
Springer Finance

Derivative  
Securities and 
Difference Methods

You-lan Zhu
Xiaonan Wu
I-Liang Chern
Zhi-zhong Sun

Second Edition



Springer Finance

Editorial Board
Marco Avellaneda
Giovanni Barone-Adesi
Mark Broadie
Mark H.A. Davis
Claudia Klüppelberg
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Preface to the Second Edition

During the last 9 years, this textbook has been used for financial mathematics
courses in M.S. or Ph.D. degree programs. During teaching, some description
has been improved, some new material has been added, and many new exercise
problems have been provided. Based on these materials accumulated, many
changes are made in the second edition. Major changes include:

1. The original chapter of Basic Options has been divided into two chapters:
European Style Derivatives and American Style Derivatives. Thus the
original Chaps. 3 and 4 become Chaps. 4 and 5. In the chapter of Euro-
pean Style Derivatives, immediately following the derivation of the Black–
Scholes equation, the description of deriving partial differential equations
for general derivative securities is given, including derivatives depending
on random variables which do not represent prices or are not prices but
known functions of prices. In that chapter, for two-dimensional case, the
solution-uniqueness of final value problem of degenerate parabolic equa-
tions is proved when the reversion conditions are satisfied. Thus a clear
picture for the formulation of such problems is provided.

2. The original chapter of Basic Numerical Methods is split into two chapters:
Basic Numerical Methods and Finite-Difference Methods and the origi-
nal Chaps. 6–8 becomes Chaps. 8–10. In the chapter of Finite-Difference
Methods, strict stability analysis for a popular two-dimensional scheme
for derivative securities is added. The proof of solution-uniqueness and
the strict stability analysis make this book also suitable to the Ph.D. stu-
dents who wants to work on numerical methods on partial differential
equations for derivative securities as the textbook of main courses.

3. Besides the methods of pricing a variety of derivative securities in the
first edition, for two cases, the details of the methods are added into
the second edition. Give the details of pricing Asian options in Chap. 8
because of the importance of the Asian options in practice. The material
provided can let readers know how to price such options with discrete
samplings, for example, daily, weekly, or monthly, and write a code for
such a purpose. A very good approximate expression of the cumulative
distribution for bivariate standard normal distribution has been added in

vii



viii Preface to the Second Edition

the second edition, and in the projects of Chap. 6 readers are asked to
write a C++ function on this expression. Using this function, the price of
options on two assets with the same exercise prices can be calculated. In
Chap. 7, a two-dimensional finite-difference scheme is added, which is easy
to perform and can be used to calculate the prices of options on two assets.
Thus the tools for pricing options on two assets have been provided.

4. Number of exercise problems increases to more than 250 in this edition
from 170 in the first edition. These problems are very helpful for readers
to understand the material in this book.

5. This book can be used for financial mathematics courses with different
levels. In this edition, for those sections/subsections suitable only to a
course with advanced level, we put † in the front of the section/subsection
name, and for those sections/subsections suitable only to a course with
Ph.D. degree level, we put ‡ in the front of the section/subsection name.
At the beginning of most problem sections, we give a table1 showing which
problem is related to which section/subsection. For example, if Problems
1–4 of Chap. 2 are related to Sect. 2.1.12, then in the table at the begin-
ning of Problem Section in Chap. 2, 1–4 and Sect. 2.1.1 will appear in a
column of Problems and in the closely right-hand column of Subsections,
respectively, and they are on the same line. We hope that these might give
the user of this book some help.

Besides these major changes, small changes are done throughout the entire
book.

As it has been pointed out in Preface to the first edition, this book can
be used as a textbook for two courses as a sequence. In the first course, the
subject “Partial Differential Equations in Finance” is taught by using the
materials in Part I. The second one is a course on “Numerical Methods for
Derivative Securities” based on Part II of this book. The following materials
are basic and more important:

• Sects. 1.1–1.2;
• Sects. 2.1–2.3, 2.5–2.6;
• Sects. 3.1–3.2, 3.3.1–3.3.3;
• Sects. 4.1, 4.2.1, 4.3.1–4.3.4, 4.4.1–4.4.2;
• Sects. 5.1–5.2, 5.6–5.7;
• Sects. 6.1.1–6.1.2, 6.2.1–6.2.2;
• Sects. 7.1, 7.2.1, 7.3;
• Sects. 8.1.1–8.1.3, 8.1.5, 8.2.1, 8.2.3;
• Sects. 9.1.1, 9.2.1, 9.2.3, 9.3.2;
• Sect. 10.3.

1Here a table is referred to Table 2.1 of Chapter 2, Table 3.1 of Chapter 3, . . . ,
or Table 10.6 of Chapter 10.

2In this book, we adopt the following notation: Sect. x.x is the abbreviation of
Section x.x and Sect. x.x.x is the abbreviation of Subsection x.x.x.



Preface to the Second Edition ix

These materials can be taught in one semester. Thus, if only one course is
offered, this book can also be used.

During the procedure of revising the book, we received helps from many
persons. Here we would like to express our great thanks to them. Special
thanks should go to graduate students Qiang Shi, who provides the expression
of standard deviation of the interest model given in this book, and Guanghua
Gao, who computes the results of options on two assets. We also would like
to express our thanks to Achi Dosanjh, the editor of this book, whose many
suggestions have greatly improved the quality of the book.

Charlotte, NC You-lan Zhu
Kowloon, Hong Kong Xiaonan Wu
Taipei, Taiwan I-Liang Chern
Nanjing, China Zhi-zhong Sun





Preface to the First Edition

In the past three decades, great progress has been made in the theory and prac-
tice of financial derivative securities. Now huge volumes of financial derivative
securities are traded on the market every day. This causes a big demand for
experts who know how to price financial derivative securities. This book is
designed as a textbook for graduate students in a mathematical finance pro-
gram and as a reference book for the people who already work in this field.
We hope that a person who has studied this book and who knows how to
write codes for engineering computation can handle the business of providing
efficient derivative-pricing codes. In order for this book to be used by various
people, the prerequisites to study the majority of this book are multivariable
calculus, linear algebra, and basic probability and statistics.

In this book, the determination of the prices of financial derivative secu-
rities is reduced to solving partial differential equation problems, i.e., a PDE
approach is adopted in order to find the price of a derivative security. This
book is divided into two parts. In the first part, we discuss how to establish
the corresponding partial differential equations and find the final and nec-
essary boundary conditions for a specific derivative product. If possible, we
derive its explicit solution and describe some properties of the solution. In
many cases, no explicit solution has been found so far. In these situations,
we have to use numerical methods to determine the value of financial deriva-
tive securities. Therefore, the second part is devoted to numerical methods
for derivative securities. There are two styles of financial derivatives: Euro-
pean and American. The numerical methods for both styles of derivatives
are described. The main numerical method discussed is the finite-difference
method. The binomial/trinomial method is also introduced as a version of an
explicit finite-difference method, and the pseudo-spectral method is discussed
as a high-order finite-difference method. In this part, numerical methods for
determining the market price of risk are also studied as numerical methods for
inverse problems. From the viewpoint of partial differential equations, solving
an inverse problem means to determine a function as a variable coefficient in
a partial differential equation, according to certain values of some solutions.
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During the past few years, a great number of books on financial derivative
securities have been published. For example: Duffie [28], Baxter and Rennie
[6], Hull [43], James and Webber [47], Jarrow [48], Kwok [54], Lamberton and
Lapeyre [55], Lyuu [59], Musiela and Rutkowski [64], Pelsser [66], Tavella and
Randall [80], Wilmott, Dewynne, and Howison [84], Wilmott [82], Wilmott
[83], and Yan [87] have published books on this subject. However, each book
has its own features and gives emphasis to some aspects of this subject. Rela-
tively speaking, this book is similar to the books by Wilmott, Dewynne, and
Howison [84], Kwok [54], and Tavella and Randall [80] because all of them deal
with the partial differential equation problems in finance and their numerical
methods. However, this book pays more attention to numerical methods. At
least the following features of this book are unique:

1. The slopes of the payoff functions for many derivative securities are discon-
tinuous, and American-style derivative securities usually have free bound-
aries. These features downgrade the efficiency of numerical methods. In
this book, we will discuss how to make computation more efficient even
though the solutions have such types of weak singularities.

2. Many derivative security problems are defined on an infinite domain.
When a numerical method is used to solve such a problem, usually a
large finite domain is taken, and some artificial boundary conditions are
adopted for implicit methods. This book will discuss how to convert such
a problem into a problem defined on a finite domain and without requir-
ing any artificial boundary conditions. Also, conditions guaranteeing that
a random variable is defined on a finite domain are derived. When these
conditions hold, any derivative security problems will be defined on a fi-
nite domain and do not need any artificial boundary conditions in order
to solve them numerically.

3. A numerical method for an inverse problem in finance, for determination
of the market price of risk on the spot interest rate, has been provided. As
soon as having the market price of risk on the spot interest rate, we can
use partial differential equations for evaluating interest rate derivatives in
practice.

4. A three-factor interest rate model has been provided. All the parameters
in the model and the final values of derivatives are determined from the
market data. Because of this, it can be expected that the model reflects
the real market. The evaluation of interest rate derivatives is reduced to
solving a final value problem of a three-dimensional partial differential
equation on a finite domain. Because the correctness of the formulation
of the problem is proven, the numerical method for such a problem can
be designed without difficulties.

The first four chapters are related to partial differential equations in finance.
Chapter 1 is an introduction, where basic features of several assets and fi-
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nancial derivative securities are briefly described. Chapter 2 discusses basic
options. In this chapter, Itô’s lemma and the Black–Scholes equation are intro-
duced, along with the derivation of the Black–Scholes formulae. These topics
are followed by a discussion on American options as both linear complementar-
ity and free-boundary problems. Also in Chap. 2, the put–call parity relation
for European options as well as the put–call symmetry relations for American
options are introduced. Finally, the general equations for derivative securities
are derived.

In Chap. 3, exotic options such as barrier, Asian, lookback, and multi-asset
are introduced. The equations, final conditions, and necessary boundary con-
ditions for these options are provided. In this chapter, we examine a few cases
in which a two-dimensional problem may be reduced to a one-dimensional
problem. Explicit solutions for some of these options are provided whenever
possible. Also, the formulations as free-boundary problems have been given
for several American exotic options.

In Chap. 4, one-factor interest rate models, namely, the Vasicek, Cox–
Ingersoll–Ross, Ho–Lee, and Hull–White models, are carefully discussed.
Then, we describe how the problem of determining the market price of risk
from the market data may be formulated as an inverse problem. After that,
the formulations of interest rate derivatives such as bond options and swap-
tions are given. Then, we discuss multi-factor models and give the details of
a three-factor model that can reflect the real market and be used in practice
readily. The final topics in Chap. 4 are a discussion on two-factor convertible
bonds and the derivation of the equivalent free-boundary problem.

Most of basic materials in these four chapters can be found from many
books, for example, from the books listed above. Readers who need to know
more about these subjects are referred to those books. Some of the materials
are the authors’ research results. For more details, see those corresponding
papers given in the references.

As is well-known, exact solutions to the vanilla American option problems
are not known, and the problems need to be solved numerically. For vanilla
European options, if σ depends on S or the dividend is paid discretely, then
explicit solutions may not exist. Therefore, in order to evaluate their prices, we
often rely on numerical methods. For pricing exotic options and interest rate
derivatives, we rely on numerical methods even more due to the complexity
of these problems.

The next four chapters are devoted to numerical methods for partial differ-
ential equations in finance. In Chap. 5, we provide the basic numerical methods
that will be used for solving partial differential equation problems and dis-
cuss the basic theory on finite-difference methods—stability, convergence and
the extrapolation technique of numerical solutions. Most of these concepts
can be found in many books. In the next chapter, Initial-Boundary Value
and LC (linear complementarity) Problems, we discuss the numerical meth-
ods for European-style derivative securities and for American-style derivative
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securities formulated as an LC problem. In Chap. 7, Free-Boundary Problems,
we carefully discuss how to solve one-factor and two-factor American option
problems as free-boundary problems by implicit finite-difference methods. We
also describe how to solve a two-factor convertible bond problem as a free-
boundary problem by the pseudo-spectral method. In this chapter, we provide
a comparison among these methods given in this chapter and in Chap. 6 as
well. In the last chapter, Interest Rate Modeling, we begin with another for-
mulation of the inverse problem and some numerical examples on the market
price of risk. Then, we discuss how to price interest rate derivatives, such as
swaptions, using one-factor models with numerical market prices of risk and
show some numerical results. Finally, how to use the three-factor model to
price interest rate derivatives in practice is discussed. Most of the materials
presented in the last three chapters are from research results, especially from
the authors’ research.

This book can be used as a textbook for two courses as a sequence. In the
first course, the subject “Partial Differential Equations in Finance” is taught
by using the materials in Part I. The second one is a course on “Numerical
Methods for Derivative Securities” based on Part II of this book. In order to
help students to understand the materials and check whether or not students
have understood them, a number of problems are given at the end of each
chapter. Also, at the ends of Chaps. 5–8, some projects are given in order for
students to be trained in evaluating derivative securities. This book is consid-
ered as a book between a textbook for graduate students and a monograph. If
time is not enough, some portions can be omitted and left to students as ref-
erence materials. We have used it as a textbook in our mathematical finance
program and almost all the materials can be taught in class. The following
materials are basic and more important:3

• Sects. 1.1–1.2;
• Sects. 2.1–2.4, 2.5.1–2.5.2, 2.6.1–2.6.3, 2.9.1–2.9.4, 2.10.1–2.10.2;
• Sects. 3.1, 3.2.1, 3.3.1–3.3.4, 3.4.1–3.4.2;
• Sects. 4.1–4.2, 4.6–4.7;
• Sects. 5.1.1–5.1.2, 5.2.1–5.2.2, 5.3, 5.4.1, 5.5;
• Sects. 6.1.1–6.1.3, 6.1.5, 6.2.1–6.2.3, 6.3.2–6.3.3, 6.3.6;
• Sects. 7.1, 7.2.1, 7.2.3, 7.2.5–7.2.6, 7.3;
• Sect. 8.3.

These materials can be taught in one semester. Thus, if only one course is
offered, this book can also be used.

During the production of this book, we received great help from our col-
leagues and former and current graduate students. We would like to express
our thanks to them, especially, to Bing-mu Chen, Jinliang Li, Yingjun Sun,

3The sections and subsections here are referred to the sections and subsections
in the first edition of the book.
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Xionghua Wu, Chenggao Yang, and Jainqing Zhang, who provided many data
and plots for this book. Our gratefulness is also extended to Jeremy Lane for
his grammatical editing of the entire text and Doris Huneycutt for her careful
and patient word processing. Finally, special thanks go to Achi Dosanjh, the
editor of this book, and the reviewers of the book for their many suggestions,
which greatly improved the quality of the book.

Charlotte, NC You-lan Zhu
Kowloon, Hong Kong Xiaonan Wu
Taipei, Taiwan I-Liang Chern
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Partial Differential Equations in Finance



1

Introduction

1.1 Assets

We first introduce some basic knowledge on stocks, bonds, foreign currencies,
commodities, and indices, all of which are called assets in this book.

Huge volumes of stocks are traded on the stock market every day, and
the price of a stock changes all the time. Such a price is a typical random
variable. As examples, the prices of the stocks issued by IBM and GE during
the period 1990–2000 are plotted in Figs. 1.1 and 1.2. Stocks are issued by
corporations. A corporation like IBM, for example, is a business unit, which
gets its capital through issuing stocks. A holder of a share of stock owns a fixed
portion of the corporation. For example, if a corporation issues ten million
shares of stock, then the holder of a share of stock owns 10−7 portion of the
corporation. Stock prices, especially those of high technology stocks, have large
volatilities. However, stocks usually have higher returns than bonds, which
attracts people to buy them. Many corporations distribute a small amount of
cash to its stockholders in proportion to the number of shares of stock held
periodically. The amount is not fixed and is determined by the corporation
after the stocks have been issued. This payment is commonly known as the
dividend. A corporation sometimes splits its stock. When a stock split occurs,
the value of the stock changes. If one share splits into two shares, the value of
a new share of stock is one half of the value of an old share of stock because
the value of the corporation does not change when the stock split occurs.

Bonds and other debt instruments are other types of securities that are
traded on the market frequently. Besides issuing stocks, a corporation can
also get its capital through issuing bonds. Governments at various levels issue
bonds for some special purposes, too. The holder of a bond will get the face
value (the par value) at the maturity as long as the issuer has the ability
to pay. Therefore, the price of a bond usually goes to the face value as the
maturity approaches, which is a feature any price of stock does not have and
is called the pull-to-par phenomenon. Periodically, a bondholder will receive a
fixed amount of cash, usually a few percent of the face value. This percentage is

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 1, © Springer Science+Business Media New York 2013
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specified when a bond is issued, and this amount of money is called a coupon.
In Fig. 1.3, the price of a five-year government bond with a coupon 6.5% and
maturing on May 31, 2001, is plotted, and the pull-to-par phenomenon can
be seen clearly. Bonds usually have less risk than stocks. The bonds issued by
the central government of a developed country have almost no risk.

Foreign currencies can also be sold or bought on the foreign currencies
market. The exchange rate of a foreign currency, similar to the price of a stock,
is also changing continuously. Figure 1.4 shows the exchange rate between the
British pound and the U.S. dollar during 1990–2000. For the same period,
the exchange rate between the Japanese yen and the U.S. dollar is plotted
in Fig. 1.5. A person who holds foreign currencies can always deposit them
into a bank to earn some interest. The interest is paid every day. Therefore,
a foreign currency can be seen as a stock that pays dividends continuously.
The interest rate of the foreign currency plays the role of the dividend yield.
The price of a foreign currency usually has lower volatility.

Another important financial market is the commodity market. Similar to
stocks, bonds, and foreign currencies, commodities are traded on the commod-
ity market. However, a holder of commodities sometimes has to spend money
every day in order to store them in a safe place. In this case, commodities pay
negative dividend yields. In addition, the prices of some commodities have
certain periodicity due to the periodicity in climate. In Fig. 1.6, the electricity
price of a company from 1996 to 2000 is given. The unit of the price is dol-
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lar/Megawatt. Because the range of the price p is from about $20 to $2,000,
we use log10 p instead of p as the ordinate in the figure. From this figure, we
can see that the price possesses some “periodicity” with a period of one year.
In the peak season, late June–late August, the price is higher because the
demand is higher. On a few days the price almost reached $2,000, but usually
the price is $20–$30. The other markets do not possess such a feature.

We can also sell or buy indices, for example, S&P 500 and S&P 100. An
index is a mixture of many stocks in which the percentage for each stock is
fixed. Some of the stocks may pay dividends on different days, and the divi-
dend payment of an index can be approximately understood as a continuous
payment. Figure 1.7 shows the index level of S&P 500 during 1990–2000.

1.2 Derivative Securities

On markets, not only stocks, bonds, foreign currencies, commodities, and in-
dices can be sold or bought, but also any contracts related to an asset can
be traded. A contract is an agreement on something between two parties for
a specified period. Those contracts are called derivative securities or con-
tingent claims. The assets are called the underlying assets because those
securities are derived from and their prices are contingent on the assets. For-
ward contracts, futures contracts, and options are such securities. Moreover,
many other types of derivative securities exist. For example, an interest rate
derivative is a contract derived from interest rates, rather than an asset. If one
party earns a certain amount of money, then the other party loses the same
amount of money. When we mention the value of a contract, generally speak-
ing, the party should be specified. For a forward contract, a futures contract,
or an option, one party agrees to sell the asset or writes the option and the
other party agrees to buy the asset or purchases the option. We often say that
the former takes the short position and the latter takes the long position of
the contract. The values of the contract for the holders of the long and short
positions are the same in magnitude but have the opposite signs. In this book,
the value of a forward contract, a futures contract, or an option means the
value of the contract for the holder of the long position, i.e., for the buyer.
The end of the specified period usually is called the expiry, the expiration
date, or the maturity date. The value of the contract at expiry is called the
payoff of the contract. If a contract can be exercised at any time during the
period, then the derivative is called an American-style derivative; if it can be
exercised at a certain time specified in the contract, then we say that it is
a European-style derivative. In what follows, we give some details on three
types of derivatives: forward and futures contracts, options, and interest rate
derivatives.

1.2.1 Forward and Futures Contracts

A forward contract is an agreement between two parties according to which
one party will buy an asset from another party at the expiry for a specified
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Fig. 1.8. Payoffs from forward contracts

price in the agreement. The specified price, called the delivery or forward price,
is chosen so that its value is zero at the initiation of the contract. As time
passes, the value of the contract can become positive or negative, depending on
movement in the price of the asset. If the price of the asset rises sharply soon
after the contract is entered into, the value of the forward contract becomes
positive. If the price drops, it becomes negative. Its payoff is positive if the
price of the asset is greater than the delivery price. Otherwise, the payoff is
less than or equal to zero. Concretely, the payoff of a forward contract is

S −K, (1.1)

where S is the price of the asset at expiry, and K is the delivery price. The
graph of the payoff as a function of S is given in Fig. 1.8.

Corporations facing foreign exchange exposure frequently enter into for-
ward contracts on foreign currencies with financial institutions in order to
avoid potential loss in profits caused by the sharp change in foreign currency
exchange rates. Such a contract is usually not traded on an exchange, and we
say that it is traded on the over-the-counter market.

Like a forward contract, a futures contract is also an agreement between
two parties to buy or sell an asset at a certain time in the future for a speci-
fied price called the delivery or futures price. However, futures contracts are
usually traded on an exchange. In order to guarantee that the contract will
be honored, the exchange requests each party to deposit funds in a margin
account. At the end of each day, the difference between the closing futures
prices on the day and the previous day is added to or subtracted from the
margin account of each party, so the net profit or loss is paid over the lifetime
of the contract. Another difference between a forward and a futures contract
is that an exact delivery date is sometimes not specified in a futures contract.
For commodities, the delivery period is often the entire month. These differ-
ences make determining how much its holder owns more complicated than
evaluating the value of a forward contract for many situations.
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1.2.2 Options

Options on stocks were first traded on an organized exchange in 1973. Now,
options are traded on a large number of exchanges throughout the world.
Huge volumes of options are also traded in the over-the-counter market by
financial institutions. Not only can an option be on assets, but it can also be
on another derivative, for example, a futures contract.

An option gives the holder a right, not an obligation, to do something.
Hence, the holder does not have to exercise this right. There are two basic
types of options: call options and put options. A call option gives the holder a
right to buy the underlying asset at or by a certain date for a specified price.
A put option gives the holder a right to sell the underlying asset at or by a
certain date for a specified price. The price in the contract is known as the
exercise or strike price. Let E denote this price. If the price of stock is less
than E, then a holder of a call option will not exercise the option because
there is no point in buying for E a stock that has a market value less than E.
That is, the payoff of a call option is

max(S − E, 0), (1.2)

where S is the price of the stock at the end of the option’s life. Similarly, the
payoff of a put option is

max(E − S, 0). (1.3)

The graphs of these two functions are given in Figs. 1.9 and 1.10, respectively.
If S is greater than E and if the holder of a call option could immediately
exercise the option, then the holder would earn some money. In this case, we
say that the call option is “in the money.” If S is less than E, it is said that
the call option is “out of the money” because the holder would lose money if
the option were exercised immediately. If S = E, we say that the call option
is “at the money” because no cash flow would come in or go out if exercising
the option. For a put option, the situation is similar.

Unlike a forward or futures contract, where its value is equal to zero at the
initiation of the contract, the holder of an option has to pay a certain amount
of money to the writer of the option in order to enter into the option contract
because the payoff is always nonnegative. This payment is usually called a
premium. Because the holder of an option paid a premium when the option
was bought, the value of the payoff is not the money earned. The money
earned, the profit, is the payoff function minus the value of the premium at
the end of the option’s life. In Figs. 1.11 and 1.12, the profits are shown for a
call option and a put option, respectively.

Many newspapers, such as the Wall Street Journal and the Financial
Times, carry vanilla option quotations, which refer to trading that took place
on exchanges on the previous workday. Most of the options that are traded
on exchanges are American.
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Fig. 1.9. The payoff diagram for a call option

Fig. 1.10. The payoff diagram for a put option

Fig. 1.11. Profit of a call option
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Fig. 1.12. Profit of a put option

1.2.3 Interest Rate Derivatives

On markets, the interest rate of a loan depends on the term of the loan.
For example, one-year loans and five-year loans usually have different interest
rates. The interest rate for the shortest possible deposit is commonly called the
spot rate. The interest rates are constantly changing, at least on a daily basis,
therefore in some cases it is necessary to consider interest rates as random
variables. A security dependent on interest rates is called an interest rate
derivative.

A typical interest rate derivative is a swap. Such a contract is an agreement
between two parties A and B, usually between a bank and a corporation. In
the contract, they agree that during the next few years A will pay interest
on certain capital to B at a fixed interest rate, and B will pay interest on the
same capital to A at a floating interest rate. One needs to determine what the
fixed interest rate should be according to the current market and the value
of the contract with a given fixed interest rate at a specific time. Other than
swaps, there are many other types of interest rate derivatives, such as caps,
floors and collars and options on swaps, caps, floors, and collars, which will
be discussed in Chap. 5.

1.2.4 Factors Affecting Derivative Prices

It is clear that the value of a derivative depends on underlying random vari-
ables. For example, the value of an option on a stock depends on the price of
the stock, and the manner of dependence is determined by the feature of the
option. For a call option, the profit of the holder of the option will increase
when the price of the stock rises. Therefore, the price of a call option is an
increasing function of the stock price. The price of a put option is a decreasing
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function because the holder of the option will receive less when the stock price
increases. The value of a swap depends on the floating interest rate. For the
party who receives the floating interest, the swap is more valuable when the
floating interest rate rises.

The price of a derivative also depends on some parameters. For example,
the volatility of the underlying random variable, the time to expiration, the
strike price of an option, and the fixed interest rate of a swap are such param-
eters. If the volatility is large, then the chance that the underlying random
variable becomes very large or very small increases. For a call option, no mat-
ter whether the stock price is $10 less than the strike price or $100 less than
the strike price at expiry, the value of the option is zero. However, if at expiry
the stock price changes from $10 higher than the strike price to $100 higher
than the strike price, then the value of the call option increases from $10 to
$100. Therefore, a holder of a call option benefits from a large volatility. Sim-
ilarly, a holder of a put option also benefits from a large volatility. That is,
both calls and puts become more valuable as the volatility increases. If the
time to expiration is longer, then the value of an American-style derivative
should increase because the holder of the long-life American derivative has
more exercise opportunities than the owner of the short-life American deriva-
tive. A rise in the strike price makes a call option less valuable because in order
to get one share, the owner of the call option needs to pay more. However,
a rise in the strike price makes the price of a put option go up because the
owner of an option will get more money from one share. Increasing the fixed
interest rate of a swap causes the party who receives the floating interest to
pay more money, so the value to this party decreases. Derivatives depend on
more parameters, such as the short-term interest rate and the dividend.

1.2.5 Functions of Derivative Securities

Generally speaking, derivatives have two primary uses: speculation and
hedging.

Speculation. Suppose the price of a particular stock, for example, IBM,
is $120 today. An investor who believes that the stock is going to rise can
purchase shares in that company. If he is correct, he makes money; if he is
wrong, he loses money. This investor is speculating. If the share price rises
from $120 to $150, he makes a profit of $30 per share or

30

120
= 25%.

If it falls to $90, he takes a loss of $30 or

30

120
= 25%.
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Alternatively, instead of shares, he buys call options with exercise price $120.
Assume that such an option costs $15. If the share price rises to $150, the
payoff is $30 with a profit of $15; if the share price drops to $90, then the loss
is $15 because the payoff is zero and the premium is $15. Therefore, the profit
or loss is magnified to

15

15
= 100%!

Consequently, options can be a cheap way of exposing a portfolio to a large
amount of risk.

On the other hand, if the investor thinks that IBM shares are going to
fall, he can do one of two things: sell shares or buy puts. If he speculates by
selling shares that he does not own,1 he will profit from a fall in IBM shares.
He can also buy puts and will earn money from a fall of the stock.

Hedging. An owner of an asset will lose money when the price of the asset
falls. The value of a put option rises when the asset price falls. What happens
to the value of a portfolio containing both the asset and the put when the
asset price falls? Clearly, the answer depends on the ratio of assets to options
in the portfolio. If the ratio is equal to zero, the value rises, whereas if the
ratio is infinity, the value falls. Somewhere between these two extremes is a
ratio at which a small movement in the asset does not result in any movement
in the value of the portfolio. Such a portfolio is risk-free. The reduction of risk
by taking advantage of such correlations between the asset and option price
movements is called hedging. This is one example explaining how options are
used in hedging. Call options and futures can also be used for the purpose of
hedging.

Problems

1. What is the difference between taking a long position in a forward contract
and in a call option?

2. Suppose the futures price of gold is currently $324 per ounce. An investor
takes a short position in a futures contract for the delivery of 1,000 ounces.
How much does the investor gain or lose if the price of gold at the end of
the contract is (a) $310 per ounce; (b) $340 per ounce?

3. An investor holds a European call option on a stock with an exercise price
of $88 and the option costs $3.50. For what value of the stock at maturity
will the investor exercise the option, and for what value of the stock at
maturity will the investor make a profit?

4. An investor holds a European put option for a stock with an exercise price
of $88 and the option costs $3.50. Find the gain or loss to the investor if
the stock price at maturity is (a) $93.50; (b) $81.50.

1This is perfectly legal in many markets. This action is called a short selling.
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5. A company will receive a certain amount of foreign currency in one year.
To reduce the risk of the changes in the exchange rate, what type of
contract is appropriate for hedging?

6. Suppose a fund manager holds ten million shares of IBM stock and would
like to use options to reduce risk. What action is suitable for reducing the
risk of decline of the stock price in the next three months?

7. A stock price is $67 just before a dividend of $1.50 is paid. What is the
stock price immediately after the payment?
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European Style Derivatives

2.1 Asset Price Models and Itô’s Lemma

2.1.1 Models for Asset Prices
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Fig. 2.1. Stock price of Microsoft Inc.

As examples, in Figs. 1.1–1.7 we showed how the prices of assets vary with
time t. Figure 2.1 shows the stock price of Microsoft Inc. in the period March
30, 1999, to June 8, 2000. From these figures, we can see the following: the
graphs are jagged, and the size of the jags changes all the time. This means
that we cannot express S as a smooth function of t, and it is difficult to predict
exactly the price at time t from the price before time t. It is natural to think
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of the price at time t as a random variable. Now let us give a model for such
a random variable.

Suppose that at time t the asset price is S. Let us consider a small subse-
quent time interval dt, during which S changes to S+dS. (We use the notation
df for the small change in any quantity f over this time interval.) How might
we model the corresponding return rate on the asset, dS/S?

Assume that the return rate on the asset can be described by the following
stochastic differential equation:

dS

S
= μ(S, t)dt+ σ(S, t)dX, (2.1)

where μ and σ are called the drift and the volatility, respectively, and dX
is known as a Wiener process defined by

⎧
⎨

⎩

dX = φ
√
dt,

φ being a standardized normal random variable.

In this model, the first part is an anticipated and deterministic return rate,
and the second part is the random return rate of the asset price in response to
unexpected events. As we can see, the random increment dS depends solely
on today’s price. This independence from the past is known as the Markov
property. In many situations, it is assumed that μ and σ are constants. Due
to its simplicity, this is a popular model for asset prices

For a random variable ψ with a probability density function f(ψ) defined
on (−∞,∞), the expectation of any function F (ψ), E [F (ψ)], is given by

E [F (ψ)] =

∫ ∞

−∞
F (ψ)f(ψ)dψ.

The variance of F (ψ), Var [F (ψ)], is defined by

Var [F (ψ)] = E
[
(F (ψ)− E [F (ψ)])2

]
.

According to these definitions, for any constants a, b, c, and random variable
W , we have

E [aW − b] = aE [W ]− b,

Var [W ] = E
[
(W − E [W ])

2
]

= E
[
W 2
]
− (E [W ])

2

and

Var

[
W

c

]

=
1

c2
Var [W ] .
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For a standardized normal random variable φ, the probability density func-
tion is

1√
2π

e−φ
2/2, −∞ < φ <∞.

As a probability density function, this function satisfies1

∫ ∞

−∞

1√
2π

e−φ
2/2dφ = 1.

Therefore we have

E [φ] =

∫ ∞

−∞
φ

1√
2π

e−φ
2/2dφ = 0

and

Var [φ] = E
[
φ2
]

=

∫ ∞

−∞
φ2

1√
2π

e−φ
2/2dφ

= − 1√
2π

∫ ∞

−∞
φd
(
e−φ

2/2
)

=
1√
2π

∫ ∞

−∞
e−φ

2/2dφ

= 1.

From these we obtain

E [dX] = E [φ]
√
dt = 0

and

Var [dX] = E
[
dX2

]
= E

[
φ2
]
dt = dt.

Consequently2

E [dS] = E [σS dX + μS dt] = μS dt,

and

Var [dS] = E
[
dS2
]
− (E [dS])

2

= E
[
σ2S2dX2 + 2σS2μdt dX + μ2S2dt2

]
− μ2S2dt2

= σ2S2dt.

The square root of the variance is known as the standard deviation. Thus,
the deviation of the return on the asset is proportional to σ. This means

1Because
∫∞
0

e−x2/2dx × ∫∞
0

e−y2/2dy =
∫ π/2

0

∫∞
0

e−r2/2rdrdθ = π/2, we have
∫∞
0

e−φ2/2dφ =
√

π/2 .
2Here, dX is a random variable and S is unchanged. In stochastic calculus, it is

called conditional expectation (see [51, 6]).
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that an asset price with a larger σ would appear more jagged. Typically, for
stocks, indices, exchange rates, and bonds, the value of σ is in the range
0.02–0.4. Usually, the volatility of stocks is greater than indices, exchange
rates, and bonds, and government bonds have the smallest volatility among
these. Among shares, high-tech companies tend to have higher volatility than
other companies. For example, assume that the volatility of the price of IBM
stock is a constant during 1990–2000, then its value is 0.31. Under the same
assumption, for the price of GE stock, σ = 0.23. For S&P 500, British pound—
U.S. dollar exchange rate, Japanese yen—U.S. dollar exchange rate, and a
five-year government bond with coupon 6.5% and maturing on May 31, 2001,
σ = 0.10, 0.11, 0.12, and 0.03, respectively. For the bond, we assume that σ
depends on the time to maturity. Clearly, at maturity σ is zero. The value
0.03 means that the maximum value of σ is 0.03. In practice, the volatility is
often quoted as a percentage so that σ = 0.2 would be 20% volatility.

If σ = 0, then

dS

S
= μdt and S (t) = S0e

μ(t−t0),

where S0 is the value of the asset at t = t0.
In this asset price model, μ and σ are two parameters. In general, these

parameters depend on the asset price S and time t, i.e., μ = μ(S, t),
σ = σ(S, t). According to the historical data, we can determine these parame-
ters (or parameter functions) for the past by statistical analysis. If we assume
that μ and σ depend on S only, then the functions μ(S) and σ(S) determined
by the historical data can be used for the future.

A Wiener process is also referred to as a Brownian motion. There are many
excellent books on the Brownian motion. Readers interested in this subject
can read, for example, [51]. A basic and very important feature of the Wiener
process is that the sum of two independent Wiener processes is also a Wiener
process, and the variance of the sum is the sum of the two original variances.
That is, if dX1 = φ1

√
dt1 and dX2 = φ2

√
dt2 are two Wiener processes and

they are independent, namely, E [φ1φ2] = 0, then

dX3 = dX1 + dX2 = φ1
√
dt1 + φ2

√
dt2 = φ3

√
dt1 + dt2, (2.2)

where φ3 is also a standardized normal random variable. Readers are asked
to prove a similar conclusion as a portion of Problem 4.

2.1.2 Itô’s Lemma

There is a practical lower bound for the basic time-step dt of the random walk
of an asset price. Thus, an asset price is a discrete random variable. However,
sometimes the lower bound is so small that we consider an asset price as a
continuous random variable. Also, because it is much more efficient to solve the
resulting differential equations than to evaluate options by direct simulation
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of the random walk on a practical time scale, we will assume that an asset
price is a continuous random variable even if the basic time-step is not very
small.

Before coming to Itô’s lemma, we need one result, which we do not prove.
This result is, with probability one,

dX2 = φ2dt→ dt as dt→ 0.

This can be explained as follows. Because

E
[
dX2

]
= E

[
φ2
]
dt = dt

and
Var
[
dX2

]
= E

[
dX4

]
− (E

[
dX2

]
)2 = O(dt2),

the variance of dX2 is very small and the smaller dt becomes, the closer dX2

comes to being equal to dt.
Assume

dS = a(S, t)dt+ b(S, t)dX

and suppose f (S, t) is a smooth function of a random variable S and time t.
We need to find a stochastic differential equation for f . If we vary S and t by
a small amount dS and dt, then f also varies by a small amount. From the
Taylor series expansion we can write

df =
∂f

∂S
dS +

∂f

∂t
dt+

1

2

(
∂2f

∂S2
dS2 + 2

∂2f

∂t∂S
dt dS +

∂2f

∂t2
dt2
)

+ · · · .

Because

dS2 = [a(S, t)dt+ b(S, t)dX]
2
=
(
adt+ bφ

√
dt
)2

= a2(dt)2 + 2abφ(dt)3/2 + b2φ2dt→ b2dt as dt→ 0,

we have3

df =
∂f

∂S
dS +

(
∂f

∂t
+

1

2
b2
∂2f

∂S2

)

dt as dt→ 0 (2.3)

or in the form of a stochastic differential equation

df = b
∂f

∂S
dX +

(
∂f

∂t
+

1

2
b2
∂2f

∂S2
+ a

∂f

∂S

)

dt.

This is Itô’s lemma. If in the asset price model (2.1), μ and σ are constants,
i.e.,

3As we know, in calculus we have df(S, t) =
∂f

∂S
dS +

∂f

∂t
dt. Thus this relation is

the same as the relation in calculus only if f(S, t) is a linear function in S.
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dS = μSdt+ σSdX,

then Itô’s lemma is in the form:

df =
∂f

∂S
dS +

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)

dt

= σS
∂f

∂S
dX +

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2
+ μS

∂f

∂S

)

dt.

2.1.3 Expectation and Variance of Lognormal Random Variables

As a simple example, consider the function f (S) = lnS. Differentiation of
this function gives

df

dS
=

1

S
and

d2f

dS2
= − 1

S2
.

Suppose that S satisfies Eq. (2.1) with constant μ and σ, i.e., dS = μSdt +
σSdX. Using Itô’s lemma, for lnS we have

d lnS = σdX +

(

μ− σ2

2

)

dt = mdt+ σdX, (2.4)

where

m = μ− σ2

2
. (2.5)

It is clear that

E [d lnS] = E [mdt+ σdX] = mdt

and

Var [d lnS] = E
[
(d lnS)2

]
− (E [d lnS])2

= E
[
σ2dX2 + 2σmdt dX +m2dt2

]
−m2dt2

= σ2E
[
φ2dt

]
= σ2dt.

From Eq. (2.4), the probability density function for d lnS is4

4• Here e−(d lnS−mdt)2/2σ2dt means e−(d lnS−mdt)2/(2σ2dt). That is, in the expres-
sion (d lnS −mdt)2 /2σ2dt, the division between (d lnS −mdt)2 and 2σ2dt should
be done after 2 × σ2 × dt is obtained. Throughout the entire book we use such a
notation.

• If x is a normal random variable and its mean and variance are a and b2, then
its probability density function is

1

b
√
2π

e−(x−a)2/2b2 .
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1

σ
√
2πdt

e−(d lnS−mdt)2/2σ2dt.

Let d lnS = lnS′ − lnS. Then for lnS′, the probability density function is

G1 (lnS
′) =

1

σ
√
2πdt

e−[lnS
′−lnS−mdt]2/2σ2dt.

Here, S is the value of the asset at time t and S′ is the value of the asset at
time t+dt which is a random variable. In Fig. 2.2, the curve of G1 (lnS

′) with
lnS +mdt = 0 and σ

√
dt = 0.2 is shown.

Fig. 2.2. The probability density function for lnS′

with lnS +mdt = 0 and σ
√
dt = 0.2

Suppose that for S′ the probability density function is G (S′). Because5

G (S′) dS′ =
1

σ
√
2πdt

e−(lnS
′−lnS−mdt)2/2σ2dtd lnS′,

we have

G(S′) =
1

S′σ
√
2πdt

e−(lnS′−lnS−mdt)2/2σ2dt.

5If for x the probability density function is f(x), then the probability of x ∈
[x, x+dx] is f(x)dx. If y = y(x) and y(x) is a nondecreasing function, then x ∈ [x, x+

dx] if and only if y ∈ [y(x), y(x+dx)] ≈
[

y(x), y(x) +
dy

dx
dx

]

. Thus, the probability

of the event y ∈
[

y(x), y(x) +
dy

dx
dx

]

is also f(x)dx. If for y the probability density

function is f1(y), then f1(y)dy = f(x)dx, from which we have f1(y) = f(x(y))
dx

dy
.

If x = lnS′ and y = S′, then f1(S
′) = f(x(y))

dx

dy
= f(lnS′)

1

S′ .
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Fig. 2.3. The probability density function for S′

with lnS +mdt = 0 and σ
√
dt = 0.2

In Fig. 2.3, the corresponding curve of G(S′) is given. This is called a
lognormal because the corresponding distribution for lnS′ is normal.

Now the question is what are E [S′] and Var [S′]. Because we have the
probability density function, let

y =
lnS′ − lnS −mdt

σ
√
dt

and we have

E [S′] =
∫ ∞

0

G(S′)S′dS′

=
1

σ
√
2πdt

∫ ∞

0

e−(lnS′−lnS−mdt)2/2σ2dt 1

S′ × S′dS′

=
1√
2π

∫ ∞

−∞
e−y

2/2eyσ
√
dt+lnS+mdtdy

=
1√
2π

∫ ∞

−∞
e−(y−σ

√
dt)

2
/2 × eσ

2dt/2+lnS+mdtdy

= eσ
2dt/2+lnS+mdt = Seμdt,

E
[
S′2] =

∫ ∞

0

G(S′)S′2dS′

=
1

σ
√
2πdt

∫ ∞

0

e−(lnS′−lnS−mdt)2/2σ2dt 1

S′S
′2dS′

=
1√
2π

∫ ∞

−∞
e−y

2/2 × e2(yσ
√
dt+lnS+mdt)dy

=
1√
2π

∫ ∞

−∞
e−(y−2σ

√
dt)

2
/2e2σ

2dt+2(lnS+mdt)dy

= e2σ
2dt+lnS2+2mdt = S2e2μdt+σ

2dt



2.2 Derivation of the Black–Scholes Equation 25

and

Var [S′] = S2e2μdt+σ
2dt − S2e2μdt

= S2e2μdt
(
eσ

2dt − 1
)
,

where we have used the relation (2.5).
If m and σ in the expression (2.4) are constants, then for a large time

period T − t, we can have

lnS′ − lnS =

∫ T

t

d lnS = m

∫ T

t

dt+ σ

∫ T

t

dX(t) = m(T − t) + σφ
√
T − t,

where S′ is the stock price at time T , S is the stock price at time t, and
φ is a standardized normal random variable. Here we used the relation∫ T

t
dX(t) = φ

√
T − t, which can be obtained from the relation (2.2). There-

fore, in this case, the probability density function for S′ is

G(S′) =
1

S′σ
√
2π(T − t)

e−[lnS′−lnS−m(T−t)]2/2σ2(T−t)

and
⎧
⎪⎨

⎪⎩

E [S′] = Seμ(T−t),

Var [S′] = S2e2μ(T−t)
[
eσ

2(T−t) − 1
]
,

(2.6)

where μ is given by the relation (2.5):

μ = m+
σ2

2
.

2.2 Derivation of the Black–Scholes Equation

2.2.1 Arbitrage Arguments

In the modern world, financial transactions may be done simultaneously in
more than one market. Suppose the price of gold is $324 per ounce in New York
and 37,275 Japanese Yen in Tokyo, while the exchange rate is 1 U.S. dollar
for 115 Japanese Yen. An arbitrageur, who is always looking for any arbitrage
opportunities to make money, could simultaneously buy 1,000 ounces in New
York, sell them in Tokyo to obtain a risk-free profit of

37,275× 1,000/115− 324× 1,000 = $130.43

if the transaction costs can be ignored. Small investors may not profit from
such opportunity due to the transaction costs. However, the transaction costs
for large investors might be a small portion of the profit, which makes the
arbitrage opportunity very attractive.
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Arbitrage opportunities usually cannot last long. As arbitrageurs buy the
gold in New York, the price of the gold will rise. Similarly, as they sell the gold
in Tokyo, the price of the gold will be driven down. Very quickly, the ratio be-
tween the two prices will become closer to the current exchange rate. In prac-
tice, due to the existence of arbitrageurs, very few arbitrage opportunities can
be observed. Therefore, throughout this book we will assume that there are
no arbitrage opportunities for financial transactions.

Let us make the following assumptions: both the borrowing short-term in-
terest rate and the lending short-term interest rate are equal to r, short selling
is permitted, the assets and options are divisible, and there is no transaction
cost. Then, we can conclude that the absence of arbitrage opportunities is
equivalent to all risk-free portfolios having the same return rate r.

Let us show this point. Suppose that Π is the value of a portfolio and that
during a time step dt the return of the portfolio dΠ is risk-free. If

dΠ > rΠdt,

then an arbitrageur could make a risk-free profit dΠ − rΠdt during the time
step dt by borrowing an amount Π from a bank to invest in the portfolio.
Conversely, if

dΠ < rΠdt,

then the arbitrageur would short the portfolio and invest Π in a bank and
get a net income rΠdt− dΠ during the time step dt without taking any risk.
Only when

dΠ = rΠdt

holds, is it guaranteed that there are no arbitrage opportunities.
In the next subsection, we will derive the equation the prices of derivative

securities should satisfy by using the conclusion that all risk-free portfolios
have the same return rate r.

2.2.2 The Black–Scholes Equation

Let V denote the value of an option that depends on the value of the under-
lying asset S and time t, i.e., V = V (S, t). It is not necessary at this stage
to specify whether V is a call or a put; indeed, V can even be the value of
a whole portfolio of various options. For simplicity, readers may think of a
simple call or put.

Assume that in a time step dt, the underlying asset pays out a dividend
SD0dt, where D0 is a constant known as the dividend yield.6 Suppose S
satisfies Eq. (2.1):

6This dividend structure is a good model for an index. In this case, many discrete
dividend payments are paid at many different times, and the dividend payment can
be approximated by a continuous yield without serious error. Also, if the asset is a
foreign currency, then the interest rate for the foreign currency plays the role of D0.
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dS

S
= μ(S, t)dt+ σ(S, t)dX.

According to Itô’s lemma (2.3), the random walk followed by V is given by

dV =
∂V

∂S
dS +

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)

dt. (2.7)

Here we require V to have at least one t derivative and two S derivatives.
Now construct a portfolio consisting of one option and a number −Δ of

the underlying asset. This number is as yet unspecified. The value of this
portfolio is

Π = V −ΔS. (2.8)

Because the portfolio contains one option and a number −Δ of the underlying
asset, and the owner of the portfolio receives SD0dt for every asset held, the
earnings for the owner of the portfolio during the time step dt is

dΠ = dV −Δ (dS + SD0dt) .

Using the relation (2.7), we find that Π follows the random walk

dΠ =

(
∂V

∂S
−Δ

)

dS +

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
−ΔSD0

)

dt.

The random component in this random walk can be eliminated by choosing

Δ =
∂V

∂S
. (2.9)

This results in a portfolio whose increment is wholly deterministic:

dΠ =

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
−ΔSD0

)

dt. (2.10)

Because the return for any risk-free portfolio should be r, we have

rΠdt = dΠ =

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
−ΔSD0

)

dt. (2.11)

Substituting the relations (2.8) and (2.9) into Eq. (2.11) and dividing by dt,
we arrive at

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0. (2.12)

When we take differentΠ for different S and t, we can conclude that Eq. (2.12)
holds on a domain. In this book, Eq. (2.12) is called the Black–Scholes partial
differential equation, or the Black–Scholes equation,7 even though D0 = 0
in the equation originally given by Black and Scholes (see [11]). With its
extensions and variants, it plays the major role in the rest of the book.

About the derivation of this equation and the equation itself, we give more
explanation here.

7It is also called Black–Scholes–Merton differential equation (see [43]).
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• The key idea of deriving this equation is to eliminate the uncertainty
or the risk. dΠ is not a differential in the usual sense. It is the earning
of the holder of the portfolio during the time step dt. Therefore, ΔSD0dt
appear. In the derivation, in order to eliminate any small risk, Δ is chosen
before an uncertainty appears and does not depend on the coming risk.
Therefore, no differential of Δ is needed.

• The linear differential operator given by

∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

has a financial interpretation as a measure of the difference between the
return on a hedged option portfolio

∂

∂t
+

1

2
σ2S2 ∂2

∂S2
−D0S

∂

∂S

and the return on a bank deposit

r

(

1− S
∂

∂S

)

.

Although the difference between the two returns is identically zero for
European options, we will later see that the difference between the two
returns may be nonzero for American options.

• From the Black–Scholes equation (2.12), we know that the parameter μ in
Eq. (2.1) does not affect the option price, i.e., the option price determined
by this equation is independent of the average return rate of an asset price
per unit time.

• From the derivation procedure of the Black-Scholes equation we know that
the Black-Scholes equation still holds if r and D0 are functions of S and t.

• If dividends are paid only on certain dates, then the money the owner of
the portfolio will get during the time period [t, t+ dt] is

dV −ΔdS −ΔD(S, t)dt,

where D(S, t) is a sum of several Dirac delta functions. Suppose that a
stock pays dividend D1(S) at time t1 and D2(S) at time t2 for a share,
where D1(S) ≤ S and D2(S) ≤ S. Then

D(S, t) = D1(S)δ(t− t1) +D2(S)δ(t− t2),

where the Dirac delta function8 δ(t) is defined as follows:

8It is the limit as ε → 0 of the one-parameter family of functions:

δε(x) =

⎧
⎨

⎩

1

2ε
, −ε ≤ x ≤ ε,

0, |x| > ε.



2.2 Derivation of the Black–Scholes Equation 29

δ(t) =

⎧
⎨

⎩

0, if t �= 0,

∞, if t = 0
and

∫ ∞

−∞
δ(t) = 1.

In this case, the modified Black–Scholes equation is in the form

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ [rS −D (S, t)]

∂V

∂S
− rV = 0. (2.13)

2.2.3 Final Conditions for the Black–Scholes Equation

From the derivation of the Black–Scholes equation (2.12), we know that this
partial differential equation holds for any option (or portfolio of options) whose
value depends only on S and t. In order to determine a unique solution of the
Black–Scholes equation, the solution at the expiry, t = T , needs to be given.
This condition is called the final condition for the partial differential equation.
Different options satisfy the same partial differential equation, but different
final conditions. Therefore, in order to determine the price of an option, we
need to know the value of the option at time T . In what follows, we will derive
the final conditions for call and put options.

Final Condition for Call Options. Let us examine what a holder of a call
option will do just at the moment of expiry. If S > E at expiry, it makes
financial sense for the holder to exercise the call option, handing over an
amount E for an asset worth S. The money earned by the holder from such a
transaction is then S − E. On the other hand, if S < E at expiry, the holder
should not exercise the option because the holder would lose an amount of
E − S. In this case, the option expires valueless. Thus, the value of the call
option at expiry can be written as

C(S, T ) = max(S − E, 0). (2.14)

This function giving the value of a call option at expiry is usually called the
payoff function of a call option. In Fig. 1.9, we plot max(S−E, 0) as a function
of S, which is usually known as a payoff diagram. A call option with such a
payoff is the simplest call option and is known as a vanilla call option.

Final Condition for Put Options. Each option or each portfolio of options
has its own payoff at expiry. An argument similar to that given above for the
value of a call at expiry leads to the payoff for a put option. At expiry, the
put option is worthless if S > E but has the value E − S for S < E. Thus,
the payoff function of a put option is

P (S, T ) = max(E − S, 0). (2.15)

The payoff diagram for a put is shown in Fig. 1.10 where the line shows
the payoff function max(E−S, 0). In order to distinguish this put option from
other more complicated put options, sometimes it is referred to as the vanilla
put option.
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2.2.4 Hedging and Greeks

The way to reduce the sensitivity of a portfolio to the movement of something
by taking opposite positions in different financial instruments is called hedg-
ing. Hedging is a basic concept in finance. When we derived the Black–Scholes

equation in Sect. 2.2.2, we chose the delta to be
∂V

∂S
, so that the portfolio Π

became risk-free. This gives an important example on how hedging is applied.
Let us see another example of hedging that is similar to what we have used
in deriving the Black–Scholes equation.

Consider a call option on a stock. Figure 2.4 shows the relation between the
call price and the underlying stock price. When the stock price corresponds
to point A, the option price corresponds to point B and the Δ of the call is
the slope of the line indicated. As an approximation

Δ =
δc

δS
,

where δS is a small change in the stock price and δc is the corresponding
change in the call price.

Fig. 2.4. Δ = the slope of a curve

Assume that the delta of the call option is 0.7 and a writer sold 10,000
units of call options. Then, the writer’s position could be hedged by buying
0.7 × 10,000 = 7,000 shares of stocks. If the stock price goes up by $0.50,
the writer will earn $3,500 from the 7,000 shares of stocks held. At the same
time, the price of call options will go up approximately 0.7 × 0.5 = $0.35,
and he will lose 10,000 × $0.35 = $3,500 from 10,000 shares of option he sold.
Therefore, the net profit or loss is about zero. If the price falls down by a
small amount, the situation is similar. Consequently, the writer’s position has
been hedged quite well as long as the movement of the price is small. This is
called delta hedging.

In the example above, we have considered only a call option. Actually, any
portfolio can be hedged in this way. If Π denotes the price of option, then the
slope is



2.2 Derivation of the Black–Scholes Equation 31

Δ =
∂Π

∂S
.

If the movement of the price is not very small, then it might be necessary
to use the value of the second derivative of the portfolio with respect to S in
order to eliminate most of the risk. The second derivative is known as gamma

Γ =
∂2Π

∂S2
.

When hedging in practice, some other values, for example,
∂Π

∂t
,
∂Π

∂σ
,
∂Π

∂r
,

∂Π

∂D0
, may need to be known. Usually,

∂Π

∂t
,
∂Π

∂σ
, and

∂Π

∂r
are called theta,

vega, and rho, respectively; namely, the following notation is used:

Θ =
∂Π

∂t
, V =

∂Π

∂σ
,

and

ρ =
∂Π

∂r
.

In currency options, D0 is the interest rate in the foreign country. Thus,
∂Π

∂D0

is also known as rho. In order to distinguish
∂Π

∂r
and

∂Π

∂D0
, here we define

ρd =
∂Π

∂D0
.

These quantities are usually referred to as Greeks.

When σ depends on S, or the coefficient of
∂V

∂S
is more complicated,

analytic expressions of option prices may not exist. In this case, we have to
use numerical methods. Also sometimes (for example, for a call option), the
solution is unbounded. It is not convenient to solve a problem numerically
on an infinite domain with an unbounded solution. Therefore in Sect. 2.2.5,
we also provide a transformation under which the Black–Scholes equation on
[0,∞) becomes an equation on [0, 1) with a bounded solution.

2.2.5 Transforming the Black–Scholes Equation into an Equation
Defined on a Finite Domain

Let us consider the following option problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

0 ≤ S <∞, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S <∞.

(2.16)
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The transformation to be described in this subsection works even when σ, r,
or D0 depends on S and t. For simplicity, we assume in the derivation that σ
depends on S and that r, D0 are constant. In this case, an analytic expression
of the solution V (S, t) may not exist, and numerical methods may be neces-
sary. Also for a call option, the solution V (S, t) is not bounded. Therefore,
we introduce new independent variables and dependent variable through the
following transformation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

τ = T − t,

V (S, t) = (S + Pm)V (ξ, τ).

(2.17)

From Eq. (2.17) we have

S =
Pmξ

1− ξ
, S + Pm =

Pm
1− ξ

and
dξ

dS
=

Pm
(S + Pm)2

=
(1− ξ)2

Pm
.

Because

∂V

∂t
=

∂

∂t

[
(S + Pm)V (ξ, τ)

]
= −(S + Pm)

∂V

∂τ
= − Pm

1− ξ

∂V

∂τ
,

∂V

∂S
=

∂

∂S

[
(S + Pm)V (ξ, τ)

]
= (S + Pm)

∂V

∂ξ

dξ

dS
+ V = (1− ξ)

∂V

∂ξ
+ V ,

∂2V

∂S2
=

∂

∂ξ

[

(1− ξ)
∂V

∂ξ
+ V

]
dξ

dS
=

(1− ξ)3

Pm

∂2V

∂ξ2
,

and let

σ̄(ξ) = σ(S(ξ)) = σ

(
Pmξ

1− ξ

)

,

the original equation becomes9

Pm
1− ξ

∂V

∂τ
=
σ̄2(ξ)Pmξ

2(1− ξ)

2

∂2V

∂ξ2
+ (r −D0)Pmξ

∂V

∂ξ
+

(r −D0)ξ − r

1− ξ
PmV

or

∂V

∂τ
=
σ̄2(ξ)ξ2(1− ξ)2

2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ < 1, 0 ≤ τ.

9Actually, the same equation can be directly obtained by constructing a portfolio
and using Itô lemma (see Problem 23).
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Assume that V is a smooth function of ξ, then the equation also holds at

ξ = 1. Because V (S, T ) = (S + Pm)V (ξ, 0) = V (ξ, 0)
Pm
1− ξ

, the condition

V (S, T ) = VT (S) can be rewritten as V (ξ, 0) = VT

(
Pmξ

1− ξ

)
1− ξ

Pm
. Conse-

quently, the problem (2.16) becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) =
1− ξ

Pm
VT

(
Pmξ

1− ξ

)

, 0 ≤ ξ ≤ 1.

(2.18)
Thus, the transformation (2.17) converts a problem on an infinite domain
into a problem on a finite domain. For a parabolic equation defined on a
finite domain to have a unique solution, besides an initial condition, boundary
conditions are usually needed. However, in this equation the coefficients of
∂2V

∂ξ2
and

∂V

∂ξ
at ξ = 0 and at ξ = 1 are equal to zero, i.e., the equation

degenerates to ordinary differential equations at the boundaries. Actually, at
ξ = 0 the equation becomes

∂V (0, τ)

∂τ
= −rV (0, τ)

and the solution is

V (0, τ) = V (0, 0)e−rτ . (2.19)

Similarly, at ξ = 1 the equation reduces to

∂V (1, τ)

∂τ
= −D0V (1, τ),

from which we have
V (1, τ) = V (1, 0)e−D0τ . (2.20)

Therefore for this equation, the two solutions of the ordinary differential equa-
tions provide the values at the boundaries, and no boundary conditions are
needed in order for the problem (2.18) to have a unique solution.

Consequently, in order to price an option, we need to solve a problem
on a finite domain if this formulation is adopted. From the point view of
numerical methods, such a formulation is better. This is its first advantage.
Actually, the uniqueness of solution for problem (2.18) can easily be proved
(see Sect. 2.4). Indeed, not only the uniqueness can be proved, but the stability
of the solution with respect to the initial value can also be shown easily. That
is, this formulation makes proof of some theoretical problems easy. This is its
other advantage.
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For a call option, the payoff is

V (S, T ) = max(S − E, 0),

so the initial condition in the problem (2.18) for a call is

V (ξ, 0) = max(S − E, 0)(1− ξ)/Pm

= max

(
Pmξ

1− ξ
− E, 0

)

(1− ξ)/Pm

= max

(

ξ − E

Pm
(1− ξ), 0

)

.

For a put option

V (S, T ) = max(E − S, 0).

Therefore

V (ξ, 0) = max

(
E

Pm
(1− ξ)− ξ, 0

)

.

Let Pm = E, the two initial conditions become

V (ξ, 0) = max (2ξ − 1, 0) and V (ξ, 0) = max (1− 2ξ, 0) ,

respectively. Therefore, a European call option is the solution of the following
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) = max(2ξ − 1, 0), 0 ≤ ξ ≤ 1
(2.21)

and the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) = max(1− 2ξ, 0), 0 ≤ ξ ≤ 1
(2.22)

gives the price of a European put option. In the problem (2.21) the initial
condition is bounded, so V (ξ, τ), as a solution of a linear parabolic equation,
is also bounded. Therefore in this case, the solution that needs to be found
numerically is bounded.

So far, we assumed that σ depends only on S and that r and D0 are
constant. However, the result will be the same if σ depends on both S and t,
and r and D0 also depend on S and t.
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Finally, we would like to point out that from the expression (2.20) we can
have an asymptotic expression of the solution of the Black–Scholes equation
at infinity. Because at ξ = 1 there is an analytic solution (2.20), noticing

V (S, t) = (S + Pm)V (ξ, τ),

for S ≈ ∞ we have

V (S, t) = (S + Pm)V (ξ, τ) ≈ (S + Pm)V (1, τ)

= (S + Pm)V (1, 0)e−D0τ

≈ V (S, T )e−D0τ = V (S, T )e−D0(T−t). (2.23)

This is an asymptotic expression of the solution of the Black–Scholes equation
at infinity.

2.2.6 Derivation of the Equation for Options on Futures

As we know, a futures contract in finance is a standardized contract between
two parties to exchange a specified asset of a standardized quantity and quality
for a price K (the delivery price) agreed today with delivery occurring at a
specified future date, while a forward contract in finance is a nonstandardized
contract between two parties to buy or sell an asset at a specified future
time at a price K agreed today. There are some differences between a futures
contract and a forward contract, but both are a contract in which two parties
agree to exchange a specified asset for a specified amount of cash at a specified
future date. Here we derive the PDE for options on such a contract.

Suppose that the price of the underlying asset satisfies

dS = μSdt+ σSdX, (2.24)

and it pays dividends continuously with a constant dividend yield D0. We also
assume that the interest rate r is a constant. Let T be the expiration date of
the contract and t be the time today.

Before deriving the PDE, we point out that the value of a forward/futures
contract at time t is

f = Se−D0(T−t) −Ke−r(T−t), (2.25)

from which we can have

S = eD0(T−t)
(
f +Ke−r(T−t)

)
. (2.26)

The reason is as follows. At time t, the seller of this contract, who gets f when
the contract is sold, can borrow Ke−r(T−t) from a bank with an interest rate
r and buy e−D0(T−t) units of the asset by spending Se−D0(T−t). At time T ,



36 2 European Style Derivatives

the seller will get K from the holder of the contract, which will be paid to the
bank, and give a unit of the asset to the holder. Therefore, there is no risk for
seller, and it is a reasonable price for the contract.

Now we consider an option on such a contract. When we consider options
on stocks, we let its value be a function of the value of the stock, S, and t.
Thus, it is natural to let the value of options on futures be a function of the
value of futures contracts, f , and t. That is, let V1(f, t) denote the price of the
option. The PDE for V1(f, t) can be derived in the following way. Consider a
portfolio

Π = V1(f, t)−Δf.

Because we assume that S is a lognormal variable,10 using Itô’s lemma, for f
we have

df =
∂f

∂S
dS +

(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)

dt

= e−D0(T−t)dS +
(
D0Se

−D0(T−t) − rKe−r(T−t)
)
dt

= e−D0(T−t)(μSdt+ σSdX) +
(
D0Se

−D0(T−t) − rKe−r(T−t)
)
dt

=
(
e−D0(T−t)μS +D0Se

−D0(T−t) − rKe−r(T−t)
)
dt+ e−D0(T−t)σSdX

=
[
(μ+D0)

(
f +Ke−r(T−t)

)
− rKe−r(T−t)

]
dt

+σ
[
f +Ke−r(T−t)

]
dX.

Using this relation and Itô’s lemma again, we can further have

dΠ =
∂V1
∂f

df +

[
∂V1
∂t

+
1

2
σ2
(
f +Ke−r(T−t)

)2 ∂2V1
∂f2

]

dt−Δdf

=

(
∂V1
∂f

−Δ

)

df +

[
∂V1
∂t

+
1

2
σ2
(
f +Ke−r(T−t)

)2 ∂2V1
∂f2

]

dt.

If we choose Δ =
∂V1
∂f

, then the portfolio dΠ is risk-free and

dΠ =

[
∂V1
∂t

+
1

2
σ2
(
f +Ke−r(T−t)

)2 ∂2V1
∂f2

]

dt

= rΠdt = r

(

V1(f, t)−
∂V1
∂f

f

)

dt.

This relation can be rewritten as

∂V1
∂t

+
1

2
σ2
(
f +Ke−r(T−t)

)2 ∂2V1
∂f2

+ rf
∂V1
∂f

− rV1 = 0. (2.27)

10If we assume that f has a lognormal distribution, the PDE will be different.
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Actually, if we use another independent variable, the PDE will become
simple. This independent variable is the forward price F . What is the forward
price? Consider a foreign currency. Let S be the current spot price in dollars
of one unit of the foreign currency at time t and F be the forward price in
dollars of one unit of the foreign currency in the forward contract issued at
time t and expiring at time T . Let D0 be the interest rate in the foreign
country. Then for the forward price F , there is the following expression:

F = e(r−D0)(T−t)S. (2.28)

This is because the seller of the forward contract can borrow e−D0(T−t)S to
buy e−D0(T−t) units of the foreign currency at time t, and at time T he or
she can have one unit of the foreign currency and can obtain an amount of
e(r−D0)(T−t)S from one unit of the foreign currency, which is what he or she
needs in order to pay off the borrowing. It is clear that between F and f ,
there are the following relations:

f = e−r(T−t)
(
Se(r−D0)(T−t) −K

)
= e−r(T−t) (F −K) (2.29)

and
F = er(T−t)f +K.

Let V (F, t) denote the value of that option, and let us find the PDE for the
function V (F, t). Set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F = er(T−t)f +K,

t = t,

V1(f, t) = V (F (f, t), t) = V (er(T−t)f +K, t).

From these expressions, we have

∂V1
∂t

=
∂V

∂t
− rer(T−t)f

∂V

∂F
,

∂V1
∂f

= er(T−t) ∂V
∂F

,

and

∂2V1
∂f2

= e2r(T−t) ∂
2V

∂F 2
.

Using these relations, we can rewrite the PDE for V1 as

∂V

∂t
− rer(T−t)f

∂V

∂F
+

1

2
σ2
(
f +Ke−r(T−t)

)2
e2r(T−t) ∂

2V

∂F 2

+rfer(T−t) ∂V
∂F

− rV = 0
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or
∂V

∂t
+

1

2
σ2F 2 ∂

2V

∂F 2
− rV = 0. (2.30)

Usually, this equation is called the PDE for an option on a futures contract
(see [8]). However, the PDE indeed is a variant of the Black–Scholes equation
in Sect. 2.2.2. Because F is a function of S and t, we can define a function
of S, t as follows: V2(S, t) = V (F (S, t), t). It is clear that V2(S, t) also gives
the value of the option. The only difference is that it is a function of S, t, not
F, t. As we know, any function of S, t, giving the value of a derivative security,
should satisfy the Black–Scholes equation; that is, the equation

∂V2
∂t

+
1

2
σ2S2 ∂

2V2
∂S2

+ (r −D0)S
∂2V2
∂S

− rV2 = 0

holds. Let us show by direct calculation that V2(S, t) satisfies the Black–
Scholes equation. Because

V (F, t) = V2(S(F, t), t)

and
S = e−(r−D0)(T−t)F,

we have

∂V

∂t
=
∂V2
∂t

+
∂V2
∂S

∂S

∂t
=
∂V2
∂t

+ (r −D0)S
∂V2
∂S

,

∂V

∂F
= e−(r−D0)(T−t) ∂V2

∂S
,

∂2V

∂F 2
= e−2(r−D0)(T−t) ∂

2V2
∂S2

.

From Eq. (2.30) we can have

∂V2
∂t

+ (r −D0)S
∂V2
∂S

+
1

2
σ2F 2e−2(r−D0)(T−t) ∂

2V2
∂S2

− rV2 = 0

or
∂V2
∂t

+
1

2
σ2S2 ∂

2V2
∂S2

+ (r −D0)S
∂V2
∂S

− rV2 = 0.

Thus, we have proved that if the value of an option on a futures contract is
a function of S and t, then it satisfies the Black–Scholes equation. It can also
be proved that if we let V3(S, t) = V1(f(S, t), t), then V3(S, t) also satisfies the
Black–Scholes equation. This means that Eq. (2.27) is also a variant of the
Black–Scholes equation. The proof is left for readers as a part of Problem 16.
When the Black–Scholes equation is derived, the randomness of the value of
derivative securities is cancelled by the randomness of the value of the stock, S,
and when Eq. (2.27) is derived, the randomness is cancelled by the randomness
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of the value of the forward/futures contract, f . However, f is a function of
S and t given by the expression (2.25). Thus, their randomnesses are related.
Consequently, the Black–Scholes equation and the equation for options on
futures contracts are the same essentially.

2.3 General Equations for Derivatives

Generally speaking, a financial derivative could depend on several random
variables, and a random variable may not represent a price of an asset that
can be traded on the market. For example, a derivative could depend on prices
of several assets. Also interest rates and volatilities may need to be treated
as random variables. As we know, both interest rates and volatilities are not
prices of assets. In this section, we will derive the general partial differential
equations satisfied by derivatives, where there exist several state variables and
a state variable may not be a price of an asset traded on the market or even
not be related to a price. The derivation of equations for derivatives with
several state variables can be found from other books, for example, the books
by Hull [42], and Wilmott, Dewynne, and Howison [84].

2.3.1 Generalization of Itô’s Lemma

Suppose a financial derivative depends on time t and n random state variables,
namely, S1, S2, · · · , Sn. Each of them satisfies a stochastic differential equation

dSi = aidt+ bidXi, i = 1, 2, · · · , n, (2.31)

where ai,bi are functions of S1, S2, · · · , Sn and t, and dXi = φi
√
dt are Wiener

processes. In addition, φ1, φ2, · · · , φn have a joint normal distribution and

E [φiφj ] = ρij , (2.32)

where
−1 ≤ ρij ≤ 1.

If ρij = 0, then φi and φj are not correlated. If ρij = ±1, then φi and φj are
completely correlated. It is clear that ρii = 1. In this book ρij is referred to
as the correlation coefficient between Si and Sj .

Let V = V (S1, S2, · · · , Sn, t). According to the Taylor expansion, we have

dV =V (S1 + dS1, S2 + dS2, · · · , Sn + dSn, t+ dt)− V (S1, S2, · · · , Sn, t)

=

n∑

i=1

∂V

∂Si
dSi +

∂V

∂t
dt+

1

2

n∑

i=1

n∑

j=1

∂2V

∂Si∂Sj
dSidSj

+

n∑

i=1

∂2V

∂Si∂t
dSidt+

1

2

∂2V

∂t2
(dt)2 + · · · .
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Because
lim
dt→0

dSidSj/dt = bibjρij

and dSidt is a quantity of order (dt)
3/2

, the relation above as dt→ 0 becomes

dV = fdt+

n∑

i=1

∂V

∂Si
dSi, (2.33)

where

f =
∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

∂2V

∂Si∂Sj
bibjρij .

This is called the generalized Itô’s lemma.

2.3.2 Derivation of Equations for Financial Derivatives

On the n random variables, we further assume that

S1, S2, · · · , and Sm, m ≤ n,

are prices of some assets which can be traded on markets, and that the k-th
asset pays a dividend payment Dkdt during the time interval [t, t+ dt], Dk

being a known function that may depend on S1,S2, · · · , Sn and t. In order to
derive the general PDE for financial derivatives, we suppose that there are

n−m+ 1

distinct financial derivatives dependent on S1, S2, · · · , Sn and t. Let Vk stand
for the value of the k-th derivative, k = 0, 1, · · · , n−m and assume that the
k-th derivative during the time interval [t, t+ dt] pays coupon payment Kkdt,
Kk being a known function that may depend on S1,S2, · · · , Sn and t. They
could have different expiries, different exercise prices, or different payoff func-
tions. Even some of the derivatives may depend on only some of the random
variables. According to the generalized Itô’s lemma, for each derivative, we
have

dVk = fkdt+

n∑

i=1

νi,kdSi,

where

fk =
∂Vk
∂t

+
1

2

n∑

i=1

n∑

j=1

∂2Vk
∂Si∂Sj

bibjρij

and

νi,k =
∂Vk
∂Si

.
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Consider a portfolio consisting of the n − m + 1 derivatives and the m
assets, whose prices are S1, S2, · · · , Sm:

Π =

n−m∑

k=0

ΔkVk +

n∑

k=n−m+1

ΔkSk−n+m,

where Δk is the amount of the k-th derivative for k = 0, 1, · · · , n − m and
the amount of the (k − n+m)-th asset, for k = n−m+ 1, n−m+ 2, · · · , n.
During the time interval [t, t+ dt] , the holder of this portfolio will earn

n−m∑

k=0

Δk (dVk +Kkdt) +
n∑

k=n−m+1

Δk (dSk−n+m +Dk−n+mdt)

=

n−m∑

k=0

Δk

(

fkdt+

n∑

i=1

νi,kdSi +Kkdt

)

+

n∑

k=n−m+1

Δk (dSk−n+m +Dk−n+mdt)

=

n−m∑

k=0

Δk (fk +Kk) dt+

n∑

i=1

(
n−m∑

k=0

Δkνi,k

)

dSi

+

m∑

i=1

Δi+n−mdSi +
n∑

k=n−m+1

ΔkDk−n+mdt

=

n−m∑

k=0

Δk (fk +Kk) dt+

m∑

i=1

(
n−m∑

k=0

Δkνi,k +Δi+n−m

)

dSi

+

n∑

i=m+1

(
n−m∑

k=0

Δkνi,k

)

dSi +

n∑

k=n−m+1

ΔkDk−n+mdt.

Let us choose Δk so that

n−m∑

k=0

Δkνi,k +Δi+n−m = 0, i = 1, 2, · · · ,m

and
n−m∑

k=0

Δkνi,k = 0, i = m+ 1,m+ 2, · · · , n.

In this case the portfolio is risk-free, so its return rate is r, i.e.,

n−m∑

k=0

Δk (fk +Kk) dt+

n∑

k=n−m+1

ΔkDk−n+mdt

= r

[
n−m∑

k=0

ΔkVk +
n∑

k=n−m+1

ΔkSk−n+m

]

dt,
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or

n−m∑

k=0

Δk (fk +Kk − rVk) +

n∑

k=n−m+1

Δk (Dk−n+m − rSk−n+m) = 0,

or
n−m∑

k=0

Δk (fk +Kk − rVk) +

m∑

k=1

Δn−m+k (Dk − rSk) = 0.

This relation and the relations the chosen Δk satisfy can be written together
in a matrix form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν1,0 ν1,1 · · · ν1,n−m 1 0 · · · 0
ν2,0 ν2,1 · · · ν2,n−m 0 1 · · · 0
...

...
...

...
...

...
. . .

...
νm,0 νm,1 · · · νm,n−m 0 0 · · · 1
νm+1,0 νm+1,1 · · · νm+1,n−m 0 0 · · · 0

...
...

...
...

...
...

...
...

νn,0 νn,1 · · · νn,n−m 0 0 · · · 0
g0 g1 · · · gn−m h1 h2 · · · hm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Δ0

Δ1
...

Δn−m
Δn−m+ 1
Δn−m+ 2

...
Δn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0,

where
gk = fk +Kk − rVk, k = 0, 1, · · · , n−m

and
hk = Dk − rSk, k = 1, 2, · · · ,m.

In order for the system to have a non-trivial solution, the determinant of the
matrix must be zero, or the n+ 1 row vectors of the matrix must be linearly
dependent. Therefore, it is expected that the last row can be expressed as a
linear combination of the other rows with coefficients λ̃1, λ̃2, · · · , λ̃n:

gk =

n∑

i=1

λ̃iνi,k, k = 0, 1, · · · , n−m

and
hk = λ̃k, k = 1, 2, · · · ,m.

Using the last m relations, we can rewrite the first n−m+ 1 relations as

gk −
m∑

i=1

hiνi,k −
n∑

i=m+1

λ̃iνi,k = 0, k = 0, 1, · · · , n−m,

which means that any derivative satisfies an equation in the form

f +K − rV −
m∑

i=1

hi
∂V

∂Si
−

n∑

i=m+1

λ̃i
∂V

∂Si
= 0,



2.3 General Equations for Derivatives 43

or

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

bibjρij
∂2V

∂Si∂Sj
+

m∑

i=1

(rSi −Di)
∂V

∂Si

−
n∑

i=m+1

λ̃i
∂V

∂Si
− rV +K = 0,

where bi, ρij are given functions in the models of Si, λ̃i are unknown functions
which are independent of V0, V1, · · · , Vn−m and could depend on S1, S2, · · · , Sn
and t, and K depends on the individual derivative security. Usually λ̃i is writ-
ten in the form:

λ̃i = λibi − ai

and λi is called the market price of risk for Si. Using this notation, we finally
arrive at

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

bibjρij
∂2V

∂Si∂Sj
+

m∑

i=1

(rSi −Di)
∂V

∂Si

+

n∑

i=m+1

(ai − λibi)
∂V

∂Si
− rV +K = 0. (2.34)

It is clear that if m = n = 1, b1 = σ1S1, D1 = D01S1, and K = 0, then
this equation becomes the Black–Scholes equation (2.12) after ignoring the
subscript 1.

In the last we give some explanation on why λi is called the market price
of risk for Si. For simplicity, assume that none of Sk, k = 1, 2, · · · , n, is a
price. In this case the PDE above becomes

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

bibjρij
∂2V

∂Si∂Sj
+

n∑

i=1

(ai − λibi)
∂V

∂Si
− rV +K = 0.

According to Itô’s lemma and using this PDE, we have

dV =

⎛

⎝
∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

∂2V

∂Si∂Sj
bibjρij

⎞

⎠ dt+

n∑

i=1

∂V

∂Si
dSi

=

[
n∑

i=1

(λibi − ai)
∂V

∂Si
+ rV −K

]

dt+

n∑

i=1

∂V

∂Si
(aidt+ bidXi)

or

dV +Kdt− rV dt =

n∑

i=1

∂V

∂Si
bi (dXi + λidt) .

Here, dV +Kdt is the return for the derivative including the coupon payment
and rV dt is the return if the investment is risk-free. Therefore, dV+Kdt−rV dt
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is the excess return above the risk-free rate during the time interval [t, t+ dt].

This equals the right-hand side of the equation. Its expectation is
n∑

i=1

∂V

∂Si
biλidt

because E [dXi] = 0, i = 1, 2, · · · , n. Therefore, the term
∂V

∂Si
biλidt may be

interpreted as an excess return above the risk-free return for taking the risk
dXi. Consequently, λi is a price of risk for Si that is associated with dXi and
is often called the market price of risk for Si.

2.3.3 Three Types of State Variables

When we talk about the market price of risk, we can think that there are
three types of state variables.

The first type of state variable is a price of an asset. In this case the coef-

ficient of
∂V

∂Si
in Eq. (2.34) is rSi−Di. Thus for such a state variable, there is

no market price of risk. However, this fact can also be understood in another
way: there still is a market price of risk and the market price of risk for an
asset is determined by

ai − λibi = rSi −Di(S1, S2, · · · , Sn, t). (2.35)

This can be explained as follows. Suppose that the (m+1)-th random variable
actually is a price of an asset. In this case, let us consider a portfolio consisting
of the n−m derivatives and the m+1 assets, and derive the PDE. In the new

PDE obtained the coefficient of
∂V

∂Sm+1
is rSm+1−Dm+1. The price of any fi-

nancial derivative dependent on S1, S2, · · · , Sn, t should satisfy the same equa-
tion. Thus am+1 − λm+1bm+1 should equal rSm+1 −Dm+1(S1, S2, · · · , Sn, t),
which means that the relation (2.35) holds. If Di = D0iSi, then the following
should be true:

ai − λibi = (r −D0i)Si. (2.36)

This can be shown in another way, which is left for readers as Problem 22.
A state variable Si with bi = 0 in Eq. (2.31) is another type of state

variable. From bi = 0, we have

ai − λibi = ai, (2.37)

so λi disappears in Eq. (2.34). As we will see from Chap. 4, if S′
i is the price

of a stock and Si is the maximum, minimum, or average price of the stock
during a time period, and both of them are state variables, then dSi = aidt.

If Si is the short-term interest rate, then in order to determine λi, we have
to solve an inverse problem. We will discuss this problem in detail in Chap. 5.
This is an example of the third type of state variable. Besides the interest
rate, the random volatility also falls into this type of state variable.
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2.3.4 Random Variables Not Being But Related to Prices of Assets

In Sect. 2.3.2 we assume that a random variable either is a value of a derivative
or is a price of an asset. However, sometimes a random variable is merely re-
lated to an asset price. The random variable ξ in Sect. 2.2.5 and the random
variable F in Sect. 2.2.6 are such examples. In Sects. 2.2.5 and 2.2.6, the PDEs
for V (ξ, τ) and V (F, t) are obtained from the known PDEs by using trans-
formations of independent and dependent variables. However, the two PDEs
can also be obtained by setting a portfolio and using Itô’s lemma. In Prob-
lems 23 and 24, readers are asked to derive the two PDEs and some other
PDEs in this way. Here we assume that there are m random variables that
do not represent prices of assets, but there exist m known different functions
dependent on the m random variables that represent asset prices. In this case,
in the procedure of deriving a PDE, determining Δ0, · · · , Δn in the portfolio
will involve solving a linear system; the expressions of the coefficients of the
first derivatives in the PDE are more complicated. Here we give an example
with m = 2, and readers are asked to do Problem 26 with m = 3.

Suppose that ξ1 and ξ2 satisfy the system of stochastic differential equa-
tions

dξi = μi(ξ1, ξ2, t)dt+ σi(ξ1, ξ2, t)dXi, i = 1, 2,

where dXi are the Wiener processes and E [dXidXj ] = ρijdt with −1 ≤ ρij ≤
1. The functions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1 (ξ1)− Z2,l]

= Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l]

represent prices of two nondividend-paying assets, where Z1,l and Z2,l are
two constants. Let V (ξ1, ξ2, t) be the value of a noncoupon-paying derivative
security. Because Z1(ξ1) and Z2(ξ1, ξ2) are prices of two assets, we can set a
portfolio

Π = V −Δ1Z1(ξ1)−Δ2Z2(ξ1, ξ2)

when deriving the PDE for V (ξ1, ξ2, t). According to Itô’s lemma and noticing
the form of functions Z1 (ξ1) and Z2 (ξ1, ξ2), we have

dV =
2∑

i=1

∂V

∂ξi
dξi +

⎛

⎝
∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj

⎞

⎠ dt,

dZ1 =
∂Z1

∂ξ1
dξ1,

dZ2 =

2∑

i=1

∂Z2

∂ξi
dξi + σ1σ2ρ1,2

∂2Z2

∂ξ1∂ξ2
dt.
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Using these expressions, we obtain

dΠ =

2∑

i=1

∂V

∂ξi
dξi +

⎛

⎝
∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj

⎞

⎠ dt

−Δ1
∂Z1

∂ξ1
dξ1 −Δ2

(
2∑

i=1

∂Z2

∂ξi
dξi + σ1σ2ρ1,2

∂2Z2

∂ξ1∂ξ2
dt

)

=

(
∂V

∂ξ1
−Δ1

∂Z1

∂ξ1
−Δ2

∂Z2

∂ξ1

)

dξ1 +

(
∂V

∂ξ2
−Δ2

∂Z2

∂ξ2

)

dξ2

+

⎛

⎝
∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj

⎞

⎠ dt

−Δ2σ1σ2ρ1,2
∂2Z2

∂ξ1∂ξ2
dt.

Let us choose

Δ2 =
1
∂Z2

∂ξ2

∂V

∂ξ2
,

Δ1 =
1
∂Z1

∂ξ1

(
∂V

∂ξ1
−Δ2

∂Z2

∂ξ1

)

=
1
∂Z1

∂ξ1

∂V

∂ξ1
−

∂Z2

∂ξ1
∂Z1

∂ξ1
∂Z2

∂ξ2

∂V

∂ξ2
,

so that
∂V

∂ξ1
−Δ1

∂Z1

∂ξ1
−Δ2

∂Z2

∂ξ1
=
∂V

∂ξ2
−Δ2

∂Z2

∂ξ2
= 0.

In this case, the portfolio is risk-free and the return rate should be r:

⎛

⎝
∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj

⎞

⎠ dt−Δ2σ1σ2ρ1,2
∂2Z2

∂ξ1∂ξ2
dt

= r (V −Δ1Z1 −Δ2Z2) dt

or

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj
+
rZ1

∂Z1

∂ξ1

∂V

∂ξ1

+

(

−
rZ1

∂Z2

∂ξ1
∂Z1

∂ξ1
∂Z2

∂ξ2

+
rZ2

∂Z2

∂ξ2

−
σ1σ2ρ1,2

∂2Z2

∂ξ1∂ξ2
∂Z2

∂ξ2

)
∂V

∂ξ2
− rV = 0.
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Noticing

∂Z1

∂ξ1
= 1− Z1,l,

∂Z2

∂ξ1
= ξ2 (1− Z1,l) ,

∂Z2

∂ξ2
= Z1 − Z2,l,

∂2Z2

∂ξ1∂ξ2
= 1− Z1,l,

we can rewrite the PDE as

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj
+

rZ1

1− Z1,l

∂V

∂ξ1

+

(

− rZ1ξ2 (1− Z1,l)

(1− Z1,l) (Z1 − Z2,l)
+

rZ2

Z1 − Z2,l
− σ1σ2ρ1,2 (1− Z1,l)

Z1 − Z2,l

)
∂V

∂ξ2
−rV = 0,

which can be simplified to

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj
+

rZ1

1− Z1,l

∂V

∂ξ1

+

[
r (Z2 − Z1ξ2)− σ1σ2ρ1,2 (1− Z1,l)

Z1 − Z2,l

]
∂V

∂ξ2
− rV = 0.

From Sect. 5.6 you can see that it could be a PDE for a two-factor interest
rate model.

2.4 Uniqueness of Initial-Value Problems for Degenerate
Parabolic PDEs

2.4.1 Reversion Conditions for Stochastic Models

In many cases, a stochastic model in finance usually describes a random vari-
able which can take its value on an infinite domain. For such a model, closed-
form solutions can be found in many situations. This is an advantage of such
a model. However it seems that assuming a random variable (such as interest
rates, volatilities) to be defined on a finite domain and designing a model from
market data are more realistic. How do we model a random variable with such
a property? For simplicity, we consider problems with only one random vari-
able S. Suppose that we want a random variable S to have a lower boundary
Sl, i.e., if S ≥ Sl at time t, then we want to guarantee that S is still greater
than or equal to Sl after time t even though the movement of S possesses
some uncertainty. In this case, we need to require that a (S, t) and b (S, t) at
S = Sl satisfy the conditions
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⎧
⎨

⎩

a (Sl, t) ≥ 0, 0 ≤ t ≤ T,

b (Sl, t) = 0, 0 ≤ t ≤ T.
(2.38)

This is a necessary condition because if either of the two conditions does not
hold, then there is a chance for S to be lower than Sl at time t + dt when
S = Sl at time t. In Sect. 2.4.2, we will see that if

⎧
⎨

⎩

a (Sl, t)− b(Sl, t)
∂

∂S
b(Sl, t) ≥ 0, 0 ≤ t ≤ T,

b (Sl, t) = 0, 0 ≤ t ≤ T

(2.39)

holds, then a unique solution of the corresponding partial differential equation
can be determined by a final condition on [Sl,∞) without any boundary
conditions at S = Sl. Therefore, what happens at S = Sl will not affect the
solution at t = 0 for any S. This fact can be interpreted as follows. If the
condition (2.39) holds for any t ∈ [t0,T ], then for any such time t, S will be
greater than or equal to Sl if S > Sl at t = t0. That is, S is either reflected
into the region S > Sl or is absorbed by the boundary S = Sl in the event S
hits the lower bound Sl at some time t ∈ [t0, T ]. This is because if there are
paths that pass through a point (Sl, t) and go to the outside of [Sl,∞), then
the solution at the point (S, 0) should depend on the value of the solution at
the point (Sl, t). The solution is determined only by the final condition, so
there is no path passing the boundary S = Sl. Consequently the condition
(2.39) is a sufficient condition to guarantee S ≥ Sl for any t.

In the popular model

dS = μSdt+ σSdX,

we have a = μS and b = σS. Therefore, the condition (2.39) holds at S = 0,
and S is always greater than or equal to zero. In the Cox–Ingersoll–Ross
interest rate model (see [23])

dr = (μ̄− γ̄r)dt+
√
αrdX, μ̄, γ̄, α > 0,

which will be discussed in Chap. 5, a = μ̄ − γ̄r, b =
√
αr, and the condition

(2.39) is reduced to μ̄− α/2 ≥ 0 if the lower bound is zero. This means that
if μ̄ − α/2 ≥ 0, then at r = 0, no boundary condition is needed. In fact, if
μ̄− α/2 ≥ 0, the upward drift is sufficiently large to make the origin inac-
cessible (see [23]). Therefore, no boundary condition at r = 0 is related to
inaccessibility to the origin.

Actually, Sl may not be zero, and a similar condition

⎧
⎨

⎩

a (Su, t)− b(Su, t)
∂

∂S
b(Su, t) ≤ 0, 0 ≤ t ≤ T,

b (Su, t) = 0, 0 ≤ t ≤ T

(2.40)
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can also be required at S = Su > Sl so that S will always be in [Sl,Su] .
If a (Sl, t) ≥ 0 and a (Su,t) ≤ 0, then it is usually said that the model has a
mean reversion property. However, if b (Sl, t) �= 0 or b (Su,t) �= 0, then there is
still a chance for S to become less than Sl or greater than Su. If the conditions
(2.39) and (2.40) hold, then we say that the model really has a reversion
property because S will always be in [Sl, Su]. In this book, the conditions
(2.39) and (2.40) will be referred to as the reversion conditions, and (2.38)
and the like will be referred to as the weak-form reversion conditions. When
∂

∂S
b(S, t) is bounded, the two types of reversion conditions are the same.

The two random variables given above as examples are defined on [0,∞).
In what follows, we will show that they can be converted into new random
variables whose domains are [0, 1) and can be naturally extended to [0, 1], and
for them the reversion conditions hold at both the lower and upper boundaries.

Let us introduce a new random variable

ξ =
S

S + Pm
,

where Pm is a positive parameter. From this relation, we can have

S =
Pmξ

1− ξ
,

S + Pm =
Pm
1− ξ

,

dξ

dS
=

Pm

(S + Pm)
2 =

(1− ξ)
2

Pm
,

and
d2ξ

dS2
=

−2Pm
(S + Pm)3

=
−2(1− ξ)3

P 2
m

.

According to Itô’s lemma, if S satisfies dS = μSdt + σSdX, then for ξ the
stochastic differential equation is

dξ =
(1− ξ)

2

Pm
dS − (1− ξ)

3

P 2
m

σ2S2dt

=
[
μξ(1− ξ)− σ2ξ2(1− ξ)

]
dt+ σξ(1− ξ)dX.

Consequently for ξ, the conditions (2.39) and (2.40) are fulfilled at ξ = 0 and
ξ = 1, respectively.

Similarly for the Cox–Ingersoll–Ross interest rate model, let

ξ =
r

r + Pm
,
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then we get

dξ =

[
(1− ξ)

2

Pm

(

μ̄− γ̄Pmξ

1− ξ

)

− αξ (1− ξ)
2

Pm

]

dt+

√
αξ1/2(1− ξ)3/2

P
1/2
m

dX.

In this case ξl = 0 and ξu = 1 and it is easy to show that both the conditions
(2.39) and (2.40) hold if μ̄−α/2 ≥ 0. All the proofs here are left for readers as
Problem 28. In this book we only talk these models satisfying conditions (2.39)
and (2.40) or these models which can become models satisfying conditions
(2.39) and (2.40) after introducing new random variables.

Suppose that a model defined on [Sl, Su] has the property of mean revert-
ing, but it does not satisfy the reversion condition. The model can be modified
as follows: the coefficient of dX is multiplied by a function, for example,

Φ(x) =
1− (1− 2x)2

1− 0.975(1− 2x)2
,

where x = (S−Sl)
(Su−Sl)

. Because Φ(x) are equal to zero at S = Sl and S = Su and

very close to one at S ∈ (Sl + ε, Su − ε), ε being a very small number, almost
all the properties of the original model are kept in the modified model and
the reversion conditions will hold after the modification is made.

Now we describe the reversion conditions for the case involving n random
variables. Suppose that a financial derivative depends on the time t and n
random variables S1, S2, · · · , Sn and that for i = 1, 2, · · · , n, Si satisfies the
equation

dSi = ai(S1, S2, · · · , Sn, t)dt+ bi(S1, S2, · · · , Sn, t)dXi (2.41)

in a rectangular domain Ω : [S1l, S1u] × [S2l, S2u] × · · · × [Snl, Snu]. In this
case we require that the following conditions hold:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Sil

Sj∈[Sjl,Sju]
j �=i

≥ 0,

bi(S1, S2, · · · , Sn, t)| Si=Sil

Sj∈[Sjl,Sju]
j �=i

= 0

(2.42)
and
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Siu

Sj∈[Sjl,Sju]
j �=i

≤ 0,

bi(S1, · · · , Sn, t)| Si=Siu

Sj∈[Sjl,Sju]
j �=i

= 0.

(2.43)
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These conditions are called the reversion conditions on a rectangular do-
main Ω. It is clear that if

∂bi(S1, · · · , Sn, t)
∂Si

∣
∣
∣
∣ Si=Sil

Sj∈[Sjl,Sju]
j �=i

and
∂bi(S1, · · · , Sn, t)

∂Si

∣
∣
∣
∣ Si=Siu

Sj∈[Sjl,Sju]
j �=i

are bounded, then the two conditions (2.42) and (2.43) can be reduced to

⎧
⎪⎪⎨

⎪⎪⎩

ai(S1, · · · , Sn, t)| Si=Sil

Sj∈[Sjl,Sju]
j �=i

≥ 0,

bi(S1, · · · , Sn, t)| Si=Sil

Sj∈[Sjl,Sju]
j �=i

= 0
(2.44)

and
⎧
⎪⎪⎨

⎪⎪⎩

ai(S1, · · · , Sn, t)| Si=Siu

Sj∈[Sjl,Sju]
j �=i

≤ 0,

bi(S1, · · · , Sn, t)| Si=Siu

Sj∈[Sjl,Sju]
j �=i

= 0.
(2.45)

If the domain is not rectangular, the form of reversion conditions will be
a little different. If all the coefficients in the models are differential, then
the form is relatively simple. For example, consider the case of n = 3. Let
the outer normal vector be (n1, n2, n3)

T . Then the reversion conditions are
that ⎧

⎨

⎩

n1a1 + n2a2 + n3a3 ≥ 0,

Var(n1b1dX1 + n2b2dX2 + n3b3dX3) = 0

hold on the boundary of the domain.

2.4.2 †Uniqueness of Solutions for One-Dimensional Case

Equation (2.34) is a parabolic equation. When Si is defined on [Sil, Siu], i =
1, 2, · · · , n, Eq. (2.34) is defined on the rectangular domain Ω. If bi = 0 at
Si = Si,l and Si = Si,u, i = 1, 2, · · · , n, then we say that the equation is
a degenerate parabolic partial differential equation. In this subsection, we
are going to discuss when a degenerate equation has a unique solution. The
conclusion expected is that if for any i,
[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Sil

Sj∈[Sjl,Sju]
j �=i

≥ 0

(2.46)
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and
[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Siu

Sj∈[Sjl,Sju]
j �=i

≤ 0

(2.47)
hold, the solution of the degenerate parabolic equation on a rectangular do-
main with a final condition at t = T is unique.11 If

[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Sil

Sj∈[Sjl,Sju]
j �=i

< 0

(2.48)
or
[

ai(S1, · · · , Sn, t)− bi(S1, · · · , Sn, t)
∂bi(S1, · · · , Sn, t)

∂Si

]∣
∣
∣
∣ Si=Siu

Sj∈[Sjl,Sju]
j �=i

> 0,

(2.49)
then a boundary condition at Si = Si,l or Si = Si,u needs to be imposed
besides the final condition in order to have a unique solution. In this subsec-
tion we now prove this conclusion for the one-dimensional case. In the next
subsection we will prove that for a final-value problem the solution is unique
if the reversion conditions hold.

In the case m = 0 and n = 1, after ignoring the subscript 1, Eq. (2.34)
becomes

∂V

∂t
+

1

2
b2
∂2V

∂S2
+ (a− λb)

∂V

∂S
− rV +K = 0.

Here, the sign of the coefficient of the second derivative is opposite to that
of the coefficient of the second derivative in the heat equation. We say that
such a parabolic equation has an “anti-directional” time. For a heat equation,
an initial condition is given at t = 0, and the solution for t ≥ 0 needs to
be determined. Therefore, for the equation with an “anti-directional” time, a
final condition should be given at t = T , and the solution for t ≤ T needs to
be determined. Consequently, we consider the following problem:

11For a parabolic equation defined on a non-rectangular domain, the conditions
for a parabolic partial differential equation to be degenerate and the conditions for
the solution of its initial-value problem to be unique, see the paper [91] by Zhu.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
b2
∂2V

∂S2
+ (a− λb)

∂V

∂S
− rV +K = 0,

0 ≤ t ≤ T, Sl ≤ S ≤ Su,

V (S, T ) = f(S), Sl ≤ S ≤ Su,

V (Sl, t)

⎧
⎨

⎩

needs not to be given if the condition (2.46) holds,

= fl(t) if the condition (2.46) does not hold,

V (Su, t)

⎧
⎨

⎩

needs not to be given if the condition (2.47) holds,

= fu(t) if the condition (2.47) does not hold.

(2.50)

Let τ = T −t and x = (S−Sl)/(Su−Sl), then the problem (2.50) is converted
into a problem in the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= f1(x, τ)

∂2u

∂x2
+ f2(x, τ)

∂u

∂x
+ f3(x, τ)u+ g(x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,

u(x, 0) = f(x), 0 ≤ x ≤ 1,

u(0, τ)

⎧
⎪⎪⎨

⎪⎪⎩

needs not to be given if f2(0, τ)−
∂f1(0, τ)

∂x
≥ 0,

= fl(τ) if f2(0, τ)−
∂f1(0, τ)

∂x
< 0,

u(1, τ)

⎧
⎪⎪⎨

⎪⎪⎩

needs not to be given if f2(1, τ)−
∂f1(1, τ)

∂x
≤ 0,

= fu(τ) if f2(1, τ)−
∂f1(1, τ)

∂x
> 0,

(2.51)

where f1(0, τ) = f1(1, τ) = 0 and f1(x, τ) ≥ 0. Thus, if we can prove the
uniqueness of the solution of the problem (2.51), then we have the uniqueness
of the solution of the problem (2.50). The third and fourth relations in the
problem (2.51) are the boundary conditions for degenerate parabolic equa-
tions. For parabolic equations, there is always a boundary condition at any
boundary, that is, the number of boundary conditions for parabolic equations
is always one. However, for degenerate parabolic equations, sometimes there
is a boundary condition and sometimes there is not, depending on the value

of f2(x, τ)−
∂f1(x, τ)

∂x
at the boundary. For the problem (2.51), we have the

following theorem (see [79]).

Theorem 2.1 Suppose that the solution of the problem (2.51) exists and is
bounded12 and that there exist a constant c1 and two bounded functions c2(τ)

12This is proved in the paper [7] by Behboudi.
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and c3(τ) such that

1 + max
0≤x≤1, 0≤τ≤T

(∣
∣
∣
∣
∂2f1(x, τ)

∂x2
− ∂f2(x, τ)

∂x
+ 2f3(x, τ)

∣
∣
∣
∣

)

≤ c1,

−min

(

0, f2(0, τ)−
∂f1(0, τ)

∂x

)

≤ c2(τ),

and

max

(

0, f2(1, τ)−
∂f1(1, τ)

∂x

)

≤ c3(τ).

In this case, its solution is unique and stable with respect to the initial value
f(x), inhomogeneous term g(x, τ), and the boundary values fl(τ), fu(τ) if
there are any.

Proof. Because the partial differential equation in the problem (2.51) can
be rewritten as

∂u

∂τ
=

∂

∂x

[

f1(x, τ)
∂u

∂x

]

+

[

f2(x, τ)−
∂f1(x, τ)

∂x

]
∂u

∂x
+ f3(x, τ)u+ g(x, τ),

multiplying that equation by 2u, we have

∂(u2)

∂τ
= 2

∂

∂x

(

f1u
∂u

∂x

)

+

(

f2 −
∂f1
∂x

)
∂(u2)

∂x
− 2f1

(
∂u

∂x

)2

+ 2f3u
2 + 2gu

= 2
∂

∂x

(

f1u
∂u

∂x

)

+
∂

∂x

[(

f2 −
∂f1
∂x

)

u2
]

− 2f1

(
∂u

∂x

)2

+

(
∂2f1
∂x2

− ∂f2
∂x

+ 2f3

)

u2 + 2gu.

Integrating this equality with respect to x on the interval [0, 1], we obtain the
second equality

d

dτ

∫ 1

0

u2(x, τ)dx

= 2

(

f1u
∂u

∂x

)∣
∣
∣
∣

1

x=0

+

[(

f2 −
∂f1
∂x

)

u2
]∣
∣
∣
∣

1

x=0

− 2

∫ 1

0

f1

(
∂u

∂x

)2

dx

+

∫ 1

0

(
∂2f1
∂x2

− ∂f2
∂x

+ 2f3

)

u2dx+ 2

∫ 1

0

gudx.

Because
[(

f2 −
∂f1
∂x

)

u2
]∣
∣
∣
∣

1

x=0

=

[

f2(1, τ)−
∂f1(1, τ)

∂x

]

u2(1, τ)−
[

f2(0, τ)−
∂f1(0, τ)

∂x

]

u2(0, τ)

≤ max

(

0, f2(1, τ)−
∂f1(1, τ)

∂x

)

f2u(τ)−min

(

0, f2(0, τ)−
∂f1(0, τ)

∂x

)

f2l (τ),
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from the equality above and the relations f1(0, τ) = f1(1, τ) = 0 and
f1(x, τ) ≥ 0, we have

d

dτ

∫ 1

0

u2(x, τ)dx≤c1
∫ 1

0

u2(x, τ)dx+

∫ 1

0

g2(x, τ)dx+ c2(τ)f
2
l (τ) + c3(τ)f

2
u(τ).

Based on this inequality and by the Gronwall inequality,13 we arrive at
∫ 1

0

u2(x, τ)dx

≤ ec1τ
{∫ 1

0

f2(x)dx+

∫ τ

0

[∫ 1

0

g2(x, s)dx+ c2(s)f
2
l (s) + c3(s)f

2
u(s)

]

ds

}

,

t ∈ [0, T ].

From the last inequality, we know that the solution is stable with respect
to f(x) and g(x, τ). Also if

f2(0, τ)−
∂f1(0, τ)

∂x
≥ 0 and f2(1, τ)−

∂f1(1, τ)

∂x
≤ 0

hold and
f(x) ≡ 0, g(x, τ) ≡ 0,

then the solution of the problem (2.51) must be zero. Hence, the functions
f(x) and g(x, τ) determine the solution uniquely. If

f2(0, τ)−
∂f1(0, τ)

∂x
< 0 and f2(1, τ)−

∂f1(1, τ)

∂x
≤ 0

hold, then the solution is determined by f(x), g(x, τ), and fl(τ) uniquely.
The situation for other cases are similar. Therefore, we may conclude that if
the solution of the problem (2.51) exists, then it is unique and stable with
respect to the initial value f(x), the inhomogeneous term g(x, τ), and the
boundary values fl(τ), fu(τ) if there are any. This completes the proof and
gives an explanation on when a boundary condition is necessary. ��

Here we give some remarks.

• From the probabilistic point of view, a boundary condition on a boundary
is needed if and only if there are paths reaching the boundary from a point
x ∈ (0, 1) and t = 0. Therefore, on whether or not a random variable can
reach a boundary from the interior, there are similar conclusions (see [33]).

• This result indicates that a degenerate parabolic equation at boundaries
is similar to a hyperbolic equation.14 Due to this fact, roughly speak-
ing, we might say that the parabolic equation degenerates into a hyper-
bolic equation at the boundaries. When conditions (2.46) and (2.47) hold,

13The inequality dA(τ)/dτ ≤ cA(τ) +B(τ) can be rewritten as e−cτ [dA(τ)/dτ −
cA(τ)] ≤ e−cτB(τ) or d(e−cτA(τ))/dτ ≤ e−cτB(τ), so for positive τ, c, B(τ) we have
A(τ) ≤ ecτ [A(0) +

∫ τ

0
e−cτ̄B(τ̄)dτ̄ ] ≤ ecτ [A(0) +

∫ τ

0
B(τ̄)dτ̄ ].

14When f1(x, t) ≡ 0, the partial differential equation in Eq. (2.51) is called a
hyperbolic equation.
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incoming information is not needed at boundaries, that is, the value of V
at the boundaries at t = t∗ is determined by the value V on the region:
Sl ≤ S ≤ Su and t∗ ≤ t ≤ T . Therefore, in this case, in order for a degen-
erate parabolic equation to have a unique solution, only the final condition
is needed.15

• When the domain of S is not finite, a final condition is still enough for
such an equation to have a unique solution if S can be converted into a
random variable for which the reversion conditions hold. The reason is
that a final condition can determine a unique solution if the new random
variable is used. However, a transformation will not change the nature
of the problem. If the problem has a unique solution as a function of a
random variable, the problem will also have a unique solution as a function
of another random variable associated by a transformation. Applying this
theorem to problem (2.18), we know that its solution is unique and stable
with respect to the initial value. Problem (2.18) is obtained through a
transformation from the European option problem (2.16). Therefore, the
European option problem (2.16) also has a unique solution. In Sect. 2.2.5 it
is pointed that for problem (2.18) the values at ξ = 0 and ξ = 1 are given
by the expressions (2.19) and (2.20), respectively. This means that when
a solution of the problem (2.18) is determined, no boundary condition is
needed. The result here points out not only that no boundary condition is
needed when a solution of the problem (2.18) is determined, but also that
it is impossible for problem (2.18) to have several solutions.

2.4.3 ‡Uniqueness of Solutions for Two-Dimensional Case

On a multidimensional rectangular domain, it can be proved that if the re-
version conditions are satisfied, then the final-value problem for degenerate
parabolic partial differential equations has a unique solution. In this subsec-
tion, we give a detailed proof only for the two-dimensional case; at the end of
this subsection, we point out the key part of the proof for the multidimensional
case.

Suppose that a financial derivative depends on the time t and two random
variables S1 and S2, which satisfy Eq. (2.41) and the reversion conditions, and
let V (S1, S2, t) be the price of the financial derivative. By an arbitrage argu-
ment, it can be shown that V (S1, S2, t) should satisfy the following equation
(see Sect. 2.3.2):

∂V

∂t
+

1

2
b21
∂2V

∂S2
1

+ ρb1b2
∂2V

∂S1∂S2
+

1

2
b22
∂2V

∂S2
2

+(a1 − λ1b1)
∂V

∂S1
+ (a2 − λ2b2)

∂V

∂S2
− rV + g(S1, S2, t) = 0,

15Olĕinik and Radkevič in their book [65] discussed the uniqueness of solutions
of this type of partial differential equations under different conditions.
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where λ1 and λ2 are two bounded functions and called the market prices of
risk on S1 and S2, respectively, and r is the short-term interest rate.16 Also,
many financial derivatives should be solutions of the final-value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V

∂t
+ 1

2b
2
1

∂2V

∂S2
1

+ ρb1b2
∂2V

∂S1∂S2
+ 1

2b
2
2

∂2V

∂S2
2

+(a1 − λ1b1)
∂V

∂S1
+ (a2 − λ2b2)

∂V

∂S2
− rV + g(S1, S2, t) = 0,

S1 ∈ [S1l, S1u], S2 ∈ [S2l, S2u], t ∈ [0, T ],
V (S1, S2, T ) = f(S1, S2), S1 ∈ [S1l, S1u], S2 ∈ [S2l, S2u].

(2.52)

Now let us discuss when Problem (2.52) has a unique solution. For this
question, we have the following theorem:

Theorem 2.2 If

(i) the reversion conditions (2.42) and (2.43) hold;
(ii) there exists a constant c1 such that

max
S1l≤S1≤S1u
S2l≤S2≤S2u

∣
∣
∣
∣
∂

∂S1

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)

+
∂

∂S2

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)

+ 2r

∣
∣
∣
∣+ 1 ≤ c1;

(iii) solutions of Problem (2.52) exist and their first derivatives are bounded,

then the solution of Eq. (2.52) is unique.

Proof. Suppose that u(S1, S2, t) is a solution of the problem (2.52). Let
τ = T − t and define

W (τ) =

∫ S2u

S2l

∫ S1u

S1l

u2(S1, S2, T − τ)dS1dS2. (2.53)

Since the partial differential equation in the problem (2.52) can be rewritten
as

∂u

∂τ
=

1

2

∂

∂S1

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)

+
1

2

∂

∂S2

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)

+

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)
∂u

∂S1

+

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)
∂u

∂S2
− ru+ g,

16If r is replaced by a bounded function, Theorem 2.2 still holds.
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we have

1

2

dW (τ)

dτ
=

∫ S2u

S2l

∫ S1u

S1l

u
∂u

∂τ
dS1dS2

=

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S1

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)

dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S2

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)

dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

u

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)
∂u

∂S1
dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

u

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)
∂u

∂S2
dS1dS2

−
∫ S2u

S2l

∫ S1u

S1l

ru2dS1dS2 +

∫ S2u

S2l

∫ S1u

S1l

gudS1dS2. (2.54)

Now let us look at the first four terms in the right-hand side of the relation
(2.54). Using integration by parts and the equality conditions in the conditions
(2.42) and (2.43), we can rewrite the first and second terms as follows:

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S1

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)

dS1dS2

=
1

2

∫ S2u

S2l

{[

u

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)]∣
∣
∣
∣

S1u

S1l

−
∫ S1u

S1l

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)
∂u

∂S1
dS1

}

dS2

= −1

2

∫ S2u

S2l

∫ S1u

S1l

(

b21
∂u

∂S1
+ ρb1b2

∂u

∂S2

)
∂u

∂S1
dS1dS2 (2.55)

and

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S2

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)

dS1dS2

=
1

2

∫ S1u

S1l

{[

u

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)]∣
∣
∣
∣

S2u

S2l

−
∫ S2u

S2l

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)
∂u

∂S2
dS2

}

dS1

= −1

2

∫ S2u

S2l

∫ S1u

S1l

(

ρb1b2
∂u

∂S1
+ b22

∂u

∂S2

)
∂u

∂S2
dS1dS2. (2.56)
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Also, according to the equality condition in the condition (2.42), b1(S1l, S2, t) =
0 holds for any S2, so

∂

∂S2
(ρb1b2)

∣
∣
∣
∣
S1=S1l

= 0.

Similarly, we have

∂

∂S2
(ρb1b2)

∣
∣
∣
∣
S1=S1u

=
∂

∂S1
(ρb1b2)

∣
∣
∣
∣
S2=S2l

=
∂

∂S1
(ρb1b2)

∣
∣
∣
∣
S2=S2u

= 0.

Noticing these facts and the inequality conditions in the conditions (2.42) and
(2.43), for the third and fourth integrals in the right-hand side of the relation
(2.54), we have

∫ S2u

S2l

∫ S1u

S1l

u

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)
∂u

∂S1
dS1dS2

=
1

2

∫ S2u

S2l

{[

u2
(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)]∣
∣
∣
∣

S1u

S1l

−
∫ S1u

S1l

u2
∂

∂S1

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)

dS1

}

dS2

≤ −1

2

∫ S2u

S2l

∫ S1u

S1l

u2
∂

∂S1

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)

dS1dS2

(2.57)

and

∫ S1u

S1l

∫ S2u

S2l

u

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)
∂u

∂S2
dS2dS1

=
1

2

∫ S1u

S1l

{[

u2
(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)]∣
∣
∣
∣

S2u

S2l

−
∫ S2u

S2l

u2
∂

∂S2

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)

dS2

}

dS1

≤ −1

2

∫ S2u

S2l

∫ S1u

S1l

u2
∂

∂S2

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)

dS1dS2.

(2.58)
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Adding the relations (2.55) and (2.56) together, due to |ρ| ≤ 1, we have

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S1

(

b21
∂u

∂S1
+ρb1b2

∂u

∂S2

)

dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

u

2

∂

∂S2

(

ρb1b2
∂u

∂S1
+b22

∂u

∂S2

)

dS1dS2

=−1

2

∫ S2u

S2l

∫ S1u

S1l

[(

b1
∂u

∂S1

)2

+2ρb1b2
∂u

∂S1

∂u

∂S2
+

(

b2
∂u

∂S2

)2
]

dS1dS2≤0.

(2.59)

Substituting the relations (2.55)–(2.56) and the inequalities (2.57)–(2.58) into
the relation (2.54) and applying the inequality (2.59) and condition (ii), we
have

1

2

dW (τ)

dτ
≤ −1

2

∫ S2u

S2l

∫ S1u

S1l

u2
{

∂

∂S1

(

a1 − λ1b1 − b1
∂b1
∂S1

− 1

2

∂

∂S2
(ρb1b2)

)

+
∂

∂S2

(

a2 − λ2b2 − b2
∂b2
∂S2

− 1

2

∂

∂S1
(ρb1b2)

)

+ 2r

}

dS1dS2

+

∫ S2u

S2l

∫ S1u

S1l

g(S1, S2, T − τ)udS1dS2

≤ 1

2
c1W (τ) +

1

2

∫ S2u

S2l

∫ S1u

S1l

g2(S1, S2, T − τ)dS1dS2.

Therefore, according to the Gronwall inequality, we arrive at

0 ≤W (τ) ≤ ec1τ

[

W (0) +

∫ τ

0

∫ S2u

S2l

∫ S1u

S1l

g2(S1, S2, T − τ)dS1dS2dτ

]

.

Suppose that u1 and u2 are two solutions of the problem (2.52) and let
u = u1 − u2. It is clear that u is the solution of the problem (2.52)
with V (S1, S2, T ) = f(S1, S2) ≡ 0 and g(S1, S2, t) ≡ 0. In this case, we get
W (τ) ≡ 0. Then, u ≡ 0, or u1 ≡ u2; that is, the solution of the problem (2.52)
is unique. ��

Here we would like to make some remarks. The first one is about the
conditions given in the theorem. If a1, a2, b1, b2, λ1, λ2, r, the first deriva-
tives of a1, a2, λ1, and λ2, and the first and second derivatives of ρ, b1, and
b2 are bounded, then conditions (2.42), (2.43) are reduced to the conditions
(2.44), (2.45) respectively, and condition (ii) is always satisfied. The partial
differential equation in the problem (2.52) is called a degenerate parabolic par-
tial differential equation because of the equality conditions in the conditions
(2.42) and (2.43). It is clear that the result can be applied to any degenerate
parabolic problems from various fields.
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When there are K random variables, K ≥ 3, governed by

dSi = ai(S1, S2, · · · , SK , t)dt+ bi(S1, S2, · · · , SK , t)dXi, i = 1, 2, · · · ,K,

similar results can still be proved. For the proof above, a key fact we used is
|ρ| ≤ 1, which means that the correlation matrix is semi-positive. For multi-
dimensional cases, the key fact we need is that the correlation matrix

⎛

⎜
⎜
⎜
⎝

1 ρ12 · · · ρ1K
ρ21 1 · · · ρ2K
...

...
. . .

...
ρK1 ρK2 · · · 1

⎞

⎟
⎟
⎟
⎠

is semi-positive definite. Here ρi,j = E[dXidXj ]/dt.
The meaning of the final-value problem (2.52) having a unique solution

is that the solution of the problem (2.52) is completely determined by the
PDE and the final condition. This also means that the random variables will
never reach the boundaries if they are inside the domain at the beginning
[33]. This is because if the random variables reach the boundaries, then the
solution must also be affected by what happens at the boundaries. Therefore,
if stochastic models satisfy the reversion conditions, then those random vari-
ables should be guaranteed on the finite domain [S1l, S1u]× [S2l, S2u]. When
∂bi(S1, S2, t)

∂Si

∣
∣
∣
∣
Si=Sil

and
∂bi(S1, S2, t)

∂Si

∣
∣
∣
∣
Si=Siu

are bounded, then conditions

(2.42) and (2.43) are reduced to the conditions (2.44) and (2.45). Under con-
ditions (2.44) and (2.45), the fact that the random variable will never reach
the boundaries has been proved for the one-dimensional case in [33]. It can
be expected that the same result is still true for multidimensional cases and
when conditions (2.42) and (2.43) cannot be reduced to the conditions (2.44)
and (2.45).

2.4.4 ‡Uniqueness of Solutions for European Options on Assets
with Stochastic Volatilities

In this subsection, we consider a special two-factor financial derivative: options
on assets with stochastic volatilities. We assume that the asset price S follows
the following stochastic process:

dS = μSdt+ σSdX1, 0 ≤ S (2.60)

and that the volatility σ is also a random variable and its evolution is governed
by

dσ = p(σ, t)dt+ q(σ, t)dX2, σl ≤ σ ≤ σu, (2.61)
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where the two random increments dX1 and dX2 are twoWiener processes. dX1

and dX2 are correlated and E[dX1dX2] = ρdt. Furthermore, we assume that
the stochastic model for σ satisfies reversion conditions; that is, the following
relations hold:

{

p(σl, t)− q(σl, t)
∂q

∂σ
(σl, t) ≥ 0,

q(σl, t) = 0
(2.62)

and
{

p(σu, t)− q(σu, t)
∂q

∂σ
(σu, t) ≤ 0,

q(σu, t) = 0,
(2.63)

or when
∂q

∂σ
(σl, t) and

∂q

∂σ
(σu, t) are bounded,

{
p(σl, t) ≥ 0,
q(σl, t) = 0

(2.64)

and
{
p(σu, t) ≤ 0,
q(σu, t) = 0

(2.65)

hold. Suppose that V (S, σ, t) is the value of such an option. V (S, σ, t) satisfies

∂V

∂t
+
1

2
σ2S2 ∂

2V

∂S2
+ρσqS

∂2V

∂S∂σ
+
1

2
q2
∂2V

∂σ2
+(r−D0)S

∂V

∂S
+(p−λq)∂V

∂σ
−rV=0.

(2.66)

This equation holds for S ∈ [0,∞). In order to convert the problem on an
infinite domain into one on a finite domain, we introduce the following trans-
formation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

σ = σ,

t = t,

V =
V

S + Pm
,

(2.67)
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where Pm is a positive constant. Since the following expressions exist:

S =
ξPm
1− ξ

, S + Pm =
Pm
1− ξ

,

dξ

dS
=

(1− ξ)2

Pm
,

∂V

∂t
=

Pm
1− ξ

∂V

∂t
,

∂V

∂S
= V + (1− ξ)

∂V

∂ξ
,

∂V

∂σ
=

Pm
1− ξ

∂V

∂σ
,

∂2V

∂S2
=

(1− ξ)3

Pm

∂2V

∂ξ2
,

∂2V

∂S∂σ
=
∂V

∂σ
+ (1− ξ)

∂2V

∂ξ∂σ
,

∂2V

∂σ2
=

Pm
1− ξ

∂2V

∂σ2
,

we can rewrite Eq. (2.66) as

∂V

∂t
+

1

2
σ2ξ2(1− ξ)2

∂2V

∂ξ2
+ ρσξ(1− ξ)q

∂2V

∂ξ∂σ
+

1

2
q2
∂2V

∂σ2

+(r −D0)ξ(1− ξ)
∂V

∂ξ
+ [p− (λ− ρσξ)q]

∂V

∂σ
− [r − (r −D0)ξ]V = 0.

Since the transformation above converts a value of S ∈ [0,∞) into a value of
ξ ∈ [0, 1), V (ξ, σ, t) is defined on the domain [0, 1]× [σl, σu]× [0, T ]. Therefore,
the determination of European option prices in this case reduces to finding
the solution of the following final-value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+ 1

2σ
2ξ2(1− ξ)2

∂2V

∂ξ2
+ ρσξ(1− ξ)q

∂2V

∂ξ∂σ
+ 1

2q
2 ∂

2V

∂σ2

+(r −D0)ξ(1− ξ)
∂V

∂ξ
+ [p− (λ− ρσξ)q]

∂V

∂σ
− [r − (r −D0)ξ]V = 0,

ξ ∈ [0, 1], σ ∈ [σl, σu], t ∈ [0, T ],

V (ξ, σ, T ) = f(ξ, σ), ξ ∈ [0, 1], σ ∈ [σl, σu].

(2.68)

It is easy to see dξ = a1(ξ)dt+ b1(ξ)dX1, where a1(ξ) = (μ− σξ)ξ(1− ξ) and
b1(ξ) = σξ(1 − ξ). Thus, this problem is in the form of the problem (2.52)
with

λ1 =
μ− σξ − r +D0

σ
, a2 = p(σ, t),

b2 = q(σ, t), λ2 = λ− ρσξ,

and the coefficient of V here is −[r − (r − D0)ξ] instead of −r. In order to
have a unique solution, the key is that a1, b1, a2, and b2 should satisfy the
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reversion conditions (2.42) and (2.43). In this case, a1 and b1 always satisfy the
conditions (2.42) and (2.43). That a2 and b2 satisfy the reversion conditions is
equivalent to fulfillment of the conditions (2.62) and (2.63). Therefore, if the
conditions (2.62), (2.63), conditions (ii) and (iii) of Theorem 2.2 are satisfied,
then the problem (2.68) has a unique solution.

Suppose that a problem is defined on an infinite domain and its closed-
form solution cannot be found. In order to get its solution, we need to solve the
problem numerically on a finite domain. In this case, an artificial boundary
condition will be needed, which causes some error and problems. The problem
here is defined on a finite domain, so its numerical solution can be obtained
without using any artificial boundary conditions; if the singularity-separating
method and extrapolation techniques are used, then numerical solutions are
very good even on quite coarse meshes.

2.5 Jump Conditions

2.5.1 Hyperbolic Equations with a Dirac Delta Function

Consider the following linear hyperbolic partial differential equation

∂u

∂t
+ f1(x1, x2, · · · , xK , t)

∂u

∂x1
+ · · ·+ fK(x1, x2, · · · , xK , t)

∂u

∂xK

= 0.

Let C be a curve defined by the system of ordinary differential equations

dx1(t)

dt
= f1(x1, x2, · · · , xK , t),

...
dxK(t)

dt
= fK(x1, x2, · · · , xK , t)

with initial conditions

x1(0) = ξ1, x2(0) = ξ2, · · · , xK(0) = ξK .

Along the curve C we have

du

dt
=
∂u

∂t
+

∂u

∂x1

dx1
dt

+ · · ·+ ∂u

∂xK

dxK

dt
= 0.

Therefore, u is a constant along the curve:

u (x1(t
∗), x2(t∗), · · · , xK(t

∗), t∗) = u (x1(t
∗∗), x2(t∗∗), · · · , xK(t

∗∗), t∗∗) ,
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where t∗ and t∗∗ are any two times. If

fk(x1, x2, · · · , xK , t) = Fk(x1, x2, · · · , xK , t)δ(t− ti),

where δ(t− ti) is the Dirac delta function, then 17

xk(t
+
i )− xk(t

−
i ) =

∫ t+i

t−i

Fk(x1(t), x2(t), · · · , xK(t), t)δ(t− ti)dt

= Fk
(
x1(t

−
i ), x2(t

−
i ), · · · , xK(t

−
i ), t

−
i

)

and

u
(
x1(t

−
i ), x2(t

−
i ), · · · , xK(t

−
i ), t

−
i

)

= u
(
x1(t

+
i ), x2(t

+
i ), · · · , xK(t

+
i ), t

+
i

)

= u
(
x1(t

−
i ) + F−

1i , x2(t
−
i ) + F−

2i , · · · , xK(t
−
i ) + F−

Ki, t
+
i

)
, (2.69)

where t−i and t+i denote the time just before and after ti, respectively, and

F−
ki ≡ Fk

(
x1(t

−
i ), x2(t

−
i ), · · · , xK(t

−
i ), t

−
i

)
.

For such a jump condition, a similar derivation is given in the book [84] by
Wilmott, Dewynne, and Howison.

2.5.2 Jump Conditions for Options on Stocks with Discrete
Dividends and Discrete Sampling

From the relation (2.69), jump conditions of various options can be derived.
Here, we give three examples. Two are simple and the other is quite compli-
cated. Jump conditions for other options will be given when they are discussed.

Suppose V (S, t) is the value of an option on a stock, which pays a dividend
Di at time ti, i = 1, 2, · · · , I. Here, we assume that ti ≤ T , T being expiry.
From Sect. 2.2, we know that V (S, t) satisfies Eq. (2.13):

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ [rS −D(S, t)]

∂V

∂S
− rV = 0,

17Here an integral is defined in the following way. Suppose that on [0, T ] we have
a partition with N + 1 points: 0 = t0 < t1 < · · · < TN = T . The definition of an
integral is

∫ T

0

f(t)dt = lim
dt→0

n=N−1∑

n=0

f(tn)(tn+1 − tn),

where dt = max
0≤n≤N−1

(tn+1 − tn). Let us call it an Itô integral. Such a definition is

usually used in financial calculus.
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where

D(S, t) =
I∑

i=1

Di(S)δ(t− ti), with Di(S) ≤ S.

This means that at t �= ti, i = 1, 2, · · · , I, V satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

and at t = ti, i = 1, 2, · · · , or I, the equation

∂V

∂t
−Di(S)δ(t− ti)

∂V

∂S
= 0

holds. According to Eq. (2.69), at t = ti we have

V (S, t−i ) = V (S −Di(S), t
+
i ). (2.70)

This is the jump condition for options on stocks with discrete dividends.
We now explain the financial meaning of this relation. At t = ti, the stock
pays a dividend Di, so the stock price will drop by Di. If the price is S at t−i ,
then the price is S −Di at t

+
i . However, the price of the option is unchanged

at time ti because the holder of the option does not receive any money at
time ti.

The second example is similar to the first one. Suppose that W (η, t) sat-
isfies

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

K

K∑

i=1

δ (t− ti)

]
∂W

∂η
−D0W = 0,

Then at t = ti, i = 1, 2, · · · , or K, W satisfies

∂W

∂t
+

1

K
δ (t− ti)

∂W

∂η
= 0

Thus according to the relation (2.69), at t = ti we have

W
(
η, t−i

)
=W

(

η +
1

K
, t+i

)

. (2.71)

We will see in Chap. 4 that this jump condition will be often used when pricing
Asian options because usually the average is measured discretely.

The third example involves several independent variables. Suppose the
stock price is measured discretely and let S1, S2, · · · , SN be the first N largest
sampled stock prices until time t and S1 ≥ S2 ≥ · · · ≥ SN . Assume that the
value of option V depends on S, S1, · · · , SN , t. From Sect. 4.4.6, we will see
that if sampling occurs at t = ti, then
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dSn
dt

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
max(S, S1(t

−
i ))− S1(t

−
i )
]
δ(t− ti), if n = 1,

[
max(min(S, Sn−1(t

−
i )), Sn(t

−
i ))− Sn(t

−
i )
]
δ(t− ti),

if n = 2, 3, · · · , N ;

otherwise
dSn
dt

= 0.

According to Sect. 2.3, in this case, the option price is the solution of

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S

+
∂V

∂S1

dS1

dt
+
∂V

∂S2

dS2

dt
+ · · ·+ ∂V

∂SN

dSN

dt
− rV = 0.

Consequently, at t = ti, V satisfies

∂V

∂t
+
∂V

∂S1

dS1

dt
+
∂V

∂S2

dS2

dt
+ · · ·+ ∂V

∂SN

dSN

dt
= 0.

From the relation (2.69) we know when t = ti, the jump condition

V (S, S−
1 , S

−
2 , · · · , S−

N , t
−
i ) = V (S, max(S, S−

1 ), max(min(S, S−
1 ), S−

2 ),

· · · ,max(min(S, S−
N−1), S

−
N ), t+i ) (2.72)

holds, where S−
n denotes Sn(t

−
i ) for brevity.

It is clear how to use such a jump condition when a European-style deriva-
tive is evaluated. When the price of an American-style derivative needs to
be calculated, such a condition should be used on the solution obtained by
the PDE. After that, taking the maximum between the new solution and the
constraint yields the solution for the American derivative.

2.6 Solutions of European Options

A linear partial differential equation

A
∂2u

∂t2
+ 2B

∂2u

∂t∂x
+ C

∂2u

∂x2
= F

(

x, t, u,
∂u

∂t
,
∂u

∂x

)

is called a parabolic partial differential equation if AC −B2 = 0, where A,B,
and C are not all equal to zero. The diffusion equation is the simplest parabolic
equation. The Black–Scholes equation is another parabolic equation. In this
section we mainly do two things. We reduce the Black–Scholes equation to a
diffusion equation, and find out the analytic expression of the solution of the
Black–Scholes equation and the Black–Scholes formulae for European options
based on the analytic solution of the diffusion equation.
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2.6.1 Converting the Black–Scholes Equation into a Heat Equation

In this subsection, we introduce one transformation that reduces the Black–
Scholes equation to the heat equation. Because Green’s function18 of the heat
equation has an analytic expression, we can obtain an analytic expression of
Green’s function for the Black–Scholes equation using the inverse transfor-
mation. Based on this, analytic expressions of European call and put option
prices can be derived. These are the famous Black–Scholes formulae.

The price of a European option is a solution of the following problem:
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

(2.73)

The payoff function VT (S) is determined by the feature of the option. For
example, the payoffs of European calls and puts are given by

VT (S) = max(±(S − 1), 0), 0 ≤ S,

where + and − in ± correspond to call and put options, respectively. Here,
the exercise price is 1 because we assume that both the price of the stock and
the price of option have been divided by the exercise price. We call a problem
with such a payoff a standard put/call problem. Let us set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y = lnS,

τ = T − t,

V (S, t) = e−r(T−t)v(y, τ).

(2.74)

Because

∂V

∂t
= e−r(T−t)

(

rv − ∂v

∂τ

)

,

∂V

∂S
= e−r(T−t) ∂v

∂y

dy

dS
= e−r(T−t) 1

S

∂v

∂y
,

∂2V

∂S2
=

∂

∂S

(
∂V

∂S

)

=
∂

∂S

(

e−r(T−t) 1
S

∂v

∂y

)

= e−r(T−t)
(

− 1

S2

∂v

∂y
+

1

S2

∂2v

∂y2

)

,

the Black–Scholes equation is converted into

−∂v
∂τ

+
1

2
σ2

(
∂2v

∂y2
− ∂v

∂y

)

+ (r −D0)
∂v

∂y
= 0,

18The definitions of Green’s functions of the heat equation and the Black–Scholes
equation are given in Sect. 2.6.
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and the problem above becomes
⎧
⎪⎨

⎪⎩

∂v

∂τ
=

1

2
σ2 ∂

2v

∂y2
+

(

r −D0 −
1

2
σ2

)
∂v

∂y
, −∞ < y <∞, 0 ≤ τ,

v(y, 0) = VT (e
y), −∞ < y <∞.

(2.75)

Furthermore, we let
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = y +

(

r −D0 −
1

2
σ2

)

τ,

τ̄ =
1

2
σ2τ,

v(y, τ) = u(x, τ̄).

(2.76)

Noticing the relations

∂v

∂τ
=

1

2
σ2 ∂u

∂τ̄
+

(

r −D0 −
1

2
σ2

)
∂u

∂x
,

∂v

∂y
=
∂u

∂x
,

∂2v

∂y2
=
∂2u

∂x2
,

we finally arrive at
⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = VT (e
x), −∞ < x <∞,

(2.77)

where VT (e
x) = max(±(ex − 1), 0) for the European call and put options.

The partial differential equation in this problem is usually called the heat or
diffusion equation.

Before we go to the next subsection, we point out the following:

1. From the relations (2.74) and (2.76), we know

V (S, t) = e−r(T−t)u(lnS + (r −D0 − σ2/2)(T − t), σ2(T − t)/2)

= e−r(T−t)u
(

ln
Se−D0(T−t)

e−r(T−t) − σ2(T − t)/2, σ2(T − t)/2

)

.

Therefore, besides those parameters in the payoff function VT (S), V (S, t)
depends on only three parameters: Se−D0(T−t), e−r(T−t), and σ2(T − t)/2.

2. Actually, the transformations (2.74) and (2.76) can be combined into one
transformation19

19The transform converting the Black-Scholes equation into a heat equation is not

unique. For example, let x̄ =
√
2

[

lnS +

(

r −D0 − 1

2
σ2

)

(T − t)

]
/
σ, τ = T−t, and
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = lnS +

(

r −D0 −
1

2
σ2

)

(T − t),

τ̄ =
1

2
σ2(T − t),

V (S, t) = e−r(T−t)u(x, τ̄).

(2.78)

That is, through the transformation (2.78), the Black–Scholes equation
can be directly converted into the heat equation. The reason we complete
the transformation through two steps is to see the function of each single
transformation. In fact, from the derivation we know the following:
• Through setting τ = T − t, we change a problem with a final condition

to a problem with an initial condition and let the initial time be zero.
• The transformation y = lnS is to reduce an equation with variable

coefficients to one with constant coefficients. This is the transformation
by which the Euler equation in ordinary differential equations becomes
a differential equation with constant coefficients.

• Letting V = e−r(T−t)v(y, τ), we eliminate the term rV in the equation.

This is similar to the fact that an equation
dV

dτ
−rV = f can be written

as
d(e−rτV )

dτ
= e−rτf after the equation is multiplied by e−rτ . The

factor e−rτ is called an integrating factor for the ordinary differential
equation. If r depends on t, then the integrating factor is e−

∫ τ
0
r(T−s)ds

= e−
∫ T
t
r(s)ds and the term rV can be eliminated in the same way.

• The transformation x = y+ (r−D0 − σ2/2)τ is to eliminate the term

(r−D0−σ2/2)
∂v

∂y
. This is similar to reducing the simplest hyperbolic

partial differential equation
∂v

∂τ
− a

∂v

∂y
= 0 to an ordinary differen-

tial equation. For this case, the characteristic equation is
dy

dτ
= −a

and its solution is y = −aτ + c or y + aτ = c. Let x = y + aτ and
v(y, τ) = u(x, τ), then the hyperbolic partial differential equation be-

comes
∂u(x, τ)

∂τ
= 0. If a depends on t, then the solution of the charac-

teristic equation is y = −
∫ τ
0
a(T − s)ds+ c = −

∫ T
t
a(s)ds+ c. Letting

x = y +
∫ T
t
a(s)ds and v(y, τ) = u(x, τ), we still have

∂u(x, τ)

∂τ
= 0.

V (S, t) = e−r(T−t)u(x̄, τ), then u(x̄, τ) is a solution of the problem

⎧
⎪⎨

⎪⎩

∂u

∂τ
=

∂2u

∂x̄2
, −∞ < x̄ < ∞, 0 ≤ τ,

u(x, 0) = VT (e
σx̄/

√
2), −∞ < x̄ < ∞.
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• In order for the coefficient of
∂2u

∂x2
to be one, we let τ̄ = σ2τ/2. If σ

depends on t, then letting τ̄ = 1
2

∫ τ
0
σ2(T − s)ds = 1

2

∫ T
t
σ2(s)ds can

still make the coefficient of
∂2u

∂x2
be one.

3. From the explanation on the function of each single transformation given
above, we can see that if r,D0, and σ are not constant, but depend on t
only, then the Black–Scholes equation can still be converted into a heat
equation by the following transformation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = lnS +
∫ T
t

[
r(s)−D0(s)− σ2(s)/2

]
ds,

τ̄ =
1

2

∫ T
t
σ2(s)ds,

V (S, t) = e−
∫ T
t
r(s)dsu(x, τ̄)

(2.79)

and the solution V (S, t) possesses the following form:

e−
∫ T
t
r(s)dsu

(

ln
Se−

∫ T
t
D0(s)ds

e−
∫ T
t
r(s)ds

− 1

2

∫ T

t

σ2(s)ds,
1

2

∫ T

t

σ2(s)ds

)

,

(2.80)

where u(x, τ̄) is a solution of the heat equation (see [84]). This is left
for readers as an exercise (Problem 36). There, in order to see the func-
tion of each part of the transformation, readers are asked to reduce the
Black–Scholes equation with time-dependent parameters to a heat equa-
tion through two steps.

4. The transformation to convert the Black–Scholes equation into a heat

equation is not unique. In fact, we can let x = lnS, τ̄ =
1

2
σ2(T − t),

V (S, t) = eαx+βτ̄u(x, τ̄), and choose constants α and β such that u(x, τ̄)
satisfies the heat equation (see [84]).

2.6.2 The Solutions of Parabolic Equations

In order for a parabolic differential equation to have a unique solution, one
has to specify some conditions. For example, the initial value problem for a
heat equation

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, τ̄ ≥ 0 (2.81)

with
u (x, 0) = u0 (x) (2.82)

has a unique solution under certain conditions that usually hold for cases
considered in this book.
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Let us find the solution of Eq. (2.81) with initial condition (2.82). The way
to find the solution is not unique. Here, we use the following method (see
[52]). We first try to find a special solution of Eq. (2.81) in the form

u(x, τ̄) = τ̄−1/2U(η),

where

η =
x− ξ√
τ̄
, ξ being a parameter.

Because

∂u

∂τ̄
= − τ̄

−3/2

2

(

U + η
dU

dη

)

= − τ̄
−3/2

2

d

dη
[ηU(η)],

∂u

∂x
= τ̄−1/2 dU

dη

1√
τ̄
= τ̄−1 dU

dη
,

∂2u

∂x2
= τ̄−3/2 d

2U

dη2
,

from Eq. (2.81) we have

− τ̄
−3/2

2

d

dη
(ηU) = τ̄−3/2 d

2U

dη2
,

that is,
d2U

dη2
+

1

2

d

dη
(ηU) = 0.

Integrating this equation, we have

dU

dη
+
η

2
U = c1,

where c1 is a constant. Let us choose c1 = 0, so now we have a linear homo-
geneous equation. The solution of this equation is

U(η) = ce−η
2/4,

where c is a constant. Thus, for the diffusion equation we have a special
solution in the form

cτ̄−1/2e−(x−ξ)2/4τ̄ .

If we further require
∫ ∞

−∞
cτ̄−1/2e−(x−ξ)2/4τ̄dξ = 1,
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then

c =
1

∫ ∞

−∞
τ̄−1/2e−(x−ξ)2/4τ̄dξ

=
1

√
2

∫ ∞

−∞
e−η

2/2dη

=
1

2
√
π

and the special solution is

1

2
√
πτ̄

e−(x−ξ)2/4τ̄ .

This solution is called the fundamental solution, or Green’s function, for the
heat equation (2.81). Let g(ξ;x, τ̄) represent this class of functions with ξ as
parameters. It is clear that the relation

∂g(ξ;x, τ̄)

∂τ̄
=
∂2g(ξ;x, τ̄)

∂x2

holds for any ξ. Thus, for any u0(ξ) we have
∫ ∞

−∞
u0(ξ)

∂g(ξ;x, τ̄)

∂τ̄
dξ =

∫ ∞

−∞
u0(ξ)

∂2g(ξ;x, τ̄)

∂x2
dξ,

that is,

∂

[∫ ∞

−∞
u0(ξ)g(ξ;x, τ̄)dξ

]

∂τ̄
=

∂2
[∫ ∞

−∞
u0(ξ)g(ξ;x, τ̄ )dξ

]

∂x2
.

Consequently,

u(x, τ̄) =

∫ ∞

−∞
u0(ξ)×

1

2
√
πτ̄

e−(x−ξ)2/4τ̄dξ (2.83)

is also a solution of Eq. (2.81). Because

lim
τ̄→0

1

2
√
πτ̄

e−(x−ξ)2/4τ̄ =

{
0, x− ξ �= 0,
∞, x− ξ = 0

and ∫ ∞

−∞

1

2
√
πτ̄

e−(x−ξ)2/4τ̄dξ = 1

is true for any τ̄ , we have

lim
τ̄→0

1

2
√
πτ̄

e−(x−ξ)2/4τ̄ = δ(x− ξ)

and

lim
τ̄→0

∫ ∞

−∞
u0(ξ)×

1

2
√
πτ̄

e−(x−ξ)2/4τ̄dξ = u0(x).

Consequently, Eq. (2.83) is the solution of the initial-value problem
⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, τ̄ > 0,

u(x, 0) = u0(x), −∞ < x <∞.
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2.6.3 Solutions of the Black–Scholes Equation

Because the solution of the problem (2.77) is the expression (2.83), from the
relation (2.78) we know that the solution of the final value problem

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = VT (S), 0 ≤ S

is

V (S, t) = e−r(T−t)
∫ ∞

−∞
u0(ξ)

1

2
√
πτ̄

e−(x−ξ)2/4τ̄dξ

= e−r(T−t)
∫ ∞

−∞
VT
(
eξ
) 1

2
√
πτ̄

e−(ξ−x)2/4τ̄dξ

= e−r(T−t) 1

σ
√
2π(T − t)

×
∫ ∞

0

VT (S
′)e−{lnS

′−[lnS+(r−D0−σ2/2)(T−t)]}2
/2σ2(T−t) dS

′

S′ .

This result can be written as

V (S, t) = e−r(T−t)
∫ ∞

0

VT (S
′)G(S′, T ;S, t)dS′, (2.84)

where

G(S′, T ;S, t)

=
1

σ
√
2π(T − t)S′ e

−{lnS′−[lnS+(r−D0−σ2/2)(T−t)]}2
/2σ2(T−t). (2.85)

Equations (2.84) and (2.85) are usually referred to as the general solution and
Green’s function of the Black–Scholes equation, respectively. From Sect. 2.1.3,
we know that this function is also the probability density function for a log-
normal distribution, that is, we can say that S′ is a lognormal random variable
and according to the result (2.6) its expectation is

E [S′] = Se(r−D0)(T−t). (2.86)

In order to make the expression of this function short, we rewrite it as

G(S′, T ;S, t) =
1√

2πbS′ e
−[ln(S′/a)+b2/2]

2
/2b2 ,

where

a = Se(r−D0)(T−t) and b = σ
√
T − t.
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For this function, there are the following useful formulae:
∫ ∞

c

G(S′, T ;S, t)dS′ = N

(
ln(a/c)− b2/2

b

)

(2.87)

and
∫ ∞

c

S′G(S′, T ;S, t)dS′ = aN

(
ln(a/c) + b2/2

b

)

, (2.88)

where N(z) is the cumulative distribution function for the standard normal
distribution defined by20

N(z) =
1√
2π

∫ z

−∞
e−ξ

2/2dξ. (2.89)

The proof of the two formulae is straightforward. Let

η(S′) =
ln(S′/a) + b2/2

b
,

that is,

S′ = aebη−b
2/2.

Thus

dS′ = aebη−b
2/2bdη = S′bdη.

Consequently, we have
∫ ∞

c

1√
2πbS′ e

−[ln(S′/a)+b2/2]
2
/2b2dS′

=

∫ ∞

η(c)

1√
2πbS′ e

−η2/2S′bdη

= N(−η(c))

= N

(

− ln(c/a) + b2/2

b

)

= N

(
ln(a/c)− b2/2

b

)

20The value of this function has to be obtained by numerical methods. If z ≤ 0,
this function can be approximated by

N(z) = 0.5t exp(−x2 − 1.26551223 + t(1.00002368 + t(0.37409196 + t(0.09678418

+t(−0.18628806 + t(0.27886807 + t(−1.13520398 + t(1.48851587

+t(−0.82215223 + t× 0.17087277))))))))),

where x = −z × 0.707106781186550 and t = 1.0/(1.0 + 0.5x). If z > 0, then N(z) =
1−N(−z). The fractional error is less than 0.6×10−7 everywhere. See NUMERICAL
RECIPES IN C: The Art of Scientific Computing. Cambridge University Press,
Cambridge (1988–1992).
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and
∫ ∞

c

S′ 1√
2πbS′ e

−[ln(S′/a)+b2/2]
2
/2b2dS′

=

∫ ∞

η(c)

1√
2πb

e−η
2/2aebη−b

2/2bdη

=
a√
2π

∫ ∞

η(c)

e−(η−b)2/2dη

=
a√
2π

∫ ∞

η(c)−b
e−ξ

2/2dξ

= aN

(

− ln(c/a) + b2/2

b
+ b

)

= aN

(
ln(a/c) + b2/2

b

)

.

2.6.4 Prices of Forward Contracts and Delivery Prices

From Sect. 1.2.1, we know that the payoff function for a forward contract is

V (S, T ) = S −K.

