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American Style Derivatives

In this Chapter, we will discuss that in order to find the value of an American
style derivative, what kind of mathematical problems needs to be solved.
When we have such discussions, we mainly take American options as exam-
ples. However the methods can be used for other American style derivatives.
In the first section, we will derive the additional constraints on American
style derivatives and discuss how the constraints affect the way the price is
determined. In Sect. 3.2, we formulate the American call and put problems as
linear complementarity (LC) problems and point out how to get the formula-
tion for an American style derivative from the formulation for the correspond-
ing European style derivative. In Sect. 3.3, we will discuss how to formulate
an American option problem as a free-boundary problem (FBP) from a linear
complementarity problem. For other American style derivatives, the method is
similar. Finally we discuss some properties of options, including the relations
between European and American options, by the arbitrage theory in the last
section.

3.1 Constraints on American Style Derivatives

3.1.1 Constraints on American Options

Let C(S, t) and P (S, t) denote the prices of American call and put options,
respectively. As we know from Sect. 1.2, an American option has the additional
feature that it may be exercised at any time during the life of the option. What
does this additional feature mean in mathematics? It means that the value of
an American call option must satisfy the condition

C(S, t) ≥ max(S − E, 0), (3.1)

and that the value of an American put option must fulfill the inequality

P (S, t) ≥ max(E − S, 0). (3.2)
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106 3 American Style Derivatives

Usually, max(S − E, 0) and max(E − S, 0) are called the intrinsic values of
call and put options, respectively. Thus, satisfying the two inequalities above
means that the value of an option must be at least equal to its intrinsic
value. Conditions (3.1) and (3.2) are usually referred to as the constraints
on American vanilla options. These conclusions can be proved by arbitrage
arguments as follows.

First, let us consider an American call option. For S ≤ E, the condi-
tion (3.1) means C(S, t) ≥ 0. This is always true because a solution of the
Black–Scholes equation with a nonnegative payoff function as a final condi-
tion is always nonnegative. From the financial point of view, it is also clear
that a holder of an option has only rights, no obligation, so he/she needs to
pay something in order to get it, i.e., the option price should not be negative.
Thus, the condition (3.1) always holds for any S ∈ [0, E]. Suppose that for a
price S > E, the condition (3.1) is not fulfilled, i.e., C(S, t) < S−E. Then, an
obvious arbitrage opportunity arises: by short selling the asset on the market
for S, purchasing the option for C, and exercising the call option, a risk-free
profit of S−C−E is made. Of course, such an opportunity would not last long
before the value of the option was pushed up by the demand of arbitrageurs.
We conclude that on a value of an American call, we must impose the con-
straint (3.1). For an American put option the situation is similar. For any
S ≥ E, the condition (3.2) holds naturally. Suppose the option price satisfies
P (S, t) < E − S for a price S < E. Then, by purchasing the option for P ,
purchasing the asset from the market for S, and exercising the put option, an
immediate risk-free profit of E − P − S is made, and the demand will push
the option price up so that condition (3.2) holds.

Bermudan options are similar to American options but can be exercised
only at several predetermined dates, instead of the entire period [0, T ]. This
means that for a Bermudan option, condition (3.1) or condition (3.2) should
be required at several predetermined dates but not on the entire period [0, T ],
which is the only difference between American and Bermudan options.

How does a constraint affect the way of determining the price of an option?
Let us take an American put option as an example. As we easily see, at S = 0
the Black–Scholes equation degenerates to an ordinary differential equation

∂V (0, t)

∂t
− rV (0, t) = 0

and its solution is
V (0, t) = V (0, T )e−r(T−t).

For a put, V (0, T ) = E. Therefore, the price of a European put option at
S = 0 is

p(0, t) = Ee−r(T−t) < E

for any t < T if r > 0. Consequently, the price of a European put option will
not satisfy the constraint (3.2). Thus, in order to price an American put, we
must modify the method for determining the price of an option if r > 0.
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Roughly speaking, the way of determining the price of an American style
derivative is as follows. Let V (S, t) be the price of an American style derivative
and Gv(S, t) be the constraint. Suppose that for a time t, V (S, t) is known for
any S. Based on V (S, t) and using the Black–Scholes equation, we can obtain
the price of a derivative security at time t−Δt for a small positive Δt. If the
value satisfies the constraint condition V (S, t−Δt) ≥ Gv(S, t−Δt), it gives
the price of the American style derivative; if not, the constraint is the value of
the American style derivative, i.e., the Black–Scholes equation cannot be used
for determining the price of the American style derivative in this case.

Let us explain why the price of the American style derivative is determined
in this way. If V (S, t) > Gv(S, t) in a neighborhood of a point S = S∗ at time
t, then the solution V (S, t−Δt) obtained by using the Black–Scholes equation
must still satisfy the condition V (S, t −Δt) > Gv(S, t −Δt) at that point if
Δt is small enough. Therefore the event “the Black–Scholes equation cannot
be used” only occurs at a point S = S∗ where V (S, t) = Gv(S, t). Thus we
need to discuss when the Black–Scholes equation can be used and when the
Black–Scholes equation cannot be used only if V (S, t) = Gv(S, t). On this
question, we have the following theorem. In the future we will also consider
other problems besides option problems, thus in the theorem, we consider
a general partial differential equation (PDE) similar to the Black–Scholes
equation. The theorem is described as follows.

Theorem 3.1 Let LS,t be an operator in a derivative security problem in
the form:

LS,t = a(S, t)
∂2

∂S2
+ b(S, t)

∂

∂S
+ c(S, t)

and Gv(S, t) be the constraint function for an American style derivative.

Furthermore, we assume that
∂Gv

∂t
+ LS,tGv exists. Suppose V (S, t∗) =

Gv(S, t
∗) on an open interval (A,B) on the S-axis. Let t = t∗ − Δt, where

Δt is a sufficiently small positive number. For this case we have the following
conclusions: If for any S ∈ (A,B),

∂Gv

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) ≥ 0,

then the value V (S, t) determined by the equation

∂V

∂t
(S, t) + LS,tV (S, t) = 0

satisfies the condition V (S, t)−Gv(S, t) ≥ 0 on (A,B), which means the PDE
can be used for determining the price of the American style derivative; and if
for any S ∈ (A,B),

∂Gv

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) < 0,
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then the equation
∂V

∂t
(S, t) + LS,tV (S, t) = 0

cannot give a solution satisfying the condition V (S, t)−Gv(S, t) ≥ 0 for any
S ∈ (A,B), which means the PDE cannot be used for determining the price
of the American style derivative.

Proof. Because V (S, t∗) = Gv(S, t
∗), the fact that V (S, t) − Gv(S, t) > 0

holds for any t = t∗ − Δt, Δt being a sufficiently small positive number, is
equivalent to that at time t∗, V (S, t)−Gv(S, t) is a decreasing function with
respect to t, that is,

∂V

∂t
(S, t∗)− ∂Gv

∂t
(S, t∗) < 0.

If
∂Gv

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) > 0

and
∂V

∂t
(S, t∗) + LS,t∗V (S, t∗) =

∂V

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) = 0,

then
∂Gv

∂t
(S, t∗) > −LS,t∗Gv(S, t

∗) =
∂V

∂t
(S, t∗)

or
∂V

∂t
(S, t∗)− ∂Gv

∂t
(S, t∗) < 0.

Therefore in this case we can use the equation

∂V

∂t
(S, t) + LS,tV (S, t) = 0

to get a solution satisfying the condition V (S, t) − Gv(S, t) > 0, which
means the PDE can be used for determining the price of the American style
derivative.

If on a point (S, t∗) with S ∈ (A,B)

∂Gv

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) = 0,

then Gv(S, t) is the solution V (S, t) in a sufficiently small neighborhood of
the point (S, t∗). Putting this result and the result above together, we know
that if

∂Gv

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) ≥ 0

then the PDE can be used for determining the price of the American style
derivative.
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If
∂Gv

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) < 0

and
∂V

∂t
(S, t∗) + LS,t∗V (S, t∗) =

∂V

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) = 0,

then
∂Gv

∂t
(S, t∗) < −LS,t∗Gv(S, t

∗) =
∂V

∂t
(S, t∗)

or
∂V

∂t
(S, t∗)− ∂Gv

∂t
(S, t∗) > 0,

which will cause V (S, t) − Gv(S, t) < 0 for any t = t∗ − Δt. Therefore, we
cannot get the solution by using the equation

∂V

∂t
(S, t) + LS,tV (S, t) = 0,

which means the PDE cannot be used for determining the price of the Amer-
ican style derivative. ��

About this theorem, we would like to make the following remark.

• Let us adopt τ = T − t instead of t and we want to have the solution at
τ = τ∗+Δτ from the solution at τ = τ∗, where Δτ > 0. Then the theorem
is still true if the condition

∂Gv

∂t
(S, t) + LS,tGv(S, t) ≥ 0

is changed into
∂Gv

∂τ
(S, τ)− LS,τGv(S, τ) ≤ 0

and the condition
∂Gv

∂t
(S, t) + LS,tGv(S, t) < 0

is changed into
∂Gv

∂τ
(S, τ)− LS,τGv(S, τ) > 0,

where Gv(S, τ) = Gv(S, t) and LS,τGv(S, τ) = LS,tGv(S, t).

From Theorem 3.1, we know that when V (S, t) = Gv(S, t) and[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]
Gv < 0,

we cannot use the Black–Scholes equation to determine V (S, t − Δt). What
V (S, t − Δt) should be in this case? In the above, we have pointed that in
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this case, V (S, t−Δt) = Gv(S, t−Δt). Here let us explain why it should be.
It is clear that a buyer of a derivative security wants the price to be as low
as possible and that the price of an American style derivative cannot be less
than the constraint as we discussed above. Thus for V (S, t−Δt) the constraint
Gv(S, t−Δt) is the lowest price the buyer can expect. A seller wants the price
to be as high as possible. Can the seller accept that the constraint is the price
in this case? The answer is “yes”, so the constraint is the price both the buyer
and the seller accept. Let us explain why the seller accepts this price. Suppose
that the seller sells the derivative security for V (S, t −Δt) = Gv(S, t −Δt).
After the derivative security is sold, using the money obtained, the seller buys
∂V

∂S
shares and deposits the remains V − ∂V

∂S
S into a money market account.1

Because V (S, t−Δt) = Gv(S, t−Δt), we will have

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]
V

=

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]
Gv < 0,

i.e.,

∂V

∂S
dS +

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)
dt <

∂V

∂S
dS −

[
(r −D0)S

∂V

∂S
− rV

]
dt

= r

(
V − ∂V

∂S
S

)
dt+

∂V

∂S
(dS +D0Sdt).

This means that the return from the derivative security during a time step dt,

∂V

∂S
dS +

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)
dt,

will be less than the return from the money market account with a value of

V − ∂V

∂S
S and

∂V

∂S
shares,

r

(
V − ∂V

∂S
S

)
dt+

∂V

∂S
(dS +D0Sdt).

Thus the amount of money the seller obtains from the money market account
and shares is more than the change of the derivative value, which means the
seller will earn money. Hence the seller can accept this price.

1If V − ∂V

∂S
S < 0, the seller indeed borrows −

(
V − ∂V

∂S
S

)
, the money needed

to buy
∂V

∂S
shares, from somewhere.
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3.1.2 Some Properties of American Style Derivatives

Consider a European style derivative and an American style derivative with
identical payoffs and identical operators. Let V (S, t), v(S, t) denote the prices
of the American and European style derivatives, respectively, let Gv(S, t) be
the constraint for the American style derivative, and the operator for the two
derivatives is

∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

S0 E

P

Location of Free Boundary

where ∂P
∂S

is continuous

American Put

European Put

Intrinsic value

Fig. 3.1. The price of an American put option before expiry

with constant σ, r, and D0. Using the results we have obtained, we can prove
that the price of the European style derivative is never higher than the price
of the American style derivative, i.e., V (S, t) ≥ v(S, t) holds. Let us prove this
conclusion. Suppose that

V (S, T ) = v(S, T ) = Gv(S, T ).

Set Δt = T/N , N being a positive integer and define tn = nΔt, n = N,N −
1, · · · , 0. For the European style derivative, from the formula (2.84) we have
the relation between v(S, tn) and v(S, tn+1)

v(S, tn) = e−rΔt

∫ ∞

0

v(S′, tn+1)G(S′, tn+1;S, tn)dS
′

for n = N − 1, N − 2, · · · , 0. Let

Ṽ (S, tN) = Gv(S, T )
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and for n = N − 1, N − 2, · · · , 0, define

Ṽ (S, tn) = max

(
e−rΔt

∫ ∞

0

Ṽ (S′, tn+1)G(S′, tn+1;S, tn)dS
′, Gv(S, tn)

)
,

(3.3)

where G(S′, tn+1;S, tn) is given by the formula (2.85). Suppose Ṽ (S, tn+1) ≥
v(S, tn+1), then we know

v(S, tn) = e−rΔt

∫ ∞

0

v(S′, tn+1)G(S′, tn+1;S, tn)dS
′

≤ e−rΔt

∫ ∞

0

Ṽ (S′, tn+1)G(S′, tn+1;S, tn)dS
′

≤ Ṽ (S, tn).

