest rate models and some special
function of the market price of risk, we can find an explicit solution for a
zero-coupon bond and furthermore explicit expressions for the market price
of risk for which the entire term structure of interest rate or the entire zero-
coupon bond price curve is fitted. However, even though the model is in the
form (5.14) and solving the partial differential equation (5.16) can be reduced
to solving ordinary differential equations (5.22) and (5.23), we still may not
be able to find an explicit expression for the market price of risk if α(t) really
depends on t or even if α is a nonzero constant. In this case, the unknown
function λ̄(t) appears in both Eqs. (5.22) and (5.23) and it may be necessary
to use numerical methods.

Also, there are other models, for example, the Black–Derman–Toy model
(see [9]):

d ln r =

[
μ̄(t)− σ′

r(t)

σr(t)
ln r

]
dt+ σr(t)dX

and the Black–Karasinski model (see [10]):

d ln r = [μ̄(t)− γ̄(t) ln r] dt+ σr(t)dX.

For these models, it might even be impossible to reduce solving a partial dif-
ferential equation into solving two ordinary differential equations. In addition,
it may be necessary to consider interest rate models (5.11):

dr = u(r, t)dt+ w(r, t)dX

with more general functions u(r, t) and w(r, t). For example, a model might
be more useful if u(r, t) and w(r, t) is determined from the data of the short
rate on the market. Also in order for the model to be more realistic, the model
should guarantee that the random variable r will be in a finite interval [rl, ru]
in the future if r is in the interval [rl, ru] now. According to Sect. 2.4, if u and
w satisfy {

u(rl, t)− w(rl, t)
∂

∂r
w(rl, t) ≥ 0,

w(rl, t) = 0
(5.45)
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Fig. 5.1. One month LIBOR on US dollar during Jan 1977–Sep 2007

and {
u(ru, t)− w(ru, t)

∂

∂r
w(ru, t) ≤ 0,

w(ru, t) = 0,
(5.46)

then the random variable r is always in [rl, ru]. In what follows, we will de-
scribe a model having such properties.

The real data of the 1-month LIBOR (London Interbank Offer Rate) on
U.S. dollar during January 1977–2010 is available and is shown as a curve
in Fig. 5.1. From the data we know that the minimum interest rate rmin is
0.0022906 and the maximum interest rate rmax is 0.23562. Thus we assume
that for the interval [rl, ru] the lower bound rl is 0.0 and the upper bound ru
is 0.24. From the data we can also determine the standard deviation of r for
40 values of r by statistics, which are shown as “◦” in Fig. 5.2. Assuming

w(r) = (r − rl)(ru − r)(a0r
2 + b0r + c0),

using the values of standard deviation of r obtained, and using the least
squares method, we can find the values of a0, b0, and c0, which are

a0 = 4.1, b0 = −0.51, c0 = 0.0224.
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Fig. 5.2. w(r) with rl = 0 and ru = 0.24

That is, the function w(r) in the form above from the real data is:

w(r) = (r − rl)(ru − r)4.1r2 − 0.51r + 0.0224

The curve of w(r) is also given in Fig. 5.2. This function w(r) satisfies the
second conditions in the conditions (5.45) and (5.46). We can also find a
function u(r) satisfying the conditions (5.45) and (5.46), so r will be in [rl, ru]
if such a model is used. However here we do not discuss how to determine
such a u(r, t) from the real data. This is because, as we will see, we can choose
λ(r, t) so that u(r, t) will not be used in order to do computation by using this
model. If such a model is used, we have to solve PDE problems numerically
in order to get market price of risk and the values of derivatives (for details,
see the paper [72] by Shi). In what follows, we briefly discuss how to obtain
the market price of risk numerically.

As pointed out in Sect. 5.2.2, if we use the model (5.11), then any interest
rate derivative, V (r, t), satisfies Eq. (5.12):

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, 0 ≤ t ≤ T,

where we assume that there is no coupon related to the derivative, so kZ = 0.
This parabolic partial differential equation degenerates to a hyperbolic partial
differential equation or an ordinary differential equation at r = rl and ru when
w (rl, t) = 0 and w(ru, t) = 0. Moreover, if the condition (5.45) holds, from
Sect. 2.4.2, we see that no extra boundary condition at r = rl is needed in
order to find a unique solution. Similarly, if the condition (5.46) holds, then
no extra boundary condition at r = ru is needed. Consequently, the final value
problem without any boundary conditions
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⎧⎪⎨
⎪⎩
∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, rl ≤ r ≤ ru, t ≤ T,

V (r, T ) = f(r), rl ≤ r ≤ ru

has a unique solution if the conditions (5.45) and (5.46) hold. As we have
discussed, u and w can be determined from the historical data of the short rate
on the market. However, in order to use this equation to price any derivatives,
we need to know λ(r, t). As soon as such a λ(r, t) is determined, an interest
rate model (5.11) becomes a no-arbitrage interest rate model. Thus, it is
important in practice. Suppose λ(r, t) is a function of t plus u(r, t)/w(r), i.e.,
λ(r, t) = λ̄(t)+u(r, t)/w(r).2 Then λ̄(t), as the solution of the following inverse
problem, can be determined numerically by the term structure of interest
rates or, equivalently, by the zero-coupon bond price curve. Suppose that
t = 0 corresponds to today and today’s short rate is r∗. Let V (r, t;T ∗) be the
solution of the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+
[
u− (λ̄(t) + u/w)w

] ∂V
∂r

− rV = 0,

rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗,

V (r, T ∗;T ∗) = 1, rl ≤ r ≤ ru.

(5.47)

Here T ∗ is a parameter. We need to find a function λ̄(t) defined on [0, T ∗
max]

such that V (r∗, 0;T ∗) is equal to the today’s value of the zero-coupon bond
maturing at time T ∗ and with a face value of one dollar for any T ∗ ∈ [0, T ∗

max],
where T ∗

max in the longest maturity of zero-coupon bonds on the market.
In this problem, the value of λ̄(t) for t ∈ [0, T ∗

1 ] is determined by the value
of zero-coupon bonds maturing at time T ∗ ∈ [0, T ∗

1 ]. If λ̄(t) for t ∈ [0, T ∗
1 ]

has been obtained and T ∗
2 > T ∗

1 , then the value of λ̄(t) for t ∈ [T ∗
1 , T

∗
2 ] will

be found by letting V (r∗, 0;T ∗) be equal to the value of a zero-coupon bond
maturing at time T ∗ for any T ∗ ∈ [T ∗

1 , T
∗
2 ]. Therefore, the value of λ̄(t) at

t = T ∗ is determined by the value of a zero-coupon bond maturing at time
T ∗ if the value of λ̄(t) for t ∈ [0, T ∗) has been obtained. In order to find the
value of λ̄(T ∗), we need to make a guess about it and solve the problem (5.47)
from t = T ∗ to t = 0 and then check if V (r∗, 0;T ∗) is equal to the value of
the zero-coupon bond maturing at time T ∗. If T ∗ is 20 or 30 years, then the
procedure of solving the problem (5.47) is quite long.

Actually the property of the function λ̄(t) has a close relation with the
second derivative of the zero-coupon bond curve with respect to the matu-
rity time T ∗ (see Sect. 10.1.1). If the zero-coupon bond curve is obtained by
the cubic spline interpolation, then the second derivative is continuous, but
the third derivative is discontinuous. The non-smoothness of λ̄(t) sometimes
causes quite big oscillation of the solution of the bond equation if T ∗

max is big.

2For such a choice of λ(r, t), u(r, t)−λ(r, t)w(r) = −λ̄(t)w(r), so u(r, t) disappears
from the PDE. Thus we do not need u(r, t) in order to solve the PDE.
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5.5 Application of Bond Equations

The bond equation (5.12) can be applied to evaluating not only bonds but also
bond options, options on bond futures contracts, swaps, caps, floors, collars,
and even options on them. In what follows, we describe these applications.

5.5.1 Bond Options and Options on Bond Futures Contracts

A bond option is similar to an equity option except that the underlying asset
is a bond. A bond depends on the interest r, and consequently, a bond option
will also depend on r. Consider a T -year European option on a N -year bond.
Suppose that the time today is zero. Then the bond should be issued on time
T and will mature at time T +N . In what follows, let Tb denote T +N and
for simplicity, let the face value of the bond be equal to one. Thus, the bond
price is the solution of the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Vb
∂t

+
1

2
w2 ∂

2Vb
∂r2

+ (u− λw)
∂Vb
∂r

− rVb + k = 0,

rl ≤ r ≤ ru, T ≤ t ≤ Tb,

Vb(r, Tb;Tb) = 1, rl ≤ r ≤ ru,

(5.48)

where we consider a coupon-bearing bond with a coupon payment k(t)dt dur-
ing a time period [t, t+ dt] and use Vb to represent the price of the bond. In
practice the coupon is not paid continuously, the equation should be

∂Vb
∂t

+
1

2
w2 ∂

2Vb
∂r2

+ (u− λw)
∂Vb
∂r

− rVb +
∑
i

kiδ(t− ti) = 0.

In this case Vb gives the quoted price (clean price). The price a purchaser needs
to pay is the cash price (dirty price)—the clean price plus the accrued interest,
which should be close to the price given by the model with a continuous
coupon payment. Here, we assume that the conditions (5.45) and (5.46) hold,
so at r = rl and r = ru the equation degenerates to a hyperbolic equation
and does not require any boundary conditions. Every model can be modified
locally, so the conditions (5.45) and (5.46) hold. Therefore, this assumption is
realistic. We also assume that λ(r, t) is known. A European call bond option
is a contract whose holder has a right to purchase a bond at time T at a
price E. Let V (r, t) be the price of the option. Clearly, V (r, t) should be the
solution of the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, rl ≤ r ≤ ru,

t ≤ T,

V (r, T ) = max(Vb(r, T ;Tb)− E, 0), rl ≤ r ≤ ru.

(5.49)
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For a European put bond option, the final condition is

V (r, T ) = max (E − Vb(r, T ;Tb), 0) .

For American call and put bond options, we need to require

V (r, t) ≥ max (Vb (r, t; t+N)− E, 0)

and
V (r, t) ≥ max(E − Vb(r, t; t+N), 0)

for t ∈ [0, t], respectively. For example, if the option is on a 3-year bond,
then N = 3. In this case, in order to determine the solution, we need to
solve a problem involving free boundaries, and the constraint is a function
of t. Therefore, this free-boundary problem is more complicated than that in
equity option cases.

We can also determine the value of an option on a bond futures contract,
which is denoted by V (r, t) in what follows. Again, let Tb be the maturity
date of the bond and T be the expiry of the option and the date the futures
contract is initiated. Also, suppose that the futures contract is matured at
time Tf ∈ (T, Tb) and that the delivery price given in the option—the exercise
price of the option is K. When V (r, T ) is given, we can obtain the value of
the option today by solving a problem similar to the problem (5.49). How do
we find V (r, T )?

Let Vb0(r, t;Tf ) be the value of the zero-coupon bond with maturity date
Tf , which is the solution of the following problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Vb0
∂t

+
1

2
w2 ∂

2Vb0
∂r2

+ (u− λw)
∂Vb0
∂r

− rVb0 = 0,

rl ≤ r ≤ ru, t ≤ Tf ,

Vb0(r, Tf ;Tf ) = 1, rl ≤ r ≤ ru.

(5.50)

Then the value of the bond futures contract with a delivery price K given in
the option can be expressed as

Vf (r, t;Tf ) = Vb(r, t;Tb)−KVb0(r, t;Tf ) (5.51)

for any t ≤ Tf . Let K
∗ be the futures price for the futures contract with

maturity date Tf at time T . K∗ should be determined by the condition that
the value of the futures contract is equal to zero when it is initiated at time
T , i.e.,

Vf (r, T ;Tf ) = Vb(r, T ;Tb)−K∗Vb0(r, T ;Tf ) = 0.

From this condition, we immediately know that the futures price K∗ is equal
to Vb(r, T ;Tb)/Vb0(r, T ;Tf ). If

K < K∗ = Vb(r, T ;Tb)/Vb0(r, T ;Tf ),
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the holder of the option will exercise the option because the value of the bond
futures contract

Vf (r, T ;Tf ) = Vb(r, T ;Tb)−KVb0(r, T ;Tf ) > 0.

Actually this is the value of the option for this case. If

K ≥ K∗ = Vb(r, T ;Tb)/Vb0(r, T ;Tf ),

the value of the bond futures contract

Vf (r, T ;Tf ) = Vb(r, T ;Tb)−KVb(r, T ;Tf ) ≤ 0,

and the holder will not exercise the option, which means V (r, T ) = 0. Putting
the two cases together, for V (r, T ) we have the following expression

V (r, T ) = max (Vb(r, T ;Tb)−KVb0(r, T ;Tf ), 0) . (5.52)

Therefore, we can first solve the problem (5.48) from Tb to T to get Vb(r, T ;Tb)
and solve the problem (5.50) from Tf to T to get Vb0(r, T ;Tf ), and then use
the formula (5.52) in order to get V (r, T ). As soon as we have V (r, T ), we can
solve the problem (5.49) with V (r, T ) as the final condition in order to find
the price of the option on a bond futures contract today.

It is possible to consider Vb as a state variable and let the bond option
price depend on Vb and t. For example, suppose

dVb = μVbdt+ σVbdX,

where μ and σ is constant. In this case, we get the Black–Scholes equation
with independent variables t and Vb, and use the Black–Scholes formulae to
find the prices of European bond options. However, because the bond price
must be equal to the face value at time Tb, which is often referred to as
the pull-to-par phenomenon, a bond has different features from an equity,
especially when t ≈ Tb (see Fig. 1.3). Therefore, even though a model in the
form dVb = μVbdt + σVbdX can describe the dynamics of an equity well, it
could not state that of a bond. Consequently, the bond price obtained in this
way is expected to have a large error, especially when T ≈ Tb. If the model is
in the form

dVb = α(t)(1− Vb)dt+ σ(t)VbdX,

where α(t) → ∞ and σ(t) → 0 as t→ Tb, then the result might be much better
because such a model guarantees that Vb has a unique value one at time Tb.
Of course, in this case it might be necessary to get solutions by numerical
methods. Another problem of pricing a bond option in this way is to assume
that the short rate is constant throughout the whole life of the option. If T is
not small, it is not a good assumption.
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Promising to pay an amount E at time T is equivalent to issuing a bond
maturing at time T with a face value E. Thus, a right to pay E for a bond
with a maturity date Tb at time T is the same right to exchange a bond of a
face value E with a maturity date T for another bond with a maturity date Tb
at time T . Therefore, a bond option can be understood as an exchange option
that allows the holder to exchange a bond maturing at time T for another
bond maturing at time Tb. If a bond option is dealt with in this way, it may
be necessary to choose a model so that at least the random variable for the
bond maturing at time T has the property of “pull-to-par.”