Therefore, according to the formula (2.84) and using the result (2.86), we see
that its price is

V (S, t) = e−r(T−t)
∫ ∞

0

(S′ −K)G(S′, T ;S, t)dS′

= e−r(T−t)(Se(r−D0)(T−t) −K)

= Se−D0(T−t) −Ke−r(T−t).

Because for a forward contract the buyer does not need to pay any premium
at t = 0, we have

V (S, 0) = Se−D0T −Ke−rT = 0.

Consequently, the delivery price should be

K = e(r−D0)TS0,

where in order to make it clear, we use S0, instead of S, to denote the price
of the underlying asset at the initiation of the contract.

2.6.5 Derivation of the Black–Scholes Formulae

At t = T , the value of a call option is

c(S, T ) = max(S − E, 0).
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According to the formulae (2.84), (2.87), and (2.88), the value of a European
call is

c(S, t) = e−r(T−t)
∫ ∞

0

max(S′ − E, 0)G(S′, T ;S, t)dS′

= e−r(T−t)
∫ ∞

E

(S′ − E)G(S′, T ;S, t)dS′

= e−r(T−t)
[∫ ∞

E

S′G(S′, T ;S, t)dS′ −
∫ ∞

E

EG(S′, T ;S, t)dS′
]

= e−r(T−t)
[
Se(r−D0)(T−t)N(d1)− EN(d2)

]

= Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2), (2.90)

where

d1 =

[

ln
Se(r−D0)(T−t)

E
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)

=

[

ln
Se−D0(T−t)

Ee−r(T−t) +
1

2
σ2(T − t)

]/(
σ
√
T − t

)
,

d2 =

[

ln
Se(r−D0)(T−t)

E
− 1

2
σ2(T − t)

]/(
σ
√
T − t

)

=

[

ln
Se−D0(T−t)

Ee−r(T−t) − 1

2
σ2(T − t)

]/(
σ
√
T − t

)

= d1 − σ
√
T − t.

For a put, the final value is

p(S, T ) = max(E − S, 0).

Thus, the value of a European put is

p(S, t) = e−r(T−t)
∫ ∞

0

max(E − S′, 0)G(S′, T ;S, t)dS′

= e−r(T−t)
∫ E

0

(E − S′)G(S′, T ;S, t)dS′

= e−r(T−t)
[

E

∫ E

0

G(S′, T ;S, t)dS′ −
∫ E

0

S′G(S′, T ;S, t)dS′
]

= e−r(T−t)
{
E[1−N(d2)]− Se(r−D0)(T−t)[1−N(d1)]

}

= Ee−r(T−t)N(−d2)− Se−D0(T−t)N(−d1). (2.91)

It is interesting that the values of European call and put options can be
expressed in terms of the cumulative distribution function for the standardized



78 2 European Style Derivatives

normal random variable, N(z). Expressions (2.90) and (2.91) give closed-form
solutions for European vanilla options and are usually referred to as the Black–
Scholes formulae.

When hedging is involved, we not only seek the value of options, but also
the value of the first and second derivatives with respect to S, Δ, and Γ .

For European call, Δ =
∂c

∂S
is

∂c

∂S
= e−D0(T−t)N(d1) + Se−D0(T−t) 1√

2π
e−d

2
1/2

∂d1
∂S

−Ee−r(T−t) 1√
2π

e−d
2
2/2

∂d2
∂S

= e−D0(T−t)N(d1) +
1√
2π

∂d1
∂S

(
Se−D0(T−t)−d21/2 − Ee−r(T−t)−d22/2

)
.

Noticing

−r(T − t)− d22/2

=−r(T − t)−
[
d21 − 2d1σ

√
T − t+ σ2(T − t)

]/
2

=−r(T − t)−
[
d21 − 2 ln(S/E)− 2

(
r −D0 + σ2/2

)
(T − t) + σ2(T − t)

]/
2

=−d21/2−D0(T − t) + ln(S/E),

that is,

Se−D0(T−t)−d21/2 = Ee−r(T−t)−d22/2,

we have
∂c

∂S
= e−D0(T−t)N(d1).

Taking the derivative with respect to S again yields

∂2c

∂S2
=

1

Sσ
√
2π(T − t)

e−D0(T−t)−d21/2.

Similarly, for put options

∂p

∂S
= −e−D0(T−t)N(−d1) and

∂2p

∂S2
=
∂2c

∂S2
.

We need to point out that if the value of an option and the price of the
underlying asset are divided by E, then the dimensionless option value V/E
and the derivatives of V/E can still be obtained by the same formulae. The
only change is to let E = 1 and S should have dimensionless value.

What the values of c(S, t) and p(S, t) are? What do the functions c(S, t)
and p(S, t) look like? For the case S = E, r = 0.1, D0 = 0.05, σ = 0.2 and
T − t = 1,
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Fig. 2.5. The European call value c(S, t) as a function of S
(r = 0.1, D0 = 0.05, σ = 0.2, and T − t = 0, 0.5, and 1.0)

Fig. 2.6. The European put value p(S, t) as a function of S
(r = 0.1, D0 = 0.05, σ = 0.2, and T − t = 0, 0.5, and 1.0)

c(S, t)/E = 0.0994 and p(S, t)/E = 0.0530

and for the case S = E, r = 0.02, D0 = 0.01, σ = 0.2 and T − t = 1,

c(S, t)/E = 0.0835 and p(S, t)/E = 0.0736.

The functions of the European call and put options for the case r = 0.1,
D0 = 0.05, σ = 0.2, T − t = 0, 0.5, 1 are shown in Figs. 2.6 and 2.5. Clearly,
the curves should approach the payoff functions as t→ T , which can be seen
from the two figures. From Fig. 2.6, we can also see that when S is close to
zero, the curves approach the payoff from the bottom and when S is large,
the curves tend to the payoff from the top. That is, p(S, t) is less than the
payoff for small S and greater than the payoff for large S. In Sect. 3.1, we will
see that for American options, the price should always be at least the payoff.
Because of this, the Black–Scholes equation cannot be used to determine the
price of American options in some situations.



80 2 European Style Derivatives

When σ, r, and D0 depend on t, closed-form solutions can still be obtained
(see [63, 84]). Actually, through the transformation (2.79), the Black–Scholes
equation

∂V

∂t
+

1

2
σ2(t)S2 ∂

2V

∂S2
+ [r(t)−D0(t)]S

∂V

∂S
− r(t)V = 0

can still be reduced to a diffusion equation. Let

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α(t) =
1

2

∫ T
t
σ2(s)ds,

δ(t) =
∫ T
t
D0(s)ds,

γ(t) =
∫ T
t
r(s)ds,

then the solution of the Black–Scholes equation in this case is

V (S, t) = e−γ(t)
∫ ∞

−∞
VT
(
eξ
) 1

2
√
πτ̄

e−(ξ−x)2/4τ̄dξ,

where x = lnS + γ(t) − δ(t) − α(t) and τ̄ = α(t). Therefore, for a call with
coefficients r(t), D0(t), and σ(t), the solution should be

c(S, t) = Se−δ(t)N(d1)− Ee−γ(t)N(d2),

where

d1 =

[

ln
Se−δ(t)

Ee−γ(t)
+ α(t)

]/

[2α(t)]1/2,

d2 =

[

ln
Se−δ(t)

Ee−γ(t)
− α(t)

]/

[2α(t)]1/2.

2.6.6 Put–Call Parity Relation

Although call and put options are superficially different, they can be combined
in such a way that they are perfectly correlated. In fact, there is the following
relation:

c(S, t)− p(S, t) = Se−D0(T−t) − Ee−r(T−t), (2.92)

which is usually called the put–call parity relation. It can be obtained in
different ways. From the Black–Scholes formulae (2.90) and (2.91), we can
have

c(S, t)− p(S, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2)

−Ee−r(T−t)N(−d2) + Se−D0(T−t)N(−d1)
= Se−D0(T−t) − Ee−r(T−t).

This is one way to get it.
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We can also find this relation without finding the concrete expressions of
c(S, t) and p(S, t). Let us look at a portfolio whose payoff is

Π(S, T ) = S +max(E − S, 0)−max(S − E, 0)− E = 0.

According to the formula (2.84), Π(S, t) = 0 and we also have

Π(S, t)

=e−r(T−t)
∫ ∞

0

[S′ +max(E − S′, 0)−max(S′ − E, 0)− E]G(S′, T ;S, t)dS′

=Se−D0(T−t) + p(S, t)− c(S, t)− Ee−r(T−t).

Here, we are actually using the superposition principle of homogeneous linear
partial differential equations. From these relations, we immediately have the
put–call parity. In Sect. 3.4, we will derive this relation again without using
a partial differential equation. Here, we need to point out that the put–call
parity relation is true only for European options. For American options, the
equality becomes an inequality, which will be discussed in Sect. 3.4.

2.6.7 An Explanation in Terms of Probability

The function G(S′, T ;S, t) given by the expression (2.85) represents a prob-
ability density function of a random variable S′, and S′ can be interpreted
as the random price of a stock at time T . Then, we can understand S as
the price of the stock at time t because G (S′, T ;S, t) goes to a Dirac delta
function δ(S′ − S) as T → t. VT (S

′) is the value of an option at time T if the
price is S′. Therefore

∫ ∞

0

VT (S
′)G(S′, T ;S, t)dS′

is the expectation of the value of the option at time T if the price is S at time
t, and

e−r(T−t)
∫ ∞

0

VT (S
′)G(S′, T ;S, t)dS′

is the present (or discounted) value of the expectation at time T . That is, the
price of an option at time t given by the formula (2.84) is the present value of
the expectation of the option value at time T . This is the explanation of the
solution given by the formula (2.84) in terms of probability.

Suppose that S and S′ are the prices of a stock at time T − Δt and
time T , respectively, and that S′ has the probability density function
G(S′, T ;S, T −Δt). According to the result (2.6) we have

E [S′] = Se(r−D0)Δt
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and
Var [S′] = S2e2(r−D0)Δt

(
eσ

2Δt − 1
)
≈ S2σ2Δt.

Therefore21

E

[
S′ − S

S

]

=
Se(r−D0)Δt − S

S
≈ (r −D0)Δt

and

Var

[
S′ − S

S

]

≈ σ2Δt.

Consequently
dS

S
= (r −D0)dt+ σdX.

However, in the real world

dS

S
= μdt+ σdX.

Therefore, the random variable in the expression of the solution is a different
random variable from that in the real world. Usually, we say that the random
variable in the expression of the solution is in a “risk-neutral” world. In this
case, the expected return rate per unit time on any asset is the difference
between the riskless interest rate r and the dividend yield D0.

It is clear that if we let

V (S, t) = er(T−t)V (S, t),

then V is the solution of the problem

⎧
⎪⎪⎨

⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
= 0, 0 ≤ S, t ≤ T,

V (S, T ) = V T (S), 0 ≤ S

and

V (S, t) =

∫ ∞

0

V T (S
′)G(S′, T ;S, t)dS′ = E

[
V T (S

′)
]
.

In probability theory, when this relation holds, it is said that V (S, t) is a
martingale under the probability density function G(S′, T ;S, t).

21Here we take a conditional expectation, i.e., S′ is a random variable and S is
fixed.
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Problems

Table 2.1. Problems and subsections

Problems Subsections Problems Subsections Problems Subsections

1–4 2.1.1 5–10 2.1.2 11(a) 2.2.1

11(b) 2.2.2 12–15 2.2.5 16 2.2.6

17–18 2.3.1 19–21 2.3.2 22 2.3.3

23–26 2.3.4 27–28 2.4.1 29–30 2.4.2

31(a) 2.5.1 31(b–d)–33 2.5.2 34–36 2.6.1

37 2.6.2 38–42 2.6.3 43–58 2.6.5

59–61 2.6.6

1. (a) Show ∫ ∞

−∞

1√
2π

e−x
2/2dx = 1.

(b) Show that
∫ ∞

−∞

1

b
√
2π

e−(x−a)2/2b2dx = 1

holds for any a and b. (Because this is true and the integrand is always
positive, it can be a probability density function.)

(c) If the probability density function of a random variable x is

1

b
√
2π

e−(x−a)2/2b2 ,

then it is called a normal random variable. Show E[x] = a and
Var[x] = b2.

2. Define dX = φ
√
dt, where φ is a standardized normal random variable

and its probability density function is

1√
2π

e−φ
2/2, −∞ < φ <∞.

Find E [dX], Var [dX], E
[
(dX)2

]
, and Var

[
(dX)2

]
.

3. Suppose that S has the probability density function

G(S) =
1√
2πbS

e−[ln(S/a)+b
2/2]

2
/2b2 .

Find the probability density function for ξ =
1

S
, E [ξ] and Var [ξ].
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4. (a) Suppose that S1 and S2 are two independent normal random variables.
The mean and variance of S1 are μ1 and σ2

1 and for S2 they are μ2

and σ2
2 . Find the probability density function of the random variable

S1+S2 and using this function, show that S1+S2 is a normal random
variable with mean μ1 + μ2 and variance σ2

1 + σ2
2 .

22

(b) Suppose that Δt = t/n and φi, i = 1, 2, · · · , n, are independent stan-
dardized normal random variables. Show that

X(t) = lim
n→∞

(
φ1

√
Δt+ φ2

√
Δt+ · · ·+ φn

√
Δt
)

is a normal random variable with mean zero and variance t.
(c) Define dX = X(t + dt) − X(t). Show that it is a normal random

variable with mean zero and variance dt.
(d) Suppose S(t) = eμt+σX(t). Show that d lnS(t) ≡ lnS(t + dt) −

lnS(t) = μdt+σdX without using Itô’s lemma. (This result shows that
S(t) = eμt+σX(t) is a solution of the equation d lnS(t) = μdt+ σdX.)

5. *23Suppose
dS = a(S, t)dt+ b(S, t)dX,

where dX is a Wiener process. Let f be a function of S and t. Show that

df =
∂f

∂S
dS +

(
∂f

∂t
+

1

2
b2
∂2f

∂S2

)

dt

= b
∂f

∂S
dX +

(
∂f

∂t
+

1

2
b2
∂2f

∂S2
+ a

∂f

∂S

)

dt.

This result is usually referred to as Itô’s lemma.
6. Suppose that a random variable satisfies

dS = μSdt+ σSdX,

where dX is a Wiener process. Find the stochastic equation for ξ =
1

S

by using Itô’s lemma and determine the mean and variance of
dξ

ξ
.

7. Suppose that S satisfies

dS = μSdt+ σSdX.

22You have to show directly the relation

1√
2πσ1

∫ ∞

−∞
etS1e−(S1−μ1)

2/2σ2
1dS1 · 1√

2πσ2

∫ ∞

−∞
etS2e−(S2−μ2)

2/2σ2
2dS2

=
1√

2π
√

σ2
1 + σ2

1

∫ ∞

−∞
etSe−(S−μ1−μ2)

2/2(σ2
1+σ2

2)dS

if such a conclusion is used.
23A problem with * in this book means that you can find the answer in this book.

It is suggested that a student should first read and understand the corresponding
material and then do the problem without looking at the book.
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(a) Let F = e(r−D0)(T−t)S, which is called the forward/futures price, and
f = Se−D0(T−t) −Ke−r(T−t), which is the value of a forward/futures
contract. Here K is a constant and we assume that r and D0 are
constant. By Itô’s lemma, show that F and f satisfy

dF = (μ− r +D0)Fdt+ σFdX

and

df =
[
(μ+D0)

(
f +Ke−r(T−t)

)
− rKe−r(T−t)

]
dt

+σ
[
f +Ke−r(T−t)

]
dX,

respectively.

(b) Define ξ10 =
Se−D0(T−t)

Ee−r(T−t) =
Se(r−D0)(T−t)

E
and ξ01 =

Ee−r(T−t)

Se−D0(T−t) =

E

Se(r−D0)(T−t) , where E is a constant. Show

dξ10 = (μ− r +D0)ξ10dt+ σξ10dX

and
dξ01 = (−μ+ r −D0 + σ2)ξ01dt− σξ01dX.

8. Suppose that S satisfies

dS = a(S, t)dt+ b(S, t)dX.

Show that for any functions f1(S, t) and f2(S, t), the following is true:

d (f1f2) = f1df2 + f2df1 + b2
∂f1
∂S

∂f2
∂S

dt.

9. Suppose that S satisfies

dS = μSdt+ σSdX, 0 ≤ S <∞,

where μ, σ are positive constants and dX is a Wiener process. Let

ξ =
S

S + Pm
,

where Pm is a positive constant. The range of ξ is [0, 1) and the stochastic
differential equation for ξ is in the form:

dξ = a(ξ)dt+ b(ξ)dX.

Find the concrete expressions for a(ξ) and b(ξ) by Itô’s lemma and show
⎧
⎨

⎩

a(0) = 0,

b(0) = 0,
and

⎧
⎨

⎩

a(1) = 0,

b(1) = 0.
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10. Consider a random variable r satisfying the stochastic differential equa-
tion

dr = (μ− γr)dt+ wdX, −∞ < r <∞,

where μ, γ, w are positive constants and dX is a Wiener process. Define

ξ =
r

|r|+ Pm
, Pm > 0,

which transforms the domain (−∞,∞) for r into (−1, 1) for ξ. Suppose
the stochastic equation for the new random variable ξ is

dξ = a(ξ)dt+ b(ξ)dX.

Find the concrete expressions of a(ξ) and b(ξ) and show that a(ξ) and
b(ξ) fulfill the conditions

⎧
⎪⎨

⎪⎩

a(−1) = 0,

b(−1) =
db(−1)

dξ
= 0,

and

⎧
⎪⎨

⎪⎩

a(1) = 0,

b(1) =
db(1)

dξ
= 0.

11. (a) *Show that if an investment is risk-free, then theoretically its return
rate must be the short-term interest rate.

(b) *Using this fact and Itô’s lemma, derive the Black–Scholes equation.
12. *Suppose V (S, t) is the solution of the problem

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0 , 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

Let ξ =
S

S + Pm
, τ = T − t, and V (S, t) = (S + Pm)V (ξ, τ), where Pm

is a positive constant.
(a) Show that V (ξ, τ) is the solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

−[r(1− ξ) +D0ξ]V , 0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) =
1− ξ

Pm
VT

(
Pmξ

1− ξ

)

, 0 ≤ ξ ≤ 1,

where σ̄(ξ) = σ

(
Pmξ

1− ξ

)

.

(b) What are the advantages of reformulating the problem on a finite
domain?
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13. Consider the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

T

]
∂W

∂η
−D0W = 0,

−∞ < η <∞, t ≤ T,

W (η, T ) =WT (η) , −∞ < η <∞,

which is related to the European average price options. Let us introduce
the following transformation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
η

|η|+ Pm
,

τ = T − t,

W (η, t) = (|η|+ Pm)u(ξ, τ),

where Pm > 0. Find the PDE and the initial condition u(ξ, τ) should
satisfy.

14. As we know, the prices of European call and put options are solutions of
the problem

⎧
⎪⎨

⎪⎩

∂c

∂t
+

1

2
σ2S2 ∂

2c

∂S2
+ (r −D0)S

∂c

∂S
− rc = 0, 0 ≤ S, t ≤ T,

c(S, T ) = max(S − E, 0), 0 ≤ S,

and the problem

⎧
⎪⎨

⎪⎩

∂p

∂t
+

1

2
σ2S2 ∂

2p

∂S2
+ (r −D0)S

∂p

∂S
− rp = 0, 0 ≤ S, t ≤ T,

p(S, T ) = max(E − S, 0), 0 ≤ S,

respectively.
(a) Let S∗

0=Ee−r(T−t), S∗
1=Se

−D0(T−t), ξ10=S∗
1/S

∗
0 , and ξ01 = S∗

0/S
∗
1 .

Define V0(ξ10, t) = c(S, t)/S∗
0 and V1(ξ01, t) = p(S, t)/S∗

1 . Find the
PDEs and final conditions for V0(ξ10, t) and V1(ξ01, t).

(b) Based on the results in part (a), show that when S∗
1 is replaced

by S∗
0 and S∗

0 by S∗
1 at the same time, the expression for c(S, t) =

S∗
0V0(S

∗
1/S

∗
0 , t) becomes the expression for p(S, t) = S∗

1V1(S
∗
0/S

∗
1 , t).

15. Consider the following option problem:

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = max(E,S), 0 ≤ S.

Suppose that the uniqueness of the solution has been proved.
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a) Let S∗
0 = Ee−r(T−t), S∗

1 = Se−D0(T−t), ξ10 = S∗
1/S

∗
0 , and ξ01 = S∗

0/S
∗
1 .

Define V0(ξ10, t) = V (S, t)/S∗
0 and V1(ξ01, t) = V (S, t)/S∗

1 . Based on
these relations, find the PDEs and final conditions for V0(ξ10, t) and
V1(ξ01, t).

b) Based on the results in part (a), show that V (S, t) can be expressed
as a function f(S∗

0 , S
∗
1 , t) and this function is symmetric for S∗

0 and
S∗
1 , i.e., f(S

∗
0 , S

∗
1 , t) = f(S∗

1 , S
∗
0 , t). This result indicates that in this

option problem, the position of the cash and the position of the value
of the stock are symmetric in some sense.

16. As we know, f = Se−D0(T−t)−Ke−r(T−t) is the value of a forward/futures
contract. For S we assume dS = μSdt+ σSdX, so for df we have

df =
[
(μ+D0)

(
f +Ke−r(T−t)

)
− rKe−r(T−t)

]
dt

+σ
[
f +Ke−r(T−t)

]
dX

according to Itô’s lemma.

(a) *Consider an option on a forward/futures and let the price of such an
option be V1(f, t). Derive the PDE for V1 by using Itô’s lemma. (Hint:
Set Π = V1(f, t)−Δf .)

(b) *Let F = e(r−D0)(T−t)S, then for f we have another expression: f =
e−r(T−t) (Se(r−D0)(T−t) −K

)
= e−r(T−t) (F −K). Define V (F, t) =

V1(f(F, t), t) = V1(e
−r(T−t) (F −K) , t). Derive the PDE for V (F, t)

from the PDE obtained in part (a).
(c) Define V3(S, t) = V1(f(S, t), t) = V1(Se

−D0(T−t)−Ke−r(T−t), t). Show
that V3(S, t) satisfies the Black–Scholes equation:

∂V3
∂t

+
1

2
σ2S2 ∂

2V3
∂S2

+ (r −D0)S
∂V3
∂S

− rV3 = 0.

17. *Describe and derive the generalized Itô’s lemma.
18. Suppose that S1, S2, · · · , Sn are n lognormal random variables satisfying

the following stochastic differential equations:

dSi = μiSidt+ σiSidXi, i = 1, 2, · · · , n,

where μi, σi, i = 1, 2, · · · , n, are constants and dXi, i = 1, 2, · · · , n, are
n Wiener processes, i.e., dXi = φi

√
dt, φi being distinct standardized

normal random variables, i = 1, 2, · · · , n. φi and φj could be correlated
and E[φiφj ] = ρij , i, j = 1, 2, · · · , n, where −1 ≤ ρij ≤ 1. Define

ξij =
Si
Sj
, i �= j.

(a) Show that ξij satisfies the following stochastic differential equation

dξij = (μi − μj + σ2
j − ρijσiσj)ξijdt+ σijξijdXij ,
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where

σij =
√

σ2
i − 2ρijσiσj + σ2

j

and dXij is a Wiener process defined by

dXij =
σidXi − σjdXj

σij
.

That is, ξij = Si/Sj is also a lognormal variable and its volatility
is σij .

(b) Let S0 be a function of t, satisfying

dS0 = μ0S0dt.

It is clear that if we think S0 to be a random variable and let its
volatility be σ0, then σ0 = 0. Show that if Si is S0, then σ0j = σj and
dX0j = −dXj ; if Sj is S0, then σi0 = σi and dXi0 = dXi.

(c) Define

ρijk =
σ2
k − ρikσiσk − ρjkσjσk + ρijσiσj

σikσjk
.

Show
E[dXikdXjk] = ρijkdt,

i.e., ρijk is the correlation coefficient between the Wiener processes
related to ξik and ξjk.

(d) Show that if Si = S0, then

E[dX0kdXjk] = ρ0jkdt =
σk − ρjkσj

σjk
dt.

19. Suppose that S is the price of a dividend-paying stock and satisfies

dS = μ(S, t)Sdt+ σSdX1, 0 ≤ S <∞,

where dX1 is a Wiener process and σ is another random variable. Let the
dividend paid during the time period [t, t+dt] be D(S, t)dt. Assume that
for σ, the stochastic equation

dσ = p(σ, t)dt+ q(σ, t)dX2, σl ≤ σ ≤ σu

holds. Here, p(σ, t) and q(σ, t) are differentiable functions. dX2 is an-
other Wiener process correlated with dX1, and the correlation coeffi-
cient between them is ρdt. For options on such a stock, derive directly
the partial differential equation that contains only the unknown mar-
ket price of risk for the volatility. Here “Directly” means “without using
the general PDE for derivatives”. (Hint: Take a portfolio in the form
Π = Δ1V1(S, σ, t) +Δ2V2(S, σ, t) + S, where V1 and V2 are two different
options.)
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20. Consider a two-factor convertible bond paying coupons with a rate
k(t). For such a convertible bond, derive directly the partial differen-
tial equation that contains only the unknown market price of risk for
the short-term interest rate. “Directly” means “without using the gen-
eral PDE for derivatives”. (Hint: Take a portfolio in the form Π =
Δ1V1(S, r, t) +Δ2V2(S, r, t) + S, where V1 and V2 are two different con-
vertible bonds.)

21. *Describe and derive the general equations for derivative securities.
22. (a) Suppose that V (S, t) satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (a− λb)

∂V

∂S
− rV = 0.

Assuming that V = Se−D0(T−t) is a solution, find a− λb.
(b) Let Zl be a constant and suppose that V (ξ, t) = Zl+ξ(1−Zl) satisfies

∂V

∂t
+

1

2
σ2 ∂

2V

∂ξ2
+ (a− λb)

∂V

∂ξ
− rV = 0.

Find a− λb.
23. Suppose that ξ satisfy the stochastic differential equation:

dξ = a(ξ, t)dt+ b(ξ, t)dX,

where dX is a Wiener process. Let S(ξ) be the price of a stock which
pays dividends D(S(ξ), t)dt during the time period [t, t + dt] and f(ξ, t)
represent the value of a derivative security.
(a) Setting a portfolio Π = f(ξ, t)−ΔS(ξ) and using Itô’s lemma, derive

a PDE for f(ξ, t).
(b) Assume f(ξ, t) = V (ξ, t), S(ξ) = eξ and D(S(ξ), t) = D0e

ξ. Find the
PDE for V (ξ, t).

(c) Assume f(ξ, t) = V (ξ, t)/ξ, S(ξ) = 1/ξ and D(S(ξ), t) = D0/ξ. Find
the PDE for V (ξ, t).

(d) Assume f(ξ, t) = PmV (ξ, t)/(1−ξ), S(ξ) = Pmξ/(1−ξ) andD(S(ξ), t)
= D0Pmξ/(1− ξ). Find the PDE for V (ξ, t).

24. As we know, f = Se−D0(T−t)−Ke−r(T−t) is the value of a forward/futures
contract. If we set F = e(r−D0)(T−t)S, then for f we have another ex-
pression: f = e−r(T−t) (Se(r−D0)(T−t) −K

)
= e−r(T−t) (F −K). For S

we assume dS = μSdt+ σSdX, so for F we have

dF = (μ− r +D0)Fdt+ σFdX

according to Itô’s lemma. Consider an option on a forward/futures and let
the price of such an option be V (F, t). Derive the PDE for V by using Itô’s
lemma. (Hint: Set Π = V (F, t)−Δf(F, t) = V (F, t)−Δe−r(T−t)(F−K)).
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25. *Suppose that ξ1 and ξ2 satisfy the system of stochastic differential equa-
tions:

dξi = μi(ξ1, ξ2, t)dt+ σi(ξ1, ξ2, t)dXi, i = 1, 2,

where dXi are Wiener processes and E [dXidXj ] = ρijdt with −1 ≤ ρij ≤
1. Define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1 (ξ1)− Z2,l]

= Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l] .

Assume that Z1(ξ1) and Z2(ξ1, ξ2) represent prices of two securities.
Let V (ξ1, ξ2, t) be the value of a derivative security. Setting a portfo-
lio Π = V −Δ1Z1(ξ1)−Δ2Z2(ξ1, ξ2) and using Itô’s lemma, show that
V (ξ1, ξ2, t) satisfies the following PDE:

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂ξi∂ξj
+

rZ1

1− Z1,l

∂V

∂ξ1

+

[
r (Z2 − Z1ξ2)

Z1 − Z2,l
− σ1σ2ρ1,2 (1− Z1,l)

Z1 − Z2,l

]
∂V

∂ξ2
− rV = 0.

26. Suppose that ξ1, ξ2 and ξ3 satisfy the system of stochastic differential
equations:

dξi = μ̃i(ξ1, ξ2, ξ3, t)dt+ σ̃i(ξ1, ξ2, ξ3, t)dX̃i, i = 1, 2, 3,

where dX̃i are the Wiener processes and E
[
dX̃idX̃j

]
= ρ̃ijdt with

−1 ≤ ρ̃ij ≤ 1. Define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1 (ξ1)− Z2,l]

= Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l] ,

Z3 (ξ1, ξ2, ξ3) = Z3,l + ξ3 [Z2 (ξ1, ξ2)− Z3,l]

= Z3,l + ξ3 {Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l]− Z3,l} .

Assume that Z1(ξ1), Z2(ξ1, ξ2), and Z3(ξ1, ξ2, ξ3) represent prices of three
securities. Let V (ξ1, ξ2, ξ3, t) be the value of a derivative security. Setting
a portfolio Π = V −Δ1Z1(ξ1)−Δ2Z2(ξ1, ξ2)−Δ3Z3(ξ1, ξ2, ξ3) and using
Itô’s lemma, derive the PDE that V (ξ1, ξ2, ξ3, t) should satisfy.

27. *Write down the weak-form reversion conditions and the reversion con-
ditions of a stochastic process, describe when the two types of reversion
conditions are the same, and give the intuitive meaning of the weak-form
reversion conditions.
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28. Show the following:
(a) The Cox–Ingersoll–Ross interest rate model defined on [0,∞)

dr = (μ̄− γ̄r)dt+
√
αrdX, μ̄, γ̄, α > 0

can be converted into the model

dξ =

[
(1− ξ)

2

Pm

(

μ̄− γ̄Pmξ

1− ξ

)

− αξ (1− ξ)
2

Pm

]

dt+

√
αξ1/2(1− ξ)3/2

P
1/2
m

dX

by introducing a new random variable ξ =
r

r + Pm
, where Pm is a

positive constant.
(b) ξ is defined on [0, 1]. For the new model, the reversion conditions at ξ =

0 hold if and only if μ̄−α/2 ≥ 0 and the reversion conditions at ξ = 1
always hold.

29. *Consider the following degenerate parabolic problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= f1(x, τ)

∂2u

∂x2
+ f2(x, τ)

∂u

∂x
+ f3(x, τ)u+ g(x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,

u(x, 0) = f(x), 0 ≤ x ≤ 1,

u(0, τ)

⎧
⎪⎪⎨

⎪⎪⎩

needs not to be given if f2(0, τ)−
∂f1(0, τ)

∂x
≥ 0,

= fl(τ) if f2(0, τ)−
∂f1(0, τ)

∂x
< 0,

u(1, τ)

⎧
⎪⎪⎨

⎪⎪⎩

needs not to be given if f2(1, τ)−
∂f1(1, τ)

∂x
≤ 0,

= fu(τ) if f2(1, τ)−
∂f1(1, τ)

∂x
> 0,

where f1(0, τ) = f1(1, τ) = 0 and f1(x, τ) ≥ 0. Suppose that its solution
exists and is bounded and that there exist a constant c1 and two bounded
functions c2(τ) and c3(τ) such that

1 + max
0≤x≤1, 0≤τ≤T

(∣
∣
∣
∣
∂2f1(x, τ)

∂x2
− ∂f2(x, τ)

∂x
+ 2f3(x, τ)

∣
∣
∣
∣

)

≤ c1,

−min

(

0, f2(0, τ)−
∂f1(0, τ)

∂x

)

≤ c2(τ),

and

max

(

0, f2(1, τ)−
∂f1(1, τ)

∂x

)

≤ c3(τ).

Show that in this case, its solution is unique and stable with respect to
the initial value f(x), inhomogeneous term g(x, τ), and the boundary
values fl(τ), fu(τ) if there are any.
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30. Suppose f1(r, t) ≥ 0 and f1(rl, t) =
∂f1(rl, t)

∂r
= f1(ru, t) =

∂f1(ru, t)

∂r
= 0,

and f2(rl, t) < 0, f2(ru, t) > 0. Explain why problem A
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
= f1

∂2V

∂r2
+ f2

∂V

∂r
+ f3V, rl ≤ r ≤ ru, 0 ≤ t,

V (r, 0) = V0(r), rl ≤ r ≤ ru,

V (rl, t) = fl(t), 0 ≤ t,

V (ru, t) = fu(t), 0 ≤ t

and problem B
⎧
⎪⎨

⎪⎩

∂V

∂t
= −f1

∂2V

∂r2
+ f2

∂V

∂r
+ f3V, rl ≤ r ≤ ru, t ≤ T,

V (r, T ) = VT (r), rl ≤ r ≤ ru

have unique solutions.
31. (a) Consider a linear hyperbolic partial differential equation

∂u

∂t
+ f(x, t)

∂u

∂x
= 0.

Let x = x(t) be the curve C which is determined by the following
ordinary differential equation

dx(t)

dt
= f(x, t)

with x(0) = ξ. Show that u is a constant along the curve C:

u (x(t∗), t∗) = u (x(t∗∗), t∗∗) ,

where t∗ and t∗∗ are any two times, and that if

f(x, t) = F (x, t)δ(t− ti),

where δ(t− ti) is the Dirac delta function, then

u
(
x(t−i ), t

−
i

)
= u

(
x(t−i ) + F

(
x(t−i ), t

−
i

)
, t+i
)
,

where t−i and t+i denote the time just before and after ti, respectively.
(b) Derive the jump condition for options on stocks with discrete divi-

dends and explain its financial meaning.
(c) Find the corresponding jump condition for the following PDE

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

K

K∑

i=1

δ (t− ti)

]
∂W

∂η
−D0W = 0.
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(d) Find the corresponding jump condition for the following PDE

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S

+
K∑

i=1

[
max

(
S (t) , H

(
t−
))

−H
(
t−
)]
δ (t− ti)

∂V

∂H
− rV = 0.

32. Show that the expression

W (η, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e−r(T−t)η, t2 < t ≤ T,

e−r(T−t)η + 1
2e

−r(T−t2)−D0(t2−t), t1 < t ≤ t2,

e−r(T−t)η + 1
2e

−r(T−t1)−D0(t1−t)

+ 1
2e

−r(T−t2)−D0(t2−t), 0 < t ≤ t1,

is the solution of the problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

2

2∑

i=1

δ (t− ti)

]
∂W

∂η

−D0W = 0, 0 ≤ η, 0 ≤ t ≤ T,

W (η, T ) = η, 0 ≤ η.

(This problem is related to discretely sampled average price call options.)

33. Suppose that V (S, t) is the solution of the following PDE:

∂V

∂t
+ a(S, t)

∂2V

∂S2
+ b(S, t)

∂V

∂S
+ c(S, t)V + d(S, t)δ(t− ti) = 0.

Find the relation between V (S, t+i ) and V (S, t−i ), and describe the finan-
cial meaning of this relation.

34. Suppose V (S, t) is the solution of the problem
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

Let x =

√
2

σ

[
lnS + (r −D0 − σ2/2)(T − t)

]
, τ = T − t and V (S, t) =

e−r(T−t)u(x, τ). Show that u(x, τ) is the solution of the problem

⎧
⎪⎨

⎪⎩

∂u

∂τ
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ,

u(x, 0) = VT

(
eσx/

√
2
)
, −∞ < x <∞.
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35. *Suppose V (S, t) is the solution of the problem
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

Let x = lnS + (r − D0 − σ2/2)(T − t), τ̄ = σ2(T − t)/2 and V (S, t) =
e−r(T−t)u(x, τ̄). Show that u(x, τ̄) is the solution of the problem

⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = VT (e
x), −∞ < x <∞.

36. Consider problem A:
⎧
⎪⎨

⎪⎩

∂V

∂t
+ a(t)S2 ∂

2V

∂S2
+ b(t)S

∂V

∂S
− r(t)V = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S

and define

α(t) =

∫ T

t

a(s)ds, β(t) =

∫ T

t

b(s)ds,

and

γ(t) =

∫ T

t

r(s)ds.

Assume that for this problem the uniqueness of solution is proved. Show
that
(a) Let x = lnS + β(t)− α(t), τ̄ = α(t) and V (S, t) = e−γ(t)u(x, τ̄), then

u(x, τ̄) is the solution of the problem:
⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = VT (e
x), −∞ < x <∞.

(b) V (S, t) must be in the form

V (S, t) = e−γ(t)u(lnS + β(t)− α(t), α(t))

or
V (S, t) = e−γ(t)ū(Seβ(t), α(t)).

(c) If
V (S, t) = e−r(T−t) ¯̄u(Seb(T−t), a(T − t))

is the solution of problem A with constant coefficients, then

V (S, t) = e−γ(t) ¯̄u(Seβ(t), α(t))

is the solution of problem A with time-dependent coefficients.
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37. *Find an integral expression of the solution of the following problem

⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = u0(x), −∞ < x <∞.

38. Using the results given in Problems 34 and 37, show that the solution of
the following problem

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S

is

V (S, t) = e−r(T−t)
∫ ∞

0

VT (S
′)G(S′, T ;S, t)dS′,

where

G(S′, T ;S, t)

=
1

σ
√
2π(T − t)S′ e

−[lnS′−lnS−(r−D0−σ2/2)(T−t)]2/2σ2(T−t).

39. Suppose that S is a random variable which is defined on [0,∞) and whose
probability density function is

G(S) =
1√
2πbS

e−[ln(S/a)+b
2/2]

2
/2b2 ,

a and b being positive numbers. Show that
(a)

∫ c

0

G(S)dS = N

(
ln(c/a) + b2/2

b

)

;

(b)
∫ c

0

SG(S)dS = aN

(
ln(c/a)− b2/2

b

)

;

(c) for any real number n

∫ c

0

SnG(S)dS = ane(n
2−n)b2/2N

(
ln(c/a) + b2/2

b
− nb

)

;

(d) for any real number n

E [Sn] = ane(n
2−n)b2/2;
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(e) for any real number n

∫ ∞

c

SnG(S)dS = ane(n
2−n)b2/2N

(

− ln(c/a) + b2/2

b
+ nb

)

;

(f)
∫ c

0

lnS G (S) dS

=
−b√
2π

e−[ln(c/a)+b
2/2]

2
/2b2 +

(
ln a− b2/2

)
N

(
ln (c/a) + b2/2

b

)

;

(g)
∫ ∞

c

lnS G (S) dS

=
b√
2π

e−[ln(c/a)+b
2/2]

2
/2b2 +

(
ln a− b2/2

)
N

(

− ln (c/a) + b2/2

b

)

,

where

N(z) =
1√
2π

∫ z

−∞
e−ξ

2/2dξ.

40. (a) Define S∗
0 = Ee−r(T−t) and S∗

1 = Se−D0(T−t). Show that there exists
a function f(x1, x2, t;σ) such that the following is true:

e−r(T−t)
∫ E

0

max(E,S′)G(S′, T ;S, t)dS′ = f(S∗
0 , S

∗
1 , t;σ)

and

e−r(T−t)
∫ ∞

E

max(E,S′)G(S′, T ;S, t)dS′ = f(S∗
1 , S

∗
0 , t;σ),

where

G(S′, T ;S, t)

=
1

σ
√
2π(T − t)S′ e

−{lnS′−[lnS+(r−D0−σ2/2)(T−t)]}2
/2σ2(T−t).

(b) Let V (S, t) be the solution of the problem
⎧
⎪⎨

⎪⎩

∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = max(E,S), 0 ≤ S.

Based on the results in part (a), show that in the expression for V (S, t),
the positions of S∗

0 and S∗
1 are symmetric, i.e., exchanging S∗

0 and S∗
1

in the expression for V (S, t) will generate the same expression.
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41. As we know,

c(S, t) = e−r(T−t)
∫ ∞

0

max(S′ − E, 0)G(S′, T ;S, t)dS′

and

p(S, t) = e−r(T−t)
∫ ∞

0

max(E − S′, 0)G(S′, T ;S, t)dS′,

where

G(S′, T ;S, t) =
1

σ
√
2π(T − t)S′ e

−[ln(S′/S)−(r−D0−σ2/2)(T−t)]2/2σ2(T−t).

(a) Using the expression above for c(S, t), show that if D0 = 0, then
c(S, t) ≥ max(S − E, 0), which means that for this case the value of
an American call option is the same as the value of a European call
option.

(b) Using the expression above for p(S, t), show that if r = 0, then
p(S, t) ≥ max(E − S, 0), which means that for this case the value
of an American put option is the same as the value of a European put
option.

42. Consider the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ (r −D0)S
∂Bc
∂S

− rBc = 0,

0 ≤ S, 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S,

where σ, r,D0, Z, and n are constants. Show that if D0 ≤ 0, then

Bc(S, t) ≥ max
(
Ze−r(T−t), nS

)
for 0 ≤ t ≤ T.

43. Find the solution in the form of V (S, t) = V (S) for the Black–Scholes
equation.

44. Show by substitution that
(a) V (S, t) = Se−D0(T−t),
(b) V (S, t) = Ee−r(T−t)

are solutions of the Black–Scholes equation. What do these solutions rep-
resent?

45. *Using the results given in Problems 38 and 39, derive the Black-Scholes
formula for a European put option.

46. As we know, the price of a call option on a forward/futures is the solution
of the following problem:
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⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2F 2 ∂

2V

∂F 2
− rV = 0, 0 ≤ F, t ≤ T,

V (F, T ) = max(F −K, 0), 0 ≤ F.

Using the general solution of the Black–Scholes equation and the results
given in Problem 39, find a closed-form solution for this case.

47. Consider the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV + k(t)Z = 0,

0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS), 0 ≤ S,

where σ, r, D0, Z, n are constants and k(t) is a nonnegative function.
Using the general solution of the Black–Scholes equation and the re-
sults given in Problem 39, find a closed-form solution for this case. (If
D0 = 0, this solution gives the price of a one-factor convertible bond pay-
ing coupon.) (Hint: Define V (S, t) = V (S, t) − b0(t), where b0(t) is the
solution of the following problem:

⎧
⎨

⎩

db0
dt

− rb0 + k(t)Z = 0, 0 ≤ t ≤ T,

b0(T ) = 0.

Find b0(t) and a closed-form solution of V (S, t) first, then putting them
together, we have V (S, t).)

48. Consider the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cb
∂t

+
1

2
σ2S2 ∂

2cb
∂S2

+ (r −D0)S
∂cb
∂S

− rcb = 0,

0 ≤ S <∞, 0 < t < T,

cb(S, T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if 0 ≤ S < S∗∗,

f(S), if S∗∗ ≤ S < S∗,

S − E, if S∗ ≤ S <∞,

where
f(S) = a0 + a1S + · · ·+ aJS

J .
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Show that it has a solution in the following closed form:

cb(S, t) =
J∑

n=0

{
anS

ne[−r+n(r−D0)+(n−1)nσ2/2](T−t)

×
[
N
(
d∗ − nσ

√
T − t

)
−N

(
d∗∗ − nσ

√
T − t

)]}

+Se−D0(T−t)
[
1−N

(
d∗ − σ

√
T − t

)]
− Ee−r(T−t)[1−N(d∗)],

where

d∗ =

[

ln(S∗/S)−
(

r −D0 −
1

2
σ2

)

(T − t)

]/(
σ
√
T − t

)
,

d∗∗ =

[

ln(S∗∗/S)−
(

r −D0 −
1

2
σ2

)

(T − t)

]/(
σ
√
T − t

)
.

49. Using the Black–Scholes formula for a put option and the result in Prob-
lem 36 part (c), find the formula for the price of a put option with time-
dependent parameters.

50. Consider a European call option on a non-dividend-paying stock. Use the
Black–Scholes formula to find the option price when the stock price is
$63, the strike price is $60, the risk-free interest rate is 5% per annum,
the volatility is 35% per annum, and the time to maturity is six months.

51. Consider a European put option on a dividend-paying stock. Use the
Black–Scholes formula to find the option price when the stock price is
$55, the strike price is $60, the risk-free interest rate is 5% per annum,
the volatility is 35% per annum, the dividend yield is 3% per annum,
and the time to maturity is six months.

52. Consider a European call option on a non-dividend-paying stock. The
option price is $4.5, the stock price is $86, the exercise price is $92,
the risk-free interest rate is 5% per annum, and the time to maturity is
three months. Use the Black–Scholes formula for a call option to find what
the corresponding volatility should be. (This volatility is usually referred
to as the implied volatility associated with the given option price.)

53. *Show
Se−D0(T−t)−d21/2 = Ee−r(T−t)−d22/2,

where

d1 =

[

ln
Se(r−D0)(T−t)

E
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)
,

d2 = d1 − σ
√
T − t.
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54. Verify that the Black–Scholes formula for a put option is the solution of
the following problem:
⎧
⎪⎨

⎪⎩

∂p

∂t
+

1

2
σ2S2 ∂

2p

∂S2
+ (r −D0)S

∂p

∂S
− rp = 0, 0 ≤ S, 0 ≤ t ≤ T,

p(S, T ) = max(E − S, 0), 0 ≤ S.

(Hint: Show the following identity Ee−r(T−t)−d22/2 = Se−D0(T−t)−d21/2

first.)
55. Find the expressions of limS→0 c(S, t) and limS→0 p(S, t).
56. Derive the expressions for derivatives of c(S, t) and p(S, t) with respect

to r, D0, σ, E, and show that
∂c

∂r
,
∂c

∂σ
,
∂p

∂D0
,
∂p

∂σ
,
∂p

∂E
are nonnegative,

and others are nonpositive.
57. Let c̄(ξ, τ) = c(S, t)/(S + Pm) and p̄(ξ, τ) = p(S, t)/(S + Pm), where

ξ = S/(S + Pm) and τ = T − t. Derive the expressions of c̄(ξ, τ) and
p̄(ξ, τ) and find the limits of c̄(ξ, τ) and p̄(ξ, τ) as ξ tends to 0 and 1. Also
write down the formulae for the case Pm = E.

58. Suppose that S is the price of a stock,

dS = μSdt+ σSdX,

and V (S, t) is the value of an option on the stock. Define S∗
0 =Ee−r(T−t),

S∗
1 = Se−D0(T−t), ξ10 =

S∗
1

S∗
0

=
Se(r−D0)(T−t)

E
, ξ01 =

S∗
0

S∗
1

=
E

Se(r−D0)(T−t) ,

V0(ξ10, t) = V (S(ξ10, t), t)/S
∗
0 (t), and V1(ξ01, t)=V (S(ξ01, t), t)/S

∗
1 (ξ01, t),

where E and T are constants, r is the interest rate, andD0 is the dividend
yield of the stock. Assume that we already know that

dξ10 = (μ− r +D0)ξ10dt+ σξ10dX.

(a) By setting Π = V −ΔS = S∗
0 (t)V0(ξ10, t)−ΔEe−(r−D0)(T−t)ξ10 and

using Itô’s lemma, show that the PDE for V0(ξ10, t) is

∂V0
∂t

+
1

2
σ2ξ210

∂2V0
∂ξ210

= 0.

(b) From the PDE for V0(ξ10, t) obtained in part (a), show that the PDE
for V1(ξ01, t) is

∂V1
∂t

+
1

2
σ2ξ201

∂2V1
∂ξ201

= 0.

(c) Consider the problem:
⎧
⎪⎨

⎪⎩

∂W

∂t
+ 1

2σ
2ξ2

∂2W

∂ξ2
= 0, 0 ≤ ξ, t ≤ T,

W (ξ, T ) = max(ξ, 1), 0 ≤ ξ.
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As we know, the solution of this problem is

W (ξ, t) =

∫ ∞

0

max(ξ′, 1)G(ξ′, T ; ξ, t)dξ′

=

∫ 1

0

G(ξ′, T ; ξ, t)dξ′ +
∫ ∞

1

ξ′G(ξ′, T ; ξ, t)dξ′,

where

G(ξ′, T ; ξ, t) =
1√
2πbξ′

e−[ln(ξ
′/ξ)+b2/2]

2
/2b2 , b being σ

√
T − t.

Let V (S, t) be the price of the option with payoff max(S,E). In this
case V0(ξ10, T ) = max(S,E)/E = max(ξ10, 1) and V1(ξ01, T ) =
max(S,E)/S = max(ξ01, 1). Thus, for V (S, t) we have two expres-
sions:

V (S, t) = S∗
0W (ξ10, t)

= S∗
0

∫ 1

0

G(ξ′10, T ; ξ10, t)dξ
′
10 + S∗

0

∫ ∞

1

ξ′10G(ξ
′
10, T ; ξ10, t)dξ

′
10,

and

V (S, t) = S∗
1W (ξ01, t)

= S∗
1

∫ 1

0

G(ξ′01, T ; ξ01, t)dξ
′
01 + S∗

1

∫ ∞

1

ξ′01G(ξ
′
01, T ; ξ01, t)dξ

′
01.

Because at t = T both ξ′10 < 1 and ξ′01 > 1 correspond to S′ < E,
both the first term in the first expression and the second term in
the second expression represent the contribution which the function
max(S′, E) as S′ < E makes to the value V (S, t). Consequently, the
two terms should be equal. Similarly the second term in the first ex-
pression should be equal to the first term in the second expression.
Verify this conclusion by direct calculation.

59. *Suppose that c(S, t) and p(S, t) are the prices of European call and put
options with the same parameters, respectively. Show the put–call parity

c(S, t)− p(S, t) = Se−D0(T−t) − Ee−r(T−t)

without using the Black–Scholes formulae.
60. Consider a European option on a non-dividend-paying stock. The stock

price is $37, the exercise price is $34, the risk-free interest rate is 5% per
annum, the volatility is 30% per annum, and the time to maturity is six
months. Find the call and put option prices by using the Black–Scholes
formulae and verify that the put–call parity holds.
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61. By using the put–call parity relation of European options

c(S, t)− p(S, t) = Se−D0(T−t) − Ee−r(T−t),

show that the following relations hold:

∂p

∂S
=
∂c

∂S
− e−D0(T−t),

∂2p

∂S2
=
∂2c

∂S2

and
∂2p

∂S∂σ
=

∂2c

∂S∂σ
,

∂p

∂σ
=
∂c

∂σ
,

∂2p

∂σ2
=
∂2c

∂σ2
.



3

American Style Derivatives

In this Chapter, we will discuss that in order to find the value of an American
style derivative, what kind of mathematical problems needs to be solved.
When we have such discussions, we mainly take American options as exam-
ples. However the methods can be used for other American style derivatives.
In the first section, we will derive the additional constraints on American
style derivatives and discuss how the constraints affect the way the price is
determined. In Sect. 3.2, we formulate the American call and put problems as
linear complementarity (LC) problems and point out how to get the formula-
tion for an American style derivative from the formulation for the correspond-
ing European style derivative. In Sect. 3.3, we will discuss how to formulate
an American option problem as a free-boundary problem (FBP) from a linear
complementarity problem. For other American style derivatives, the method is
similar. Finally we discuss some properties of options, including the relations
between European and American options, by the arbitrage theory in the last
section.

3.1 Constraints on American Style Derivatives

3.1.1 Constraints on American Options

Let C(S, t) and P (S, t) denote the prices of American call and put options,
respectively. As we know from Sect. 1.2, an American option has the additional
feature that it may be exercised at any time during the life of the option. What
does this additional feature mean in mathematics? It means that the value of
an American call option must satisfy the condition

C(S, t) ≥ max(S − E, 0), (3.1)

and that the value of an American put option must fulfill the inequality

P (S, t) ≥ max(E − S, 0). (3.2)

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 3, © Springer Science+Business Media New York 2013
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Usually, max(S − E, 0) and max(E − S, 0) are called the intrinsic values of
call and put options, respectively. Thus, satisfying the two inequalities above
means that the value of an option must be at least equal to its intrinsic
value. Conditions (3.1) and (3.2) are usually referred to as the constraints
on American vanilla options. These conclusions can be proved by arbitrage
arguments as follows.

First, let us consider an American call option. For S ≤ E, the condi-
tion (3.1) means C(S, t) ≥ 0. This is always true because a solution of the
Black–Scholes equation with a nonnegative payoff function as a final condi-
tion is always nonnegative. From the financial point of view, it is also clear
that a holder of an option has only rights, no obligation, so he/she needs to
pay something in order to get it, i.e., the option price should not be negative.
Thus, the condition (3.1) always holds for any S ∈ [0, E]. Suppose that for a
price S > E, the condition (3.1) is not fulfilled, i.e., C(S, t) < S−E. Then, an
obvious arbitrage opportunity arises: by short selling the asset on the market
for S, purchasing the option for C, and exercising the call option, a risk-free
profit of S−C−E is made. Of course, such an opportunity would not last long
before the value of the option was pushed up by the demand of arbitrageurs.
We conclude that on a value of an American call, we must impose the con-
straint (3.1). For an American put option the situation is similar. For any
S ≥ E, the condition (3.2) holds naturally. Suppose the option price satisfies
P (S, t) < E − S for a price S < E. Then, by purchasing the option for P ,
purchasing the asset from the market for S, and exercising the put option, an
immediate risk-free profit of E − P − S is made, and the demand will push
the option price up so that condition (3.2) holds.

Bermudan options are similar to American options but can be exercised
only at several predetermined dates, instead of the entire period [0, T ]. This
means that for a Bermudan option, condition (3.1) or condition (3.2) should
be required at several predetermined dates but not on the entire period [0, T ],
which is the only difference between American and Bermudan options.

How does a constraint affect the way of determining the price of an option?
Let us take an American put option as an example. As we easily see, at S = 0
the Black–Scholes equation degenerates to an ordinary differential equation

∂V (0, t)

∂t
− rV (0, t) = 0

and its solution is
V (0, t) = V (0, T )e−r(T−t).

For a put, V (0, T ) = E. Therefore, the price of a European put option at
S = 0 is

p(0, t) = Ee−r(T−t) < E

for any t < T if r > 0. Consequently, the price of a European put option will
not satisfy the constraint (3.2). Thus, in order to price an American put, we
must modify the method for determining the price of an option if r > 0.
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Roughly speaking, the way of determining the price of an American style
derivative is as follows. Let V (S, t) be the price of an American style derivative
and Gv(S, t) be the constraint. Suppose that for a time t, V (S, t) is known for
any S. Based on V (S, t) and using the Black–Scholes equation, we can obtain
the price of a derivative security at time t−Δt for a small positive Δt. If the
value satisfies the constraint condition V (S, t−Δt) ≥ Gv(S, t−Δt), it gives
the price of the American style derivative; if not, the constraint is the value of
the American style derivative, i.e., the Black–Scholes equation cannot be used
for determining the price of the American style derivative in this case.

Let us explain why the price of the American style derivative is determined
in this way. If V (S, t) > Gv(S, t) in a neighborhood of a point S = S∗ at time
t, then the solution V (S, t−Δt) obtained by using the Black–Scholes equation
must still satisfy the condition V (S, t −Δt) > Gv(S, t −Δt) at that point if
Δt is small enough. Therefore the event “the Black–Scholes equation cannot
be used” only occurs at a point S = S∗ where V (S, t) = Gv(S, t). Thus we
need to discuss when the Black–Scholes equation can be used and when the
Black–Scholes equation cannot be used only if V (S, t) = Gv(S, t). On this
question, we have the following theorem. In the future we will also consider
other problems besides option problems, thus in the theorem, we consider
a general partial differential equation (PDE) similar to the Black–Scholes
equation. The theorem is described as follows.

Theorem 3.1 Let LS,t be an operator in a derivative security problem in
the form:

LS,t = a(S, t)
∂2

∂S2
+ b(S, t)

∂

∂S
+ c(S, t)

and Gv(S, t) be the constraint function for an American style derivative.

Furthermore, we assume that
∂Gv
∂t

+ LS,tGv exists. Suppose V (S, t∗) =

Gv(S, t
∗) on an open interval (A,B) on the S-axis. Let t = t∗ − Δt, where

Δt is a sufficiently small positive number. For this case we have the following
conclusions: If for any S ∈ (A,B),

∂Gv
∂t

(S, t∗) + LS,t∗Gv(S, t
∗) ≥ 0,

then the value V (S, t) determined by the equation

∂V

∂t
(S, t) + LS,tV (S, t) = 0

satisfies the condition V (S, t)−Gv(S, t) ≥ 0 on (A,B), which means the PDE
can be used for determining the price of the American style derivative; and if
for any S ∈ (A,B),

∂Gv
∂t

(S, t∗) + LS,t∗Gv(S, t
∗) < 0,
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then the equation
∂V

∂t
(S, t) + LS,tV (S, t) = 0

cannot give a solution satisfying the condition V (S, t)−Gv(S, t) ≥ 0 for any
S ∈ (A,B), which means the PDE cannot be used for determining the price
of the American style derivative.

Proof. Because V (S, t∗) = Gv(S, t
∗), the fact that V (S, t) − Gv(S, t) > 0

holds for any t = t∗ − Δt, Δt being a sufficiently small positive number, is
equivalent to that at time t∗, V (S, t)−Gv(S, t) is a decreasing function with
respect to t, that is,

∂V

∂t
(S, t∗)− ∂Gv

∂t
(S, t∗) < 0.

If
∂Gv
∂t

(S, t∗) + LS,t∗Gv(S, t
∗) > 0

and
∂V

∂t
(S, t∗) + LS,t∗V (S, t∗) =

∂V

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) = 0,

then
∂Gv
∂t

(S, t∗) > −LS,t∗Gv(S, t
∗) =

∂V

∂t
(S, t∗)

or
∂V

∂t
(S, t∗)− ∂Gv

∂t
(S, t∗) < 0.

Therefore in this case we can use the equation

∂V

∂t
(S, t) + LS,tV (S, t) = 0

to get a solution satisfying the condition V (S, t) − Gv(S, t) > 0, which
means the PDE can be used for determining the price of the American style
derivative.

If on a point (S, t∗) with S ∈ (A,B)

∂Gv
∂t

(S, t∗) + LS,t∗Gv(S, t
∗) = 0,

then Gv(S, t) is the solution V (S, t) in a sufficiently small neighborhood of
the point (S, t∗). Putting this result and the result above together, we know
that if

∂Gv
∂t

(S, t∗) + LS,t∗Gv(S, t
∗) ≥ 0

then the PDE can be used for determining the price of the American style
derivative.
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If
∂Gv
∂t

(S, t∗) + LS,t∗Gv(S, t
∗) < 0

and
∂V

∂t
(S, t∗) + LS,t∗V (S, t∗) =

∂V

∂t
(S, t∗) + LS,t∗Gv(S, t

∗) = 0,

then
∂Gv
∂t

(S, t∗) < −LS,t∗Gv(S, t
∗) =

∂V

∂t
(S, t∗)

or
∂V

∂t
(S, t∗)− ∂Gv

∂t
(S, t∗) > 0,

which will cause V (S, t) − Gv(S, t) < 0 for any t = t∗ − Δt. Therefore, we
cannot get the solution by using the equation

∂V

∂t
(S, t) + LS,tV (S, t) = 0,

which means the PDE cannot be used for determining the price of the Amer-
ican style derivative. ��

About this theorem, we would like to make the following remark.

• Let us adopt τ = T − t instead of t and we want to have the solution at
τ = τ∗+Δτ from the solution at τ = τ∗, where Δτ > 0. Then the theorem
is still true if the condition

∂Gv
∂t

(S, t) + LS,tGv(S, t) ≥ 0

is changed into
∂Gv
∂τ

(S, τ)− LS,τGv(S, τ) ≤ 0

and the condition
∂Gv
∂t

(S, t) + LS,tGv(S, t) < 0

is changed into
∂Gv
∂τ

(S, τ)− LS,τGv(S, τ) > 0,

where Gv(S, τ) = Gv(S, t) and LS,τGv(S, τ) = LS,tGv(S, t).

From Theorem 3.1, we know that when V (S, t) = Gv(S, t) and

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]

Gv < 0,

we cannot use the Black–Scholes equation to determine V (S, t − Δt). What
V (S, t − Δt) should be in this case? In the above, we have pointed that in
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this case, V (S, t−Δt) = Gv(S, t−Δt). Here let us explain why it should be.
It is clear that a buyer of a derivative security wants the price to be as low
as possible and that the price of an American style derivative cannot be less
than the constraint as we discussed above. Thus for V (S, t−Δt) the constraint
Gv(S, t−Δt) is the lowest price the buyer can expect. A seller wants the price
to be as high as possible. Can the seller accept that the constraint is the price
in this case? The answer is “yes”, so the constraint is the price both the buyer
and the seller accept. Let us explain why the seller accepts this price. Suppose
that the seller sells the derivative security for V (S, t −Δt) = Gv(S, t −Δt).
After the derivative security is sold, using the money obtained, the seller buys
∂V

∂S
shares and deposits the remains V − ∂V

∂S
S into a money market account.1

Because V (S, t−Δt) = Gv(S, t−Δt), we will have

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]

V

=

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]

Gv < 0,

i.e.,

∂V

∂S
dS +

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)

dt <
∂V

∂S
dS −

[

(r −D0)S
∂V

∂S
− rV

]

dt

= r

(

V − ∂V

∂S
S

)

dt+
∂V

∂S
(dS +D0Sdt).

This means that the return from the derivative security during a time step dt,

∂V

∂S
dS +

(
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2

)

dt,

will be less than the return from the money market account with a value of

V − ∂V

∂S
S and

∂V

∂S
shares,

r

(

V − ∂V

∂S
S

)

dt+
∂V

∂S
(dS +D0Sdt).

Thus the amount of money the seller obtains from the money market account
and shares is more than the change of the derivative value, which means the
seller will earn money. Hence the seller can accept this price.

1If V − ∂V

∂S
S < 0, the seller indeed borrows −

(

V − ∂V

∂S
S

)

, the money needed

to buy
∂V

∂S
shares, from somewhere.
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3.1.2 Some Properties of American Style Derivatives

Consider a European style derivative and an American style derivative with
identical payoffs and identical operators. Let V (S, t), v(S, t) denote the prices
of the American and European style derivatives, respectively, let Gv(S, t) be
the constraint for the American style derivative, and the operator for the two
derivatives is

∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

S0 E

P

Location of Free Boundary

where ∂P
∂S

is continuous

American Put

European Put

Intrinsic value

Fig. 3.1. The price of an American put option before expiry

with constant σ, r, and D0. Using the results we have obtained, we can prove
that the price of the European style derivative is never higher than the price
of the American style derivative, i.e., V (S, t) ≥ v(S, t) holds. Let us prove this
conclusion. Suppose that

V (S, T ) = v(S, T ) = Gv(S, T ).

Set Δt = T/N , N being a positive integer and define tn = nΔt, n = N,N −
1, · · · , 0. For the European style derivative, from the formula (2.84) we have
the relation between v(S, tn) and v(S, tn+1)

v(S, tn) = e−rΔt
∫ ∞

0

v(S′, tn+1)G(S
′, tn+1;S, tn)dS

′

for n = N − 1, N − 2, · · · , 0. Let

Ṽ (S, tN) = Gv(S, T )
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and for n = N − 1, N − 2, · · · , 0, define

Ṽ (S, tn) = max

(

e−rΔt
∫ ∞

0

Ṽ (S′, tn+1)G(S
′, tn+1;S, tn)dS

′, Gv(S, tn)
)

,

(3.3)

where G(S′, tn+1;S, tn) is given by the formula (2.85). Suppose Ṽ (S, tn+1) ≥
v(S, tn+1), then we know

v(S, tn) = e−rΔt
∫ ∞

0

v(S′, tn+1)G(S
′, tn+1;S, tn)dS

′

≤ e−rΔt
∫ ∞

0

Ṽ (S′, tn+1)G(S
′, tn+1;S, tn)dS

′

≤ Ṽ (S, tn).

At t = tN = T , the condition

Ṽ (S, tN) = Gv(S, T ) ≥ v(S, T ) = Gv(S, T )

holds. Therefore, using the induction method, we can prove Ṽ (S, tn) ≥ v(S, tn)
for n = N − 1, N − 2, · · · , 0 successively. Letting N → ∞ and noticing that

Ṽ

(

S, int

(
tN

T

)

· T
N

)

generates V (S, t) as N → ∞, where int

(
tN

T

)

is the

integer part of
tN

T
, we can have the conclusion:

V (S, t) ≥ v(S, t) for any S and t.

The put and call options are such type of derivatives. Thus C(S, t) ≥ c(S, t)
and P (S, t) ≥ p(S, t). This result has the following financial meaning. Because
an American option can be exercised at any time by expiry, a holder of an
American option has more rights than does a holder of a European option.
Thus, the holder of an American option needs to pay at least as much premium
as does the holder of a European option with the same parameters. Figure 3.1
shows this fact and other related facts for put options. From the figure, we
can see that the price of America put option is always greater than the price
of European put option and the intrinsic value, but the price of the European
put option is greater than the intrinsic value for some S and less than the
intrinsic value for other S. It can also be proved that the price of a Bermudan
option should be between these of European and American options and the
financial meaning can be expressed as follows. The Bermudan option can be
exercised at several predetermined dates including the expiration date, its
holder has less rights than does the holder of an American option and more
rights than does the holder of a European option. Thus, its premium should
be between the premiums of the American and European options with the
same parameters.
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The price of an American style derivative has another property: V (S, t∗) ≥
V (S, t∗∗) for t∗ ≤ t∗∗ if Gv(S, t) = Gv(S) or, more generally, the condition
Gv(S, t

∗) ≥ Gv(S, t
∗∗) for t∗ ≤ t∗∗ holds. Let us explain this fact by using

mathematical tools. Suppose Ṽ (S, tn) ≥ Ṽ (S, tn+1). According to the defini-
tion of Ṽ (S, tn), we have

Fig. 3.2. P (S, t−Δt) ≥ P (S, t) for any positive Δt

Ṽ (S, tn) = max

(

e−rΔt
∫ ∞

0

Ṽ (S′, tn+1)G(S
′, tn+1;S, tn)dS

′, Gv(S, tn)
)

≤ max

(

e−rΔt
∫ ∞

0

Ṽ (S′, tn)G(S′, tn;S, tn−1)dS
′, Gv(S, tn−1)

)

= Ṽ (S, tn−1).

Here we have used the facts

G(S′, tn+1;S, tn) = G(S′, tn;S, tn−1)

and
Gv(S, tn) ≤ Gv(S, tn−1).

Because

Ṽ (S, tN−1) = max

(

e−rΔt
∫ ∞

0

Ṽ (S′, tN)G(S′, tN ;S, tN−1)dS
′, Gv(S, tN−1)

)

≥ Gv(S, tN−1) ≥ Gv(S, tN) = Ṽ (S, tN),

we can prove

Ṽ (S, tn) ≥ Ṽ (S, tn+1) for n = N − 2, N − 3, · · · , 0
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successively. This means

Ṽ (S, tn) ≥ Ṽ (S, tm) for n ≤ m ≤ N.

Letting N → ∞ and noticing that Ṽ (S, t) generates V (S, t) as N → ∞, we
arrive at the conclusion

V (S, t∗) ≥ V (S, t∗∗) if t∗ ≤ t∗∗.

For the American call/put option, Gv(S, t) = Gv(S), so we have C(S, t∗) ≥
C(S, t∗∗) and P (S, t∗) ≥ P (S, t∗∗) if t∗ ≤ t∗∗. Figure 3.2 shows this fact
graphically for an American put option. From the point of financial view,
when t∗ < t∗∗, a holder of an American call/put option at time t∗ has more
rights than does a holder at time t∗∗, so the premium of the option at time t∗

should be higher than the premium of the option at time t∗∗.
As we have pointed out, C(S, t) ≥ max(S −E, 0) and P (S, t) ≥ max(E −

S, 0), which means that C(S, t)−max(S −E, 0) and P (S, t)−max(E − S, 0)
must be nonnegative. Because these two functions are usually called the time
values of the American call and put options, respectively, this fact can be
expressed as that the time values must be nonnegative. Using the result
here V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗, we can have another conclusion: the
time values C(S, t) − max(S − E, 0) and P (S, t) − max(E − S, 0) are non-
increasing functions in time because

V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗

is equivalent to

V (S, t∗)−Gv(S) ≥ V (S, t∗∗)−Gv(S) for t∗ ≤ t∗∗.

However not all American style derivatives have such a property. Here we
give an example. Consider the following derivative security. It is a bond with
a face value Z and it can be converted into n shares at any time. We assume
that the price of the stock is a random variable, the interest rate is a constant
and the bond pays no coupon. This problem is referred to as the problem
of one-factor convertible bond paying no coupon. Let Bc(S, t) stand for its
value. It is clear that Bc(S, T ) = max(Z, nS), Bc(S, t) ≥ nS for t < T ,
and the basic PDE for this problem is the Black-Scholes equation. Thus this
derivative security problem is close to the American option problem and its
some properties can be studied by using a similar way given in this subsection.
For example, using the method given here, it can be shown that

Bc(S, t
∗)− Ze−r(T−t∗) ≥ Bc(S, t

∗∗)− Ze−r(T−t∗∗) if t∗ ≤ t∗∗

holds and
Bc(S, t

∗) ≥ Bc(S, t
∗∗) if t∗ ≤ t∗∗

does not hold at least for S = 0. These results are left for readers to prove as
Problem 6. Here we give an explanation for such results. The final condition
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Bc(S, T ) = max(Z, nS) can be rewritten as Bc(S, T ) = Z +max(nS − Z, 0),
so it consists of two problems, one is a bond problem with a solution of
Ze−r(T−t) and the other is a special American call problem with a payoff of
max(nS − Z, 0) and a constraint nS − Ze−r(T−t). For this special American
call option, the price is a non-increasing function like the American option.
However for the bond problem, the price is an increasing function. Thus the
total is not a non-increasing function. Consequently, even the holder of this
American derivative at t∗ has “more rights” than does the holder at t∗∗ if t∗ ≤
t∗∗, but the price at t∗ is not always greater than or equal to the price at t∗∗.

3.2 American Options Problems as Linear
Complementarity Problems

3.2.1 Formulation of the Linear Complementarity Problem
in (S, t)-Plane

From Sect. 3.1.1, we know that the price of an American option usually is
not a solution of the problem (2.73) anymore because usually in some regions
the solution satisfies the PDE and in other regions it is not determined by
the PDE. For American option problems, the price is given by a solution of a
so-called linear complementarity (LC) problem.

Now let us formulate the LC problem the price of an American option
should satisfy. Let us take an American put option as an example. Assume that
at time t we have obtained P (S, t) satisfying (3.2) and we need to determine
P (S, t−Δt) satisfying (3.2), where Δt is a sufficiently small positive number.
Define Gp(S, t) = max(E − S, 0). For simplicity, we assume that the entire
interval consists of three open intervals plus their boundaries. On the first
open interval, P (S, t) > Gp(S, t). For any point in this interval, we can use
the Black–Scholes equation to determine P (S, t−Δt) and P (S, t−Δt) must
be still greater than Gp(S, t − Δt) if Δt is small enough. Therefore, at any
point in this open interval

⎧
⎪⎨

⎪⎩

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP = 0,

P (S, t) > Gp(S, t).

On the second open interval P (S, t) = Gp(S, t) and

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]

Gp(S, t) ≥ 0

and on the third open interval P (S, t) = Gp(S, t) and

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]

Gp(S, t) < 0.
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According to Theorem 3.1, for a point (S, t) in the second open interval the
Black–Scholes equation can be used to determine P (S, t−Δt) and the following
is true: ⎧

⎪⎨

⎪⎩

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP = 0,

P (S, t) = Gp(S, t).

On the third interval, the Black–Scholes equation cannot be used to determine
P (S, t−Δt). Instead, P (S, t−Δt) should equal Gp(S, t−Δt). In this situation

P (S, t)− P (S, t−Δt)

Δt
=
Gp(S, t)−Gp(S, t−Δt)

Δt
→ ∂Gp(S, t)

∂t

as Δt→ 0 and we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]

P

=

[
∂

∂t
+

1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

]

Gp(S, t) < 0,

P (S, t) = Gp(S, t).

Because P (S, T ) = Gp(S, T ), we can use this argument from T to 0. Putting
all the cases together, for S ∈ [0,∞) and t ≤ T we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP

]

(P −Gp) = 0,

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP ≤ 0,

P (S, t)−Gp(S, t) ≥ 0,

P (S, T ) = Gp(S, T ),

where Gp(S, t) = max(E − S, 0). Here, we use the fact that these relations in
the formulation are also true in some sense at the boundary points of these
open intervals because these relations are true on the two sides of a boundary
point. It is clear that the formulation above can also be written in the following
short form:

⎧
⎪⎨

⎪⎩

min

(

−∂P
∂t

− LSP, P (S, t)−Gp(S, t)

)

= 0, 0 ≤ S, t ≤ T,

P (S, T ) = Gp(S, T ), 0 ≤ S,

(3.4)

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r
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and
Gp(S, t) = max(E − S, 0).

This problem is called the linear complementarity problem for an American
put option. In order to determine the price of an American put option, we
need to solve this problem.

Similarly, for an American call option, the corresponding linear comple-
mentarity problem is

⎧
⎪⎨

⎪⎩

min

(

−∂C
∂t

− LSC, C(S, t)−Gc(S, t)

)

= 0, 0 ≤ S, t ≤ T,

C(S, T ) = Gc(S, T ), 0 ≤ S,

(3.5)

where Gc(S, t) = max(S − E, 0). From the derivation of the problem (3.4),
we can see that the formulations are still correct when σ, r,D0 depend on S
and t.

3.2.2 Formulation of the Linear Complementarity Problem
in (x, τ̄ )-Plane

As we know from Sect. 2.6.1, if we set
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = lnS +

(

r −D0 −
1

2
σ2

)

(T − t),

τ̄ =
1

2
σ2(T − t),

V (S, t) = e−r(T−t)u(x, τ̄),

then
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV

becomes

−1

2
σ2e−r(T−t)

(
∂u

∂τ̄
− ∂2u

∂x2

)

.

Thus,
∂P

∂t
+

1

2
σ2S2 ∂P

∂S2
+ (r −D0)S

∂P

∂S
− rP < 0

is equivalent to

∂u

∂τ̄
− ∂2u

∂x2
> 0

and the Black–Scholes equation holds if and only if

∂u

∂τ̄
− ∂2u

∂x2
= 0.
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Let us define

gp(x, τ̄) = max
(
e2rτ̄/σ

2 − ex+(2D0/σ
2+1)τ̄ , 0

)
,

then

P −Gp = P (S, t)−max(1− S, 0)

= e−r(T−t)u(x, τ̄)−max
(
1− ex−(r−D0−σ2/2)(T−t), 0

)

= e−r(T−t)
[
u(x, τ̄)−max

(
er(T−t) − ex+(D0+σ

2/2)(T−t), 0
)]

= e−r(T−t)[u(x, τ̄)− gp(x, τ̄)],

where we suppose E = 1 for simplicity. Thus, P −Gp > 0 is equivalent to

u(x, τ̄)− gp(x, τ̄) > 0

and P −Gp = 0 if and only if

u(x, τ̄)− gp(x, τ̄) = 0.

Therefore, the American put option is the solution of the following problem:
⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− gp(x, τ̄)

)

= 0, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = gp(x, 0), −∞ < x <∞.

(3.6)

Similarly, for American call options we have
⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− gc(x, τ̄)

)

= 0, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = gc(x, 0), −∞ < x <∞,

(3.7)

where
gc(x, τ̄) = max

(
ex+(2D0/σ

2+1)τ̄ − e2rτ̄/σ
2

, 0
)
.

The derivation of the problem (3.7) is almost identical to the American put.
The only difference is that instead of using P−Gp = e−r(T−t) [u(x, τ̄)− gp(x, τ̄)],
we need to use the relation

C −Gc = C(S, t)−max(S − 1, 0)

= e−r(T−t)u(x, τ̄)−max
(
ex−(r−D0−σ2/2)(T−t) − 1, 0

)

= e−r(T−t)
[
u(x, τ̄)−max

(
ex+(D0+σ

2/2)(T−t) − er(T−t), 0
)]

= e−r(T−t) [u(x, τ̄)− gc(x, τ̄)] ,

where we also assume E = 1.
It is clear that if r,D0, and σ depend on t, then similar results hold.

However, if σ depends on S, then we may not be able to convert the prob-
lems(3.4) and (3.5) into (3.6) and (3.7) by a simple transformation.
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3.2.3 Formulation of the Linear Complementarity Problem
on a Finite Domain

Generally speaking, r, D0, and σ are not constants. For simplicity, we assume
that σ depends on S in this subsection even though the derivation is almost
the same when r, D0, and σ all depend on S and t.

From Sect. (2.2.5), we know that through the transformation
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + E
,

τ = T − t,

V (S, t) = (S + E)V (ξ, τ) =
E

1− ξ
V (ξ, τ),

the operator
∂

∂t
+

1

2
σ2(S)S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

is converted into

−E
1− ξ

{
∂

∂τ
− 1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
− (r −D0)ξ(1− ξ)

∂

∂ξ
+ [r(1− ξ) +D0ξ]

}

,

where σ̄(ξ) = σ(Eξ/(1− ξ)), and the function max(±(S − E), 0) becomes

E

1− ξ
max(±(2ξ − 1), 0).

Therefore, problem (3.4) can be rewritten as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
∂V

∂τ
− LξV , V (ξ, τ)−max(1− 2ξ, 0)

)

= 0, 0 ≤ ξ ≤ 1,

0 ≤ τ,

V (ξ, 0) = max(1− 2ξ, 0), 0 ≤ ξ ≤ 1,

(3.8)

where

Lξ =
1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
+ (r −D0)ξ(1− ξ)

∂

∂ξ
− [r(1− ξ) +D0ξ].

This is the American put option problem reformulated as a linear complemen-
tarity problem on a finite domain. Similarly, from the problem (3.5) we know
that the American call option problem can be reformulated as the following
linear complementarity problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
∂V

∂τ
− LξV , V (ξ, τ)−max(2ξ − 1, 0)

)

= 0, 0 ≤ ξ ≤ 1,

0 ≤ τ,

V (ξ, 0) = max(2ξ − 1, 0), 0 ≤ ξ ≤ 1.

(3.9)
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In this section, an American option is reduced to a linear complementarity
problem. Such a problem usually needs to be solved numerically. Here, we need
to point out that the version given in Sect. 3.2.2 can be applied only if σ does
not depend on S and that the other two versions can be applied for any case.
However, the version given in Sect. 3.2.2 has the simplest equation. Also, if an
implicit scheme is used, then for the versions given in Sects. 3.2.1 and 3.2.2,
artificial boundary conditions are needed at the boundaries because numerical
methods have to be performed on a finite domain. However, the version given
in this subsection does not have such a problem.

3.2.4 More General Form of the Linear Complementarity
Problems

From the three previous subsections, we see that a linear complementarity
problem could be in the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(

−∂V (S, t)

∂t
− LS,tV (S, t), V (S, t)−Gv(S, t)

)

= 0,

Sl ≤ S ≤ Su, t ≤ T,

V (S, T ) = Gv(S, T ), Sl ≤ S ≤ Su,

where2

LS,t = a(S, t)
∂2

∂S2
+ b(S, t)

∂

∂S
+ c(S, t).

However, a linear complementarity problem could have a more general form
such as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(

−∂V (S, t)

∂t
− LS,tV (S, t)− d(S, t), V (S, t)−Gv(S, t)

)

= 0,

Sl ≤ S ≤ Su, t ≤ T,

V (S, T ) = G1(S) ≥ Gv(S, T ), Sl ≤ S ≤ Su.
(3.10)

In this problem there are two new features. There is a new function d(S, t)
called the nonhomogeneous term of the problem and the payoff G1(S) is not
equal to Gv(S, T ). The linear complementarity problem for one-factor convert-
ible bonds has such a form. For two-factor convertible bonds, the form of the
linear complementarity problem is similar, but the operator LS,t is replaced
by a two-dimensional one (see Chap. 5).

From what we have done in this section, we know the following. Consider
a European style derivative and an American style derivative with identi-
cal payoffs G1(S), identical operators, and identical nonhomogeneous terms.

2If Sl = −∞, then the first “≤” needs to be changed into “<,” and if Su = ∞,
then the second “≤” needs to be changed into “<.” In what follows, the same
notation is used.
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Suppose that the American style derivative has a constraint Gv(S, t) satisfying
Gv(S, T ) ≤ G1(S). If the price of the European style derivative is the solution
of the PDE problem

⎧
⎨

⎩

∂v(S, t)

∂t
+ LS,tv(S, t) + d(S, t) = 0, Sl ≤ S ≤ Su, t ≤ T,

v(S, T ) = G1(S) Sl ≤ S ≤ Su,

then the price of the American style derivative with a constraint Gv(S, t)
satisfying Gv(S, T ) ≤ G1(S) is the solution of LC problem (3.10).

3.3 American Option Problems as Free-Boundary
Problems

3.3.1 Free Boundaries

From the past two sections, we discovered that there are some regions where
the Black–Scholes equation cannot be used. Therefore, there exist two different
types of regions: one where the Black–Scholes equation is valid, and the other
where the Black–Scholes equation cannot be used and the solution is equal to
the constraint. Because we do not know a priori the location of the boundaries
between the two types of different regions, these boundaries are called free
boundaries. Because in some regions the solution is known, we only need to
determine the price in other regions and the locations of these free boundaries.
In order to do that, we reformulate the American option problems as so-called
free-boundary problems (FBPs).

Let us first discuss how to find the locations of the free boundaries at
time T . Using Theorem 3.1, we can easily determine the locations of free
boundaries at time T , namely, the starting points of free boundaries. We will
show that for an American put option with r > 0, there is a free boundary
starting from the point (min(E, rE/D0), T ) on the (S, t)-plane. If r = 0, then
there is no free boundary. This implies that the Black–Scholes equation is valid
everywhere and that the prices of the American and European put options are
the same if r = 0. For an American call option, the situation is similar. IfD0 >
0, then there is a free boundary starting from the point (max(E, rE/D0), T )
on the (S, t)-plane. If D0 = 0, then there is no free boundary, implying that
an American call option is the same as a European call option.

First, let us consider an American put option and let P (S, t) denote its
value as we did in Sect. 3.1.1. In this case

Gp(S, t) = max(E − S, 0) =

⎧
⎨

⎩

E − S, for S < E,

0, for S ≥ E
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and the operator LS,t in this case does not depend on t and is equal to

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

For S ∈ (E,∞), we have Gp(S, t) = 0 and

∂Gp
∂t

(S, T ) + LSGp(S, T ) = 0,

which means that the PDE can be used on (E,∞). For S ∈ (0, E), we have
Gp(S, t) = E − S and

∂Gp
∂t

(S, T ) + LSGp(S, T )

=
1

2
σ2S2 ∂

2Gp
∂S2

+ (r −D0)S
∂Gp
∂S

− rGp

=
1

2
σ2S2 ∂2

∂S2
(E − S) + (r −D0)S

∂

∂S
(E − S)− r(E − S)

= D0S − rE.

The root of the equation D0S − rE = 0 is S∗ = rE/D0. If E > rE/D0, then
there are two situations: S ∈ (0, rE/D0) and S ∈ (rE/D0, E). On (0, rE/D0)

∂Gp
∂t

(S, T ) + LSGp(S, T ) = D0S − rE < 0

and on (rE/D0, E)

∂Gp
∂t

(S, T ) + LSGp(S, T ) = D0S − rE > 0.

Thus in this case, the entire S-axis is divided into two parts: (0, rE/D0) where
the Black–Scholes equation cannot be used and (rE/D0,∞) where the Black–
Scholes equation gives the price of the American put option. Consequently,
if E > rE/D0, there is only one free boundary at time T when r > 0 and
the location of the free boundary is S = rE/D0. If E < rE/D0, then on the
entire interval (0, E)

∂Gp
∂t

(S, T ) + LSGp(S, T ) = D0S − rE < 0.

Thus in this case, the entire S-axis is divided into two parts: (0, E) where
the Black–Scholes equation cannot be used and (E,∞) where the Black–
Scholes equation gives the price of the American put option. Consequently,
if E < rE/D0, then there is also only one free boundary at time T when
r > 0 and the location of the free boundary is S = E. Put them together,
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we have that there is only one free boundary at time T when r > 0 and the
location of the free boundary is S = min(E, rE/D0). Let Sf (t) denote this
free boundary. Because it starts from the point (min(E, rE/D0), T ), we have

Sf (T ) = min

(

E,
rE

D0

)

. (3.11)

If r = 0, then min(E, rE/D0) = 0, so in the entire interval (0,∞), the Black–
Scholes equation can be used, and there is no free boundary.

Now let us explain that in the case r > 0, no new free boundary can appear
at any time t < T , so Sf (t) is the only free boundary in this problem, and
that Sf (t) is not a constant, but an increasing function in t (see Fig. 3.3). First
let us explain this when t is discrete. Similarly to what we did in Sect. 3.1.2,
set Δt = T/N and tn = nΔt, n = 0, 1, · · · , N,N being a large integer, let
P̃ (S, tN) = Gp(S) and S̃f (tN) = Sf (T ), and for n = N − 1, N − 2, · · · , 0,
successively, define P̃ (S, tn) by

P̃ (S, tn) = max (p̃(S, tn), Gp(S)) ,

where

p̃(S, tn) = e−rΔt
∫ ∞

0

P̃ (S′, tn+1)G(S
′, tn+1;S, tn)dS

′.

At S = 0, Gp(0) = E > p̃(0, tn) = e−rΔtE and at S = S∗ ≈ ∞, Gp(S
∗) = 0

and p̃(S∗, tn) > 0, the two continuous curves p̃(S, tn) and Gp(S) must have
at least one intersection point and let us denote the location of the intersec-
tion point with the largest S value by S̃(tn). Thus for any S ∈ (S̃(tn),∞),
P̃ (S, tn) = p̃(S, tn). If S ∈ (E,∞), for P̃ (S, tN−1) we have

P̃ (S, tN−1) = max (p̃(S, tN−1), Gp(S))

= max (p̃(S, tN−1),max(E − S, 0))

= p̃(S, tN−1)

= e−rΔt
∫ ∞

0

max(E − S′, 0)G(S′, tN ;S, tN−1)dS
′ > 0.

Thus for the case Sf (tN) = E, then P̃ (S, tN−1) > Gp(S) = max(E − S, 0) = 0
for S ∈ (E,∞); for the case Sf (tN) = rE/D0, for any point in (rE/D0, E),

∂Gp(S)

∂t
+ LSGp(S) = D0S − rE > 0,

so P̃ (S, tN−1) > Gp(S) also holds for S ∈ (rE/D0, E). Consequently, put

them together, we have that for any S ∈ (Sf (tN),∞), P̃ (S, tN−1) > Gp(S),

from which we know P̃ (Sf (tN), tN−1) > Gp(Sf (tN)) holds also. Thus we have

S̃f (tN−1) < S̃f (tN) and P̃ (S, tN−1) > Gp(S) on (S̃f (tN−1), S̃f (tN)).
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Now let us assume that for certain n we have P̃ (S, tn+1) > P̃ (S, tn+2)
for S ∈ (S̃f (tn+1),∞), and show P̃ (S, tn) > P̃ (S, tn+1) on (S̃f (tn),∞) and

S̃f (tn) < S̃f (tn+1). In order to show this result, we only need to show
p̃(S, tn) > p̃(S, tn+1) for S ∈ (0,∞). This is easy to see: for S ∈ (0,∞)

p̃(S, tn) = e−rΔt
∫ ∞

0

P̃ (S′, tn+1)G(S
′, tn+1;S, tn)dS

′

> e−rΔt
∫ ∞

0

P̃ (S′, tn+2)G(S
′, tn+2;S, tn+1)dS

′

= p̃(S, tn+1) (3.12)

because from Sect. 3.1.2 we have P̃ (S, tn+1) ≥ P̃ (S, tn+2) for any S ∈ (0,∞)
and it is given that P̃ (S, tn+1) > P̃ (S, tn+2) on (S̃f (tn+1),∞). Here we
also have used the fact that G(S′, tn+1;S, tn) = G(S′, tn+2;S, tn+1) > 0 for
S ∈ (0,∞) and S′ ∈ (0,∞). From the relation (3.12) we know P̃ (S, tn) >
P̃ (S, tn+1) on (S̃f (tn+1),∞) because on this interval P̃ (S, tn) = p̃(S, tn) and

P̃ (S, tn+1) = p̃(S, tn+1), which means that we can have S̃f (tn) < S̃f (tn+1).

From the definition of S̃f (tn), we further know P̃ (S, tn) > P̃ (S, tn+1) on

(S̃f (tn), S̃f (tn+1)). For n = N − 1, we already have P̃ (S, tN−1) > Gp(S) =

P̃ (S, tN) for S ∈ (Sf (tN),∞). Thus this procedure can be done for n =
N − 2, N − 3, · · · , 0, successively.

On (0, Sf (tN)), P̃ (S, tN) = Gp(S) and the following inequality

∂Gp
∂t

+
1

2
σ2S2 ∂

2Gp
∂S2

+ (r −D0)S
∂Gp
∂S

− rGp < 0

holds, which means that p̃(S, tN−1) < Gp(S) on that interval if Δt is
small enough. Therefore the inequality p̃(S, tN−1) < Gp(S) must hold on

(0, S̃f (tN−1)) at least for a very small Δt. Consequently, no more intersec-
tion points exist. This procedure can also be done for n = N−2, N−3, · · · , 0,
successively. Consequently no new free boundary will appear during the entire
procedure if Δt is small enough. Let N → ∞, we will have the conclusion we
need to explain.

Consequently, if r > 0, then there is a unique free boundary, and the
entire domain is divided into two regions by the free boundary (see Fig. 3.3):
one region is [0, Sf (t))× [0, T ], where

⎧
⎪⎨

⎪⎩

P = max(E − S, 0) = E − S,

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP < 0

and the other is (Sf (t), ∞)× [0, T ], where
⎧
⎪⎨

⎪⎩

P > max(E − S, 0),

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP = 0
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Fig. 3.3. Structure of solution to American put options (r > 0)

if t < T . Also if at a point (S, t), P (S, t) > max(E−S, 0), then P (S, t−Δt) >
P (S, t) for any positive Δt, and the location of the free boundary has the
following property (see Fig. 3.2):

Sf (t) > Sf (t−Δt), Δt > 0,

implying that Sf (t) is an increasing function of t (see Fig. 3.3).
Before going further, we would like to give some remarks.

• What is the meaning of the inequality

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP < 0?

As pointed out in Sect. 3.1.1, this means that holding the money market

account with a value of P − ∂P

∂S
S and

∂P

∂S
shares will be better than

holding the option. In this case exercising the option and holding a money

market account with a value of P − ∂P

∂S
S and

∂P

∂S
shares will have better

return than holding the option. Therefore the option should be exercised.
If P (S, t) > max(E − S, 0), one should hold the option, as one should not
give up a higher value (the option) for a lower value (the intrinsic value).
Therefore, the free boundary is the optimal exercise price that divides the
exercise region and the non-exercise region.

• Let Dge denote the open domain where
∂Gv
∂t

(S, t) + LS,tGv(S, t) ≥ 0

and Dl the open domain where
∂Gv
∂t

(S, t) + LS,tGv(S, t) < 0. For the

put option case, Gv(S, t) = max(E − S, 0) and the open domain Dge is
(min(E, rE/D0),∞) × [0, T ] and Dl is (0,min(E, rE/D0)) × [0, T ]. In a
neighborhood of a point in the open domain Dge, if V (S, t) > Gv(S, t), then
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the PDE can be used because we can let a positive Δt be small enough to
guarantee V (S, t −Δt) > Gv(S, t −Δt), and if V (S, T ) = Gv(S, T ), then

the PDE can also be used because
∂Gv
∂t

(S, t) + LS,tGv(S, t) ≥ 0. Thus

a point on a free boundary cannot appear in the open domain Dge. In
a neighborhood of a point in the open domain Dl, if V (S, t) > Gv(S, t),
then the PDE can be used, and if V (S, T ) = Gv(S, T ), then the PDE

cannot be used because
∂Gv
∂t

(S, t) + LS,tGv(S, t) < 0. Thus a point on a

free boundary may appear in the open domain Dl.
• From theorem 3.1, we can find that there are two types of points on free

boundaries. The first type of points is: in a neighborhood of the point,
V (S, t) = Gv(S, t) and some portion of the neighborhood belongs to Dge

and another portion of the neighborhood belongs to Dl. The second type of
points is: in some portion of a neighborhood of the point, V (S, t) > Gv(S, t)
and in another portion of the neighborhood, V (S, t) = Gv(S, t) and this
portion belongs to Dl. Thus a free boundary will appear only in the open
domain Dl and on the boundary between the open domains Dge and Dl. If
V (S, T ) = Gv(S, T ), then a free boundary will start at a point between the
open domains Dge and Dl. For example, the free boundary of an American
put option starts at such a point. If V (S, T ) > Gv(S, T ) on some portion
of the entire domain and V (S, T ) = Gv(S, T ) on another portion, then a
free boundary might also start at a boundary between an open interval
belonging to Dl and an open interval where V (S, T ) > Gv(S, T ). As we
will see in Sect. 5.7, the free boundary of a one-factor convertible bond
can start from a point of the first type of points or a point of the second
type of points. Later, a free boundary may move but never move into the
open domain Dge.

Now let us consider an American call option. From Sect. 2.2.5 we know, at
very large S, the solution of the Black–Scholes equation with final condition
V (S, t) = max(S − E, 0) has the following asymptotic expression

V (S, t) ≈ V (S, T )e−D0(T−t) = max(S − E, 0)e−D0(T−t),

so if D0 > 0, then V (S, t) < max(S−E, 0) for any t < T . Therefore, if D0 > 0,
the American call problem is a free-boundary problem. Now let us show that
the free-boundary problem has only one free boundary, which is also denoted
by Sf (t) in what follows, and determine the location of the free boundary at
t = T from the constraint condition C(S, t) ≥ Gc(S, t).

In the case of an American call option,

Gc(S, t) = max(S − E, 0) =

⎧
⎨

⎩

S − E, S > E,

0, S ≤ E.
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Let S > max
(
E, rED0

)
. In this case

Gc(S, t) = S − E

and

∂Gc
∂t

(S, T ) + LSGc(S, T )

=
1

2
σ2S2 ∂

2Gc
∂S2

+ (r −D0)S
∂Gc
∂S

− rGc

=
1

2
σ2S2 ∂

2(S − E)

∂S2
+ (r −D0)S

∂(S − E)

∂S
− r(S − E)

= rS −D0S − rS + rE = −D0S + rE < 0

because S > rE
D0

. Therefore, the Black–Scholes equation cannot hold in this

case, and C(S, T−Δt) should be equal to S−E for S > max
(
E, rED0

)
. Just like

the case of the American put option, we can know that for S < max
(
E, rED0

)
,

the Black–Scholes equation can hold. Thus, a free boundary starts at S =

max
(
E, rED0

)
, i.e.,

Sf (T ) = max

(

E,
rE

D0

)

. (3.13)

Fig. 3.4. Structure of solution to American call options (D0 > 0)

Using the same argument we have used for an American put option, we
can show that the free boundary starting from the point (max(E, rE/D0), T )
is the only free boundary because no new free boundary can appear at time
t < T . Just like the put case, the entire domain is divided into two parts by the
free boundary. However, the situation is a little different from the American
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put. Here in the region [0, Sf (t)) × [0, T ], the Black–Scholes equation holds,
whereas in the region (Sf (t),∞) × [0, T ], the Black–Scholes equation cannot
be used. In other words, for S ∈ [0, Sf (t)) and t < T ,

⎧
⎪⎨

⎪⎩

C(S, t) ≥ max(S − E, 0),

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC = 0,

where the equal sign in C(S, t) ≥ max(S−E, 0) holds only at S = 0; whereas
for S ∈ (Sf (t),∞),

⎧
⎪⎨

⎪⎩

C(S, t) = max(S − E, 0) = S − E,

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC < 0

and the option should be exercised. It can also be shown that for an American
call option, the free boundary Sf (t) is a decreasing function of t, as graphed
in Fig. 3.4, and that the price of an American call option is the same as a
European call if D0 = 0.

3.3.2 Free-Boundary Problems

In this subsection, we will describe the formulation of American option prob-
lems as free-boundary problems. In order to give a complete formulation, we
need to give the conditions on the free boundary. For an initial-boundary
value problem of a parabolic equation on a finite interval, if the locations of
the boundaries are given and if the coefficient of the second derivative at the
boundaries is not equal to zero, one boundary condition at each boundary
is needed in order for the problem to have a unique solution. However, the
location of the free boundary is unknown, so two conditions are needed at
the free boundary in order for the problem to have a unique solution. One
boundary condition determines the option value on the free boundary and
the other boundary condition determines the location of the free boundary.
Now the question is what the two conditions should be. For some other linear
complementarity problems, it has been proved that on the free boundary the
value and the first derivative are continuous (see [31]). For this problem, from
the proof given by Badea and Wang (see [4] and [5]), the situation is still the
same. Therefore, the two conditions on the free boundary are: both the value
and the derivative with respect to S are continuous.

For an American put option, in the region [0, Sf (t)),

P (S, t) = E − S
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and
∂P

∂S
= −1.

Therefore, the boundary conditions on the free boundary Sf (t) are

P (Sf (t), t) = E − Sf (t) (3.14)

and
∂P

∂S
(Sf (t), t) = −1. (3.15)

It is clear that when the boundary condition (3.15) holds, the gradient
∂P

∂S
must be continuous at S = Sf , which is shown in Fig. 3.1.

Now we can formulate the American put option problem. On the domain
[0, Sf (t))× [0, T ],

P (S, t) = E − S,

while on the domain [Sf (t),∞) × [0, T ], P (S, t) is the solution of the free-
boundary problem3 for American put options

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP = 0,

Sf (t) ≤ S, 0 ≤ t ≤ T,

P (S, T ) = max(E − S, 0), Sf (T ) ≤ S,

P (Sf (t), t) = E − Sf (t), t ≤ T,

∂P (Sf (t), t)

∂S
= −1, t ≤ T,

Sf (T ) = min

(

E,
rE

D0

)

.

(3.16)

Similarly, for call options we need two boundary conditions on the free
boundary. One is

C(Sf (t), t) = Sf (t)− E (3.17)

and the other still can be obtained by requiring the continuity of the slope of
the solution at S = Sf (t). In this case, the condition is

∂C(Sf (t), t)

∂S
= 1. (3.18)

3In this book we call this problem and the like a free-boundary problem. An LC
problem usually involves free boundaries. Thus it is not strange that some people
call an LC problem a free-boundary problem.
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Fig. 3.5. Numerically calculated solution of an American call problem
with E = 100, r = 0.1, D0 = 0.05, σ = 0.2, and T = 1 year

Therefore for the American call option, the formulation is as follows. On
the domain [0, Sf (t)] × [0, T ], C(S, t) is the solution of the free-boundary
problem for American call options

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC = 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

C(S, T ) = max(S − E, 0), 0 ≤ S ≤ Sf (T ),

C(Sf (t), t) = Sf (t)− E, 0 ≤ t ≤ T,

∂C

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T,

Sf (T ) = max

(

E,
rE

D0

)

;

(3.19)

whereas on the domain (Sf (t),∞) × [0, T ], C(S, t) = S − E. In Fig. 3.5, the
value of an American call option is plotted, from which we can see that the
two parts of solution are connected smoothly. The parameters of the problem
are E = 100, r = 0.1, D0 = 0.05, σ = 0.2, and T = 1year.

Here we need to point out that Sf (T ) is determined by the partial differen-
tial operator and the final condition. Therefore, in a free-boundary problem,
the starting location of the free boundary is not arbitrary and should be con-
sistent with the partial differential operator and the final condition.

As has been pointed, there are two formulations for American option prob-
lems. It is clear that the solutions obtained from the two formulations should
be the same. In this book, we will not carefully study this problem. However
in Sect. 3.3.5 for the perpetual American call option, we will prove that the
solution obtained by solving the free-boundary problem is the solution of the
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LC problem. Here we just show the following. For the American put prob-
lem, if the solution of the problem (3.16) satisfies the conditions P (S, t) ≥ 0

and
∂P 2 (S, t)

∂S2
≥ 0 for Sf (t) < S, then the solution, including the part on

the domain [0, Sf (t))× [0, T ] and the part on the domain [Sf (t),∞)× [0, T ],
satisfies the LC relation:

min

(

−∂P
∂t

− LSP, P (S, t)−max(E − S, 0)

)

= 0, 0 < S, t ≤ T,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

The proof is as follows. On the interval (0, Sf (t)), P (S, t) = Gp(S) and this
interval belongs to the domain Dl, which means

−∂Gp(S)
∂t

− LSGp(S) > 0.

Consequently, the LC relation holds for this case. For the case Sf (t) < S ≤ E,

we have −∂P
∂t

− LSP = 0, and we need to show P (S, t) − (E − S) ≥ 0

in order to prove our conclusion. Define f(S, t) = P (S, t) − (E − S). We

know that f(Sf (t), t) = P (Sf (t), t) − (E − Sf (t)) = 0 and
∂f(Sf (t), t)

∂S
=

∂P (Sf (t), t)

∂S
+ 1 = 0. Thus for a fixed t, we have

f(S, t) = f(Sf (t), t) +
∂f(Sf (t), t)

∂S
[S − Sf (t)] +

1

2

∂2f(S∗, t)
∂S2

[S − Sf (t)]
2

=
1

2

∂2P (S∗, t)
∂S2

[S − Sf (t)]
2 ≥ 0,

where S∗ ∈ (Sf (t), S) and we have used the condition
∂P 2 (S, t)

∂S2
≥ 0 for

Sf (t) < S. For the case E < S, we have −∂P
∂t

− LSP = 0 and P (S, t) −
max(E − S, 0) = P (S, t) ≥ 0, and thus the LC relation holds on (Sf (t),∞).
Because the LC relation holds on (0, Sf (t)), (Sf (t),∞), the LC relation at the
points 0 and Sf (t) also holds, which can be shown by letting S go to these
points. Consequently the LC relation holds for all the cases and the proof is
completed.

As is proved in Problem 41 of Chap. 2, if D0 = 0, then the value of an
American call option is equal to the value of a European call option. Thus in
this case there is no free boundary, that is, there is no optimal exercise price.
A new question is: does the optimal exercise price exist when the dividends
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are paid discretely? The answer is that when there are discrete dividends, the
American call option can only be optimal to exercise at a time immediately
before the stock goes ex-dividend and that an optimal exercise price does
not always exist even at those moments. Readers are asked to prove these
conclusions as Problem 15.

3.3.3 Put–Call Symmetry Relations

As we know, the price of an American put option is the solution of the
following LC problem:

⎧
⎪⎨

⎪⎩

min

(

−∂P
∂t

− LSP, P (S, t)−max(E − S, 0)

)

= 0, 0 ≤ S, t ≤ T,

P (S, T ) = max(E − S, 0), 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

Let
⎧
⎪⎪⎨

⎪⎪⎩

ζ =
E2

S
,

C(ζ, t) =
EP (S, t)

S
.

(3.20)

Because
E

S
max(E − S, 0) = max(ζ − E, 0),

for C(ζ, t) the payoff and constraint are max(ζ − E, 0). Noticing

∂P

∂t
=
S

E

∂C

∂t
,

∂P

∂S
=

1

E

[

C + S
∂C

∂ζ

(

−E
2

S2

)]

=
1

E

(

C − ζ
∂C

∂ζ

)

,

∂2P

∂S2
=

ζ3

E3

∂2C

∂ζ2
,

we have

∂P

∂t
+

1

2
σ2S2 ∂

2P

∂S2
+ (r −D0)S

∂P

∂S
− rP

=
S

E

{
∂C

∂t
+

1

2
σ2ζ2

∂2C

∂ζ2
+ (D0 − r)ζ

∂C

∂ζ
−D0C

}

.

Therefore the function C(ζ, t) is the solution of the following American call
option problem:
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⎧
⎪⎨

⎪⎩

min

(

−∂C
∂t

− LζC, C(ζ, t)−max(ζ − E, 0)

)

= 0, 0 ≤ ζ, t ≤ T,

C(ζ, T ) = max(ζ − E, 0), 0 ≤ ζ,

(3.21)

where

Lζ =
1

2
σ2ζ2

∂2

∂ζ2
+ (D0 − r)ζ

∂

∂ζ
−D0.

Consequently, an American put problem can be converted into an American
call problem. However in the two problems, the state variable and the
parameters are different. From the definitions of LS and Lζ , we know that
the volatilities of the put and call problems are the same, but the interest rate
and the dividend yield of the call problem are equal to the dividend yield and
the interest rate of the put problem, respectively. In order to explain these
facts, we express the dependency of the options on interest rate and divi-
dend yield explicitly. Let P (S, t; b, a) denote the price of the put option and
C(ζ, t; a, b) the price of the call option, where the first and second parameters
after the semicolon are the interest rate and the dividend yield, respectively.
From the definition of ζ and C(ζ, t; a, b), we know

P (S, t; b, a) = C (ζ, t; a, b)S/E,

where ζ =
E2

S
. This can also be rewritten as

P (S, t; b, a) = C
(
E2/S, t; a, b

)
S/E,

or
C (ζ, t; a, b) = P

(
E2/ζ, t; b, a

)
ζ/E,

where we used the relation E/S = ζ/E. In the last relation, we can use S,
instead of ζ, as the state variable. That is, we can write this relation as

C (S, t; a, b) = P
(
E2/S, t; b, a

)
S/E.

Finally, putting them together, we have

⎧
⎨

⎩

C(S, t; a, b) = P
(
E2/S, t; b, a

)
S/E, or

P (S, t; b, a) = C
(
E2/S, t; a, b

)
S/E.

(3.22)

For the special case S = E, it becomes

P (E, t; b, a) = C(E, t; a, b).

Also, the location of free boundary in the latter problem, ζcf (t; a, b), must be
equal to E2 divided by the location of free boundary of the former problem,
E2/Spf (t; b, a), because ζ = E2/S, i.e.,
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ζcf (t; a, b) = E2/Spf (t; b, a)

or
Scf (t; a, b)× Spf (t; b, a) = E2, (3.23)

where in the last relation, instead of ζcf , we use Scf as the name of the function
representing the location of the free boundary. From the derivation above we
know that for European options, the following relations also hold:

⎧
⎨

⎩

c(S, t; a, b) = p
(
E2/S, t; b, a

)
S/E, or

p(S, t; b, a) = c
(
E2/S, t; a, b

)
S/E.

(3.24)

The relations (3.22)–(3.24) are called the put–call symmetry relations.
Now let us discuss the financial meaning of the put–call symmetry relations.

Suppose that one British pound is worth S U.S. dollars and that E2 U.S. dol-
lars are worth ζ British pounds. It is clear that ζ = E2/S. Let P be the value
of a put option whose holder can always sell one pound for E dollars if the
holder wants. This means that the payoff and constraint of the put option is
max(E−S, 0) in dollars. Let C be the value of a call option whose holder can
buy E2 dollars by paying E pounds if the holder wants. This means that the
payoff and constraint of the call option are max(E2/S−E, 0) = max(ζ−E, 0)
in pounds. The holder of the put option has the right to sell one pound for E
U.S. dollars even if S ≤ E. The holder of 1/E units of the call option has the
right to buy E dollars by paying one British pound even if ζ ≥ E. The condi-
tion S ≤ E is equivalent to E2/S = ζ ≥ E. Thus, both the holder of one unit
of the put option and the holder of 1/E units of the call option have the right
to exchange one pound for E dollars even if S < E. The two holders have the
same rights, so the value of one unit of the put option and the value of 1/E
units of the call option in U.S. dollars, which is equal to S · C/E, should be
equal, i.e.,

P = S · C/E.
Here, we need to notice that P and C have different but related volatilities,
interest rates, and dividend yields. According to Itô’s lemma, if

dS = μSdt+ σSdX,

then
dζ = (−μ+ σ2)ζdt− σζdX.

Hence, the volatilities of S and ζ = E2/S are the same if the volatilities are
constants. Suppose that σ, r, and D0 are constant and that the interest rates
of the British pound and the U.S. dollar are a and b, respectively. Then r = a
and D0 = b for the call and r = b and D0 = a for the put, and the volatilities
are the same. In this case, the relation above can be written as

P (S, t; b, a) = C
(
E2/S, t; a, b

)
S/E.
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The first relation in the set of relations (3.22) (or (3.24)) actually is another
form of the second relation in the set of relations (3.22) (or (3.24)). Thus
from the financial reasoning here, we know that all the relations in the sets of
relations (3.22) and (3.24) hold. Because the state variable ζ for the call with
r = a and D0 = b and the state variable S for the put with r = b and D0 = a
have the relation ζ = E2/S, the argument above to obtain the relation (3.23)
can still be used here. Hence from the financial reasoning above, we can also
have the relation (3.23).

Actually such relations exist for more complicated cases. If σ depends upon
S, then the following relations hold:

⎧
⎪⎪⎨

⎪⎪⎩

C(S, t; a, b, σ(S)) = P

(
E2

S
, t; b, a, σ(S)

)

S/E, or

P (S, t; b, a, σ(S)) = C

(
E2

S
, t; a, b, σ(S)

)

S/E

and
Scf (t; a, b, σ(S))× Spf (t; b, a, σ(E

2/S)) = E2.

Here, the third argument after the semicolon is the function for the volatility.
The proof is left for readers as an exercise (Problem 17).

The symmetry relations can be used when we write codes for pricing
American options or calculate prices of options. Suppose that we need codes
for pricing American call and put options and that we already have a code for
pricing American call options. If it is very easy for the code to be modified to a
code for pricing American put options, then we can have another code for put
options by modifying the code we already have. If the code for put options will
be quite a different from the code for call options, then we can use the code for
call options to find C(E2/S, t; a, b) first and then obtain P (S, t; b, a) by using
the relation P (S, t; b, a) = C(E2/S, t; a, b) ·S/E. If one already has a code that
can deal with both American call and put options, then the symmetry rela-
tions can be used for checking the accuracy of the numerical results. Because
the numerical results have errors, they will not exactly satisfy the symmetry
relation and can be used as indicators to show how accurate the numerical
results are if the values of a call and the corresponding put option have been
obtained. For details, see the paper [98] by Zhu, Ren, and Xu. For more about
symmetry relations and similar results, see [53, 54, 62] and [24].

3.3.4 Equations for Some Greeks

Here, for American options we would like to derive the equations and boundary

conditions that V =
∂Π

∂σ
, ρ =

∂Π

∂r
, and ρd =

∂Π

∂D0
should satisfy. Let us first

consider American call options and write the dependence of C and Sf on r,D0,
and σ explicitly, that is, instead of C(S, t) and Sf (t), we use C(S, t; r,D0, σ)
and Sf (t; r,D0, σ) to denote the price of American call options and the free
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boundary in what follows. Differentiating the partial differential equation in

the problem (3.19) with respect to r,D0, or σ yields the equations for
∂C

∂r
,

∂C

∂D0
or

∂C

∂σ
. For example, for

∂C

∂σ
we have

∂Cσ
∂t

+
1

2
σ2S2 ∂

2Cσ
∂S2

+ (r −D0)S
∂Cσ
∂S

− rCσ + σS2 ∂
2C

∂S2
= 0,

where Cσ denotes the partial derivative of the call option with respect to σ.
The final condition for the price of American call options is

C(S, T ; r,D0, σ) = max(S − E, 0).

Therefore
∂C

∂σ
= 0 at t = T . The boundary conditions on the free boundary are

C(Sf (t; r,D0, σ), t; r,D0, σ) = Sf (t; r,D0, σ)− E (3.25)

and
∂C(Sf (t; r,D0, σ), t; r,D0, σ)

∂S
= 1. (3.26)

From the relation (3.25) we have

∂C

∂S

∂Sf
∂σ

+
∂C

∂σ
=
∂Sf
∂σ

on the free boundary. Noticing (3.26), we have
∂C

∂σ
= 0 at the free bound-

ary. Consequently,
∂C

∂σ
is the solution of the following final-boundary value

problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Cσ
∂t

+
1

2
σ2S2 ∂

2Cσ
∂S2

+ (r −D0)S
∂Cσ
∂S

− rCσ + σS2 ∂
2C

∂S2
= 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

Cσ(S, T ) = 0, 0 ≤ S ≤ Sf (T ),

Cσ(Sf (t), t) = 0, 0 ≤ t ≤ T,

(3.27)

where
∂2C

∂S2
and Sf (t) are known functions obtained from the solution of

problem (3.19).

For
∂C

∂r
and

∂C

∂D0
, we can derive the same final and boundary conditions

as
∂C

∂σ
, namely,
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∂C

∂r
=

∂C

∂D0
= 0 (3.28)

at t = T and
∂C

∂r
=

∂C

∂D0
= 0 (3.29)

at the free boundary. The only difference is the equation. Differentiating the
partial differential equation in the problem (3.19) with respect to r and D0

yields

∂Cr
∂t

+
1

2
σ2S2 ∂

2Cr
∂S2

+ (r −D0)S
∂Cr
∂S

− rCr + S
∂C

∂S
− C = 0 (3.30)

and

∂CD0

∂t
+

1

2
σ2S2 ∂

2CD0

∂S2
+ (r −D0)S

∂CD0

∂S
− rCD0

− S
∂C

∂S
= 0 (3.31)

respectively, where Cr stands for
∂C

∂r
and CD0

for
∂C

∂D0
.

For American put options, the Greeks are solutions of similar problems.
This is left for readers to show as Problem 19 of this chapter.

3.3.5 Solutions for Perpetual American Call Options

If an option does not have an expiry date but rather an infinite time zone,
then the option is called a perpetual option. Let C(S, 0;T ) be the today’s
price of an American call option with expiry T , and let C∞(S) be the price
of the corresponding perpetual American call option. Between them, there is
the following relation:

C∞(S) = lim
T→∞

C(S, 0;T ).

Since
∂C(S, t;T )

∂t

∣
∣
∣
∣
t=0

= 0 as T → ∞, we know from the problem (3.19)

that for S ∈ [0, Sf ], Sf standing for the location of the corresponding free
boundary, C∞(S) is the solution of the following problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2
σ2S2 d

2C∞
dS2

+ (r −D0)S
dC∞
dS

− rC∞ = 0, 0 ≤ S ≤ Sf ,

C∞(Sf ) = Sf − E,

dC∞(Sf )

dS
= 1.

(3.32)

Let

C∞(S) = Sα,
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then
dC∞
dS

= αSα−1

and

d2C∞
dS2

= α(α− 1)Sα−2.

Substituting these into the ordinary differential equation in the problem
(3.32), we get

1

2
σ2α2 +

(

r −D0 −
1

2
σ2

)

α− r = 0.

The two roots of this equation are

α± =
1

σ2

⎡

⎣−
(

r −D0 −
1

2
σ2

)

±

√
(

r −D0 −
1

2
σ2

)2

+ 2σ2r

⎤

⎦ .

Thus

C∞(S) = C+(S/Sf )
α+ + C−(S/Sf )α− .

It is clear that α+ > 0 and α− < 0. In order to guarantee the solution to be
bounded at S = 0, C− should equal zero. Consequently, we arrive at

C∞(S) = C+(S/Sf )
α+ .

From the free-boundary conditions in the problem (3.32) we obtain

C+ = Sf − E,

C+α+S
−1
f = 1.

Solving these two equations we get

Sf =
E

1− 1/α+
and C+ =

1

α+S
−1
f

.

Thus, the solution of problem (3.32) is

C∞(S) =
Sf
α+

(
S

Sf

)α+

. (3.33)

On [0,∞), the solution of the perpetual American call option is

C∞(S) =

⎧
⎨

⎩

the solution of the free-boundary problem, 0 ≤ S ≤ Sf ,

S − E, Sf < S.
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C∞(S) should satisfy the following LC relation of the perpetual American call
option for any S:

min

(

−
[
1

2
σ2S2 d

2C∞
dS2

+ (r −D0)S
dC∞
dS

− rC∞

]

,

C∞ −max(S − E, 0)

)

= 0.

Here let us verify this conclusion by direct computation. Before doing that,
we point out that the following is true: Sf = E/(1−1/α+) ≥ Emax(1, r/D0).
As we know, for a vanilla call option, Sf (T ) = Emax(1, r/D0) and Sf (0) ≥
Sf (T ) = Emax(1, r/D0). This still holds as T → ∞. Thus4

Sf ≥ Emax(1, r/D0).

For S ∈ (0, E), C∞ satisfies the ODE and is greater than 0, and max(S −
E, 0) = 0. Thus the LC relation

min

(

−
[
1

2
σ2S2 d

2C∞
dS2

+ (r −D0)S
dC∞
dS

− rC∞

]

,

C∞ −max(E − S, 0)

)

= 0

holds. Now let us check if the LC relation holds for S ∈ (E,Sf ). Suppose
that f(x), f ′(x), and f ′′(x) are continuous functions on [a, b]. As we know, if
f(b) = 0 and f ′(b) = 0, then the following relation is true: f(x) = 1

2f
′′(ξ)(x−

b)2, where x ∈ [a, b] and ξ ∈ [x, b]. Using this fact, we know that because

C∞(Sf ) − (Sf − E) = 0 and
dC∞(Sf )

dS
− 1 = 0, C∞(S) − (S − E) ≥ 0 on

(E,Sf ) if
d2C∞ (S)

dS2
≥ 0 on (E,Sf ). From the expression of C∞, we have

d2C∞
dS2

=
α+ − 1

Sf

(
S

Sf

)α+−2

.

Because
α+ − 1

Sf
=

(α+ − 1)2

Eα+
> 0, we know

d2C∞
dS2

≥ 0 and the LC relation

holds on (E,Sf ). For S ∈ (Sf ,∞), because Sf ≥ Emax(1, r/D0), we have
C∞(S) = S−E = max(S−E, 0), which means C∞(S)−max(S−E, 0) = 0, and

−σ
2S2

2

d2C∞
dS2

− (r −D0)S
dC∞
dS

+ rC∞

= D0S − rE = D0(S − rE/D0) ≥ 0.

4This result can also be obtained from direct calculation, which is left for readers
as Problem 20.
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Thus the LC relation also holds for S ∈ (Sf ,∞). Consequently, we have proved
our conclusion for all the cases.

For an American put option, as T → ∞, the free-boundary problem (3.16)
becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2
σ2S2 d

2P∞
dS2

+ (r −D0)S
dP∞
dS

− rP∞ = 0, Sf ≤ S,

P∞(Sf ) = E − Sf ,

dP∞(Sf )

dS
= −1.

Similar to the call option, for S ≥ Sf the price of a perpetual American put
option is

P∞(S) =
−Sf
α−

(
S

Sf

)α−

, (3.34)

where

Sf =
E

1− 1/α−
.

3.4 Some Conclusion from Arbitrage Theory

In Sect. 2.2, we derived the Black–Scholes equation by using arbitrage
arguments. Here, we will further use arbitrage arguments to obtain some prop-
erties of option prices. Similar materials can be found in the book [43] by Hull.

3.4.1 Three Conclusions and Some Portfolios

Consider two portfolios X and Y, whose values depend on a stock price S
and time t. Let X(S, t) and Y(S, t) denote the values of portfolios X and Y,
respectively. X and Y could involve options, and all their expiries are T . By
using arbitrage arguments, we can have three conclusions, which are written
in the form of theorems.

Theorem 3.2 If only European options are involved and X(S, T ) ≥ Y(S, T )
for any S, then for any t ≤ T, X(S, t) must be greater than or equal to Y(S, t).

Proof. Suppose that at time t̄ the value of portfolio X is less than the value
of portfolio Y and that the latter is higher than the former by an amount of
Z(t̄). In this case, an arbitrageur can earn at least Z(t̄)er(T−t̄) at time T
by doing the following: sell Y, buy X, and invest Z(t̄) into a bank at an
interest rate r at time t̄, and get X(S, T ) from portfolio X, pay Y(S, T ) for
portfolio Y, and obtain Z(t̄)er(T−t̄) from the risk-free investment at time T .
BecauseX(S, T ) ≥ Y(S, T ) for any S, the arbitrageur will always earn at least
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Z(t̄)er(T−t̄) at the time T , which means that the earning is risk-free. Thus,
everyone will do such a thing. Because so many people sell Y and buy X, the
price of Y will drop and the price of X will rise and will be immediately equal
to or greater than the price of Y. Therefore, Theorem 3.2 holds. ��

From this result, assuming X(S, T ) ≤ Y(S, T ), we can immediately get
that for any time t ≤ T, X(S, t) ≤ Y(S, t) and furthermore we can have

Theorem 3.3 If X(S, T ) = Y(S, T ) for any S, then for any t ≤ T, X(S, t)
must be equal to Y(S, t) for any S.

Proof. Because X(S, T ) = Y(S, T ) means X(S, T ) ≥ Y(S, T ) and X(S, T )
≤ Y(S, T ), from the conclusion above we have for any t

X(S, t) ≥ Y(S, t) and X(S, t) ≤ Y(S, t),

which means
X(S, t) = Y(S, t).

Thus we have Theorem 3.3. ��
We can also have the following conclusion.

Theorem 3.4 Suppose that portfolio Y involves only one American option
and no European option and that portfolio X involves only European options.
If X(S, T ) ≥ Y(S, T ) at time T and if the amount of cash and the number
of stocks in X is greater than or equal to the amount of cash and the number
of stocks the holder of Y has when the American option is exercised at time
t̄ < T , then X(S, t) ≥ Y(S, t) for any time t.

Proof. The argument is similar to the argument for proving Theorem 3.2.
Suppose X(S, t) < Y(S, t) at time t < T . Then, an arbitrageur can purchase
X, sell Y, and earn some money. Later, when the American option is exercised
early at time t̄ < T , the arbitrageur will never lose money because the amount
of cash and the number of stocks in X are greater than or equal to the amount
of cash and the number of stocks the holder of Y has. When the American
option is not exercised before time T , the arbitrageur will also never lose any
money because the value of X is greater than or equal to the value of Y at
time T . Therefore, the earning is risk-free, which means X(S, t) should not be
less than Y(S, t) at any time. ��

Before applying these conclusions, we define some portfolios and find their
values at time T along with what their holders will have if American options
are exercised at time t̄ < T .

Portfolio A: An amount of cash equal to Ee−r(T−t) invested at an interest
rate r. It is clear that its value at time T is E.

Portfolio B: e−D0(T−t) shares of a stock with dividends being reinvested in
the stock if the stock pays the dividend continuously or one share of a
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stock plus a loan Dp(S, t)
5 if the stock pays cash dividends discretely.

Here, Dp(S, t) is equal to the present value of these dividends to be paid
from time t to time T , and the money will be returned to the loaner as
soon as the stock pays a dividend. Obviously, its value at time T is the
price of the stock S.

Portfolio C: One European call option plus portfolio A. The value of this
portfolio at time T is max(S − E, 0) + E = max(S,E).

Portfolio D: One European put option plus portfolio B. Its value at time T
is max(E − S, 0) + S = max(S,E).

Portfolio E: One American call option plus portfolio A. If the American call
option is not exercised before time T , its value at time T is max(S−E, 0)+
E = max(S,E). If at some time t̄ < T , the stock price S is greater than
E and the American option is exercised, then the holder of the portfolio
has one share plus a loan of (1− e−r(T−t̄))E.

Portfolio F: One American put option plus portfolio B. max(S,E) is its value
at time T if the put option is not exercised before time T ; while its holder
has an amount of cash E minus (1 − e−D0(T−t̄)) shares or an amount of
cash E −Dp(S, t̄) if the stock price S is less than E and the put option is
exercised at some time t̄ < T .

Portfolio G: One European call option plus E. Its value at time T is equal to
max(S,E).

Portfolio H: One European put option plus one share. Its value is equal to
max(S,E) at expiry.

3.4.2 Bounds of Option Prices

Consider a European call option and portfolio B. At time T , c(S, T ) =
max(S − E, 0) ≤ B(S, T ) = S. From Theorem 3.2, we have

c(S, t) ≤ Se−D0(T−t)

or

c(S, t) ≤ S −Dp(S, t).

Now let us compare portfolio C with portfolio B. Because at time T

C(S, T ) = max(S,E) ≥ B(S, T ) = S,

we have
c(S, t) + Ee−r(T−t) ≥ Se−D0(T−t)

or

c(S, t) + Ee−r(T−t) ≥ S −Dp(S, t).

5Here we assume that the value of the dividends depends on S, just like what
we did in Sect. 2.2.2.
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Clearly, c(S, t) ≥ 0 for any case. Therefore, for a European call option we have

max
(
Se−D0(T−t) − Ee−r(T−t), 0

)
≤ c(S, t) ≤ Se−D0(T−t) (3.35)

or

max
(
S −Dp(S, t)− Ee−r(T−t), 0

)
≤ c(S, t) ≤ S −Dp(S, t). (3.36)

Consequently, the lower bound of c(S, t) is max
(
Se−D0(T−t) − Ee−r(T−t), 0

)

or max
(
S −Dp(S, t)− Ee−r(T−t), 0

)
and the upper bound is Se−D0(T−t) or

S −Dp(S, t). Here, we assume that S −Dp(S, t) is always greater than zero.
If S < Dp(S, t) at time t, then any person will buy one share of the stock by
finding a loan of amount S at time t and returning the loan as soon as the
stock pays a dividend. In this way, the person gets one share and some cash
free at time T . Therefore, the price must rise until S ≥ Dp(S, t).

Because C(S, t) ≥ c(S, t), we require that C(S, t) is greater than or equal
to the lower bound of c(S, t). Also, C(S, t) needs to be greater than or equal
to the constraint max(S − E, 0). Thus

max
(
Se−D0(T−t) − Ee−r(T−t), S − E, 0

)

or

max
(
S −Dp(S, t)− Ee−r(T−t), S − E, 0

)

is a lower bound. Clearly, S is an upper bound for an American call option.
Consequently, for the price of an American call option, we have

max
(
Se−D0(T−t) − Ee−r(T−t), S − E, 0

)
≤ C(S, t) ≤ S (3.37)

or

max
(
S −Dp(S, t)− Ee−r(T−t), S − E, 0

)
≤ C(S, t) ≤ S. (3.38)

Now let us compare a European put option with portfolio A. At time T ,

p(S, T ) = max(E − S, 0) ≤ A(S, T ) = E.

Thus

p(S, t) ≤ Ee−r(T−t).

In order to get a lower bound of p(S, t), let us look at portfolios D and A.
Because at time T ,

D(S, T ) = max(S,E) ≥ A(S, T ) = E,

we arrive at

p(S, t) + Se−D0(T−t) ≥ Ee−r(T−t)
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or
p(S, t) + S −Dp(S, t) ≥ Ee−r(T−t).

Also, p(S, t) must be nonnegative. Therefore, we have

max
(
Ee−r(T−t) − Se−D0(T−t), 0

)
≤ p(S, t) ≤ Ee−r(T−t) (3.39)

or

max
(
Ee−r(T−t) − S +Dp(S, t), 0

)
≤ p(S, t) ≤ Ee−r(T−t). (3.40)

These give the lower and upper bounds of European put options.
For an American put option, we can also get the lower and upper bounds.

Because P (S, t) ≥ p(S, t), we have

P (S, t) ≥ max
(
Ee−r(T−t) − Se−D0(T−t), 0

)

or
P (S, t) ≥ max

(
Ee−r(T−t) − S +Dp(S, t), 0

)
.

Also, P (S, t) must be greater than or equal to max(E − S, 0). Therefore, we
further obtain

P (S, t) ≥ max
(
Ee−r(T−t) − Se−D0(T−t), E − S, 0

)

or
P (S, t) ≥ max

(
Ee−r(T−t) − S +Dp(S, t), E − S, 0

)
.

E is a upper bound of P (S, t), consequently we have

max
(
Ee−r(T−t) − Se−D0(T−t), E − S, 0

)
≤ P (S, t) ≤ E (3.41)

or
max

(
Ee−r(T−t) − S +Dp(S, t), E − S, 0

)
≤ P (S, t) ≤ E. (3.42)

From the proofs we know that if one of these relations is not true, then
we can find an arbitrage opportunity to earn some money. This means that
the lower bound is the greatest lower bound and that the upper bound is
the least upper bound. From Sect. 1.2.4, we know that the price of an option
is an increasing function of the volatility. Therefore, if the lower bound is
the greatest lower bound, then as the volatility approaches zero, the limit of
option should be the lower bound. Similarly, if the upper bound is the least
upper bound, then as the volatility approaches infinity, the limit of the option
should be the upper bound. When r,D0, and σ are constant, the European
option price is given by the Black–Scholes formulae in Sect. 2.6.5:

c(S, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2)
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and

p(S, t) = Ee−r(T−t)N(−d2)− Se−D0(T−t)N(−d1),

where

d1 =

[

ln
Se−D0(T−t)

Ee−r(T−t) +
1

2
σ2(T − t)

]/(
σ
√
T − t

)

and

d2 =

[

ln
Se−D0(T−t)

Ee−r(T−t) − 1

2
σ2(T − t)

]/(
σ
√
T − t

)
.

Therefore we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
σ→0

c(S, t) =

⎧
⎨

⎩

0, if Se−D0(T−t) < Ee−r(T−t),

Se−D0(T−t) − Ee−r(T−t), if Se−D0(T−t) > Ee−r(T−t),
lim
σ→∞ c(S, t) = Se−D0(T−t),

lim
σ→0

p(S, t) =

⎧
⎨

⎩

0, if Ee−r(T−t) < Se−D0(T−t),

Ee−r(T−t) − Se−D0(T−t), if Ee−r(T−t) > Se−D0(T−t),
lim
σ→∞ p(S, t) = Ee−r(T−t).

That is, the inequalities (3.35) and (3.39) truly provide the least upper and
greatest lower bounds of European options, respectively.

Here, we give an example to show that if the price of an option does not
satisfy a related condition, then there exists an arbitrage opportunity. More
examples are given as problems for readers to study.

Example 1. Consider a European call option on a dividend-paying stock. Sup-
pose the following: S = $102, E = $100, c = $8.50, r = 0.1, the time to matu-
rity is 9months, and the present value of the dividend Dp(102, t) is $0.50. Is
there any arbitrage opportunity?

Solution: As we know, the price of a call option has to satisfy the
condition (3.36):

max
(
S −Dp(102, t)− Ee−r(T−t), 0

)
≤ c(S, t) ≤ S −Dp(102, t).

In this case

max
(
S −Dp(102, t)− Ee−r(T−t), 0

)
= max

(
102− 0.5− 100e−0.9/12, 0

)

= 8.73.

Therefore, the price of the call option is less than the lower bound. In this
case, if we own one share of the stock or if you can borrow one share of the
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stock for the period [t, T ], then we should take a long position in a portfolio
C and a short position in a portfolio B. In other words, buy one call option,
sell one share, and deposit Ee−r(T−t) +Dp(102, t) in a bank at time t. In this
case we will get −8.5+102− 100e−0.9/12 − 0.5 = $0.23 at time t, and this is a
risk-free earning. This is because we can get the money from the bank to pay
the dividends on the stock during the time interval [t, T ] and get E from the
bank at time T . If S ≥ E at time T , we can exercise the call option and get
one share. If S < E, we can have one share of the stock that is bought from
the market and an amount of cash E−S. In any case, we have one share plus
at least $0.23. That is, we can get one share back or return one share to the
borrower and earn at least $0.23 free at time T .

3.4.3 Relations Between Call and Put Prices

Let us look at portfolios C and D. Because C(S, T ) = D(S, T ), we have

c(S, t) + Ee−r(T−t) = p(S, t) + Se−D0(T−t) (3.43)

or
c(S, t) + Ee−r(T−t) = p(S, t) + S −Dp(S, t) (3.44)

according to Theorem 3.3. These are called put–call parities of European
options. For stocks with continuous dividends, we obtained such a relation
through a very long procedure in Sect. 2.6. However, the derivation here is so
simple. This shows that arbitrage theory is a very powerful tool.

The put–call parity relations hold only for European options. For American
options they are not true, but the following inequalities on the difference
between the American call and put option prices are fulfilled

Se−D0(T−t) − E ≤ C(S, t)− P (S, t) ≤ S − Ee−r(T−t) (3.45)

or
S −Dp(S, t)− E ≤ C(S, t)− P (S, t) ≤ S − Ee−r(T−t). (3.46)

The two inequalities can also be written as

⎧
⎨

⎩

Se−D0(T−t) − E + P (S, t) ≤ C(S, t) ≤ S − Ee−r(T−t) + P (S, t),

C(S, t)− S + Ee−r(T−t) ≤ P (S, t) ≤ C(S, t)− Se−D0(T−t) + E

or
⎧
⎨

⎩

S −Dp(S, t)− E + P (S, t) ≤ C(S, t) ≤ S − Ee−r(T−t) + P (S, t),

C(S, t)− S + Ee−r(T−t) ≤ P (S, t) ≤ C(S, t)− S +Dp(S, t) + E,

which gives the lower and upper bounds of an American call (put) option if
the price of the corresponding American put (call) option is known.
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First, let us prove the left portions of the inequalities (3.45) and (3.46).
Consider portfolios G and F. Because G contains European options only
and F contains only one American option, it is possible to use Theorem 3.4.
According to Theorem 3.4, the value of G is always greater than or equal to
the value of F if we can prove two things:

1. The value of G is greater than or equal to the value of F at time T ;
2. The amount of cash and the number of stocks inG is greater than or equal

to the amount of cash and the number of stocks in F when the American
option is exercised at time t̄ < T .

At time T , the value of G is equal to the value of F. At any time t̄ < T , there
is an amount of cash E and no stock in G. If the American put option in F is
exercised before time T , F contains an amount of cash E and −(1−e−D0(T−t̄))
shares or an amount of cash E−Dp(S, t). Therefore, both the amount of cash
and the number of stocks in G is greater than or equal to those in F if the
American option in F is exercised at some time t̄ < T . Consequently, according
to Theorem 3.4, the value of G is greater than or equal to the value of F for
any case, that is,

P (S, t) + Se−D0(T−t) ≤ c(S, t) + E

or
P (S, t) + S −Dp(S, t) ≤ c(S, t) + E.

Because C(S, t) ≥ c(S, t), we further have

Se−D0(T−t) − E ≤ C(S, t)− P (S, t)

or
S −Dp(S, t)− E ≤ C(S, t)− P (S, t).

In order to prove the right portions of the relations, we need to look at
portfolios H and E. In H there is only one European option and in E the
American option is the only option, so we can use Theorem 3.4 again. When
the American call option in E is exercised before time T , the amount of cash
and the number of stocks in H is greater than or equal to those in E. When
it is not exercised before expiry, the value of H is equal to the value of E at
time T . Therefore

C(S, t) + Ee−r(T−t) ≤ p(S, t) + S.

Noticing P (S, t) ≥ p(S, t), we have

C(S, t)− P (S, t) ≤ S − Ee−r(T−t).

This completes our proof.
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Example 2. Suppose there are an American call option and an American put
option on the same stock. The stock pays dividends continuously, and D0 =
0.05. For both options, E = $100 and T = 1month. At present, r = 0.1, S =
$103, and C = $5.50. Find the upper and lower bounds for the price of
the American put option by using the relation (3.45). How do we take the
arbitrage opportunity if the price of the American put option is greater than
the calculated upper bound?

Solution: According to the relation (3.45), the lower bound of P (S, t) is

C(S, t)− S + Ee−r(T−t) = 5.5− 103 + 100e−0.1/12 = 1.67

and the upper bound is

C(S, t)− Se−D0(T−t) + E = 5.5− 103e−0.05/12 + 100 = 2.93.

Suppose that on the market P (103, t) = $3.50. Now we describe how
to take advantage of the arbitrage opportunity. At time t, we can sell the
American put option and short-sell e−0.05/12 shares, purchase one European
call option that is less than or equal to $5.50, and hold at least an amount of
cash 3.5+103e−0.05/12 −5.5 = $100.57. If we want, it can be deposited into a
bank. At any time t̄ ∈ [t, T ), the holder of the American put option wants to
exercise the option, we pay $100 and get one share. In this case, we have at
least one share of stock and at least an amount of cash equal to $0.57 at time
T. If the holder of the American put option does not exercise the option before
time T , we also will always have at least $0.57 in cash plus one share of stock
at time T . The reason is that we can exercise the European call option and
get one share if S > E, whereas we can purchase one share from the market
if S ≤ E. Because we need to return only one share to the borrower at time
T , we always have enough shares of stocks. Therefore, the risk-free earning in
this case is at least $0.57.

Problems

Table 3.1. Problems and subsections

Problems Subsections Problems Subsections Problems Subsections

1–2 3.1.1 3–7 3.1.2 8 3.2.1

9–15 3.3.2 16–18 3.3.3 19 3.3.4

20–23 3.3.5 24–25 3.4.1 26–27 3.4.2

28–30 3.4.3
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1. Let LS,t be an operator in an option problem in the form:

LS,t = a(S, t)
∂2

∂S2
+ b(S, t)

∂

∂S
+ c(S, t)

and Gv(S, t) be the constraint function for an American option. Further-

more we assume that
∂Gv
∂t

+ LS,tGv exists. Suppose V (S, t∗) = Gv(S, t
∗)

on an open interval (A,B) on the S-axis. Let t = t∗ −Δt, where Δt is a
sufficiently small positive number. Show the following conclusions: If for
any S ∈ (A,B),

∂Gv
∂t

(S, t∗) + LS,t∗Gv(S, t
∗) + d(S, t∗) ≥ 0,

then the value V (S, t) determined by the equation

∂V

∂t
(S, t) + LS,tV (S, t) + d(S, t) = 0

satisfies the condition V (S, t) − Gv(S, t) ≥ 0 on (A,B); and if for any
S ∈ (A,B),

∂Gv
∂t

(S, t∗) + LS,t∗Gv(S, t
∗) + d(S, t∗) < 0,

then the equation

∂V

∂t
(S, t) + LS,tV (S, t) + d(S, t) = 0

cannot give a solution satisfying the condition V (S, t) − Gv(S, t) ≥ 0 for
any S ∈ (A,B).

2. *Suppose that for an American option, the constraint is Gv(S, t), its value
at time t is V (S, t), and V (S, t) = Gv(S, t) on (A,B). Assume that when
V (S, t) were given as the value of a European option at t, the value of the
European option at t−Δt for a positive and very small Δt is v(S, t−Δt).
Explain that if in an open interval containing S∗ ∈ (A,B), v(S, t−Δt) <
Gv(S, t − Δt), then for the American option a fair value at the point
(S∗, t−Δt) should be Gv(S

∗, t−Δt).
3. *Show that an American option is always worth at least as much as a

European option on the same asset with the same strike price and exercise
date if r, D0, σ are constant, and give a financial explanation.

4. Show that a Bermudan option is always worth at least as much as a
European option on the same asset with the same strike price and exercise
date if r, D0, σ are constant, and give a financial explanation of this fact.
(Hint: For a Bermudan option, the approximate relation between the price
at tn and the price at tn+1 is the same as for a European option if at t = tn
the option cannot be exercised, and the same as for an American option
if at t = tn the option can be exercised.)
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5. (a) *Explain why an American option is always worth at least as much
as its intrinsic value. What is the definition of the time value of an
American option?

(b) *Let V (S, t) be the price of a vanilla American option. Show that
V (S, t∗) ≥ V (S, t∗∗) is always true, where t∗ ≤ t∗∗. This means that
the time value of a vanilla American option for a fixed S is decreasing
as t→ T , and give a financial explanation of this fact.

6. (a) The price of a one-factor convertible bond paying no coupon is the
solution of the following linear complementarity problem

⎧
⎪⎨

⎪⎩

min

(

−∂V
∂t

− LSV, V (S, t)− nS

)

= 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS) ≥ nS, 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

and n, Z, σ, r, and D0 are positive constants. Show

V (S, t∗)− Ze−r(T−t∗) ≥ V (S, t∗∗)− Ze−r(T−t∗∗) if t∗ ≤ t∗∗.

(Hint: Define V (S, t) = V (S, t) − Ze−r(T−t) and show V (S, t∗) ≥
V (S, t∗∗) if t∗ ≤ t∗∗.)

(b) Can you prove that V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗ by using the
method used in part (a)? If your answer is “Yes”, give a proof; other-
wise explain why you cannot.

(c) “A holder of a convertible bond at time t∗ has “more rights” than
a holder of a convertible bond at time t∗∗ does if t∗ ≤ t∗∗, so the
premium at t∗ should be higher than the premium at t∗∗, i.e., the
inequality V (S, t∗) ≥ V (S, t∗∗) should hold for any t∗ ≤ t∗∗.” Do you
think that this statement is true and why?

7. The price of a one-factor convertible bond paying constant coupon is the
solution of the following linear complementarity problem

⎧
⎪⎨

⎪⎩

min

(

−∂V
∂t

− LSV − kZ, V (S, t)− nS

)

= 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS) ≥ nS, 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r

and k, Z, n, σ, r, and D0 are positive constants. Study whether or not
V (S, t∗) ≥ V (S, t∗∗) for t∗ ≤ t∗∗ holds in the cases r > k and r = k, and
if not, try to find a relation between V (S, t∗) and V (S, t∗∗).
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8. A European option is the solution of the problem

⎧
⎨

⎩

∂V

∂t
+ LSV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S,

where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r.

For an American option, the constraint is that the inequality

V (S, t) ≥ G(S, t)

holds for any S and t, where G(S, T ) = VT (S). Derive the linear comple-
mentarity problem for the American option.

9. The American call option is the solution of the following linear comple-
mentarity problem on a finite domain:
⎧
⎪⎨

⎪⎩

min

(
∂V

∂τ
− LξV , V (ξ, τ)−max(2ξ − 1, 0)

)

= 0, 0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) = max(2ξ − 1, 0), 0 ≤ ξ ≤ 1,

where

Lξ =
1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
+ (r −D0)ξ(1− ξ)

∂

∂ξ
− [r(1− ξ) +D0ξ].

Reformulate this problem as a free-boundary problem if D0 > 0.
10. The American put option is the solution of the following linear comple-

mentarity problem:
⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− gp(x, τ̄)

)

= 0, −∞ < x <∞, 0 ≤ τ̄ ,

u(x, 0) = gp(x, 0), −∞ < x <∞,

where
gp(x, τ̄) = max

(
e2rτ̄/σ

2 − ex+(2D0/σ
2+1)τ̄ , 0

)
.

Find the domain where a free boundary may appear and the domain
where it is impossible for a free boundary to appear, show that there is
only one free boundary at τ̄ = 0, and give the starting location of this free
boundary.

11. The price of a one-factor convertible bond is the solution of the linear
complementarity problem
⎧
⎪⎨

⎪⎩

min

(

−∂V
∂t

− LSV − kZ, V (S, t)− nS

)

= 0, 0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = max(Z, nS) ≥ nS, 0 ≤ S,
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where

LS =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
− r,

and k, Z, n, σ, r and D0 are constants. Show that if D0 > 0, then the solu-
tion of a one-factor convertible bond must involve a free boundary and its

location at t = T is S = max

(
Z

n
,
kZ

D0n

)

. Also, derive the corresponding

free-boundary problem if this problem has only one free boundary.
12. Consider the following LC problem:

⎧
⎪⎨

⎪⎩

min

(

−∂W
∂t

− Lα,tW, W (η, t)−max(α− η, 0)

)

= 0, 0 ≤ η, t ≤ T,

W (η, T ) = max(α− η, 0), 0 ≤ η,

where the operator La,t is defined by

La,t =
1

2
σ2η2

∂2

∂η2
+

[

(D0 − r)η +
1− η

t

]
∂

∂η
−D0.

Suppose that there is only one free-boundary for this problem, reformulate
this problem as a free-boundary problem.

13. Consider the following LC problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

(

−∂W
∂t

− LηW, W (η, t)−Glsp(η, t)

)

= 0, 1 ≤ η, t ≤ T,

W (η, T ) = Glsp(η, T ), 1 ≤ η,

∂W

∂η
(1, t) = 0, t ≤ T,

where Glsp(η, t) = max(η−β, 0) with β ≥ 1 and Lη=
1

2
σ2η2

∂2

∂η2
+(D0−r)

η
∂

∂η
−D0. Find the domain where it is impossible for a free boundary to

appear and the domain where a free boundary may appear.
14. As we know, when the LC problem of an American call option is for-

mulated as a free-boundary problem, on the free boundary S = Sf (t) ≥
max(E, rE/D0), we need to require C (Sf (t), t) = max (Sf (t)− E, 0) =

Sf (t) − E and
∂C (Sf (t), t)

∂S
= 1, where C (S, t) and max (S − E, 0) are

the solution of the free-boundary problem and the constraint. Show that

if C(S, t) ≥ 0 and
∂C2 (S, t)

∂S2
≥ 0 for S < Sf (t), then the solution of the

free-boundary problem satisfies the LC condition

min

(

−∂C
∂t

− LSC, C −max(S − E, 0)

)

= 0,
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where LS =
1

2
σ2S2 ∂2

∂S2
+ (r − D0)S

∂

∂S
− r, that is, C(S, t) truly is the

solution of the LC problem for S ∈ [0, Sf (t)).
15. Consider an American call option on a stock paying discrete dividends.

