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Interest Rate Modeling

As pointed out in Sect. 2.3, when the short-term interest rate is considered
as a random variable, there is an unknown function λ(r, t), called the market
price of risk, in the governing equation. Before using the governing equation
for evaluating an interest rate derivative, we have to find this function (or
make some assumptions on it). This function cannot be obtained by statis-
tics directly from the market data. In Sect. 5.4, the inverse problem on the
market price of risk was formulated. This problem can be solved by numerical
methods. However, if the problem is formulated in another way, then the in-
verse problem may be solved more efficiently. Therefore, in Sect. 10.1, we first
discuss another formulation of the inverse problem and then we give numeri-
cal methods for both formulations and show some numerical examples. Then,
numerical methods for one-factor interest rate derivatives are described, and
some numerical results are shown in Sect. 10.2. Because interest rate deriva-
tive problems are so complicated, for many cases, use of multi-factor models
is necessary. In the last section, we study how to price interest rate derivatives
using the three-factor model and the market data.

10.1 Inverse Problems

10.1.1 Another Formulation of the Inverse Problem

As seen in Sect. 5.4, in order to match the bond equation with the market
data, we need to find λ(r, t) such that the solution V (r, t;T ∗) of the problem
(5.47) at r = r∗ and t = 0 is equal to today’s price of the bond with maturity
T ∗. There, we also briefly discussed how to solve this inverse problem. Here, we
reformulate the inverse problem in Sect. 5.4 (see [89]). This formulation may
make the numerical solution easy and efficient. Let us derive this formulation.
The problem (5.47) can be rewritten as follows:
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⎧
⎨

⎩

∂V

∂t
= −LrV, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗ ≤ T ∗

max,

V (r, T ∗;T ∗) = 1, rl ≤ r ≤ ru.

Here, we have used the relation
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and adopted the following notation
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and U(r, t) satisfy the following equation:
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Consequently, L∗
r is called the adjoint operator to Lr. Because w(rl, t) =

w(ru, t)= 0 when the conditions (5.45) and (5.46) hold, we arrive at
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rl

LrV Udr =
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rl

L∗
rU V dr +

{[

u−
(

λ+
∂w

∂r

)

w

]

UV

}∣
∣
∣
∣

ru

rl

. (10.3)

For simplicity, let us consider the case:

⎧
⎪⎪⎨

⎪⎪⎩

u(rl, t)− w(rl, t)
∂w(rl, t)

∂r
> 0,

u(ru, t)− w(ru, t)
∂w(ru, t)

∂r
< 0.

(10.4)

It is clear that when u(rl, t) and u(ru, t) are bounded and the condition (10.4)

holds, u(rl, t)−w(rl, t)
∂w(rl, t)

∂r
and u(ru, t)−w(ru, t)

∂w(ru, t)

∂r
must also be

bounded even if
∂w(rl, t)

∂r
or

∂w(ru, t)

∂r
is unbounded because of

∂w2(rl, t)

∂r
≥ 0

and
∂w2(ru, t)

∂r
≤ 0.1 In this case, in order for

∂U

∂t
= L∗

rU to have a unique so-

lution, two boundary conditions are needed in addition to an initial condition.
Therefore, we may add two boundary conditions on U(r, t). Let us choose

U(rl, t) = U(ru, t) = 0, 0 ≤ t ≤ T ∗
max.

Under this choice, equality (10.3) becomes
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LrV Udr =

∫ ru

rl

L∗
rU V dr. (10.5)

Therefore,

d
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(−LrV U + L∗
rU V )dr = 0,

from which, we further have

∫ ru

rl

V (r, 0;T ∗)U(r, 0)dr =

∫ ru

rl

V (r, T ∗;T ∗)U(r, T ∗)dr.

Suppose we choose

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru.

Then, noticing V (r, T ∗;T ∗) = 1, we arrive at

1This is because w2(r, t) ≥ 0 on [rl, ru].
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V (r∗, 0;T ∗) =
∫ ru

rl

U(r, T ∗)dr. (10.6)

Consequently, for any function λ(r, t), if U(r, t) is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂U

∂t
= L∗

rU, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗
max,

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru,

U(rl, t) = U(ru, t) = 0, 0 ≤ t ≤ T ∗
max,

(10.7)

and V (r, t;T ∗) is the solution of the problem (5.47), then condition (10.6)
holds.

Let today’s time be t = 0, today’s short-term interest rate be r∗, and
the prices of zero-coupon bonds with a face value Z = 1 and with various
maturities T ∗ be V (T ∗). Assume2 λ(r, t) = λ(t) to be such a function that
the solution U(r, T ∗) of the problem (10.7) satisfies (10.6) with V (r∗, 0;T ∗) =
V (T ∗). Then, the solution V (r, t;T ∗) of the problem (5.47) at r = r∗ and
t = 0 gives today’s price of the zero-coupon bond with maturity T ∗ on the
market. Consequently, matching λ(r, t) with the zero-coupon bond price curve
can be reduced to finding λ(t) such that U(r, T ∗) satisfies Eq. (10.6) with
V (r∗, 0;T ∗) = V (T ∗).

From Eq. (10.6), we can derive another equivalent relation that can also
be used to determine λ(t). Differentiating (10.6) with respect to T ∗ yields
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because

w(rl, T
∗) = w(ru, T

∗) = U(rl, T
∗) = U(ru, T

∗) = 0.

From this relation we can further have

∂2V (r∗, 0;T ∗)
∂T ∗2 = −

∫ ru

rl

r
∂U(r, T ∗)

∂T ∗ dr

= −
∫ ru

rl
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rU(r, T ∗)dr

2Or assume λ(r, t) = λ̄(t) + u(r, t)/w(r, t), which is equivalent to let u(r, t) = 0
and λ(r, t) = λ̄(t).
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= −
∫ ru

rl

(

r
∂

∂r

(
1

2
w2 ∂U

∂r

)

− r
∂

∂r

{[

u−
(

λ(t) +
∂w

∂r

)

w

]

U

}

− r2U

)

dr

= −
[
r

2
w2 ∂U

∂r

]∣
∣
∣
∣

ru

rl

+

∫ ru

rl

1

2
w2 ∂U

∂r
dr +

{

r

[

u−
(

λ(t) +
∂w

∂r

)

w

]

U

}∣
∣
∣
∣

ru

rl

−
∫ ru

rl

[

u−
(

λ(t) +
∂w

∂r

)

w

]

Udr +

∫ ru

rl

r2Udr

=

∫ ru

rl

(
1

2
w2 ∂U

∂r
+

∂w

∂r
wU

)

dr + λ(t)

∫ ru

rl

wUdr +

∫ ru

rl

(r2 − u)Udr

=
1

2

∫ ru

rl

∂(w2U)

∂r
dr + λ(t)

∫ ru

rl

wUdr +

∫ ru

rl

(r2 − u)Udr

= λ(t)

∫ ru

rl

wUdr +

∫ ru

rl

(r2 − u)Udr. (10.9)

Consequently, λ(t) satisfies the equation:

λ(T ∗)
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(r2 − u)U(r, T ∗)dr =
∂2V (r∗, 0;T ∗)

∂T ∗2 . (10.10)

Here we have shown that from the condition (10.6) we can have the condition
(10.10). In order to show that they are equivalent, we also need to show
that from the condition (10.10) we can have the condition (10.6). From the
derivation procedure of the expressions (10.8) and (10.9), we know that when
U(r, t) is the solution of the problem (10.7), the following is true:
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When the condition (10.10) holds, we have
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which can be reduced into

∂V (r∗, 0;T ∗)
∂T ∗ =

∫ ru

rl

∂U(r, T ∗)
∂T ∗ dr

because
∂V (r∗, 0; 0)

∂T ∗ = −r∗. From the relation just obtained we further have

V (r∗, 0;T ∗)− V (r∗, 0; 0) =
∫ T∗

0

∂V (r∗, 0;T ∗)
∂T ∗ dT ∗

=

∫ T∗

0

∫ ru

rl

∂U(r, T ∗)
∂T ∗ drdT ∗

=

∫ ru

rl

[U(r, T ∗)− U(r, 0)] dr

=

∫ ru

rl

U(r, T ∗)dr − 1,

which can be reduced into

V (r∗, 0;T ∗) =
∫ ru

rl

U(r, T ∗)dr

because V (r∗, 0; 0) = 1. This completes our proof. Hence, instead of finding
λ(t) such that the condition (10.6) holds, we may also find λ(t) such that the
condition (10.10) is satisfied.