At t = tN = T , the condition

Ṽ (S, tN) = Gv(S, T ) ≥ v(S, T ) = Gv(S, T )

holds. Therefore, using the induction method, we can prove Ṽ (S, tn) ≥ v(S, tn)
for n = N − 1, N − 2, · · · , 0 successively. Letting N → ∞ and noticing that

Ṽ

(
S, int

(
tN

T

)
· T
N

)
generates V (S, t) as N → ∞, where int

(
tN

T

)
is the

integer part of
tN

T
, we can have the conclusion:

V (S, t) ≥ v(S, t) for any S and t.

The put and call options are such type of derivatives. Thus C(S, t) ≥ c(S, t)
and P (S, t) ≥ p(S, t). This result has the following financial meaning. Because
an American option can be exercised at any time by expiry, a holder of an
American option has more rights than does a holder of a European option.
Thus, the holder of an American option needs to pay at least as much premium
as does the holder of a European option with the same parameters. Figure 3.1
shows this fact and other related facts for put options. From the figure, we
can see that the price of America put option is always greater than the price
of European put option and the intrinsic value, but the price of the European
put option is greater than the intrinsic value for some S and less than the
intrinsic value for other S. It can also be proved that the price of a Bermudan
option should be between these of European and American options and the
financial meaning can be expressed as follows. The Bermudan option can be
exercised at several predetermined dates including the expiration date, its
holder has less rights than does the holder of an American option and more
rights than does the holder of a European option. Thus, its premium should
be between the premiums of the American and European options with the
same parameters.
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The price of an American style derivative has another property: V (S, t∗) ≥
V (S, t∗∗) for t∗ ≤ t∗∗ if Gv(S, t) = Gv(S) or, more generally, the condition
Gv(S, t

∗) ≥ Gv(S, t
∗∗) for t∗ ≤ t∗∗ holds. Let us explain this fact by using

mathematical tools. Suppose Ṽ (S, tn) ≥ Ṽ (S, tn+1). According to the defini-
tion of Ṽ (S, tn), we have

Fig. 3.2. P (S, t−Δt) ≥ P (S, t) for any positive Δt

Ṽ (S, tn) = max

(
e−rΔt

∫ ∞

0

Ṽ (S′, tn+1)G(S′, tn+1;S, tn)dS
′, Gv(S, tn)

)

≤ max

(
e−rΔt

∫ ∞

0

Ṽ (S′, tn)G(S′, tn;S, tn−1)dS
′, Gv(S, tn−1)

)

= Ṽ (S, tn−1).

Here we have used the facts

G(S′, tn+1;S, tn) = G(S′, tn;S, tn−1)

and
Gv(S, tn) ≤ Gv(S, tn−1).

Because

Ṽ (S, tN−1) = max

(
e−rΔt

∫ ∞

0

Ṽ (S′, tN)G(S′, tN ;S, tN−1)dS
′, Gv(S, tN−1)

)

≥ Gv(S, tN−1) ≥ Gv(S, tN) = Ṽ (S, tN),

we can prove

Ṽ (S, tn) ≥ Ṽ (S, tn+1) for n = N − 2, N − 3, · · · , 0
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successively. This means

Ṽ (S, tn) ≥ Ṽ (S, tm) for n ≤ m ≤ N.

Letting N → ∞ and noticing that Ṽ (S, t) generates V (S, t) as N → ∞, we
arrive at the conclusion

V (S, t∗) ≥ V (S, t∗∗) if t∗ ≤ t∗∗.

For the American call/put option, Gv(S, t) = Gv(S), so we have C(S, t∗) ≥
C(S, t∗∗) and P (S, t∗) ≥ P (S, t∗∗) if t∗ ≤ t∗∗. Figure 3.2 shows this fact
graphically for an American put option. From the point of financial view,
when t∗ < t∗∗, a holder of an American call/put option at time t∗ has more
rights than does a holder at time t∗∗, so the premium of the option at time t∗

should be higher than the premium of the option at time t∗∗.
As we have pointed out, C(S, t) ≥ max(S −E, 0) and P (S, t) ≥ max(E −

S, 0), which means that C(S, t)−max(S −E, 0) and P (S, t)−max(E − S, 0)
must be nonnegative. Because these two functions are usually called the time
values of the American call and put options, respectively, this fact can be
expressed as that the time values must be nonnegative. Using the result
here V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗, we can have another conclusion: the
time values C(S, t) − max(S − E, 0) and P (S, t) − max(E − S, 0) are non-
increasing functions in time because

V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗

is equivalent to

V (S, t∗)−Gv(S) ≥ V (S, t∗∗)−Gv(S) for t∗ ≤ t∗∗.

However not all American style derivatives have such a property. Here we
give an example. Consider the following derivative security. It is a bond with
a face value Z and it can be converted into n shares at any time. We assume
that the price of the stock is a random variable, the interest rate is a constant
and the bond pays no coupon. This problem is referred to as the problem
of one-factor convertible bond paying no coupon. Let Bc(S, t) stand for its
value. It is clear that Bc(S, T ) = max(Z, nS), Bc(S, t) ≥ nS for t < T ,
and the basic PDE for this problem is the Black-Scholes equation. Thus this
derivative security problem is close to the American option problem and its
some properties can be studied by using a similar way given in this subsection.
For example, using the method given here, it can be shown that

Bc(S, t
∗)− Ze−r(T−t∗) ≥ Bc(S, t

∗∗)− Ze−r(T−t∗∗) if t∗ ≤ t∗∗

holds and
Bc(S, t

∗) ≥ Bc(S, t
∗∗) if t∗ ≤ t∗∗

does not hold at least for S = 0. These results are left for readers to prove as
Problem 6. Here we give an explanation for such results. The final condition
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Bc(S, T ) = max(Z, nS) can be rewritten as Bc(S, T ) = Z +max(nS − Z, 0),
so it consists of two problems, one is a bond problem with a solution of
Ze−r(T−t) and the other is a special American call problem with a payoff of
max(nS − Z, 0) and a constraint nS − Ze−r(T−t). For this special American
call option, the price is a non-increasing function like the American option.
However for the bond problem, the price is an increasing function. Thus the
total is not a non-increasing function. Consequently, even the holder of this
American derivative at t∗ has “more rights” than does the holder at t∗∗ if t∗ ≤
t∗∗, but the price at t∗ is not always greater than or equal to the price at t∗∗.

3.2 American Options Problems as Linear
Complementarity Problems

3.2.1 Formulation of the Linear Complementarity Problem
in (S, t)-Plane

From Sect. 3.1.1, we know that the price of an American option usually is
not a solution of the problem (2.73) anymore because usually in some regions
the solution satisfies the PDE and in other regions it is not determined by
the PDE. For American option problems, the price is given by a solution of a
so-called linear complementarity (LC) problem.

Now let us formulate the LC problem the price of an American option
should satisfy. Let us take an American put option as an example. Assume that
at time t we have obtained P (S, t) satisfying (3.2) and we need to determine
P (S, t−Δt) satisfying (3.2), where Δt is a sufficiently small positive number.
Define Gp(S, t) = max(E − S, 0). For simplicity, we assume that the entire
interval consists of three open intervals plus their boundaries. On the first
open interval, P (S, t) > Gp(S, t). For any point in this interval, we can use
the Black–Scholes equation to determine P (S, t−Δt) and P (S, t−Δt) must
be still greater than Gp(S, t − Δt) if Δt is small enough. Therefore, at any
point in this open interval⎧⎪⎨

⎪⎩
∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP = 0,

P (S, t) > Gp(S, t).

On the second open interval P (S, t) = Gp(S, t) and

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]
Gp(S, t) ≥ 0

and on the third open interval P (S, t) = Gp(S, t) and

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]
Gp(S, t) < 0.
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According to Theorem 3.1, for a point (S, t) in the second open interval the
Black–Scholes equation can be used to determine P (S, t−Δt) and the following
is true: ⎧⎪⎨

⎪⎩
∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP = 0,

P (S, t) = Gp(S, t).

On the third interval, the Black–Scholes equation cannot be used to determine
P (S, t−Δt). Instead, P (S, t−Δt) should equal Gp(S, t−Δt). In this situation

P (S, t)− P (S, t−Δt)

Δt
=

Gp(S, t)−Gp(S, t−Δt)

Δt
→ ∂Gp(S, t)

∂t

as Δt → 0 and we have
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]
P

=

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]
Gp(S, t) < 0,

P (S, t) = Gp(S, t).

Because P (S, T ) = Gp(S, T ), we can use this argument from T to 0. Putting
all the cases together, for S ∈ [0,∞) and t ≤ T we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP

]
(P −Gp) = 0,

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP ≤ 0,

P (S, t)−Gp(S, t) ≥ 0,

P (S, T ) = Gp(S, T ),

where Gp(S, t) = max(E − S, 0). Here, we use the fact that these relations in
the formulation are also true in some sense at the boundary points of these
open intervals because these relations are true on the two sides of a boundary
point. It is clear that the formulation above can also be written in the following
short form:⎧⎪⎨

⎪⎩
min

(
−∂P

∂t
− LSP, P (S, t)−Gp(S, t)

)
= 0, 0 ≤ S, t ≤ T,

P (S, T ) = Gp(S, T ), 0 ≤ S,

(3.4)

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r
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and
Gp(S, t) = max(E − S, 0).

This problem is called the linear complementarity problem for an American
put option. In order to determine the price of an American put option, we
need to solve this problem.

Similarly, for an American call option, the corresponding linear comple-
mentarity problem is⎧⎪⎨

⎪⎩
min

(
−∂C

∂t
− LSC, C(S, t)−Gc(S, t)

)
= 0, 0 ≤ S, t ≤ T,

C(S, T ) = Gc(S, T ), 0 ≤ S,

(3.5)

where Gc(S, t) = max(S − E, 0). From the derivation of the problem (3.4),
we can see that the formulations are still correct when σ, r,D0 depend on S
and t.

3.2.2 Formulation of the Linear Complementarity Problem
in (x, τ̄ )-Plane

As we know from Sect. 2.6.1, if we set⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x = lnS +

(
r −D0 − 1

2
σ2

)
(T − t),

τ̄ =
1

2
σ2(T − t),

V (S, t) = e−r(T−t)u(x, τ̄),

then
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV

becomes

−1

2
σ2e−r(T−t)

(
∂u

∂τ̄
− ∂2u

∂x2

)
.

Thus,
∂P

∂t
+

1

2
σ2S2 ∂P

∂S2
+ (r −D0)S

∂P

∂S
− rP < 0

is equivalent to

∂u

∂τ̄
− ∂2u

∂x2
> 0

and the Black–Scholes equation holds if and only if

∂u

∂τ̄
− ∂2u

∂x2
= 0.



118 3 American Style Derivatives

Let us define

gp(x, τ̄) = max
(
e2rτ̄/σ

2 − ex+(2D0/σ
2+1)τ̄ , 0

)
,

then

P −Gp = P (S, t)−max(1− S, 0)

= e−r(T−t)u(x, τ̄)−max
(
1− ex−(r−D0−σ2/2)(T−t), 0

)

= e−r(T−t)
[
u(x, τ̄)−max

(
er(T−t) − ex+(D0+σ2/2)(T−t), 0

)]

= e−r(T−t)[u(x, τ̄)− gp(x, τ̄)],

where we suppose E = 1 for simplicity. Thus, P −Gp > 0 is equivalent to

u(x, τ̄)− gp(x, τ̄) > 0

and P −Gp = 0 if and only if

u(x, τ̄)− gp(x, τ̄) = 0.

Therefore, the American put option is the solution of the following problem:⎧⎪⎨
⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− gp(x, τ̄)

)
= 0, −∞ < x < ∞, 0 ≤ τ̄ ,

u(x, 0) = gp(x, 0), −∞ < x < ∞.

(3.6)

Similarly, for American call options we have⎧⎪⎨
⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− gc(x, τ̄)

)
= 0, −∞ < x < ∞, 0 ≤ τ̄ ,

u(x, 0) = gc(x, 0), −∞ < x < ∞,

(3.7)

where
gc(x, τ̄) = max

(
ex+(2D0/σ

2+1)τ̄ − e2rτ̄/σ
2

, 0
)
.

The derivation of the problem (3.7) is almost identical to the American put.
The only difference is that instead of using P−Gp = e−r(T−t) [u(x, τ̄)− gp(x, τ̄)],
we need to use the relation

C −Gc = C(S, t)−max(S − 1, 0)

= e−r(T−t)u(x, τ̄)−max
(
ex−(r−D0−σ2/2)(T−t) − 1, 0

)

= e−r(T−t)
[
u(x, τ̄)−max

(
ex+(D0+σ2/2)(T−t) − er(T−t), 0

)]

= e−r(T−t) [u(x, τ̄)− gc(x, τ̄)] ,

where we also assume E = 1.
It is clear that if r,D0, and σ depend on t, then similar results hold.