(a) Show that in this case, the optimal exercise price cannot appear for t
between two successive ex-dividend dates.

(b) Suppose that tn, tn+1 are two successive ex-dividend dates with tn <
tn+1. Assume Dn(S) be the dividend payment at time tn. Show that if
Dn(S) ≤ E

(
1− e−r(tn+1−tn)), then there is no chance for an optimal

exercise price to appear at time t−n ; if Dn(S) > E
(
1− e−r(tn+1−tn)),

it is possible for an optimal exercise price to appear at time t−n .
16. *Suppose r,D0, and σ are constant.

(a) Derive the put–call symmetry relations.
(b) Explain the financial meaning of the symmetry relation.
(c) Explain how to use these relations when we write codes if a code for

put options is quite a different from a code for call options.
17. (a) Suppose σ = σ(S, t), r = r(t), and D0 = D0(S, t). Show that the

problem of pricing a put option can always be converted into a problem
of pricing a call option. Also explain how to use this conclusion when
we write codes if a code for put options is quite a different from a code
for call options.

(b) Let the exercise price be E. Suppose that r, D0 are constants and
σ = σ(S). Show

P (S, t; b, a, σ(S)) = C
(
E2/S, t; a, b, σ(S)

)
S/E,

C (S, t; a, b, σ(S)) = P
(
E2/S, t; b, a, σ(S)

)
S/E

and

Scf (t; a, b, σ(S))× Spf (t; b, a, σ(E
2/S)) = E2.

Here, the first, second, and third parameters after the semicolon in
P , C, Spf , and Scf are the interest rate, the dividend yield and the
volatility function, respectively.

(c) Show that for Bermudan options the symmetry relation is still true.
18. Suppose that σ, r, D0 are constants. In this case we have the following

symmetry relation for European options

p(S, t; b, a) = c

(
E2

S
, t; a, b

)

S/E,

where the first and second arguments after the semicolon in p and c are
the values of the interest rate and the dividend yield, respectively. For a
European call option, the price is

c(S, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2),
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where

d1 =
ln
Se−D0(T−t)

Ee−r(T−t) + 1
2σ

2(T − t)

σ
√
T − t

,

d2 =
ln
Se−D0(T−t)

Ee−r(T−t) − 1
2σ

2(T − t)

σ
√
T − t

.

Find the price of a European put option by using the symmetry relation.

19. Derive the formulation of the problem for
∂P

∂r
and write down the for-

mulation of the problems for
∂P

∂σ
and

∂P

∂D0
, where P is the price of an

American put option.
20. Define

α± =
1

σ2

⎡

⎣−
(

r −D0 −
1

2
σ2

)

±

√
(

r −D0 −
1

2
σ2

)2

+ 2σ2r

⎤

⎦ ,

where r ≥ 0 and D0 ≥ 0.
(a) Show that α+ ≥ 1, α− ≤ 0, and −(r −D0)α± + r ≥ 0 .
(b) Based on the results in part (a), show that 1/(1−1/α+) ≥ max(1, r/D0)

and 1/(1− 1/α−) ≤ min(1, r/D0).
21. (a) Find the solution of the following free-boundary problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

2
σ2S2 d

2P∞
dS2

+ (r −D0)S
dP∞
dS

− rP∞ = 0, Sf ≤ S,

P∞(Sf ) = E − Sf ,

dP∞(Sf )

dS
= −1.

(b) Define

P∞(S) =

⎧
⎨

⎩

E − S, 0 ≤ S < Sf ,

the solution of the free-boundary problem, Sf ≤ S.

Show that P∞(S) satisfies

min

(

−
[
1

2
σ2S2 d

2P∞
dS2

+ (r −D0)S
dP∞
dS

− rP∞

]

,

P∞ −max(E − S, 0)

)

= 0,

that is, P∞(S) is a solution of the perpetual American put option.
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22. (a) Find the solution of the following free-boundary problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ2η2

d2W∞
dη2

+ (D0 − r) η
dW∞
dη

−D0W∞ = 0, 1 ≤ η ≤ ηf ,

dW∞(1)

dη
= 0,

W∞ (ηf ) = ηf ,

dW∞ (ηf )

dη
= 1,

where ηf is a number representing the location of this free boundary.
(b) Define

W∞(η) =

⎧
⎨

⎩

the solution of the free-boundary problem, 1 ≤ η ≤ ηf ,

η, ηf < η.

Show that W∞(η) is a solution of the following LC problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

(

−σ
2η2

2

d2W∞
dη2

− (D0 − r) η
dW∞
dη

+D0W∞, W∞ − η

)

= 0,

1 ≤ η,

dW∞(1)

dη
= 0.

(This problem is related to the Russian option.)
23. Find the solution of the problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ2ξ2

d2W∞
dξ2

+ (D02 −D01) ξ
dW∞
dξ

−D02W∞ = 0, ξf1 ≤ ξ ≤ ξf2 ,

W∞ (ξf1) = 1,

dW∞
dξ

(ξf1) = 0,

W∞ (ξf2) = ξf2 ,

dW∞
dξ

(ξf2) = 1,

where ξf1 < ξf2 . (This problem is related to the perpetual American
better-of option.)

24. Suppose that c1(S, t) and c2(S, t) are the prices of European call options
with strikes E1 and E2, respectively, where E1 < E2. Also assume that
the two options have the same maturity T and that the interest rate r is
a constant. Show



156 3 American Style Derivatives

0 ≤ c1(S, t)− c2(S, t) ≤ (E2 − E1)e
−r(T−t).

25. Suppose that p1, p2, and p3 are the prices of European put options with

strike prices E1, E2, and E3, respectively, where E2 =
1

2
(E1+E3). All the

options have the same maturity. Show

p2 ≤ 1

2
(p1 + p3).

26. Consider a European call option with T = 6months and E = $80 on a
dividend-paying stock. The dividend is paid continuously with a dividend
yield D0 = 0.05. Today, t = 0, r = 0.1 and S = $82.

(a) Find the lower bound of the call option.
(b) What are the least profits we could make at time T by arbitrage if the

call option price today is $0.10 less than the lower bound and why?

27. Consider a European put option with T = 3months and E = $60 on a
dividend-paying stock. Today t = 0, r = 0.05, and S = $55. The dividends
are paid discretely, and the total present value of them is Dp(55, 0) =
$0.30.

(a) Find the lower bound of the put option.
(b) What are the least profits we could make at time T by arbitrage if the

put option price today is $0.20 less than the lower bound and why?

28. *Use arbitrage arguments to show the put–call parity of European options
for the following two cases.
(a) When the dividend is paid continuously, the put–call parity is

c(S, t)− p(S, t) = Se−D0(T−t) − Ee−r(T−t);

(b) when the dividend is paid discretely, the put–call parity is

c(S, t)− p(S, t) = S −Dp(S, t)− Ee−r(T−t),

where Dp(S, t) is the value of “will-be-paid” dividends at time t.
29. *Use arbitrage arguments to show the inequalities of American options

for the following two cases.
(a) When the dividend is paid continuously, there is the inequality

Se−D0(T−t) − E ≤ C(S, t)− P (S, t) ≤ S − Ee−r(T−t)

between American put option P (S, t) and American call option C(S, t)
with the same parameters.

(b) When the dividend is paid discretely, there is the inequality

S −Dp(S, t)− E ≤ C(S, t)− P (S, t) ≤ S − Ee−r(T−t)

between American put option P (S, t) and American call option C(S, t)
with the same parameters.
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30. Suppose that there are an American call option and an American put
option on the same stock that pays dividends discretely. For both of them,
E = $90 and T = 3months. At time t = 0, the stock price is $93 and the
present value of dividend payments during the period [0, T ] is Dp(93, 0) =
$0.50. Assume that r = 0.10 and P (93, 0) = $2.50.

(a) Find the upper and lower bounds of the price of the American call
option.

(b) What are the risk-free profits we could make today by arbitrage if
the price of the call option today is $0.10 greater than the calculated
upper bound and why?



4

Exotic Options

4.1 Introduction

In order to meet a variety of demands, modern financial institutions issue
many exotic options besides the vanilla options we have introduced in Chaps. 2
and 3. An exotic option is an option that is not a vanilla put or call. It usually
is traded between companies and banks and not quoted on an exchange. In
this case, we usually say that it is traded in the over-the-counter market. Most
exotic options are quite complicated, and their final values depend not only
on the asset price at expiry but also on the asset price at previous times. They
are determined by a part or the whole of the path of the asset price during
the life of option. These options are called path-dependent exotic options.
Barrier options, Asian options, and lookback options are important examples
of path-dependent exotic options.

A barrier option is a derivative product that either becomes worthless,
must be exercised, or comes into existence if the underlying asset price reaches
a certain level during a certain period of time. For example, a down-and-out
call has similar features to a vanilla call option, except that it becomes nullified
when the asset price falls below a knock-out level. Because the holder of the
option loses some of the rights, the price of such an option is lower than a
vanilla call option. However, if the asset price is always higher than the knock-
out level (which is expected by any holder of a call option), then the two
options are actually the same. Therefore, such a call option is more attractive
than a vanilla call option for people who expect the price to rise.

An Asian option is an option whose payoff depends on some form of the
average of the underlying asset price over a part or the whole of the life of the
option. Consider a call option and let the price of underlying asset in its payoff
be replaced by the average of the asset price over a period. Suppose that a
manufacturer expects to make a series of crude oil purchases for his factory
during some fixed time period. If the average price of crude oil drops, then he
will be happy because the cost of his product declines; if the average price of
crude oil rises, then he might lose money because the cost rises. In this case,

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 4, © Springer Science+Business Media New York 2013
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such an option can be a hedging instrument for him. He can avoid the risk
caused by the rise in average price and keep the advantage due to the drop in
average price by holding an average call option on crude oil for that period.
Asian options are more appropriate than vanilla options for such a case.

A lookback option is a contract whose payoff depends on the maximum
or minimum stock price reached during the life of the option. For example, a
lookback put option has a payoff that is the difference between the maximum
realized price and the price at expiry. Therefore, the holder of such an option
can sell the asset at the highest price.

We have described three examples through which we explain how those
exotic options are designed by financial institutions to meet the requirements
of their clients. Besides the examples mentioned above, there are many other
types of barrier, Asian, lookback options, and other exotic options. Multi-
asset options, binary options, forward start options, compound options, and
chooser options are all examples of exotic options. In the following sections,
we will give some details on these options.

4.2 Barrier Options

4.2.1 Knock-Out and Knock-In Options

As pointed out in Sect. 4.1, a barrier option is a derivative product that either
becomes worthless, must be exercised, or comes into existence if the underlying
asset price reaches a certain level during a certain period of time.

A knock-out option is an option that either becomes worthless or must be
exercised if the underlying asset value reaches the knock-out level, which is
called a barrier. The simplest knock-out options are the down-and-out call and
the up-and-out put. An option is called a down-and-out call if it is actually
a call when S is always greater than the barrier during the life of the option,
and it becomes worthless when S reaches the barrier from above at some time
before or at expiry. We call such a barrier a lower barrier Bl, and in this
section we mainly consider the case that such a barrier is below the exercise
price E. A down-and-out call could be a European-style or an American-style
option just like a vanilla option. An up-and-out put is similar to a down-
and-out call. However, instead of a lower barrier, it has an upper barrier Bu,
which we usually assume is greater than E. It is a put if S is never above
Bu and becomes worthless when S crosses the barrier Bu from below at some
time prior to expiry. More complicated knock-out options have two barriers
Bl and Bu that might be given as functions of time, and such an option
becomes worthless if S enters [0, Bl] or [Bu,∞) from (Bl, Bu) at some time
during the life of the option. Sometimes the holder of the option receives a
specified amount of money as a rebate if a barrier is reached. For example,
an option is called a knock-out call with a rebate if it has the following three
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properties. It is actually a call when S is always in (Bl, Bu) during the life
of the option, it becomes worthless when S enters [0, Bl] at any time, and it
must be exercised for a rebate Bu − E when S crosses the upper barrier Bu
from below at any time.

A knock-in option is a contract that comes into existence if the asset price
crosses a barrier. For example, a down-and-in call with a lower barrier Bl
expires worthless unless the asset price reaches the lower barrier from above
prior to or at expiry. If it crosses the lower barrier from above at some time
before expiry, then the option becomes a vanilla option. An up-and-in put is
similar to a down-and-in call, but the barrier is an upper one and the put
option is activated when S crosses the upper barrier from below.

4.2.2 Closed-Form Solutions of Some European Barrier Options

For some European barrier options, closed-form solutions can be obtained.
As examples, we first derive such a solution for a European down-and-out
call by the method of images and then obtain the solution for a European
down-and-in call from the solution for the European down-and-out call.

Now let us look at a European down-and-out call option. Let co(S, t) de-
note the value of this option. As an option, co (S, t) satisfies the Black–Scholes
equation for S > Bl. If S is always greater than Bl, then it is a call option.
Therefore the final condition should be

co (S, T ) = max (S − E, 0) , for S > Bl.

The option becomes worthless if S ever reaches Bl, which means that the
boundary condition at S = Bl should be

co (Bl, t) = 0.

Therefore, the fair value of such an option should be the solution of the
problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂co
∂t

+
1

2
σ2S2 ∂co

∂S2
+ (r −D0)S

∂co
∂S

− rco = 0, S ≥ Bl, t ≤ T,

co (S, T ) = max (S − E, 0) , S ≥ Bl,

co (Bl, t) = 0, t ≤ T.

In order to find analytic solutions of European Barrier options, let us
consider the following problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) =

⎧
⎨

⎩

ϕ1 (S) , 0 ≤ S ≤ B,

ϕ2 (S) , B < S,

(4.1)
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where ϕ1 (S) and ϕ2 (S) are continuous functions and ϕ1 (B) = ϕ2 (B) might
not hold. Let us show that if the relation

ϕ1 (S) = −
(
B

S

)2(r−D0−σ2/2)/σ2

ϕ2

(
B2

S

)

or

ϕ2 (S) = −
(
B

S

)2(r−D0−σ2/2)/σ2

ϕ1

(
B2

S

)

holds, then the solution V (S, t) must satisfy the condition V (B, t) = 0.
As we know, the solution of the above problem can be expressed by

V (S, t) = e−r(T−t)
∫ ∞

0

V (S′, T )G (S′, T ;S, t) dS′,

where

G (S′, T ;S, t)

=
1

S′σ
√
2π (T − t)

e−[ln(S
′/S)−(r−D0−σ2/2)(T−t)]2/2σ2(T−t).

Therefore, V (B, t) = 0 is equivalent to
∫ ∞

0

V (S′, T )G (S′, T ;B, t) dS′

=

∫ B

0

ϕ1 (S
′)G (S′, T ;B, t) dS′ +

∫ ∞

B

ϕ2 (S
′)G (S′, T ;B, t) dS′

=

∫ B

∞
ϕ1

(
B2

S′′

)

G
(
B2/S′′, T ;B, t

)
(

− B2

S′′2

)

dS′′

+

∫ ∞

B

ϕ2 (S
′)G (S′, T ;B, t) dS′

=

∫ ∞

B

[

ϕ1

(
B2

S′

)
B2

S′2G
(
B2/S′, T ;B, t

)
+ ϕ2 (S

′)G (S′, T ;B, t)
]

dS′

= 0.

Thus if

ϕ1

(
B2

S′

)
B2

S′2G
(
B2/S′, T ;B, t

)
+ ϕ2 (S

′)G (S′, T ;B, t) = 0

holds for S′ ∈ (B,∞) and t ∈ [0, T ], then V (B, t) = 0 for t ∈ [0, T ]. Because

G
(
B2/S′, T ;B, t

)

G (S′, T ;B, t)
=

S′
B2 e

−[ln(B/S′)−(r−D0−σ2/2)(T−t)]2/2σ2(T−t)

1
S′ e−[ln(S′/B)−(r−D0−σ2/2)(T−t)]2/2σ2(T−t)

=
S′2

B2
e4 ln(B/S′)(r−D0−σ2/2)(T−t)/2σ2(T−t)

=

(
B

S′

)2(r−D0−σ2/2)/σ2−2
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is a function of S′, when ϕ1 and ϕ2 satisfy the relation

ϕ2 (S
′) = −

(
B

S′

)2(r−D0−σ2/2)/σ2

ϕ1

(
B2

S′

)

,

the condition V (B, t) = 0 holds. Let S′ =
B2

S′′ , then this relation can also be

rewritten as

ϕ2

(
B2

S′′

)

= −
(
S′′

B

)2(r−D0−σ2/2)/σ2

ϕ1 (S
′′) ,

or

ϕ1 (S
′) = −

(
B

S′

)2(r−D0−σ2/2)/σ2

ϕ2

(
B2

S′

)

.

Therefore we obtain our conclusion.
Now let us show that for the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, Bl ≤ S, t ≤ T,

V (S, T ) = VT (S) , Bl ≤ S,

V (Bl, t) = 0, t ≤ T,

(4.2)

the solution is

V (S, t) = e−r(T−t)
∫ ∞

Bl

VT (S′)G1 (S
′, T ;S, t, Bl) dS′,

where

G1 (S
′, T ;S, t, Bl) = G (S′, T ;S, t)

− (Bl/S)
2(r−D0−σ2/2)/σ2

G
(
S′, T ;B2

l /S, t
)
.

Usually G1 is called Green’s function of down-and-out option problems.1 Let
us set B = Bl and ϕ2(S) = VT (S) in the problem (4.1). From the result above
we know if

1Actually, G1 (S
′, T ;S, t, Bl) dS

′ is the probability of the price at time T being
in [S′, S′ + dS′] with the lowest price during the time period [t, T ] being greater
than Bl. Let us explain this fact. Consider all the paths of the price during the time
period [t, T ] that start from S at time t. For any path that hits the lower barrier, the
contribution to the option value is 0 because the option dies. Only those paths that
never hit the lower barrier have contribution to the option value. A path that never
hits the lower barrier S = Bl during the time period [t, T ] is a path whose lowest
price during the time period [t, T ] is greater than Bl. From the expression for V (S, t),
we see that the value of a down-and-out option is equal to the discounting factor
times an integral of the product of the payoff function and G1 (S

′, T ;S, t, Bl) on
[Bl,∞). Consequently, G1 (S

′, T ;S, t, Bl) dS
′ actually is the probability of the price

at time T being in [S′, S′ + dS′] with the lowest price during the time period [t, T ]
being greater than Bl. This fact will be used when we derive closed-form solutions
for lookback options in Sect. 4.4.3.
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ϕ1 (S) = − (Bl/S)
2(r−D0−σ2/2)/σ2

VT

(
B2
l /S
)
,

then the solution of the problem on [Bl,∞) is the solution of the problem
(4.2). Thus

V (S, t) = e−r(T−t)
[

−
∫ Bl

0

VT

(
B2
l

S′

)(
Bl
S′

)2(r−D0−σ2/2)/σ2

×G(S′, T ;S, t)dS′

+

∫ ∞

Bl

VT (S
′)G(S′, T ;S, t)dS′

]

= e−r(T−t)
[∫ Bl

∞
VT (S′′)

(
S′′

Bl

)2(r−D0−σ2/2)/σ2

×G(B2
l /S

′′, T ;S, t)
B2
l

S′′2 dS
′′

+

∫ ∞

Bl

VT (S
′)G(S′, T ;S, t)dS′

]

= e−r(T−t)
∫ ∞

Bl

VT (S′)

[

−
(
S′

Bl

)2(r−D0−σ2/2)/σ2−2

×
G
(
B2
l /S

′, T ;S, t
)

G (S′, T ;B2
l /S, t)

G
(
S′, T ;B2

l /S, t
)

+G (S′, T ;S, t)

]

dS′

= e−r(T−t)
∫ ∞

Bl

VT (S′)

[

G (S′, T ;S, t)

−
(
Bl
S

)2(r−D0−σ2/2)/σ2

G
(
S′, T ;B2

l /S, t
)
]

dS′

= e−r(T−t)
∫ ∞

Bl

VT (S′)G1 (S
′, T ;S, t, Bl) dS′.

Here we used the relation:

G
(
B2
l /S

′, T ;S, t
)

G (S′, T ;B2
l /S, t)

=

S′
B2

l
e−[ln(B

2
l /S

′S)−(r−D0−σ2/2)(T−t)]2/2σ2(T−t)

1
S′ e

−[ln(S′S/B2
l )−(r−D0−σ2/2)(T−t)]2/2σ2(T−t)

=
S′2

B2
l

e4 ln(B2
l /S

′S)(r−D0−σ2/2)(T−t)/2σ2(T−t)

=
S′2

B2
l

(
B2
l

S′S

)2(r−D0−σ2/2)/σ2

.
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Based on this result we know that if Bl ≤ E, then for S ≥ Bl,

co (S, t) = e−r(T−t)
∫ ∞

Bl

max (S′ − E, 0)G1 (S
′, T ;S, t, Bl) dS′

= e−r(T−t)
∫ ∞

0

max (S′ − E, 0)G1 (S
′, T ;S, t, Bl) dS′

= e−r(T−t)
∫ ∞

0

max (S′ − E, 0)G (S′, T ;S, t) dS′

−
(
Bl
S

)2(r−D0−σ2/2)/σ2

e−r(T−t)

×
∫ ∞

0

max (S′ − E, 0)G
(
S′, T ;B2

l /S, t
)
dS′

= c (S, t)−
(
Bl
S

)2(r−D0−σ2/2)/σ2

c

(
B2
l

S
, t

)

. (4.3)

The formula (4.3) is a closed-form solution for a down-and-out call option if
Bl ≤ E. From this formula, we know that the price of a down-and-out call
option is cheaper than the price of a vanilla call option. From the financial
point of view, it is clear that a holder of a down-and-out call option has less
rights than a holder of a vanilla call option and should pay less premium.
However, if the price is always greater than Bl (which is what a holder of
a call expects), then it is the same as a call. This is why a down-and-out
call option is so attractive for many people. The method used to derive this
formula is called the method of images because an “artificial” final condition
for S ∈ [0, Bl) is used, which is generated from the condition for S > Bl and
can be called an “image” of the condition for S > Bl.

Let us now consider a down-and-in European call option and let ci(S, t)
stand for its value. The option value ci (S, t) satisfies the Black–Scholes equa-
tion for S > Bl, and all we need to do is to determine the correct final and
boundary conditions. The down-and-in option expires worthless unless the as-
set price reaches the lower barrier Bl by expiry, i.e., if S has been greater than
Bl right up to time T , then the option is not activated and expires worthless.
Thus for S > Bl, the final condition is

ci (S, T ) = 0.

If the asset price S reaches Bl by expiry, then the option immediately turns
into a vanilla call and must have the identical value as the vanilla call.
The boundary condition is

ci (Bl, t) = c (Bl, t) .

Therefore, the fair value of a down-and-in option is the solution of the
following final-boundary value problem:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ci
∂t

+
1

2
σ2S2 ∂

2ci
∂S2

+ (r −D0)S
∂ci
∂S

− rci = 0, S ≥ Bl, t ≤ T,

ci (S, T ) = 0, S ≥ Bl,

ci (Bl, t) = c (Bl, t) , t ≤ T.

Let

c (S, t) = c (S, t)− ci (S, t) .

Because both c (S, t) and ci (S, t) satisfy the Black–Scholes equation, c (S, t)
also satisfies the same equation. The final and boundary conditions for
c (S, t) is

c (S, T ) = c (S, T )− ci (S, T ) = c (S, T ) = max (S − E, 0) ,

and

c (Bl, t) = c (Bl, t)− ci (Bl, t) = 0.

Therefore, c (S, t) actually is co(S, t). In other words, we have the identity:

c (S, t) = co (S, t) + ci (S, t) for S ≥ Bl.

According to this identity and using the expression for the fair value of a
down-and-out call, we have the fair value of a down-and-in option as follows:

ci(S, t) =

(
Bl
S

)2(r−D0−σ2/2)/σ2

c

(
B2
l

S
, t

)

for S ≥ Bl if Bl ≤ E. (4.4)

Obviously, co(S, t) = 0 and ci(S, t) = c(S, t) for S < Bl. Therefore the identity

c (S, t) = co (S, t) + ci (S, t)

still holds for S < Bl.
For a European up-and-out put option with Bu > E, the solution is similar

to the formula (4.3). It can also be shown that the sum of a European up-
and-out put option and a European up-and-in put option equals a European
vanilla put option. These problems are left for readers as a part of Problem 1
and Problem 3.

Solutions in closed form can still be obtained for more complicated cases.
For example, if Bl = bEe−α(T−t), where b and α are constants and b ∈ [0, 1]
and α ≥ 0, then such a solution for a down-and-out call with D0 = 0 is given
in the paper [63] by Merton and in the book [54] by Kwok. The solution for
D0 �= 0 can still be obtained (see Problem 4).

If Bl ≥ E , the closed-form solution for down-and-out call option can still
be obtained and it is
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co = Se−D0(T−t)N
(
d̃1(Bl)

)
− Ee−r(T−t)N

(
d̃1(Bl)− σ

√
T − t

)

− (Bl/S)
2(r−D0−σ2/2)/σ2

×
[
B2
l

S
e−D0(T−t)N

(
d̄1(Bl)

)
− Ee−r(T−t)N

(
d̄1(Bl)− σ

√
T − t

)]

,

where

d̃1(Bl) =

[

ln
Se(r−D0)(T−t)

Bl
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)
,

d̄1(Bl) =

[

ln
Ble

(r−D0)(T−t)

S
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)
.

For an up-and-out put option with Bu ≤ E, the closed-form solution can also
be obtained. Readers are asked to derive the closed-form formulae for both
cases as an exercise. If Bl ≥ E or Bu ≤ E, the total price of the knock-out
and knock-in options is still equal to the price of a vanilla option. Therefore,
from these two formulae, we can easily obtain the closed-form solutions for
a down-and-in call option with Bl ≥ E and for a up-and-in put option with
Bu ≤ E.

4.2.3 Formulation of American Barrier Options
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Fig. 4.1. Values of American down-and-out call options
with Bl = 0.8, 0.85, 0.9, 0.95, and an American vanilla call option

(r = 0.1, D0 = 0.05, σ = 0.2, T = 1 year, and E = 100)
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A barrier option could be an American one. As an example, here we give
the formulation of an American down-and-out call option. Let Co(S, t) be
its price. If D0 �= 0, then the American down-and-out call option problem with
Bl < E has a free boundary Sf (t). The solution between the free boundary
S = Sf (t) and S = Bl is determined by the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Co
∂t

+
1

2
σ2S2 ∂

2Co
∂S2

+ (r −D0)S
∂Co
∂S

− rCo = 0,

Bl ≤ S ≤ Sf (t), t ≤ T,

Co(S, T ) = max(S − E, 0), Bl ≤ S ≤ Sf (T ),

Co (Bl, t) = 0, t ≤ T,

Co(Sf (t), t) = Sf (t)− E, t ≤ T,

∂Co
∂S

(Sf (t), t) = 1, t ≤ T,

Sf (T ) = max

(

E,
rE

D0

)

.

(4.5)

The only difference between the formulations of a vanilla call and a down-and-
out call is that a boundary condition at S = Bl is imposed on the solution
of the down-and-out call option. The problem (4.5) will be referred to as the
free-boundary problem for American down-and-out call options.

For American and some other complicated European options, numerical
methods might become necessary. Some details on numerical methods for these
cases can be found in Chaps. 8 and 9. In Fig. 4.1, the prices of American down-
and-out call options withBl = 0.8, 0.85, 0.9, and 0.95 and the American vanilla
call option obtained by numerical methods are given. As we have pointed out
in the case of European barrier call options, the price of a barrier option is
cheaper than a vanilla option because the holder of a barrier option has less
rights than a holder of a vanilla option. Clearly, this should still be true for the
American case, and the greater Bl is, the lower the option price. Obviously,
the vanilla call option actually is a down-and-out call option with the smallest
Bl(= 0) and it has the highest value. This fact has been confirmed by the
figure. Indeed all these properties can be proved by using mathematical tools
just like the case of vanilla call options. These proofs are left for readers to do
as a part of Problem 2.

4.2.4 Parisian Options

A Parisian option is a barrier option with the feature that a knock-in or
knock-out event only occurs when the price of the underlying asset has been
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above or below the barrier price for a prescribed continuous length of time
if sampling is done continuously or for a prescribed number of contiguous
samples if sampling is done discretely (see [20, 37, 80]). As we know, if the
knock-in or knock-out event can be activated by one touch of the barrier, such
an event can be triggered by manipulating the price of the underlying asset
for a short time. Such a thing does not happen with a Parisian option.

Fig. 4.2. The area of computation for Parisian up-and-out options

Let us consider European Parisian up-and-out options with an upper bar-
rier Bu > E. Sampling is done continuously, and the prescribed length of
time is Td. Let td be the length of the time period of the stock price being
continuously greater than or equal to Bu. It is clear that the option price
depends on S, td, and t. Let V (S, td, t) be the option price, and let time t = 0
represent today. We need to find the option price for t ∈ [0, T ]. If S < Bu at
time t, then td must be 0 for that time. Therefore, V (S, td, t) should have a
value only for td = 0. Suppose that we have the stock price for t ∈ [−Td, 0],
so td can be defined on [0, Td] for any t ∈ [0, T ]. For t ∈ [0, T ] if S ≥ Bu
and td ≥ Td, then V (S, td, t) must be 0. Therefore, for any t ∈ [0, T ], we
only need to find V (S, td, t) on the interval [0, Bu)× [0, 0] and on the domain
[Bu,∞) × [0, Td] (see Fig. 4.2). For any S ∈ [0, Bu) and td = 0, V (S, 0, t)
satisfies the Black–Scholes equation:

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S < Bu, 0 ≤ t ≤ T.

If S ∈ [Bu,∞), then
td(t+ dt) = td(t) + dt,
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and
dtd
dt

= 1.

Therefore, according to the results in Sect. 2.3.2, V (S, td, t) should satisfy

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+
∂V

∂td
− rV = 0,

Bu ≤ S, 0 ≤ td ≤ Td, 0 ≤ t ≤ T.

Putting these two cases together, we have for t ∈ [0, T ]

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+H(S −Bu)

∂V

∂td
− rV = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td,

where

H(x) =

{
0, x < 0,
1, 0 ≤ x.

Now we consider the case of discrete sampling. Let sampling be done at
Tk = kT/K, k = 1, 2, · · · ,K, and let the prescribed number of contiguous
samples be N < K. In this case, for S ≥ Bu

dtd
dt

=
T

K

K∑

k=1

δ(t− Tk).

Therefore, V (S, td, t) should satisfy

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r−D0)S

∂V

∂S
+H(S−Bu)

T

K

K∑

k=1

δ(t−Tk)
∂V

∂td
−rV = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td, 0 ≤ t ≤ T,

where Td = NT/K. This partial differential equation can also be rewritten as
follows. For any t �= Tk, k = 1, 2, · · · ,K,

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td

and at t = Tk, k = 1, 2, · · · or K,

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S < Bu, td = 0,

V (S, td, T
−
k ) = V (S, td + T/K, T+

k ), Bu ≤ S, 0 ≤ td ≤ Td.
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Here, we have used the jump condition given in Sect. 2.5, and in order to
have the value V (S, Td + T/k, T+

k ) with S ≥ Bu, we need to use the fact
V (S, td, t) = 0 for S ≥ Bu and td ≥ Td.

Suppose that at time t the price is Bu and td is not equal to 0 and could
be very close to Td. If at time t + dt > t, S becomes less than Bu, then td
becomes 0. Thus, the situation S = Bu and td ∈ [0, Td] can easily become the
situation S = B−

u and td = 0. Consequently, we require

V (Bu, td, t) = V (Bu, 0, t), td ∈ (0, Td).

In order to determine the value of an option, we also need to give the value
of the option at time T . This is related to the type of the option. As an exam-
ple, we consider a European Parisian up-and-out call option. Let cp(S, td, t)
be its price. For this option, the payoff function is

cp(S, td, T ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max(S − E, 0), 0 ≤ S < Bu, td = 0,

max(S − E, 0) = S − E, Bu ≤ S, 0 ≤ td < Td,

0, Bu ≤ S, td = Td.

Consequently, when sampling is done continuously, cp(S, td, t) is the solu-
tion of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cp
∂t

+
1

2
σ2S2 ∂

2cp
∂S2

+ (r −D0)S
∂cp
∂S

+H(S−Bu)
∂cp
∂td

− rcp = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td, 0 ≤ t ≤ T,

cp(S, td, T ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max(S − E, 0), 0 ≤ S < Bu, td = 0,

S − E, Bu ≤ S, 0 ≤ td < Td,

0, Bu ≤ S, td = Td,
cp(Bu, td, t) = cp(Bu, 0, t), td ∈ (0, Td), 0 ≤ t ≤ T,

cp(S, Td, t) = 0, Bu ≤ S, 0 ≤ t ≤ T ;

(4.6)

and when sampling is done discretely, cp(S, td, t) satisfies
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cp
∂t

+
1

2
σ2S2 ∂

2cp
∂S2

+ (r −D0)S
∂cp
∂S

+H(S −Bu)
T

K

K∑

k=1

δ(t− Tk)
∂cp
∂td

− rcp = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td, 0 ≤ t ≤ T,

cp(S, td, T ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max(S − E, 0), 0 ≤ S < Bu, td = 0,

S − E, Bu ≤ S, 0 ≤ td < Td,

0, Bu ≤ S, td = Td,
cp(Bu, td, t) = cp(Bu, 0, t), td ∈ (0, Td), 0 ≤ t ≤ T,

cp(S, Td, t) = 0, Bu ≤ S, 0 ≤ t ≤ T.

(4.7)

Table 4.1. Parisian up-and-out call option prices

(r = 0.1, D0 = 0.05, σ = 0.25, E = 100, T = 0.5, and Bu = 150)

Td \ S 100 120 150

0 6.8669 12.1036 0

0.004 7.1806 13.9689 2.5134

0.02 7.3930 15.1938 4.8226

0.04 7.5759 16.6243 7.3770

0.08 7.7836 18.3608 11.3442

Solving the problems (4.6) or (4.7), we can have the price of Parisian up-
and-out call options. In Table 4.1 (see [58]), the prices of some Parisian up-and-
out call options are given. From there, we see that the larger the parameter
Td, the higher the Parisian up-and-out call option price. The financial reason
is clear. The larger the parameter Td, the less the chance of the event of
“up-and-out,” so the higher the option price.

4.3 Asian Options

4.3.1 Average Price, Average Strike, and Double Average Options

The Asian options are another type of popular path-dependent options. One of
Asian call options can be used by a company to reduce its risk in frequently
purchasing raw materials as pointed out in Sect. 4.1. It can also reduce the risk
in frequently selling foreign currency through buying a put whose payoff de-
pends on the difference between the exercise price and the average exchange
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rate. If the average exchange rate drops, the company can get some com-
pensation from the option for the loss in frequently selling foreign currency.
In practice, the asset price might be manipulated by some groups so that the
asset price can be at a certain level desired by the groups for a short period.
An Asian option may also protect option holders from the kind of asset price
manipulation that occurs, especially near the end of the option’s life.

Asian options can be divided into three types: average price, average strike,
and double average options, where average price options are also called average
rate options if the underlying asset is an exchange rate. Let A be some type of
average price, which depends on the path of the price. The payoff of an average
price option is a function of A−E, i.e., A is in the position of S. Sometimes, it
is also called an average value option. Here, the strike price is fixed. Therefore,
it is called a fixed strike Asian option as well. Let cpr(S,A, t) and ppr(S,A, t)
denote the prices of average price call and put options, respectively. For an
average price call option, its payoff is

cpr(S,A, T ) = max (A− E, 0) , (4.8)

whereas for an average price put option, the payoff is

ppr(S,A, T ) = max (E −A, 0) . (4.9)

In an average strike option, a payoff function depends on αS − A instead
of S − E, where α ≈ 1. Thus, it is also called a floating strike option. Let
cst(S,A, t) and pst(S,A, t) denote the prices of average strike call and put op-
tions, respectively. It is clear that the payoff of an average strike call option is

cst(S,A, T ) = max (αS −A, 0) (4.10)

and the payoff of an average strike put option is

pst(S,A, T ) = max (A− αS, 0) . (4.11)

A double average option has a payoff function of A − A1, where A is an
average over one period [Ts, Te] and A1 is an average over another period
[Ts1 , Te1 ]. Here, we assume Te ≤ Ts1 . In what follows, a double average call
option is referred to as an option with a payoff

max (A1 −A, 0) (4.12)

and a double average put option is an option with a payoff

max (A−A1, 0) . (4.13)

4.3.2 Continuously and Discretely Sampled Arithmetic Averages

Sampling for an arithmetic average may be done either continuously or
discretely. Suppose S (t) is the asset price at time t. A continuously sampled
average over [Ts, t] ⊂ [Ts, Te] is given by
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A =
1

t− Ts

∫ t

Ts

S (τ) dτ.

A discretely sampled average over t1, t2, · · · , tk is

A =
1

k

k∑

i=1

S (ti) .

In the following, we assume that over [Ts, Te] the price is sampled K times
at t1, t2, · · · , tK , where Ts = t1 < t2 < · · · < tK = Te. Assume tk ≤ t < tk+1.
Then, the discretely sampled average over t1, t2, · · · , tk can be rewritten as an
average over [Ts, t] ⊂ [Ts, Te] with a weight function

A =
1

∫ t

Ts

k∑

i=1

δ (τ − ti) dτ

∫ t

Ts

S (τ)

k∑

i=1

δ (τ − ti) dτ,

=
1

∫ t

Ts

K∑

i=1

δ (τ − ti) dτ

∫ t

Ts

S (τ)

K∑

i=1

δ (τ − ti) dτ,

where δ (t) is the Dirac delta function defined in Sect. 2.2.2. Therefore, an
average price over [Ts, t] ⊂ [Ts, Te] can be written as

A =
1

∫ t

Ts

f (τ) dτ

∫ t

Ts

S (τ) f (τ) dτ,

where

f (τ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if sampled continuously

K∑

i=1

δ (τ − ti) , if sampled at t1, t2, · · · , tK .

Here, A and f are defined on [Ts, Te]. We can extend the domain of A from
[Ts, Te] to [0, T ] ⊃ [Ts, Te] by defining

A =
1

∫ t

0

f (τ) dτ

∫ t

0

S (τ) f (τ) dτ, (4.14)

where

f (τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if τ /∈ [Ts, Te] ,

1, if τ ∈ [Ts, Te] and sampled continuously,

K∑

i=1

δ (τ − ti) , if sampled at t1, t2, · · · , tK .
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If we give another interval [Ts1 , Te1 ] or K1 specified times satisfying Ts1 =
t11 < t12 < · · · < t1K1

= Te1 , then we can define another function whose
domain is [0, T ]:

A1 =
1

∫ t

0

f1 (τ) dτ

∫ t

0

S (τ) f1 (τ) dτ, (4.15)

where

f1 (τ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if τ /∈ [Ts1 , Te1 ] ,

1, if τ ∈ [Ts1 , Te1 ] and sampled continuously,

K1∑

i=1

δ (τ − t1i) , if sampled at t11, t12, · · · , t1K1
.

Let us define I and I1 as follows:

I =
1

∫ T

0

f (τ) dτ

∫ t

0

S (τ) f (τ) dτ (4.16)

and

I1 =
1

∫ T

0

f1 (τ) dτ

∫ t

0

S (τ) f1 (τ) dτ. (4.17)

Because

A = I ·

∫ T

0

f (τ) dτ

∫ t

0

f (τ) dτ

,

A1 = I1 ·

∫ T

0

f1 (τ) dτ

∫ t

0

f1 (τ) dτ

and ∫ T

0

f (τ) dτ

∫ t

0

f (τ) dτ

and

∫ T

0

f1 (τ) dτ

∫ t

0

f1 (τ) dτ

are given functions of t, we can replace A by I or A1 by I1 as an independent
variable. Furthermore, we will discover in the next two subsections that for
some cases, it is more convenient to use I or DI = I − I1 as an independent
variable.
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4.3.3 Partial Differential Equations for Asian Options

Consider an option whose value V depends on three independent variables,
say, S, Y , t. Suppose S satisfies

dS = μSdt+ σSdX (4.18)

and for Y we have
dY = g (S, Y, t) dt. (4.19)

From Sect. 2.3.2, we know that V (S, Y, t) satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+ g

∂V

∂Y
− rV = 0. (4.20)

If we take
Y = A, I or DI = I − I1,

from the definitions (4.14), (4.16), and (4.17) we have

g =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S −A
∫ t
0
f (τ) dτ

f (t) , if Y = A,

1
∫ T
0
f (τ) dτ

Sf (t) , if Y = I,

1
∫ T
0
f (τ) dτ

Sf (t)− 1
∫ T
0
f1 (τ) dτ

Sf1 (t) , if Y = DI .

Therefore for these cases, we can have a partial differential equation that
involves A, I or DI besides S and t. For example, if the independent variables
are S, A, t, and the average is measured continuously, then V (S,A, t) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+
S −A

t− Ts

∂V

∂A
− rV = 0,

if t ∈ [Ts, Te] ,

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

if t /∈ [Ts, Te] ;

(4.21)

If the independent variables are S, I, t, and the average is measured discretely,
then V (S, I, t) satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+
S

K

K∑

i=1

δ (t− ti)
∂V

∂I
− rV = 0; (4.22)
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and if the independent variables are S, DI , t, and the average is measured
discretely, then V (S,DI , t) satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S

+S

[
1

K

K∑

i=1

δ (t− ti)−
1

K1

K1∑

i=1

δ (t− t1i)

]
∂V

∂DI

− rV = 0. (4.23)

For average price and average strike options, payoff functions at time T are
in the form of f(S,A) or f(S, I), so for a European option we can use Eq. (4.21)
or Eq. (4.22) and the payoff function to determine the value of the option.
For double average options, payoff functions at time T are in the form of
f(A−A1) = f(I−I1) = f(DI), so for a European option we can use Eq. (4.23)
and the payoff to compute the option price.

4.3.4 Reducing to One-Dimensional Problems

In the problems mentioned above, there are three independent variables.
Usually they are called two-dimensional problems as besides t, the values
depend on two independent variables. In many cases, such an Asian option
problem can be reduced to a one-dimensional problem, i.e., for a fixed t, the
solution depends only on one independent variable. If a problem can be re-
duced to a one-dimensional problem, the amount of computation needed to
obtain numerical solutions will be greatly decreased.

Let us consider an average strike call option. For this case, the payoff
function is max (αS −A, 0) . Let

η =
A

S
and W =

V

S
,

where the function W actually is the option value in units of the stock price,
and consider the case of continuous sampling. SupposeW is a function of η, t.
Because

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
= S

∂W

∂t
,

∂V

∂S
= S

∂W

∂η

∂η

∂S
+W =W − η

∂W

∂η
,

∂2V

∂S2
=
η2

S

∂2W

∂η2
,

∂V

∂A
=
∂W

∂η
,

(4.24)
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from Eq. (4.21) we know that W satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1− η

t− Ts

]
∂W

∂η
−D0W = 0,

if t ∈ [Ts, Te] ,

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+ (D0 − r) η

∂W

∂η
−D0W = 0,

if t /∈ [Ts, Te]

(4.25)

and from the payoff we have

W (η, T ) = max (α− η, 0) . (4.26)

Equation (4.25) with the final condition (4.26) has a solution, so for a Eu-
ropean average strike call option, we only need to solve a one-dimensional
problem. For a European average strike put option, the only difference is the
payoff.

In the case of an average being measured discretely and Ts = 0, the pro-
cedure above can still be used to reduce an original average strike option to a
one-dimensional problem (see Problem 6).

For an average price call option, the payoff is

max (A− E, 0) .

We cannot use the transformation mentioned above to reduce the problem
into a one-dimensional problem. However, if we consider the fact that the
value of the option is a function of S, I, t, and use the transformations

η =
I − E

S
, W =

V

S
,

then for such a European option, we still only need to solve a one-dimensional
problem in order to get its price. Here, taking a discretely sampled average
price call option as an example, we explain the situation. Let V = V (S, I, t),
then V is the solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+
S

K

K∑

i=1

δ (t− ti)
∂V

∂I
− rV = 0,

0 ≤ S <∞, 0 ≤ I <∞, t ≤ T,

V (S, I, T ) = max (A− E, 0) = max (I − E, 0) ,

0 ≤ S <∞, 0 ≤ I <∞.
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Let η =
I − E

S
, W =

V

S
. In this case, the first three relations in the set of

relations (4.24) are still true and

∂V

∂I
=
∂W

∂η
.

Furthermore, we have
W (η, T ) = max (η, 0) .

Therefore, W (η, t) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

K

K∑

i=1

δ (t− ti)

]
∂W

∂η

−D0W = 0, −∞ < η <∞, t ≤ T,

W (η, T ) = max (η, 0) , −∞ < η <∞.

(4.27)

That is, this problem can be reduced to a one-dimensional problem. For such a
put option or for such a continuously sampled option, the situation is similar.

For a European double average option, we can assume that the value of
such an option is a function of S,DI , t. In this case, we use the transformations

η =
DI

S
and W =

V

S
,

then determining the option price can be reduced to solving a one-dimensional
problem, and W satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η+
1

K

K∑

i=1

δ (t− ti)

− 1

K1

K1∑

i=1

δ (t− t1i)

]
∂W

∂η
−D0W = 0,

−∞ < η <∞, t ≤ T,

W (η, T ) = max (η, 0) or max (−η, 0) , −∞ < η <∞.

(4.28)

Reducing an Asian option problem to a one-dimensional problem can be
done in other ways. For example, see [46, 84, 68, 54, 3, 80].

4.3.5 Jump Conditions

As we can see from Sect. 4.3.4, when the average is measured discretely, at
the time a sample is taken, i.e., at t = ti ∈ T ≡ {t1, t2, · · · , tK} or t = t1i ∈ T1
≡ {t11, t12, · · · , t1K1

}, W satisfies
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∂W

∂t
+

1

K
δ (t− ti)

∂W

∂η
= 0

or
∂W

∂t
− 1

K1
δ (t− ti1)

∂W

∂η
= 0

respectively, as the other terms in the equations can be neglected in this case.
From Sect. 2.5.2, we know that W fulfills the relation

W
(
η, t−i

)
=W

(

η +
1

K
, t+i

)

(4.29)

for ti ∈ T and

W
(
η, t−1i

)
=W

(

η − 1

K1
, t+1i

)

(4.30)

for t1i ∈ T1. These relations will be referred to as the jump conditions for
Asian options with a discrete average and be used when W is determined if a
discretely sampled arithmetic average is adopted.

4.3.6 American Asian Options

Some Asian options could be American style. Let us consider an American
average strike call option with continuous sampling. Suppose [Ts, Te] = [0, T ].
In this case, V (S,A, t) needs to satisfy the following constraint on American
average strike call options:

V (S,A, t) ≥ max (αS −A, 0) for t ∈ [0, T ] ,

which is equivalent to

W (η, t) ≥ max (α− η, 0) for t ∈ [0, T ] .

Thus, for an American average strike call option, we still only need to solve a
one-dimensional problem. From Eq. (4.25), when we define

La,t =
1

2
σ2η2

∂2

∂η2
+

[

(D0 − r)η +
1− η

t

]
∂

∂η
−D0,

this American option should be the solution of the following linear comple-
mentarity problem:

⎧
⎪⎨

⎪⎩

min

(

−∂W
∂t

− La,tW, W (η, t)−max (α− η, 0)

)

= 0, 0 ≤ η, t ≤ T,

W (η, T ) = max (α− η, 0) 0 ≤ η.
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Now let us reformulate this problem as a free-boundary problem. In order
to do this, we need to find out how many free boundaries it has and where they
are located at time T . Theorem 3.1 in Sect. 3.1 tells us that these locations
are the boundaries between the regions where

(
∂

∂t
+ La,T

)

max (α− η, 0) ≥ 0

and the regions where

(
∂

∂t
+ La,T

)

max (α− η, 0) < 0.

First, we consider the case η > α. Because max (α− η, 0) = 0, we have

(
∂

∂t
+ La,T

)

max (α− η, 0) = 0.

Now let us look at the case η < α. In this case,

(
∂

∂t
+ La,T

)

max (α− η, 0) = −
[

(D0 − r) η +
1− η

T

]

−D0 (α− η)

= −αD0 + rη − 1− η

T
.

The inequality

−αD0 + rη − 1− η

T
> 0

is equivalent to

η >
1 + αD0T

1 + rT
.

Thus, when
1 + αD0T

1 + rT
< α, there exists an interval

(
1 + αD0T

1 + rT
, α

)

where
(
∂

∂t
+ La,T

)

max (α− η, 0) > 0. Therefore, if η > min

(

α,
1 + αD0T

1 + rT

)

, then

(
∂

∂t
+ La,T

)

max (α− η, 0) ≥ 0

and we can determine the solution by the partial differential equation; and if

η < min

(

α,
1 + αD0T

1 + rT

)

, then

(
∂

∂t
+ La,T

)

max (α− η, 0) < 0
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and the solution should be equal to α−η. Consequently, there is only one free

boundary at time T , the location of the free boundary is min

(

α,
1 + αD0T

1 + rT

)

,

and in the region η ≥ min

(

α,
1 + αD0T

1 + rT

)

, we need to solve the partial

differential equation. Let ηf (t) be the location function of the free boundary.
Then

ηf (T ) = min

(

α,
1 + αD0T

1 + rT

)

.

At the free boundary, the solution of the option and its derivative should be
continuous, i.e.,

⎧
⎪⎨

⎪⎩

W (ηf , t) = α− ηf ,

∂

∂η
W (ηf , t) = −1

should hold. Therefore, if

η ≥ ηf (t) ,

then W (η, t) should be the solution of the free-boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r)η +
1− η

t

]
∂W

∂η
−D0W = 0,

ηf (t) ≤ η, t ≤ T,

W (η, T ) = max (α− η, 0) , ηf (T ) ≤ η,

W (ηf , t) = α− ηf , t ≤ T,

∂W

∂η
(ηf , t) = −1, t ≤ T,

ηf (T ) = min

(

α,
1 + αD0T

1 + rT

)

;

(4.31)

while if

0 ≤ η < ηf (t) ,

then

W (η, t) = α− η.

This problem will be referred to as the free-boundary problem for American
average strike call options. For an American average strike put option, the
two-dimensional problem can also be reduced into a one-dimensional prob-
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lem. Furthermore the one-dimensional linear complementarity problem can
be converted into a free-boundary problem. We leave this as Problem 7 for
readers to derive.

For an American average price call option, V (S, I, t) satisfies

V (S, I, t) ≥ max (A− E, 0)

or

V (S, I, t)

S
≥ max (A− E, 0)

S
.

The right-hand side cannot be a function of η = (I − E)/S and t. Therefore,
for an American average price call option, we cannot use the method described
in Sect. 4.3.4 for reducing the problem to a one-dimensional problem. For an
American average rate put option, the situation is the same. This means that
it is necessary to solve a two-dimensional problem in these cases.

4.3.7 Some Examples

According to the equations, final conditions, boundary conditions, and jump
conditions given in Sect. 4.3.4–4.3.6, and using the numerical methods de-
scribed in Chaps. 8 and 9, we can obtain W (η, t) numerically and furthermore
find the option price by V = SW . In what follows, we give some results in
the forms of tables and figures.

Table 4.2. Average strike put option prices for various α

(r = 0.05, D0 = 0, σ = 0.2, S = 100, T = 1, Ts = 0.1, Te = 1.0, K = 10,
and the payoff = max (A− αS, 0))

Parameter α “Exact” solution

0.900 8.981655

0.925 7.175189

0.950 5.599918

0.975 4.267895

1.000 3.176202

1.025 2.308797

1.050 1.640145

1.075 1.139517

1.100 0.774976

In Table 4.2, we list the prices of European average strike put options
with various α. The other parameters are r = 0.05, D0 = 0, σ = 0.2, S = 100,
and T = 1. The number of discrete samplings K is 10 and tk = k/K, k =
1, 2, · · · ,K. From Table 4.2, we see that the price decreases as α increases.
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Table 4.3. Average price call option prices for various strike prices

(r = 0.05, D0 = 0, σ = 0.2, S = 100, T = 1, Ts = 0.1, Te = 1.0, K = 10,
and the payoff = max (A− E, 0))

Strike price E “Exact” solution

90.0 12.985323

92.5 11.050426

95.0 9.269009

97.5 7.659745

100.0 6.234515

102.5 4.997539

105.0 3.945496

107.5 3.068492

110.0 2.351591

The reason for this fact is clear: when α increases, the money the holder of the
option gets at expiry, the payoff max(A− αS), decreases or does not change.

Table 4.3 shows the results of European average price call options with
various strike prices. There, the parameters are the same as those in Table 4.2.
From Table 4.3, we see that the option price is a decreasing function of the
strike price E. The reason is as follows. When E increases, the money its
holder gets at expiry, the payoff max(A−E, 0), decreases or does not change.

European double average call option prices for various sampling intervals
Δt are listed in Table 4.4. For a given Δt = 0.1/2n−1, n being a positive
integer, tk = kΔt, k = 1, 2, · · · , 10 × 2n−2, and t1k1 = 0.5 + k1Δt, k1 =
1, 2, · · · , 10 × 2n−2. The data show that when the interval goes to 0, the
price tends to 5.813 · · · . As we know, when the interval goes to 0, discrete
sampling becomes continuous sampling. Therefore, the limit should be the
price of the option with continuous sampling. From the data, we also see
that if the length of interval is less than 0.025 (6.25 business days), then
the difference of the prices between an option with discrete sampling and
the option with continuous sampling is 10−2. Therefore, if such an error is
acceptable, we can use a continuous model to replace a discrete sampling
with an interval less than 0.025. Usually, the CPU time needed for continuous
sampling is less than that needed for a discrete model with a small Δt, so such
a replacement can save CPU time needed. Finally, we would like to point out
that in these tables, “exact” solution means that the error of these values is
about 10−6.

In Fig. 4.3, for an American average strike put option, the value of W (η, t)
as a function of η is given. The price of the option is V (S,A, t) = SW (A/S, t).
Thus if t > 0, then S and A need to be given, whereas if t = 0, then A = S
and only S needs to be given in order to find the price from the figure.
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Table 4.4. Double average call option prices with various sampling intervals Δt

(r = 0.05, D0 = 0, σ = 0.2, S = 100, T = 1,
Ts = Δt, Te = 0.5, Ts1 = 0.5 +Δt, Te1 = 1,

and the payoff = max (A1 −A, 0))

Sampling interval Δt (in years) “Exact” solution

0.1 5.872133

0.05 5.831998

0.025 5.820122

0.0125 5.816244

0.00625 5.814820

0.003125 5.814237

0.0015625 5.813978
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0.14

0.16
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t = 0.8
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t = 0.4
t = 0.2
t = 0.0

Fig. 4.3. W (η, t) of an American average strike put option
(r = 0.1, D0 = 0.1, σ = 0.2, and α = 1)

4.4 Lookback Options

4.4.1 Equations for Lookback Options

Sometimes the payoff of a derivative product depends on the maximum or
minimum realized asset price over the life of the option. Such an option is
called a lookback option. If the strike price in the payoff depends on the max-
imum or minimum, then the lookback option is called a lookback strike option
or a lookback option with a floating strike; whereas if the stock price in the
payoff is replaced by the maximum or minimum, then it is called a lookback
price option or a lookback option with fixed strike. When the underlying as-
set is an exchange rate, a lookback price option is also called a lookback rate
option. If the payoff is

max (αS − L, 0) ,
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where L is the minimum realized price and α is a constant satisfying

0 < α ≤ 1,

then the option is called a lookback strike call option; whereas if the payoff is

max (H − βS, 0) ,

where H is the maximum realized price and β is a constant satisfying

1 ≤ β,

then the option is called a lookback strike put option. Similarly, lookback price
call and put options have the payoffs

max (H − E, 0)

and
max (E − L, 0)

respectively. A person who holds a European lookback strike call option with
α = 1 can buy the underlying asset at the lowest realized price at expiration
time, and an investor who holds a European lookback strike put option with
β = 1 can sell the asset at the highest realized price. These attractive features
are the reason why there exist such options on the market.

As for Asian options, the maximum or minimum realized asset price may
be measured continuously, or more commonly, discretely. If it is measured
continuously, then

L (t) = min
0≤τ≤t

S (τ)

and
H (t) = max

0≤τ≤t
S (τ) .

If the sampling is done discretely and the sampling times are t1, t2, · · · , tK ,
where

0 ≤ t1 < t2 < · · · < tK ≤ T,

then
L (t) = min

(
S (t1) , · · · , S

(
ti∗(t)

))

and
H (t) = max

(
S (t1) , · · · , S

(
ti∗(t)

))
,

where i∗ (t) is the number of samplings before time t.
We see that the value V of such an option depends on not only S and t

but also L or H, i.e., V = V (S,L, t) or V (S,H, t). In what follows, let us find
out the concrete equation for the price of a lookback strike put option or a
lookback price call option. For such an option, V = V (S,H, t). First, suppose
discrete sampling is taken. In this case
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dH (t) =

⎧
⎨

⎩

0, if t �= ti, i = 1, 2, · · · ,K,

max
(
S (ti) , H

(
t−i
))

−H
(
t−i
)
, if t = ti, i = 1, 2, · · · , or K

and

dH (t)

dt
=

K∑

i=1

[
max

(
S (t) , H

(
t−
))

−H
(
t−
)]
δ (t− ti) ,

where
H
(
t−
)
= lim
ε→0

H (t− ε)

with ε > 0.
Suppose dS satisfies Eq. (4.18). According to the results given in Sect. 2.3.2,

V (S,H, t) satisfies Eq. (4.20) with g =
dH

dt
, i.e.,

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S

+
K∑

i=1

[
max

(
S (t) , H

(
t−
))

−H
(
t−
)]
δ (t− ti)

∂V

∂H
− rV = 0, 0 ≤ S, 0 ≤ H.

This means that at t �= ti, i = 1, 2, · · · ,K, V fulfills

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, 0 ≤ H (4.32)

and at t = ti, i = 1, 2, · · · , or K, the equation

∂V

∂t
+

K∑

i=1

[
max

(
S (t) , H

(
t−
))

−H
(
t−
)]
δ (t− ti)

∂V

∂H
= 0, 0 ≤ S, 0 ≤ H

holds. It is a hyperbolic equation, and the characteristic relation is

dH

dt
=

K∑

i=1

[
max

(
S (t) , H

(
t−
))

−H
(
t−
)]
δ (t− ti) .

According to the results given in Sect. 2.5, the solution of the characteristic
equation is

H
(
t+i
)
−H

(
t−i
)
= max

(
S (ti) , H

(
t−i
))

−H
(
t−i
)

or

H
(
t+i
)
= max

(
S (ti) , H

(
t−i
))
.

From this relation and the results given in Sect. 2.5, the solution of the hy-
perbolic equation above is
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V
(
S (ti) , H

(
t−i
)
, t−i
)
= V

(
S (ti) , H

(
t+i
)
, t+i
)

= V
(
S (ti) ,max

(
S (ti) , H

(
t−i
))
, t+i
)

or

V
(
S,H, t−i

)
= V

(
S,max (S,H) , t+i

)
, 0 ≤ S, 0 ≤ H. (4.33)

For simplicity, H stands forH
(
t−i
)
here. This is a jump condition for lookback

options with a discrete maximum.
Therefore, if the maximum realized asset price is measured discretely, the

price of a lookback strike put option or a lookback price call option satis-
fies Eqs. (4.32) and (4.33). Consequently, the price of a European lookback
strike put option is the solution of the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

if T ≥ t �= ti, i = 1, 2, · · · ,K,

V
(
S,H, t−i

)
= V

(
S,max (S,H) , t+i

)
,

if t = ti, i = 1, 2, · · · , or K,

V (S,H, T ) = max (H − βS, 0) ,

(4.34)

where
0 ≤ H, 0 ≤ S, and β ≥ 1.

For an American one, the solution must fulfill the constraint on American
lookback strike put options:

V (S,H, t) ≥ max (H − βS, 0) . (4.35)

Therefore, if the first equation in the problem (4.34) gives a value of V that is
less than the constraint max (H − βS, 0) at some point, the value should be
replaced by max (H − βS, 0). In this case, the formulation of problem can be
written as a linear complementarity problem.

For a lookback price call option, the final condition and the constraint are

V (S,H, T ) = max (H − E, 0) (4.36)

and

V (S,H, t) ≥ max (H − E, 0) (4.37)

respectively, and the value of V (S,H, t) is determined by the equation (4.32)
or the relation (4.33) before using the constraint.
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S0

H

V is unchanged

if S ≤ H

S = H

S∗

For any H ∈ [0,S∗ ]on the line S = S∗

V (S∗,H,ti
−) = V (S∗,S∗,ti+)

∂V (S∗,H,ti
−)

∂H
= 0,

where S∗ ∈ (0,∞).

Fig. 4.4. When t = ti a jump condition is used

Now let us derive the equation if continuous sampling is done. Equa-
tion (4.33) can be rewritten as

V
(
S,H, t−i

)
=

⎧
⎨

⎩

V
(
S, S, t+i

)
, if 0 ≤ S, 0 ≤ H < S,

V
(
S,H, t+i

)
, if 0 ≤ S, S ≤ H.

Therefore, from t+i to t−i ,

V
(
S,H, t−i

)
= V

(
S,H, t+i

)
if S ≤ H

and V
(
S,H, t−i

)
does not depend on H or

∂V

∂H

(
S,H, t−i

)
= 0 if 0 ≤ H < S

(see Fig. 4.4). Consequently, if S < H, then V (S,H, t) always satisfies the
Eq. (4.32) and if 0 ≤ H < S and max

0≤i≤K
(ti+1 − ti) is very small, where we let

t0 = 0 and tK+1 = T , then
∂V

∂H
should be very close to 0 because the condition

V
(
S,H, t−i

)
= V

(
S, S, t+i

)
for anyH < S is used very frequently. The solution

for t �= ti should be smooth, thus
∂V

∂H
(S, S, t) should be close to 0 and becomes

closer to 0 when max
0≤i≤K

(ti+1 − ti) goes to 0, i.e., when the measure becomes

continuous. Therefore, if sampling is done continuously, then the price of a
European lookback strike put option is determined by the problem
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

0 ≤ S ≤ H, t ≤ T,

V (S,H, T ) = max (H − βS, 0) , 0 ≤ S ≤ H,

∂V

∂H
(S, S, t) = 0, 0 ≤ S, t ≤ T.

(4.38)

For a European lookback price call option, the equation and the boundary
condition are the same. The final condition in the problem (4.38) should be
replaced by the condition (4.36). The constraint for an American option will
be unchanged if the measure is changed from discrete to continuous. Thus the
constraints for an American lookback strike put and price call options still
are the inequalities (4.35) and (4.37) respectively.

Similarly, if the minimum realized asset price is measured discretely, then
the price of a European lookback strike call option satisfies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

if T ≥ t �= ti, i = 1, 2, · · · ,K,

V
(
S,L, t−i

)
= V

(
S,min (S,L) , t+i

)
, if t = ti, i = 1, 2, · · · , or K,

V (S,L, T ) = max (αS − L, 0) ,

where
0 ≤ L, 0 ≤ S, and 0 < α ≤ 1.

If the asset price is measured continuously, then the price is the solution of
the problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ L ≤ S, t ≥ T,

V (S,L, T ) = max (αS − L, 0) , 0 ≤ L ≤ S,

∂V

∂L
(S, S, t) = 0, 0 ≤ S, t ≤ T.

For a European lookback price put option, the only change is that the final
condition should be replaced by

V (S,L, T ) = max (E − L, 0) .

Readers are asked to prove these results as exercises. Clearly, the constraints
for such American options are

V (S,L, t) ≥ max (αS − L, 0) or V (S,L, t) ≥ max (E − L, 0) .
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4.4.2 Reducing to One-Dimensional Problems

As with Asian options, some lookback option problems can be reduced to
one-dimensional problems.2 For example, a lookback strike put option can be
reduced to a one-dimensional problem. We show this here.

Let

η =
H

S

and

W =
V

S
.

Suppose W depends only on η and t. Using the first three relations in the set
of relations (4.24) and

∂V

∂H
=
∂W

∂η
,

the first equation in the problem (4.34) can be rewritten as

S
∂W

∂t
+

1

2
σ2S2 η

2

S

∂2W

∂η2
+ (r −D0)S

(

W − η
∂W

∂η

)

− rSW = 0

or
∂W

∂t
+ LηW = 0,

where

Lη =
1

2
σ2η2

∂2

∂η2
+ (D0 − r) η

∂

∂η
−D0,

and from the second and third relations in Eq. (4.34), we have

W
(
η, t−i

)
=
V
(
S,H, t−i

)

S

=
V
(
S,max (S,H) , t+i

)

S

= W
(
max (1, η) , t+i

)

and

W (η, T ) =
V (S,H, T )

S

=
max (H − βS, 0)

S
= max (η − β, 0) .

Therefore, it is true that the problem (4.34) can be reduced to the following
one-dimensional problem

2The way to reduce some lookback option problems to one-dimensional problems
is not unique (see [84, 54, 3, 80]).



192 4 Exotic Options

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W

∂t
+ LηW = 0, if T ≥ t �= ti, i = 1, 2, · · · ,K,

W
(
η, t−i

)
=W

(
max (1, η) , t+i

)
, if t = ti, i = 1, 2, · · · , or K,

W (η, T ) = max (η − β, 0) ,

(4.39)

where 0 ≤ η. This is a formulation of a European lookback strike put option
as a one-dimensional problem if sampling is done discretely. Similarly, the
problem (4.38) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+ LηW = 0, 1 ≤ η, t ≤ T,

W (η, T ) = max (η − β, 0) , 1 ≤ η,

∂W

∂η
(1, t) = 0, t ≤ T.

(4.40)

This is a formulation of a European lookback strike put option as a one-
dimensional problem if sampling is done continuously. The constraint for such
an American option, the constraint (4.35), can also be rewritten in a form
involving η only:

W (η, t) ≥ max (η − β, 0) . (4.41)

For a European lookback strike call option with continuous sampling, the
corresponding one-dimensional problem is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+ LηW = 0, 0 ≤ η ≤ 1, t ≤ T,

W (η, T ) = max (α− η, 0) , 0 ≤ η ≤ 1,

∂W

∂η
(1, t) = 0, t ≤ T,

where
η = L/S and W = V/S

and for a corresponding American option, the constraint is

W (η, t) ≥ max (α− η, 0) .

These are left for the reader to derive as exercises.
It is useful to write an American option problem as a linear complementar-

ity problem. Let us write the American lookback strike put problem as a linear
complementarity problem for the case of continuous sampling. Just like other
American options we have met, the price of the American lookback strike put
option is the solution of the following linear complementarity problem
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

(

−∂W
∂t

− LηW, W −max (η − β, 0)

)

= 0, 1 ≤ η, t ≤ T,

W (η, T ) = max (η − β, 0) , 1 ≤ η,

∂W

∂η
(1, t) = 0, t ≤ T.

For the lookback strike call option, similar results can be obtained (Prob-
lem 17).

4.4.3 Closed-Form Solutions for European Lookback Options

For some European lookback options with continuous sampling, the closed-
form solutions have been found. For example, such solutions for lookback
strike options with α = 1 or β = 1 were found by Goldman, Sosin, and Gatto
(see [34]). Later, Conze and Viswanathan (see [21]) derived explicit solutions
for the lookback strike options with α < 1 or β > 1 and the lookback price
options. In Kwok’s book [54] and Jiang’s book [49], some details of those
derivations are given.

In the following, we will derive the closed-form solution for a lookback
strike call option with α ≤ 1 in a way close to the way given in Jiang’s
book [49].

In order to find closed-form solutions of European lookback options, let us
consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W

∂t
+ LηW = 0, 0 ≤ η, t ≤ T,

W (η, T ) =

⎧
⎨

⎩

ϕ1 (η) , 0 ≤ η ≤ 1,

ϕ2 (η) , 1 < η,

(4.42)

where ϕ1 (η) and ϕ2 (η) are continuous functions, ϕ1 (1) = ϕ2 (1) might not
hold, and

Lη =
1

2
σ2η2

∂2

∂η2
+ (D0 − r) η

∂

∂η
−D0.

Let us show that if
⎧
⎪⎪⎨

⎪⎪⎩

ϕ1 (1) = ϕ2 (1) ,

dϕ1 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ2 (1/η)

dη
,
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or ⎧
⎪⎪⎨

⎪⎪⎩

ϕ2 (1) = ϕ1 (1) ,

dϕ2 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ1 (1/η)

dη
,

then
∂W (1, t)

∂η
= 0.

As we know, the solution of the above problem can be expressed by

W (η, t) = e−D0(T−t)
∫ ∞

0

W (η′, T ) G̃ (η′, T ; η, t) dη′,

where

G̃ (η′, T ; η, t) =
1

σ
√
2π (T − t)η′

e−[ln(η
′/η)−(D0−r−σ2/2)(T−t)]2/2σ2(T−t).

Let

G (η′, T ; η, t) = e−[ln(η
′/η)−(D0−r−σ2/2)(T−t)]2/2σ2(T−t).

For G (η′, T ; η, t) the following is true:

−η ∂G
∂η

= η′
∂G

∂η′
.

Then the expression for W (η, t) can be rewritten as

W (η, t) =
e−D0(T−t)

σ
√
2π (T − t)

∫ ∞

0

W (η′, T )
η′

G (η′, T ; η, t) dη′

and we can have

∂W (η, t)

∂η
=

e−D0(T−t)

σ
√
2π (T − t)

∫ ∞

0

W (η′, T )
η′

∂G (η′, T ; η, t)
∂η

dη′

=
−e−D0(T−t)

ησ
√
2π (T − t)

∫ ∞

0

W (η′, T )
∂G (η′, T ; η, t)

∂η′
dη′

=
−e−D0(T−t)

ησ
√
2π (T − t)

[

W (η′, T )G (η′, T ; η, t)
∣
∣
∣
∣

∞

0

−
∫ ∞

0

G (η′, T ; η, t)
∂W (η′, T )

∂η′
dη′
]

=
e−D0(T−t)

ησ
√
2π (T − t)

∫ ∞

0

G (η′, T ; η, t)
∂W (η′, T )

∂η′
dη′.
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Thus,
∂W (1, t)

∂η
= 0 is equivalent to that the last integral above at η = 1 is

equal to 0, i.e.,

∫ ∞

0

G (η′, T ; 1, t)
∂W (η′, T )

∂η′
dη′

=

∫ 1−

0

G (η′, T ; 1, t)
∂W (η′, T )

∂η′
dη′ +

∫ 1+

1−
G (η′, T ; 1, t)

∂W (η′, T )
∂η′

dη′

+

∫ ∞

1+
G (η′, T ; 1, t)

∂W (η′, T )
∂η′

dη′

=

∫ 1

0

G (η′, T ; 1, t)
dϕ1 (η

′)
dη′

dη′ + [ϕ2 (1)− ϕ1 (1)]G (1, T ; 1, t)

+

∫ ∞

1

G (η′, T ; 1, t)
dϕ2 (η

′)
dη′

dη′

= [ϕ2 (1)− ϕ1 (1)]G (1, T ; 1, t) +

∫ 1

0

G (η′, T ; 1, t)
dϕ1 (η

′)
dη′

dη′

+

∫ 0

1

G (1/η′, T ; 1, t)
dϕ2 (1/η

′)
d (1/η′)

d (1/η′)

= [ϕ2 (1)− ϕ1 (1)]G (1, T ; 1, t)

+

∫ 1

0

[

G (η′, T ; 1, t)
dϕ1 (η

′)
dη′

−G (1/η′, T ; 1, t)
dϕ2 (1/η

′)
dη′

]

dη′

= 0.

Consequently, if the two conditions

ϕ1 (1) = ϕ2 (1)

and
dϕ1 (η

′)
dη′

=
G (1/η′, T ; 1, t)
G (η′, T ; 1, t)

dϕ2 (1/η
′)

dη′

hold, then

∂W (1, t)

∂η
= 0.

Because

G (1/η′, T ; 1, t)
G (η′, T ; 1, t)

=
e−[ln η

′+(D0−r−σ2/2)(T−t)]2/2σ2(T−t)

e−[ln η′−(D0−r−σ2/2)(T−t)]2/2σ2(T−t)

= e−4 ln η′(D0−r−σ2/2)(T−t)/2σ2(T−t)

= (η′)2(r−D0+σ
2/2)/σ2

,
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the second condition above can be rewritten as

dϕ1 (η
′)

dη′
= (η′)2(r−D0+σ

2/2)/σ2 dϕ2 (1/η
′)

dη′
.

Thus when
⎧
⎪⎪⎨

⎪⎪⎩

ϕ1 (1) = ϕ2 (1) ,

dϕ1 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ2 (1/η)

dη
,

∂W (1, t)

∂η
= 0 holds. Let ξ =

1

η
. Then from

dξ = − 1

η2
dη = −ξ2dη

and the relation
dϕ2 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ1 (1/η)

dη
, we have

dϕ2 (η)

dη
=
dϕ2 (1/ξ)

−ξ−2dξ
= ξ−2(r−D0+σ

2/2)/σ2

· dϕ1 (ξ)

−ξ−2dξ
.

Thus
dϕ1 (ξ)

dξ
= ξ2(r−D0+σ

2/2)/σ2 dϕ2 (1/ξ)

dξ
,

or
dϕ1 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ2 (1/η)

dη
.

Therefore, from the result we have obtained we can further have that if

⎧
⎪⎪⎨

⎪⎪⎩

ϕ2 (1) = ϕ1 (1) ,

dϕ2 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ1 (1/η)

dη
,

then
∂W (1, t)

∂η
= 0 also holds.

Remark. The condition
∂W (1, t)

∂η
= 0 is also equivalent to

∫ ∞

0

W (η′, T )
∂G (η′, T ; 1, t)

∂η′
dη′

=

∫ 1

0

[

ϕ1 (η
′)
∂G (η′, T ; 1, t)

∂η′
− ϕ2 (1/η

′)
∂G (1/η′, T ; 1, t)

∂η′

]

dη′

= 0.
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However, we cannot find the relation between ϕ1 (η
′) and ϕ2 (η

′) by assuming

ϕ1 (η
′)
∂G (η′, T ; 1, t)

∂η′
− ϕ2 (1/η

′)
∂G (1/η′, T ; 1, t)

∂η′
= 0

because
∂G (η′, T ; 1, t)

∂η′
/∂G (1/η′, T ; 1, t)

∂η′
depends on not only η′ but also

T − t.

Let cls(S,L, t) denote the price of a European lookback strike call option.

As we know, set W =
cls (S,L, t)

S
and η =

L

S
, then W (η, t) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+ LηW = 0, 0 ≤ η ≤ 1, t ≤ T,

W (η, T ) = max (α− η, 0) , 0 ≤ η ≤ 1,

∂W

∂η
(1, t) = 0, t ≤ T,

(4.43)

where 0 < α ≤ 1.
From the result we just obtain, we know that if ϕ1(η) = max(α − η, 0)

and ϕ2(η) satisfies
dϕ2 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ1 (1/η)

dη
with ϕ2(1) = ϕ1(1),

then the solution of the problem (4.42) for η ∈ [0, 1] is the solution of the
problem (4.43). In order to find such a solution, first let us find ϕ2(η). In this

case ϕ1 (η) = α−η if η ∈ [0, α] and ϕ1 (η) = 0 for η ∈ (α, 1], so
dϕ1 (1/η)

dη
= 0

for η ∈ (1, 1/α) and
dϕ1 (1/η)

dη
= 1/η2 for η ∈ (1/α,∞). Thus from ϕ1(1) = 0,

we have ϕ2(η) = 0 for η ∈ (1, 1/α) and for η ∈ (1/α,∞),

ϕ2(η) = ϕ2(1/α) +

∫ η

1/α

dϕ2(η)

dη
dη =

∫ η

1/α

η2(r−D0+σ
2/2)/σ2−2dη

=
(η)

2(r−D0)/σ
2

− α−2(r−D0)/σ
2

2 (r −D0) /σ2
.

Here we assume r − D0 �= 0. Therefore if set τ = T − t, then for W (η, t)
we have
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W (η, t)

= e−D0τ

[∫ 1

0

ϕ1 (η
′) G̃ (η′, T ; η, t) dη′ +

∫ ∞

1

ϕ2 (η
′) G̃ (η′, T ; η, t) dη′

]

= e−D0τ

[∫ α

0

(α− η′) G̃ (η′, T ; η, t) dη′ +
∫ ∞

1/α

ϕ2 (η
′) G̃ (η′, T ; η, t) dη′

]

= e−D0τ

[

αN

⎛

⎜
⎝

ln
α

ηe(D0−r)τ + σ2τ/2

σ
√
τ

⎞

⎟
⎠

−ηe(D0−r)τN

⎛

⎜
⎝

ln
α

ηe(D0−r)τ − σ2τ/2

σ
√
τ

⎞

⎟
⎠

+
σ2

2 (r −D0)

∫ ∞

1/α

[
(η′)2(r−D0)/σ

2

− α−2(r−D0)/σ
2
]
G̃ (η′, T ; η, t) dη′

]

= e−D0τ

[

αN

(
ln (α/η) +

(
r −D0 + σ2/2

)
τ

σ
√
τ

)

−ηe(D0−r)τN

(
ln (α/η) +

(
r −D0 − σ2/2

)
τ

σ
√
τ

)

+
σ2

2 (r −D0)

(
ηe(D0−r)τ

)2(r−D0)/σ
2

· e[4(r−D0)
2/σ4−2(r−D0)/σ

2]σ2τ/2

×N
(
ln
(
αηe(D0−r)τ)− σ2τ/2 + 2 (r −D0) τ

σ
√
τ

)

− σ2

2 (r −D0)
α−2(r−D0)/σ

2

N

(
ln
(
αηe(D0−r)τ)− σ2τ/2

σ
√
τ

)]

= e−D0τ

[

αN

(
ln (α/η) +

(
r −D0 + σ2/2

)
τ

σ
√
τ

)

−ηe(D0−r)τN

(
ln (α/η) +

(
r −D0 − σ2/2

)
τ

σ
√
τ

)

+
σ2

2 (r −D0)
η2(r−D0)/σ

2

e−(r−D0)τN

(
ln (αη) +

(
r −D0 − σ2/2

)
τ

σ
√
τ

)

− σ2

2 (r −D0)
α−2(r−D0)/σ

2

N

(
ln (αη)−

(
r −D0 + σ2/2

)
τ

σ
√
τ

)]

,

and if set
μ = r −D0 − σ2/2,
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then for cls (S,L, t), we have

cls (S,L, t) = SW (η, t) = e−r(T−t)Ser(T−t)W (η, t)

= e−r(T−t)S

[
σ2

2 (r −D0)

(
L

S

)2(r−D0)/σ
2

N

(
ln (αL/S) + μ (T − t)

σ
√
T − t

)

− σ2

2 (r −D0)
α−2(r−D0)/σ

2

e(r−D0)(T−t)N

(
ln (αL/S)−

(
μ+ σ2

)
(T − t)

σ
√
T − t

)

+αe(r−D0)(T−t)N

(
ln (αS/L) +

(
μ+ σ2

)
(T − t)

σ
√
T − t

)

−L
S
N

(
ln (αS/L) + μ (T − t)

σ
√
T − t

)]

.

When r−D0 = 0, this expression cannot be used because r−D0 appears
on denominators. In this case for η ∈ (1/α,∞),

dϕ2 (η)

dη
= η−1 and ϕ2 (η) = ln η + lnα.

Thus we have

∫ ∞

1/α

ϕ2 (η
′) G̃ (η′, T ; η, t) dη′

=

∫ ∞

1/α

(ln η′ + lnα) G̃ (η′, T ; η, t) dη′

=
σ
√
τ√

2π
e−[ln(αη)−σ

2τ/2]
2
/2σ2τ +

(
ln η − σ2τ/2

)
N

(
ln(αη)− σ2τ/2

σ
√
τ

)

+ lnαN

(
ln(αη)− σ2τ/2

σ
√
τ

)

=
σ
√
τ√

2π
e−[ln(αη)−σ

2τ/2]
2
/2σ2τ +

[
ln(αη)− σ2τ/2

]
N

(
ln(αη)− σ2τ/2

σ
√
τ

)

and the expression usable in practice for cls (S,L, t) is

cls (S,L, t)

= e−r(T−t)S
{
[
ln (αL/S)− σ2 (T − t) /2

]
N

(
ln (αL/S)− σ2 (T − t) /2

σ
√
T − t

)

+
σ
√
T − t√
2π

e−[ln(αL/S)−σ
2(T−t)/2]2/2σ2(T−t)
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+αN

(
ln (αS/L) +

(
μ+ σ2

)
(T − t)

σ
√
T − t

)

−L
S
N

(
ln (αS/L) + μ (T − t)

σ
√
T − t

)}

.

This expression can also be obtained by finding the following limit:

lim
r−D0→0

σ2

2 (r −D0)

[(
L

S

)2(r−D0)/σ
2

N

(
ln (αL/S) + μ (T − t)

σ
√
T − t

)

−α−2(r−D0)/σ
2

e(r−D0)(T−t)N

(
ln (αL/S)−

(
μ+ σ2

)
(T − t)

σ
√
T − t

)]

.

In the above we have found the closed-form solution of the lookback strike
call option. In a similar way, we can also find a closed-form solution of the
lookback strike put option. Because a lookback price option problem cannot
be reduced to a one-dimensional problem by the way given in Sect. 4.4.2, we
cannot find a closed-form solution of a lookback price option in the way above.
However their closed-form solutions can be obtained in another way.

Suppose that t ≤ t′, and let S and S′ stand for the price at time t and
t′, respectively. Also let Lt

′
t be the lowest price during the time period [t, t′].

In this notation the lowest price during the time period [0, t] is Lt0. However
sometimes we also write it as L, i.e., we define L ≡ Lt0. Among Lt0, L

t′
0 , and

Lt
′
t , there is the relation Lt

′
0 = min

(
Lt0, L

t′
t

)
. Let V (S,Lt0, t) be the value of

a European option depending on S,Lt0, t. Suppose that we know

V
(
S′, Lt

′
0 , t

′
)
= V

(
S′,min

(
Lt0, L

t′
t

)
, t′
)
,

and we want to find V (S,Lt0, t). In this case, S′ and Lt
′
t are two random

variables, and the value of the European option at time t, V (S,Lt0, t), can be

expressed as the expectation of V
(
S′, Lt

′
0 , t

′
)
times a discounting factor:

V
(
S,Lt0, t

)
= e−r(t

′−t)

×
S∫

0

∞∫

Lt′
t

V
(
S′,min

(
Lt0, L

t′
t

)
, t′
)
g
(
S′, Lt

′
t ;S, t

′ − t
)
dS′dLt

′
t ,

where g
(
S′, Lt

′
t ;S, t

′ − t
)

is a two-dimensional probability density function

in the “risk-neutral” world, and we have used the fact that the two random
variables S′ and Lt

′
t appear only in the domain (the shaded area in Fig. 4.5):

0 ≤ Lt
′
t ≤ S and Lt

′
t ≤ S′ because of Lt

′
t ≤ S and Lt

′
t ≤ S′.
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S0

Lt
t

S

L

Lt
t =S Lt

t = Sa

Fig. 4.5. The area of integration for a lookback strike call option

From Sect. 4.2.2, the probability of the price at time t′ being in [S′, S′+dS′)
and the price during the time period [t, t′] never being lower than Lt

′
t is

G1

(
S′, t′;S, t, Lt

′
t

)
dS′,

where

G1

(
S′, t′;S, t, Lt

′
t

)
=

1

S′σ
√
2πτ ′

×
[

e−[ln(S
′/S)−μτ ′]

2
/2σ2τ ′

−
(
Lt

′
t /S

)2μ/σ2

e
−
[
ln
(
S′S/Lt′

t

2)−μτ ′
]2/

2σ2τ ′
]

.

In this expression, μ = r −D0 − σ2/2 and τ ′ = t′ − t. Thus, the probability

of the event S′∈ [S′, S′ + dS′) and Lt
′
t ∈
[
Lt

′
t , L

t′
t + dLt

′
t

)
is

g
(
S′, Lt

′
t ;S, t

′ − t
)
dS′dLt

′
t

= G1

(
S′, t′;S, t, Lt

′
t

)
dS′ −G1

(
S′, t′;S, t, Lt

′
t + dLt

′
t

)
dS′ = −∂G1

∂Lt
′
t

dS′dLt
′
t ,

that is,

g
(
S′, Lt

′
t ;S, t

′ − t
)
= −

∂G1

(
S′, t′;S, t, Lt

′
t

)

∂Lt
′
t

.
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Here we use the fact that indeed the function G1

(
S′, t′;S, t, Lt

′
t

)
depends on

S′, S, t′ − t and Lt
′
t . Because the first term in G1

(
S′, t′;S, t, Lt

′
t

)
does not

depend on Lt
′
t , g

(
S′, Lt

′
t ;S, t

′ − t
)
actually is equal to the partial derivative

of the second term with respect to Lt
′
t , i.e.,

g
(
S′, Lt

′
t ;S, t

′ − t
)
=
∂f1

(
S′, Lt

′
t ;S, t

′ − t
)

∂Lt
′
t

,

where

f1

(
S′, Lt

′
t ;S, t

′ − t
)
=

1

S′σ
√
2πτ ′

(
Lt

′
t

S

)2μ/σ2

e
−
[
ln
(
S′S/Lt′

t

2)−μτ ′
]2/

2σ2τ ′
.

It can be proved that g ≥ 0 if 0 ≤ Lt
′
t ≤ S and Lt

′
t ≤ S′. The function

g
(
S′, Lt

′
t ;S, t

′ − t
)

is usually called Green’s function for lookback options

depending on S,L, t. The proof of this result is left to readers as a part of
Problem 16.

In almost the same way we can find out Green’s function for lookback
options depending on S,H, t. Based on these Green’s functions, we can prove
that the value of an American option is not less than the value of the corre-
sponding European option and the value of such an American option at time
t∗ is not less than the value of this option at time t∗∗ if t∗ < t∗∗ by using
the method given in Sect. 3.1. Also when we have Green’s functions for such
lookback option problems, the closed-form solution for European lookback
strike/price options can be obtained in the following way which is close to the
way given in Kwok’s book [54].

Now let us find out the closed-form solution to the European lookback

strike call option by using g
(
S′, Lt

′
t ;S, t

′ − t
)
. For this option, the payoff is

cls (S,L, T ) = max (αS − L, 0) = max
(
αS −min

(
Lt0, L

T

t

)
, 0
)
.

We need to find cls (S,L, t) from cls (S,L, T ), so τ
′ = t′− t = T − t = τ . Hence

we have

cls (S,L, t)

= e−r(T−t)
S∫

0

∞∫

Lt′
t

max
(
αS′ −min

(
L,Lt

′
t

)
, 0
)
g
(
S′, Lt

′
t ;S, T − t

)
dS′dLt

′
t .

The integral here can be expressed in terms of the cumulative distribution
function for the standardized normal variable. In the procedure of finding
such an expression, in order to make writing short, instead of f1 (S

′, x;S, τ),
we just write it as f1 or f1 (S

′, x), x being Lt
′
t , S

′, L, S, or αS′. This procedure
is as follows. Because L ≤ S, we have
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S∫

0

∞∫

Lt′
t

max
(
αS′ −min

(
L,Lt

′
t

)
, 0
) ∂f1
∂Lt

′
t

dS′dLt
′
t

=

L∫

0

∞∫

Lt′
t

max
(
αS′ − Lt

′
t , 0
) ∂f1
∂Lt

′
t

dS′dLt
′
t

+

S∫

L

∞∫

Lt′
t

max (αS′ − L, 0)
∂f1
∂Lt

′
t

dS′dLt
′
t

=

L∫

0

∞∫

Lt′
t /α

(
αS′ − Lt

′
t

) ∂f1
∂Lt

′
t

dS′dLt
′
t +

S∫

L

S′
∫

L

max (αS′ − L, 0)
∂f1
∂Lt

′
t

dLt
′
t dS

′

+

∞∫

S

S∫

L

max (αS′ − L, 0)
∂f1
∂Lt

′
t

dLt
′
t dS

′

=

L/α∫

0

αS′
∫

0

(
αS′ − Lt

′
t

) ∂f1
∂Lt

′
t

dLt
′
t dS

′ +

∞∫

L/α

L∫

0

(
αS′ − Lt

′
t

) ∂f1
∂Lt

′
t

dLt
′
t dS

′

+

S∫

L

max (αS′ − L, 0) [f1 (S
′, S′)− f1 (S

′, L)] dS′

+

∞∫

S

max (αS′ − L, 0) [f1 (S
′, S)− f1 (S

′, L)] dS′

=

L/α∫

0

αS′f1 (S′, αS′) dS′ −
L/α∫

0

αS′
∫

0

Lt
′
t

∂f1
∂Lt

′
t

dLt
′
t dS

′

+

∞∫

L/α

αS′f1 (S′, L) dS′ −
∞∫

L/α

L∫

0

Lt
′
t

∂f1
∂Lt

′
t

dLt
′
t dS

′

+

S∫

L

max (αS′ − L, 0) f1 (S
′, S′) dS′

+

∞∫

S

max (αS′ − L, 0) f1 (S
′, S) dS′ −

∞∫

L/α

(αS′ − L) f1 (S
′, L) dS′
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=

L/α∫

0

αS′f1 (S′, αS′) dS′ −
L/α∫

0

⎡

⎣Lt
′
t f1|αS

′
0 −

αS′
∫

0

f1

(
S′, Lt

′
t

)
dLt

′
t

⎤

⎦ dS′

−
∞∫

L/α

⎡

⎣Lt
′
t f1

∣
∣
∣
L

0
−

L∫

0

f1

(
S′, Lt

′
t

)
dLt

′
t

⎤

⎦ dS′

+

S∫

L

max (αS′ − L, 0) f1 (S
′, S′) dS′

+

∞∫

S

max (αS′ − L, 0) f1 (S
′, S) dS′ +

∞∫

L/α

Lf1 (S
′, L) dS′

=

L/α∫

0

αS′
∫

0

f1

(
S′, Lt

′
t

)
dLt

′
t dS

′ +

∞∫

L/α

L∫

0

f1

(
S′, Lt

′
t

)
dLt

′
t dS

′

+

S∫

L

max (αS′ − L, 0) f1 (S
′, S′) dS′

+

∞∫

S

max (αS′ − L, 0) f1 (S
′, S) dS′

=

L∫

0

∞∫

Lt′
t /α

f1

(
S′, Lt

′
t

)
dS′dLt

′
t +

S∫

L

max (αS′ − L, 0) f1 (S
′, S′) dS′

+

∞∫

S

max (αS′ − L, 0) f1 (S
′, S) dS′.

Now let us find the result for each integral. The first integral is equal to

L∫

0

∞∫

Lt′
t /α

f1

(
S′, Lt

′
t

)
dS′dLt

′
t

=

L∫

0

∞∫

Lt′
t /α

1

S′σ
√
2πτ

(
Lt

′
t

S

)2μ/σ2

e
−
[
ln
(
S′S/Lt′

t

2)−μτ
]2/

2σ2τ
dS′dLt

′
t

=

L∫

0

(
Lt

′
t

S

)2μ/σ2

N

⎛

⎝
− ln S

αLt′
t

+ μτ

σ
√
τ

⎞

⎠ dLt
′
t
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=
S−2μ/σ2

2μ/σ2 + 1

L∫

0

N

⎛

⎝
ln

αLt′
t

S + μτ

σ
√
τ

⎞

⎠ d
(
Lt

′
t

)2μ/σ2+1

=
S−2μ/σ2

2μ/σ2 + 1

⎡

⎢
⎣

(
Lt

′
t

)2μ/σ2+1

N

⎛

⎝
ln

αLt′
t

S + μτ

σ
√
τ

⎞

⎠

∣
∣
∣
∣
∣
∣

L

0

−
L∫

0

(
Lt

′
t

)2μ/σ2+1

dN

⎛

⎝
ln

αLt′
t

S + μτ

σ
√
τ

⎞

⎠

⎤

⎥
⎦

=
σ2S−2μ/σ2

2 (r −D0)
L2μ/σ2+1N

(
ln αL

S + μτ

σ
√
τ

)

−σ
2S−2μ/σ2

2 (r −D0)

L∫

0

(
Lt

′
t

)2μ/σ2+1 1√
2π

e
−
[
ln
(
αLt′

t /S
)
+μτ

]2/
2σ2τ dLt

′
t

σ
√
τLt

′
t

=
σ2S

2 (r −D0)

(
L

S

)2(r−D0)/σ
2

N

(
ln αL

S + μτ

σ
√
τ

)

− σ2S

2 (r −D0)
α−2μ/σ2−1

× e

[
−μ2+(μ+σ2)

2
]
τ/2σ2

L∫

0

1√
2π

e
−
[
ln
(
αLt′

t /S
)
−(μ+σ2)τ

]2
/2σ2τ dLt

′
t

σ
√
τLt

′
t

=
σ2S

2 (r −D0)

(
L

S

)2(r−D0)/σ
2

N

(
ln αL

S + μτ

σ
√
τ

)

− σ2S

2 (r −D0)
α−2(r−D0)/σ

2

e(r−D0)τN

(
ln αL

S −
(
μ+ σ2

)
τ

σ
√
τ

)

.

If S > L/α, then the second and the third integrals can be written as

S∫

L

max (αS′ − L, 0) f1 (S
′, S′) dS′ +

∞∫

S

max (αS′ − L, 0) f1 (S
′, S) dS′

=

S∫

L/α

(αS′ − L) f1 (S
′, S′) dS′ +

∞∫

S

(αS′ − L) f1 (S
′, S) dS′

= α

S∫

L/α

S′ 1

S′σ
√
2πτ

(
S′

S

)2μ/σ2

e−[ln(S/S
′)−μτ]2/2σ2τdS′

−L
S∫

L/α

1

S′σ
√
2πτ

(
S′

S

)2μ/σ2

e−[ln(S/S
′)−μτ]2/2σ2τdS′
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+α

∞∫

S

S′ 1

S′σ
√
2πτ

e−[ln(S
′/S)−μτ]2/2σ2τdS′

−L
∞∫

S

1

S′σ
√
2πτ

e−[ln(S
′/S)−μτ]2/2σ2τdS′

= αSe

[
−μ2+(μ+σ2)

2
]
τ/2σ2

S∫

L/α

1

S′σ
√
2πτ

e−[ln(S
′/S)−(μ+σ2)τ]

2
/2σ2τdS′

−Le[−μ
2+μ2]τ/2σ2

S∫

L/α

1

S′σ
√
2πτ

e−[ln(S
′/S)−μτ]2/2σ2τdS′

+αSe

[
−μ2+(μ+σ2)

2
]
τ/2σ2

∞∫

S

1

S′σ
√
2πτ

e−[ln(S
′/S)−(μ+σ2)τ]

2
/2σ2τdS′

−L
∞∫

S

1

S′σ
√
2πτ

e−[ln(S
′/S)−μτ]2/2σ2τdS′

= αSe(r−D0)τ

∞∫

L/α

1

S′σ
√
2πτ

e−[ln(S
′/S)−(μ+σ2)τ]

2
/2σ2τdS′

−L
∞∫

L/α

1

S′σ
√
2πτ

e−[ln(S
′/S)−μτ]2/2σ2τdS′

= αSe(r−D0)τN

(
− ln L

αS +
(
μ+ σ2

)
τ

σ
√
τ

)

− LN

(
− ln L

αS + μτ

σ
√
τ

)

.

If S ≤ L/α, then for the second and the third integrals, we have

S∫

L

max (αS′ − L, 0) f1 (S
′, S′) dS′ +

∞∫

S

max (αS′ − L, 0) f1 (S
′, S) dS′

=

∞∫

L/α

(αS′ − L) f1 (S
′, S) dS′

= α

∞∫

L/α

S′ 1

S′σ
√
2πτ

e−[ln(S
′/S)−μτ]2/2σ2τdS′

−L
∞∫

L/α

1

S′σ
√
2πτ

e−[ln(S
′/S)−μτ]2/2σ2τdS′
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= αSe(r−D0)τ

∞∫

L/α

1

S′σ
√
2πτ

e−[ln(S
′/S)−(μ+σ2)τ]

2
/2σ2τdS′

−L
∞∫

L/α

1

S′σ
√
2πτ

e−[ln(S
′/S)−μτ]2/2σ2τdS′

= αSe(r−D0)τN

(
− ln L

αS +
(
μ+ σ2

)
τ

σ
√
τ

)

− LN

(
− ln L

αS + μτ

σ
√
τ

)

.

Thus, the results are the same for S ≤ L/α and S > L/α. Consequently, the
price of the European lookback strike call option is

cls(S,L, t)

= e−rτS

[
σ2

2 (r −D0)

(
L

S

)2(r−D0)/σ
2

N

(
ln αL

S +
(
r −D0 − σ2/2

)
τ

σ
√
τ

)

− σ2

2 (r −D0)
α−2(r−D0)/σ

2

e(r−D0)τN

(
ln αL

S −
(
r −D0 + σ2/2

)
τ

σ
√
τ

)

+αe(r−D0)τN

(
ln αS

L +
(
r −D0 + σ2/2

)
τ

σ
√
τ

)

−L
S
N

(
ln αS

L +
(
r −D0 − σ2/2

)
τ

σ
√
τ

)]

.

This is a closed-form solution for a lookback strike call option with α ≤ 1.
From this formula, we know that cls/S is a function of L/S and t, so cls/S is
a solution of a one-dimensional problem.

Using a similar procedure, we can have explicit formulae for lookback
strike put options and lookback price options. We leave these for readers as
Problems 12–14.

4.4.4 American Options Formulated as Free-Boundary Problems

First, consider the American lookback strike put option with continuous sam-
pling. In Sect. 4.4.2, this problem was formulated as a LC problem. Here let us
formulate this problem as a free-boundary problem. According to Theorem 3.1
in Sect. 3.1, we need to check

(
∂

∂t
+ Lη

)

max (η − β, 0) .

When η < β, we have
(
∂

∂t
+ Lη

)

max (η − β, 0) = 0;
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and when β < η, we obtain

(
∂

∂t
+ Lη

)

max (η − β, 0) = (D0 − r)η −D0(η − β) = −rη + βD0.

The inequality −rη + βD0 > 0 is equivalent to η < βD0/r. Therefore, when
βD0/r > β, there exists an interval [β, βD0/r] where

(
∂

∂t
+ Lη

)

max (η − β, 0) > 0;

when βD0/r < β, no such an interval exists. Thus when

η < βmax (1, D0/r) ,

we have (
∂

∂t
+ Lη

)

max (η − β, 0) ≥ 0.

Otherwise, i.e., when
βmax (1, D0/r) < η,

we have (
∂

∂t
+ Lη

)

max (η − β, 0) < 0.

Consequently, at time T there is only one free boundary, and its location is
βmax (1, D0/r). Let V (S,H, t) be the price of an American lookback strike put
option. In Sect. 3.1.2, for American vanilla options we proved that V (S, t∗) ≥
V (S, t∗∗) if t∗ < t∗∗. For American lookback options, the situation is similar.
By the same method it can be proved3 that

V (S,H, t∗) ≥ V (S,H, t∗∗) if t∗ < t∗∗.

From this inequality, we can further have

W (η, t∗) ≥W (η, t∗∗) if t∗ < t∗∗.

Therefore, no new free boundary can appear at t < T . Consequently, the
rectangular domain [1,∞)× [0, T ] can be divided into two parts:

[1, ηf (t)]× [0, T ]

and
(ηf (t) ,∞)× [0, T ] ,

where the curve η = ηf (t) is the free boundary with ηf (T ) = βmax (1, D0/r) .
In the left region, the price of the American option, W , satisfies the partial
differential equation in the linear complementarity problem, and in the right

3A similar problem is given as a part of Problem 16 for readers to prove.
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region, W is equal to max (η − β, 0). That is, in the left region, the solution
of the following free-boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+ (D0 − r) η

∂W

∂η
−D0W = 0,

1 ≤ η ≤ ηf (t) , t ≤ T,

W (η, T ) = max (η − β, 0) , 1 ≤ η ≤ ηf (T ) ,

∂W

∂η
(1, t) = 0, t ≤ T,

W (ηf , t) = ηf − β, t ≤ T,

∂W

∂η
(ηf , t) = 1, t ≤ T,

ηf (T ) = βmax (1, D0/r)

(4.44)

provides the price of the American option, and in the domain (ηf (t) ,∞) ×
[0, T ], the value ofW is max (η − β, 0). We will call the problem (4.44) the free-
boundary problem for American lookback strike put options. This problem
has boundary conditions on the both sides, which is similar to the American
barrier options but different from American vanilla options and American
Asian options.

Using the same procedure, we can find that in the domain [ηf (t) , 1]×[0, T ]
the price of an American lookback strike call option with continuous sampling
is the solution of the free-boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+ (D0 − r) η

∂W

∂η
−D0W = 0,

ηf (t) ≤ η ≤ 1, t ≤ T,

W (η, T ) = max (α− η, 0) , ηf (T ) ≤ η ≤ 1,

W (ηf , t) = α− ηf , t ≤ T,

∂W

∂η
(ηf , t) = −1, t ≤ T,

∂W

∂η
(1, t) = 0, t ≤ T,

ηf (T ) = αmin (1, D0/r) ;

(4.45)

whereas in the domain [0, ηf (t)) × [0, T ], the value of W is max (α− η, 0).
This is left for readers as a part of Problem 17.
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4.4.5 A Closed-Form Solution for a Perpetual American Lookback
Option

In Sect. 3.3.5, closed-form solutions for perpetual American vanilla options
were derived. Here, a closed-form solution for a perpetual American lookback
option will be derived. As explained in Sect. 3.3.5, a perpetual option means
an option with T = ∞. Because T = ∞, the solution does not depend on t
and the final condition. Let us look at a perpetual American lookback option
that depends on S and H and satisfies the constraint V ≥ H. This option is
called the Russian option (see [29]). We again let η = H/S andW = V/S. The
constraint now should be W ≥ η. Therefore, from the procedure to derive the
problem (4.44), we can see that the free-boundary problem for this case is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ2η2

d2W

dη2
+ (D0 − r) η

dW

dη
−D0W = 0, 1 ≤ η ≤ ηf ,

dW (1)

dη
= 0,

W (ηf ) = ηf ,

dW (ηf )

dη
= 1,

where ηf is a number representing the location of the free boundary. Let us
look for a solution of the ordinary differential equation in the form ηα. After
substituting this function into the equation, we know that α is a root of the
quadratic equation

1

2
σ2α2 +

(

D0 − r − 1

2
σ2

)

α−D0 = 0.

Therefore, the solution of the problem is in the form

W = C+

(
η

ηf

)α+

+ C−

(
η

ηf

)α−

,

where

α+ =

−D0 + r +
1

2
σ2 +

√(

D0 − r − 1

2
σ2

)2

+ 2σ2D0

σ2

and

α− =

−D0 + r +
1

2
σ2 −

√(

D0 − r − 1

2
σ2

)2

+ 2σ2D0

σ2
.
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Consequently, these boundary conditions become

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dW (1)

dη
= C+α+η

−α+

f + C−α−η
−α−
f = 0,

W (ηf ) = C+ + C− = ηf ,

dW (ηf )

dη
= C+α+η

−1
f + C−α−η−1

f = 1.

From the last two equations, we have

C+ (1− α+) + C− (1− α−) = 0.

Comparing this equation with C+α+η
−α+

f + C−α−η
−α−
f = 0, we know

1− α+

1− α−
=
α+η

−α+

f

α−η
−α−
f

,

which gives

ηf =

[
α+ (1− α−)
α− (1− α+)

]
1

α+ − α− .

From C+ + C− = ηf and C+ (1− α+) + C− (1− α−) = 0, we have

C+ =
ηf (1− α−)
α+ − α−

,

C− =
−ηf (1− α+)

α+ − α−
.

Therefore, the solution of the free-boundary problem is

W (η) =
ηf

α+ − α−

[

(1− α−)
(
η

ηf

)α+

− (1− α+)

(
η

ηf

)α−]

and the price of a Russian option is

V (S,H) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ηfS

α+ − α−

[

(1− α−)
(
H

ηfS

)α+

− (1− α+)

(
H

ηfS

)α−]

,

if 1 ≤ H

S
< ηf ,

H, if ηf ≤ H

S
.
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Using the method given in Sect. 3.3.5 for perpetual American call option, it
is not difficult to show that this function is a solution of the LC problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

(

−
[
1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV

]

, V (S,H)−H

)

= 0,

0 ≤ S ≤ H,

∂V

∂H
(S, S) = 0, 0 ≤ S.

This is left for readers to prove as a part of Problem 19. If D0 = 0, then
α− = 0 and ηf = ∞, implying that there is no free boundary in this case.

4.4.6 Lookback-Asian Options

Suppose the sampling is done discretely. An option could depend on the aver-
age of N largest or smallest sampled prices. For example, an European option
could have such a payoff function

max

(
1

N

N∑

n=1

Sn − S, 0

)

, (4.46)

where Sn is the nth largest sampled price during a time period [0, T ], T being
the expiry. Let us call it a European lookback-Asian option. Consider the
following scenario. During the peak season of July–September, the price of
electricity might be very high for only a few days, and it is uncertain about
how high the price will be. Therefore, there is a risk for consumers of electricity.
In October, the price of electricity is normal, so if the expiry of the option is in
October, a holder of such an option will receive certain amount of money that
is proportional to the difference between the average of uncertain high prices
and the normal price. Therefore, a consumer of electricity can be protected
from the risk if the consumer holds such an option. Consequently, in May
or so, electricity companies sell options with a payoff function (4.46) and an
expiry in October, which are interesting for many companies who consume a
large amount of electricity.

Let us assume that S satisfies

dS = μSdt+ σ(t)SdX,

where dX is a Wiener process. In this model, we require that σ(t) is a function
of t so that it is possible to have a big volatility in one period, for example, in
July–September, and to have a normal volatility in other periods, for example,
in May and in October.

Now let us determine
dSn
dt

. Suppose that sampling is performed at t = ti,

i = 1, 2, · · · ,K with K ≥ N , and 0 < t1 < t2 < · · · < tK < T . Let Sn(t
−
i ) and
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Fig. 4.6. Different Sn(t
+
i ) for three cases

Sn(t
+
i ) denote the nth largest price before and after the sampling procedure

at t = ti, respectively, and let S be the price at t = ti. In this case, S1(t
+
i ) is

determined by S and S1(t
−
i ) according to the following relation:

S1(t
+
i ) =

⎧
⎨

⎩

S1(t
−
i ), if S ≤ S1(t

−
i ),

S, if S1(t
−
i ) < S

or
S1(t

+
i ) = max(S, S1(t

−
i )).

For 1 < n ≤ N , Sn(t
+
i ) can be expressed by S, Sn−1(t

−
i ), and Sn(t

−
i ) as

follows (see Fig. 4.6):

Sn(t
+
i ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sn(t
−
i ), if S ≤ Sn(t

−
i ),

S, if Sn(t
−
i ) < S ≤ Sn−1(t

−
i ),

Sn−1(t
−
i ), if Sn−1(t

−
i ) < S

or4

Sn(t
+
i ) = max(min(S, Sn−1(t

−
i )), Sn(t

−
i )).

Therefore at t = ti

dSn
dt

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
max(S, S1(t

−
i ))− S1(t

−
i )
]
δ (t− ti) , if n = 1,

[
max(min(S, Sn−1(t

−
i )), Sn(t

−
i ))− Sn(t

−
i )
]
δ (t− ti) ,

if n = 2, 3, · · · , N.

If t �= ti, i = 1, 2, · · · ,K, then
dSn
dt

= 0. Let V (S, S1, S2, · · · , SN , t) denote

the price of the option. From Sect. 2.3, we know that V satisfies

4Sn(t
+
i ) can also be expressed as Sn(t

+
i ) = min(Sn−1(t

−
i ),max(S, Sn(t

−
i ))).
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∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+

N∑

n=1

∂V

∂Sn

dSn
dt

− rV = 0. (4.47)

At t �= ti, i = 1, 2, · · · ,K, because
dSn
dt

= 0, this equation reduces to

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0; (4.48)

whereas at t = ti, i = 1, 2, · · · , or K, according to Sect. 2.5, V satisfies the
following jump condition:

V (S, S−
1 , S

−
2 , · · · , S−

N , t
−
i ) = V (S,max(S, S−

1 ),max(min(S, S−
1 ), S−

2 ),

· · · ,max(min(S, S−
N−1), S

−
N ), t+i ), (4.49)

where S−
n stands for Sn(t

−
i ). This is the jump condition for lookback-Asian

options.
In order to get the solution of this problem, it might be necessary to use

numerical methods. This problem actually is an (N+1)-dimensional problem,
so solving such a problem is very time-consuming. In order to reduce the time
needed to get a numerical solution, we can reduce it to an N -dimensional
problem by letting

ξ =
S

SN

, ξ1 =
S1

SN

, · · · , ξN−1 =
SN−1

SN

,

and

U(ξ, ξ1, · · · , ξN−1, t) =
V (S, S1, · · · , SN−1, SN , t)

SN

.

Moreover, in this case we need to solve a problem defined on an infinite do-
main. As pointed out in Sect. 2.2.5, it is not convenient to solve a problem
on an infinite domain numerically. In order to avoid such a problem, we can
transform the problem on an infinite domain to a problem on a finite domain
by using a way similar to the way given in Sect. 2.2.5.

4.4.7 Some Examples

In this subsection, we give some results for some of those problems formulated
in the previous subsections. These results are obtained by using the numerical
methods in Part II.

In Fig. 4.7, the functionW (η, t) of an American lookback strike call option
with continuous sampling for t = 0, 0.2, 0.4, 0.6, 0.8 is shown. From the figure,
we know that W (η, t) = V (S,L, t)/S is a decreasing function in η = L/S, i.e.,
if S is fixed, then V (S,L, t) is a decreasing function in L. This is because the
value of the payoff max(S−L, 0) decreases or does not change as L increases.
The lowest price up to time t is of course less than or equal to the price at
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Fig. 4.7. W (η, t) of an American lookback strike call option
(r = 0.1, D0 = 0.05, σ = 0.2, and α = 1)
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Fig. 4.8. The free boundary of an American lookback strike call option
(r = 0.1, D0 = 0.05, σ = 0.2, and α = 1)

time t. Thus, η = L/S must be less than or equal to 1. Therefore, for a fixed
t, the price has a minimum at η = L/S = 1. The minimum price at t = 0
is 16.37% of S, which is much higher than 9.94%—the value for the vanilla
case with S = E. In Fig. 4.8, the location of the free boundary on (η, t)-plane
is also given, which is a monotone function in t.
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In Table 4.5, today’s prices of some lookback strike put options with dis-
crete sampling are given. The parameters are given there. The sampling times
are tk = t0+(2k− 1)T/2K, k = 1, 2, · · · ,K, where t0 is the time today. Both
European and American option prices are given. From the table, we see that
the American option prices are about 9% higher than the European option
prices for these cases. The table also shows that the larger the number K, the
higher the price. This is because H and the payoff max(H − S, 0) increase or
do not change as K increases. For comparison, the values of the vanilla op-
tions are also given. From those values, we can see that the prices of lookback
options are much higher than those of the corresponding vanilla options.

Table 4.5. Lookback strike put option prices

(r = 0.1, D0 = 0.05, σ = 0.2, S = H = 100, T = 1, and β = 1)

K = 48 K = 24 K = 12 K = 6 K = 3 Vanilla

European option 11.865 11.283 10.499 9.535 8.456 5.302

American option 12.893 12.280 11.452 10.427 9.277 5.928

4.5 Multi-Asset Options

Sometimes an option involves several assets. Such an option is called a multi-
asset option. For example, a U.S. company buys raw materials from foreign
country A and sells its product in foreign country B. Its income depends on
the exchange rates of the currencies of the foreign countries A and B. The
higher the exchange rate of the currency of country A, the higher the cost,
and the higher the exchange rate of the currency of country B, the higher the
revenue. Here, an exchange rate of a foreign currency is referred to as the price
of one unit of the foreign currency in U.S. dollars. Therefore, the company
is interested in an option of exchanging the currency of country B into the
currency of country A with a fixed rate because such an option protects the
company from the exchange rate risk. Such an option involves two assets and
is called an exchange option or a cross-currency option. Besides this, there
are many options involving more than one asset. For example, options on the
maximum or the minimum of several assets, multi-asset call/put options, and
basket options are such options. This section is devoted to such options.

In this section, first we give the equation and Green’s formula of solution
of European multi-asset options. Then, we study the exchange options and
options on the extremum of several assets. If these options are European,
it is possible to express their solution in terms of multivariate cumulative
normal distribution functions. Derivation of such expressions are given when
we study them. Finally, the formulation of multi-asset option problems on a
finite domain is given, which is useful when such a option problem has to be
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solved numerically, and such American option problems are briefly mentioned.
Kwok in his book [54] gave an excellent summary on multi-asset options. For
more details on this subject, readers are referred to that book.

4.5.1 †Equations for Multi-Asset Options and Green’s Formula

Consider an option dependent on n assets. Let Si be the price of the ith
underlying asset and V (S1, S2, · · · , Sn, t) represent the price of the option.
For simplicity, V (S1, S2, · · · , Sn, t) is sometimes written as V (S, t), S being
(S1, S2, · · · , Sn)T . Suppose that Si satisfies

dSi = μiSidt+ σiSidXi, 0 ≤ Si, (4.50)

and the ith asset pays a dividend D0iSidt in a time step dt. dXi = φi
√
dt,

i = 1, 2, · · · , n, are Wiener processes. φ1, φ2, · · · , φn have a joint normal
distribution and

E [φiφj ] = ρij , i, j = 1, 2, · · · , n. (4.51)

It is clear that ρij = ρji and ρii = 1, i = 1, 2, · · · , n. Let us call ρij the
correlation coefficient between the two standardized normal random variables
associated with Si and Sj , or simply, the correlation coefficient between Si
and Sj . According to Sect. 2.3, V (S, t) satisfies
⎧
⎨

⎩

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n∑

i=1

(r −D0i)Si
∂V

∂Si
− rV = 0,

0 ≤ S, 0 ≤ t ≤ T,
(4.52)

where the inequality 0 ≤ S means 0 ≤ Si, i = 1, 2, · · · , n, and similar notation
will be used later on. Suppose the payoff function of an option is

V (S, T ) = VT (S), 0 ≤ S, (4.53)

we need to evaluate the price of the option dependent on n assets and with
the payoff above.

In what follows, we assume that μi, σi and D0i are constants and that the
option is European, and we want to find the solution in an integral form. Let
V (S, t) = e−r(T−t)V (S, t). Because

∂V

∂t
= rV + e−r(T−t) ∂V

∂t
,

∂V

∂Si
= e−r(T−t) ∂V

∂Si
,

∂2V

∂Si∂Sj
= e−r(T−t) ∂2V

∂Si∂Sj
,
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we know that V (S, t) is the solution of the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n∑

i=1

(r −D0i)Si
∂V

∂Si
= 0,

0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = VT (S), 0 ≤ S.

(4.54)

Furthermore, we introduce the following transformation

⎧
⎪⎨

⎪⎩

yi =

√
2

σi
[lnSi + (r −D0i − σ2

i /2)(T − t)], i = 1, 2, · · · , n,

τ = T − t,

and let V 1(y, τ) = V (S, t), where y stands for (y1, y2, · · · , yn)T . Noticing

∂V

∂t
= −∂V 1

∂τ
−

n∑

i=1

√
2

σi

(

r −D0i −
σ2
i

2

)
∂V 1

∂yi
,

∂V

∂Si
=

√
2

σiSi

∂V 1

∂yi
,

∂2V

∂S2
i

= −
√
2

σiS2
i

∂V 1

∂yi
+

2

σ2
i S

2
i

∂2V 1

∂y2i
,

∂2V

∂Si∂Sj
=

2

σiσjSiSj

∂2V 1

∂yi∂yj
, i �= j,

we can rewrite the problem above as follows:

⎧
⎪⎨

⎪⎩

∂V 1

∂τ
=

n∑

i=1

n∑

j=1

ρij
∂2V 1

∂yi∂yj
, −∞ < y <∞, 0 ≤ τ ≤ T,

V 1(y, 0) = V1T (y), −∞ < y <∞,

(4.55)

where
V1T (y) = VT

(
eσ1y1/

√
2, eσ2y2/

√
2, · · · , eσnyn/

√
2
)
.

Define

P =

⎡

⎢
⎢
⎢
⎣

1 ρ12 · · · ρ1n
ρ21 1 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · 1

⎤

⎥
⎥
⎥
⎦
.

Because P should be a symmetric positive definite matrix, there exists an
orthogonal matrix5 Q and a diagonal positive definite matrix Λ such that

5If Q−1 = QT , which is equivalent to QQT = I or QTQ = I, then Q is called
an orthogonal matrix.
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P = QΛQT = QΛ1/2Λ1/2QT , P−1 = QΛ−1/2Λ−1/2QT

and
Λ−1/2QTPQΛ−1/2 = I.

Let

R = Λ−1/2QT ≡

⎡

⎢
⎢
⎢
⎣

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

⎤

⎥
⎥
⎥
⎦
,

then the relations above can further be rewritten as

P−1 = RTR

and
RPRT = I

or in component form

n∑

i=1

n∑

j=1

rliρijrkj = δlk, l, k = 1, 2, · · · , n.

Now we define new variables as follows:

x ≡

⎡

⎢
⎢
⎢
⎣

x1
x2
...
xn

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

y1
y2
...
yn

⎤

⎥
⎥
⎥
⎦

and further rewrite the partial differential equation in the problem (4.55) as

∂V 1

∂τ
=

n∑

i=1

n∑

j=1

ρij
∂2V 1

∂yi∂yj

=
n∑

i=1

n∑

j=1

[

ρij

n∑

l=1

n∑

k=1

rlirkj
∂2V 2

∂xl∂xk

]

=

n∑

l=1

n∑

k=1

δlk
∂2V 2

∂xl∂xk

=
n∑

l=1

∂2V 2

∂x2l
,

where V 2(x, τ) = V 1(y, τ). Consequently, the problem is now reduced to
⎧
⎪⎨

⎪⎩

∂V 2(x, τ)

∂τ
=

n∑

l=1

∂2V 2(x, τ)

∂x2l
, −∞ < x <∞, 0 ≤ τ ≤ T,

V 2(x, 0) = V2T (x), −∞ < x <∞,

(4.56)
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where V2T (x) = V1T (R
−1x). Similar to the one-dimensional case, the func-

tion6

φ(x0;x, τ) =
1

(4πτ)n/2
e
−

n∑

i=1
(xi−xi0)

2/(4τ)

is a solution to the equation above, where xi0, i = 1, 2, · · · , n are constants,
and x0 stands for (x10, x20, · · · , xn0)T . This can be verified by finding the

derivatives
∂φ

∂τ
,
∂2φ

∂x2l
, l = 1, 2, · · · , n and substituting them in the equation

above. It can also be shown straightforwardly that

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
φ(x0;x, τ)dx10dx20 · · · dxn0 = 1

and

lim
τ→0

φ(x0;x, τ) =

⎧
⎨

⎩

∞, at x = x0,

0, otherwise.

Therefore, the expression

V 2(x, τ) =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
V2T (x0)φ(x0;x, τ)dx10dx20 · · · dxn0

is a solution to the problem (4.56), which shows how V (x, τ) depends on the
solution at τ = 0, V2T (x0). This is left as an exercise to readers. Consequently,
the solution of Eq. (4.52) with condition (4.53) is

V (S, t)

= e−r(T−t)
∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
V2T (x0)φ(x0;x, τ)dx10dx20 · · · dxn0

= e−r(T−t)
∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

VT (S
′)φJx0y0

Jy0S′dS′
1dS

′
2 · · · dS′

n

= e−r(T−t)
∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

VT (S
′)ψ(S′;S, t)dS′

1dS
′
2 · · · dS′

n. (4.57)

Here, y0 = (y10, y20, · · · , yn0)T = R−1x0. Jx0y0
and Jy0S′ are the Jacobians

of the transformation from x0 to y0 and from y0 to S′:

Jx0y0
=
∂(x10, x20, · · · , xn0)
∂(y10, y20, · · · , yn0)

= detR =
1√

detP
,

Jy0S′ =
∂(y10, y20, · · · , yn0)
∂(S′

1, S
′
2, · · · , S′

n)
=

n∏

i=1

√
2

σiS′
i

6This function is referred to as Green’s function for the n-dimensional heat equa-
tion.
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and

ψ(S′;S, t) = φJx0y0
Jy0S′

=
1

(4πτ)n/2
e−(x0−x)T (x0−x)/(4τ) · 1√

detP
·
n∏

i=1

√
2

σiS′
i

=
1

(2πτ)n/2
√
detP

n∏

i=1

(σiS′
i)
e−η

TRTRη/2

=
1

(2πτ)n/2
√
detP

n∏

i=1

(σiS′
i)
e−η

TP−1η/2, (4.58)

where η = (y0 − y)/
√
2τ , y0 standing for R−1x0, and its ith component is

ηi (S
′
i) =

1√
2τ

(√
2

σi
lnS′

i − yi

)

=
lnS′

i −
[
lnSi + (r −D0i − σ2

i /2)τ
]

σi
√
τ

.

The expression (4.57) is called Green’s formula. For some payoff function
VT (S), it can be written in terms of multivariate cumulative distribution
functions for standardized normal variables, which will be called multivari-
ate cumulative distribution functions for brevity in what follows, and we can
have closed-form solutions. In Sect. 4.5.3, some examples will be given. If σi
depends on Si, it might be necessary to use numerical methods to price those
options.

4.5.2 Exchange Options

Sometimes, a two-asset option problem can be reduced to a one-asset op-
tion, and its closed-form solution can be found for such a European option.
Exchange options on two assets is such an example.

An exchange option is a contract that gives its holder a right to exchange
certain assets for some other assets. In this subsection, we consider an ex-
change option to exchange nB shares of asset B for nA shares of asset A.
Suppose SA and SB are the prices of assets A and B, respectively. Let

{
S1 = nASA,
S2 = nBSB.

Then, the payoff function of the exchange option is

max(nASA − nBSB, 0) = max(S1 − S2, 0).

Therefore, if we consider nA shares of asset A as an asset Ā, and nB shares of
asset B as an asset B̄, then the exchange option is an option to exchange an
asset B̄ for another asset Ā. Suppose that SA and SB satisfy
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⎧
⎨

⎩

dSA = μ1SAdt+ σ1SAdX1,

dSB = μ2SBdt+ σ2SBdX2,
(4.59)

where dX1 and dX2 satisfy

E [dX1dX2] = ρ12dt.

Then, using Itô’s lemma, we have
⎧
⎨

⎩

dS1 = μ1S1dt+ σ1S1dX1,

dS2 = μ2S2dt+ σ2S2dX2.

Thus, S1 and S2 have the same volatilities as SA and SB, respectively. The
dividend yields related to the assets A and Ā are the same, and for the assets
B and B̄, this is also true. In what follows, D01 and D02 denote the dividend
yields related to the assets A and B, respectively. Let V (S1, S2, t) be the
value of a European exchange option. According to Sect. 4.5.1, V should be
the solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ρ12σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

+(r −D01)S1
∂V

∂S1
+ (r −D02)S2

∂V

∂S2
− rV = 0,

0 ≤ S1, 0 ≤ S2, 0 ≤ t ≤ T,

V (S1, S2, T ) = max(S1 − S2, 0), 0 ≤ S1, 0 ≤ S2.

(4.60)

This is a two-dimensional problem, but it can be reduced to a one-dimensional
problem. In fact, let

W =
V

S2
and ξ =

S1

S2
,

then we have

∂V

∂t
= S2

∂W

∂t
,

∂V

∂S1
=
∂W

∂ξ
,

∂2V

∂S2
1

=
∂2W

∂ξ2
1

S2
,

∂2V

∂S1∂S2
=

−ξ
S2

∂2W

∂ξ2
,

∂V

∂S2
= W − ξ

∂W

∂ξ
,

∂2V

∂S2
2

=
ξ2

S2

∂2W

∂ξ2
,

and the problem (4.60) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
(σ2

1 − 2ρ12σ1σ2 + σ2
2)ξ

2 ∂
2W

∂ξ2
+ (D02 −D01)ξ

∂W

∂ξ

−D02 W = 0, 0 ≤ ξ, 0 ≤ t ≤ T,

W (ξ, T ) = max(ξ − 1, 0), 0 ≤ ξ.

(4.61)
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This is a European call option problem with r = D02, D0 = D01, E = 1, and

σ = σ12 ≡
√

σ2
1 − 2ρ12σ1σ2 + σ2

2 .

Hence
W (ξ, t) = ξe−D01(T−t)N(d10)− e−D02(T−t)N(d20),

where

d10 =
ln
ξe−D01(T−t)

e−D02(T−t) +
σ2
12

2
(T − t)

σ12
√
T − t

and
d20 = d10 − σ12

√
T − t.

Therefore

V (S1, S2, t) = S1e
−D01(T−t)N(d10)− S2e

−D02(T−t)N(d20)

= nASAe
−D01(T−t)N(d10)− nBSBe

−D02(T−t)N(d20), (4.62)

where

d10 =
ln
nASAe

−D01(T−t)

nBSBe−D02(T−t) +
σ2
12

2
(T − t)

σ12
√
T − t

and
d20 = d10 − σ12

√
T − t.

Maryrabe [60] derived this closed-form solution with D01 = D02 = 0, and
Rumsey [70] and Brooks [15] gave this closed-form solution and called this
exchange option a cross-currency option because the assets there were foreign
currencies.

An exchange option could be an American option. We can also introduce

the transformation W =
V

S2
and ξ =

S1

S2
and reduce the two-dimensional

problem to a one-dimensional problem. W is the solution of an American call
option with

σ =
√

σ2
1 − 2ρ12σ1σ2 + σ2

2 , r = D02, D0 = D01 and E = 1.

After finding W (ξ, t), the function V is given by

V = S2W

(
S1

S2
, t

)

= nBSBW

(
nASA

nBSB

, t

)

.
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4.5.3 †Options on the Extremum of Several Assets

The price of certain European multi-asset options can be expressed in terms
of multivariate cumulative distribution functions. Options on the extremum
of several assets are such options. In this subsection, we first explain how
these options appear in practice. Then, the price expression of such European
options in terms of multivariate cumulative distribution functions are derived
out if the volatilities, the interest rate, and the dividend yields are constants.

0

S2

S0

S0

S2

S1

S1

S1 = S2

Fig. 4.9. The maximum values on three domains for options
with a payoff max(S0, S1, S2)

Let us consider a zero-coupon bond that at maturity date T pays, at the
choice of holder, either Z0 units of domestic currency, ZA units of currency of
country A, or ZB units of currency of country B. Let SA denote the domestic
price of currency of country A and SB that of country B. Then, the payment
at maturity (payoff) is max(Z0, SAZA, SBZB). Let S0 = Z0, S1 = SAZA, and
S2 = SBZB, then the payoff function of the option on the maximum among
two assets and cash becomes

max(S0, S1, S2).

The question is what is the present value of the option. The value depends on
S1, S2, and t. Let r be the interest rate of domestic currency. Suppose that SA

and SB are governed by the system of equations (4.59) and that the interest
rates of currencies of the countries A and B are D01 and D02, respectively. As
shown previously, S1 and S2 satisfy the same stochastic differential equations
as SA and SB, and the dividend yields for the assets S1 and S2 also are D01

and D02. Therefore, the value of the bond, V (S1, S2, t), is the solution of the
problem
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ρ12σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

+(r −D01)S1
∂V

∂S1
+ (r −D02)S2

∂V

∂S2
− rV = 0,

0 ≤ S1, 0 ≤ S2, 0 ≤ t ≤ T,

V (S1, S2, T ) = max(S0, S1, S2), 0 ≤ S1, 0 ≤ S2.

(4.63)

This problem is usually called a European option on the maximum of assets
S0, S1, and S2. From the formula (4.57), the solution of the problem (4.63) is

V (S1, S2, t) = e−r(T−t)
∫ ∞

0

∫ ∞

0

max(S0, S
′
1, S

′
2)ψ(S

′;S, t)dS′
1dS

′
2

= e−r(T−t)
∫ S0

0

∫ S0

0

S0ψ(S
′;S, t)dS′

1dS
′
2

+ e−r(T−t)
∫ ∞

S0

∫ S′
1

0

S′
1ψ(S

′;S, t)dS′
2dS

′
1

+ e−r(T−t)
∫ ∞

S0

∫ S′
2

0

S′
2ψ(S

′;S, t)dS′
1dS

′
2. (4.64)

In the expression, there are three terms that represent the contributions to
the solution from the three domains (see Fig. 4.9):

0 ≤ S′
1 ≤ S0, 0 ≤ S′

2 ≤ S0; S0 ≤ S′
1, 0 ≤ S′

2 ≤ S′
1;

and
S0 ≤ S′

2, 0 ≤ S′
1 ≤ S′

2.

Indeed, every term in Eq. (4.64) can be expressed in terms of the cumula-
tive distribution function for the bivariate standard normal distribution7

N2(x1, x2; ρ) =
1

2π
√
1− ρ2

∫ x2

−∞

∫ x1

−∞
e−

1
2 (η

2
1−2ρη1η2+η

2
2)/(1−ρ2)dη1dη2,

(4.65)

7The value of this function has to be obtained by numerical methods. Here we
write down the approximate expression derived in [26] by Drezner and Wesolovsky
with the coefficients based on the abscissas and weight factors for Gaussian inte-
gration of

∫ 1

−1
f(x)dx on p. 916 of the handbook [1] by Abramowity and Stegum

(editors). When |ρ| < 0.7, it is approximated by

ρ
5∑

i=1

{

Wie
[Xiρx1x2− 1

2
(x2

1+x2
2)]

/
[1−(Xiρ)

2]/√
1− (Xiρ)2

}

+N(x1)N(x2);
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where ρ is a parameter. Stulz gave such a result in [75]. Later, Johnson [50]
improved the method for deriving this result. Here, we show how every term
in the expression (4.64) can be expressed in terms of the function (4.65). Let
us begin with looking at the first term. Noticing the concrete expression (4.58)
for ψ, we have

e−r(T−t)
∫ S0

0

∫ S0

0

S0ψ(S
′;S, t)dS′

1dS
′
2

= e−rτS0

∫ S0

0

∫ S0

0

1

2πτ
√
detPσ1σ2S′

1S
′
2

e−η
TP−1η/2dS′

1dS
′
2

= e−rτS0

∫ η2(S0)

−∞

∫ η1(S0)

−∞

1

2π
√
detP

e−η
TP−1η/2dη1dη2

when |ρ| ≥ 0.7, it is approximated by

N2(x1, x2; sgn (ρ))− sgn (ρ)ae−x1x
′
2/2

{
1

6π

(
3− cb2 + ca2) e−b2/(2a2)

− 1

3
√
2π

b

a

(
3− cb2

)
N(−b/a) +

5∑

i=1

Wie
− b2

2y2
i

[
e−x1x

′
2/(1+

√
1−y2

i )

e−x1x
′
2/2

√
1− y2

i

− 1− cy2
i

]}

,

where

W1 = 0.0188540425, W2 = 0.0380880594, W3 = 0.0452707394,

W4 = 0.0380880594, W5 = 0.0188540425,

X1 = 0.0469100770, X2 = 0.2307653449, X3 = 0.5000000000,

X4 = 0.7692346551, X5 = 0.9530899230,

sgn(ρ) =

{
1, if ρ ≥ 0,
−1, if ρ < 0,

N2(x1, x2; 1) = N(min(x1, x2)), N2(x1, x2;−1) = max(0, N(x1)−N(−x2)),

x′
2 = sgn(ρ)x2, a =

√
1− ρ2, b = |x1 − x′

2|, c = (4− x1x
′
2)/8,

yi = aXi, i = 1, 2, 3, 4, 5.

The authors claim that for any x1, x2, −1 ≤ ρ ≤ 1, its maximum error is 2× 10−7.
However in the FORTRAN program given in that paper there are two typos. In the
book [43] by Hull, another approximate expression given in [25] by Drezner is also
shown. (In order to know how to get its coefficients of expression, see the paper [74]
by Steen, Byrne, and Gelbard.) Its accuracy is four decimal places and, averagely
speaking, it needs more computational time than the expression shown here.
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= e−rτS0N2

⎛

⎜
⎜
⎝

ln
S0

S1
−
(

r −D01 −
σ2
1

2

)

τ

σ1
√
τ

,

ln
S0

S2
−
(

r −D02 −
σ2
2

2

)

τ

σ2
√
τ

; ρ12

⎞

⎟
⎟
⎠

= S∗
0N2

⎛

⎜
⎜
⎝

ln
S∗
0

S∗
1

+
σ2
1

2
τ

σ1
√
τ

,

ln
S∗
0

S∗
2

+
σ2
2

2
τ

σ2
√
τ

; ρ12

⎞

⎟
⎟
⎠ , (4.66)

where
S∗
0 = S0e

−rτ , S∗
1 = S1e

−D01τ , S∗
2 = S2e

−D02τ .

Here, we have used the following formulae

detP =

∣
∣
∣
∣
1 ρ12
ρ12 1

∣
∣
∣
∣ = 1− ρ212,

P−1 =

[
1 ρ12
ρ12 1

]−1

=
1

1− ρ212

[
1 − ρ12
−ρ12 1

]

,

and

ηTP−1η =
η21 − 2ρ12η1η2 + η22

1− ρ212
.

The value of the bivariate cumulative distribution function in the expression
(4.66) can be interpreted as the probability of the event max(S′

1, S
′
2) ≤ S0 in

the “risk-neutral” world.
Now let us work on the second and third terms in the expression (4.64).

Actually, we can find their expressions from the first term.
From Itô’s lemma, we know that the random variable S∗

i has the same
volatility as Si has, which is σi, i = 1, 2. We can understand S∗

0 as a random
variable with σ0 = 0. The correlation coefficient between S∗

i and S∗
j is the

same as that between Si and Sj , which is denoted by ρij , 0 ≤ i ≤ 2 and
0 ≤ j ≤ 2. Because S∗

0 is not a random variable, we have ρi0 = ρ0i = 0 for
any i �= 0. Define

ξij = S∗
i /S

∗
j for any i �= j.

Let σ2
ij be the variance of the random variable ξij and ρijk be the correlation

coefficient between ξik and ξjk. Using Itô’s lemma, we have

σij =
√

σ2
i − 2ρijσiσj + σ2

j (4.67)

and

ρijk =
σ2
k − ρikσiσk − ρjkσjσk + ρijσiσj

σikσjk
. (4.68)

Let us take
ξ10 = S∗

1/S
∗
0
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and
ξ20 = S∗

2/S
∗
0

as independent variables and V0 = V/S∗
0 as the unknown function. Because

∂V

∂t
= S0e

−rτ
[

rV0 +
∂V0
∂t

+ (D01 − r)ξ10
∂V0
∂ξ10

+ (D02 − r)ξ20
∂V0
∂ξ20

]

,

∂V

∂S1
= S0e

−rτ ∂V0
∂ξ10

e−D01τ

S0e−rτ
= e−D01τ

∂V0
∂ξ10

,

∂2V

∂S2
1

=
e−2D01τ

S0e−rτ
∂2V0
∂ξ210

,

∂V

∂S2
= e−D02τ

∂V0
∂ξ20

,

∂2V

∂S2
2

=
e−2D02τ

S0e−rτ
∂2V0
∂ξ220

,

∂2V

∂S1∂S2
= −e−D01τe−D02τ

S0e−rτ
∂2V0

∂ξ10∂ξ20
,

problem (4.63) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V0
∂t

+
1

2
σ2
1ξ

2
10

∂2V0
∂ξ210

+ ρ12σ1σ2ξ10ξ20
∂2V0

∂ξ10∂ξ20
+

1

2
σ2
2ξ

2
20

∂2V0
∂ξ220

= 0,

0 ≤ ξ10, 0 ≤ ξ20, 0 ≤ t ≤ T,

V0(ξ10, ξ20, T ) = max(1, ξ10, ξ20), 0 ≤ ξ10, 0 ≤ ξ20.

Because σ10 = σ1, σ20 = σ2, and ρ120 = ρ12, the problem above can be
rewritten as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V0
∂t

+
1

2
σ2
10ξ

2
10

∂2V0
∂ξ210

+ ρ120σ10σ20ξ10ξ20
∂2V0

∂ξ10∂ξ20
+

1

2
σ2
20ξ

2
20

∂2V0
∂ξ220

= 0,

0 ≤ ξ10, 0 ≤ ξ20, 0 ≤ t ≤ T,

V0(ξ10, ξ20, T ) = max(1, ξ10, ξ20), 0 ≤ ξ10, 0 ≤ ξ20.
(4.69)

By using the integral expression of the solution of the problem (4.69),
V (S1, S2, t) can be expressed as

V (S1, S2, t) = S∗
0V0 (ξ10, ξ20, t)

= S∗
0

∞∫

0

∞∫

0

max (1, ξ′10, ξ
′
20)ψdξ

′
10dξ

′
20
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= S∗
0

1∫

0

1∫

0

ψdξ′10dξ
′
20 + S∗

0

∞∫

1

ξ′10∫

0

ξ′10ψdξ
′
20dξ

′
10

+S∗
0

∞∫

1

ξ′20∫

0

ξ′20ψdξ
′
10dξ

′
20. (4.70)

Clearly, the first term in the expression (4.70) is the same as the first term
in the expression (4.64). Thus, the first term in the expression (4.70) is equal to

S∗
0N2

⎛

⎜
⎜
⎝

ln
S∗
0

S∗
1

+
σ2
1

2
τ

σ1
√
τ

,

ln
S∗
0

S∗
2

+
σ2
2

2
τ

σ2
√
τ

; ρ12

⎞

⎟
⎟
⎠

= S∗
0N2

⎛

⎜
⎝

− ln ξ10 +
σ2
10

2
τ

σ10
√
τ

,
− ln ξ20 +

σ2
20

2
τ

σ20
√
τ

; ρ120

⎞

⎟
⎠ . (4.71)

Now we take
ξ21 = S∗

2/S
∗
1

and
ξ01 = S∗

0/S
∗
1

as independent variables and V1 = V/S∗
1 as the unknown function. Because

∂V

∂t
= S1e

−D01τ

[

D01V1 +
∂V1
∂t

+ (D02 −D01)ξ21
∂V1
∂ξ21

+(r −D01)ξ01
∂V1
∂ξ01

]

,

∂V

∂S1
= e−D01τ

(

V1 − ξ21
∂V1
∂ξ21

− ξ01
∂V1
∂ξ01

)

,

∂2V

∂S2
1

=
e−D01τ

S1

(

ξ221
∂2V1
∂ξ221

+ 2ξ21ξ01
∂2V1

∂ξ21∂ξ01
+ ξ201

∂2V1
∂ξ201

)

,

∂V

∂S2
= e−D02τ

∂V1
∂ξ21

,

∂2V

∂S2
2

=
e−2D02τ

S1e−D01τ

∂2V1
∂ξ221

,

∂2V

∂S1∂S2
= −e−D02τ

S1

(

ξ21
∂2V1
∂ξ221

+ ξ01
∂2V1

∂ξ21∂ξ01

)

,
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we have
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V1
∂t

+
1

2
σ2
21ξ

2
21

∂2V1
∂ξ221

+ ρ201σ21σ1ξ21ξ01
∂2V1

∂ξ21∂ξ01
+

1

2
σ2
1ξ

2
01

∂2V1
∂ξ201

= 0,

0 ≤ ξ21, 0 ≤ ξ01, 0 ≤ t ≤ T,

V1(ξ21, ξ01, T ) = max(1, ξ21, ξ01), 0 ≤ ξ21, 0 ≤ ξ01,

where σ21 and ρ201 are defined by the formulae (4.67) and (4.68), namely,

σ21 =
√

σ2
1 − 2ρ12σ1σ2 + σ2

2

and

ρ201 =
σ2
1 − ρ12σ1σ2 − ρ01σ0σ1 + ρ20σ2σ0

σ21σ01
=
σ1 − ρ12σ2

σ21
.

Because σ01 = σ1, the problem above can be rewritten as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V1
∂t

+
1

2
σ2
21ξ

2
21

∂2V1
∂ξ221

+ ρ201σ21σ01ξ21ξ01
∂2V1

∂ξ21∂ξ01
+

1

2
σ2
01ξ

2
01

∂2V1
∂ξ201

= 0,

0 ≤ ξ21, 0 ≤ ξ01, 0 ≤ t ≤ T,

V1(ξ21, ξ01, T ) = max(1, ξ21, ξ01), 0 ≤ ξ21, 0 ≤ ξ01.
(4.72)

Therefore, we have

V (S1, S2, t) = S∗
1V1 (ξ21, ξ01, t)

= S∗
1

∞∫

0

∞∫

0

max (1, ξ′21, ξ
′
01)ψdξ

′
21dξ

′
01

= S∗
1

1∫

0

1∫

0

ψdξ′21dξ
′
01 + S∗

1

∞∫

1

ξ′21∫

0

ξ′21ψdξ
′
01dξ

′
21

+S∗
1

∞∫

1

ξ′01∫

0

ξ′01ψdξ
′
21ξ

′
01. (4.73)

Because we can have the problem (4.72) from the problem (4.69) by the rule
of substitution of subscripts:

0 → 1, 1 → 2, 2 → 0,

we can obtain the result of the first term in the expression (4.73) from the
result of the first term in the expression (4.70) by the same rule. The result
of the first term in the expression (4.70) is the expression (4.71), so for the
first term in the expression (4.73) we have
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S∗
1

1∫

0

1∫

0

ψdξ′21dξ
′
01

= S∗
1N2

⎛

⎜
⎝

− ln ξ21 +
σ2
21

2
τ

σ21
√
τ

,
− ln ξ01 +

σ2
01

2
τ

σ01
√
τ

; ρ201

⎞

⎟
⎠

= S∗
1N2

⎛

⎜
⎜
⎝

ln
S∗
1

S∗
2

+
σ2
12

2
τ

σ12
√
τ

,

ln
S∗
1

S∗
0

+
σ2
1

2
τ

σ1
√
τ

;
σ1 − ρ12σ2

σ12

⎞

⎟
⎟
⎠ . (4.74)

Because

max(ξ′21, ξ
′
01) = max

(
S′
2

S′
1

,
S0

S′
1

)

≤ 1,

which is equivalent to
S′
1 ≥ max(S0, S

′
2),

both the first term in the expression (4.73) and the second term in the expres-
sion (4.64) represent the contribution to the solution from the same domain
where S′

1 ≥ max(S0, S
′
2). This domain is

S0 ≤ S′
1, 0 ≤ S′

2 ≤ S′
1.

Thus, the second term in the expression (4.64) and the first term in the
expression (4.73) should have the same result (4.74).

Similarly, we can prove that the result of the third term in the expression
(4.64) can be obtained from the second term in the expression (4.64) by the
same rule of substitution of subscripts, namely, it is equal to

S∗
2N2

⎛

⎜
⎝

− ln ξ02 +
σ2
02

2
τ

σ02
√
τ

,
− ln ξ12 +

σ2
12

2
τ

σ12
√
τ

; ρ012

⎞

⎟
⎠

= S∗
2N2

⎛

⎜
⎜
⎝

ln
S∗
2

S∗
0

+
σ2
2

2
τ

σ2
√
τ

,

ln
S∗
2

S∗
1

+
σ2
12

2
τ

σ12
√
τ

;
σ2 − ρ12σ1

σ12

⎞

⎟
⎟
⎠ .

Therefore, we finally arrive at

V (S1, S2, t)
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⎠ . (4.75)

This expression will also be referred to as Vmax(S1, S2, t) later because the
payoff of the option is max(S0, S1, S2). In the expression (4.75), it seems that
the rule of substitution of subscripts does not work. Actually, the rule should
be used in the following way. First, the rule is applied to S∗

i . Then, you should
determine the volatilities and correlation coefficient in a function as follows.
If

S∗
i

S∗
j
appears in an argument expression, then the volatility in the expression

is the volatility of Si

Sj
. If

S∗
i

S∗
k
and

S∗
j

S∗
k
(or equivalently,

S∗
k

S∗
i
and

S∗
k

S∗
j
) appear in

the function, then the third argument is the correlation coefficient between
Si

Sk
and

Sj

Sk
.