Now we discuss how to find λ(t) from condition (10.10). From Sect. 5.4,3

the value of λ(t) for t ∈ [0, T ∗] is determined by the portion of the zero-coupon
bond price curve on [0, T ∗]. Suppose we already have the solution of problem
(10.7) and the value of λ(t) for t ∈ [0, T ∗ − ε] , ε being a small positive number.
In order to find the value of λ(t) for t ∈ (T ∗ − ε, T ∗] , we need to guess the
value of λ(t) for t ∈ (T ∗ − ε, T ∗] and continue to solve the problem (10.7) from
T ∗ − ε to T ∗ and check the condition (10.10) at any time in (T ∗ − ε, T ∗]. As
soon as the condition (10.10) holds, we have the value of λ(t) on (T ∗ − ε, T ∗].
Such a procedure is performed from a very small T ∗, gradually increasing, to
T ∗ = T ∗

max, and λ(t) can be found for t ∈ [0, T ∗
max]. This procedure is easy

and faster, compared with the procedure of determining λ(t) by solving the
problem (5.47) if the same mesh sizes are used.

The initial-boundary value problem (10.7) is well-posed because the con-
dition (10.4) holds. If

⎧
⎪⎪⎨

⎪⎪⎩

u(rl, t)− w(rl, t)
∂w(rl, t)

∂r
= 0,

u(ru, t)− w(ru, t)
∂w(ru, t)

∂r
= 0,

(10.11)

3There we assume λ(r, t) = λ̄(t) + u(r, t)/w(r, t). However the procedures of
determining λ̄(t) and λ(t) from the zero-coupon bond price curve are the same.
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then from the relation (10.3), we can still obtain the relation (10.5) without
specifying the values for U(rl, t) and U(ru, t). In this case, instead of the
problem (10.7), U(r, t) is the solution of the following well-posed initial value
problem

⎧
⎨

⎩

∂U

∂t
= L∗

rU, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗
max,

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru,

(10.12)

and we can still derive the conditions (10.6) and (10.10) from the relation
(10.5). For more complicated cases, the following treatment can be used. At
any point on the lower boundary r = rl, when

u(rl, t)− w(rl, t)
∂w(rl, t)

∂r
> 0,

we choose U(rl, t) = 0; whereas

u(rl, t)− w(rl, t)
∂w(rl, t)

∂r
= 0,

we do not specify any value for U(rl, t) as a boundary condition. For the upper
boundary, the situation is similar. Under such a treatment, the conditions
(10.6) and (10.10) still hold.

10.1.2 Numerical Methods for the Inverse Problem

Again, let V (T ∗) denote today’s zero-coupon bond curve for bonds with a
face value Z = 1. Suppose that the values of K zero-coupon bonds with
maturities T ∗

1 , T
∗
2 , · · · , T ∗

K are VT∗
1
, VT∗

2
, · · · , VT∗

K
, which can be obtained from

the market. Assume T ∗
K = T ∗

max and 0 < T ∗
1 < · · · < T ∗

K . Let today’s time

be T ∗
0 and T ∗

0 = 0. Clearly, V (T ∗
0 ) = 1 and

∂V (T ∗
0 )

∂T ∗ = −r∗, where r∗ is

today’s short-term interest rate. Based on the data, we can generate a zero-
coupon bond price curve V (T ∗) on [0, T ∗

max] by the cubic spline interpolation

described in Sect. 6.1.1. Because
∂V (T ∗

0 )

∂T ∗ = −r∗, at the left end we require

this condition instead of assuming
∂2V (T ∗

0 )

∂T ∗2 = 0. At the right end, we assume

the function V (T ∗) to be a polynomial of degree two on [T ∗
K−1, T

∗
K ] instead

of assuming
∂2V (T ∗

M)

∂T ∗2 = 0. Using the method described in Sect. 6.1.1 for

the modified case, we can determine these polynomials on all the subintervals
[T ∗

k , T
∗
k+1], k = 0, 1, · · · ,K − 1. As soon as we have the zero-coupon bond

curve, we can determine λ(t) by solving inverse problems.
First, let us discuss how to solve the inverse problem (5.47). When λ(t)

is given on [0, T ∗], the partial differential equation can be discretized by the
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difference scheme (7.12). Hence, for any T ∗, as long as λ(t) is given on [0, T ∗],
we can calculate V (r, 0;T ∗) from V (r, T ∗;T ∗). Assume that we have obtained
λ(t) on [0, T ∗ − Δt] from the value V (t) on [0, T ∗ − Δt]. We guess λ(T ∗),
assume λ(t) to be a linear function on [T ∗−Δt, T ∗], and solve problem (5.47)
from t = T ∗ to t = 0. Check if V (r∗, 0;T ∗) = V (T ∗). If it is true, we find λ(t)
on [T ∗−Δt, T ∗]; if not, we adjust λ(T ∗) until we find a value λ(T ∗) such that
V (r∗, 0;T ∗) = V (T ∗). This procedure can start from T ∗ = Δt and continue
successively until T ∗ = T ∗

max. At T
∗ = Δt, if only λ(Δt) is given, we cannot

define a linear function on [0, Δt]. From the condition (10.10), we see that
λ(0) can be determined by

λ(0) =

∂2V (0)

∂T ∗2 − r∗2 + u(r∗, 0)

w(r∗, 0)
. (10.13)

Now let us discuss how to solve problem (10.7). For the domain [rl, ru]×
[0, T ∗

max], we take the following partition: rm = rl +mΔr, m = 0, 1, · · · ,M ,
tn = nΔt, n = 0, 1, · · · , N , where Δr = (ru − rl)/M and Δt = T ∗

max/N , M ,
N being integers. Let Un

m and λn+1/2 be the approximate values of U(rm, tn)
and λ(tn+1/2), and V

n
denote V (tn). We also represent Un

m, m = 0, 1, · · · ,M
by {Un

m}. On this partition, the problem (10.7) and the condition (10.10) can
be discretized as follows.

Because the initial condition in the problem (10.7) is a Dirac delta function,
we discretize the partial differential equation there by the following “conser-
vative” scheme:
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m = 1, 2, · · · ,M − 1,

where w̄
n+1/2
m+1/2 = (w
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m+1 + w

n+1/2
m )/2 and ū
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+
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(
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.

From the boundary conditions in the problem (10.7), we have

Un+1
0 = Un+1

M = 0. (10.15)

When the coefficients in the set of equations (10.14) are known, the sets
of equations (10.14) and (10.15) consist of a linear system for Un+1

0 , Un+1
1 ,

· · · , Un+1
M .