However, if σ depends on S, then we may not be able to convert the prob-
lems(3.4) and (3.5) into (3.6) and (3.7) by a simple transformation.



3.2 American Options Problems as Linear Complementarity Problems 119

3.2.3 Formulation of the Linear Complementarity Problem
on a Finite Domain

Generally speaking, r, D0, and σ are not constants. For simplicity, we assume
that σ depends on S in this subsection even though the derivation is almost
the same when r, D0, and σ all depend on S and t.

From Sect. (2.2.5), we know that through the transformation⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + E
,

τ = T − t,

V (S, t) = (S + E)V (ξ, τ) =
E

1− ξ
V (ξ, τ),

the operator
∂

∂t
+

1

2
σ2(S)S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

is converted into

−E

1− ξ

{
∂

∂τ
− 1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
− (r −D0)ξ(1− ξ)

∂

∂ξ
+ [r(1− ξ) +D0ξ]

}
,

where σ̄(ξ) = σ(Eξ/(1− ξ)), and the function max(±(S − E), 0) becomes

E

1− ξ
max(±(2ξ − 1), 0).

Therefore, problem (3.4) can be rewritten as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

(
∂V

∂τ
− LξV , V (ξ, τ)−max(1− 2ξ, 0)

)
= 0, 0 ≤ ξ ≤ 1,

0 ≤ τ,

V (ξ, 0) = max(1− 2ξ, 0), 0 ≤ ξ ≤ 1,

(3.8)

where

Lξ =
1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
+ (r −D0)ξ(1− ξ)

∂

∂ξ
− [r(1− ξ) +D0ξ].

This is the American put option problem reformulated as a linear complemen-
tarity problem on a finite domain. Similarly, from the problem (3.5) we know
that the American call option problem can be reformulated as the following
linear complementarity problem:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
∂V

∂τ
− LξV , V (ξ, τ)−max(2ξ − 1, 0)

)
= 0, 0 ≤ ξ ≤ 1,

0 ≤ τ,

V (ξ, 0) = max(2ξ − 1, 0), 0 ≤ ξ ≤ 1.

(3.9)
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In this section, an American option is reduced to a linear complementarity
problem. Such a problem usually needs to be solved numerically. Here, we need
to point out that the version given in Sect. 3.2.2 can be applied only if σ does
not depend on S and that the other two versions can be applied for any case.
However, the version given in Sect. 3.2.2 has the simplest equation. Also, if an
implicit scheme is used, then for the versions given in Sects. 3.2.1 and 3.2.2,
artificial boundary conditions are needed at the boundaries because numerical
methods have to be performed on a finite domain. However, the version given
in this subsection does not have such a problem.

3.2.4 More General Form of the Linear Complementarity
Problems

From the three previous subsections, we see that a linear complementarity
problem could be in the form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
−∂V (S, t)

∂t
− LS,tV (S, t), V (S, t)−Gv(S, t)

)
= 0,

Sl ≤ S ≤ Su, t ≤ T,

V (S, T ) = Gv(S, T ), Sl ≤ S ≤ Su,

where2

LS,t = a(S, t)
∂2

∂S2
+ b(S, t)

∂

∂S
+ c(S, t).

However, a linear complementarity problem could have a more general form
such as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
−∂V (S, t)

∂t
− LS,tV (S, t)− d(S, t), V (S, t)−Gv(S, t)

)
= 0,

Sl ≤ S ≤ Su, t ≤ T,

V (S, T ) = G1(S) ≥ Gv(S, T ), Sl ≤ S ≤ Su.
(3.10)

In this problem there are two new features. There is a new function d(S, t)
called the nonhomogeneous term of the problem and the payoff G1(S) is not
equal to Gv(S, T ). The linear complementarity problem for one-factor convert-
ible bonds has such a form. For two-factor convertible bonds, the form of the
linear complementarity problem is similar, but the operator LS,t is replaced
by a two-dimensional one (see Chap. 5).

From what we have done in this section, we know the following. Consider
a European style derivative and an American style derivative with identi-
cal payoffs G1(S), identical operators, and identical nonhomogeneous terms.

2If Sl = −∞, then the first “≤” needs to be changed into “<,” and if Su = ∞,
then the second “≤” needs to be changed into “<.” In what follows, the same
notation is used.
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Suppose that the American style derivative has a constraint Gv(S, t) satisfying
Gv(S, T ) ≤ G1(S). If the price of the European style derivative is the solution
of the PDE problem

⎧⎨
⎩

∂v(S, t)

∂t
+ LS,tv(S, t) + d(S, t) = 0, Sl ≤ S ≤ Su, t ≤ T,

v(S, T ) = G1(S) Sl ≤ S ≤ Su,

then the price of the American style derivative with a constraint Gv(S, t)
satisfying Gv(S, T ) ≤ G1(S) is the solution of LC problem (3.10).

3.3 American Option Problems as Free-Boundary
Problems

3.3.1 Free Boundaries

From the past two sections, we discovered that there are some regions where
the Black–Scholes equation cannot be used. Therefore, there exist two different
types of regions: one where the Black–Scholes equation is valid, and the other
where the Black–Scholes equation cannot be used and the solution is equal to
the constraint. Because we do not know a priori the location of the boundaries
between the two types of different regions, these boundaries are called free
boundaries. Because in some regions the solution is known, we only need to
determine the price in other regions and the locations of these free boundaries.
In order to do that, we reformulate the American option problems as so-called
free-boundary problems (FBPs).

Let us first discuss how to find the locations of the free boundaries at
time T . Using Theorem 3.1, we can easily determine the locations of free
boundaries at time T , namely, the starting points of free boundaries. We will
show that for an American put option with r > 0, there is a free boundary
starting from the point (min(E, rE/D0), T ) on the (S, t)-plane. If r = 0, then
there is no free boundary. This implies that the Black–Scholes equation is valid
everywhere and that the prices of the American and European put options are
the same if r = 0. For an American call option, the situation is similar. IfD0 >
0, then there is a free boundary starting from the point (max(E, rE/D0), T )
on the (S, t)-plane. If D0 = 0, then there is no free boundary, implying that
an American call option is the same as a European call option.

First, let us consider an American put option and let P (S, t) denote its
value as we did in Sect. 3.1.1. In this case

Gp(S, t) = max(E − S, 0) =

⎧⎨
⎩

E − S, for S < E,

0, for S ≥ E



122 3 American Style Derivatives

and the operator LS,t in this case does not depend on t and is equal to

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

For S ∈ (E,∞), we have Gp(S, t) = 0 and

∂Gp

∂t
(S, T ) + LSGp(S, T ) = 0,

which means that the PDE can be used on (E,∞). For S ∈ (0, E), we have
Gp(S, t) = E − S and

∂Gp

∂t
(S, T ) + LSGp(S, T )

=
1

2
σ2S2 ∂

2Gp

∂S2
+ (r −D0)S

∂Gp

∂S
− rGp

=
1

2
σ2S2 ∂2

∂S2
(E − S) + (r −D0)S

∂

∂S
(E − S)− r(E − S)

= D0S − rE.

The root of the equation D0S − rE = 0 is S∗ = rE/D0. If E > rE/D0, then
there are two situations: S ∈ (0, rE/D0) and S ∈ (rE/D0, E). On (0, rE/D0)

∂Gp

∂t
(S, T ) + LSGp(S, T ) = D0S − rE < 0

and on (rE/D0, E)

∂Gp

∂t
(S, T ) + LSGp(S, T ) = D0S − rE > 0.

Thus in this case, the entire S-axis is divided into two parts: (0, rE/D0) where
the Black–Scholes equation cannot be used and (rE/D0,∞) where the Black–
Scholes equation gives the price of the American put option. Consequently,
if E > rE/D0, there is only one free boundary at time T when r > 0 and
the location of the free boundary is S = rE/D0. If E < rE/D0, then on the
entire interval (0, E)

∂Gp

∂t
(S, T ) + LSGp(S, T ) = D0S − rE < 0.

Thus in this case, the entire S-axis is divided into two parts: (0, E) where
the Black–Scholes equation cannot be used and (E,∞) where the Black–
Scholes equation gives the price of the American put option. Consequently,
if E < rE/D0, then there is also only one free boundary at time T when
r > 0 and the location of the free boundary is S = E. Put them together,
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we have that there is only one free boundary at time T when r > 0 and the
location of the free boundary is S = min(E, rE/D0). Let Sf (t) denote this
free boundary. Because it starts from the point (min(E, rE/D0), T ), we have

Sf (T ) = min

(
E,

rE

D0

)
. (3.11)

If r = 0, then min(E, rE/D0) = 0, so in the entire interval (0,∞), the Black–
Scholes equation can be used, and there is no free boundary.

Now let us explain that in the case r > 0, no new free boundary can appear
at any time t < T , so Sf (t) is the only free boundary in this problem, and
that Sf (t) is not a constant, but an increasing function in t (see Fig. 3.3). First
let us explain this when t is discrete. Similarly to what we did in Sect. 3.1.2,
set Δt = T/N and tn = nΔt, n = 0, 1, · · · , N,N being a large integer, let
P̃ (S, tN) = Gp(S) and S̃f (tN) = Sf (T ), and for n = N − 1, N − 2, · · · , 0,
successively, define P̃ (S, tn) by

P̃ (S, tn) = max (p̃(S, tn), Gp(S)) ,

where

p̃(S, tn) = e−rΔt

∫ ∞

0

P̃ (S′, tn+1)G(S′, tn+1;S, tn)dS
′.

At S = 0, Gp(0) = E > p̃(0, tn) = e−rΔtE and at S = S∗ ≈ ∞, Gp(S
∗) = 0

and p̃(S∗, tn) > 0, the two continuous curves p̃(S, tn) and Gp(S) must have
at least one intersection point and let us denote the location of the intersec-
tion point with the largest S value by S̃(tn). Thus for any S ∈ (S̃(tn),∞),
P̃ (S, tn) = p̃(S, tn). If S ∈ (E,∞), for P̃ (S, tN−1) we have

P̃ (S, tN−1) = max (p̃(S, tN−1), Gp(S))

= max (p̃(S, tN−1),max(E − S, 0))

= p̃(S, tN−1)

= e−rΔt

∫ ∞

0

max(E − S′, 0)G(S′, tN ;S, tN−1)dS
′ > 0.

Thus for the case Sf (tN) = E, then P̃ (S, tN−1) > Gp(S) = max(E − S, 0) = 0
for S ∈ (E,∞); for the case Sf (tN) = rE/D0, for any point in (rE/D0, E),

∂Gp(S)

∂t
+ LSGp(S) = D0S − rE > 0,

so P̃ (S, tN−1) > Gp(S) also holds for S ∈ (rE/D0, E). Consequently, put

them together, we have that for any S ∈ (Sf (tN),∞), P̃ (S, tN−1) > Gp(S),

from which we know P̃ (Sf (tN), tN−1) > Gp(Sf (tN)) holds also. Thus we have

S̃f (tN−1) < S̃f (tN) and P̃ (S, tN−1) > Gp(S) on (S̃f (tN−1), S̃f (tN)).
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Now let us assume that for certain n we have P̃ (S, tn+1) > P̃ (S, tn+2)
for S ∈ (S̃f (tn+1),∞), and show P̃ (S, tn) > P̃ (S, tn+1) on (S̃f (tn),∞) and

S̃f (tn) < S̃f (tn+1). In order to show this result, we only need to show
p̃(S, tn) > p̃(S, tn+1) for S ∈ (0,∞). This is easy to see: for S ∈ (0,∞)

p̃(S, tn) = e−rΔt

∫ ∞

0

P̃ (S′, tn+1)G(S′, tn+1;S, tn)dS
′

> e−rΔt

∫ ∞

0

P̃ (S′, tn+2)G(S′, tn+2;S, tn+1)dS
′

= p̃(S, tn+1) (3.12)

because from Sect. 3.1.2 we have P̃ (S, tn+1) ≥ P̃ (S, tn+2) for any S ∈ (0,∞)
and it is given that P̃ (S, tn+1) > P̃ (S, tn+2) on (S̃f (tn+1),∞). Here we
also have used the fact that G(S′, tn+1;S, tn) = G(S′, tn+2;S, tn+1) > 0 for
S ∈ (0,∞) and S′ ∈ (0,∞). From the relation (3.12) we know P̃ (S, tn) >
P̃ (S, tn+1) on (S̃f (tn+1),∞) because on this interval P̃ (S, tn) = p̃(S, tn) and

P̃ (S, tn+1) = p̃(S, tn+1), which means that we can have S̃f (tn) < S̃f (tn+1).

From the definition of S̃f (tn), we further know P̃ (S, tn) > P̃ (S, tn+1) on

(S̃f (tn), S̃f (tn+1)). For n = N − 1, we already have P̃ (S, tN−1) > Gp(S) =

P̃ (S, tN) for S ∈ (Sf (tN),∞). Thus this procedure can be done for n =
N − 2, N − 3, · · · , 0, successively.