Here, we would like to make the following four remarks:

1. Through a procedure similar to what we used to derive the expression
(4.75), it can be shown that for a European option on the minimum among
two assets S1, S2 and cash S0, whose payoff function is min(S0, S1, S2),
the price is

Vmin(S1, S2, t)

= S∗
0N2
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This is left for readers as Problem 27.
2. Because

max(E,S) = max(S − E, 0) + E,



4.5 Multi-Asset Options 233

for a European option with a payoff max(S,E), the solution is

c(S, t) + Ee−r(T−t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2) + Ee−r(T−t)

= Ee−r(T−t)N(−d2) + Se−D0(T−t)N(d1)

= S∗
0N

⎛

⎜
⎜
⎝
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ln
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1
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0
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2
τ

σ
√
τ

⎞

⎟
⎟
⎠ ,

where
S∗
0 = Ee−r(T−t), S∗

1 = Se−D0(T−t).

For this case, obtaining the second term from the first term follows the
rule:

0 → 1, 1 → 0.

Therefore, the expression (4.75) can be understood as a generalization
of this expression. For an option with a payoff max(S0, S1, S2, · · · , Sn),
where S0 is a constant and S1, S2, · · · , Sn are random variables, a term
can be obtained from another term by the following rule

0 → 1, 1 → 2, · · · , n− 1 → n, n→ 0

if the solution is written in a similar form to the expression (4.75). The
solution of the option with a payoff max(S0, S1, S2, S3) can be found in
Problem 31, and readers are asked to show this result. In Problem 32,
readers are asked to guess the solution for an option with a payoff
max(S0, S1, S2, · · · , Sn). For options with a payoff min(S0, S1, S2, · · · , Sn),
the situation is similar, and Problems 31 and 32 also involve these options.

3. We have pointed out that the value of the bivariate cumulative distribution
function appearing in the first term in the expression (4.75) denotes the
probability of the event max(S′

1, S
′
2) ≤ S0 in the so-called “risk-neutral”

world. Now we look at

N2

⎛
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τ
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σ1 − ρ12σ12

σ12

⎞

⎟
⎟
⎠ .

As we saw, it is the value of the integral
∫ 1

0

∫ 1

0

ψ (ξ′21, ξ
′
01; ξ21, ξ01, t) dξ

′
21dξ

′
01.

Therefore, the value of the bivariate cumulative distribution function ap-
pearing in the second term of V (S1, S2, t) can be interpreted as the proba-

bility of the event max(ξ′21, ξ
′
01) = max

(
S′
2

S′
1

,
S0

S′
1

)

≤ 1, which is equivalent
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to S′
1 ≥ max(S0, S

′
2), in another “risk-neutral” world with the probability

density function

ψ(ξ′21, ξ
′
01; ξ21, ξ01, t) =

1

2πτ
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detPσ1σ12ξ′21ξ
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e−ζ
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ρ201 1
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⎥
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Similarly, the value of the bivariate cumulative distribution function ap-
pearing in the third term of V (S1, S2, t) represents the probability of the

event max

(
S0

S′
2

,
S′
1

S′
2

)

≤ 1 or S′
2 ≥ max(S0, S

′
1) in a third “risk-neutral”

world.
4. As the option with a payoff max(S,E) is related to the European vanilla

call option, the option with a payoff max(E,S1, S2) is related to the
European call option on the maximum of two assets, whose payoff is
max(max(S1, S2) − E, 0). Let the price of this option be c(S1, S2, t). Be-
cause

max(max(S1, S2)−E, 0) = max(S1−E,S2−E, 0) = max(E,S1, S2)−E,

the price of this option is

c(S1, S2, t) = Vmax(S1, S2, t)− Ee−r(T−t), (4.76)

where Vmax(S1, S2, t) is the expression given by the expression (4.75). This
is the closed-form solution for the European call option on the maximum
of two assets. Similarly, we can show that the price of a European put
option on the minimum of two assets is

p(S1, S2, t) = Ee−r(T−t) − Vmin(S1, S2, t) (4.77)

because its payoff is

max(E −min(S1, S2), 0) = max(E − S1, E − S2, 0) = E −min(E,S1, S2).

This is the closed-form solution for the European put option on the min-
imum of two assets. Using a similar procedure, we can prove some other
relations, which are left for readers to show as Problems 33 and 34.

Finally, we give some values of the European call option on the maximum
of two assets and the European put option on the minimum of two assets
obtained by the formulae (4.76) and (4.77). In Tables 4.6 and 4.7 the prices
of some call and put options are given, respectively. Table 4.8 shows how the
price varies when ρ changes.
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Table 4.6. Prices of European call option on the maximum of two assets

(r = 0.02, D01 = 0.01, D02 = 0.01, ρ = 0.8, E = 100 and T = 1)

Call option σ1 = 0.20 σ1 = 0.15 σ1 = 0.20
price σ2 = 0.15 σ2 = 0.20 σ2 = 0.20

S1 = 100, S2 = 100 9.99 9.99 11.14

S1 = 95, S2 = 105 10.58 11.69 12.20

S1 = 105, S2 = 95 11.69 10.58 12.20

Table 4.7. Prices of European put option on the minimum of two assets

(r = 0.02, D01 = 0.01, D02 = 0.01, ρ = 0.8, E = 100 and T = 1)

Put option σ1 = 0.20 σ1 = 0.15 σ1 = 0.20
price σ2 = 0.15 σ2 = 0.20 σ2 = 0.20

S1 = 100, S2 = 100 8.52 8.52 9.57

S1 = 95, S2 = 105 10.02 8.95 10.47

S1 = 105, S2 = 95 8.95 10.02 10.47

Table 4.8. Prices of European options on two assets

(r = 0.02, D01 = 0.01, D02 = 0.01, σ1 = 0.2,
σ2 = 0.2, S1 = 100, S2 = 100, E = 100 and T = 1)

ρ Call price Put price

0.80 11.14 9.57

0.85 10.76 9.27

0.90 10.32 8.92

0.95 9.75 8.47

1.00 8.35 7.36

4.5.4 †Formulation of Multi-Asset Option Problems on a Finite
Domain

In the last two subsections, we studied some options on multi-assets whose
solutions can be expressed in terms of multivariate cumulative distribution
functions if every σi is constant and pricing of which is reduced to find the
value of these functions. If σi depends on Si, it may not be possible to express
their solutions in terms of such functions. Moreover, for some other options,
it might be hard to express their solutions in such a form even though σi are
constants. Here we give some examples:

1. Multi-asset call options. For such an option, the payoff function is

max(S1 − E1, S2 − E2, · · · , Sn − En, 0).



236 4 Exotic Options

2. Multi-asset put options. The payoff function is in the form

max(E1 − S1, E2 − S2, · · · , En − Sn, 0).

3. Basket options and index options. The payoff function of a basket option
(see [45]) is

V (S1, S2, · · · , Sn, T ) = max

(
n∑

i=1

λiSi − E, 0

)

,

where

λi ≥ 0 and

n∑

i=1

λi = 1.

The payoff function of an index option (see [16]) is

V (S1, S2, · · · , Sn, T ) = max

(
n∑

i=1

niSi − E, 0

)

,

where ni is the number of shares of asset i held in the index. An index
option is equivalent to a basket option because

max

(
n∑

i=1

niSi − E, 0

)

=

(
n∑

i=1

ni

)

max

(
n∑

i=1

λiSi − E, 0

)

,

where

λi = ni

/ n∑

i=1

ni , E = E
/ n∑

i=1

ni,

and λi satisfies the relation
n∑

i=1

λi = 1.

From Smithson’s paper [73], readers can find these and some other options
on multi-assets whose solutions might not be expressed in terms of multivari-
ate cumulative distribution functions. For these cases, it might be necessary
to use numerical methods. It will become much easier to get numerical solu-
tions if the problem can be reformulated on a finite domain. In this section,
we reformulate the two-asset option problems on a finite domain, even though
the method can be generalized to multi-asset option problems.

Let us first introduce a new coordinate system:

⎧
⎨

⎩

S1 = P1S cos θ,

S2 = P2S sin θ,
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that is,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S =

√(
S1

P1

)2

+

(
S2

P2

)2

,

θ = tan−1 P1S2

P2S1
.

Under the transformation, the domain [0,∞)× [0,∞) on the (S1, S2)-plane

becomes the domain [0,∞)×
[
0,
π

2

]
on the (S, θ)-plane. Noticing

∂S

∂S1
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cos θ

P1
,

∂S

∂S2
=

sin θ

P2
,

∂θ
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∂θ
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,

we have the following relations
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− 1
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sin θ cos θ − 1
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sin θ cos θ − 1

S2

∂V

∂θ
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cos2 θ − sin2 θ

)
]

.

From these, we can rewrite Eq. (4.52) with n = 2 as

⎧
⎪⎪⎨

⎪⎪⎩

∂V

∂t
+ a1S

2 ∂
2V

∂S2
+ a12S

∂2V

∂S∂θ
+ a2

∂2V

∂θ2
+ b1S

∂V

∂S
+ b2

∂V

∂θ
− rV = 0,

0 ≤ S, 0 ≤ θ ≤ π

2
, 0 ≤ t ≤ T,

(4.78)
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where

a1 =
1

2

(
σ2
1 cos

4 θ + 2ρ12σ1σ2 sin
2 θ cos2 θ + σ2

2 sin
4 θ
)
,

a12 = −σ2
1 sin θ cos

3 θ + ρ12σ1σ2 cos θ sin θ(cos
2 θ − sin2 θ) + σ2

2 sin
3 θ cos θ

=
[
−σ1(σ1 − ρ12σ2) cos

2 θ + σ2 (σ2 − ρ12σ1) sin
2 θ
]
sin θ cos θ,

a2 =
1

2
(σ2

1 − 2ρ12σ1σ2 + σ2
2) cos

2 θ sin2 θ,

b1 = (r −D01) cos
2 θ + (r −D02) sin

2 θ +
1

2
(σ2

1 − 2ρ12σ1σ2 + σ2
2) sin

2 θ cos2 θ

= r +

[

−D01 cos
2 θ −D02 sin

2 θ +
1

2
(σ2

1 − 2ρ12σ1σ2 + σ2
2) sin

2 θ cos2 θ

]

,

b2 = [−(r −D01) + (r −D02)] sin θ cos θ + σ2
1 sin θ cos

3 θ

−ρ12σ1σ2 sin θ cos θ(cos2 θ − sin2 θ)− σ2
2 sin

3 θ cos θ

=
[
D01 −D02 + σ2

1 cos
2 θ − ρ12σ1σ2(cos

2 θ − sin2 θ)− σ2
2 sin

2 θ
]
sin θ cos θ.

Now let us introduce another transformation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

θ = θ,

w =
V

S + Pm
.

Under this transformation, the domain [0,∞) on the S-axis is transformed
into the domain [0, 1) on the ξ-axis. Because

S =
ξPm
1− ξ

,

S + Pm =
Pm
1− ξ

,

dξ

dS
=

Pm
(S + Pm)2

=
(1− ξ)2

Pm
,
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we get
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∂t
= (S + Pm)
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∂2V
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=

Pm
1− ξ

∂2w
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Consequently, we arrive at the final equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂w

∂t
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∂w
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0 ≤ ξ ≤ 1, 0 ≤ θ ≤ π

2
, 0 ≤ t ≤ T.

(4.79)

The combination of the above two transformations is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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θ = tan−1 P1S2

P2S1
,

w =
V

√(
S1

P1

)2

+

(
S2

P2

)2

+ Pm

and we can derive Eq. (4.79) directly from Eq. (4.52) with n = 2 by using this
transformation. Here, we do it through two steps in order to make the idea
clear.

It can be proved that in order to determine a unique solution, only the
final condition

w(ξ, θ, T ) = f(ξ, θ), 0 ≤ ξ ≤ 1, 0 ≤ θ ≤ π

2
(4.80)
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is needed. The proof is similar to that given in the paper by Zhu and Li [94].
Here, we do not give the proof but an explanation on this issue. At θ = 0 and

θ =
π

2
, Eq. (4.79) becomes

∂w

∂t
+

1

2
σ2
1ξ

2(1− ξ)2
∂2w

∂ξ2
+ (r −D01)ξ(1− ξ)

∂w

∂ξ
− [r(1− ξ) +D01ξ]w = 0,

0 ≤ ξ ≤ 1, 0 ≤ t ≤ T

and

∂w

∂t
+

1

2
σ2
2ξ

2(1− ξ)2
∂2w

∂ξ2
+ (r −D02)ξ(1− ξ)

∂w

∂ξ
− [r(1− ξ) +D02ξ]w = 0,

0 ≤ ξ ≤ 1, 0 ≤ t ≤ T

respectively. These are one-dimensional parabolic equations that degenerate
into ordinary differential equations at ξ = 0 and ξ = 1. Therefore, if a final
condition is given for each equation, the solution for each equation is unique.
These two solutions give the value of the solution to Eq. (4.79) at the bound-
aries θ = 0 and θ = π/2. At ξ = 0 and ξ = 1, Eq. (4.79) becomes
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Fig. 4.10. The values of a European two-asset call option
(r = 0.02, D01 = 0.01, D02 = 0.01, σ1 = 0.2,

σ2 = 0.15, ρ = 0.8, E1 = 100, E2 = 95, and T = 1)
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∂w

∂t
+ a2

∂2w

∂θ2
+ b2

∂w

∂θ
− rw = 0, 0 ≤ θ ≤ π

2
, 0 ≤ t ≤ T

and

∂w

∂t
+ a2

∂2w

∂θ2
+ (b2 + a12)

∂w

∂θ
− (r − b1)w = 0, 0 ≤ θ ≤ π

2
, 0 ≤ t ≤ T

respectively. These two parabolic partial differential equations also degenerate
to ordinary differential equations at θ = 0 and θ = π/2, so in order for
them to have unique solutions, only final conditions are enough. Just like
the situation on the boundaries θ = 0 and θ = π/2, the solutions of these
two equations provide the value of the solution to Eq. (4.79) at ξ = 0 and
ξ = 1. Consequently, the final condition (4.80) determines a unique solution
to Eq. (4.79).

Instead of t, using a new variable τ = T − t, Eq. (4.79) will change slightly.
Let us call this equation the modified Eq. (4.79). It can be discretized by the
implicit scheme (7.46). Using the final condition (4.80) and the scheme (7.46)
obtained by discretizing the modified Eq. (4.79), a numerical solution of Euro-
pean option problems involving two assets, for example, a European two-asset
call option, can be obtained. In Fig. 4.10 the price of the European two-asset
call option with r = 0.02, D01 = 0.01, D02 = 0.01, σ1 = 0.2, σ2 = 0.15,
ρ = 0.8, E1 = 100, E2 = 95, and T = 1 for (S1, S2) ∈ [0, 200] × [0, 200] is
shown.

For an American multi-asset option, when the problem is formulated as a
linear complementarity problem and this transformation given in this subsec-
tion is adopted, the problem is defined on a finite rectangular domain. Such
a linear complementarity problem is not difficult to solve numerically.

4.6 Some Other Exotic Options

In this section, we introduce some other exotic options, namely, binary op-
tions, forward start options, compound options, and chooser options. In what
follows, we discuss each case in each subsection.

4.6.1 Binary Options

Binary options are options with discontinuous payoffs. A simple example is
a cash-or-nothing call. For this case, the payoff is

V (S, T ) = B ×H (S − E) ,

where B is a constant and H is the Heaviside function:

H (S − E) =

⎧
⎨

⎩

0, S < E,

1, S > E.
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From the formula (2.84) in Sect. 2.6.3, we know that V (S, t) is given by

V (S, t) = e−r(T−t)
∫ ∞

0

B ×H (S′ − E)G (S′, T ;S, t) dS′

= Be−r(T−t)
∫ ∞

E

G (S′, T ;S, t) dS′

= Be−r(T−t)N (d2) ,

where N (z) is defined by Eq. (2.89) in Sect. 2.6.3 and

d2 =
ln (S/E) +

(
r −D0 − σ2/2

)
(T − t)

σ
√
T − t

.

Besides cash-or-nothing calls, we can also have cash-or-nothing puts, asset-
or-nothing calls, and asset-or-nothing puts. Their payoffs are

B ×H (E − S) , S ×H (S − E) , and S ×H (E − S) ,

respectively. Their closed-form solutions are left for the reader to derive as an
exercise.

4.6.2 Forward Start Options (Delayed Strike Options)

Forward start (delayed strike) options are options that are paid for now but
will start at some time T1 in the future, and the exercise price of which
depends on the stock price at time T1. Here, we assume that the exercise
price E = αST1

, where ST1
is the stock price at time T1 and α is a positive

number.
Suppose that the current time is t0 and consider a forward start American

call option that will start at time T1 > t0 and mature at time T2 > T1. In
order to have the value of the forward start option, we first need to find the
solution of the American call problem with a payoff

C (S, T2) = max (S − αST1
, 0)

at time T2. Actually, the solution of this problem C (S, t) is equal to

αST1
C∗
(

S

αST1

, t

)

,
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where C∗ (S̄, t
)
is the solution of the American option with the following

standard payoff
C∗ (S̄, T2

)
= max

(
S̄ − 1, 0

)

at time T2. Therefore,

C (ST1
, T1) = αST1

C∗
(
1

α
, T1

)

.

At time t0, we do not know the stock price at time T1, implying that ST1
is a

random variable. Therefore, the value of the forward start option at time t0
is

e−r(T1−t0)E [C(ST1
, T1)] = αe−r(T1−t0)C∗

(
1

α
, T1

)

E [ST1
]

= αe−r(T1−t0)C∗
(
1

α
, T1

)

Se(r−D0)(T1−t0) = αSe−D0(T1−t0)C∗
(
1

α
, T1

)

.

Here, we assume that we are in a “risk-neutral” world. If the option is Euro-

pean, we can have a similar formula, and C∗
(
1

α
, T1

)

should be replaced by

c∗
(
1

α
, T1

)

, which is the solution of the standard European call option and

has an analytic expression.

4.6.3 Compound Options

Compound options are options on options. There are four main types of com-
pound options: a call on a call, a put on a call, a call on a put, and a put on
a put. Compound options have two strike prices and two exercise dates. For
example, the holder of a call on call option is entitled to pay the first strike
price E1 and receive a call option on the first date T1, and is given the right to
buy the underlying asset for the second strike price E2 on the second exercise
date T2 > T1 if the first option is exercised. Here we assume that both options
are European. Let c1 denote the value of the option when the first option
is a European call, and let p1 denote the value of the option when the first
one is a put. Furthermore, let c1(S, t;C2) and c1(S, t; c2) denote the price of a
European call option on an American call option and a European call option,
respectively. For the other cases, we adopt similar notation. When the first
option is a European call, the compound option will only be exercised on the
first exercise date if the value of the option on that date is greater than the
first strike price. Assume that the second call option is American. Then, the
price of the compound option is

c1 (S, t;C2) = e−r(T1−t)
∫ ∞

0

c1 (S
′, T1;C2)G (S′, T1;S, t) dS′,
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where c1 (S
′, T1;C2) = max (C2 (S

′, T1)− E1, 0) and G (S′, T1;S, t) is given
by the expression (2.85) in Sect. 2.6.3.

Clearly, in this case, the price can be written as

c1 (S, t;C2) = e−r(T1−t)
∫ ∞

S∗
[C2 (S

′, T1)− E1]G (S′, T1;S, t) dS′,

where S∗ satisfies the condition C2 (S
∗, T1) − E1 = 0. In order to get

c1 (S, t;C2) , we can find the value of the integral numerically or we can solve
the following final value problem by a numerical method:

⎧
⎪⎨

⎪⎩

∂c1
∂t

+
1

2
σ2S2 ∂

2c1
∂S2

+ (r −D0)S
∂c1
∂S

− rc1 = 0, 0 ≤ S, 0 ≤ t ≤ T1,

c1 (S, T1;C2) = max (C2(S, T1)− E1, 0) , 0 ≤ S.

Before that, we need to solve an American call option with a payoff function

C2 (S, T2) = max (S − E2, 0)

and satisfying the constraint

C2 (S, t) ≥ max (S − E2, 0)

from T2 to T1, so that we can have the value of the function C2 (S, T1) for any
S. Because there is no analytic expression for C2 (S, T1) if D0 �= 0, we also
have to get C2 (S, T1) numerically. In Fig. 4.11, the price of a European call
on an American call option at time t = 0 is given. The result is obtained by
solving the partial differential equation problem, and the parameters of this
problem are given in the figure. For a European call on an American put, the
price can be determined similarly.

The price of a European put on an American put is the solution of the
problem

⎧
⎪⎨

⎪⎩

∂p1
∂t

+
1

2
σ2S2 ∂

2p1
∂S2

+ (r −D0)S
∂p1
∂S

− rp1 = 0, 0 ≤ S, 0 ≤ t ≤ T1,

p1 (S, T1;P2) = max (E1 − P2(S, T1), 0) , 0 ≤ S,

where P2 is the price of an American put option with a payoff P2(S, T2) =
max(E2 − S, 0) and satisfying the constraint P2(S, t) ≥ max(E2 − S, 0). The
price can be obtained numerically. In Fig. 4.12, the price of a European put
on an American put at time t = 0 is shown. The price of a European put on
an American call option can be obtained in a similar way.

For a European option on a European option, the compound option can be
valued analytically in terms of integrals of the bivariate standardized normal
distribution (see [32, 43], or [54]). These closed-form solutions are
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c1 (S, t; c2) = Se−D0(T2−t)N2 (d11, d12; ρ)− E2e
−r(T2−t)N2 (d21, d22; ρ)

−E1e
−r(T1−t)N2 (d21) ,

c1 (S, t; p2) = E2e
−r(T2−t)N2 (−d23,−d22; ρ)− Se−D0(T2−t)N2 (−d13,−d12; ρ)

−E1e
−r(T1−t)N (−d23) ,

p1 (S, t; c2) = E1e
−r(T1−t)N (−d21)− Se−D0(T2−t)N2 (−d11, d12;−ρ)

+E2e
−r(T2−t)N2 (−d21, d22;−ρ) ,

p1 (S, t; p2) = E1e
−r(T1−t)N (d23)− E2e

−r(T2−t)N2 (d23,−d22;−ρ)
+Se−D0(T2−t)N2 (d13,−d12;−ρ) ,

where

d11 =
ln(S/S∗) +

(
r −D0 + σ2/2

)
(T1 − t)

σ
√
T1 − t

,

d21 =
ln(S/S∗) +

(
r −D0 − σ2/2

)
(T1 − t)

σ
√
T1 − t

,

d12 =
ln(S/E2) +

(
r −D0 + σ2/2

)
(T2 − t)

σ
√
T2 − t

,

d22 =
ln(S/E2) +

(
r −D0 − σ2/2

)
(T2 − t)

σ
√
T2 − t

,

d13 =
ln(S/S∗∗) +

(
r −D0 + σ2/2

)
(T1 − t)

σ
√
T1 − t

,

d23 =
ln(S/S∗∗) +

(
r −D0 − σ2/2

)
(T1 − t)

σ
√
T1 − t

,

ρ =

√
T1 − t

T2 − t
.

Here, S∗ and S∗∗ are the solutions of the following equations:

c2 (S
∗, T1) = E1

and
p2 (S

∗∗, T1) = E1.

Let us derive the formula for the price of a put on a call, and other formulae
are left for readers to prove. For a put on a call, we have

p1 (S, t; c2) = e−r(T1−t)
∞∫

0

max (E1 − c2(S
′, T1) , 0)G (S′, T1;S, t) dS′

= e−r(T1−t)
S∗
∫

0

[E1 − c2 (S
′, T1)]G (S′, T1;S, t) dS′
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= e−r(T1−t)E1

S∗
∫

0

G (S′, T1;S, t) dS′

−e−r(T1−t)
S∗
∫

0

e−r(T2−T1)

∞∫

E2

(S′′ − E2)G (S′′, T2;S′, T1)

×G (S′, T1;S, t) dS′′dS′

= e−r(T1−t)E1

S∗
∫

0

G (S′, T1;S, t) dS′

−e−r(T2−t)
S∗
∫

0

∞∫

E2

S′′G (S′′, T2;S′, T1)G (S′, T1;S, t) dS′′dS′

+E2e
−r(T2−t)

S∗
∫

0

∞∫

E2

G (S′′, T2;S′, T1)G (S′, T1;S, t) dS′′dS′,

where

G (S′, T1;S, t) =
1

σ
√
2π (T1 − t)S′ e

−[lnS′−lnS−(r−D0−σ2/2)(T1−t)]2/2σ2(T1−t)

and G (S′′, T2;S′, T1) is defined in the same way.
Now let us express the three integrals above by cumulative distribution

functions. Noticing

S∗
∫

0

G (S′, T1;S, t) dS′ = N

(
ln(S∗/a) + b2/2

b

)

,

where
a = Se(r−D0)(T1−t)

and
b = σ

√
T1 − t,

we know that the first term is equal to E1e
−r(T1−t)N (−d21).

Now we find out the result of the integral in the third term. Let

x =
lnS′ − lnS −

(
r −D0 − σ2/2

)
(T1 − t)

σ
√
T1 − t

,

y =
lnS′′ − lnS −

(
r −D0 − σ2/2

)
(T2 − t)

σ
√
T2 − t

,

ρ =

√
T1 − t

T2 − t
.
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Then

√
1− ρ2 =

√
T2 − T1
T2 − t

,

y − ρx
√

1− ρ2
=

lnS′′ − lnS′ −
(
r −D0 − σ2/2

)
(T2 − T1)

σ
√
T2 − T1

.

Therefore

S∗
∫

0

∞∫

E2

G (S′′, T2;S′, T1)G (S′, T1;S, t) dS′′dS′

=

S∗
∫

0

∞∫

E2

1

σ
√
2π (T2 − T1)S′′ e

−[lnS′′−lnS′−(r−D0−σ2/2)(T2−T1)]
2
/2σ2(T2−T1)

× 1

σ
√
2π (T1 − t)S′ e

−[lnS′−lnS−(r−D0−σ2/2)(T1−t)]2/2σ2(T1−t)dS′′dS′

=

−d21∫

−∞

∞∫

−d22

1

2π
√

1− ρ2
e−

1
2 (y−ρx)2/(1−ρ2)− 1

2x
2

dydx

=
1

2π
√
1− ρ2

−d21∫

−∞

∞∫

−d22

e−(y2−2ρxy+x2)/2(1−ρ2)dydx

=
1

2π
√
1− ρ2

−d21∫

−∞

d22∫

−∞
e−(y2+2ρxy+x2)/2(1−ρ2)dydx

= N2 (−d21, d22;−ρ) .

Now let us calculate the integral in the second term. Because

S′′e−[lnS
′′−lnS′−(r−D0−σ2/2)(T2−T1)]

2
/2σ2(T2−T1)

= S′e(r−D0)(T2−T1)e−[lnS
′′−lnS′−(r−D0+σ

2/2)(T2−T1)]
2
/2σ2(T2−T1)

and

S′e−[lnS
′−lnS−(r−D0−σ2/2)(T1−t)]2/2σ2(T1−t)

= Se(r−D0)(T1−t)e−[lnS
′−lnS−(r−D0+σ

2/2)(T1−t)]2/2σ2(T1−t),
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we have

S∗
∫

0

∞∫

E2

S′′G (S′′, T2;S′, T1)G (S′, T1;S, t) dS′′dS′

=

S∗
∫

0

∞∫

E2

S′′

σ
√
2π (T2 − T1)S′′ e

−[lnS′′−lnS′−(r−D0−σ2/2)(T2−T1)]
2
/2σ2(T2−T1)

× 1

σ
√
2π (T1 − t)S′ e

−[lnS′−lnS−(r−D0−σ2/2)(T1−t)]2/2σ2(T1−t)dS′′dS′

= Se(r−D0)(T1−t)e(r−D0)(T2−T1)

×
S∗
∫

0

∞∫

E2

1

σ
√
2π (T2 − T1)S′′ e

−[lnS′′−lnS′−(r−D0+σ
2/2)(T2−T1)]

2
/2σ2(T2−T1)

× 1

σ
√
2π (T1 − t)S′ e

−[lnS′−lnS−(r−D0+σ
2/2)(T1−t)]2/2σ2(T1−t)dS′′dS′

= Se(r−D0)(T2−t)N2 (−d11, d12;−ρ) .

Here, we use the fact that the only difference between the last integral above
and the integral related to the third term is that

(
r −D0 − σ2/2

)
is replaced

by
(
r −D0 + σ2/2

)
, so replacing d21 and d22 by d11 and d12 yields the result

here. Consequently, we arrive at

p1 (S, t; c2) = E1e
−r(T1−t)N (−d21)− Se−D0(T2−t)N2 (−d11, d12;−ρ)

+E2e
−r(T2−t)N2 (−d21, d22;−ρ) .

4.6.4 Chooser Options

Chooser (as-you-like-it) options are only slightly more complicated than com-
pound options (see [82]). A chooser option gives its owner the right to purchase
either a call for an amount E1c or a put for an amount E1p at time T1. We
suppose that both the call and put options are expired at time T2 and with
an exercise price E2. We still assume that the first option is European and
the second options are American. Therefore, in order to find the price of such
a chooser option, we need to do the following. First, find the price functions
at time T1 of the American call option and the American put option with ex-
ercise price E2 and expiry T2. Then, calculate the price of the chooser option
by

c1 (S, t) = e−r(T1−t)
∫ ∞

0

max (C2 (S
′, T1)− E1c, P2 (S

′, T1)− E1p, 0)

×G (S′, T1;S, t) dS′,
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where C2 (S
′, T1) and P2 (S

′, T1) are the values of the second American call
and put options, respectively. Just like the case of compound options, c1 (S, t)
can be obtained by numerical integration or by solving a final value problem.

A chooser option could be more complicated (see [43, 83]). It could also
be less complicated. If E1c = E1p = 0, then the chooser option is called
a standard chooser option (see [69, 54], or [43]). In this case, if both the
underlying options are European, then the chooser option price is given by

V (S, t) = Se−D0(T2−t)N (d1)− E2e
−r(T2−t)N (d2)

+E2e
−r(T2−t)N (−d4)− Se−D0(T2−t)N (−d3)

where

d1 =

[

ln(S/E2) +

(

r −D0 +
1

2
σ2

)

(T2 − t)

]/
σ
√
T2 − t,

d2 = d1 − σ
√
T2 − t,

d3 =

[

ln (S/E2) + (r −D0) (T2 − t) +
1

2
σ2 (T1 − t)

]/
σ
√
T1 − t,

d4 = d3 − σ
√
T1 − t.

This is left for readers to prove as an exercise.

Problems

Table 4.9. Problems and sections

Problems Sections Problems Sections Problems Sections

1–5 4.2 6–8 4.3 9–20 4.4

21–34 4.5 35–40 4.6

1. Consider the following problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) =

⎧
⎨

⎩

ϕ1 (S) , 0 ≤ S ≤ B,

ϕ2 (S) , B < S,

where ϕ1 (S) and ϕ2 (S) are continuous functions and

ϕ1 (B) = ϕ2 (B)

may not hold.
(a) *Try to find such a relation between ϕ1 (S) and ϕ2 (S) that

V (B, t) = 0.
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(b) *Based on the result in part (a), show that for the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, Bl ≤ S, t ≤ T,

V (S, T ) = VT (S) , Bl ≤ S,

V (Bl, t) = 0, t ≤ T,

the solution is

V (S, t) = e−r(T−t)
∫ ∞

Bl

VT (S′)G1 (S
′, T ;S, t, Bl) dS′,

where

G1 (S
′, T ;S, t, Bl) = G (S′, T ;S, t)

− (Bl/S)
2(r−D0−σ2/2)/σ2

G
(
S′, T ;B2

l /S, t
)
.

Here

G (S′, T ;S, t)

=
1

S′σ
√
2π (T − t)

e−[ln(S
′/S)−(r−D0−σ2/2)(T−t)]2/2σ2(T−t).

(c) The value of a European down-and-out call option is the solution of
the problem:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂co
∂t

+
1

2
σ2S2 ∂co

∂S2
+ (r −D0)S

∂co
∂S

− rco = 0, Bl ≤ S, t ≤ T,

co (S, T ) = max (S − E, 0) , Bl ≤ S,

co (Bl, t) = 0, t ≤ T.

Based on the result in part (b), show that for the case Bl ≤ E, the
expression of co is

co (S, t) = c (S, t)−
(
Bl
S

)2(r−D0−σ2/2)/σ2

c

(
B2
l

S
, t

)

;

and for the case Bl ≥ E, its expression is

co(S, t) = Se−D0(T−t)N
(
d̃1(Bl)

)
− Ee−r(T−t)N

(
d̃1(Bl)− σ

√
T − t

)

− (Bl/S)
2(r−D0−σ2/2)/σ2

[
B2
l

S
e−D0(T−t)N

(
d̄1(Bl)

)

−Ee−r(T−t)N
(
d̄1(Bl)− σ

√
T − t

)
]

,
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where

d̃1(Bl) =

[

ln
Se(r−D0)(T−t)

Bl
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)
,

d̄1(Bl) =

[

ln
Ble

(r−D0)(T−t)

S
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)
.

(d) Based on the result in part (a), show that for the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S ≤ Bu, t ≤ T,

V (S, T ) = VT (S) , 0 ≤ S ≤ Bu,

V (Bu, t) = 0, t ≤ T,

the solution is

V (S, t) = e−r(T−t)
∫ Bu

0

VT (S′)G1 (S
′, T ;S, t, Bu) dS′,

where

G1 (S
′, T ;S, t, Bu) = G (S′, T ;S, t)

− (Bu/S)
2(r−D0−σ2/2)/σ2

G
(
S′, T ;B2

u/S, t
)
.

Here

G (S′, T ;S, t)

=
1

S′σ
√
2π (T − t)

e−[ln(S
′/S)−(r−D0−σ2/2)(T−t)]2/2σ2(T−t).

(e) Based on the result in part (d), find the closed-form solution of a
European up-and-out put option for both the case Bu ≥ E and the
case 0 < Bu ≤ E.

2. Show the following results which are related to the down-and-out call
options:
(a) If S ≥ Bl and S

′ ≥ Bl, then

G1 (S
′, T ;S, t, Bl)

= G (S′, T ;S, t)− (Bl/S)
2(r−D0−σ2/2)/σ2

G
(
S′, T ;B2

l /S, t
)
≥ 0,

where

G (S′, T ;S, t)

=
1

S′σ
√
2π (T − t)

e−[ln(S
′/S)−(r−D0−σ2/2)(T−t)]2/2σ2(T−t).
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(Hint: First it should be shown that this inequality is equivalent to
the following inequalities:

lnG (S′, T ;S, t) ≥ ln
[
(Bl/S)

2(r−D0−σ2/2)/σ2

G
(
S′, T ;B2

l /S, t
)]

and (

ln
S′

Bl
+ ln

S

Bl

)2

≥
(

ln
S′

Bl
− ln

S

Bl

)2

.

)
(b) Let co(S, t;Bl) be the price of the European down-and-out call option,

where Bl is a parameter. For S ≥ Bl,

∂co(S, t;Bl)

∂Bl
≤ 0.

(Hint: Show
∂G1

∂Bl
≤ 0 first.)

(c) Let co(S, t) and Co(S, t) be the prices of the European and American
down-and-out call options, respectively. Between them the following
is true:

Co(S, t) ≥ co(S, t) for any t.

(d) For Co(S, t) the following is true:

Co(S, t
∗) ≥ Co(S, t

∗∗) if t∗ ≤ t∗∗.

(e) Let Co(S, t;Bl) be the price of the American down-and-out call option,
where Bl is a parameter. For Co(S, t;Bl) the following is true:

Co(S, t;B
∗
l ) ≥ Co(S, t;B

∗∗
l ) if 0 ≤ B∗

l ≤ B∗∗
l .

3. Show that a European up-and-out put option with Bu > E plus a Euro-
pean up-and-in put option with the same parameters is equal to a vanilla
European put option.

4. Find the solution of the European down-and-out call option

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂co
∂t

+
1

2
σ2S2 ∂

2co
∂S2

+ (r −D0)S
∂co
∂S

− rco = 0, Bl(t) ≤ S, t ≤ T,

co (S, T ) = max(S − E, 0), Bl(t) ≤ S,

co (Bl(t), t) = 0, t ≤ T,

where Bl(t) = bEe−α(T−t) with b ∈ [0, 1] and α ≥ 0. (Hint: Let η =
Seα(T−t), the moving barrier becomes a fixed barrier in the (η, t)-plane.
Then, solve a barrier option problem with a fixed barrier.)
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5. Let Po(S, t) denote the price of an American up-and-out put option. Show
that under the following transformation

⎧
⎪⎪⎨

⎪⎪⎩

ζ =
E2

S
,

Co(ζ, t) =
EPo(S, t)

S
,

the new function Co(ζ, t) represents the price of an American down-and-
out call option. Based on this result, derive the symmetry relations be-
tween American down-and-out call and up-and-out put options.

6. Consider an average strike option with discrete arithmetic averaging. As-
sume that the stock pays dividends and that during the time step [t, t+dt],
the dividend payment is D(S, t)dt. Take S and

I =
1

K

∫ t

0

S(τ)f(τ)dτ

as state variables, where

f(t) =
K∑

i=1

δ(t− ti).

(a) Derive the equation for such an option directly by using a portfolio
Π = V −ΔS.

(b) Find the jump condition at t = ti, i = 1, 2, · · · ,K if at t = ti no
discrete dividend is paid.

(c) Finally under the assumption D(S, t) = D0S and V (S, I, T ) =
max(±(αS−I), 0), reduce an average strike option problem to a prob-
lem with only two independent variables and the payoff to a function
with only one independent variable.

7. Let V (S,A, t) be the price of a European Asian option with continuous
arithmetic averaging, where A is the average of the price during the time
period [0, t]. As we know, the equation for European Asian option with
continuous arithmetic averaging is

∂W (η, t)

∂t
+ La,tW (η, t) = 0,

where W = V (S,A, t)/S, η = A/S and La,t is the time-dependent opera-
tor related to Asian options and given by

La,t =
1

2
σ2η2

∂2

∂η2
+

[

(D0 − r)η +
1− η

t

]
∂

∂η
−D0.

(a) Write down the LC problem for an American Asian put option with
a continuous arithmetic average strike price.
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(b) Determine where the PDE can always be used and a free boundary
cannot appear and where a free boundary may appear.

(c) Derive the free-boundary problem for this case. (Assume that there
exists at most one free boundary.)

8. Define

LSAt =
1

2
σ2S2 ∂2

∂S2
+ (r −D0)S

∂

∂S
+
S −A

t

∂

∂A
− r.

(a) For the LC problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min

(

−∂V
∂t

− LSAtV, V −max(αS −A, 0)

)

= 0, 0 ≤ S, 0 ≤ A,

t ≤ T,

V (S,A, T ) = max(αS −A, 0), 0 ≤ S, 0 ≤ A,

find the function of location of the free boundary at t = T , S =
Sf (A, T ).

(b) For the LC problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min

(

−∂V
∂t

− LSAtV, V −max(A− E, 0)

)

= 0, 0 ≤ S, 0 ≤ A,

t ≤ T,

V (S,A, T ) = max(A− E, 0), 0 ≤ S, 0 ≤ A,

find the function of location of the free boundary at t = T , A =
Af (S, T ).

9. Suppose that sampling is done discretely at t = t1, t2, · · · , tK , where
0 ≤ t1 < t2 < · · · < tK ≤ T . Let H (t) = max

(
S (t1) , · · · , S

(
ti∗(t)

))
,

where i∗ (t) is the number of samplings before time t. Assume dS = μSdt+
σSdX and the dividends are paid continuously with dividend yield D0.
Let V (S,H, t) be the value of a lookback option with discrete sampling.
Derive the PDE and the jump condition for such a lookback option by
using a portfolio Π = V (S,H, t) − ΔS (without using the general PDE
for derivative securities).

10. *Consider a lookback option V (S,H, t) with continuous sampling. De-
scribe how to get the PDE and the boundary condition for such an option
from the PDE and the jump condition for an identical lookback option
with discrete sampling and reduce the PDE to a PDE involving only two
independent variables and the boundary condition to a boundary condi-
tion involving only one independent variable.



256 4 Exotic Options

11. *Consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+ (D0 − r) η

∂W

∂η
−D0W = 0, 0 ≤ η, t ≤ T,

W (η, T ) =

⎧
⎨

⎩

ϕ1 (η) , 0 ≤ η ≤ 1,

ϕ2 (η) , 1 ≤ η,

where ϕ1 (η) and ϕ2 (η) are continuous functions, and

ϕ1 (1) = ϕ2 (1)

may not hold. Show that if

⎧
⎪⎪⎨

⎪⎪⎩

ϕ1 (1) = ϕ2 (1) ,

dϕ1 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ2 (1/η)

dη
,

or ⎧
⎪⎪⎨

⎪⎪⎩

ϕ2 (1) = ϕ1 (1) ,

dϕ2 (η)

dη
= η2(r−D0+σ

2/2)/σ2 dϕ1 (1/η)

dη
,

then
∂W (1, t)

∂η
= 0.

12. Suppose that the payoff of a lookback strike put option is

max(H − βS, 0),

where β ≥ 1. Show that if r �= D0, its solution is

pls (S,H, t)

= e−r(T−t)S

[
H

S
N

(
ln H

βS − μ (T − t)

σ
√
T − t

)

−βe(r−D0)(T−t)N

(
ln H

βS −
(
μ+ σ2

)
(T − t)

σ
√
T − t

)

− σ2

2 (r −D0)

(
H

S

)2(r−D0)/σ
2

N

(
ln S

βH − μ (T − t)

σ
√
T − t

)

+
σ2β−2(r−D0)/σ

2

e(r−D0)(T−t)

2 (r −D0)
N

(
ln S

βH +
(
μ+ σ2

)
(T − t)

σ
√
T − t

)]

,
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where
μ = r −D0 − σ2/2,

and if r = D0, the solution is

pls (S,H, t) = e−r(T−t)S

[
H

S
N

(
ln H

βS − μ (T − t)

σ
√
T − t

)

−βN
(
ln H

βS −
(
μ+ σ2

)
(T − t)

σ
√
T − t

)

+
[
ln (S/βH) + σ2 (T − t) /2

]

×N
(
ln (S/βH) + σ2 (T − t) /2

σ
√
T − t

)

+
σ
√
T − t√
2π

e−[ln(S/βH)+σ2(T−t)/2]2/2σ2(T−t)
]

.

13. Suppose the payoff of a lookback price call option is

max(H − E, 0).

Show that if H > E, the price is

clp (S,H, t)

= e−r(T−t)
{

HN

(
ln H

S − μ(T − t)

σ
√
T − t

)

− E

+

[

1 +
σ2

2 (r −D0)

]

Se(r−D0)(T−t)N

(
ln S

H +
(
μ+ σ2

)
(T − t)

σ
√
T − t

)

− σ2S

2 (r −D0)

(
H

S

)2(r−D0)/σ
2

N

(
ln S

H − μ(T − t)

σ
√
T − t

)}

;

and that if H ≤ E, the price is

clp(S,H, t)

= e−r(T−t)
{

−EN
(
ln S

E + μ(T − t)

σ
√
T − t

)

+

[

1 +
σ2

2 (r −D0)

]

Se(r−D0)(T−t)N

(
ln S

E +
(
μ+ σ2

)
(T − t)

σ
√
T − t

)

− σ2S

2 (r −D0)

(
E

S

)2(r−D0)/σ
2

N

(
ln S

E − μ(T − t)

σ
√
T − t

)}

,

where
μ = r −D0 − σ2/2.
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14. Suppose the payoff of a lookback price put option is

max(E − L, 0).

Show that for the case E > L, the price is

plp (S,L, t)

= e−r(T−t)
{

E − LN

(
ln S

L + μ (T − t)

σ
√
T − t

)

−
[

1 +
σ2

2 (r −D0)

]

Se(r−D0)(T−t)N

(
ln L

S −
(
μ+ σ2

)
(T − t)

σ
√
T − t

)

+
σ2S

2 (r −D0)

(
L

S

)2(r−D0)/σ
2

N

(
ln L

S + μ (T − t)

σ
√
T − t

)}

;

and that for E ≤ L, the price is

plp (S,L, t)

= e−r(T−t)
{

EN

(
ln E

S − μ (T − t)

σ
√
T − t

)

−
[

1 +
σ2

2 (r −D0)

]

Se(r−D0)(T−t)N

(
ln E

S −
(
μ+ σ2

)
(T − t)

σ
√
T − t

)

+
σ2S

2 (r −D0)

(
E

S

)2(r−D0)/σ
2

N

(
ln E

S + μ (T − t)

σ
√
T − t

)}

,

where
μ = r −D0 − σ2/2.

15. *Show that for lookback options depending on S,L, t, the Green’s function
is

g
(
S′, Lt

′
t ;S, t

′ − t
)

=
∂

∂Lt
′
t

⎡

⎣
1

S′σ
√
2πτ ′

(
Lt

′
t

S

)2μ/σ2

e
−
[
ln
(
S′S/(Lt′

t )2
)
−μτ ′

]2/
2σ2τ ′

⎤

⎦ ,

where τ ′ = t′ − t and μ = r −D0 − σ2/2.

16. Let g
(
S′, Lt

′
t ;S, t

′ − t
)
be Green’s function for lookback options depend-

ing on S,L, t, and let cls(S,L, t) and Cls(S,L, t) be the prices of the Euro-
pean and American lookback strike call options with continuous sampling,
respectively.



Problems 259

(a) As we know,

g
(
S′, Lt

′
t ;S, t

′ − t
)

=
∂

∂Lt
′
t

⎡

⎣
1

S′σ
√
2πτ ′

(
Lt

′
t

S

)2μ/σ2

e
−
[
ln
(
S′S/(Lt′

t )2
)
−μτ ′

]2/
2σ2τ ′

⎤

⎦ ,

where τ ′ = t′ − t and μ = r −D0 − σ2/2. Show

g
(
S′, Lt

′
t ;S, t

′ − t
)
≥ 0

for any Lt
′
t ≤ min(S, S′).

(b) Show
Cls(S,L, t) ≥ cls(S,L, t)

always holds.
(c) Show Cls(S,L, t

∗) ≥ Cls(S,L, t
∗∗) if t∗ < t∗∗.

17. As we know, for a European lookback strike call option with continuous
sampling, the corresponding one-dimensional problem is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+ LηW = 0, 0 ≤ η ≤ 1, t ≤ T,

W (η, T ) = max(α− η, 0), 0 ≤ η ≤ 1,

∂W

∂η
(1, t) = 0, t ≤ T,

where
η = L/S, W (η, t) = v(S,L, t)/S, 0 < α ≤ 1,

Lη =
1

2
σ2η2

∂2

∂η2
+ (D0 − r)η

∂

∂η
−D0,

and v(S,L, t) is the price of the European lookback strike call option with
continuous sampling.
(a) Let V (S,L, t) denote the price of the American lookback strike call

option with continuous sampling and define W = V/S. Derive the
linear complementarity problem for W .

(b) Assume that we have proved V (S,L, t∗) ≥ V (S,L, t∗∗) for any t∗ ≤
t∗∗. Derive the free-boundary problem for W .

18. (a) The price of a European better-of option is the solution of the following
problem:

⎧
⎪⎨

⎪⎩

∂V

∂t
+ LV = 0, 0 ≤ S1, 0 ≤ S2, 0 ≤ t ≤ T,

V (S1, S2, T ) = max (S1, S2) , 0 ≤ S1, 0 ≤ S2,
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where

L =
1

2
σ2
1S

2
1

∂2

∂S2
1

+ ρσ1σ2S1S2
∂2

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2

∂S2
2

+(r −D01)S1
∂

∂S1
+ (r −D02)S2

∂

∂S2
− r.

Let

ξ =
S1

S2
, W =

V

S2
,

and
τ = T − t.

Show that W is the solution of the problem:
⎧
⎪⎨

⎪⎩

∂W

∂τ
= LξW, 0 ≤ ξ, 0 ≤ τ,

W (ξ, 0) = max (ξ, 1) , 0 ≤ ξ,

where

Lξ =
1

2

[
σ2
1 − 2ρσ1σ2 + σ2

2

]
ξ2
∂2

∂ξ2
+ (D02 −D01) ξ

∂

∂ξ
−D02.

(b) For W , the corresponding American-style problem is
⎧
⎪⎨

⎪⎩

min

(
∂W

∂τ
− LξW, W (ξ, τ)−max (ξ, 1)

)

= 0, 0 ≤ ξ, 0 ≤ τ,

W (ξ, 0) = max (ξ, 1) 0 ≤ ξ.

Based on this formulation and assuming that there exist two free
boundaries, show that the corresponding free-boundary problem can
be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂τ
= LξW, ξf1 (τ) ≤ ξ ≤ ξf2 (τ) , τ ≥ 0,

W (ξ, 0) = max (ξ, 1) , ξf1 (0) ≤ ξ ≤ ξf2 (0) ,

W (ξf1 (τ) , τ) = 1, τ ≥ 0,

∂W

∂ξ
(ξf1 (τ) , τ) = 0, τ ≥ 0,

W (ξf2 (τ) , τ) = ξf2 (τ) , τ ≥ 0,

∂W

∂ξ
(ξf2 (τ) , τ) = 1, τ ≥ 0,

ξf1 (0) = 1,

ξf2 (0) = 1.
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19. Suppose that the value V of an option depends on S, H, and t, i.e.,
V = V (S,H, t). As we know, for such any European option, V satisfies
the equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0, 0 ≤ S ≤ H, t ≤ T,

and the condition
∂V

∂H
(S, S, t) = 0, 0 ≤ S.

For such a perpetual American option with the constraint V ≥ H, which
is called the Russian option, V = V (S,H) and V is the solution of the
following LC problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

(

−
[
1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV

]

, V (S,H)−H

)

= 0,

0 ≤ S ≤ H,

∂V

∂H
(S, S) = 0, 0 ≤ S.

We can find a solution of this problem in the following way:
(a) Find the solution of the following free-boundary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ2η2

d2W∞
dη2

+ (D0 − r) η
dW∞
dη

−D0W∞ = 0, 1 ≤ η ≤ ηf ,

dW∞(1)

dη
= 0,

W∞ (ηf ) = ηf ,

dW∞ (ηf )

dη
= 1,

where ηf is a number representing the location of this free boundary.
(b) Define

W∞(η) =

⎧
⎨

⎩

the solution of the free-boundary problem, 1 ≤ η ≤ ηf ,

η, ηf < η.

Show that W∞(η) is a solution of the following LC problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min

(

−σ
2η2

2

d2W∞
dη2

− (D0 − r) η
dW∞
dη

+D0W∞, W∞ − η

)

= 0,

1 ≤ η,

dW∞
dη

(1) = 0.
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(c) Show that the function SW∞(H/S) is a solution of the LC problem
given at the beginning.

20. Find the solution of the problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ2ξ2

d2W∞
dξ2

+ (D02 −D01) ξ
dW∞
dξ

−D02W∞ = 0, ξf1 ≤ ξ ≤ ξf2 ,

W∞ (ξf1) = 1,

dW∞
dξ

(ξf1) = 0,

W∞ (ξf2) = ξf2 ,

dW∞
dξ

(ξf2) = 1,

where ξf1 < ξf2 . (This problem is related to the perpetual American
better-of option.)

21. Consider the following problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n∑

i=1

(r −D0i)Si
∂V

∂Si
− rV = 0,

0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = VT (S1, S2, · · · , Sn), 0 ≤ S.

(a) *Let V (S, t) = e−r(T−t)V (S, t). Show that V (S, t) is the solution of
the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2

n∑

i=1

n∑

j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj
+

n∑

i=1

(r −D0i)Si
∂V

∂Si
= 0,

0 ≤ S, 0 ≤ t ≤ T,

V (S, T ) = VT (S1, S2, · · · , Sn), 0 ≤ S.

(b) Let
⎧
⎨

⎩

yi = ai [lnSi + bi(T − t)] , i = 1, 2, · · · , n,

τ = T − t,

and V 1(y, τ) = V (S, t), y standing for (y1, y2, · · · , yn)T . Find ai and
bi such that V 1(y, τ) satisfies

⎧
⎪⎨

⎪⎩

∂V 1(y, τ)

∂τ
=

n∑

i=1

n∑

j=1

ρij
∂2V 1(y, τ)

∂yi∂yj
, −∞ < y <∞, 0 ≤ τ ≤ T,

V (y, 0) = V1T (y), −∞ < y <∞,
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where
V1T (y) ≡ VT (e

σ1y1/
√
2, eσ2y2/

√
2, · · · , eσnyn/

√
2).

(c) Let rij denote the element on the ith row and the jth column of a
matrix R, where R represents any letter. A,B, and C are M ×M
matrices. Define D = AB and E = ABC. According to the definition
of multiplication of two matrices, we have

dij =
M∑

k=1

aikbkj .

Show

eij =
M∑

l=1

M∑

k=1

aikbklclj .

(d) Let
x = Ry

and
V 2(x, τ) = V 1(y, τ),

where R is a constant matrix:

R =

⎡

⎢
⎢
⎢
⎣

r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

⎤

⎥
⎥
⎥
⎦
.

Find the equation and initial condition for V 2(x, τ).
(e) Find R such that V 2(x, τ) satisfies

⎧
⎪⎨

⎪⎩

∂V 2(x, τ)

∂τ
=

n∑

l=1

∂2V 2(x, τ)

∂x2l
, −∞ < x <∞, 0 ≤ τ ≤ T,

V 2(x, 0) = V2T (x), −∞ < x <∞,

where V2T (x) ≡ V1T (R
−1x).

22. (a) Show that

φ(x0;x, τ) =
1

(4πτ)n/2
e
−

n∑

i=1

(xi−xi0)
2/(4τ)

is a solution to

∂φ

∂τ
=

n∑

i=1

∂2φ

∂x2i
, −∞ < x <∞, 0 ≤ τ,

where x and x0 are two n-dimensional vectors with components xi
and xi0, i = 1, 2, · · · , n, respectively and −∞ < x <∞ means

−∞ < xi <∞, i = 1, 2, · · · , n.
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(b) Show that the function φ(x0;x, τ) satisfies the conditions

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
φ(x0;x, τ)dx10dx20 · · · dxn0 = 1

and

lim
τ→0

φ(x0;x, τ) =

⎧
⎨

⎩

∞, at x = x0,

0, otherwise,

that is,
lim
τ→0

φ(x0;x, τ) = δ(x− x0).

(c) Show that

V (x, τ) =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
V0(x0)φ(x0;x, τ)dx10dx20 · · · dxn0

is the solution of the problem

⎧
⎪⎨

⎪⎩

∂V

∂τ
=

n∑

i=1

∂2V

∂x2i
, −∞ < x <∞, 0 ≤ τ,

V (x, 0) = V0(x), −∞ < x <∞.

23. Let P be a positive definite matrix. As we know, in this case there exist
a matrix Q and a diagonal matrix Λ such that P = QΛQT , where all
the components of Λ are positive and Q satisfies the conditions QTQ = I
and det Q = 1. Let y and y0 be two vectors and define R = Λ−1/2QT ,

x = Ry, x0 = Ry0, and η =
y0 − y√

2τ
. Show

(a) det R =
1√

det P
.

(b)
(x0 − x)

T
(x0 − x)

4τ
=
ηTP−1η

2
.

24. *Reduce the problem of the European exchange option

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ρ12σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

+(r −D01)S1
∂V

∂S1
+ (r −D02)S2

∂V

∂S2
− rV = 0,

0 ≤ S1, 0 ≤ S2, 0 ≤ t ≤ T,

V (S1, S2, T ) = max(S1 − S2, 0), 0 ≤ S1, 0 ≤ S2

into a one-dimensional problem and find its closed-form solution.
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25. (a) Suppose that V (S1, S2, t) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2
1S

2
1

∂2V

∂S2
1

+ ρ12σ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2
2S

2
2

∂2V

∂S2
2

+(r −D01)S1
∂V

∂S1
+ (r −D02)S2

∂V

∂S2
− rV = 0,

0 ≤ S1, 0 ≤ S2, 0 ≤ t ≤ T,

V (S1, S2, T ) = max(S0, S1, S2), 0 ≤ S1, 0 ≤ S2.

Define S∗
0 = S0e

−r(T−t), S∗
i = Sie

−D0i(T−t), i = 1, 2, ξ02 = S∗
0/S

∗
2 =

S0e
−(r−D02)(T−t)/S2, ξ12 = S∗

1/S
∗
2 = S1e

−(D01−D02)(T−t)/S2, and
V2(ξ02, ξ12, t) = V (S1, S2, t)/S

∗
2 = V (S1, S2, t)/(S2e

−D02(T−t)). Derive
the final-value problem for V2(ξ02, ξ12, t).

(b) As we know, if let ξ10 = S∗
1/S

∗
0 and ξ20 = S∗

2/S
∗
0 as independent

variables and V0(ξ10, ξ20, t) = V (S1, S2, t)/S
∗
0 , then V0(ξ10, ξ20, t) is

the solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂V0
∂t

+
1

2
σ2
10ξ

2
10

∂2V0
∂ξ210

+ ρ120σ10σ20ξ10ξ20
∂2V0

∂ξ10∂ξ20

+
1

2
σ2
20ξ

2
20

∂2V0
∂ξ220

= 0, 0 ≤ ξ10, 0 ≤ ξ20, 0 ≤ t ≤ T,

V0(ξ10, ξ20, T ) = max(1, ξ10, ξ20), 0 ≤ ξ10, 0 ≤ ξ20.

Suppose that we know

V (S1, S2, t) = S∗
0

∫ ∫

max(ξ′10,ξ′20)≤1

ψdξ′10dξ
′
20

+S∗
0

∫ ∫

max(1,ξ′20)≤ξ′10
ξ′10ψdξ

′
10dξ

′
20

+S∗
0

∫ ∫

max(1,ξ′10)≤ξ′20
ξ′20ψdξ

′
10dξ

′
20,

where ψ = ψ(ξ′10, ξ
′
20; ξ10, ξ20, t, σ10, σ20, ρ120) and ξ

′
ij stands for ξij at

time T , and the first term in the expression is equal to

S∗
0N2

⎛

⎜
⎜
⎝

ln
S∗
0

S∗
1

+
σ2
10

2
τ

σ10
√
τ

,

ln
S∗
0

S∗
2

+
σ2
20

2
τ

σ20
√
τ

; ρ120

⎞

⎟
⎟
⎠ ,

where N2(x1, x2; ρ) is a function of x1, x2, and ρ. Using the result in
part (a), show that the third term should be equal to
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S∗
2N2

⎛

⎜
⎜
⎝

ln
S∗
2

S∗
0

+
σ2
02

2
τ

σ02
√
τ

,

ln
S∗
2

S∗
1

+
σ2
12

2
τ

σ12
√
τ

; ρ012

⎞

⎟
⎟
⎠ .

26. Show

e−rτ
∫ ∞

S0

∫ S′
1

0

S′
1ψ(S

′
1, S

′
2;S1, S2, t)dS

′
2dS

′
1

= S∗
1N2

⎛

⎜
⎜
⎝

ln
S∗
1

S∗
2

+
σ2
12

2
τ

σ12
√
τ

,

ln
S∗
1

S∗
0

+
σ2
1

2
τ

σ1
√
τ

;
σ1 − ρ12σ2

σ12

⎞

⎟
⎟
⎠

by direct calculation, i.e., without using solutions of PDEs. Here

τ = T − t,

ψ(S′
1, S

′
2;S1, S2, t) =

1

2πτ
√
detP

2∏

i=1

(σiS′
i)

e−η
TP−1η/2,

S∗
0 = S0e

−rτ , S∗
1 = S1e

−D01τ , S∗
2 = S2e

−D02τ ,

σ12 =
√

σ2
1 − 2ρ12σ1σ2 + σ2

2 ,

N2(x1, x2; ρ) =
1

2π
√
1− ρ2

∫ x2

−∞

∫ x1

−∞
e−

1
2 (η

2
1−2ρη1η2+η

2
2)/(1−ρ2)dη

1
dη

2
,

where

P =

[
1 ρ12
ρ12 1

]

,

the ith component of η in ψ(S′
1, S

′
2;S1, S2, t) is given by

ηi (S
′
i) =

lnS′
i −
[
lnSi + (r −D0i − σ2

i /2)τ
]

σi
√
τ

, i = 1, 2,

and r,D01, D02, σ1, σ2, ρ12, T, S0, S1, S2, t are parameters.
27. Suppose S1 and S2 are the prices of two assets A and B, respectively. The

random variables S1 and S2 satisfy

dS1 = μ1S1dt+ σ1S1dX1,

dS2 = μ2S2dt+ σ2S2dX2,

where μ1, μ2, σ1, and σ2 are constants, and dX1 and dX2 are two Wiener
processes with
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E [dX1dX2] = ρ12dt.

Also, suppose that the two assets pay dividends continuously and that
the dividend yields of the assets A and B are D01 and D02, respectively.
Consider a European option on the minimum of S1, S2, and S0, i.e., its
payoff function is

min(S0, S1, S2),

where S0 is a constant. Let Vmin(S1, S2, t) be the price of the option. Show
that

Vmin(S1, S2, t)

= S∗
0N2

⎛

⎜
⎜
⎝

ln
S∗
1

S∗
0

− σ2
1

2
τ

σ1
√
τ

,

ln
S∗
2

S∗
0

− σ2
2

2
τ

σ2
√
τ

; ρ12

⎞

⎟
⎟
⎠

+ S∗
1N2

⎛

⎜
⎜
⎝

ln
S∗
2

S∗
1

− σ2
12

2
τ

σ12
√
τ

,

ln
S∗
0

S∗
1

− σ2
1

2
τ

σ1
√
τ

;
σ1 − ρ12σ2

σ12

⎞

⎟
⎟
⎠

+ S∗
2N2

⎛

⎜
⎜
⎝

ln
S∗
0

S∗
2

− σ2
2

2
τ

σ2
√
τ

,

ln
S∗
1

S∗
2

− σ2
12

2
τ

σ12
√
τ

;
σ2 − ρ12σ1

σ12

⎞

⎟
⎟
⎠ ,

where S∗
0 = S0e

−rτ , S∗
1 = S1e

−D01τ and S∗
2 = S2e

−D02τ , τ denoting T − t.

28. As we know, the cumulative distribution function for the bivariate stan-
dard normal distribution is

N2(x1, x2; ρ) =

∫ x2

−∞

∫ x1

−∞
p(η1, η2; ρ)dη1dη2,

where p(η1, η2; ρ) is the probability density function for the bivariate stan-
dard normal distribution, which has the following expression:

p(η1, η2; ρ) =
1

2π
√
1− ρ2

e−
1
2 (η

2
1−2ρη1η2+η

2
2)/(1−ρ2).

Here ρ ∈ [−1, 1] is a parameter. Show
(a)

N2(x1,∞; ρ) = N(x1)

and
N2(∞, x2; ρ) = N(x2).
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Here N(z) is the cumulative distribution function for the standard
normal distribution, i.e.,

N(z) =
1√
2π

∫ z

−∞
e−ξ

2/2dξ.

(b) For N2(x1, x2; ρ) there is another expression:

N2(x1, x2; ρ) =

∫ ρ

0

p(x1, x2; ρ)dρ+N(x1)N(x2),

from which we can have

N2(0, 0; ρ) =
sin−1 ρ

2π
+

1

4
.

(Hint: Show
∂2p(η1, η2; ρ)

∂η1∂η2
=
∂p(η1, η2; ρ)

∂ρ
first.)

(c) Express the values of N2(x1, x2; 1) and N2(x1, x2;−1) in terms of
N(z).

29. The payoffs of two-asset European call and put options with the identical
exercise price E for the two assets are

c(S1, S2, T ) = max(S1 − E,S2 − E, 0)

and
p(S1, S2, T ) = max(E − S1, E − S2, 0).

(a) Drive the closed-form solutions of these two options. (The closed-form
solutions of the options with payoffs max(S1, S2, E) and min(S1, S2, E)
can be used as given results.)

(b) Show that if S1 = S2, D01 = D02, and σ1 = σ2, the limits of the
two option prices when ρ12 goes to 1 are the functions given by the
Black–Scholes formulae.

(c) Derive the limits of the two option prices when ρ12 goes to 1 and
σ1 = σ2.

30. S, S′, ξ, and η are n-dimensional vectors. The ith components of S and
S′ are Si and S′

i respectively. τ, S0, r,D0i, σi, i = 1, 2, · · · , n, are numbers.
We further define

S∗
0 = S0e

−rτ , S∗
i = Sie

−D0iτ , i = 1, 2, · · · , n.

The ith components of ξ and η are given by

ξi (S
′
i) =

lnS′
i − lnS0

σi
√
τ

,

ηi (S
′
i) =

lnS′
i −
[
lnSi + (r −D0i − σ2

i /2)τ
]

σi
√
τ
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=
lnS′

i − lnS0 − [lnS∗
i − lnS∗

0 ] + σ2
i τ/2

σi
√
τ

= ξi +
lnS∗

0 − lnS∗
i

σi
√
τ

+ σi
√
τ/2.

Define

P =

⎡

⎢
⎢
⎢
⎣

1 ρ12 · · · ρ1n
ρ21 1 · · · ρ2n
...

...
. . .

...
ρn1 ρn2 · · · 1

⎤

⎥
⎥
⎥
⎦

with ρij = ρji,

ψ(S′;S, t) =
1

(2πτ)n/2
√
detP

n∏

i=1

(σiS′
i)
e−

1
2η

TP−1η,

and

σij =
√

σ2
i − 2ρijσiσj + σ2

j , for any i and j.

(a) Show

e−rτS′
ie

− 1
2η

TP−1η = S∗
i e

− 1
2 (η−σi

√
τPei)

T
P−1(η−σi

√
τPei),

where ei is the vector, whose ith component is one and whose other
components are zero.

(b) R is a given matrix. Define

z = Rξ, b = Ra, ζ = z+ b, and Q = RPRT .

Show

(ξ + a)TP−1(ξ + a) = (z+ b)
T
Q−1(z+ b) = ζTQ−1ζ.

(c) Show

1

τn/2
n∏

i=1

(σiS′
i)
√
detP

dS′
1dS

′
2 · · · dS′

n

=
1√

detQ
dz1dz2 · · · dzn.

(d) Suppose that the domain Ω in the (S′
1, S

′
2, · · · , S′

n)-space is equiv-
alent to the domain Ω∗ : −∞ < zi ≤ 0, i = 1, 2, · · · , n, in the
(z1, z2, · · · , zn)-space. Show

e−rτ
∫ ∫

· · ·
∫

Ω

S′
iψ(S

′;S, t)dS′
1dS

′
2 · · · dS′

n = S∗
iNn(b;Q),
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where

Nn(b;Q)

=
1

(2π)n/2
√
detQ

·
∫ bn

−∞

∫ bn−

−∞
· · ·
∫ b1

−∞
e−

1
2 ζ

TQ−1ζdζ1dζ2 · · · dζn,

bi being the ith component of b

and
b = R

(
η − ξ − σi

√
τPei

)
.

(e) In the space (S′
1, S

′
2) ∈ [0,∞)× [0,∞), the domain Ω is defined by

max(S0, S
′
2) ≤ S′

1.

Show

e−rτ
∫ ∫

Ω

S′
1ψ(S

′
1, S

′
2;S1, S2, t)dS

′
2dS

′
1

= S∗
1N2

⎛

⎜
⎜
⎝

ln
S∗
1

S∗
2

+
σ2
12

2
τ

σ12
√
τ

,

ln
S∗
1

S∗
0

+
σ2
1

2
τ

σ1
√
τ

;
σ1 − ρ12σ2

σ12

⎞

⎟
⎟
⎠ ,

where

N2(x1, x2; ρ) =
1

2π
√
1− ρ2

∫ x2

−∞

∫ x1

−∞
e−

1
2 (η

2
1−2ρη1η2+η

2
2)/(1−ρ2)dη

1
dη

2
.

(f) In the space (S′
1, S

′
2, S

′
3) ∈ [0,∞) × [0,∞) × [0,∞), the domain Ω is

defined by
max(S0, S

′
1, S

′
2) ≤ S′

3.

Show

e−rτ
∫ ∫ ∫

Ω

S′
3ψ(S

′
1, S

′
2, S

′
3;S1, S2, S3, t)dS

′
1dS

′
2dS

′
3

= S∗
3N3

⎛

⎜
⎜
⎝

ln
S∗
3

S∗
0

+
σ2
3

2
τ

σ3
√
τ

,

ln
S∗
3

S∗
1

+
σ2
13

2
τ

σ13
√
τ

,

ln
S∗
3

S∗
2

+
σ2
23

2
τ

σ23
√
τ

; ρ013, ρ023, ρ123

⎞

⎟
⎟
⎠ ,
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where

N3(x1, x2, x3; ρ12, ρ13, ρ23)

=
1

(2π)
3/2 √

detP

∫ x3

−∞

∫ x2

−∞

∫ x1

−∞
e−

1
2η

TP−1ηdη1dη2dη3,

P being

⎡

⎣
1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

⎤

⎦ and η being

⎡

⎣
η1
η2
η3

⎤

⎦ .

(g) In the space (S′
1, S

′
2, · · · , S′

n) ∈ [0,∞)× [0,∞) · · ·× [0,∞), the domain
Ω is defined by

max(S0, S
′
1, · · · , S′

i−1, S
′
i+1, · · · , S′

n) ≤ S′
i.

Show that in this case if let

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 · · · 0
−σi
σi+1,i

σi+1

σi+1,i
· · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0
−σi
σni

0 · · · σn
σni

0 · · · 0 −1 0 · · · 0
σ1
σ1i

· · · 0
−σi
σ1i

0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · σi−1

σi−1,i

−σi
σi−1,i

0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

then the domain Ω is equivalent to the domain Ω∗ in part (d) and for
b we have

b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ln(S∗
i /S

∗
i+1)

σi+1,i
√
τ

+
σi+1,i

√
τ

2
· · ·

ln(S∗
i /S

∗
n)

σni
√
τ

+
σni

√
τ

2
ln(S∗

i /S
∗
0 )

σi
√
τ

+
σi
√
τ

2
ln(S∗

i /S
∗
1 )

σ1i
√
τ

+
σ1i

√
τ

2
· · ·

ln(S∗
i /S

∗
i−1)

σi−1,i
√
τ

+
σi−1,i

√
τ

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Here the diagonal dots in the matrix R from
σi+1

σi+1,i
to

σn
σni

and from

σ1
σ1i

to
σi−1

σi−1,i
represent

σi+2

σi+2,i
, · · · , σn−1

σn−1,i
and

σ2
σ2i

, · · · , σi−2

σi−2,i
, re-

spectively, and the other dots represent 0.
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31. Suppose that S1, S2, and S3 are the prices of three assets satisfying

dSi = μiSidt+ σiSidXi, i = 1, 2, 3,

where μi, σi, i = 1, 2, 3 are constants and dXi, i = 1, 2, 3 are the Wiener
processes with

E [dXidXj ] = ρijdt, i, j = 1, 2, 3.

Also, suppose that the three assets pay dividends continuously and that
the dividend yields of the three assets are D0i, i = 1, 2, 3.

(a) Consider a European option on the maximum of S1, S2, S3, and S0,
i.e., its payoff is

max(S0, S1, S2, S3),

where S0 is a certain amount of cash. If we understand S0 as a random
variable, then its volatility, σ0, is equal to 0. Let Vmax(S1, S2, S3, t) be
the price of such a T -year option. Show that

Vmax(S1, S2, S3, t) = S∗
0N3 (A10, A20, A30; ρ120, ρ130, ρ230)

+S∗
1N3 (A21, A31, A01; ρ231, ρ201, ρ301)

+S∗
2N3 (A32, A02, A12; ρ302, ρ312, ρ012)

+S∗
3N3 (A03, A13, A23; ρ013, ρ023, ρ123) ,

where

S∗
0 = S0e

−r(T−t),
S∗
i = Sie

−D0i(T−t), i = 1, 2, 3,

Aij =

ln
S∗
j

S∗
i

+
σ2
ij(T − t)

2

σij
√
T − t

, i, j = 0, 1, 2, 3 but i �= j,

σij being
√

σ2
i − 2ρijσiσj + σ2

j ,

ρijk =
σ2
k − ρikσiσk − ρjkσjσk + ρijσiσj

σikσjk
,

i, j, k = 0, 1, 2, 3 but i, j, k being distinct,

and N3(x1, x2, x3; ρ12, ρ13, ρ23) is the trivariate cumulative distribu-
tion function:

N3(x1, x2, x3; ρ12, ρ13, ρ23)

=
1

(2π)
3/2 √

detP

∫ x3

−∞

∫ x2

−∞

∫ x1

−∞
e−

1
2η

TP−1ηdη1dη2dη3,

P being

⎡

⎣
1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

⎤

⎦ and η being

⎡

⎣
η1
η2
η3

⎤

⎦ .
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(b) Consider a European option on the minimum of S1, S2, S3, and S0,
i.e., its payoff is

min(S0, S1, S2, S3),

where S0 is a certain amount of cash. Find the expression of the price
for this option in terms of the trivariate cumulative distribution func-
tion.

32. Suppose that S1, S2, · · · , Sn are the prices of n assets and that each asset
pays a dividend continuously, the dividend yield for Si being D0i, i =
1, 2, · · · , n. Each price Si satisfies the stochastic equation

dSi = μiSidt+ σiSidXi,

where μi, σi are constants and dXi is a Wiener process, and

E [dXidXj ] = ρijdt, i, j = 1, 2, · · · , n.

(a) Guess the expression of price of the European option on the maximum
of S1, S2, · · · , Sn and S0 according to the result given in part (a) of
Problem 31, where S0 is a certain amount of cash.

(b) Guess the expression of price of the European option on the minimum
of S1, S2, · · · , Sn and S0 according to the result given in part (b) of
Problem 31.

33. Suppose that cmax (S1, S2, t), cmin(S1, S2, t), c(S1, t) and c (S2, t) are the
prices of four call options with payoff functions

max(max(S1, S2)− E, 0), max(min(S1, S2)− E, 0), max(S1 − E, 0),

and
max(S2 − E, 0),

respectively. Show

cmax(S1, S2, t) + cmin(S1, S2, t) = c(S1, t) + c(S2, t).

(Hint: Show that the total payoff of the two options on the left-hand side
is equal to the total payoff of the two options on the right-hand side.)

34. Let pmax(S1, S2, t) and pmin(S1, S2, t) be the prices of two European put
options with payoff functions

max(E −max(S1, S2), 0) and max(E −min(S1, S2), 0),

respectively. Suppose that cmax(S1, S2, t) and cmin(S1, S2, t) are the prices
of two European call options with payoff functions

max(max(S1, S2)− E, 0) and max(min(S1, S2)− E, 0),

respectively. c̄max(S1, S2, t) and c̄min(S1, S2, t) denote the prices of Euro-
pean options with payoff functions

max(S1, S2) and min(S1, S2).
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Show
(a) pmax(S1, S2, t) = Ee−r(T−t) − c̄max(S1, S2, t) + cmax(S1, S2, t).
(b) pmin(S1, S2, t) = Ee−r(T−t) − c̄min(S1, S2, t) + cmin(S1, S2, t).
(Hint: Show that the payoff of the option on the left-hand side is equal to
the total value of the three terms at t = T on the right-hand side.)

35. Show that the closed-form solutions of cash-or-nothing puts, asset-or-
nothing calls, and asset-or-nothing puts are

Be−r(T−t)N (−d2) , Se−D0(T−t)N (d1) , and Se−D0(T−t)N (−d1) ,
respectively. Here

d1 =
ln
(
Se(r−D0)(T−t)/E

)
+ σ2(T − t)/2

σ
√
T − t

,

d2 =
ln
(
Se(r−D0)(T−t)/E

)
− σ2(T − t)/2

σ
√
T − t

.

36. Show that the value of a forward start American put option with exercise
price E = αST1

at time t0 < T1 is

αSe−D0(T1−t0)P ∗
(
1

α
, T1

)

,

where P ∗
(
1

α
, T1

)

is the value of a standard American put option.

37. Consider compound options and assume that both options are European.
Let c1 (S, t; c2), c1 (S, t; p2), and p1 (S, t; p2) denote the prices of a call on
a call, a call on a put, and a put on a put, respectively. Show that their
closed-form solutions are

c1 (S, t; c2) = Se−D0(T2−t)N2 (d11, d12; ρ)− E2e
−r(T2−t)N2 (d21, d22; ρ)

−E1e
−r(T1−t)N (d21) ,

c1 (S, t; p2) = E2e
−r(T2−t)N2 (−d23,−d22; ρ)

−Se−D0(T2−t)N2 (−d13,−d12; ρ)
−E1e

−r(T1−t)N (−d23) ,
p1 (S, t; p2) = E1e

−r(T1−t)N (d23)− E2e
−r(T2−t)N2 (d23,−d22;−ρ)

+Se−D0(T2−t)N2 (d13,−d12;−ρ) ,
where

d11 =
ln(S/S∗) +

(
r −D0 + σ2/2

)
(T1 − t)

σ
√
T1 − t

,

d21 =
ln(S/S∗) +

(
r −D0 − σ2/2

)
(T1 − t)

σ
√
T1 − t

,

d12 =
ln(S/E2) +

(
r −D0 + σ2/2

)
(T2 − t)

σ
√
T2 − t

,
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d22 =
ln(S/E2) +

(
r −D0 − σ2/2

)
(T2 − t)

σ
√
T2 − t

,

d13 =
ln(S/S∗∗) +

(
r −D0 + σ2/2

)
(T1 − t)

σ
√
T1 − t

,

d23 =
ln(S/S∗∗) +

(
r −D0 − σ2/2

)
(T1 − t)

σ
√
T1 − t

,

ρ =

√
T1 − t

T2 − t
.

Here, S∗ and S∗∗ are the solutions of the following equations:

c2 (S
∗, T1) = E1

and
p2 (S

∗∗, T1) = E1.

38. How do we determine the price of a European put option on an American
put option?

39. Show

∞∫

0

G (S′′, T2;S′, T1)G (S′, T1;S, t) dS′ = G (S′′, T2;S, t) ,

where

G (S′, T1;S, t)

=
1

σ
√
2π (T1 − t)S′ e

−[lnS′−lnS−(r−D0−σ2/2)(T1−t)]2/2σ2(T1−t)

and G (S′′, T2;S′, T1) and G (S′′, T2;S, t) are defined in the same way.
40. The payoff of a standard chooser option is

V (S, T1) = max (c (S, T1) , p (S, T1)) ,

where c (S, T1) and p (S, T1) are the prices of European call and put options
with the same exercise price E2 and the same expiration date T2. Find
its closed-form solution. (Hint: Use the put–call parity relation and the
result of Problem 39.)
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Interest Rate Derivative Securities

5.1 Introduction

This chapter is devoted to interest rate derivatives. Interest rate derivatives
are financial products derived from interest rates. There are various interest
rates that will be mentioned in this chapter. Here we first give the meaning
of each interest rate and derive some relations among them.

An N -year zero-coupon yield or an N -year spot interest rate is the interest
rate on an investment starting at time t and lasting for N years. The invest-
ment is a “pure” N -year investment with no intermediate payments. Assume
that the interest is compounded continuously. In this case, suppose that at
time t the N -year zero-coupon yield is Y (t, t+N), then the investor will get

eY (t,t+N)N

at the end of year N for each dollar invested. A zero-coupon yield curve is a
curve showing the relation between Y (t, t+N) and N .

A zero-coupon bond with a face value or a par value of one dollar is a
contract whose holder will get one dollar at the maturity of the contract from
its issuer. Let Z(t;T ) denote the money a person needs to pay in order to
have the contract with maturity date T at time t. Then, between Y (t, T ) and
Z(t;T ), there is the following relation

Z(t;T ) = e−Y (t,T )(T−t), (5.1)

or

Y (t, T ) =
− lnZ(t;T )

T − t
.

Suppose t ≤ T1 ≤ T2. An interest rate determined at time t for a period
[T1, T2] and paid at time T2 is called a forward interest rate. Let us denote
this rate by f(t, T1, T2) and again assume that the interest is compounded
continuously. Among f(t, T1, T2), Z(t;T1), and Z(t;T2), there is the following
relation:

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
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Z(t;T1) = Z(t;T2)e
f(t,T1,T2)(T2−T1),

or

f(t, T1, T2) =
1

T2 − T1
ln
Z(t;T1)

Z(t;T2)
. (5.2)

The reason is the following. If we borrow one dollar at time T1, then we
need to return ef(t,T1,T2)(T2−T1) dollars at time T2 according to the forward
interest rate at time t. At time t, the values of one dollar at time T1 and
ef(t,T1,T2)(T2−T1) dollars at time T2 should be the same, otherwise there is an
arbitrage opportunity.

An instantaneous forward interest rate F (t, T1) is the limit of f(t, T1, T2)
as T2 → T1, written as

F (t, T1) = lim
T2→T1

f(t, T1, T2) = lim
T2→T1

−[lnZ(t;T2)− lnZ(t;T1)]

T2 − T1

=
−1

Z(t;T1)

∂Z(t;T1)

∂T1
. (5.3)

This gives

Z(t;T ) = Z(t; t)e−
∫ T
t
F (t,u)du = e−

∫ T
t
F (t,u)du.

Furthermore, combining this expression for Z(t, T ) with the relation (5.1)
yields

Y (t, T ) =
1

T − t

∫ T

t

F (t, u)du. (5.4)

The limit of Y (t, T ) as T → t is called the instantaneous short rate (see [43]),
the short-term interest rate, the short rate, or the spot rate (see [84]), denoted
by r(t), so

r(t) = lim
T→t

Y (t, T ) = Y (t, t).

Because from Eq. (5.4) we also have

lim
T→t

Y (t, T ) = lim
T→t

1

T − t

∫ T

t

F (t, u)du = F (t, t),

we get

r(t) = Y (t, t) = F (t, t). (5.5)

Clearly, if Y (t, T ) is equal to a constant r, then

Z(t;T ) = e−r(T−t),

and
f(t, T1, T2) = F (t, T1) = F (t, t) = Y (t, t) = r(t) = r.
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In practice, the interest is often compounded discretely. If a loan of one
dollar is required to pay at an interest rate r̄ compounded m times per year,
then the amount of each payment is

r̄

m
.

For an investment with an interest rate r compounded continuously, the in-

terest payment for a period
1

m
years is

er/m − 1.

If

er/m − 1 =
r̄

m
,

that is,
r = m ln(1 + r̄/m),

then the two investments are equivalent. Suppose that a forward interest rate
at time t for the period [T1, T1 + 1/m] is an interest rate compounded m times
per year and we use f̄(t, T1, T1 + 1/m) to denote this forward interest rate.
Let f(t, T1, T1 + 1/m) be equivalent to the interest rate f̄(t, T1, T1 + 1/m).
Then we have

f(t, T1, T1 + 1/m) = m ln

(

1 +
f̄(t, T1, T1 + 1/m)

m

)

and the relation (5.2) can be rewritten as

m ln

(

1 +
f̄(t, T1, T1 + 1/m)

m

)

= m ln

(
Z(t;T1)

Z(t;T1 + 1/m)

)

or

f̄(t, T1, T1 + 1/m) = m

[
Z(t;T1)

Z(t;T1 + 1/m)
− 1

]

. (5.6)

This is the counterpart of the relation (5.2) for an interest rate compounded
m times per year. Actually, this relation can also be derived directly. For the
formulae (5.1) and (5.3)–(5.5), we can also have their counterparts for interest
rates compounded discretely.

As we know, the value of a bond is related to interest rates. There are many
other financial contracts related to interest rates, which are signed between
two parties, for example, a bank and a company. These are called interest
rate derivatives. For an equity option, a typical life span is 9 months or less.
In this case, the assumption of a short rate being a deterministic function of
t, even a constant, is acceptable. If this is not the case, it may be necessary to
consider a short rate as a random variable. For example, a life span of a bond
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may be 5 years, 10 years, even 30 years. Therefore, it is more realistic to deal
with a short-term interest rate as a random variable. An interest rate cannot
be traded on the market. In Chap. 2, we pointed out that there is a unknown
function called the market price of risk for a short rate in the governing
partial differential equation (PDE) for interest rate derivatives. Before using
such an equation to price a derivative security, one has to find this function.
From the mathematical point of view, to find a unknown function in the
partial differential equation is to solve an inverse problem. This function in
the PDE is determined by some data associated with solutions of the equation.
The values of zero-coupon bonds with various maturity dates on the market
or some other data can be taken as the data needed. Moreover, reducing the
randomness of a zero-coupon bond curve to the randomness of the short rate is
not a good approximation in many cases. Thus, describing the randomness of
a zero-coupon bond curve by the randomness of several interest rates, namely,
considering multi-factor models, is necessary.

Therefore, the rest of this chapter is organized as follows. In Sects. 5.2
and 5.3, the problem for a bond is formulated and for four special models,
explicit solutions are derived. In Sect. 5.4, we discuss the inverse problem
of determining the market price of risk and give a formulation of the inverse
problem so that the determination of the unknown function can be reduced to
solving such a problem. Then, we discuss bond options, swaps, swaptions, and
so forth in Sect. 5.5. Section 5.6 is devoted to multi-factor interest rate models,
especially, a three-factor model that can used in practice easily. Finally, two-
factor convertible bonds are discussed in Sect. 5.7.

5.2 Bonds

A bond is a long-term contract under which the issuer promises to pay the
holder a specified amount of money on a specified date. The specified amount
is called the face value of the bond, which is denoted by Z in this chapter,
and the specified date is named the maturity date T . Usually, the holder is
also paid a specified amount at fixed times during the life of the contract.
Such a specified amount is called a coupon. If there is no coupon payment,
the bond is known as a zero-coupon bond. Clearly, the bondholder must pay
a certain amount of money to the issuer when the bond is purchased. This
amount is called the upfront premium. In this section, we will mainly derive
the equations by which one can determine a fair value of the bond for any
time t, including the upfront premium.

5.2.1 Bond Values for Deterministic Short Rates

Let r be the interest rate for the shortest possible deposit, which is called the
short-term interest rate or, for short, the short rate in this book. For a short
period, r may be assumed to be a constant. For a long period, for example, a
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few years, it is unreasonable to consider r as a constant. As a starting point,
we assume that the short rate is a known function of t, i.e., r = r(t). Let V (t)
stand for the value of a bond with coupon rate k(t) at time t. Assume that
the return rate of a bond during the time interval [t, t+ dt] be the risk-free
short rate, so we have

dV + Zk(t)dt = r(t)V dt,

where Zk(t)dt is the coupon payment the bondholder receives during the time
interval. If the coupon is paid continuously, k(t) is a continuous function of t.
If it is paid at fixed times, k(t) is a linear combination of Dirac delta functions,
i.e., k(t) =

∑

i

kiδ (t− ti) , ti ≤ T . The relation above can also be written as

dV − r(t)V dt = −Zk(t)dt.

Multiplying both sides of the equation by e
∫ T
t
r(τ)dτ , which is usually referred

to as the integrating factor, yields

e
∫ T
t
r(τ)dτ [dV − r(t)V dt] = −Zk(t)e

∫ T
t
r(τ)dτdt.

The left-hand side actually is d
(
e
∫ T
t
r(τ)dτV

)
. Therefore, we have

∫ T

t

d
(
e
∫ T
t
r(τ)dτV

)
= V (T )− e

∫ T
t
r(τ)dτV (t) = −Z

∫ T

t

k(τ̄)e
∫ T
τ̄
r(τ)dτdτ̄

and

V (t) = e−
∫ T
t
r(τ)dτ

[

V (T ) + Z

∫ T

t

k(τ̄)e
∫ T
τ̄
r(τ)dτdτ̄

]

= V (T )e−
∫ T
t
r(τ)dτ

[

1 +

∫ T

t

k(τ̄)e
∫ T
τ̄
r(τ)dτdτ̄

]

, (5.7)

where we have used the condition Z = V (T ). For a zero-coupon bond, k(t) = 0
and

V (t) = V (T )e−
∫ T
t
r(τ)dτ = Ze−

∫ T
t
r(τ)dτ .

From the right-hand side, we see that the value of V (t) depends on T . How-
ever, this dependence is suppressed in this expression. In order to express this
dependence explicitly, the relation above can be rewritten as

V (t;T ) = V (T ;T )e−
∫ T
t
r(τ)dτ , (5.8)

where V (T ;T ) = Z.
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At time t, the values of zero-coupon bonds with various maturities can
be obtained from the market, i.e., V (t;T ) with a fixed t and various T is
observable. Suppose we have such a function. Differentiating the formula (5.8)
with respect to T yields

∂V (t;T )

∂T
= −V (T ;T )e−

∫ T
t
r(τ)dτr(T ) = −V (t;T )r(T )

and

r(T ) =
−1

V (t;T )

∂V (t;T )

∂T
.

This means that the short rate at time T can be determined by the value and
the slope of the function V (t;T ). It is clear that r(T ) does not depend on
Z. Let Z = 1, then comparing the expression for r(T ) and the formula (5.3)
yields

F (t, T ) = r(T )

and

Z(t;T ) = e−
∫ T
t
r(u)du (5.9)

if Z = 1. Also for a zero-coupon bond,

V (t;T )

V (T ;T )
= Z(t;T ).

Thus, from the relation (5.1) we have

Y (t, T ) =
− lnZ(t;T )

T − t
=

− ln (V (t;T )/V (T ;T ))

T − t
, (5.10)

which is usually called the yield of a bond during the time interval [t, T ].
A plot of Y against the time to maturity, T − t, is called the yield curve. The
dependence of the yield on T − t is called the term structure of interest rates.
The historical data on bonds are usually given in the form of yields for various
T − t.

5.2.2 Bond Equations for Random Short Rates

It will be more realistic to consider the short rate r as a random variable.
Suppose

dr = u(r, t)dt+ w(r, t)dX. (5.11)

From Sect. 2.3, we know that the value of a bond as a short rate derivative,
V (r, t), satisfies Eq. (2.34) with only one random variable r:

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + kZ = 0, (5.12)
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where kZ is the coupon payment and λ = λ(r, t) is the market price of risk
for r. For a bond the value at maturity date T is a constant Z, i.e.,

V (r, T ) = Z. (5.13)

If the short rate model satisfies the conditions (2.39) and (2.40), then no
boundary condition is needed, i.e., Eq. (5.12) with the final condition (5.13)
has a unique solution.

5.3 Some Explicit Solutions of Bond Equations

There exist many short rate models. Here, we discuss the following model
(see [84]):

dr = [μ̄(t)− γ̄(t)r] dt+
√
α(t)r − β(t)dX, (5.14)

where α(t), β(t), γ̄(t), and μ̄(t) are given functions of t. Several important
models, for example, the Vasicek model (see [81]), the Cox–Ingersoll–Ross
model (see [23]), the Ho–Lee model (see [41]), and the Hull–White model (see
[44]) possess this form. For the models in the form (5.14), the determination
of the value of a zero-coupon bond can be reduced to solving two ordinary
differential equations. Sometimes we can find analytic solutions or the solution
can be expressed in terms of integrals with known integrands. Such a solution
is referred to as an explicit solution here.

If a short rate model is in the form (5.14) and we take

λ (r, t) = λ̄(t)
√
α(t)r − β(t), (5.15)

then Eq. (5.12) can be written as

∂V

∂t
+

1

2
[α(t)r − β(t)]

∂2V

∂r2
+ [μ(t)− γ(t)r]

∂V

∂r
− rV = 0, (5.16)

where

μ(t) = μ̄(t) + λ̄(t)β(t) (5.17)

and

γ(t) = γ̄(t) + λ̄(t)α(t). (5.18)

Here, we let k = 0 because we are going to determine the value of a zero-

coupon bond. Because the coefficients of
∂2V

∂r2
and

∂V

∂r
are linear functions in

r, the solution of Eq. (5.16) with the condition (5.13) has the following form

V (r, t) = ZeA(t,T )−rB(t,T ) (5.19)



284 5 Interest Rate Derivative Securities

with

A(T, T ) = 0 (5.20)

and

B(T, T ) = 0. (5.21)

In fact, because the conditions (5.20) and (5.21) hold, we have

V (r, T ) = Z.

Substituting the expression (5.19) into Eq. (5.16) yields

dA

dt
− r

dB

dt
+

1

2
[α(t)r − β(t)]B2 − [μ(t)− γ(t)r]B − r = 0.

If the sum of the terms independent of r is equal to zero, i.e.,

dA

dt
− 1

2
β(t)B2 − μ(t)B = 0

and the sum of all coefficients of r is equal to zero, i.e.,

−dB
dt

+
1

2
αB2 + γ(t)B − 1 = 0,

then the expression (5.19) is a solution to a zero-coupon bond. These two
equations above, which can be rewritten as

dA

dt
=

1

2
β(t)B2 + μ(t)B (5.22)

and
dB

dt
=

1

2
α(t)B2 + γ(t)B − 1, (5.23)

have unique solutions satisfying the conditions (5.20) and (5.21). Thus, it is
true that Eq. (5.16) with the condition (5.13) has a solution in the form (5.19)
satisfying the conditions (5.20) and (5.21), and the solution of the problem
can be reduced to solving the two ordinary differential equations (5.22) and
(5.23) with the conditions (5.20) and (5.21).

5.3.1 Analytic Solutions for the Vasicek and Cox–Ingersoll–Ross
Models

If α, β, γ, μ in Eqs. (5.22) and (5.23) are constant, then we can find analytic
expressions for A and B.When A and B have such expressions, the expression
(5.19) gives an analytic solution for a zero-coupon bond. In this case, Eq. (5.23)
can be rewritten as

dB

B2 +
2γ

α
B − 2

α

=
α

2
dt. (5.24)
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Since

B2 +
2γ

α
B − 2

α
=

(

B +
γ − ψ

α

)(

B +
γ + ψ

α

)

,

where

ψ =
√
γ2 + 2α, (5.25)

using the method of partial fraction decomposition, we can have

1

B2 +
2γ

α
B − 2

α

=

α

2ψ

B +
γ − ψ

α

−

α

2ψ

B +
γ + ψ

α

.

Noticing this relation, we can easily find the solution to Eq. (5.24) by inte-
grating both sides of the equation:

∫ B(T,T )

B(t,T )

dB

B2 +
2γ

α
B − 2

α

=
α

2ψ

[∫ 0

B(t,T )

dB

B + (γ − ψ)/α
−
∫ 0

B(t,T )

dB

B + (γ + ψ)/α

]

=
α

2ψ

[

ln
(γ − ψ) /α

B + (γ − ψ)/α
− ln

(γ + ψ) /α

B + (γ + ψ)/α)

]

=
α

2

∫ T

t

dt =
α

2
(T − t).

From this we have

B + (γ + ψ) /α

B + (γ − ψ)/α
=
γ + ψ

γ − ψ
eψ(T−t)

or

B =

γ + ψ

α
eψ(T−t) − γ + ψ

α

1− γ + ψ

γ − ψ
eψ(T−t)

=
2
[
eψ(T−t) − 1

]

(γ + ψ) eψ(T−t) − (γ − ψ)
, (5.26)

where we have used the relation ψ2−γ2 = 2α. After we find B, from Eq. (5.22)
we have

∫ A(T,T )

A(t,T )

dA = A (T, T )−A(t, T )

=

∫ T

t

(
1

2
βB2 + μB

)

dt
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or

A(t, T ) = −1

2
β

∫ T

t

B2dt− μ

∫ T

t

Bdt.

Using the relation (5.24), we can obtain the results of
∫ T
t
Bdt and

∫ T
t
B2dt

easily as follows:

∫ T

t

Bdt =

∫ 0

B(t,T )

2B/α

B2 + 2γB/α− 2/α
dB

=
2

α

∫ 0

B(t,T )

[
− (γ − ψ) /(2ψ)

B + (γ − ψ)/α
+

(γ + ψ) /(2ψ)

B + (γ + ψ)/α

]

dB

= −γ − ψ

αψ
ln

(γ − ψ) /α

B + (γ − ψ) /α
+
γ + ψ

αψ
ln

(γ + ψ)/α

B + (γ + ψ) /α

and

∫ T

t

B2dt =
2

α

∫ 0

B(t,T )

B2

B2 + 2γB/α− 2/α
dB

=
2

α

∫ 0

B(t,T )

(

1− 2γB/α

B2 + 2γB/α− 2/α
+

2/α

B2 + 2γB/α− 2/α

)

dB

=
2

α

∫ 0

B(t,T )

(

1 +
γ(γ − ψ)/(αψ)

B + (γ − ψ)/α
− γ(γ + ψ)/(αψ)

B + (γ + ψ)/α

+
1/ψ

B + (γ − ψ)/α
− 1/ψ

B + (γ + ψ)/α

)

dB

=
2

α

{

−B +

[
γ (γ − ψ)

αψ
+

1

ψ

]

ln
(γ − ψ) /α

B + (γ − ψ) /α

−
[
γ(γ + ψ)

αψ
+

1

ψ

]

ln
(γ + ψ) /α

B + (γ + ψ) /α

}

=
2

α

{

−B − γ − ψ

(γ + ψ)ψ
ln

(γ − ψ) /α

B + (γ − ψ) /α

+
(γ + ψ)

(γ − ψ)ψ
ln

(γ + ψ) /α

B + (γ + ψ) /α

}

.

Therefore

A =
β

α
B +

[
β (γ − ψ)

α (γ + ψ)ψ
+ μ

γ − ψ

αψ

]

ln
(γ − ψ) /α

B + (γ − ψ) /α

−
[
β(γ + ψ)

α (γ − ψ)ψ
+ μ

γ + ψ

αψ

]

ln
(γ + ψ)/α

B + (γ + ψ) /α
(5.27)
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and

V (r, t)=Z

[
B + (γ − ψ) /α

(γ − ψ)α

]β(ψ−γ)/α(γ+ψ)ψ+μ(ψ−γ)/αψ

×
[
B + (γ + ψ) /α

(γ + ψ) /α

]β(γ+ψ)/α(γ−ψ)ψ+μ(γ+ψ)/αψ
e(β/α−r)B . (5.28)

This is a solution of a zero-coupon bond suitable for all the models (5.14)
with constant α, β, γ̄, and μ̄ as long as we choose the market price of risk in
the form λ (r, t) = λ̄

√
αr − β. The parameters α, β, γ̄, and μ̄ can be obtained

from the data on the short rate on the market. However λ̄, a parameter in the
expression of the market price of risk, cannot be determined from the data on
the short rate and should be obtained from the other data on the market. For
example, λ̄ can be determined from the yield function on the market by the

least squares method, i.e., by choosing λ̄ so that

∫ T

t

[
Y (t, T ; λ̄)−Ỹ (t−T )

]2
dT

is minimized, or

∫ T

t

[
Y
(
t, T ; λ̄

)
− Ỹ (t, T )

] ∂Y
(
t, T ; λ̄

)

∂λ̄
dT = 0. (5.29)

Here, Ỹ (t, T ) is the yield function observed on the market, whereas according
to the expressions (5.10) and (5.19), the function Y (t, T ; λ̄) is given by

Y
(
t, T ; λ̄

)
=
rB(t, T ; λ̄)−A(t, T ; λ̄)

T − t
, (5.30)

where A(t, T ; λ̄) and B(t, T ; λ̄) are given by the expressions (5.26) and (5.27),
respectively, but the dependence of A and B on λ̄ is expressed explicitly here.
If the value of yield is only available discretely on the market, then we can

find a λ̄ such that
∑

i

[
Y (t, Ti; λ̄)− Ỹ (t, Ti)

]2
is minimized, or

∑

i

[
Y (t, Ti; λ̄)− Ỹ (t, Ti)

] ∂Y (t, Ti; λ̄)

∂λ̄
= 0. (5.31)

As soon as we have λ̄, the (5.16) with constant α, β, γ, and μ can be used
to determine the value of any other short rate derivative. Generally speaking,
it is impossible to fit the entire yield curve by choosing only one parameter.
This is a drawback of such a model.

For some special models, for example, the Vasicek model (see [81]) and the
Cox–Ingersoll–Ross model (see [23]), the expression can be simplified. Let us
do this for these two models.

The Vasicek model is in the form

dr = (μ̄− γ̄r) dt+
√

−βdX, β < 0, γ̄ > 0.
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Therefore, the expressions (5.26) and (5.27) with

α = 0, μ = μ̄+ λ̄β

and
γ = γ̄

give B and A for this model. In this case, the expression (5.26) becomes1

B =
eγ(T−t) − 1

γ eγ(T−t) =
1

γ
(1− e−γ(T−t)). (5.32)

However, the expression (5.27) cannot be used for calculation because of α =
0. In order to have an expression for A that can be used for calculation, we
need to find the limit of the expression (5.27) as α → 0 or solve Eq. (5.22)
with B given by the expression (5.32) directly. Let us solve Eq. (5.22) directly.
Putting the expression (5.32) into Eq. (5.22), we have:

A(T, T )−A(t, T ) =

∫ A(T,T )

A(t,T )

dA

=

∫ T

t

[
β

2γ2

(
1− e−γ(T−t)

)2
+
μ

γ

(
1− e−γ(T−t)

)]

dt

=

∫ T

t

[
β

2γ2

(
1− e−γ(T−t)

)(
−e−γ(T−t)

)

+

(
β

2γ2
+
μ

γ

)(
1− e−γ(T−t)

)]

dt

=

[
β

4γ3

(
1− e−γ(T−t)

)2
+

(
β

2γ2
+
μ

γ

)(

t− 1

γ
e−γ(T−t)

)]∣
∣
∣
∣

T

t

= − β

4γ3

(
1− e−γ(T−t)

)2
+

(
β

2γ2
+
μ

γ

)

(T − t)

−
(

β

2γ2
+
μ

γ

)
1

γ

(
1− e−γ(T−t)

)
.

Because of A(T, T ) = 0, we obtain

A = −
(

β

2γ2
+
μ

γ

)

(T − t) +

(
β

2γ2
+
μ

γ

)

B +
βB2

4γ
. (5.33)

Consequently

V (r, t) = Ze−(β/2γ2+μ/γ)(T−t)+(β/2γ2+μ/γ−r)B+βB2/4γ

= Ze−(β/2γ2+μ/γ)(T−t)+(β/2γ2+μ/γ−r)(1−e−γ(T−t))/γ+β(1−e−γ(T−t))
2
/4γ3

.

(5.34)

1This expression can also be obtained by integrating Eq. (5.23) with α = 0
directly, and for the case α = 0, this direct way of finding the solution is easier.
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This is the value of a zero-coupon bond if the Vasicek model is adopted. As
pointed out above, the solution (5.34) can also be obtained by finding the
limit of the solution (5.28). This is left to readers as Problem 7.

Noticing that B does not depend on λ̄ in this case, we have

Y (t, T ; λ̄) =
rB (t, T )−A(t, T ; λ̄)

T − t

=

(
β

2γ2
+
μ

γ

)

(T − t)−
(

β

2γ2
+
μ

γ
− r

)

B − βB2

4γ

T − t

=

(
β

2γ2
+
μ̄

γ

)

(T − t)−
(
B

2γ2
+
μ̄

γ
− r

)

B − βB2

4γ

T − t

+
λ̄β(T − t−B)

γ (T − t)

and
∂Y

∂λ̄
(t, T ; λ̄) =

β(T − t−B)

γ(T − t)
.

Hence, Eq. (5.29) becomes a linear equation for λ̄. From the linear equation,
we see that λ̄ is given by

∫ T

t

⎡

⎢
⎢
⎣

(
β

2γ2
+
μ̄

γ

)

(T − t)−
(
B

2γ2
+
μ̄

γ
− r

)

B − βB2

4γ

T − t
− Ỹ

⎤

⎥
⎥
⎦
T − t−B

(T − t)
dT

−β
γ

∫ T

t

(T − t−B)
2

(T − t)
2 dT

.

(5.35)

Because only λ̄ is chosen, the yield curve cannot be fitted entirely. Another
problem of this model is that r may be negative.

In order to rectify this problem, Cox, Ingersoll, and Ross (see [23]) pro-
posed another model:

dr = (μ̄− γ̄r)dt+
√
αrdX. (5.36)

This is also in the form (5.14) and β = 0 here. In this case, the solution for a
zero-coupon bond is

V (r, t) = Z

[
B + (γ − ψ) /α

(γ − ψ)/α

]μ(ψ−γ)/αψ [
B + (γ + ψ) /α

(γ + ψ) /α

]μ(γ+ψ)/αψ

e−rB .
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Here, B is given by the expression (5.26), i.e.,

B =
2
(
eψ(T−t) − 1

)

(γ + ψ) eψ(T−t) − (γ − ψ)
,

μ = μ̄

and
γ = γ̄ + λ̄α,

where λ̄ is a parameter in the expression (5.15) for the market price of risk.
However, the solution can have another form. Because

A (T, T )−A(t, T ) =

∫ A(T,T )

A(t,T )

dA =

∫ T

t

μBdt

= μ

∫ T

t

2
(
eψ(T−t) − 1

)

(γ + ψ) eψ(T−t) − (γ − ψ)
dt,

noticing A(T, T ) = 0 and setting ξ = eψ(T−t), we have

A(t, T )

= −μ
∫ T

t

2
(
eψ(T−t) − 1

)

(γ + ψ) eψ(T−t) − (γ − ψ)
dt = μ

∫ 1

ξ

2(ξ − 1)dξ

[(γ + ψ)ξ − (γ − ψ)]ψξ

=
2μ

ψ(γ + ψ)

∫ 1

ξ

[
−2ψ/(γ − ψ)

ξ − (γ − ψ)/(γ + ψ)
+

(γ + ψ)/(γ − ψ)

ξ

]

dξ

=
−4μ

γ2 − ψ2
[ln(ξ − (γ − ψ)/(γ + ψ))− (γ + ψ) ln ξ/2ψ]|1ξ

=
2μ

α
[ln(1− (γ − ψ)/(γ + ψ))− ln(ξ − (γ − ψ)/(γ + ψ))

+(γ + ψ) ln ξ/2ψ]

= ln

(
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

)2μ/α

.

Therefore, we have a solution

V (r, t) = Z

[
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

]2μ/α

e−rB , (5.37)

which is the form given in the paper by Cox, Ingersoll, and Ross. It can be
proved that the two expressions are identical. This is left to readers to prove
as Problem 9.

In this case

Y (t, T ; λ̄) =

2
(
eψ(T−t) − 1

)
r

(γ + ψ)eψ(T−t) − (γ − ψ)
− 2μ

α
ln

(
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

)

T − t
,
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where γ = γ̄ + λ̄α and ψ =
√
γ2 + 2α, so the dependence of Y (t, T ; λ̄) on λ̄

is quite complicated.
As we have stated, in order to use the partial differential equation (5.16)

to price the value of other derivatives, we need to determine λ̄ so that we can

have γ = γ̄+ λ̄α. For example, we can obtain λ̄ by solving Eq. (5.29). Because
the dependence of Y (t, T ; λ̄) on λ̄ in this case is quite complicated, Eq. (5.29)
has to be solved numerically. Just like the Vasicek model, generally speaking,
it is impossible to “build” the entire term structure of the short rate into a
parameter λ̄.

5.3.2 Explicit Solutions for the Ho–Lee and Hull–White Models

In order to fit the entire term structure of interest rates, it seems to be neces-
sary to require λ̄ to be dependent on t or r. If λ̄ depends on t, then for some
models in the form (5.14), the solution of a zero-coupon bond can explicitly
be expressed by elemental functions and integrals with known integrands. We
refer to such a solution as an explicit solution or a closed-form solution. The
Ho–Lee model (see [41])

dr = μ̄(t)dt+
√

−βdX (5.38)

and the Hull–White model (see [44])

dr = (μ̄(t)− γ̄r)dt+
√
−βdX (5.39)

are such models. We note that the Hull–White model is an extension of the
Ho–Lee model and the Vasicek model. For the Hull–White model, B(t, T ) is
the same as for the Vasicek model, given by the expression (5.32):

B(t, T ) =
1

γ
(1− e−γ(T−t)),

where

γ = γ̄.

Let γ → 0, we have

B(t, T ) = T − t, (5.40)

which is the expression of B(t, T ) for the Ho–Lee model. For both of them,
Eq. (5.22) is in the form

dA

dt
=

1

2
βB2 + μ(t)B,

where μ(t) is given by the expression (5.17):

μ(t) = μ̄(t) + λ̄(t)β.
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Here, we assume that the market price of risk is λ(r, t) = λ̄(t)
√
−β. From the

ordinary differential equation above, we can find

A(t, T ) = −1

2
β

∫ T

t

B2(τ, T )dτ −
∫ T

t

μ(τ)B(τ, T )dτ

and
V (r, t) = Ze−

1
2β

∫ T
t
B2(τ,T )dτ−∫ T

t
μ(τ)B(τ,T )dτ−rB(t,T ). (5.41)

Here, B is given by the expression (5.32) or the expression (5.40), depending
on which model is used. Therefore, if λ̄ is given, we can find V (r, t) without
any difficulties.

In practice, we need to find λ̄(t) from some data on the market, for exam-
ple, a given yield function Y (t, T ). In order to do this, we rewrite the solution
(5.41) as

lnV (r, t) = lnZ − 1

2
β

∫ T

t

B2(τ, T )dτ −
∫ T

t

μ(τ)B(τ, T )dτ − rB(t, T )

or if we require that the solution (5.41) fits the yield function on the market,
we furthermore have

∫ T

t

μ(τ)B(τ, T )dτ = Y (t, T )(T − t)− 1

2
β

∫ T

t

B2(τ, T )dτ − rB(t, T ), (5.42)

where we have used the definition of the yield (5.10). If we define

F1(t, T ) ≡ Y (t, T )(T − t)− 1

2
β

∫ T

t

B2(τ, T )dτ − rB(t, T ) (5.43)

and substitute (1 − e−γ(T−τ))/γ for B on the left-hand side of Eq. (5.42), it
becomes

1

γ

∫ T

t

μ(τ)(1− e−γ(T−τ))dτ = F1(t, T ).

Differentiating both sides of this relation with respect to T twice yields

μ(T ) =
∂2F1(t, T )

∂T 2
+ γ

∂F1(t, T )

∂T
, (5.44)

which is the function μ(t) for the Hull–White model. After having the function
μ(t), we can obtain λ̄(t) immediately by

λ̄(t) =
1

β
[μ(t)− μ̄(t)]

if we want. Therefore, for the Hull–White model, we can find a function for
the market price of risk for r such that the entire term structure of interest
rate can be fitted. For the Ho–Lee model, in order to do this, we can use the
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same formula with γ = 0, so in the expression (5.43) B = T − t. Because
in these models the entire term structure of interest rate is built into the
function λ̄(t), these two models are often referred to as no-arbitrage interest
rate models. The difference between them is that the Hull–White model has
the mean reversion property that an interest rate model should have, whereas
the Ho–Lee model does not. However, even though the Hull-White model
has the mean reversion property, r is still defined on (−∞,∞) because the
coefficient of dX in the model is a constant.

5.4 Inverse Problem on the Market Price of Risk

As we saw in Sect. 5.3, for some special interest rate models and some special
function of the market price of risk, we can find an explicit solution for a
zero-coupon bond and furthermore explicit expressions for the market price
of risk for which the entire term structure of interest rate or the entire zero-
coupon bond price curve is fitted. However, even though the model is in the
form (5.14) and solving the partial differential equation (5.16) can be reduced
to solving ordinary differential equations (5.22) and (5.23), we still may not
be able to find an explicit expression for the market price of risk if α(t) really
depends on t or even if α is a nonzero constant. In this case, the unknown
function λ̄(t) appears in both Eqs. (5.22) and (5.23) and it may be necessary
to use numerical methods.

Also, there are other models, for example, the Black–Derman–Toy model
(see [9]):

d ln r =

[

μ̄(t)− σ′
r(t)

σr(t)
ln r

]

dt+ σr(t)dX

and the Black–Karasinski model (see [10]):

d ln r = [μ̄(t)− γ̄(t) ln r] dt+ σr(t)dX.

For these models, it might even be impossible to reduce solving a partial dif-
ferential equation into solving two ordinary differential equations. In addition,
it may be necessary to consider interest rate models (5.11):

dr = u(r, t)dt+ w(r, t)dX

with more general functions u(r, t) and w(r, t). For example, a model might
be more useful if u(r, t) and w(r, t) is determined from the data of the short
rate on the market. Also in order for the model to be more realistic, the model
should guarantee that the random variable r will be in a finite interval [rl, ru]
in the future if r is in the interval [rl, ru] now. According to Sect. 2.4, if u and
w satisfy

{

u(rl, t)− w(rl, t)
∂

∂r
w(rl, t) ≥ 0,

w(rl, t) = 0
(5.45)
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Fig. 5.1. One month LIBOR on US dollar during Jan 1977–Sep 2007

and {

u(ru, t)− w(ru, t)
∂

∂r
w(ru, t) ≤ 0,

w(ru, t) = 0,
(5.46)

then the random variable r is always in [rl, ru]. In what follows, we will de-
scribe a model having such properties.

The real data of the 1-month LIBOR (London Interbank Offer Rate) on
U.S. dollar during January 1977–2010 is available and is shown as a curve
in Fig. 5.1. From the data we know that the minimum interest rate rmin is
0.0022906 and the maximum interest rate rmax is 0.23562. Thus we assume
that for the interval [rl, ru] the lower bound rl is 0.0 and the upper bound ru
is 0.24. From the data we can also determine the standard deviation of r for
40 values of r by statistics, which are shown as “◦” in Fig. 5.2. Assuming

w(r) = (r − rl)(ru − r)(a0r
2 + b0r + c0),

using the values of standard deviation of r obtained, and using the least
squares method, we can find the values of a0, b0, and c0, which are

a0 = 4.1, b0 = −0.51, c0 = 0.0224.
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Fig. 5.2. w(r) with rl = 0 and ru = 0.24

That is, the function w(r) in the form above from the real data is:

w(r) = (r − rl)(ru − r)4.1r2 − 0.51r + 0.0224

The curve of w(r) is also given in Fig. 5.2. This function w(r) satisfies the
second conditions in the conditions (5.45) and (5.46). We can also find a
function u(r) satisfying the conditions (5.45) and (5.46), so r will be in [rl, ru]
if such a model is used. However here we do not discuss how to determine
such a u(r, t) from the real data. This is because, as we will see, we can choose
λ(r, t) so that u(r, t) will not be used in order to do computation by using this
model. If such a model is used, we have to solve PDE problems numerically
in order to get market price of risk and the values of derivatives (for details,
see the paper [72] by Shi). In what follows, we briefly discuss how to obtain
the market price of risk numerically.

As pointed out in Sect. 5.2.2, if we use the model (5.11), then any interest
rate derivative, V (r, t), satisfies Eq. (5.12):

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, 0 ≤ t ≤ T,

where we assume that there is no coupon related to the derivative, so kZ = 0.
This parabolic partial differential equation degenerates to a hyperbolic partial
differential equation or an ordinary differential equation at r = rl and ru when
w (rl, t) = 0 and w(ru, t) = 0. Moreover, if the condition (5.45) holds, from
Sect. 2.4.2, we see that no extra boundary condition at r = rl is needed in
order to find a unique solution. Similarly, if the condition (5.46) holds, then
no extra boundary condition at r = ru is needed. Consequently, the final value
problem without any boundary conditions
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⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, rl ≤ r ≤ ru, t ≤ T,

V (r, T ) = f(r), rl ≤ r ≤ ru

has a unique solution if the conditions (5.45) and (5.46) hold. As we have
discussed, u and w can be determined from the historical data of the short rate
on the market. However, in order to use this equation to price any derivatives,
we need to know λ(r, t). As soon as such a λ(r, t) is determined, an interest
rate model (5.11) becomes a no-arbitrage interest rate model. Thus, it is
important in practice. Suppose λ(r, t) is a function of t plus u(r, t)/w(r), i.e.,
λ(r, t) = λ̄(t)+u(r, t)/w(r).2 Then λ̄(t), as the solution of the following inverse
problem, can be determined numerically by the term structure of interest
rates or, equivalently, by the zero-coupon bond price curve. Suppose that
t = 0 corresponds to today and today’s short rate is r∗. Let V (r, t;T ∗) be the
solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+
[
u− (λ̄(t) + u/w)w

] ∂V

∂r
− rV = 0,

rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗,

V (r, T ∗;T ∗) = 1, rl ≤ r ≤ ru.

(5.47)

Here T ∗ is a parameter. We need to find a function λ̄(t) defined on [0, T ∗
max]

such that V (r∗, 0;T ∗) is equal to the today’s value of the zero-coupon bond
maturing at time T ∗ and with a face value of one dollar for any T ∗ ∈ [0, T ∗

max],
where T ∗

max in the longest maturity of zero-coupon bonds on the market.
In this problem, the value of λ̄(t) for t ∈ [0, T ∗

1 ] is determined by the value
of zero-coupon bonds maturing at time T ∗ ∈ [0, T ∗

1 ]. If λ̄(t) for t ∈ [0, T ∗
1 ]

has been obtained and T ∗
2 > T ∗

1 , then the value of λ̄(t) for t ∈ [T ∗
1 , T

∗
2 ] will

be found by letting V (r∗, 0;T ∗) be equal to the value of a zero-coupon bond
maturing at time T ∗ for any T ∗ ∈ [T ∗

1 , T
∗
2 ]. Therefore, the value of λ̄(t) at

t = T ∗ is determined by the value of a zero-coupon bond maturing at time
T ∗ if the value of λ̄(t) for t ∈ [0, T ∗) has been obtained. In order to find the
value of λ̄(T ∗), we need to make a guess about it and solve the problem (5.47)
from t = T ∗ to t = 0 and then check if V (r∗, 0;T ∗) is equal to the value of
the zero-coupon bond maturing at time T ∗. If T ∗ is 20 or 30 years, then the
procedure of solving the problem (5.47) is quite long.

Actually the property of the function λ̄(t) has a close relation with the
second derivative of the zero-coupon bond curve with respect to the matu-
rity time T ∗ (see Sect. 10.1.1). If the zero-coupon bond curve is obtained by
the cubic spline interpolation, then the second derivative is continuous, but
the third derivative is discontinuous. The non-smoothness of λ̄(t) sometimes
causes quite big oscillation of the solution of the bond equation if T ∗

max is big.

2For such a choice of λ(r, t), u(r, t)−λ(r, t)w(r) = −λ̄(t)w(r), so u(r, t) disappears
from the PDE. Thus we do not need u(r, t) in order to solve the PDE.
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5.5 Application of Bond Equations

The bond equation (5.12) can be applied to evaluating not only bonds but also
bond options, options on bond futures contracts, swaps, caps, floors, collars,
and even options on them. In what follows, we describe these applications.

5.5.1 Bond Options and Options on Bond Futures Contracts

A bond option is similar to an equity option except that the underlying asset
is a bond. A bond depends on the interest r, and consequently, a bond option
will also depend on r. Consider a T -year European option on a N -year bond.
Suppose that the time today is zero. Then the bond should be issued on time
T and will mature at time T +N . In what follows, let Tb denote T +N and
for simplicity, let the face value of the bond be equal to one. Thus, the bond
price is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vb
∂t

+
1

2
w2 ∂

2Vb
∂r2

+ (u− λw)
∂Vb
∂r

− rVb + k = 0,

rl ≤ r ≤ ru, T ≤ t ≤ Tb,

Vb(r, Tb;Tb) = 1, rl ≤ r ≤ ru,

(5.48)

where we consider a coupon-bearing bond with a coupon payment k(t)dt dur-
ing a time period [t, t+ dt] and use Vb to represent the price of the bond. In
practice the coupon is not paid continuously, the equation should be

∂Vb
∂t

+
1

2
w2 ∂

2Vb
∂r2

+ (u− λw)
∂Vb
∂r

− rVb +
∑

i

kiδ(t− ti) = 0.

In this case Vb gives the quoted price (clean price). The price a purchaser needs
to pay is the cash price (dirty price)—the clean price plus the accrued interest,
which should be close to the price given by the model with a continuous
coupon payment. Here, we assume that the conditions (5.45) and (5.46) hold,
so at r = rl and r = ru the equation degenerates to a hyperbolic equation
and does not require any boundary conditions. Every model can be modified
locally, so the conditions (5.45) and (5.46) hold. Therefore, this assumption is
realistic. We also assume that λ(r, t) is known. A European call bond option
is a contract whose holder has a right to purchase a bond at time T at a
price E. Let V (r, t) be the price of the option. Clearly, V (r, t) should be the
solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, rl ≤ r ≤ ru,

t ≤ T,

V (r, T ) = max(Vb(r, T ;Tb)− E, 0), rl ≤ r ≤ ru.

(5.49)
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For a European put bond option, the final condition is

V (r, T ) = max (E − Vb(r, T ;Tb), 0) .

For American call and put bond options, we need to require

V (r, t) ≥ max (Vb (r, t; t+N)− E, 0)

and
V (r, t) ≥ max(E − Vb(r, t; t+N), 0)

for t ∈ [0, t], respectively. For example, if the option is on a 3-year bond,
then N = 3. In this case, in order to determine the solution, we need to
solve a problem involving free boundaries, and the constraint is a function
of t. Therefore, this free-boundary problem is more complicated than that in
equity option cases.

We can also determine the value of an option on a bond futures contract,
which is denoted by V (r, t) in what follows. Again, let Tb be the maturity
date of the bond and T be the expiry of the option and the date the futures
contract is initiated. Also, suppose that the futures contract is matured at
time Tf ∈ (T, Tb) and that the delivery price given in the option—the exercise
price of the option is K. When V (r, T ) is given, we can obtain the value of
the option today by solving a problem similar to the problem (5.49). How do
we find V (r, T )?

Let Vb0(r, t;Tf ) be the value of the zero-coupon bond with maturity date
Tf , which is the solution of the following problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vb0
∂t

+
1

2
w2 ∂

2Vb0
∂r2

+ (u− λw)
∂Vb0
∂r

− rVb0 = 0,

rl ≤ r ≤ ru, t ≤ Tf ,

Vb0(r, Tf ;Tf ) = 1, rl ≤ r ≤ ru.

(5.50)

Then the value of the bond futures contract with a delivery price K given in
the option can be expressed as

Vf (r, t;Tf ) = Vb(r, t;Tb)−KVb0(r, t;Tf ) (5.51)

for any t ≤ Tf . Let K
∗ be the futures price for the futures contract with

maturity date Tf at time T . K∗ should be determined by the condition that
the value of the futures contract is equal to zero when it is initiated at time
T , i.e.,

Vf (r, T ;Tf ) = Vb(r, T ;Tb)−K∗Vb0(r, T ;Tf ) = 0.

From this condition, we immediately know that the futures price K∗ is equal
to Vb(r, T ;Tb)/Vb0(r, T ;Tf ). If

K < K∗ = Vb(r, T ;Tb)/Vb0(r, T ;Tf ),
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the holder of the option will exercise the option because the value of the bond
futures contract

Vf (r, T ;Tf ) = Vb(r, T ;Tb)−KVb0(r, T ;Tf ) > 0.

Actually this is the value of the option for this case. If

K ≥ K∗ = Vb(r, T ;Tb)/Vb0(r, T ;Tf ),

the value of the bond futures contract

Vf (r, T ;Tf ) = Vb(r, T ;Tb)−KVb(r, T ;Tf ) ≤ 0,

and the holder will not exercise the option, which means V (r, T ) = 0. Putting
the two cases together, for V (r, T ) we have the following expression

V (r, T ) = max (Vb(r, T ;Tb)−KVb0(r, T ;Tf ), 0) . (5.52)

Therefore, we can first solve the problem (5.48) from Tb to T to get Vb(r, T ;Tb)
and solve the problem (5.50) from Tf to T to get Vb0(r, T ;Tf ), and then use
the formula (5.52) in order to get V (r, T ). As soon as we have V (r, T ), we can
solve the problem (5.49) with V (r, T ) as the final condition in order to find
the price of the option on a bond futures contract today.

It is possible to consider Vb as a state variable and let the bond option
price depend on Vb and t. For example, suppose

dVb = μVbdt+ σVbdX,

where μ and σ is constant. In this case, we get the Black–Scholes equation
with independent variables t and Vb, and use the Black–Scholes formulae to
find the prices of European bond options. However, because the bond price
must be equal to the face value at time Tb, which is often referred to as
the pull-to-par phenomenon, a bond has different features from an equity,
especially when t ≈ Tb (see Fig. 1.3). Therefore, even though a model in the
form dVb = μVbdt + σVbdX can describe the dynamics of an equity well, it
could not state that of a bond. Consequently, the bond price obtained in this
way is expected to have a large error, especially when T ≈ Tb. If the model is
in the form

dVb = α(t)(1− Vb)dt+ σ(t)VbdX,

where α(t) → ∞ and σ(t) → 0 as t→ Tb, then the result might be much better
because such a model guarantees that Vb has a unique value one at time Tb.
Of course, in this case it might be necessary to get solutions by numerical
methods. Another problem of pricing a bond option in this way is to assume
that the short rate is constant throughout the whole life of the option. If T is
not small, it is not a good assumption.
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Promising to pay an amount E at time T is equivalent to issuing a bond
maturing at time T with a face value E. Thus, a right to pay E for a bond
with a maturity date Tb at time T is the same right to exchange a bond of a
face value E with a maturity date T for another bond with a maturity date Tb
at time T . Therefore, a bond option can be understood as an exchange option
that allows the holder to exchange a bond maturing at time T for another
bond maturing at time Tb. If a bond option is dealt with in this way, it may
be necessary to choose a model so that at least the random variable for the
bond maturing at time T has the property of “pull-to-par.”

5.5.2 Interest Rate Swaps and Swaptions

This subsection is devoted to plain vanilla interest rate swaps and options
on such swaps—swaptions. As an example, let us look at the following N -
year swap on a notional principal Q between a bank and a company.3 In the
swap, the bank and the company agree that during the next N years, the
company will pay the bank the interest payment on the notional principal
Q at a fixed rate rs(N) semiannually and in return, the bank will pay the
company the interest payment on the same principal at a floating rate at the
same times. Here, the floating rate in many interest rate swap agreements
is the 6-month London Interbank Offer Rate (LIBOR) prevailing 6 months
before the payment date. When the swap is initiated, both parties do not need
to pay any money. Thus, the contract has no value at initiation. The fixed
rate rs(N) is called the swap rate for an N year swap and determined through
negotiation by the two parties. Clearly, the company wants rs (N) to be as
small as possible, and the bank prefers a higher rs (N). What is the value of
rs (N) both parties can accept? rs (N) should be a rate such that the value of
the swap at initiation is zero. In order to know what equation rs (N) should
satisfy, we need to find out how the value of the swap is related to rs, where
rs denotes a swap rate that might not equal rs (N).

Suppose the swap is initiated at time T and today’s time is t∗ ≥ T . The
interest payments are exchanged semiannually at time

tk = T + k/2,

k = k∗ +1, k∗ +2, · · · , 2N , where k∗ is the integer part of 2(t∗ − T ). Suppose
today the price of the zero-coupon bond with a face value of one dollar and
with maturity date tk is Z(t∗; tk). In the swap given above, the company will
pay cash Qrs/2 at time tk, k = k∗ + 1, k∗ + 2, · · · , 2N . The present value of
this cash flow is

2N∑

k=k∗+1

Qrs
2
Z(t∗; tk).

3A swap can also be between two companies.
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At the same times, the bank will pay the company an amount of cash
Q

2
f̄(tk−1, tk−1, tk) at time tk, k = k∗+1, k∗+2, · · · , 2N , where f̄(tk−1, tk−1, tk)

is the forward rate for the period [tk−1, tk] determined at time tk−1 and we
define tk∗ = T + k∗/2. Because tk∗ ≤ t∗, f̄(tk∗ , tk∗ , tk∗+1) is known today and
the present value of the first payment is

Q

2
Z(t∗; tk∗+1)f̄(tk∗ , tk∗ , tk∗+1).

What is the present value of the other payments? Suppose we deposit Q
in the bank at time tk∗+1 for a period [tk∗+1, tk∗+2] at a floating rate
f(tk∗+1, tk∗+1, tk∗+2). At time tk, k = k∗ + 2, k∗ + 3, · · · , 2N − 1, we take
the interest payment away and still leave Q in the bank for the next half

year. In this way, we can generate a cash flow
Q

2
f̄(tk−1, tk−1, tk) at time

tk, k = k∗ + 2, k∗ + 3, · · · , 2N − 1 and cash
Q

2
f̄(t2N−1, t2N−1, t2N) +Q at time

t2N . Therefore, the value of the other payments is the difference between Q at
time tk∗+1 and Q at time t2N = T +N . Written mathematically, the present
value of the other payments is

QZ(t∗; tk∗+1)−QZ(t∗;T +N).

This result also can be obtained analytically. In fact, from the relation (5.6)
we know that the forward interest rate compounded semiannually at time tk
during a period [tk, tk+1] is

f̄(tk, tk, tk+1) = 2

[
Z(tk; tk)

Z(tk; tk+1)
− 1

]

,

where tk+1 = tk + 1/2. Therefore at time t∗, the value of the cash flow
Q

2
f̄(tk, tk, tk+1) at time tk+1, k = k∗ + 1, k∗ + 2, · · · , 2N − 1, is

2N−1∑

k=k∗+1

Q

2
f̄(tk, tk, tk+1)Z(t

∗; tk+1)

= Q
2N−1∑

k=k∗+1

[
Z(tk; tk)

Z(tk; tk+1)
− 1

]

Z(t∗; tk+1)

= Q
2N−1∑

k=k∗+1

[Z(tk; tk)− Z(tk; tk+1)]Z(t
∗; tk)

Z(tk; tk+1)Z(t∗; tk)
Z(t∗; tk+1)

= Q
2N−1∑

k=k∗+1

[Z(t∗; tk)− Z(t∗; tk+1)]

= Q[Z(t∗; tk∗+1)− Z(t∗; t2N)]
= QZ(t∗; tk∗+1)−QZ(t∗;T +N).
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Let Vs(t
∗, rs) be the present value of the swap to the company, which is

the present value of the cash flow the company will receive minus the present
value of the cash flow it will pay. From previous results, we arrive at

Vs(t
∗; rs) =

Q

2
Z(t∗; tk∗+1)f̄(tk∗ , tk∗ , tk∗+1) +QZ(t∗; tk∗+1)−QZ(t∗;T +N)

−
2N∑

k=k∗+1

Qrs
2
Z(t∗; tk)

= QZ(t∗; tk∗+1)

[

1 +
1

2
f̄(tk∗ , tk∗ , tk∗+1)

]

− Q

[

Z(t∗;T +N) +

2N∑

k=k∗+1

rs
2
Z(t∗; tk)

]

. (5.53)

The expression Q

[

Z(t∗;T +N) +
2N∑

k=k∗+1

rs
2
Z(t∗; tk)

]

can be understood as

the present value of a coupon-bearing bond, and the expression QZ(t∗; tk∗+1)

×
[

1 +
1

2
f̄(tk∗ , tk∗ , tk∗+1)

]

is the present value of another coupon-bearing

bond. Therefore, a swap can be seen as a combination of a long position
in one coupon-bearing bond with a short position in another coupon-bearing
bond.

Here, we also need to point out that the values of a swap to two parties
have the same magnitude but opposite signs. Thus, the value of the swap
mentioned above to the bank is

Q

[

Z(t∗;Ts +N) +

2N∑

k=k∗+1

rs
2
Z(t∗; tk)

]

−QZ(t∗; tk∗+1)

[

1 +
1

2
f̄(tk∗ , tk∗ , tk∗+1)

]

.

In the case t∗ = T , we have k∗ = 0, tk∗+1 = T + 1/2 and

f̄(T, T, T + 1/2) = 2

[
1

Z(T ;T + 1/2)
− 1

]

,

that is,

Z(T ;T + 1/2)

[

1 +
1

2
f̄(T, T, T + 1/2)

]

= 1, (5.54)

so we have

Vs(T ; rs) = Q

[

1− Z(T ;T +N)− rs
2

2N∑

k=1

Z(T ;T + k/2)

]

. (5.55)
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As we have stated, when the swap is initiated, the value of the swap should
be zero. Therefore, for the fixed rate in the contract we obtain

rs(N) = 2
1− Z(T ;T +N)
2N∑

k=1

Z(T ;T + k/2)

. (5.56)

Therefore, between the swap rate for an N -year swap and Z(T ;T + k/2), k =
1, 2, · · · , 2N , there is a simple relation: rs(N) can be determined by Z(T ;T +
k/2), k = 1, 2, · · · 2N . This relation is true for N = 1/2, 1, 3/2, · · · . Actually,
Z(T ;T + k/2), k = 1, 2, · · · , 2N , can also be obtained recursively by

Z(T ;T + k/2) =

1− rs(k/2)

2

k−1∑

i=1

Z(T ;T + i/2)

1 +
rs(k/2)

2

(5.57)

if rs(k/2), k = 1, 2, · · · , 2N are given. Therefore, knowing rs(k/2) for different
k is the same as knowing the yield curve.

As we have mentioned, a swap can be understood as the difference between
two different coupon-bearing bonds. From the expression (5.53), we know that
the face values of both bonds are Q. The expiration date of one bond is tk∗+1

and it pays a coupon
Q

2
f̄(tk∗ , tk∗ , tk∗+1) at t = tk∗+1. Let Vi denote the value

of this bond. The expiration date of the other bond is T + N , and it pays

coupons
Qrs
2

semiannually starting at t = tk∗+1. Let Vo represent the value

of the other bond. The value of swap Vs(t) is equal to Vi − Vo. Any bond can
be priced by the bond equation. In fact, Vi(r, t) is the solution of the problem

⎧
⎪⎨

⎪⎩

∂Vi
∂t

+
1

2
w2 ∂

2Vi
∂r2

+ (u− λw)
∂Vi
∂r

− rVi = 0, rl ≤ r ≤ ru, t
∗ ≤ t ≤ tk∗+1,

Vi(r, tk∗+1) = Q[1 + f̄(tk∗ , tk∗ , tk∗+1)/2], rl ≤ r ≤ ru

and Vo(r, t) is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vo
∂t

+
1

2
w2 ∂

2Vo
∂r2

+ (u− λw)
∂Vo
∂r

− rVo +
2N∑

k=k∗+1

Qrs
2
δ(t− tk) = 0,

rl ≤ r ≤ ru, t
∗ ≤ t ≤ T +N,

Vo(r, T +N) = Q, rl ≤ r ≤ ru.

Let r = r∗ today and let λ(r, t) be chosen so that V (r∗, t∗; tk) = Z(t∗; tk),
k = k∗ + 1, k∗ + 2, · · · , 2N , where V (r, t; tk) is the solution of the following
problem
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0,

rl ≤ r ≤ ru, t
∗ ≤ t ≤ tk,

V (r, tk; tk) = 1, rl ≤ r ≤ ru,

(5.58)

then

Vo(r
∗, t∗; rs) = QV (r∗, t∗; t2N) +

Qrs
2

2N∑

k=k∗+1

V (r∗, t∗; tk)

= Q

[

Z(t∗; t2N) +
rs
2

2N∑

k=k∗+1

Z(t∗; tk)

]

and

Vi(r
∗, t∗) = Q

[
1 + f̄(tk∗ , tk∗ , tk∗+1)/2

]
V (r∗, t∗; tk∗+1)

= Q
[
1 + f̄(tk∗ , tk∗ , tk∗+1)/2

]
Z(t∗; tk∗+1).

From these two expressions, we can see that

Vi(r
∗, t∗)− Vo(r

∗, t∗; rs)

will have the same value as that given by the expression (5.53). When the
bond equation is used, the value of the swap is not only given at r = r∗,
and Vs is considered as a function of r and t, i.e., Vs = Vs(r, t). The value of
the swap is also dependent on the value of rs. Therefore sometimes Vs(r, t) is
written as Vs(r, t; rs), where rs is a parameter.

Indeed, in order to find Vs(r, t), it is not necessary to find Vi(r, t) and
Vo(r, t) separately; instead, we only need to solve

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs
∂t

+
1

2
w2 ∂

2Vs
∂r2

+ (u− λw)
∂Vs
∂r

− rVs −
2N∑

k=k∗+1

Qrs
2
δ(t− tk)

+Q

[

1 +
f̄(tk∗ , tk∗ , tk∗+1)

2

]

δ(t− tk∗+1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ T +N,

Vs(r, T +N) = −Q, rl ≤ r ≤ ru.

(5.59)

It is not difficult to show this conclusion, and we leave this proof to the
reader as problem 15. Now we can find the value of a swap either using the
formula (5.53) or solving the problem (5.59) and get the same answer. Many
people will choose to calculate the value of the swap by the expression (5.53)
because it is simple. Why do we need to consider problem (5.59)? It can

provide some information on
∂Vs(r

∗, t)
∂r

and the bond equation will be useful

when pricing a swaption by solving bond equations.
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An option on a swap, or a swaption, is a contract to give the holder the
right to enter into a certain interest rate swap by a certain time in the future.
Consider a European swaption. Its holder has the right to choose if he should
have an N -year swap at time T under which he will pay interest at a fixed
rate rse (the so-called exercise swap rate) and receive interest payment at
a floating rate. Let r′s be the N -year swap rate at time T , which can have
infinitely many possible values. If rse < r′s, then the holder will choose to
exercise the swaption because the value of a swap with a swap rate r′s at time
T is 0 and the value of a swap with a swap rate rse < r′s should be positive, but
the holder can enter into such a swap without paying any money. If rse > r′s,
then the holder will choose not to exercise the option because the swap rate
is lower on the market.

Such an option interests companies who plan to enter into a swap as a fixed
rate payer because the swaption provides the companies with a guarantee that
the fixed rate of interest they will pay on a loan will not exceed rse.

According to the result (5.55), at time T , the values of the swaps with
swap rates r′s and rse to the company are

Vs(T ; r
′
s) = Q

[

1− Z(T ;T +N)−
2N∑

k=1

r′s
2
Z(T ; tk)

]

and

Vs(T ; rse) = Q

[

1− Z(T ;T +N)−
2N∑

k=1

rse
2
Z(T ; tk)

]

respectively. If rse ≤ r′s, then the value of the swaption V at time T is

V (r′s, T ) = Vs(T ; rse)− Vs(T ; r
′
s) = Q

r′s − rse
2

2N∑

k=1

Z(T ; tk);

while if rse > r′s, then V (r′s, T ) = 0. Consequently, the payoff of the swaption
is

V (r′s, T ) =
Q

2

2N∑

k=1

Z(T ; tk)max(r′s − rse, 0). (5.60)

Suppose that at time T , r′s has a lognormal distribution with the following
probability density function

G(r′s) =
1

r′sσ
√
2π(T − t)

e−[ln(r
′
s/rs)+σ

2(T−t)/2]2/2σ2(T−t),

where rs is the swap rate at time t. This model is often referred to as Black’s
model (see [8]). This probability density function is the probability density
function (2.85) with r −D0 = 0. Thus, the expectation of max(r′s − rse, 0) is
er(T−t) times the price of a call option with r −D0 = 0. That is
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E [max(r′s − rse, 0)] = rsN

(
ln(rs/rse) + σ2(T − t)/2

σ
√
T − t

)

−rseN
(
ln(rs/rse)− σ2(T − t)/2

σ
√
T − t

)

.

Therefore at time t, the value of the payoff is

Z(t;T )
Q

2

2N∑

k=1

Z(T ; tk)

×

⎡

⎢
⎢
⎣rsN

⎛

⎜
⎜
⎝

ln
rs
rse

+
σ2(T − t)

2

σ
√
T − t

⎞

⎟
⎟
⎠− rseN

⎛

⎜
⎜
⎝

ln
rs
rse

− σ2(T − t)

2

σ
√
T − t

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

=
Q

2

2N∑

k=1

Z(t; tk)

×

⎡

⎢
⎢
⎣rsN

⎛

⎜
⎜
⎝

ln
rs
rse

+
σ2(T − t)

2

σ
√
T − t

⎞

⎟
⎟
⎠− rseN

⎛

⎜
⎜
⎝

ln
rs
rse

− σ2(T − t)

2

σ
√
T − t

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ ,

where Z(t;T ) is the discounting factor between t and T and we have used the
relation Z(t;T ) Z(T ; tk) = Z(t; tk). European swaptions are frequently valued
in this way. Obviously, it is an approximate method.

We may also evaluate the European swaption by solving bond equations.
As is given by the formula (5.60), the payoff of the swaption is

Q

2

2N∑

k=1

Z(T ;T + k/2)max(r′s − rse, 0).

At time T , rs(N) is determined by the formula (5.56), i.e., r′s is given by

2
1− Z(T ;T +N)
2N∑

k=1

Z(T ;T + k/2)

.

Thus the payoff of the swaption can be rewritten as

Q

2

2N∑

k=1

Z(T ;T + k/2)max

⎛

⎜
⎜
⎜
⎝
2
1− Z(T ;T +N)
2N∑

k=1

Z(T ;T + k/2)

− rse, 0

⎞

⎟
⎟
⎟
⎠

= Qmax

(

1− Z(T ;T +N)− rse
2

2N∑

k=1

Z(T ;T + k/2), 0

)

.
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Let Vso(r, t) denote the value of the swaption. In this case the procedure
of determining swaption price is divided into two steps. The first step is to
determine the value of swap with rse as the swap rate for all r ∈ [rl, ru],
Vs(r, t; rse, T ), where rse and T are parameters and T denotes the starting
date of the swap, and the second step is to obtain the payoff of swaption and
to find the value of swaption. In order to get Vs(r, t; rse, T ), we need to solve
the following problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs
∂t

+
1

2
w2 ∂

2Vs
∂r2

+ (u− λw)
∂Vs
∂r

− rVs

−Qrse
2

2N∑

k=1

δ(t− T − k/2) +Qδ(t− T ) = 0,

rl ≤ r ≤ ru, T ≤ t ≤ T +N,

Vs(r, T +N) = −Q, rl ≤ r ≤ ru.

(5.61)

This problem actually is Eq. (5.59) with k∗ = 0, t∗ = T , and replacing

Q

[

1 +
f̄(tk∗ , tk∗ , tk∗+1)

2

]

δ(t− tk∗+1)

by Qδ(t − T ) because of the relation (5.54). After we obtain Vs(r, T ; rse, T ),
we need to get the payoff of the swaption

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0)

and then to solve the following bond equation from t = T to t = 0 in order to
find the value of swaption:⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vso
∂t

+
1

2
w2 ∂

2Vso
∂r2

+ (u− λw)
∂Vso
∂r

− rVso = 0, rl ≤ r ≤ ru,

0 ≤ t ≤ T,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) , rl ≤ r ≤ ru.

(5.62)

The value of the swaption today is Vso(r
∗, 0), where r∗ is the interest rate

today. For American swaptions we can use a similar treatment to find their
prices.

5.5.3 Interest Rate Caps, Floors, and Collars

An interest rate cap is a contract whose holder will receive some money from
the issuer if the floating rate exceeds a certain level rc, where rc is called
the cap rate. Therefore, interest rate caps can be used to provide insurance
against the rate of interest on a floating-rate loan rising above a certain level.

For example, someone is going to get an N -year floating-rate loan with a
principal amount Q at time t∗. The borrower will pay interest quarterly at
time

tk = t∗ + k/4, k = 1, 2, · · · , 4N.
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The rate is a 3-month LIBOR determined at time tk−1 for the period [tk−1, tk],
where we define t0 = t∗. The LIBOR is a forward interest rate. According to
the notation given in Sect. 5.1, f̄(tk−1, tk−1, tk) stands for this rate. In what
follows, we use the notation f̄k−1 instead of f̄(tk−1, tk−1, tk) for brevity. The
borrower is worrying that he will pay too much interest if the 3-month LIBOR
becomes very high during the period [t∗, t∗ +N ]. Therefore, he is interested in
such a cap: it starts from t∗ and lasts N years, and at time tk, the issuer of the
cap will pay the holder an amount of cash Qmax(f̄k−1 − rc, 0)/4. Suppose he
purchases this cap. Then when f̄k−1 < rc, he will pay interest payment on the
loan Qf̄k−1/4 and receive zero from the issuer of the cap; whereas f̄k−1 > rc,
his actual payment is Qrc/4 because he receives Qmax(f̄k−1 − rc, 0)/4 from
the cap. Hence the cap provides insurance against the interest rate on the
floating-rate loan rising above an upper bound rc.