The initial condition in the problem (10.7) can be approximated by

U0
m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

Δr

[

1− r∗

Δr
+ int

(
r∗

Δr

)]

, m = int

(
r∗

Δr

)

,

1

Δr

[
r∗

Δr
− int

(
r∗

Δr

)]

, m = int

(
r∗

Δr

)

+ 1,

0, otherwise,

(10.16)

where int(x) is the integer part of the number x, and we assume r∗ ∈ [rl +
Δr, ru −Δr]. As it can be seen, we here approximate the function δ(r − r∗)
in the following way. We let the sum of the two values on the point with
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m = int

(
r∗

Δr

)

and the point with m = int

(
r∗

Δr

)

+ 1 be equal to
1

Δr
and

their ratio is inversely proportional to their distances to r∗. On any other
point, let the value be equal to zero.

By the trapezoidal rule (see Sect. 6.1.3), the condition (10.10) can be
approximated by

λn+1/2Δr

[
1

4
w

n+ 1
2

0

(
Un+1
0 + Un

0

)
+ 1

2

M−1∑

m=1
w

n+ 1
2

m

(
Un+1
m + Un

m

)

+
1

4
w

n+ 1
2

M

(
Un+1

M + Un
M

)
]

+
Δr

4

[
(r

n+ 1
2

0 )2 − u
n+ 1

2
0

] (
Un+1
0 + Un

0

)

+
Δr

2

M−1∑

m=1

[
(r

n+ 1
2

m )2 − u
n+ 1

2
m

] (
Un+1
m + Un

m

)

+
Δr

4

[
(r

n+ 1
2

M )2 − u
n+ 1

2
M

] (
Un+1

M + Un
M

)
=

∂2V (tn+
1
2 )

∂T ∗2 .

(10.17)

Here we approximate U
n+1/2
m by 1

2 (U
n
m + Un+1

m ) for m = 0, 1, · · · ,M .
From the expression (10.16), we can have {U0

m}. Therefore, we can have the
following procedure for n = 0, 1, · · · , N − 1 successively. Suppose we already
have {Un

m}. Guessing4 λn+1/2, we can obtain {Un+1
m } by solving the system

consisting of Eqs. (10.14) and (10.15). Then, we check if Eq. (10.17) holds. If
not, we need to find a new guess by solving λn+1/2 from Eq. (10.17) or by other
iteration methods, and obtain new {Un+1

m } and check again; if it is, we find the
value λn+1/2. When this procedure is done for n = 0, 1, · · · , N−1 successively,
we find the values for λn+1/2, n = 0, 1, · · · , N − 1. Another condition that
can be used to determine λn+1/2 is condition (10.6). The advantage of using
condition (10.6) is to let the value of the zero-coupon bonds be exactly equal to
the data from the market. In this case, we have to design an iteration method
to find the next iterative value of λn+1/2. It is clear that if the problem (10.7)
needs to be replaced by the problem (10.12), the procedure above is almost
the same.

For the method based on the problem (5.47), in order to do one iteration
to determine λ(t), we need to integrate the partial differential equation n+ 1
times from tn+1 to t0. For the method based on the problem (10.7), in order
to do the same thing, we need to integrate the partial differential equation
only once from tn to tn+1. Therefore, we pay more attention to the method
based on the problem (10.7). The only complication is that the computation
based on the problem (10.7) involves the Dirac delta function. This requires
us to use more grid points in the r-direction. In order for a function λ(t)
to be used in practice, we have to check whether or not the computed zero-
coupon bond values are matched with the real market data well enough. If

4As the first guess, we can let λ1/2 = λ(0) and λn+1/2 = λn−1/2 for n �= 0.
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the formulation (5.47) is adopted, then such a condition is used directly when
λ(t) is determined. Thus, no further check is needed for this case. However,
when the formulation (10.7) is used, theoretically the computed zero-coupon
bond values should be consistent with the real market data if the condition
(10.6) or the condition (10.10) holds. Because there exists numerical error,
this fact will be true only if very large M is used. Thus between these two
methods, which has a better performance is not clear.

10.1.3 Numerical Results on Market Prices of Risk

In this subsection, we give two examples on numerical results of inverse prob-
lems and the only results obtained by the method of solving the problem
(10.7) are given. As an example, we take the following short-term interest
rate model:

dr = (r∗∗ − r)dt+ r(0.2− r)dX, rl = 0 ≤ r ≤ ru = 0.2,

where r∗∗ is a constant between rl and ru, and r∗∗ = 0.05345 in these examples
given here. This model satisfies conditions (5.45) and (5.46), so these partial
differential equation problems we are going to solve are well-posed.
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Fig. 10.1. The market price of risk λ(t)

Example 1. Suppose today’s bond prices are given by the exponential
function 100e−0.05345T∗

. According to this function, we can use the method
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Table 10.1. Comparison between given and computed bond prices

(Vb,g denotes given bond prices and Vb stands for computed bond prices)

T ∗ 0.5 1 2 3 5 7 10 15 20 25

Vb,g 97.36 94.80 89.86 85.18 76.55 68.79 58.60 44.85 34.335 26.283

Vb 97.36 94.80 89.86 85.18 76.55 68.79 58.60 44.85 34.333 26.279

given in the last subsection to find the market price of risk λ(t). In Fig. 10.1,
the function λ(t) is shown. As soon as we have the market price of risk, we can
compute the bond price by solving the bond equation. In Table 10.1, we list
both the numerical results and the values from the given function. From the
table, we see that the difference is on the third decimal place, which means
that the inverse problem has been solved quite accurately. In order to do this
computation, a 1, 000× 1, 000 mesh was used.
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Fig. 10.2. Prices of today’s bonds

Table 10.2. Comparison between market and computed bond prices

(Vb,m represents market bond prices and Vb stands for computed bond prices)

T ∗ 0.5 1 2 3 5 7 10 15 20 25

Vb,m 97.35 94.83 90.01 85.16 76.18 67.62 56.72 41.76 29.49 21.00

Vb 97.35 94.83 90.01 85.16 76.18 67.62 56.73 41.77 29.50 21.02
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Example 2. From the market, we obtained the data on the short-term
interest rate and the zero-coupon bond prices with maturities 0.5, 1, 2, 3, 5, 7,
10, 15, 20, and 25 years on November 30, 1995. Using the data, we generate a
bond price function by the cubic spline interpolation described in Sect. 6.1.1.
In Fig. 10.2, the data are given by “◦,” and the function is shown by a solid
curve. Using the bond price function, we find the market price of risk, which
is shown in Fig. 10.3. This function is not as smooth as the market price of
risk given in Fig. 10.1. From the condition (10.10), we see that λ(t) is closely
related to the second derivative of today’s bond curve. For this case, the second
derivative of bond prices is not smooth (see Fig. 10.4), so the market price of
risk has the shape shown in Fig. 10.3. Using the market price of risk, we can
compute the bond price by solving the bond equation. In Table 10.2, both
the computed bond prices and the bond prices on the market are listed. Their
difference is also very small, which means that the inverse problem has been
solved successfully even if the market data are used.

10.2 Numerical Results of One-Factor Models

In order to price interest rate derivatives, the market price of risk for the short-
term interest rate and today’s short-term interest rate r∗ must be given. In this
section, the market price of risk is given numerically and is based on the data
from November 30, 1995. Today’s short-term interest rate is assumed to take
the value of the short-term interest rate on that day, namely, r∗ = 0.05345.
Also, we suppose today’s time t to be zero.