5.5.2 Interest Rate Swaps and Swaptions

This subsection is devoted to plain vanilla interest rate swaps and options
on such swaps—swaptions. As an example, let us look at the following N -
year swap on a notional principal Q between a bank and a company.3 In the
swap, the bank and the company agree that during the next N years, the
company will pay the bank the interest payment on the notional principal
Q at a fixed rate rs(N) semiannually and in return, the bank will pay the
company the interest payment on the same principal at a floating rate at the
same times. Here, the floating rate in many interest rate swap agreements
is the 6-month London Interbank Offer Rate (LIBOR) prevailing 6 months
before the payment date. When the swap is initiated, both parties do not need
to pay any money. Thus, the contract has no value at initiation. The fixed
rate rs(N) is called the swap rate for an N year swap and determined through
negotiation by the two parties. Clearly, the company wants rs (N) to be as
small as possible, and the bank prefers a higher rs (N). What is the value of
rs (N) both parties can accept? rs (N) should be a rate such that the value of
the swap at initiation is zero. In order to know what equation rs (N) should
satisfy, we need to find out how the value of the swap is related to rs, where
rs denotes a swap rate that might not equal rs (N).

Suppose the swap is initiated at time T and today’s time is t∗ ≥ T . The
interest payments are exchanged semiannually at time

tk = T + k/2,

k = k∗ +1, k∗ +2, · · · , 2N , where k∗ is the integer part of 2(t∗ − T ). Suppose
today the price of the zero-coupon bond with a face value of one dollar and
with maturity date tk is Z(t∗; tk). In the swap given above, the company will
pay cash Qrs/2 at time tk, k = k∗ + 1, k∗ + 2, · · · , 2N . The present value of
this cash flow is

2N∑
k=k∗+1

Qrs
2
Z(t∗; tk).

3A swap can also be between two companies.



5.5 Application of Bond Equations 301

At the same times, the bank will pay the company an amount of cash
Q

2
f̄(tk−1, tk−1, tk) at time tk, k = k∗+1, k∗+2, · · · , 2N , where f̄(tk−1, tk−1, tk)

is the forward rate for the period [tk−1, tk] determined at time tk−1 and we
define tk∗ = T + k∗/2. Because tk∗ ≤ t∗, f̄(tk∗ , tk∗ , tk∗+1) is known today and
the present value of the first payment is

Q

2
Z(t∗; tk∗+1)f̄(tk∗ , tk∗ , tk∗+1).

What is the present value of the other payments? Suppose we deposit Q
in the bank at time tk∗+1 for a period [tk∗+1, tk∗+2] at a floating rate
f(tk∗+1, tk∗+1, tk∗+2). At time tk, k = k∗ + 2, k∗ + 3, · · · , 2N − 1, we take
the interest payment away and still leave Q in the bank for the next half

year. In this way, we can generate a cash flow
Q

2
f̄(tk−1, tk−1, tk) at time

tk, k = k∗ + 2, k∗ + 3, · · · , 2N − 1 and cash
Q

2
f̄(t2N−1, t2N−1, t2N) +Q at time

t2N . Therefore, the value of the other payments is the difference between Q at
time tk∗+1 and Q at time t2N = T +N . Written mathematically, the present
value of the other payments is

QZ(t∗; tk∗+1)−QZ(t∗;T +N).

This result also can be obtained analytically. In fact, from the relation (5.6)
we know that the forward interest rate compounded semiannually at time tk
during a period [tk, tk+1] is

f̄(tk, tk, tk+1) = 2

[
Z(tk; tk)

Z(tk; tk+1)
− 1

]
,

where tk+1 = tk + 1/2. Therefore at time t∗, the value of the cash flow
Q

2
f̄(tk, tk, tk+1) at time tk+1, k = k∗ + 1, k∗ + 2, · · · , 2N − 1, is

2N−1∑
k=k∗+1

Q

2
f̄(tk, tk, tk+1)Z(t

∗; tk+1)

= Q
2N−1∑
k=k∗+1

[
Z(tk; tk)

Z(tk; tk+1)
− 1

]
Z(t∗; tk+1)

= Q
2N−1∑
k=k∗+1

[Z(tk; tk)− Z(tk; tk+1)]Z(t
∗; tk)

Z(tk; tk+1)Z(t∗; tk)
Z(t∗; tk+1)

= Q
2N−1∑
k=k∗+1

[Z(t∗; tk)− Z(t∗; tk+1)]

= Q[Z(t∗; tk∗+1)− Z(t∗; t2N)]
= QZ(t∗; tk∗+1)−QZ(t∗;T +N).
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Let Vs(t
∗, rs) be the present value of the swap to the company, which is

the present value of the cash flow the company will receive minus the present
value of the cash flow it will pay. From previous results, we arrive at

Vs(t
∗; rs) =

Q

2
Z(t∗; tk∗+1)f̄(tk∗ , tk∗ , tk∗+1) +QZ(t∗; tk∗+1)−QZ(t∗;T +N)

−
2N∑

k=k∗+1

Qrs
2
Z(t∗; tk)

= QZ(t∗; tk∗+1)

[
1 +

1

2
f̄(tk∗ , tk∗ , tk∗+1)

]

− Q

[
Z(t∗;T +N) +

2N∑
k=k∗+1

rs
2
Z(t∗; tk)

]
. (5.53)

The expression Q

[
Z(t∗;T +N) +

2N∑
k=k∗+1

rs
2
Z(t∗; tk)

]
can be understood as

the present value of a coupon-bearing bond, and the expression QZ(t∗; tk∗+1)

×
[
1 +

1

2
f̄(tk∗ , tk∗ , tk∗+1)

]
is the present value of another coupon-bearing

bond. Therefore, a swap can be seen as a combination of a long position
in one coupon-bearing bond with a short position in another coupon-bearing
bond.

Here, we also need to point out that the values of a swap to two parties
have the same magnitude but opposite signs. Thus, the value of the swap
mentioned above to the bank is

Q

[
Z(t∗;Ts +N) +

2N∑
k=k∗+1

rs
2
Z(t∗; tk)

]

−QZ(t∗; tk∗+1)

[
1 +

1

2
f̄(tk∗ , tk∗ , tk∗+1)

]
.

In the case t∗ = T , we have k∗ = 0, tk∗+1 = T + 1/2 and

f̄(T, T, T + 1/2) = 2

[
1

Z(T ;T + 1/2)
− 1

]
,

that is,

Z(T ;T + 1/2)

[
1 +

1

2
f̄(T, T, T + 1/2)

]
= 1, (5.54)

so we have

Vs(T ; rs) = Q

[
1− Z(T ;T +N)− rs

2

2N∑
k=1

Z(T ;T + k/2)

]
. (5.55)
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As we have stated, when the swap is initiated, the value of the swap should
be zero. Therefore, for the fixed rate in the contract we obtain

rs(N) = 2
1− Z(T ;T +N)
2N∑
k=1

Z(T ;T + k/2)

. (5.56)

Therefore, between the swap rate for an N -year swap and Z(T ;T + k/2), k =
1, 2, · · · , 2N , there is a simple relation: rs(N) can be determined by Z(T ;T +
k/2), k = 1, 2, · · · 2N . This relation is true for N = 1/2, 1, 3/2, · · · . Actually,
Z(T ;T + k/2), k = 1, 2, · · · , 2N , can also be obtained recursively by

Z(T ;T + k/2) =

1− rs(k/2)

2

k−1∑
i=1

Z(T ;T + i/2)

1 +
rs(k/2)

2

(5.57)

if rs(k/2), k = 1, 2, · · · , 2N are given. Therefore, knowing rs(k/2) for different
k is the same as knowing the yield curve.

As we have mentioned, a swap can be understood as the difference between
two different coupon-bearing bonds. From the expression (5.53), we know that
the face values of both bonds are Q. The expiration date of one bond is tk∗+1

and it pays a coupon
Q

2
f̄(tk∗ , tk∗ , tk∗+1) at t = tk∗+1. Let Vi denote the value

of this bond. The expiration date of the other bond is T + N , and it pays

coupons
Qrs
2

semiannually starting at t = tk∗+1. Let Vo represent the value

of the other bond. The value of swap Vs(t) is equal to Vi − Vo. Any bond can
be priced by the bond equation. In fact, Vi(r, t) is the solution of the problem

⎧⎪⎨
⎪⎩
∂Vi
∂t

+
1

2
w2 ∂

2Vi
∂r2

+ (u− λw)
∂Vi
∂r

− rVi = 0, rl ≤ r ≤ ru, t
∗ ≤ t ≤ tk∗+1,

Vi(r, tk∗+1) = Q[1 + f̄(tk∗ , tk∗ , tk∗+1)/2], rl ≤ r ≤ ru

and Vo(r, t) is the solution of the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Vo
∂t

+
1

2
w2 ∂

2Vo
∂r2

+ (u− λw)
∂Vo
∂r

− rVo +
2N∑

k=k∗+1

Qrs
2
δ(t− tk) = 0,

rl ≤ r ≤ ru, t
∗ ≤ t ≤ T +N,

Vo(r, T +N) = Q, rl ≤ r ≤ ru.

Let r = r∗ today and let λ(r, t) be chosen so that V (r∗, t∗; tk) = Z(t∗; tk),
k = k∗ + 1, k∗ + 2, · · · , 2N , where V (r, t; tk) is the solution of the following
problem
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0,

rl ≤ r ≤ ru, t
∗ ≤ t ≤ tk,

V (r, tk; tk) = 1, rl ≤ r ≤ ru,

(5.58)

then

Vo(r
∗, t∗; rs) = QV (r∗, t∗; t2N) +

Qrs
2

2N∑
k=k∗+1

V (r∗, t∗; tk)

= Q

[
Z(t∗; t2N) +

rs
2

2N∑
k=k∗+1

Z(t∗; tk)

]

and

Vi(r
∗, t∗) = Q

[
1 + f̄(tk∗ , tk∗ , tk∗+1)/2

]
V (r∗, t∗; tk∗+1)

= Q
[
1 + f̄(tk∗ , tk∗ , tk∗+1)/2

]
Z(t∗; tk∗+1).

From these two expressions, we can see that

Vi(r
∗, t∗)− Vo(r

∗, t∗; rs)

will have the same value as that given by the expression (5.53). When the
bond equation is used, the value of the swap is not only given at r = r∗,
and Vs is considered as a function of r and t, i.e., Vs = Vs(r, t). The value of
the swap is also dependent on the value of rs. Therefore sometimes Vs(r, t) is
written as Vs(r, t; rs), where rs is a parameter.

Indeed, in order to find Vs(r, t), it is not necessary to find Vi(r, t) and
Vo(r, t) separately; instead, we only need to solve

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs
∂t

+
1

2
w2 ∂

2Vs
∂r2

+ (u− λw)
∂Vs
∂r

− rVs −
2N∑

k=k∗+1

Qrs
2
δ(t− tk)

+Q

[
1 +

f̄(tk∗ , tk∗ , tk∗+1)

2

]
δ(t− tk∗+1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ T +N,

Vs(r, T +N) = −Q, rl ≤ r ≤ ru.

(5.59)

It is not difficult to show this conclusion, and we leave this proof to the
reader as problem 15. Now we can find the value of a swap either using the
formula (5.53) or solving the problem (5.59) and get the same answer. Many
people will choose to calculate the value of the swap by the expression (5.53)
because it is simple. Why do we need to consider problem (5.59)? It can

provide some information on
∂Vs(r

∗, t)
∂r

and the bond equation will be useful

when pricing a swaption by solving bond equations.
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An option on a swap, or a swaption, is a contract to give the holder the
right to enter into a certain interest rate swap by a certain time in the future.
Consider a European swaption. Its holder has the right to choose if he should
have an N -year swap at time T under which he will pay interest at a fixed
rate rse (the so-called exercise swap rate) and receive interest payment at
a floating rate. Let r′s be the N -year swap rate at time T , which can have
infinitely many possible values. If rse < r′s, then the holder will choose to
exercise the swaption because the value of a swap with a swap rate r′s at time
T is 0 and the value of a swap with a swap rate rse < r′s should be positive, but
the holder can enter into such a swap without paying any money. If rse > r′s,
then the holder will choose not to exercise the option because the swap rate
is lower on the market.

Such an option interests companies who plan to enter into a swap as a fixed
rate payer because the swaption provides the companies with a guarantee that
the fixed rate of interest they will pay on a loan will not exceed rse.

According to the result (5.55), at time T , the values of the swaps with
swap rates r′s and rse to the company are

Vs(T ; r
′
s) = Q

[
1− Z(T ;T +N)−

2N∑
k=1

r′s
2
Z(T ; tk)

]

and

Vs(T ; rse) = Q

[
1− Z(T ;T +N)−

2N∑
k=1

rse
2
Z(T ; tk)

]

respectively. If rse ≤ r′s, then the value of the swaption V at time T is

V (r′s, T ) = Vs(T ; rse)− Vs(T ; r
′
s) = Q

r′s − rse
2

2N∑
k=1

Z(T ; tk);

while if rse > r′s, then V (r′s, T ) = 0. Consequently, the payoff of the swaption
is

V (r′s, T ) =
Q

2

2N∑
k=1

Z(T ; tk)max(r′s − rse, 0). (5.60)

Suppose that at time T , r′s has a lognormal distribution with the following
probability density function

G(r′s) =
1

r′sσ
√
2π(T − t)

e−[ln(r
′
s/rs)+σ

2(T−t)/2]2/2σ2(T−t),

where rs is the swap rate at time t. This model is often referred to as Black’s
model (see [8]). This probability density function is the probability density
function (2.85) with r −D0 = 0. Thus, the expectation of max(r′s − rse, 0) is
er(T−t) times the price of a call option with r −D0 = 0. That is
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E [max(r′s − rse, 0)] = rsN

(
ln(rs/rse) + σ2(T − t)/2

σ
√
T − t

)

−rseN
(
ln(rs/rse)− σ2(T − t)/2

σ
√
T − t

)
.