How much should be paid in order to obtain such an insurance? The
present value of the payment Qmax(f̄k−1 − rc, 0)/4 at time tk is actually the
value of a call option with expiry tk. This call option is usually called the kth
caplet. The LIBOR f̄k−1 is a forward rate determined at time tk−1 for the
period [tk−1, tk], so an amount Qmax(f̄k−1 − rc, 0)/4 at time tk is equivalent
to the amount

Q

4(1 + f̄k−1/4)
max(f̄k−1 − rc, 0) = max

(

Q−Q
1 + rc/4

1 + f̄k−1/4
, 0

)

at time tk−1. A loan with a face value Q (1 + rc/4) and maturity tk is worth
Q(1 + rc/4)/(1 + f̄k−1/4) at time tk−1 for any f̄k−1. Therefore, a caplet with
a payoff Qmax(f̄k−1 − rc, 0)/4 at time tk is equivalent to a put option with
maturity tk−1 and a strike priceQ on a zero-coupon bond with maturity tk and
a face value Q (1 + rc/4). At time t∗(= t0), the value of the first caplet is equal

to a known value
Q

4(1 + f̄0/4)
max(f̄0 − rc, 0). Usually, this value is excluded

from the premium and there is no payment at time t1 even if the LIBOR is
greater than rc. Thus, a cap comprises 4N − 1 put options on zero-coupon
bonds. Because a bond or an option on a bond can be seen as a derivative on
the short rate r, their values can be calculated by the bond equation. Let the
value of the bond with maturity tk be Vbk(r, t). Then, Vbk(r, t) is the solution
of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vbk
∂t

+
1

2
w2 ∂

2Vbk
∂r2

+ (u− λw)
∂Vbk
∂r

− rVbk = 0, rl ≤ r ≤ ru,

tk−1 ≤ t ≤ tk,

Vbk(r, tk) = (1 + rc/4)Q, rl ≤ r ≤ ru,

(5.63)
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where k = 2, 3, · · · , 4N . Let Vc(r, t) be the solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vc
∂t

+
1

2
w2 ∂

2Vc
∂r2

+ (u− λw)
∂Vc
∂r

− rVc

+
4N∑

k=2

max(Q− Vbk(r, tk−1), 0)δ(t− tk−1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ t4N−1,

Vc(r, t4N−1) = 0, rl ≤ r ≤ ru.

(5.64)

Then, Vc(r, t
∗) gives the value of the cap — the total value of the 4N − 1 put

options at time t∗ and the premium of the cap is given by

Vc(r
∗, t∗),

where r∗ is the short rate at time t∗.
There are some other derivatives analogous to interest rate caps, such as

interest rate floors and collars. A holder of a floor will receive some money
from the issuer if the floating rate is below a certain level rf , which is called
the floor rate. If a borrower of a floating-rate loan believes that the floating
rate will never be less than the lower bound rf , then he may want to write
such a floor. This is because he will get some money from writing a floor but,
according to his opinion, he will not actually pay any money to the holder
of the floor. Therefore, he hopes that he can reduce his expenses on the loan
through writing a floor. If we assume that the floor starts at t∗ and lasts N
years, that the floating rate is 3-month LIBOR, and that the money will be
paid quarterly at time tk, k = 2, 3, · · · , 4N , then the value of the floor is the
sum of 4N − 1 floorlets that are call options on zero-coupon bonds. In order
to determine the premium, we can first solve the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vbk
∂t

+
1

2
w2 ∂

2Vbk
∂r2

+ (u− λw)
∂Vbk
∂r

− rVbk = 0, rl ≤ r ≤ ru,

tk−1 ≤ t ≤ tk,

Vbk(r, tk) = (1 + rf/4)Q, rl ≤ r ≤ ru

and get Vbk(r, tk−1). Based on Vbk(r, tk−1), we then can determine the solution
of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vf
∂t

+
1

2
w2 ∂

2Vf
∂r2

+ (u− λw)
∂Vf
∂r

− rVf

+
4N∑

k=2

max(Vbk(r, tk−1)−Q, 0)δ(t− tk−1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ t4N−1,

Vf (r, t4N−1) = 0, rl ≤ r ≤ ru
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and the value Vf (r
∗, t∗) gives the premium of the floor. The derivation of this

conclusion is left for readers as Problem 17.
A collar specifies both the upper bound rc and the lower bound rf . It

may be understood as a combination of a long position in a cap with a short
position in a floor. The value of a collar Vco is

Vco = Vc − Vf .

Usually, we choose rc and rf such that

Vc = Vf or Vco = 0.

It is clear that a portfolio of a collar and the original floating-rate loan is
equivalent to a new loan with a floating rate in [rc, rf ]. If

rc = rf ,

then the collar actually becomes a swap based on 3-month LIBOR and with
4N − 1 exchanges of payments. There exist other interest rate derivatives
such as captions and floortions. Their evaluations are similar to what we have
discussed.

5.6 Multi-Factor Interest Rate Models

5.6.1 Brief Description of Several Multi-Factor
Interest Rate Models

Sometimes, it is necessary to assume that interest rate derivatives depend
on not only the short rate r, but also some other random state variables.
Because volatility is always a dominant factor in determining the prices of
bonds and options, we need to have a more accurate model for volatility. It
may be necessary to consider the interest rate volatility as a random variable.
Fong and Vasicek [30] proposed such a two-factor model. In their model, they
postulated that both the short rate r and the variance υ of the short rate are
stochastic state variables and assumed

dr = (μ̄− γr)dt+
√
υdX,

dυ = (ν − ηυ)dt+ ξ
√
υdXυ,

E [dXdXυ] = ρdt,

where μ̄, γ, ν, η, ξ are constants and dX and dXυ are two standard Wiener
processes. As we can see in this model, the stochastic equation for r is the
same as that in the Vasicek model, and r could become negative. Here, not
only the short rate but also the variance possess the mean reversion property.
In this case, Eq. (2.34) can be written as
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∂V

∂t
+

1

2
υ
∂2V

∂r2
+ ρξυ

∂2V

∂r∂υ
+

1

2
ξ2υ

∂2V

∂υ2
+ (μ̄− γr − λ̄υ)

∂V

∂r

+
[
ν − (η + λ̄υξ)υ

] ∂V

∂υ
− rV = 0,

where the market prices of risk for r and υ are λ̄
√
υ and λ̄υ

√
υ, respectively,

λ̄ and λ̄υ being constants.
Brenman and Schwartz [13] considered another two-factor model. In their

model, the two random state variables are the short-term interest rate r and
the long-term interest rate l. They assumed

dr = u(r, l, t)dt+ w(r, l, t)dX,

dl = ul(r, l, t)dt+ wl(r, l, t)dXl,

E [dXdXl] = ρ(r, l, t)dt,

where dX and dXl are the standardWiener processes. According to Eq. (2.34),
any derivative dependent on r and l should satisfy

∂V

∂t
+
1

2
w2 ∂

2V

∂r2
+ρwwl

∂2V

∂r∂l
+
1

2
w2
l

∂2V

∂l2
+(u−λw)∂V

∂r
+(ul−λlwl)

∂V

∂l
−rV = 0.

For other models, for example, see [2, 19, 57]. From these models, we
can have the corresponding partial differential equations. Any reader who is
interested in knowing more about these models and other models is suggested
to consult these papers and the book [47] by James and Webber.

In order to use these models to price derivatives, we need to determine
these market prices of risk, which is similar to what we have done for one-
factor models. Also, if we make some modifications on these models so that
some conditions similar to the conditions (5.45) and (5.46) hold, then unique
solutions of these equations can be obtained only by requiring final conditions.

Not only can the interest rates and their variances be taken as state vari-
ables. Heath et al. [38, 39, 40] suggested a model where the driving state
variable of the model is F (t, T ), the forward rate at time t for instantaneous
borrowing at a later time T . They assume

dF (t, T ) = αF (t, T )dt+

n∑

i=1

σiF (t, T )dXi,

where dXi is the ith Wiener process, and the n Wiener processes are inde-
pendent. In this sense, it can be called a multi-factor model. Jarrow wrote a
monograph on this method in 1996 (see [48]). Any reader who wants to know
its details is referred to that book.

5.6.2 Reducing the Randomness of a Zero-Coupon
Bond Curve to That of a Few Zero-Coupon Bonds

As we know, if we have an effective way to describe the randomness of a
zero-coupon bond curve, then we can have an effective model for interest rate
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derivatives such as bond options or swaptions. In this and the next subsections,
we discuss a three-factor model, which can be easily used in practice and
generalized to the cases with more factors without any difficulty.

As we have done in Sect. 5.1, let Z(t; t + T ) denote the price of a T -year
zero-coupon bond with a face value of one dollar at time t, and we use the
notation Zi(t) = Z(t; t+ Ti) for any Ti, i = 0, 1, · · · , N . Here, we also assume
Ti < Ti+1, for i = 0, 1, · · · , N − 1, and T0 = 0. According to Zi(t), i =
0, 1, · · · , N , we can have an interpolation function Z̄(T ; t) for T ∈ [0, TN ] by
requiring Z̄(T ; t) to be a continuous function with continuous first and second
derivatives in the form:

Z̄(T ; t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a0,1 + a1,1T + a2,1T
2, 0 ≤ T ≤ T1,

a0,i + a1,iT + a2,iT
2 + a3,iT

3, Ti−1 ≤ T ≤ Ti,

i = 2, · · · , N − 1,

a0,N + a1,NT + a2,NT
2, TN−1 ≤ T ≤ TN .

(5.65)

In this function, there are 4(N−2)+6 = 4N−2 coefficients. Because we have
N + 1 conditions on the value of the function

Z̄(Ti; t) = Zi(t), i = 0, 1, · · · , N

and 3(N−1) continuity conditions on the function, first and second derivatives
at T1, T2, · · · , TN−1, the total number of conditions is also 4N − 2. Therefore,
it is possible that those coefficients in the expression (5.65) can be determined
by these conditions uniquely. This interpolation method is called a cubic spline
interpolation, and the way of determining the coefficients in the expression
(5.65) will be given in Sect. 6.1.1. A zero-coupon bond curve is a monotone
function with respect to T . If for a set of Zi(t), i = 0, 1, · · · , N , the expression
(5.65) does not possess this property, the approximation needs to be modified
so that the monotonicity is guaranteed. This is important in practice.

We assume that Z̄(T ; t) is a very good approximation to the zero-coupon
bond curve Z(t; t+ T ). In this way, a random curve is reduced to N random
variables with a small error.

Now let us reduce the number of random variables from N to K by the
principal component analysis. Suppose that we have N random variables

Si, i = 1, 2, · · · , N

and the covariance between Si and Sj is

Cov[SiSj ] = bibjρi,j , i, j = 1, 2, · · · , N,
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where −1 ≤ ρi,j = ρj,i ≤ 1 and ρi,i = 1. Let

c2i and ai =

⎡

⎢
⎢
⎢
⎣

ai,1
ai,2
...

ai,N

⎤

⎥
⎥
⎥
⎦
, i = 1, 2, · · · , N,

be the eigenvalues and unit eigenvectors of the covariance matrix

B =

⎡

⎢
⎢
⎢
⎣

b21 b1b2ρ1,2 · · · b1bNρ1,N
b2b1ρ2,1 b22 · · · b2bNρ2,N

...
...

. . .
...

bNb1ρN,1 bNb2ρN,2 · · · b2N

⎤

⎥
⎥
⎥
⎦
.

That is, there is the following relation:

BAT = ATC or ABAT = C,

where AT is the transpose of A and

A =

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
...

...
. . .

...
aN,1 aN,2 · · · aN,N

⎤

⎥
⎥
⎥
⎦
, C =

⎡

⎢
⎢
⎢
⎣

c21 0 · · · 0
0 c22 · · · 0
...

...
. . .

...
0 0 · · · c2N

⎤

⎥
⎥
⎥
⎦
.

Here A is an orthogonal matrix, i.e., AAT = I because B is a symmetric
matrix.

Let S̄1, S̄2, · · · , S̄N be N other random variables defined by

⎡

⎢
⎢
⎢
⎣

S̄1

S̄2

...
S̄N

⎤

⎥
⎥
⎥
⎦
= A

⎡

⎢
⎢
⎢
⎣

S1

S2

...
SN

⎤

⎥
⎥
⎥
⎦
.

For simplicity, this relation can be written as

S̄ = AS,

where

S̄ =

⎡

⎢
⎢
⎢
⎣

S̄1

S̄2

...
S̄N

⎤

⎥
⎥
⎥
⎦
, S =

⎡

⎢
⎢
⎢
⎣

S1

S2

...
SN

⎤

⎥
⎥
⎥
⎦
.
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Then

Cov
[
S̄iS̄j

]
= E

[(
S̄i − E

[
S̄i
]) (

S̄j − E
[
S̄j
])]

= E

[(
N∑

k=1

aik (Sk − E [Sk])

)(
N∑

l=1

ajl (Sl − E [Sl])

)]

=

N∑

k=1

N∑

l=1

aikajl Cov [SkSl]

=

⎧
⎨

⎩

0, i �= j,

c2i , i = j.

That is, C is the covariance matrix of the random vector S̄. We furthermore
suppose that

c2i ≥ c2j for i < j

and

c2i � c2K , i = K + 1, · · · , N.

Assume that on some day

S =

⎡

⎢
⎢
⎢
⎣

S∗
1

S∗
2
...
S∗

N

⎤

⎥
⎥
⎥
⎦
≡ S∗

and

S̄ = A

⎡

⎢
⎢
⎢
⎣

S∗
1

S∗
2
...
S∗

N

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

S̄∗
1

S̄∗
2
...
S̄∗

N

⎤

⎥
⎥
⎥
⎦
≡ S̄∗.

Because c2i , i = K + 1, · · · , N are very small, for a period starting from that
day, we neglect the uncertainty caused by the last N −K components of S̄.
That is, we assume that in this period S̄ has the following form:

S̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S̄1

...
S̄K

S̄∗
K+1

...
S̄∗

N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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where S̄1, · · · , S̄K can take all possible values. In this case

S = AT

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S̄1

...
S̄K

S̄∗
K+1

...
S̄∗

N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.66)

Under this assumption, among S1, S2, · · · , SN , only K components are
independent. Suppose

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1,1 a2,1 · · · aK,1

a1,2 a2,2 · · · aK,2

...
...

. . .
...

a1,K a2,K · · · aK,K

∣
∣
∣
∣
∣
∣
∣
∣
∣

�= 0.

Then, we can choose S1, S2, · · · , SK as independent components. Rewrite Eq.
(5.66) as

⎡

⎢
⎣

S1

...
SK

⎤

⎥
⎦ = AT

1

⎡

⎢
⎣

S̄1

...
S̄K

⎤

⎥
⎦+AT

2

⎡

⎢
⎣

S̄∗
K+1

...
S̄∗

N

⎤

⎥
⎦ ,

⎡

⎢
⎣

SK+1

...
SN

⎤

⎥
⎦ = AT

3

⎡

⎢
⎣

S̄1

...
S̄K

⎤

⎥
⎦+AT

4

⎡

⎢
⎣

S̄∗
K+1

...
S̄∗

N

⎤

⎥
⎦ ,

where

AT

1 =

⎡

⎢
⎣

a1,1 · · · aK,1

...
. . .

...
a1,K · · · aK,K

⎤

⎥
⎦ , AT

2 =

⎡

⎢
⎣

aK+1,1 · · · aN,1

...
. . .

...
aK+1,K · · · aN,K

⎤

⎥
⎦ ,

AT

3 =

⎡

⎢
⎣

a1,K+1 · · · aK,K+1

...
. . .

...
a1,N · · · aK,N

⎤

⎥
⎦ , AT

4 =

⎡

⎢
⎣

aK+1,K+1 · · · aN,K+1

...
. . .

...
aK+1,N · · · aN,N

⎤

⎥
⎦ .

Then, for SK+1, · · · , SN , we have
⎡

⎢
⎣

SK+1

...
SN

⎤

⎥
⎦ = AT

3 (AT

1 )
−1

⎛

⎜
⎝

⎡

⎢
⎣

S1

...
SK

⎤

⎥
⎦−AT

2

⎡

⎢
⎣

S̄∗
K+1

...
S̄∗

N

⎤

⎥
⎦

⎞

⎟
⎠

+AT

4

⎡

⎢
⎣

S̄∗
K+1

...
S̄∗

N

⎤

⎥
⎦ . (5.67)
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Thus, for given S1, · · · , SK , using the relation (5.67) we can get all other
components of a vector S. Consequently, the relation (5.67) defines a class
of vectors with K parameters. That is, by the relation (5.67), we actually
determine a class of S, where only S1, · · · , SK are independent. Here, we take
S1, · · · , SK as independent components. However, it is also possible to choose
other K components as independent components.

Letting Si = Zi/Ti, i = 1, 2, · · · , N , by the principal component analysis
described above, we can find a class of vectors [Z1/T1, · · · , ZN/TN ]

T with K
parameters4 and using the cubic spline interpolation given at the beginning
of this subsection, we can further determine the curve Z̄(T ; t) for T ∈ [0, TN ].
From the books by Jarrow [48], Hull [43], James andWebber [47], andWilmott
[83], we know that K usually is equal to three or four for the random curves
related to interest rates. Thus, all the curves determined by the relation (5.67)
form a class of curves with three or four parameters. The zero-coupon bond
curve at that day is one of such curves, and the projections of any vector S
determined by the relation (5.67) on the eigenvectors corresponding to the
eigenvalues cK+1, · · · , cN are the same as those of S∗. Those projections are
different for different S∗, so this is a feature belonging to S∗. It is clear that the
class of curves with such a feature needs to be considered most for derivative-
pricing problems. Hence, when K = 3 or 4, the class contains all possible and
need-to-be-considered-most zero-coupon bond curves. As soon as we have a
zero-coupon bond curve, we can determine various interest rates at t, including
the short rate r(Z1, · · · , ZK , t) at time t. For example, for r(Z1, · · · , ZK , t),
we have

r(Z1, · · · , ZK , t) = − ∂Z̄(T ; t)

∂T

∣
∣
∣
∣
T=0

. (5.68)

5.6.3 A Three-Factor Interest Rate Model and the Equation
for Interest Rate Derivatives

Suppose Z1, Z2 and Z3 are prices of zero-coupon bonds with maturities T1, T2,
and T3, respectively. Assume T1 < T2 < T3, which implies the relations 1 ≥
Z1 ≥ Z2 ≥ Z3. Furthermore, we assume Z1 ≥ Z1,l, Z2 ≥ Z2,l and Z3 ≥ Z3,l,
where Z1,l ≥ Z2,l ≥ Z3,l ≥ 0. Z1, Z2 and Z3 are random variables and satisfy
the system of stochastic differential equations:

dZi = μi (Z1, Z2, Z3, t) dt+ σi (Z1, Z2, Z3, t) dXi, i = 1, 2, 3

on the domain Ω: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2}. dXi are
the Wiener processes and E [dXidXj ] = ρi,jdt with −1 ≤ ρi,j ≤ 1. The
coefficients μi, σi and their first- and second-order derivatives are assumed
to be bounded on the domain Ω. On the six boundaries of Ω, the following
conditions hold:

4If the conditions Zi ≥ Zi+1, i = 0, 1, · · ·N − 1 are not satisfied, then some
modification needs to be done in order to guarantee the monotonicity.
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(i) On surface I: {Z1 = Z1,l, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2},
⎧
⎨

⎩

μ1 (Z1,l, Z2, Z3, t) ≥ 0,

σ1 (Z1,l, Z2, Z3, t) = 0;
(5.69)

(ii) On surface II: {Z1 = 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2},
⎧
⎨

⎩

μ1 (1, Z2, Z3, t) ≤ 0,

σ1 (1, Z2, Z3, t) = 0;
(5.70)

(iii) On surface III: {Z1,l ≤ Z1 ≤ 1, Z2 = Z2,l, Z3,l ≤ Z3 ≤ Z2},
⎧
⎨

⎩

μ2 (Z1, Z2,l, Z3, t) ≥ 0,

σ2 (Z1, Z2,l, Z3, t) = 0;
(5.71)

(iv) On surface IV: {Z1,l ≤ Z1 ≤ 1, Z2 = Z1, Z3,l ≤ Z3 ≤ Z2},
⎧
⎨

⎩

−μ1 (Z1, Z1, Z3, t) + μ2 (Z1, Z1, Z3, t) ≤ 0,

σ1 (Z1, Z1, Z3, t) = σ2 (Z1, Z1, Z3, t) , ρ1,2 (Z1, Z1, Z3, t) = 1;
(5.72)

(v) On surface V: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3 = Z3,l},
⎧
⎨

⎩

μ3 (Z1, Z2, Z3,l, t) ≥ 0,

σ3 (Z1, Z2, Z3,l, t) = 0;
(5.73)

(vi) On surface VI: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3 = Z2},
⎧
⎨

⎩

−μ2 (Z1, Z2, Z2, t) + μ3 (Z1, Z2, Z2, t) ≤ 0,

σ2 (Z1, Z2, Z2, t) = σ3 (Z1, Z2, Z2, t) , ρ2,3 (Z1, Z2, Z2, t) = 1.
(5.74)

This model will be called the three-factor interest rate model in this book.
As you can see, conditions (5.69)–(5.71) and (5.73) have the same form

as the condition (5.45) or the condition (5.46), and the conditions (5.72)
and (5.74) are in a similar form. They are the weak-form reversion condi-
tions on the non-rectangular domain Ω. In order to guarantee that if a point
is in Ω at time t∗, then the point is still in Ω at t = t∗ + dt for a positive dt,
it is necessary to require that

n1dZ1 + n2dZ2 + n3dZ3 ≤ 0 (5.75)

holds at any point on the boundary of the domain Ω, where n1, n2, and n3
are the three components of the outer normal vector of the boundary at the
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Fig. 5.3. Projection of the domain Ω on the (Z1, Z2)-plane

point. This is called the weak-form reversion conditions on a general domain.
The condition of the condition (5.75) holding at every point on the boundary
of the domain Ω is equivalent to the conditions (5.69)–(5.74). For example, on
surface I (see Fig. 5.3), n1 = −1, n2 = 0 and n3 = 0, so the condition (5.75)
can be written as

n1dZ1 + n2dZ2 + n3dZ3 = −dZ1 = −μ1dt− σ1dX1 ≤ 0.

This holds if and only if σ1 = 0 and μ1 ≥ 0. On surface IV, n1 = −1, n2 = 1,
and n3 = 0 (see Fig. 5.3). In this case the condition (5.75) can be written as

n1dZ1 + n2dZ2 + n3dZ3 = −dZ1 + dZ2

= −μ1dt+ μ2dt− σ1dX1 + σ2dX2

= (−μ1 + μ2)dt+ σ12dX12 ≤ 0,

where we define

σ12dX12 = −σ1dX1 + σ2dX2

and dX12 is another Wiener process. Using Itô’s lemma, we know

σ12 =
√

σ2
1 − 2ρ1,2σ1σ2 + σ2

2 .

Thus in this case the condition (5.75) holds if and only if

−μ1 + μ2 ≤ 0 and σ12 = 0.

σ12 = 0 is equivalent to

σ2
1 − 2ρ1,2σ1σ2 + σ2

2 = (σ1 − σ2)
2 + 2(1− ρ1,2)σ1σ2 = 0
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or

σ1 = σ2 and ρ1,2 = 1.

Thus in this case the condition (5.75) is equivalent to −μ1 +μ2 ≤ 0, σ1 = σ2,
and ρ1,2 = 1. If the derivatives of σi(Z1, Z2, Z3, t) with respect to Z1, Z2, and
Z3 are bounded, then it is expected that the condition (5.75) or the conditions
(5.69)–(5.74) guarantee that a point (Z1, Z2, Z3) will never move from inside
of the domain Ω to its outside. This is a natural property of a stochastic
model for interest rates when Z1,l, Z2,l and Z3,l are given properly.

Let V (Z1, Z2, Z3, t) be the value of a derivative security depending on
Z1, Z2, Z3, t. According to Sect. 2.3.2, V (Z1, Z2, Z3, t) should satisfy

∂V

∂t
+

1

2

3∑

i=1

3∑

j=1

σiσjρi,j
∂2V

∂Zi∂Zj
+ r

3∑

i=1

Zi
∂V

∂Zi
− rV = 0.

As we pointed out in Sect. 2.3, in this case in the PDE there is no market
price of risk, or because zero-coupon bonds can be traded on the market, the
market prices of risk for these bonds can be determined by the relation (2.36)
with D0i = 0:

μi(Z1, Z2, Z3, t)− λi(Z1, Z2, Z3, t)σi(Z1, Z2, Z3, t) = r(Z1, Z2, Z3, t)Zi,

i = 1, 2, 3.

Let

L3Z =
1

2

3∑

i=1

3∑

j=1

σiσjρi,j
∂2

∂Zi∂Zj
+ r

3∑

i=1

Zi
∂

∂Zi
− r. (5.76)

The equation above can be written as

∂V

∂t
+ L3ZV = 0.

For a derivative security, at the maturity date T , its price should be equal
to its payoff VT (Z1, Z2, Z3). Therefore, any European interest rate derivatives
under this model should be solutions of the problem

⎧
⎨

⎩

∂V

∂t
+ L3ZV = 0 on Ω × [0, T ],

V (Z1, Z2, Z3, T ) = VT (Z1, Z2, Z3) on Ω.

(5.77)

Introduce the following transformation:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
.

(5.78)
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Through this transformation, the domain Ω in the (Z1, Z2, Z3)-space is trans-
formed into the domain Ω̃: [0, 1]×[0, 1]×[0, 1] in the (ξ1, ξ2, ξ3)-space. Because

∂ξ1
∂Z1

=
1

1− Z1,l
,

∂ξ2
∂Z1

=
−ξ2

Z1 − Z2,l
,

∂ξ2
∂Z2

=
1

Z1 − Z2,l
,

∂ξ3
∂Z2

=
−ξ3

Z2 − Z3,l
,

∂ξ3
∂Z3

=
1

Z2 − Z3,l
,

we have

∂V

∂Z1
=

1

1− Z1,l

∂V

∂ξ1
− ξ2
Z1 − Z2,l

∂V

∂ξ2
,

∂V

∂Z2
=

1

Z1 − Z2,l

∂V

∂ξ2
− ξ3
Z2 − Z3,l

∂V

∂ξ3
,

∂V

∂Z3
=

1

Z2 − Z3,l

∂V

∂ξ3
,

∂2V

∂Z2
1

=
1

(1− Z1,l)
2

∂2V

∂ξ21
− 2ξ2

(1− Z1,l) (Z1 − Z2,l)

∂2V

∂ξ1∂ξ2

+
ξ22

(Z1 − Z2,l)
2

∂2V

∂ξ22
+

2ξ2
(Z1 − Z2,l)2

∂V

∂ξ2
,

∂2V

∂Z2
2

=
1

(Z1 − Z2,l)
2

∂2V

∂ξ22
− 2ξ3

(Z1 − Z2,l)(Z2 − Z3,l)

∂2V

∂ξ2∂ξ3

+
ξ23

(Z2 − Z3,l)
2

∂2V

∂ξ23
+

2ξ3
(Z2 − Z3,l)2

∂V

∂ξ3
,

∂2V

∂Z2
3

=
1

(Z2 − Z3,l)
2

∂2V

∂ξ23
,

∂2V

∂Z1∂Z2
=

−1

(Z1 − Z2,l)2
∂V

∂ξ2
+

1

Z1 − Z2,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ2
− ξ2
Z1 − Z2,l

∂2V

∂ξ22

)

− ξ3
Z2 − Z3,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ3
− ξ2
Z1 − Z2,l

∂2V

∂ξ2∂ξ3

)

,

∂2V

∂Z1∂Z3
=

1

Z2 − Z3,l

(
1

1− Z1,l

∂2V

∂ξ1∂ξ3
− ξ2
Z1 − Z2,l

∂2V

∂ξ2∂ξ3

)

,

∂2V

∂Z2∂Z3
=

−1

(Z2 − Z3,l)2
∂V

∂ξ3
+

1

Z2 − Z3,l

(
1

Z1 − Z2,l

∂2V

∂ξ2∂ξ3
− ξ3
Z2 − Z3,l

∂2V

∂ξ23

)

.

Therefore, the operator L3Z defined by the expression (5.76) can be rewritten
as
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L3ξ =
1

2
σ̃2
1

∂2

∂ξ21
+

1

2
σ̃2
2

∂2

∂ξ22
+

1

2
σ̃2
3

∂2

∂ξ23

+σ̃1σ̃2ρ̃1,2
∂2

∂ξ1∂ξ2
+ σ̃1σ̃3ρ̃1,3

∂2

∂ξ1∂ξ3
+ σ̃2σ̃3ρ̃2,3

∂2

∂ξ2∂ξ3

+b1
∂

∂ξ1
+ b2

∂

∂ξ2
+ b3

∂

∂ξ3
− r, (5.79)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ̃2
1 =

1
2σ

2
1

(1− Z1,l)
2 ,

1

2
σ̃2
2 =

1
2

(
σ2
1ξ

2
2 − 2σ1σ2ξ2ρ1,2 + σ2

2

)

(Z1 − Z2,l)
2 ,

1

2
σ̃2
3 =

1
2

(
σ2
2ξ

2
3 − 2σ2σ3ξ3ρ2,3 + σ2

3

)

(Z2 − Z3,l)
2 ,

(5.80)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σ̃1σ̃2ρ̃1,2 =
σ1 (σ2ρ1,2 − σ1ξ2)

(1− Z1,l) (Z1 − Z2,l)
,

σ̃1σ̃3ρ̃1,3 =
σ1 (σ3ρ1,3 − σ2ρ1,2ξ3)

(1− Z1,l) (Z2 − Z3,l)
,

σ̃2σ̃3ρ̃2,3 =
σ1ξ2 (σ2ρ1,2ξ3 − σ3ρ1,3) + σ2 (σ3ρ2,3 − σ2ξ3)

(Z1 − Z2,l) (Z2 − Z3,l)
,

(5.81)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
rZ1

1− Z1,l
,

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
+
σ1 (σ1ξ2 − σ2ρ1,2)

(Z1 − Z2,l)
2 ,

b3 =
r (Z3 − Z2ξ3)

Z2 − Z3,l
+
σ2 (σ2ξ3 − σ3ρ2,3)

(Z2 − Z3,l)
2 .

(5.82)

Consequently, the problem (5.77) can be rewritten as
⎧
⎪⎨

⎪⎩

∂V

∂t
+ L3ξV = 0 on Ω̃ × [0, T ],

V (ξ1, ξ2, ξ3, T ) = VT (Z1(ξ1), Z2(ξ1, ξ2), Z3(ξ1, ξ2, ξ3)) on Ω̃,

(5.83)

where L3ξ is defined by Eq. (5.79) and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l] ,

Z3 (ξ1, ξ2, ξ3) = Z3,l + ξ3 {Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l]− Z3,l} .
(5.84)
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This is a final-value problem on a rectangular domain. Thus, when the three-
factor interest rate model is used, evaluating an interest rate derivative is
reduced to solving a final-value problem on a rectangular domain.

We would like to point out the relations among σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3
and dξ1, dξ2, dξ3. Using Itô’s lemma, from the definitions of ξ1, ξ2, ξ3, we can
have

dξ1 = μ̃1dt+ σ̃1dX1, dξ2 = μ̃2dt+ σ̃2dX̃2, dξ3 = μ̃3dt+ σ̃3dX̃3,

where dX̃2 and dX̃3 are two new Wiener processes. Therefore

σ̃2
i = Var[dξi]/dt, j = 1, 2, 3.

It can also be shown that

Cov[dX1dX̃2]/dt = ρ̃1,2, Cov[dX1dX̃3]/dt = ρ̃1,3

and
Cov[dX̃2dX̃3]/dt = ρ̃2,3.

These are left for readers to prove as Problem 24.
From Eq. (5.80), it is easy to see that the equality conditions in

the conditions (5.69)–(5.74) can be rewritten as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ̃1(0, ξ2, ξ3, t) = σ̃1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃2(ξ1, 0, ξ3, t) = σ̃2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃3(ξ1, ξ2, 0, t) = σ̃3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1.

(5.85)

Therefore, in order for the equality conditions in the conditions (5.69)–(5.74)
to hold, we just require that the volatilities of dξ1, dξ2, and dξ3 satisfy the con-
dition (5.85), which is easier to be implemented than the equality conditions
in the conditions (5.69)–(5.74). Suppose that σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3 are
given functions. In this case, in order to be able to use the expressions of b1,
b2, and b3 conveniently, we express σ1 (σ1ξ2 − σ2ρ1,2) and σ2 (σ2ξ3 − σ3ρ2,3)
in the expressions of b2 and b3 in terms of σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3.
From the expression (5.81) we have

σ̃1σ̃2ρ̃1,2 (1− Z1,l) (Z1 − Z2,l) = σ1 (σ2ρ1,2 − σ1ξ2) ,

σ̃1σ̃3ρ̃1,3 (1− Z1,l) (Z2 − Z3,l) = σ1 (σ3ρ1,3 − σ2ρ1,2ξ3) ,

σ̃2σ̃3ρ̃2,3 (Z1 − Z2,l) (Z2 − Z3,l) = σ1ξ2 (σ2ρ1,2ξ3 − σ3ρ1,3)

+σ2 (σ3ρ2,3 − σ2ξ3) ,

and from the second and third relations we further obtain

σ2 (σ3ρ2,3 − σ2ξ3) = σ̃1σ̃3ρ̃1,3ξ2 (1− Z1,l) (Z2 − Z3,l)

+σ̃2σ̃3ρ̃2,3 (Z1 − Z2,l) (Z2 − Z3,l) .
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Therefore, the expressions of b1, b2 and b3 can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
rZ1

1− Z1,l
,

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
− σ̃1σ̃2ρ̃1,2 (1− Z1,l)

Z1 − Z2,l
,

b3 =
r (Z3 − Z2ξ3)

Z2 − Z3,l
− σ̃1σ̃3ρ̃1,3ξ2 (1− Z1,l)

Z2 − Z3,l

− σ̃2σ̃3ρ̃2,3 (Z1 − Z2,l)

Z2 − Z3,l
.

(5.86)

By this relation, we can easily calculate b1, b2, and b3 when the values of σ̃1,
σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3 are given. Because of the condition (5.85) and r = 0
for Z1 = 1 [see the expression (5.68)], we can easily show

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b1(0, ξ2, ξ3, t) ≥ 0, b1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

b2(ξ1, 0, ξ3, t) ≥ 0, b2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

b3(ξ1, ξ2, 0, t) ≥ 0, b3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1.

It can be proved that when these inequalities and the condition (5.85) hold, the
problem (5.83) has a unique solution (see [91]). Thus the problem (5.83) can
be solved by numerical methods without any difficulty. In this subsection, the
PDE in the problem (5.83) is derived through two steps: first it is obtained
from the result given in Sect. 2.3.2 and then a new equation is gotten by means
of a transformation. Actually this equation can be obtained directly by setting
a portfolio and using Itô’s lemma just like what we did in Sect. 2.3.4 for two-
factor case. Readers are asked to derive the PDE in the problem (5.83) in this
way as Problem 25.

Finally, we say a few words about how to use this model to evaluate interest
rate derivatives. First, we need to choose Z1, Z2, and Z3 and find σ̃1, σ̃2, σ̃3
satisfying conditions (5.85), and ρ̃1,2, ρ̃1,3, ρ̃2,3. Finding these functions can
be done from the data on markets by statistics. After that, the problem (5.83)
needs to be solved. Let t = 0 denote today, and suppose the derivative security
is European style. On the maturity date T , for each point (ξ1, ξ2, ξ3) in Ω̃, we
can have Z1, Z2, and Z3 by the relation (5.84). Then, we determine a zero-
coupon bond curve by using the method given in Sect. 5.6.2. When we obtain
such a curve, the value of the payoff and r for the point can be determined.
This can be done for all points (ξ1, ξ2, ξ3) in the domain Ω̃ for t = T . When we
have the final value and all the coefficients of the partial differential equation
in the problem (5.83), we can solve the final-value problem (5.83) from t = T
to t = 0 and get the value of the derivative security today for all the points
in Ω̃.

For American-style derivatives, the situation is similar. The only difference
is that the value of derivative must be greater than the constraint. Because
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the value of the constraint can be obtained by the zero-coupon bond curves
at all points in Ω̃× [0, T ], the value of an American-style derivative can be de-
termined without any difficulty. However, free boundaries will usually appear
in this case.

From what we have described, we see that this model has the following
features:

• The state variables are prices of three zero-coupon bonds with different
maturities that can be traded on markets, so the coefficients of the first
derivatives with respect to the bond prices Zi in the partial differential
equation simply are rZi.

• The volatilities of these zero-coupon bonds and their correlation coeffi-
cients can be found directly from the real markets by statistics, so the
model will have the real major feature of the markets.

• All the zero-coupon bond curves having appeared in the real market can
be reproduced quite accurately. This is the basis of a model giving correct
results. If taking three random variables is not good enough, four-factor
models can be adopted. Generalizing three-factor models to four-factor
models is straightforward.

• In other models, the partial differential equation is defined on an infinite
domain. For this model, the corresponding partial differential equation is
defined on a finite domain. It has been proved that no boundary condition
is needed in order for its final-value problem to have a unique solution.
Thus, it is not difficult to design correct and efficient numerical methods
to price interest rate derivatives.

For the details on how to determine models from the market data and
how to solve the final-value problem of the partial differential equation, see
Sect. 10.3 and [96]. There, some numerical results are also given.

5.7 Two-Factor Convertible Bonds

Until now, we discussed derivatives depending on either equities or interest
rates. This section deals with a derivative dependent on both equity prices
and interest rates. This derivative security is a bond that may, at any time
chosen by the holder, be converted into n shares of stocks of the company
who issues the bond. Such a bond is commonly known as a convertible bond.
As a bond, its price depends on the short rate r. It can be exchanged for n
shares of stocks, so its value is also a function of the stock price S. Because its
typical life span is about 3–10 years, both S and r are considered as random
state variables. Therefore, this bond is called a two-factor convertible bond.
In this section, we discuss how to price such a bond.

Consider a bond issued by a company and its payoff depends not only on
r but also on the price of the stock of the company. In this case the value of
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this bond depends on both r and S. Let B(S, r, t) be the value of such a bond.
As usual, we assume that S is governed by

dS = μ(S, t)Sdt+ σ(S, t)SdX1, 0 ≤ S (5.87)

and the interest rate by

dr = u(r, t)dt+ w(r, t)dX2, rl ≤ r ≤ ru, (5.88)

where dX1 and dX2 are different Wiener processes though they can be corre-
lated. Suppose that

E [dX1dX2] = ρdt,

where ρ is a constant belonging to [−1, 1] and for S and r, ρ usually is a
negative number. According to Sect. 2.3, such a derivative satisfies

∂B

∂t
+ LS,rB + kZ = 0, 0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T, (5.89)

where

LS,r =
1

2
σ2S2 ∂2

∂S2
+ρσSw

∂2

∂S∂r
+

1

2
w2 ∂

2

∂r2
+(r−D0)S

∂

∂S
+(u−λw) ∂

∂r
− r.

Here, D0 is the dividend yield a holder of the stock receives per unit time,
and kZ is the coupon payment a holder of the bond receives per unit time,
Z being the face value of the bond. λ is the market price of risk for the short
rate. T is the maturity date of the bond.

We assume that at maturity time T, the holder of the bond can choose to
get the face value Z or n shares of stocks. Therefore, the payoff is

B(S, r, T ) = max(Z, nS), 0 ≤ S, rl ≤ r ≤ ru. (5.90)

This is the final condition for this bond. We assume that for the interest rate,
the conditions (5.45) and (5.46) hold, i.e.,

{

u(rl, t)− w(rl, t)
∂

∂r
w(rl, t) ≥ 0,

w(rl, t) = 0,

and {

u(ru, t)− w(ru, t)
∂

∂r
w(ru, t) ≤ 0,

w(ru, t) = 0.

Because w2(r, t) ≥ 0 and w(rl, t) = 0, on [rl, ru] we conclude w(rl, t)
∂

∂r
w(rl, t)

=
1

2

∂

∂r
w2(rl, t) ≥ 0. Similarly, w(ru, t)

∂

∂r
w(ru, t) ≤ 0. Therefore, the condi-

tions above can be rewritten as
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{

u(rl, t) ≥ w(rl, t)
∂

∂r
w(rl, t) ≥ 0,

w(rl, t) = 0,

{

u(ru, t) ≤ w(ru, t)
∂

∂r
w(ru, t) ≤ 0,

w(ru, t) = 0.

Because of w(rl, t) = 0, Eq. (5.89) at r = rl degenerates into

∂B

∂t
+

1

2
σ2S2 ∂

2B

∂S2
+ (r −D0)S

∂B

∂S
+ u

∂B

∂r
− rB + kZ = 0.

This equation has hyperbolic properties in the r-direction. Thus, if u(rl, t) ≥ 0,
then the value B(S, rl, t) is determined by the value B(S, r, t) in the do-
main [0,∞) × [rl, ru] × [t, T ] and no extra boundary condition at r = rl is
needed. Similarly, no boundary condition should be required at r = ru be-
cause u(ru, t) ≤ 0 and w(ru, t) = 0. At S = 0, Eq. (5.89) becomes

∂B

∂t
+

1

2
w2 ∂

2B

∂r2
+ (u− λw)

∂B

∂r
− rB + kZ = 0.

This is the bond equation, and the value B(0, r, t) is determined by this equa-
tion and the final condition at S = 0. Just like the Black–Scholes equation,
there is no need for specifying a condition as S → ∞. Therefore, if the condi-
tions (5.45) and (5.46) hold, then we could expect that the problem

⎧
⎨

⎩

∂B

∂t
+ LS,rB + kZ = 0, 0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T,

B(S, r, T ) = max(Z, nS), 0 ≤ S, rl ≤ r ≤ ru

(5.91)

has a unique solution. If
∂

∂r
w(rl, t) and

∂

∂r
w(ru, t) are bounded, which usually

is true, then the uniqueness of solution of the problem (5.91) can be obtained
from the results given in the paper by Zhu and Li (see [94]).

If this bond can be exchanged for n shares of stocks at any time, then this
bond is called a convertible bond and let us denote its value by Bc(S, r, t). It
is clear that the value Bc(S, r, t) must satisfy the following constraint

Bc(S, r, t) ≥ nS, 0 ≤ S, 0 ≤ t ≤ T. (5.92)

This condition is called the constraint on convertible bonds. Sometimes, the
solution of the problem (5.91) satisfies the constraint (5.92), so the problem
(5.91) determines the solution of a convertible bond. For example, if D0 = 0,
then the problem (5.91) gives the price of a convertible bond, which will be
explained later. If

D0 > 0,

then the price of a convertible bond should be the solution of the following
linear complementarity problem on the domain [0,∞)× [rl, ru]× [0, T ]:
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⎧
⎪⎨

⎪⎩

min

(

−∂Bc
∂t

− LS,rBc − kZ, Bc(S, r, t)− nS

)

= 0,

Bc(S, r, T ) = max(Z, nS) ≥ nS.

Let us reformulate this problem as a free-boundary problem if D0 > 0. We
cannot directly apply Theorem 3.1 in Sect. 3.1 to this case because there are
two major differences between the problem in the theorem and the prob-
lem here. Here, the operator LS,r is two-dimensional and there is a nonho-
mogeneous term kZ. However, the main idea is still true. For S < Z/n,
Bc(S, r, T ) = Z > nS. Therefore, on [0, Z/n), Bc(S, r, T−Δt) must be greater
than nS if Δt is small enough, and no free boundary can appear in that re-
gion at time T . Now let us check the region (Z/n,∞). In this case, we need
to check where (

∂

∂t
+ LS,r

)

nS + kZ ≥ 0

and where
(
∂

∂t
+ LS,r

)

nS + kZ < 0.

Because
(
∂

∂t
+ LS,r

)

nS + kZ = (r −D0)nS − rnS + kZ

= kZ −D0nS,

when S > Z/n and S > kZ/D0n, namely, S > max(Z/n, kZ/D0n),

(
∂

∂t
+ LS,r

)

nS + kZ < 0

and the solution is nS. Otherwise, we can use the partial differential equation
to determine the solution. Therefore, there is a free boundary starting at
S = max(Z/n, kZ/D0n) and t = T . Let Sf (r, t) be the location of the free
boundary, then

Sf (r, T ) = max

(
Z

n
,
kZ

D0n

)

, rl ≤ r ≤ ru. (5.93)

We assume that there is only one free boundary. From numerical solutions, we
know that it is true at least for some cases. Thus, when D0 > 0, the domain
[0,∞) × [rl, ru] × [0, T ] in (S, r, t)-space is divided into subdomains

I : [0, Sf (r, t)]× [rl, ru]× [0, T ]
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and

II : (Sf (r, t),∞)× [rl, ru]× [0, T ] .

The free boundary is between them. At the free boundary, the solution and
its derivatives are continuous. In the subdomain II where Bc = nS,

∂Bc
∂S

= n

and
∂Bc
∂r

= 0.

Thus, it seems that in the subdomain I where the partial differential equation
is used, we need to require

Bc (Sf (r, t), r, t) = nSf (r, t), rl ≤ r ≤ ru, 0 ≤ t ≤ T, (5.94)

∂Bc
∂S

(Sf (r, t), r, t) = n, rl ≤ r ≤ ru, 0 ≤ t ≤ T, (5.95)

and
∂Bc
∂r

(Sf (r, t), r, t) = 0, rl ≤ r ≤ ru, 0 ≤ t ≤ T

on the free boundary. Differentiating both sides of the condition (5.94) with
respect to r in subdomain I yields

∂Bc
∂S

(Sf (r, t), r, t)
∂Sf
∂r

(r, t) +
∂Bc
∂r

(Sf (r, t), r, t) = n
∂Sf
∂r

(r, t).

Using the condition (5.95), we arrive at

∂Bc
∂r

(Sf (r, t), r, t) = 0.

Consequently, the conditions (5.94) and (5.95) guarantee that all the first
derivatives are continuous at the free boundary and we only need to impose
the conditions (5.94) and (5.95) on the solution in subdomain I.

Thus in subdomain I, the solution Bc(S, r, t) and the location of the free
boundary S = Sf (r, t) are obtained by solving the following problem:
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Fig. 5.4. The price of a two-factor convertible bond with T = 30 years

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc
∂t

+ LS,rBc + kZ = 0, 0 ≤ S ≤ Sf (r, t), rl ≤ r ≤ ru,

0 ≤ t ≤ T,

Bc(S, r, T ) = max(Z, nS), 0 ≤ S ≤ Sf (r, T ), rl ≤ r ≤ ru,

Bc(Sf (r, t), r, t) = nSf (r, t), rl ≤ r ≤ ru, 0 ≤ t ≤ T,

∂Bc
∂S

(Sf (r, t), r, t) = n, rl ≤ r ≤ ru, 0 ≤ t ≤ T,

Sf (r, T ) = max

(
Z

n
,
kZ

D0n

)

, rl ≤ r ≤ ru;

(5.96)

whereas in subdomain II, Bc(S, r, t) = nS. The problem (5.96) is usually
called a free-boundary problem for convertible bonds.

The starting location of the free boundary

Sf (r, T ) = max

(
Z

n
,
kZ

D0n

)

goes to infinity as D0 tends to zero, so there is no free boundary at time T .
Because



330 5 Interest Rate Derivative Securities

(
∂

∂t
+ LS,r

)

nS + kZ ≥ 0

always holds when D0 = 0, no free boundary can appear at any time. This
means that there is no free boundary when D0 = 0. Thus, the value of a
convertible bond in this case is determined by the problem (5.91).

In Fig. 5.4, the price of a two-factor convertible bond with D0 = 0.05 is
shown. For this case, there is only one free boundary, which confirms our
assumption. The result there is obtained by the singularity-separating finite-
difference method, which will be described in Chap. 9.

A convertible bond can also have a call feature that gives the company
the right to purchase back the bond at any time (or during specified periods)
for a fixed amount M1. In this case, the price of the bond must not exceed
M1 because no one will spend an amount more than M1 to buy a bond that
can be purchased back for an amount M1 at any time. When we evaluate the
price of such a bond, the constraint

Bc(S, r, t) ≤M1, 0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T (5.97)

is required. Because of this condition, the price of a convertible bond with a
call feature can be less than a convertible bond without this feature. Because
the company gets more rights, the buyer of the bond should be asked to pay
less money.

A convertible bond can also incorporate a put feature, which means that
the owner of the convertible bond can return the bond to the company for an
amount M2 at any time. Now we must impose the constraint

Bc(S, r, t) ≥M2, 0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T. (5.98)

This condition might increase the value of the bond. The owner of the bond
has more rights, so he usually needs to pay more money in order to purchase
such a bond.

Just like the constraint (5.92), the constraint (5.97) or the constraint (5.98)
may induce a free boundary or make the free boundary more complicated. For
example, for a convertible bond with a call feature, the location of the free
boundary at t = T is

Sf (r, T ) = min

(
M1

n
, max

(
Z

n
,
kZ

D0n

))

, rl ≤ r ≤ ru. (5.99)

If we assume that r is a given function of t, then the bond is a one-factor
convertible bond. When D0 > 0, the free-boundary problem is
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ [r(t)−D0]S
∂Bc
∂S

− r(t)Bc + kZ = 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S ≤ Sf (T ),

Bc(Sf (t), t) = nSf (t), 0 ≤ t ≤ T,

∂Bc
∂S

(Sf (t), t) = n, 0 ≤ t ≤ T,

Sf (T ) = max

(
Z

n
,
kZ

D0n

)

.

(5.100)
This problem is only a little different from an American call option problem.
Similar to an American option, it can be proved rigorously that there is no
free boundary if D0 = 0 for the case r = constant. This is left as Problem 29
for readers.

Problems

Table 5.1. Problems and sections

Problems Sections Problems Sections Problems Sections

1–3 5.2 4–9 5.3 10 5.4

11–17 5.5 18–25 5.6 26–30 5.7

1. (a) *Suppose the short rate is a known function r(t). Consider a bond
with a face value Z and assume that it pays a coupon with a coupon
rate k(t), that is, during a time interval (t, t+dt], the coupon payment
is Zk(t)dt. Show that the value of the bond is

V (t) = Ze−
∫ T
t
r(τ)dτ

[

1 +

∫ T

t

k(τ̄)e
∫ T
τ̄
r(τ)dτdτ̄

]

.

(b) Suppose that r(t) and k(t) are equal to constants r and k, respectively.
Show that in this case,

V (t) = Ze−r(T−t)[1 + k(er(T−t) − 1)/r].

(c) Suppose that the bond pays coupon payments at two specified dates T1
and T2 before the maturity date T and the payments are Zk1 and Zk2,
respectively. According to the formula given in part (a), and assuming
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T1 < T2, find the values of the bond for t ∈ [0, T1), t ∈ (T1, T2), and
t ∈ (T2, T ), respectively, and give a financial interpretation of these
expressions.

2. Suppose that the short rate r satisfies

dr = udt+ w(t)dX,

where dX is a Wiener process. Assume that during the time period [0, t∗],
for example, t∗ being 1 or 3 months, the interest rate is equal to the short
rate r. Thus the price of a zero-coupon bond at t = 0 with face value
one and maturity date t∗ is e−rt

∗
. Because the zero-coupon bond can be

traded on the market, we can take Π = V (r, t)−Δe−rt
∗
as the portfolio in

order to derive the PDE for V (r, t), the price of an interest rate derivative.
Derive the PDE for V (r, t) in this way.

3. Suppose that the short rate r satisfies

dr = udt+ w(t)dX,

where dX is a Wiener process.
(a) Find the stochastic equation for B(r) = e−rt

∗
by using Itô’s lemma,

where t∗ is equal to, for example, 1 or 3 months.
(b) As we know, B(r) is the price of a zero-coupon bond at t = 0 with

face value one and maturity date t∗ if during the time period [0, t∗] the
interest rate is a constant. V (B, t) is any derivative on the zero-coupon
bond. Derive the PDE for V (B, t) by using Itô’s lemma directly.

(c) As we know, if dr = udt + w(t)dX, then the price of any derivative
security on r, V (r, t), should satisfy the equation

∂V

∂t
+

1

2
w2(t)

∂2V

∂r2
+ [u− λw(t)]

∂V

∂r
− rV + kZ = 0,

where kZ is the coupon of the derivative. Define V (r, t) = V (B(r), t).
Find the PDE for V (r, t) from PDE obtained in part (b) by using
transformation. This equation should be the same as the equation
given here. Based on this fact, determine λ.

4. Suppose that a(r, t) =
∞∑

i=0

ai(t)r
i and b(r, t) =

∞∑

i=0

bi(t)r
i and require that

the problem

⎧
⎨

⎩

∂V

∂t
+ a(r, t)

∂2V

∂r2
+ b(r, t)

∂V

∂r
− rV = 0, 0 ≤ t ≤ T,

V (r, T ) = 1

has a solution in the form

V (r, t) = eA(t)−rB(t).
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Show that in order to fulfill this requirement, between ai and bi, i =
2, 3, · · · , there must exist the following relations:

aiB − bi = 0, i = 2, 3, · · · .

This means that in order to choose a(r, t) and b(r, t) independently and
for the solution to be in the form eA(t)−rB(t), we have to assume a(r, t) =
a0(t) + a1(t)r and b(r, t) = b0(t) + b1(t)r.

5. Suppose that a(r, t) = a0(t) + a1(t)r and b(r, t) = b0(t) + b1(t)r. Show
that the problem

⎧
⎨

⎩

∂V

∂t
+ a(r, t)

∂2V

∂r2
+ b(r, t)

∂V

∂r
− rV = 0, 0 ≤ t ≤ T,

V (r, T ) = 1

has a solution in the form

V (r, t) = eA(t)−rB(t)

with A(T ) = B(T ) = 0 and determine the system of ordinary differential
equations the functions A(t) and B(t) should satisfy.

6. *In the Vasicek model, the short rate is assumed to satisfy

dr = (μ̄− γr)dt+
√
−βdX, β < 0, γ > 0,

where μ̄, γ, and β are constants, and dX is a Wiener process. Let the
market price of risk λ(r, t) = λ̄

√
−β. Then, the price V (r, t;T ) of a zero-

coupon bond maturing at time T with a face value Z is the solution of
the problem

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
(−β)∂

2V

∂r2
+ (μ− γr)

∂V

∂r
− rV = 0,

−∞ < r <∞, 0 ≤ t ≤ T,
V (r, T ;T ) = Z, −∞ < r <∞, 0 ≤ t ≤ T,

where
μ = μ̄+ λ̄β.

(a) Show that this problem has a solution in the form

V (r, t;T ) = ZeA(t,T )−rB(t,T )

and A and B are the solution of the system of ordinary differential
equations ⎧

⎪⎨

⎪⎩

dA

dt
=

1

2
βB2 + μB,

dB

dt
= γB − 1
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with the conditions

A(T, T ) = 0,

B(T, T ) = 0.

(b) Find the solution of the above problem of ordinary differential equa-
tions by solving the two ODEs and show that the expressions of A
and B can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

A = −
(

β

2γ2
+
μ

γ

)

(T − t) +

(
β

2γ2
+
μ

γ

)

B +
β

4γ
B2,

B =
1

γ

(
1− e−γ(T−t))

if the solution obtained is not in this form.

7. Show

lim
α→0

{
β

α
B +

[
β (γ − ψ)

α (γ + ψ)ψ
+ μ

γ − ψ

αψ

]

ln
(γ − ψ) /α

B + (γ − ψ) /α

−
[
β(γ + ψ)

α (γ − ψ)ψ
+ μ

γ + ψ

αψ

]

ln
(γ + ψ)/α

B + (γ + ψ) /α

}

= −
(

β

2γ2
+
μ

γ

)

(T − t) +

(
β

2γ2
+
μ

γ

)

B +
βB2

4γ
,

where

B(t, T ) =
1

γ

(
1− e−γ(T−t)

)
and ψ =

√
γ2 + 2α.

(The two sides are two expressions for A(t, T ) associated with the Va-
sicek model obtained by different approaches. This confirms that the two
different approaches give the same answer.)

8. *In the Cox–Ingersoll–Ross model, the short rate is assumed to satisfy

dr = (μ− γ̄r)dt+
√
αrdX,

where μ, γ̄, and α are constants, and dX is a Wiener process. Let the
market price of risk λ(r, t) be λ̄

√
αr. Then, the price V (r, t;T ) of a zero-

coupon bond maturing at time T with a face value Z is the solution of
the problem

⎧
⎨

⎩

∂V

∂t
+

1

2
αr
∂2V

∂r2
+ (μ− γr)

∂V

∂r
− rV = 0, 0 ≤ r, 0 ≤ t ≤ T,

V (r, T ;T ) = Z, 0 ≤ r,

where γ = γ̄ + λ̄α.
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(a) Show that this problem has a solution in the form

V (r, t;T ) = ZeA(t,T )−rB(t,T )

and A and B are the solutions of the system of ordinary differential
equations ⎧

⎪⎨

⎪⎩

dA

dt
= μB,

dB

dt
=

1

2
αB2 + γB − 1

with the conditions
A(T, T ) = 0

and
B(T, T ) = 0.

(b) Find the solution of the above problem of ordinary differential equa-
tions by solving the two ODEs and show that the expressions of A
and B can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A = ln

(
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

)2μ/α

,

B =
2(eψ(T−t) − 1)

(γ + ψ)eψ(T−t) − (γ − ψ)

with ψ =
√
γ2 + 2α

if the solution obtained is not in this form.

9. Show

Z

[
B + (γ − ψ) /α

(γ − ψ)/α

]μ(ψ−γ)/αψ [
B + (γ + ψ) /α

(γ + ψ) /α

]μ(γ+ψ)/αψ

e−rB

≡ Z

[
2ψe(γ+ψ)(T−t)/2

(γ + ψ)eψ(T−t) − (γ − ψ)

]2μ/α

e−rB ,

where

B =
2
(
eψ(T−t) − 1

)

(γ + ψ) eψ(T−t) − (γ − ψ)
.

(The two sides are two expressions for the zero-coupon bond price associ-
ated with the Cox–Ingersoll–Ross model obtained by different approaches.
This confirms that the two different approaches give the same answer.)

10. *Describe a way to determine the market price of risk for the short rate.
11. *Suppose that any European-style interest rate derivative with a contin-

uous coupon satisfies the equation:

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + k = 0, rl ≤ r ≤ ru, t ≤ T,
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where k is the coupon rate corresponding to the derivative, the coefficients
u and w satisfy the reversion conditions on the boundaries r = rl, r = ru,
and λ is a given bounded function. Describe how to evaluate the price of
a European call option on a bond with coupon by using this equation.

12. (a) Let Z(t;T ∗) be the price of a zero-coupon bond with a face value of
one dollar and with maturity date T ∗ at time t and let f̄(t, T, T + 1

2 )
be the forward interest rate compounded semiannually at time t for
the period (T, T + 1

2 ). Show

f̄

(

t, T, T +
1

2

)

= 2

[
Z(t;T )

Z(t;T + 1/2)
− 1

]

.

(b) There is a cash flow 1
2 f̄(tk−1, tk−1, tk), tk being t+k/2, k = 1, 2, · · · ,

2N and t0 being t. Find the value of the cash flow at time t.
(c) *Show that the value of an N -year swap with swap rate rs and with

notional principal Q is

Vs(T ; rs) = Q

[

1− Z(T ;T +N)− rs
2

2N∑

k=1

Z(T ;T + k/2)

]

,

where T is the time the swap initiates.
13. Show that the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0,

rl ≤ r ≤ ru, t ≤ T,

V (r, T ;T ) = 1, rl ≤ r ≤ ru

is the same as that of the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + δ(t− T ) = 0,

rl ≤ r ≤ ru, t ≤ T,

V (r, T+;T ) = 0, rl ≤ r ≤ ru

for any t < T.
14. Let Vs1k(r, T ) denote the price of a (k/2)-year zero-coupon bond, k =

1, 2, · · · , 2N , and we want to get
2N∑

k=1

Vs1k(r, T ). Consider the following

procedures. The first one is to solve the following problems
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vs1k
∂t

+
1

2
w2 ∂

2Vs1k
∂r2

+ (u− λw)
∂Vs1k
∂r

− rVs1k = 0, rl ≤ r ≤ ru,

T ≤ t ≤ T + k/2,

Vs1k(r, T + k/2) = 1, rl ≤ r ≤ ru,
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k = 1, 2, · · · , 2N , and then obtain
2N∑

k=1

Vs1k(r, T ) by adding Vs1k(r, T ),

k = 1, 2, · · · , 2N , together. The second one is to solve the problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs1
∂t

+
1

2
w2 ∂

2Vs1
∂r2

+ (u− λw)
∂Vs1
∂r

− rVs1

+
2N∑

k=1

δ(t− T − k/2) = 0,

rl ≤ r ≤ ru, T ≤ t ≤ T +N,

Vs1(r, T +N) = 0, rl ≤ r ≤ ru.

(a) Show Vs1(r, T ) =
2N∑

k=1

Vs1k(r, T ) holds.

(b) In order to get
2N∑

k=1

Vs1k(r, T ), which procedure is better and why?

15. Suppose that the solution of
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, rl ≤ r ≤ ru, t∗ ≤ t ≤ tk,

V (r, tk; tk) = 1, rl ≤ r ≤ ru

is V (r, t; tk) and that V (r∗, t∗; tk) = Z(t∗; tk). Also assume that Vs(r, t; rs)
is the solution of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs
∂t

+
1

2
w2 ∂

2Vs
∂r2

+ (u− λw)
∂Vs
∂r

− rVs −
2N∑

k=k∗+1

Qrs
2
δ(t− tk)

+Q

[

1 +
f̄(tk∗ , tk∗ , tk∗+1)

2

]

δ(t− tk∗+1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ T +N,

Vs(r, T +N ; rs) = −Q, rl ≤ r ≤ ru.

Here, Vs(r, t; rs) actually is the value of a swap. Q and rs are the notional
principal and the swap rate, respectively. t∗, T , and N denote the time
today, the time the swap is initiated, and the duration of the swap with
the relation T ≤ t∗ < T + N . k∗ is the integer part of (t∗ − T )/2, and
tk = T + k/2, k = k∗ +1, k∗ +2, · · · , 2N . f̄(tk∗ , tk∗ , tk∗+1) is the 6-month
LIBOR for the period [tk∗ , tk∗+1] determined at time tk∗ . Show

Vs(r
∗, t∗; rs) = QZ(t∗; tk∗+1)

[

1 +
1

2
f̄(tk∗ , tk∗ , tk∗+1)

]

− Q

[
2N∑

k=k∗+1

rs
2
Z(t∗; tk) + Z(t∗;T +N)

]

.
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16. *Suppose that any European-style interest rate derivative satisfies the
equation:

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV + f(t) = 0, rl ≤ r ≤ ru,

where all the coefficients in the equation are known. Let Vso(r, t) be the
value of a T -year swaption on a N -year swap. Its payoff is

Qmax

(

1− Z(T ;T +N)− rse
2

2N∑

k=1

Z(T ;T + k/2), 0

)

,

where Q is the notional principal, rse is the exercise swap rate, and
Z(T ;T + k/2) is the value of zero-coupon bond with maturity k/2 at
time T . Describe how to find the price of the swaption, including to find
the payoff of the swaption, by solving this equation from T +N to T and
from T to 0.

17. Consider an N -year floor with a floor rate rf . Suppose that the money
will be paid quarterly at time tk = t∗ + k/4, k = 2, 3, · · · , 4N , and the
floating rate is the 3-month LIBOR. Suppose that Vbk(r, t) is the solution
of the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Vbk
∂t

+
1

2
w2 ∂

2Vbk
∂r2

+ (u− λw)
∂Vbk
∂r

− rVbk = 0,

rl ≤ r ≤ ru, tk−1 ≤ t ≤ tk,

Vbk(r, tk) = Q
(
1 +

rf
4

)
, rl ≤ r ≤ ru,

where k = 2, 3, · · · , 4N and Vf (r, t) is the solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vf
∂t

+
1

2
w2 ∂

2Vf
∂r2

+ (u− λw)
∂Vf
∂r

− rVf

+
4N∑

k=2

max(Vbk(r, tk−1)−Q, 0)δ(t− tk−1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ t4N−1,

Vf (r, t4N−1) = 0, rl ≤ r ≤ ru.

Show that the premium of the floor should be

Vf (r
∗, t∗),

where r∗ is the short rate at time t∗.
18. (a) S is a random vector and its covariance matrix is B. Let S̄ = AS,

A being a constant matrix, and its covariance matrix be C. Find the
relation among A, B, and C.
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(b) How do we choose A so that C will be a diagonal matrix?
(c) *Suppose that S̄1, S̄2, · · · , S̄K are variables and S̄K+1, S̄K+2, · · · , S̄N are

fixed numbers. Find the dependence of SK+1, SK+2, · · · , SN on S1, S2,
· · · , SK .

19. (a) Suppose that there is a domain Ω on the (Z1, Z2)-plane, the boundary
of Ω is Γ , and (n1, n2)

T is the outer normal vector of the boundary
Γ . Assume that Z1 and Z2 are two stochastic processes and satisfy
the system of stochastic differential equations:

dZi = μi(Z1, Z2, t)dt+ σi(Z1, Z2, t)dXi with σi ≥ 0, i = 1, 2,

where dXi, i = 1, 2, are the Wiener processes and E [dX1dX2] = ρ12dt
with ρ12 ∈ [−1, 1]. Suppose that at t = 0, (Z1, Z2) ∈ Ω. Show that
in order to guarantee (Z1, Z2) ∈ Ω for any time t ∈ [0, T ], we need
to require, for any t ∈ [0, T ] and for any point on Γ , the following
condition to be held:
(i) if n1 �= 0 and n2 = 0, then

⎧
⎨

⎩

n1μ1 ≤ 0,

σ1 = 0;

(ii) if n1 = 0 and n2 �= 0, then

⎧
⎨

⎩

n2μ2 ≤ 0,

σ2 = 0;

(iii) if n1 �= 0 and n2 �= 0, then

⎧
⎨

⎩

n1μ1 + n2μ2 ≤ 0,

n1σ1 − sign(n1n2)n2σ2 = 0, and ρ12 = −sign(n1n2),

where

sign(n1n2) =

⎧
⎨

⎩

1, if n1n2 > 0,

−1, if n1n2 < 0.

If a point is a corner point, then there are two normals and we need
to require this condition to be held for the two outer normal vectors.

(b) Suppose that the domain Ω is Z1l ≤ Z1 ≤ 1 and Z2l ≤ Z2 ≤ Z1, where
Z1l and Z2l are constants, and Z1l ≥ Z2l. Find the concrete condition
for each segment of the boundary according to the condition given in
part (a).
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20. Assume that Z1, Z2, Z3 are random variables and satisfy the system of
stochastic differential equations:

dZi = μi (Z1, Z2, Z3, t) dt+ σi (Z1, Z2, Z3, t) dXi, i = 1, 2, 3,

where dXi are the Wiener processes and E [dXidXj ] = ρi,jdt with ρi,j ∈
[−1, 1]. In order to guarantee that if a point is in a domain Ω at time t∗,
then the point is still in the domain Ω at t = t∗ + dt for a positive dt, it
is necessary to require that the condition

n1dZ1 + n2dZ2 + n3dZ3 ≤ 0

holds at any point on the boundary of the domain Ω, where n1, n2, and
n3 are the three components of the outer normal vector of the boundary
at the point. Suppose that the domain Ω is {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤
Z1, Z3,l ≤ Z3 ≤ Z2}. Show that on the surfaces Z1 = 1, Z2 = Z2,l, and
Z3 = Z2, the condition is equivalent to {μ1 ≤ 0, σ1 = 0}, {μ2 ≥ 0,
σ2 = 0}, and {−μ2 + μ3 ≤ 0, σ2 = σ3, ρ2,3 = 1}, respectively.

21. Suppose that σ1 (Zl, Z2, Z3, t), σ2 (Zl, Z2, Z3, t), and σ3 (Zl, Z2, Z3, t) are
defined on Ω : {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3 ≤ Z2}. Assume
that

(i) σ1 (Z1,l, Z2, Z3, t) = 0 on surface I: {Z1 = Z1,l, Z2,l ≤ Z2 ≤ Z1,
Z3,l ≤ Z3 ≤ Z2}.

(ii) σ1 (1, Z2, Z3, t) = 0 on surface II: {Z1 = 1, Z2,l ≤ Z2 ≤ Z1, Z3,l ≤ Z3

≤ Z2}.
(iii) σ2 (Z1, Z2,l, Z3, t) = 0 on surface III: {Z1,l ≤ Z1 ≤ 1, Z2 = Z2,l,

Z3,l ≤ Z3 ≤ Z2}.
(iv) σ1 (Z1, Z1, Z3, t) = σ2 (Z1, Z1, Z3, t) , ρ1,2 (Z1, Z1, Z3, t) = 1 on sur-

face IV: {Z1,l ≤ Z1 ≤ 1, Z2 = Z1, Z3,l ≤ Z3 ≤ Z2}.
(v) σ3 (Z1, Z2, Z3,l, t) = 0 on surface V: {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1,

Z3 = Z3,l}.
(vi) σ2 (Z1, Z2, Z2, t) = σ3 (Z1, Z2, Z2, t) , ρ2,3 (Z1, Z2, Z2, t) = 1 on sur-

face VI: n {Z1,l ≤ Z1 ≤ 1, Z2,l ≤ Z2 ≤ Z1, Z3 = Z2}.
Define ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
,
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and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̃2
1(ξ1, ξ2, ξ3, t) =

σ2
1

(1− Z1,l)
2 ,

σ̃2
2(ξ1, ξ2, ξ3, t) =

σ2
1ξ

2
2 − 2σ1σ2ξ2ρ1,2 + σ2

2

(Z1 − Z2,l)
2 ,

σ̃2
3(ξ1, ξ2, ξ3, t) =

σ2
2ξ

2
3 − 2σ2σ3ξ3ρ2,3 + σ2

3

(Z2 − Z3,l)
2 .

Show that the assumption on σ1, σ2, and σ3 is equivalent to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ̃1(0, ξ2, ξ3, t) = σ̃1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃2(ξ1, 0, ξ3, t) = σ̃2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃3(ξ1, ξ2, 0, t) = σ̃3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1.

22. (a) Show that under the transformation
⎧
⎪⎪⎨

⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

the partial differential equation

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σiσjρi,j
∂2V

∂Zi∂Zj
+ r

2∑

i=1

Zi
∂V

∂Zi
− rV = 0

becomes

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

2∑

i=1

bi
∂V

∂ξi
− rV = 0,

where ⎧
⎪⎪⎨

⎪⎪⎩

b1 =
rZ1

1− Z1,l
,

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
+
σ1 (σ1ξ2 − σ2ρ1,2)

(Z1 − Z2,l)
2 ,

and σ̃1, σ̃2, ρ̃1,2, are determined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2
σ̃2
1 =

1
2σ

2
1

(1− Z1,l)
2 ,

1

2
σ̃2
2 =

1
2

(
σ2
1ξ

2
2 − 2σ1σ2ξ2ρ1,2 + σ2

2

)

(Z1 − Z2,l)
2 ,

σ̃1σ̃2ρ̃1,2 =
σ1 (σ2ρ1,2 − σ1ξ2)

(1− Z1,l) (Z1 − Z2,l)
.
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(b) Show further that the expression of b2 can be rewritten as

b2 =
r (Z2 − Z1ξ2)

Z1 − Z2,l
− σ̃1σ̃2ρ̃1,2 (1− Z1,l)

Z1 − Z2,l
.

(c) σ̃i and bi given above are functions of ξ1, ξ2, t and let σ̃i(ξ1, ξ2, t) and
bi(ξ1, ξ2, t) denote these functions, i = 1 and 2. Show that if

⎧
⎨

⎩

σ̃1(0, ξ2, t) = σ̃1(1, ξ2, t) = 0, 0 ≤ ξ2 ≤ 1,

σ̃2(ξ1, 0, t) = σ̃2(ξ1, 1, t) = 0, 0 ≤ ξ1 ≤ 1,

then ⎧
⎨

⎩

b1(0, ξ2, t) ≥ 0, b1(1, ξ2, t) = 0, 0 ≤ ξ2 ≤ 1,

b2(ξ1, 0, t) ≥ 0, b2(ξ1, 1, t) = 0, 0 ≤ ξ1 ≤ 1.

(Hint: r(ξ1, ξ2, t)|ξ1=1 = 0. This can be explained as follows. ξ1 = 1
means Z1 = 1, thus the zero-coupon bond curve must be flat near
T = 0 and its derivative with respect to T at T = 0, r(ξ1, ξ2, t)|ξ1=1

equals 0. When σ̃i, bi, i = 1, 2, satisfy these conditions here, it can be
proved that the final value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2

2∑

i=1

2∑

j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

2∑

i=1

bi
∂V

∂ξi
− rV = 0

on [0, 1]× [0, 1]× [0, T ],

V (ξ1, ξ2, T ) = VT (ξ1, ξ2) on [0, 1]× [0, 1]

has a unique solution.)
23. (a) *Show that under the transformation

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
,

the partial differential equation

∂V

∂t
+

1

2

3∑

i=1

3∑

j=1

σiσjρi,j
∂2V

∂Zi∂Zj
+ r

3∑

i=1

Zi
∂V

∂Zi
− rV = 0

becomes

∂V

∂t
+

1

2

3∑

i=1

3∑

j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

3∑

i=1

bi
∂V

∂ξi
− rV = 0,

and find the expressions of σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3, b1, b2, and b3.
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(b) Show
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ̃1(0, ξ2, ξ3, t) = σ̃1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃2(ξ1, 0, ξ3, t) = σ̃2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

σ̃3(ξ1, ξ2, 0, t) = σ̃3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1,

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b1(0, ξ2, ξ3, t) ≥ 0, b1(1, ξ2, ξ3, t) = 0, 0 ≤ ξ2 ≤ 1, 0 ≤ ξ3 ≤ 1,

b2(ξ1, 0, ξ3, t) ≥ 0, b2(ξ1, 1, ξ3, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ3 ≤ 1,

b3(ξ1, ξ2, 0, t) ≥ 0, b3(ξ1, ξ2, 1, t) = 0, 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1.

(When σ̃i, bi, i = 1, 2, 3, satisfy these conditions here, it can be proved
that the final value problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2

3∑

i=1

3∑

j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

3∑

i=1

bi
∂V

∂ξi
− rV = 0

on [0, 1]× [0, 1]× [0, 1]× [0, T ],

V (ξ1, ξ2, ξ3, T ) = VT (ξ1, ξ2, ξ3) on [0, 1]× [0, 1]× [0, 1]

has a unique solution.)
24. Assume that Z1, Z2, Z3 are random variables and satisfy the system of

stochastic differential equations:

dZi = μi (Z1, Z2, Z3, t) dt+ σi (Z1, Z2, Z3, t) dXi, i = 1, 2, 3,

where dXi are the Wiener processes and E [dXidXj ] = ρijdt with −1 ≤
ρij ≤ 1, and that ξ1, ξ2 and ξ3 are governed by

dξi = μ̃i(ξ1, ξ2, ξ3, t)dt+ σ̃i(ξ1, ξ2, ξ3, t)dX̃i, i = 1, 2, 3,

where dX̃i are the Wiener processes and E
[
dX̃idX̃j

]
= ρ̃ijdt with −1 ≤

ρ̃ij ≤ 1. Furthermore, we suppose that ξ1, ξ2 and ξ3 are defined by
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Z1 − Z1,l

1− Z1,l
,

ξ2 =
Z2 − Z2,l

Z1 − Z2,l
,

ξ3 =
Z3 − Z3,l

Z2 − Z3,l
,

where Z1,l, Z2,l, and Z3,l are constants. Find the expressions of σ̃1, σ̃2,
σ̃3, ρ̃12, ρ̃13, ρ̃23 as functions of σ1, σ2, σ3, ρ1,2, ρ1,3, ρ2,3, Z1, Z2, and Z3

by using Itô’s lemma.
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25. Suppose that ξ1, ξ2 and ξ3 satisfy the system of stochastic differential
equations:

dξi = μ̃i(ξ1, ξ2, ξ3, t)dt+ σ̃i(ξ1, ξ2, ξ3, t)dX̃i, i = 1, 2, 3,

where dX̃i are the Wiener processes and E
[
dX̃idX̃j

]
= ρ̃ijdt with −1 ≤

ρ̃ij ≤ 1. Define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1 (ξ1) = Z1,l + ξ1 (1− Z1,l) ,

Z2 (ξ1, ξ2) = Z2,l + ξ2 [Z1 (ξ1)− Z2,l]

= Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l] ,

Z3 (ξ1, ξ2, ξ3) = Z3,l + ξ3 {Z2 (ξ1, ξ2)− Z3,l}

= Z3,l + ξ3 {Z2,l + ξ2 [Z1,l + ξ1 (1− Z1,l)− Z2,l]− Z3,l} .

Assume that Z1(ξ1), Z2(ξ1, ξ2), and Z3(ξ1, ξ2, ξ3) represent prices of three
securities. Let V (ξ1, ξ2, ξ3, t) be the value of a derivative security. Setting
a portfolio Π = V −Δ1Z1(ξ1)−Δ2Z2(ξ1, ξ2)−Δ3Z3(ξ1, ξ2, ξ3) and using
Itô’s lemma, show that V (ξ1, ξ2, ξ3, t) satisfies the following PDE:

∂V

∂t
+

1

2

3∑

i=1

3∑

j=1

σ̃iσ̃j ρ̃i,j
∂2V

∂ξi∂ξj
+

rZ1

1− Z1,l

∂V

∂ξ1

+

[
r (Z2 − Z1ξ2)

Z1 − Z2,l
− σ̃1σ̃2ρ̃1,2 (1− Z1,l)

Z1 − Z2,l

]
∂V

∂ξ2

+

[
r (Z3 − Z2ξ3)

Z2 − Z3,l
− σ̃1σ̃3ρ̃1,3ξ2 (1− Z1,l) + σ̃2σ̃3ρ̃2,3 (Z1 − Z2,l)

Z2 − Z3,l

]
∂V

∂ξ3
−rV = 0.

26. Consider a two-factor convertible bond paying coupons with a rate k. For
such a convertible bond, derive directly the partial differential equation
that contains only the unknown market price of risk for the short rate.
“Directly” means “without using the general PDE for derivatives.” (Hint:
Take a portfolio in the form Π = Δ1V1 +Δ2V2 + S, where V1 and V2 are
two different convertible bonds.)

27. *Formulate the two-factor convertible coupon-paying bond problem as a
linear complementarity problem.

28. Consider two-factor convertible coupon-paying bond problems.
(a) Show that if D0 ≤ 0, then there is no free boundary; if D0 > 0, then

there exists at least one free boundary.
(b) *Formulate a two-factor convertible coupon-paying bond problem as

a free-boundary problem if D0 > 0. (Suppose it is known that on the
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free boundary, the price of the convertible bond and its derivative are
continuous, and assume that there exists only one free boundary.)

29. Consider the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ (r −D0)S
∂Bc
∂S

− rBc + kZ = 0,

0 ≤ S, 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S,

where σ, r,D0, k, Z, and n are constants. Show that if D0 ≤ 0, then

Bc(S, t) ≥ nS for 0 ≤ t ≤ T.

(Hint: Define Bc(S, t) = Bc(S, t)− b0(t), where b0(t) is the solution of the
problem:

⎧
⎨

⎩

db0
dt

− rb0 + kZ = 0, 0 ≤ t ≤ T,

b0(T ) = 0.

Show Bc(S, t) ≥ nS and b0(t) ≥ 0, and then show Bc(S, t) ≥ nS.)
(Remark: If the solution of this problem fulfills the constraint condition
Bc(S, t) ≥ nS for 0 ≤ t ≤ T , then the solution of the problem above
represents the price of a one-factor convertible bond. In this case, the
solution of a one-factor convertible bond does not involve any free bound-
ary. Therefore, no free boundary will be encountered when one prices a
one-factor convertible bond with D0 ≤ 0.)

30. Consider the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ (r −D0)S
∂Bc
∂S

− rBc + kZ = 0,

0 ≤ S, 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS) = nmax(S − Z/n, 0) + Z, 0 ≤ S,

where σ, r,D0, k, Z, and n are constants. Show that its solution is

nc(S, t;Z/n) + Ze−r(T−t)
[
1 + k

(
er(T−t) − 1

)
/r
]
,

where c(S, t;Z/n) is the price of a European call option with an exercise
price E = Z/n. This means that the problem can be understood as a
problem to determine the value of an investment consisting of n units of
European call options with E = Z/n and a bond with face value Z and
coupon rate k [see the result of Problem 1 part (b)]. According to the
result of Problem 29, if D0 ≤ 0, then it is the price of a convertible bond.
Therefore when D0 ≤ 0, the value of a one-factor convertible bond is equal
to the price of n units of European call options with E = Z/n plus the
price of a bond with face value Z and coupon rate k.
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Basic Numerical Methods

This chapter is devoted to the basic numerical methods. We first discuss var-
ious approximations, solution of systems, and eigenvalue problems. Then, we
describe how to determine the parameters in stochastic models.

6.1 Approximations

6.1.1 Interpolation

Linear Interpolation. Suppose that the values of a function f(x) are given
on the grid points xm, m = 0, 1, · · · ,M , where x0 < x1 < · · · < xM .
Sometimes, we may need to find the value of the function at other points.
A simple way to do this is to interpolate the function by using the known
values of the function. Let fm denote the value of the function f(x) at a
point xm, m = 0, 1, · · · ,M . We want to approximate the value f(x∗) for
x∗ ∈ (xm, xm+1). The simplest interpolation is to use a linear function to
approximate the function f(x) on the subinterval [xm, xm+1]. Let

p1(x) = a0 + a1x.

Using the conditions

p1(xm) = fm, p1(xm+1) = fm+1,

we find

a0 =
xm+1fm − xmfm+1

xm+1 − xm
, a1 =

fm+1 − fm
xm+1 − xm

.

Then, we have

p1(x) =
xm+1 − x

xm+1 − xm
fm +

x− xm
xm+1 − xm

fm+1.

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 6, © Springer Science+Business Media New York 2013
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Thus, we have the approximate value:

f(x∗) ≈ p1(x
∗) =

xm+1 − x∗

xm+1 − xm
fm +

x∗ − xm
xm+1 − xm

fm+1.

This is called the linear interpolation. If we do the interpolation for all subin-
tervals, then we obtain a piecewise linear function on the interval [x0, xM ].

Higher Order Interpolation. If the function data indicates that the
function is smooth, then we can use a quadratic or Nth order interpolation to
get a better approximation. Assume that we have obtained the values fm−1,
fm, and fm+1. Let

p2(x) = a0 + a1x+ a2x
2.

Using the conditions

p2(xm−1) = fm−1, p2(xm) = fm, p2(xm+1) = fm+1,

we find

p2(x) =
(xm − x)(xm+1 − x)

(xm − xm−1)(xm+1 − xm−1)
fm−1 +

(x− xm−1)(xm+1 − x)

(xm − xm−1)(xm+1 − xm)
fm

+
(x− xm−1)(x− xm)

(xm+1 − xm−1)(xm+1 − xm)
fm+1.

Then, for any x∗ ∈ (xm−1, xm+1), f(x
∗) can be approximated by p2(x

∗). This
is called the quadratic interpolation.

In general, if fm, m = i, i+ 1, · · · , i+N , are known for an integer i, then
an Nth Lagrange interpolating polynomial can be obtained. For simplicity,
let i = 0 and write down the polynomial as follows:

pN(x) = ϕ0(x)f0 + ϕ1(x)f1 + · · ·+ ϕN(x)fN ,

where

ϕk(x) =
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1) · · · (x− xN)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xN)

for k = 0, 1, · · · , N . This approximation can be used for any x ∈ (x0, xN).
It is clear that the linear and quadratic interpolating polynomials are the
Lagrange interpolating polynomials with N = 1 and 2, respectively. For an
Nth Lagrange interpolating polynomial, the error is given by the following
theorem:

Theorem 6.1 If xm, m = 0, 1, · · · , N , are distinct numbers and f(x) is N+1
times continuous differentiable on [x0, xN ], then for any x ∈ [x0, xN ], there
exists a ξ ∈ [x0, xN ], such that

f(x)− pN(x) =
f (N+1)(ξ)

(N + 1)!
(x− x0)(x− x1) · · · (x− xN).
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Therefore, the error of linear interpolation is O(Δx2), and the error of
quadratic interpolation is O(Δx3), where Δx = max

m
(xm+1 − xm).

Cubic Spline Interpolation. As we can see, linear interpolations result in
piecewise linear functions on the interval [x0, xM ]: the function is smooth in
each subinterval [xm, xm+1], continuous in [x0, xM ], but may not be smooth
in [x0, xM ]. For quadratic interpolations, the situation is similar. Cubic spline
interpolation is the most commonly used piecewise polynomial approximation,
which is a cubic polynomial on each subinterval [xm, xm+1] and has a contin-
uous second derivative on the whole interval. The cubic spline interpolation
S(x) satisfies the following conditions:

(A) On the subinterval [xm, xm+1], S(x) = Sm(x) is a cubic polynomial,
m = 0, 1, · · · ,M − 1;

(B) S(xm) = fm, m = 0, 1, · · · ,M ;
(C) Sm(xm) = Sm−1(xm), S′

m(xm) = S′
m−1(xm), S′′

m(xm) = S′′
m−1(xm), m =

1, 2, · · · ,M − 1;
(D) S′′(x0) = S′′(xM) = 0, or other two conditions.

Let

Sm(x) = am+bm(x−xm)+cm(x−xm)2+dm(x−xm)3, m = 0, 1, · · · ,M−1.

Condition B, m = 0, 1, · · · ,M − 1, can be written as

am = Sm(xm) = fm, m = 0, 1, · · · ,M − 1.

Using condition C, we get
⎧
⎪⎪⎨

⎪⎪⎩

am = am−1 + bm−1hm−1 + cm−1h
2
m−1 + dm−1h

3
m−1,

bm = bm−1 + 2cm−1hm−1 + 3dm−1h
2
m−1,

cm = cm−1 + 3dm−1hm−1,
m = 1, 2, · · · ,M − 1,

(6.1)

where hm−1 = xm − xm−1. Define

aM = fM

and

cM = S′′(xM)/2.

Then, from the expression SM−1(x) and Condition B with m =M , we further
have

{
aM = aM−1 + bM−1hM−1 + cM−1h

2
M−1 + dM−1h

3
M−1,

cM = cM−1 + 3dM−1hM−1.
(6.2)

Rewrite the last relations in the sets of relations (6.1) and (6.2) as

dm−1 =
cm − cm−1

3hm−1
, m = 1, 2, · · · ,M, (6.3)
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and the first relations in the sets of relations (6.1) and (6.2) as

bm−1 =
am − am−1

hm−1
− cm−1hm−1 − dm−1h

2
m−1

=
am − am−1

hm−1
− cm−1hm−1 −

cm − cm−1

3
hm−1, (6.4)

m = 1, 2, · · · ,M.

Substituting them into the second relation in the set of relations (6.1) yields
am+1 − am

hm
− cmhm − cm+1 − cm

3
hm

=
am − am−1

hm−1
− cm−1hm−1 −

cm − cm−1

3
hm−1

+2cm−1hm−1 + (cm − cm−1)hm−1,

m = 1, 2, · · · ,M − 1,

or

umcm−1 + 2cm + vmcm+1=
1

hm−1 + hm

[
3(am+1 − am)

hm
− 3(am − am−1)

hm−1

]

,

m = 1, 2, · · · ,M − 1,

where um = hm−1/(hm−1 + hm) and vm = hm/(hm−1 + hm). This system is
equivalent to Conditions A–C. If Condition D is S′′(x0) = S′′(xM) = 0, we
have two other equations c0 = 0 and cM = 0. In this case the entire system
can be written in the following matrix form:

Ac = h, (6.5)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · · · · · · · 0
u1 2 v1 0 · · · 0
0 u2 2 v2 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

0 · · · 0 uM−1 2 vM−1

0 · · · · · · · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
...
...
cM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

h =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1

h0 + h1

(
3(a2 − a1)

h1
− 3(a1 − a0)

h0

)

...
1

hM−2 + hM−1

(
3(aM − aM−1)

hM−1

− 3(aM−1 − aM−2)

hM−2

)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Solving this linear system, we obtain cm, m = 0, 1, · · · ,M . Then dm, m =
0, 1, · · · ,M − 1, can be obtained from the set of relations (6.3) and bm, m =
0, 1, · · · ,M − 1, from the set of relations (6.4).
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The condition S′′(x0) = 0 could be replaced by S′(x0) = f ′(x0) or d0 = 0,
namely, assuming S0(x) = a0+b0(x−x0)+c0(x−x0)2. At x = xM , the situation
is similar. If such a case appears, then the way to determine these coefficients
needs to be changed slightly. Here, assuming S′(x0) = f ′(x0) and dM−1 = 0,
we explain how to modify the way to determine these coefficients. Because
S′
0(x0) = b0, the coefficient b0 is known in this case, namely, b0 = f ′(x0).

From
{
a1 = a0 + b0h0 + c0h

2
0 + d0h

3
0,

c1 = c0 + 3d0h0,

we eliminate d0 and obtain

2c0 + c1 = 3

(
a1 − a0
h20

− b0
h0

)

= 3

(
a1 − a0
h20

− f ′(x0)
h0

)

.

This equation should replace the first equation in the system (6.5). From
dM−1 = 0 and the second equation in the set of relations (6.2), we have

cM−1 − cM = 0.

This equation should replace the last equation in the system (6.5). Solving the
modified system (6.5) yields cm, m = 0, 1, · · · ,M , for this case. As soon as all
the cm are obtained, dm, m = 0, 1, · · · ,M − 1, can be obtained from the set
of relations (6.3) and bm, m = 0, 1, · · · ,M − 1, from the set of relations (6.4).
For more about cubic spline interpolation, see books on numerical methods.

When we write a code to calculate the approximate value f(x∗) by
quadratic interpolation, in order to guarantee to use an interpolation, we need
to find a numberm such that x∗ ∈ [xm−1, xm+1]. This can be realized by using
a loop statement. If xm = mΔx,m = 0, 1, · · · ,M , then the expression

m = max

(

1,min

(

int

(
x∗

Δx
+ 0.5

)

,M − 1

))

will also always give such a number.

6.1.2 Approximation of Partial Derivatives

Finite-Difference Approximation. Here, we will discuss how derivatives
of a function u(x, t) at a point can be approximated by a linear combination of
values of the function at adjacent points. Let xm = a+mΔx and τn = nΔτ ,
where m is an integer and n is an integer or an integer plus a half.

Using the Taylor expansion, we have1

u(xm, τ
n+1) = u(xm, τ

n) +Δτ
∂u

∂τ
(xm, τ

n) +
Δτ2

2

∂2u

∂τ2
(xm, η),

1In this book Δτ2 stands for (Δτ)2. For Δτ3, Δx2, Δx3 etc., the situation is
similar.
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where τn < η < τn+1. Then,

∂u

∂τ
(xm, τ

n) =
u(xm, τ

n+1)− u(xm, τ
n)

Δτ
− Δτ

2

∂2u

∂τ2
(xm, η).

If Δτ is small, we have

∂u

∂τ
(xm, τ

n) ≈ u(xm, τ
n+1)− u(xm, τ

n)

Δτ
.

This approximation is called the forward finite-difference approximation or

the forward difference for
∂u

∂τ
. Similarly, we can obtain the backward

difference

∂u

∂τ
(xm, τ

n) ≈ u(xm, τ
n)− u(xm, τ

n−1)

Δτ
.

Both forward and backward finite-difference approximations have errors of
first order in Δτ (first-order accurate). To obtain a second-order accurate
finite-difference approximation, we use the following Taylor expansions:

u(xm, τ
n+1) = u(xm, τ

n+1/2) +
Δτ

2

∂u

∂τ
(xm, τ

n+1/2)

+
Δτ2

8

∂2u

∂τ2
(xm, τ

n+1/2) +
Δτ3

48

∂3u

∂τ3
(xm, η1),

u(xm, τ
n) = u(xm, τ

n+1/2)− Δτ

2

∂u

∂τ
(xm, τ

n+1/2)

+
Δτ2

8

∂2u

∂τ2
(xm, τ

n+1/2)− Δτ3

48

∂3u

∂τ3
(xm, η2),

where τn+1/2 < η1 < τn+1 and τn < η2 < τn+1/2. Subtracting the second
equation from the first one, we get

∂u

∂τ
(xm, τ

n+1/2) =
u(xm, τ

n+1)− u(xm, τ
n)

Δτ
− Δτ2

24

∂3u

∂τ3
(xm, η3),

where τn < η3 < τn+1. Then, we have

∂u

∂τ
(xm, τ

n+1/2) ≈ u(xm, τ
n+1)− u(xm, τ

n)

Δτ
.

This approximation is called the central finite-difference approximation or a

central difference for
∂u

∂τ
.

Similarly, for
∂u

∂x
(xm, τ

n) we can have the following approximations
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∂u

∂x
(xm, τ

n) ≈ u(xm+1, τ
n)− u(xm−1, τ

n)

2Δx
,

∂u

∂x
(xm, τ

n) ≈ u(xm, τ
n)− u(xm−1, τ

n)

Δx

and

∂u

∂x
(xm, τ

n) ≈ u(xm+1, τ
n)− u(xm, τ

n)

Δx
.

The first one is second order and called the second-order central difference
for first derivatives. The second and third approximations are first order and
called the first-order one-sided difference. Sometimes, we also need the
following second-order one-sided differences:

∂u

∂x
(xm, τ

n) ≈ 3u(xm, τ
n)− 4u(xm−1, τ

n) + u(xm−2, τ
n)

2Δx

and

∂u

∂x
(xm, τ

n) ≈ −3u(xm, τ
n) + 4u(xm+1, τ

n)− u(xm+2, τ
n)

2Δx
.

For the approximation of the second-order partial derivative with respect
to x, we use the following Taylor expansions:

u(xm+1, τ
n) = u(xm, τ

n) +Δx
∂u

∂x
(xm, τ

n) +
Δx2

2

∂2u

∂x2
(xm, τ

n)

+
Δx3

6

∂3u

∂x3
(xm, τ

n) +
Δx4

24

∂4u

∂x4
(ξ1, τ

n),

u(xm−1, τ
n) = u(xm, τ

n)−Δx
∂u

∂x
(xm, τ

n) +
Δx2

2

∂2u

∂x2
(xm, τ

n)

−Δx
3

6

∂3u

∂x3
(xm, τ

n) +
Δx4

24

∂4u

∂x4
(ξ2, τ

n),

where xm < ξ1 < xm+1 and xm−1 < ξ2 < xm. Adding these two equations,
we obtain

∂2u

∂x2
(xm, τ

n) =
u(xm+1, τ

n)− 2u(xm, τ
n) + u(xm−1, τ

n)

Δx2
− Δx2

12

∂4u

∂x4
(ξ3, τ

n),

where xm−1 < ξ3 < xm+1. Thus, we have the second-order central differ-
ence for second derivatives:

∂2u

∂x2
(xm, τ

n) ≈ u(xm+1, τ
n)− 2u(xm, τ

n) + u(xm−1, τ
n)

Δx2
.
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Sometimes, we also need to have an approximation to mixed second-order

partial derivatives. For
∂2u

∂x∂y
, we have

∂2u

∂x∂y
(xm, yl, τ

n) ≈ 1

2Δx

[
u(xm+1, yl+1, τ

n)− u(xm+1, yl−1, τ
n)

2Δy

−u(xm−1, yl+1, τ
n)− u(xm−1, yl−1, τ

n)

2Δy

]

,

where yl = b + lΔy, Δy being a small number. It is clear that this is a
second-order scheme, and this formula is called the second-order central
difference for mixed second-order partial derivatives.

Pseudo-Spectral Approximation. By using more points, we can also
construct higher order finite-difference approximations for the partial deriva-
tives. An alternative way to obtain higher order approximations for partial
derivatives is to use a pseudo-spectral method. To illustrate the method, we
consider the approximation to the partial derivatives with respect to x for a
fixed τ . Assume that we want to find the solution u in the interval 0 ≤ x ≤ 1.
Suppose we use non-equidistant nodes. For example, we can use the following
grid points

xm =
1

2

(
1− cos

mπ

M

)
, m = 0, 1, · · · ,M. (6.6)

These points are in [0, 1] and equal to (1 − x∗m)/2, x∗m being the extrema of
theMth order Chebyshev polynomial TM (x). Here, theMth order Chebyshev
polynomial is defined by TM (x) = cos(M cos−1 x). Assume that the solution
for a fixed τ is a polynomial in x with degree M . If we require the polynomial
to have a value u(xm) at x = xm, then we can determine the coefficients of the
polynomial, each of which is a linear combination of u(xi), i = 0, 1, · · · ,M .
Thus, the derivatives of the polynomial at the point xm is also a linear com-
bination of u(xi), i = 0, 1, · · · ,M , with coefficients depending on xm and xi.
Therefore,

∂u

∂x
(xm) =

M∑

i=0

Dx,m,iu(xi). (6.7)

This is an Mth order approximation to the derivative with respect to
x used in the pseudo-spectral method. If the grid points are given by the
expression (6.6), then Dx,m,i has the following expression:
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Dx,m,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm(−1)m+i

ci(xm − xi)
, m �= i,

−2M2 + 1

3
, m = i = 0,

1− 2xi
4xi(1− xi)

, m = i = 1, 2, · · · ,M − 1,

2M2 + 1

3
, m = i =M ,

(6.8)

where c0 = cM = 2 and ci = 1, i = 1, 2, · · · ,M − 1 (see [36]). Similarly, we
have

∂2u

∂x2
(xm) =

M∑

j=0

Dx,m,j
∂u

∂x
(xj)

=

M∑

j=0

Dx,m,j

[
M∑

i=0

Dx,j,iu(xi)

]

=

M∑

i=0

⎛

⎝
M∑

j=0

Dx,m,jDx,j,i

⎞

⎠u(xi)

=

M∑

i=0

Dxx,m,iu(xi), (6.9)

where

Dxx,m,i =

M∑

j=0

Dx,m,jDx,j,i. (6.10)

When the solution is very smooth, only a small M may be needed in order to
get a satisfying result. In such a case, its performance could be better than
the finite-difference approximations.

6.1.3 Approximate Integration

Trapezoidal Rule. The approximation of the integral
∫ b

a

f(x)dx

is needed in the numerical solution of integro-differential equations and some-
times in the numerical solution of partial differential equations. The sim-
plest method for the approximation is called the trapezoidal rule. Let
h = (b − a)/M , and xm = a + mh, m = 0, 1, · · · ,M . In the subinterval
[xm, xm+1], we use the linear function
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p1(x) =
xm+1 − x

h
f(xm) +

x− xm
h

f(xm+1)

to approximate f(x). Thus,

∫ xm+1

xm

f(x)dx ≈ 1

h

∫ xm+1

xm

[(xm+1 − x)f(xm) + (x− xm)f(xm+1)]dx

=
h

2
[f(xm) + f(xm+1)] .

Using this for all subintervals, we obtain

∫ b

a

f(x)dx =
M−1∑

m=0

∫ xm+1

xm

f(x)dx

≈
M−1∑

m=0

h

2
[f(xm) + f(xm+1)]

=
h

2

[

f(a) + 2

M−1∑

m=1

f(xm) + f(b)

]

.

The error of the trapezoidal rule is

− (b− a)h2

12
f ′′(ξ),

where ξ ∈ (a, b).

Simpson’s Rule. Simpson’s rule is a better approximation for the integral by
using the quadratic interpolation polynomial. In the subinterval [xm−1, xm+1],
we use

p2(x) =
(xm − x)(xm+1 − x)

(xm − xm−1)(xm+1 − xm−1)
f(xm−1)

+
(x− xm−1)(xm+1 − x)

(xm − xm−1)(xm+1 − xm)
f(xm)

+
(x− xm−1)(x− xm)

(xm+1 − xm−1)(xm+1 − xm)
f(xm+1)

to approximate f(x). Thus

∫ xm+1

xm−1

f(x)dx ≈ 1

2h2

∫ xm+1

xm−1

[(xm − x)(xm+1 − x)f(xm−1)

+2(x− xm−1)(xm+1 − x)f(xm)

+(x− xm−1)(x− xm)f(xm+1)]dx

=
h

3
[f(xm−1) + 4f(xm) + f(xm+1)].
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Suppose that M is an even number and using this for all subintervals, we
obtain

∫ b

a

f(x)dx ≈ h

3

⎡

⎣f(a) + 2

M/2−1∑

m=1

f(x2m) + 4

M/2∑

m=1

f(x2m−1) + f(b)

⎤

⎦ .

The error of the Simpson’s rule is

− (b− a)h4

180
f (4)(ξ),

where ξ ∈ (a, b).

6.1.4 Least Squares Approximation

In Sect. 6.1.1 we discussed various interpolations. In those cases, all the given
points (xm, fm) are on the interpolation function. Here, we will discuss how
to find an approximate function satisfying the following two conditions:

(A) The number of parameters in the function is less than the number of
given points.

(B) Let the function have the “best fit” to those given points (xm, fm) in
some sense.

Let xm, m = 0, 1, · · · ,M , be distinct, and let M + 1 points (xm, fm) be
given. We want to find a product of a given function g(x) and a polynomial
of degree N < M

g(x)

N∑

n=0

anx
n

such that the value of the total least squares error

M∑

m=0

bm

[

fm − g(xm)

N∑

n=0

anx
n
m

]2

has a minimum, where bm, m = 0, 1, · · · ,M , are given positive numbers
called the weights. In order to minimize the least squares error, the neces-
sary conditions are

∂

∂ai

⎧
⎨

⎩

M∑

m=0

bm

[

fm − g(xm)

N∑

n=0

anx
n
m

]2
⎫
⎬

⎭

= −2
M∑

m=0

bm

[

fm − g(xm)
N∑

n=0

anx
n
m

]

g(xm)xim = 0,

i = 0, 1, · · · , N.
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This system can be written as

N∑

n=0

[
M∑

m=0

bmg
2(xm)xn+im

]

an =

M∑

m=0

bmfmg(xm)xim, (6.11)

i = 0, 1, · · · , N.

It is a linear system for a0, a1, · · · , aN , which is usually known as the
system of normal equations. When x0, x1, · · · , xM are distinct, we can find
a0, a1, · · · , aN without any difficulty. This method is usually referred to as the
least squares method with weights.

6.2 Solution of Systems and Eigenvalue Problems

6.2.1 LU Decomposition of Linear Systems

One efficient method for solving linear systems is the LU decomposition, which
decomposes the matrix A into a product of a unit lower triangular matrix2

L and an upper triangular matrix U, i.e., A = LU. In this subsection, we
will give the details of the method for linear tridiagonal systems. For more
complicated systems, the procedure is similar.

Consider a general linear tridiagonal system

Ax = q, (6.12)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 c1
a2 b2 c2 0

. . .
. . .

. . .

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎣

x1
x2
...
xm

⎤

⎥
⎥
⎥
⎦
, q =

⎡

⎢
⎢
⎢
⎣

q1
q2
...
qm

⎤

⎥
⎥
⎥
⎦
.

Let us discuss how to find the solution of this system. The first equation of
the system is

b1x1 + c1x2 = q1.

Let

u1 = b1, y1 = q1,

the equation above can be written as

u1x1 + c1x2 = y1. (6.13)

2A matrix A is called a unit lower triangular matrix if aii = 1 and aij = 0 for
i < j. If aij = 0 for i > j, then the matrix A is called an upper triangular matrix.
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Now suppose we have a relation in the form

ui−1xi−1 + ci−1xi = yi−1.

We put this relation and the ith equation of the system together and obtain
{
ui−1xi−1 + ci−1xi = yi−1,
aixi−1 + bixi + cixi+1 = qi.

Subtracting the first relation multiplied by ai/ui−1 from the second equation,
we can eliminate xi−1 and have another relation in the same form:

(

bi − ci−1
ai
ui−1

)

xi + cixi+1 = qi − yi−1
ai
ui−1

or

uixi + cixi+1 = yi,

where

ui = bi −
ci−1ai
ui−1

,

yi = qi −
yi−1ai
ui−1

.

Because we have Eq. (6.13) that is in this form, this procedure can be done
for i = 2, 3, · · · ,m successively and generates

uixi + cixi+1 = yi, i = 2, 3, · · · ,m− 1 (6.14)

and

umxm = ym. (6.15)

Because in the last equation of the system xm+1 does not appear, which
means cm = 0, the last relation is in the form Eq. (6.15) instead of the
set of equations (6.14). This procedure can be called elimination or forward
substitution.

When we obtain Eq. (6.15), we can have

xm =
ym
um

.

Furthermore, from Eq. (6.13) and the set of equations (6.14) we can get

xi =
yi − cixi+1

ui
, i = m− 1, · · · , 1

successively. This procedure is called back substitution. Through these two
procedures, we can obtain the solution of this system.

The elimination procedure can be written in matrix form

Lm−1 · · ·L2L1Ax = Ux = Lm−1 · · ·L1q = y, (6.16)
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where

Li =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

0 1
. . .

. . .
. . .

. . .
... 0 1

. . .
...

−li 1
. . .

0
. . .

. . .

. . .
. . . 0

0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1 c1 0 · · · 0

0 u2 c2
. . .

...
...

. . .
. . .

. . . 0
...

. . . um−1 cm−1

0 · · · · · · 0 um

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...
ym

⎤

⎥
⎥
⎥
⎦
,

li equalling ai+1/ui and being in the ith column and the (i+ 1)th row of Li,
i = 1, 2, · · · ,m− 1.

Let

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0

l1 1 0
...

0 l2 1
. . .

...
...
. . .

. . .
. . . 0

0 · · · 0 lm−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is easy to see

Lm−1Lm−2 · · ·L1L = I.

Thus, we have

Lm−1Lm−2 · · ·L1 = L−1

and Eq. (6.16) can be written as

L−1Ax = Ux = L−1q = y.

Consequently,

Ax = LUx = q.
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This means that A can be decomposed into a unit lower triangular matrix
L multiplied by an upper triangular matrix U. The procedure of solving the
system is as follows. We first multiply the equation by L−1 so that the equation
becomes Ux = L−1q = y and then solve Ux = y to get x = U−1y. Because
these two procedures are easy to perform, the method is quite popular.

6.2.2 Iteration Methods for Linear Systems

An alternative to LU decomposition is iteration. Iteration methods are espe-
cially effective for large systems with sparse coefficient matrices. Consider the
linear system

Ax = q.

A may be decomposed as

A = D+ L+U

where

L =

⎡

⎢
⎢
⎢
⎣

0 · · · · · · 0
a2,1 0 · · · 0
...

. . .
. . .

...
am,1 · · · am,m−1 0

⎤

⎥
⎥
⎥
⎦
, U =

⎡

⎢
⎢
⎢
⎣

0 a1,2 · · · a1,m
...
. . .

. . .
...

0 . . . 0 am−1,m

0 · · · · · · 0

⎤

⎥
⎥
⎥
⎦
,

and D = diag{a1,1, a2,2, · · · , am,m}. Then, the linear system can be rewritten
as the following system,

x = D−1 [q− (L+U)x] ,

where we assume that D is invertible.

Jacobi Iteration. A simple way to find the solution is to use the following
iteration:

x(k+1) = D−1
[
q− (L+U)x(k)

]
, k = 0, 1, · · · ,

or in component form

x
(k+1)
1 =

1

a1,1
[q1 − (a1,2x

(k)
2 + · · ·+ a1,mx

(k)
m )],

x
(k+1)
2 =

1

a2,2
[q2 − (a2,1x

(k)
1 + a2,3x

(k)
3 + · · ·+ a2,mx

(k)
m )],

...

x(k+1)
m =

1

am,m
[qm − (am,1x

(k)
1 + · · ·+ am,m−1x

(k)
m−1)].

It is clear that in order to implement this iteration, an initial guess x(0) should
be given. This method is called the Jacobi iteration.
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Gauss–Seidel Iteration. In the Jacobi iteration, at the iteration step for

x
(k+1)
i , all the solutions x

(k+1)
1 , · · · , x(k+1)

i−1 have been obtained. Therefore, new
variables can be used in the iteration, namely, we can have the following
iteration:

x
(k+1)
1 =

1

a1,1
[q1 − (a1,2x

(k)
2 + · · ·+ a1,mx

(k)
m )],

x
(k+1)
2 =

1

a2,2
[q2 − (a2,1x

(k+1)
1 + a2,3x

(k)
3 + · · ·+ a2,mx

(k)
m )],

x
(k+1)
3 =

1

a3,3
[q3 − (a3,1x

(k+1)
1 + a3,2x

(k+1)
2 + a3,4x

(k)
4 + · · ·+ a3,mx

(k)
m )],

...

x(k+1)
m =

1

am,m
[qm − (am,1x

(k+1)
1 + · · ·+ am,m−1x

(k+1)
m−1 )]

or in matrix form

x(k+1) = D−1
[
q− Lx(k+1) −Ux(k)

]
.

This method is called the Gauss–Seidel iteration.

SOR (Successive Over Relaxation). The Gauss–Seidel iteration can be
modified in the following way: Take a combination of the previous value of x
and the current update (from the Gauss–Seidel method) as the next approx-
imation:

x(k+1) = (1− ω)x(k) + ωD−1
[
q− Lx(k+1) −Ux(k)

]
,

or in component form

x
(k+1)
1 = (1− ω)x

(k)
1 +

ω

a1,1
[q1 − (a1,2x

(k)
2 + · · ·+ a1,mx

(k)
m )],

x
(k+1)
2 = (1− ω)x

(k)
2 +

ω

a2,2
[q2 − (a2,1x

(k+1)
1 + a2,3x

(k)
3 + · · ·+ a2,mx

(k)
m )],

x
(k+1)
3 = (1− ω)x

(k)
3 +

ω

a3,3
[q3 − (a3,1x

(k+1)
1 + a3,2x

(k+1)
2 + a3,4x

(k)
4 + · · ·+

a3,mx
(k)
m )],

...

x(k+1)
m = (1− ω)x(k)m +

ω

am,m
[qm − (am,1x

(k+1)
1 + · · ·+ am,m−1x

(k+1)
m−1 )].

Here, ω is a real number. This method usually is called the method of
successive over relaxation (SOR). When ω = 1, it is the Gauss–Seidel iteration.
The parameter ω should be chosen so that the method will converge and work
better than the Gauss–Seidel iteration. The following result has been proved:
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Theorem 6.2 If A is a symmetric positive definite matrix and 0 < ω < 2,
then the method of successive over relaxation will converge for any initial
vector x.

Practical computation shows that this method also works for some
nonsymmetric linear systems if ω is chosen properly. For many cases, this
method gives faster convergence than the Gauss–Seidel iteration if ω ∈ (1, 2).
We would like to point out that in the books by Golub and Loan [35] and
Saad [71], there are some other iteration methods that can also be used for
solving linear systems in Chaps. 8–10. Interested readers are referred to these
books.

6.2.3 Iteration Methods for Nonlinear Systems

In the numerical solution of partial differential equations, the resulting algebraic
systems are sometimes nonlinear. In this section, we discuss three iteration
methods for the nonlinear systems.

Newton’s Method. Consider the following nonlinear system,

f1(x1, x2, · · · , xn) = 0,

f2(x1, x2, · · · , xn) = 0,

...

fn(x1, x2, · · · , xn) = 0.

Let

x =

⎡

⎢
⎢
⎢
⎣

x1
x2
...
xn

⎤

⎥
⎥
⎥
⎦
, f(x) =

⎡

⎢
⎢
⎢
⎣

f1(x)
f2(x)

...
fn(x)

⎤

⎥
⎥
⎥
⎦
.

Then, the nonlinear system has the form

f(x) = 0.

Suppose x(0) = [x01, x
0
2, · · · , x0n]T is a good initial guess to the true solution

x∗ = [x∗1, x
∗
2, · · · , x∗n]T , i.e.,

δx = x∗ − x(0) = [δx1, δx2, · · · , δxn]T

is small in norm. Then, for i = 1, 2, · · · , n

0 = fi(x
∗
1, x

∗
2, · · · , x∗n) = fi(x

0
1 + δx1, x

0
2 + δx2, · · · , x0n + δxn)

≈ fi(x
0
1, x

0
2, · · · , x0n) +

n∑

k=1

∂fi(x
0
1, x

0
2, · · · , x0n)
∂xk

δxk.
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In matrix form, we have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f1(x
(0))

∂x1

∂f1(x
(0))

∂x2
· · · ∂f1(x

(0))

∂xn
∂f2(x

(0))

∂x1

∂f2(x
(0))

∂x2
· · · ∂f2(x

(0))

∂xn
· · · · · · · · · · · ·

∂fn(x
(0))

∂x1

∂fn(x
(0))

∂x2
· · · ∂fn(x

(0))

∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

δx1
δx2
...

δxn

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎣

f1(x
(0))

f2(x
(0))
...

fn(x
(0))

⎤

⎥
⎥
⎥
⎦
≈ 0,

or

Jf (x
(0)) · δx+ f(x(0)) ≈ 0,

where Jf (x
(0)) denotes the above Jacobian matrix. Solving for δx we get

δx ≈ −[Jf (x
(0))]−1f(x(0))

or

x∗ ≈ x(0) − [Jf (x
(0))]−1f(x(0)).

This means that the vector

x(1) = x(0) − [Jf (x
(0))]−1f(x(0))

will be a better approximation to the solution x∗. In general, suppose x(k)

has been obtained, then

x(k+1) = x(k) − [Jf (x
(k))]−1f(x(k)). (6.17)

When n = 1, it is an equation, not a system:

x(k+1) = x(k) − f(x(k))/f ′(x(k)). (6.18)

This iteration method is called Newton’s method. Because finding an inverse
of a matrix is time consuming, in the real computation, Newton’s method has
the form

{
Jf (x

(k))y = −f(x(k)),
x(k+1) = x(k) + y.

Newton’s method converges locally with second order. More precisely, it
can be proved that the following result holds.

Theorem 6.3 Let x∗ be a solution of f(x) = 0. Assume that Jf (x
∗) is not

singular, and that fi(x) has continuous second-order partial derivatives near
x∗. Then, if x(0) is close enough to x∗, Newton’s method converges and

∥
∥
∥x(k+1) − x∗

∥
∥
∥
∞

≤ C
∥
∥
∥x(k) − x∗

∥
∥
∥
2

∞
.
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Generalized Secant Method. One of weaknesses of Newton’s method for
solving nonlinear systems is that the Jacobian matrix must be computed at
each iteration. The Jacobian matrix associated with a system f(x) = 0 requires
n2 partial derivatives to be evaluated. In many situations, the exact evaluation
of the partial derivatives is inconvenient. This difficulty can be overcome by
using finite-difference approximations to the partial derivatives. For example,

∂fi(x1, x2, · · · , xn)
∂xk

≈ 1

Δxk
[fi(x1, · · · , xk +Δxk, · · · , xn)− fi(x1, · · · , xk, · · · , xn)],

k = 1, 2, · · · , n,

where Δxk is small in absolute value. This approximation, however, still re-
quires at least n2 function evaluations to be performed in order to approximate
the Jacobian and does not decrease the amount of calculations. Actually, if we
have f(x) at n+1 points, then we usually can have an approximate Jacobian
at some point. Suppose that we have x(l) and f(x(l)), l = k−n, k−n+1, · · · , k.
Because

[
f(x(k−n))− f(x(k)), f(x(k−n+1))− f(x(k)), · · · , f(x(k−1))− f(x(k))

]

≈ Jf (x
(k))
[
x(k−n) − x(k),x(k−n+1) − x(k), · · · ,x(k−1) − x(k)

]
,

we have

Jf (x
(k))

≈
[
f(x(k−n))− f(x(k)), f(x(k−n+1))− f(x(k)), · · · , f(x(k−1))− f(x(k))

]

×
[
x(k−n) − x(k),x(k−n+1) − x(k), · · · ,x(k−1) − x(k)

]−1

.

Therefore, Newton’s method can be modified to

x(k+1) = x(k) −
[
x(k−n) − x(k),x(k−n+1) − x(k), · · · ,x(k−1) − x(k)

]

×
[
f(x(k−n))− f(x(k)), f(x(k−n+1))− f(x(k)),

· · · , f(x(k−1))− f(x(k))
]−1

f(x(k)). (6.19)

Consequently, if we have n + 1 guesses x(l), l = 0, 1, · · · , n, and the values
of the function f(x) at these points, then we can do the iteration (6.19) for
k = n, n+1, · · · and at each iteration we spend very little time to calculate a
Jacobian. Of course, it needs to be guaranteed that the matrix

[
f(x(k−n))− f(x(k)), · · · , f(x(k−1))− f(x(k))

]
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is invertible. If during the iteration this matrix is not invertible, we need to
find the guess x(k+1) that is close to x(k) in another way, for example, by
changing a component of x(k) a little bit. In practice, it happens very seldom.

If n = 1, then the vectors x and f become scalars x and f and the itera-
tion (6.19) becomes

x(k+1) = x(k) − (x(k−1) − x(k))f(x(k))

f(x(k−1))− f(x(k))
. (6.20)

Thus, if we have two initial guesses x(0) and x(1), we can do this iteration
starting from k = 1. This method is called the secant method, and the it-
eration (6.19) is referred to as the generalized secant method. Under some
conditions, for the iteration (6.19) we can prove that the following relation
holds:
∥
∥
∥x(k+1) − x∗

∥
∥
∥
∞

≤ C
∥
∥
∥x(k) − x∗

∥
∥
∥
2

∞
+ C sup

1≤l≤n

∥
∥
∥x(k−l) − x(k)

∥
∥
∥
∞

∥
∥
∥f(x(k))

∥
∥
∥
∞

for k = n, n+ 1, · · · , where C is a constant (see [97]).

Bisection Method and Modified Secant Method. Consider the case n =
1 and suppose x

(k−1)
1 and x

(k−1)
2 be a pair of guess for the (k− 1)th iteration

with the property f
(
x
(k−1)
1

)
·f
(
x
(k−1)
2

)
< 0. Set x̄(k) = 1

2

(
x
(k−1)
1 + x

(k−1)
2

)
.

If f
(
x̄(k)
)
· f
(
x
(k−1)
1

)
> 0, then let x

(k)
1 = x̄(k) and x

(k)
2 = x

(k−1)
2 ; otherwise,

let x
(k)
1 = x

(k−1)
1 and x

(k)
2 = x̄(k). Because x̄(k) always replaces the component

x
(k−1)
i with the condition f

(
x̄(k)
)
· f
(
x
(k−1)
i

)
> 0, i = 1 or 2, f

(
x
(k)
1

)
·

f
(
x
(k)
2

)
< 0 still holds. It is clear that

∣
∣
∣x

(k)
2 − x

(k)
1

∣
∣
∣ =

1

2

∣
∣
∣x

(k−1)
2 − x

(k−1)
1

∣
∣
∣ .

Thus the method is always convergent. For the secant method, if f
(
x
(k−1)
1

)
·

f
(
x
(k−1)
2

)
< 0 holds, then we can make a modification on choosing a pair

of guess, so that f
(
x
(k)
1

)
· f
(
x
(k)
2

)
< 0. In this way the convergence of the

modified secant method is also guaranteed.

Broyden’s Method. There are some other ways to avoid calculating the
Jacobian for each iteration except for the first iteration. Another weakness of
Newton’s method is that an n×n linear system has to be solved at each itera-
tion, which usually requires O(n3) arithmetic calculations. Here, we introduce
Broyden’s method, which avoids calculating the Jacobian at each iteration and
reduces the number of arithmetic calculations to O(n2) at each iteration if we
get the inverse of the matrix for the first iteration.

Suppose that an initial approximation x(0) is given, and x(1) is computed
by Newton’s method
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x(1) = x(0) − [Jf (x
(0))]−1f(x(0)).

In order to get x(2), we replace the matrix Jf (x
(1)) in Newton’s method by a

matrix A1 satisfying

A1(x
(1) − x(0)) = f(x(1))− f(x(0))

and
A1z = Jf (x

(0))z whenever (x(1) − x(0))Tz = 0.

From these conditions, it can be proved that

A1 = Jf (x
(0)) +

f(x(1))− f(x(0))− Jf (x
(0))(x(1) − x(0))

∥
∥
∥x(1) − x(0)

∥
∥
∥
2

2

(x(1) − x(0))T .

Using this matrix in place of Jf (x
(1)), we have

x(2) = x(1) −A−1
1 f(x(1)).

In general, suppose we have x(i−1), x(i) and Ai−1, then we can have x(i+1) by

Ai = Ai−1 +
y(i) −Ai−1s

(i)

∥
∥
∥s(i)

∥
∥
∥
2

2

(s(i))T ,

and

x(i+1) = x(i) −A−1
i f(x(i)),

where y(i) = f(x(i)) − f(x(i−1)) and s(i) = x(i) − x(i−1). However, at each
iteration step, the linear system

Ais
(i+1) = −f(x(i))

still needs to be solved. To further improve the method, we need the following
theorem.

Theorem 6.4 If A ∈ R
n×n is nonsingular, x,y ∈ R

n, and yTA−1x �= −1,
then A+ xyT is also nonsingular, moreover,

(A+ xyT )−1 = A−1 − A−1xyTA−1

1 + yTA−1x
.

This theorem suggests a simple way to find the inverse of Ai. By setting

A = Ai−1,

x =
y(i) −Ai−1s

(i)

∥
∥
∥s(i)

∥
∥
∥
2

2

,

y = s(i),

A+ xyT = Ai
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in the above theorem, we have

A−1
i = A−1

i−1 −

A−1
i−1

⎛

⎜
⎝
y(i) −Ai−1s

(i)

∥
∥
∥s(i)

∥
∥
∥
2

2

(s(i))T

⎞

⎟
⎠A−1

i−1

1 + (s(i))TA−1
i−1

⎛

⎜
⎝
y(i) −Ai−1s

(i)

∥
∥
∥s(i)

∥
∥
∥
2

2

⎞

⎟
⎠

= A−1
i−1 −

(A−1
i−1y

(i) − s(i))(s(i))TA−1
i−1

∥
∥
∥s(i)

∥
∥
∥
2

2
+ (s(i))TA−1

i−1y
(i) −

∥
∥
∥s(i)

∥
∥
∥
2

2

= A−1
i−1 +

(s(i) −A−1
i−1y

(i))(s(i))TA−1
i−1

(s(i))TA−1
i−1y

(i)
.

This computation requires only O(n2) arithmetic calculations because it in-
volves only matrix-vector multiplications. Therefore, we have the following
Broyden’s method:

• Given initial guess x(0), compute A−1
0 = [Jf (x

(0))]−1 and x(1).
• For i = 1, 2, · · · , do the following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y(i) = f(x(i))− f(x(i−1)), s(i) = x(i) − x(i−1),

A−1
i = A−1

i−1 +
(s(i) −A−1

i−1y
(i))(s(i))TA−1

i−1

(s(i))TA−1
i−1y

(i)
,

x(i+1) = x(i) −A−1
i f(x(i)).

(6.21)

Broyden’s method reduces a large amount of work from Newton’s method.
However, the quadratic convergence of Newton’s method is lost. For Broyden’s
method, we have

lim
i→∞

∥
∥
∥x(i+1) − x∗

∥
∥
∥

∥
∥
∥x(i) − x∗

∥
∥
∥

= 0.

This type of convergence is called superlinear. For more about Broyden’s
method, see books on numerical methods.

6.2.4 Obtaining Eigenvalues and Eigenvectors

In this subsection, we will discuss how to get eigenvalues and eigenvectors of
a square matrix, especially, a symmetric matrix. Before that, we introduce
some basic tools we will need.

Consider an m×m matrix in the form
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Hm = Im − αvvT ,

where Im is an m ×m identity matrix, v is an m-dimensional vector, and α
is a number. Obviously, Hm is a symmetric matrix. We also want Hm to be
orthogonal, namely,

HT

mHm = (Im − αvvT ) (Im − αvvT )

= Im − 2αvvT + α2vvTvvT

= Im −
(
2α− α2vTv

)
vvT = Im.

Therefore, we require

α =
2

vTv

and

Hm = Im − 2

vTv
vvT . (6.22)

The matrix defined by the expression (6.22) is called a Householder matrix.
We are especially interested in the Householder matrix satisfying

Hmx = βe1, (6.23)

where x = [x1, x2, · · · , xm]
T
is an m-dimensional vector, β is a number whose

value may depend on the components of x, and e1 = [1, 0, · · · , 0]T . Because

Hmx = x− 2

vTv
vvTx = x− 2vTx

vTv
v = βe1,

we have

u ≡ 2vTx

vTv
v = x− βe1 (6.24)

and

uTx = xTx− βx1, uTu = xTx− 2βx1 + β2.

Therefore, we further obtain

Hmx =

(

Im − 2

vTv
vvT

)

x =

(

Im − 2

uTu
uuT

)

x

= x− 2uTx

uTu
u =

(

1− 2uTx

uTu

)

x+
2uTx

uTu
βe1.

Because we want the relation (6.23) to hold, we require

1− 2uTx

uTu
= 1− 2 (xTx− βx1)

xTx− 2βx1 + β2
= 0

or

β = ±
√
xTx. (6.25)



372 6 Basic Numerical Methods

Usually, we take the + sign so that the first component of the vector Hmx is
nonnegative. In this case

Hm = Im − 2

uTu
uuT = Im − 1

β(β − x1)
uuT , (6.26)

where u and β are given by the expressions (6.24) and (6.25).
An n× n matrix

A =

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

⎤

⎥
⎥
⎥
⎦

is called an upper triangular matrix if aij = 0 for i > j and an upper
Hessenberg matrix if aij = 0 for i > j + 1. Because a Householder matrix
defined by the expression (6.26) has the property (6.23), it can be used to
reduce a matrix A to an upper triangular matrix or an upper Hessenberg
matrix, which will be described below. Based on this fact, we can have the
so-called QR algorithm for finding the eigenvalues of a matrix.

The first step of the QR algorithm for finding the eigenvalues of a matrix
A is to reduce the matrix to an upper Hessenberg matrix. Let Pk be an n×n
matrix in the form:

Pk =

[
Ik 0
0 Hn−k

]

,

where k is equal to 0, 1, · · · , or n − 2, Hn−k is an (n − k) × (n − k) matrix
defined by the expression (6.26). Clearly, Pk is a Householder matrix. Suppose
that after using k − 1 Householder transformations, A is changed to

Ak−1 = (P1 · · ·Pk−1)
TA(P1 · · ·Pk−1) =

⎡

⎣
C11 C12 C13

C21 C22 C23

0 C32 C33

⎤

⎦ ,

where
[
C11 C12

C21 C22

]

is a k × k upper Hessenberg matrix and C32 is a column vector. Now let us
define Ak = PT

kAk−1Pk, and from the forms of Ak−1 and Pk we have

Ak = PT

kAk−1Pk = PkAk−1Pk =

⎡

⎣
C11 C12 C13Hn−k
C21 C22 C23Hn−k
0 Hn−kC32 Hn−kC33Hn−k

⎤

⎦ .

If we take C32 as x and determine Hn−k, then we arrive at

Hn−kC32 =
[
β, 0, · · · , 0

]T
.
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Therefore, the (k + 1) × (k + 1) submatrix at the upper-left corner of Ak is
an upper Hessenberg matrix, and the procedure can continue for k + 1. For
k = 1, this procedure can be done. Consequently, we can do this procedure
from k = 1 to n− 2, and finally obtain an upper Hessenberg matrix:

An−2 = (P1 · · ·Pn−2)
TA(P1 · · ·Pn−2). (6.27)

Now let us discuss the second step. If the procedure above starts from P0

and a matrix is multiplied only by PT

k from the left-hand side, then we will
obtain an upper triangular matrix with nonnegative main diagonal entries.
Therefore, for any matrix B, we can find an orthogonal matrix QT such that
QTB = R or B = QR, where R is an upper triangular matrix with nonneg-
ative main diagonal entries. This procedure is called QR factorization. Using
the QR factorization and letting B1 = An−2, we have the following iteration:

Bk = QkRk,

Bk+1 = RkQk = QT

kBkQk (6.28)

for k = 1, 2, · · · . That is, first get Qk and Rk from Bk and then multiplying
Rk by Qk from the right-hand side yields Bk+1. For this iteration, we have
the following relation

Bk+1 = QT

kBkQk = QT

k · · ·QT

1An−2Q1 · · ·Qk

= (Q1 · · ·Qk)
T
An−2 (Q1 · · ·Qk)

= (P1 · · ·Pn−2Q1 · · ·Qk)
T
A (P1 · · ·Pn−2Q1 · · ·Qk) ,

or

Bk+1 = ST

kASk,

where

Sk = P1 · · ·Pn−2Q1 · · ·Qk.

Let B and S be the limits of Bk+1 and Sk as k → ∞ respectively, then we have

B = STAS.

The goal of the iteration is to find an upper triangular matrix that is similar
to A, so that we can have the eigenvalues of A from the main diagonal entries
of the upper triangular matrix. From the relation (6.28), we can see as follows.
First, we get an upper triangular matrix by multiplying an orthogonal matrix
from the left-hand side, but in order to let the new matrix be similar to the
old one, multiplying the same orthogonal matrix from the right-hand side is
needed, which may destroy the goal of finding an upper triangular matrix.
However, under certain conditions it will be proved that the limit B is an
upper triangular matrix. Therefore, we may reach our goal at the end of the
iteration.
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In order to find the eigenvectors of A, we first need to find the eigenvectors
of B. As soon as we find the eigenvectors of B, the eigenvectors of A can be
obtained through multiplying the eigenvectors of B from the left-hand side
by S. If A is symmetric, then B is diagonal and every column of S is an
eigenvector of A.

For the convergence of the iteration we have

Theorem 6.5 Assume that the eigenvalues of B1 have distinct absolute val-
ues, and X−1 has an LU decomposition, where X is the matrix of eigenvectors.
Then, Bk converges to an upper triangular matrix.

Proof. Suppose X has the decomposition

X = QxRx,

whereQx is orthogonal andRx is upper triangular with positive main diagonal
entries. Then, we have

Bk
1 = XΛkX−1 = X(ΛkLΛ−k)ΛkU

= QxRx(I+Ek)Λ
kU

= Qx(I+RxEkR
−1
x )RxΛ

kU,

where Λ is the Jordan canonical matrix of B1 and Ek = ΛkLΛ−k − I → 0 as
k → ∞ because we assume |λ1| > |λ2| > · · · |λn|, |λi| being an eigenvalue of
B1. Let

I+RxEkR
−1
x = Q(k)R(k),

where Q(k) is orthogonal and R(k) is upper triangular with positive main
diagonal entries. Obviously,

Q(k) → I, R(k) → I.

Let D and Du be diagonal matrices defined by

D = diag(λ1/|λ1|, · · · , λn/|λn|),
Du = diag(u11/|u11|, · · · , unn/|unn|),

where uii, i = 1, · · · , n, are the main diagonal entries of U. Then, we have

Bk
1 = QxQ

(k)R(k)RxΛ
kU

= (QxQ
(k)DuD

k)(D−kD−1
u R(k)RxΛ

kU).

Because a product of two upper triangular matrices is an upper triangular
matrix, and because a main diagonal entry of the new matrix is the product
of the corresponding main diagonal entries in each original matrix, this is a QR
decomposition of Bk

1 and the upper triangular matrix D−kD−1
u R(k)RxΛ

kU
has positive main diagonal entries. On the other hand, it can be shown that

Bk
1 = Q̂kR̂k,
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where

Q̂k = Q1 · · ·Qk, R̂k = Rk · · ·R1.

In fact

Bk = Q̂T

k−1B1Q̂k−1

or

B1Q̂k−1 = Q̂k−1Bk = Q̂k−1QkRk = Q̂kRk.

Multiplying R̂k−1 from the right-hand side on both sides of the relation
Q̂kRk = B1Q̂k−1, we get

Q̂kR̂k = B1Q̂k−1R̂k−1

and furthermore we obtain

Q̂kR̂k = B1Q̂k−1R̂k−1 = B2
1Q̂k−2R̂k−2 = · · · = Bk

1 .

Therefore, we have another QR decomposition of Bk
1 . Because the QR decom-

position is unique, we have

Q̂k = QxQ
(k)DuD

k, R̂k = D−kD−1
u R(k)RxΛ

kU.

Therefore,

Bk+1 = (DT )kDT

u(Q
(k))TQT

xB1QxQ
(k)DuD

k

= (DT )kDT

u(Q
(k))TQT

xQxRxΛR−1
x Q−1

x QxQ
(k)DuD

k

= (DT )kDT

u(Q
(k))TRxΛR−1

x Q(k)DuD
k.

Because Q(k) → I and an inverse of an upper triangular matrix is still an
upper triangular matrix, Bk+1 converges to an upper triangular matrix. ��

From the proof, we can see that it is not necessary for B1 to be an upper
Hessenberg matrix. Having a Hessenberg matrix at the first step is for the
practical reason of reducing computational cost. If Bk is in upper Hessenberg
form, then Bk+1 is also in upper Hessenberg form. Thus, in the entire iteration
process, we deal with upper Hessenberg matrices. For an upper Hessenberg
matrix, the amount of computational work at each step of the QR factorization
is O(n2), which is much smaller than O(n3) for a full matrix. In order to make
computation faster, we can also speed up the convergence of theQR algorithm
by combining the shifting technique. In addition, there are some other methods
for finding eigenvalues of a matrix, for example, the Jacobi algorithm. For more
about the QR algorithm, the details of the shifting technique, and other
methods, see books on matrix computation, for example, the book [35] by
Golub and Loan.
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6.3 Determination of Parameters in Models

In order to price an option on a specified underlying asset, we must have a
model for the asset. We can have various models, and we have to determine
the parameters in the model before pricing. In this section, we will discuss
how to determine the parameters in models from the market data.

6.3.1 Constant Variances and Covariances

Assume that the stochastic process of an asset price S can be described by

dS = adt+ bdX,

where a and b are constants and dX is a Wiener process. Because we assume
that the parameters in the stochastic process do not depend on time, we can
determine a and b according to the historical data. Clearly,

E [dS] = adt

and

Var [dS] = E
[
(dS − adt)2

]
= E

[
(bdX)2

]
= b2dt,

that is,

a =
1

dt
E [dS]

and

b2 =
1

dt
Var [dS] .

Suppose that from the market, we have the values of the asset price S at time
ti = T1 + (i− 1)dt, i = 1, 2, · · · , I +1. From any statistics textbook, we know
that the mean and variance of dS can be approximated by

E [dS] ≈ 1

I

I∑

i=1

dSi =
1

I

I∑

i=1

(Si+1 − Si)

and

Var [dS] ≈ 1

I − 1

I∑

i=1

[

Si+1 − Si −
1

I

I∑

i=1

(Si+1 − Si)

]2

.

Thus, we have the estimates for a and b2 as follows:

a ≈ 1

Idt

I∑

i=1

(Si+1 − Si) (6.29)

and
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b2 ≈ 1

(I − 1)dt

I∑

i=1

[

Si+1 − Si −
1

I

I∑

i=1

(Si+1 − Si)

]2

=
1

(I − 1)dt

⎡

⎣
I∑

i=1

(Si+1 − Si)
2 − 1

I

(
I∑

i=1

(Si+1 − Si)

)2
⎤

⎦ . (6.30)

Now suppose

dS = μSdt+ σSdX

and let us discuss how to find μ and σ from the market data. Because dS =
μSdt+ σSdX can be written as

d lnS = (μ− σ2/2)dt+ σdX,

then we can estimate μ and σ2 by

σ2 ≈ 1

(I − 1)dt

⎡

⎣
I∑

i=1

(lnSi+1 − lnSi)
2 − 1

I

(
I∑

i=1

(lnSi+1 − lnSi)

)2
⎤

⎦

≈ 1

(I − 1)dt

⎡

⎣
I∑

i=1

(
Si+1 − Si

Si

)2

− 1

I

(
I∑

i=1

Si+1 − Si
Si

)2
⎤

⎦ (6.31)

and

μ− σ2/2 ≈ 1

Idt

I∑

i=1

(lnSi+1 − lnSi) ≈
1

Idt

I∑

i=1

Si+1 − Si
Si

or

μ ≈ 1

Idt

I∑

i=1

Si+1 − Si
Si

+ σ2/2. (6.32)

Here, we have used the approximate relation

lnSi+1 − lnSi ≈
Si+1 − Si

Si
.

Suppose that there are two stochastic processes:

dS1 = a1dt+ b1dX1

and

dS2 = a2dt+ b2dX2,

where a1, b1, a2, and b2 are constants, dX1, dX2 are two Wiener processes
correlated with E [dX1dX2] = ρdt. Assume that we have the values of the
asset prices S1 and S2 at time ti = T1 + (i− 1)dt, which are denoted by S1,i

and S2,i, i = 1, 2, · · · , I + 1. We can have estimates for a1, b1, a2, and b2 by
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the formulae (6.29) and (6.30). Now let us discuss how to estimate ρ from S1,i

and S2,i, i = 1, 2, · · · , I + 1. Because

E [dX1dX2] = E

[
dS1 − a1dt

b1
× dS2 − a2dt

b2

]

=
1

b1b2

{
E [dS1dS2]− a1a2dt

2
}
,

we have

ρ =
1

b1b2dt

{
E [dS1dS2]− a1a2dt

2
}
.

From statistics, we know

E [dS1dS2] ≈
1

I − 1

I∑

i=1

(S1,i+1 − S1,i) (S2,i+1 − S2,i) ,

so we have

ρ ≈ 1

b1b2dt

[
1

I − 1

I∑

i=1

(S1,i+1 − S1,i) (S2,i+1 − S2,i)− a1a2dt
2

]

. (6.33)

On the market, the data are given hourly, daily, and so forth, and only
on workdays. Suppose we use the data given daily and the adopted time
unit is year. When doing the computation, we should think that dt between
two successive workdays is always equal to 1/Iw, where Iw is the number of
workdays per year.

6.3.2 Variable Parameters

From Figs. 1.1–1.7, we can see that the assumption of the volatility being
constant might not be a good assumption. For example, Figs. 1.1 and 1.2
show that the prices of IBM and GE stocks have less volatilities if the price is
lower. Therefore, we assume that volatilities are functions of stock prices S.
That is, the stochastic process of S is described by

dS = a (S) dt+ b (S) dX,

where a (S) and b (S) are functions of S to be determined. Because we do not
assume the dependence of the parameters on time t, we can still determine
a (S) and b (S) from the historical data.

Again, suppose that we have I + 1 prices of an asset from the market: Si,
i = 1, 2, · · · , I + 1. Let Smax and Smin be the maximum and minimum values
among them. Set S(m) = Smin − ε + m (Smax − Smin + ε) / (M + 1), m =
0, 1, · · · ,M + 1, where ε is a small positive number. Clearly, S(0) = Smin − ε

and S(M+1) = Smax. The entire interval
(
S(0), S(M+1)

]
is divided into M + 1

subintervals
(
S(m−1), S(m)

]
,m = 1, 2, · · · ,M + 1. Every Si belongs to one of

these subintervals. Consider Si, i = 1, 2, · · · , I. If Si ∈
(
S(m−1), S(m)

]
, then
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we say that Si belongs to the set S(m). Let Im be the number of elements in

the set S(m). It is clear that
M+1∑

m=1
Im = I. For each set S(m), we can have a

mean a(m) and a variance b2(m) by the formulae (6.29) and (6.30).

The variance b2(m) is an approximate variance of the random variable S

at S = (S(m−1) + S(m))/2, m = 1, 2, · · · ,M + 1. We define S(m−1/2) =
(
S(m−1) + S(m)

)
/2, so b(S(m−1/2)) ≈ b(m). Because S is defined on [0,∞),

b(S) is a function on [0,∞). However, it is not convenient to approximate
the function b(S) defined on an infinite interval. Hence we introduce a
transformation

ξ =
S

S + Pm
,

where Pm is a positive number. This transformation maps [0,∞) to [0, 1).
Therefore, we assume that b (S) is in the form b̄(ξ) and find b̄(ξ) on the interval
[0, 1). It is clear that b(m) should be an approximation to b̄

(
ξ(m−1/2)

)
, where

ξ(m−1/2) =
S(m−1/2)

S(m−1/2) + Pm
. Now the problem is reduced to finding a function

b̄(ξ) such that the points
(
ξ
(m−1/2)

, b(m)

)
, m = 1, 2, · · · ,M +1, are as close to

b̄(ξ) as possible. Assume

b̄ (ξ) = g (ξ)

N∑

n=0

anξ
n,

where N < M and g (ξ) is a given function, for example, g (ξ) = 1 or
Pmξ

1− ξ
.

Under this assumption, using the points

(

ξ
(m− 1

2 )
, b(m)

)

, m = 1, 2, · · · ,M +1

and taking the weights bm = Im/I, we can find a0, a1, · · · , aN by the least
squares method with weights in Sect. 6.1.4. As soon as we find b̄ (ξ), we have
b (S) by

b (S) = g

(
S

S + Pm

) N∑

n=0

an

(
S

S + Pm

)n

.

If b(S) < 0 in some small regions, then a local modification is needed in order
to guarantee b(S) ≥ 0 for all S ∈ [0,∞). For a (S), the method is similar.

Now let us discuss the case involving several stochastic processes. For
simplicity, suppose we have two stochastic processes governed by

dS1 = a1(S1)dt+ b1(S1)dX1

and

dS2 = a2(S2)dt+ b2(S2)dX2
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with E [dX1dX2] = ρdt, ρ being a constant. Using the method given above,
we can find a1(S1), b1(S1), a2(S2), and b2(S2). Because we assume that ρ is
a constant, it can be determined by

ρ =
1

dt
E [dX1dX2]

=
1

dt
E

[
dS1 − a1(S1)dt

b1(S1)
× dS2 − a2(S2)dt

b2(S2)

]

≈ 1

(I − 1)dt

I∑

i=1

[
S1,i+1 − S1,i − a1(S1,i)dt

b1(S1,i)
× S2,i+1 − S2,i − a2(S2,i)dt

b2(S2,i)

]

.

Problems

Table 6.1. Problems and Sections

Problems Sections Problems Sections Problems Sections

1–6 6.1 7–14 6.2 15 6.3

1. Suppose xm = mΔx.
(a) Find the order of the error of the following approximate function

u(x) ≈ xm+1 − x

Δx
u(xm) +

x− xm
Δx

u(xm+1)

by the Taylor expansion. Here x ∈ [xm, xm+1] .
(b) Find the order of the error of the following approximate function

u(x) ≈ (x− xm)(x− xm+1)

2Δx2
u(xm−1)

− (x− xm−1)(x− xm+1)

Δx2
u(xm)

+
(x− xm−1)(x− xm)

2Δx2
u(xm+1)

by the Taylor expansion. Here x ∈ [xm−1, xm+1] and xm−1 < xm <
xm+1.

2. *Show that from
⎧
⎨

⎩

am = am−1 + bm−1hm−1 + cm−1h
2
m−1 + dm−1h

3
m−1,

bm = bm−1 + 2cm−1hm−1 + 3dm−1h
2
m−1,

cm = cm−1 + 3dm−1hm−1, m = 1, 2, · · · ,M − 1,
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and {
aM = aM−1 + bM−1hM−1 + cM−1h

2
M−1 + dM−1h

3
M−1,

cM = cM−1 + 3dM−1hM−1,

the following relation can be derived:

hm−1

hm−1 + hm
cm−1 + 2cm +

hm
hm−1 + hm

cm+1

=
1

hm−1 + hm

[
3(am+1 − am)

hm
− 3(am − am−1)

hm−1

]

,

m = 1, 2, · · · ,M − 1.

3. Consider the cubic spline problem. Suppose that the derivative is given
at x = xM , instead of assuming cM = 0. Derive the equation which should
replace the equation cM = 0 in the system for c0, c1, · · · , cM .

4. Suppose xm = mΔx, yl = lΔy, and τn = nΔτ . Find the expression of the
error of each of the following approximations:

(a) u(xm, τ
n+1/2) ≈ u(xm, τ

n+1) + u(xm, τ
n)

2
;

(b)
∂u

∂τ
(xm, τ

n) ≈ u(xm, τ
n+1)− u(xm, τ

n)

Δτ
;

(c)
∂u

∂τ
(xm, τ

n+1/2) ≈ u(xm, τ
n+1)− u(xm, τ

n)

Δτ
;

(d)
∂u

∂x
(xm, τ

n) ≈ u(xm+1, τ
n)− u(xm, τ

n)

Δx
;

(e)
∂u

∂x
(xm, τ

n) ≈ u(xm+1, τ
n)− u(xm−1, τ

n)

2Δx
;

(f)
∂u

∂x
(xm, τ

n) ≈ 3u(xm, τ
n)− 4u(xm−1, τ

n) + u(xm−2, τ
n)

2Δx
;

(g)
∂2u

∂x2
(xm, τ

n) ≈ u(xm+1, τ
n)− 2u(xm, τ

n) + u(xm−1, τ
n)

Δx2
;

(h)

∂2u

∂x∂y
(xm, yl, τ

n) ≈ 1

2Δx

[
u(xm+1, yl+1, τ

n)− u(xm+1, yl−1, τ
n)

2Δy

−u(xm−1, yl+1, τ
n)− u(xm−1, yl−1, τ

n)

2Δy

]

.