First, let us briefly discuss how to price bond options. Suppose that we need
to find today’s price of a T -year option with an exercise price E on a N -year
bond that has a face value Z = 1 and a coupon rate k. Set Tb = T+N , and let
Vb(r, t;Tb) and V (r, t) be the prices of the bond and the option, respectively.
What we need to find is V (r∗, 0). In order to do this, we first need to find
Vb(r, T ;Tb) for r ∈ [rl, ru] by solving the problem (5.48):
⎧
⎪⎨

⎪⎩

∂Vb

∂t
+

1

2
w2 ∂

2Vb

∂r2
+ (u− λw)

∂Vb

∂r
− rVb + k = 0, rl ≤ r ≤ ru, t ≤ Tb,

Vb(r, Tb;Tb) = 1, rl ≤ r ≤ ru

from t = Tb to t = T < Tb. Based on the function Vb(r, T ;Tb), we then obtain
V (r, 0) by solving the problem (5.49):
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, rl ≤ r ≤ ru, t ≤ T,

V (r, T ) = max (Vb(r, T ;Tb)− E, 0) , rl ≤ r ≤ ru

from t = T to t = 0. When the market price of risk is given numeri-
cally, the problems (5.48) and (5.49) have to be solved numerically, and
the scheme (7.12) or a modified scheme (7.6) can be adopted. The modi-
fied scheme (7.6) is a scheme that is the same as the scheme (7.6) for any
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Table 10.3. Prices of bond options with E = 0.95, 1 and k = 0.055

E T\Tb − T 0.5 1 2 3 5

0.95 0.25 0.0502 0.0516 0.0536 0.0530 0.0515

0.95 0.50 0.0499 0.0514 0.0525 0.0519 0.0498

0.95 0.75 0.0495 0.0509 0.0512 0.0507 0.0478

0.95 1.00 0.0489 0.0500 0.0497 0.0494 0.0457

1.00 0.25 0.0011 0.0024 0.0044 0.0039 0.0026

1.00 0.50 0.0014 0.0029 0.0041 0.0037 0.0022

1.00 0.75 0.0017 0.0031 0.0036 0.0034 0.0016

1.00 1.00 0.0017 0.0029 0.0030 0.0029 0.0010
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Fig. 10.5. Prices of caps

interior point and the same as the scheme (7.12) for the boundary points. In
Table 10.3, the numerical results of the prices on 40 bond options are listed.
There, the exercise price E is equal to 0.95 and 1, and the bond pays coupons
continuously with a coupon rate k = 0.055. The expiries of the options are
0.25, 0.5, 0.75, and 1 year and the life spans of bonds are 0.5, 1, 2, 3, and 5
years.

Pricing a cap is done in the following way. Consider a N -year cap and
suppose that money is paid quarterly. As pointed out in Sect. 5.5, the cap is a
sum of 4N − 1 caplets in this case and the maturities of the bonds associated
with the 4N − 1 caplets are tk = k/4, k = 2, 3, · · · , 4N . Let us call the bond
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with maturity tk the kth bond, and its value is denoted by Vbk(r, t). In order
to have the value of the kth bond, we solve the problem (5.63):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vbk

∂t
+

1

2
w2 ∂

2Vbk

∂r2
+ (u− λw)

∂Vbk

∂r
− rVbk = 0, rl ≤ r ≤ ru,

tk−1 ≤ t ≤ tk,

Vbk(r, tk) = (1 + rc/4)Q, rl ≤ r ≤ ru.

After we have all the values of the bonds, we can obtain the total value of the
4N − 1 caplets by solving the problem (5.64):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vc

∂t
+

1

2
w2 ∂

2Vc

∂r2
+ (u− λw)

∂Vc

∂r
− rVc

+
4N∑

k=2

max (Q− Vbk(r, tk−1), 0) δ(t− tk−1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ t4N−1,

Vc(r, t4N−1) = 0, rl ≤ r ≤ ru.

The value Vc(r
∗, t∗) gives the premium of the cap.

The way to solve (5.63) and (5.64) numerically is similar to the way to
solve (5.48), namely, by using the scheme (7.12) or modified (7.6). The only
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difference is that in the problem (5.64) there exist the Dirac delta functions. In
this case, the treatment of the Dirac delta function is simple: after Vc(r, t

+
k−1)

is obtained, we should let Vc(r, t
−
k−1) = Vc(r, t

+
k−1) +max (Q− Vbk(r, tk−1), 0)

and then continue the computation by using the scheme (7.12) or modi-
fied (7.6). We take Q = 100, N = 5 years, and rc = 0, 0.002, 0.004, · · · , 0.2
and find these values of caps numerically.5 The values of caps as a function
of rc are plotted in Fig. 10.5. The curve resembles a price curve of a put op-
tion, that is, the price is a decreasing function of rc and changes rapidly near
rc = r∗ = 0.05345.

Table 10.4. Pairs of caps and floors with the same values

(Q = 100, N = 5 years, and the interest is paid quarterly)

rc rf Prices of caps or floors

0.05502 0.05466 0.8

0.05557 0.05422 0.7

0.05618 0.05370 0.6

0.05687 0.05310 0.5

0.05768 0.05242 0.4

0.05868 0.05160 0.3

0.05999 0.05055 0.2

0.06204 0.04899 0.1

The way to price floors is similar to the way to price caps. For the floor
rate rf ∈ [0, 0.2], the floor prices are shown in Fig. 10.6. Their parameters are
the same as the caps. The floor resembles a call option, that is, the price is
an increasing function of rf and changes rapidly near rf = r∗ = 0.05345. As
soon as we have the prices of a cap with a cap rate rc and a floor with a floor
rate rf , the difference between them is the price of a collar for the pair of rc
and rf . If the price of a cap is equal to the price of a floor, then the price of
the collar with this pair of rc and rf is zero. In Table 10.4, eight such pairs of
rc and rf are listed. That is, on November 30, 1995, the price of a collar with
one of these pairs of rc and rf should be zero. In Table 10.4, the corresponding
prices of caps and floors are also shown.

Now let us discuss how to price swaps and swaptions, including both Eu-
ropean and American swaptions. Let Vs(r, t; rs, T ) be the value of an N -year
swap with a swap rate rs at time t when it is initiated at time T , t ≥ T . Here,
the notation is a little different from the notation used in Chap. 5: the time
of the swap being initiated, T , is explicitly given in the notation as a param-
eter because when American swaptions are priced, many swaps with different
initial times are involved. As it is described in Sect. 5.5.2, the procedure of

5When these values of caps were computed, a cap was defined as a sum of 4N
caplets. For those results on floors, the situation is similar.
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determining European swaption price is divided into two steps. The first step
is to determine the value of swap with rse as the swap rate for all r ∈ [rl, ru],
Vs(r, t; rse, T ), and the second step is to obtain the payoff of swaption and to
find the value of swaption. In order to get Vs(r, t; rse, T ), we need to solve the
problem (5.61):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs

∂t
+

1

2
w2 ∂

2Vs

∂r2
+ (u− λw)

∂Vs

∂r
− rVs

−Qrse
2

2N∑

k=1

δ(t− T − k/2) +Qδ(t− T ) = 0,

rl ≤ r ≤ ru, T ≤ t ≤ T +N,

Vs(r, T +N) = −Q, rl ≤ r ≤ ru.

After we obtain Vs(r, T ; rse, T ), using

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) ,

we can get the payoff of the swaption and then in order to find the value of
swaption we need to solve the problem (5.62):
⎧
⎪⎪⎨

⎪⎪⎩

∂Vso

∂t
+

1

2
w2 ∂

2Vso

∂r2
+ (u− λw)

∂Vso

∂r
− rVso = 0, rl ≤ r ≤ ru, t ≤ T,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) , rl ≤ r ≤ ru

from t = T to t = 0. Vso(r
∗, 0) gives today’s value of the European swaption.