On (0, Sf (tN)), P̃ (S, tN) = Gp(S) and the following inequality

∂Gp

∂t
+

1

2
σ2S2 ∂

2Gp

∂S2
+ (r −D0)S

∂Gp

∂S
− rGp < 0

holds, which means that p̃(S, tN−1) < Gp(S) on that interval if Δt is
small enough. Therefore the inequality p̃(S, tN−1) < Gp(S) must hold on

(0, S̃f (tN−1)) at least for a very small Δt. Consequently, no more intersec-
tion points exist. This procedure can also be done for n = N−2, N−3, · · · , 0,
successively. Consequently no new free boundary will appear during the entire
procedure if Δt is small enough. Let N → ∞, we will have the conclusion we
need to explain.

Consequently, if r > 0, then there is a unique free boundary, and the
entire domain is divided into two regions by the free boundary (see Fig. 3.3):
one region is [0, Sf (t))× [0, T ], where⎧⎪⎨

⎪⎩
P = max(E − S, 0) = E − S,

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP < 0

and the other is (Sf (t), ∞)× [0, T ], where⎧⎪⎨
⎪⎩

P > max(E − S, 0),

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP = 0
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Fig. 3.3. Structure of solution to American put options (r > 0)

if t < T . Also if at a point (S, t), P (S, t) > max(E−S, 0), then P (S, t−Δt) >
P (S, t) for any positive Δt, and the location of the free boundary has the
following property (see Fig. 3.2):

Sf (t) > Sf (t−Δt), Δt > 0,

implying that Sf (t) is an increasing function of t (see Fig. 3.3).
Before going further, we would like to give some remarks.

• What is the meaning of the inequality

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP < 0?

As pointed out in Sect. 3.1.1, this means that holding the money market

account with a value of P − ∂P

∂S
S and

∂P

∂S
shares will be better than

holding the option. In this case exercising the option and holding a money

market account with a value of P − ∂P

∂S
S and

∂P

∂S
shares will have better

return than holding the option. Therefore the option should be exercised.
If P (S, t) > max(E − S, 0), one should hold the option, as one should not
give up a higher value (the option) for a lower value (the intrinsic value).
Therefore, the free boundary is the optimal exercise price that divides the
exercise region and the non-exercise region.

• Let Dge denote the open domain where
∂Gv

∂t
(S, t) + LS,tGv(S, t) ≥ 0

and Dl the open domain where
∂Gv

∂t
(S, t) + LS,tGv(S, t) < 0. For the

put option case, Gv(S, t) = max(E − S, 0) and the open domain Dge is
(min(E, rE/D0),∞) × [0, T ] and Dl is (0,min(E, rE/D0)) × [0, T ]. In a
neighborhood of a point in the open domain Dge, if V (S, t) > Gv(S, t), then



126 3 American Style Derivatives

the PDE can be used because we can let a positive Δt be small enough to
guarantee V (S, t −Δt) > Gv(S, t −Δt), and if V (S, T ) = Gv(S, T ), then

the PDE can also be used because
∂Gv

∂t
(S, t) + LS,tGv(S, t) ≥ 0. Thus

a point on a free boundary cannot appear in the open domain Dge. In
a neighborhood of a point in the open domain Dl, if V (S, t) > Gv(S, t),
then the PDE can be used, and if V (S, T ) = Gv(S, T ), then the PDE

cannot be used because
∂Gv

∂t
(S, t) + LS,tGv(S, t) < 0. Thus a point on a

free boundary may appear in the open domain Dl.
• From theorem 3.1, we can find that there are two types of points on free

boundaries. The first type of points is: in a neighborhood of the point,
V (S, t) = Gv(S, t) and some portion of the neighborhood belongs to Dge

and another portion of the neighborhood belongs to Dl. The second type of
points is: in some portion of a neighborhood of the point, V (S, t) > Gv(S, t)
and in another portion of the neighborhood, V (S, t) = Gv(S, t) and this
portion belongs to Dl. Thus a free boundary will appear only in the open
domain Dl and on the boundary between the open domains Dge and Dl. If
V (S, T ) = Gv(S, T ), then a free boundary will start at a point between the
open domains Dge and Dl. For example, the free boundary of an American
put option starts at such a point. If V (S, T ) > Gv(S, T ) on some portion
of the entire domain and V (S, T ) = Gv(S, T ) on another portion, then a
free boundary might also start at a boundary between an open interval
belonging to Dl and an open interval where V (S, T ) > Gv(S, T ). As we
will see in Sect. 5.7, the free boundary of a one-factor convertible bond
can start from a point of the first type of points or a point of the second
type of points. Later, a free boundary may move but never move into the
open domain Dge.

Now let us consider an American call option. From Sect. 2.2.5 we know, at
very large S, the solution of the Black–Scholes equation with final condition
V (S, t) = max(S − E, 0) has the following asymptotic expression

V (S, t) ≈ V (S, T )e−D0(T−t) = max(S − E, 0)e−D0(T−t),

so if D0 > 0, then V (S, t) < max(S−E, 0) for any t < T . Therefore, if D0 > 0,
the American call problem is a free-boundary problem. Now let us show that
the free-boundary problem has only one free boundary, which is also denoted
by Sf (t) in what follows, and determine the location of the free boundary at
t = T from the constraint condition C(S, t) ≥ Gc(S, t).

In the case of an American call option,

Gc(S, t) = max(S − E, 0) =

⎧⎨
⎩

S − E, S > E,

0, S ≤ E.
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Let S > max
(
E, rE

D0

)
. In this case

Gc(S, t) = S − E

and

∂Gc

∂t
(S, T ) + LSGc(S, T )

=
1

2
σ2S2 ∂

2Gc

∂S2
+ (r −D0)S

∂Gc

∂S
− rGc

=
1

2
σ2S2 ∂

2(S − E)

∂S2
+ (r −D0)S

∂(S − E)

∂S
− r(S − E)

= rS −D0S − rS + rE = −D0S + rE < 0

because S > rE
D0

. Therefore, the Black–Scholes equation cannot hold in this

case, and C(S, T−Δt) should be equal to S−E for S > max
(
E, rE

D0

)
. Just like

the case of the American put option, we can know that for S < max
(
E, rE

D0

)
,

the Black–Scholes equation can hold. Thus, a free boundary starts at S =

max
(
E, rE

D0

)
, i.e.,

Sf (T ) = max

(
E,

rE

D0

)
. (3.13)

Fig. 3.4. Structure of solution to American call options (D0 > 0)

Using the same argument we have used for an American put option, we
can show that the free boundary starting from the point (max(E, rE/D0), T )
is the only free boundary because no new free boundary can appear at time
t < T . Just like the put case, the entire domain is divided into two parts by the
free boundary. However, the situation is a little different from the American
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put. Here in the region [0, Sf (t)) × [0, T ], the Black–Scholes equation holds,
whereas in the region (Sf (t),∞) × [0, T ], the Black–Scholes equation cannot
be used. In other words, for S ∈ [0, Sf (t)) and t < T ,

⎧⎪⎨
⎪⎩

C(S, t) ≥ max(S − E, 0),

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC = 0,

where the equal sign in C(S, t) ≥ max(S−E, 0) holds only at S = 0; whereas
for S ∈ (Sf (t),∞),

⎧⎪⎨
⎪⎩

C(S, t) = max(S − E, 0) = S − E,

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC < 0

and the option should be exercised. It can also be shown that for an American
call option, the free boundary Sf (t) is a decreasing function of t, as graphed
in Fig. 3.4, and that the price of an American call option is the same as a
European call if D0 = 0.

3.3.2 Free-Boundary Problems

In this subsection, we will describe the formulation of American option prob-
lems as free-boundary problems. In order to give a complete formulation, we
need to give the conditions on the free boundary. For an initial-boundary
value problem of a parabolic equation on a finite interval, if the locations of
the boundaries are given and if the coefficient of the second derivative at the
boundaries is not equal to zero, one boundary condition at each boundary
is needed in order for the problem to have a unique solution. However, the
location of the free boundary is unknown, so two conditions are needed at
the free boundary in order for the problem to have a unique solution. One
boundary condition determines the option value on the free boundary and
the other boundary condition determines the location of the free boundary.
Now the question is what the two conditions should be. For some other linear
complementarity problems, it has been proved that on the free boundary the
value and the first derivative are continuous (see [31]). For this problem, from
the proof given by Badea and Wang (see [4] and [5]), the situation is still the
same. Therefore, the two conditions on the free boundary are: both the value
and the derivative with respect to S are continuous.

For an American put option, in the region [0, Sf (t)),

P (S, t) = E − S
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and
∂P

∂S
= −1.

Therefore, the boundary conditions on the free boundary Sf (t) are

P (Sf (t), t) = E − Sf (t) (3.14)

and
∂P

∂S
(Sf (t), t) = −1. (3.15)

It is clear that when the boundary condition (3.15) holds, the gradient
∂P

∂S
must be continuous at S = Sf , which is shown in Fig. 3.1.

Now we can formulate the American put option problem. On the domain
[0, Sf (t))× [0, T ],

P (S, t) = E − S,

while on the domain [Sf (t),∞) × [0, T ], P (S, t) is the solution of the free-
boundary problem3 for American put options

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP = 0,

Sf (t) ≤ S, 0 ≤ t ≤ T,

P (S, T ) = max(E − S, 0), Sf (T ) ≤ S,

P (Sf (t), t) = E − Sf (t), t ≤ T,

∂P (Sf (t), t)

∂S
= −1, t ≤ T,

Sf (T ) = min

(
E,

rE

D0

)
.

(3.16)

Similarly, for call options we need two boundary conditions on the free
boundary. One is

C(Sf (t), t) = Sf (t)− E (3.17)

and the other still can be obtained by requiring the continuity of the slope of
the solution at S = Sf (t). In this case, the condition is

∂C(Sf (t), t)

∂S
= 1. (3.18)

3In this book we call this problem and the like a free-boundary problem. An LC
problem usually involves free boundaries. Thus it is not strange that some people
call an LC problem a free-boundary problem.
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Fig. 3.5. Numerically calculated solution of an American call problem
with E = 100, r = 0.1, D0 = 0.05, σ = 0.2, and T = 1 year

Therefore for the American call option, the formulation is as follows. On
the domain [0, Sf (t)] × [0, T ], C(S, t) is the solution of the free-boundary
problem for American call options⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC = 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

C(S, T ) = max(S − E, 0), 0 ≤ S ≤ Sf (T ),

C(Sf (t), t) = Sf (t)− E, 0 ≤ t ≤ T,

∂C

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T,

Sf (T ) = max

(
E,

rE

D0

)
;

(3.19)

whereas on the domain (Sf (t),∞) × [0, T ], C(S, t) = S − E. In Fig. 3.5, the
value of an American call option is plotted, from which we can see that the
two parts of solution are connected smoothly. The parameters of the problem
are E = 100, r = 0.1, D0 = 0.05, σ = 0.2, and T = 1year.

Here we need to point out that Sf (T ) is determined by the partial differen-
tial operator and the final condition. Therefore, in a free-boundary problem,
the starting location of the free boundary is not arbitrary and should be con-
sistent with the partial differential operator and the final condition.

As has been pointed, there are two formulations for American option prob-
lems. It is clear that the solutions obtained from the two formulations should
be the same. In this book, we will not carefully study this problem. However
in Sect. 3.3.5 for the perpetual American call option, we will prove that the
solution obtained by solving the free-boundary problem is the solution of the
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LC problem. Here we just show the following. For the American put prob-
lem, if the solution of the problem (3.16) satisfies the conditions P (S, t) ≥ 0

and
∂P 2 (S, t)

∂S2
≥ 0 for Sf (t) < S, then the solution, including the part on

the domain [0, Sf (t))× [0, T ] and the part on the domain [Sf (t),∞)× [0, T ],
satisfies the LC relation:

min

(
−∂P

∂t
− LSP, P (S, t)−max(E − S, 0)

)
= 0, 0 < S, t ≤ T,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

The proof is as follows. On the interval (0, Sf (t)), P (S, t) = Gp(S) and this
interval belongs to the domain Dl, which means

−∂Gp(S)

∂t
− LSGp(S) > 0.

Consequently, the LC relation holds for this case. For the case Sf (t) < S ≤ E,

we have −∂P

∂t
− LSP = 0, and we need to show P (S, t) − (E − S) ≥ 0

in order to prove our conclusion. Define f(S, t) = P (S, t) − (E − S). We

know that f(Sf (t), t) = P (Sf (t), t) − (E − Sf (t)) = 0 and
∂f(Sf (t), t)

∂S
=

∂P (Sf (t), t)

∂S
+ 1 = 0. Thus for a fixed t, we have

f(S, t) = f(Sf (t), t) +
∂f(Sf (t), t)

∂S
[S − Sf (t)] +

1

2

∂2f(S∗, t)
∂S2

[S − Sf (t)]
2

=
1

2

∂2P (S∗, t)
∂S2

[S − Sf (t)]
2 ≥ 0,

where S∗ ∈ (Sf (t), S) and we have used the condition
∂P 2 (S, t)

∂S2
≥ 0 for

Sf (t) < S. For the case E < S, we have −∂P

∂t
− LSP = 0 and P (S, t) −

max(E − S, 0) = P (S, t) ≥ 0, and thus the LC relation holds on (Sf (t),∞).
Because the LC relation holds on (0, Sf (t)), (Sf (t),∞), the LC relation at the
points 0 and Sf (t) also holds, which can be shown by letting S go to these
points. Consequently the LC relation holds for all the cases and the proof is
completed.