5. The Chebyshev polynomial of first kind with degree N is defined by

TN (y) = cos
(
N cos−1 y

)
,

where N is an integer and y ∈ [−1, 1]. Let

yj = cos
jπ

N
, j = 0, 1, · · · , N.



382 6 Basic Numerical Methods

Show

(a) Tk+1(y)− 2yTk(y) + Tk−1(y) = 0, k ≥ 1.
(b) TN(y) is a polynomial of degree N for any nonnegative integer.

(c)
dTN (yj)

dy
=

⎧
⎪⎪⎨

⎪⎪⎩

N2, j = 0,

0, j = 1, 2, · · · , N − 1,

(−1)
N+1

N2, j = N ;

(d)
d2TN (yj)

dy2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N2
(
N2 − 1

)

3
, j = 0,

(−1)
j+1

N2

(
1− y2j

) , j = 1, 2, · · · , N − 1,

(−1)
N
N2
(
N2 − 1

)

3
, j = N ;

(e)
d3TN (yj)

dy3
=

(−1)
j+1

3N2yj
(
1− y2j

)2 , j = 1, 2, · · · , N − 1.

6. Let

hj (y) =
(−1)

j+1 (
1− y2

)
T ′

N (y)

cjN2 (y − yj)
, j = 0, 1, · · · , N,

where TN (y) is the Chebyshev polynomial of first kind with degree N ,
yj = cos jπN , j = 0, 1, · · · , N, and

cj =

⎧
⎨

⎩

2, j = 0,
1, j = 1, 2, · · · , N − 1,
2, j = N.

(a) Show

hj(yi) =
(−1)

j+1 (
1− y2i

)
T ′

N (yi)

cjN2 (yi − yj)
= δij , i, j = 0, 1, · · · , N,

where δij is the Kronecker delta.
(b) Define

dij =
dhj (yi)

dy
, i, j = 0, 1, · · · , N.

Show that
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dij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)
i+j

ci
cj (yi − yj)

, i �= j,

2N2 + 1

6
, i = j = 0,

− yj

2
(
1− y2j

) , i = j = 1, 2, · · · , N − 1,

−2N2 + 1

6
, i = j = N.

(c) Let f1(yj) denote the values of the function f1(y) at y = yj , j =
0, 1, · · · , N . Show that

pN1(y) =

N∑

j=0

hj(y)f1(yj)

is an interpolation polynomial with degree N for f1(y) on [−1, 1] and

dpN1(yi)

dy
=

N∑

j=0

dijf1(yj).

(d) Define x = (1− y)/2 or y = 1− 2x. Let f(xj) denote the values of the
function f(x) at x = xj , j = 0, 1, · · · , N . Show that

pN(x) =

N∑

j=0

hj(1− 2x)f(xj)

is an interpolation polynomial with degree N for f(x) on [0, 1] and

dpN(xi)

dx
=

N∑

j=0

Dijf(xj),

where

Dij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)
i+j

ci
cj (xi − xj)

, i �= j,

−2N2 + 1

3
, i = j = 0,

1− 2xj
4xj (1− xj)

, i = j = 1, 2, · · · , N − 1,

2N2 + 1

3
, i = j = N.
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7. Derive the formulae of the LU decomposition method for the following
almost tridiagonal system

Ax = q,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 c1 d1
a2 b2 c2 0 d2

. . .
. . .

. . .
...

. . .
. . .

. . .
...

0 am−1 bm−1 dm−1

am dm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

x =

⎡

⎢
⎢
⎢
⎣

x1
x2
...
xm

⎤

⎥
⎥
⎥
⎦
, q =

⎡

⎢
⎢
⎢
⎣

q1
q2
...
qm

⎤

⎥
⎥
⎥
⎦
.

8. Suppose that we already have a solver for solving tridiagonal system:

Ax = q,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1 c1
a2 b2 c2 0

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
x2
...

xm−1

xm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

q1
q2
...

qm−1

qm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In order to solve the following almost tridiagonal system

Ax = q,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 b1 c1
a2 b2 c2 0

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm cm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

or A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b1 c1
a2 b2 c2 0

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm cm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

we can convert it to a tridiagonal system and solve the new system by the
existing solver. Design such a method.

9. *Describe the Jacobi iteration, the Gauss–Seidel iteration, and the method
of successive over relaxation for an n× n system of linear equations.
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10. *Suppose f(x) = 0 is a nonlinear equation. Derive the iteration formu-
lae of Newton’s method and the secant method for solving the nonlinear
equation.

11. (a) For each of the following methods, describe the details of the method
and its advantage and disadvantage:
i. The secant method;
ii. The bisection method;
iii. The modified secant method.

(b) Based on the methods in part a), design an efficient and robust method
of finding a root of the equation f(x) = 0.

12. Suppose

A1 = Jf (x
(0)) +

f(x(1))− f(x(0))− Jf (x
(0))(x(1) − x(0))

∥
∥
∥x(1) − x(0)

∥
∥
∥
2

2

(x(1) − x(0))T .

Show that the following relations hold:

A1(x
(1) − x(0)) = f(x(1))− f(x(0))

and

A1z = Jf (x
(0))z whenever (x(1) − x(0))Tz = 0.

13. Prove that if A ∈ R
n×n is nonsingular, x,y ∈ R

n, and yTA−1x �= −1,
then A+ xyT is also nonsingular, moreover,

(A+ xyT )−1 = A−1 − A−1xyTA−1

1 + yTA−1x
.

14. (a) *Show

Hmx = βe1,

where

x = [x1, x2, · · · , xm]
T
,

β =
√
xTx,

Hm = Im − 1

β(β − x1)
uuT ,

u being x− βe1.

(b) *Using the result in part a), design a method to obtain an orthogonal
matrix Q from A such that A = QR, where R is an upper triangular
matrix with nonnegative diagonals.

15. *Assume that the volatility of a stock is a function of the stock price.
Describe a method determining the function from the market data.
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Projects

General Requirements

(A) Submit a code or codes in C or C++ that will work on a computer
the instructor can get access to. At the beginning of the code, write
down the name of the student and indicate on which computer it
works and the procedure to make it work.

(B) Each code should use an input file to specify all the problem
parameters and the computational parameters and an output file to
store all the results. In an output file, the name of the problem, all
the problem parameters, and the computational parameters should be
given, so that one can know what the results are and how they were
obtained. The input file should be submitted with the code.

(C) Submit results in form of tables. When a result is given, always
provide the problem parameters and the computational parameters.

1. Cumulative Distribution Functions and Black–Scholes Formulae.

Write five functions:

(a) double N(double z)

for computing approximate values of the cumulative distribution func-
tion for the standardized normal variable by using the expression given
in a footnote of Sect. 2.6.3, where z is the independent variable.
• Give the values of N(z) for z = −2,−1, 0, 1, 2.

(b) double BS(double S, double E, double tau, double r, double D0, dou-
ble sigma, char option),

which gives prices of the European options by using Black–Scholes
formulae (see Sect. 2.6.5). When the value of the character ‘option’ is
equal to ‘c’ or ‘C’, the value of the European call needs to be evaluated.
Otherwise, the value of the European put needs to be evaluated.
• For European call and put options, give the results for the cases:

S = 100, E = 95, 100, 105, T = 1, r = 0.1, D0 = 0.05, σ = 0.2.
• For European call and put options, give the results for the cases:

S = 100, E = 95, 100, 105, T = 1, r = 0.05, D0 = 0.1, σ = 0.2.

(c) double BS bar(double xi, double E, double tau, double r, double D0,
double sigma, char option)

This function gives the value of c̄(ξ, τ) = c(S, t)/(S + E) or p̄(ξ, τ) =
p(S, t)/(S + E).
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• For ξ = 0.5128, 0.5000, 0.4878, E = 95, 100, 105, τ = 1, r = 0.1,
D0 = 0.05, σ = 0.2, calculate the results of c̄(ξ, τ) and p̄(ξ, τ) by
this function.

(d) double N 2(double x1, double x2, double rho)

for computing approximate values of the cumulative distribution func-
tion for the bivariate standard normal distribution by using the ex-
pression given in a footnote of Sect. 4.5.3, where x1, x2 and rho are
parameters.
• Give the values of N2(x1, x2, ρ) for the following sets of (x1, x2, ρ):

(0.6, 0.5, 0.6), (0.4, 0.5, 0.8), (0.3, 0.4,−0.6), (0.5, 0.7,−0.8).

(e) double BS 2(double S1, double S2, double E, double tau, double r,
double D01, double D02, double sigma1, double sigma2, double rho,
char option)

which gives prices of the European call option on the maximum of two
assets and the European put option on the minimum of two assets by
using the closed-form solutions (4.76) and (4.77) given in Sect. 4.5.3.
When the value of the character ‘option’ is equal to ‘c’ or ‘C’, the value
of the European call needs to be evaluated. Otherwise, the value of
the European put needs to be evaluated.
• Find the prices of the European call option on the maximum of two

assets for the following parameter sets of (S1, S2, E, τ, r,D01, D02,
σ1, σ2, ρ, option):

(100, 100, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.20, 0.8, c),

(100, 105, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.15, 0.8, c),

(100, 105, 100, 1.0, 0.02, 0.01, 0.01, 0.15, 0.20, 0.8, c),

(100, 95, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.15, 0.8, c),

(100, 95, 100, 1.0, 0.02, 0.01, 0.01, 0.15, 0.20, 0.8, c).

• Find the prices of the European put option on the minimum of two
assets for the following parameter sets of (S1, S2, E, τ, r,D01, D02,
σ1, σ2, ρ, option):

(100, 100, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.20, 0.8, p),

(100, 105, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.15, 0.8, p),

(100, 105, 100, 1.0, 0.02, 0.01, 0.01, 0.15, 0.20, 0.8, p),

(100, 95, 100, 1.0, 0.02, 0.01, 0.01, 0.20, 0.15, 0.8, p),

(100, 95, 100, 1.0, 0.02, 0.01, 0.01, 0.15, 0.20, 0.8, p).

2. Quadratic Interpolation and LU Decomposition of a Tridiagonal
System.
For the quadratic interpolation method (see Sect. 6.1.1), write a function
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(a) double Interpolation(double x, int M, double *y)

Suppose that x, M , and ym = y(xm),m = 0, 1, . . . ,M , are given,
where xm = m/M . This function gives an approximate value of
y(x) by quadratic interpolation. The concrete method is as follows.
If x < 1/2M , then interpolate or extrapolate y(x) by (x0, y0), (x1, y1),
(x2, y2), if xm − 1/2M ≤ x < xm + 1/2M , m = 1, 2, · · · ,M − 1,
then interpolate y(x) by (xm−1, ym−1), (xm, ym), (xm+1, ym+1), and if
xM −1/2M ≤ x, then interpolate or extrapolate y(x) by (xM−2, yM−2),
(xM−1, yM−1), (xM , yM).
• Let M = 5 and the six components from y0 to y5 are 0.0,

0.008, 0.064, 0.216, 0.512, 1.0. Calculate the values of y(x) for
x = −0.1, 0.45, 1.01 by this function.

For LU decomposition (see Sect. 6.2.1), write two functions:

(b) int LUT(int m, double *a, double *b, double *c, double *q, double *x).

Suppose that we have a tridiagonal system (6.12). The number of
unknowns is given in the integer ‘m’. The nonhomogeneous term qi is
given in q[i-1] (the ith component of the array ‘q’). The coefficients
ai, bi, and ci are given in the ith component of the arrays ‘a’, ‘b’,
and ‘c’, respectively. Write a function to solve the system by using the
method described in Sect. 6.2.1. If all the ui are not equal to zero,
then the code should return an integer number 0 and gives the value
of the ith unknown in the ith component of the array x. If one of ui
is equal to zero, then the solution(s) of the system cannot be found
by the method (or the system has no solution), and the code should
return an integer number 1. The values in the arrays ‘a’, ‘b’, ‘c’, and
‘q’ are required unchanged.
• Let m = 4, a2 = a3 = a4 = −0.48, b1 = b2 = b3 = b4 = 1,

c1 = c2 = c3 = −0.49, q1 = 0.02, q2 = 0.05, q3 = 0.08, and
q4 = 2.56. Find the solution of the system (6.12).

(c) int LUAT(int m, double *a, double *b, double *c, double *q,
double *x)

This is a solver for an almost tridiagonal system by LU decomposition.
The almost tridiagonal system is in the following form:

Ax = q,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a1 b1 c1
a2 b2 c2 0

. . .
. . .

. . .

0 am−1 bm−1 cm−1

am bm cm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.
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This function calculates x if m, a,b, c, and q are given. Require m,
a,b, c, and q unchanged.
• Let m = 5, a = {1.75,−0.48,−0.48,−0.48, 0.25}, b = {−0.5, 1, 1,

1,−0.5}, c = {0.25,−0.49,−0.49,−0.49, 1.75}, q = {1.5, 0.05, 0.08,
0.11, 7.5}, calculate the result of x by this function.



7

Finite-Difference Methods

In this chapter, we deal with finite-difference methods for parabolic partial dif-
ferential equations, including algorithms, stability and convergence analysis,
and extrapolation techniques of numerical solutions.

7.1 Finite-Difference Schemes

In this section, we will discuss the finite-difference methods for parabolic
partial differential equation problems (parabolic PDE problems). Usually, a
parabolic partial differential equation problem is formulated as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u+ g(x, τ),

xl ≤ x ≤ xu, 0 ≤ τ ≤ T,
u(x, 0) = f(x), xl ≤ x ≤ xu,
u(xl, τ) = fl(τ), 0 ≤ τ ≤ T,
u(xu, τ) = fu(τ), 0 ≤ τ ≤ T,

(7.1)

where a(x, τ) > 0 on the domain [xl, xu] × [0, T ] and the compatibility con-
ditions f(xl) = fl(0) and f(xu) = fu(0) hold. Though sometimes, a Euro-
pean option problem can be approximately formulated in such a way after
giving some approximate boundary condition on certain artificial boundary.
However, for most of the European option problems, the problems are in or
can be transformed into the following degenerate parabolic partial differential
equation problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u+ g(x, τ),

xl ≤ x ≤ xu, 0 ≤ τ ≤ T,

u(x, 0) = f(x), xl ≤ x ≤ xu,

(7.2)

where a(x, τ) ≥ 0 on the domain [xl, xu]× [0, T ],
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{

b(xl, τ)−
∂a

∂x
(xl, τ) ≥ 0, 0 ≤ τ ≤ T,

a (xl, τ) = 0, 0 ≤ τ ≤ T,
(7.3)

and {

b(xu, τ)−
∂a

∂x
(xu, τ) ≤ 0, 0 ≤ τ ≤ T,

a (xu, τ) = 0, 0 ≤ τ ≤ T.
(7.4)

For example, the prices of vanilla European call/put options are solutions
of the problem

⎧
⎨

⎩

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0 , 0 ≤ S, 0 ≤ t ≤ T,

V (S, t) = max(±(S − E), 0), 0 ≤ S.

Through the transformation

⎧
⎪⎨

⎪⎩

ξ =
S

S + E
,

τ = T − t,
V (S, t) = (S + E)V (ξ, τ),

the problem is converted into

⎧
⎪⎪⎨

⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ
− [r(1− ξ) +D0ξ]V ,

0 ≤ ξ ≤ 1, 0 ≤ τ ≤ T,
V (ξ, 0) = max(±(2ξ − 1), 0), 0 ≤ ξ ≤ 1,

where σ̄(ξ) = σ(Eξ/(1−ξ)). (For details, see Sect. 2.2.5.) Clearly, this problem
is in the form (7.2). Moreover, if a stochastic model

dS = udt+ wdX

is defined on [Sl, Su], and the conditions

{

u (Sl, t)− w(Sl, t)
∂

∂S
w(Sl, t) ≥ 0,

w (Sl, t) = 0

and {

u (Su, t)− w(Su, t)
∂

∂S
w(Su, t) ≤ 0,

w (Su, t) = 0
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Fig. 7.1. A mesh for finite-difference methods

hold, then prices of European-style derivatives on this random variable also
are solutions of the problem (7.2). (For details, see Sect. 2.4.)

To find an approximate solution of a partial differential equation problem
by finite-difference methods, we first divide the domain [xl, xu] × [0, T ] into
small subdomains using lines xm = xl +mΔx and τn = nΔτ , where Δx =
(xu − xl)/M , Δτ = T/N and M , N are positive integers. These lines form a
grid, and these points (xm, τ

n) are called grid points (see Fig. 7.1). We want
to find the approximate values of the solution on these grid points.

Let us look at the problem (7.2). First consider the case1

b(xl, τ) = 0, 0 ≤ τ ≤ T

and
b(xu, τ) = 0, 0 ≤ τ ≤ T.

In this case, the partial differential equation in the problem (7.2) degenerates
into an ordinary differential equation at each boundary, and the degenerate
parabolic problem (7.2) can be discretized in the following way.

Using forward difference for
∂u

∂τ
(xm, τ

n), second-order central difference

for
∂u

∂x
(xm, τ

n) and
∂2u

∂x2
(xm, τ

n) in the problem (7.2) at the point (xm, τ
n),

we have

1Because a(x, τ) ≥ 0 on [xl, xu] and a(xl, τ) = a(xu, τ) = 0, we have
∂a

∂x
(xl, τ) ≥ 0 and

∂a

∂x
(xu, τ) ≤ 0. Thus the inequality conditions in the con-

ditions (7.3) and (7.4) can be rewritten as b(xl, τ) ≥ ∂a

∂x
(xl, τ) ≥ 0 and

b(xu, τ) ≤ ∂a

∂x
(xu, τ) ≤ 0. Consequently, the two conditions below imply

∂a

∂x
(xl, τ) =

∂a

∂x
(xu, τ) = 0.
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u(xm, τ
n+1)− u(xm, τ

n)

Δτ
− Δτ

2

∂2u

∂τ2
(xm, η)

= anm

[
u(xm+1, τ

n)− 2u(xm, τ
n) + u(xm−1, τ

n)

Δx2
− Δx2

12

∂4u

∂x4
(ξ, τn)

]

+bnm

[
u(xm+1, τ

n)− u(xm−1, τ
n)

2Δx
− Δx2

6

∂3u

∂x3
(ξ̄, τn)

]

+cnmu(xm, τ
n) + gnm,

where

η ∈ (τn, τn+1), ξ ∈ (xm−1, xm+1), ξ̄ ∈ (xm−1, xm+1),

and anm, b
n
m, c

n
m, and gnm denote a(xm, τ

n), b(xm, τ
n), c(xm, τ

n), and g(xm, τ
n),

respectively. Dropping the term −Δτ
2

∂2u

∂τ2
(xm, η) from the left-hand side and

the two terms −anm
Δx2

12

∂4u

∂x4
(ξ, τn) and −bnm

Δx2

6

∂3u

∂x3
(ξ̄, τn) from the right-

hand side, and denoting the approximate solution of u(xm, τ
n) by unm, we

obtain the following approximation to the partial differential equation in the
problem (7.2):

un+1
m − unm
Δτ

= anm
unm+1 − 2unm + unm−1

Δx2
+ bnm

unm+1 − unm−1

2Δx
+ cnmu

n
m + gnm,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1.

From the initial condition in problem (7.2), we have u0m = f(xm), m =
0, 1, · · · ,M . Therefore, the degenerate parabolic problem (7.2) can be dis-
cretized by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+1
m =

(
anmΔτ

Δx2
+
bnmΔτ

2Δx

)

unm+1 +

(

1− 2
anmΔτ

Δx2
+ cnmΔτ

)

unm

+

(
anmΔτ

Δx2
− bnmΔτ

2Δx

)

unm−1 + gnmΔτ,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1,
u0m = f(xm), m = 0, 1, · · · ,M.

(7.5)

Here, we need to point out that because we discretize ordinary differential
equations at the boundaries, only un0 appears in the equation for m = 0 and
only unM for m =M . That is, because an0 = bn0 = anM = bnM = 0, un−1 and unM+1

actually do not appear in the equations above.
When unm, m = 0, 1, · · · ,M are known, we can find un+1

m , m = 0, 1, · · · ,M
by difference scheme (7.5). Because u0m, m = 0, 1, · · · ,M are given in the
scheme (7.5), this procedure can be done for n = 0, 1, · · · , N − 1 succes-
sively, and the approximate solution on all the grid points can be obtained.
This method is called an explicit finite-difference method. This is be-
cause when unm has been obtained, one equation involves only one unknown,
so the unknown un+1

m can be computed from unm−1, u
n
m and unm+1 explicitly.
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Fig. 7.2. An explicit finite-difference discretization

Figure 7.2 gives a diagram for this procedure. When we have the approxima-
tion (7.5), we have dropped the terms

Δτ

2

∂2u

∂τ2
(xm, η)− anm

Δx2

12

∂4u

∂x4
(ξ, τn)− bnm

Δx2

6

∂3u

∂x3
(ξ̄, τn)

from the equations. These terms as a whole are called the truncation error
for scheme (7.5). Because the truncation error can be rewritten asO(Δx2, Δτ),
we say that for scheme (7.5), the truncation error is second order in Δx and
first order in Δτ .

Now let us discretize the problem (7.2) at the point (xm, τ
n+1/2). For

∂u

∂τ
(xm, τ

n+1/2), we use the central scheme. The derivative
∂u

∂x
(xm, τ

n+1/2)

is approximated first by the average of the values at the points (xm, τ
n) and

(xm, τ
n+1), and then the derivatives at these two points are discretized by

the central difference. The second derivative
∂2u

∂x2
(xm, τ

n+1/2) is dealt with

Fig. 7.3. An implicit finite-difference discretization
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similarly. Using this way, the degenerate parabolic problem (7.2) can be
approximated by the implicit finite-difference method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
m − unm
Δτ

=
a
n+1/2
m

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2

+
unm+1 − 2unm + unm−1

Δx2

)

+
b
n+1/2
m

2

(
un+1
m+1 − un+1

m−1

2Δx
+
unm+1 − unm−1

2Δx

)

+
c
n+1/2
m

2
(un+1
m + unm) + g

n+1/2
m ,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1,
u0m = f(xm), m = 0, 1, · · · ,M.

(7.6)

From here, we see that each equation involves six grid points (see Fig. 7.3)
and that there are three unknowns. As we know, the error of a central differ-
ence is second order. For a function, the average of the values at the points
(xm, τ

n) and (xm, τ
n+1) is an approximate value at the point (xm, τ

n+1/2)
with an error of O(Δτ2) because it actually is the result obtained by the linear
interpolation. Therefore, the truncation error of this scheme is O(Δx2, Δτ2).

Similar to the scheme (7.5), because we actually discretize ordinary differ-
ential equations at the boundaries, the equations for m = 0 and m = M can
be written as

un+1
m − unm
Δτ

=
c
n+1/2
m

2
(un+1
m + unm) + gn+1/2

m ,

m = 0,M, n = 0, 1, · · · , N − 1.

Consequently, these equations actually do not involve un−1 and unM+1. Further-
more, the equations for m = 0 alone can determine un0 , n = 1, 2, · · · , N from
u00. For u

n
M , the situation is similar. However, for unm, m �= 0 and M , the

situation is different. We cannot determine un+1
m only from a few equations.

In order to obtain un+1
m , m = 1, 2, · · · ,M − 1, we have to solve a tridiagonal

system of linear equations, and each of un+1
m is determined by all the unm.

Consequently, this method is called an implicit finite-difference method.
The problem (7.1) can be discretized similarly. The only difference is that

the partial differential equation should not be discretized for m = 0 and
m =M because the boundary conditions

u(xl, τ) = fl(τ)

and
u(xu, τ) = fu(τ)

provide the equations we need. When a(x, τ) is equal to a positive constant
a, b(x, τ) = 0, c(x, τ) = 0, and g(x, τ) = 0, i.e., for the heat conductivity
problem
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u

∂τ
= a

∂2u

∂x2
, xl ≤ x ≤ xu, 0 ≤ τ ≤ T,

u(x, 0) = f(x), xl ≤ x ≤ xu,
u(xl, τ) = fl(τ), 0 ≤ τ ≤ T,
u(xu, τ) = fu(τ), 0 ≤ τ ≤ T,

(7.7)

corresponding to the explicit scheme (7.5), (7.7) can be approximated by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un+1
m = αunm+1 + (1− 2α)unm + αunm−1,

m = 1, 2, · · · ,M − 1,
n = 0, 1, · · · , N − 1,

un+1
0 = fl(τ

n+1), n = 0, 1, · · · , N − 1,
un+1

M = fu(τ
n+1), n = 0, 1, · · · , N − 1,

u0m = f(xm), m = 0, 1, · · · ,M,

(7.8)

where

α =
aΔτ

Δx2
.

Similar to the implicit scheme (7.6), (7.7) can also be approximated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
m − unm
Δτ

=
a

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2

+
unm+1 − 2unm + unm−1

Δx2

)

,

m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,
un+1
0 = fl(τ

n+1), n = 0, 1, · · · , N − 1,
un+1

M = fu(τ
n+1), n = 0, 1, · · · , N − 1,

u0m = f(xm), m = 0, 1, · · · ,M,

(7.9)

which is called the Crank–Nicolson scheme.
Since u(xl, τ) and u(xu, τ) are given, there are only M − 1 unknowns for

each time level, and the M − 1 equations in the difference scheme (7.9) can
be written together in matrix form:

Aun+1 = Bun + bn, (7.10)

where
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A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + α −α
2 0 · · · 0

−α
2 1 + α −α

2

. . .
...

0 −α
2

. . .
. . . 0

...
. . .

. . .
. . . −α

2
0 · · · 0 −α

2 1 + α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− α α
2 0 · · · 0

α
2 1− α α

2

. . .
...

0 α
2

. . .
. . . 0

...
. . .

. . .
. . . α

2
0 · · · 0 α

2 1− α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

un =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

un1
un2
...

unM−2

unM−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and bn =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
2αu

n
0 + 1

2αu
n+1
0

0
...
0

1
2αu

n
M + 1

2αu
n+1
M

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Now we consider the problem (7.2) for the case

b(xl, τ) > 0, 0 ≤ τ ≤ T

and
b(xu, τ) < 0, 0 ≤ τ ≤ T.

In this case, the PDE degenerates into hyperbolic partial differential equations
at the boundaries, and the first derivative there has to be discretized by a one-
sided difference. For example, if in the scheme (7.5) or (7.6), we use a one-sided
difference for the first derivative in the equations for m = 0 and m = M , we
can have the approximation we need. We call them the modified schemes (7.5)
and (7.6). However, here the way of discretizing the first derivative atm = 0 is
different from that at m = 1, namely, the discretization “jumps” from m = 0
to m = 1, so from the finite-difference equation at m = 0 to m = 1, the
coefficients do not satisfy the Lipschitz condition. This causes some problems
when doing stability analysis. A similar situation occurs from m = M − 1 to
m = M . In order to avoid the “jump,” we can approximate the degenerate
parabolic problem (7.2) by the explicit finite-difference method:

⎧
⎪⎨

⎪⎩

un+1
m − unm
Δτ

= anm
unm+1 − 2unm + unm−1

Δx2
+ Φnm + cnmu

n
m + gnm,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1,
u0m = f(xm), m = 0, 1, · · · ,M,

(7.11)
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where

Φnm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

bnm
−unm+2 + 4unm+1 − 3unm

2Δx
, if bnm > 0,

0, if bnm = 0,

bnm
3unm − 4unm−1 + unm−2

2Δx
, if bnm < 0

or by the implicit finite-difference method:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
m − unm
Δτ

=
a
n+1/2
m

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2

+
unm+1 − 2unm + unm−1

Δx2

)

+Φ
n+1/2
m +

c
n+1/2
m

2
(un+1
m + unm) + g

n+1/2
m ,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1,
u0m = f(xm), m = 0, 1, · · · ,M,

(7.12)

where

Φn+1/2
m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
n+1/2
m

2

(
−un+1

m+2 + 4un+1
m+1 − 3un+1

m

2Δx

+
−unm+2 + 4unm+1 − 3unm

2Δx

)

, if b
n+1/2
m > 0,

0, if b
n+1/2
m = 0,

b
n+1/2
m

2

(
3un+1

m − 4un+1
m−1 + un+1

m−2

2Δx

+
3unm − 4unm−1 + unm−2

2Δx

)

, if b
n+1/2
m < 0.

Scheme (7.12) usually involves eight points, among them there are four un-
knowns (see Fig. 7.4). However, at boundaries there are three unknowns be-

cause a
n+1/2
0 = a

n+1/2
M = 0. When the partial differential equation is dis-

cretized in this way, the stability analysis can be done much easier. In the
paper [79] by Sun, Yan, and Zhu, the stability problem of scheme (7.12) has
been carefully studied. Clearly, the truncation error of the scheme (7.11) is
O(Δx2, Δτ) and that of the scheme (7.12) is O(Δx2, Δτ2).

Therefore, in order to find a solution, we can use either an explicit finite-
difference method or an implicit finite-difference method. From the next sec-
tion, we will see that for an explicit method, the step size Δτ must be less
than a constant times Δx2 for a stable computation. Thus, if a small Δx
must be adopted in order to have satisfying results, the computation could
take quite a long time. However, there is no restriction on the step size Δτ
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Fig. 7.4. Implicit eight-point finite-difference discretizations

for implicit finite-difference methods. This is the main advantage of implicit
methods over explicit methods.

A European-style derivative could involve several random state variables.
In this case, we need to discretize a multi-dimensional problem, which will be
dealt with in Chaps. 8 and 10. Usually, an American-style derivative prob-
lem can be formulated as a free boundary problem. Discretization of such a
problem will be discussed in Chap. 9.

7.2 Stability and Convergence Analysis

7.2.1 Stability

Stability is concerned with the propagation of errors. During the computation,
truncation errors are brought into approximate solutions at each step. Also
rounding errors are introduced into solutions all the time because any com-
puter has a finite number of digits for numbers. If for a given finite-difference
method, the errors are not magnified at each step in some norm, then we say
that the finite-difference method is stable. There are two different norms that
are often used in studying stability. Suppose

x = (x1, x2, · · · , xM−1)
T

is a vector with M − 1 components. The L∞ and L2 norms of the vector x
are defined as follows:

||x||L∞ = max
1≤m≤M−1

|xm|

and

||x||L2
=

(
1

M − 1

M−1∑

m=1

x2m

)1/2

.
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Here, M − 1 could be any positive integer and is allowed to go to infinity.

Stability of Explicit Finite-Difference Methods for the Heat Equa-
tion. Consider the explicit finite-difference method (7.8) for the heat conduc-
tivity problem. Suppose an initial error e0m appears in computing f(xm) for
m = 1, 2, · · · ,M − 1. That is, instead of f(xm), f(xm) + e0m is given as the
initial value. We assume that there is no error from boundary conditions, that
is, e00 = e0M = 0. Let ũnm,m = 0, 1, · · · ,M, n = 0, 1, · · · , N , be the computed
solution. We want to study how ũnm is affected by e0m. This is usually referred
to as studying the stability of schemes with respect to initial values. Clearly,
ũnm satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ũn+1
m = αũnm+1 + (1− 2α)ũnm + αũnm−1,
m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,

ũn+1
0 = fl(τ

n+1), n = 0, 1, · · · , N − 1,
ũn+1

M = fu(τ
n+1), n = 0, 1, · · · , N − 1,

ũ0m = f(xm) + e0m, m = 0, 1, · · · ,M.

Let
enm = ũnm − unm, m = 0, 1, · · · ,M, n = 0, 1, · · · , N.

Taking the difference of the scheme (7.8) and this system, we get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

en+1
m = αenm+1 + (1− 2α)enm + αenm−1,
m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,

en+1
0 = 0, n = 0, 1, · · · , N − 1,
en+1
M = 0, n = 0, 1, · · · , N − 1,
e0m = e0m, m = 0, 1, · · · ,M.

(7.13)

For this scheme, we can analyze its stability in two ways. First, we show
that this scheme is stable in the maximum norm if α ≤ 1/2. In this case, all the
coefficients in the right-hand side of the finite-difference equation, α, 1−2α, α,
are nonnegative, so

|en+1
m | = |αenm+1 + (1− 2α)enm + αenm−1|

≤ α|enm+1|+ (1− 2α)|enm|+ α|enm−1|
≤ max

1≤m≤M−1
|enm|, m = 1, 2, · · · ,M − 1,

or
max

1≤m≤M−1
|en+1
m | ≤ max

1≤m≤M−1
|enm|,

where we have used the fact en0 = enM = 0, n = 0, 1, · · · , N . This is true for
any n. Therefore,

max
1≤m≤M−1

|enm| ≤ max
1≤m≤M−1

|e0m|

or
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||en||L∞ ≤ ||e0||L∞ .

Consequently, the difference scheme (7.8) is stable with respect to initial value
in the maximum norm. This method of analyzing stability is very simple.
Unfortunately, it seems that this method works only for explicit schemes with
positive coefficients on the right-hand side.

Now let us study the stability of scheme (7.8) in another way. Set

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− 2α α 0 · · · 0

α 1− 2α α
. . .

...

0 α 1− 2α
. . . 0

...
. . .

. . .
. . . α

0 · · · 0 α 1− 2α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, en =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

en1
en2
...
...

enM−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.14)

From the system (7.13), we see that between en+1 and en there is the following
relation:

en+1 = A1e
n.

Suppose λ is an eigenvalue of A1 and x = (x1, x2, · · · , xM−1)
T is an asso-

ciated eigenvector, i.e., we assume that λ and x satisfy the equation

A1x = λx.

Now let us find M − 1 linearly independent eigenvectors of A1 and their
associated eigenvalues. Define

x0 = xM = 0.

Then the equation above can be rewritten as

αxm−1 + (1− 2α)xm + αxm+1 = λxm, 1 ≤ m ≤M − 1, (7.15)

or

αxm−1 + (1− 2α− λ)xm + αxm+1 = 0, 1 ≤ m ≤M − 1. (7.16)

For the system (7.16) with arbitrary x0 and xM , let us try to find a solution
in the form

xm = μm, 0 ≤ m ≤M. (7.17)

Substituting it into system (7.16), we have

[
α+ (1− 2α− λ)μ+ αμ2

]
μm−1 = 0, 1 ≤ m ≤M − 1,

which can be reduced to one equation:

αμ2 + (1− 2α− λ)μ+ α = 0. (7.18)
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Denote the two roots of Eq. (7.18) by μ1 and μ2. It is clear that μ1 and μ2

should satisfy the following conditions:

μ1 + μ2 = − 1

α
(1− 2α− λ), μ1μ2 = 1.

Case one: μ1 = μ2 = μ∗. In this case,

xm = mμm∗ , 0 ≤ m ≤M,

also is a solution of the system (7.16). Substituting it into system (7.16) yields

α(m− 1)μm−1
∗ + (1− 2α− λ)mμm∗ + α(m+ 1)μm+1

∗
= −αμm−1

∗ + αμm+1
∗ = αμm−1

∗ (μ2
∗ − 1) = 0, 1 ≤ m ≤M − 1,

because of μ1μ2 = μ2
∗ = 1, so it is true that xm = mμm∗ , 0 ≤ m ≤ M, is

another solution of the system (7.16) besides the solution (7.17) with μ = μ∗.
Thus for any c1 and c2,

xm = ( c1 + c2m )μm∗ , 0 ≤ m ≤M,

should be a solution of the system (7.16). It follows from x0 = xM = 0 that
c1 = c2 = 0. Consequently, xm ≡ 0, 1 ≤ m ≤ M − 1, which contradicts that
x = (x1, x2, · · · , xM−1)

T is an eigenvector.
Case two: μ1 �= μ2. In this case for any c1 and c2,

xm = c1μ
m
1 + c2μ

m
2 , 0 ≤ m ≤M,

should be a solution of the system (7.16). It follows from x0 = xM = 0 that

c1 + c2 = 0, c1μ
M
1 + c2μ

M
2 = 0.

From these two relations we can obtain
(
μ1

μ2

)M

= −c2
c1

= 1 = ei2kπ, k being any integer.

Consequently,

μ1

μ2
= ei2ωk , ωk =

kπ

M
, k being any integer.

It is clear that k = k∗ and k = k∗ +M give the same solution. Thus we need
to set k = 0, 1, · · · ,M − 1 only. For k = 0, we have μ1 = μ2. As we have
pointed out, in this case we could not find any eigenvector. For k = 1, 2, · · · ,
or M − 1, we have

μ1

μ2
= ei2ωk . Combining this relation with μ1μ2 = 1 yields

μ
(k)
1 = eiωk , μ

(k)
2 = e−iωk .

For such a k, taking c1 = 1
2 and c2 = − 1

2 , we have the following eigenvector
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xωk
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2e

iωk − 1
2e

−iωk

1
2e

i2ωk − 1
2e

−i2ωk

...

...
1
2e

i(M−1)ωk − 1
2e

−i(M−1)ωk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

sinωk
sin 2ωk

...

...
sin(M − 1)ωk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.19)

The corresponding eigenvalue λωk
satisfies system (7.15), i.e.,

λωk
=
α sin (m− 1)ωk + (1− 2α) sin mωk + α sin (m+ 1)ωk

sin mωk

=
α sin mωk cos ωk + (1− 2α) sin mωk + α sin mωk cos ωk

sin mωk

= 1− 2α+ 2α cos ωk = 1− 4α sin2(ωk/2).

Here k = 1, 2, · · · ,M − 1, i.e., we have found M − 1 eigenvalues of A1 and
their associated eigenvectors. Because λωk

, k = 1, 2, · · · ,M − 1, are distinct
eigenvalues of the symmetric matrix A1, the M − 1 associated eigenvectors,
xωk

, k = 1, 2, · · · ,M − 1, are linearly independent.
As a consequence, any vector with M − 1 components can be expressed as

linear combination of xωk
, which means that an error e0 can be expressed as

e0 =

M−1∑

k=1

εωk
xωk

.

Substituting this expression into en+1 = A1e
n, we have

e1 = A1e
0 =

M−1∑

k=1

εωk
λωk

xωk

and furthermore

en =
M−1∑

k=1

εωk
λnωk

xωk

or in component form

enm =

M−1∑

k=1

εωk
λnωk

sinmωk, m = 1, 2, · · · ,M − 1.

As eigenvectors of a symmetric matrix A1, xωk
, k = 1, 2, · · · ,M − 1 are

orthogonal. Thus, from the expressions of e0 and en above, we have

||e0||L2
=

(
1

M − 1

M−1∑

m=1

ε2ωk
||xωk

||2L2

)1/2



7.2 Stability and Convergence Analysis 405

and

||en||L2 =

(
1

M − 1

M−1∑

m=1

ε2ωk
λ2nωk

||xωk
||2L2

)1/2

.

Consequently, we obtain
||en||L2

≤ ||e0||L2

if all the eigenvalues of A1 are in [−1, 1]. From what we have gotten the
following conclusion is obtained: if

0 ≤ α ≤ 1/2,

then we have the following inequality

−1 ≤ 1− 4α ≤ λωk
= 1− 4α sin2(ωk/2) ≤ 1, k = 1, 2, · · · ,M − 1,

which means that the computation is stable with respect to the initial value. If
α > 1/2, then whenM is large enough, some of the eigenvalues of A1 must be
less than −1. Hence, if a component of e0 associated with such an eigenvalue
is not zero, then the corresponding component of en will be greater than the
component of e0 and go to infinity as n goes to infinity. Because the errors
are random variables, the εωk

corresponding to such an eigenvalue λωk
might

not be zero. Thus, the computation is unstable. This can be summarized as:
scheme (7.8) is stable if

α =
aΔτ

Δx2
≤ 1/2;

whereas the scheme is unstable if

α =
aΔτ

Δx2
> 1/2.

Stability of Implicit Finite-Difference Methods for the Heat Equa-
tion. The second method used above to analyze stability can be applied to
other cases, for example, implicit finite-difference methods. For an implicit
finite-difference scheme, suppose en satisfies

Aen+1 = Ben,

where A and B are two matrices, and A is invertible. Also, assume that the
following relations hold:

λωk
Axωk

= Bxωk
, k = 1, 2, · · · ,M − 1, (7.20)

where xωk
, k = 1, 2, · · · ,M − 1 are linear independent vectors. In this case,

this method still works: if all the λωk
∈ [−1, 1], then the scheme is stable; if

certain λωk
does not belong to [−1, 1], then the scheme is unstable. In fact,

any initial error can be expressed as
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e0 =
M−1∑

k=1

εωk
xωk

and because of the set of relations (7.20), we have

en =

M−1∑

k=1

εωk
λnωk

xωk

for any n. Therefore, the scheme is stable if and only if

|λωk
| ≤ 1

for all the ωk.
For the Crank–Nicolson scheme (7.9), A and B are given in Sect. 7.1. As

pointed out above, in order to study the stability, we need to find the solution
of

λAx = Bx.

In Problem 7, for more general equations, readers are asked to find the eigen-
vectors and the eigenvalues. Here we only give the result. The result is as
follows. For this case, there are M − 1 linearly independent vectors given by
the expression (7.19) and the corresponding eigenvalues are

λωk
=

1
2α sin (m+ 1)ωk + (1− α) sinmωk +

1
2α sin (m− 1)ωk

− 1
2α sin (m+ 1)ωk + (1 + α) sinmωk − 1

2α sin (m− 1)ωk

=
(1− α) sinmωk + α sinmωk cosωk
(1 + α) sinmωk − α sinmωk cosωk

=
1− 2α sin2

ωk
2

1 + 2α sin2
ωk
2

, k = 1, 2, · · · ,M − 1,

where ωk = kπ/M . Because |λωk
| ≤ 1 for any ωk, the difference scheme (7.9)

is stable in the L2 norm.

Stability for Periodic Problems. In schemes (7.8) and (7.9), the values
are given at both boundaries, and during stability analysis, we assume that
there is no error at the boundaries. It is clear that this is not always the case.
Consider problems satisfying periodic conditions and assume unm = unm+M . In
this case, we only need to find unm, m = 0, 1, · · · ,M − 1 for each time level. If
the coefficients of the problem are constant, then we can analyze the stability
in a similar way. Let us further assume that the solution satisfies the system:

a1u
n+1
m+1+a0u

n+1
m +a−1u

n+1
m−1 = b1u

n
m+1+b0u

n
m+b−1u

n
m−1, m = 0, 1, · · · ,M−1.

If enm is the error of unm, then enm satisfy the same system. Thus, the system
for enm can be written as
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A2e
n+1 = B2e

n,

where we have used the conditions

en−1 = enM−1, enM = en0

and adopted the following notation:

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 0 · · · a−1

a−1 a0 a1
. . .

...

0 a−1 a0
. . . 0

...
. . .

. . .
. . . a1

a1 · · · 0 a−1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, en =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

en0
en1
...
...

enM−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 b1 0 · · · b−1

b−1 b0 b1
. . .

...

0 b−1 b0
. . . 0

...
. . .

. . .
. . . b1

b1 · · · 0 b−1 b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In order to study stability, we need to find the solution of the equation

λA2x = B2x.

This is left for readers to do as Problem 8. The result is as follows. For this
equation, the eigenvectors are

xθk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
eiθk

...

...
ei(M−1)θk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, k = 0, 1, · · · ,M − 1,

where θk = 2kπ/M and the eigenvalues are

λθk =
b1e

iθk + b0 + b−1e
−iθk

a1eiθk + a0 + a−1e−iθk
, k = 0, 1, · · · ,M − 1.

By using the relations e−iθk = ei(M−1)θk and eiMθk = 1, this result can be
shown by a straightforward calculation. If |λθk | ≤ 1, k = 0, 1, · · · ,M − 1,
then the method is stable. If |λθk | > 1 for some k, then the method is unstable.
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Because M can go to infinity, θk indeed can be any number in the interval
[0, 2π]. Therefore, if for any θ ∈ [0, 2π],

|λθ| =
∣
∣
∣
∣
b1e

iθ + b0 + b−1e
−iθ

a1eiθ + a0 + a−1e−iθ

∣
∣
∣
∣ ≤ 1, (7.21)

then the scheme is stable. Otherwise, the method is unstable. Such a method of
analyzing stability is usually called the von Neumann method and λθ is called
the amplification factor. This method gives a complete stability analysis for
periodic initial value problems with constant coefficients. For more general
case, this method can be performed in the following way. Assume

enm = λnθ e
imθ, (7.22)

where θ can be any real number in the interval [0, 2π]. Substituting this ex-
pression into the finite-difference equation, we can find λθ. If all |λθ| ≤ 1, then
the scheme is stable; if some |λθ| > 1, then the scheme is unstable. For more
about this method, see the book [67] by Richtmyer and Morton and many
other books.

Stability Analysis in Practice. In practice, most problems have variable
coefficients. Therefore, the von Neumann method does not give a complete
stability analysis. However, it is still very useful. The von Neumann method
can be applied in practice in the following way.

Consider the following scheme with variable coefficients:

an1,mu
n+1
m+1 + an0,mu

n+1
m + an−1,mu

n+1
m−1

= bn1,mu
n
m+1 + bn0,mu

n
m + bn−1,mu

n
m−1, (7.23)

where for simplicity, we assume that only three points in the x direction are
involved. If more points are involved, the procedure is still the same. Suppose

|fnm+1 − fnm| < cΔx, |fnm+1 − 2fnm + fnm−1| < cΔx2,

and
|fn+1
m − fnm| < cΔτ

for f = a1, a0, a−1, b1, b0, and b−1. Assume that enm has the form (7.22).
Substituting this expression into the finite-difference equation (7.23) yields

λθ(xm, τ
n) =

bn1,mei(m+1)θ + bn0,meimθ + bn−1,mei(m−1)θ

an1,mei(m+1)θ + an0,meimθ + an−1,mei(m−1)θ
.

If for the amplification factor, we have

|λθ(xm, τn)| ≤ 1

for every point and the treatment of boundary conditions is reasonable, then
we can expect the scheme to be stable. Clearly, the condition |λθ(xm, τn)| ≤ 1
is equivalent to
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|bn1,meiθ + bn0,m + bn−1,me−iθ|2 − |an1,meiθ + an0,m + an−1,me−iθ|2 ≤ 0 (7.24)

if |an1,meiθ + an0,m + an−1,me−iθ|2 ≥ c̃ > 0, c̃ being a constant. The latter is
easier to use in practice than the former.

Let us analyze the stability of scheme (7.6) in this way. This scheme has
the form (7.23) with

an1,m = −
(
a
n+1/2
m

2Δx2
+
b
n+1/2
m

4Δx

)

Δτ,

an0,m = 1 +
a
n+1/2
m

Δx2
Δτ,

an−1,m = −
(
a
n+1/2
m

2Δx2
− b

n+1/2
m

4Δx

)

Δτ,

bn1,m = −an1,m,
bn0,m = 2− an0,m,

bn−1,m = −an−1,m.

Here, we assume
gn+1/2
m = cn+1/2

m = 0

because we analyze the stability with respect to initial values only and ignor-
ing a term of O(Δτ) in coefficients will have no effect on the conclusion on
stability. The left-hand side of the condition (7.24) for this scheme is

[
−an1,meiθ + (2− an0,m)− an−1,me−iθ

] [
−an1,me−iθ + (2− an0,m)− an−1,meiθ

]

−(an1,meiθ + an0,m + an−1,me−iθ)(an1,me−iθ + an0,m + an−1,meiθ)

= (an1,m)2 + (an0,m − 2)2 + (an−1,m)2 + 2an1,m(an0,m − 2) cos θ

+2(an0,m − 2)an−1,m cos θ + 2an1,ma
n
−1,m cos 2θ

−
[
(an1,m)2 + (an0,m)2 + (an−1,m)2 + 2an1,ma

n
0,m cos θ + 2an0,ma

n
−1,m cos θ

+2an1,ma
n
−1,m cos 2θ

]

= (an0,m − 2)2 − (an0,m)2 − 4an1,m cos θ − 4an−1,m cos θ

= −4a
n+1/2
m

Δx2
Δτ +

4a
n+1/2
m

Δx2
Δτ cos θ

=
4a
n+1/2
m

Δx2
Δτ(cos θ − 1).

This expression is always nonpositive. Therefore, the condition (7.24) is satis-
fied at every grid point. For scheme (7.6), there is no other boundary condition.
Consequently, the scheme is expected to be stable.

So far, we say that a scheme is stable with respect to initial values if the
error of the solution caused by the error in the initial condition is less than
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or equal to the error in the initial condition. However, generally speaking, we
say that a scheme is stable with respect to initial values if the error of the
solution caused by the error in the initial condition is less than c times the
error in the initial condition. c is a constant independent of Δx and Δτ , but
is allowed to be greater than one. That is, the error is allowed to increase by
a certain factor, but the factor must be bounded and independent of Δx and
Δτ . Therefore, we can take

|λθ(xm, τn)| ≤ 1 + c̄Δτ (7.25)

as a criterion for stability.2 In fact, if the inequality (7.25) holds for any θ,
then usually we can have

||en||L2
≤ (1 + c̄Δτ)||en−1||L2

≤ (1 + c̄Δτ)n||e0||L2
≤ ec̄nT/N ||e0||L2

for any n ≤ N , so the error increases at most by a factor ec̄T . Here we have
used the relation (1 + c̄Δτ)

1
c̄Δτ ≤ e for any positive Δτ .

Now let us study the stability of the difference scheme (7.5) by using the
criterion (7.25). We consider the stability with respect to initial values only, so
we can set gnm = 0. In this case, the scheme has the form (7.23) with an1,m = 0,
an0,m = 1, an−1,m = 0 and

bn1,m =
anmΔτ

Δx2
+
bnmΔτ

2Δx
,

bn0,m = 1− 2
anmΔτ

Δx2
+ cnmΔτ,

bn−1,m =
anmΔτ

Δx2
− bnmΔτ

2Δx
.

Therefore,

λθ(xm, τ
n) = bn1,meiθ + bn0,m + bn−1,me−iθ

= bn0,m +
(
bn1,m + bn−1,m

)
cos θ + i

(
bn1,m − bn−1,m

)
sin θ

= 1− 2
anmΔτ

Δx2
+ cnmΔτ + 2

anmΔτ

Δx2
cos θ + i

bnmΔτ

Δx
sin θ

= 1− 4
anmΔτ

Δx2
sin2

θ

2
+ cnmΔτ + i

bnmΔτ

Δx
sin θ.

If

max
anmΔτ

Δx2
≤ 1

2
or

Δτ

Δx2
≤ 1

2max anm
, (7.26)

2This criterion is equivalent to

|bn1,meiθ + bn0,m + bn−1,me−iθ|2 − |an
1,meiθ + an

0,m + an
−1,me−iθ|2 ≤ ¯̄cΔτ

if |an
1,meiθ + an

0,m + an
−1,me−iθ|2 ≥ c̃ > 0, c̃ being a constant, which is easier to use

in practice than the criterion (7.25).
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then

|λθ(xm, τn)|2 ≤ (1 + |cnm|Δτ)2 +
(
bnmΔτ

Δx

)2

≤ (1 + |cnm|Δτ)2 + (bnm)
2

2max anm
Δτ

≤ (1 + |cnm|Δτ)2 + 2 (1 + |cnm|Δτ) (bnm)
2

4max anm
Δτ

+

[
(bnm)

2

4max anm
Δτ

]2

=

[

1 + |cnm|Δτ + (bnm)
2

4max anm
Δτ

]2

.

Thus, let c̄ = |cnm|+ (bnm)
2
/(4max anm), we have

|λθ(xm, τn)| ≤ 1 + c̄Δτ

and we can expect this scheme to be stable if inequality (7.26) holds.
In fact, the stability of scheme (7.6) with variable coefficients has been

proved rigorously in the paper [79] by Sun, Yan, and Zhu. By a similar method,
the stability of scheme (7.5) with variable coefficients can also be shown when
inequality (7.26) holds. If readers are interested in such a subject, please see
that paper and the book [97] by Zhu, Zhong, Chen, and Zhang.

7.2.2 Convergence

If a scheme is stable with respect to initial values, and the truncation error
of the scheme goes to zero as Δx and Δτ tend to zero, then the approximate
solution will usually go to the exact solution. Such a result is usually referred to
as the Lax equivalence theorem (see the book [67] by Richtmyer and Morton).
We are not going to prove this conclusion for general cases but explain this
result intuitively through proving this result for special cases.

Consider the explicit finite-difference method (7.8). We know that the
exact solution u(x, τ) satisfies the equation

u(xm, τ
n+1)

= αu(xm+1, τ
n) + (1− 2α)u(xm, τ

n) + αu(xm−1, τ
n) +ΔτRnm(Δx2, Δτ),

m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,

where

Rnm(Δx2, Δτ) =
Δτ

2

∂2u

∂τ2
(xm, η)− a

Δx2

12

∂4u

∂x4
(ξ, τn).
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Let enm be the error of the approximate solution on the point (xm, τ
n), that is,

enm = u(xm, τ
n)− unm, m = 0, 1, · · · ,M, n = 0, 1, · · · , N.

Then, enm is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

en+1
m = αenm+1 + (1− 2α)enm + αenm−1 +ΔτRnm(Δx2, Δτ),

m = 1, 2, · · · ,M − 1, n = 0, 1, · · · , N − 1,
en+1
0 = 0, n = 0, 1, · · · , N − 1,
en+1
M = 0, n = 0, 1, · · · , N − 1,
e0m = 0, m = 0, 1, · · · ,M.

Because en0 = enM = 0 for any n, the system can be written as

{
en+1 = A1e

n +ΔτRn(Δx2, Δτ), n = 0, 1, · · · , N − 1,
e0 = 0,

where en is a vector with M − 1 components enm, m = 1, 2, · · · ,M − 1 and

Rn(Δx2, Δτ) =

⎡

⎢
⎢
⎢
⎣

Rn1 (Δx
2, Δτ)

Rn2 (Δx
2, Δτ)
...

RnM−1(Δx
2, Δτ)

⎤

⎥
⎥
⎥
⎦
.

Actually, en can be written as
∑n
k=1 e

n
(k). Here, for k = n,

en(n) = ΔτRn−1(Δx2, Δτ)

and for k = 1, 2, · · · , n− 1, en(k) is the solution of the following problem

{
en̄+1
(k) = A1e

n̄
(k), n̄ = k, k + 1, · · · , n− 1,

ek(k) = ΔτRk−1(Δx2, Δτ).

Because the error does not increase for the scheme (7.8) if α ≤ 1/2, ||en||L2

should not be greater than
∑n
k=1Δτ ||Rk−1(Δx2, Δτ)||L2

. Noticing n ≤ T/Δτ ,
we see that enm goes to zero as Rk−1

m (Δx2, Δτ) tends to zero for k = 1, 2, · · · , n
and m = 1, 2, · · · ,M − 1. Hence, the approximate solution converges to the
exact solution as Δx and Δτ tend to zero and α stays less than 1/2 and
||en||L2

has an order of O(Δx2, Δτ). Usually, α = aΔτ/Δx2 stays constant as
Δx and Δτ tend to zero. Therefore, ||en||L2

= O(Δτ), and we say that the
scheme (7.8) converges with order of Δτ .

For implicit schemes, the situation is similar. Consider the Crank–Nicolson
scheme (7.9). The exact solution satisfies
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u(xm, τ
n+1)− u(xm, τ

n)

Δτ

=
a

2

[
u(xm+1, τ

n+1)− 2u(xm, τ
n+1) + u(xm−1, τ

n+1)

Δx2

+
u(xm+1, τ

n)− 2u(xm, τ
n) + u(xm−1, τ

n)

Δx2

]

+Rnm(Δx2, Δτ2),

m = 1, 2, · · · ,M − 1,

where

Rnm(Δx2, Δτ2)

= Δτ2
[
1

24

∂3u

∂τ3
(xm, η

(1))− a

8

∂4u

∂x2τ2
(xm, η

(2))

]

− Δx2a

12

∂4u

∂x4
(ξ, η(3)).

In this case, the error satisfies

Aen+1 = Ben +ΔτRn(Δx2, Δτ2),

where en and Rn(Δx2, Δτ2) are two (M − 1)-dimensional vectors with enm
and Rnm(Δx2, Δτ2) as components, respectively, and A and B are given in
the difference scheme (7.10). Just like in the case of the scheme (7.8), en can
also be written as

∑n
k=1 e

n
(k). Here, for k = n,

en(n) = ΔτA−1Rn−1(Δx2, Δτ2)

and for k = 1, 2, · · · , n− 1, en(k) is the solution of the following problem:

{
Aen̄+1

(k) = Ben̄(k), n̄ = k, k + 1, · · · , n− 1,

ek(k) = ΔτA−1Rk−1(Δx2, Δτ2).

The Crank–Nicolson scheme is stable with respect to the initial value. Thus,
||en||L2 does not exceed

∑n
k=1Δτ ||A−1Rk−1(Δx2, Δτ2)||L2 . Because

Aeωk
=
(
1 + 2α sin2

ωk
2

)
eωk

,

we see that 1+2α sin2(ωk/2) is an eigenvalue of A. Thus, 1/[1+2α sin2(ωk/2)]
is an eigenvalue of A−1. This means that A−1 always exists and that its norm
is bounded for any case. Consequently, ||en||L2

goes to zero as Δx and Δτ
tend to zero. In this case, we say that this scheme is convergent. Furthermore,
because ||en||L2 is of the order O(Δx2, Δτ2), we say that the scheme has a
second-order convergence or possesses a second-order accuracy.

For schemes with variable coefficients, from the stability with respect to
initial values and the consistency of a scheme, we also can have its convergence.
Here, we say that a scheme is consistent with the partial differential equation
if the truncation error of the scheme goes to zero as Δx and Δτ tend to zero.
In the paper [79] by Sun, Yan, and Zhu, some results on this issue are given.
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7.3 Extrapolation of Numerical Solutions

When a partial differential equation problem is discretized, a truncation error
is introduced that causes the numerical solution to have an error. What is
the relation between the truncation error and the error of the numerical solu-
tion? Intuitively, the answer should be that a term of O(Δxk1 , Δτk2) in the
truncation error causes an error of O(Δxk1 , Δτk2) in the numerical solution.
Here O(Δxk1 , Δτk2) denotes a term less than C

(
Δxk1 +Δxk2

)
, where C is

a constant. Let us illustrate this fact.
Consider the following problem

⎧
⎪⎨

⎪⎩

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u+ g(x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,
u(x, 0) = f(x), 0 ≤ x ≤ 1,

where b(0, τ) = a(0, τ) = ax(0, τ) = b(1, τ) = a(1, τ) = ax(1, τ) = 0 and
a(x, τ) ≥ 0. This problem can be approximated by

⎧
⎨

⎩

δτu
n+1/2
m = a

n+1/2
m δ2xu

n+1/2
m + b

n+1/2
m δ0xu

n+1/2
m + c

n+1/2
m u

n+1/2
m + g

n+1/2
m ,

0 ≤ m ≤M, 0 ≤ n ≤ N − 1,
u0m = f(xm), 0 ≤ m ≤M.

(7.27)

Here,

δτu
n+1/2
m =

un+1
m − unm
Δτ

,

δ2xu
n+1/2
m =

1

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+
unm+1 − 2unm + unm−1

Δx2

)

,

δ0xu
n+1/2
m =

1

2

(
un+1
m+1 − un+1

m−1

2Δx
+
unm+1 − unm−1

2Δx

)

,

fn+1/2
m =

1

2

(
fn+1
m + fnm

)
, f being u, a, b, c, g,

and the same notation will be used for other functions in what follows.
The truncation error of this scheme is O(Δx2) + O(Δτ2) everywhere; more
accurately, it is in the form

Pn+1/2
m Δx2 +Rn+1/2

m Δτ2 +O(Δx4 +Δτ4),

where P
n+1/2
m and R

n+1/2
m denote the values of two functions P (x, τ) and

R(x, τ) at x = xm and τ = τn+1/2. That is, the exact solution satisfies the
following equation:
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⎧
⎪⎪⎨

⎪⎪⎩

δτU
n+1/2
m = a

n+1/2
m δ2xU

n+1/2
m +b

n+1/2
m δ0xU

n+1/2
m +c

n+1/2
m U

n+1/2
m +g

n+1/2
m

+P
n+1/2
m Δx2 +R

n+1/2
m Δτ2 +O(Δx4 +Δτ4),

0 ≤ m ≤M, 0 ≤ n ≤ N − 1,
u0m = f(xm), 0 ≤ m ≤M,

where Unm stands for u(xm, τ
n). Suppose v1 and v2 are the solutions of the

problems
⎧
⎪⎨

⎪⎩

∂v1
∂τ

= a(x, τ)
∂2v1
∂x2

+ b(x, τ)
∂v1
∂x

+ c(x, τ)v1 + P (x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,
v1(x, 0) = 0, 0 ≤ x ≤ 1

and
⎧
⎪⎨

⎪⎩

∂v2
∂τ

= a(x, τ)
∂2v2
∂x2

+ b(x, τ)
∂v2
∂x

+ c(x, τ)v2 +R(x, τ),

0 ≤ x ≤ 1, 0 ≤ τ ≤ T,
v2(x, 0) = 0, 0 ≤ x ≤ 1,

respectively. Let V n1,m and V n2,m denote v1(xm, τ
n) and v2(xm, τ

n). Then,

⎧
⎨

⎩

δτV
n+1/2
1,m = a

n+1/2
m δ2xV

n+1/2
1,m +b

n+1/2
m δ0xV

n+1/2
1,m +c

n+1/2
m V

n+1/2
1,m +P

n+1/2
m

+O(Δx2 +Δτ2), 0 ≤ m ≤M, 0 ≤ n ≤ N − 1,
V 0
1,m = 0, 0 ≤ m ≤M,

and
⎧
⎨

⎩

δτV
n+1/2
2,m = a

n+1/2
m δ2xV

n+1/2
2,m +b

n+1/2
m δ0xV

n+1/2
2,m +c

n+1/2
m V

n+1/2
2,m +R

n+1/2
m

+O(Δx2 +Δτ2), 0 ≤ m ≤M, 0 ≤ n ≤ N − 1,
V 0
2,m = 0, 0 ≤ m ≤M.

Let us define

Wn
m = Unm − unm − V n1,mΔx

2 − V n2,mΔτ
2.

It is clear that Wn
m satisfies

⎧
⎨

⎩

δτW
n+1/2
m = a

n+1/2
m δ2xW

n+1/2
m + b

n+1/2
m δ0xW

n+1/2
m + c

n+1/2
m W

n+1/2
m

+O(Δx4 +Δx2Δτ2 +Δτ4), 0 ≤ m ≤M, 0 ≤ n ≤ N − 1,
W 0
m = 0, 0 ≤ m ≤M.

Because the scheme is stable with respect to the initial value and the nonho-
mogeneous term (see the paper [76] by Sun and the paper [79] by Sun, Yan,
and Zhu for the details of the proof) and O(Δx2Δτ2) can be expressed as
O(Δx4 +Δτ4), we have

|Unm − unm − V n1,mΔx
2 − V n2,mΔτ

2| ≤ O(Δx4 +Δτ4),
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or we can write this relation as

u(xm, τ
n)−unm(Δx,Δτ) = v1(xm, τ

n)Δx2+ v2(xm, τ
n)Δτ2+O(Δx4+Δτ4),

that is,

unm(Δx,Δτ) = u(xm, τ
n)− v1(xm, τ

n)Δx2 − v2(xm, τ
n)Δτ2

+O(Δx4 +Δτ4).
(7.28)

Here, we write unm as unm(Δx,Δτ) in order to indicate that the approximate
solution is obtained on a mesh with mesh sizes Δx and Δτ . For this case, the
error of a numerical solution is in the form

v1(xm, τ
n)Δx2 + v2(xm, τ

n)Δτ2 +O(Δx4 +Δτ4),

which has the same form as the truncation error given above. Similarly, if the
truncation error of a numerical scheme, including the algorithms for boundary
conditions, is

PΔx2 +QΔxΔτ +RΔτ2 +O(Δτ3),

i.e., the scheme is second order and stable, then the numerical solution can
be expressed as

unm(Δx,Δτ) = u(xm, τ
n)− v1(xm, τ

n)Δx2 − v12(xm, τ
n)ΔxΔτ

−v2(xm, τn)Δx2 +O(Δτ3),
(7.29)

where O(Δτ3) means O(Δx3 +Δx2Δτ +ΔxΔτ2 +Δτ3) for simplicity.
Here, the approximate value is given only at the nodes. Now let us gen-

erate a function defined on the domain [0, 1] × [0, T ] by some type of inter-
polation. We assume that the interpolation function generated from the val-
ues on the nodes by an interpolation method is an approximation to f(x, τ)
with an error of O(Δτ3) for any smooth enough function f(x, τ). For exam-
ple, if we use quadratic interpolation, then the interpolation function gener-
ated has such a property. Let u(x, τ ;Δx,Δτ) denote such a function gener-
ated by u(xm, τ

n;Δx,Δτ). Because u(xm, τ
n;Δx,Δτ) consists of u(xm, τ

n)−
v1(xm, τ

n)Δx2−v12(xm, τn)ΔxΔτ−v2(xm, τn)Δτ2 and O(Δτ3), the interpo-
lation function also has two parts. One part is the interpolation function gener-
ated by u(xm, τ

n)−v1(xm, τn)Δx2−v12(xm, τn)ΔxΔτ−v2(xm, τn)Δτ2, which
we call u1(x, τ ;Δx,Δτ). The other part is generated by the term O(Δτ3),
which is denoted by u2(x, τ ;Δx,Δτ). Clearly,

u1(x, τ ;Δx,Δτ)− u(x, τ) + v1(x, τ)Δx
2 + v12(x, τ)ΔxΔτ + v2(x, τ)Δτ

2

is a term of O(Δτ3). The function u2(x, τ ;Δx,Δτ) is also a term of O(Δτ3).
Consequently, we have
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u(x, τ ;Δx,Δτ) = u1(x, τ ;Δx,Δτ) + u2(x, τ ;Δx,Δτ)
= u(x, τ)− v1(x, τ)Δx

2 − v12(x, τ)ΔxΔτ − v2(x, τ)Δτ
2

+O(Δτ3).

In this case, we can use the following technique to eliminate the error of
O(Δx2 +ΔxΔτ +Δτ2) if we have numerical solutions on a mesh with mesh
sizes Δx and Δτ and on a mesh with mesh sizes 2Δx and 2Δτ . Let us consider
a linear combination of the solutions on the two different meshes, which are
denoted by u(x, τ ;Δx,Δτ) and u(x, τ ; 2Δx, 2Δτ):

(1− d)× u(x, τ ;Δx,Δτ) + d× u(x, τ ; 2Δx, 2Δτ)
= u(x, τ)− v1(x, τ)(1− d+ 4d)Δx2 − v12(x, τ)(1− d+ 4d)ΔxΔτ

−v2(x, τ)(1− d+ 4d)Δτ2 +O(Δτ3).

If we choose d such that 1− d+ 4d = 0, that is, d = −1

3
, then

(1− d)× u(x, τ ;Δx,Δτ) + d× u(x, τ ; 2Δx, 2Δτ) = u(x, τ) +O(Δτ3).

Therefore,

1

3
[4u(x, τ ;Δx,Δτ)− u(x, τ ; 2Δx, 2Δτ)] (7.30)

is an approximate to u(x, τ) with an error of O(Δτ3).
However, for the approximation (7.27), the expression of the numerical

solution is in the form (7.28), and the extrapolation formula of numerical
solutions (7.30) gives an approximation to u(x, τ) with an error of O(Δτ4).
This is a special case. Generally speaking, if for a second-order scheme we
have three solutions unm(Δx,Δτ), unm(2Δx, 2Δτ), and unm(4Δx, 4Δτ), then
we can have an approximation with an error of O(Δτ4). In order to do that,
we first generate an interpolation function from the values at these nodes
and require the interpolation with an error of O(Δτ4). This can be done, for
example, by cubic interpolation. Let u(x, τ ;Δx,Δτ), u(x, τ ; 2Δx, 2Δτ), and
u(x, τ ; 4Δx, 4Δτ) represent these functions. Then, consider a linear combina-
tion of them:

(1− d1 − d2)u(x, τ ;Δx,Δτ) + d1u(x, τ ; 2Δx, 2Δτ) + d2u(x, τ ; 4Δx, 4Δτ).

If we choose d1and d2 such that
{
1− d1 − d2 + 22d1 + 42d2 = 0,
1− d1 − d2 + 23d1 + 43d2 = 0,

which gives
⎧
⎪⎨

⎪⎩

d1 = −12

21
,

d2 =
1

21
,
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then all the terms of O(Δτ2) and the terms of O(Δτ3) in

(1− d1 − d2)u(x, τ ;Δx,Δτ) + d1u(x, τ ; 2Δx, 2Δτ) + d2u(x, τ ; 4Δx, 4Δτ)

are eliminated. Therefore

1

21
[32u(x, τ ;Δx,Δτ)− 12u(x, τ ; 2Δx, 2Δτ) + u(x, τ ; 4Δx, 4Δτ)] (7.31)

gives an approximation to u(x, τ) with an error of O(Δτ4) for any second-
order scheme.

Here, we need to point out that in order to obtain an approximate solution
with an error of O(Δτ3), it is not necessary for bothΔx1/Δx2 andΔτ1/Δτ2 to
equal two, where Δx1, Δτ1 are mesh sizes for one mesh and Δx2, Δτ2 for the
other. For example, if we have a solution on a 12× 16 mesh and a solution on
a 9× 12 mesh, then we still can obtain an approximate solution with an error
of O(Δτ3) by using extrapolation. Furthermore, if there exist solutions on
15×20, 12×16, and 9×12 meshes, then we can have an approximate solution
with an error of O(Δτ4) by using extrapolation. These are left as a problem
for the reader to prove. Generally speaking, when a scheme has an error of
Δxk1 and Δτk2 and we know solutions on two meshes, the extrapolation can

be used if
Δxk11
Δτk21

=
Δxk12
Δτk22

, where Δxi and Δτi, i = 1, 2, are mesh sizes used

in order to obtain the two solutions. For example, if k1 = 2 and k2 = 1,
then when solutions on a 20× 20 mesh and a 40× 80 mesh are obtained, this

technique can also be used because

(
1
20

)2

1
20

=
( 1
40 )

2

1
80

(see Problem 16).

The technique of generating more accurate results by combining several
numerical results, which is similar to Richardson’s extrapolation in numerical
methods for ordinary differential equations, is referred to as the extrapolation
technique of numerical solutions in next few chapters. Finally we need to point
out that this technique works if the solution is smooth, but may not work if
the solution is not smooth enough.

7.4 Two-Dimensional Degenerate Parabolic Equations

Generally speaking, the coefficients of PDEs are variable, and so the difference
equations also have variable coefficients. For such a case, the theoretical analy-
sis of numerical methods is more complicated. In this section, for some type of
two-dimensional degenerate parabolic equations and for a special but popular
scheme, a complete theoretical analysis of numerical methods is given.

Consider the following two-dimensional degenerate parabolic partial
differential equation:
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∂u

∂τ
= a11(x, y, τ)

∂2u

∂x2
+ 2a12(x, y, τ)

∂2u

∂x∂y
+ a22(x, y, τ)

∂2u

∂y2
+ b1(x, y, τ)

∂u

∂x

+b2(x, y, τ)
∂u

∂y
+c(x, y, τ)u+g(x, y, τ), (x, y)∈Ω, 0≤τ≤T, (7.32)

with the initial condition

u(x, y, 0) = f(x, y), (x, y) ∈ Ω, (7.33)

where

Ω = {(x, y) | xl ≤ x ≤ xu, yl ≤ y ≤ yu},

a11(x, y, τ)
∣
∣
∣
x=xl or xu

= 0, a22(x, y, τ)
∣
∣
∣
y=yl or yu

= 0, (7.34)

b1(x, y, τ)
∣
∣
∣
x=xl or xu

= 0, b2(x, y, τ)
∣
∣
∣
y=yl or yu

= 0, (7.35)

∂a11(x, y, τ)

∂x

∣
∣
∣
x=xl or xu

= 0,
∂a22(x, y, τ)

∂y

∣
∣
∣
y=yl or ,yu

= 0, (7.36)

and the matrix
(
a11(x, y, τ) a12(x, y, τ)
a12(x, y, τ) a22(x, y, τ)

)

is semi-positive (nonnegative); i.e., for any X ∈ R and Y ∈ R, we have

a11(x, y, τ)X
2 + 2a12(x, y, τ)XY + a22(x, y, τ)Y

2 ≥ 0. (7.37)

The matrix of the coefficients of second derivatives is semi-positive, so a212 ≤
a11a22. Thus, when a11 = 0 or a22 = 0, we have a12 = 0. Thus, from the
expression (7.34), we have

a12(x, y, τ)
∣
∣
∣
x=xl or xu

= 0, a12(x, y, τ)
∣
∣
∣
y=yl or yu

= 0. (7.38)

Taking the partial derivative of the first and second relations in the result
(7.38) with respect to y and x, respectively, we can further have

∂a12(x, y, τ)

∂y

∣
∣
∣
x=xl or xu

= 0,
∂a12(x, y, τ)

∂x

∣
∣
∣
y=yl or yu

= 0. (7.39)

Denote

c1 = max
(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂2a11(x, y, τ)

∂x2

∣
∣
∣
∣ , c2 = max

(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂2a12(x, y, τ)

∂x∂y

∣
∣
∣
∣ ,

c3 = max
(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂2a22(x, y, τ)

∂y2

∣
∣
∣
∣ , c4 = max

(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂b1(x, y, τ)

∂x

∣
∣
∣
∣ ,

c5 = max
(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂b2(x, y, τ)

∂y

∣
∣
∣
∣ , c6 = max

(x,y,τ)∈Ω×[0,T ]
|c(x, y, τ)| ,
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and set

c = c1 + 2c2 + c3 + c4 + c5 + 2c6. (7.40)

In Sect. 2.4.3, for more general problems we have obtained the following
inequality:

∫∫

Ω

u2(x, y, τ)dxdy ≤ ec̄T
[∫∫

Ω

f 2(x, y)dxdy

+

∫ τ

0

(∫∫

Ω

g2(x, y, s)dxdy
)
ds

]

, 0 ≤ τ ≤ T,

where c̄ is a constant determined by the bounds of the coefficients of the PDE
and their derivatives. Of course, for the problem here, such an inequality holds.
In this section, we are going to prove that for the numerical solutions obtained
by a special but popular scheme, such an inequality still holds.

7.4.1 The Crank–Nicolson Difference Scheme and a Preliminary

Lemma

Take three positive integers M,N , and K. Set h1 = (xu − xl)/M, h2 = (yu −
yl)/N,Δτ = T/K, and denote

xm = xl +mh1, 0 ≤ m ≤M,

yn = yl + nh2, 0 ≤ n ≤ N,

τk = kΔτ, 0 ≤ k ≤ K,

Ωh = {(xm, yn) | 0 ≤ m ≤M, 0 ≤ n ≤ N},
ΩΔτ = {τk | 0 ≤ k ≤ K}.

Let V = {u | u = {umn, 0 ≤ m ≤M, 0 ≤ n ≤ N}} be the grid function
space on Ωh. If u ∈ V, we introduce the following notation:

δxum+ 1
2 ,n

= 1
h1
(um+1,n − umn), Δxumn = 1

2h1
(um+1,n − um−1,n),

δyum,n+ 1
2
= 1

h2
(um,n+1 − umn), Δyumn = 1

2h2
(um,n+1 − um,n−1),

δ2xumn = 1
h2
1
(um+1,n − 2umn + um−1,n),

δ2yumn = 1
h2
2
(um,n+1 − 2umn + um,n−1).

It is obvious that

Δxumn =
1

2
(δxum+ 1

2 ,n
+ δxum− 1

2 ,n
), δ2xumn =

1

h1
(δxum+ 1

2 ,n
− δxum− 1

2 ,n
),

Δyumn =
1

2
(δyum,n+ 1

2
+ δyum,n− 1

2
), δ2yumn =

1

h2
(δyum,n+ 1

2
− δyum,n− 1

2
).

For any u ∈ V, and v ∈ V, their inner product is defined by
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(u, v) = h1h2

[
M−1∑

m=1

N−1∑

n=1

umnvmn +
1

2

M−1∑

m=1

(um0vm0 + umNvmN)

+
1

2

N−1∑

n=1

(u0nv0n + uMnvMn) +
1

4
(u00v00 + uM0vM0 + u0Nv0N + uMNvMN)

]

(7.41)

and the norm of a grid function is defined by

‖u‖ =
√

(u, u).

It is also obvious that the definition of the inner product can also be written
in another form:

(u, v) =
1

4
h1h2

M−1∑

m=0

N−1∑

n=0

(
umnvmn + um+1,nvm+1,n

+um,n+1vm,n+1 + um+1,n+1vm+1,n+1

)
. (7.42)

We also define the grid function U on Ωh ×ΩΔτ as follows:

Ukmn = u(xm, yn, τ
k), 0 ≤ m ≤M, 0 ≤ n ≤ N, 0 ≤ k ≤ K.

In what follows, we use the following notations:

U
k+ 1

2
mn =

1

2
(Uk+1

mn + Ukmn), τk+
1
2 =

1

2
(τk + τk+1)

and

(a11)
k+ 1

2
mn = a11(xm, yn, τ

k+ 1
2 ), (a12)

k+ 1
2

mn = a12(xm, yn, τ
k+ 1

2 ),

(a22)
k+ 1

2
mn = a22(xm, yn, τ

k+ 1
2 ), (b1)

k+ 1
2

mn = b1(xm, yn, τ
k+ 1

2 ),

(b2)
k+ 1

2
mn = b2(xm, yn, τ

k+ 1
2 ), c

k+ 1
2

mn = c(xm, yn, τ
k+ 1

2 ),

g
k+ 1

2
mn = g(xm, yn, τ

k+ 1
2 ), fmn = f(xm, yn).

Suppose problem (7.32)–(7.33) has a smooth solution u(x, y, τ). Applying
the Taylor expansion, we can obtain

1

Δτ
(Uk+1

mn − Ukmn) = (a11)
k+ 1

2
mn δ2xU

k+ 1
2

mn + 2(a12)
k+ 1

2
mn ΔxΔyU

k+ 1
2

mn

+(a22)
k+ 1

2
mn δ2yU

k+ 1
2

mn + (b1)
k+ 1

2
mn ΔxU

k+ 1
2

mn + (b2)
k+ 1

2
mn ΔyU

k+ 1
2

mn

+c
k+ 1

2
mn U

k+ 1
2

mn + g
k+ 1

2
mn +R

k+ 1
2

mn ,

0 ≤ m ≤M, 0 ≤ n ≤ N, 0 ≤ k ≤ K − 1 (7.43)
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and there exists a constant c0 such that

|Rk+
1
2

mn | ≤ c0(h
2
1 + h22 +Δτ2),

0 ≤ m ≤M, 0 ≤ n ≤ N, 0 ≤ k ≤ K − 1. (7.44)

Omitting the small term R
k+ 1

2
mn in the expression (7.43) and writing down the

initial condition on Ωh:

U0
mn = fmn, 0 ≤ m ≤M, 0 ≤ n ≤ N, (7.45)

we have for the problem (7.32)–(7.33) the following difference scheme:

1

Δτ
(uk+1
mn − ukmn) = (a11)

k+ 1
2

mn δ2xu
k+ 1

2
mn + 2(a12)

k+ 1
2

mn ΔxΔyu
k+ 1

2
mn

+(a22)
k+ 1

2
mn δ2yu

k+ 1
2

mn + (b1)
k+ 1

2
mn Δxu

k+ 1
2

mn + (b2)
k+ 1

2
mn Δyu

k+ 1
2

mn + c
k+ 1

2
mn u

k+ 1
2

mn

+g
k+ 1

2
mn , 0 ≤ m ≤M, 0 ≤ n ≤ N, 0 ≤ k ≤ K − 1, (7.46)

u0mn = fmn, 0 ≤ m ≤M, 0 ≤ n ≤ N. (7.47)

The following lemma will be used for the analysis of the difference scheme.

Lemma 7.1. Let u ∈ V. Then we have
(
a
k+ 1

2
11 δ2xu, u

)
+ 2
(
a
k+ 1

2
12 ΔxΔyu, u

)
+
(
a
k+ 1

2
22 δ2yu, u

)

+
(
b
k+ 1

2
1 Δxu, u

)
+
(
b
k+ 1

2
2 Δyu, u

)
+
(
ck+

1
2u, u

)
≤ c

2
‖u‖2, (7.48)

where c is defined by the expression (7.40).

Section 7.4.2 is devoted to the proof of this lemma.

7.4.2 ‡The Proof of the Preliminary Lemma

We will estimate each term in the inequality (7.48). For simplicity, we omit
the superscript.

Proposition 7.1 For
(
a11δ

2
xu, u

)
and

(
a22δ

2
yu, u

)
, we have the following

inequalities:
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B1 ≡
(
a11δ

2
xu, u

)

≤ −h1h2

[
M−1∑

m=1

N−1∑

n=1

(a11)mn
(δxum− 1

2 ,n
)2 + (δxum+ 1

2 ,n
)2

2

+
1

2

M−1∑

m=1

(a11)m0

(δxum− 1
2 ,0

)2 + (δxum+ 1
2 ,0

)2

2

+
1

2

M−1∑

m=1

(a11)mN

(δxum− 1
2 ,N

)2 + (δxum+ 1
2 ,N

)2

2

]

+
1

2
c1‖u‖2

≤ −h1h2
M−1∑

m=1

N−1∑

n=1

[

(a11)mn
(δxum− 1

2 ,n
)2 + (δxum+ 1

2 ,n
)2

2

]

+
1

2
c1‖u‖2.

(7.49)

and

B3 ≡
(
a22δ

2
yu, u

)

≤ −h1h2

[
M−1∑

m=1

N−1∑

n=1

(a22)mn
(δyum,n− 1

2
)2 + (δyum,n+ 1

2
)2

2

+
1

2

N−1∑

n=1

(a22)0n
(δyu0,n− 1

2
)2 + (δyu0,n+ 1

2
)2

2

+
1

2

N−1∑

n=1

(a22)Mn
(δyuM,n− 1

2
)2 + (δyuM,n+ 1

2
)2

2

]

+
1

2
c3‖u‖2

≤ −h1h2
M−1∑

m=1

N−1∑

n=1

[

(a22)mn
(δyum,n− 1

2
)2 + (δyum,n+ 1

2
)2

2

]

+
1

2
c3‖u‖2.

(7.50)

Proof. Because (a11)0n = (a11)Mn = 0 for n = 0, 1, · · · , N , some terms in
the inner product are zero. Thus, the expression of

(
a11δ

2
xu, u

)
is

B1 =
(
a11δ

2
xu, u

)
= h1h2

[
M−1∑

m=1

N−1∑

n=1

(a11)mn δ
2
xumn umn

+
1

2

M−1∑

m=1

(a11)m0 δ
2
xum0 um0 +

1

2

M−1∑

m=1

(a11)mN δ2xumn umN

]

.

(7.51)
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Averaging the following two equalities:

h1

M−1∑

m=1

(a11)mn δ
2
xumn umn

=

M−1∑

m=1

(a11)mn(δxum+ 1
2 ,n

− δxum− 1
2 ,n

)umn

=

M−1∑

m=1

(a11)mn δxum+ 1
2 ,n

umn −
M−2∑

m=0

(a11)m+1,n δxum+ 1
2 ,n

um+1,n

=

M−1∑

m=0

(a11)mn δxum+ 1
2 ,n

umn −
M−1∑

m=0

(a11)m+1,n δxum+ 1
2 ,n

um+1,n

=

M−1∑

m=0

(a11)mn δxum+ 1
2 ,n

(umn − um+1,n)

+

M−1∑

m=0

[(a11)mn − (a11)m+1,n] δxum+ 1
2 ,n

um+1,n

= −h1
M−1∑

m=1

(a11)mn(δxum+ 1
2 ,n

)2 − h1

M−1∑

m=0

(δxa11)m+ 1
2 ,n

δxum+ 1
2 ,n

um+1,n

and

h1

M−1∑

m=1

(a11)mn δ
2
xumn umn

=

M−1∑

m=1

(a11)mn(δxum+ 1
2 ,n

− δxum− 1
2 ,n

)umn

=

M∑

m=2

(a11)m−1,n δxum− 1
2 ,n

um−1,n −
M−1∑

m=1

(a11)mn δxum− 1
2 ,n

umn

=

M∑

m=1

(a11)m−1,n δxum− 1
2 ,n

um−1,n −
M∑

m=1

(a11)mn δxum− 1
2 ,n

umn

=
M∑

m=1

(a11)mn δxum− 1
2 ,n

(um−1,n − umn)

+

M∑

m=1

[(a11)m−1,n − (a11)mn] δxum− 1
2 ,n

um−1,n

= −h1
M−1∑

m=1

(a11)mn(δxum− 1
2 ,n

)2 − h1

M−1∑

m=0

(δxa11)m+ 1
2 ,n

δxum+ 1
2 ,n

umn,
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we have

h1

M−1∑

m=1

(a11)mn δ
2
xumn umn

= −h1
M−1∑

m=1

(a11)mn
(δxum− 1

2 ,n
)2 + (δxum+ 1

2 ,n
)2

2

−h1
M−1∑

m=0

(δxa11)m+ 1
2 ,n

δxum+ 1
2 ,n

um+ 1
2 ,n

= −h1
M−1∑

m=1

(a11)mn
(δxum− 1

2 ,n
)2 + (δxum+ 1

2 ,n
)2

2

−1

2

M−1∑

m=0

(δxa11)m+ 1
2 ,n

(
u2m+1,n − u2m,n

)

= −h1
M−1∑

m=1

(a11)mn
(δxum− 1

2 ,n
)2 + (δxum+ 1

2 ,n
)2

2

+
1

2

[M−1∑

m=1

(
(δxa11)m+ 1

2 ,n
− (δxa11)m− 1

2 ,n

)
u2mn

+(δxa11) 1
2 ,n
u20n − (δxa11)M− 1

2 ,n
u2Mn

]

≤ −h1
M−1∑

m=1

(a11)mn
(δxum− 1

2 ,n
)2 + (δxum+ 1

2 ,n
)2

2

+
1

2
c1h1

(
1

2
u20n +

M−1∑

m=1

u2mn +
1

2
u2Mn

)

.

Here we have used the relations
∣
∣
∣(δxa11)m+ 1

2 ,n
− (δxa11)m− 1

2 ,n

∣
∣
∣ ≤ c1h1,

|(δxa11) 1
2 ,n

| ≤ 1

2
c1h1, |(δxa11)M− 1

2 ,n
| ≤ 1

2
c1h1,

which hold because of

c1 = max
(x,y,τ)∈Ω×[0,T ]

∣
∣
∣
∣
∂2a11(x, y, τ)

∂x2

∣
∣
∣
∣
t

and
∂a11(x, y, τ)

∂x

∣
∣
∣
x=xl or xu

= 0.

Inserting the above equality into the equality (7.51), we obtain the inequality
(7.49).

It is clear that for the second inequality in Proposition 7.1, the proof is
almost the same as the proof for the first one. The concrete proof is omitted
here.
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Proposition 7.2

B2 ≡ (a12ΔxΔyu, u)

≤ −1

4
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn

[
δxum+ 1

2 ,n
δyum,n− 1

2
+ δxum− 1

2 ,n
δyum,n− 1

2

+δxum+ 1
2 ,n

δyum,n+ 1
2
+ δxum− 1

2 ,n
δyum,n+ 1

2

]
+

1

2
c2‖u‖2. (7.52)

Proof. Because a12 = 0 on all the boundary points, the expression of
(a12ΔxΔyu, u) can be written as follows:

B2 = h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn(ΔxΔyu)mnumn

=
1

4
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn

(
δxδyum− 1

2 ,n− 1
2
+ δxδyum+ 1

2 ,n− 1
2

+δxδyum− 1
2 ,n+

1
2
+ δxδyum+ 1

2 ,n+
1
2

)
umn

=
1

4

[
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum− 1
2 ,n− 1

2
umn

+h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum+ 1
2 ,n− 1

2
umn

+h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum− 1
2 ,n+

1
2
umn

+h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum+ 1
2 ,n+

1
2
umn

]

≡ 1

4
(B21 +B22 +B23 +B24). (7.53)

For B21, we have

B21 = h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum− 1
2 ,n− 1

2
umn

= h2

N−1∑

n=1

M−1∑

m=1

(a12)mn(δyum,n− 1
2
− δyum−1,n− 1

2
)umn

= h2

N−1∑

n=1

[
M−1∑

m=1

(a12)mn δyum,n− 1
2
umn−

M−2∑

m=0

(a12)m+1,n δyum,n− 1
2
um+1,n

]

= h2

N−1∑

n=1

[
M−1∑

m=0

(a12)mn δyum,n− 1
2
umn−

M−1∑

m=0

(a12)m+1,n δyum,n− 1
2
um+1,n

]
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= h2

N−1∑

n=1

[M−1∑

m=0

(a12)mn δyum,n− 1
2
(umn − um+1,n)

+
M−1∑

m=0

[(a12)mn − (a12)m+1,n] δyum,n− 1
2
um+1,n

]

= −h1h2
M−1∑

m=1

N−1∑

n=1

(a12)mn δxum+ 1
2 ,n

δyum,n− 1
2

−h1h2
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum,n− 1
2
um+1,n . (7.54)

For B22, we have

B22 = h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum+ 1
2 ,n− 1

2
umn

= h2

N−1∑

n=1

M−1∑

m=1

(a12)mn(δyum+1,n− 1
2
− δyum,n− 1

2
)umn

= h2

N−1∑

n=1

[
M−1∑

m=0

(a12)mn δyum+1,n− 1
2
umn

−
M∑

m=1

(a12)mn δyum,n− 1
2
um,n

]

= h2

N−1∑

n=1

[
M∑

m=1

[(a12)m−1,n − (a12)m,n] δyum,n− 1
2
um−1,n

−
M−1∑

m=1

(a12)mn δyum,n− 1
2
(um,n − um−1,n)

]

= h2

N−1∑

n=1

[

−h1
M∑

m=1

(δxa12)m− 1
2 ,n

δyum,n− 1
2
um−1,n

−h1
M−1∑

m=1

(a12)mn δxum− 1
2 ,n

δyum,n− 1
2

]

= −h1h2
N−1∑

n=1

[
M−1∑

m=1

(a12)mn δxum− 1
2 ,n

δyum,n− 1
2

+
M−1∑

m=0

(δxa12)m+ 1
2 ,n

δyum+1,n− 1
2
um,n

]
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= −h1h2
M−1∑

m=1

N−1∑

n=1

(a12)mn δxum− 1
2 ,n

δyum,n− 1
2

−h1h2
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum+1,n− 1
2
um,n . (7.55)

We can see that during deriving the equalities (7.54) and (7.55), the sub-
scripts n and n− 1

2 are unchanged. Thus, from the equalities (7.54) and (7.55),
for B23 and B24, we can have

B23 = −h1h2
M−1∑

m=1

N−1∑

n=1

(a12)mn δxum+ 1
2 ,n

δyum,n+ 1
2

−h1h2
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum,n+ 1
2
um+1,n ; (7.56)

B24 = −h1h2
M−1∑

m=1

N−1∑

n=1

(a12)mn δxum− 1
2 ,n

δyum,n+ 1
2

−h1h2
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum+1,n+ 1
2
umn . (7.57)

Putting the second terms in the last expressions of B21, B22, B23, and B24 in
the expressions (7.54)–(7.57) together yields

−h1h2
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(δyum,n− 1
2
+ δyum,n+ 1

2
)um+1,n

−h1h2
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(δyum+1,n− 1
2
+ δyum+1,n+ 1

2
)umn

= −h1
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

[(um,n+1 − um,n−1)um+1,n

+(um+1,n+1 − um+1,n−1)umn]

= −h1
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(um+1,n+1umn + um,n+1um+1,n

−um+1,n−1umn − um,n−1um+1,n)

= −h1
M−1∑

m=0

[
N−1∑

n=0

(δxa12)m+ 1
2 ,n

(um+1,n+1umn + um,n+1um+1,n)

−
N−1∑

n=0

(δxa12)m+ 1
2 ,n+1 (um+1,num,n+1 + umnum+1,n+1)

]
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= h1h2

M−1∑

m=0

N−1∑

n=0

(δyδxa12)m+ 1
2 ,n+

1
2
(um+1,n+1umn + um,n+1um+1,n)

≤ 1

2
c2h1h2

M−1∑

m=0

N−1∑

n=0

(
u2m+1,n+1 + u2mn + u2m,n+1 + u2m+1,n

)

= 2c2‖u‖2. (7.58)

Here we have used (δxa12)m+ 1
2 ,0

= (δxa12)m+ 1
2 ,N

= 0 and another form of the

definition of inner product (7.42).
Thus, inserting the equalities (7.54)–(7.57) into the expression (7.53) and

using the inequality (7.58), we get

B2 = −1

4
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn

(
δxum+ 1

2 ,n
δyum,n− 1

2
+ δxum− 1

2 ,n
δyum,n− 1

2

+δxum+ 1
2 ,n

δyum,n+ 1
2
+ δxum− 1

2 ,n
δyum,n+ 1

2

)

−1

4
h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(δyum,n− 1
2
+ δyum,n+ 1

2
)um+1,n

−1

4
h1h2

M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

(δyum+1,n− 1
2
+ δyum+1,n+ 1

2
)umn

≤ −1

4
h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn

(
δxum+ 1

2 ,n
δyum,n− 1

2
+ δxum− 1

2 ,n
δyum,n− 1

2

+δxum+ 1
2 ,n

δyum,n+ 1
2
+ δxum− 1

2 ,n
δyum,n+ 1

2

)
+

1

2
c2‖u‖2.

Proposition 7.3 For (b1Δxu, u) and (b2Δyu, u), we have

B4 ≡ (b1Δxu, u) ≤
1

2
c4‖u‖2 (7.59)

and

B5 ≡ (b2Δyu, u) ≤
1

2
c5‖u‖2. (7.60)

Proof. Because (b1)0,n = (b1)M,n for n = 0, 1, · · · , N , the concrete expression
for (b1Δxu, u) is

B4 = h1h2

[
M−1∑

m=1

N−1∑

n=1

(b1)mn Δxumn umn +
1

2

M−1∑

m=1

(b1)m0 Δxum0 um0

+
1

2

M−1∑

m=1

(b1)mN ΔxumN umN

]

.
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For any n, we have

h1

M−1∑

m=1

(b1)mn Δxumn umn

=
1

2

M−1∑

m=1

(b1)mn(um+1,n − um−1,n)umn

=
1

2

(
M−1∑

m=1

(b1)mnumnum+1,n −
M−2∑

m=0

(b1)m+1,numnum+1,n

)

= −1

2
h1

M−1∑

m=0

(δxb1)m+ 1
2 ,n

umnum+1,n

≤ 1

2
c4h1

(1

2
u20n +

M−1∑

m=1

u2mn +
1

2
u2Mn

)
.

Adding them together yields

B4 ≤ 1

2
c4‖u‖2.

It is easy to see that changing x to y and m to n during the derivation
above, we can prove the second inequality in Proposition 7.3. Thus, we have
proved the conclusion we need.

Proposition 7.4

B6 ≡ (cu, u) ≤ c6‖u‖2. (7.61)

Proof. Since |ckmn| ≤ c6, it is easy to see the validity of the inequality (7.61).

The proof of Lemma 7.1 Based on these inequalities and noticing the
matrix

(
a11(x, y, τ) a12(x, y, τ)
a12(x, y, τ) a22(x, y, τ)

)

is semi-positive, we can prove the lemma immediately. Adding the relations
(7.49), (7.52), (7.50), (7.59), (7.60), and (7.61), then using the inequality
(7.37), we get

B1 + 2B2 +B3 +B4 +B5 +B6

≤ 1

2
(c1 + 2c2 + c3 + c4 + c5 + 2c6)‖u‖2

−1

4
h1h2

M−1∑

m=1

N−1∑

n=1

{
(a11)mn

[
2(δxum− 1

2 ,n
)2 + 2(δxum+ 1

2 ,n
)2
]
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+2(a12)mn

[
δxum+ 1

2 ,n
δyum,n− 1

2
+ δxum− 1

2 ,n
δyum,n− 1

2

+δxum+ 1
2 ,n

δyum,n+ 1
2
+ δxum− 1

2 ,n
δyum,n+ 1

2

]

+(a22)mn

[
2(δyum,n− 1

2
)2 + 2(δyum,n+ 1

2
)2
]}

=
c

2
‖u‖2 − 1

4
h1h2

M−1∑

m=1

N−1∑

n=1

{

[
(a11)mn(δxum+ 1

2 ,n
)2 + 2(a12)mn δxum+ 1

2 ,n
δyum,n− 1

2

+(a22)mn(δyum,n− 1
2
)2
]

+
[
(a11)mn(δxum− 1

2 ,n
)2 + 2(a12)mn δxum− 1

2 ,n
δyum,n− 1

2

+(a22)mn(δyum,n− 1
2
)2
]

+
[
(a11)mn(δxum+ 1

2 ,n
)2 + 2(a12)mn δxum+ 1

2 ,n
δyum,n+ 1

2

+(a22)mn(δyum,n+ 1
2
)2
]

+
[
(a11)mn(δxum− 1

2 ,n
)2 + 2(a12)mn δxum− 1

2 ,n
δyum,n+ 1

2

+(a22)mn(δyum,n+ 1
2
)2
]}

≤ c

2
‖u‖2.

This completes the proof of Lemma 7.1. �

7.4.3 ‡Solvability and Stability

In this subsection, we will prove the solvability and stability of the two-
dimensional finite-difference scheme (7.46)–(7.47).

Theorem 7.1 If Δτ < 1/c, then the difference scheme (7.46)–(7.47) is

uniquely solvable.

Proof. Suppose {ukmn | 0 ≤ m ≤ M, 0 ≤ n ≤ N} has been determined.
Then the difference scheme (7.46) is a linear system about {uk+1

mn | 0 ≤ m ≤
M, 0 ≤ n ≤ N}. Consider its homogeneous system

1

Δτ
uk+1
mn =

1

2
(a11)

k+ 1
2

mn δ2xu
k+1
mn + (a12)

k+ 1
2

mn ΔxΔyu
k+1
mn +

1

2
(a22)

k+ 1
2

mn δ2yu
k+1
mn

+
1

2
(b1)

k+ 1
2

mn Δxu
k+1
mn +

1

2
(b2)

k+ 1
2

mn Δyu
k+1
mn +

1

2
c
k+ 1

2
mn uk+1

mn ,

0 ≤ m ≤M, 0 ≤ n ≤ N. (7.62)



432 7 Finite-Difference Methods

Taking the inner product of equality (7.62) with 2uk+1 and using Lemma 7.1,
we have

2

Δτ
‖uk+1‖2 =

(
(a11)

k+ 1
2 δ2xu

k+1, uk+1
)
+ 2
(
(a12)

k+ 1
2ΔxΔyu

k+1, uk+1
)

+
(
(a22)

k+ 1
2 δ2yu

k+1, uk+1
)
+
(
(b1)

k+ 1
2Δxu

k+1, uk+1
)

+
(
(b2)

k+ 1
2Δyu

k+1, uk+1
)
+
(
ck+

1
2uk+1, uk+1

)

≤ c

2
‖uk+1‖2. (7.63)

If Δτ < 1/c, then ‖uk+1‖ = 0. This completes the proof.

Theorem 7.2 If Δτ ≤ 2/[3(1 + c)], then the solution to the difference

scheme (7.46)–(7.47) satisfies

‖uk+1‖2 ≤ e3(c+1)T/2
(
‖u0‖2 + 3

2
Δτ

k∑

l=0

‖gl+ 1
2 ‖2
)
, 0 ≤ k ≤ K − 1. (7.64)

Proof. Taking the inner product of Eq. (7.46) with uk+
1
2 and using Lemma

7.1, we have

1

2Δτ

(
‖uk+1‖2 − ‖uk‖2

)

=
(
(a11)

k+ 1
2 δ2xu

k+ 1
2 , uk+

1
2

)
+ 2
(
(a12)

k+ 1
2ΔxΔyu

k+ 1
2 , uk+

1
2

)

+
(
(a22)

k+ 1
2 δ2yu

k+ 1
2 , uk+

1
2

)
+
(
(b1)

k+ 1
2Δxu

k+ 1
2 , uk+

1
2

)

+
(
(b2)

k+ 1
2Δyu

k+ 1
2 , uk+

1
2

)
+
(
ck+

1
2uk+1, uk+

1
2

)
+
(
gk+

1
2 , uk+

1
2

)

≤ c

2
‖uk+ 1

2 ‖2 + 1

2
‖gk+ 1

2 ‖2 + 1

2
‖uk+ 1

2 ‖2, 0 ≤ k ≤ K − 1,

from which we further obtain

‖uk+1‖2 ≤ ‖uk‖2 + (1 + c)Δτ‖uk+ 1
2 ‖2 +Δτ‖gk+ 1

2 ‖2

≤ ‖uk‖2 + 1 + c

2
Δτ
(
‖uk‖2 + ‖uk+1‖2

)
+Δτ‖gk+ 1

2 ‖2,
0 ≤ k ≤ K − 1.

If 1− 1 + c

2
Δτ > 0, then the inequality can be rewritten as

‖uk+1‖2 ≤
1 + 1+c

2 Δτ

1− 1+c
2 Δτ

‖uk‖2 + Δτ

1− 1+c
2 Δτ

‖gk+ 1
2 ‖2.

It is clear that for C̄ > 2, when Δτ is small enough, we can have
1 + 1+c

2 Δτ

1− 1+c
2 Δτ

≤

1+C̄ 1+c
2 Δτ. Let us take C̄ = 3; then we can easily find that the corresponding
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condition for Δτ is Δτ ≤ 2/[3(c + 1)] and that in this case 1 − 1+c
2 Δτ ≥ 2

3 .
Thus, when Δτ ≤ 2/[3(c+ 1)], we have

‖uk+1‖2 ≤
(
1 +

3(c+ 1)

2
Δτ
)
‖uk‖2 + 3

2
Δτ‖gk+ 1

2 ‖2, 0 ≤ k ≤ K − 1.

From this discrete Gronwall inequality, we finally arrive at

‖uk+1‖2 ≤ e3(c+1)T/2
[
‖u0‖2 + 3

2
Δτ

k∑

l=0

‖gl+ 1
2 ‖2
]
, 0 ≤ k ≤ K − 1.

This completes the proof.
The method used here to prove the stability is usually called the energy

method for stability analysis.

7.4.4 ‡Convergence

For the convergence of the finite-difference scheme (7.46)–(7.47), we have

Theorem 7.3 Let {Ukmn} be the solution of the problem (7.32)–(7.33) and

{ukmn} be the solution of Eqs. (7.46)–(7.47). Denote

ekmn = Ukmn − ukmn, 0 ≤ m ≤M, 0 ≤ n ≤ N, 0 ≤ k ≤ K.

If Δτ ≤ 2/[3(c+ 1)], then we have

‖ek+1‖ ≤ e3(c+1)T/4

√
3(xu − xl)(yu − yl)T

2
c0
(
h21 + h22 +Δτ2

)
,

0 ≤ k ≤ K − 1.

Proof. Subtracting the equalities (7.46) and (7.47) from the equalities
(7.43) and (7.45), respectively, we obtain the error equations

1

Δτ
(ek+1
mn − ekmn) = (a11)

k+ 1
2

mn δ2xe
k+ 1

2
mn + 2(a12)

k+ 1
2

mn ΔxΔye
k+ 1

2
mn

+(a22)
k+ 1

2
mn δ2ye

k+ 1
2

mn + (b1)
k+ 1

2
mn Δxe

k+ 1
2

mn

+(b2)
k+ 1

2
mn Δye

k+ 1
2

mn + c
k+ 1

2
mn e

k+ 1
2

mn +R
k+ 1

2
mn ,

0 ≤ m ≤M, 0 ≤ n ≤ N, 0 ≤ k ≤ K − 1, (7.65)

e0mn = 0, 0 ≤ m ≤M, 0 ≤ n ≤ N. (7.66)
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Taking the inner product of the system (7.65) with ek+
1
2 and using Lemma 7.1,

we have

1

2Δτ

(
‖ek+1‖2 − ‖ek‖2

)

=
(
(a11)

k+ 1
2 δ2xe

k+ 1
2 , ek+

1
2

)
+ 2
(
(a12)

k+ 1
2ΔxΔye

k+ 1
2 , ek+

1
2

)

+
(
(a22)

k+ 1
2 δ2ye

k+ 1
2 , ek+

1
2

)
+
(
(b1)

k+ 1
2Δxe

k+ 1
2 , ek+

1
2

)

+
(
(b2)

k+ 1
2Δye

k+ 1
2 , ek+

1
2

)
+
(
ck+

1
2 ek+1, ek+

1
2

)
+
(
Rk+

1
2 , ek+

1
2

)

≤ c

2
‖ek+ 1

2 ‖2 + 1

2
‖Rk+ 1

2 ‖2 + 1

2
‖ek+ 1

2 ‖2, 0 ≤ k ≤ K − 1,

from which we further get

‖ek+1‖2 ≤ ‖ek‖2 + (1 + c)Δτ‖ek+ 1
2 ‖2 +Δτ‖Rk+ 1

2 ‖2

≤ ‖ek‖2 + 1 + c

2
Δτ
(
‖ek‖2 + ‖ek+1‖2

)
+Δτ‖Rk+ 1

2 ‖2,
0 ≤ k ≤ K − 1.

Using the condition (7.44) and when Δτ ≤ 2/[3(c + 1)], we can rewrite this
inequality as

‖ek+1‖2 ≤
(
1 +

3(c+ 1)

2
Δτ
)
‖ek‖2 + 3

2
Δτ‖Rk+ 1

2 ‖2

≤
(
1 +

3(c+ 1)

2
Δτ
)
‖ek‖2

+
3

2
(xu − xl)(yu − yl)c

2
0Δτ

(
h21 + h22 +Δτ2

)2
,

0 ≤ k ≤ K − 1.

The Gronwall inequality gives

‖ek+1‖2 ≤ e3(c+1)T/2 3(xu − xl)(yu − yl)T

2
c20

(
h21+h

2
2+Δτ

2
)2
, 0 ≤ k ≤ K−1,

or

‖ek+1‖ ≤ e3(c+1)T/4

√

3
(xu − xl)(yu − yl)T

2
c0
(
h21 + h22 +Δτ2

)
,

0 ≤ k ≤ K − 1.

This completes the proof.
For the solution to the difference scheme (7.46)–(7.47), we can also use

the extrapolation technique to improve the accuracy of the numerical solu-
tions when solutions are smooth. The idea is the same as what is described
in Sect. 7.3. Based on the results given in this subsection, some theoretical
conclusions on the extrapolation technique can be obtained. For details, see
the paper [78] by Sun and Zhu.
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Problems

Table 7.1. Problems and Sections

Problems Sections Problems Sections Problems Sections

1–5 7.1 6–15 7.2 16–18 7.3

19–21 7.4

1. *Let fnm denote f(mΔx, nΔτ). Find the truncation error of the explicit
difference scheme

un+1
m − unm
Δτ

= anm
unm+1 − 2unm + unm−1

Δx2

+bnm
unm+1 − unm−1

2Δx
+ cnmu

n
m

to the parabolic partial differential equation

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u.

2. Show that the truncation error of the Crank–Nicolson scheme for the heat
equation at the point (xm, τ

n+1/2) is in the following form:

Δτ2
[
1

24

∂3u

∂τ3
(xm, η

(1))− a

8

∂4u

∂x2∂τ2
(xm, η

(2))

]

− Δx2a

12

∂4u

∂x4
(ξ, η(3)),

where ξ ∈ (xm−1, xm+1), η
(k) ∈ (τn, τn+1), k = 1, 2, 3, and a is the

conductivity coefficient in the heat equation.
3. *Let fnm denote f(mΔx, nΔτ). Find the truncation error of the implicit

difference scheme

un+1
m − unm
Δτ

=
a
n+1/2
m

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+
unm+1 − 2unm + unm−1

Δx2

)

+
b
n+1/2
m

2

(
un+1
m+1 − un+1

m−1

2Δx
+
unm+1 − unm−1

2Δx

)

+
c
n+1/2
m

2
(un+1
m + unm)

to the parabolic partial differential equation

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u.
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4. The heat equation

∂u

∂τ
=
∂2u

∂x2

can also be discretized by

un+1
m − unm
Δτ

= θ

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2

)

+(1−θ)
(
unm+1 − 2unm + unm−1

Δx2

)

or

un+1
m − θα(un+1

m+1 − 2un+1
m + un+1

m−1) = unm+(1− θ)α(unm+1 − 2unm+ unm−1),

where 0 ≤ θ ≤ 1 and α = Δτ/Δx2. This scheme is called the θ–scheme.
It is clear that when θ = 0, the scheme reduces to the explicit scheme and
when θ = 1/2, the scheme becomes the Crank–Nicolson scheme. Show
that the order of truncation error of the θ–scheme is

O
(
(1− 2θ)Δτ +Δτ2 +Δx2

)
.

(Hint: Discretize the partial differential equation at x = xm and τ =
τn+θ.)

5. Consider the parabolic partial differential equation

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u,

which is defined for x ∈ [0, 1] and τ ≥ 0. Here a(x, τ) ≥ 0 holds and we

suppose that
∂a

∂x
is bounded. Assuming that u(x, τ) is given, we want to

determine u(x, τ +Δτ) with Δτ > 0 for x ∈ [0, 1].
(a) Under what conditions on a(x, τ) and b(x, τ) a boundary condition is

needed and under what conditions no boundary condition is needed
at x = 0 and x = 1?

(b) Suppose that an explicit scheme will be used. How do we determine
u(0, τ + Δτ) and u(1, τ + Δτ) if no boundary condition should be
given?

6. *Consider the three-point explicit finite-difference scheme:

un+1
m = amu

n
m−1 + bmu

n
m + cmu

n
m+1, m = 1, 2, · · · ,M − 1,

where am ≥ 0, bm = 1− am − cm ≥ 0, cm ≥ 0 and a0 = cM = 0. Show

max
1≤m≤M−1

|un+1
m | ≤ max

1≤m≤M−1
|unm|.

This means that the numerical procedure is stable under the maximum
norm.



Problems 437

7. Consider the equation

λAx = Bx or A−1Bx = λx,

where A and B are (M − 1) × (M − 1) matrices and their concrete ex-
pressions are

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 0 · · · 0

a1 a0 a1
. . .

...

0 a1 a0
. . . 0

...
. . .

. . .
. . . a1

0 · · · 0 a1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 b1 0 · · · 0

b1 b0 b1
. . .

...

0 b1 b0
. . . 0

...
. . .

. . .
. . . b1

0 · · · 0 b1 b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Find M − 1 linearly independent eigenvectors of A−1B and their associ-
ated eigenvalues.

8. Consider the equation

λA2x = B2x

or

A−1
2 B2x = λx,

where A2 and B2 are M ×M matrices and their concrete expressions are

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a1 0 · · · a−1

a−1 a0 a1
. . .

...

0 a−1 a0
. . . 0

...
. . .

. . .
. . . a1

a1 · · · 0 a−1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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and

B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 b1 0 · · · b−1

b−1 b0 b1
. . .

...

0 b−1 b0
. . . 0

...
. . .

. . .
. . . b1

b1 · · · 0 b−1 b0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

FindM linearly independent eigenvectors of A2
−1B2 and their associated

eigenvalues.
9. (a) Consider an M ×M matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b 0 · · · · · · 0 b
b a b 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 b a b
b 0 · · · · · · 0 b a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Suppose a = q + 2/h2 and b = −1/h2. Show that its eigenvalues are

λj = q +
4

h2
sin2

θj
2
, j = 0, 1, · · · ,M − 1, where θj = j 2πM , and the

corresponding eigenvectors are

vj =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
cos θj
cos 2θj

...
cos (M − 1) θj

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, j = 0, 1, · · · , int
(
M

2

)

,

and

vj =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
sin θj
sin 2θj

...
sin (M − 1) θj

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, j = int

(
M

2

)

+ 1, · · · ,M − 1,

respectively, where int

(
M

2

)

is the integer part of
M

2
.

(b) Find the eigenvalues and eigenvectors of A−1.
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(c) Suppose a =
q

2
+

2

h2
and b =

q

4
− 1

h2
, find the eigenvalues and eigen-

vectors of A and A−1.
10. *Consider the explicit scheme

un+1
m − unm
Δτ

= a
unm+1 − 2unm + unm−1

Δx2
, m = 1, 2, · · · ,M − 1

with un+1
0 = fl(τ

n+1) and un+1
M = fu(τ

n+1). Determine when it is stable
with respect to initial values in L2 norm and when it is unstable. (Suppose
a > 0.)

11. *Consider the implicit scheme

un+1
m − unm
Δτ

=
a

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+
unm+1 − 2unm + unm−1

Δx2

)

,

m = 1, 2, · · · ,M − 1

with un+1
0 = fl(τ

n+1) and un+1
M = fu(τ

n+1). Show that it is always stable
with respect to initial values in L2 norm. (Suppose a > 0.)

12. By using the von Neumann method, show that for periodic problems, the
θ–scheme for the heat equation

un+1
m − θα

(
un+1
m+1 − 2un+1

m + un+1
m−1

)

= unm + (1− θ)α
(
unm+1 − 2unm + unm−1

)

is stable for all α > 0 if
1

2
≤ θ ≤ 1 and that it is stable for 0 < α ≤

1

2(1− 2θ)
if 0 < θ <

1

2
.

13. Consider the following parabolic partial differential equation:

∂u

∂τ
= a11

∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ b1

∂u

∂x
+ b2

∂u

∂y
,

where a11 (x, y, τ) ≥ 0, a22 (x, y, τ) ≥ 0, a12 (x, y, τ) = ρ12 (x, y, τ)
√
a11a22

with ρ12 ∈ [−1, 1], and b1, b2 are any functions of x, y, τ . This equation
can be approximated by

(i)

uk+1
m,n − ukm,n

Δτ

=
a
k+ 1

2
11,m,n

2

(
uk+1
m+1,n − 2uk+1

m,n + uk+1
m−1,n

Δx2
+
ukm+1,n − 2ukm,n + ukm−1,n

Δx2

)
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+a
k+ 1

2
12,m,n

(
uk+1
m+1,n+1 − uk+1

m+1,n−1 − uk+1
m−1,n+1 + uk+1

m−1,n−1

4ΔxΔy

+
ukm+1,n+1 − ukm+1,n−1 − ukm−1,n+1 + ukm−1,n−1

4ΔxΔy

)

+
a
k+ 1

2
22,m,n

2

(
uk+1
m,n+1−2uk+1

m,n + uk+1
m,n−1

Δy2
+
ukm,n+1−2ukm,n + ukm,n−1

Δy2

)

+
b
k+ 1

2
1,m,n

2

(
uk+1
m+1,n − uk+1

m−1,n

2Δx
+
ukm+1,n − ukm−1,n

2Δx

)

+
b
k+ 1

2
2,m,n

2

(
uk+1
m,n+1 − uk+1

m,n−1

2Δy
+
ukm,n+1 − ukm,n−1

2Δy

)

or

(ii)

uk+1
m,n − ukm,n

Δτ

=
a
k+ 1

2
11,m,n

2

(
uk+1
m+1,n − 2uk+1

m,n + uk+1
m−1,n

Δx2
+
ukm+1,n − 2ukm,n + ukm−1,n

Δx2

)

+a
k+ 1

2
12,m,n

(
uk+1
m+1,n+1 − uk+1

m+1,n−1 − uk+1
m−1,n+1 + uk+1

m−1,n−1

4ΔxΔy

+
ukm+1,n+1 − ukm+1,n−1 − ukm−1,n+1 + ukm−1,n−1

4ΔxΔy

)

+
a
k+ 1

2
22,m,n

2

(
uk+1
m,n+1−2uk+1

m,n + uk+1
m,n−1

Δy2
+
ukm,n+1−2ukm,n + ukm,n−1

Δy2

)

+
b
k+ 1

2
1,m,n

2

(
−uk+1

m+2,n + 4uk+1
m+1,n − 3uk+1

m,n

2Δx

+
−ukm+2,n + 4ukm+1,n − 3ukm,n

2Δx

)

+
b
k+ 1

2
2,m,n

2

(
3uk+1

m,n−4uk+1
m,n−1 + uk+1

m,n−2

2Δy
+
3ukm,n−4ukm,n−1 + ukm,n−2

2Δy

)

if b1 (x, y, τ) ≥ 0 and b2 (x, y, τ) ≤ 0. By the von Neumann method,
show that they are stable.
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(Hint:
(a) First show that the amplification factor λ can be written as λ =

1 + a+ ib

1− a− ib
.

(b) Then show that |λ|2 ≤ 1 is equivalent to |1− a− ib|2 − |1+ a+ ib|2 =
−4a ≥ 0.

(c) Finally show −4a ≥ 0 by using the following inequalities: (i) A2 +

B2 + 2ρAB = (A+ ρB)
2
+ B2

(
1− ρ2

)
≥ 0 if |ρ| ≤ 1; (ii) cos 2θ −

4 cos θ + 3 = 2 (cos θ − 1)
2 ≥ 0.)

14. *Show that if

max
0≤m≤M

x2m(1− xm)2σ̄2
m

2

Δτ

Δx2
≤ 1

2
,

then for the scheme with variable coefficients

un+1
m − unm
Δτ

=
1

2
[xm(1− xm)σ̄m]2

unm+1 − 2unm + unm−1

Δx2

+ (r −D0)xm(1− xm)
unm+1 − unm−1

2Δx
− [r (1− xm) +D0xm]unm,

the condition |λθ(xm, τn)| ≤ 1 +O(Δτ) is satisfied for any xm = m/M ∈
[0, 1]. (When you prove this result, you should derive the stability condi-
tion for explicit schemes by yourself.)

15. For the scheme with variable coefficients

un+1
m − unm
Δτ

=
1

4
[xm(1− xm)σ̄m]2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+
unm+1 − 2unm + unm−1

Δx2

)

+
1

2
(r −D0)xm(1− xm)

(
un+1
m+1 − un+1

m−1

2Δx
+
unm+1 − unm−1

2Δx

)

− 1

2
[r (1− xm) +D0xm] (un+1

m + unm),

show that the condition |λθ(xm, τn)| ≤ 1 + O(Δτ) is satisfied for any
xm ∈ [0, 1].

16. (a) Consider the explicit difference scheme

un+1
m − unm
Δτ

= anm
unm+1 − 2unm + unm−1

Δx2
+ bnm

unm+1 − unm−1

2Δx
+ cnmu

n
m

to the parabolic partial differential equation

∂u

∂τ
= a(x, τ)

∂2u

∂x2
+ b(x, τ)

∂u

∂x
+ c(x, τ)u.
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Assume that its stability with respect to initial value and non-
homogeneous term is proved under certain conditions. Show that
for its solution, under these conditions there is the following rela-

tion: u (x, τ ;Δx,Δτ) = u(x, τ) + a

(

x, τ ;
Δx2

Δτ

)

Δτ +O(Δτ2), where

∣
∣O(Δτ2)

∣
∣ ≤ cΔτ2, c being bounded as Δτ → 0 with

Δx2

Δτ
= constant.

(b) Suppose we have two such approximate solutions u (x, τ ;Δx,Δτ) and
u (x, τ ;Δx/2, Δτ/4). Find a linear combination

(1− d)× u (x, τ ;Δx,Δτ) + d× u (x, τ ;Δx/2, Δτ/4)

such that it is an approximate solution with an error of O(Δτ2).
17. (a) Assume that an approximate solution u (x, τ ;Δx,Δτ) has the follow-

ing expression:

u (x, τ ;Δx,Δτ)

= u (x, τ) + a

(

x, τ ;
Δx

Δτ

)

Δτ2 + b

(

x, τ ;
Δx

Δτ

)

Δτ3 +O
(
Δτ4

)
,

where u (x, τ) is the exact solution. Suppose that we have two approx-

imate solutions: u

(

x, τ ;
1

12
,
T

16

)

and u

(

x, τ ;
1

9
,
T

12

)

. Find a linear

combination

(1− d)× u

(

x, τ ;
1

12
,
T

16

)

+ d× u

(

x, τ ;
1

9
,
T

12

)

such that it is an approximate solution with an error of O(Δτ3).

(b) Suppose that there is another approximate solution u

(

x, τ ;
1

15
,
T

20

)

.

Find a linear combination

d0 × u

(

x, τ ;
1

15
,
T

20

)

+ d1 × u

(

x, τ ;
1

12
,
T

16

)

+ d2 × u

(

x, τ ;
1

9
,
T

12

)

such that it is an approximate solution with an error of O(Δτ4), where
d0 = 1− d1 − d2.

18. *Explain why, how and when the extrapolation technique will improve the
accuracy of numerical solutions.

19. Let V = {u |u = (u0, u1, · · · , uM−1, uM )} be the grid function space on
Ωh = {xm | xm = xl+mh, 0 ≤ m ≤M,h = (xu−xl)/M}. For any u ∈ V,
and v ∈ V, introduce the inner product

(u, v) = h

(
1

2
u0v0 +

M−1∑

m=1

umvm +
1

2
uMvM

)
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and norm

‖u‖ =
√

(u, u).

In addition, denote

Δxum =
1

2h
(um+1 − um−1), δ2xum =

1

h2
(um+1 − 2um + um−1).

(a) Suppose

a(x) ∈ C(2)[xl, xu], a(x) ≥ 0, a(xl) = a(xu) = a′(xl) = a′(xu) = 0

and

max
xl≤x≤xu

|a′′(x)| = c1.

Prove
(
aδ2xu, u

)
≤ 1

2
c1‖u‖2.

(b) Suppose

b(x) ∈ C(1)[xl, xu], b(xl) = b(xu) = 0, max
xl≤x≤xu

|b′(x)| = c2.

Prove

(bΔxu, u) ≤
1

2
c2‖u‖2.

20. Suppose that (a12)0n = (a12)Mn = (a12)m0 = (a12)mN = 0. Show

h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum− 1
2 ,n+

1
2
umn

= −h1h2
M−1∑

m=1

N−1∑

n=1

(a12)mn δxum+ 1
2 ,n

δyum,n+ 1
2

−h1h2
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum,n+ 1
2
um+1,n

and

h1h2

M−1∑

m=1

N−1∑

n=1

(a12)mn δxδyum+ 1
2 ,n+

1
2
umn

= −h1h2
M−1∑

m=1

N−1∑

n=1

(a12)mn δxum− 1
2 ,n

δyum,n+ 1
2

−h1h2
M−1∑

m=0

N−1∑

n=1

(δxa12)m+ 1
2 ,n

δyum+1,n+ 1
2
umn

by a direct calculation.
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21. Suppose {ukm} is the solution of the difference scheme

1

Δτ
(uk+1
m − ukm) = a(xm)δ2xu

k+ 1
2

m + b(xm)Δxu
k+ 1

2
m + c(xm)u

k+ 1
2

m

+ g(xm, τ
k+ 1

2 ), 0 ≤ m ≤M, 0 ≤ k ≤ K − 1,

u0m = f(xm), 0 ≤ m ≤M,

where u
k+ 1

2
m = 1

2

(
ukm + uk+1

m

)
and

a(x) ∈ C(2)[xl, xu], b(x) ∈ C(1)[xl, xu],

a(x) ≥ 0, a(xl) = a(xu) = a′(xl) = a′(xu) = b(xl) = b(xu) = 0,

max
xl≤x≤xu

|a′′(x)| = c1, max
xl≤x≤xu

|b′(x)| = c2, max
xl≤x≤xu

|c(x)| = c3,

c = c1 + c2 + 2c3, Δτ ≤ 2/[3(c+ 1)].

Prove

‖uk+1‖2 ≤ e3(c+1)T/2

(

‖f‖2 + 3

2
Δt

k∑

l=0

‖gl+ 1
2 ‖2
)

, 0 ≤ k ≤ K − 1.



8

Initial-Boundary Value and LC Problems

Evaluation of European-style derivatives can be reduced to solving initial value
or initial-boundary value problems of parabolic partial differential equations.
This chapter discusses numerical methods for such problems. If an Ameri-
can option problem is formulated as a linear complementarity problem, then
the only difference between solving a European option and an American
option is that if the solution obtained by the partial differential equation
does not satisfy the constraint at some point, then the solution of the PDE
at the point should be replaced by the value determined from the constraint
condition. Such methods are usually referred to as projected methods for
American-style derivatives. Therefore, the two methods are very close, and
we also study the projected methods in this chapter.

In this chapter, there are four sections. The first two sections are devoted
to explicit and implicit schemes, respectively. As we know, the derivative of the
function representing the payoff of an option usually is discontinuous. This fact
makes numerical methods inefficient. In many cases, an option problem can
be reduced to another problem that has either a smooth solution or a solution
with a weaker singularity than the solution of the option problem itself, and
the numerical solution of the new problem can be obtained efficiently. We call
such a method the singularity-separating method. In Sect. 8.3, we give several
examples to illustrate how such a method works. In the final section, we discuss
the pseudo-spectral method, which is very efficient if the solution is smooth.
Examples are given to explain this fact.

8.1 Explicit Methods

8.1.1 Pricing European Options by Using V , ξ, τ or u, x, τ̄
Variables

In Sect. 2.2.5, we obtained the formulation of the problem satisfied by a
call/put option on a finite domain:

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 8, © Springer Science+Business Media New York 2013
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

−[r(1− ξ) +D0ξ]V , 0 ≤ ξ ≤ 1, 0 ≤ τ ≤ T,

V (ξ, 0) = max(±(2ξ − 1), 0), 0 ≤ ξ ≤ 1,

(8.1)

where the sign “+” in ± corresponds to the call option and the sign “−” in
± the put option. Here, we assume that the volatility depends on S, so σ̄ is a
function of ξ in the equation. Let

⎧
⎨

⎩

ξm = mΔξ, m = 0, 1, · · · ,M,

τn = nΔτ, n = 0, 1, · · · , N,
(8.2)

where M and N are given integers, and Δξ = 1/M and Δτ = T/N . This
means that we use an M ×N equidistant mesh on the domain [0, 1]× [0, T ].
Let vnm denote the approximate value of V (ξ, τ) at ξ = ξm and τ = τn,
and {vnm} represent the set vnm, m = 0, 1, · · · ,M . Discretizing the partial
differential equation in the problem (8.1) at the point (ξm, τn) by scheme

(7.5), i.e., by using the forward difference for
∂V

∂τ
and the central difference

for
∂2V

∂ξ2
and

∂V

∂ξ
, we get

vn+1
m − vnm
Δτ

=
1

2
σ̄2
mξ

2
m(1− ξm)2

vnm+1 − 2vnm + vnm−1

Δξ2

+(r −D0)ξm(1− ξm)
vnm+1 − vnm−1

2Δξ

−[r(1− ξm) +D0ξm]vnm

or

vn+1
m =

1

2

[
σ̄2
mξ

2
m(1− ξm)2 − (r −D0)ξm(1− ξm)Δξ

]
αvnm−1

+[1− σ̄2
mξ

2
m(1− ξm)2α− (r(1− ξm) +D0ξm)Δτ ]vnm

+
1

2

[
σ̄2
mξ

2
m(1− ξm)2 + (r −D0)ξm(1− ξm)Δξ

]
αvnm+1,

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1, (8.3)

where

α =
Δτ

Δξ2
.

In order for scheme (8.3) to be stable, we require

max
0≤m≤M

[σ̄2
mξ

2
m(1− ξm)2]

Δτ

2Δξ2
≤ 1

2
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because if this is true, then |λθ| ≤ 1 + O(Δτ) (see Problem 14 in Chap. 7).
In practice, we can replace this condition by a slightly stronger condition as
follows:

Δτ ≤ 16Δξ2

max
0≤m≤M

σ̄2
m

. (8.4)

Sometimes, for example, when a lookback option needs to be priced, the
value at a boundary is determined by a boundary condition which involves a

derivative. In such cases,
∂

∂ξ
needs to be discretized by a one-sided first or

second order scheme.
From the difference scheme (8.3), we know that when the values vnm−1,

vnm, and vnm+1 are given, vn+1
m can be obtained immediately. At a glance, it

appears that vn−1 and vnM+1 are needed when vn+1
0 and vn+1

M are calculated.
As pointed out in Sect. 7.1, because the coefficients of vn−1 and vnM+1 equal
zero, the values of vn−1 and vnM+1 will not be used. Therefore, if {vnm} is given,
then {vn+1

m } can be obtained by the difference scheme (8.3). According to the
initial condition given in the problem (8.1), we have

v0m = max(±(2ξm − 1), 0).

Therefore, from {v0m}, we can get {vnm}, n = 1, 2, · · · , N successively. Usually,
we need the value of V at a certain point S∗ at time zero. After {vN

m} have
been obtained, V (S∗, 0) can be found in the following way. First, we need
to find v(ξ∗, T ) by using the quadratic interpolation given in Sect. 6.1, where

ξ∗ =
S∗

S∗ + E
. Then, we can obtain V (S∗, 0) from v(ξ∗, T ) by

V (S∗, 0) = (S∗ + E)v(ξ∗, T ).

This method works not only for a constant σ but also for a variable σ, namely,
σ = σ(S), even σ = σ(S, t). In what follows, this scheme is referred to as the
explicit finite-difference method I, and its abbreviation is EFDI.

If σ is a constant, then an alternative way to find the approximate solution
of the European options is to use u, x, τ̄ variables. From Sect. 2.6.1, we know
that if E = 1, i.e., if the stock price and the option price has been divided
by the exercise price, then pricing a call/put option can be reduced to finding
u(x, τ̄), which is the solution of the problem:
⎧
⎪⎨

⎪⎩

∂u

∂τ̄
=
∂2u

∂x2
, −∞ < x <∞, 0 ≤ τ̄ ≤ 1

2σ
2T,

u(x, 0) = max(±(ex − 1), 0), −∞ < x <∞.

(8.5)

Here,

x = lnS + (r −D0 − σ2/2)(T − t), τ̄ = σ2(T − t)/2
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and
u(x, τ̄) = er(T−t)V (S, t).

Let xm = a+mΔx, a being a given number and τ̄n = nΔτ̄ , and let unm denote
the approximate value of u(xm, τ̄

n). Then, the partial differential equation can
be discretized by the difference scheme (7.8):

un+1
m = ᾱunm+1 + (1− 2ᾱ)unm + ᾱunm−1, (8.6)

where

ᾱ =
Δτ̄

Δx2
.

From Sect. 7.2.1, we know that in order for the scheme to be stable, we need
to require

ᾱ =
Δτ̄

Δx2
≤ 1

2
. (8.7)

x
a−N a+Nax

τ

x

Fig. 8.1. A triangle mesh (N = 5)

Suppose again that we need to find V (S∗, 0), i.e., we need to know
u
(
lnS∗ + (r −D0 − σ2/2)T, σ2T/2

)
. Assume that we will use N steps in τ̄

direction, i.e.,Δτ̄ =
σ2T

2N
. In order to find u

(
lnS∗ + (r −D0 − σ2/2)T, σ2T/2

)
,

we can use a triangle mesh (see Fig. 8.1): τ̄n = nΔτ̄ , n = 0, 1, · · · , N and for
each n, xm = lnS∗ + (r − D0 − σ2/2)T +mΔx, m = −N + n,−N + n +
1, · · · , N − n− 1, N − n. From the initial condition at τ̄ = 0, we have

u0m = max (±(exm − 1), 0) , m = −N,−N + 1, · · · , N − 1, N.

It is clear that when unm,m = −N+n,−N+n+1, · · · , N−n−1, N−n are given,
we can obtain un+1

m ,m = −N + n+ 1,−N + n+ 2, · · · , N − n− 2, N − n− 1.
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Therefore, starting from u0m,m = −N,−N + 1, · · · , N − 1, N , we can find
unm,m = −N + n,−N + n + 1, · · · , N − n − 1, N − n for n = 1, 2, · · · , N
successively. When we get uN0 , V (S∗, 0) can be calculated by

V (S∗, 0) = e−rTuN0

because V (S, t) = e−r(T−t)u(lnS + (r −D0 − σ2/2)(T − t), σ2(T − t)/2).

Table 8.1. Values of European put options (EFDI)

(E = 50, S = 48, r = 0.05, σ = 0.20, and D0 = 0)

Δτ T = 0.25 T = 0.50 T = 0.75 T = 1.00

0.01 2.7220 3.1163 3.4045 3.5852

0.001 2.7087 3.1275 3.3989 3.5910

0.0001 2.7083 3.1272 3.3986 3.5907

Exact 2.708349 · · · 3.127199 · · · 3.398586 · · · 3.590738 · · ·

Assume that we want to calculate the value of an option on a stock when
the stock price is $100 and the exercise price is $90. In this method above,
the stock price and the option price has been divided by E, so S∗ should
be 100/90, and the real option price should be obtained by 90 × V (S∗, 0).
This method is referred to as the explicit finite-difference method II, and its
abbreviation is EFDII.

Example 1: Using EFDI with

Δξ ≈
√

max
0≤m≤M

σ̄2
mΔτ/4,

we have solved European put problems using different Δτ . Numerical results
for T = 0.25, 0.5, 0.75, and 1.00 are listed in Table 8.1, and the other
problem parameters are also shown there. From the table we see that for
Δτ = 0.01, 0.001, and 0.0001, the error is about on the second, third, and
fourth decimal places.

8.1.2 Projected Methods for LC Problems

In Sect. 3.2, we saw that an American option problem could be formulated
as a linear complementarity problem. When the variables V , ξ, τ are adopted,
the linear complementarity problem is

⎧
⎪⎨

⎪⎩

min

(
∂V

∂τ
− Lξ V , V (ξ, τ)−max(±(2ξ − 1), 0)

)

= 0,

V (ξ, 0) = max(±(2ξ − 1), 0),

(8.8)
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where

Lξ =
1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
+ (r −D0)ξ(1− ξ)

∂

∂ξ
− [r(1− ξ) +D0ξ];

whereas if the variables u, x, τ̄ are used, the linear complementarity problem is

⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− g(x, τ̄)

)

= 0,

u(x, 0) = g(x, 0),

(8.9)

where

g(x, τ̄) = max
(
±(ex+(2D0/σ

2+1)τ̄ − e2rτ̄/σ
2

), 0
)
.

Such a formulation can be described in another way. Let us take the prob-
lem (8.9) as an example in order to explain it. Suppose that we have obtained
the solution at τ̄ = τ̄∗, u(x, τ̄∗). Starting from u(x, τ̄∗), we can find the so-
lution u(x, τ̄∗ +Δτ̄) in the following way. Let ũ(x, τ̄∗ +Δτ̄) be the solution
determined by an approximation to the equation

∂ũ

∂τ̄
− ∂2ũ

∂x2
= 0.

If

ũ(x, τ̄∗ +Δτ̄) ≥ g(x, τ̄∗ +Δτ̄)

at a point, then

u(x, τ̄∗ +Δτ̄) = ũ(x, τ̄∗ +Δτ̄);

otherwise
u(x, τ̄∗ +Δτ̄) = g(x, τ̄∗ +Δτ̄).

That is, for each x,

u(x, τ̄∗ +Δτ̄) = max (ũ(x, τ̄∗ +Δτ̄), g(x, τ̄∗ +Δτ̄)) .

Does the solution determined in this way satisfy all the requirements in the
problem (8.9)? When ũ(x, τ̄∗+Δτ̄) ≥ g(x, τ̄∗+Δτ̄), we have u(x, τ̄∗+Δτ̄) =

ũ(x, τ̄∗ +Δτ̄), u(x, τ̄∗ +Δτ̄) ≥ g(x, τ̄∗ +Δτ̄) and
∂u

∂τ̄
− ∂2u

∂x2
= 0, so the first

relation in the problem (8.9) holds; when ũ(x, τ̄∗ +Δτ̄) < g(x, τ̄∗ +Δτ̄), we

have u(x, τ̄∗ +Δτ̄) = g(x, τ̄∗ +Δτ̄) and
∂u

∂τ̄
− ∂2u

∂x2
=
∂g

∂τ̄
− ∂2g

∂x2
> 0, so the

first relation in the problem (8.9) also holds. Thus the first relation in the
problem (8.9) holds at any point. If the problem is formulated in the form
(8.8), the situation is the same.

Therefore, if an American option is formulated as a linear complementarity
problem, the difference between the numerical methods for European options
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and American options is not big. In fact, if the formulation (8.8) is used, then
we can compute the value of American options by

vn+1
m = max(ṽn+1

m , ±(2ξ − 1), 0), (8.10)

where

ṽn+1
m =

1

2

[
σ̄2
mξ

2
m(1− ξm)2 − (r −D0)ξm(1− ξm)Δξ

]
αvnm−1

+[1− σ̄2
mξ

2
m(1− ξm)2α− (r(1− ξm) +D0ξ)Δτ ]v

n
m

+
1

2

[
σ̄2
mξ

2
m(1− ξm)2 + (r −D0)ξm(1− ξm)Δξ

]
αvnm+1.

If the formulation (8.9) is adopted, then the computation is done by

un+1
m = max

(
ᾱunm+1 + (1− 2ᾱ)unm + ᾱunm−1, g(xm, τ̄

n+1)
)
. (8.11)

Table 8.2. American call option (PEFDII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100, T = 1,
and the exact solution is C = 9.94092345 · · · )

Numbers of time steps Results |Errors| CPU(s)

50 9.902768 0.038156 0.0003

100 9.921822 0.019102 0.0013

200 9.931367 0.009557 0.0053

400 9.936144 0.004780 0.0220

800 9.938533 0.002390 0.0880

Table 8.3. American put option (PEFDII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100, T = 1,
and the exact solution is P = 5.92827717 · · · )

Numbers of time steps Results |Errors| CPU(s)

50 5.911829 0.016448 0.0003

100 5.920472 0.007805 0.0013

200 5.924476 0.003801 0.0054

400 5.926424 0.001853 0.0220

800 5.927360 0.000917 0.0880

Finding the prices of American options in such a way is referred to as a
projected method in the book [84] by Wilmott, Dewynne, and Howison. We
call Eqs. (8.10) and (8.11) projected explicit finite-difference methods I and II,
respectively, and their abbreviations are PEFDI and PEFDII. Clearly, PEFDI
can be applied to the cases with both a constant σ and a variable σ, and
PEFDII is suitable only for the case that σ is a constant. In Tables 8.2 and 8.3,
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the results of call and put options on several meshes are given. The method
used is PEFDII. The error and the CPU time needed are also shown. In order
to have an error, we must have the exact solutions. The exact solution for
the American call and put option problems with these parameters are C =
9.94092345 · · · and P = 5.92827717 · · · , which are obtained by the SSM given
in Chap. 9. Here, the first nine digits are given, and it is enough to determine
the first few digits of the errors given in these tables. Computation is done on
a Space Ultra 10 computer. In this book, when a CPU time is mentioned, the
computation is done on such a computer if no other explanation is given.

8.1.3 Binomial and Trinomial Methods

This subsection is devoted to the binomial and trinomial methods. In these
methods, there is a lattice of possible asset prices. Thus, such methods are
also called lattice methods.

Binomial Methods. The binomial method is a simple and very effective
method for computing the option prices.

When the Black–Scholes equation is derived, a risk-free portfolio is estab-
lished. This idea can also be used to design numerical methods. Let Sn be the
given stock price at time tn, Sn+1 be the stock price at time tn+1 = tn +Δt,
and the possible values of Sn+1 be Sn+1,0 and Sn+1,1. Assume that the stock
pays dividends continuously and the dividend yield is D0. Therefore one share
of stock at time tn becomes eD0Δt shares at time tn+1. Let Vn be the price of
a derivative at time tn, and Vn+1,i be the price of the derivative at time tn+1

if the stock price is Sn+1,i, i = 0 and 1. That the portfolio

V −ΔS

is risk-free means that

Vn+1,0 −ΔeD0ΔtSn+1,0 = Vn+1,1 −ΔeD0ΔtSn+1,1 = (Vn −ΔSn) e
rΔt.

Therefore

Δ =
Vn+1,1 − Vn+1,0

Sn+1,1 − Sn+1,0
e−D0Δt

and

Vn = e−rΔt
(
Vn+1,0 −ΔeD0ΔtSn+1,0

)
+ΔSn

= e−rΔt
(

Vn+1,0 −
Vn+1,1 − Vn+1,0

Sn+1,1 − Sn+1,0
Sn+1,0

)

+
Vn+1,1 − Vn+1,0

Sn+1,1 − Sn+1,0
e−D0ΔtSn

= e−rΔt
[
Sne

(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0
Vn+1,1

+

(

1− Sne
(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0

)

Vn+1,0

]

.
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Let

p =
Sne

(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0
, (8.12)

then we have

Vn = e−rΔt [pVn+1,1 + (1− p)Vn+1,0] . (8.13)

Suppose that in the real world, the stock price satisfies

dS = μSdt+ σSdX = μSdt+ σSφ
√
dt,

or
Sn+1 − Sn = μSnΔt+ σSnφ

√
Δt,

where φ is the standardized normal random variable. Using Itô’s lemma, this
model can be rewritten as

d lnS =

(

μ− σ2

2

)

dt+ σdX =

(

μ− σ2

2

)

dt+ σφ
√
dt,

or

lnSn+1 − lnSn =

(

μ− σ2

2

)

Δt+ σφ
√
Δt. (8.14)

According to this model, the number of possible prices of the stock at time
tn+1 is infinity. In the derivation above, we think that there are only two
possible values the price of the stock can take at time tn+1. Thus the random
variable φ is approximated by a binomial random variable. Let ψ denote this
binomial random variable. Because E[φ] = 0 and E[φ2] = Var[φ] + E2[φ] = 1,
it is natural to require E[ψ] = 0 and E[ψ2] = 1. Suppose that the two values
of ψ are ψ0 and ψ1 and that the probabilities of taking ψ0 and ψ1 are 1 − q
and q, respectively. Then the two conditions can be written as

⎧
⎨

⎩

(1− q)ψ0 + qψ1 = 0,

(1− q)ψ2
0 + qψ2

1 = 1.

From these two equations we can have
⎧
⎪⎪⎨

⎪⎪⎩

q =
−ψ0

ψ1 − ψ0
,

q =
1− ψ2

0

ψ2
1 − ψ2

0

.

Hence

−ψ0 =
1− ψ2

0

ψ1 + ψ0

or
ψ0ψ1 = −1.
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Therefore ψ0ψ1 = −1 is a necessary condition for E[ψ2] = 1 and E[ψ] = 0.
From the procedure of deriving this condition, it is easy to see that this
condition is also a sufficient condition for E[ψ2] = 1 if E[ψ] = 0. It is clear, if
we choose ψ0 and ψ1 so that

ψ0ψ1 = −1 +O(Δt)

and require E[ψ] = 0, then ψ is still a good approximate to φ.
Suppose that ψi is related to Sn+1,i, i = 0, 1. Thus we have

⎧
⎪⎪⎨

⎪⎪⎩

lnSn+1,0 = lnSn +

(

μ− σ2

2

)

Δt+ σψ0

√
Δt,

lnSn+1,1 = lnSn +

(

μ− σ2

2

)

Δt+ σψ1

√
Δt.

Let us choose
⎧
⎪⎪⎨

⎪⎪⎩

ψ0 = −1−
(

μ− σ2

2

)√
Δt/σ,

ψ1 = 1−
(

μ− σ2

2

)√
Δt/σ.

(8.15)

Because ψ0ψ1 = −1+

(

μ− σ2

2

)2

Δt/σ2, ψ is an approximate to φ. In this case

⎧
⎨

⎩

lnSn+1,0 = lnSn − σ
√
Δt,

lnSn+1,1 = lnSn + σ
√
Δt,

or
⎧
⎨

⎩

Sn+1,0 = Sne
−σ√Δt,

Sn+1,1 = Sne
σ
√
Δt.

(8.16)

Using the formulae (8.12), (8.13) and (8.16), we can evaluate the price of a
derivative if the stock price satisfies Eq. (8.14). This is called the binomial
method which was proposed by Cox, Ross, and Rubinstein in 1979 [22].

For ψ0 and ψ1, we can choose other expressions. For example (see the book
by McDonald [61]), let

⎧
⎪⎪⎨

⎪⎪⎩

ψ0 = −1−
(

μ− r +D0 −
σ2

2

)√
Δt/σ,

ψ1 = 1−
(

μ− r +D0 −
σ2

2

)√
Δt/σ.

(8.17)
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Because ψ0ψ1 = −1 +

(

μ− r −D0 −
σ2

2

)2

Δt/σ2, ψ is an approximate

to φ. In this case ⎧
⎨

⎩

Sn+1,0 = Sne
(r−D0)Δt−σ

√
Δt,

Sn+1,1 = Sne
(r−D0)Δt+σ

√
Δt.

(8.18)

Generally, we can choose

⎧
⎪⎪⎨

⎪⎪⎩

ψ0 = −1−
(

μ− c− σ2

2

)√
Δt/σ,

ψ1 = 1−
(

μ− c− σ2

2

)√
Δt/σ.