Table 10.5. Prices of European and American swaptions with Q = 100

(The exercise swap rates rse are 0.05335, 0.05423, 0.05506, 0.05712
for N = 2, 3, 5, 10, respectively, which are the swap rates computed
by using the mode based on the market data of November 30, 1995)

T\N 2 3 5 10

0.5 0.167 0.196 0.269 0.278

European 1 0.276 0.288 0.499 0.490

2 0.492 0.548 1.083 1.021

0.5 0.213 0.248 0.331 0.342

American 1 0.450 0.474 0.731 0.722

2 0.678 0.753 1.338 1.273

For an American swaption, its value Vso(r, t) at any time t ∈ [0, T ] must
be greater than or equal to max (Vs(r, t; rse, t), 0):



10.3 Pricing Derivatives with Multi-Factor Models 623

Vso(r, t) ≥ max (Vs(r, t; rse, t), 0) . (10.18)

Therefore, in order to obtain Vso(r, t), we need to solve the following linear
complementarity problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min

(

−∂Vso

∂t
− 1

2
w2 ∂

2Vso

∂r2
− (u− λw)

∂Vso

∂r
+ rVso,

Vso(r, t)−max (Vs(r, t; rse, t), 0)

)

= 0,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) ,

(10.19)

where t ∈ [0, T ] and r ∈ [rl, ru]. In order to have Vs(r, t; rse, t), we need
to solve (5.61) with T = t from t + N to t when Vso(r, t) for time t needs
to be determined. Of course, this LC problem can also be formulated as a
free-boundary problem. Readers are asked to write down the free-boundary
problem for this case as an exercise.

The problems (5.62) and (10.19) can be solved by the scheme (7.12) or
modified (7.6). In Table 10.5, we list some numerical results on European
and American swaptions. The exercise swap rates rse are 0.05335, 0.05423,
0.05506, 0.05712 for N = 2, 3, 5, 10, respectively. The other parameters are
given in the table.

10.3 Pricing Derivatives with Multi-Factor Models

10.3.1 Determining Models from the Market Data

In Sect. 5.6, a three-factor interest rate model was proposed. In this section,
we will discuss implicit finite-difference methods for the three-factor interest
rate derivative problems and some other related problems. In order to use that
model to price an interest rate derivative, we need to know how to find the
payoff of the derivative and to determine those coefficients in the partial differ-
ential equation (5.83). In this subsection, we will discuss these two problems,
and the next subsection is devoted to implicit finite-difference methods.

Suppose we want to price a half-year option on five-year swaps with an
exercise swap rate rse. Assume the day we want to price the swaption (the
option on swaps) to be denoted as t = 0. Thus, according to the notation
given in Sect. 5.5.2, T = 0.5 and N = 5.

First, let us discuss how to determine the final value. On the market, the
prices of 3-month, 6-month, 1-year, 2-year, 3-year and 5-year zero-coupon
bonds are given every day. Set

T ∗
1 = 0.25, T ∗

2 = 0.5, T ∗
3 = 1, T ∗

4 = 2 , T ∗
5 = 3, and T ∗

6 = 5,

let Zi denote the price of the bond with maturity T ∗
i , and define
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Si = Zi/T
∗
i , i = 1, 2, · · · , 6.

Suppose we have these values on a period of L days and let Si,l stand for
the value of Si at the lth day, l = 1, 2, · · · , L. By b2i and bibjρi,j , we denote
the variance of Si and the covariance between Si and Sj , respectively. From
statistics, we know that b2i and ρi,j can be estimated by

b2i =
1

L− 1

L∑

l=1

(

Si,l − 1

L

L∑

l=1

Si,l

)2

=
1

L− 1

⎡

⎣
L∑

l=1

(Si,l)
2 − 1

L

(
L∑

l=1

Si,l

)2
⎤

⎦

and

ρij =

L∑

l=1

(

Si,l − 1

L

L∑

l=1

Si,l

)(

Sj,l − 1

L

L∑

l=1

Sj,l

)

√
√
√
√

[
L∑

l=1

(

Si,l − 1

L

L∑

l=1

Si,l

)2

×
L∑

l=1

(

Sj,l − 1

L

L∑

l=1

Sj,l

)2
]

=

L∑

l=1

(Si,lSj,l)− 1

L

(
L∑

l=1

Si,l ×
L∑

l=1

Sj,l

)

√
√
√
√

[
L∑

l=1

(Si,l)
2 − 1

L

(
L∑

l=1

Si,l

)2
][

L∑

l=1

(Sj,l)
2 − 1

L

(
L∑

l=1

Sj,l

)2
] .

Using the data for the period from January 4, 1982, to February 15, 2002, we
obtain

B =

⎡

⎢
⎢
⎢
⎣

b21 b1b2ρ1,2 · · · b1b6ρ1,6
b1b2ρ1,2 b22 · · · b2b6ρ2,6

...
...

. . .
...

b1b6ρ1,6 b2b6ρ2,6 · · · b26

⎤

⎥
⎥
⎥
⎦

= 10−3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4644 0.4758 0.4637 0.4224 0.3776 0.2993
0.4758 0.4916 0.4818 0.4413 0.3956 0.3145
0.4637 0.4818 0.4760 0.4392 0.3952 0.3161
0.4224 0.4413 0.4392 0.4109 0.3724 0.3014
0.3776 0.3956 0.3952 0.3724 0.3392 0.2766
0.2993 0.3145 0.3161 0.3014 0.2766 0.2289

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By the QR method given in Sect. 6.2.4 or other methods, we can find the
eigenvalues and the unit eigenvectors of B. As soon as we have them, B can
be rewritten as

B = ATCA,
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where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4366 0.4533 0.4479 0.4151 0.3745 0.3011
−0.5426 −0.3546 −0.0918 0.2650 0.4190 0.5706
−0.5871 0.1231 0.5461 0.2779 −0.0121 −0.5143
−0.3980 0.6808 0.0016 −0.4305 −0.1994 0.3912
0.1082 −0.4337 0.7019 −0.4366 −0.1869 0.2864

−0.0031 0.0448 0.0113 −0.5516 0.7806 −0.2902

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

C = 10−3 × diag (2.366, 0.04109, 0.003240,

3.953× 10−4, 1.996× 10−4, 4.498× 10−5).

Because the last three components of C are very small compared with the first
three components, the six random variables, S1, S2, · · · , S6, almost depend
on only three variables. Because

∣
∣
∣
∣
∣
∣

a1,1 a1,4 a1,6
a2,1 a2,4 a2,6
a3,1 a3,4 a3,6

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

0.4366 0.4151 0.3011
−0.5426 0.2650 0.5706
−0.5871 0.2779 −0.5143

∣
∣
∣
∣
∣
∣
≈ −0.3822 �= 0,

we can choose S1, S4, and S6 as the three independent components, which will
be denoted by Si1 , Si2 , and Si3 in what follows. From Sect. 5.6.2, we know
that the values of Si, i �= i1, i2, and i3, are uniquely determined by Eq. (5.67)
for a given set of Si1 , Si2 , and Si3 when A is found and S∗

i , i = 1, 2, · · · , 6,
are specified.6 Based on the six values of S1, S2, · · · , S6, a zero-coupon bond
curve with a maximum maturity T ∗

max = 5 can be found by using the cubic
spline interpolation. Assume that for the period t ∈ [0, T ] = [0, 0.5], S∗

i are
constants, for example, are equal to the values of zero-coupon bonds at t = 0.
Thus, the possible zero-coupon bond curves for any t ∈ [0, T ] are the same,
i.e.,

Z̄ (T ∗;Zi1 , Zi2 , Zi3 , t) = Z̄ (T ∗;Zi1 , Zi2 , Zi3 , 0) .