As is proved in Problem 41 of Chap. 2, if D0 = 0, then the value of an
American call option is equal to the value of a European call option. Thus in
this case there is no free boundary, that is, there is no optimal exercise price.
A new question is: does the optimal exercise price exist when the dividends
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are paid discretely? The answer is that when there are discrete dividends, the
American call option can only be optimal to exercise at a time immediately
before the stock goes ex-dividend and that an optimal exercise price does
not always exist even at those moments. Readers are asked to prove these
conclusions as Problem 15.

3.3.3 Put–Call Symmetry Relations

As we know, the price of an American put option is the solution of the
following LC problem:

⎧⎪⎨
⎪⎩

min

(
−∂P

∂t
− LSP, P (S, t)−max(E − S, 0)

)
= 0, 0 ≤ S, t ≤ T,

P (S, T ) = max(E − S, 0), 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

Let ⎧⎪⎪⎨
⎪⎪⎩

ζ =
E2

S
,

C(ζ, t) =
EP (S, t)

S
.

(3.20)

Because
E

S
max(E − S, 0) = max(ζ − E, 0),

for C(ζ, t) the payoff and constraint are max(ζ − E, 0). Noticing

∂P

∂t
=

S

E

∂C

∂t
,

∂P

∂S
=

1

E

[
C + S

∂C

∂ζ

(
−E2

S2

)]
=

1

E

(
C − ζ

∂C

∂ζ

)
,

∂2P

∂S2
=

ζ3

E3

∂2C

∂ζ2
,

we have

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP

=
S

E

{
∂C

∂t
+

1

2
σ2ζ2

∂2C

∂ζ2
+ (D0 − r)ζ

∂C

∂ζ
−D0C

}
.

Therefore the function C(ζ, t) is the solution of the following American call
option problem:
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⎧⎪⎨
⎪⎩

min

(
−∂C

∂t
− LζC, C(ζ, t)−max(ζ − E, 0)

)
= 0, 0 ≤ ζ, t ≤ T,

C(ζ, T ) = max(ζ − E, 0), 0 ≤ ζ,

(3.21)

where

Lζ =
1

2
σ2ζ2

∂2

∂ζ2
+ (D0 − r)ζ

∂

∂ζ
−D0.

Consequently, an American put problem can be converted into an American
call problem. However in the two problems, the state variable and the
parameters are different. From the definitions of LS and Lζ , we know that
the volatilities of the put and call problems are the same, but the interest rate
and the dividend yield of the call problem are equal to the dividend yield and
the interest rate of the put problem, respectively. In order to explain these
facts, we express the dependency of the options on interest rate and divi-
dend yield explicitly. Let P (S, t; b, a) denote the price of the put option and
C(ζ, t; a, b) the price of the call option, where the first and second parameters
after the semicolon are the interest rate and the dividend yield, respectively.
From the definition of ζ and C(ζ, t; a, b), we know

P (S, t; b, a) = C (ζ, t; a, b)S/E,

where ζ =
E2

S
. This can also be rewritten as

P (S, t; b, a) = C
(
E2/S, t; a, b

)
S/E,

or
C (ζ, t; a, b) = P

(
E2/ζ, t; b, a

)
ζ/E,

where we used the relation E/S = ζ/E. In the last relation, we can use S,
instead of ζ, as the state variable. That is, we can write this relation as

C (S, t; a, b) = P
(
E2/S, t; b, a

)
S/E.

Finally, putting them together, we have

⎧⎨
⎩

C(S, t; a, b) = P
(
E2/S, t; b, a

)
S/E, or

P (S, t; b, a) = C
(
E2/S, t; a, b

)
S/E.

(3.22)

For the special case S = E, it becomes

P (E, t; b, a) = C(E, t; a, b).

Also, the location of free boundary in the latter problem, ζcf (t; a, b), must be
equal to E2 divided by the location of free boundary of the former problem,
E2/Spf (t; b, a), because ζ = E2/S, i.e.,
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ζcf (t; a, b) = E2/Spf (t; b, a)

or
Scf (t; a, b)× Spf (t; b, a) = E2, (3.23)

where in the last relation, instead of ζcf , we use Scf as the name of the function
representing the location of the free boundary. From the derivation above we
know that for European options, the following relations also hold:

⎧⎨
⎩

c(S, t; a, b) = p
(
E2/S, t; b, a

)
S/E, or

p(S, t; b, a) = c
(
E2/S, t; a, b

)
S/E.

(3.24)

The relations (3.22)–(3.24) are called the put–call symmetry relations.
Now let us discuss the financial meaning of the put–call symmetry relations.

Suppose that one British pound is worth S U.S. dollars and that E2 U.S. dol-
lars are worth ζ British pounds. It is clear that ζ = E2/S. Let P be the value
of a put option whose holder can always sell one pound for E dollars if the
holder wants. This means that the payoff and constraint of the put option is
max(E−S, 0) in dollars. Let C be the value of a call option whose holder can
buy E2 dollars by paying E pounds if the holder wants. This means that the
payoff and constraint of the call option are max(E2/S−E, 0) = max(ζ−E, 0)
in pounds. The holder of the put option has the right to sell one pound for E
U.S. dollars even if S ≤ E. The holder of 1/E units of the call option has the
right to buy E dollars by paying one British pound even if ζ ≥ E. The condi-
tion S ≤ E is equivalent to E2/S = ζ ≥ E. Thus, both the holder of one unit
of the put option and the holder of 1/E units of the call option have the right
to exchange one pound for E dollars even if S < E. The two holders have the
same rights, so the value of one unit of the put option and the value of 1/E
units of the call option in U.S. dollars, which is equal to S · C/E, should be
equal, i.e.,

P = S · C/E.

Here, we need to notice that P and C have different but related volatilities,
interest rates, and dividend yields. According to Itô’s lemma, if

dS = μSdt+ σSdX,

then
dζ = (−μ+ σ2)ζdt− σζdX.

Hence, the volatilities of S and ζ = E2/S are the same if the volatilities are
constants. Suppose that σ, r, and D0 are constant and that the interest rates
of the British pound and the U.S. dollar are a and b, respectively. Then r = a
and D0 = b for the call and r = b and D0 = a for the put, and the volatilities
are the same. In this case, the relation above can be written as

P (S, t; b, a) = C
(
E2/S, t; a, b

)
S/E.
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The first relation in the set of relations (3.22) (or (3.24)) actually is another
form of the second relation in the set of relations (3.22) (or (3.24)). Thus
from the financial reasoning here, we know that all the relations in the sets of
relations (3.22) and (3.24) hold. Because the state variable ζ for the call with
r = a and D0 = b and the state variable S for the put with r = b and D0 = a
have the relation ζ = E2/S, the argument above to obtain the relation (3.23)
can still be used here. Hence from the financial reasoning above, we can also
have the relation (3.23).

Actually such relations exist for more complicated cases. If σ depends upon
S, then the following relations hold:

⎧⎪⎪⎨
⎪⎪⎩

C(S, t; a, b, σ(S)) = P

(
E2

S
, t; b, a, σ(S)

)
S/E, or

P (S, t; b, a, σ(S)) = C

(
E2

S
, t; a, b, σ(S)

)
S/E

and
Scf (t; a, b, σ(S))× Spf (t; b, a, σ(E

2/S)) = E2.

Here, the third argument after the semicolon is the function for the volatility.
The proof is left for readers as an exercise (Problem 17).

The symmetry relations can be used when we write codes for pricing
American options or calculate prices of options. Suppose that we need codes
for pricing American call and put options and that we already have a code for
pricing American call options. If it is very easy for the code to be modified to a
code for pricing American put options, then we can have another code for put
options by modifying the code we already have. If the code for put options will
be quite a different from the code for call options, then we can use the code for
call options to find C(E2/S, t; a, b) first and then obtain P (S, t; b, a) by using
the relation P (S, t; b, a) = C(E2/S, t; a, b) ·S/E. If one already has a code that
can deal with both American call and put options, then the symmetry rela-
tions can be used for checking the accuracy of the numerical results. Because
the numerical results have errors, they will not exactly satisfy the symmetry
relation and can be used as indicators to show how accurate the numerical
results are if the values of a call and the corresponding put option have been
obtained. For details, see the paper [98] by Zhu, Ren, and Xu. For more about
symmetry relations and similar results, see [53, 54, 62] and [24].

3.3.4 Equations for Some Greeks

Here, for American options we would like to derive the equations and boundary

conditions that V =
∂Π

∂σ
, ρ =

∂Π

∂r
, and ρd =

∂Π

∂D0
should satisfy. Let us first

consider American call options and write the dependence of C and Sf on r,D0,
and σ explicitly, that is, instead of C(S, t) and Sf (t), we use C(S, t; r,D0, σ)
and Sf (t; r,D0, σ) to denote the price of American call options and the free
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boundary in what follows. Differentiating the partial differential equation in

the problem (3.19) with respect to r,D0, or σ yields the equations for
∂C

∂r
,

∂C

∂D0
or

∂C

∂σ
. For example, for

∂C

∂σ
we have

∂Cσ

∂t
+

1

2
σ2S2 ∂

2Cσ

∂S2
+ (r −D0)S

∂Cσ

∂S
− rCσ + σS2 ∂

2C

∂S2
= 0,

where Cσ denotes the partial derivative of the call option with respect to σ.
The final condition for the price of American call options is

C(S, T ; r,D0, σ) = max(S − E, 0).

Therefore
∂C

∂σ
= 0 at t = T . The boundary conditions on the free boundary are

C(Sf (t; r,D0, σ), t; r,D0, σ) = Sf (t; r,D0, σ)− E (3.25)

and
∂C(Sf (t; r,D0, σ), t; r,D0, σ)

∂S
= 1. (3.26)

From the relation (3.25) we have

∂C

∂S

∂Sf

∂σ
+

∂C

∂σ
=

∂Sf

∂σ

on the free boundary. Noticing (3.26), we have
∂C

∂σ
= 0 at the free bound-

ary. Consequently,
∂C

∂σ
is the solution of the following final-boundary value

problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Cσ

∂t
+

1

2
σ2S2 ∂

2Cσ

∂S2
+ (r −D0)S

∂Cσ

∂S
− rCσ + σS2 ∂

2C

∂S2
= 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

Cσ(S, T ) = 0, 0 ≤ S ≤ Sf (T ),

Cσ(Sf (t), t) = 0, 0 ≤ t ≤ T,

(3.27)

where
∂2C

∂S2
and Sf (t) are known functions obtained from the solution of

problem (3.19).

For
∂C

∂r
and

∂C

∂D0
, we can derive the same final and boundary conditions

as
∂C

∂σ
, namely,
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∂C

∂r
=

∂C

∂D0
= 0 (3.28)

at t = T and
∂C

∂r
=

∂C

∂D0
= 0 (3.29)

at the free boundary. The only difference is the equation. Differentiating the
partial differential equation in the problem (3.19) with respect to r and D0

yields

∂Cr

∂t
+

1

2
σ2S2 ∂

2Cr

∂S2
+ (r −D0)S

∂Cr

∂S
− rCr + S

∂C

∂S
− C = 0 (3.30)

and

∂CD0

∂t
+

1

2
σ2S2 ∂

2CD0

∂S2
+ (r −D0)S

∂CD0

∂S
− rCD0

− S
∂C

∂S
= 0 (3.31)

respectively, where Cr stands for
∂C

∂r
and CD0

for
∂C

∂D0
.

For American put options, the Greeks are solutions of similar problems.
This is left for readers to show as Problem 19 of this chapter.

3.3.5 Solutions for Perpetual American Call Options

If an option does not have an expiry date but rather an infinite time zone,
then the option is called a perpetual option. Let C(S, 0;T ) be the today’s
price of an American call option with expiry T , and let C∞(S) be the price
of the corresponding perpetual American call option. Between them, there is
the following relation:

C∞(S) = lim
T→∞

C(S, 0;T ).

Since
∂C(S, t;T )

∂t

∣∣∣∣
t=0

= 0 as T → ∞, we know from the problem (3.19)

that for S ∈ [0, Sf ], Sf standing for the location of the corresponding free
boundary, C∞(S) is the solution of the following problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
σ2S2 d

2C∞
dS2

+ (r −D0)S
dC∞
dS

− rC∞ = 0, 0 ≤ S ≤ Sf ,

C∞(Sf ) = Sf − E,

dC∞(Sf )

dS
= 1.