Therefore at time t, the value of the payoff is

Z(t;T )
Q

2

2N∑
k=1

Z(T ; tk)

×

⎡
⎢⎢⎣rsN

⎛
⎜⎜⎝
ln

rs
rse

+
σ2(T − t)

2

σ
√
T − t

⎞
⎟⎟⎠− rseN

⎛
⎜⎜⎝
ln

rs
rse

− σ2(T − t)

2

σ
√
T − t

⎞
⎟⎟⎠

⎤
⎥⎥⎦

=
Q

2

2N∑
k=1

Z(t; tk)

×

⎡
⎢⎢⎣rsN

⎛
⎜⎜⎝
ln

rs
rse

+
σ2(T − t)

2

σ
√
T − t

⎞
⎟⎟⎠− rseN

⎛
⎜⎜⎝
ln

rs
rse

− σ2(T − t)

2

σ
√
T − t

⎞
⎟⎟⎠

⎤
⎥⎥⎦ ,

where Z(t;T ) is the discounting factor between t and T and we have used the
relation Z(t;T ) Z(T ; tk) = Z(t; tk). European swaptions are frequently valued
in this way. Obviously, it is an approximate method.

We may also evaluate the European swaption by solving bond equations.
As is given by the formula (5.60), the payoff of the swaption is

Q

2

2N∑
k=1

Z(T ;T + k/2)max(r′s − rse, 0).

At time T , rs(N) is determined by the formula (5.56), i.e., r′s is given by

2
1− Z(T ;T +N)
2N∑
k=1

Z(T ;T + k/2)

.

Thus the payoff of the swaption can be rewritten as

Q

2

2N∑
k=1

Z(T ;T + k/2)max

⎛
⎜⎜⎜⎝2

1− Z(T ;T +N)
2N∑
k=1

Z(T ;T + k/2)

− rse, 0

⎞
⎟⎟⎟⎠

= Qmax

(
1− Z(T ;T +N)− rse

2

2N∑
k=1

Z(T ;T + k/2), 0

)
.
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Let Vso(r, t) denote the value of the swaption. In this case the procedure
of determining swaption price is divided into two steps. The first step is to
determine the value of swap with rse as the swap rate for all r ∈ [rl, ru],
Vs(r, t; rse, T ), where rse and T are parameters and T denotes the starting
date of the swap, and the second step is to obtain the payoff of swaption and
to find the value of swaption. In order to get Vs(r, t; rse, T ), we need to solve
the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs
∂t

+
1

2
w2 ∂

2Vs
∂r2

+ (u− λw)
∂Vs
∂r

− rVs

−Qrse
2

2N∑
k=1

δ(t− T − k/2) +Qδ(t− T ) = 0,

rl ≤ r ≤ ru, T ≤ t ≤ T +N,

Vs(r, T +N) = −Q, rl ≤ r ≤ ru.

(5.61)

This problem actually is Eq. (5.59) with k∗ = 0, t∗ = T , and replacing

Q

[
1 +

f̄(tk∗ , tk∗ , tk∗+1)

2

]
δ(t− tk∗+1)

by Qδ(t − T ) because of the relation (5.54). After we obtain Vs(r, T ; rse, T ),
we need to get the payoff of the swaption

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0)

and then to solve the following bond equation from t = T to t = 0 in order to
find the value of swaption:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Vso
∂t

+
1

2
w2 ∂

2Vso
∂r2

+ (u− λw)
∂Vso
∂r

− rVso = 0, rl ≤ r ≤ ru,

0 ≤ t ≤ T,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) , rl ≤ r ≤ ru.

(5.62)

The value of the swaption today is Vso(r
∗, 0), where r∗ is the interest rate

today. For American swaptions we can use a similar treatment to find their
prices.

5.5.3 Interest Rate Caps, Floors, and Collars

An interest rate cap is a contract whose holder will receive some money from
the issuer if the floating rate exceeds a certain level rc, where rc is called
the cap rate. Therefore, interest rate caps can be used to provide insurance
against the rate of interest on a floating-rate loan rising above a certain level.

For example, someone is going to get an N -year floating-rate loan with a
principal amount Q at time t∗. The borrower will pay interest quarterly at
time

tk = t∗ + k/4, k = 1, 2, · · · , 4N.
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The rate is a 3-month LIBOR determined at time tk−1 for the period [tk−1, tk],
where we define t0 = t∗. The LIBOR is a forward interest rate. According to
the notation given in Sect. 5.1, f̄(tk−1, tk−1, tk) stands for this rate. In what
follows, we use the notation f̄k−1 instead of f̄(tk−1, tk−1, tk) for brevity. The
borrower is worrying that he will pay too much interest if the 3-month LIBOR
becomes very high during the period [t∗, t∗ +N ]. Therefore, he is interested in
such a cap: it starts from t∗ and lasts N years, and at time tk, the issuer of the
cap will pay the holder an amount of cash Qmax(f̄k−1 − rc, 0)/4. Suppose he
purchases this cap. Then when f̄k−1 < rc, he will pay interest payment on the
loan Qf̄k−1/4 and receive zero from the issuer of the cap; whereas f̄k−1 > rc,
his actual payment is Qrc/4 because he receives Qmax(f̄k−1 − rc, 0)/4 from
the cap. Hence the cap provides insurance against the interest rate on the
floating-rate loan rising above an upper bound rc.

How much should be paid in order to obtain such an insurance? The
present value of the payment Qmax(f̄k−1 − rc, 0)/4 at time tk is actually the
value of a call option with expiry tk. This call option is usually called the kth
caplet. The LIBOR f̄k−1 is a forward rate determined at time tk−1 for the
period [tk−1, tk], so an amount Qmax(f̄k−1 − rc, 0)/4 at time tk is equivalent
to the amount

Q

4(1 + f̄k−1/4)
max(f̄k−1 − rc, 0) = max

(
Q−Q

1 + rc/4

1 + f̄k−1/4
, 0

)

at time tk−1. A loan with a face value Q (1 + rc/4) and maturity tk is worth
Q(1 + rc/4)/(1 + f̄k−1/4) at time tk−1 for any f̄k−1. Therefore, a caplet with
a payoff Qmax(f̄k−1 − rc, 0)/4 at time tk is equivalent to a put option with
maturity tk−1 and a strike priceQ on a zero-coupon bond with maturity tk and
a face value Q (1 + rc/4). At time t∗(= t0), the value of the first caplet is equal

to a known value
Q

4(1 + f̄0/4)
max(f̄0 − rc, 0). Usually, this value is excluded

from the premium and there is no payment at time t1 even if the LIBOR is
greater than rc. Thus, a cap comprises 4N − 1 put options on zero-coupon
bonds. Because a bond or an option on a bond can be seen as a derivative on
the short rate r, their values can be calculated by the bond equation. Let the
value of the bond with maturity tk be Vbk(r, t). Then, Vbk(r, t) is the solution
of the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Vbk
∂t

+
1

2
w2 ∂

2Vbk
∂r2

+ (u− λw)
∂Vbk
∂r

− rVbk = 0, rl ≤ r ≤ ru,

tk−1 ≤ t ≤ tk,

Vbk(r, tk) = (1 + rc/4)Q, rl ≤ r ≤ ru,

(5.63)
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where k = 2, 3, · · · , 4N . Let Vc(r, t) be the solution of the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vc
∂t

+
1

2
w2 ∂

2Vc
∂r2

+ (u− λw)
∂Vc
∂r

− rVc

+
4N∑
k=2

max(Q− Vbk(r, tk−1), 0)δ(t− tk−1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ t4N−1,

Vc(r, t4N−1) = 0, rl ≤ r ≤ ru.

(5.64)

Then, Vc(r, t
∗) gives the value of the cap — the total value of the 4N − 1 put

options at time t∗ and the premium of the cap is given by

Vc(r
∗, t∗),

where r∗ is the short rate at time t∗.
There are some other derivatives analogous to interest rate caps, such as

interest rate floors and collars. A holder of a floor will receive some money
from the issuer if the floating rate is below a certain level rf , which is called
the floor rate. If a borrower of a floating-rate loan believes that the floating
rate will never be less than the lower bound rf , then he may want to write
such a floor. This is because he will get some money from writing a floor but,
according to his opinion, he will not actually pay any money to the holder
of the floor. Therefore, he hopes that he can reduce his expenses on the loan
through writing a floor. If we assume that the floor starts at t∗ and lasts N
years, that the floating rate is 3-month LIBOR, and that the money will be
paid quarterly at time tk, k = 2, 3, · · · , 4N , then the value of the floor is the
sum of 4N − 1 floorlets that are call options on zero-coupon bonds. In order
to determine the premium, we can first solve the problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Vbk
∂t

+
1

2
w2 ∂

2Vbk
∂r2

+ (u− λw)
∂Vbk
∂r

− rVbk = 0, rl ≤ r ≤ ru,

tk−1 ≤ t ≤ tk,

Vbk(r, tk) = (1 + rf/4)Q, rl ≤ r ≤ ru

and get Vbk(r, tk−1). Based on Vbk(r, tk−1), we then can determine the solution
of the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vf
∂t

+
1

2
w2 ∂

2Vf
∂r2

+ (u− λw)
∂Vf
∂r

− rVf

+
4N∑
k=2

max(Vbk(r, tk−1)−Q, 0)δ(t− tk−1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ t4N−1,

Vf (r, t4N−1) = 0, rl ≤ r ≤ ru
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and the value Vf (r
∗, t∗) gives the premium of the floor. The derivation of this

conclusion is left for readers as Problem 17.
A collar specifies both the upper bound rc and the lower bound rf . It

may be understood as a combination of a long position in a cap with a short
position in a floor. The value of a collar Vco is

Vco = Vc − Vf .

Usually, we choose rc and rf such that

Vc = Vf or Vco = 0.

It is clear that a portfolio of a collar and the original floating-rate loan is
equivalent to a new loan with a floating rate in [rc, rf ]. If

rc = rf ,

then the collar actually becomes a swap based on 3-month LIBOR and with
4N − 1 exchanges of payments. There exist other interest rate derivatives
such as captions and floortions. Their evaluations are similar to what we have
discussed.

5.6 Multi-Factor Interest Rate Models

5.6.1 Brief Description of Several Multi-Factor
Interest Rate Models

Sometimes, it is necessary to assume that interest rate derivatives depend
on not only the short rate r, but also some other random state variables.
Because volatility is always a dominant factor in determining the prices of
bonds and options, we need to have a more accurate model for volatility. It
may be necessary to consider the interest rate volatility as a random variable.
Fong and Vasicek [30] proposed such a two-factor model. In their model, they
postulated that both the short rate r and the variance υ of the short rate are
stochastic state variables and assumed

dr = (μ̄− γr)dt+
√
υdX,

dυ = (ν − ηυ)dt+ ξ
√
υdXυ,

E [dXdXυ] = ρdt,

where μ̄, γ, ν, η, ξ are constants and dX and dXυ are two standard Wiener
processes. As we can see in this model, the stochastic equation for r is the
same as that in the Vasicek model, and r could become negative. Here, not
only the short rate but also the variance possess the mean reversion property.
In this case, Eq. (2.34) can be written as
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∂V

∂t
+

1

2
υ
∂2V

∂r2
+ ρξυ

∂2V

∂r∂υ
+

1

2
ξ2υ

∂2V

∂υ2
+ (μ̄− γr − λ̄υ)

∂V

∂r

+
[
ν − (η + λ̄υξ)υ

] ∂V
∂υ

− rV = 0,

where the market prices of risk for r and υ are λ̄
√
υ and λ̄υ

√
υ, respectively,

λ̄ and λ̄υ being constants.
Brenman and Schwartz [13] considered another two-factor model. In their

model, the two random state variables are the short-term interest rate r and
the long-term interest rate l. They assumed

dr = u(r, l, t)dt+ w(r, l, t)dX,

dl = ul(r, l, t)dt+ wl(r, l, t)dXl,

E [dXdXl] = ρ(r, l, t)dt,

where dX and dXl are the standardWiener processes. According to Eq. (2.34),
any derivative dependent on r and l should satisfy

∂V

∂t
+
1

2
w2 ∂

2V

∂r2
+ρwwl

∂2V

∂r∂l
+
1

2
w2
l

∂2V

∂l2
+(u−λw)∂V

∂r
+(ul−λlwl)∂V

∂l
−rV = 0.

For other models, for example, see [2, 19, 57]. From these models, we
can have the corresponding partial differential equations. Any reader who is
interested in knowing more about these models and other models is suggested
to consult these papers and the book [47] by James and Webber.

In order to use these models to price derivatives, we need to determine
these market prices of risk, which is similar to what we have done for one-
factor models. Also, if we make some modifications on these models so that
some conditions similar to the conditions (5.45) and (5.46) hold, then unique
solutions of these equations can be obtained only by requiring final conditions.

Not only can the interest rates and their variances be taken as state vari-
ables. Heath et al. [38, 39, 40] suggested a model where the driving state
variable of the model is F (t, T ), the forward rate at time t for instantaneous
borrowing at a later time T . They assume

dF (t, T ) = αF (t, T )dt+

n∑
i=1

σiF (t, T )dXi,

where dXi is the ith Wiener process, and the n Wiener processes are inde-
pendent. In this sense, it can be called a multi-factor model. Jarrow wrote a
monograph on this method in 1996 (see [48]). Any reader who wants to know
its details is referred to that book.

5.6.2 Reducing the Randomness of a Zero-Coupon
Bond Curve to That of a Few Zero-Coupon Bonds

As we know, if we have an effective way to describe the randomness of a
zero-coupon bond curve, then we can have an effective model for interest rate
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derivatives such as bond options or swaptions. In this and the next subsections,
we discuss a three-factor model, which can be easily used in practice and
generalized to the cases with more factors without any difficulty.

As we have done in Sect. 5.1, let Z(t; t + T ) denote the price of a T -year
zero-coupon bond with a face value of one dollar at time t, and we use the
notation Zi(t) = Z(t; t+ Ti) for any Ti, i = 0, 1, · · · , N . Here, we also assume
Ti < Ti+1, for i = 0, 1, · · · , N − 1, and T0 = 0. According to Zi(t), i =
0, 1, · · · , N , we can have an interpolation function Z̄(T ; t) for T ∈ [0, TN ] by
requiring Z̄(T ; t) to be a continuous function with continuous first and second
derivatives in the form:

Z̄(T ; t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a0,1 + a1,1T + a2,1T
2, 0 ≤ T ≤ T1,

a0,i + a1,iT + a2,iT
2 + a3,iT

3, Ti−1 ≤ T ≤ Ti,

i = 2, · · · , N − 1,

a0,N + a1,NT + a2,NT
2, TN−1 ≤ T ≤ TN .