Here in order to indicate the dependence of the zero-coupon bond curves on
Zi1 , Zi2 , Zi3 , instead of Z̄ (T ∗; t), we use Z̄ (T ∗;Zi1 , Zi2 , Zi3 , t) . As soon as we
have a zero-coupon bond curve, using the expression (5.55) with rs = rse:

Q

[

1− Z (T ;T +N)− rse
2

2N∑

k=1

Z (T ;T + k/2)

]

,

6In this way, for any day in the period from January 4, 1982, to February 15,
2002, we can obtain the theoretical values of S2, S3, and S5 by giving the market
data of S1, S4, and S6. That is, from the market prices of 3-month, 2-year, and
5-year zero-coupon bonds we can obtain the theoretical prices of 6-month, 1-year,
and 3-year zero-coupon bonds for any day. In Fig. 10.7 we compare the theoretical
prices of 6-month, 1-year, and 3-year zero-coupon bonds with their market data for
any day in the period from January 4, 1982, to February 15, 2002. The figure shows
that the theoretical prices and the market data are very close to each other.
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Fig. 10.7. Comparison between the market data and the theoretical values of zero-
coupon bonds

we can determine the value of a swap with an exercise rate rse. Here, Q
is the notional principal and Z(T ;T + k/2) = Z̄(k/2;Zi1 , Zi2 , Zi3 , T ) =
Z̄(k/2;Zi1 , Zi2 , Zi3 , 0). Therefore, the final value of a swaption is

Qmax

(

1− Z̄ (N ;Zi1 , Zi2 , Zi3 , 0)−
rse
2

2N∑

k=1

Z̄ (k/2;Zi1 , Zi2 , Zi3 , 0) , 0

)

.

(10.20)

Before discussing how to determine the coefficients in the partial differen-
tial equation, we would like to give some information about how these zero-
coupon bond curves generated above are close to the real zero-coupon bond
curves. Suppose that one day, the prices of zero-coupon bonds are

⎧
⎨

⎩

Z1 = 0.9811, Z2 = 0.9559, Z3 = 0.9047,

Z4 = 0.7979, Z5 = 0.7068, and Z6 = 0.5475,
(10.21)

which correspond to the following interest rates:
⎧
⎨

⎩

r1 = 0.0776, r2 = 0.0923, r3 = 0.1027,

r4 = 0.1161, r5 = 0.1191, and r6 = 0.1242.
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Here, ri is associated with Zi by the following expression:

Zi = (1 + ri/2)
−2Ni ,

where Ni is the maturity of the ith zero-coupon bond. From this set of data,
we can determine a class of zero-coupon bond curves with Zi1 , Zi2 , Zi3 as
parameters. For any day in the period from January 4, 1982, to February 15,
2002, we take the values of Zi1 , Zi2 , Zi3 as input and find a zero-coupon bond
curve from the class. From the zero-coupon bond curve, we obtain the values of
Zi, i �= i1, i2, and i3, and the differences between the values determined from
the curve and the values from the original market data. We do this for every
day. The average value of the differences divided by (1 − Zi), i �= i1, i2, and
i3, is 0.005. The same thing to the swap rate and to the value of the swaption
on a 5-year swap with rse = 0.1225 is also done. The maximum difference
between the swap rates from the market curve and the model curve is 0.0004
(4 basis points), and the average difference is 0.00008 (0.8 basis points). The
average error of the swaption value is 0.02 if the notional principal is 100.
Therefore, we may conclude that these zero-coupon bond curves reflect the
market situation.

Now let us discuss how to determine the coefficients in the partial differen-
tial equation. Suppose that derivative securities depend on Zi1 , Zi2 , Zi3 , and t.
Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Zi1 − Zi1,l

1− Zi1,l
,

ξ2 =
Zi2 − Zi2,l

Zi1 − Zi2,l
,

ξ3 =
Zi3 − Zi3,l

Zi2 − Zi3,l
,

(10.22)

where Zi1,l, Zi2,l, and Zi3,l are minimums of Zi1 , Zi2 , Zi3 and we set Zi1,l =
0.9597, Zi2,l = 0.7209, and Zi3,l = 0.4332, which are a little less than the ob-
served minimums 0.9634, 0.7463, and 0.4847, respectively. From Sect. 5.6.3,
we know that the value of a derivative security, V (ξ1, ξ2, ξ3, t), satisfies the
problem (5.83), where coefficients depends on r, σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3 be-
sides ξ1, ξ2, and ξ3. Therefore, in order to use that equation, we have to know
r, σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3. It is clear that r can be determined by the
slope of zero-coupon bond curves at the left end, i.e.,

r (ξ1, ξ2, ξ3, t) = − ∂Z̄

∂T ∗ (0;Zi1 , Zi2 , Zi3 , 0) , (10.23)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Zi1 = Zi1,l + ξ1 (1− Zi1,l) ,

Zi2 = Zi2,l + ξ2 [Zi1,l + ξ1 (1− Zi1,l)− Zi2,l] ,

Zi3 = Zi3,l + ξ3 {Zi2,l + ξ2 [Zi1,l + ξ1 (1− Zi1,l)− Zi2,l]− Zi3,l} .

(10.24)
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As we know, for σ̃1, σ̃2, σ̃3 we need to require the condition (5.85):

⎧
⎪⎨

⎪⎩

σ̃1 (0, ξ2, ξ3, t) = σ̃1 (1, ξ2, ξ3, t) = 0,

σ̃2 (ξ1, 0, ξ3, t) = σ̃2 (ξ1, 1, ξ3, t) = 0,

σ̃3 (ξ1, ξ2, 0, t) = σ̃3 (ξ1, ξ2, 1, t) = 0.

Let us assume σ̃i to be in the form

σ̃i (ξ1, ξ2, ξ3, t) = σ̃i (ξi) = σ̃i,0
1− (1− 2ξi)

2

1− pi (1− 2ξi)
2 , i = 1, 2, 3, (10.25)

where σ̃i,0 and pi are positive constants, and pi ∈ (0, 1). It is clear that in
this case, condition (5.85) is fulfilled. On each day, we have the values of
Zi1 , Zi2 , Zi3 . Because ξ1, ξ2, ξ3 are defined by the formula (10.22), we can also
have the values of ξ1, ξ2, ξ3 every day. Therefore, we can find σ̃i (ξi) from the
data on the market using the method described in Sect. 6.3.2 with

g (ξi) =
1− (1− 2ξi)

2

1− pi (1− 2ξi)
2 and N = 0.

For ρ̃1,2, ρ̃1,3, and ρ̃2,3, there is no requirement. We assume that they are
constant and that the value can also be obtained using the method described
in Sect. 6.3.2.

Taking p1 = p2 = p3 = 0.8 and using the data on the market for the period
between January 4, 1982, and February 15, 2002, we obtain

σ̃1,0 = 0.09733, σ̃2,0 = 0.08622, σ̃3,0 = 0.08148

and
ρ̃1,2 = 0.5682, ρ̃1,3 = 0.4996, ρ̃2,3 = 0.8585.