(3.32)

Let

C∞(S) = Sα,
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then
dC∞
dS

= αSα−1

and

d2C∞
dS2

= α(α− 1)Sα−2.

Substituting these into the ordinary differential equation in the problem
(3.32), we get

1

2
σ2α2 +

(
r −D0 − 1

2
σ2

)
α− r = 0.

The two roots of this equation are

α± =
1

σ2

⎡
⎣−

(
r −D0 − 1

2
σ2

)
±
√(

r −D0 − 1

2
σ2

)2

+ 2σ2r

⎤
⎦ .

Thus

C∞(S) = C+(S/Sf )
α+ + C−(S/Sf )

α− .

It is clear that α+ > 0 and α− < 0. In order to guarantee the solution to be
bounded at S = 0, C− should equal zero. Consequently, we arrive at

C∞(S) = C+(S/Sf )
α+ .

From the free-boundary conditions in the problem (3.32) we obtain

C+ = Sf − E,

C+α+S
−1
f = 1.

Solving these two equations we get

Sf =
E

1− 1/α+
and C+ =

1

α+S
−1
f

.

Thus, the solution of problem (3.32) is

C∞(S) =
Sf

α+

(
S

Sf

)α+

. (3.33)

On [0,∞), the solution of the perpetual American call option is

C∞(S) =

⎧⎨
⎩

the solution of the free-boundary problem, 0 ≤ S ≤ Sf ,

S − E, Sf < S.
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C∞(S) should satisfy the following LC relation of the perpetual American call
option for any S:

min

(
−
[
1

2
σ2S2 d

2C∞
dS2

+ (r −D0)S
dC∞
dS

− rC∞

]
,

C∞ −max(S − E, 0)

)
= 0.

Here let us verify this conclusion by direct computation. Before doing that,
we point out that the following is true: Sf = E/(1−1/α+) ≥ Emax(1, r/D0).
As we know, for a vanilla call option, Sf (T ) = Emax(1, r/D0) and Sf (0) ≥
Sf (T ) = Emax(1, r/D0). This still holds as T → ∞. Thus4

Sf ≥ Emax(1, r/D0).

For S ∈ (0, E), C∞ satisfies the ODE and is greater than 0, and max(S −
E, 0) = 0. Thus the LC relation

min

(
−
[
1

2
σ2S2 d

2C∞
dS2

+ (r −D0)S
dC∞
dS

− rC∞

]
,

C∞ −max(E − S, 0)

)
= 0

holds. Now let us check if the LC relation holds for S ∈ (E,Sf ). Suppose
that f(x), f ′(x), and f ′′(x) are continuous functions on [a, b]. As we know, if
f(b) = 0 and f ′(b) = 0, then the following relation is true: f(x) = 1

2f
′′(ξ)(x−

b)2, where x ∈ [a, b] and ξ ∈ [x, b]. Using this fact, we know that because

C∞(Sf ) − (Sf − E) = 0 and
dC∞(Sf )

dS
− 1 = 0, C∞(S) − (S − E) ≥ 0 on

(E,Sf ) if
d2C∞ (S)

dS2
≥ 0 on (E,Sf ). From the expression of C∞, we have

d2C∞
dS2

=
α+ − 1

Sf

(
S

Sf

)α+−2

.

Because
α+ − 1

Sf
=

(α+ − 1)2

Eα+
> 0, we know

d2C∞
dS2

≥ 0 and the LC relation

holds on (E,Sf ). For S ∈ (Sf ,∞), because Sf ≥ Emax(1, r/D0), we have
C∞(S) = S−E = max(S−E, 0), which means C∞(S)−max(S−E, 0) = 0, and

−σ2S2

2

d2C∞
dS2

− (r −D0)S
dC∞
dS

+ rC∞

= D0S − rE = D0(S − rE/D0) ≥ 0.

4This result can also be obtained from direct calculation, which is left for readers
as Problem 20.
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Thus the LC relation also holds for S ∈ (Sf ,∞). Consequently, we have proved
our conclusion for all the cases.

For an American put option, as T → ∞, the free-boundary problem (3.16)
becomes

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
σ2S2 d

2P∞
dS2

+ (r −D0)S
dP∞
dS

− rP∞ = 0, Sf ≤ S,

P∞(Sf ) = E − Sf ,

dP∞(Sf )

dS
= −1.

Similar to the call option, for S ≥ Sf the price of a perpetual American put
option is

P∞(S) =
−Sf

α−

(
S

Sf

)α−

, (3.34)

where

Sf =
E

1− 1/α−
.

3.4 Some Conclusion from Arbitrage Theory

In Sect. 2.2, we derived the Black–Scholes equation by using arbitrage
arguments. Here, we will further use arbitrage arguments to obtain some prop-
erties of option prices. Similar materials can be found in the book [43] by Hull.

3.4.1 Three Conclusions and Some Portfolios

Consider two portfolios X and Y, whose values depend on a stock price S
and time t. Let X(S, t) and Y(S, t) denote the values of portfolios X and Y,
respectively. X and Y could involve options, and all their expiries are T . By
using arbitrage arguments, we can have three conclusions, which are written
in the form of theorems.

Theorem 3.2 If only European options are involved and X(S, T ) ≥ Y(S, T )
for any S, then for any t ≤ T, X(S, t) must be greater than or equal to Y(S, t).

Proof. Suppose that at time t̄ the value of portfolio X is less than the value
of portfolio Y and that the latter is higher than the former by an amount of
Z(t̄). In this case, an arbitrageur can earn at least Z(t̄)er(T−t̄) at time T
by doing the following: sell Y, buy X, and invest Z(t̄) into a bank at an
interest rate r at time t̄, and get X(S, T ) from portfolio X, pay Y(S, T ) for
portfolio Y, and obtain Z(t̄)er(T−t̄) from the risk-free investment at time T .
BecauseX(S, T ) ≥ Y(S, T ) for any S, the arbitrageur will always earn at least
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Z(t̄)er(T−t̄) at the time T , which means that the earning is risk-free. Thus,
everyone will do such a thing. Because so many people sell Y and buy X, the
price of Y will drop and the price of X will rise and will be immediately equal
to or greater than the price of Y. Therefore, Theorem 3.2 holds. ��

From this result, assuming X(S, T ) ≤ Y(S, T ), we can immediately get
that for any time t ≤ T, X(S, t) ≤ Y(S, t) and furthermore we can have

Theorem 3.3 If X(S, T ) = Y(S, T ) for any S, then for any t ≤ T, X(S, t)
must be equal to Y(S, t) for any S.

Proof. Because X(S, T ) = Y(S, T ) means X(S, T ) ≥ Y(S, T ) and X(S, T )
≤ Y(S, T ), from the conclusion above we have for any t

X(S, t) ≥ Y(S, t) and X(S, t) ≤ Y(S, t),

which means
X(S, t) = Y(S, t).

Thus we have Theorem 3.3. ��
We can also have the following conclusion.

Theorem 3.4 Suppose that portfolio Y involves only one American option
and no European option and that portfolio X involves only European options.
If X(S, T ) ≥ Y(S, T ) at time T and if the amount of cash and the number
of stocks in X is greater than or equal to the amount of cash and the number
of stocks the holder of Y has when the American option is exercised at time
t̄ < T , then X(S, t) ≥ Y(S, t) for any time t.

Proof. The argument is similar to the argument for proving Theorem 3.2.
Suppose X(S, t) < Y(S, t) at time t < T . Then, an arbitrageur can purchase
X, sell Y, and earn some money. Later, when the American option is exercised
early at time t̄ < T , the arbitrageur will never lose money because the amount
of cash and the number of stocks in X are greater than or equal to the amount
of cash and the number of stocks the holder of Y has. When the American
option is not exercised before time T , the arbitrageur will also never lose any
money because the value of X is greater than or equal to the value of Y at
time T . Therefore, the earning is risk-free, which means X(S, t) should not be
less than Y(S, t) at any time. ��

Before applying these conclusions, we define some portfolios and find their
values at time T along with what their holders will have if American options
are exercised at time t̄ < T .

Portfolio A: An amount of cash equal to Ee−r(T−t) invested at an interest
rate r. It is clear that its value at time T is E.

Portfolio B: e−D0(T−t) shares of a stock with dividends being reinvested in
the stock if the stock pays the dividend continuously or one share of a
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stock plus a loan Dp(S, t)
5 if the stock pays cash dividends discretely.

Here, Dp(S, t) is equal to the present value of these dividends to be paid
from time t to time T , and the money will be returned to the loaner as
soon as the stock pays a dividend. Obviously, its value at time T is the
price of the stock S.

Portfolio C: One European call option plus portfolio A. The value of this
portfolio at time T is max(S − E, 0) + E = max(S,E).

Portfolio D: One European put option plus portfolio B. Its value at time T
is max(E − S, 0) + S = max(S,E).

Portfolio E: One American call option plus portfolio A. If the American call
option is not exercised before time T , its value at time T is max(S−E, 0)+
E = max(S,E). If at some time t̄ < T , the stock price S is greater than
E and the American option is exercised, then the holder of the portfolio
has one share plus a loan of (1− e−r(T−t̄))E.

Portfolio F: One American put option plus portfolio B. max(S,E) is its value
at time T if the put option is not exercised before time T ; while its holder
has an amount of cash E minus (1 − e−D0(T−t̄)) shares or an amount of
cash E −Dp(S, t̄) if the stock price S is less than E and the put option is
exercised at some time t̄ < T .

Portfolio G: One European call option plus E. Its value at time T is equal to
max(S,E).

Portfolio H: One European put option plus one share. Its value is equal to
max(S,E) at expiry.

3.4.2 Bounds of Option Prices

Consider a European call option and portfolio B. At time T , c(S, T ) =
max(S − E, 0) ≤ B(S, T ) = S. From Theorem 3.2, we have

c(S, t) ≤ Se−D0(T−t)

or

c(S, t) ≤ S −Dp(S, t).

Now let us compare portfolio C with portfolio B. Because at time T

C(S, T ) = max(S,E) ≥ B(S, T ) = S,

we have
c(S, t) + Ee−r(T−t) ≥ Se−D0(T−t)

or

c(S, t) + Ee−r(T−t) ≥ S −Dp(S, t).

5Here we assume that the value of the dividends depends on S, just like what
we did in Sect. 2.2.2.
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Clearly, c(S, t) ≥ 0 for any case. Therefore, for a European call option we have

max
(
Se−D0(T−t) − Ee−r(T−t), 0

)
≤ c(S, t) ≤ Se−D0(T−t) (3.35)

or

max
(
S −Dp(S, t)− Ee−r(T−t), 0

)
≤ c(S, t) ≤ S −Dp(S, t). (3.36)

Consequently, the lower bound of c(S, t) is max
(
Se−D0(T−t) − Ee−r(T−t), 0

)
or max

(
S −Dp(S, t)− Ee−r(T−t), 0

)
and the upper bound is Se−D0(T−t) or

S −Dp(S, t). Here, we assume that S −Dp(S, t) is always greater than zero.
If S < Dp(S, t) at time t, then any person will buy one share of the stock by
finding a loan of amount S at time t and returning the loan as soon as the
stock pays a dividend. In this way, the person gets one share and some cash
free at time T . Therefore, the price must rise until S ≥ Dp(S, t).

Because C(S, t) ≥ c(S, t), we require that C(S, t) is greater than or equal
to the lower bound of c(S, t). Also, C(S, t) needs to be greater than or equal
to the constraint max(S − E, 0). Thus

max
(
Se−D0(T−t) − Ee−r(T−t), S − E, 0

)

or

max
(
S −Dp(S, t)− Ee−r(T−t), S − E, 0

)

is a lower bound. Clearly, S is an upper bound for an American call option.
Consequently, for the price of an American call option, we have

max
(
Se−D0(T−t) − Ee−r(T−t), S − E, 0

)
≤ C(S, t) ≤ S (3.37)

or

max
(
S −Dp(S, t)− Ee−r(T−t), S − E, 0

)
≤ C(S, t) ≤ S. (3.38)

Now let us compare a European put option with portfolio A. At time T ,

p(S, T ) = max(E − S, 0) ≤ A(S, T ) = E.

Thus

p(S, t) ≤ Ee−r(T−t).

In order to get a lower bound of p(S, t), let us look at portfolios D and A.
Because at time T ,

D(S, T ) = max(S,E) ≥ A(S, T ) = E,

we arrive at

p(S, t) + Se−D0(T−t) ≥ Ee−r(T−t)
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or
p(S, t) + S −Dp(S, t) ≥ Ee−r(T−t).

Also, p(S, t) must be nonnegative. Therefore, we have

max
(
Ee−r(T−t) − Se−D0(T−t), 0

)
≤ p(S, t) ≤ Ee−r(T−t) (3.39)

or

max
(
Ee−r(T−t) − S +Dp(S, t), 0

)
≤ p(S, t) ≤ Ee−r(T−t). (3.40)

These give the lower and upper bounds of European put options.
For an American put option, we can also get the lower and upper bounds.