(5.65)

In this function, there are 4(N−2)+6 = 4N−2 coefficients. Because we have
N + 1 conditions on the value of the function

Z̄(Ti; t) = Zi(t), i = 0, 1, · · · , N

and 3(N−1) continuity conditions on the function, first and second derivatives
at T1, T2, · · · , TN−1, the total number of conditions is also 4N − 2. Therefore,
it is possible that those coefficients in the expression (5.65) can be determined
by these conditions uniquely. This interpolation method is called a cubic spline
interpolation, and the way of determining the coefficients in the expression
(5.65) will be given in Sect. 6.1.1. A zero-coupon bond curve is a monotone
function with respect to T . If for a set of Zi(t), i = 0, 1, · · · , N , the expression
(5.65) does not possess this property, the approximation needs to be modified
so that the monotonicity is guaranteed. This is important in practice.

We assume that Z̄(T ; t) is a very good approximation to the zero-coupon
bond curve Z(t; t+ T ). In this way, a random curve is reduced to N random
variables with a small error.

Now let us reduce the number of random variables from N to K by the
principal component analysis. Suppose that we have N random variables

Si, i = 1, 2, · · · , N

and the covariance between Si and Sj is

Cov[SiSj ] = bibjρi,j , i, j = 1, 2, · · · , N,
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where −1 ≤ ρi,j = ρj,i ≤ 1 and ρi,i = 1. Let

c2i and ai =

⎡
⎢⎢⎢⎣

ai,1
ai,2
...

ai,N

⎤
⎥⎥⎥⎦ , i = 1, 2, · · · , N,

be the eigenvalues and unit eigenvectors of the covariance matrix

B =

⎡
⎢⎢⎢⎣

b21 b1b2ρ1,2 · · · b1bNρ1,N
b2b1ρ2,1 b22 · · · b2bNρ2,N

...
...

. . .
...

bNb1ρN,1 bNb2ρN,2 · · · b2N

⎤
⎥⎥⎥⎦ .

That is, there is the following relation:

BAT = ATC or ABAT = C,

where AT is the transpose of A and

A =

⎡
⎢⎢⎢⎣

a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
...

...
. . .

...
aN,1 aN,2 · · · aN,N

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

c21 0 · · · 0
0 c22 · · · 0
...

...
. . .

...
0 0 · · · c2N

⎤
⎥⎥⎥⎦ .

Here A is an orthogonal matrix, i.e., AAT = I because B is a symmetric
matrix.

Let S̄1, S̄2, · · · , S̄N be N other random variables defined by

⎡
⎢⎢⎢⎣

S̄1

S̄2

...
S̄N

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

S1

S2

...
SN

⎤
⎥⎥⎥⎦ .

For simplicity, this relation can be written as

S̄ = AS,

where

S̄ =

⎡
⎢⎢⎢⎣

S̄1

S̄2

...
S̄N

⎤
⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎣

S1

S2

...
SN

⎤
⎥⎥⎥⎦ .
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Then

Cov
[
S̄iS̄j

]
= E

[(
S̄i − E

[
S̄i
]) (

S̄j − E
[
S̄j
])]

= E

[(
N∑
k=1

aik (Sk − E [Sk])

)(
N∑
l=1

ajl (Sl − E [Sl])

)]

=

N∑
k=1

N∑
l=1

aikajl Cov [SkSl]

=

⎧⎨
⎩

0, i �= j,

c2i , i = j.

That is, C is the covariance matrix of the random vector S̄. We furthermore
suppose that

c2i ≥ c2j for i < j

and

c2i � c2K , i = K + 1, · · · , N.
Assume that on some day

S =

⎡
⎢⎢⎢⎣

S∗
1

S∗
2
...
S∗

N

⎤
⎥⎥⎥⎦ ≡ S∗

and

S̄ = A

⎡
⎢⎢⎢⎣

S∗
1

S∗
2
...
S∗

N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

S̄∗
1

S̄∗
2
...
S̄∗

N

⎤
⎥⎥⎥⎦ ≡ S̄∗.

Because c2i , i = K + 1, · · · , N are very small, for a period starting from that
day, we neglect the uncertainty caused by the last N −K components of S̄.
That is, we assume that in this period S̄ has the following form:

S̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄1

...
S̄K

S̄∗
K+1

...
S̄∗

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where S̄1, · · · , S̄K can take all possible values. In this case

S = AT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S̄1

...
S̄K

S̄∗
K+1

...
S̄∗

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.66)

Under this assumption, among S1, S2, · · · , SN , only K components are
independent. Suppose ∣∣∣∣∣∣∣∣∣

a1,1 a2,1 · · · aK,1

a1,2 a2,2 · · · aK,2

...
...

. . .
...

a1,K a2,K · · · aK,K

∣∣∣∣∣∣∣∣∣
�= 0.

Then, we can choose S1, S2, · · · , SK as independent components. Rewrite Eq.
(5.66) as ⎡

⎢⎣
S1

...
SK

⎤
⎥⎦ = AT

1

⎡
⎢⎣
S̄1

...
S̄K

⎤
⎥⎦+AT

2

⎡
⎢⎣
S̄∗

K+1

...
S̄∗

N

⎤
⎥⎦ ,

⎡
⎢⎣
SK+1

...
SN

⎤
⎥⎦ = AT

3

⎡
⎢⎣
S̄1

...
S̄K

⎤
⎥⎦+AT

4

⎡
⎢⎣
S̄∗

K+1

...
S̄∗

N

⎤
⎥⎦ ,

where

AT

1 =

⎡
⎢⎣
a1,1 · · · aK,1

...
. . .

...
a1,K · · · aK,K

⎤
⎥⎦ , AT

2 =

⎡
⎢⎣
aK+1,1 · · · aN,1

...
. . .

...
aK+1,K · · · aN,K

⎤
⎥⎦ ,

AT

3 =

⎡
⎢⎣
a1,K+1 · · · aK,K+1

...
. . .

...
a1,N · · · aK,N

⎤
⎥⎦ , AT

4 =

⎡
⎢⎣
aK+1,K+1 · · · aN,K+1

...
. . .

...
aK+1,N · · · aN,N

⎤
⎥⎦ .

Then, for SK+1, · · · , SN , we have⎡
⎢⎣
SK+1

...
SN

⎤
⎥⎦ = AT

3 (AT

1 )
−1

⎛
⎜⎝
⎡
⎢⎣
S1

...
SK

⎤
⎥⎦−AT

2

⎡
⎢⎣
S̄∗

K+1

...
S̄∗

N

⎤
⎥⎦
⎞
⎟⎠

+AT

4

⎡
⎢⎣
S̄∗

K+1

...
S̄∗

N

⎤
⎥⎦ . (5.67)
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Thus, for given S1, · · · , SK , using the relation (5.67) we can get all other
components of a vector S. Consequently, the relation (5.67) defines a class
of vectors with K parameters. That is, by the relation (5.67), we actually
determine a class of S, where only S1, · · · , SK are independent. Here, we take
S1, · · · , SK as independent components. However, it is also possible to choose
other K components as independent components.

Letting Si = Zi/Ti, i = 1, 2, · · · , N , by the principal component analysis
described above, we can find a class of vectors [Z1/T1, · · · , ZN/TN ]

T with K
parameters4 and using the cubic spline interpolation given at the beginning
of this subsection, we can further determine the curve Z̄(T ; t) for T ∈ [0, TN ].
From the books by Jarrow [48], Hull [43], James andWebber [47], andWilmott
[83], we know that K usually is equal to three or four for the random curves
related to interest rates. Thus, all the curves determined by the relation (5.67)
form a class of curves with three or four parameters. The zero-coupon bond
curve at that day is one of such curves, and the projections of any vector S
determined by the relation (5.67) on the eigenvectors corresponding to the
eigenvalues cK+1, · · · , cN are the same as those of S∗. Those projections are
different for different S∗, so this is a feature belonging to S∗. It is clear that the
class of curves with such a feature needs to be considered most for derivative-
pricing problems. Hence, when K = 3 or 4, the class contains all possible and
need-to-be-considered-most zero-coupon bond curves. As soon as we have a
zero-coupon bond curve, we can determine various interest rates at t, including
the short rate r(Z1, · · · , ZK , t) at time t. For example, for r(Z1, · · · , ZK , t),
we have

r(Z1, · · · , ZK , t) = − ∂Z̄(T ; t)

∂T

∣∣∣∣
T=0

. (5.68)

5.6.3 A Three-Factor Interest Rate Model and the Equation
for Interest Rate Derivatives

Suppose Z1, Z2 and Z3 are prices of zero-coupon bonds with maturities T1, T2,
and T3, respectively. Assume T1 < T2 < T3, which implies the relations 1 ≥
Z1 ≥ Z2 ≥ Z3. Furthermore, we assume Z1 ≥ Z1,l, Z2 ≥ Z2,l and Z3 ≥ Z3,l,
where Z1,l ≥ Z2,l ≥ Z3,l ≥ 0. Z1, Z2 and Z3 are random variables and satisfy
the system of stochastic differential equations:

dZi = μi (Z1, Z2, Z3, t) dt+ σi (Z1, Z2, Z3, t) dXi, i = 1, 2, 3

on the domain Ω: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2}. dXi are
the Wiener processes and E [dXidXj ] = ρi,jdt with −1 ≤ ρi,j ≤ 1. The
coefficients μi, σi and their first- and second-order derivatives are assumed
to be bounded on the domain Ω. On the six boundaries of Ω, the following
conditions hold:

4If the conditions Zi ≥ Zi+1, i = 0, 1, · · ·N − 1 are not satisfied, then some
modification needs to be done in order to guarantee the monotonicity.
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(i) On surface I: {Z1 = Z1,l, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2},
⎧⎨
⎩
μ1 (Z1,l, Z2, Z3, t) ≥ 0,

σ1 (Z1,l, Z2, Z3, t) = 0;
(5.69)

(ii) On surface II: {Z1 = 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2},
⎧⎨
⎩
μ1 (1, Z2, Z3, t) ≤ 0,

σ1 (1, Z2, Z3, t) = 0;
(5.70)

(iii) On surface III: {Z1,l ≤ Z1 ≤ 1, Z2 = Z2,l, Z3,l ≤ Z3 ≤ Z2},
⎧⎨
⎩
μ2 (Z1, Z2,l, Z3, t) ≥ 0,

σ2 (Z1, Z2,l, Z3, t) = 0;
(5.71)

(iv) On surface IV: {Z1,l ≤ Z1 ≤ 1, Z2 = Z1, Z3,l ≤ Z3 ≤ Z2},
⎧⎨
⎩

−μ1 (Z1, Z1, Z3, t) + μ2 (Z1, Z1, Z3, t) ≤ 0,

σ1 (Z1, Z1, Z3, t) = σ2 (Z1, Z1, Z3, t) , ρ1,2 (Z1, Z1, Z3, t) = 1;
(5.72)

(v) On surface V: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3 = Z3,l},
⎧⎨
⎩
μ3 (Z1, Z2, Z3,l, t) ≥ 0,

σ3 (Z1, Z2, Z3,l, t) = 0;
(5.73)

(vi) On surface VI: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3 = Z2},
⎧⎨
⎩

−μ2 (Z1, Z2, Z2, t) + μ3 (Z1, Z2, Z2, t) ≤ 0,

σ2 (Z1, Z2, Z2, t) = σ3 (Z1, Z2, Z2, t) , ρ2,3 (Z1, Z2, Z2, t) = 1.
(5.74)

This model will be called the three-factor interest rate model in this book.
As you can see, conditions (5.69)–(5.71) and (5.73) have the same form

as the condition (5.45) or the condition (5.46), and the conditions (5.72)
and (5.74) are in a similar form. They are the weak-form reversion condi-
tions on the non-rectangular domain Ω. In order to guarantee that if a point
is in Ω at time t∗, then the point is still in Ω at t = t∗ + dt for a positive dt,
it is necessary to require that

n1dZ1 + n2dZ2 + n3dZ3 ≤ 0 (5.75)

holds at any point on the boundary of the domain Ω, where n1, n2, and n3
are the three components of the outer normal vector of the boundary at the
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Fig. 5.3. Projection of the domain Ω on the (Z1, Z2)-plane

point. This is called the weak-form reversion conditions on a general domain.
The condition of the condition (5.75) holding at every point on the boundary
of the domain Ω is equivalent to the conditions (5.69)–(5.74). For example, on
surface I (see Fig. 5.3), n1 = −1, n2 = 0 and n3 = 0, so the condition (5.75)
can be written as

n1dZ1 + n2dZ2 + n3dZ3 = −dZ1 = −μ1dt− σ1dX1 ≤ 0.

This holds if and only if σ1 = 0 and μ1 ≥ 0. On surface IV, n1 = −1, n2 = 1,
and n3 = 0 (see Fig. 5.3). In this case the condition (5.75) can be written as

n1dZ1 + n2dZ2 + n3dZ3 = −dZ1 + dZ2

= −μ1dt+ μ2dt− σ1dX1 + σ2dX2

= (−μ1 + μ2)dt+ σ12dX12 ≤ 0,

where we define

σ12dX12 = −σ1dX1 + σ2dX2

and dX12 is another Wiener process. Using Itô’s lemma, we know

σ12 =
√
σ2
1 − 2ρ1,2σ1σ2 + σ2

2 .

Thus in this case the condition (5.75) holds if and only if

−μ1 + μ2 ≤ 0 and σ12 = 0.

σ12 = 0 is equivalent to

σ2
1 − 2ρ1,2σ1σ2 + σ2

2 = (σ1 − σ2)
2 + 2(1− ρ1,2)σ1σ2 = 0
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or

σ1 = σ2 and ρ1,2 = 1.