(8.19)

In this case ⎧
⎨

⎩

Sn+1,0 = Sne
cΔt−σ√Δt,

Sn+1,1 = Sne
cΔt+σ

√
Δt,

(8.20)

and both the formulae (8.16) and (8.18) are in this form.
If p is determined by the formula (8.12), then we have

pSn+1,1 + (1− p)Sn+1,0

=
Sne

(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0
Sn+1,1 +

Sn+1,1 − Sne
(r−D0)Δt

Sn+1,1 − Sn+1,0
Sn+1,0

= e(r−D0)ΔtSn.

When 0 ≤ p ≤ 1, this relation can be interpreted as follows. When a derivative
is priced, the probability of the price at tn+1 being Sn+1,1 is p and the prob-
ability of the price at tn+1 being Sn+1,0 is 1 − p, and the expectation of the
stock price at tn+1 is e(r−D0)ΔtSn:

ED [Sn+1] = pSn+1,1+(1− p)Sn+1,0 = e(r−D0)ΔtSn = erΔte−D0ΔtSn, (8.21)

where we use ED as the notation for expectation in the case a derivative is
priced. In the front of Sn there is a factor e−D0Δt because the expectation of
the stock price should go down by a factor of e−D0Δt as one share of stock
at time tn becomes eD0Δt shares of stock at time tn+1, and there is another
factor erΔt because the expectation of the stock price should go up by a factor
of erΔt just like any risk-free investment. Because of this, we usually say that
ED [Sn+1] is the expectation of Sn+1 in the “risk-neutral” world. According
to the model for the stock price, we have

E[Sn+1] = Sn + μSnΔt =
(
eμΔt +O(Δt2)

)
Sn.

That is, in the expression for the expectation of the stock price at time tn+1

in the real world, there is a factor about eμΔt in the front of Sn, which is
completely different from the case when we price derivatives.
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When Sn+1,0 and Sn+1,1 are given by Eq. (8.16), then

p =
Sne

(r−D0)Δt − Sne
−σ√Δt

Sneσ
√
Δt − Sne−σ

√
Δt

=
e(r−D0)Δt − e−σ

√
Δt

eσ
√
Δt − e−σ

√
Δt

(8.22)

and 0 ≤ p ≤ 1 is equivalent to e−σ
√
Δt ≤ e(r−D0)Δt ≤ eσ

√
Δt. The inequality

e(r−D0)Δt ≤ eσ
√
Δt might not hold for large Δt and p does not represent a

probability in this case. However this case usually does not occur in practice
because Δt would be small in real computation. When Sn+1,0 and Sn+1,1 are
given by the formula (8.18), then

p =
Sne

(r−D0)Δt − Sne
(r−D0)Δt−σ

√
Δt

Sne(r−D0)Δt+σ
√
Δt − Sne(r−D0)Δt−σ

√
Δt

=
1− e−σ

√
Δt

eσ
√
Δt − e−σ

√
Δt

(8.23)

and 0 ≤ p ≤ 1 always holds. Hence in this case p can always be interpreted as
the probability of the price being Sn+1,1 at tn+1.

In the “risk-neutral” world, the variance of Sn+1 is

VarD [Sn+1]

=
Sne

(r−D0)Δt − Sn+1,0

Sn+1,1 − Sn+1,0

(
Sn+1,1 − e(r−D0)ΔtSn

)2

+
Sn+1,1 − Sne

(r−D0)Δt

Sn+1,1 − Sn+1,0

(
Sn+1,0 − e(r−D0)ΔtSn

)2

=
(
Sne

(r−D0)Δt − Sn+1,0

)(
Sn+1,1 − Sne

(r−D0)Δt
)

= S2
ne

2(r−D0)Δt ·
(

1− Sn+1,0

Sne(r−D0)Δt

)(
Sn+1,1

Sne(r−D0)Δt
− 1

)

= S2
ne

2(r−D0)Δt ·
(

Sn+1,0

Sne(r−D0)Δt
+

Sn+1,1

Sne(r−D0)Δt
− Sn+1,0Sn+1,1

S2
ne

2(r−D0)Δt
− 1

)

.

When Sn+1,0 and Sn+1,1 are given by the expression (8.20), both the formulae
(8.16) and (8.18) being in this form, the expression above can further be
written as:

VarD [Sn+1]

= S2
ne

2(r−D0)Δt
(
e−(r−D0−c)Δt−σ

√
Δt + e−(r−Dt0−c)Δt+σ

√
Δt

−e−2(r−D0−c)Δt − 1
)

= S2
ne

(r−D0+c)Δt
(
e−σ

√
Δt + eσ

√
Δt − e−(r−D0−c)Δt − e(r−D0−c)Δt

)

= S2
ne

(r−D0+c)Δt

[

1− σ
√
Δt+

1

2
σ2Δt− 1

6
σ3Δt3/2 + 1 + σ

√
Δt+

1

2
σ2Δt

+
1

6
σ3Δt3/2 − 1 + (r −D0 − c)Δt− 1− (r −D0 − c)Δt+O

(
Δt2
)
]

= S2
ne

(r−D0+c)Δt
[
σ2Δt+O

(
Δt2
)]

= S2
nσ

2Δt+O
(
Δt2
)
. (8.24)
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In the real world,

Var[Sn+1] = Var
[
Sn + μSnΔt+ σSnφ

√
Δt
]
= σ2S2

nΔt.

Therefore as Δt → 0 the variance of Sn+1 in the “risk-neutral” world will
tend to the variance of Sn+1 in the real world.

Now let us describe the complete method proposed by Cox, Ross, and
Rubinstein [22]. Define

d = e−σ
√
Δt (8.25)

and

u =
1

d
= eσ

√
Δt, (8.26)

then Sn+1,1 = Snu, Sn+1,0 = Snd, and Eqs. (8.22) and (8.13) can be rewrit-
ten as

p =
e(r−D0)Δt − d

u− d
(8.27)

and

V (Sn, nΔt)

= e−rΔt [pV (Sn+1,1, (n+ 1)Δt) + (1− p)V (Sn+1,0, (n+ 1)Δt)] .
(8.28)

Here V (S, t) is the value of an option.
Suppose the asset price at the current time t to be S, and we divide the

remaining life of the derivative security into N equal time subintervals with
time step Δt = (T − t)/N . At the first time level t + Δt, there are two
possible asset prices Su and Sd = Su−1. At the second time level t + 2Δt,
there are three possible asset prices, Su2, Sud = Sdu = S, and Sd2 = Su−2.
At the third time level t + 3Δt, there are four possible asset prices, Su3,
Su2d = Su, Sud2 = Su−1, and Sd3 = Su−3. In general, at the n-th time level
t + nΔt, there are n + 1 possible values of the asset price. Originally, at the
n-th time level, there should be 2n possible values of the asset price. However
since d = 1/u is required, many points are the same. For example, S, Su2d2,
Su4d4, · · · are the same point because d = 1/u. Hence the number of possible
values is greatly reduced. Let Sn,m,m = 0, 1, · · · , n, denote the n+1 possible
values of the asset price at the n-th time level from the smallest to the largest.
Then

Sn,m = Su2m−n, m = 0, 1, · · · , n. (8.29)

For N = 4, all the possible prices for each n are given in Fig. 8.2. This plot is
usually referred to as a tree or lattice of possible asset prices.

Assuming that we know the payoff function for our derivative security
and that it depends only on the values of the underlying asset at expiry, this
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Asset Price
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d4S d2S u2S u4SS
At the fourth time level
there are five possible
values of the asset price.

Fig. 8.2. Tree of asset prices for a binomial model

enables us to value it at expiry, the N -th time level. If we are considering a
call, for example, we find

cN,m = max(SN,m − E, 0), m = 0, 1, · · · , N, (8.30)

where E is the exercise price and cN,m denotes the value of the call for the
m-th possible asset value SN,m at time-step N . For a put, we know that

pN,m = max(E − SN,m, 0), m = 0, 1, · · · , N, (8.31)

where pN,m denotes the value of the put for the m-th possible asset value SN,m

at expiry.
We can now find the expected value of the derivative security at the (N−1)-

th time level and for possible asset prices SN−1,m, m = 0, 1, . . . , N −1 because
we know that the probability of an asset price moving from SN−1,m to SN,m+1

during a time step is p and that the probability of it moving to SN,m is (1−p).
Using the discounting factor e−rΔt, we can obtain the value of the security at
each possible asset price for the (N − 1)-th time level. This procedure can be
applied to the n-th time level if the values of the option for the (n+1)-th time
level have been obtained, and the computational formula is Eq. (8.28) or, in
a general form,

Vn,m = e−rΔt(pVn+1,m+1 + (1− p)Vn+1,m), m = 0, 1, · · · , n. (8.32)

Here, Vn,m denotes the value of a European option at the n-th time level
and corresponding to asset price Sn,m. According to this formula, starting
from the payoff function, VN,m, m = 0, 1, · · · , N , we can recursively determine
Vn,m,m = 0, 1, · · · , n for n = N − 1, N − 2, · · · , 0, and the final value V0,0 is
the current value of the option.
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For American options, we can easily incorporate the possibility of early
exercise of an option into the binomial model. Because the price of an Amer-
ican call option must be greater than or equal to

max(Sn,m − E, 0), (8.33)

when calculating the price of an American call option, we need to replace the
formula (8.32) by

Cn,m = max
(
e−rΔt [pCn+1,m+1 + (1− p)Cn+1,m] , Sn,m − E, 0

)
(8.34)

at each point. Similarly, for an American put option, the formula is

Pn,m = max
(
e−rΔt [pPn+1,m+1 + (1− p)Pn+1,m] , E − Sn,m, 0

)
(8.35)

because the price of an American put option has to be at least

max(E − Sn,m, 0). (8.36)

From what has been described, we see that the entire computation can be
done in two steps. In the first step, we calculate all the Sn,m to be used.
Then, we find VN,m,m = 0, 1, · · · , N and calculate Vn,m,m = 0, 1, · · · , n
for n = N − 1, N − 2, · · · , 0 successively. When a European option is cal-
culated, only the SN,m,m = 0, 1, · · · , N , are used in order to find VN,m.
When an American option is evaluated, all the Sn,m are needed. However,
because Sn,m = Su2m−n = Su2(m−1)−(n−2) = Sn−2,m−1, we indeed only
need to calculate SN,m,m = 0, 1, · · · , N and SN−1,m,m = 0, 1, · · · , N − 1, i.e.,
Sum,m = −N,−N +1, . . . , N . For this method, the total number of nodes is
(N +2)(N +1)/2, so the execution time for computing all the Vn,m is O(N2).

If the method given in the book by McDonald [61] wants to be adopted,
instead of the formulae (8.25)–(8.27), (8.18) and (8.23) should be used. Also
the tree of asset prices is different. In this case we should define

Sn,m = Sen(r−D0)Δtu2m−n, m = 0, 1, · · · , n

with u = eσ
√
Δt.

Trinomial Methods. If σ depends on S, then u is not a constant. In this
case, generally speaking, at the n-th time level, there are 2n possible values
of the asset prices that need to be considered, and the total nodes and the
execution time will be very large if a binomial method is used. In order to
reduce the nodes for a problem with variable σ, we can use trinomial methods.
In a trinomial method, given a current asset value S, the asset value after a
time-step Δt can take any of the three values

Su, Sq, Sd,

where 0 ≤ d < q < u. Let pu be the probability of the value of the asset after
a time-step Δt being Su, pq be the probability of the value being Sq, and pd
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be the probability of the value being Sd. Because there are only three possible
cases, we must have

pu + pq + pd = 1, 0 ≤ pu ≤ 1, 0 ≤ pq ≤ 1, 0 ≤ pu ≤ 1.

When the binomial method is used for pricing call/put options, from the
expressions (8.21) and (8.24) we have

ED [Sn+1] = e(r−D0)ΔtSn

and

ED

[
S2
n+1

]
= VarD [Sn+1] + (ED [Sn+1])

2

= S2
nσ

2Δt+O(Δt2) + e2(r−D0)ΔtS2
n

= e[2(r−D0)+σ
2]ΔtS2

n +O(Δt2).

Thus for pu, pq and pd, we require1

puu+ pqq + pdd = e(r−D0)Δt,

puu
2 + pqq

2 + pdd
2 = e(2(r−D0)+σ

2)Δt.

Because there are three equations above for six unknowns, u, q, d, pu, pq,
pd, we can choose three parameters. In order that the number of the possible
asset prices is not 3n at the n-th time level, we can choose

d = 1/u and q = 1. (8.37)

Now there are only four parameters u, pu, pq, pd left. They should satisfy the
three conditions above. If u is given, then this is a linear system for pu, pq, pd
and can be solved for them easily. Its solution is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pu =
e(2(r−D0)+σ

2)Δt − e(r−D0)Δt(q + d) + qd

(u− q)(u− d)
,

pq =
e(2(r−D0)+σ

2)Δt − e(r−D0)Δt(d+ u) + du

(q − d)(q − u)
,

pd =
e(2(r−D0)+σ

2)Δt − e(r−D0)Δt(u+ q) + uq

(d− u)(d− q)
.

(8.38)

Because they represent probabilities, we need to choose such a u that pu, pq
and pd all are nonnegative. If σ depends on S and t, then pu, pq and pd will
be different at different points. In this case, we need to choose such a u that
at all the points pu, pq and pd are nonnegative and the set of formulae (8.38)
can still be used.

1We also know that because the Black–Scholes equation holds, ED [Sn+1] =

e(r−D0)ΔtSn and ED

[
S2
n+1

]
= e[2(r−D0)+σ2]ΔtS2

n should be true (see Problem 39
of Chap. 2).
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Fig. 8.3. Lattice generated by a trinomial model

The details for evaluating derivative securities using a trinomial method
are nearly identical to the binomial method. The only major difference is that
the expected value of the security at the n-th time level depends on the three
possible values at the (n + 1)-th time level, and that at the n-th time level,
there are 2n+ 1 possible asset prices, which are

Sn,m = Sum,m = −n,−n+ 1, · · · , n.

In this case, the corresponding lattice is illustrated in Fig. 8.3. Let Vn,m be
the security price at Sn,m. Then, the formula for finding the expected value
of a security at time level n+ 1 is

ED [Vn+1,m] = puVn+1,m+1 + pqVn+1,m + pdVn+1,m−1

and the value of a European derivative security for Sn,m is

Vn,m = e−rΔt(puVn+1,m+1 + pqVn+1,m + pdVn+1,m−1),

and for American puts and calls we have

Pn,m = max
(
e−rΔt [puPn+1,m+1 + pqPn+1,m + pdPn+1,m−1] , E − Sn,m, 0

)
,

(8.39)

Cn,m = max
(
e−rΔt [puCn+1,m+1 + pqCn+1,m + pdCn+1,m−1] , Sn,m − E, 0

)
.

(8.40)

In Tables 8.4 and 8.5, we give binomial lattice approximations to American
call and put options when the formulae (8.25)–(8.28) are used. The errors and
the CPU times on a computer are also shown.
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Table 8.4. American call option [binomial method (8.25)–(8.28)]

(r = 0.1, σ = 0.2, D0 = 0.05, T = 1year, S = E = 100,
and the exact solution is C = 9.94092345 · · · )

Numbers of time steps Results |Errors| CPU(s)

50 9.902969 0.037955 0.0004

100 9.921921 0.019002 0.0013

200 9.931416 0.009507 0.0053

400 9.936168 0.004755 0.0220

800 9.938546 0.002378 0.0890

Table 8.5. American put option [binomial method (8.25)–(8.28)]

(r = 0.1, σ = 0.2, D0 = 0.05, T = 1year, S = E = 100,
and the exact solution is P = 5.92827717 · · · )

Numbers of time steps Results |Errors| CPU(s)

50 5.911020 0.017257 0.0004

100 5.920066 0.008211 0.0014

200 5.924273 0.004005 0.0053

400 5.926323 0.001955 0.0210

800 5.927309 0.000968 0.0880

8.1.4 Relations Between the Lattice Methods
and the Explicit Finite-Difference Methods

From the view point of PDEs, the procedure given by the formulae (8.12),
(8.13), and (8.20) can be understood in the following way. The value of any
derivative, V , satisfies

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0.

Let S̄ = Se−ct and V
(
S̄, t
)
= V (S, t) . Since

∂V

∂S
=
∂V

∂S̄
e−ct,

∂2V

∂S2
=
∂2V

∂S̄2
e−2ct,

and

∂V

∂t
=
∂V

∂t
+
∂V

∂S̄
Se−ct · (−c) ,

we have

∂V

∂t
+

1

2
σ2S̄2 ∂

2V

∂S̄2
+ (r −D0 − c) S̄

∂V

∂S̄
− rV = 0.
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Furthermore let us set x = ln S̄ and Ṽ (x, t) = V
(
S̄, t
)
. Noticing

∂V

∂S̄
=
∂Ṽ

∂x

1

S̄
,

∂2V

∂S̄2
=
∂2Ṽ

∂x2
1

S̄2
− 1

S̄2

∂Ṽ

∂x
,

and

∂V

∂t
=
∂Ṽ

∂t
,

we arrive at

∂Ṽ

∂t
+

1

2
σ2 ∂

2Ṽ

∂x2
+
(
r −D0 − c− σ2/2

) ∂Ṽ

∂x
− rṼ = 0. (8.41)

For this equation, we can have the following finite-difference scheme

Ṽ n+1
m − Ṽ nm
Δt

+
1

2
σ2 Ṽ

n+1
m+1 − 2Ṽ n+1

m + Ṽ n+1
m−1

Δx2

+
(
r −D0 − c− σ2/2

) Ṽ n+1
m+1 − Ṽ n+1

m−1

2Δx
− rṼ nm = 0,

or

Ṽ nm =
1

1 + rΔt

[(
σ2

2

Δt

Δx2
+
r −D0 − c− σ2/2

2

Δt

Δx

)

Ṽ n+1
m+1

+

(

1− σ2Δt

Δx2

)

Ṽ n+1
m

+

(
σ2

2

Δt

Δx2
− r −D0 − c− σ2/2

2

Δt

Δx

)

Ṽ n+1
m−1

]

. (8.42)

Here Ṽ nm denotes the value of Ṽ at xm = x̄+mΔx and tn = nΔt. If we choose

Δx = σ
√
Δt, (8.43)

then we have

Ṽ nm =
1

1 + rΔt

[(
1

2
+
r −D0 − c− 1

2σ
2

2σ

√
Δt

)

Ṽ n+1
m+1

+

(
1

2
−
r −D0 − c− 1

2σ
2

2σ

√
Δt

)

Ṽ n+1
m−1

]

. (8.44)

Now we show that a trinomial method (a binomial method) is close to an
explicit method (8.42) [an explicit method (8.44)]. First we will show that
the mesh here can overlap the lattices of trinomial and binomial methods.
Consider the case c = 0 and let x̄ = lnS∗, S∗ being the asset price at the
current time. In this case
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S(xm) = ex̄+mΔx = S∗ (eΔx
)m

.

Therefore, a uniform mesh on (x, t)-plane (see Fig. 8.4) corresponds to a
non-uniform mesh on (S, t)-plane (see Fig. 8.5), which overlaps the lattices
in Figs. 8.2 and 8.3 with u = eΔx and S = S∗. Consequently, this explicit
difference method can be understood as a trinomial method with a lattice in
Fig. 8.3 and as a binomial method with a lattice in Fig. 8.2 if the expression
(8.43) holds.

x
ln S∗

t

Fig. 8.4. A uniform mesh on (x, t)-plane

S0
S∗

t

Fig. 8.5. The mesh on (S, t)-plane corresponding to a uniform mesh
on (x, t)-plane
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Now let show that the difference between the formulae (8.13) and (8.44)
is very small. Let xm, Snm, and S̄nm denote the x-coordinates, S-coordinates,
and S̄-coordinates of the m-point at time tn, respectively. Because

xm+1 = xm +Δx = xm + σ
√
Δt,

which means
ln S̄n+1

m+1 = ln S̄nm + σ
√
Δt

or

ln
(
Sn+1
m+1e

−ctn+1
)
= ln

(
Snme−ct

n
)
+ σ

√
Δt,

we have

Sn+1
m+1 = Snmec(t

n+1−tn)+σ
√
Δt = SnmecΔt+σ

√
Δt. (8.45)

Similarly,

Sn+1
m−1 = SnmecΔt−σ

√
Δt. (8.46)

Noticing that Sn+1
m+1, S

n+1
m−1 and Snm correspond to Sn+1,1, Sn+1,0 and Sn, we

have the relations (8.20). Therefore from the expression (8.12), we have

p =
Sne

(r−D0)Δt − Sne
cΔt−σ√Δt

SnecΔt+σ
√
Δt − SnecΔt−σ

√
Δt

=
e(r−D0−c)Δt − e−σ

√
Δt

eσ
√
Δt − e−σ

√
Δt

=
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(
1− σ

√
Δt+ 1

2σ
2Δt− 1

6σ
3Δt3/2

)
+O

(
Δt2
)

2σ
√
Δt+ 1

3σ
3Δt3/2 +O (Δt2)

=
σ
√
Δt
[
1 +
(
r −D0 − c− σ2/2

)√
Δt/σ + 1

6σ
2Δt+O

(
Δt3/2

)]

2σ
√
Δt
[
1 + 1

6σ
2Δt+O

(
Δt3/2
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=
1

2

[

1 +
(
r −D0 − c− σ2/2

)√
Δt/σ +

1

6
σ2Δt+O

(
Δt3/2

)]

×
[

1− 1

6
σ2Δt+O

(
Δt3/2

)]

=
1

2

[

1 +
r −D0 − c− 1

2σ
2

σ

√
Δt

]

+O
(
Δt3/2

)
.

Also the difference between e−rΔt and 1
1+rΔt is O(Δt2). Thus the formula

(8.13) is almost the same as the formula (8.44). Consequently, the method
given by the formulae (8.12), (8.13), and (8.20) is almost an explicit scheme
(8.44). Therefore, the binomial method and the trinomial method can be
understood as explicit finite-difference methods in some sense.

Finally we point out that because the convergence of the explicit scheme
here with Δt/Δx2 = σ−2 can be easily proved, the difference between
1
2

[
1 +

r−D0−c− 1
2σ

2

σ

√
Δt
]
and p is O

(
Δt3/2

)
, and the difference between e−rΔt

and 1
1+rΔt is O(Δt2), the convergence of the binomial method can also

be proved.
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The formulae (8.45) and (8.46) actually are the formula (8.20), so the
conclusion given here can be used for both the Cox–Ross–Rubinstein method
(See [22]) and the McDonald method (See [61]).

8.1.5 Examples of Unstable Schemes

As has been pointed out in Sect. 8.1.1, when the scheme (8.3) or (8.6) is
used, stability condition (8.4) or (8.7) is required. What will happen if these
conditions are violated?

0 20 40 60 80 100 120 140 160 180
−300

−200

−100

0

100

200

300

S($)

c(
$)

European call, E=100, T=1, r=0.1, D0= Delta tau = 0.05, Delta xi = 0.01

Fig. 8.6. A unstable solution of EFDI
(The solution appears when Eq. (8.4) is violated. E = 100, T = 1,

r = 0.1, D0 = 0.05, σ = 0.2, Δτ = 0.05, and Δξ = 0.01.)

Let us try scheme (8.3) for a European call option with parameters
E = 100, T = 1, r = 0.1, D0 = 0.05, and σ = 0.2. Take Δτ = 0.05 and
Δξ = 0.01. The solution at t = 0 is shown in Fig. 8.6, where we see that rather
large oscillations develop. In this case, Δτ = 0.05 and 16Δξ2/σ2 = 0.04, so
condition (8.4) does not hold, and the scheme is unstable. We cannot get a
useful solution if such a set of Δτ and Δξ is adopted.
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8.2 Implicit Methods

8.2.1 Pricing European Options by Using V , ξ, τ Variables

The problem (8.1) can also be discretized by an implicit scheme, for example,
by scheme (7.6). In this case, the difference equations are

vn+1
m − vnm
Δτ

=
1

4
σ̄2
mξ

2
m(1− ξm)2

(
vn+1
m+1 − 2vn+1

m + vn+1
m−1

Δξ2
+
vnm+1 − 2vnm + vnm−1

Δξ2

)

+
1

2
(r −D0)ξm(1− ξm)

(
vn+1
m+1 − vn+1

m−1

2Δξ
+
vnm+1 − vnm−1

2Δξ

)

−1

2
[r(1− ξm) +D0ξm](vn+1

m + vnm),

m = 0, 1, · · · ,M, n = 0, 1, · · · , N − 1. (8.47)

Like the explicit scheme case, vn−1 and vnM+1 do not appear in the equation.
For a fixed n, there are M + 1 equations in the following form:

amv
n+1
m−1 + bmv

n+1
m + cmv

n+1
m+1 = −amvnm−1 + (2− bm)vnm − cmv

n
m+1,

m = 0, 1, · · · ,M,

where

am =
[
(r −D0)m(1− ξm)− σ̄2

mm
2(1− ξm)2

]
Δτ/4,

bm = 1 + [σ̄2
mm

2(1− ξm)2 + r(1− ξm) +D0ξm]Δτ/2,

cm =
[
−(r −D0)m(1− ξm)− σ̄2

mm
2(1− ξm)2

]
Δτ/4,

m = 0, 1, · · · ,M.

In matrix form, we have

Avn+1 = qn,

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 c0
a1 b1 c1 0

. . .
. . .

. . .

. . .
. . .

. . .

0 aM−1 bM−1 cM−1

aM bM

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

vn =

⎡

⎢
⎢
⎢
⎣

vn0
vn1
...
vnM

⎤

⎥
⎥
⎥
⎦
, qn =

⎡

⎢
⎢
⎢
⎣

(2− b0)v
n
0 − c0v

n
1

−a1vn0 + (2− b1)v
n
1 − c1v

n
2

...
−aMvnM−1 + (2− bM )vnM

⎤

⎥
⎥
⎥
⎦
.
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The difference between an implicit method and an explicit method is that for
an implicit method, a linear system needs to be solved in order to get vn+1

from vn. This can be done by the LU decomposition or an iteration method
given in Sects. 6.2.1 and 6.2.2. The linear system here has a variable coefficient
matrix, however, it does not depend on time if σ does not depend on t. Thus,
the linear system can be solved with only slightly more cost compared to a
linear system with a constant coefficient matrix. It is clear that scheme (8.47)
can even be applied to the case when σ depends on S and t. We will refer
to this scheme as the implicit finite-difference scheme. From Problem 15 in
Chap. 7, we can expect this scheme to be stable without any condition on the
ratio Δτ/Δξ. In fact, in the paper by Sun, Yan, and Zhu [79], it is rigorously
proved that this scheme with variable coefficients is unconditionally stable.

When σ is a constant, we can also use the variables u, x and τ̄ . In this
case, the difference scheme (7.9) can be applied to the equation in problem
(8.5). However, when the scheme (7.9) is used for problem (8.5), we have
to modify the problem formulation slightly. Let the problem be defined on
a finite domain [xl, xu] and give an artificial boundary condition on each
boundary. From the expressions (2.19) and (2.23) in Sect. 2.2.5, we know at
S = 0, V (0, t) = V (0, T )e−r(T−t) and for S ≈ ∞, V (S, t) ≈ V (S, T )e−D0(T−t).
Therefore, noticing u(x, τ̄) = er(T−t)V (S, t), for S ≈ 0, i.e., x ≈ −∞ we have

u(x, τ̄) ≈ V (S, T )

and for S ≈ ∞, i.e., x ≈ ∞,

u(x, τ̄) ≈ V (S, T )e(r−D0)(T−t),

where x = lnS + (r − D0 − σ2/2)(T − t) and τ̄ = σ2(T − t)/2. These two
relations can be taken as artificial boundary conditions at x = xl and x = xu,
respectively, if xl is small enough and xu is large enough. For example, in
order to calculate a call option,

u(xl, τ̄) = 0 and u(xu, τ̄) = (exu−(2(r−D0)/σ
2−1)τ̄ − E)e2(r−D0)τ̄/σ

2

can be adopted as artificial boundary conditions. If the call option has param-
eters r = 0.1, D0 = 0.05, σ = 0.2, E = 1, and T = 1, we can let xl = ln 0.2
and xu = ln 2.3.

The method for solving European average strike and double average
options with continuous sampling is similar. However the transformations will
be different for the two different cases.

8.2.2 European Options with Discrete Dividends and Asian
and Lookback Options with Discrete Sampling

A holder of a stock usually obtains dividends on certain days, not continuously.
Thus, in practice, it is important to know how to price options on stocks with
discrete dividends. For Asian and lookback options, sampling is usually done
discretely even though the time interval between two samples is very small so
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it can be seen as being continuously. This subsection is devoted to discussing
how to evaluate European options with discrete dividends and European-style
Asian and lookback options with discrete sampling. We give details here only
for European options with discrete dividends and European average price
options with discrete sampling. For other cases, the prices can be obtained in
a similar way. Some results on such options are also given here.

European Options with Discrete Dividends. First, we work on
options on stocks with discrete dividends. Let V (S, t) be the price of an option
on stocks with discrete dividends. From Sect. 2.2.2, we know that V (S, t) is
the solution to the following problem:
⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ [rS −D(S, t)]

∂V

∂S
− rV = 0, 0 ≤ S, t ≤ T,

V (S, T ) = VT (S), 0 ≤ S,

(8.48)

where D(S, t) =
∑I
i=1Di(S)δ(t − ti) and Di(S) ≤ S for any S. The

meaning of the condition Di(S) ≤ S here is that the price of a stock at
any time should be greater than or equal to the dividend paid at that time.
From the problem (8.48), we know the following: At t �= ti, i = 1, 2, · · · , I, V
satisfies

∂V

∂t
+

1

2
σ2(S)S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 ≤ S (8.49)

and at t = ti, i = 1, 2, · · · , or I, the equation

∂V

∂t
−Di(S)δ(t− ti)

∂V

∂S
= 0, 0 ≤ S

holds. From Sect. 2.5.2, we see that this equation gives

V (S, t−i ) = V
(
S −Di(S), t

+
i

)
. (8.50)

As we know from Sect. 2.2.5, through the transformation
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

τ = T − t,

V (ξ, τ) =
V (S, t)

S + Pm
,

(8.51)

Eq. (8.49) becomes

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ rξ(1− ξ)

∂V

∂ξ
− r(1− ξ)V , 0 ≤ ξ ≤ 1, (8.52)

where σ̄(ξ) = σ

(
Pmξ

1− ξ

)

, the final condition in the problem (8.48) is converted

into an initial condition of the form
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V (ξ, 0) =
1− ξ

Pm
VT

(
Pmξ

1− ξ

)

, 0 ≤ ξ ≤ 1 (8.53)

and the condition (8.50) is transferred to

V (ξ, τ+i ) =

[

1−Di

(
ξPm
1− ξ

)
1− ξ

Pm

]

V

⎛

⎜
⎜
⎝

Pmξ −Di

(
ξPm
1− ξ

)

(1− ξ)

Pm −Di

(
ξPm
1− ξ

)

(1− ξ)

, τ−i

⎞

⎟
⎟
⎠ .

(8.54)

Table 8.6. European and American options on stocks with discrete dividends

(r = 0.09, σ = 0.3, T = 0.5 year and E = 40.
There are two dividend payments and each pays 0.50.)

t1 = 1/12 and t2 = 4/12 t1 = 2/12 and t2 = 5/12
S European American European American

38 2.64 2.64 2.66 2.69
Call 40 3.70 3.70 3.72 3.77

42 4.95 4.95 4.97 5.03

38 3.86 4.08 3.87 4.02
Put 40 2.92 3.08 2.93 3.04

42 2.17 2.28 2.18 2.26

We solve the problem here using the following mesh. The mesh is still
uniform in ξ with Δξ = 1/M , but in the τ direction, the interval [0, T ] is
divided into N subintervals with τ = τn, n = 0, 1, · · · , N, where τ0 = 0 <
τ1 < · · · < τN−1 < τN = T , and suppose ti corresponds to τni

, i = 1, 2, · · · , I.
Furthermore, define n0 = 0 and nI+1 = N . Just like before, let vnm be an
approximate value of V at ξ = ξm and τ = τn and {vnm} denote vnm, m =

0, 1, · · · ,M . The problem can be solved in the following way. When {vn
+
i

m }
are known at τ+ni

, we can obtain {vn
−
i+1

m } at τ−ni+1
by a scheme approximating

Eq. (8.52), for example, the scheme (8.47). Then we use condition (8.54) to

interpolate {vn
+
i+1

m } from {vn
−
i+1

m }. At t = 0, the option values are the same
for t = 0− and t = 0+. Thus, from the initial condition (8.53), we can have

{vn
+
0

m }. Consequently, we can do the procedure of getting {vn
+
i+1

m } from {vn
+
i

m }
for i = 0, 1, · · · , I − 1 successively. As soon as we have {vn

+
I

m }, we can find

{vn
−
I+1

m }, that is, {vN
m} by scheme (8.47). For American options, the maximum

between v
n+
i+1

m and the constraint condition should be taken as the value of
the American option at τ = τ+ni+1

, i = 0, 1, · · · , I − 1.
In Table 8.6, we give some values of half-year European and American

options with two dividend payments. Each time, the dividend payment is
0.50 if the price of stock is greater than or equal to 0.50. If S < 0.50, we let
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Di(S) = S in the computation. The payments are given at times 1/12 and
4/12 or 2/12 and 5/12. In order to check if the results of European options
are correct, we can check if the put–call parity relation holds. For European
options on stocks with discrete dividends, the put–call parity relation is in
the form (3.44) in Chap. 3. For the case with S = 40 and the payment dates
t1 = 2/12 and t2 = 5/12, this relation is c(40, 0) + Ee−rT = p(40, 0) + 40 −
0.5
(
e−r·2/12 + e−r·5/12

)
. From the data given in Table 8.6, we have

c(40, 0) + Ee−rT = 3.72 + 40 · e−0.09·0.5 = 3.72 + 38.24 = 41.96,

p(40, 0) + 40− 0.5
(
e−r·2/12 + e−r·5/12

)
= 2.93 + 40

−0.5
(
e−0.09·2/12 + e−0.09·5/12

)
= 42.93− 0.97 = 41.96.

Thus, the put–call parity relation holds. In Hull’s book [43], an approximate
method to get c(S, t) is provided. It gives c(40, 0) = 3.67 for this case. The
numerical result here is 3.72, so it gives a very good estimate. From Table 8.6,
we know that for the case t1 = 1/12 and t2 = 4/12, the values of European
and American call options are the same. This is because E(1 − e−r(T−t2)) =
40 · (1 − e−0.09/6) = 0.60 > 0.5 and E(1 − e−r(t2−t1)) = 40 · (1 − e−0.09/4) =
0.89 > 0.5, where 0.5 is the dividend payment. When such inequalities hold, it
is impossible to have an optimal exercise price and the value of the American
option must be equal to the value of the European option (see Problem 15 in
Chap. 3 or the book [43] by Hull).

European Average Price Options with Discrete Sampling. Now we
give some details on how to price European average price options. Suppose
that sampling is done at t = t1, t2, · · · , tK , where 0 ≤ t1 < t2 < · · · < tK ≤ T .
Define

I =
1

K

∫ t

0

S (τ) f (τ) dτ,

where f(τ) =
K∑

i=1

δ (τ − ti) . It is clear that at t = T , I = A. Let the price of

a European average price option be V (S, I, t) and let E be the exercise price.
Then V (S, I, t) is the solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S

+
S

K

K∑

i=1

δ (t− ti)
∂V

∂I
− rV = 0, 0 ≤ S <∞, 0 ≤ I <∞, t ≤ T,

V (S, I, T ) = max (±(A− E), 0)

= max (±(I − E), 0) , 0 ≤ S <∞, 0 ≤ I <∞,

where the “+” and “−” in ± correspond to the call and put options, re-

spectively. Let η =
I − E

S
, W =

V

S
. In this case, the first three relations
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in the set of expressions (4.24) are still true and
∂V

∂I
=

∂W

∂η
. Also, from

V (S, I, T ) = max (±(I − E), 0), we have

W (η, T ) = max (±η, 0) .

Therefore, W (η, t) satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r) η +
1

K

K∑

i=1

δ (t− ti)

]
∂W

∂η

−D0W = 0, −∞ < η <∞, t ≤ T,

W (η, T ) = max (±η, 0) , −∞ < η <∞.

(8.55)

Suppose t1 = 0 and let tK+1 = T > tK ; then the problem can be solved as
follows. Starting with fK+1,w = max(±η, 0), for i = K + 1,K, · · · , 2, succes-
sively, solve the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W

∂t
+ 1

2σ
2η2

∂2W

∂η2
+ (D0 − r) η

∂W

∂η
−D0W = 0,

−∞ < η <∞, t+i−1 < t < t−i ,

W (η, t−i ) = fi,w(η), −∞ < η <∞

(8.56)

and obtain W (η, t−i−1) from W (η, t+i−1) by the jump condition

W
(
η, t−i

)
=W

(

η +
1

K
, t+i

)

. (8.57)

We want to solve this problem as an initial-value problem on a finite
domain. Thus, we introduce the following transformation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
η

|η|+ Pm
,

τ = T − t,

W (η, t) = (|η|+ Pm)u(ξ, τ),

(8.58)

where Pm > 0. From the expression (8.58), we have

sign(ξ) = sign(η), |ξ| ≤ 1, |η| = Pm|ξ|
1− |ξ| , η =

Pmξ

1− |ξ| , |η|+ Pm =
Pm

1− |ξ| ,

and
dξ

dη
=

|η|+ Pm − η · sign(η)
(|η|+ Pm)2

=
Pm

(|η|+ Pm)2
=

(1− |ξ|)2
Pm

.
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Because

∂W

∂t
= −(|η|+ Pm)

∂u

∂τ
= − Pm

1− |ξ|
∂u

∂τ
,

∂W

∂η
=

∂

∂η
[(|η|+ Pm)u] = sign(η)u+ (η + |Pm|)∂u

∂ξ

dξ

dη

= sign(ξ)u+ (1− |ξ|)∂u
∂ξ
,

∂2W

∂η2
=

∂

∂ξ

[

(1− |ξ|)∂u
∂ξ

+ sign(ξ)u

]
dξ

dη
=

(1− |ξ|)3
Pm

∂2u

∂ξ2
,

from the PDE for W we have

Pm
1− |ξ|

∂u

∂τ
=
σ2Pmξ

2(1− |ξ|)
2

∂2u

∂ξ2

+

[

(D0 − r)
Pmξ

1− |ξ|

] [

sign(ξ)u+ (1− |ξ|)∂u
∂ξ

]

−D0
Pm

1− |ξ|u

or

∂u

∂τ
=
σ2ξ2(1− |ξ|)2

2

∂2u

∂ξ2
+ (D0 − r)ξ(1− |ξ|)∂u

∂ξ

+ [(D0 − r)|ξ| −D0]u, −1 < ξ < 1, 0 ≤ τ.

Thus, under this transformation, the problem (8.56) becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
=

1

2
σ2ξ2(1− |ξ|)2 ∂

2u

∂ξ2
+ (D0 − r)ξ(1− |ξ|)∂u

∂ξ

− [r|ξ|+D0(1− |ξ|)]u, −1 ≤ ξ ≤ 1, τ+i < τ < τ−i−1,

u(ξ, τ+i ) =
1− |ξ|
Pm

fi,w

(
Pmξ

1− |ξ|

)

,−1 ≤ ξ ≤ 1.

(8.59)

Here we have used the following relation:

u(ξ, τ+i ) =
W
(
η, t−i

)

|η|+ Pm
=

fi,w(η)

|η|+ Pm
=

1− |ξ|
Pm

fi,w

(
Pmξ

1− |ξ|

)

.

At ξ = 0, the PDE in the problem (8.59) degenerates into

∂u

∂τ
= −D0u.

Thus, the solution at ξ = 0 can be determined alone. Therefore, the problem
(8.59) can be divided into two problems:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
=

1

2
σ2ξ2(1− ξ)2

∂2u

∂ξ2
+ (D0 − r)ξ(1− ξ)

∂u

∂ξ

− [rξ +D0(1− ξ)]u, 0 ≤ ξ ≤ 1, τ+i < τ < τ−i−1,

u(ξ, τ+i ) =
1− ξ

Pm
fi,w

(
Pmξ

1− ξ

)

, 0 ≤ ξ ≤ 1

(8.60)

and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
=

1

2
σ2ξ2(1− |ξ|)2 ∂

2u

∂ξ2
+ (D0 − r)ξ(1− |ξ|)∂u

∂ξ

− [r|ξ|+D0(1− |ξ|)]u, −1 ≤ ξ ≤ 0, τ+i < τ < τ−i−1,

u(ξ, τ+i ) =
1− |ξ|
Pm

fi,w

(
Pmξ

1− |ξ|

)

,−1 ≤ ξ ≤ 0.

(8.61)

Letting ξ1 = −ξ and u1(ξ1, τ) = u(ξ, τ), we have |ξ| = ξ1 for any ξ ∈ [−1, 0]

and ξ
∂u

∂ξ
= ξ1

∂u1
∂ξ1

. Thus, the problem (8.61) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u1
∂τ

=
1

2
σ2ξ21(1− ξ1)

2 ∂
2u1
∂ξ21

+ (D0 − r)ξ1(1− ξ1)
∂u1
∂ξ1

− [rξ1 +D0(1− ξ1)]u1, 0 ≤ ξ1 ≤ 1, τ+i < τ < τ−i−1,

u1(ξ1, τ
+
i ) =

1− ξ1
Pm

fi,w

(
−Pmξ1
1− ξ1

)

, 0 ≤ ξ1 ≤ 1.

(8.62)

The formulation of the two problems are the same as the problem (8.1). Thus,
using the scheme (8.47), we can obtain u(ξ, τ−i−1) from u(ξ, τ+i ) for −1 ≤ ξ ≤ 1.

In order to have u(ξ, τ+i−1) from u(ξ, τ−i−1) for −1 ≤ ξ ≤ 1, we need to use the
jump condition:

u
(
ξ, τ+i

)
=

∣
∣
∣
Pmξ
1−|ξ| +

1
K

∣
∣
∣+ Pm

∣
∣
∣
Pmξ
1−|ξ|

∣
∣
∣+ Pm

u

⎛

⎝

Pmξ
1−|ξ| +

1
K

∣
∣
∣
Pmξ
1−|ξ| +

1
K

∣
∣
∣+ Pm

, τ−i

⎞

⎠ , (8.63)

which is another version of the jump condition (8.57) if the function u(ξ, τ)
is used instead of the function W (η, t). It is not difficult to rewrite the jump
condition (8.57) into the jump condition (8.63), which is left as a portion of
Problem 9. As soon as we have u(ξ, T+) when τ1 = T , that is, t1 = 0, we can
find

V (S, 0, 0) = SW (−E/S, 0) = S (E/S + Pm)u

(
−E/S

E/S + Pm
, T

)

.

Because
dξ

dη
=

(1− |ξ|)2
Pm

> 0, when η varies from −∞ to ∞, ξ varies from

−1 to 1 monotonically. Thus, ξ(η) < ξ(η + 1/K) for any η; that is,
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ξ(η) =
η

|η|+ Pm
< ξ

(

η +
1

K

)

=
η +

1

K

|η + 1

K
|+ Pm

=

Pmξ
1−|ξ| +

1
K

∣
∣
∣
Pmξ
1−|ξ| +

1
K

∣
∣
∣+ Pm

.

Consequently, when ξ varies from 0 to 1,
Pmξ
1−|ξ|+

1
K

| Pmξ
1−|ξ|+

1
K |+Pm

varies from
1/K

1/K + Pm

to 1, and when ξ varies from −1 to 0,
Pmξ
1−|ξ|+

1
K

| Pmξ
1−|ξ|+

1
K |+Pm

varies from −1 to

1/K

1/K + Pm
. For an average price call option, we need to solve problems (8.60)

and (8.62) from τ+i to τ−i−1 and then use condition (8.63) for ξ ∈ [−1, 1],
i = K +1,K, · · · , 2, successively.2 For an average rate put option, u(ξ, 0) = 0
for ξ ∈ [0, 1], and so the solution of the problem (8.60) with the jump condition

Table 8.7. Prices of average price put options with discrete sampling

(T = 1, S = 100, r = 0.05, D0 = 0, σ = 0.2)

E Monthly Weekly Daily

90.0000 0.7861 0.6929 0.6694

92.5000 1.2239 1.1092 1.0800

95.0000 1.8162 1.6840 1.6501

97.5000 2.5823 2.4392 2.4023

100.0000 3.5345 3.3888 3.3512

102.5000 4.6771 4.5378 4.5020

105.0000 6.0068 5.8823 5.8506

107.5000 7.5132 7.4107 7.3850

110.0000 9.1810 9.1055 9.0871

Table 8.8. Prices of average price call options with discrete sampling

(T = 1, S = 100, r = 0, D0 = 0, σ = 0.2)

E Monthly Weekly Daily Continuously

90.0000 11.2304 11.0853 11.0487 11.0426

92.5000 9.3506 9.1760 9.1315 9.1240

95.0000 7.6595 7.4610 7.4102 7.4016

97.5000 6.1708 5.9566 5.9015 5.8922

100.0000 4.8888 4.6685 4.6118 4.6022

102.5000 3.8091 3.5922 3.5365 3.5271

105.0000 2.9194 2.7143 2.6618 2.6529

107.5000 2.2019 2.0148 1.9672 1.9592

110.0000 1.6350 1.4701 1.4284 1.4215

2In this case, the problem (8.60) with the jump condition (8.63) can be solved
independently and have an analytic solution (see Andreasen [3], Zhu [90], or Prob-
lem 32 in Chap. 2).
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Table 8.9. Comparison between two sampling-daily-average price call options

(T = 1, S = 100, r = 0, D0 = 0, σ = 0.2)

Money spent in the Money spent in the
case with E = 100 case with E = 90

A ≥ 100 104.61 > 101.05

100 > A > 96.44 4.61 +A > 101.05

A = 96.44 101.05 = 101.05

96.44 > A ≥ 90 4.61 +A < 101.05

90 > A 4.61 +A < 11.05 +A

(8.63) is zero. Thus, in order to obtain u

(
−E/S

E/S + Pm
, T

)

, we only need to

solve the problem (8.62) and to use the jump condition (8.63) alternatively.
In Sect. 4.3.7, we have given some results on European average price

options with discrete sampling. Here we give more results for the European
average rate call and put options obtained by the method described here. In
Table 8.7 for the cases with sampling monthly, weekly, or daily, for S = 100,
the values of the average price put options with T = 1, r = 0.05, D0 =
0, σ = 0.2 are listed. In Table 8.8 for the cases with sampling monthly,
weekly, or daily, for S = 100, the values of the average price call options
with T = 1, r = 0, D0 = 0, σ = 0.2 are given. Here we assume that there are
12months, 52weeks, 360 days per year, which are not real. The error of the
results given in the table should be around 0.0001 because when a finer mesh
is used, the difference between the new value and the value given here is less
than 0.0001. In Table 8.8, the results of options with continuous sampling are
also given. From that table, we can see that the difference between the option
price with sampling daily and the option price with sampling continuously is
about 0.01.

Suppose that a company will buy a certain amount of some raw material
every day during the next year. Let A be the average price of the raw material
the company paid during this period. Usually, the company does not want A
to be much higher than the price today S. It is clear that the company cannot
control the price on the market. However, if the company purchases certain
units of sampling-daily-average price call options on such a raw material, then
the company will get some money from exercising these call options when A
is higher than E, so it will be guaranteed that the money spent on this raw
material will be less than a certain level. From Table 8.8, we can see that when
today’s price of the raw material is $100, the company needs to pay $4.61 in
order to buy a sampling-daily-average price call option with E = 100. Thus,
the money spent on each unit of the raw material is $ 4.61 + 100 = $104.61
if A ≥ 100 or $ 4.61 + A if A < 100, which means that the money spent on
each unit of the raw material is not greater than $104.61. When an option
with E = 90 is purchased, the money spent on each unit of the raw material
is not greater than $11.05 + 90 =$101.05 because the premium for the call
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option for this case is $11.05 (see Table 8.8). Which choice is better? This is
determined by what you want. When the option with E = 90 is purchased,
the maximum money spent is lower than that for the case with E = 100, but
the money spent for lower A is higher than that for the case with E = 100.
Table 8.9 shows you this fact.

Table 8.10. Double average call option prices on four meshes (D0 < r)

(T = 1, S = 100, r = 0.05, D0 = 0, σ = 0.2,
T1s = 0.1, T1e = 0.5, K1 = 5, Ts = 0.6, Te = 1.0, K = 5, Pm = 0.4,

the payoff = max

(
I

K
− I1

K1
, 0

)

, and the exact solution = 5.872133 · · · )
CPU Results without CPU

Mesh sizes Results |Errors| times extrapolation |Errors| times

200× 20 5.870320 0.001813 0.0042 5.869883 0.002250 0.0020

400× 40 5.871861 0.000272 0.0094 5.871367 0.000766 0.0077

800× 80 5.872133 0.000000 0.0282 5.871942 0.000191 0.0203

1, 600× 160 5.872126 0.000007 0.0928 5.872080 0.000053 0.0745

Table 8.11. Double average call option prices on four meshes (D0 > r)

(T = 1, S = 100, r = 0.05, D0 = 0.1, σ = 0.2,
T1s = 0.1, T1e = 0.5, K1 = 5, Ts = 0.6, Te = 1.0, K = 5, Pm = 0.2,

the payoff = max

(
I

K
− I1

K1
, 0

)

, and the exact solution = 3.244201 · · · )
CPU Results without CPU

Mesh sizes Results |Errors| times extrapolation |Errors| times

200× 20 3.241122 0.003079 0.0052 3.235091 0.009110 0.0030

400× 40 3.244162 0.000039 0.0116 3.241894 0.002307 0.0084

800× 80 3.244263 0.000062 0.0321 3.243671 0.000530 0.0217

1, 600× 160 3.244196 0.000005 0.1009 3.244064 0.000137 0.0813

Some Results of Double Average Call Options. For European-style
other Asian and lookback options with discrete sampling, the method is simi-
lar. That is, the problem is solved by numerical schemes for partial differential
equations and interpolation alternately. For details of the methods, see the pa-
pers by Andreasen [3] and Zhu [90]. Some results for such options are given
in Sects. 4.3.7 and 4.4.7. Here we give some results for two double average
call options, to show the effect of the extrapolation technique and how the
approximate solutions converge to exact solutions in Tables 8.10 and 8.11. In
Table 8.10 D0 = 0.1 > r = 0.05, and in Table 8.11 D0 = 0 < r = 0.05. There
are 10 samplings at t = 0.1, 0.2, · · · , 1.0. From these tables, we can see that
the extrapolation technique greatly improves the rate of convergence and the
accuracy, with about 25% extra CPU time.
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8.2.3 Projected Direct Methods for the LC Problem

As seen in Sect. 8.2.1, using implicit finite-difference methods for European
options is straightforward. From Sect. 8.1.2, if an American option is formu-
lated as a linear complementarity problem, then there is not a big difference
between explicit finite-difference methods for European and American op-
tions. The implicit methods for American options are also only a little more
complicated than the methods for European options.

Suppose we use a direct method to solve the system related to an American
call option, which is formulated as the problem (8.8). Assuming that the
partial differential equation holds everywhere and using scheme (8.47), we
have a system in the form:

amv̄
n+1
m−1 + bmv̄

n+1
m + cmv̄

n+1
m+1 = qnm, m = 0, 1, 2, · · · ,M. (8.64)

Actually, v̄n+1
−1 and v̄n+1

M+1 do not appear in the system because

a0 = cM = 0.

It is clear that the solution of the system (8.64) may not be the solution of the
American option. However, we can find the solution of the American option
with the aid of the system (8.64).

Similar to what we did in Sect. 6.2.1, if we let

u0 = b0, y0 = qn0 , (8.65)

and

um = bm − cm−1am
um−1

, ym = qnm − ym−1am
um−1

, m = 1, 2, · · · ,M, (8.66)

then the equations in system (8.64) can be rewritten as

v̄n+1
m =

ym − cmv̄
n+1
m+1

um
, m =M,M − 1, · · · , 0, (8.67)

where the relation with m =M actually is

v̄n+1
M =

yM

uM

because cM = 0. From the derivation, we know that the relations in the
system (8.67) with m = 0, 1, · · · ,Mf are equivalent to the equations in the
system (8.64) with m = 0, 1, · · · ,Mf , where Mf is any positive integer less
than or equal to M . Obviously, v̄n+1

m may not be greater than or equal to
max(2ξm−1, 0). Therefore, we need to find the value of the American option by

vn+1
m = max

(
v̄n+1
m , 2ξm − 1, 0

)
, m = 0, 1, · · · ,M (8.68)
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Table 8.12. American call option (PIFDI)

(r = 0.05, σ = 0.2, D0 = 0.1, S = E = 100, T = 1,
and the exact solution is C = 5.92827717 · · · )

Meshes Results by Eq. (8.68) |Errors| Results by Eq. (8.69) |Errors|
50× 50 5.752424 0.175853 5.760096 0.168181

100× 100 5.878708 0.049569 5.884210 0.044067

200× 200 5.914582 0.013695 5.917403 0.010874

400× 400 5.924045 0.004132 5.925541 0.002736

800× 800 5.926810 0.001467 5.927574 0.000703

1, 600× 1, 600 5.927706 0.000571 5.928097 0.000180

3, 200× 3, 200 5.928032 0.000245 5.928230 0.000047

or by

vn+1
m = max

(
ym − cmv

n+1
m+1

um
, 2ξm − 1, 0

)

, m =M,M − 1, · · · , 0, (8.69)

successively. This method is referred to as the projected implicit finite-
difference method I (PIFDI).

Is there any difference between the formulae (8.68) and (8.69)? The answer
is yes. Let us explain this. As we know from Sect. 3.3.1, there is only one free
boundary for a call option. It is natural to expect that when the formula
(8.68) is used, there exists an Mf so that vn+1

m = v̄n+1
m for m = 0, 1, · · · ,Mf

and vn+1
m = max(2ξm− 1, 0) for m =Mf +1,Mf +2, · · · ,M . When v̄n+1

m are
determined, we assume all the equations in the system (8.64) to hold. Even
though form =Mf+1,Mf+2, · · · ,M we do not take v̄n+1

m as solutions so that
the constraint condition is satisfied, vn+1

m , m = 0, 1, · · · ,Mf are determined
under the assumption of all the equations in the system (8.64) holding. For
the formula (8.69), the situation is different. We assume that for m =M,M−
1, · · · ,Mf + 1, vn+1

m = max(2ξm − 1, 0) and for m =Mf ,Mf − 1, · · · , 0,

vn+1
m =

ym − cmv
n+1
m+1

um
.

In this case, we only use the relations in the expression (8.67) with m =
Mf ,Mf − 1, · · · , 0, which are equivalent to the equations in the system (8.64)
with m = Mf ,Mf − 1, · · · , 0. Therefore, we only assume that the equations
in the system (8.64) hold for m = Mf ,Mf − 1, · · · , 0. Consequently, this is
closer to what the situation should be. In Table 8.12, results obtained by the
formulae (8.68) and (8.69) and their errors are listed. You can see that on the
same mesh, the error of the results obtained by the formula (8.68) is greater
than the formula (8.69) and that the smaller the mesh size, the greater the
difference. Even though the formula (8.68) can be used to obtain the price
of American options, it brings some error that can be avoided if the formula
(8.69) is used. However, if the free boundary is far away from S = E, then in
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the region S ≈ E, the difference of the solutions obtained by the two direct
methods is very small.

When an implicit scheme is used to solve problem (8.9), we need to choose
the lower and upper bounds of the computational domain and give some
artificial boundary conditions at these two boundaries because we cannot do
computation on an infinite domain. Let the lower and upper bounds be xl
and xu. For a call option, we assume u(xl, τ̄) = 0 and u(xu, τ̄) = g(xu, τ̄), and
for a put option, u(xl, τ̄) = g(xl, τ̄) and u(xu, τ̄) = 0. As soon as we set these
conditions, the problem (8.9) can be discretized and solved in the same way
as described above for the problem (8.8). This method is referred to as the
projected implicit finite-difference method II (PIFDII).

In Tables 8.13 and 8.14, the values of American call and put options
obtained by PIFDII are given. When we do computation, we take

xl = ln(Sl/E)− |(r −D0 − σ2/2)T |

and

xu = ln(Su/E) + |(r −D0 − σ2/2)T |.

For the call option, Sl = 20 and Su = 230, and for the put, Sl = 80 and
Su = 350. There, we also give a solution with an error less than 10−8 in each
table, which is obtained by the SSM given in Chap. 9. Therefore, we can have
the errors of the solutions on different meshes. The CPU time used is also
given, so you can have a notion about the performance of the method.

Table 8.13. American call option (PIFDII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100, T = 1,
and the exact solution is C = 9.94092345 · · · )

Meshes Results |Errors| CPU(s)

100× 25 9.928528 0.012396 0.0025

200× 50 9.937831 0.003093 0.0096

400× 100 9.940151 0.000773 0.0400

800× 200 9.940729 0.000194 0.1700

1, 600× 400 9.940875 0.000048 0.6700

Table 8.14. American put option (PIFDII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100, T = 1,
and the exact solution is P = 5.92827717 · · · )

Meshes Results |Errors| CPU(s)

100× 25 5.922275 0.006002 0.0025

200× 50 5.926394 0.001883 0.0094

400× 100 5.927654 0.000623 0.0400

800× 200 5.928050 0.000227 0.1700

1, 600× 400 5.928188 0.000089 0.6700
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8.2.4 Projected Iteration Methods for the LC Problem

As we know, there are two types of methods to solve a linear system: iteration
methods and direct methods. Similarly, there are two ways to solve the system
related to American options. We discussed direct methods in the last subsec-
tion. Now let us study an iteration method. We still consider call options and
use the system (8.64). This problem can be solved by a method similar to
the SOR method for a system of linear equations given in Sect. 6.2.2. Any
equation in the system (8.64) can be rewritten as

v̄n+1
m = (1− ω)v̄n+1

m +
ω

bm

(
qnm − amv̄

n+1
m−1 − cmv̄

n+1
m+1

)
,

where ω is a constant. The value of the American option vn+1
m satisfies the

relation above if v̄n+1
m > max(2ξm−1, 0) or equal to max(2ξm−1, 0) otherwise.

Therefore, for vn+1
m we have the following relations:

vn+1
m = max

(

(1− ω)vn+1
m +

ω

bm

(
qnm − amv

n+1
m−1 − cmv

n+1
m+1

)
, 2ξm − 1, 0

)

,

m = 0, 1, · · · ,M.

We use an iteration method for finding its solution. Let v
(k)
m be the k-th

iteration of vn+1
m , and the relation above can be rewritten in the following

iteration form:

v(k+1)
m = max

(

(1− ω)v(k)m +
ω

bm

(
qnm − amv

(k+1)
m−1 − cmv

(k)
m+1

)
, 2ξm − 1, 0

)

,

(8.70)

where ω ∈ (0, 2). Let v
(0)
m = vnm for m = 0, 1, · · · ,M . As soon as we have v

(k)
m

for all m, the (k + 1)-th iterative value of vn+1
m can be obtained by equality

(8.70) for m = 0, 1, · · · ,M successively, starting from k = 0. When

1

M + 1

M∑

m=0

(
v(k)m − v(k+1)

m

)2
≤ ε2,

where ε2 is a small number given according to the required accuracy, we can

stop the iteration because for any m, v
(k)
m and v

(k+1)
m are very close to each

other. This method is referred to as the projected successive over relaxation
method I (PSORI). If the formulation (8.9) is adopted, after setting the values
of xl, xu and the artificial boundary conditions, we can have a similar method
and the corresponding method is referred to as PSORII. The details of the
PSORII are left for readers to write as Problem 14.

In Tables 8.15 and 8.16, the prices of American call and put options on
several meshes obtained by PSORII are given. The corresponding errors, CPU
times, and ε2 are also listed. All the parameters are the same as those given in
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Table 8.15. American call option (PSORII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100,
and the exact solution is C = 9.94092345 · · · )

Meshes Results |Errors| CPU(s) ε2

100× 25 9.929351 0.011573 0.0240 10−8

200× 50 9.938037 0.002887 0.1100 0.5 · 10−9

400× 100 9.940202 0.000721 0.5300 0.25 · 10−10

800× 200 9.940743 0.000181 2.7500 0.125 · 10−11

1, 600× 400 9.940878 0.000046 20.000 0.6125 · 10−13

Table 8.16. American put option (PSORII)

(r = 0.1, σ = 0.2, D0 = 0.05, S = E = 100,
and the exact solution is P = 5.92827717 · · · )

Meshes Results |Errors| CPU(s) ε2

100× 25 5.922349 0.005928 0.0180 10−8

200× 50 5.926410 0.001867 0.0960 0.5 · 10−9

400× 100 5.927651 0.000626 0.6100 0.25 · 10−10

800× 200 5.928048 0.000230 5.2200 0.125 · 10−11

1, 600× 400 5.928188 0.000089 46.300 0.6125 · 10−13

Tables 8.13 and 8.14. The only difference between the results here and there
is the way we solved the system.

Comparing Tables 8.13 and 8.14 with Tables 8.15 and 8.16 shows that
the CPU time here is longer. This implies that the cost of PSORII method
is greater than the PIFDII method for this case. However, we need to point
out that for most of multi-dimensional problems, the iteration methods may
be better than the direct methods even though here we show that the direct
method is better than the iteration method for one-dimensional problems.

8.2.5 Comparison with Explicit Methods

Explicit methods are usually very simple and very easy to use. The main prob-
lem of explicit methods is the stability requirement. For the explicit method
(8.6), the stability requirement is

ᾱ ≤ 1

2
or Δτ̄ ≤ 1

2
Δx2.

Thus, if the accuracy of the solution requires a small Δx, then a much smaller
Δτ̄ must be taken in order to satisfy the stability condition, which slows
down the computation. For implicit methods, no such restrictions are needed,
and we can let Δτ̄/Δx = constant. Therefore, if we require higher accuracy,
an implicit scheme will give a better performance. This can be seen in the
following way.

Suppose we solve the problem (8.5) by the explicit scheme (8.6) and the
implicit scheme (7.9). Assume that for the scheme (8.6) Δτ̄ = αΔx2, where
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α is a constant not greater than 1/2 and that for the scheme (7.9), Δτ̄ =
βΔx, where β is a constant. For the explicit scheme (8.6), the amount of
computational work is

We =
ae

Δτ̄Δx
=

ae
αΔx3

,

and the error is

E = beτ̄Δτ̄ + bexΔx
2 = (beτ̄α+ bex)Δx

2,

where ae, beτ̄ , and bex are three parameters related to scheme (8.6) and the
solution. From these two relations for the scheme (8.6), we have the relation
between the amount of work and the error required:

We =
ae[beτ̄α+ bex]

3/2

α
E−3/2.

For the scheme (7.9),

Wi =
ai

Δτ̄Δx
=

ai
βΔx2

and

E = biτ̄Δτ̄
2 + bixΔx

2 = (biτ̄β
2 + bix)Δx

2,

where ai, biτ̄ , and bix are three parameters related to scheme (7.9) and the
solution. Here, we assume that a direct method is used for solving the linear
system. Therefore, the relation between the amount of work and the error
required is

Wi =
ai(biτ̄β

2 + bix)

β
E−1.

Usually, ai is greater than ae because for the scheme (7.9) a linear system
needs to be solved at each time step. Consequently, when E is not too small,
it is possible that Wi is greater than We for the same E, which means that
the scheme (8.6) is better than the scheme (7.9). When the solution is much
smoother in the τ̄ -direction than in the x-direction, the scheme (7.9) might
be better than the scheme (8.6) even if E is not very small. This is because in
this case for the scheme (7.9) we can choose a big β such that biτ̄β

2 is close
to bix, which makes Wi smaller, but for the scheme (8.6) we cannot take this
advantage because of the stability requirement. However, when E is small
enough, then Wi must be less than We. This can be seen from comparing
Tables 8.2 and 8.3 with Tables 8.13 and 8.14. The tables show that for the
American call problem with the parameters given there, in order to reach an
error about 0.003, the CPU time for the scheme (8.6) is about 0.06 and the
CPU time for the scheme (7.9) is about 0.01.
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8.2.6 Two-Asset Options

Sometimes two assets are involved in an option problem. In this case, usually
a two-dimensional problem needs to be solved. As shown in Sect. 4.5.4, pricing
a two-asset option can be reduced to solving Eq. (4.79) with final condition
(4.80). This problem is a final-value problem. In order to use the scheme
(7.46), we need to introduce a new variable τ = T − t and modify Eq. (4.79)
into an equation with independent variables ξ, θ and τ . Let us call the new
equation the modified Eq. (4.79). The modified Eq. (4.79) can be discretized
by scheme (7.46). For a two-asset call option, the final condition is

V (S1, S2, T ) = max(E1 − S1, E2 − S2, 0),

and for a two-asset put option, the final condition is

V (S1, S2, T ) = max(S1 − E1, S2 − E2, 0).

Under the coordinate system (ξ, θ, t) introduced in Sect. 4.5.4, letting τ =T−t,
and instead of V , using w =

V

S + Pm
as a dependent variable, S being

ξPm
1− ξ

,

these two conditions become

w(ξ, θ, 0) =
1

√(
S1

P1

)2

+

(
S2

P2

)2

+ Pm

max (E1 − S1, E2 − S2, 0) (8.71)

Table 8.17. Prices of a European two-asset call option

(r = 0.02, D01 = 0.01, D02 = 0.01, σ1 = 0.2,
σ2 = 0.15, ρ = 0.8, E1 = 100, E2 = 95, and T = 1)

S1 S2 Price

95.0 90.0 6.76

97.5 92.5 8.22

100.0 95.0 9.84

102.5 97.5 11.61

105.0 100.0 13.52

Table 8.18. Prices of a European two-asset put option

(r = 0.02, D01 = 0.01, D02 = 0.01, σ1 = 0.2,
σ2 = 0.15, ρ = 0.8, E1 = 100, E2 = 95, and T = 1)

S1 S2 Price

95.0 90.0 11.29

97.5 92.5 9.78

100.0 95.0 8.41

102.5 97.5 7.19

105.0 100.0 6.11
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Fig. 8.7. Values of a European two-asset put option
(r = 0.02, D01 = 0.01, D02 = 0.01, σ1 = 0.2,

σ2 = 0.15, ρ = 0.8, E1 = 100, E2 = 95, and T = 1)

and

w(ξ, θ, 0) =
1

√(
S1

P1

)2

+

(
S2

P2

)2

+ Pm

max (S1 − E1, S2 − E2, 0) , (8.72)

respectively. Here P1, P2, and Pm are parameters, and

S1 = P1
ξPm
1− ξ

cos θ,

S2 = P2
ξPm
1− ξ

sin θ.

About the value of the parameters P1, P2, Pm, we can let

P1 = E1, P2 = E2, Pm = 1.

Using the initial condition (8.71) or (8.72) and scheme (7.46) obtained by
discretizing the modified Eq. (4.79), we can get the price of a European two-
asset call or put option. Some values of such options are listed in Tables 8.17
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and 8.18. These results are obtained by a 400× 600× 400 mesh, which means
that

Δξ = 1/400, Δθ = 1/600, Δτ = 1/400.

Computation is also done on the 800 × 1, 200 × 800 mesh; the results to two
decimal places are the same except for the case of the put option with S1 = 95
and S2 = 90. For this case, on the 800×1, 200×800 mesh, the result is 11.28,
and on the 400× 600× 400 mesh, the result is 11.29. In order to give readers
an idea as to what solutions of two-asset put options look like, the value of a
two-asset put option for (S1, S2) ∈ [0, 200]× [0, 200] is shown in Fig. 8.7.

8.3 Singularity-Separating Method

In this section, we will discuss how to make numerical methods more efficient.
Generally speaking, the smoother the solution, the smaller the truncation er-
ror. Therefore, if the solution is smooth, even on a coarse mesh, the numerical
result is still quite good. Suppose that the solution we need to find is not very
smooth but has a certain type of singularity caused by the final condition.
Also, we assume that there is an analytic expression that satisfies the same
final condition and the same equation or a similar equation. If both the final
conditions and the equations are the same, their singularities caused by the
final conditions are the same, and the difference between them is a smooth
function; if only the final conditions are the same, they possess similar singu-
larities, and the difference between them is usually smoother than the solution
we need to find. In both cases, we can first compute the difference using nu-
merical methods and then have our solution by adding the analytic expression
and the difference together. Such a method or technique will be referred to
as singularity-separating method (SSM), or singularity-separating technique,
in this book. Because computing the difference is quite efficient, we can have
the solution quite efficiently. Of course, there is some extra work in order to
compute the difference. However, from the examples we are going to show,
such a way can truly make numerical methods more efficient. In this section,
we will give some details of the method for European double moving barrier
options, European vanilla option with variable volatilities, Bermudan options,
European Parisian options, European average price options, two-factor vanilla
options, and two-factor convertible bonds with D0 = 0. Indeed, the method
can be used for many more cases, including multi-factor derivative securities.

8.3.1 Barrier Options

If the option has a fixed barrier and σ, r, and D0 are constants, we can find
analytic solutions of barrier options (see Sect. 4.2). However, if the option has
two moving barriers, analytic solutions may not exist even if σ, r, and D0 are
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constants, and we may need to rely on numerical methods for pricing such an
option. Here, we discuss how to make numerical methods more efficient.

The price V (S, t) of a double moving barrier call option with rebates sat-
isfies the equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

V (S, T ) = max(S − E, 0), f(T ) ≤ S ≤ g(T ),

V (f(t), t) = 0, 0 ≤ t ≤ T,

V (g(t), t) = g(t)− E, 0 ≤ t ≤ T,

(8.73)

where f(t) and g(t) are the locations of the lower and upper barriers with

f(t) < E and g(t) > E,

and we assume that at the lower barrier, there is no rebate and at the upper
barrier, the rebate is

g(t)− E.

Because the derivative of the payoff function max(S−E, 0) is discontinuous
at S = E, the solution V (S, t) at t ≈ T and S ≈ E is not very smooth.
Therefore, the error of numerical solutions in the region around t = T and
S = E is relatively large compared with that in the region far away from this
point. In order to make the numerical solution better, we introduce a new
function

V (S, t) = V (S, t)− c(S, t),

where c(S, t) is the price of the vanilla call option. Because c(S, t) also satisfies
the partial differential equation and the final condition in problem (8.73),
V (S, t) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

V (S, T ) = 0, f(T ) ≤ S ≤ g(T ),

V (f(t), t) = −c(f(t), t), 0 ≤ t ≤ T,

V (g(t), t) = g(t)−E− c(g(t), t), 0 ≤ t ≤ T.

(8.74)

The derivative of V (S, t) at t ≈ T and S ≈ E is very smooth, so the error
of the numerical solution of V (S, t) is usually smaller than that of V (S, t).
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Therefore, in order to get a better V (S, t), we can first obtain the numerical
solution of V (S, t) and then have V (S, t) by adding V (S, t) and c(S, t) together.
We refer to this procedure as the singularity-separating method (SSM) or the
singularity-separating technique for European barrier options. The reason is as
follows. The derivative of V (S, t) is discontinuous at t = T and S = E. Thus,
we say that V (S, t) has some weak singularity. The function V (S, t), which
will be determined numerically, is smooth. Therefore, the weak singularity has
been “separated” from the numerical computation. The CPU time of getting
V (S, t) is slightly longer than that of getting V (S, t) directly because c(f(t), t)
and c(g(t), t) need to be computed in order to get V (S, t). Because the error
is smaller, we can usually expect better performance, i.e., we can usually
expect to have the same accuracy by spending less CPU time or to spend the
same CPU time for a better accuracy. Consequently, the singularity-separating
technique can usually improve the performance.

Both V (S, t) and V (S, t) are solutions of the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ū

∂t
+

1

2
σ2S2 ∂

2ū

∂S2
+ (r −D0)S

∂ū

∂S
− rū = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

ū(S, T ) = f̄1(S), f(T ) ≤ S ≤ g(T ),

ū(f(t), t) = b̄l(t), 0 ≤ t ≤ T,

ū(g(t), t) = b̄u(t), 0 ≤ t ≤ T.

(8.75)

The only difference between the two cases is the functions in the final condition
and in the boundary conditions. Thus, no matter whether the singularity-
separating technique is used, we need a numerical method for problem (8.75)
in order to have V (S, t).

Problem (8.75) is a typical moving boundary problem. In order to convert
it into a problem with fixed boundaries and transfer the final condition to an
initial condition, we use the following transformation:

⎧
⎨

⎩

η =
S − f(t)

g(t)− f(t)
,

τ = T − t.

(8.76)

Let

u(η, τ) = u(η(S, t), T − t) = ū(S, t),

F (τ) = F (T − t) = f(t),

G(τ) = G(T − t) = g(t).
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Because

∂ū

∂t
=
∂u

∂η

∂η

∂t
+
∂u

∂τ

∂τ

∂t

= − 1

g − f

[
df

dt
+ η

(
dg

dt
− df

dt

)]
∂u

∂η
− ∂u

∂τ

=
1

G− F

[
dF

dτ
+ η

(
dG

dτ
− dF

dτ

)]
∂u

∂η
− ∂u

∂τ
,

∂ū

∂S
=

1

G(τ)− F (τ)

∂u

∂η
,

∂2ū

∂S2
=

1

[G(τ)− F (τ)]2
∂2u

∂η2
,

u(η, τ) is the solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= Lη1u, 0 ≤ η ≤ 1 0 ≤ τ ≤ T,

u(η, 0) = f1(η), 0 ≤ η ≤ 1,

u(0, τ) = bl(τ), 0 ≤ τ ≤ T,

u(1, τ) = bu(τ), 0 ≤ τ ≤ T,

(8.77)

where

Lη1 =
1

2

(
Sσ

G− F

)2
∂2

∂η2
+

{
S

G− F
(r −D0)

+
1

G− F

[
dF

dτ
+ η

(
dG

dτ
− dF

dτ

)]}
∂

∂η
− r,

f1(η) = f̄1 (F (0) + η[G(0)− F (0)]) ,

bl(τ) = b̄l(T − τ),

bu(τ) = b̄u(T − τ).

The problem (8.77) can be solved by explicit finite-difference schemes or
implicit finite-difference schemes and even by pseudo-spectral methods. Here,
we give some results to explain the effect of this technique if implicit finite-
difference methods are used.

We have solved an identical problem by scheme (7.6) in two different ways:
with and without SSM. In Table 8.19, the results, the errors, and the CPU time
in seconds for four meshes are given. There, N ×M in the column “Meshes”
stands for a mesh that has N + 1 nodes in the t-direction (the τ -direction)
and M + 1 nodes in the S-direction (the η-direction). The lower and upper
knock-out boundaries are

f(t) = 0.9Ee−0.1t and g(t) = 1.6Ee0.1t.
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Table 8.19. Implicit methods with and without the SSM

(S = 95, T = 1, E = 100, σ = 0.25, r = 0.1, D0 = 0,
f(t) = 0.9Ee−0.1t, g(t) = 1.6Ee0.1t, the rebate = g(t)− E,

and the exact solution is 6.8441468 · · · )
Without SSM With SSM

Meshes Solution |Errors| CPU Solution |Errors| CPU

12× 48 6.845973 0.001826 0.00039 6.843292 0.000855 0.00049

25× 100 6.844623 0.000476 0.0019 6.844205 0.000058 0.0019

50× 200 6.844187 0.000040 0.0062 6.844163 0.000016 0.0063

100× 400 6.844167 0.000020 0.0221 6.844150 0.000003 0.0221

There, the results both with and without SSM are given. In order to give
errors, we have to find the exact solution. To our knowledge, no analytic
solution for such a problem has been found. Therefore, we take a very accurate
approximate solution as an exact solution. For this case, the exact solution
is 6.8441468 · · · (here the eight digits are correct). From there, we can see
that the result with SSM is clearly better than without SSM on the same
mesh whereas the CPU time difference between the two cases is very small.
Therefore, the advantage of the singularity-separating technique is obvious for
this case. As we know, if the error ≈ aΔτα = a(T/N)α (suppose Δτ/Δη =
constant), then we say that the convergence rate is O(Δτα). From Table 8.19,
we can see that when N is doubled, the error of the implicit finite-difference
method with the singularity-separating technique decreases by a factor of
about 4. This implies that the convergence rate of this method is O(Δτ2).

In what follows, we give an intuitive explanation on why the singularity-
separating method can improve the numerical results. The functions computed
numerically for the methods with and without the singularity-separating tech-
nique are plotted in Figs. 8.8 and 8.9 respectively. In each figure, there are six
curves, which correspond to t = 0, 0.2, 0.4, 0.6, 0.8, 1.0. In Fig. 8.9, the func-
tions are not as smooth as those in Fig. 8.8, especially, the derivative of the
function for t = 1 in Fig. 8.9 is discontinuous. Therefore, when the singularity-
separating technique is used, the truncation is smaller.

When there is no rebate at the upper barrier, such a method can still
improve the performance. This is left for the reader to study (see Problem 16).
For the case discussed in this subsection, the singularity is removed completely.
For the European options with discrete dividends and some other cases, the
singularity can also be completely removed in the same way. In many other
cases, the singularity cannot be completely separated but can be made much
weaker. In the next several subsections, we will discuss how the SSM works
for other cases.
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8.3.2 European Vanilla Options with Variable Volatilities

When σ is a constant, for European vanilla options we can get their prices
by the Black–Scholes formulae. However, it seems that the assumption of σ
being a constant needs to be modified. One of the modifications is to let σ
be a function of S. In this case, in order to evaluate an option, we usually
need to solve a partial differential equation problem numerically. In order to
overcome the problem caused by the discontinuous derivative in the payoff,
we can do the following.

Let us consider call options. Their prices c(S, t) are solutions of the
problem:

⎧
⎪⎨

⎪⎩

∂c

∂t
+

1

2
σ2(S)S2 ∂

2c

∂S2
+ (r −D0)S

∂c

∂S
− rc = 0, 0 ≤ S, t ≤ T,

c(S, T ) = max(S − E, 0), 0 ≤ S.

Suppose that cE(S, t;σ(E)) is the price of the option with the volatility at
S = E, σ(E), i.e., cE(S, t;σ(E)) satisfies

⎧
⎪⎨

⎪⎩

∂cE
∂t

+
1

2
σ2(E)S2 ∂

2cE
∂S2

+ (r −D0)S
∂cE
∂S

− rcE = 0, 0 ≤ S, t ≤ T,

cE(S, T ) = max(S − E, 0), 0 ≤ S.

Let c̄(S, t) = c(S, t)−cE(S, t;σ(E)). Then, c̄(S, t) is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂c

∂t
+

1

2
σ2(S)S2 ∂

2c

∂S2
+ (r −D0)S

∂c

∂S
− rc = f(S, t),

0 ≤ S, t ≤ T,

c̄(S, T ) = 0, 0 ≤ S,

(8.78)

where

f(S, t) =
1

2

[
σ2(E)− σ2(S)

]
S2 ∂

2cE
∂S2

=
1

2σ(E)
√
2π(T − t)

[
σ2(E)− σ2(S)

]
Se−(D0(T−t)+d21/2) (8.79)

and

d1 =

{

ln(S/E) +

[

r −D0 +
1

2
σ2(E)

]

(T − t)

}/[
σ(E)

√
T − t

]
.

This problem is defined on an infinite domain. In order to convert it into a
problem on a finite domain with a bounded solution, we use the following
transformation:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ =
S

S + E
,

τ = T − t,

c(S, t) = (S + E)V (ξ, τ).

Finally, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

− [r(1− ξ) +D0ξ]V + f̄(ξ, τ), 0 ≤ ξ ≤ 1, 0 ≤ τ,

V (ξ, 0) = 0, 0 ≤ ξ ≤ 1,

(8.80)

where
σ̄(ξ) = σ(ξE/(1− ξ)),

f̄(ξ, τ) =
−f(S, t)
S + E

=
1

2σ(E)
√
2πτ

[
σ̄2(ξ)− σ2(E)

]
ξe−(D0τ+d

2
1/2)

and

d1 =

{

ln
ξ

1− ξ
+

[

r −D0 +
1

2
σ2(E)

]

τ

}/
[
σ(E)

√
τ
]
.

In order to do some computation, we need the function σ(S) or σ̄(ξ). For
the Japanese yen–U.S. dollar exchange rate, we determine the function by
the method in Sect. 6.3.2. In order to avoid approximating a function on an
infinite domain, a new variable ξ = S/(S + Pm) is introduced. Because the
exchange rate is around 0.01, we set Pm = 0.01. Using the data of 1990–
2000 from the market (see the curve in Fig. 1.5), we find the maximum and
minimum values, Smax = 0.01232741616 and Smin = 0.00625390870. The
corresponding values of ξ are

ξl =
Smin

Smin + Pm
= 0.384763371, ξu =

Smax

Smax + Pm
= 0.552120141.

Assume that the function σ̄(ξ) is in the form:

σ̄(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cl + al

[

1−
(
ξ

ξl

)200
]

, 0 ≤ ξ < ξl,

a0 + a1ξ + a2ξ
2 + a3ξ

3, ξl ≤ ξ ≤ ξu,

cu + au

[

1−
(

1− ξ

1− ξu

)200
]

, ξu ≤ ξ ≤ 1,
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where cl, al, a0, a1, a2, a3, cu, au are eight parameters to be determined.
Taking the data of 1990–2000 from the market, using the method described
in Sect. 6.3.2 with g(ξ) ≡ 1 and setting M = 7, we find the values of a0, a1,
a2, a3:

a0 = −10.7848, a1 = 72.8005, a2 = −161.134, a3 = 118.208.

Then, requiring the continuity of the function at ξ = ξl and ξ = ξu up to the
first derivative yields

cl = 0.104667, al = −0.00250664, cu = 0.185335, au = 0.00665520.

In Fig. 8.10, this function is plotted as a solid line, and the circles are the
volatilities for different S obtained by statistics.
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Fig. 8.10. The volatility function for Japanese yen–U.S. dollar exchange rate

As soon as we have this function, we can evaluate the price of options on
the Japanese yen–U.S. dollar exchange rate. Discretizing problem (8.80) by the
difference scheme (7.6) and solving the linear system by the LU decomposition,
we can find the price. In Fig. 8.11, the solid line gives the value of the European
call option. There, we also compare different models. Another model is to let
the volatility be a constant. Using the same data, we find σ = 0.1165. The
dashed line in Fig. 8.11 gives the option price for this model obtained by
the Black–Scholes formula. The maximum difference of the results between
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the two models is more than 30% if S ∈ [0.0115, 0.0125]. If we assume σ to
take the value of σ(E) (the result for this case is given by the dotted line in
Fig. 8.11), the maximum difference is more than 8% for S ∈ [0.0115, 0.0125].
Therefore, among the results obtained by using different models, there is quite
a big difference. In our computation for the model with variable volatility, the
numerical method is quite efficient because we are calculating the difference
numerically. For this example problem, on a 60×4 mesh for the option price at
S = E , the error is 6 × 10−5E when the SSM is used and 1 × 10−3E when
the SSM is not used.

Finally, we would like to point out that unlike the barrier options, in this
case the weak singularity is not removed completely. However, the singularity
is weakened so the SSM still succeeds as shown above. Let us explain this

matter as follows. Because
∂2cE
∂S2

has some singularity at the point T = t

and S = E, the function f(S, t) =
1

2

[
σ2(E)− σ2(S)

]
S2 ∂

2cE
∂S2

also has some

singularity. However, because the term σ2(E)−σ2(S) is equal to zero at S = E,

the singularity of f(S, t) at that point is much weaker than that of
∂2cE
∂S2

. In

Figs. 8.12 and 8.13, f(S, t) used in this example and
∂2cE
∂S2

for t = T − 0.01,

T − 0.001, T − 0.0001 are plotted, respectively. Noticing the maximum value
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of |f(S, t)| is about 3.5 × 10−4 and the value of
∂2cE
∂S2

could be very large,

reaching 2× 104 at t = T − 0.0001, we can see that the singularity of f(S, t)

at that point is truly weaker than that of
∂2cE
∂S2

. Because the singularity of

f(S, t) is quite weak and the singularity of c̄(S, t) is weaker than f(S, t), the
function c̄(S, t) is quite smooth. This is an important reason to guarantee the
success of the SSM.

8.3.3 Bermudan Options

A Bermudan option is an option that can be exercised early, but only on
predetermined dates. It is clear that the holder of a Bermudan option has more
rights than the holder of a European option and less rights than the holder
of an American option, just like the fact that Bermuda is situated between
America and Europe. This is how the option got its name. If we use projected
methods, it is easy to price. Here, we suggest some more efficient methods.
Assume the expiry of the option to be T and suppose the option can be
exercised at time t = T1, T2, · · · , TK = T , where Tk = kT/K, k = 1, 2, · · · ,K.

Let us consider a Bermudan call option with D0 > 0 and a vari-
able σ(S), and denote its value by Cb(S, t). Define T0 = 0 and assume
T0 < T1 < · · · < TK . Then, Cb(S, t) is a solution of K successive problems:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Cb
∂t

+
1

2
σ2(S)S2 ∂

2Cb
∂S2

+ (r −D0)S
∂Cb
∂S

− rCb = 0,

0 ≤ S, Tk−1 < t < Tk,

Cb(S, T
−
k ) = max(Cb(S, T

+
k ),max(S − E, 0)), 0 ≤ S,

(8.81)

k = K,K − 1, · · · , 1
with Cb(S, T

+
K ) = max(S − E, 0). Clearly, at t = TK , Cb(S, T

−
K ) = max(S −

E, 0) for S ∈ [0,∞). At t = Tk, k = K − 1,K − 2, · · · , 1, the whole interval
[0,∞) is divided into two parts [0, S∗

k ] and (S∗
k ,∞). On [0, S∗

k ], Cb(S, T
+
k ) ≥

max(S − E, 0) and on (S∗
k ,∞), Cb(S, T

+
k ) < max(S − E, 0). Because these

functions are nonnegative and continuous, S∗
k ≥ E and Cb(S

∗
k , T

+
k ) = S∗

k −E.
Therefore, the final condition of each problem above can be written as

Cb(S, T
−
k ) =

⎧
⎨

⎩

Cb(S, T
+
k ), if 0 ≤ S ≤ S∗

k ,

S − E, if S∗
k < S.

Because a European call option with a constant volatility has a closed-
form solution, just like what we did in the last subsection, we consider the
difference between the Bermudan call option and the European call option
with a constant volatility σ(E) and denote the difference by
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C̃b = Cb − cE(S, t;σ(E)).

It is clear that C̃b satisfies the partial differential equation in problem (8.78).
At t = Tk, we have

C̃b(S, T
−
k ) =

⎧
⎨

⎩

C̃b(S, T
+
k ), if 0 ≤ S ≤ S∗

k ,

S − E − cE (S, Tk;σ(E)) , if S∗
k < S.

Therefore, C̃b is the solution of the following K successive problems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C̃b
∂t

+
1

2
σ2(S)S2 ∂

2C̃b
∂S2

+ (r −D0)S
∂C̃b
∂S

− rC̃b = f(S, t),

0 ≤ S, Tk−1 < t < Tk,

C̃b(S, T
−
k ) = max

(
C̃b(S, T

+
k ),max(S − E, 0)− cE(S, Tk;σ(E))

)
,

0 ≤ S,

(8.82)

k = K,K − 1, · · · , 1
with C̃b(S, T

+
K ) = 0. This problem can be solved in a way similar to

what we have used to find the solution of a European option with dis-
crete dividends in Sect. 8.2.2. The only difference is that using jump con-
ditions should be replaced by taking the maximum between C̃b(S, T

+
k ) and

max(S − E, 0)− cE(S, t;σ(E)) at these specified times.
In many cases, this method can be further improved by doing the following.

For k = K − 1,K − 2, · · · , 1, let us define K − 1 polynomials of degree J :
fk(S) = a0,k+a1,kS+ · · ·+aJ,kS

J on [S∗∗
k , S

∗
k ], which satisfies the conditions

fk(S
∗
k) = S∗

k −E and fk(S
∗∗
k ) = 0. Besides satisfying these two conditions, we

choose these coefficients a0,k, a1,k, · · · , aJ,k and S∗∗
k ∈ [0, S∗

k ] such that the
norm of the function

⎧
⎨

⎩

Cb(S, T
−
k ), if 0 ≤ S < S∗∗

k ,

Cb(S, T
−
k )− fk(S), if S

∗∗
k ≤ S < S∗

k

is as small as possible. It is clear that the function

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if 0 ≤ S < S∗∗
k ,

fk(S), if S∗∗
k ≤ S < S∗

k ,

S − E, if S∗
k ≤ S

is a good approximation to Cb(S, T
−
k ). For k = K, if we define S∗

k = S∗∗
k = E,

then the function defined above is equal to Cb(S, T
−
K ). Therefore, we assume

the function above to be defined for k = K,K − 1, · · · , 1.
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Consider the problems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cb
∂t

+
1

2
σ2(S∗

k)S
2 ∂

2cb
∂S2

+ (r −D0)S
∂cb
∂S

− rcb = 0,

0 ≤ S, Tk−1 < t < Tk,

cb(S, T
−
k ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if 0 ≤ S < S∗∗
k ,

fk(S), if S∗∗
k ≤ S < S∗

k ,

S − E, if S∗
k ≤ S.

(8.83)

Noticing that for any integer n, we have (see Problem 39 in Chap. 2)

1√
2πb

∫ d

c

Sne−(ln(S/a)+b
2/2)

2
/2b2 dS

S

= ane(n
2−n)b2/2

[

N

(
ln(d/a) + (1/2− n)b2

b

)

−N
(
ln(c/a) + (1/2− n)b2

b

)]

,

we can find a closed-form solution of problem (8.83) (see Problem 48 in
Chap. 2)

cb(S, t) =

J∑

n=0

{
an,kS

ne[(n−1)r−nD0+(n−1)nσ2(S∗
k)/2](Tk−t)

×
[
N
(
d∗k − nσ(S∗

k)
√
Tk − t

)
−N

(
d∗∗k − nσ(S∗

k)
√
Tk − t

)]}

+Se−D0(Tk−t)
[
1−N

(
d∗k − σ(S∗

k)
√
Tk − t

)]
− Ee−r(Tk−t)[1−N(d∗k)],

(8.84)

where t ∈ (Tk−1, Tk) and

d∗k =

[

ln(S∗
k/S)−

(

r −D0 −
1

2
σ2(S∗

k)

)

(Tk − t)

]/(
σ(S∗

k)
√
Tk − t

)
,

d∗∗k =

[

ln(S∗∗
k /S)−

(

r −D0 −
1

2
σ2(S∗

k)

)

(Tk − t)

]/(
σ(S∗

k)
√
Tk − t

)
.

It is easy to see that for t ∈ (TK−1, TK ], cb represents the price of the European
option with a constant volatility σ(S∗) = σ(E) because S∗ = E at time t = T ,
that is, cb(S, t) is equal to cE(S, t;σ(E)) for this period.

At the point S = S∗
k and t = Tk, the singularity of the solution of the

problem (8.83) is very close to that of the problem (8.81). Therefore, the
function

Cb = Cb − cb
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is smooth near this point for t ∈ (Tk−1, Tk) and its value is quite small if
Tk − Tk−1 is not big. This function satisfies the following equation and con-
dition:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Cb
∂t

+
1

2
σ2(S)S2 ∂

2Cb
∂S2

+ (r −D0)S
∂Cb
∂S

− rCb =

1

2
(σ2(S∗

k)− σ2(S))S2 ∂
2cb
∂S2

, 0 ≤ S, Tk−1 < t < Tk,

Cb(S, T
−
k ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cb(S, T
−
k ), if 0 ≤ S < S∗∗

k ,

Cb(S, T
−
k )− fk(S), if S

∗∗
k ≤ S < S∗

k ,

0, if S∗
k ≤ S.

(8.85)

Therefore, in order to have Cb(S, T
+
k−1), we can first find Cb(S, T

+
k−1) by

solving the problem (8.85) from t = Tk to Tk−1 and then obtain Cb(S, T
+
k−1)

by
Cb(S, T

+
k−1) = Cb(S, T

+
k−1) + cb(S, T

+
k−1).

Because for a variable σ the partial differential equation in the problem
(8.85) is nonhomogeneous and the right-hand side is quite complicated, the
amount of computation of solving the problem (8.85) is greater than solving
the problem (8.81) on the same mesh. However, in order to have a solution
with the same accuracy, the number of mesh points needed for the problem
(8.85) is much smaller than the problem (8.81). It is expected that in order to
reach the same accuracy, solving the problem (8.85) is better. If σ = constant,
then the problem (8.85) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Cb
∂t

+
1

2
σ2S2 ∂

2Cb
∂S2

+ (r −D0)S
∂Cb
∂S

− rCb = 0,

0 ≤ S, Tk−1 < t < Tk,

Cb(S, T
−
k ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cb(S, T
−
k ), if 0 ≤ S < S∗∗

k ,

Cb(S, T
−
k )− fk(S), if S

∗∗
k ≤ S < S∗

k ,

0, if S∗
k ≤ S.

(8.86)

The partial differential equation in the problem (8.86) is a homogeneous equa-
tion. Hence, the amount of computation of solving the problem (8.86) is very
close to that of solving the original problem (8.81).

Sometimes, the singularities at the points S = S∗
k and t = Tk, k =

K − 1,K − 2, · · · , 1, are quite weak and far away from the region S ≈ E.
Therefore, these singularities only cause small errors in the region S ≈ E.
Also, [S∗∗

k , S
∗
k ] is not a small interval, so fk(S) may not be a good approxima-

tion to Cb(S, T
−
k ). In this case, using the method described at the beginning

of this subsection might be better.
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Table 8.20. Bermudan call option prices (r < D0)

(S = 100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, K = 4,
and the exact solution = 5.77654 · · · )

Implicit method SSM

Mesh sizes Results |Errors| CPU(s) Results |Errors| CPU(s)

24× 24 5.0474 0.7291 0.0002 5.8564 0.0799 0.0014

36× 36 5.4507 0.3258 0.0005 5.7788 0.0023 0.0019

48× 48 5.6143 0.1622 0.0008 5.7881 0.0116 0.0028

60× 60 5.6732 0.1033 0.0013 5.7845 0.0080 0.0037

72× 72 5.7069 0.0696 0.0018 5.7833 0.0068 0.0048

84× 84 5.7332 0.0433 0.0024 5.7833 0.0068 0.0061

96× 96 5.7362 0.0403 0.0032 5.7809 0.0044 0.0073

108× 108 5.7479 0.0286 0.0039 5.7807 0.0042 0.0086

120× 120 5.7543 0.0222 0.0049 5.7797 0.0032 0.0101

132× 132 5.7599 0.0166 0.0059 5.7804 0.0039 0.0119

144× 144 5.7592 0:0173 0.0073 5.7800 0.0035 0.0134

156× 156 5.7649 0.0116 0.0082 5.7799 0.0034 0.0152

168× 168 5.7674 0.0091 0.0096 5.7790 0.0025 0.0172

180× 180 5.7659 0.0106 0.0109 5.7784 0.0019 0.0190

Table 8.21. Bermudan call option prices (r > D0)

(S = 100, E = 100, T = 1, r = 0.1, D0 = 0.05, σ = 0.2, K = 12,
and the exact solution = 9.940918 · · · )

Implicit method SSM

Mesh sizes Results |Errors| CPU(s) Results |Errors| CPU(s)

24× 24 9.1488 0.7922 0.0003 9.9411 0.0002 0.0017

36× 36 9.6261 0.3148 0.0006 9.9410 0.0001 0.0026

48× 48 9.7704 0.1705 0.0011 9.9410 0.0001 0.0037

60× 60 9.8333 0.1076 0.0015 9.9409 0.0000 0.0049

72× 72 9.8667 0.0742 0.0020 9.9409 0.0000 0.0062

84× 84 9.8866 0.0543 0.0027 9.9409 0.0000 0.0075

96× 96 9.8995 0.0414 0.0034 9.9409 0.0000 0.0090

108× 108 9.9082 0.0327 0.0043 9.9409 0.0000 0.0105

120× 120 9.9145 0.0264 0.0052 9.9409 0.0000 0.0121

In what follows, we give some examples. Consider a Bermudan call option
with r = 0.05, D0 = 0.1, and Tk = k/4, k = 1, 2, 3, 4. The price of the option
is evaluated by two different ways. One is to solve problem (8.81) by the
implicit method (7.6) and the other is to take J = 6 and solve problem (8.86)
by difference scheme (7.6). For S = 100, the results obtained by the two ways,
the errors, and CPU times needed on a Pentium III 800MHz computer are
given in Table 8.20. From there, we can see that for this case in order to have
a result with an error about 10−2 (the corresponding relative error to E is
10−4), CPU time needed is about 0.003 s if the singularity-separating method
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described here is used, and CPU time needed is about 0.01 s if the singularity-
separating method is not used. Therefore, even though on an identical mesh,
the CPU time needed for the SSM is much longer, overall the SSM is still fast
for a fixed accuracy.
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Fig. 8.14. Prices of American, Bermudan, and European call options
(E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4)

The next example is a Bermudan option with r = 0.1, D0 = 0.05, and
Tk = k/12, k = 1, 2, · · · , 12. The other parameters are the same as those for
the first example. In this case, the singularities at the points S = S∗

k and
t = Tk, k = K − 1,K − 2, · · · , 1, are weak and we choose cE(S, t;σ(E)) as
cb and solve problem (8.82) by the difference scheme (7.6). The results for
S = 100 are given in Table 8.21. When the SSM is not used, the errors are
close to those in the first example. However, when the SSM is used, the errors
are even much less than those in the first example due to the very small value
of Cb.

In Fig. 8.14, the price of the first Bermudan call option is given as a
function of S. The prices of the American and European call options are
also given there. The figure shows that the price of the Bermudan option
is less than the price of the American option and greater than the price of
the European option, and it is quite close to the price of the corresponding
American option. The financial reason of this fact is as follows. As has been
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pointed out at the beginning of this subsection, the holder of a Bermudan
option has more rights than a holder of a European option and less rights
than a holder of an American option. Thus, the money paid by the holder of
the Bermudan option should be greater than the price of a European option
and less than the price of an American option.

The symmetry relations also hold for Bermudan options, which is left for
readers to prove. Therefore, we only need to study numerical methods for
Bermudan call options. In order to obtain the price of a put option, we first
solve a corresponding call option problem and then find the price of the put
option by the symmetry relation.

8.3.4 European Parisian Options

Let us take a European Parisian up-and-out call option with continuous
sampling as an example to show how the singularity-separating method works
for Parisian options.

Suppose cp is the price of the Parisian up-and-out call option. From
Sect. 4.2.4, we see that cp(S, td, t) is the solution of problem (4.6):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂cp
∂t

+
1

2
σ2S2 ∂

2cp
∂S2

+ (r −D0)S
∂cp
∂S

+H(S −Bu)
∂cp
∂td

− rcp = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td, 0 ≤ t ≤ T,

cp(S, td, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max(S − E, 0), 0 ≤ S < Bu, td = 0,

S − E, Bu ≤ S, 0 ≤ td < Td,

0, Bu ≤ S, td = Td,

cp(Bu, td, t) = cp(Bu, 0, t), td ∈ (0, Td), 0 ≤ t ≤ T,

cp(S, Td, t) = 0, Bu ≤ S, 0 ≤ t ≤ T.

Let c(S, t) be the price of the European vanilla call option and define

c̄p(S, td, t) = cp(S, td, t)− c(S, t).

Because c(S, t) does not depend on td, it is clear that c(S, t) also satisfies the
partial differential equation in the problem (4.6). Therefore, c̄p(S, td, t) is the
solution of the following problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c̄p
∂t

+
1

2
σ2S2 ∂

2c̄p
∂S2

+ (r−D0)S
∂c̄p
∂S

+H(S−Bu)
∂c̄p
∂td

− rc̄p = 0,

0 ≤ S, td = 0 and Bu ≤ S, 0 < td ≤ Td, 0 ≤ t ≤ T,

c̄p(S, td, T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ S < Bu, td = 0,

0, Bu ≤ S, 0 ≤ td < Td,

E − S, Bu ≤ S, td = Td,

c̄p(Bu, td, t) = c̄p(Bu, 0, t), td ∈ (0, Td), 0 ≤ t ≤ T,

c̄p(S, Td, t) = −c(S, t), Bu ≤ S, 0 ≤ t ≤ T.

(8.87)

Because cp(S, td, t) and c(S, t) have the same singularity at the point S = E
and t = T , c̄p is quite smooth near S = E and t = T , that is, the singularity
has been separated. Therefore, it is expected that on the same mesh, the error
of the numerical results obtained by solving the problem (8.87) is smaller than
that obtained by solving the problem (4.6). Tables 8.22 and 8.23 (see [58]) give
the results and the relative errors when the SSM is not used and when it is
used, respectively. From there, we can see that the results with the SSM are
much better than the results without the SSM.

Problem (8.87) is a two-dimensional problem. However, it can be solved by
a modified one-dimensional method. Let us explain why this problem can be
solved like a one-dimensional problem. Because there is no second derivative

in the td-direction, the coefficient of
∂c̄p
∂td

is positive or zero, and the boundary

condition is given at td = Td, for a fixed time t∗ the solution of the problem
can be obtained from td = Td to td = 0 successively. Suppose the value of
c̄p for t = t∗ and td ≥ t∗d has been obtained. We want to find the value of
c̄p for t = t∗ and td = t∗d − Δtd with a positive Δtd. Because the value at
t = t∗ and td = t∗d is known, the value at t = t∗ and td = t∗d − Δtd can be
found by solving a one-dimensional problem on an (S, t)-plane. This can be
done by various methods. After transforming the problem to one defined on

Table 8.22. Numerical solutions for Parisian up-and-out call options

(r = 0.1, D0 = 0.05, σ = 0.25, E = 100, T = 0.5, Bu = 150, and Td = 0.02)

S = 100 S = 120 S = 150

Meshes Solutions |Errors| Solution |Errors| Solution |Errors|
200× 100 7.4139 1.08 · 10−3 15.3107 7.79 · 10−3 5.0574 3.73 · 10−2

300× 150 7.4067 1.08 · 10−4 15.2886 6.33 · 10−3 4.9389 1.30 · 10−2

400× 200 7.4059 – 15.1924 – 4.8754 –
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Table 8.23. Numerical solutions for Parisian up-and-out call options (with SSM)

(r = 0.1, D0 = 0.05, σ = 0.25, E = 100, T = 0.5, Bu = 150, and Td = 0.02)

S = 100 S = 120 S = 150

Meshes Solutions |Errors| Solution |Errors| Solution |Errors|
200× 100 7.3943 1.76 · 10−4 15.2016 5.13 · 10−4 4.9232 2.09 · 10−2

300× 150 7.3936 8.16 · 10−5 15.1947 5.92 · 10−5 4.8251 5.18 · 10−4

400× 200 7.3930 – 15.1938 – 4.8226 –

a finite domain by the transformation (2.17), the partial differential equation
can be discretized by scheme (7.6) at interior points, and the right boundary
point and the solution can be found from these finite-difference equations.
The results given in this subsection are obtained by using a method that is
a little different from what we have described here. For details, see the paper
[58] by Luo and Wu.

When σ is a function of S, the SSM method can still be used. However, a
European vanilla call option has a closed-form solution only when σ is a con-
stant. Therefore, we do not have a closed-form solution for the corresponding
European vanilla call option. In this case, we can consider the difference be-
tween the Parisian call option and the vanilla call option with a constant
volatility σ(E). This difference satisfies a nonhomogeneous equation (for de-
tails, see Sect. 8.3.2), but we still can expect that the SSM will make the
computation more efficient.

8.3.5 European Average Price Options

In the last few subsections, we always computed the difference between an op-
tion and the corresponding vanilla option with a constant volatility. However,
other functions can also be used as long as they have a similar singularity,
and even they may be better. In this subsection, we give such an example.

From Eq. (4.20), we know that if sampling is done continuously, then the
European-style Asian option may be modeled by the following partial differ-
ential equation

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+
S

T

∂V

∂I
− rV = 0, (8.88)

where

I =
1

T

∫ t

0

S(τ)dτ.

Let us consider an average price call option whose final condition is

V (S, I, T ) = max(I − E, 0). (8.89)
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Zhang3 in his paper [88] proposed to solve the problem in the following way.
By letting (see Sect. 4.3.4)

η =
I − E

S
and W (η, t) =

V (S, I, t)

S
,

the two-dimensional equation (8.88) can be converted into a one-dimensional
equation:

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r)η +
1

T

]
∂W

∂η
−D0W = 0

and the final condition becomes

W (η, T ) = max(η, 0).

Because the equation
dη

dt
= (D0 − r)η +

1

T
has solutions in the form

ηe−(r−D0)(T−t) +
1

(r −D0)T

(
1− e−(r−D0)(T−t)

)
= constant,

introducing the transformation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ = ηe−(r−D0)(T−t) +
1

(r −D0)T

(
1− e−(r−D0)(T−t)) ,

τ = T − t,

W (η, t) = e−D0τf(ξ, τ),

(8.90)

we can get rid of the first derivative of W and the function W , and we arrive
at an initial value problem of a heat equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f

∂τ
− 1

2
σ2

[

ξ − 1

(r −D0)T
(1− e−(r−D0)τ )

]2
∂2f

∂ξ2
= 0,

−∞ < ξ <∞, 0 ≤ τ ≤ T,

f(ξ, 0) = max(ξ, 0), −∞ < ξ <∞.

(8.91)

The initial condition f(ξ, 0) = max(ξ, 0) is not smooth at the point ξ = 0.
To separate the singularity, the problem that is obtained by setting ξ = 0 in
the above equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f̃0
∂τ

− σ2

2(r −D0)2T 2

(
1− e−(r−D0)τ

)2 ∂2f̃0
∂ξ2

= 0,

−∞ < ξ <∞, 0 ≤ τ ≤ T,

f̃0(ξ, 0) = max(ξ, 0), −∞ < ξ <∞

(8.92)

3In his paper, he assumes D0 = 0. However, it is not difficult to generalize that
result to the case with D0 
= 0.
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is considered. Introducing a new variable τ1(τ) by

dτ1 =
σ2

2(r −D0)2T 2

(
1− e−(r−D0)τ

)2
dτ with τ1(0) = 0,

which gives

τ1(τ) =

∫ τ

0

σ2

2(r −D0)2T 2

(
1− e−(r−D0)τ

)2
dτ

=
σ2

4(r −D0)3T 2

[
2(r −D0)τ + 4e−(r−D0)τ − e−2(r−D0)τ − 3

]
,

(8.93)

and letting f0(ξ, τ1) = f̃0 (ξ, τ(τ1)), we obtain the following parabolic problem

⎧
⎪⎨

⎪⎩

∂f0
∂τ1

− ∂2f0
∂ξ2

= 0, −∞ < ξ <∞, 0 ≤ τ1 ≤ τ1(T ),

f0(ξ, 0) = max(ξ, 0), −∞ < ξ <∞.

(8.94)

The solution of this problem is given by

f0(ξ, τ1) =

∫ ∞

0

ξT
2
√
πτ1

e−(ξT−ξ)2/4τ1dξT = ξN

(
ξ√
2τ1

)

+

√
τ1
π
e−ξ

2/4τ1 .

(8.95)

This analytic formula gives quite a good approximation to the prices of Eu-
ropean average price call options. That is, the value of the difference between
f(ξ, τ) and f0 (ξ, τ1(τ)),

f1(ξ, τ) = f(ξ, τ)− f0 (ξ, τ1(τ)) , (8.96)

is quite small. If we want to have more accurate results, we need to find
f1(ξ, τ). This function satisfies the following equation and initial condition:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂f1
∂τ

− 1

2
σ2

[

ξ − 1

(r −D0)T

(
1− e−(r−D0)τ

)
]2
∂2f1
∂ξ2

=
σ2ξ e−ξ

2/4τ1

4
√
πτ1

×
[

ξ − 2

(r −D0)T

(
1− e−(r−D0)τ

)
]

, −∞ < ξ <∞, 0 ≤ τ ≤ T,

f1(ξ, 0) = 0, −∞ < ξ <∞.
(8.97)

The function f1(ξ, τ) is smooth, and its value is quite small compared with
f(ξ, τ), so in order to get a very good numerical solution, we need only a very
coarse mesh. In this way, we can find quite accurate solutions very fast. The
problem (8.97) is defined on an infinite domain. In order to convert the infinite
domain into a finite domain, we can introduce the following transformation:
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ξ1 =
1

2

(
ξ

|ξ|+ Pm
+ 1

)

and u(ξ1, τ) =
f1(ξ, τ)

|ξ|+ Pm
.

After this transformation, the problem for u(ξ1, τ) is defined on [0, 1]× [0, T ]
in the (ξ1, τ)-space and can be solved by scheme (7.6).

We can also take the difference between the price of a European-style
Asian option and the price of a European vanilla option and do the numerical
computation. However, the performance might not be as good as the method
here. The reason is that the difference in the method given here is smaller
than the difference between the price of a European-style Asian option and
the price of a European vanilla option. This can be roughly explained as
follows. Consider the following linear parabolic problem:

⎧
⎪⎨

⎪⎩

∂u

∂τ
= a2

∂2u

∂ξ2
+ a1

∂u

∂ξ
+ a0u+ g(ξ, τ), −∞ < ξ <∞, 0 ≤ τ ≤ T,

u(ξ, 0) = f(ξ), −∞ < ξ <∞.

Suppose that ũ is an approximate solution by a numerical method on a certain
mesh. It is clear that v = u/10 is the solution of the problem:

⎧
⎪⎨

⎪⎩

∂v

∂τ
= a2

∂2v

∂ξ2
+ a1

∂v

∂ξ
+ a0v + g(ξ, τ)/10, −∞ < ξ <∞, 0 ≤ τ ≤ T,

v(ξ, 0) = f(ξ)/10, −∞ < ξ <∞.

Let ṽ be the approximate solution of this problem by using the same method
on the same mesh. Just like the relation between u and v, we have ṽ = ũ/10.
Thus, v − ṽ = (u − ũ)/10, which means that the smaller the solution, the
smaller the error of approximate solutions. Therefore, when we choose an
analytic solution, we should let the analytic solution be as close to the desired
solution as possible. In this way, we can have a better performance.

8.3.6 European Two-Factor Options

In Sect. 8.3.2, we pointed out that the assumption of the volatility being
constant might need to be modified. One possible modification is to let the
volatility be a given function of S. In Sect. 8.3.2, we discussed how to solve such
a problem. Another possible modification is to allow the volatility to be a ran-
dom variable, i.e., the volatility is stochastic. This subsection is devoted to
studying how to solve this problem. In this case, option prices depend on two
random variables. In what follows, such an option will be referred to as a
two-factor option, and we will call an option a one-factor option if only the
stock price is considered as a random variable.

Now let us discuss how to evaluate quickly such a European vanilla option
or American vanilla option with D0 = 0. We assume that the asset price S and
the stochastic volatility are governed by the following two stochastic processes
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⎧
⎨

⎩

dS = μSdt+ σSdX1, 0 ≤ S,

dσ = p(σ, t)dt+ q(σ, t)dX2, σl ≤ σ ≤ σu,
(8.98)

where dX1 and dX2 are two Wiener processes. These two random variables
could be correlated and E[dX1dX2] = ρdt.

As we have seen in Sect. 2.4.1, in order to guarantee σ ∈ [σl, σu], p and q in
the model for the volatility need to satisfy the following reversion conditions:

⎧
⎨

⎩

p(σl, t)− q(σl, t)
∂q(σl, t)

∂σ
≥ 0,

q(σl, t) = 0

(8.99)

and ⎧
⎨

⎩

p(σu, t)− q(σu, t)
∂q(σu, t)

∂σ
≤ 0,

q(σu, t) = 0.

(8.100)

It is clear that if
∂q(σl, t)

∂σ
and

∂q(σu, t)

∂σ
are bounded, then the conditions

(8.99) and (8.100) are simplified into

⎧
⎨

⎩

p(σl, t) ≥ 0,

q(σl, t) = 0
(8.101)

and ⎧
⎨

⎩

p(σu, t) ≤ 0,

q(σu, t) = 0.
(8.102)

Suppose V (S, σ, t) is the value of an option depending on two random vari-
ables S and σ. From Sect. 2.3, such an option satisfies the following equation:

∂V

∂t
+ LS,σV = 0, (8.103)

where LS,σ is an operator defined by

LS,σ =
1

2
σ2S2 ∂2

∂S2
+ ρσSq

∂2

∂S∂σ
+

1

2
q2

∂2

∂σ2

+(r −D0)S
∂

∂S
+ (p− λq)

∂

∂σ
− r. (8.104)

Consider a two-factor European vanilla call option problem, and let its value
be c(S, σ, t). Because the volatility model satisfies the reversion conditions, no
boundary conditions need to be given at the boundaries σ = σl and σ = σu.
Therefore, the value of the two-factor European vanilla call option is the
solution of the following final-value problem:
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⎧
⎨

⎩

∂c

∂t
+ LS,σc = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

c(S, σ, T ) = max(S − E, 0), 0 ≤ S, σl ≤ σ ≤ σu.

(8.105)

In order to make the computed solution smoother, which will make nu-
merical methods more efficient, we let

c(S, σ, t) = c(S, σ, t)− c1(S, σ, t) (8.106)

on the entire computational domain. c1(S, σ, t) is the price of the one-factor
European vanilla call option, that is, the price of the European vanilla call op-
tion with a parameter σ. Here, we denote the value of this option by c1(S, σ, t)
instead of c(S, t) in order to indicate explicitly its dependence on σ and to
explain that it is the price of the one-factor model. From Sect. 2.6.5, we know
that its expression is given by

c1(S, σ, t) = Se−D0(T−t)N(d1)− Ee−r(T−t)N(d2),

where

N(z) =
1√
2π

∫ z

−∞
e−ξ

2/2dξ,

d1 =

[

ln
Se−D0(T−t)

Ee−r(T−t) +
1

2
σ2(T − t)

]/(
σ
√
T − t

)
,

d2 = d1 − σ
√
T − t.

Because c1(S, σ, t) satisfies the Black–Scholes equation, the difference c is the
solution of the following final-value problem:
⎧
⎨

⎩

∂c

∂t
+ LS,σc = f(S, σ, t), 0 ≤ S, σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

c(S, σ, T ) = 0, 0 ≤ S, σl ≤ σ ≤ σu,

(8.107)

where

f(S, σ, t) = −ρσSq ∂
2c1

∂S∂σ
− 1

2
q2
∂2c1
∂σ2

− (p− λq)
∂c1
∂σ

.

From the expressions of c1(S, σ, t), noticing

∂c1
∂S

= e−D0(T−t)N(d1),

∂d1
∂σ

=
√
T − t−

[

ln
Se−D0(T−t)

Ee−r(T−t) +
1

2
σ2(T − t)

]/

(σ2
√
T − t)

=
√
T − t− d1

σ
,

∂d2
∂σ

=
∂d1
∂σ

−
√
T − t = −d1

σ
,

N ′(z) =
1√
2π

e−z
2/2,
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we can easily find
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c1
∂σ

= Se−D0(T−t)N ′(d1)
∂d1
∂σ

− Ee−r(T−t)N ′(d2)
∂d2
∂σ

= S
√
T − t e−D0(T−t)N ′(d1),

∂2c1
∂σ2

= S
√
T − t e−D0(T−t)N ′′(d1)

∂d1
∂σ

= −S
√
T − t e−D0(T−t)d1N ′(d1)

∂d1
∂σ

,

∂2c1
∂S∂σ

= e−D0(T−t)N ′(d1)
∂d1
∂σ

.

(8.108)

As we see from the problem (8.105), the derivative of c(S, σ, t) with respect
to S is discontinuous at t = T and S = E. However, the problem (8.107) shows
the derivative of c(S, σ, t) with respect to S to be identically equal to zero at
t = T . Therefore, when a numerical method is used, the truncation error for
the problem (8.107) will be much smaller than the problem (8.105). This is
why we consider the formulation (8.107) instead of the formulation (8.105).

The final-value problem (8.107) is defined on an infinite domain. In order
to convert it into a problem on a finite domain, we introduce the following
transformation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

σ = σ,

τ = T − t,

u(ξ, σ, τ) =
c(S, σ, t)

S + Pm
.

(8.109)

In the {ξ, σ, τ}-space, we need to solve a problem on the domain [0, 1] ×
[σl, σu]× [0, T ]. This is a finite domain, and it is easy to construct numerical
methods to solve the problem on this domain. From the expression (8.109),
we have

c(S, σ, t) = (S + Pm)u(ξ, σ, τ) =
Pm
1− ξ

u(ξ, σ, τ) and
dξ

dS
=

(1− ξ)2

Pm
.

Therefore, among the derivatives of c and u, there are the following relations:

∂c

∂t
= − Pm

1− ξ

∂u

∂τ
,

∂c

∂S
= (1− ξ)

∂u

∂ξ
+ u,

∂c

∂σ
=

Pm
1− ξ

∂u

∂σ
,
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∂2c

∂S2
=

(1− ξ)3

Pm

∂2u

∂ξ2
,

∂2c

∂S∂σ
= (1− ξ)

∂2u

∂ξ∂σ
+
∂u

∂σ
,

∂2c

∂σ2
=

Pm
1− ξ

∂2u

∂σ2
.

Substituting them into the partial differential equation in the problem (8.107)
yields

∂u

∂τ
= a1

∂2u

∂ξ2
+ a2

∂2u

∂ξ∂σ
+ a3

∂2u

∂σ2
+ a4

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u+ a7,

where

a1 =
1

2
σ2ξ2(1− ξ)2, a2 = ρσqξ(1− ξ),

a3 =
1

2
q2, a4 = (r −D0)ξ(1− ξ),

a5 = p− (λ− ρσξ)q, a6 = −[r(1− ξ) +D0ξ],

a7 = −f(ξPm/(1− ξ), σ, T − τ)(1− ξ)/Pm

= ρσξq e−D0(T−t)N ′(d1)
∂d1
∂σ

− 1

2
q2ξ

√
T − t e−D0(T−t)d1N ′(d1)

∂d1
∂σ

+(p− λq)ξ
√
T − t e−D0(T−t)N ′(d1)

=
1√
2π
ξe−D0τ−d21/2 [q(

√
τ − d1/σ)(ρσ − q

√
τd1/2) + (p− λq)

√
τ ] .

Therefore, the problem (8.107) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂τ
= a1

∂2u

∂ξ2
+ a2

∂2u

∂ξ∂σ
+ a3

∂2u

∂σ2
+ a4

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u+ a7,

0 ≤ ξ ≤ 1, σl ≤ σ ≤ σu, 0 ≤ τ ≤ T,

u(ξ, σ, 0) = 0, 0 ≤ ξ ≤ 1, σl ≤ σ ≤ σu.

(8.110)

Once we have u(ξ, σ, τ), we can get the value of the two-factor European
call option by

c(S, σ, t) = c(S, σ, t) + c1(S, σ, t)

= (S + Pm)u

(
S

S + Pm
, σ, T − t

)

+ c1(S, σ, t).
(8.111)
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As we have pointed out in Sect. 2.4.4, when the reversion conditions (8.99)
and (8.100), and conditions (ii) and (iii) in Theorem 2.2 hold, it has been
proved that the final value problem (8.110) has a unique solution. In this
case it is not difficult to design a well-posed numerical method to solve this
problem.

The following is such a numerical method for problem (8.110). Let unm,i
be the approximate value of u at ξ = mΔξ, σ = σl + iΔσ, and τ = nΔτ ,
where Δξ = 1/M , Δσ = (σu−σl)/I, and Δτ = 1/N , M , I, N being integers.
This partial differential equation can be discretized by the following scheme.
If σ �= σl and σ �= σu, at a point (ξm, σi, τ

n+1/2) the partial differential equa-
tion in the problem (8.110) can be discretized by the following second-order
approximation:

un+1
m,i − unm,i

Δτ

=
a1

2Δξ2
(
un+1
m+1,i − 2un+1

m,i + un+1
m−1,i + unm+1,i − 2unm,i + unm−1,i

)

+
a2

8ΔσΔξ
(un+1
m+1,i+1 − un+1

m+1,i−1 − un+1
m−1,i+1 + un+1

m−1,i−1

+unm+1,i+1 − unm+1,i−1 − unm−1,i+1 + unm−1,i−1)

+
a3

2Δσ2
(un+1
m,i+1 − 2un+1

m,i + un+1
m,i−1

+unm,i+1 − 2unm,i + unm,i−1) (8.112)

+
a4
4Δξ

(un+1
m+1,i − un+1

m−1,i + unm+1,i − unm−1,i)

+
a5
4Δσ

(un+1
m,i+1 − un+1

m,i−1 + unm,i+1 − unm,i−1)

+
a6
2
(un+1
m,i + unm,i) + a7, m = 0, 1, · · · ,M, i = 1, 2, · · · , I − 1.

Here, all the coefficients a1–a7 should be evaluated at the point (ξm, σi, τ
n+1/2)

in order to guarantee second-order accuracy.
At the boundaries σ = σl and σ = σu, due to q = 0 the partial differential

equation in the problem (8.110) becomes

∂u

∂τ
= a1

∂2u

∂ξ2
+ a4

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u+ a7,

which possesses hyperbolic properties in the σ-direction. From the reversion

conditions, we see a5 = p − (λ − ρσξ)q = p ≥ p − q
∂q

∂σ
≥ 0 at the boundary

σ = σl and a5 = p− (λ−ρσξ)q = p ≤ p− q ∂q
∂σ

≤ 0 at σ = σu. These facts tell

us that the value of u on the boundaries σ = σl and σ = σu can be determined
by the value of u inside the domain. Hence, we can approximate the partial
differential equation in the problem (8.110) at the boundaries σ = σl and
σ = σu by
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un+1
m,0 − unm,0

Δτ

=
a1

2Δξ2
(un+1
m+1,0 − 2un+1

m,0 + un+1
m−1,0 + unm+1,0 − 2unm,0 + unm−1,0)

+
a4
4Δξ

(un+1
m+1,0 − un+1

m−1,0 + unm+1,0 − unm−1,0) (8.113)

+
a5
4Δσ

(−un+1
m,2 + 4un+1

m,1 − 3un+1
m,0 − unm,2 + 4unm,1 − 3unm,0)

+
a6
2
(un+1
m,0 + unm,0) + a7,

m = 0, 1, · · · ,M

and

un+1
m,I − unm,I

Δτ

=
a1

2Δξ2
(un+1
m+1,I − 2un+1

m,I + un+1
m−1,I + unm+1,I − 2unm,I + unm−1,I)

+
a4
4Δξ

(un+1
m+1,I − un+1

m−1,I + unm+1,I − unm−1,I) (8.114)

+
a5
4Δσ

(3un+1
m,I − 4un+1

m,I−1 + un+1
m,I−2 + 3unm,I − 4unm,I−1 + unm,I−2)

+
a6
2
(un+1
m,I + unm,I) + a7,

m = 0, 1, · · · ,M

respectively. Here,
∂u

∂σ
is discretized by one-sided second-order scheme in order

for all the node points involved to be in the computational domain. a1 and
a4–a7 are also evaluated at the point (ξm, σi, τ

n+1/2), i = 0 or I. When
unm,i, m = 0, 1, · · · ,M , i = 0, 1, · · · , I are known, from the difference scheme

(8.112)–(8.114) we can determine un+1
m,i , m = 0, 1, · · · ,M , i = 0, 1, · · · , I. The

initial condition gives u0m,i, m = 0, 1, · · · ,M , i = 0, 1, · · · , I. Therefore, we
can do this procedure for n = 0, 1, · · · , N − 1 successively and finally find
uNm,i, m = 0, 1, · · · ,M , i = 0, 1, · · · , I.

In Fig. 8.15, the price of a European call option obtained in this way is
given. The mesh used is 20×20×20, where the first, second, and third numbers
are M , I, and N , respectively. The parameters of the problem are given in
the figure and the parameter functions are
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Fig. 8.15. The price of a two-factor European call option

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p = a(b− σ), σl ≤ σ ≤ σu,

q = c

1−
(

1− 2
σ − σl
σu − σl

)2

1− 0.975

(

1− 2
σ − σl
σu − σl

)2 σ, σl ≤ σ ≤ σu,

ρ = 0.2,

λ = d+ eσ, σl ≤ σ ≤ σu,

where a = 0.1, b = 0.06, c = 0.12, d = 0, e = 0, σl = 0.05, and σu = 0.8.
When the singularity-separating technique is not adopted, the scheme

above can also be used. In that case,

a7 = 0 and u(ξ, σ, 0) = max(2ξ − 1, 0).

In order to give some idea about the performance of the method described
in this subsection, we list the values of the option obtained by the method
here with and without using extrapolation technique in Tables 8.24 and 8.25
for S = 50 and σ = 0.2. When these results were computed, for the first
five coarser meshes, the linear systems were solved by the LU decomposition
method and for the last three finer meshes, the Gauss–Seidel iteration was
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Table 8.24. SSM with and without extrapolation technique

(S = 50, E = 50, T = 1, σ = 0.2, r = 0.1, D0 = 0.05,
a = 0.1, b = 0.06, c = 0.12, d = 0, and e = 0.

The exact solution is 4.848069 · · · .)
Without extrapolation With extrapolation

Meshes Solution |Errors| Solution |Errors|
10× 10× 10 4.8143085 0.033761 – –

20× 20× 20 4.8361039 0.011966 4.8433691 0.004700

40× 40× 40 4.8460151 0.002054 4.8493188 0.001249

80× 80× 80 4.8476154 0.000454 4.8481488 0.000079

160× 160× 160 4.8479592 0.000110 4.8480738 0.000004

320× 320× 320 4.8480421 0.000027 4.8480697 Less than 10−6

640× 640× 640 4.8480626 0.000007 4.8480694 Less than 10−6

960× 960× 960 4.8480664 0.000003 4.8480694 Less than 10−6

Table 8.25. Implicit method with and without extrapolation technique

(S = 50, E = 50, T = 1, σ = 0.2, r = 0.1, D0 = 0.05,
a = 0.1, b = 0.06, c = 0.12, d = 0, and e = 0.

The exact solution is 4.848069 · · · .)
Without extrapolation With extrapolation

Meshes Solution |Errors| Solution |Errors|
10× 10× 10 3.1774889 1.670580 – –

20× 20× 20 4.2406270 0.607442 4.5950063 0.253063

40× 40× 40 4.7179697 0.130100 4.8770840 0.029015

80× 80× 80 4.8171183 0.030951 4.8501678 0.002098

160× 160× 160 4.8404088 0.007661 4.8481722 0.000103

320× 320× 320 4.8461590 0.001910 4.8480758 0.000006

640× 640× 640 4.8475923 0.000477 4.8480700 0.000001

960× 960× 960 4.8478575 0.000212 4.8480697 Less than 10−6

used in order to solve the linear systems. From the tables, we see that the
exact solution up to the sixth decimal place is 4.848069, which we obtained
by a very fine mesh. Therefore, we can find out the errors of the results
up to the sixth decimal place, which are also listed there. From the results
without extrapolation in Table 8.24, it can be seen that this method has
a second order accuracy because the error is reduced by a factor of about
1/4 when the mesh size is reduced by a factor of 1/2 (see the errors for the
meshes 20 × 20 × 20, · · · , 640 × 640 × 640). Table 8.24 also shows that for a
20× 20× 20 mesh with extrapolation, the error relative to E is 0.0047/50 ≈
10−4 and that the error relative to the option value is 0.0047/4.848069 ≈ 10−3.
In practice, requiring such accuracy is reasonable. The CPU time on a Pentium
III 800MHz computer is 0.07 s. If the singularity-separating technique is not
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used, in order to reach a similar accuracy, the mesh is between 40×40×40 and
80×80×80 and the CPU time is between 1 to 8 s and close to 8 s, respectively.
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Fig. 8.16. The price of a two-factor European put option

Noticing

∂p1
∂σ

=
∂c1
∂σ

,
∂2p1
∂σ2

=
∂2c1
∂σ2

,
∂2p1
∂S∂σ

=
∂2c1
∂S∂σ

,

where p1 is the price of the one-factor put option, we see that the difference
between the two-factor and one-factor put options is also the solution of the
problem (8.110). Therefore, in order to have the price of a European put
option, we proceed as follows. First solving problem (8.110), then we can have
the put price by

p(S, σ, t) = (S + Pm)u

(
S

S + Pm
, σ, T − t

)

+ p0(S, σ, t).

In Fig. 8.16, the price of a two-factor European put option obtained by this
way is shown. The parameters of the problem and the parameter functions are
the same as these for the two-factor European call option. Also, for European
vanilla options, both the put–call parity relation and the put–call symmetric
relation exist. The put–call parity relation still is
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Fig. 8.17. An unstable solution of implicit schemes
(Variation of u with respect to S on the line σ = 0.05 at t = 0. E = 50,
T = 2, r = 0.1, and D0 = 0.05. The solution is on a 80× 40× 80 mesh.)

p(S, σ, t) = c(S, σ, t)− Se−D0(T−t) + Ee−r(T−t). (8.115)

When we calculate put option prices without using SSM, this relation can be
used to check the correctness of the code to some extent. First, we compute
the prices of a call option and a put option with the same parameters. Then,
the results are substituted into the put–call parity relation to see if it holds.
If it holds with a small error, then the code most likely gives correct results;
if the relation does not hold, then the code must have some problems.

Finally, we give an example to explain that if the reversion conditions are
not satisfied, then the final-value problem (8.110) is not well-posed and we
cannot determine the solution using only the partial differential equation and
the final condition in the problem (8.110). Consider a problem with a = 1,
b = 0, c = 0.012, d = 0, e = 0, and T = 2. The other parameters are the
same as before. We still use the numerical method above to find the numerical
solution. In Fig. 8.17, we give the variation of u with S on the line σ = σl
at time t = 0. From there, we can see some “nonphysical” oscillations, which
means that the computation is unstable even though an implicit scheme is
used. This indicates that for this case, the solution is not determined only
by the partial differential equation and final condition. The reason is that a
proper boundary condition is needed at the boundary σ = σl because the
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inequality condition in the condition (8.101) is not satisfied at σ = σl due to
b = 0 < σl = 0.05. If a reasonable condition cannot be given, then an artificial
boundary condition has to be added. If the artificial boundary condition is
not proper, then one will encounter some difficulty during computation.

8.3.7 Two-Factor Convertible Bonds with D0 = 0

If D0 = 0, then the convertible bond problem has no free boundary, and the
problem has the same form as a European-style two-factor derivative problem
does. The only difference is that the another random variable is the spot
interest rate instead of the volatility. In order to make numerical methods
more efficient, there are also two things we need to deal with. The first thing
is the weak singularity generated by a discontinuous derivative of the payoff
function. In order to separate this singularity, we can calculate numerically the
difference between the values of two-factor and one-factor convertible bonds
for the case D0 = 0. We will not give the method here because it is similar to
the method for two-factor options and the method for two-factor convertible
bonds with D0 �= 0, which will be given in Sect. 9.1.2. The second thing is that
the problem is defined on an infinite domain. Through a transformation similar
to expression (8.109), the problem can be converted into a problem similar
to problem (8.110) and the solution can be obtained by numerical methods
efficiently. The details are similar to what we have done for two-factor options
and left for readers to complete (Problem 26).

8.4 Pseudo-Spectral Methods

After the singularity-separating method is used, the solution to be com-
puted numerically (the difference between the original unknown solution and a
closed-form solution) is quite smooth. In this case, the pseudo-spectral method
might be another good choice for computing the difference numerically. The
basic principle of the method was discussed in Chap. 6. In this subsection,
we give some details when the pseudo-spectral method is applied to problems
(7.1) and (7.2).

Let us take M + 1 grid points xm, m = 0, 1, · · · ,M , on [0, 1] and assume
that the values of a function u(x) for any xm are given. Then, the values
of the derivatives of u(x) can be expressed as linear combinations of u(xm).
Especially, if xm is given by the expression (6.6), then the first derivative is
approximated by the formula (6.7):

∂u

∂x
(xm) =

M∑

i=0

Dx,m,iu(xi)
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and the second derivative by expression (6.9):

∂2u

∂x2
(xm) =

M∑

i=0

Dxx,m,iu(xi),

where Dx,m,i and Dxx,m,i are given by the formulae (6.8) and (6.10), respec-
tively. Consequently, the PDE in the problem (7.2) can be approximated by

un+1(xm)− un(xm)

Δτ

=
1

2

[

a
n+ 1

2
m

M∑

i=0

Dxx,m,iu
n+1(xi) + b

n+ 1
2

m

M∑

i=0

Dx,m,iu
n+1(xi) + c

n+ 1
2

m un+1(xm)

]

+
1

2

[

a
n+ 1

2
m

M∑

i=0

Dxx,m,iu
n(xi) + b

n+ 1
2

m

M∑

i=0

Dx,m,iu
n(xi) + c

n+ 1
2

m un(xm)

]

+g
n+ 1

2
m ,

m = 0, 1, · · · ,M, (8.116)

where un+1(xm) = u (xm, (n+ 1)Δτ). Just like the implicit finite-difference
method, if un(xm), m = 0, 1, · · · ,M are given, we can determine un+1(xm),
m = 0, 1, · · · ,M by the linear system (8.116). However, the matrix of the
current system is a full matrix, and the CPU time needed for solving this
system is longer than the implicit finite-difference method if M is the same.
When the solution is very smooth, only a smallM might be needed in order to
get a satisfying result. In such a case, its performance could be better than the
implicit finite-difference method. This numerical method is referred to as the
implicit pseudo-spectral method for one-dimensional problems.

Table 8.26. Pseudo-spectral methods

(S = 95, T = 1, E = 100, σ = 0.25, r = 0.1, D0 = 0,
f(t) = (0.9− 0.05t)E, g(t) = (1.6 + 0.05t)E, and

the rebate = g(t)− E. The exact solution is 6.43129316 · · · .)
Without SSM With SSM

Meshes Solutions |Errors| CPU Solution |Errors| CPU

7× 50 6.454922 0.023629 0.0007 6.431842 0.000549 0.0014

7× 100 6.454789 0.023596 0.0015 6.431438 0.000145 0.0022

7× 200 6.454755 0.023462 0.0028 6.431426 0.000133 0.0043

8× 50 6.438364 0.007071 0.0010 6.431351 0.000058 0.0014

8× 100 6.438227 0.006934 0.0019 6.431305 0.000012 0.0028

8× 200 6.438193 0.006900 0.0038 6.431293 0.0000005 0.0058

9× 50 6.404701 0.026592 0.0013 6.431350 0.000057 0.0021

9× 100 6.404555 0.026738 0.0024 6.431304 0.000011 0.0036

9× 200 6.404518 0.002678 0.0044 6.431292 0.000001 0.0065
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If we consider problem (7.1), the only difference is that instead of the
partial differential equation being discretized at xm, m = 0, 1, · · · ,M , now
it is discretized at xm, m = 1, 2, · · · ,M − 1, and these equations and the
boundary conditions given in the problem (7.1) form the entire system we
need.

Table 8.26 gives some results obtained by the implicit pseudo-spectral
method described above withM = 7, 8, 9. The corresponding time steps used
areΔτ = 1/N , N = 50, 100, 200, respectively. In the column “Meshes,”M×N
is given. The problem is a double barrier call option whose lower and upper
knock-out boundaries are f(t) = (0.9 − 0.05t)E and g(t) = (1.6 + 0.05t)E.
The other parameters are given in the table. When the computation is done,
the independent variable x is defined by

x =

S

E + S
− f(t)

E + f(t)

g(t)

E + g(t)
− f(t)

E + f(t)

.

The exact solution for this case is 6.43129316 · · · , where the nine digits given
are correct. When we have the exact solution, we can have the error of the
solution, which is also given. The CPU time in seconds is also shown in order
to see the performance.

In Table 8.26, both the results with and without the SSM are listed. From
there, we can see that if the SSM is not used, the result obtained by using
higher order polynomials might be worse than the results obtained by using
lower order polynomials. However, it shows that when the pseudo-spectral
method is combined with the singularity-separating technique, the higher
the polynomial order, the better the result. Hence, the result of the pseudo-
spectral method with the singularity-separating technique is much better than
without it. Consequently, if the pseudo-spectral method is adopted, then com-
bining it with SSM is essential. In Figs. 8.8 and 8.9, the functions computed
when SSM is used and not used are shown, respectively. As pointed out, the
functions in Fig. 8.9 are not as smooth as those in Fig. 8.8, especially, the
derivative of the function for t = 1 in Fig. 8.9 is discontinuous. Therefore,
the pseudo-spectral method does not provide a good performance for this
case. However, if the singularity-separating technique is used, then the func-
tions determined numerically are always very smooth, which can be seen from
Fig. 8.8. In this case, the performance of the pseudo-spectral method is very
good, and in certain cases it may even be better than the second-order im-
plicit finite-difference methods because a pseudo-spectral method can be un-
derstood as a high-order difference method. In Fig. 8.18, the performances of
the implicit finite-difference method and the implicit pseudo-spectral method
with the singularity-separating technique are compared, which confirms this
conclusion.
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Fig. 8.18. Comparison between an implicit scheme and a pseudo-spectral method

The idea described here also works for double moving barrier put options
with rebates and many other cases. For details, see the paper [92] by Zhu and
Abifaker.

In Sect. 8.3, we pointed out that two-dimensional European-style deriva-
tive problems and American-style derivative problems that do not have free
boundaries could be written in the form (8.110). The pseudo-spectral method
can also be applied to such a problem. When this method is combined with
the singularity-separating method, a good performance can be expected. For
details of this method for two-dimensional case, see Chap. 9.

Problems

Table 8.27. Problems and sections

Problems Sections Problems Sections Problems Sections

1–7 8.1 8–15 8.2 16–27 8.3

28–29 8.4

1. *Suppose that we determine the price of an American vanilla call/put
option through solving the following problem:
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⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− g(x, τ̄)

)

= 0, −∞ < x <∞, τ̄ ≥ 0,

u(x, 0) = g(x, 0), −∞ < x <∞,

where
g(x, τ̄) = max

(
±(ex+(2D0/σ

2+1)τ̄ − e2rτ̄/σ
2

), 0
)
.

Describe a numerical method for solving this problem by using an explicit
scheme.

2. As we know, an American lookback strike put option is the solution of
the following linear complementarity problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min

(

−∂W
∂t

− LηW, W −max (η − β, 0)

)

= 0, 1 ≤ η, t ≤ T,

W (η, T ) = max (η − β, 0) , 1 ≤ η,

∂W

∂η
(1, t) = 0, t ≤ T,

where we assume that β ≥ 1 and the operator Lη to be defined by

Lη ≡ 1

2
σ2η2

∂2

∂η2
+ (D0 − r) η

∂

∂η
−D0.

Convert this problem into a problem on [0, 1] and with an initial condition,
and design an explicit method with a first-order accuracy in time and a
second-order accuracy in space for solving the new problem.

3. Suppose that ψ is a binomial random variable and its two values are ψ0

and ψ1. Show the following:
(a) If E[ψ] = 0 and E[ψ2] = 1, then ψ0ψ1 = −1.
(b) If E[ψ] = 0 and ψ0ψ1 = −1, then E[ψ2] = 1.
(c) If E[ψ] = 0 and ψ0ψ1 = −1 +O(Δt), then E[ψ2] = 1 +O(Δt).

4. (a) *Derive the binomial methods proposed by Cox, Ross, and Rubinstein
and by McDonald.

(b) *Can the parameter p in the Cox–Ross–Rubinstein binomial method
always represent a probability? Find out when it can and when it
cannot. Can the parameter p given in the book by McDonald always
represent a probability? Find out when it can and when it cannot.

5. From the Black–Scholes equation, we know that when a derivative security
is priced, the value of the stock price at time tn, Sn, and the value at time
tn+1, Sn+1, have the following relations:

ED [Sn+1] = e(r−D0)ΔtSn

and

ED

[
S2
n+1

]
= e[2(r−D0)+σ

2]ΔtS2
n,
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where Δt = tn+1 − tn (see Problem 39 of Chap. 2). Thus if the possible
values of Sn+1 are Sn+1,0 = Sn/u and Sn+1,1 = uSn, and the probabili-
ties of Sn+1 being Sn+1,0 and the probabilities of Sn+1 being Sn+1,1 are
1− p and p, respectively, then in a binomial method, u and p should be
determined by

⎧
⎨

⎩

pu+ (1− p)u−1 = e(r−D0)Δt,

pu2 + (1− p)u−2 = e[2(r−D0)+σ
2]Δt.

If Δt is very small, this problem can be approximated by

⎧
⎨

⎩

pu+ (1− p)u−1 = 1 + (r −D0)Δt,

pu2 + (1− p)u−2 = 1 + [2(r −D0) + σ2]Δt.

(a) Find u and p for both cases (suppose u > 1).
(b) Consider a more general system

⎧
⎨

⎩

pu+ (1− p)u−1 = 1 + (r −D0)Δt+O(Δt2),

pu2 + (1− p)u−2 = 1 + [2(r −D0) + σ2]Δt+O(Δt2).

Show that if u and p are determined by such a system, then we always
have

u = eσ
√
Δt +O

(
Δt3/2

)

and

p =
1

2

[

1 +

√
Δt

σ

(

r −D0 −
1

2
σ2

)]

+O
(
Δt3/2

)
.

(Hint: When you derive the expression for p, write u as 1 + σ
√
Δt +

σ2Δt/2 + cΔt3/2 +O(Δt2), c being a constant.)
6. *Describe the binomial methods for solving American vanilla call/put

options
7. *Show that the Cox–Ross–Rubinstein binomial method for European op-

tions almost is an explicit difference scheme for the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2 ∂

2V

∂y2
+

(

r −D0 −
1

2
σ2

)
∂V

∂y
− rV = 0,

−∞ < y <∞, t ≤ T,

V (y, T ) = max(±(ey − 1), 0), −∞ < y <∞,

where y = lnS, S being the price of the stock and assume E = 1.
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8. Show that the relation

V (S, t−i ) = V (S −Di(S), t
+
i )

becomes

V (ξ, τ+i )

=

[

1−Di

(
Pmξ

1− ξ

)
1− ξ

Pm

]

V

⎛

⎜
⎜
⎝

Pmξ −Di

(
Pmξ

1− ξ

)

(1− ξ)

Pm −Di

(
Pmξ

1− ξ

)

(1− ξ)

, τ−i

⎞

⎟
⎟
⎠

under the transformation
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

τ = T − t,

V (ξ, τ) =
V (S, t)

S + Pm
.

9. (a) Show that the jump condition

W
(
η, t−i

)
=W

(
η + J, t+i

)

becomes

u
(
ξ, τ+i

)
=

∣
∣
∣
Pmξ
1−|ξ| + J

∣
∣
∣+ Pm

∣
∣
∣
Pmξ
1−|ξ|

∣
∣
∣+ Pm

u

⎛

⎝

Pmξ
1−|ξ| + J

∣
∣
∣
Pmξ
1−|ξ| + J

∣
∣
∣+ Pm

, τ−i

⎞

⎠

under the transformation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
η

|η|+ Pm
,

τ = T − t,

W (η, t) = (|η|+ Pm)u(ξ, τ),

where Pm > 0.
(b) Suppose that the jump condition for W (η, t) is

W
(
η, t−i

)
=W

(
η + J, t+i

)

and introduce the transformation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
η

|η|+ Pm(η)
,

τ = T − t,

W (η, t) = (|η|+ Pm(η))u(ξ, τ),
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where

Pm(η) =

⎧
⎨

⎩

Pmr, if η > 0,

Pml, if η < 0.

Here Pmr > 0 and Pml > 0. Find the jump condition for u(ξ, τ).
10. *Suppose that we determine the price of an American vanilla call/put

option through solving the following problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min

(
∂V

∂τ
− LξV , V (ξ, τ)−max(±(2ξ − 1), 0)

)

= 0, 0 ≤ ξ ≤ 1,

τ ≥ 0,

V (ξ, 0) = max(±(2ξ − 1), 0), 0 ≤ ξ ≤ 1,

where

Lξ =
1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2

∂ξ2
+ (r −D0)ξ(1− ξ)

∂

∂ξ
− [r(1− ξ) +D0ξ].

Describe a numerical method for solving this problem by using a second
order implicit scheme. (Discuss the discretization of the problem only.)

11. As we know, an American average strike call option is the solution of the
following linear complementarity problem:

⎧
⎪⎨

⎪⎩

min

(

−∂W
∂t

− La,tW, W (η, t)−max (α− η, 0)

)

= 0, 0 ≤ η, t ≤ T,

W (η, T ) = max (α− η, 0) , 0 ≤ η,

where α ≈ 1 and

La,t =
1

2
σ2η2

∂2

∂η2
+

[

(D0 − r) η +
1− η

t

]
∂

∂η
−D0.