Because P (S, t) ≥ p(S, t), we have

P (S, t) ≥ max
(
Ee−r(T−t) − Se−D0(T−t), 0

)

or
P (S, t) ≥ max

(
Ee−r(T−t) − S +Dp(S, t), 0

)
.

Also, P (S, t) must be greater than or equal to max(E − S, 0). Therefore, we
further obtain

P (S, t) ≥ max
(
Ee−r(T−t) − Se−D0(T−t), E − S, 0

)

or
P (S, t) ≥ max

(
Ee−r(T−t) − S +Dp(S, t), E − S, 0

)
.

E is a upper bound of P (S, t), consequently we have

max
(
Ee−r(T−t) − Se−D0(T−t), E − S, 0

)
≤ P (S, t) ≤ E (3.41)

or
max

(
Ee−r(T−t) − S +Dp(S, t), E − S, 0

)
≤ P (S, t) ≤ E. (3.42)

From the proofs we know that if one of these relations is not true, then
we can find an arbitrage opportunity to earn some money. This means that
the lower bound is the greatest lower bound and that the upper bound is
the least upper bound. From Sect. 1.2.4, we know that the price of an option
is an increasing function of the volatility. Therefore, if the lower bound is
the greatest lower bound, then as the volatility approaches zero, the limit of
option should be the lower bound. Similarly, if the upper bound is the least
upper bound, then as the volatility approaches infinity, the limit of the option
should be the upper bound. When r,D0, and σ are constant, the European
option price is given by the Black–Scholes formulae in Sect. 2.6.5:

c(S, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2)
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and

p(S, t) = Ee−r(T−t)N(−d2)− Se−D0(T−t)N(−d1),

where

d1 =

[
ln

Se−D0(T−t)

Ee−r(T−t)
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)

and

d2 =

[
ln

Se−D0(T−t)

Ee−r(T−t)
− 1

2
σ2(T − t)

]/(
σ
√
T − t

)
.

Therefore we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
σ→0

c(S, t) =

⎧⎨
⎩

0, if Se−D0(T−t) < Ee−r(T−t),

Se−D0(T−t) − Ee−r(T−t), if Se−D0(T−t) > Ee−r(T−t),

lim
σ→∞ c(S, t) = Se−D0(T−t),

lim
σ→0

p(S, t) =

⎧⎨
⎩

0, if Ee−r(T−t) < Se−D0(T−t),

Ee−r(T−t) − Se−D0(T−t), if Ee−r(T−t) > Se−D0(T−t),

lim
σ→∞ p(S, t) = Ee−r(T−t).

That is, the inequalities (3.35) and (3.39) truly provide the least upper and
greatest lower bounds of European options, respectively.

Here, we give an example to show that if the price of an option does not
satisfy a related condition, then there exists an arbitrage opportunity. More
examples are given as problems for readers to study.

Example 1. Consider a European call option on a dividend-paying stock. Sup-
pose the following: S = $102, E = $100, c = $8.50, r = 0.1, the time to matu-
rity is 9months, and the present value of the dividend Dp(102, t) is $0.50. Is
there any arbitrage opportunity?

Solution: As we know, the price of a call option has to satisfy the
condition (3.36):

max
(
S −Dp(102, t)− Ee−r(T−t), 0

)
≤ c(S, t) ≤ S −Dp(102, t).

In this case

max
(
S −Dp(102, t)− Ee−r(T−t), 0

)
= max

(
102− 0.5− 100e−0.9/12, 0

)
= 8.73.

Therefore, the price of the call option is less than the lower bound. In this
case, if we own one share of the stock or if you can borrow one share of the
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stock for the period [t, T ], then we should take a long position in a portfolio
C and a short position in a portfolio B. In other words, buy one call option,
sell one share, and deposit Ee−r(T−t) +Dp(102, t) in a bank at time t. In this
case we will get −8.5+102− 100e−0.9/12 − 0.5 = $0.23 at time t, and this is a
risk-free earning. This is because we can get the money from the bank to pay
the dividends on the stock during the time interval [t, T ] and get E from the
bank at time T . If S ≥ E at time T , we can exercise the call option and get
one share. If S < E, we can have one share of the stock that is bought from
the market and an amount of cash E−S. In any case, we have one share plus
at least $0.23. That is, we can get one share back or return one share to the
borrower and earn at least $0.23 free at time T .

3.4.3 Relations Between Call and Put Prices

Let us look at portfolios C and D. Because C(S, T ) = D(S, T ), we have

c(S, t) + Ee−r(T−t) = p(S, t) + Se−D0(T−t) (3.43)

or
c(S, t) + Ee−r(T−t) = p(S, t) + S −Dp(S, t) (3.44)

according to Theorem 3.3. These are called put–call parities of European
options. For stocks with continuous dividends, we obtained such a relation
through a very long procedure in Sect. 2.6. However, the derivation here is so
simple. This shows that arbitrage theory is a very powerful tool.

The put–call parity relations hold only for European options. For American
options they are not true, but the following inequalities on the difference
between the American call and put option prices are fulfilled

Se−D0(T−t) − E ≤ C(S, t)− P (S, t) ≤ S − Ee−r(T−t) (3.45)

or
S −Dp(S, t)− E ≤ C(S, t)− P (S, t) ≤ S − Ee−r(T−t). (3.46)

The two inequalities can also be written as

⎧⎨
⎩

Se−D0(T−t) − E + P (S, t) ≤ C(S, t) ≤ S − Ee−r(T−t) + P (S, t),

C(S, t)− S + Ee−r(T−t) ≤ P (S, t) ≤ C(S, t)− Se−D0(T−t) + E

or ⎧⎨
⎩

S −Dp(S, t)− E + P (S, t) ≤ C(S, t) ≤ S − Ee−r(T−t) + P (S, t),

C(S, t)− S + Ee−r(T−t) ≤ P (S, t) ≤ C(S, t)− S +Dp(S, t) + E,

which gives the lower and upper bounds of an American call (put) option if
the price of the corresponding American put (call) option is known.
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First, let us prove the left portions of the inequalities (3.45) and (3.46).
Consider portfolios G and F. Because G contains European options only
and F contains only one American option, it is possible to use Theorem 3.4.
According to Theorem 3.4, the value of G is always greater than or equal to
the value of F if we can prove two things:

1. The value of G is greater than or equal to the value of F at time T ;
2. The amount of cash and the number of stocks inG is greater than or equal

to the amount of cash and the number of stocks in F when the American
option is exercised at time t̄ < T .

At time T , the value of G is equal to the value of F. At any time t̄ < T , there
is an amount of cash E and no stock in G. If the American put option in F is
exercised before time T , F contains an amount of cash E and −(1−e−D0(T−t̄))
shares or an amount of cash E−Dp(S, t). Therefore, both the amount of cash
and the number of stocks in G is greater than or equal to those in F if the
American option in F is exercised at some time t̄ < T . Consequently, according
to Theorem 3.4, the value of G is greater than or equal to the value of F for
any case, that is,

P (S, t) + Se−D0(T−t) ≤ c(S, t) + E

or
P (S, t) + S −Dp(S, t) ≤ c(S, t) + E.

Because C(S, t) ≥ c(S, t), we further have

Se−D0(T−t) − E ≤ C(S, t)− P (S, t)

or
S −Dp(S, t)− E ≤ C(S, t)− P (S, t).

In order to prove the right portions of the relations, we need to look at
portfolios H and E. In H there is only one European option and in E the
American option is the only option, so we can use Theorem 3.4 again. When
the American call option in E is exercised before time T , the amount of cash
and the number of stocks in H is greater than or equal to those in E. When
it is not exercised before expiry, the value of H is equal to the value of E at
time T . Therefore

C(S, t) + Ee−r(T−t) ≤ p(S, t) + S.

Noticing P (S, t) ≥ p(S, t), we have

C(S, t)− P (S, t) ≤ S − Ee−r(T−t).

This completes our proof.
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Example 2. Suppose there are an American call option and an American put
option on the same stock. The stock pays dividends continuously, and D0 =
0.05. For both options, E = $100 and T = 1month. At present, r = 0.1, S =
$103, and C = $5.50. Find the upper and lower bounds for the price of
the American put option by using the relation (3.45). How do we take the
arbitrage opportunity if the price of the American put option is greater than
the calculated upper bound?

Solution: According to the relation (3.45), the lower bound of P (S, t) is

C(S, t)− S + Ee−r(T−t) = 5.5− 103 + 100e−0.1/12 = 1.67

and the upper bound is

C(S, t)− Se−D0(T−t) + E = 5.5− 103e−0.05/12 + 100 = 2.93.

Suppose that on the market P (103, t) = $3.50. Now we describe how
to take advantage of the arbitrage opportunity. At time t, we can sell the
American put option and short-sell e−0.05/12 shares, purchase one European
call option that is less than or equal to $5.50, and hold at least an amount of
cash 3.5+103e−0.05/12 −5.5 = $100.57. If we want, it can be deposited into a
bank. At any time t̄ ∈ [t, T ), the holder of the American put option wants to
exercise the option, we pay $100 and get one share. In this case, we have at
least one share of stock and at least an amount of cash equal to $0.57 at time
T. If the holder of the American put option does not exercise the option before
time T , we also will always have at least $0.57 in cash plus one share of stock
at time T . The reason is that we can exercise the European call option and
get one share if S > E, whereas we can purchase one share from the market
if S ≤ E. Because we need to return only one share to the borrower at time
T , we always have enough shares of stocks. Therefore, the risk-free earning in
this case is at least $0.57.

Problems

Table 3.1. Problems and subsections

Problems Subsections Problems Subsections Problems Subsections

1–2 3.1.1 3–7 3.1.2 8 3.2.1

9–15 3.3.2 16–18 3.3.3 19 3.3.4

20–23 3.3.5 24–25 3.4.1 26–27 3.4.2

28–30 3.4.3
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1. Let LS,t be an operator in an option problem in the form:

LS,t = a(S, t)
∂2

∂S2
+ b(S, t)

∂

∂S
+ c(S, t)

and Gv(S, t) be the constraint function for an American option. Further-

more we assume that
∂Gv

∂t
+ LS,tGv exists. Suppose V (S, t∗) = Gv(S, t

∗)

on an open interval (A,B) on the S-axis. Let t = t∗ −Δt, where Δt is a
sufficiently small positive number. Show the following conclusions: If for
any S ∈ (A,B),

∂Gv

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) + d(S, t∗) ≥ 0,

then the value V (S, t) determined by the equation

∂V

∂t
(S, t) + LS,tV (S, t) + d(S, t) = 0

satisfies the condition V (S, t) − Gv(S, t) ≥ 0 on (A,B); and if for any
S ∈ (A,B),

∂Gv

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) + d(S, t∗) < 0,

then the equation

∂V

∂t
(S, t) + LS,tV (S, t) + d(S, t) = 0

cannot give a solution satisfying the condition V (S, t) − Gv(S, t) ≥ 0 for
any S ∈ (A,B).

2. *Suppose that for an American option, the constraint is Gv(S, t), its value
at time t is V (S, t), and V (S, t) = Gv(S, t) on (A,B). Assume that when
V (S, t) were given as the value of a European option at t, the value of the
European option at t−Δt for a positive and very small Δt is v(S, t−Δt).
Explain that if in an open interval containing S∗ ∈ (A,B), v(S, t−Δt) <
Gv(S, t − Δt), then for the American option a fair value at the point
(S∗, t−Δt) should be Gv(S

∗, t−Δt).
3. *Show that an American option is always worth at least as much as a

European option on the same asset with the same strike price and exercise
date if r, D0, σ are constant, and give a financial explanation.

4. Show that a Bermudan option is always worth at least as much as a
European option on the same asset with the same strike price and exercise
date if r, D0, σ are constant, and give a financial explanation of this fact.
(Hint: For a Bermudan option, the approximate relation between the price
at tn and the price at tn+1 is the same as for a European option if at t = tn
the option cannot be exercised, and the same as for an American option
if at t = tn the option can be exercised.)
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5. (a) *Explain why an American option is always worth at least as much
as its intrinsic value. What is the definition of the time value of an
American option?

(b) *Let V (S, t) be the price of a vanilla American option. Show that
V (S, t∗) ≥ V (S, t∗∗) is always true, where t∗ ≤ t∗∗. This means that
the time value of a vanilla American option for a fixed S is decreasing
as t → T , and give a financial explanation of this fact.

6. (a) The price of a one-factor convertible bond paying no coupon is the
solution of the following linear complementarity problem

⎧⎪⎨
⎪⎩

min

(
−∂V

∂t
− LSV, V (S, t)− nS

)
= 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS) ≥ nS, 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

and n, Z, σ, r, and D0 are positive constants. Show

V (S, t∗)− Ze−r(T−t∗) ≥ V (S, t∗∗)− Ze−r(T−t∗∗) if t∗ ≤ t∗∗.

(Hint: Define V (S, t) = V (S, t) − Ze−r(T−t) and show V (S, t∗) ≥
V (S, t∗∗) if t∗ ≤ t∗∗.)