Thus in this case the condition (5.75) is equivalent to −μ1 +μ2 ≤ 0, σ1 = σ2,
and ρ1,2 = 1. If the derivatives of σi(Z1, Z2, Z3, t) with respect to Z1, Z2, and
Z3 are bounded, then it is expected that the condition (5.75) or the conditions
(5.69)–(5.74) guarantee that a point (Z1, Z2, Z3) will never move from inside
of the domain Ω to its outside. This is a natural property of a stochastic
model for interest rates when Z1,l, Z2,l and Z3,l are given properly.

Let V (Z1, Z2, Z3, t) be the value of a derivative security depending on
Z1, Z2, Z3, t. According to Sect. 2.3.2, V (Z1, Z2, Z3, t) should satisfy

∂V

∂t
+

1

2

3∑
i=1

3∑
j=1

σiσjρi,j
∂2V

∂Zi∂Zj
+ r

3∑
i=1

Zi
∂V

∂Zi
− rV = 0.

As we pointed out in Sect. 2.3, in this case in the PDE there is no market
price of risk, or because zero-coupon bonds can be traded on the market, the
market prices of risk for these bonds can be determined by the relation (2.36)
with D0i = 0:

μi(Z1, Z2, Z3, t)− λi(Z1, Z2, Z3, t)σi(Z1, Z2, Z3, t) = r(Z1, Z2, Z3, t)Zi,

i = 1, 2, 3.

Let

L3Z =
1

2

3∑
i=1

3∑
j=1

σiσjρi,j
∂2

∂Zi∂Zj
+ r

3∑
i=1

Zi
∂

∂Zi
− r. (5.76)

The equation above can be written as

∂V

∂t
+ L3ZV = 0.

For a derivative security, at the maturity date T , its price should be equal
to its payoff VT (Z1, Z2, Z3). Therefore, any European interest rate derivatives
under this model should be solutions of the problem

⎧⎨
⎩
∂V

∂t
+ L3ZV = 0 on Ω × [0, T ],

V (Z1, Z2, Z3, T ) = VT (Z1, Z2, Z3) on Ω.

(5.77)

Introduce the following transformation:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
.

(5.78)
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Through this transformation, the domain Ω in the (Z1, Z2, Z3)-space is trans-
formed into the domain Ω̃: [0, 1]×[0, 1]×[0, 1] in the (ξ1, ξ2, ξ3)-space. Because

∂ξ1
∂Z1

=
1

1− Z1,l
,

∂ξ2
∂Z1

=
−ξ2

Z1 − Z2,l
,

∂ξ2
∂Z2

=
1

Z1 − Z2,l
,

∂ξ3
∂Z2

=
−ξ3

Z2 − Z3,l
,

∂ξ3
∂Z3

=
1

Z2 − Z3,l
,

we have

∂V

∂Z1
=

1

1− Z1,l

∂V

∂ξ1
− ξ2
Z1 − Z2,l

∂V

∂ξ2
,

∂V

∂Z2
=

1

Z1 − Z2,l

∂V

∂ξ2
− ξ3
Z2 − Z3,l

∂V

∂ξ3
,

∂V

∂Z3
=

1

Z2 − Z3,l

∂V

∂ξ3
,

∂2V

∂Z2
1

=
1

(1− Z1,l)
2

∂2V

∂ξ21
− 2ξ2

(1− Z1,l) (Z1 − Z2,l)

∂2V

∂ξ1∂ξ2

+
ξ22

(Z1 − Z2,l)
2

∂2V

∂ξ22
+

2ξ2
(Z1 − Z2,l)2

∂V

∂ξ2
,

∂2V

∂Z2
2

=
1

(Z1 − Z2,l)
2

∂2V

∂ξ22
− 2ξ3

(Z1 − Z2,l)(Z2 − Z3,l)

∂2V

∂ξ2∂ξ3

+
ξ23

(Z2 − Z3,l)
2

∂2V

∂ξ23
+

2ξ3
(Z2 − Z3,l)2

∂V

∂ξ3
,

∂2V

∂Z2
3

=
1

(Z2 − Z3,l)
2

∂2V

∂ξ23
,

∂2V

∂Z1∂Z2
=

−1

(Z1 − Z2,l)2
∂V

∂ξ2
+

1

Z1 − Z2,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ2
− ξ2
Z1 − Z2,l

∂2V

∂ξ22

)

− ξ3
Z2 − Z3,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ3
− ξ2
Z1 − Z2,l

∂2V

∂ξ2∂ξ3

)
,

∂2V

∂Z1∂Z3
=

1

Z2 − Z3,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ3
− ξ2
Z1 − Z2,l

∂2V

∂ξ2∂ξ3

)
,

∂2V

∂Z2∂Z3
=

−1

(Z2 − Z3,l)2
∂V

∂ξ3
+

1

Z2 − Z3,l

(
1

Z1 − Z2,l

∂2V

∂ξ2∂ξ3
− ξ3
Z2 − Z3,l

∂2V

∂ξ23

)
.

Therefore, the operator L3Z defined by the expression (5.76) can be rewritten
as
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L3ξ =
1

2
σ̃2
1

∂2

∂ξ21
+

1

2
σ̃2
2

∂2

∂ξ22
+

1

2
σ̃2
3

∂2

∂ξ23

+σ̃1σ̃2ρ̃1,2
∂2

∂ξ1∂ξ2
+ σ̃1σ̃3ρ̃1,3

∂2

∂ξ1∂ξ3
+ σ̃2σ̃3ρ̃2,3

∂2

∂ξ2∂ξ3

+b1
∂

∂ξ1
+ b2

∂

∂ξ2
+ b3

∂

∂ξ3
− r, (5.79)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ̃2
1 =

1
2σ

2
1

(1− Z1,l)
2 ,

1

2
σ̃2
2 =

1
2

(
σ2
1ξ

2
2 − 2σ1σ2ξ2ρ1,2 + σ2

2

)
(Z1 − Z2,l)

2 ,

1

2
σ̃2
3 =

1
2

(
σ2
2ξ

2
3 − 2σ2σ3ξ3ρ2,3 + σ2

3

)
(Z2 − Z3,l)

2 ,

(5.80)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ̃1σ̃2ρ̃1,2 =
σ1 (σ2ρ1,2 − σ1ξ2)

(1− Z1,l) (Z1 − Z2,l)
,

σ̃1σ̃3ρ̃1,3 =
σ1 (σ3ρ1,3 − σ2ρ1,2ξ3)

(1− Z1,l) (Z2 − Z3,l)
,

σ̃2σ̃3ρ̃2,3 =
σ1ξ2 (σ2ρ1,2ξ3 − σ3ρ1,3) + σ2 (σ3ρ2,3 − σ2ξ3)

(Z1 − Z2,l) (Z2 − Z3,l)
,

(5.81)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
rZ1

1− Z1,l
,

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
+
σ1 (σ1ξ2 − σ2ρ1,2)

(Z1 − Z2,l)
2 ,

b3 =
r (Z3 − Z2ξ3)

Z2 − Z3,l
+
σ2 (σ2ξ3 − σ3ρ2,3)

(Z2 − Z3,l)
2 .

(5.82)

Consequently, the problem (5.77) can be rewritten as
⎧⎪⎨
⎪⎩
∂V

∂t
+ L3ξV = 0 on Ω̃ × [0, T ],

V (ξ1, ξ2, ξ3, T ) = VT (Z1(ξ1), Z2(ξ1, ξ2), Z3(ξ1, ξ2, ξ3)) on Ω̃,

(5.83)

where L3ξ is defined by Eq. (5.79) and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l] ,

Z3 (ξ1, ξ2, ξ3) = Z3,l + ξ3 {Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l]− Z3,l} .
(5.84)
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This is a final-value problem on a rectangular domain. Thus, when the three-
factor interest rate model is used, evaluating an interest rate derivative is
reduced to solving a final-value problem on a rectangular domain.

We would like to point out the relations among σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3
and dξ1, dξ2, dξ3. Using Itô’s lemma, from the definitions of ξ1, ξ2, ξ3, we can
have

dξ1 = μ̃1dt+ σ̃1dX1, dξ2 = μ̃2dt+ σ̃2dX̃2, dξ3 = μ̃3dt+ σ̃3dX̃3,

where dX̃2 and dX̃3 are two new Wiener processes. Therefore

σ̃2
i = Var[dξi]/dt, j = 1, 2, 3.

It can also be shown that

Cov[dX1dX̃2]/dt = ρ̃1,2, Cov[dX1dX̃3]/dt = ρ̃1,3

and
Cov[dX̃2dX̃3]/dt = ρ̃2,3.

These are left for readers to prove as Problem 24.
From Eq. (5.80), it is easy to see that the equality conditions in

the conditions (5.69)–(5.74) can be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̃1(0, ξ2, ξ3, t) = σ̃1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃2(ξ1, 0, ξ3, t) = σ̃2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃3(ξ1, ξ2, 0, t) = σ̃3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1.

(5.85)

Therefore, in order for the equality conditions in the conditions (5.69)–(5.74)
to hold, we just require that the volatilities of dξ1, dξ2, and dξ3 satisfy the con-
dition (5.85), which is easier to be implemented than the equality conditions
in the conditions (5.69)–(5.74). Suppose that σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3 are
given functions. In this case, in order to be able to use the expressions of b1,
b2, and b3 conveniently, we express σ1 (σ1ξ2 − σ2ρ1,2) and σ2 (σ2ξ3 − σ3ρ2,3)
in the expressions of b2 and b3 in terms of σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3.
From the expression (5.81) we have

σ̃1σ̃2ρ̃1,2 (1− Z1,l) (Z1 − Z2,l) = σ1 (σ2ρ1,2 − σ1ξ2) ,

σ̃1σ̃3ρ̃1,3 (1− Z1,l) (Z2 − Z3,l) = σ1 (σ3ρ1,3 − σ2ρ1,2ξ3) ,

σ̃2σ̃3ρ̃2,3 (Z1 − Z2,l) (Z2 − Z3,l) = σ1ξ2 (σ2ρ1,2ξ3 − σ3ρ1,3)

+σ2 (σ3ρ2,3 − σ2ξ3) ,

and from the second and third relations we further obtain

σ2 (σ3ρ2,3 − σ2ξ3) = σ̃1σ̃3ρ̃1,3ξ2 (1− Z1,l) (Z2 − Z3,l)

+σ̃2σ̃3ρ̃2,3 (Z1 − Z2,l) (Z2 − Z3,l) .
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Therefore, the expressions of b1, b2 and b3 can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
rZ1

1− Z1,l
,

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
− σ̃1σ̃2ρ̃1,2 (1− Z1,l)

Z1 − Z2,l
,

b3 =
r (Z3 − Z2ξ3)

Z2 − Z3,l
− σ̃1σ̃3ρ̃1,3ξ2 (1− Z1,l)

Z2 − Z3,l

− σ̃2σ̃3ρ̃2,3 (Z1 − Z2,l)

Z2 − Z3,l
.

(5.86)

By this relation, we can easily calculate b1, b2, and b3 when the values of σ̃1,
σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3 are given. Because of the condition (5.85) and r = 0
for Z1 = 1 [see the expression (5.68)], we can easily show

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1(0, ξ2, ξ3, t) ≥ 0, b1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

b2(ξ1, 0, ξ3, t) ≥ 0, b2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

b3(ξ1, ξ2, 0, t) ≥ 0, b3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1.

It can be proved that when these inequalities and the condition (5.85) hold, the
problem (5.83) has a unique solution (see [91]). Thus the problem (5.83) can
be solved by numerical methods without any difficulty. In this subsection, the
PDE in the problem (5.83) is derived through two steps: first it is obtained
from the result given in Sect. 2.3.2 and then a new equation is gotten by means
of a transformation. Actually this equation can be obtained directly by setting
a portfolio and using Itô’s lemma just like what we did in Sect. 2.3.4 for two-
factor case. Readers are asked to derive the PDE in the problem (5.83) in this
way as Problem 25.

Finally, we say a few words about how to use this model to evaluate interest
rate derivatives. First, we need to choose Z1, Z2, and Z3 and find σ̃1, σ̃2, σ̃3
satisfying conditions (5.85), and ρ̃1,2, ρ̃1,3, ρ̃2,3. Finding these functions can
be done from the data on markets by statistics. After that, the problem (5.83)
needs to be solved. Let t = 0 denote today, and suppose the derivative security
is European style. On the maturity date T , for each point (ξ1, ξ2, ξ3) in Ω̃, we
can have Z1, Z2, and Z3 by the relation (5.84). Then, we determine a zero-
coupon bond curve by using the method given in Sect. 5.6.2. When we obtain
such a curve, the value of the payoff and r for the point can be determined.
This can be done for all points (ξ1, ξ2, ξ3) in the domain Ω̃ for t = T . When we
have the final value and all the coefficients of the partial differential equation
in the problem (5.83), we can solve the final-value problem (5.83) from t = T
to t = 0 and get the value of the derivative security today for all the points
in Ω̃.

For American-style derivatives, the situation is similar. The only difference
is that the value of derivative must be greater than the constraint. Because
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the value of the constraint can be obtained by the zero-coupon bond curves
at all points in Ω̃× [0, T ], the value of an American-style derivative can be de-
termined without any difficulty. However, free boundaries will usually appear
in this case.

From what we have described, we see that this model has the following
features:

• The state variables are prices of three zero-coupon bonds with different
maturities that can be traded on markets, so the coefficients of the first
derivatives with respect to the bond prices Zi in the partial differential
equation simply are rZi.

• The volatilities of these zero-coupon bonds and their correlation coeffi-
cients can be found directly from the real markets by statistics, so the
model will have the real major feature of the markets.

• All the zero-coupon bond curves having appeared in the real market can
be reproduced quite accurately. This is the basis of a model giving correct
results. If taking three random variables is not good enough, four-factor
models can be adopted. Generalizing three-factor models to four-factor
models is straightforward.

• In other models, the partial differential equation is defined on an infinite
domain. For this model, the corresponding partial differential equation is
defined on a finite domain. It has been proved that no boundary condition
is needed in order for its final-value problem to have a unique solution.
Thus, it is not difficult to design correct and efficient numerical methods
to price interest rate derivatives.

For the details on how to determine models from the market data and
how to solve the final-value problem of the partial differential equation, see
Sect. 10.3 and [96]. There, some numerical results are also given.