10.3.2 Numerical Methods and Results

From Sect. 5.6, we know that for a European swaption, V (ξ1, ξ2, ξ3, t) satisfies
the problem (5.83):

⎧
⎪⎨

⎪⎩

∂V

∂t
+ L3ξV = 0 on Ω̃ × [0, T ],

V (ξ1, ξ2, ξ3, T ) = VT (Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3)) on Ω̃,

where Ω̃ is the domain [0, 1] × [0, 1] × [0, 1] in the (ξ1, ξ2, ξ3)-space, L3ξ is
defined by

L3ξ =
1

2
σ̃2
1

∂2

∂ξ21
+

1

2
σ̃2
2

∂2

∂ξ22
+

1

2
σ̃2
3

∂2

∂ξ23
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+σ̃1σ̃2ρ̃1,2
∂2

∂ξ1∂ξ2
+ σ̃1σ̃3ρ̃1,3

∂2

∂ξ1∂ξ3
+ σ̃2σ̃3ρ̃2,3

∂2

∂ξ2∂ξ3

+b1
∂

∂ξ1
+ b2

∂

∂ξ2
+ b3

∂

∂ξ3
− r

and Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3) are given by expression (10.24). For b1,
b2, and b3 we have expression (5.86):
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
rZi1

1− Zi1,l
,

b2 =
r (Zi2 − Zi1ξ2)

Zi1 − Zi2,l
− σ̃1σ̃2ρ̃1,2 (1− Zi1,l)

Zi1 − Zi2,l
,

b3 =
r (Zi3 − Zi2ξ3)

Zi2 − Zi3,l
− σ̃1σ̃3ρ̃1,3ξ2 (1− Zi1,l)

Zi2 − Zi3,l
− σ̃2σ̃3ρ̃2,3 (Zi1 − Zi2,l)

Zi2 − Zi3,l

and r is given by the formula (10.23).
Let

τ = T − t and V (ξ1, ξ2, ξ3, τ) = V (ξ1, ξ2, ξ3, T − τ),

the above problem becomes
⎧
⎪⎨

⎪⎩

∂V

∂τ
= L3ξV on Ω̃ × [0, T ],

V (ξ1, ξ2, ξ3, 0) = VT (Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3)) on Ω̃.

(10.26)

In the last subsection, we discussed how to determine the final value
VT (Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3)) for a swaption, which is given by the
expression (10.20), and find r, σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3, Zi1,l, Zi2,l, and
Zi3,l from the market. Therefore, we have everything we need in order to
solve (10.26) numerically.

Suppose that M , L, I, and N are given integers. Let Δξ1 = 1/M , Δξ2 =
1/L, Δξ3 = 1/I, and Δτ = T/N and un

m,l,i be an approximate value of V
at ξ1 = mΔξ1, ξ2 = lΔξ2, ξ3 = iΔξ3, and τ = nΔτ . Here, m = 0, 1, · · · ,M ,
l = 0, 1, · · · , L, i = 0, 1, · · · , I and n = 0, 1, · · · , N .

The partial differential equation in the problem (10.26) is discretized at
τ = (n + 1/2)Δτ , n = 0, 1, · · · , N − 1. At any point, the partial derivative
with respect to t is discretized by the central difference:

∂V
n+1/2

m,l,i

∂τ
≈ un+1

m,l,i − un
m,l,i

Δτ
.

At any interior point, in Ω̃, first- and second-order partial derivatives with
respect to ξi are approximated by central schemes. For example,

∂V
n+1/2

m,l,i

∂ξ1
≈ 1

2

(
un+1
m+1,l,i − un+1

m−1,l,i

2Δξ1
+

un
m+1,l,i − un

m−1,l,i

2Δξ1

)
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and

∂2V
n+1/2

m,l,i

∂ξ21
≈ 1

2

(
un+1
m+1,l,i − 2un+1

m,l,i + un+1
m−1,l,i

Δξ21
+
un
m+1,l,i − 2un

m,l,i + un
m−1,l,i

Δξ21

)

.

Mixed second-order partial derivatives are discretized by the central finite-
difference for mixed partial derivatives. For example,

∂2V
n+1/2

m,l,i

∂ξ1∂ξ2
≈ 1

2

(
un+1
m+1,l+1,i − un+1

m+1,l−1,i − un+1
m−1,l+1,i + un+1

m−1,l−1,i

4Δξ1Δξ2

+
un
m+1,l+1,i − un

m+1,l−1,i − un
m−1,l+1,i + un

m−1,l−1,i

4Δξ1Δξ2

)

.

At the boundary ξ1 = 0, because σ̃1 = 0, only
∂

∂ξ1
,

∂

∂ξ2
,

∂

∂ξ3
,
∂2

∂ξ22
,
∂2

∂ξ23
, and

∂2

∂ξ2∂ξ3
appear in the partial differential equation. In this case, we can always

deal with
∂

∂ξ1
by the second-order one-sided scheme:

∂V
n+1/2

0,l,i

∂ξ1
≈ 1

2

(
−un+1

2,l,i + 4un+1
1,l,i − 3un+1

0,l,i

2Δξ1
+

−un
2,l,i + 4un

1,l,i − 3un
0,l,i

2Δξ1

)

because of b1 ≥ 0 at ξ1 = 0. If ξ1 = 0, ξ2 �= 0, ξ2 �= 1, ξ3 �= 0, and ξ3 �= 1, then
∂

∂ξ2
,

∂

∂ξ3
,
∂2

∂ξ22
,
∂2

∂ξ23
, and

∂2

∂ξ2∂ξ3
can still be discretized by central schemes.

If ξ1 = 0, ξ3 �= 0, ξ3 �= 1, and ξ2 = 0 or ξ2 = 1, then both σ̃1 and σ̃2 are

equal to zero and only
∂

∂ξ1
,

∂

∂ξ2
,

∂

∂ξ3
, and

∂2

∂ξ23
are left. The treatment of

∂

∂ξ1
,

∂

∂ξ3
, and

∂2

∂ξ23
is unchanged, and

∂

∂ξ2
is approximated by the second-

order one-sided differences. For example, at ξ2 = 1, we can use the following
approximation:

∂V
n+1/2

m,L,i

∂ξ2
≈ 1

2

(
3un+1

m,L,i − 4un+1
m,L−1,i + un+1

m,L−2,i

2Δξ2

+
3un

m,L,i − 4un
m,L−1,i + un

m,L−2,i

2Δξ2

)

because of b2 ≤ 0 at ξ2 = 1. If ξ1 = 0, ξ2 = 0 or 1, and ξ3 = 0 or 1, then

σ̃1 = σ̃2 = σ̃3 = 0 and only
∂

∂ξ1
,

∂

∂ξ2
, and

∂

∂ξ3
are left. In this case, all of

them need to be dealt with by proper one-sided second-order differences.
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For the other boundaries, the situations are similar. All the approximations
have a second-order accuracy. In order for the truncation error of the finite-
difference equations to have a second-order accuracy, all the coefficients need
to take values at the point: ξ1 = mΔξ1, ξ2 = lΔξ2, ξ3 = iΔξ3, and τ =
(n+ 1/2)Δτ , and the term rV should be approximated by

1

2

(
rn+1
m,l,iu

n+1
m,l,i + rnm,l,iu

n
m,l,i

)
.

The number of the finite-difference equations for the time level τ =
(n + 1/2)Δτ is (M + 1) × (L + 1) × (I + 1). If all the values un

m,l,i are

known, the number of unknowns un+1
m,l,i is equal to the number of the equa-

tions. Thus, un+1
m,l,i can be determined by the system. It is clear that this

system is linear. This system is quite large and usually solved by iteration
methods, for example, by successive over relaxation described in Sect. 6.2.2
because iteration methods need less memory space and are usually more effi-
cient than direct methods for this case. The initial condition V (ξ1, ξ2, ξ3, 0) =
VT (Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3)) gives u

0
m,l,i. Thus, the computation can

start with n = 0 and continue for n = 1, 2, · · · , N − 1 successively. Finally, we
obtain uN

m,l,i, the price of the derivative security at time t = 0.
This problem can also be solved by explicit schemes. If the partial differen-

tial equation is discretized at τ = nΔτ and the time derivative is approximated
by the forward finite-difference, then we have an explicit scheme. In this case,
Δτ should be small enough so that the stability of computation is guaranteed.

For American swaptions, the value must be greater than or equal to the
constraint. In the model here, the value of the constraint does not depend
on t and equals to condition (10.20). Therefore, for American swaptions, the
method needs to be modified in the following way. At each time step, we
should choose the maximum between the computed value by the PDE and
the constraint (10.20) as the value of an American swaption.