(b) Can you prove that V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗ by using the
method used in part (a)? If your answer is “Yes”, give a proof; other-
wise explain why you cannot.

(c) “A holder of a convertible bond at time t∗ has “more rights” than
a holder of a convertible bond at time t∗∗ does if t∗ ≤ t∗∗, so the
premium at t∗ should be higher than the premium at t∗∗, i.e., the
inequality V (S, t∗) ≥ V (S, t∗∗) should hold for any t∗ ≤ t∗∗.” Do you
think that this statement is true and why?

7. The price of a one-factor convertible bond paying constant coupon is the
solution of the following linear complementarity problem

⎧⎪⎨
⎪⎩

min

(
−∂V

∂t
− LSV − kZ, V (S, t)− nS

)
= 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS) ≥ nS, 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

and k, Z, n, σ, r, and D0 are positive constants. Study whether or not
V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗ holds in the cases r > k and r = k, and
if not, try to find a relation between V (S, t∗) and V (S, t∗∗).
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8. A European option is the solution of the problem

⎧⎨
⎩

∂V

∂t
+ LSV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

For an American option, the constraint is that the inequality

V (S, t) ≥ G(S, t)

holds for any S and t, where G(S, T ) = VT (S). Derive the linear comple-
mentarity problem for the American option.

9. The American call option is the solution of the following linear comple-
mentarity problem on a finite domain:⎧⎪⎨
⎪⎩

min

(
∂V

∂τ
− LξV , V (ξ, τ)−max(2ξ − 1, 0)

)
= 0, 0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) = max(2ξ − 1, 0), 0 ≤ ξ ≤ 1,

where

Lξ =
1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
+ (r −D0)ξ(1− ξ)

∂

∂ξ
− [r(1− ξ) +D0ξ].

Reformulate this problem as a free-boundary problem if D0 > 0.
10. The American put option is the solution of the following linear comple-

mentarity problem:⎧⎪⎨
⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− gp(x, τ̄)

)
= 0, −∞ < x < ∞, 0 ≤ τ̄ ,

u(x, 0) = gp(x, 0), −∞ < x < ∞,

where
gp(x, τ̄) = max

(
e2rτ̄/σ

2 − ex+(2D0/σ
2+1)τ̄ , 0

)
.

Find the domain where a free boundary may appear and the domain
where it is impossible for a free boundary to appear, show that there is
only one free boundary at τ̄ = 0, and give the starting location of this free
boundary.

11. The price of a one-factor convertible bond is the solution of the linear
complementarity problem⎧⎪⎨
⎪⎩

min

(
−∂V

∂t
− LSV − kZ, V (S, t)− nS

)
= 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS) ≥ nS, 0 ≤ S,
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where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r,

and k, Z, n, σ, r and D0 are constants. Show that if D0 > 0, then the solu-
tion of a one-factor convertible bond must involve a free boundary and its

location at t = T is S = max

(
Z

n
,
kZ

D0n

)
. Also, derive the corresponding

free-boundary problem if this problem has only one free boundary.
12. Consider the following LC problem:

⎧⎪⎨
⎪⎩

min

(
−∂W

∂t
− Lα,tW, W (η, t)−max(α− η, 0)

)
= 0, 0 ≤ η, t ≤ T,

W (η, T ) = max(α− η, 0), 0 ≤ η,

where the operator La,t is defined by

La,t =
1

2
σ2η2

∂2

∂η2
+

[
(D0 − r)η +

1− η

t

]
∂

∂η
−D0.

Suppose that there is only one free-boundary for this problem, reformulate
this problem as a free-boundary problem.

13. Consider the following LC problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

(
−∂W

∂t
− LηW, W (η, t)−Glsp(η, t)

)
= 0, 1 ≤ η, t ≤ T,

W (η, T ) = Glsp(η, T ), 1 ≤ η,

∂W

∂η
(1, t) = 0, t ≤ T,

where Glsp(η, t) = max(η−β, 0) with β ≥ 1 and Lη=
1

2
σ2η2

∂2

∂η2
+(D0−r)

η
∂

∂η
−D0. Find the domain where it is impossible for a free boundary to

appear and the domain where a free boundary may appear.
14. As we know, when the LC problem of an American call option is for-

mulated as a free-boundary problem, on the free boundary S = Sf (t) ≥
max(E, rE/D0), we need to require C (Sf (t), t) = max (Sf (t)− E, 0) =

Sf (t) − E and
∂C (Sf (t), t)

∂S
= 1, where C (S, t) and max (S − E, 0) are

the solution of the free-boundary problem and the constraint. Show that

if C(S, t) ≥ 0 and
∂C2 (S, t)

∂S2
≥ 0 for S < Sf (t), then the solution of the

free-boundary problem satisfies the LC condition

min

(
−∂C

∂t
− LSC, C −max(S − E, 0)

)
= 0,
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where LS =
1

2
σ2S2 ∂2

∂S2
+ (r − D0)S

∂

∂S
− r, that is, C(S, t) truly is the

solution of the LC problem for S ∈ [0, Sf (t)).
15. Consider an American call option on a stock paying discrete dividends.

(a) Show that in this case, the optimal exercise price cannot appear for t
between two successive ex-dividend dates.

(b) Suppose that tn, tn+1 are two successive ex-dividend dates with tn <
tn+1. Assume Dn(S) be the dividend payment at time tn. Show that if
Dn(S) ≤ E

(
1− e−r(tn+1−tn)

)
, then there is no chance for an optimal

exercise price to appear at time t−n ; if Dn(S) > E
(
1− e−r(tn+1−tn)

)
,

it is possible for an optimal exercise price to appear at time t−n .
16. *Suppose r,D0, and σ are constant.

(a) Derive the put–call symmetry relations.
(b) Explain the financial meaning of the symmetry relation.
(c) Explain how to use these relations when we write codes if a code for

put options is quite a different from a code for call options.
17. (a) Suppose σ = σ(S, t), r = r(t), and D0 = D0(S, t). Show that the

problem of pricing a put option can always be converted into a problem
of pricing a call option. Also explain how to use this conclusion when
we write codes if a code for put options is quite a different from a code
for call options.

(b) Let the exercise price be E. Suppose that r, D0 are constants and
σ = σ(S). Show

P (S, t; b, a, σ(S)) = C
(
E2/S, t; a, b, σ(S)

)
S/E,

C (S, t; a, b, σ(S)) = P
(
E2/S, t; b, a, σ(S)

)
S/E

and

Scf (t; a, b, σ(S))× Spf (t; b, a, σ(E
2/S)) = E2.

Here, the first, second, and third parameters after the semicolon in
P , C, Spf , and Scf are the interest rate, the dividend yield and the
volatility function, respectively.

(c) Show that for Bermudan options the symmetry relation is still true.
18. Suppose that σ, r, D0 are constants. In this case we have the following

symmetry relation for European options

p(S, t; b, a) = c

(
E2

S
, t; a, b

)
S/E,

where the first and second arguments after the semicolon in p and c are
the values of the interest rate and the dividend yield, respectively. For a
European call option, the price is

c(S, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2),
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where

d1 =
ln

Se−D0(T−t)

Ee−r(T−t)
+ 1

2σ
2(T − t)

σ
√
T − t

,

d2 =
ln

Se−D0(T−t)

Ee−r(T−t)
− 1

2σ
2(T − t)

σ
√
T − t

.

Find the price of a European put option by using the symmetry relation.

19. Derive the formulation of the problem for
∂P

∂r
and write down the for-

mulation of the problems for
∂P

∂σ
and

∂P

∂D0
, where P is the price of an

American put option.
20. Define

α± =
1

σ2

⎡
⎣−

(
r −D0 − 1

2
σ2

)
±
√(

r −D0 − 1

2
σ2

)2

+ 2σ2r

⎤
⎦ ,

where r ≥ 0 and D0 ≥ 0.
(a) Show that α+ ≥ 1, α− ≤ 0, and −(r −D0)α± + r ≥ 0 .
(b) Based on the results in part (a), show that 1/(1−1/α+) ≥ max(1, r/D0)

and 1/(1− 1/α−) ≤ min(1, r/D0).
21. (a) Find the solution of the following free-boundary problem:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2
σ2S2 d

2P∞
dS2

+ (r −D0)S
dP∞
dS

− rP∞ = 0, Sf ≤ S,

P∞(Sf ) = E − Sf ,

dP∞(Sf )

dS
= −1.

(b) Define

P∞(S) =

⎧⎨
⎩

E − S, 0 ≤ S < Sf ,

the solution of the free-boundary problem, Sf ≤ S.

Show that P∞(S) satisfies

min

(
−
[
1

2
σ2S2 d

2P∞
dS2

+ (r −D0)S
dP∞
dS

− rP∞

]
,

P∞ −max(E − S, 0)

)
= 0,

that is, P∞(S) is a solution of the perpetual American put option.
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22. (a) Find the solution of the following free-boundary problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ2η2

d2W∞
dη2

+ (D0 − r) η
dW∞
dη

−D0W∞ = 0, 1 ≤ η ≤ ηf ,

dW∞(1)

dη
= 0,

W∞ (ηf ) = ηf ,

dW∞ (ηf )

dη
= 1,

where ηf is a number representing the location of this free boundary.
(b) Define

W∞(η) =

⎧⎨
⎩

the solution of the free-boundary problem, 1 ≤ η ≤ ηf ,

η, ηf < η.

Show that W∞(η) is a solution of the following LC problem
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min

(
−σ2η2

2

d2W∞
dη2

− (D0 − r) η
dW∞
dη

+D0W∞, W∞ − η

)
= 0,

1 ≤ η,

dW∞(1)

dη
= 0.

(This problem is related to the Russian option.)
23. Find the solution of the problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ2ξ2

d2W∞
dξ2

+ (D02 −D01) ξ
dW∞
dξ

−D02W∞ = 0, ξf1 ≤ ξ ≤ ξf2 ,

W∞ (ξf1) = 1,

dW∞
dξ

(ξf1) = 0,

W∞ (ξf2) = ξf2 ,

dW∞
dξ

(ξf2) = 1,

where ξf1 < ξf2 . (This problem is related to the perpetual American
better-of option.)

24. Suppose that c1(S, t) and c2(S, t) are the prices of European call options
with strikes E1 and E2, respectively, where E1 < E2. Also assume that
the two options have the same maturity T and that the interest rate r is
a constant. Show
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0 ≤ c1(S, t)− c2(S, t) ≤ (E2 − E1)e
−r(T−t).

25. Suppose that p1, p2, and p3 are the prices of European put options with

strike prices E1, E2, and E3, respectively, where E2 =
1

2
(E1+E3). All the

options have the same maturity. Show

p2 ≤ 1

2
(p1 + p3).

26. Consider a European call option with T = 6months and E = $80 on a
dividend-paying stock. The dividend is paid continuously with a dividend
yield D0 = 0.05. Today, t = 0, r = 0.1 and S = $82.

(a) Find the lower bound of the call option.
(b) What are the least profits we could make at time T by arbitrage if the

call option price today is $0.10 less than the lower bound and why?

27. Consider a European put option with T = 3months and E = $60 on a
dividend-paying stock. Today t = 0, r = 0.05, and S = $55. The dividends
are paid discretely, and the total present value of them is Dp(55, 0) =
$0.30.

(a) Find the lower bound of the put option.
(b) What are the least profits we could make at time T by arbitrage if the

put option price today is $0.20 less than the lower bound and why?

28. *Use arbitrage arguments to show the put–call parity of European options
for the following two cases.
(a) When the dividend is paid continuously, the put–call parity is

c(S, t)− p(S, t) = Se−D0(T−t) − Ee−r(T−t);

(b) when the dividend is paid discretely, the put–call parity is

c(S, t)− p(S, t) = S −Dp(S, t)− Ee−r(T−t),

where Dp(S, t) is the value of “will-be-paid” dividends at time t.
29. *Use arbitrage arguments to show the inequalities of American options

for the following two cases.
(a) When the dividend is paid continuously, there is the inequality

Se−D0(T−t) − E ≤ C(S, t)− P (S, t) ≤ S − Ee−r(T−t)

between American put option P (S, t) and American call option C(S, t)
with the same parameters.

(b) When the dividend is paid discretely, there is the inequality

S −Dp(S, t)− E ≤ C(S, t)− P (S, t) ≤ S − Ee−r(T−t)

between American put option P (S, t) and American call option C(S, t)
with the same parameters.
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30. Suppose that there are an American call option and an American put
option on the same stock that pays dividends discretely. For both of them,
E = $90 and T = 3months. At time t = 0, the stock price is $93 and the
present value of dividend payments during the period [0, T ] is Dp(93, 0) =
$0.50. Assume that r = 0.10 and P (93, 0) = $2.50.

(a) Find the upper and lower bounds of the price of the American call
option.

(b) What are the risk-free profits we could make today by arbitrage if
the price of the call option today is $0.10 greater than the calculated
upper bound and why?
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