5.7 Two-Factor Convertible Bonds

Until now, we discussed derivatives depending on either equities or interest
rates. This section deals with a derivative dependent on both equity prices
and interest rates. This derivative security is a bond that may, at any time
chosen by the holder, be converted into n shares of stocks of the company
who issues the bond. Such a bond is commonly known as a convertible bond.
As a bond, its price depends on the short rate r. It can be exchanged for n
shares of stocks, so its value is also a function of the stock price S. Because its
typical life span is about 3–10 years, both S and r are considered as random
state variables. Therefore, this bond is called a two-factor convertible bond.
In this section, we discuss how to price such a bond.

Consider a bond issued by a company and its payoff depends not only on
r but also on the price of the stock of the company. In this case the value of
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this bond depends on both r and S. Let B(S, r, t) be the value of such a bond.
As usual, we assume that S is governed by

dS = μ(S, t)Sdt+ σ(S, t)SdX1, 0 ≤ S (5.87)

and the interest rate by

dr = u(r, t)dt+ w(r, t)dX2, rl ≤ r ≤ ru, (5.88)

where dX1 and dX2 are different Wiener processes though they can be corre-
lated. Suppose that

E [dX1dX2] = ρdt,

where ρ is a constant belonging to [−1, 1] and for S and r, ρ usually is a
negative number. According to Sect. 2.3, such a derivative satisfies

∂B

∂t
+ LS,rB + kZ = 0, 0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T, (5.89)

where

LS,r =
1

2
σ2S2 ∂2

∂S2
+ρσSw

∂2

∂S∂r
+

1

2
w2 ∂

2

∂r2
+(r−D0)S

∂

∂S
+(u−λw) ∂

∂r
− r.

Here, D0 is the dividend yield a holder of the stock receives per unit time,
and kZ is the coupon payment a holder of the bond receives per unit time,
Z being the face value of the bond. λ is the market price of risk for the short
rate. T is the maturity date of the bond.

We assume that at maturity time T, the holder of the bond can choose to
get the face value Z or n shares of stocks. Therefore, the payoff is

B(S, r, T ) = max(Z, nS), 0 ≤ S, rl ≤ r ≤ ru. (5.90)

This is the final condition for this bond. We assume that for the interest rate,
the conditions (5.45) and (5.46) hold, i.e.,

{
u(rl, t)− w(rl, t)

∂

∂r
w(rl, t) ≥ 0,

w(rl, t) = 0,

and {
u(ru, t)− w(ru, t)

∂

∂r
w(ru, t) ≤ 0,

w(ru, t) = 0.

Because w2(r, t) ≥ 0 and w(rl, t) = 0, on [rl, ru] we conclude w(rl, t)
∂

∂r
w(rl, t)

=
1

2

∂

∂r
w2(rl, t) ≥ 0. Similarly, w(ru, t)

∂

∂r
w(ru, t) ≤ 0. Therefore, the condi-

tions above can be rewritten as
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{
u(rl, t) ≥ w(rl, t)

∂

∂r
w(rl, t) ≥ 0,

w(rl, t) = 0,

{
u(ru, t) ≤ w(ru, t)

∂

∂r
w(ru, t) ≤ 0,

w(ru, t) = 0.

Because of w(rl, t) = 0, Eq. (5.89) at r = rl degenerates into

∂B

∂t
+

1

2
σ2S2 ∂

2B

∂S2
+ (r −D0)S

∂B

∂S
+ u

∂B

∂r
− rB + kZ = 0.

This equation has hyperbolic properties in the r-direction. Thus, if u(rl, t) ≥ 0,
then the value B(S, rl, t) is determined by the value B(S, r, t) in the do-
main [0,∞) × [rl, ru] × [t, T ] and no extra boundary condition at r = rl is
needed. Similarly, no boundary condition should be required at r = ru be-
cause u(ru, t) ≤ 0 and w(ru, t) = 0. At S = 0, Eq. (5.89) becomes

∂B

∂t
+

1

2
w2 ∂

2B

∂r2
+ (u− λw)

∂B

∂r
− rB + kZ = 0.

This is the bond equation, and the value B(0, r, t) is determined by this equa-
tion and the final condition at S = 0. Just like the Black–Scholes equation,
there is no need for specifying a condition as S → ∞. Therefore, if the condi-
tions (5.45) and (5.46) hold, then we could expect that the problem

⎧⎨
⎩
∂B

∂t
+ LS,rB + kZ = 0, 0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T,

B(S, r, T ) = max(Z, nS), 0 ≤ S, rl ≤ r ≤ ru

(5.91)

has a unique solution. If
∂

∂r
w(rl, t) and

∂

∂r
w(ru, t) are bounded, which usually

is true, then the uniqueness of solution of the problem (5.91) can be obtained
from the results given in the paper by Zhu and Li (see [94]).

If this bond can be exchanged for n shares of stocks at any time, then this
bond is called a convertible bond and let us denote its value by Bc(S, r, t). It
is clear that the value Bc(S, r, t) must satisfy the following constraint

Bc(S, r, t) ≥ nS, 0 ≤ S, 0 ≤ t ≤ T. (5.92)

This condition is called the constraint on convertible bonds. Sometimes, the
solution of the problem (5.91) satisfies the constraint (5.92), so the problem
(5.91) determines the solution of a convertible bond. For example, if D0 = 0,
then the problem (5.91) gives the price of a convertible bond, which will be
explained later. If

D0 > 0,

then the price of a convertible bond should be the solution of the following
linear complementarity problem on the domain [0,∞)× [rl, ru]× [0, T ]:
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⎧⎪⎨
⎪⎩

min

(
−∂Bc
∂t

− LS,rBc − kZ, Bc(S, r, t)− nS

)
= 0,

Bc(S, r, T ) = max(Z, nS) ≥ nS.

Let us reformulate this problem as a free-boundary problem if D0 > 0. We
cannot directly apply Theorem 3.1 in Sect. 3.1 to this case because there are
two major differences between the problem in the theorem and the prob-
lem here. Here, the operator LS,r is two-dimensional and there is a nonho-
mogeneous term kZ. However, the main idea is still true. For S < Z/n,
Bc(S, r, T ) = Z > nS. Therefore, on [0, Z/n), Bc(S, r, T−Δt) must be greater
than nS if Δt is small enough, and no free boundary can appear in that re-
gion at time T . Now let us check the region (Z/n,∞). In this case, we need
to check where (

∂

∂t
+ LS,r

)
nS + kZ ≥ 0

and where (
∂

∂t
+ LS,r

)
nS + kZ < 0.

Because
(
∂

∂t
+ LS,r

)
nS + kZ = (r −D0)nS − rnS + kZ

= kZ −D0nS,

when S > Z/n and S > kZ/D0n, namely, S > max(Z/n, kZ/D0n),

(
∂

∂t
+ LS,r

)
nS + kZ < 0

and the solution is nS. Otherwise, we can use the partial differential equation
to determine the solution. Therefore, there is a free boundary starting at
S = max(Z/n, kZ/D0n) and t = T . Let Sf (r, t) be the location of the free
boundary, then

Sf (r, T ) = max

(
Z

n
,
kZ

D0n

)
, rl ≤ r ≤ ru. (5.93)

We assume that there is only one free boundary. From numerical solutions, we
know that it is true at least for some cases. Thus, when D0 > 0, the domain
[0,∞) × [rl, ru] × [0, T ] in (S, r, t)-space is divided into subdomains

I : [0, Sf (r, t)]× [rl, ru]× [0, T ]



328 5 Interest Rate Derivative Securities

and

II : (Sf (r, t),∞)× [rl, ru]× [0, T ] .

The free boundary is between them. At the free boundary, the solution and
its derivatives are continuous. In the subdomain II where Bc = nS,

∂Bc
∂S

= n

and
∂Bc
∂r

= 0.

Thus, it seems that in the subdomain I where the partial differential equation
is used, we need to require

Bc (Sf (r, t), r, t) = nSf (r, t), rl ≤ r ≤ ru, 0 ≤ t ≤ T, (5.94)

∂Bc
∂S

(Sf (r, t), r, t) = n, rl ≤ r ≤ ru, 0 ≤ t ≤ T, (5.95)

and
∂Bc
∂r

(Sf (r, t), r, t) = 0, rl ≤ r ≤ ru, 0 ≤ t ≤ T

on the free boundary. Differentiating both sides of the condition (5.94) with
respect to r in subdomain I yields

∂Bc
∂S

(Sf (r, t), r, t)
∂Sf
∂r

(r, t) +
∂Bc
∂r

(Sf (r, t), r, t) = n
∂Sf
∂r

(r, t).

Using the condition (5.95), we arrive at

∂Bc
∂r

(Sf (r, t), r, t) = 0.

Consequently, the conditions (5.94) and (5.95) guarantee that all the first
derivatives are continuous at the free boundary and we only need to impose
the conditions (5.94) and (5.95) on the solution in subdomain I.

Thus in subdomain I, the solution Bc(S, r, t) and the location of the free
boundary S = Sf (r, t) are obtained by solving the following problem:
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Fig. 5.4. The price of a two-factor convertible bond with T = 30 years

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc
∂t

+ LS,rBc + kZ = 0, 0 ≤ S ≤ Sf (r, t), rl ≤ r ≤ ru,

0 ≤ t ≤ T,

Bc(S, r, T ) = max(Z, nS), 0 ≤ S ≤ Sf (r, T ), rl ≤ r ≤ ru,

Bc(Sf (r, t), r, t) = nSf (r, t), rl ≤ r ≤ ru, 0 ≤ t ≤ T,

∂Bc
∂S

(Sf (r, t), r, t) = n, rl ≤ r ≤ ru, 0 ≤ t ≤ T,

Sf (r, T ) = max

(
Z

n
,
kZ

D0n

)
, rl ≤ r ≤ ru;

(5.96)

whereas in subdomain II, Bc(S, r, t) = nS. The problem (5.96) is usually
called a free-boundary problem for convertible bonds.

The starting location of the free boundary

Sf (r, T ) = max

(
Z

n
,
kZ

D0n

)

goes to infinity as D0 tends to zero, so there is no free boundary at time T .
Because
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(
∂

∂t
+ LS,r

)
nS + kZ ≥ 0

always holds when D0 = 0, no free boundary can appear at any time. This
means that there is no free boundary when D0 = 0. Thus, the value of a
convertible bond in this case is determined by the problem (5.91).

In Fig. 5.4, the price of a two-factor convertible bond with D0 = 0.05 is
shown. For this case, there is only one free boundary, which confirms our
assumption. The result there is obtained by the singularity-separating finite-
difference method, which will be described in Chap. 9.

A convertible bond can also have a call feature that gives the company
the right to purchase back the bond at any time (or during specified periods)
for a fixed amount M1. In this case, the price of the bond must not exceed
M1 because no one will spend an amount more than M1 to buy a bond that
can be purchased back for an amount M1 at any time. When we evaluate the
price of such a bond, the constraint

Bc(S, r, t) ≤M1, 0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T (5.97)

is required. Because of this condition, the price of a convertible bond with a
call feature can be less than a convertible bond without this feature. Because
the company gets more rights, the buyer of the bond should be asked to pay
less money.

A convertible bond can also incorporate a put feature, which means that
the owner of the convertible bond can return the bond to the company for an
amount M2 at any time. Now we must impose the constraint

Bc(S, r, t) ≥M2, 0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T. (5.98)

This condition might increase the value of the bond. The owner of the bond
has more rights, so he usually needs to pay more money in order to purchase
such a bond.

Just like the constraint (5.92), the constraint (5.97) or the constraint (5.98)
may induce a free boundary or make the free boundary more complicated. For
example, for a convertible bond with a call feature, the location of the free
boundary at t = T is

Sf (r, T ) = min

(
M1

n
, max

(
Z

n
,
kZ

D0n

))
, rl ≤ r ≤ ru. (5.99)

If we assume that r is a given function of t, then the bond is a one-factor
convertible bond. When D0 > 0, the free-boundary problem is
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ [r(t)−D0]S
∂Bc
∂S

− r(t)Bc + kZ = 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S ≤ Sf (T ),

Bc(Sf (t), t) = nSf (t), 0 ≤ t ≤ T,

∂Bc
∂S

(Sf (t), t) = n, 0 ≤ t ≤ T,

Sf (T ) = max

(
Z

n
,
kZ

D0n

)
.

(5.100)
This problem is only a little different from an American call option problem.
Similar to an American option, it can be proved rigorously that there is no
free boundary if D0 = 0 for the case r = constant. This is left as Problem 29
for readers.

Problems

Table 5.1. Problems and sections

Problems Sections Problems Sections Problems Sections

1–3 5.2 4–9 5.3 10 5.4

11–17 5.5 18–25 5.6 26–30 5.7

1. (a) *Suppose the short rate is a known function r(t). Consider a bond
with a face value Z and assume that it pays a coupon with a coupon
rate k(t), that is, during a time interval (t, t+dt], the coupon payment
is Zk(t)dt. Show that the value of the bond is

V (t) = Ze−
∫ T
t
r(τ)dτ

[
1 +

∫ T

t

k(τ̄)e
∫ T
τ̄
r(τ)dτdτ̄

]
.

(b) Suppose that r(t) and k(t) are equal to constants r and k, respectively.
Show that in this case,

V (t) = Ze−r(T−t)[1 + k(er(T−t) − 1)/r].

(c) Suppose that the bond pays coupon payments at two specified dates T1
and T2 before the maturity date T and the payments are Zk1 and Zk2,
respectively. According to the formula given in part (a), and assuming
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T1 < T2, find the values of the bond for t ∈ [0, T1), t ∈ (T1, T2), and
t ∈ (T2, T ), respectively, and give a financial interpretation of these
expressions.

2. Suppose that the short rate r satisfies

dr = udt+ w(t)dX,

where dX is a Wiener process. Assume that during the time period [0, t∗],
for example, t∗ being 1 or 3 months, the interest rate is equal to the short
rate r. Thus the price of a zero-coupon bond at t = 0 with face value
one and maturity date t∗ is e−rt

∗
. Because the zero-coupon bond can be

traded on the market, we can take Π = V (r, t)−Δe−rt
∗
as the portfolio in

order to derive the PDE for V (r, t), the price of an interest rate derivative.
Derive the PDE for V (r, t) in this way.

3. Suppose that the short rate r satisfies

dr = udt+ w(t)dX,

where dX is a Wiener process.
(a) Find the stochastic equation for B(r) = e−rt

∗
by using Itô’s lemma,

where t∗ is equal to, for example, 1 or 3 months.
(b) As we know, B(r) is the price of a zero-coupon bond at t = 0 with

face value one and maturity date t∗ if during the time period [0, t∗] the
interest rate is a constant. V (B, t) is any derivative on the zero-coupon
bond. Derive the PDE for V (B, t) by using Itô’s lemma directly.