Consider an American swaption with rse = 0.1225, T = 0.5, and N = 5.
We want to have the price of the swaption today. Suppose that the prices
of zero-coupon bonds today are given by the expression (10.21), then we can
use the numerical methods described here to find the price of the American
swaption value. Its value today for ξ1 = 0.25, 0.5, 0.75, 0 ≤ ξ2 ≤ 1, and
0 ≤ ξ3 ≤ 1 is shown by the right three graphs in Fig. 10.8. There, the circles are
the approximate locations of the free boundary. The final value is also plotted
on the left-hand side for comparison. We can see that the derivative of the
final value is discontinuous and that for the solution at t = 0 it is continuous.
The result shown in this figure is obtained by the implicit scheme. When for
σ̃i, i = 1, 2, 3 and ρ̃i,j , i, j = 1, 2, 3, we use more complicated expressions,
the procedure of evaluating the interest rate derivatives is the same. For the
details of the procedure and more results, see [96].
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Problems

Table 10.6. Problems and sections

Problems Sections Problems Sections Problems Sections

1–4 10.1 5–10 10.2 11–13 10.3

1. Define

Lr =
∂

∂r

[

f1(r, t)
∂

∂r

]

− f2(r, t)
∂

∂r
+ f3(r, t).

(a) Find an operator L∗
r such that

∫ ru

rl

LrV Udr =

∫ ru

rl

L∗
rU V dr +

[

f1

(

U
∂V

∂r
− V

∂U

∂r

)

− f2V U

]∣
∣
∣
∣

ru

rl

.

This operator is called the conjugate operator of Lr.
(b) Suppose

∂V

∂t
= −LrV,

∂U

∂t
= L∗

rU, f1(rl, t) = f1(ru, t) = 0,

and
U(rl, t) = U(ru, t) = 0.

Show ∫ ru

rl

U(r, t)V (r, t)dr = constant.

(c) Let U(r, 0) = δ(r − r∗) and V (r, T ∗) = 1. Prove that there is the
following relation:

V (r∗, 0;T ∗) =
∫ ru

rl

U(r, T ∗)dr.

Here V (r, t;T ∗) stands for the solution V (r, t) with V (r, T ∗) = 1.

2. Assume that U(r, t) is the solution of the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂U

∂t
= L∗

rU, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗
max,

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru,

U(rl, t) = U(ru, t) = 0, 0 ≤ t ≤ T ∗
max,

where

L∗
r =

∂

∂r

(

f1(r, t)
∂

∂r

)

+
∂

∂r
(f2(r, t))− r, f1(ru, t) = f1(rl, t) = 0.
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(a) Define V (r∗, 0;T ∗) =

∫ ru

rl

U(r, T ∗)dr, where T ∗ ∈ [0, T ∗
max]. Show

that we can have such an expression:

∂2V (r∗, 0;T ∗)
∂T ∗2 =

∫ ru

rl

F (f1, f2, r)Udr.

and find the concrete expression of F (f1, f2, r).
(b) Show that the solution of the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2V (r∗, 0;T ∗)
∂T ∗2 =

∫ ru

rl

F (f1, f2, r)Udr,

∂V (r∗, 0; 0)
∂T ∗ = −r∗,

V (r∗, 0; 0) = 1.

is V (r∗, 0;T ∗) =
∫ ru

rl

U(r, T ∗)dr.

3. *Consider the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
=

∂

∂r

[

f1(r, t)
∂U

∂r

]

+
∂

∂r

[
f2
(
r, t, λ(t)

√
f1
)
U
]
+ f3(r, t)U,

rl ≤ r ≤ ru, 0 ≤ t,

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru,

U(rl, t) = 0, 0 ≤ t,

U(ru, t) = 0, 0 ≤ t,

where
f1 (r, t) ≥ 0 and f1 (rl, t) = f1 (ru, t) = 0,

and

f2

(
rl, t, λ(t)

√
f1(rl, t)

)
< 0, f2

(
ru, t, λ(t)

√
f1(ru, t)

)
> 0.

Here, λ(t) is a unknown function with a known λ(0). We want to find such
a function λ(t) that

∫ ru

rl

U(r, t)dr = f(t) for any t ∈ [0, T ∗
max],

where f(t) is a given function with f(0) = 1. Design a second-order nu-
merical method for this purpose.

4. *Design a numerical method for finding the market price of risk by using
the bond equation directly and taking the prices of today’s zero-coupon
bonds with various maturities as input.
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5. Design an implicit second-order accurate finite-difference method based
on the bond equation to solve the European bond option problem.

6. Design an explicit first-order accurate finite-difference method based on
the bond equation to solve a cap problem.

7. What is the difference between the numerical methods for a cap problem
and for a floor problem if the bond equation is adopted.

8. Design an implicit second-order accurate finite-difference method based
on the bond equation to solve the European swaption problem.

9. What is the difference between the numerical methods for the European
swaption problem and for the American swaption problem formulated as
a linear complementarity problem if the bond equation is adopted.

10. Assume that the prices of American swaptions are the solutions of the
following linear complementarity problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min

(

−∂Vso

∂t
− 1

2
w2 ∂

2Vso

∂r2
− (u− λw)

∂Vso

∂r
+ rVso,

Vso(r, t)−max (Vs(r, t; rse, t), 0)

)

= 0,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) ,

where t ∈ [0, T ] and r ∈ [rl, ru] and Vs(r, t; rse, t) is the price of the swap.
Suppose that the price of the swap has been found and assume that there
is only one free boundary. Formulate this problem as a free-boundary
problem and briefly describe how to solve the free-boundary problem by
an implicit second-order finite-difference method.

11. *Briefly describe how to solve a European swaption problem numerically
by using the three-factor interest rate model.

12. Briefly describe how to determine the value of a bond option by using the
three-factor interest rate model for both European and American cases.

13. Briefly describe how to determine the value of a cap by using the three-
factor interest rate model.

Projects

General Requirements

(A) Submit a code or codes in C or C++ that will work on a computer
the instructor can get access to. At the beginning of the code, write
down the name of the student and indicate on which computer it
works and the procedure to make it work.

(B) Each code should use an input file to specify all the problem param-
eters and the computational parameters for each computation and
an output file to store all the results. In an output file, the name
of the student, all the problem parameters, and the computational
parameters should be given, so that one can know what the results
are and how they were obtained. The input file should be submitted
with the code.
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(C) For each case, two results are required. One result is on a 20 × 24
mesh, and the accuracy of the other result will be specified individ-
ually. (The error of the solution on a 20 × 24 mesh might be quite
large.)

(D) Submit results in form of tables. When a result is given, always
provide the problem parameters and the computational parameters.

1. Implicit Method (7.6) with Modification at the Boundaries
for European bond Options and Swaptions. Suppose

dr = (0.05345− r)dt+ r(0.2− r)dX, rl = 0 ≤ r ≤ ru = 0.2

and λ(t) has been found and is given as a function in C. Also, assume
that today’s short-term interest rate is 0.05345. Write a code to calculate
European bond options and a code to calculate European swaptions.
• For European bond options, give results for the case: E = 0.95, 1,

k = 0.055, T = 0.25, 0.5, and Tb − T = 1, 2. The requirement on the
accuracy of the other result is 0.0001, and the mesh used should be as
coarse as possible.

• For swaptions, give the results for the cases: Q = 100, N = 5, 10,
T = 0.5, 1, 2, rse = 0.05507 for N = 5, and rse = 0.05766 for N = 10.
The requirement on the accuracy of the other result is 0.001, and the
mesh used should be as coarse as possible.
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