(c) As we know, if dr = udt + w(t)dX, then the price of any derivative
security on r, V (r, t), should satisfy the equation

∂V

∂t
+

1

2
w2(t)

∂2V

∂r2
+ [u− λw(t)]

∂V

∂r
− rV + kZ = 0,

where kZ is the coupon of the derivative. Define V (r, t) = V (B(r), t).
Find the PDE for V (r, t) from PDE obtained in part (b) by using
transformation. This equation should be the same as the equation
given here. Based on this fact, determine λ.

4. Suppose that a(r, t) =
∞∑
i=0

ai(t)r
i and b(r, t) =

∞∑
i=0

bi(t)r
i and require that

the problem

⎧⎨
⎩
∂V

∂t
+ a(r, t)

∂2V

∂r2
+ b(r, t)

∂V

∂r
− rV = 0, 0 ≤ t ≤ T,

V (r, T ) = 1

has a solution in the form

V (r, t) = eA(t)−rB(t).
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Show that in order to fulfill this requirement, between ai and bi, i =
2, 3, · · · , there must exist the following relations:

aiB − bi = 0, i = 2, 3, · · · .
This means that in order to choose a(r, t) and b(r, t) independently and
for the solution to be in the form eA(t)−rB(t), we have to assume a(r, t) =
a0(t) + a1(t)r and b(r, t) = b0(t) + b1(t)r.

5. Suppose that a(r, t) = a0(t) + a1(t)r and b(r, t) = b0(t) + b1(t)r. Show
that the problem

⎧⎨
⎩
∂V

∂t
+ a(r, t)

∂2V

∂r2
+ b(r, t)

∂V

∂r
− rV = 0, 0 ≤ t ≤ T,

V (r, T ) = 1

has a solution in the form

V (r, t) = eA(t)−rB(t)

with A(T ) = B(T ) = 0 and determine the system of ordinary differential
equations the functions A(t) and B(t) should satisfy.

6. *In the Vasicek model, the short rate is assumed to satisfy

dr = (μ̄− γr)dt+
√
−βdX, β < 0, γ > 0,

where μ̄, γ, and β are constants, and dX is a Wiener process. Let the
market price of risk λ(r, t) = λ̄

√−β. Then, the price V (r, t;T ) of a zero-
coupon bond maturing at time T with a face value Z is the solution of
the problem

⎧⎪⎨
⎪⎩
∂V

∂t
+

1

2
(−β)∂

2V

∂r2
+ (μ− γr)

∂V

∂r
− rV = 0,

−∞ < r <∞, 0 ≤ t ≤ T,
V (r, T ;T ) = Z, −∞ < r <∞, 0 ≤ t ≤ T,

where
μ = μ̄+ λ̄β.

(a) Show that this problem has a solution in the form

V (r, t;T ) = ZeA(t,T )−rB(t,T )

and A and B are the solution of the system of ordinary differential
equations ⎧⎪⎨

⎪⎩
dA

dt
=

1

2
βB2 + μB,

dB

dt
= γB − 1
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with the conditions

A(T, T ) = 0,

B(T, T ) = 0.

(b) Find the solution of the above problem of ordinary differential equa-
tions by solving the two ODEs and show that the expressions of A
and B can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩
A = −

(
β

2γ2
+
μ

γ

)
(T − t) +

(
β

2γ2
+
μ

γ

)
B +

β

4γ
B2,

B =
1

γ

(
1− e−γ(T−t))

if the solution obtained is not in this form.

7. Show

lim
α→0

{
β

α
B +

[
β (γ − ψ)

α (γ + ψ)ψ
+ μ

γ − ψ

αψ

]
ln

(γ − ψ) /α

B + (γ − ψ) /α

−
[
β(γ + ψ)

α (γ − ψ)ψ
+ μ

γ + ψ

αψ

]
ln

(γ + ψ)/α

B + (γ + ψ) /α

}

= −
(

β

2γ2
+
μ

γ

)
(T − t) +

(
β

2γ2
+
μ

γ

)
B +

βB2

4γ
,

where

B(t, T ) =
1

γ

(
1− e−γ(T−t)

)
and ψ =

√
γ2 + 2α.

(The two sides are two expressions for A(t, T ) associated with the Va-
sicek model obtained by different approaches. This confirms that the two
different approaches give the same answer.)

8. *In the Cox–Ingersoll–Ross model, the short rate is assumed to satisfy

dr = (μ− γ̄r)dt+
√
αrdX,

where μ, γ̄, and α are constants, and dX is a Wiener process. Let the
market price of risk λ(r, t) be λ̄

√
αr. Then, the price V (r, t;T ) of a zero-

coupon bond maturing at time T with a face value Z is the solution of
the problem

⎧⎨
⎩
∂V

∂t
+

1

2
αr
∂2V

∂r2
+ (μ− γr)

∂V

∂r
− rV = 0, 0 ≤ r, 0 ≤ t ≤ T,

V (r, T ;T ) = Z, 0 ≤ r,

where γ = γ̄ + λ̄α.
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(a) Show that this problem has a solution in the form

V (r, t;T ) = ZeA(t,T )−rB(t,T )

and A and B are the solutions of the system of ordinary differential
equations ⎧⎪⎨

⎪⎩
dA

dt
= μB,

dB

dt
=

1

2
αB2 + γB − 1

with the conditions
A(T, T ) = 0

and
B(T, T ) = 0.

(b) Find the solution of the above problem of ordinary differential equa-
tions by solving the two ODEs and show that the expressions of A
and B can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A = ln

(
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

)2μ/α

,

B =
2(eψ(T−t) − 1)

(γ + ψ)eψ(T−t) − (γ − ψ)

with ψ =
√
γ2 + 2α

if the solution obtained is not in this form.

9. Show

Z

[
B + (γ − ψ) /α

(γ − ψ)/α

]μ(ψ−γ)/αψ [
B + (γ + ψ) /α

(γ + ψ) /α

]μ(γ+ψ)/αψ
e−rB

≡ Z

[
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

]2μ/α
e−rB ,

where

B =
2
(
eψ(T−t) − 1

)
(γ + ψ) eψ(T−t) − (γ − ψ)

.

(The two sides are two expressions for the zero-coupon bond price associ-
ated with the Cox–Ingersoll–Ross model obtained by different approaches.
This confirms that the two different approaches give the same answer.)

10. *Describe a way to determine the market price of risk for the short rate.
11. *Suppose that any European-style interest rate derivative with a contin-

uous coupon satisfies the equation:

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + k = 0, rl ≤ r ≤ ru, t ≤ T,
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where k is the coupon rate corresponding to the derivative, the coefficients
u and w satisfy the reversion conditions on the boundaries r = rl, r = ru,
and λ is a given bounded function. Describe how to evaluate the price of
a European call option on a bond with coupon by using this equation.

12. (a) Let Z(t;T ∗) be the price of a zero-coupon bond with a face value of
one dollar and with maturity date T ∗ at time t and let f̄(t, T, T + 1

2 )
be the forward interest rate compounded semiannually at time t for
the period (T, T + 1

2 ). Show

f̄

(
t, T, T +

1

2

)
= 2

[
Z(t;T )

Z(t;T + 1/2)
− 1

]
.

(b) There is a cash flow 1
2 f̄(tk−1, tk−1, tk), tk being t+k/2, k = 1, 2, · · · ,

2N and t0 being t. Find the value of the cash flow at time t.
(c) *Show that the value of an N -year swap with swap rate rs and with

notional principal Q is

Vs(T ; rs) = Q

[
1− Z(T ;T +N)− rs

2

2N∑
k=1

Z(T ;T + k/2)

]
,

where T is the time the swap initiates.
13. Show that the solution of the problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0,

rl ≤ r ≤ ru, t ≤ T,

V (r, T ;T ) = 1, rl ≤ r ≤ ru

is the same as that of the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + δ(t− T ) = 0,

rl ≤ r ≤ ru, t ≤ T,

V (r, T+;T ) = 0, rl ≤ r ≤ ru

for any t < T.
14. Let Vs1k(r, T ) denote the price of a (k/2)-year zero-coupon bond, k =

1, 2, · · · , 2N , and we want to get
2N∑
k=1

Vs1k(r, T ). Consider the following

procedures. The first one is to solve the following problems⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Vs1k
∂t

+
1

2
w2 ∂

2Vs1k
∂r2

+ (u− λw)
∂Vs1k
∂r

− rVs1k = 0, rl ≤ r ≤ ru,

T ≤ t ≤ T + k/2,

Vs1k(r, T + k/2) = 1, rl ≤ r ≤ ru,
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k = 1, 2, · · · , 2N , and then obtain
2N∑
k=1

Vs1k(r, T ) by adding Vs1k(r, T ),

k = 1, 2, · · · , 2N , together. The second one is to solve the problem:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs1
∂t

+
1

2
w2 ∂

2Vs1
∂r2

+ (u− λw)
∂Vs1
∂r

− rVs1

+
2N∑
k=1

δ(t− T − k/2) = 0,

rl ≤ r ≤ ru, T ≤ t ≤ T +N,

Vs1(r, T +N) = 0, rl ≤ r ≤ ru.

(a) Show Vs1(r, T ) =
2N∑
k=1

Vs1k(r, T ) holds.

(b) In order to get
2N∑
k=1

Vs1k(r, T ), which procedure is better and why?

15. Suppose that the solution of⎧⎪⎨
⎪⎩
∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, rl ≤ r ≤ ru, t∗ ≤ t ≤ tk,

V (r, tk; tk) = 1, rl ≤ r ≤ ru

is V (r, t; tk) and that V (r∗, t∗; tk) = Z(t∗; tk). Also assume that Vs(r, t; rs)
is the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs
∂t

+
1

2
w2 ∂

2Vs
∂r2

+ (u− λw)
∂Vs
∂r

− rVs −
2N∑

k=k∗+1

Qrs
2
δ(t− tk)

+Q

[
1 +

f̄(tk∗ , tk∗ , tk∗+1)

2

]
δ(t− tk∗+1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ T +N,

Vs(r, T +N ; rs) = −Q, rl ≤ r ≤ ru.

Here, Vs(r, t; rs) actually is the value of a swap. Q and rs are the notional
principal and the swap rate, respectively. t∗, T , and N denote the time
today, the time the swap is initiated, and the duration of the swap with
the relation T ≤ t∗ < T + N . k∗ is the integer part of (t∗ − T )/2, and
tk = T + k/2, k = k∗ +1, k∗ +2, · · · , 2N . f̄(tk∗ , tk∗ , tk∗+1) is the 6-month
LIBOR for the period [tk∗ , tk∗+1] determined at time tk∗ . Show

Vs(r
∗, t∗; rs) = QZ(t∗; tk∗+1)

[
1 +

1

2
f̄(tk∗ , tk∗ , tk∗+1)

]

− Q

[
2N∑

k=k∗+1

rs
2
Z(t∗; tk) + Z(t∗;T +N)

]
.
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16. *Suppose that any European-style interest rate derivative satisfies the
equation:

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + f(t) = 0, rl ≤ r ≤ ru,

where all the coefficients in the equation are known. Let Vso(r, t) be the
value of a T -year swaption on a N -year swap. Its payoff is

Qmax

(
1− Z(T ;T +N)− rse

2

2N∑
k=1

Z(T ;T + k/2), 0

)
,

where Q is the notional principal, rse is the exercise swap rate, and
Z(T ;T + k/2) is the value of zero-coupon bond with maturity k/2 at
time T . Describe how to find the price of the swaption, including to find
the payoff of the swaption, by solving this equation from T +N to T and
from T to 0.

17. Consider an N -year floor with a floor rate rf . Suppose that the money
will be paid quarterly at time tk = t∗ + k/4, k = 2, 3, · · · , 4N , and the
floating rate is the 3-month LIBOR. Suppose that Vbk(r, t) is the solution
of the problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂Vbk
∂t

+
1

2
w2 ∂

2Vbk
∂r2

+ (u− λw)
∂Vbk
∂r

− rVbk = 0,

rl ≤ r ≤ ru, tk−1 ≤ t ≤ tk,

Vbk(r, tk) = Q
(
1 +

rf
4

)
, rl ≤ r ≤ ru,

where k = 2, 3, · · · , 4N and Vf (r, t) is the solution of the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vf
∂t

+
1

2
w2 ∂

2Vf
∂r2

+ (u− λw)
∂Vf
∂r

− rVf

+
4N∑
k=2

max(Vbk(r, tk−1)−Q, 0)δ(t− tk−1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ t4N−1,

Vf (r, t4N−1) = 0, rl ≤ r ≤ ru.

Show that the premium of the floor should be

Vf (r
∗, t∗),

where r∗ is the short rate at time t∗.
18. (a) S is a random vector and its covariance matrix is B. Let S̄ = AS,

A being a constant matrix, and its covariance matrix be C. Find the
relation among A, B, and C.
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(b) How do we choose A so that C will be a diagonal matrix?
(c) *Suppose that S̄1, S̄2, · · · , S̄K are variables and S̄K+1, S̄K+2, · · · , S̄N are

fixed numbers. Find the dependence of SK+1, SK+2, · · · , SN on S1, S2,
· · · , SK .

19. (a) Suppose that there is a domain Ω on the (Z1, Z2)-plane, the boundary
of Ω is Γ , and (n1, n2)

T is the outer normal vector of the boundary
Γ . Assume that Z1 and Z2 are two stochastic processes and satisfy
the system of stochastic differential equations:

dZi = μi(Z1, Z2, t)dt+ σi(Z1, Z2, t)dXi with σi ≥ 0, i = 1, 2,

where dXi, i = 1, 2, are the Wiener processes and E [dX1dX2] = ρ12dt
with ρ12 ∈ [−1, 1]. Suppose that at t = 0, (Z1, Z2) ∈ Ω. Show that
in order to guarantee (Z1, Z2) ∈ Ω for any time t ∈ [0, T ], we need
to require, for any t ∈ [0, T ] and for any point on Γ , the following
condition to be held:
(i) if n1 �= 0 and n2 = 0, then

⎧⎨
⎩
n1μ1 ≤ 0,

σ1 = 0;

(ii) if n1 = 0 and n2 �= 0, then

⎧⎨
⎩
n2μ2 ≤ 0,

σ2 = 0;

(iii) if n1 �= 0 and n2 �= 0, then

⎧⎨
⎩
n1μ1 + n2μ2 ≤ 0,

n1σ1 − sign(n1n2)n2σ2 = 0, and ρ12 = −sign(n1n2),

where

sign(n1n2) =

⎧⎨
⎩

1, if n1n2 > 0,

−1, if n1n2 < 0.

If a point is a corner point, then there are two normals and we need
to require this condition to be held for the two outer normal vectors.

(b) Suppose that the domain Ω is Z1l ≤ Z1 ≤ 1 and Z2l ≤ Z2 ≤ Z1, where
Z1l and Z2l are constants, and Z1l ≥ Z2l. Find the concrete condition
for each segment of the boundary according to the condition given in
part (a).
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20. Assume that Z1, Z2, Z3 are random variables and satisfy the system of
stochastic differential equations:

dZi = μi (Z1, Z2, Z3, t) dt+ σi (Z1, Z2, Z3, t) dXi, i = 1, 2, 3,

where dXi are the Wiener processes and E [dXidXj ] = ρi,jdt with ρi,j ∈
[−1, 1]. In order to guarantee that if a point is in a domain Ω at time t∗,
then the point is still in the domain Ω at t = t∗ + dt for a positive dt, it
is necessary to require that the condition

n1dZ1 + n2dZ2 + n3dZ3 ≤ 0

holds at any point on the boundary of the domain Ω, where n1, n2, and
n3 are the three components of the outer normal vector of the boundary
at the point. Suppose that the domain Ω is {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤
Z1, Z3,l ≤ Z3 ≤ Z2}. Show that on the surfaces Z1 = 1, Z2 = Z2,l, and
Z3 = Z2, the condition is equivalent to {μ1 ≤ 0, σ1 = 0}, {μ2 ≥ 0,
σ2 = 0}, and {−μ2 + μ3 ≤ 0, σ2 = σ3, ρ2,3 = 1}, respectively.

21. Suppose that σ1 (Zl, Z2, Z3, t), σ2 (Zl, Z2, Z3, t), and σ3 (Zl, Z2, Z3, t) are
defined on Ω : {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2}. Assume
that

(i) σ1 (Z1,l, Z2, Z3, t) = 0 on surface I: {Z1 = Z1,l, Z2,l ≤ Z2 ≤ Z1,
Z3,l ≤ Z3 ≤ Z2}.

(ii) σ1 (1, Z2, Z3, t) = 0 on surface II: {Z1 = 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3

≤ Z2}.
(iii) σ2 (Z1, Z2,l, Z3, t) = 0 on surface III: {Z1,l ≤ Z1 ≤ 1, Z2 = Z2,l,

Z3,l ≤ Z3 ≤ Z2}.
(iv) σ1 (Z1, Z1, Z3, t) = σ2 (Z1, Z1, Z3, t) , ρ1,2 (Z1, Z1, Z3, t) = 1 on sur-

face IV: {Z1,l ≤ Z1 ≤ 1, Z2 = Z1, Z3,l ≤ Z3 ≤ Z2}.
(v) σ3 (Z1, Z2, Z3,l, t) = 0 on surface V: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1,

Z3 = Z3,l}.
(vi) σ2 (Z1, Z2, Z2, t) = σ3 (Z1, Z2, Z2, t) , ρ2,3 (Z1, Z2, Z2, t) = 1 on sur-

face VI: n {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3 = Z2}.
Define ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
,
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̃2
1(ξ1, ξ2, ξ3, t) =

σ2
1

(1− Z1,l)
2 ,

σ̃2
2(ξ1, ξ2, ξ3, t) =

σ2
1ξ

2
2 − 2σ1σ2ξ2ρ1,2 + σ2

2

(Z1 − Z2,l)
2 ,

σ̃2
3(ξ1, ξ2, ξ3, t) =

σ2
2ξ

2
3 − 2σ2σ3ξ3ρ2,3 + σ2

3

(Z2 − Z3,l)
2 .

Show that the assumption on σ1, σ2, and σ3 is equivalent to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̃1(0, ξ2, ξ3, t) = σ̃1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃2(ξ1, 0, ξ3, t) = σ̃2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃3(ξ1, ξ2, 0, t) = σ̃3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1.

22. (a) Show that under the transformation
⎧⎪⎪⎨
⎪⎪⎩
ξ1 =

Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

the partial differential equation

∂V

∂t
+

1

2

2∑
i=1

2∑
j=1

σiσjρi,j
∂2V

∂Zi∂Zj
+ r

2∑
i=1

Zi
∂V

∂Zi
− rV = 0

becomes

∂V

∂t
+

1

2

2∑
i=1

2∑
j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

2∑
i=1

bi
∂V

∂ξi
− rV = 0,

where ⎧⎪⎪⎨
⎪⎪⎩

b1 =
rZ1

1− Z1,l
,

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
+
σ1 (σ1ξ2 − σ2ρ1,2)

(Z1 − Z2,l)
2 ,

and σ̃1, σ̃2, ρ̃1,2, are determined by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ̃2
1 =

1
2σ

2
1

(1− Z1,l)
2 ,

1

2
σ̃2
2 =

1
2

(
σ2
1ξ

2
2 − 2σ1σ2ξ2ρ1,2 + σ2

2

)
(Z1 − Z2,l)

2 ,

σ̃1σ̃2ρ̃1,2 =
σ1 (σ2ρ1,2 − σ1ξ2)

(1− Z1,l) (Z1 − Z2,l)
.
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(b) Show further that the expression of b2 can be rewritten as

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
− σ̃1σ̃2ρ̃1,2 (1− Z1,l)

Z1 − Z2,l
.

(c) σ̃i and bi given above are functions of ξ1, ξ2, t and let σ̃i(ξ1, ξ2, t) and
bi(ξ1, ξ2, t) denote these functions, i = 1 and 2. Show that if⎧⎨

⎩
σ̃1(0, ξ2, t) = σ̃1(1, ξ2, t) = 0, 0 ≤ ξ2 ≤ 1,

σ̃2(ξ1, 0, t) = σ̃2(ξ1, 1, t) = 0, 0 ≤ ξ1 ≤ 1,

then ⎧⎨
⎩
b1(0, ξ2, t) ≥ 0, b1(1, ξ2, t) = 0, 0 ≤ ξ2 ≤ 1,

b2(ξ1, 0, t) ≥ 0, b2(ξ1, 1, t) = 0, 0 ≤ ξ1 ≤ 1.

(Hint: r(ξ1, ξ2, t)|ξ1=1 = 0. This can be explained as follows. ξ1 = 1
means Z1 = 1, thus the zero-coupon bond curve must be flat near
T = 0 and its derivative with respect to T at T = 0, r(ξ1, ξ2, t)|ξ1=1

equals 0. When σ̃i, bi, i = 1, 2, satisfy these conditions here, it can be
proved that the final value problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2

2∑
i=1

2∑
j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

2∑
i=1

bi
∂V

∂ξi
− rV = 0

on [0, 1]× [0, 1]× [0, T ],

V (ξ1, ξ2, T ) = VT (ξ1, ξ2) on [0, 1]× [0, 1]

has a unique solution.)
23. (a) *Show that under the transformation⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
,

the partial differential equation

∂V

∂t
+

1

2

3∑
i=1

3∑
j=1

σiσjρi,j
∂2V

∂Zi∂Zj
+ r

3∑
i=1

Zi
∂V

∂Zi
− rV = 0

becomes

∂V

∂t
+

1

2

3∑
i=1

3∑
j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

3∑
i=1

bi
∂V

∂ξi
− rV = 0,

and find the expressions of σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3, b1, b2, and b3.
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(b) Show
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ̃1(0, ξ2, ξ3, t) = σ̃1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃2(ξ1, 0, ξ3, t) = σ̃2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃3(ξ1, ξ2, 0, t) = σ̃3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1,

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1(0, ξ2, ξ3, t) ≥ 0, b1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

b2(ξ1, 0, ξ3, t) ≥ 0, b2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

b3(ξ1, ξ2, 0, t) ≥ 0, b3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1.

(When σ̃i, bi, i = 1, 2, 3, satisfy these conditions here, it can be proved
that the final value problem
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2

3∑
i=1

3∑
j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

3∑
i=1

bi
∂V

∂ξi
− rV = 0

on [0, 1]× [0, 1]× [0, 1]× [0, T ],

V (ξ1, ξ2, ξ3, T ) = VT (ξ1, ξ2, ξ3) on [0, 1]× [0, 1]× [0, 1]

has a unique solution.)
24. Assume that Z1, Z2, Z3 are random variables and satisfy the system of

stochastic differential equations:

dZi = μi (Z1, Z2, Z3, t) dt+ σi (Z1, Z2, Z3, t) dXi, i = 1, 2, 3,

where dXi are the Wiener processes and E [dXidXj ] = ρijdt with −1 ≤
ρij ≤ 1, and that ξ1, ξ2 and ξ3 are governed by

dξi = μ̃i(ξ1, ξ2, ξ3, t)dt+ σ̃i(ξ1, ξ2, ξ3, t)dX̃i, i = 1, 2, 3,

where dX̃i are the Wiener processes and E
[
dX̃idX̃j

]
= ρ̃ijdt with −1 ≤

ρ̃ij ≤ 1. Furthermore, we suppose that ξ1, ξ2 and ξ3 are defined by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
,

where Z1,l, Z2,l, and Z3,l are constants. Find the expressions of σ̃1, σ̃2,
σ̃3, ρ̃12, ρ̃13, ρ̃23 as functions of σ1, σ2, σ3, ρ1,2, ρ1,3, ρ2,3, Z1, Z2, and Z3

by using Itô’s lemma.
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25. Suppose that ξ1, ξ2 and ξ3 satisfy the system of stochastic differential
equations:

dξi = μ̃i(ξ1, ξ2, ξ3, t)dt+ σ̃i(ξ1, ξ2, ξ3, t)dX̃i, i = 1, 2, 3,

where dX̃i are the Wiener processes and E
[
dX̃idX̃j

]
= ρ̃ijdt with −1 ≤

ρ̃ij ≤ 1. Define

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1 (ξ1)− Z2,l]

= Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l] ,

Z3 (ξ1, ξ2, ξ3) = Z3,l + ξ3 {Z2 (ξ1, ξ2)− Z3,l}

= Z3,l + ξ3 {Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l]− Z3,l} .
Assume that Z1(ξ1), Z2(ξ1, ξ2), and Z3(ξ1, ξ2, ξ3) represent prices of three
securities. Let V (ξ1, ξ2, ξ3, t) be the value of a derivative security. Setting
a portfolio Π = V −Δ1Z1(ξ1)−Δ2Z2(ξ1, ξ2)−Δ3Z3(ξ1, ξ2, ξ3) and using
Itô’s lemma, show that V (ξ1, ξ2, ξ3, t) satisfies the following PDE:

∂V

∂t
+

1

2

3∑
i=1

3∑
j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

rZ1

1− Z1,l

∂V

∂ξ1

+

[
r (Z2 − Z1ξ2)

Z1 − Z2,l
− σ̃1σ̃2ρ̃1,2 (1− Z1,l)

Z1 − Z2,l

]
∂V

∂ξ2

+

[
r (Z3 − Z2ξ3)

Z2 − Z3,l
− σ̃1σ̃3ρ̃1,3ξ2 (1− Z1,l) + σ̃2σ̃3ρ̃2,3 (Z1 − Z2,l)

Z2 − Z3,l

]
∂V

∂ξ3
−rV = 0.

26. Consider a two-factor convertible bond paying coupons with a rate k. For
such a convertible bond, derive directly the partial differential equation
that contains only the unknown market price of risk for the short rate.
“Directly” means “without using the general PDE for derivatives.” (Hint:
Take a portfolio in the form Π = Δ1V1 +Δ2V2 + S, where V1 and V2 are
two different convertible bonds.)

27. *Formulate the two-factor convertible coupon-paying bond problem as a
linear complementarity problem.

28. Consider two-factor convertible coupon-paying bond problems.
(a) Show that if D0 ≤ 0, then there is no free boundary; if D0 > 0, then

there exists at least one free boundary.
(b) *Formulate a two-factor convertible coupon-paying bond problem as

a free-boundary problem if D0 > 0. (Suppose it is known that on the
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free boundary, the price of the convertible bond and its derivative are
continuous, and assume that there exists only one free boundary.)

29. Consider the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ (r −D0)S
∂Bc
∂S

− rBc + kZ = 0,

0 ≤ S, 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S,

where σ, r,D0, k, Z, and n are constants. Show that if D0 ≤ 0, then

Bc(S, t) ≥ nS for 0 ≤ t ≤ T.

(Hint: Define Bc(S, t) = Bc(S, t)− b0(t), where b0(t) is the solution of the
problem: ⎧⎨

⎩
db0
dt

− rb0 + kZ = 0, 0 ≤ t ≤ T,

b0(T ) = 0.

Show Bc(S, t) ≥ nS and b0(t) ≥ 0, and then show Bc(S, t) ≥ nS.)
(Remark: If the solution of this problem fulfills the constraint condition
Bc(S, t) ≥ nS for 0 ≤ t ≤ T , then the solution of the problem above
represents the price of a one-factor convertible bond. In this case, the
solution of a one-factor convertible bond does not involve any free bound-
ary. Therefore, no free boundary will be encountered when one prices a
one-factor convertible bond with D0 ≤ 0.)

30. Consider the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ (r −D0)S
∂Bc
∂S

− rBc + kZ = 0,

0 ≤ S, 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS) = nmax(S − Z/n, 0) + Z, 0 ≤ S,

where σ, r,D0, k, Z, and n are constants. Show that its solution is

nc(S, t;Z/n) + Ze−r(T−t)
[
1 + k

(
er(T−t) − 1

)
/r
]
,

where c(S, t;Z/n) is the price of a European call option with an exercise
price E = Z/n. This means that the problem can be understood as a
problem to determine the value of an investment consisting of n units of
European call options with E = Z/n and a bond with face value Z and
coupon rate k [see the result of Problem 1 part (b)]. According to the
result of Problem 29, if D0 ≤ 0, then it is the price of a convertible bond.
Therefore when D0 ≤ 0, the value of a one-factor convertible bond is equal
to the price of n units of European call options with E = Z/n plus the
price of a bond with face value Z and coupon rate k.
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