Convert this problem into a problem on a finite domain and with an initial
condition, and design an implicit second-order method for solving this new
problem. (Discuss the discretization of the problem only.)

12. Based on the partial differential equation

∂V

∂τ
=

1

2
σ̄2(ξ)ξ2(1− ξ)2

∂2V

∂ξ2
+ rξ(1− ξ)

∂V

∂ξ
− r(1− ξ)V ,

design an implicit method for the LC problem of American options with
discrete dividends.
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13. *Suppose that the scheme

vn+1
m − vnm
Δτ

=
1

4
σ̄2
mξ

2
m(1− ξm)2

(
vn+1
m+1 − 2vn+1

m + vn+1
m−1

Δξ2
+
vnm+1 − 2vnm + vnm−1

Δξ2

)

+
1

2
(r −D0)ξm(1− ξm)

(
vn+1
m+1 − vn+1

m−1

2Δξ
+
vnm+1 − vnm−1

2Δξ

)

−1

2
[r(1− ξm) +D0ξm](vn+1

m + vnm)

is used for solving an American call option problem. Design a projected
direct method, which you think is most accurate, to find the solution at
each time step.

14. *Consider the following LC problem:

⎧
⎪⎨

⎪⎩

min

(
∂u

∂τ̄
− ∂2u

∂x2
, u(x, τ̄)− g(x, τ̄)

)

= 0, −∞ < x <∞, τ̄ ≥ 0,

u(x, 0) = g(x, 0), −∞ < x <∞,

where
g(x, τ̄) = max

(
±(ex+(2D0/σ

2+1)τ̄ − e2rτ̄/σ
2

), 0
)
.

Suppose an implicit finite-difference method based on such a formulation is
used for solving an American option problem. Design an iteration method
similar to the SOR method for a linear system to find the solution of the
problem at each time step.

15. *The heat equation
∂u

∂τ
= a

∂2u

∂x2

can be approximated by the explicit first-order scheme

un+1
m − unm
Δτ

= a
unm+1 − 2unm + unm−1

Δx2

or the implicit second-order scheme (the Crank–Nicolson scheme)

un+1
m − unm
Δτ

=
a

2

(
un+1
m+1 − 2un+1

m + un+1
m−1

Δx2
+
unm+1 − 2unm + unm−1

Δx2

)

.

When do we choose the explicit first-order scheme and when do we use the
implicit second-order scheme? Why should we choose the implicit second-
order scheme if we need highly accurate results?
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16. (a) Find a closed-form solution of the problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂cu
∂t

+
1

2
σ2S2 ∂

2cu
∂S2

+ (r−D0)S
∂cu
∂S

− rcu=0, 0 ≤ S, 0 ≤ t ≤ T,

cu(S, T ) =

⎧
⎨

⎩

max(S − E, 0), if 0 ≤ S < g(T ),

0, if g(T ) ≤ S.

Here we assume g(T ) > E.
(b) Consider the following European barrier option problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

V (S, T ) = max(S − E, 0), f(T ) ≤ S ≤ g(T ),

V (f(t), t) = 0, 0 ≤ t ≤ T,

V (g(t), t) = 0, 0 ≤ t ≤ T,

where S = f(t) and S = g(t) are the locations of the lower and upper
barriers with f(t) < E and g(t) > E. Assume that we need to find the
solution by numerical methods. Design a SSM for this problem based
on the result given in part (a) . (Here the problem can be defined on
a non-rectangular domain.)

17. Suppose that η1, η2, and p are given, where 0 < η1 < η2, 2η2 − η1 < 1,
and p > 1. Set η3 = 2η2− η1 and let f(η) be a function on [0, 1] satisfying
the condition f(0) = 0 and its derivative be equal to

fη (η) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d, 0 ≤ η < η1,

a (η − η2)
4
+ b (η − η2)

2
+ c, η1 ≤ η < η3,

d, η3 ≤ η ≤ 1.

Here d = a (η2 − η1)
4
+ b (η2 − η1)

2
+ c, which guarantees fη(η) is contin-

uous at η = η1. From the definition of η3, we know η2 − η1 = η3 − η2, so
fη(η) is also continuous at η = η3.
(a) Assume that the following three conditions hold:

(i)
fη (η2)

fη (η1)
=

c

a (η2 − η1)
4
+ b (η2 − η1)

2
+ c

= p,

(ii) fηη (η1) = 4a (η1 − η2)
3
+ 2b (η1 − η2) = 0,

(iii) f (1) = 1.
Find the expressions of a, b, and c as functions of η1, η2, η3, and p and
show that f(η) is an increasing function on [0, 1] in this case.
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(b) Find the expression of f(η).
(c) When solving a PDE/OPE problem, a variable mesh can be realized

by using transformation. Suppose that the independent variable in a
PDE/ODE problem is η and a new variable is introduced by setting
ξ = f(η). How should we choose the parameters in the function f(η)
if we want to let the mesh size in the region near the point η = 0.4 is
about 1/10 of the mesh size in the regions [0, 0.2] and [0.6, 1]?

18. Let c̄(ξ, τ) = c(S, t)/(S + Pm) and p̄(ξ, τ) = p(S, t)/(S + Pm), where
ξ = S/(S + Pm) and τ = T − t. Derive the expressions of c̄(ξ, τ) and
p̄(ξ, τ) and find the limits of c̄(ξ, τ) and p̄(ξ, τ) as ξ tends to 0 and 1. Also
write down the formulae for the case Pm = E.

19. Suppose that V (S, t) satisfies the following jump condition at t = ti:

V (S, t−i ) = V (S −Di(S), t
+
i )

and that V0(S, t) is continuous at t = ti. Define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

τ = T − t,

u(ξ, τ) =
V (S, t)− V0(S, t)

S + Pm
,

u0(ξ, τ) =
V0(S, t)

S + Pm
,

where Pm is a positive number. Show that the following jump condition
for u(ξ, τ) holds:

u
(
ξ, τ+i

)

=

[

1− 1− ξ

Pm
Di

(
ξPm
1− ξ

)]

⎡

⎢
⎢
⎣u

⎛

⎜
⎜
⎝

Pmξ −Di

(
ξPm
1− ξ

)

(1− ξ)

Pm −Di

(
ξPm
1− ξ

)

(1− ξ)

, τ−i

⎞

⎟
⎟
⎠

+u0

⎛

⎜
⎜
⎝

Pmξ −Di

(
ξPm
1− ξ

)

(1− ξ)

Pm −Di

(
ξPm
1− ξ

)

(1− ξ)

, τi

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦− u0 (ξ, τi) .

20. Design a SSM for European vanilla options with discrete dividends and a
constant volatility, and formulate the problem as a problem defined on a
finite domain and with an initial condition.

21. *Design a SSM for Bermudan options with variable volatilities and for-
mulate the problem as a problem defined on a finite domain and with an
initial condition.
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22. Suppose r and D0 are constant and σ = σ(S). Derive the symmetry
relations for Bermudan options.

23. *Find a transformation to convert an average price call option problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
+
S

T

∂V

∂I
− rV = 0,

0 ≤ S, 0 ≤ I, t ≤ T,

V (S, I, T ) = max(I − E, 0), 0 ≤ S, 0 ≤ I,

where

I =
1

T

∫ t

0

S(τ)dτ,

into the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f

∂τ
− 1

2
σ2

[

ξ − 1

(r −D0)T
(1− e−(r−D0)τ )

]2
∂2f

∂ξ2
= 0,

−∞ < ξ <∞, 0 ≤ τ ≤ T,

f(ξ, 0) = max(ξ, 0), −∞ < ξ <∞.

24. Find a closed-form solution of the problem:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f̃0
∂τ

− σ2

2(r −D0)2T 2

(
1− e−(r−D0)τ

)2 ∂2f̃0
∂ξ2

= 0,

−∞ < ξ <∞, 0 ≤ τ ≤ T,

f̃0(ξ, 0) = max(ξ, 0), −∞ < ξ <∞.

25. Convert the problem
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂f1
∂τ

− 1

2
σ2

[

ξ − 1

(r −D0)T

(
1− e−(r−D0)τ

)
]2
∂2f1
∂ξ2

=
σ2ξ e−ξ

2/4τ1

4
√
πτ1

×
[

ξ − 2

(r −D0)T

(
1− e−(r−D0)τ

)
]

, −∞ < ξ <∞, 0 ≤ τ ≤ T,

f1(ξ, 0) = 0, −∞ < ξ <∞.

into a problem defined on [0, 1] and with an initial condition, and design
an implicit second-order scheme for the new problem.

26. By using the transformation
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ =
S

S + Pm
,

r = r,

τ = T − t,

u(ξ, r, τ) =
Bc(S, r, t)

n (S + Pm)
,



Problems 531

the two-factor convertible bond problem for non-dividend stocks
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ ρσSw
∂2Bc
∂S∂r

+
1

2
w2 ∂

2Bc
∂r2

+ rS
∂Bc
∂S

+(u− λw)
∂Bc
∂r

− rBc + kZ = 0,

0 ≤ S, rl ≤ r ≤ ru, 0 ≤ t ≤ T,

Bc(S, r, T ) = max(Z, nS), 0 ≤ S, rl ≤ r ≤ ru

can be converted into a problem on a finite domain with a bounded final
condition. The one-factor convertible zero-coupon bond problem for non-
dividend stocks

⎧
⎪⎨

⎪⎩

∂bc
∂t

+
1

2
σ2S2 ∂

2bc
∂S2

+ rS
∂bc
∂S

− rbc = 0, 0 ≤ S, 0 ≤ t ≤ T,

bc(S, r, T ) = max(Z, nS), 0 ≤ S

has the following solution:

nc(S, t;Z/n) + e−r(T−t)Z,

where c(S, t;Z/n) is the price of a call option with an exercise price Z/n.
Find the partial differential equation and the final condition the difference
between the two bonds should satisfy. Convert the derived problem into
a problem on a finite domain and with an initial condition by using the
transformation above, and briefly describe a second-order implicit scheme
for the new problem.

27. Suppose that c(S, σ, t) and p(S, σ, t) are solutions of the following problems

⎧
⎨

⎩

∂c

∂t
+ LS,σc = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

c(S, σ, T ) = max(S − E, 0), 0 ≤ S, σl ≤ σ ≤ σu

and
⎧
⎨

⎩

∂p

∂t
+ LS,σp = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

p(S, σ, T ) = max(E − S, 0), 0 ≤ S, σl ≤ σ ≤ σu,

where LS,σ is an operator defined by

LS,σ =
1

2
σ2S2 ∂2

∂S2
+ρσSq

∂2

∂S∂σ
+
1

2
q2

∂2

∂σ2
+(r−D0)S

∂

∂S
+(p−λq) ∂

∂σ
−r.

Show that the following put–call parity relation

c(S, σ, t)− p(S, σ, t) = Se−D0(T−t) − Ee−r(T−t)
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holds by the superposition principle. (Hint: Let u denote c(S, σ, t) −
p(S, σ, t). Show that u is the solution of the problem

⎧
⎨

⎩

∂u

∂t
+ LS,σu = 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

u(S, σ, T ) = S − E, 0 ≤ S, σl ≤ σ ≤ σu

and that Se−D0(T−t) − Ee−r(T−t) is also the solution of this problem.)
28. *Convert the following double moving barrier call option problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ (r −D0)S

∂V

∂S
− rV = 0,

f(t) ≤ S ≤ g(t), 0 ≤ t ≤ T,

V (S, T ) = max(S − E, 0), f(T ) ≤ S ≤ g(T ),

V (f(t), t) = 0, 0 ≤ t ≤ T,

V (g(t), t) = g(t)− E, 0 ≤ t ≤ T

into a problem that has a smooth solution and an initial condition, and
design an implicit pseudo-spectral method for the new problem.

29. For the new problem obtained in Problem 26, design an implicit pseudo-
spectral method.

Projects

General Requirements

(A) Submit a code or codes in C or C++ that will work on a computer
the instructor can get access to. At the beginning of the code, write
down the name of the student and indicate on which computer it
works and the procedure to make it work.

(B) Each code should use an input file to specify all the problem param-
eters and the computational parameters for each computation and
an output file to store all the results. In an output file, the name
of the problem, all the problem parameters, and the computational
parameters should be given, so that one can know what the results
are and how they were obtained. The input file should be submitted
with the code.

(C) If not specified, for each case two results are required. For the first
result, a 20× 12 mesh should be used.(In this case, the error of the
solution might be quite large.) For the second result, the accuracy
required is 0.01, and the mesh used should be as coarse as possible.

(D) Submit results in form of tables or figures. When a result is given,
always provide the problem parameters and the computational pa-
rameters.
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1. Explicit Method (8.3). Suppose that σ, r are constants and the
dividends are given discretely or continuously. Write a code for European,
Bermudan, and American calls and puts.

• For American call and put options, give the results for the case:
S = 100, E = 100, T = 0.75, r = 0.1, D0 = 0.05, and σ = 0.3.

• For Bermudan call and put options, give the results for the case:
S = 100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4
(see Sect. 8.3.3).

• For European call and put options, give the results for the cases:
S = 100, E = 95, 100, 105, T = 1, r = 0.1, σ = 0.2, and two divi-
dend payments of $1.25 paid at t = 2months and t = 8months. D(S)
is defined by

D(S) =

⎧
⎨

⎩

S if S ≤ d,

d if S > d,

where d is the dividend payment.
• Taking the European call option with E = 100, T = 1, r = 0.1,

D0 = 0.05, σ = 0.2 as an example, show that the explicit method (8.3)
is unstable if Δτ is too large. For this problem, only one example is
required. Plot the S-c curve with t = 0.

2. Binomial Methods (8.28) with the formulae (8.25)–(8.27) and
Eq. (8.28) with the formulae (8.18) and (8.23). Suppose that σ,
r, D0 are constants. Write a code for European, Bermudan, and American
calls and puts. For this problem, instead of the result on a 20× 12 mesh,
a result with Δt = T/12 is required.

• For European call and put options, give the results for the cases:
S = 100, E = 95, 100, 105, T = 1, r = 0.1, D0 = 0.025, and σ = 0.2.

• For Bermudan call and put options, give the results for the case:
S = 100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4.

• For American call and put options, give the results for the case:
S = 100, E = 100, T = 0.75, r = 0.1, D0 = 0.05, and σ = 0.3.

3. Implicit Method (8.47) for Vanilla Options (Solving the Corre-
sponding System by Direct Methods). Suppose that σ, r, and D0

are constants. Write a code for European, Bermudan, and American calls
and puts.

• For European call and put options, give the results for the cases:
S = 100, E = 95, 100, 105, T = 1, r = 0.1, D0 = 0.025, and σ = 0.2.

• For Bermudan call and put options, give the results for the case:
S = 100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4.

• For American call and put options, give the results for the case:
S = 100, E = 100, T = 0.75, r = 0.1, D0 = 0.05, and σ = 0.3.

4. Implicit Method (8.47) for European Average Price Options
with Discrete Sampling (Solving the Corresponding System by
Direct Methods). Suppose that σ, r, and D0 are constants. Write a
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code for European average price call and put options with various discrete
samplings.

• For European average price call and put options with sampling daily,
give the results for the cases: S = 100, E = 90, 95, 100, 105, 110, T = 1,
r = 0.05, D0 = 0.025, and σ = 0.2. (The results on a 20× 12 mesh are
not required.)

• For European average price call and put options with sampling weekly,
give the results for the cases: S = 100, E = 90, 95, 100, 105, 110,
T = 0.5, r = 0.05, D0 = 0.0, and σ = 0.2. (The results on a 20 × 12
mesh are not required.)

• For European average price call and put options with samplingmonthly,
give the results for the cases: S = 100, E = 90, 95, 100, 105, 110, T = 1,
r = 0.0, D0 = 0.0, and σ = 0.3.

5. Singularity-Separating Implicit Method with Scheme (8.47).
Suppose that σ, r are constants and the dividends are given discretely or
continuously. Write a code for Bermudan calls and puts with continuous
dividends and a code for European vanilla calls and puts with discrete
dividends. Calculate the difference between the value of the option and
the closed-form solution of a corresponding European vanilla option nu-
merically. In order to calculate the price of a Bermudan put, Compute a
corresponding call first and then obtain the value of the Bermudan put
by using the symmetry relation.

• For Bermudan call options, give the results for the case: S = 100,
E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2, and K = 4. For
Bermudan put options, give the results for the case: S = 100, E = 100,
T = 1, r = 0.1, D0 = 0.05, σ = 0.2, and K = 12.

• For European call and put options, give the results for the cases:
S = 100, E = 95, 100, 105, T = 1, r = 0.1, σ = 0.2, and two divi-
dend payments of $1.25 paid at t = 2months and t = 8months. D(S)
is defined by

D(S) =

⎧
⎨

⎩

S if S ≤ d,

d if S > d,

where d is the dividend payment.
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Free-Boundary Problems

As we know, a problem of pricing an American-style derivative can be
formulated as a linear complementarity problem, and for most cases, it can
also be written as a free-boundary problem. In Chap. 8, we have discussed
how to solve a linear complementarity problem. Here, we study how to solve a
free-boundary problem numerically. Many derivative security problems have
a final condition with discontinuous derivatives at some point. In this case,
their solutions are not very smooth in the domain near this point, and their
numerical solutions will have relatively large error. In Chap. 8, we have sug-
gested to deal with this problem in the following way: instead of calculating
the price of the derivative security, a difference between the price and an
expression with the same or almost the same weak singularity is solved nu-
merically. Because the difference is smooth, the error of numerical solution
will be smaller. This method can still be used for free-boundary problems.
For them there is another problem. On one side of the free boundary, the
price of an American-style derivative satisfies a partial differential equation,
and on the other side, it is equal to a given function. Because of this, the sec-
ond derivative of the price is usually discontinuous on the free boundary. If we
can follow the free boundary and use the partial differential equation only on
the domain where the equation holds, then we can have less error. Hence, in
Sect. 9.1 we not only discuss how to separate the weak singularity caused by
the discontinuous first derivative at expiry but also describe how to convert
a free-boundary problem into a problem defined on a rectangular domain so
that we can easily use the partial differential equation only on the domain
where the equation holds. The method described in Sect. 9.1 is referred to
as the singularity-separating method (SSM) for free-boundary problems. The
next two sections are devoted to discussing how to solve this problem us-
ing implicit schemes and pseudo-spectral methods for one-dimensional and
two-dimensional cases. There, we also give some results on American vanilla,
barrier, Asian, and lookback options, two-factor American vanilla options, and
two-factor convertible bonds.

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 9, © Springer Science+Business Media New York 2013
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9.1 SSM for Free-Boundary Problems

9.1.1 One-Dimensional Cases

From Chaps. 3–5, we know that there are many American-style derivatives.
Their major features are the same, but there are some differences among them.
In this subsection, first taking an American vanilla call option as an example,
we give the details of the singularity-separating method for free-boundary
problems. Then, we briefly point out what modifications are needed in order
to apply the method to other American-style derivatives.

From Sect. 3.3, we know that on the domain [0, Sf (t)]× [0, T ], the price of
an American call option, C(S, t), is the solution of the free-boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC = 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

C(S, T ) = max(S − E, 0), 0 ≤ S ≤ Sf (T ),

C (Sf (t), t) = Sf (t)− E, 0 ≤ t ≤ T,

∂C

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T,

Sf (T ) = max (E, rE/D0) ;

(9.1)

whereas on the domain (Sf (t),∞)× [0, T ], C(S, t) = S −E. Here, we assume
D0 �= 0. Therefore, as long as we have the solution of the free-boundary prob-
lem, we can determine C(S, t) for any S ≥ 0 and any t ∈ [0, T ]. The function
C(S, T ) = max(S −E, 0) has a discontinuous derivative at S = E. Therefore,
C(S, t) is not very smooth in the region where S ≈ E and t ≈ T . Because the
second derivative of C(S, T ) at S = E goes to infinity, the truncation error of
numerical methods near S = E and t = T is relatively large. In order to avoid
such a relatively large error, we first find the numerical result of the difference
between the prices of the American call option and the European call option,
and then add the difference and the price of the European call option together
to get the price of the American call option. Similar to those cases given in
Sect. 8.3, the function representing the difference is very smooth, so numerical
solution can be obtained efficiently.

Now we give the details of the method. Let c(S, t) represent the price of the
European call option, whose closed-form expression is given by the formula
(2.90). As we know, c(S, t) is the solution of the problem

⎧
⎨

⎩

∂c

∂t
+

1

2
σ2S2 ∂

2c

∂S2
+ (r −D0)S

∂c

∂S
− rc = 0, 0 ≤ S, 0 ≤ t ≤ T

c(S, T ) = max(S − E, 0), 0 ≤ S.

Define
C(S, t) = C(S, t)− c(S, t)
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on the domain [0, Sf (t)] × [0, T ]. Both C (S, T ) and c(S, T ) are equal to
max(S − E, 0), so C(S, T ) = 0. The functions C(S, t) and c(S, t) satisfy
the same linear homogeneous partial differential equation, so the difference
between them does the same. At the free boundary S = Sf (t), we have

C (Sf (t), t) = C (Sf (t), t)− c (Sf (t), t) = Sf (t)− E − c (Sf (t), t)

and

∂C

∂S
(Sf (t), t) =

∂C

∂S
(Sf (t), t)−

∂c

∂S
(Sf (t), t) = 1− ∂c

∂S
(Sf (t), t) .

Therefore, C(S, t) is the solution of the following free-boundary problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC = 0, 0 ≤ S ≤ Sf (t)

0 ≤ t ≤ T,

C(S, T ) = 0, 0 ≤ S ≤ Sf (T ),

C (Sf (t), t) = Sf (t)− E − c (Sf (t), t) , 0 ≤ t ≤ T,

∂C

∂S
(Sf (t), t) = 1− ∂c

∂S
(Sf (t), t) , 0 ≤ t ≤ T,

Sf (T ) = max(E, rE/D0).

(9.2)

In the problem above, we need to determine C(S, t) on a non-rectangular
domain, and one of its boundaries, S = Sf (t), is also unknown.

In order to make discretization of the boundary conditions on the free
boundary simple and convert the final-boundary value problem into an initial-
boundary value problem, we introduce a new coordinate system {ξ, τ} through
a transformation defined by

⎧
⎨

⎩

ξ =
S

Sf (t)
,

τ = T − t.

This transformation converts the four boundaries of the domain of the
problem (9.2), S = 0, S = Sf (t), t = T , and t = 0, into ξ = 0, ξ = 1, τ = 0,
and τ = T , respectively (see Fig. 9.1). Now the problem is defined on a rect-
angular domain, and the value of the solution at τ = 0 is given, that is, the
problem now is an initial-boundary value problem on a rectangular domain.

Let

sf (τ) =
1

E
Sf (T − τ)

and

u(ξ, τ) =
1

E
C(S, t) =

1

E
C (ξEsf (τ), T − τ) ,
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Fig. 9.1. Transforming a non-rectangular domain to a rectangular domain

that is,
Sf (t) = Esf (T − t)

and

C(S, t) = Eu

(
S

Esf (T − t)
, T − t

)

.

Since

∂C

∂t
= E

[
ξ

sf (τ)

dsf (τ)

dτ

∂u

∂ξ
− ∂u

∂τ

]

,

∂C

∂S
=
∂u

∂ξ

1

sf (τ)
,

∂2C

∂S2
=

1

E

∂2u

∂ξ2

[
1

sf (τ)

]2

,

the problem (9.2) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= k2ξ

2 ∂
2u

∂ξ2
+

(

k1 +
1

sf

dsf
dτ

)

ξ
∂u

∂ξ
− k0u, 0 ≤ ξ ≤ 1,

0 ≤ τ ≤ T,

u(ξ, 0) = 0, 0 ≤ ξ ≤ 1,

u(1, τ) = g (sf (τ), τ) , 0 ≤ τ ≤ T,

∂u

∂ξ
(1, τ) = h (sf (τ), τ) , 0 ≤ τ ≤ T,

sf (0) = max(1, r/D0),

(9.3)

where k0 = r, k1 = r −D0, k2 = σ2/2,

g (sf (τ), τ) = sf (τ)− 1− 1

E
c (Esf (τ), T − τ)
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and

h (sf (τ), τ) = sf (τ)

[

1− ∂c (Esf (τ), T − τ)

∂S

]

.

The differential equation in the problem (9.3) is a partial differential equation
for u and can be understood as an ordinary differential equation for sf (τ).
This problem is a combination of an initial-boundary value problem for u(ξ, τ)
on the domain [0, 1] × [0, T ] and an initial value problem for sf (τ) on the
interval [0, T ]. It can be solved using explicit schemes, implicit schemes, or
pseudo-spectral methods. After we obtain u(ξ, τ), we can get the price of the
American call option on the domain [0, Sf (t)]× [0, T ] by

C(S, t) = Eu

(
S

Esf (T − t)
, T − t

)

+ c(S, t).

From the expression of C(S, t), we know that in order to computing C(S, t),
we need to write a code for computing u(ξ, τ) and also need to have a code
for calculating c(S, t). When the projects of Chap. 6 have been finished, the
function double BS can be used for such a purpose.

The method described here is referred to as the singularity-separating
method for American call options. The solution of the original American
call option satisfies different equations in the two regions divided by the free
boundary S = Sf (t), and its solution has a discontinuous second derivative—
a type of weak singularity—on the free boundary. In this method, the posi-
tion of the free boundary is tracked accurately, so that we can use the dif-
ferent equations in each region exactly. Because the solution in the domain
(Sf (t),∞)×[0, T ] is given by a known function, we only need to determine the
solution in the region [0, Sf (t)] × [0, T ]. In this region, the second derivative
near the free boundary is continuous, so the solution we want to get numeri-
cally is smoother than the original solution. Here, we also suggest to compute
the difference between the American call option and the European call option
numerically in the domain [0, Sf (t)]× [0, T ], instead of directly computing the
price of the American call option numerically. The derivative of solution of the
American call option with respect to S at the point (E, T ) is discontinuous if
Sf (T ) �= E. The difference is much smoother than the solution of the Amer-
ican call option in the domain [0, Sf (t)] × [0, T ], which make the truncation
error smaller. Therefore, in the method described above, we use some tech-
niques such that the solution we need to get numerically is much smoother
than the original solution, which makes numerical methods more efficient.
We refer to this as singularity-separating as we did in Sect. 8.3, because the
solution becomes smoother than the original one after some singularities on
the free boundary and at the point (E, T ) have been “separated”. Here, the
singularity that has been “separated” is the discontinuity of the derivatives
of the solution, which is weak. The idea of the method was originally devel-
oped for dealing with shock problems in fluid mechanics (see [97]) and the
Stefan problem (see [86]), the solutions of which had, for most of the cases,
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stronger discontinuities than we have here. It might be more precise if we use
“weak-singularity-separating” instead of singularity-separating. However, for
simplicity we just keep the name of the method.

As pointed in Sect. 3.3.3, between American call and put options there
exists the put–call symmetry relations. Using these relations, pricing a put
option can be reduced to pricing a call option. There, the symmetry rela-
tions have been derived when American option problems are formulated as
linear complementarity problems. Here, let us derive this conclusion when the
problems are written as free-boundary problems. Let P (S, t) stand for the
price of an American put option. P (S, t) should be the solution of the prob-
lem (3.16) on the domain [Sf (t),∞)× [0, T ] and equal E − S on the domain
[0, Sf (t))× [0, T ]. Let ⎧

⎪⎪⎨

⎪⎪⎩

η =
E2

S
,

u(η, t) =
EP (S, t)

S
,

then it is easy to see that u(η, t) is the solution of the free-boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+

1

2
σ2η2

∂2u

∂η2
+ (D0 − r)η

∂u

∂η
−D0u = 0, 0 ≤ η ≤ ηf (t),

0 ≤ t ≤ T,

u(η, T ) = max(η − E, 0), 0 ≤ η ≤ ηf (T ),

u (ηf (t), t) = ηf (t)− E, 0 ≤ t ≤ T,

∂u

∂η
(ηf (t), t) = 1, 0 ≤ t ≤ T,

ηf (T ) = max (E,D0E/r)

(9.4)

on the domain [0, ηf (t)]× [0, T ]; whereas on the domain (ηf (t),∞)× [0, T ],

u(η, t) = η − E.

As we can see, if the parameter r and the parameter D0 in the problem (9.1)
exchange their positions, then the problem (9.1) almost becomes the problem
(9.4), except for the state variable. Therefore, P (S, t) can be determined in
the following way. First, understanding D0 as r and r as D0, we solve the
problem (9.1) with the state variable η, instead of S, and get u(η, t). Then,
P (S, t) is obtained by

P (S, t) =
S

E
u

(
E2

S
, t

)

.

That is, we find P (S, t) by using one of the symmetry relations.
It is not always reasonable to assume the volatility to be a constant. If the

volatility is thought as a function of S, namely, σ = σ(S), then the formulation
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(9.1) is still true after changing σ to σ(S). Is the formulation (9.2) still true?
The answer is no because in this case we do not have analytic solutions for
European option. However, we can define

C(S, t) = C(S, t)− cE(S, t;σ(E))

on the domain [0, Sf (t)]× [0, T ], where cE(S, t;σ(E)) denotes the price of the
European call option with σ = σ(E). In this case, C(S, t) does not satisfy the
Black–Scholes equation. Instead, it satisfies the following nonhomogeneous
equation:

∂C

∂t
+

1

2
σ2(S)S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC = f(S, t), (9.5)

where f(S, t) is given by the expression (8.79) in Sect. 8.3.2. For this case, the
formulation is almost the same as the problem (9.2) except that the partial
differential equation in problem (9.2) should be replaced by problem (9.5).
Therefore, the singularity-separating method still works for American options
with variable volatilities because the singularity is weakened.

The same idea still works for American barrier, Asian, and lookback op-
tions. In order to remove the weak singularity at S = E and t = T , we can
use the solutions of vanilla European options for American barrier, Asian, and
lookback options. However, it will be better to compute numerically the differ-
ences between American and European barrier options and between American
and European lookback options because the differences are smaller in these
cases. Just like the vanilla option case, the partial differential equation that
the differences satisfy in these cases is still the partial differential equation
in the problem (9.2). For European Asian options, explicit solutions have not
been found, and the partial differential equation for Asian options is different
from vanilla options. Thus, when we apply the SSM, the resulting equation for
Asian options differs slightly from barrier and lookback options. For average
strike options with α = 1, the singularity-separating method will still work,
and the difference will be a solution of a nonhomogeneous partial differential
equation problem with a weaker singularity. It is not difficult to derive the
problem in this case, and we leave this as a problem for readers.

Consider put options on stocks paying dividends discretely. Suppose that
the last dividend is paid at time tK . This method can still be used from t = T
to t = tK . From t = tK to t = 0, the solution is already smooth, so we can
just compute the price of the American option directly. It is clear that in this
way a quite good result still can be obtained on a coarse mesh.

9.1.2 Two-Dimensional Cases

Two-Factor Options. In the above, we have discussed the formulation of
American options if the volatility is a constant or a function of S. Now let us
look at the case both the price of asset and the volatility of the asset price



542 9 Free-Boundary Problems

are random variables. As we have done in Sect. 8.3.6, we call such an option a
two-factor option. Here, we discuss how to formulate the American two-factor
vanilla call option as a free boundary problem if D0 �= 0.

We still assume the asset price S and the stochastic volatility σ to follow
the set of equations (8.98) and require the conditions (8.99) and (8.100) or
the conditions (8.101) and (8.102) to hold.

Consider an American two-factor vanilla call option problem and let its
value be C(S, σ, t). As an American call option, it satisfies the condition:

C(S, σ, t) ≥ max(S − E, 0).

Because a European two-factor call option is a solution of the problem (8.105),
the value of a two-factor vanilla American call option is a solution of the
following linear complementarity problem:

⎧
⎨

⎩

min

(

−∂C
∂t

− LS,σC, C −Gc

)

= 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

C(S, σ, T ) = Gc(S, T ), 0 ≤ S, σl ≤ σ ≤ σu,

(9.6)

where LS,σ is given by the expression (8.104):

LS,σ =
1

2
σ2S2 ∂2

∂S2
+ ρσSq

∂2

∂S∂σ
+

1

2
q2

∂2

∂σ2

+(r −D0)S
∂

∂S
+ (p− λq)

∂

∂σ
− r,

and
Gc(S, t) = max(S − E, 0).

Consider the case D0 > 0. Because

∂Gc
∂t

+ LS,σGc < 0 for S > max(E, rE/D0)

and
∂Gc
∂t

+ LS,σGc ≥ 0 for S ≤ max(E, rE/D0),

there exists a free boundary S = Sf (σ, t) starting from the straight line
S = max(E, rE/D0) at t = T in the (S, σ, t)-space, and the entire domain is
divided into two regions by the free boundary. On the domain (Sf (σ, t),∞)×
[σl, σu]× [0, T ],

C(S, σ, t) = max(S − E, 0);

whereas on [0, Sf (σ, t)] × [σl, σu] × [0, T ], C(S, σ, t) is the solution of the fol-
lowing free-boundary problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ LS,σC = 0, 0 ≤ S ≤ Sf (σ, t),

σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

C(S, σ, T ) = max(S − E, 0), 0 ≤ S ≤ Sf (σ, T ),

σl ≤ σ ≤ σu,

C (Sf (σ, t), σ, t) = Sf (σ, t)− E, σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

∂C (Sf (σ, t), σ, t)

∂S
= 1, σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

Sf (σ, T ) = max(E, rE/D0), σl ≤ σ ≤ σu.

(9.7)

Just like the European two-factor option case, we let

C(S, σ, t) = C(S, σ, t)− c1(S, σ, t) (9.8)

on the domain [0, Sf (σ, t)]× [σl, σu]× [0, T ]. Here, c1(S, σ, t) is the same as the
function c(S, t) given by the formula (2.90) in Sect. 2.6.5, namely, the price of
the vanilla European call option when σ is a constant. Thus, the difference C
is the solution of the following free-boundary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ LS,σC = f(S, σ, t), 0 ≤ S ≤ Sf (σ, t), σl ≤ σ ≤ σu,

0 ≤ t ≤ T,

C(S, σ, T ) = 0, 0 ≤ S ≤ Sf (σ, T ), σl ≤ σ ≤ σu,

C (Sf (σ, t), σ, t) = Sf (σ, t)− E − c1 (Sf (σ, t), σ, t) , σl ≤ σ ≤ σu,

0 ≤ t ≤ T,

∂C (Sf (σ, t), σ, t)

∂S
= 1− ∂c1 (Sf (σ, t), σ, t)

∂S
, σl ≤ σ ≤ σu,

0 ≤ t ≤ T,

Sf (σ, T ) = max(E, rE/D0), σl ≤ σ ≤ σu,

(9.9)

where

f(S, σ, t) = −ρσSq ∂
2c1

∂S∂σ
− 1

2
q2
∂2c1
∂σ2

− (p− λq)
∂c1
∂σ

,

∂c1
∂σ

,
∂2c1
∂σ2

, and
∂2c

∂S∂σ
being given by the set of expressions (8.108).

As we see from the problems (9.7) and (9.9), the derivative of C(S, σ, t)
with respect to S is discontinuous at the point t = T and S = E, and the
derivative of C(S, σ, t) with respect to S at t = T is identically equal to zero. It
is expected that C(S, σ, t) is smoother than C(S, σ, t) even though in this case
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the singularity only becomes weaker but is not completely removed because

of the term
∂2c1
∂S∂σ

in f(S, σ, t). Therefore, when a numerical method is used,

the truncation error for the problem (9.9) will be smaller than the problem
(9.7). This is why we consider the formulation (9.9) instead of the formulation
(9.7).

The free-boundary problem (9.9) is defined on the domain [0, Sf (σ, t)] ×
[σl, σu]×[0, T ] and the free boundary Sf (σ, t) is a moving and unknown bound-
ary. In order to make the discretization simple, we introduce the following
transformation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ =
S

Sf (σ, t)
,

σ = σ,

τ = T − t.

(9.10)

This transformation maps the domain

[0, Sf (σ, t)]× [σl, σu]× [0, T ]

in the (S, σ, t)-space onto a new domain

[0, 1]× [σl, σu]× [0, T ]

in the (ξ, σ, τ)-space and the moving boundary onto a plane under the new
coordinate system. In the (ξ, σ, τ)-space, it is easy to construct numerical
methods to solve the problem. Define

sf (σ, τ) = Sf (σ, t) = Sf (σ, T − τ)

and

u(ξ, σ, τ) = C(S, σ, t) = C (ξsf (σ, τ), σ, T − τ) .

Among the derivatives of C and u, there are the following relations:

∂C

∂t
=
∂u

∂ξ

∂ξ

∂t
+
∂u

∂τ

∂τ

∂t
=

ξ

sf

∂sf
∂τ

∂u

∂ξ
− ∂u

∂τ
,

∂C

∂S
=
∂u

∂ξ

∂ξ

∂S
=

1

sf

∂u

∂ξ
,

∂C

∂σ
=
∂u

∂ξ

∂ξ

∂σ
+
∂u

∂σ
= −

(
ξ

sf

∂sf
∂σ

∂u

∂ξ
− ∂u

∂σ

)

,

∂2C

∂S2
=

1

s2f

∂2u

∂ξ2
,
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∂2C

∂S∂σ
=

∂

∂σ

(
1

sf

∂u

∂ξ

)

= − 1

s2f

∂sf
∂σ

∂u

∂ξ
+

1

sf

(
∂2u

∂ξ2
∂ξ

∂σ
+

∂2u

∂ξ∂σ

)

= − 1

s2f

∂sf
∂σ

∂u

∂ξ
− ξ

s2f

∂sf
∂σ

∂2u

∂ξ2
+

1

sf

∂2u

∂ξ∂σ
,

∂2C

∂σ2
= −

[
∂

∂σ

(
ξ

sf

∂sf
∂σ

)
∂u

∂ξ
+

ξ

sf

∂sf
∂σ

(
∂2u

∂ξ2
∂ξ

∂σ
+

∂2u

∂ξ∂σ

)

−
(
∂2u

∂σ∂ξ

∂ξ

∂σ
+
∂2u

∂σ2

)]

=

{(
ξ

sf

)2(
∂sf
∂σ

)2
∂2u

∂ξ2
− 2

ξ

sf

∂sf
∂σ

∂2u

∂ξ∂σ
+
∂2u

∂σ2

+

[

2
ξ

s2f

(
∂sf
∂σ

)2

− ξ

sf

∂2sf
∂σ2

]
∂u

∂ξ

}

.

Substituting them into the partial differential equation in the problem
(9.9) yields

∂u

∂τ
= a1ξ

2 ∂
2u

∂ξ2
+ a2ξq

∂2u

∂ξ∂σ
+ a3q

2 ∂
2u

∂σ2
+ a4ξ

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u+ a7,

where

a1 =
1

2
σ2 − ρσq

sf

∂sf
∂σ

+
1

2

(
q

sf

∂sf
∂σ

)2

,

a2 = ρσ − q

sf

∂sf
∂σ

,

a3 =
1

2
,

a4 =
1

sf

∂sf
∂τ

+ r −D0 − (ρσq + p− λq)
1

sf

∂sf
∂σ

+

(
q

sf

∂sf
∂σ

)2

− 1

2
q2

1

sf

∂2sf
∂σ2

,

a5 = p− λq,

a6 = −r,
a7 = −f(S, σ, t) = −f (ξsf (σ, τ), σ, T − τ) .

Therefore, noticing
⎧
⎪⎨

⎪⎩

c1(Sf , σ, t) = Sfe
−D0(T−t)N(d1)− Ee−r(T−t)N(d2),

∂c1(Sf , σ, t)

∂S
= e−D0(T−t)N(d1),



546 9 Free-Boundary Problems

we can rewrite the problem (9.9) as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= a1ξ

2 ∂
2u

∂ξ2
+ a2ξq

∂2u

∂ξ∂σ
+ a3q

2 ∂
2u

∂σ2
+ a4ξ

∂u

∂ξ
+ a5

∂u

∂σ

+ a6u+ a7, 0 ≤ ξ ≤ 1, σl ≤ σ ≤ σu, 0 ≤ τ ≤ T,

u(ξ, σ, 0) = 0, 0 ≤ ξ ≤ 1, σl ≤ σ ≤ σu,

u(1, σ, τ) = sf (σ, τ)
[
1− e−D0τN(d1)

]
− E [1− e−rτN(d2)] ,

σl ≤ σ ≤ σu, 0 ≤ τ ≤ T,

∂u(1, σ, τ)

∂ξ
= sf (σ, τ)

[
1− e−D0τN(d1)

]
,

σl ≤ σ ≤ σu, 0 ≤ τ ≤ T,

sf (σ, 0) = max

(

E,
rE

D0

)

, σl ≤ σ ≤ σu,

(9.11)

where

d1 =

[

ln
sfe

−D0τ

Ee−rτ
+

1

2
σ2τ

]/
(
σ
√
τ
)

and d2 = d1 − σ
√
τ .

Once we have the solution of the problem (9.11), u(ξ, σ, τ), we can get the
value of the original American call option by

C(S, σ, t) = C(S, σ, t) + c1(S, σ, t)

= u

(
S

sf (σ, T − t)
, σ, T − t

)

+ c1(S, σ, t).
(9.12)

This method is called the singularity-separating method for American two-
factor call options.

For two-factor vanilla American put options, the linear complementarity
problem is

⎧
⎪⎨

⎪⎩

min

(

−∂P
∂t

− LS,σP, P −Gp

)

= 0, 0 ≤ S, σl ≤ σ ≤ σu, t ≤ T,

P (S, σ, T ) = Gp(S, T ), 0 ≤ S, σl ≤ σ ≤ σu,

where
Gp(S, t) = max(E − S, 0).

Introducing the transformation
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

η =
E2

S
,

σ = σ,

t = t,

u(η, σ, t) =
EP (S, σ, t)

S

(9.13)
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and noticing the following relations

∂η

∂S
= −E

2

S2
,

∂P

∂t
=
S

E

∂u

∂t
,

∂P

∂S
=

u

E
− E

S

∂u

∂η
,

∂P

∂σ
=
S

E

∂u

∂σ
,

∂2P

∂S2
=
E3

S3

∂2u

∂η2
,

∂2P

∂S∂σ
=

1

E

∂u

∂σ
− E

S

∂2u

∂η∂σ
,

∂2P

∂σ2
=
S

E

∂2u

∂σ2
,

we can convert the linear complementarity problem above into another linear
complementarity problem

⎧
⎨

⎩

min

(

−∂u
∂t

− Lη,σu, u−Gu

)

= 0, 0 ≤ η, σl ≤ σ ≤ σu, t ≤ T,

u(η, σ, T ) = Gu(η, T ), 0 ≤ η, σl ≤ σ ≤ σu,

where
Gu(η, t) = max(η − E, 0)

and

Lη,σ =
1

2
σ2η2

∂2

∂η2
− ρσqη

∂2

∂η∂σ
+

1

2
q2

∂2

∂σ2

+(D0 − r)η
∂

∂η
+ [p− (λ− ρσ)q]

∂

∂σ
−D0.

This problem has the same form as the problem (9.6). The only difference is
that r and D0 are switched, and ρ and λ in the problem (9.6) are replaced
by −ρ and λ − ρσ here. Therefore, a put problem can be written as a call
problem.

Let C(S, σ, t; a, b, c, d) and P (S, σ, t; a, b, c, d) denote the prices of Ameri-
can call and put options and Scf (σ, t; a, b, c, d) and Spf (σ, t; a, b, c, d) be their
optimal exercise prices. Here, a, b, c, and d are parameters (or parameter
functions) for the risk-free interest rate r, dividend yield rate D0, correlation
coefficient ρ, and market price of volatility risk λ, respectively. Then, what
we have described above can be written as a relation between the American
two-factor vanilla put and call options:

⎧
⎨

⎩

P (S, σ, t; a, b, c, d) =
S

E
C

(
E2

S
, σ, t; b, a,−c, d− cσ

)

,

Spf (σ, t; a, b, c, d) = E2/Scf (σ, t; b, a,−c, d− cσ).
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If we let
η = E2/S, c̄ = −c

and
d̄ = d− cσ = d+ c̄σ,

then the first relation above can be written as

P

(
E2

η
, σ, t; a, b,−c̄, d̄− c̄σ

)

=
E

η
C
(
η, σ, t; b, a, c̄, d̄

)

or

C (S, σ, t; a, b, c, d) =
S

E
P

(
E2

S
, σ, t; b, a,−c, d− cσ

)

.

The second relation can be written in a symmetric form

Spf (σ, t; a, b, c, d)× Scf (σ, t; b, a,−c, d− cσ) = E2.

Therefore, we can have the following relations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P (S, σ, t; a, b, c, d) =
S

E
C

(
E2

S
, σ, t; b, a,−c, d− cσ

)

,

C (S, σ, t; a, b, c, d) =
S

E
P

(
E2

S
, σ, t; b, a,−c, d− cσ

)

,

Spf (σ, t; a, b, c, d)× Scf (σ, t; b, a,−c, d− cσ) = E2,

(9.14)

which in this book are referred to as the call–put symmetry relations between
American two-factor vanilla call and put options. Thus, if we have a code
for one type of option, call or put, then in order to calculate another type of
option, we only need to make a little change.

The free-boundary problem for a call option is defined on a finite domain
and that for a put option is on an infinite domain. Consequently, it will be
natural to write a code for call options and calculate a put option as a call
option.

Two-Factor Convertible Bonds. Another example of American-style
derivatives depending on two random variables is two-factor convertible bonds.
Let Bc(S, r, t) be the price of such a bond. As was pointed out in Sect. 5.7,
the computational domain of a two-factor convertible bond problem can be
divided into two parts. On the domain (Sf (r, t),∞)× [rl, ru]× [0, T ] ,

Bc(S, r, t) = max(Z, nS);

whereas on the domain [0, Sf (r, t)]× [rl, ru]× [0, T ] , Bc(S, r, t) is the solution
of the free-boundary problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc
∂t

+ LS,rBc + kZ = 0, 0 ≤ S ≤ Sf (r, t), rl ≤ r ≤ ru,

0 ≤ t ≤ T,

Bc(S, r, T ) = max(Z, nS), 0 ≤ S ≤ Sf (r, T ), rl ≤ r ≤ ru,

Bc (Sf (r, t), r, t) = nSf (r, t), rl ≤ r ≤ ru, 0 ≤ t ≤ T,

∂Bc
∂S

(Sf (r, t), r, t) = n, rl ≤ r ≤ ru, 0 ≤ t ≤ T,

Sf (r, T ) = max

(
Z

n
,
kZ

D0n

)

, rl ≤ r ≤ ru.

(9.15)

where

LS,r =
1

2
σ2S2 ∂2

∂S2
+ρσSw

∂2

∂S∂r
+

1

2
w2 ∂

2

∂r2
+(r−Do)S

∂

∂S
+(u−λw) ∂

∂r
− r.

Let bc(S, r, t) be the solution of the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂bc
∂t

+
1

2
σ2S2 ∂

2bc
∂S2

+ (r −D0)S
∂bc
∂S

− rbc = 0, 0 ≤ S,

0 ≤ t ≤ T,

bc(S, T ) = max(Z, nS) = nmax(S − Z/n, 0) + Z, 0 ≤ S,

(9.16)

where σ, r, and D0 are constants. This problem has the following solution:

bc(S, r, t) = nc(S, t;Z/n) + e−r(T−t)Z,

where c(S, t;Z/n) is the price of a European call option with an exercise price
E = Z/n. Define

Bc(S, r, t) = Bc(S, r, t)− bc(S, r, t). (9.17)

For Bc(S, r, t), the free boundary problem is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc
∂t

+ LS,rBc + kZ = f(S, r, t), 0 ≤ S ≤ Sf (r, t),

rl ≤ r ≤ ru, 0 ≤ t ≤ T,

Bc(S, r, T ) = 0, 0 ≤ S ≤ Sf (r, T ), rl ≤ r ≤ ru,

Bc (Sf (r, t), r, t) = nSf (r, t)− bc (Sf (r, t), r, t) ,

rl ≤ r ≤ ru, 0 ≤ t ≤ T,

∂Bc
∂S

(Sf (r, t), r, t) = n− ∂bc (Sf (r, t), r, t)

∂S
,

rl ≤ r ≤ ru, 0 ≤ t ≤ T,

Sf (r, T ) = max

(
Z

n
,
kZ

D0n

)

, rl ≤ r ≤ ru,

(9.18)
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where

f(S, r, t) = −ρσSw ∂2bc
∂S∂r

− 1

2
w2 ∂

2bc
∂r2

− (u− λw)
∂bc
∂r

.

In order to make the discretization easy, we introduce the following transfor-
mation ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ =
S

Sf (r, t)
,

r̄ =
r − rl
ru − rl

,

τ = T − t.

(9.19)

This transformation maps the domain

[0, Sf (r, t)]× [rl, ru]× [0, T ]

in the (S, r, t)-space onto the domain

[0, 1]× [0, 1]× [0, T ]

in the (ξ, r̄, τ)-space. We also introduce two new variables u and sf defined
by

⎧
⎪⎪⎨

⎪⎪⎩

u(ξ, r̄, τ) =
Bc(S, r, t)

Z
,

sf (r̄, τ) =
Sf (r, t)

Z/n

(9.20)

and let
v(ξ, r̄, τ) = bc(S, r, t)/Z.

For v we have

v(ξ, r̄, τ) = nc(S, t;Z/n)/Z + e−r(T−t)

= (nS/Z)e−D0(T−t)N(d1)− e−r(T−t)N(d2) + e−r(T−t)

= ξsf (r̄, τ)e
−D0τN(d1) + e−rτN(−d2),

where

d1 =

[

ln
Se(r−D0)(T−t)

Z/n
+

1

2
σ2(T − t)

]/(
σ
√
T − t

)

=

[

ln
(
ξsf (r̄, τ)e

(r−D0)τ
)
+

1

2
σ2τ

]/
(
σ
√
τ
)
,

d2 = d1 − σ
√
τ .
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Thus, v can be expressed as a function of ξsf (r̄, τ) and τ . Because

Bc(S, r, t) = Zu(ξ, r̄, τ) = Zu

⎛

⎜
⎜
⎝

nS

Zsf

(
r − rl
ru − rl

, T − t

) ,
r − rl
ru − rl

, T − t

⎞

⎟
⎟
⎠ ,

we have

∂Bc
∂t

= Z

(

−∂u
∂τ

+
∂u

∂ξ

ξ

sf

∂sf
∂τ

)

,

∂Bc
∂S

=
∂u

∂ξ

n

sf
,

∂Bc
∂r

= Z

(

−∂u
∂ξ

ξ

sf

∂sf
∂r̄

+
∂u

∂r̄

)
1

ru − rl
,

∂2Bc
∂S2

=
1

Z

∂2u

∂ξ2

(
n

sf

)2

,

∂2Bc
∂S∂r

=

(

−∂
2u

∂ξ2
nξ

s2f

∂sf
∂r̄

+
∂2u

∂ξ∂r̄

n

sf
− ∂u

∂ξ

n

s2f

∂sf
∂r̄

)
1

ru − rl
,

∂2Bc
∂r2

= Z

{
∂2u

∂ξ2

(
ξ

sf

∂sf
∂r̄

)2

− 2
∂2u

∂ξ∂r̄

ξ

sf

∂sf
∂r̄

+
∂u

∂ξ

[

2
ξ

s2f

(
∂sf
∂r̄

)2

− ξ

sf

∂2sf
∂r̄2

]

+
∂2u

∂r̄2

}(
1

ru − rl

)2

.

Substituting these expressions into the problem (9.18) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ̄
= Lξ,̄ru+ a7, 0 ≤ ξ ≤ 1, 0 ≤ r̄ ≤ 1, 0 ≤ τ ≤ T,

u(ξ, r̄, 0) = 0, 0 ≤ ξ ≤ 1, 0 ≤ r̄ ≤ 1,

u(1, r̄, τ) = sf (r̄, τ)− v(1, r̄, τ), 0 ≤ r̄ ≤ 1, 0 ≤ τ ≤ T,

∂u

∂ξ
(1, r̄, τ) = sf (r̄, τ)−

∂v

∂ξ
(1, r̄, τ), 0 ≤ r̄ ≤ 1, 0 ≤ τ ≤ T,

sf (r̄, 0) = max (1, k/D0) , 0 ≤ r̄ ≤ 1,

(9.21)

where

Lξ,̄r = a1ξ
2 ∂

2

∂ξ2
+ a2ξw

∂2

∂ξ∂r̄
+ a3w

2 ∂
2

∂r̄2
+

(

a4 +
1

sf

∂sf
∂τ

)

ξ
∂

∂ξ

+a5
∂

∂r̄
+ a6,
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a1 =
1

2
σ2 − ρσw

1

sf (ru − rl)

∂sf
∂r̄

+
1

2
w2

[
1

sf (ru − rl)

∂sf
∂r̄

]2

,

a2 =
1

ru − rl

[

ρσ − w

sf (ru − rl)

∂sf
∂r̄

]

,

a3 =
1

2(ru − rl)2
,

a4 = r −D0 −
1

sf (ru − rl)

∂sf
∂r̄

(ρσw + u− λw)

+
1

2
w2

{

2

[
1

sf (ru − rl)

∂sf
∂r̄

]2

− 1

sf (ru − rl)2
∂2sf
∂r̄2

}

,

a5 =
u− λw

ru − rl
,

a6 = −r,

a7 = k + ρσSw
∂2v

∂S∂r
+

1

2
w2 ∂

2v

∂r2
+ (u− λw)

∂v

∂r
.

We will refer to this method as the singularity-separating method for two-
factor convertible bonds.

In the problem (9.21), Z and n are not involved. That is, the solution of
the problem, u(ξ, r̄, τ) and sf (r̄, τ), does not depend on Z or n. The problem
(9.21) is called the problem for a standard convertible bond.

If the asset price S, the asset price volatility σ and the interest rate r
are all considered as random variables, then we have American three-factor
option problems and three-factor convertible bond problems. It is not difficult
to generalize the method here to such three-dimensional problems.

9.2 Implicit Finite-Difference Methods

9.2.1 Solution of One-Dimensional Problems

The problem (9.3) can be solved by different numerical methods, for example,
explicit finite-difference methods, implicit finite-difference methods, pseudo-
spectral methods, and so forth. In this book, we only discuss the implicit
finite-difference methods and the pseudo-spectral methods. In this subsection,
we discuss how to use implicit finite-difference methods to solve free-boundary
problem (9.3).

As we have pointed out, the problem we are going to solve is defined on
[0, 1]× [0, T ] on the (ξ, τ)-plane. For simplicity, we assume that we still use the
equidistant mesh given by the set of expressions (8.2). Let unm stand for the
value of u at the points ξ = ξm ≡ mΔξ and τ = τn ≡ nΔτ , and snf represent
the value of sf at τ = τn. At time t = 0, the function u and sf are known, i.e.,
u0m,m = 0, 1, · · · ,M and s0f are known. We need to find unm,m = 0, 1, · · · ,M
and snf , n = 1, 2, · · · , N .
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The partial differential equation in the problem (9.3) can be discretized
by

un+1
m − unm
Δτ

=
1

2

[

k2m
2
(
un+1
m+1 − 2un+1

m + un+1
m−1

)
+
k1m

2

(
un+1
m+1 − un+1

m−1

)
− k0u

n+1
m

]

+
1

2

[

k2m
2
(
unm+1 − 2unm + unm−1

)
+
k1m

2

(
unm+1 − unm−1

)
− k0u

n
m

]

+
sn+1
f − snf

(
sn+1
f + snf

)
Δτ

[m

2

(
un+1
m+1 − un+1

m−1

)
+
m

2

(
unm+1 − unm−1

)]

(9.22)

at m = 0, 1, 2, · · · ,M − 1, for n = 0, 1, · · · , N − 1. Here, in all coefficients,
ξ = mΔξ and τ = (n + 1/2)Δτ , so from Sect. 6.1, we know that the scheme
has a truncation error of O(Δτ2, Δξ2). At m = 0, the equation actually be-
comes

un+1
0 − un0
Δτ

=
−k0
2

(
un+1
0 + un0

)
,

therefore, un−1 and un+1
−1 do not appear in the equations. The boundary con-

ditions at ξ = 1 in the problem (9.3) can be replaced by

un+1
M = g(sn+1

f , τn+1), (9.23)

and
3un+1

M − 4un+1
M−1 + un+1

M−2

2Δξ
= h

(
sn+1
f , τn+1

)
. (9.24)

Here, the condition (9.23) is exact, and the truncation error of the approx-
imate boundary condition (9.24) is O(Δξ2) because the first derivative is
approximated by a one-sided second-order difference scheme. In the system
(9.22)–(9.24), if unm, m = 0, 1, · · · ,M and snf are given, then there are M + 2

unknowns: un+1
m ,m = 0, 1, · · · ,M and sn+1

f . The number of equations in the

system is also M + 2. Therefore, we can determine un+1
m ,m = 0, 1, · · · ,M

and sn+1
f from this system. From the initial conditions in problem (9.3), the

second and the fifth equations there, we can obtain

u0m = 0, m = 0, 1, · · · ,M

and

s0f = max(1, r/D0).

Consequently, starting from n = 0, we can find the solution at τn+1 from the
solution at τn successively.
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However, the system is a nonlinear one, so we cannot find the solution
directly. In order to find the solution of the system, we use iteration methods.
For example, Eqs. (9.22)–(9.24) can be written as

u
(j)
m − unm
Δτ

=
1

2

[

k2m
2
(
u
(j)
m+1 − 2u(j)m + u

(j)
m−1

)
+
k1m

2

(
u
(j)
m+1 − u

(j)
m−1

)
− k0u

(j)
m

]

+
1

2

[

k2m
2
(
unm+1 − 2unm + unm−1

)
+
k1m

2

(
unm+1 − unm−1

)
− k0u

n
m

]

+
s
(j)
f − snf

(
s
(j−1)
f + snf

)
Δτ

[m

2

(
u
(j−1)
m+1 − u

(j−1)
m−1

)
+
m

2

(
unm+1 − unm−1

)]
,

m = 0, 1, · · · ,M − 1, (9.25)

u
(j)
M = g

(
s
(j)
f , τn+1

)
, (9.26)

and

3u
(j)
M − 4u

(j)
M−1 + u

(j)
M−2

2Δξ
= h

(
s
(j)
f , τn+1

)
, (9.27)

where u
(j)
m , s

(j)
f are the j-th iteration values of un+1

m , sn+1
f respectively. In order

to start an iteration, we set u
(0)
m = unm,m = 0, 1, · · · ,M and s

(0)
f = snf . The

system consisting of Eqs. (9.25)–(9.27) is linear for u
(j)
m ,m = 0, 1, · · · ,M , and

nonlinear for s
(j)
f . This system can be solved by a modified LU decomposition

method described below.
The system of equations (9.25) can be rewritten as

−1

2

(

k2m
2 +

k1m

2

)

Δτu
(j)
m+1 +

[

1 +

(

k2m
2 +

k0
2

)

Δτ

]

u(j)m

−1

2

(

k2m
2 − k1m

2

)

Δτu
(j)
m−1

− 1
(
s
(j−1)
f + snf

)
[m

2

(
u
(j−1)
m+1 − u

(j−1)
m−1

)
+
m

2

(
unm+1 − unm−1

)]
s
(j)
f

=
1

2

(

k2m
2 +

k1m

2

)

Δτunm+1 +

[

1−
(

k2m
2 +

k0
2

)

Δτ

]

unm

+
1

2

(

k2m
2 − k1m

2

)

Δτunm−1

− 1
(
s
(j−1)
f + snf

)
[m

2

(
u
(j−1)
m+1 − u

(j−1)
m−1

)
+
m

2

(
unm+1 − unm−1

)]
snf ,

m = 0, 1, · · · ,M − 1. (9.28)
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When m = 0, the equation simply becomes:

(

1 +
k0
2
Δτ

)

u
(j)
0 =

(

1− k0
2
Δτ

)

un0 .

Thus, no iteration for un+1
0 is needed, and

un+1
0 =

1− k0
2
Δτ

1 +
k0
2
Δτ

un0 .

Furthermore, noticing u00 = 0, we have un+1
0 = 0, n = 0, 1, · · · , N − 1. There-

fore, un0 can be understood as a given quantity, i.e., for each iteration, there

are M + 1 unknowns: u
(j)
m ,m = 1, 2, · · · ,M , and s

(j)
f . The M + 1 unknowns

satisfy a system in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1u
(j)
1 + c1u

(j)
2 + e1s

(j)
f = f1,

amu
(j)
m−1 + bmu

(j)
m + cmu

(j)
m+1 + ems

(j)
f = fm, m=2, 3, · · · ,M − 1,

u
(j)
M = g

(
s
(j)
f , τn+1

)
,

dMu
(j)
M−2 + aMu

(j)
M−1 + bMu

(j)
M = h

(
s
(j)
f , τn+1

)
.

(9.29)

The top M − 1 equations of this system are linear equations for u
(j)
m ,m =

1, 2, · · · ,M and s
(j)
f . Let us rewrite the first equation as

u
(j)
1 = α1u

(j)
2 + β1s

(j)
f + γ1,

where

α1 = −c1/b1, β1 = −e1/b1, and γ1 = f1/b1.

Suppose we have a relation in the form

u
(j)
m−1 = αm−1u

(j)
m + βm−1s

(j)
f + γm−1.

Substituting this relation into the second equation in the system (9.29) and

solving the equation for u
(j)
m , we have

u(j)m = αmu
(j)
m+1 + βms

(j)
f + γm,

where

αm =
−cm

bm + amαm−1
, βm = − em + amβm−1

bm + amαm−1
, and γm =

fm − amγm−1

bm + amαm−1
.
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This procedure can be done for m = 2, 3, · · · ,M − 1 successively. Therefore,
the first and second equations in the system (9.29) are equivalent to the fol-
lowing relation

u(j)m = αmu
(j)
m+1 + βms

(j)
f + γm, m = 1, 2, · · · ,M − 1, (9.30)

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

αm =
−cm

bm + amαm−1
,

βm = − em + amβm−1

bm + amαm−1
,

γm =
fm − amγm−1

bm + amαm−1
.

(9.31)

Here, we define a1 = 0. Using the two relations in the system (9.30) with

m =M − 2 and M − 1, we can eliminate u
(j)
M−2 and u

(j)
M−1 in the last equation

of the system (9.29) and obtain

dM

[
αM−2αM−1u

(j)
M + (αM−2βM−1 + βM−2)s

(j)
f + αM−2γM−1 + γM−2

]

+aM

(
αM−1u

(j)
M + βM−1s

(j)
f + γM−1

)
+ bMu

(j)
M

= h
(
s
(j)
f , τn+1

)
.

Substituting the third equation in the system (9.29) into this equation yields

[(dMαM−2 + aM)αM−1 + bM ] g
(
s
(j)
f , τn+1

)

+ [dM(αM−2βM−1 + βM−2) + aMβM−1] s
(j)
f

+dM(αM−2γM−1 + γM−2) + aMγM−1

= h
(
s
(j)
f , τn+1

)
.

This is an equation for s
(j)
f , and we can use the secant method to get its

solution. In order to start the secant method, we need two approximate val-

ues of s
(j)
f . For s1f , we can take s

(0)
f = s0f and s

(1)
f = s0f + ε as the two initial

values. Here, ε is a proper positive number because sf (t) is an increasing

function in τ for an American call option. For sjf , j = 2, 3, · · · , N , we can take

s
(0)
f = sj−1

f + 0.75 ·
sj−1
f − sj−2

f

τ j−1 − τ j−2
(τ j − τ j−1)
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and

s
(1)
f = sj−1

f + 1.5 ·
sj−1
f − sj−2

f

τ j−1 − τ j−2
(τ j − τ j−1)

as the two initial values for sjf .

After s
(j)
f is found, we can obtain u

(j)
M from the third equation in the

system (9.29) and u
(j)
m from the system (9.30), m = M − 1,M − 2, · · · , 1,

successively. From the system (9.28), we know that am, bm and cm do not

depend on u
(j−1)
m and s

(j−1)
f . Thus, am, bm, and cm remain unchanged during

the iteration. Furthermore, from the expression of αm in the set of expressions
(9.31), we know that αm and bm+amαm−1 also remain unchanged. fm in the
system (9.29) is a sum of two parts:

1

2

(

k2m
2+

k1m

2

)

Δτunm+1 +

[

1−
(

k2m
2+

k0
2

)

Δτ

]

unm

+
1

2

(

k2m
2− k1m

2

)

Δτunm−1

and

−1
(
s
(j−1)
f + snf

)
[m

2

(
u
(j−1)
m+1 − u

(j−1)
m−1

)
+
m

2

(
unm+1 − unm−1

)]
snf .

The first part also does not depend on u
(j−1)
m and s

(j−1)
f . In order to make

the computation efficient, all these unchanged quantities during the iteration
should be computed once and stored for future use.

The iteration (9.25)–(9.27) will give a second-order accuracy if two itera-

tions are performed. In fact, u
(1)
m and s

(1)
f are solutions of a first-order scheme,

and u
(2)
m and s

(2)
f are solutions of an improved Euler method in the τ -direction,

which gives second-order accuracy in the τ -direction (see any book on numeri-
cal methods for ordinary differential equations). This scheme is always second
order in the ξ-direction, so the results have an accuracy of O

(
Δξ2, Δτ2

)
.

The way of solving the system (9.22)–(9.24) is not unique. If sn+1
f is given,

then the system consisting of Eqs. (9.22) and (9.23) is a system with M + 1

linear equations and M + 1 unknowns u
(n+1)
m , m = 0, 1, · · · ,M . Therefore,

this system determines the dependence of un+1
m on sn+1

f , i.e., the functions

un+1
m (sn+1

f ), m = 0, 1, · · · ,M . Substituting the three functions un+1
M−2(s

n+1
f ),

un+1
M−1(s

n+1
f ), un+1

M (sn+1
f ) into Eq. (9.24), we have an equation for sn+1

f :

f(sn+1
f ) ≡

3un+1
M (sn+1

f )− 4un+1
M−1(s

n+1
f ) + un+1

M−2(s
n+1
f )

2Δξ
− h
(
sn+1
f , τn+1

)
= 0.

(9.32)

This equation can be solved by the secant method. When using the secant
method, we need to evaluate f(sn+1

f ) for a given sn+1
f . This can be done as
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follows. Let sn+1
f in Eqs. (9.22) and (9.23) take the given value, then solve the

linear system consisting of Eqs. (9.22) and (9.23) by the LU decomposition
method described in Sect. 6.2.1. Substituting the value of un+1

M , un+1
M−1, u

n+1
M−2

into Eq. (9.32) yields the value f(sn+1
f ). As long as we have f(sn+1

f ) for two

different sn+1
f , we can start the iteration. When f(sn+1

f ) is very close to zero for

some given sn+1
f , we obtain the solution for sn+1

f , and the solution of the linear

system corresponding to this sn+1
f gives the values for un+1

m ,m = 0, 1, · · · ,M .
This is another way to solve the system (9.22)–(9.24).

Wu and Kwok (see [85]) suggested a similar scheme to system (9.22)–
(9.24). The main difference is that they computed the option price directly.

9.2.2 Solution of Greeks

In practice, we usually need to know not only the price of the derivative
security but also the sensitivities of the price to the parameters, i.e., the
derivatives of the price with respect to parameters. As mentioned in Sect. 3.3.4,
these derivatives are usually denoted by Greeks on the market. For example,
∂V

∂S
,
∂2V

∂S2
,
∂V

∂t
,
∂V

∂σ
,
∂V

∂r
are usually called Delta (Δ), Gamma (Γ ), Theta (Θ),

Vega (V), and Rho (ρ), respectively. When we know the price of the derivative
security for all S and for all t ∈ [0, T ], it is easy to get Delta, Gamma, and
Theta. Here, we discuss how to get the other Greeks.

Let V (S, t;σ, r,D0) be the price of a derivative security. Here, we explicitly
indicate that V depends on σ, r, and D0. Thus, the sensitivities of the option

price to them can be described by V =
∂V

∂σ
, ρ =

∂V

∂r
, and ρd =

∂V

∂D0
. In order

to get
∂V

∂σ
, we can have V (S, t;σ1, r,D0) and V (S, t;σ1 +Δσ, r,D0), then get

∂V

∂σ
for a σ near σ1 by

V (S, t;σ1 +Δσ, r,D0)− V (S, t;σ1, r,D0)

Δσ
.

We also can solve the problem derived in Sect. 3.3.4 to get
∂V

∂σ
.

Let us take
∂C

∂σ
as an example to explain how to get such a Greek. Set

C(S, t) = C(S, t)− c(S, t) and suppose C(S, t) and Sf (t) have been obtained.

Instead of
∂C

∂σ
, let us discuss how to obtain

∂C

∂σ
, which will be denoted by Cσ

in this subsection. As pointed out in Sect. 3.3.4,
∂C

∂σ
is the solution of problem

(3.27). Thus, Cσ should satisfy
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Cσ
∂t

+
1

2
σ2S2 ∂

2Cσ
∂S2

+ (r −D0)S
∂Cσ
∂S

− rCσ + σS2 ∂
2C

∂S2
= 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

Cσ(S, T ) = 0, 0 ≤ S ≤ Sf (T ),

Cσ(Sf (t), t) = −∂c (S, t)
∂σ

, 0 ≤ t ≤ T.

This is a problem with a known moving boundary. By using the transformation
⎧
⎨

⎩

ξ =
S

Sf (t)
,

τ = T − t

and letting

sf (τ) =
1

E
Sf (T − τ)

and

W (ξ, τ) =
1

E
Cσ(S, t) =

1

E
Cσ (ξEsf (τ), T − τ) ,

the problem above can be written as an initial-boundary value problem on a
rectangular domain:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂τ
= k2ξ

2 ∂
2W

∂ξ2
+

(

k1 +
1

sf

dsf
dτ

)

ξ
∂W

∂ξ
− k0W + σξ2

∂2u

∂ξ2
,

0 ≤ ξ ≤ 1, 0 ≤ τ ≤ T,

W (ξ, 0) = 0, 0 ≤ ξ ≤ 1,

W (1, τ) = − 1

E

∂c (Esf (τ), T − τ)

∂σ
, 0 ≤ τ ≤ T,

(9.33)

where u(ξ, τ) and sf (τ) are the solution of the problem (9.3), and c(S, t) is the
price of the European call given in Sect. 2.6.5. The equation in the problem
(9.33) can be discretized by

Wn+1
m −Wn

m

Δτ

=
1

2
k2m

2
(
Wn+1
m+1 − 2Wn+1

m +Wn+1
m−1 +Wn

m+1 − 2Wn
m +Wn

m−1

)

+
1

2

⎧
⎨

⎩

⎡

⎣
k1
2

+
sn+1
f − snf

(
sn+1
f + snf

)
Δτ

⎤

⎦m
(
Wn+1
m+1 −Wn+1

m−1

)
− k0W

n+1
m

+

⎡

⎣
k1
2

+
sn+1
f − snf

(
sn+1
f + snf

)
Δτ

⎤

⎦m
(
Wn
m+1 −Wn

m−1

)
− k0W

n
m

⎫
⎬

⎭

+
(
dn+1
m + dnm

)
/2, m = 0, 1, · · · ,M − 1, (9.34)



560 9 Free-Boundary Problems

where

d = σξ2
∂2u

∂ξ2
.

The boundary condition in the problem (9.33) can be written as

Wn+1
M = − 1

E

∂c
(
Esf (τ

n+1), T − τn+1
)

∂σ
. (9.35)

The system (9.34) and (9.35) is a linear system for Wn+1
m , m = 0, 1, · · · ,M

and we can get Wn+1
m by the LU decomposition method if Wn

m, m = 0, 1, · · · ,

M , and snf , s
n+1
f ,

∂2unm
∂ξ2

, and
∂2un+1

m

∂ξ2
are given. As soon as we obtain W ,

∂C

∂σ
can be found by

∂C

∂σ
(S, t) = EW

(
S

Esf (T − t)
, T − t

)

+
∂c

∂σ
(S, t).

When u and sf are obtained, we need to solve an initial-boundary value

problem in order to get
∂C

∂σ
if the method above is adopted. If we obtain

∂C

∂σ
by using

V (S, t;σ1 +Δσ, r,D0)− V (S, t;σ1, r,D0)

Δσ
,

then we need to solve another free-boundary problem in order to have V (S, t;
σ1 + Δσ, r,D0) when V (S, t;σ1, r,D0) has been found. The amount of work
to solve a free-boundary problem by the method described in Sect. 9.2.1 is
more than twice of the amount of the work to solve an initial-boundary value
problem by the method given here. This is why we formulate a problem for

Cσ and obtain
∂C

∂σ
by solving the problem (9.33).

9.2.3 Numerical Results of Vanilla Options and Comparison

In this subsection, we will discuss some issues on the efficiency of the numerical
method described in Sect. 9.2.1 and the performance of the method combined
with the extrapolation technique. Here, a method combined with the extrap-
olation technique means that the computation is first done on a mesh by the
method, then reduce the mesh sizes in the both directions by a factor of 1/2
(or other numbers) and do the computation on the second mesh again, and
finally get the results by the formula (7.30) in Sect. 7.3 (or other similar for-
mulae). The method in Sect. 9.2.1 is an implicit finite-difference version of the
SSM and, for simplicity, is referred to as the SSM in this subsection. Here,
we also compare the results obtained by the SSM and the combination of
the SSM and the extrapolation technique with the results by other methods
for two options. Finally, through the shape of the free boundaries, we point
out that adopting nonuniform time steps can make the method more accurate.
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Table 9.1. Parameters

Interest rates r 0.05 ∼ 0.20 with Δr = 0.025

Volatilities σ 0.1 ∼ 0.5 with Δσ = 0.1

Dividend yields D0 0.00 ∼ 0.15 with ΔD0 = 0.025

Expiries T 3 days, 15 days, 1∼ 12months with ΔT = 1month

Table 9.2. American call options with r = 0.1 and T = 1year

D0\σ 0.1 0.2 0.3 0.4 0.5

0.000 – – – – –

0.025 – – – – –

0.050 – 12× 6 12× 6 12× 6 12× 6

0.075 16× 8 12× 8 12× 8 12× 8 12× 8

0.100 28× 14 18× 10 16× 10 14× 8 14× 8

0.125 44× 16 30× 12 24× 10 18× 8 14× 8

0.150 48× 18 32× 12 26× 10 20× 8 16× 8

The SSM combined with the extrapolation technique has been tested for
American vanilla call and put options with various parameters. The parame-
ters tested are given in Table 9.1. Consider the standard American call prob-
lem, i.e., the problem with E = 1. Suppose r = 0.1, T = 1, and require
the maximum error of C for S ∈ [0.9, 1.1] to be less than or equal to 10−4.
Table 9.2 lists the numbers of mesh intervals needed for different D0 and σ in
order to get such results. There, M ×N means that for the second mesh, M
subintervals in the ξ-direction and N time-steps in the τ -direction are taken.
In Table 9.2, “–” means that for this set of parameters, and for S ∈ [0.9, 1.1],
the difference between the American call option and the European call option
is less than or only a slightly greater than 10−4, so no numerical method is
needed. From here, we know that if the method described in Sect. 9.2.1 is
used, then a coarse mesh is enough for obtaining a result with error about
10−4 for S ∈ [0.9, 1.1].

Table 9.3. American put option with r = 0.05 and T = 1year

D0\σ 0.1 0.2 0.3 0.4 0.5

0.000 40× 12 24× 8 18× 6 14× 4 12× 4

0.025 36× 12 26× 8 16× 4 14× 4 12× 4

0.050 32× 10 22× 6 16× 4 12× 4 12× 4

0.075 – 22× 6 16× 4 12× 4 12× 4

0.100 – – 16× 4 12× 4 12× 4

0.125 – – – 12× 4 12× 4

0.150 – – – – 12× 4

As pointed out in Chap. 3, using the symmetry relations, we can have the
value of an American put option from an American call option with inter-
changing the interest rate and dividend yield. However, we can also solve the
put option problem directly. In Table 9.3, we list the numbers of mesh inter-
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Table 9.4. Optimal prices for American call options

(σ = 0.2, T = 1 and E = 100)

D0\r 0.050 0.075 0.100 0.125 0.150

0.050 141.540893 170.943495 223.764096 277.831844 331.285054

0.075 128.372144 137.454215 155.027353 186.574326 222.166283

0.100 122.069175 127.037558 134.599182 147.295598 168.445693

0.125 118.119037 121.403431 125.903014 132.417054 142.448401

0.150 115.346132 117.723481 120.800277 124.918028 130.659131

vals needed in order to have an accuracy of about 10−4 for S ∈ [0.9, 1.1] and
r = 0.05. Thus, for both American call and put options, only a coarse mesh
is needed in order to get the accuracy usually needed. From the price of the
call option with r = 0.1 and D0 = 0.05, we can have the value of the put
option with r = 0.05 and D0 = 0.1. From Tables 9.2 and 9.3, we know that in
order to get the price of the put option with r = 0.05, D0 = 0.1, and σ = 0.3,
we can take a 16 × 4 mesh if we solve a put problem directly or we can take
a 12 × 6 mesh if we solve a corresponding call problem and get the solution
using the symmetry relations. For these two meshes, the CPU times needed
are very close, so we can choose either way. However, if we already have a code
to compute American call option prices, then using the second way would be
a better choice since only very little code needs to be added.

With this method, it is not difficult to get results with a high accuracy.
In Table 9.4, the optimal price for American call options with various r and
D0 are listed. Analysis shows these results to be exact to at least seven digits
(see [98]).

Table 9.5. American call option

(r = 0.1, σ = 0.2, D0 = 0.05, T = 1year, S = E = 100,
and the exact value = 9.94092345 · · · )

Without extrapolation With extrapolation
Meshes Results Errors CPU(s) Results |Errors| CPU(s)

32× 2 9.941663 −0.000739 0.00025 9.940902 0.000021 0.00045

64× 4 9.941097 −0.000174 0.00083 9.940908 0.000015 0.0012

128× 8 9.940962 −0.000038 0.0027 9.940917 0.000006 0.0038

256× 16 9.940932 −0.000009 0.0099 9.9409225 0.000001 0.0125

Now let us discuss the convergence rate of the SSM. Let r = 0.1, σ =
0.2, D0 = 0.05, T = 1year, and S = E = 100. In order to study the conver-
gence rate, we have to know the exact solution. We do not have the exact
solution, but we can get a solution with a very high accuracy and obtain the
first few digits of the exact solution. For the parameters given above, our com-
putation shows the exact call option price C = 9.94092345 · · · and the exact
put option price P = 5.92827717 · · · . As long as we have such a solution,
we can find the error of any solution up to the eighth decimal. In Table 9.5,
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Table 9.6. American put options

(r = 0.1, σ = 0.2, D0 = 0.05, T = 1year, S = E = 100,
and the exact value = 5.92827717 · · · )

Without extrapolation With extrapolation
Meshes Results Errors CPU(s) Results |Errors| CPU(s)

12× 4 5.968338 −0.040060 0.00035 5.925575 0.002702 0.00065

24× 8 5.937883 −0.009606 0.00084 5.927732 0.000545 0.0014

48× 16 5.930477 −0.002200 0.0025 5.928008 0.000269 0.0035

96× 32 5.928819 −0.000542 0.0078 5.928266 0.000011 0.0108

192× 64 5.928409 −0.000132 0.0300 5.928272 0.000005 0.0387

384× 128 5.928310 −0.000033 0.1200 5.9282767 0.0000005 0.1400

the results without using the extrapolation technique for four meshes and the
errors up to the sixth decimal are listed on the second and third columns
from the left. When the numbers of intervals in the both directions is dou-
bled, the error is reduced by a factor about 1/4. This means that the error is
O
(
Δξ2, Δτ2

)
. Therefore, it has a second-order convergence rate. In Table 9.6,

the results and errors for the put option are given. From there, we see that
the convergence rate is also second order for the put option.

A method with a high convergence rate has a better performance if the
mesh size is small enough. However, if the mesh size is not small enough,
it might not be true. For a fixed mesh, the computational amount of work is
different for different methods. Thus, from a practical point of view, a method
should be judged by its performance. Therefore, we also list the CPU time
needed to perform such a computation on a Space Ultra 10 computer for each
mesh in Tables 9.5 and 9.6.

Using these data on errors and CPU times in Tables 9.5 and 9.6, the data
given for PEFDII, Binomial, PSOR, and PIFDII in Chap. 8, the graphs of
log10(CPU time in second) versus log10(error) for call and put options are
plotted in Figs. 9.2 and 9.3, respectively. On these two figures, the lower the
point, the better the performance because a lower point means that for a fixed
error, it needs less CPU time. From there, we can see that the singularity-
separating method (SSM) has the best performance for these two cases if the
error required is less than 10−2. Moreover, the higher the accuracy required,
the greater the advantage of the SSM.

If the SSM is combined with the extrapolation technique, then the perfor-
mance is even better. In order to explain this, the results, errors, and CPU
times when the SSM is combined with the extrapolation technique are listed
in the right three columns of Tables 9.5 and 9.6, and the corresponding graphs
of log10(CPU time in second) versus log10(error) are also plotted in Figs. 9.2
and 9.3. There, SSME stands for the singularity-separating method with the
extrapolation technique. From here, we can see that the extrapolation tech-
nique is very useful. At the beginning of this subsection, we showed that for
various parameters, the SSM with the extrapolation technique could give very
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good results on quite coarse meshes. This is because due to the error func-
tion being quite smooth, the extrapolation technique is always helpful when
combined with SSM.
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Fig. 9.4. Graphs of CPU time versus error for a call option, S = 110

Here, we would like to point out that the extrapolation technique is not
always helpful. Let us find out if the performance is improved when the bi-
nomial method is combined with the extrapolation technique. Consider a call
option with r = 0.1, σ = 0.2, D0 = 0.05, T = 1, and E = 100. In Fig. 9.4 for
S = 110 we plot the graphs of log10(CPU time in second) versus log10(error)
for the binomial method with and without extrapolation. There, “Binomial”
and “BinomialE” mean the binomial method and the binomial method with
extrapolation technique. From there, we can see that on some meshes, the
extrapolation technique improves the results, but on other meshes, it makes
the results worse. In order to have some details about why this happens, the
data of the errors and the CPU times are listed for the two cases in Table 9.7.
As a first-order method, the error should be reduced by a factor about 1/2
when the number of time steps is doubled. Because the error function is not
smooth due to the non-smoothness of the solution, from the table we see that
from one mesh size to another, the error before extrapolation does not always
show such a property and sometimes the sign of the error even changes. Thus,
when the extrapolation technique is used, the error increases for some cases if
the sign is unchanged and always increases if the sign changes. This phenom-
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ena occurs even if the mesh size is very small. Therefore, the extrapolation
technique is not always helpful for the binomial method. However, Broadie
and Detemple in [14] suggested an improved binomial method called the bi-
nomial Black and Scholes method (BBS). Examples show that the error of
BBS decreases and does not change its sign when the mesh size decreases. As
long as it is true, the extrapolation technique is helpful for the BBS method.

Table 9.7. American call option (binomial method)

(r = 0.1, σ = 0.2, D0 = 0.05, T = 1year, E = 100, S = 110,
and the exact value = 16.8016638 · · · )

Numbers of Without extrapolation With extrapolation
time steps Results Errors CPU(s) Results |Errors| CPU(s)

50 16.822670 −0.021006 0.0004 16.801602 0.000062 0.0005

100 16.813618 −0.011954 0.0013 16.804566 0.002902 0.0017

200 16.807482 −0.005818 0.0053 16.801346 0.000318 0.0066

400 16.803114 −0.001450 0.0220 16.798746 0.002918 0.0273

800 16.802573 −0.000909 0.0880 16.802032 0.000370 0.1110

1,600 16.802526 −0.000862 0.3100 16.802479 0.000817 0.3980

3,200 16.802096 −0.000432 1.2000 16.801666 0.000002 1.5100

6,400 16.801525 +0.000139 5.2700 16.800953 0.000710 6.4700

12,800 16.801578 +0.000086 20.100 16.801632 0.000032 25.370

25,600 16.801652 −0.000012 97.600 16.801727 0.000063 117.70

Finally, in this subsection we give two graphs on the location of the
free boundaries. In Figs. 9.5 and 9.6, the location of the free boundaries
is plotted for three call options and three put options, respectively. There,
E = 100, σ = 0.24, and t = 0 ∼ 10. The other parameters for the three
call options are (r = 0, D0 = 0.06), (r = 0.06, D0 = 0.06), and (r =
0.06, D0 = 0.03), and for the three put options they are (r = 0.06, D0 = 0),
(r = 0.06, D0 = 0.06), and (r = 0.03, D0 = 0.06). For all the cases, the lo-
cation of the free boundary moves quite fast at t ≈ T . Therefore, the time
step at t ≈ T should be smaller than the time step at t << T . In order to
make computation more efficient, the time step used for all the numerical re-
sults in this subsection is not constant. When we need to find the solution for
τ ∈ [0, T ] and the total number of time step is N , then τn is determined by
the formula

τn =
n2

N2
T, n = 0, 1, · · · , N

and from τn to τn+1, the time step is τn+1 − τn =
2n+ 1

N2
T . When such

variable time steps are used, the extrapolation technique can still be used,
which is left as an exercise problem for readers to show.
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Fig. 9.5. Locations of free boundaries of call options in the (S, t)-plane
[The parameters for these curves from the left to the right are
(r=0, D0=0.06), (r=0.06, D0=0.06), and (r=0.06, D0=0.03)]

Fig. 9.6. Locations of free boundaries of put options in the (S, t)-plane.
[The parameters for these curves from the right to the left are
(r=0.06, D0=0), (r=0.06, D0=0.06), and (r=0.03, D0=0.06)]
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9.2.4 Solution and Numerical Results of Exotic Options

After making a slight change, the implicit finite-difference method described
in Sect. 9.2.1 still can be used for computing free-boundary problems for
American-style barrier, Asian, and lookback options. Here, we first show
some results for American barrier and lookback options. Then, we discuss
some modifications we have used when we compute the prices of American-style
Asian options and give some results on Asian options.

For S = 60 ∼ 160, the prices of American down-and-out call options with
Bl = 80, 85, 90, 95 and the price of American down-and-out call option with
Bl = 0—the price of the American vanilla call option—have been shown in
Fig. 4.1. There, the parameters are r = 0.1, D0 = 0.05, σ = 0.2, T = 1year,
and E = 100. Here, for S = 60 ∼ 160 and for the same parameters, the
prices of American up-and-out put options with Bu = 105, 110, 115, 120 and
the price of American up-and-out put option with Bu = ∞—the price of the
American vanilla put option—are represented in Fig. 9.7. From these curves,
we see again that the price of a barrier option is less than a vanilla option.
The reason is still that the holder of a barrier option has less rights than a
holder of a vanilla option. In Sect. 4.2.3, we have pointed out that for call
options, the higher the lower barrier Bl, the less the rights and the cheaper
the option. Here, we give some data to show how big the difference between
the barrier options and the vanilla options is. In Table 9.8, the prices of the
American down-and-out and vanilla call options for S= 80, 85, 90, 95, 100,
105, 110, 115, and 120 are listed. From the data, we can see that the difference
is significant for most of the cases.
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Fig. 9.7. Values of American vanilla put option and American
up-and-out put options with Bu = 105, 100, 115, 120
(r = 0.1, D0 = 0.05, σ = 0.2, T = 1year, and E = 100)
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Table 9.8. American down-and-out call option

(r = 0.1, σ = 0.20, D0 = 0.05, T = 1, and E = 100)

S Vanilla Bl = 80 Bl = 85 Bl = 90 Bl = 95

80 1.769 0 0 0 0

85 3.057 2.181 0 0 0

90 4.843 4.418 3.165 0 0

95 7.145 6.943 6.242 4.251 0

100 9.941 9.846 9.464 8.243 5.361

105 13.182 13.138 12.934 12.202 10.292

110 16.802 16.782 16.674 16.244 15.005

115 20.728 20.719 20.663 20.415 19.626

120 24.893 24.889 24.861 24.720 24.226

In Sect. 4.4, for an American lookback strike call option, the valuesW (η, t)
as functions of η for t = 0, 0.2, 0.4, 0.6, 0.8 are shown in Fig. 4.7. Here, for an
American lookback strike put option, similar curves are represented in Fig. 9.8.
From this figure, we know that W (η, t) = V (S,H, t)/S is an increasing func-
tion in η = H/S. That is, if S is fixed, then V (S,H, t) is an increasing function
in H. This is because the payoff max(H − S, 0) increases for S ≤ H as H in-
creases. The highest price up to time t is of course greater than or equal to
the price at time t. Thus, η = H/S must be greater than or equal to 1. Con-
sequently, W (η, t) is defined only for η ≥ 1 and for a fixed t, the price of the
option has a minimum at η = 1. In Fig. 9.8, we can observe this being true
and the value of W (η, t) at η = 1 and t = 0 being about 0.16. This means
that the minimum price at t = 0 is about 16% (the actual value is 16.37%) of
S. From the last subsection, we know that the value of the vanilla put option
with S = E is 5.93% of S. Hence, the price of an American lookback strike
put option is much higher than the price of an American vanilla put option.
The reason is that the holder of an American lookback strike put option can
sell a stock at any time t for the maximum price during the time interval [0, t],
whereas a holder of an American vanilla put option can sell a stock at any
time t for the price at time t that is always less than or equal to the maximum
price during the time interval [0, t].

In Fig. 9.9, the location of the free boundary of the American lookback
strike put option is given. In Fig. 4.8, a similar result for a call is represented.
In Sect. 3.3.1, it has been shown that the locations of free boundaries for vanilla
options are monotone functions in t. In fact, this is also true for American
lookback strike options. Figures 4.8 and 9.9 show this fact. In Sect. 3.3.1, we
also have pointed out that the monotonicities of the free boundary and of
the price with respect to t are related. This reflects that W (η, t) should be
monotone functions of t for any fixed η. Figures 4.7 and 9.8 show this feature.

For details on how to compute American barrier and lookback options by
using SSM, see [18, 99].
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Now let us look at average options. In Fig. 9.10, the line with ∗ gives the
solutionW (η, 0) for an American average strike call option by the singularity-
separating method with the implicit finite-difference method (SSMIMP), sim-
ilar to that described in Sect. 9.2.1. The result of a put option with the same
parameters is given in Fig. 9.11 also by a curve with ∗. These two curves
are almost horizontal straight lines except near one of the boundaries because



9.2 Implicit Finite-Difference Methods 571

0.06

0.061

0.062

0.063

0.064

0.065
W

h
0.9 1 1.1 1.2 1.3 1.4 1.5

SSMEXP scheme
SSMIMP scheme

Fig. 9.10. W (η, t) of an American average strike call option
(r = 0.1, D0 = 0.1, σ = 0.2, and t = 0)

0.0615

0.062

0.0625

0.063

0.0635

0.064

0.0645

0.065

0.0655
W

0 0.2 0.4 0.6 0.8 1 1.2

SSMEXP scheme
SSMIMP scheme

Fig. 9.11. W (η, t) of an American average strike put option
(r = 0.1, D0 = 0.1, σ = 0.2, and t = 0)



572 9 Free-Boundary Problems

there is a term (1− η)/t in the partial differential equation of Asian options.
Actually, this boundary is the free boundary. Near the free boundary, the
exact solution changes very rapidly, and the numerical solution has oscilla-
tions. At time t = 0, the average price of the stock is always equal to the price
of the stock, so we actually only need the value of W (η, t) at η = A/S = 1,
which is the level of the horizontal straight line. Therefore, we can still have
a good result for W (1, t) by finding the level of the horizontal straight line.
However, in order to get rid of the oscillations and make the entire result nicer,
we use the following scheme to approximate the first and second derivatives
with respect to ξ in the partial differential equation.

Let us consider the equation:

a
n+1/2
i

∂2U

∂ξ2
+ b

n+1/2
i

∂U

∂ξ
+ c

n+1/2
i U = 0.

Its characteristic equation is

a
n+1/2
i λ2 + b

n+1/2
i λ+ c

n+1/2
i = 0. (9.36)

When a
n+1/2
i > 0 and c

n+1/2
i < 0, it has two distinct real roots:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1,i =
−bn+1/2

i +

√(
b
n+1/2
i

)2
− 4a

n+1/2
i c

n+1/2
i

2a
n+1/2
i

,

λ2,i =
−bn+1/2

i −
√(

b
n+1/2
i

)2
− 4a

n+1/2
i c

n+1/2
i

2a
n+1/2
i

.

Let
ϕ(ξ) = eλ1,i(ξ−ξi), ψ(ξ) = eλ2,i(ξ−ξi) (9.37)

be the local basis functions. Then, on a subinterval [ξi−1, ξi+1] near ξi, a
function W (ξ, τn+1/2) can be approximated by

αiϕ(ξ) + βiψ(ξ) + γi, (9.38)

where αi, βi, and γi are determined by the following conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αiϕ(ξi−1) + βiψ(ξi−1) + γi =W
n+1/2
i−1 ,

αiϕ(ξi) + βiψ(ξi) + γi =W
n+1/2
i ,

αiϕ(ξi+1) + βiψ(ξi+1) + γi =W
n+1/2
i+1 .
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From these conditions, we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αi = α1,iW
n+1/2
i−1 + α2,iW

n+1/2
i + α3,iW

n+1/2
i+1 ,

βi = β1,iW
n+1/2
i−1 + β2,iW

n+1/2
i + β3,iW

n+1/2
i+1 ,

γi =W
n+1/2
i − αi − βi,

(9.39)

where

α1,i = [ψ(ξi+1)− ψ(ξi)] /Gi,

α2,i = [ψ(ξi−1)− ψ(ξi+1)] /Gi,

α3,i = [ψ(ξi)− ψ(ξi−1)] /Gi,

β1,i = [ϕ(ξi)− ϕ(ξi+1)] /Gi,

β2,i = [ϕ(ξi+1)− ϕ(ξi−1)] /Gi,

β3,i = [ϕ(ξi−1)− ϕ(ξi)] /Gi,

Gi = [ϕ(ξi−1)− ϕ(ξi)] [ψ(ξi+1)− ψ(ξi)]

− [ϕ(ξi+1)− ϕ(ξi)] [ψ(ξi−1)− ψ(ξi)] .

If b
n+1/2
i is a very large positive number, then |λ2,i| is very large and the ex-

ponential function ψ(ξ) changes very rapidly. Therefore, even if W (ξ, τn+1/2)
changes very rapidly, as long as its behavior is close to an exponential func-
tion, (9.38) can still give a very good approximation not only for the function
itself but also for its derivatives. Differentiating function (9.38) with respect
to ξ yields

∂W

∂ξ
≈ αiλ1,iϕ(ξ) + βiλ2,iψ(ξ),

∂2W

∂ξ2
≈ αiλ

2
1,iϕ(ξ) + βiλ

2
2,iψ(ξ). (9.40)

Therefore, we can have the following approximation:
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αiλ

2
1,iϕ(ξi) + βiλ

2
2,iψ(ξi)

]

+b
n+1/2
i [αiλ1,iϕ(ξi) + βiλ2,iψ(ξi)] + c

n+1/2
i W

n+1/2
i

= −cn+1/2
i

[
αi + βi −W

n+1/2
i

]

= −cn+1/2
i

[
(α1,i + β1,i)W

n+1/2
i−1 + (α2,i + β2,i)W

n+1/2
i

+ (α3,i + β3,i)W
n+1/2
i+1 −W

n+1/2
i

]
,

where we have used the facts that λ1,i and λ2,i are roots of Eq. (9.36) and
that the expressions of αi and βi are given by the set of expressions (9.39).
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If the first and second derivatives with respect to ξ in the partial differential
equation for an Asian option are not discretized by central schemes but by
the set of expressions (9.40), then we have a new scheme, which is called the
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exponential scheme, and the method is referred to as the singularity-separating
method with an exponential scheme (see [17]) and abbreviated as SSMEXP.
The results of the exponential scheme are also given in Figs. 9.10 and 9.11 by
the curves with �, which have no oscillations. From these curves, we see that
this scheme improves the results. Therefore, in order to get the price of Asian
options, we use this scheme. In Fig. 9.12, for an American average strike call
option, the values of W (η, t) as functions of η for t = 0, 0.2, 0.4, 0.6, 0.8 are
given. The price of the option is V (S,A, t) = AW (S/A, t). Because A = S
at t = 0, in order to find the value of the option at S = $100 and t = 0,
we need to find $100W (1, 0). From Fig. 9.12, we see that it is a little higher
than $100× 0.06 = $6.00 (from the data we have it is $6.20). In Fig. 4.3, the
values of the American average strike put option with the same parameters
are represented. From there, we see that the price for an American average
strike put option with the same parameters at t = 0 is also a little higher than
$100× 0.06 = $6.00 (from the data we have it is $6.32). Thus, the difference
between the call and put prices for the average options is much smaller than for
the vanilla options. In Fig. 9.13, the free boundaries of the average strike call
and put options are given, which shows that the locations of free boundaries
are not monotone functions in t for the average strike options. This indicates
that W (η, t) is not a monotone function of t for a fixed η, which can be seen
in Figs. 4.3 and 9.12.

9.2.5 Solution of Two-Dimensional Problems

In this subsection, we will discuss how to price two-factor vanilla American
call options numerically. Here, “two-factor” means that both S and σ are
random variables. If D0 is not equal to zero, then pricing two-factor vanilla
American options involves solving two-dimensional free-boundary problems.
In what follows, we will give some details on implicit finite-difference methods
for two-dimensional free-boundary problems. For the American call, the corre-
sponding free-boundary problem is given by the problem (9.7) or the problem
(9.9). Those problems can be converted into a problem on a rectangular do-
main, for example, the problem (9.9) can be converted into the problem (9.11).
Therefore, determining the price on the domain [0, Sf (σ, t)]× [σl, σu]× [0, T ]
can be reduced to solving the problem (9.11) on a rectangular domain
[0, 1]× [σl, σu]× [0, T ] in the (ξ, σ, τ)-space.

We use equidistant grid points on the rectangular domain. Let Δξ = 1/M ,
Δσ = (σu − σl)/I, and Δτ = T/N be the mesh sizes in the ξ-, σ-, and τ -
directions, respectively, whereM , I and N are positive integers. We thus have
M+1, I+1, and N+1 nodes in the ξ-, σ-, and τ -directions, respectively. The
M + 1 nodes in the ξ-direction are ξm = mΔξ, m = 0, 1, · · · ,M , the I + 1
nodes in the σ-direction are σi = σl + iΔσ, i = 0, 1, 2, · · · , I, and the N + 1
nodes in the τ -direction are τn = nΔτ , n = 0, 1, · · · , N . In what follows, we
also define τn+1/2 = (n + 1/2)Δτ . Let unm,i stand for the approximate value
of u at ξ = ξm, σ = σi, and τ = τn and snf,i denote the approximate value of
sf at σ = σi, and τ = τn.
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If ξ �= 1, σ �= σl, and σ �= σu, then at a point (ξm, σi, τ
n+1/2), the partial

differential equation in the problem (9.11) can be discretized by the following
second-order approximation:

un+1
m,i − unm,i

Δτ

=
a1m

2

2
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m = 0, 1, · · · ,M − 1, i = 1, 2, · · · , I − 1.

Here, q and all the coefficients a1–a7 should be evaluated at ξm, σi and τ
n+1/2

in order to guarantee second-order accuracy. For a1–a7, the expressions are

a
n+1/2
1,m,i =

1

2
(σl + iΔσ)2

−
ρ
n+1/2
m,i (σl + iΔσ)q

n+1/2
m,i

2Δσ

(sn+1
f,i+1 − sn+1

f,i−1 + snf,i+1 − snf,i−1)

(sn+1
f,i + snf,i)

+
1

2

[
q
n+1/2
m,i

2Δσ

(sn+1
f,i+1 − sn+1

f,i−1 + snf,i+1 − snf,i−1)

(sn+1
f,i + snf,i)

]2

,

a
n+1/2
2,m,i = ρ

n+1/2
m,i (σl + iΔσ)−

q
n+1/2
m,i

2Δσ

(sn+1
f,i+1 − sn+1

f,i−1 + snf,i+1 − snf,i−1)

(sn+1
f,i + snf,i)

,

a
n+1/2
3,m,i =

1

2
,

a
n+1/2
4,m,i =

2

(sn+1
f,i + snf,i)

sn+1
f,i − snf,i
Δτ

+ r −D0

−
[
ρ
n+1/2
m,i (σl + iΔσ)q

n+1/2
m,i + p

n+1/2
m,i − λ

n+1/2
m,i q

n+1/2
m,i

]

×
sn+1
f,i+1 − sn+1

f,i−1 + snf,i+1 − snf,i−1

2Δσ(sn+1
f,i + snf,i)
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+

[
q
n+1/2
m,i

2Δσ

(sn+1
f,i+1 − sn+1

f,i−1 + snf,i+1 − snf,i−1)

(sn+1
f,i + snf,i)

]2

−
[
q
n+1/2
m,i

Δσ

]2
sn+1
f,i+1 − 2sn+1

f,i + sn+1
f,i−1 + snf,i+1 − 2snf,i + snf,i−1

2
(
sn+1
f,i + snf,i

) ,

a
n+1/2
5,m,i = p

n+1/2
m,i − λ

n+1/2
m,i q

n+1/2
m,i ,

a
n+1/2
6,m,i = −r,

a
n+1/2
7,m,i = −f(mΔξ(sn+1

f,i + snf,i)/2, σl + iΔσ, T − (n+ 1/2)Δτ).

At the boundaries σ = σl and σ = σu, due to q = 0, the partial differential
equation in the problem (9.11) becomes

∂u

∂τ
= a1ξ

2 ∂
2u

∂ξ2
+ a4ξ

∂u

∂ξ
+ a5

∂u

∂σ
+ a6u+ a7.

Just like the European case, this equation possesses hyperbolic properties in
the σ-direction. Hence, we can approximate the partial differential equation
in problem (9.11) at the boundary σ = σl by

un+1
m,0 − unm,0

Δτ

=
a1m

2

2
(un+1
m+1,0 − 2un+1

m,0 + un+1
m−1,0 + unm+1,0 − 2unm,0 + unm−1,0)

+
a4m

4
(un+1
m+1,0 − un+1

m−1,0 + unm+1,0 − unm−1,0) (9.42)

+
a5
4Δσ

(−un+1
m,2 + 4un+1

m,1 − 3un+1
m,0 − unm,2 + 4unm,1 − 3unm,0)

+
a6
2
(un+1
m,0 + unm,0) + a7, m = 0, 1, · · · ,M − 1

and at the boundary σ = σu by

un+1
m,I − unm,I

Δτ

=
a1m

2

2
(un+1
m+1,I − 2un+1

m,I + un+1
m−1,I + unm+1,I − 2unm,I + unm−1,I)

+
a4m

4
(un+1
m+1,I − un+1

m−1,I + unm+1,I − unm−1,I) (9.43)

+
a5
4Δσ

(3un+1
m,I − 4un+1

m,I−1 + un+1
m,I−2

+ 3unm,I − 4unm,I−1 + unm,I−2)

+
a6
2
(un+1
m,I + unm,I) + a7, m = 0, 1, · · · ,M − 1.



578 9 Free-Boundary Problems

Here,
∂u

∂σ
is discretized by a one-sided second-order scheme in order for all the

node points involved to be in the computational domain. Here, a1 and a4–a7
are also evaluated at ξm, σi and τn+1/2. The formulae for a1 and a4–a7 are

almost the same as those given above, except that the partial derivative
∂sf
∂σ

is discretized in the same way as
∂u

∂σ
. That is,

∂sf
∂σ

in the difference scheme

(9.42) is approximated by

−sn+1
f,2 + 4sn+1

f,1 − 3sn+1
f,0 − snf,2 + 4snf,1 − 3snf,0
4Δσ

and in scheme (9.43) by

3sn+1
f,I − 4sn+1

f,I−1
+ sn+1

f,I−2
+ 3snf,I − 4snf,I−1

+ snf,I−2

4Δσ
.

From the expression for a4, we see that because q = 0 at σ = σl and σ = σu,

we do not need one-sided second-order finite-difference schemes for
∂2sf
∂σ2

.

Noticing that the coefficients of
∂2u

∂ξ2
,
∂u

∂ξ
in the problem (9.11) at ξ = 0

are zero, un−1,i does not appear in Eqs. (9.41)–(9.43) with m = 0.
At ξ = 1, there are two boundary conditions in the problem (9.11). One

can be written as

un+1
M,i = g(sn+1

f,i , τ
n+1), i = 0, 1, 2, · · · , I, (9.44)

where
g(sf , τ) = sf

[
1− e−D0τN(d1)

]
− E

[
1− e−rτN(d2)

]
.

The other can be approximated by

3un+1
M,i − 4un+1

M−1,i + un+1
M−2,i = 2Δξh(sn+1

f,i , τ
n+1), i = 0, 1, · · · , I,

or

3g(sn+1
f,i , τ

n+1)− 4un+1
M−1,i + un+1

M−2,i = 2Δξh(sn+1
f,i , τ

n+1),

i = 0, 1, · · · , I,
(9.45)

where
h(sf , τ) = sf

[
1− e−D0τN(d1)

]
.

At τ = 0, from

u(ξ, σ, 0) = 0 and sf (σ, 0) = max(E, rE/D0),
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we have {
u0m,i = 0, m = 0, 1, · · · ,M, i = 0, 1, · · · , I,

s0f,i = max(E, rE/D0), i = 0, 1, · · · , I.
(9.46)

For a fixed n, the system (9.41)–(9.45) consists of (M+2)(I+1) equations.
If unm,i, m = 0, 1, · · · ,M , i = 0, 1, · · · , I and snf,i, i = 0, 1, · · · , I are known,

then in the system there are (M + 2)(I + 1) unknowns, namely, un+1
m,i , m =

0, 1, · · · ,M , i = 0, 1, · · · , I and sn+1
f,i , i = 0, 1, · · · , I, and these unknowns

can be obtained from solving the system. Because the set of initial conditions
(9.46) gives u0m,i for all m and i and s0f,i for all i, we can have un+1

m,i , i =

0, 1, · · · , I, m = 0, 1, · · · ,M and sn+1
f,i , i = 0, 1, · · · , I for n = 0, 1, · · · , N − 1

successively.
There are many ways to solve the above nonlinear system. If sn+1

f,i , i =
0, 1, · · · , I are given, then the system consisting of Eqs. (9.41)–(9.44) is a linear
system for un+1

m,i , m = 0, 1, · · · ,M and i = 0, 1, · · · , I. One way to solve the

system is as follows. Guessing sn+1
f,i , i = 0, 1, · · · , I and solving the system

(9.41)–(9.44), we get all the approximate un+1
m,i , m = 0, 1, · · · ,M , and i =

0, 1, · · · , I. Then check if Eq. (9.45) holds. If it does, we get our solution; if
not, we determine new sn+1

f,i , i = 0, 1, · · · , I, in the following way.

For each i, Eq. (9.45) is a nonlinear equation for sn+1
f,i when un+1

M−1,i and

un+1
M−2,i are given. We take the root of the nonlinear equation as the new value

of sn+1
f,i . This root can be determined by Newton’s method based on Eq. (9.45):

s
(k+1)
f,i = s

(k)
f,i −

θ(s
(k)
f,i )

θ′(s(k)f,i )
,

where s
(k)
f,i is the k-th iterative value of sn+1

f,i and

θ(sf,i, τ
n+1) = 3g(sf,i, τ

n+1)− 4un+1
M−1,i + un+1

M−2,i − 2Δξh(sf,i, τ
n+1),

θ′(sf,i, τn+1) = 3
∂g

∂sf,i
(sf,i, τ

n+1)− 2Δξ
∂h

∂sf,i
(sf,i, τ

n+1)

= (3− 2Δξ)
[
1− e−D0τ

n+1

N(d1)
]
+

2Δξ

σ
√
2πτn+1

e−D0τ
n+1−d21/2

with d1 =
ln(sf,i/E) + (r −D0 + σ2/2)τn+1

σ
√
τn+1

. As the starting value s
(0)
f,i of

this procedure, we take the value of sn+1
f,i used when the system (9.41)–(9.44)

is solved previously.

9.2.6 Numerical Results of Two-Factor Options

Now let us show some results obtained by the numerical method above. We
use the following two stochastic volatility models:
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dσ = a(b− σ)dt+ c

1−
(

1− 2
σ − σl
σu − σl

)2

1− 0.975

(

1− 2
σ − σl
σu − σl

)2σdX2, σl ≤ σ ≤ σu (9.47)

and

dσ = a(b− σ)dt+ c

[
(σ − σl)(σu − σ)

(σu − σl)2

]1/2

σdX2, σl ≤ σ ≤ σu, (9.48)

where a, b, and c are positive parameters. The models (9.47) and (9.48) are
referred to as Model I and Model II, respectively, in what follows. Both models
are in the form (8.98). There is only a little difference between them. In Model

I,
∂q(σ, t)

∂σ
is bounded on [σl, σu], and the reversion conditions are reduced

to the conditions (8.101) and (8.102). Clearly, q(σl) = q(σu) = 0, so the
equality conditions in the conditions (8.101) and (8.102) hold. In this case,
the inequality conditions are a(b − σl) ≥ 0 and a(b − σu) ≤ 0, which can be
combined into

σl ≤ b ≤ σu. (9.49)
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Fig. 9.14. The American call price (t = 0.5, T = 1.0, ρ = 0.2, and λ = 0)
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Fig. 9.15. The American call price (t = 0.5, T = 1.0, ρ = 0.2, and λ = 0)

Consequently, when the relation (9.49) holds, Model I satisfies the rever-
sion conditions. For Model II, the equality conditions of the conditions (8.99)
and (8.100) always hold, and the inequality conditions become

⎧
⎪⎪⎨

⎪⎪⎩

p(σl, t)− q(σl, t)
∂q(σl, t)

∂σ
= a(b− σl)− 0.5c2σ2

l /(σu − σl) ≥ 0,

p(σu, t)− q(σu, t)
∂q(σu, t)

∂σ
= a(b− σu) + 0.5c2σ2

u/(σu − σl) ≤ 0.

(9.50)

Therefore, in order for Model II to satisfy the reversion conditions (8.99) and
(8.100), we require that the set of conditions (9.50) holds. In the following
examples, we take σl = 0.05 and σu = 0.8.

Example 1. Here, we calculate a 1-year American call option with Model I. We
choose a = 0.1, b = 0.06, c = 0.12, ρ = 0.2, and λ = 0. We take 20 grid points
in the ξ-direction and 20 grid points in the σ-direction and 40 time steps in
the τ -direction, namely, the mesh is 20 × 20 × 40. The other parameters are
E = 50, r = 0.1, and D0 = 0.05.

Figures 9.14 and 9.15 show the values of the American call option with
T = 1 at time t = 0.5 and t = 0. Because those parameters a, b, c, ρ, and λ do
not depend on time, Fig. 9.14 also shows the value of an option with T = 0.5
at time t = 0. Here, the strips represent the plane C = S−E, the solution for
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Fig. 9.16. The difference function C = C − c
(t = 0.5, T = 1.0, ρ = 0.2, and λ = 0)

Table 9.9. Numerical solutions with extrapolation

(E = 50, T = 3.0, r = 0.1, D0 = 0.05,
a = 0.1, b = 0.06, c = 0.12, ρ = 0.2, and λ = 0)

σ S u1 u2 u3 U∗
1 U∗

2

0.125 45 3.93255 3.93246 3.93148 3.93115 3.93097
0.125 50 7.01873 7.02191 7.02241 7.02257 7.02253
0.125 55 10.7219 10.7224 10.7225 10.7225 10.7226
0.200 45 5.58000 5.57170 5.57137 5.57126 5.57160
0.200 50 8.49808 8.49254 8.49207 8.49191 8.49209
0.200 55 11.8781 11.8756 11.8742 11.8737 11.8736
0.350 45 8.93697 8.92810 8.92576 8.92498 8.92496
0.350 50 11.8615 11.8610 11.8607 11.8606 11.8605
0.350 55 15.1021 15.0953 15.0925 15.0916 15.0914

S > Sf (σ, t), and the meshed surface shows the solution for S ≤ Sf (σ, t). In
Figs. 9.16 and 9.17, the difference C is shown for t = 0.5 and 0, respectively.
There, only the solution of the free-boundary problem has been shown. As
we know, the derivative of C with respect to S at t = T is discontinuous at
S = E. Comparing Figs. 9.14 and 9.15, we see that the value of C becomes
smoother as t decreases. However, we know from Fig. 9.15 that even at t = 0,
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for smaller σ, C still changes rapidly with respect to S near S = E. The
difference C at t = T is identically equal to zero and remains smooth as t
decreases, which can be seen from Figs. 9.16 and 9.17. Because C is much
smoother than C, we can have much better numerical results if we use the
partial differential equation for C instead of C when we do the computation.

Example 2. In this example, we calculate a 3-year American call option for
Model II. All the other parameters, except ρ and λ, are the same as those in
Example 1. In this case

a(b− σl)− 0.5c2σ2
l /(σu − σl) = 0.000976 > 0

and
a(b− σu) + 0.5c2σ2

u/(σu − σl) = −0.067856 < 0.

Thus, the set of conditions (9.50) holds, and no boundary condition is needed
in order to determine the price.

First, we take ρ = 0.2 and λ = 0 and do the computation on different
meshes. In Table 9.9, u1 is the numerical solution using a mesh of 10×10×20,
u2 is the value using a mesh of 20× 20× 40, and u3 is the value using a mesh
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Table 9.10. Comparison of the results with various λ

(E = 50, T = 3.0, r = 0.1, D0 = 0.05, a = 0.1, b = 0.06, c = 0.12, and ρ = 0.2)

σ S λ = −1.0 λ = −0.5 λ = 0 λ = 0.5 λ = 1.0 One-
factor

0.125 45 4.1031 4.0170 3.9310 3.8449 3.7589 4.1789
0.125 50 7.1681 7.0953 7.0225 6.9497 6.8770 7.2432
0.125 55 10.825 10.774 10.723 10.672 10.620 10.885
0.200 45 5.9394 5.7555 5.5716 5.3877 5.2037 6.1134
0.200 50 8.8482 8.6701 8.4921 8.3141 8.1360 9.0216
0.200 55 12.193 12.033 11.874 11.714 11.554 12.361
0.350 45 9.6937 9.3085 8.9250 8.5417 8.1576 9.9913
0.350 50 12.647 12.254 11.861 11.467 11.072 12.964
0.350 55 15.876 15.485 15.091 14.701 14.309 16.209

Table 9.11. Comparison of the results with various ρ

(E = 50, T = 3.0, r = 0.1, D0 = 0.05, a = 0.1, b = 0.06, c = 0.12, and λ = 0)

σ S ρ = 0.4 ρ = 0.2 ρ = 0 ρ = −0.2 ρ = −0.4 One-
factor

0.125 45 3.9290 3.9310 3.9329 3.9349 3.9369 4.1789
0.125 50 7.0127 7.0225 7.0323 7.0422 7.0520 7.2432
0.125 55 10.711 10.723 10.735 10.747 10.759 10.885
0.200 45 5.5735 5.5716 5.5697 5.5678 5.5659 6.1134
0.200 50 8.4815 8.4921 8.5027 8.5134 8.5240 9.0216
0.200 55 11.854 11.874 11.893 11.913 11.933 12.361
0.350 45 8.9460 8.9250 8.9038 8.8825 8.8616 9.9913
0.350 50 11.866 11.861 11.855 11.849 11.844 12.964
0.350 55 15.083 15.091 15.100 15.109 15.118 16.209

of 40× 40× 80. There, we also give results when the extrapolation technique
is used. U∗

1 is the extrapolation value obtained by

U∗
1 =

1

3
(4u3 − u2)

and U∗
2 is the extrapolation value generated by

U∗
2 =

1

21
(32u3 − 12u2 + u1).

From the table, we see that the errors of u1 are on the second decimal place,
those of u2 and u3 are on the third decimal place, and for the extrapolation
values U∗

1 and U∗
2 , they are on the fourth decimal place. This shows that the

extrapolation technique increases accuracy.
Then, we take ρ = 0.2 and try different λ to see how the results vary. The

mesh used is 40×40×80. In Table 9.10, we compare the values of the options
with different parameters λ. The columns with λ = −1, −0.5, 0, 0.5, 1.0 at
the top contain the values of the options when λ = −1, −0.5, 0, 0.5, 1.0,
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Fig. 9.18. The American put value at t = 0.0 (E = 50, T = 3.0, ρ = 0, and λ = 0)

respectively. For this case, the smaller the λ, the higher the call option price.
The difference among the results for λ ∈ [−1, 1] is about 10%–20%. This
shows that we can calibrate the model to some extent even if we choose a
constant λ. We also list the values of the one-factor model with a constant
volatility. From Table 9.10, we see that the one-factor model overprices the
American call options.

In Table 9.11, we compare the values of the options with a different cor-
relation factor ρ and λ = 0, while the other parameters are kept unchanged.
The notation is similar to Table 9.10. The results show that the option price
varies a little when the correlation factor changes. Here, we again see that one
factor model overprices the American call option.

An American two-factor put option problem can also be reduced to solving
a free-boundary problem. However, the free-boundary problem is defined on
an infinite domain. As we have pointed out, a vanilla two-factor put option can
be converted into a vanilla two-factor call option with the same parameters
except for r,D0, ρ, and λ. Therefore, as long as we have a code for call options,
we can also obtain the price of any put option.

Example 3. We want to have the price of a put option with r = 0.06, D0 =
0.03, ρ = 0, and λ = 0 for Model II. The other parameters are the same as
those in Example 2. We use a mesh 40× 40× 80. In order to do this, we can
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first calculate a call option with r = 0.03, D0 = 0.06, ρ = 0, and λ = 0. Then,
using the set of relations (9.14), we can have the price and the optimal exercise
price of the put option. In Figs. 9.18 and 9.19, the price of the put option at
t = 0 for S ∈ [0, 100] and the optimal exercise price at t = 0, 0.75, 1.5, 2.25,
and 3.0 are shown.

For more results and details on two-factor options, see [56, 93, 94]. Finally,
we point out that the models given here are assumptions. In order to use such
a computation in practice, the models should be found from the market data.

9.3 Pseudo-Spectral Methods

9.3.1 The Description of the Pseudo-Spectral Methods for
Two-Factor Convertible Bonds

A free-boundary problem can also be solved by pseudo-spectral methods. If
the solution is smooth, then the pseudo-spectral method as a high-order dif-
ference method may be more efficient. Thus, when we compute C = C−c, the
pseudo-spectral method might be another good tool. Also, a parabolic opera-
tor always smoothes the solution. Thus, even if the initial value is not smooth,
the solution becomes smooth after a while. The life span of a convertible bond
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is quite long. If the time to the expiry is more than 2 years, the solution is
already quite smooth. Thus, if expiry is not soon, then the solution of a con-
vertible bond is quite smooth and for that time, a pseudo-spectral method
might be a good choice. In the last section, we already took the American call
option as an example to give the details of the implicit difference methods.
In this section, we will describe the details of the pseudo-spectral method for
the two-factor convertible bond problem.

In Sect. 9.1.2, a two-factor convertible bond problem with D0 > 0 was
reduced to the problem (9.15) or the problem (9.21). Suppose that we do not
take the difference and want to solve V (s, r, t) directly, that is, we solve the
problem (9.15). Using the transformation (9.19) and defining u(ξ, r̄, τ) and
sf (r̄, τ) by the set of formulae (9.20), we can rewrite the problem (9.15) as
the following problem on u(ξ, r̄, τ) and sf (r̄, τ):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
= Lξ,̄ru+ a7, 0 ≤ ξ ≤ 1, 0 ≤ r̄ ≤ 1, 0 ≤ τ ≤ T,

u(ξ, r̄, 0) = max (1, ξsf (r̄, 0)) , 0 ≤ ξ ≤ 1, 0 ≤ r̄ ≤ 1,

u(1, r̄, τ) = sf (r̄, τ), 0 ≤ r̄ ≤ 1, 0 ≤ τ ≤ T,

∂u

∂ξ
(1, r̄, τ) = sf (r̄, τ), 0 ≤ r̄ ≤ 1, 0 ≤ τ ≤ T,

sf (r̄, 0) = max (1, k/D0) , 0 ≤ r̄ ≤ 1,

(9.51)

where Lξ,̄r is the same as given in the problem (9.21):

Lξ,̄r = a1ξ
2 ∂

2

∂ξ2
+ a2ξw

∂2

∂ξ∂r̄
+ a3w

2 ∂
2

∂r̄2
+

(

a4 +
1

sf

∂sf
∂τ

)

ξ
∂

∂ξ

+a5
∂

∂r̄
+ a6

and
a7 = k.

Therefore, finding the value of a convertible bond is now reduced to solving
a problem on a rectangular domain. Suppose that we takeM+1 nodes in the ξ-
direction: ξ0, ξ1, · · · , ξM , L+1 nodes in the r̄-direction: r̄0, r̄1, · · · , r̄L, andN+1
nodes in the τ -direction: τ0, τ1, · · · , τN , where ξ0 = 0, ξM = 1, r̄0 = 0, r̄L = 1,
τ0 = 0, and τN = T . Furthermore, we assume the nodes in the τ -direction to
be equidistant with Δτ = T/N . Let unm,l denote u(ξm, r̄l, τ

n) and snf,l stand
for sf (r̄l, τ

n). For a fixed n, we need to determine unm,l,m = 0, 1, · · · ,M and

l = 0, 1, · · · , L, and snf,l, l = 0, 1, · · · , L. In what follows, let
{
unm,l

}
and

{
snf,l

}

denote the sets

{
unm,l,m = 0, 1, · · · ,M and l = 0, 1, · · · , L

}
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and {
snf,l, l = 0, 1, · · · , L

}

respectively. For n = 0,
{
unm,l

}
and

{
snf,l

}
are determined by the initial

conditions of the problem, which gives

u0m,l = max
(
1, ξms

0
f,l

)
, m = 0, 1, · · · ,M, l = 0, 1, · · · , L,

s0f,l = max (1, k/D0) , l = 0, 1, · · · , L.

What we need to do is to find
{
unm,l

}
and

{
snf,l

}
for n = 1, 2, · · · , N .

According to Sect. 6.1.2, we may assume the solution on the domain [0, 1]×
[0, 1] to be polynomials in each direction. Under such an assumption, for a fixed

n,
∂u

∂ξ
,
∂u

∂r̄
,
∂2u

∂ξ2
,
∂2u

∂ξ∂r̄
, and

∂2u

∂r̄2
at any point are linear combinations of unm,l,

m = 0, 1, · · · ,M and l = 0, 1. · · · , L, and ∂sf
∂r̄

at any r̄ is a linear combination

of snf,l, l = 0, 1. · · · , L. Therefore, the partial differential equation and the
boundary conditions in the problem (9.51) can be discretized into algebraic

equations, and solving the equations yields
{
unm,l

}
and

{
snf,l

}
.

Now we describe the details. Suppose that for a fixed pair of n and l,
unm,l, m = 0, 1, · · · ,M are known. According to these values, we can establish
a polynomial in ξ with degree M . From this polynomial, we can determine
∂u

∂ξ
,
∂2u

∂ξ2
at any point for r̄ = r̄l and τ = τn. If ξm is defined as follows:

ξm =
1

2

(
1− cos

mπ

M

)
, m = 0, 1, · · · ,M,

then

∂u

∂ξ
(ξm, r̄l, τ

n) =

M∑

i=0

Dξ,m,iu(ξi, r̄l, τ
n),

∂2u

∂ξ2
(ξm, r̄l, τ

n) =

M∑

i=0

Dξξ,m,iu(ξi, r̄l, τ
n)

and according to Sect. 6.1.2,

Dξ,m,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cm(−1)m+i

ci(ξm − ξi)
, m �= i,

−2M2 + 1

3
, m = i = 0,

1− 2ξi
4ξi(1− ξi)

, m = i = 1, 2, · · · ,M − 1,

2M2 + 1

3
, m = i =M,
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where c0 = cM = 2 and ci = 1, i = 1, 2, · · · ,M − 1, and

Dξξ,m,i =

M∑

k=0

Dξ,m,kDξ,k,i.

For brevity, we define

Dξ,mu
n
m,l =

M∑

i=0

Dξ,m,iu(ξi, r̄l, τ
n),

Dξξ,mu
n
m,l =

M∑

i=0

Dξξ,m,iu(ξi, r̄l, τ
n)

and write the two approximations in difference operator form:

∂u

∂ξ
(ξm, r̄l, τ

n) = Dξ,mu
n
m,l,

∂2u

∂ξ2
(ξm, r̄l, τ

n) = Dξξ,mu
n
m,l

Similarly, if r̄l is defined by

r̄l =
1

2

(

1− cos
lπ

L

)

, l = 0, 1, · · · , L,

then

∂u

∂r̄
(ξm, r̄l, τ

n) = Dr̄,lu
n
m,l,

∂2u

∂r̄2
(ξm, r̄l, τ

n) = Dr̄r̄,lu
n
m,l,

and
∂2u

∂ξ∂r̄
(ξm, r̄l, τ

n) = Dr̄,lDξ,mu
n
m,l.

These difference operators are defined by

Dr̄,lu
n
m,l =

L∑

j=0

Dr̄,l,ju(ξm, r̄j , τ
n),

Dr̄r̄,lu
n
m,l =

L∑

j=0

Dr̄r̄,l,ju(ξm, r̄j , τ
n),

Dr̄,lDξ,mu
n
m,l =

L∑

j=0

Dr̄,l,j

M∑

i=0

Dξ,m,iu(ξi, r̄j , τ
n),
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where

Dr̄,l,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cl(−1)l+j

cj(r̄l − r̄j)
, l �= j,

−2L2 + 1

3
, l = j = 0,

1− 2r̄j
4r̄j(1− r̄j)

, l = j = 1, 2, · · · , L− 1,

2L2 + 1

3
, l = j = L,

with c0 = cL = 2 and cj = 1, j = 1, 2, · · · , L− 1, and

Dr̄r̄,l,j =

L∑

k=0

Dr̄,l,kDr̄,k,j.

In the τ -direction, we can approximate
∂u

∂τ
and

∂sf
∂τ

by central differences:

∂u

∂τ
(ξm, r̄l, τ

n+1/2) =
u(ξm, r̄l, τ

n+1)− u(ξm, r̄l, τ
n)

Δτ
,

∂sf
∂τ

(r̄l, τ
n+1/2) =

sf (r̄l, τ
n+1)− sf (r̄l, τ

n)

Δτ
.

Therefore, the first equation in the problem (9.51) can be approximated by

un+1
m,l − unm,l

Δτ

=
1

2
L
n+1/2
m,l

(
un+1
m,l + unm,l

)
(9.52)

+

(
1

sn+1
f,l + snf,l

sn+1
f,l − snf,l
Δτ

)

ξmDξ,m

(
un+1
m,l + unm,l

)
+ a

n+1/2
7,m,l ,

m = 0, 1, · · · ,M − 1, l = 0, 1, · · · , L.

Here, the operator L
n+1/2
m,l and the scalar a

n+1/2
7,m,l are defined by

L
n+1/2
m,l =

1

2

(
Ln+1
m,l + Ln

m,l

)
,

and

a
n+1/2
7,m,l =

1

2

(
an+1
7,m,l + an7,m,l

)
,

where

Ln
m,l = an1,m,lξ

2
mDξξ,m + an2,m,lξmw

n
m,lDr̄,lDξ,m + an3,m,l

(
wnm,l

)2
Dr̄r̄,l

+an4,m,lξmDξ,m + an5,m,lDr̄,l + an6,m,l,

ani,m,l = ai(ξm, r̄l, τ
n), i = 1, 2, · · · , 7,
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wnm,l = w(ξm, r̄l, τ
n),

and the derivatives
∂sf
∂r̄

,
∂2sf
∂r̄2

appearing in a1, a2, and a4 are approximated

by

∂sf
∂r̄

(r̄l, τ
n) =

L∑

j=0

Dr̄,l,jsf (r̄j , τ
n),

∂2sf
∂r̄2

(r̄l, τ
n) =

L∑

j=0

Dr̄r̄,l,jsf (r̄j , τ
n).

The boundary conditions, the third and fourth relations in the problem (9.51),
can be discretized as follows:

un+1
M,l = sn+1

f,l , l = 0, 1, · · · , L, (9.53)

Dξ,Mu
n+1
M,l = sn+1

f,l , l = 0, 1, · · · , L. (9.54)

The system (9.52)–(9.54) has a truncation error of O(Δτ2) in the τ -direction
and is an M -th order scheme in the ξ-direction and an L-th order scheme in
the r̄-direction.

In the system (9.52)–(9.54), there are (M + 2)(L + 1) equations. When{
unm,l

}
and

{
snf,l

}
are given, the unknowns are un+1

m,l , m = 0, 1, · · · ,M , l =

0, 1, · · · , L, sn+1
f,l , l = 0, 1, · · · , L, the total of which is also (M + 2)(L + 1).

Therefore, it is a closed system. Unfortunately, it is a nonlinear system, and

we have to use iteration. Let u
(k)
m,l, s

(k)
f,l represent the k-th iteration value of

un+1
m,l , s

n+1
f,l , and we rewrite Eq. (9.52) in the form

u
(k)
m,l −

Δτ

2
L̄
(k−1)
m,l u

(k)
m,l −

s
(k)
f,l

s
(k−1)
f,l + snf,l

ξmDξ,m

(
u
(k−1)
m,l + unm,l

)

= unm,l +
Δτ

2
L̄
(k−1)
m,l unm,l −

snf,l

s
(k−1)
f,l + snf,l

ξmDξ,m

(
u
(k−1)
m,l + unm,l

)
+Δτa7,m,l,

m = 0, 1, · · · ,M − 1, l = 0, 1, · · · , L, (9.55)

where

L̄
(k−1)
m,l =

1

2

(
L
(k−1)
m,l + Ln

m,l

)
.

Equations (9.53) and (9.54) can be written as

u
(k)
M,l = s

(k)
f,l , l = 0, 1, · · · , L, (9.56)
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Dξ,Mu
(k)
M,l = s

(k)
f,l , l = 0, 1, · · · , L. (9.57)

The system (9.55)–(9.57) is a linear one for u
(k)
m,l, m = 0, 1, · · · ,M , l =

0, 1, · · · , L and s
(k)
f,l , l = 0, 1, · · · , L. It can be solved by a direct or itera-

tion method. We can let u
(0)
m,l = unm,l, m = 0, 1, · · · ,M , l = 0, 1, · · · , L and

s
(0)
f,l = snf,l, l = 0, 1, · · · , L. When

{
u
(k−1)
m,l

}
and

{
s
(k−1)
f,l

}
are known, we

can find
{
u
(k)
m,l

}
and

{
s
(k)
f,l

}
by solving the system (9.55)–(9.57). When all

u
(k)
m,l − u

(k−1)
m,l and s

(k)
f,l − s

(k−1)
f,l become very small, we can stop the iteration.

Just like the case of one-dimensional finite-difference methods, we can stop
at k = 2, and the result should be second-order accurate in the τ -direction.

This is because
{
u
(1)
m,l

}
and

{
s
(1)
f,l

}
can be understood as a result of a first-

order scheme in τ . The results
{
u
(2)
m,l

}
and

{
s
(2)
f,l

}
actually are the results of a

scheme in which the improved Euler method is used in the τ -direction. There-

fore, if
{
unm,l

}
and

{
snf,l

}
are given, we can obtain

{
un+1
m,l

}
and

{
sn+1
f,l

}

by solving the system (9.55)–(9.57). Because
{
u0m,l

}
and

{
s0f,l

}
are given

by the initial conditions, we can repeat the procedure described above for

n = 0, 1, · · · , N − 1, and finally get
{
uN

m,l

}
and

{
sNf,l

}
.

As long as we find
{
uN

m,l

}
and

{
sNf,l

}
, for any S, r we can have the price

of the convertible bond at t = 0 in the following way. If

S > Zsf

(
r − rl
ru − rl

, T

)/

n,

then
V = max(Z, nS);

while

S < Zsf

(
r − rl
ru − rl

, T

)/

n,

then

V (S, r, 0) = Zu

⎛

⎜
⎜
⎝

nS

Zsf

(
r − rl
ru − rl

, T

) ,
r − rl
ru − rl

, T

⎞

⎟
⎟
⎠ .

Usually,
r − rl
ru − rl

�= r̄l for any l and
nS

Zsf

(
r − rl
ru − rl

, T

) �= ξm for any m. In

order to find V (S, r, 0), we therefore need to use interpolation.

When t ≈ T and S ≈ max

(
Z

n
,
KZ

D0n

)

, the solution in the S-direction is

not smooth. In order to overcome this problem, we need to solve the problem
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(9.21) instead of the problem (9.51). The method for the problem (9.21) is
almost the same as the method for the problem (9.51). The only difference
is the boundary conditions and a7. In this case, a7,m,l in the system (9.55)
should be replaced by

1

2

(
a
(k−1)
7,m,l + an7,m,l

)

because a7 involves the location of the free boundary. Here, a
(k−1)
7,m,l is the

(k−1)-th iteration value of an+1
7,m,l. If we still want to solve the problem (9.51),

then at t ≈ T , using the finite-difference methods or using the pseudo-spectral
methods in the r-direction and using the finite-difference methods in the S-
direction might be better. Readers can find the details about how to solve
the two-factor convertible bond problems using the implicit finite-difference
method in [95] and using the mixture of the pseudo-spectral methods and the
finite-difference methods in [77]. In what follows, for brevity, we will refer to
the mixture of the pseudo-spectral method and the finite-difference method
as the pseudo-spectral method because in the entire computation, the main
method is the pseudo-spectral method. It is clear that this problem can also
be solved as a linear complementarity problem using an explicit or an implicit
finite-difference scheme.

9.3.2 Numerical Results of Two-Factor Convertible Bonds

Here, we show some numerical results of a two-factor convertible bond by
the pseudo-spectral method and compare the results by the pseudo-spectral
method with the results obtained by the finite-difference method, by the pro-
jected explicit and projected implicit finite-difference methods.

The interest rate model we adopted for the example is based on the model
used by Brennan and Schwartz (see [12]) and Druskin et al. (see [27]) even
though in practice in order to get the interest rate model, we should solve an
inverse problem by using the data on the market. Their model is

dr = u(r, t)dt+ w(r, t)dX2, 0 ≤ r,

where {
u(r, t) = −0.13r + 0.008 + λ(r, t)w(r, t),

w(r, t) =
√
0.26r.

We made the following modifications. We assume

0 ≤ r ≤ 0.3

and instead of 0.26r, use
0.26rφ2(r),
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0
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Fig. 9.20. The functions 0.26r and 0.26rφ2(r)

where

φ(r) =
1− (1− 2r/0.3)

2

1− 0.975 (1− 2r/0.3)
2 .

Thus, our model for the example here is

dr = u(r, t)dt+ w(r, t)dX2, 0 ≤ r ≤ 0.3,

where {
u(r, t) = −0.13r + 0.008 + λ(r, t)w(r, t),

w(r, t) =
√
0.26rφ(r).

The functions 0.26r and 0.26rφ2(r) are shown in Fig. 9.20, and we can see
that for r ∈ [0, 0.2], the difference is very small. Because

φ(0) = φ(0.3) = 0

and dφ(r)/dr is bounded on [0, 0.3], we have

w(0, t)
∂w(0, t)

∂r
= w(0.3, t)

∂w(0.3, t)

∂r
= 0.

Therefore, the reversion conditions can be written as:

{
u(0, t) ≥ 0,
w(0, t) = 0
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and {
u(0.3, t) ≤ 0,
w(0.3, t) = 0.

Because of
u(0, t) = 0.008 > 0

and
u(0.3, t) = −0.13× 0.3 + 0.008 = −0.031 < 0,

we do not need any boundary conditions at r = 0 and r = 0.3.
We still assume the volatility and the dividend yield of the underlying

stock to be
σ(S, t) = 0.20

and
D0 = 0.05,

respectively, and the correlation of the two random variables dX1 and dX2 to
be

ρ(S, r, t)dt = −0.01dt.

Let us consider a standard convertible bond with k = 0.06 and T = 30.
First, we give the result obtained by the pseudo-spectral methods. Con-
cretely, for τ ∈ [0, 2], in the r-direction the pseudo-spectral method described
in Sect. 8.4 is adopted, and in the S-direction the implicit finite-difference
method discussed in Sect. 9.2.1 is used, and we take M = 60, L = 10;
for τ ∈ [2, 30] in both directions, the pseudo-spectral method is used and
M = L = 10. In the τ -direction, a nonuniform time step is used and N = 50.
In Fig. 9.21, the values of the two-factor convertible bond at t = 1month,
6months, 1 year, 5 years, 10 years, and 30 years are plotted. In Fig. 9.22, the
location curves of the free boundary at various times are given.

Besides the method mentioned in this section, the implicit finite-difference
method similar to the method in Sect. 9.2.5, the projected explicit finite-
difference method and the projected implicit finite-difference method have
been used to compute the same problem on various meshes. For the implicit
finite-difference method, the value of the convertible bond at r = 0.05, S =
1, t = 30 years on a very fine mesh is 1.3116835· · · 1 and these eight digits are
unchanged as the mesh size further decreases. Therefore, this value is accurate
to at least seven digits. After we have a highly accurate result, we can obtain
the first few digits of the error of the results on different meshes. For each
computation, we also record the CPU time. Thus, for each error, we can have
the corresponding CPU time. Figure 9.23 is a log10(error) versus log10(CPU
time in second) graph, and each point in the figure represents a performance
of the method. Because the ranges of errors and CPU times are very large, we
adopt log10(Error) and log10(CPU time in second) as variables. There, a “×”

1When this figure was obtained, the function φ(r) used was
[
4r(0.3− r)/0.32

]1/8
.
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Fig. 9.21. Prices of a two-factor convertible bond at six different times
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represents the performance of the projected explicit finite-difference method,
which is referred to as PEFD in the figure. A “◦” indicates the performance
of the projected implicit finite-difference method. The successive over relax-
ation method is used to get the solution. Therefore, this method is referred
to as PSOR in the figure. A “+” stands for the performance of the implicit
finite-difference method. In order to get the solution of the nonlinear alge-
braic equations, the alternating-direction iteration method is used (see [77]).
In the figure, it is referred to as FDMI. In the figure, a “Δ” represents the per-
formance of the pseudo-spectral method, which is referred to as SPEC there.
Clearly, the lower the point, the better the performance. From Fig. 9.23, we see
that the pseudo-spectral method has the best performance for this example.

Problems

Table 9.12. Problems and sections

Problems Sections Problems Sections Problems Sections

1–3 9.1 4–10(a, b) 9.2 10(c)–12 9.3

1. Consider the following free-boundary problem that is related to American
lookback strike put options:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+ (D0 − r) η

∂W

∂η
−D0W = 0,

1 ≤ η ≤ ηf (t) , 0 ≤ t ≤ T,

W (η, T ) = max (η − β, 0) , 1 ≤ η ≤ ηf (T ) ,

∂W

∂η
(1, t) = 0, 0 ≤ t ≤ T,

W (ηf , t) = ηf − β, 0 ≤ t ≤ T,

∂W

∂η
(ηf , t) = 1, 0 ≤ t ≤ T,

ηf (T ) = βmax (1, D0/r) .

By using the closed-form solution of the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂W1

∂t
+

1

2
σ2η2

∂2W1

∂η2
+ (D0−r)η

∂W1

∂η
−D0W1=0, η ≥ 1, 0 ≤ t ≤ T,

W1(η, T ) = max(η − β, 0), η ≥ 1,

∂W1

∂η
(1, t) = 0, 0 ≤ t ≤ T,
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convert this problem into a problem whose solution has a continuous
derivative everywhere. Here we also require that the problem is defined
on a rectangular domain: [0, 1] × [0, T ], has an initial condition, and the
free boundary is the right boundary. (Assume 1 < β).

2. Consider the following free-boundary problem that is related to American
average strike call options:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
+

1

2
σ2η2

∂2W

∂η2
+

[

(D0 − r)η +
1− η

t

]
∂W

∂η
−D0W = 0,

ηf (t) ≤ η, t ≤ T,

W (η, T ) = max (1− η, 0) , ηf (T ) ≤ η,

W (ηf (t), t) = 1− ηf (t), t ≤ T,

∂W

∂η
(ηf (t), t) = −1, t ≤ T,

ηf (T ) = min

(

1,
1 +D0T

1 + rT

)

.

Convert this problem into a problem with a singularity weaker than the
singularity here for t > 0. Also require that the new problem is defined
on a rectangular domain, has an initial condition and the right boundary
corresponds to the free boundary.

3. *Let C(S, σ, t; a, b, c, d) and P (S, σ, t; a, b, c, d) denote the prices of
American two-factor call and put options and Scf (σ, t; a, b, c, d) and
Spf (σ, t; a, b, c, d) be their optimal exercise prices. Here, a, b, c, and
d are parameters (or parameter functions) for the risk-free interest rate
r, dividend yield rate D0, correlation coefficient ρ, and market price of
volatility risk λ, respectively. Show that between American two-factor
put and call options there is the following put–call symmetry relation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P (S, σ, t; a, b, c, d) =
S

E
C

(
E2

S
, σ, t; b, a,−c, d− cσ

)

,

C(S, σ, t; a, b, c, d) =
S

E
P

(
E2

S
, σ, t; b, a,−c, d− cσ

)

,

Spf (σ, t; a, b, c, d)× Scf (σ, t; b, a,−c, d− cσ) = E2.



600 9 Free-Boundary Problems

4. Consider the following free-boundary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂τ
=

1

2
σ2ξ2(1− ξ)2

∂2V

∂ξ2
+ (r −D0)ξ(1− ξ)

∂V

∂ξ

−[r(1− ξ) +D0ξ]V, 0 ≤ ξ < ξf (τ), 0 ≤ τ,

V (ξ, 0) = max(2ξ − 1, 0), 0 ≤ ξ < ξf (0),

V (ξf (τ), τ) = 2ξf (τ)− 1, 0 ≤ τ,

∂V

∂ξ
(ξf (τ), τ) = 2, 0 ≤ τ,

ξf (0) = max

(
1

2
,

r

r +D0

)

.

It can be easily seen that the free-boundary problem for the American
call options under the (S, t)-space can be rewritten as this form if let
ξ = S/(S + E) and τ = T − t.
(a) Convert this problem into a problem whose solution has a continuous

derivative everywhere. Here we also require that the problem is defined
on a rectangular domain and with an initial condition.

(b) Design a second-order implicit method to solve the new problem.
(Need to check whether or not the number of equations which can
be used is equal to the number of unknowns.)

5. Consider the following the free-boundary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂τ
=

1

2
σ2

[

ξ +
1

η̄f − 1

]2
∂2u

∂ξ2

+

[

(D0 − r)

(

ξ +
1

η̄f − 1

)

+
ξ

η̄f − 1

dη̄f
dτ

]
∂u

∂ξ
−D0u, 0 ≤ ξ ≤ 1,

0 ≤ τ ≤ T,

u(ξ, 0) = 0, 0 ≤ ξ ≤ 1,

∂u

∂ξ
(0, τ) = 0, 0 ≤ τ ≤ T,

u(1, τ) = η̄f (τ)− β −W1(η̄f (τ), T − τ), 0 ≤ τ ≤ T,

∂u

∂ξ
(1, τ) = (η̄f (τ)− 1)

[

1− ∂W1(η̄f (τ), T − τ)

∂η

]

, 0 ≤ τ ≤ T,

η̄f (0) = βmax (1, D0/r) ,

where W1(η, T − τ) is a given function. Design a second-order implicit
method to solve this problem which is the new problem obtained in
Problem 1. (Need to check whether or not the number of equations which
can be used is equal to the number of unknowns.)
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6. *Consider the nonlinear system consisting of the following equations

un+1
m − unm
Δτ

=
1

2

[

k2m
2
(
un+1
m+1 − 2un+1

m + un+1
m−1

)
+
k1m

2

(
un+1
m+1 − un+1

m−1

)
− k0u

n+1
m

]

+
1

2

[

k2m
2
(
unm+1 − 2unm + unm−1

)
+
k1m

2

(
unm+1 − unm−1

)
− k0u

n
m

]

+
sn+1
f − snf

(
sn+1
f + snf

)
Δτ

[m

2

(
un+1
m+1 − un+1

m−1

)
+
m

2

(
unm+1 − unm−1

)]
,

m = 0, 1, 2, · · · ,M − 1,

and
un+1

M = g(sn+1
f , τn+1),

3un+1
M − 4un+1

M−1 + un+1
M−2

2Δξ
= h

(
sn+1
f , τn+1

)
,

where unm are known, τn+1 is given, k0, k1, and k2 are constants, and
g(s, τ) and h(s, τ) are given functions. Discuss how to solve this system,
provide at least two methods that you think are simple and effective, and
give the details for one of the methods.

7. *Is the extrapolation technique always helpful and why?
8. Consider the scheme given in Problem 4. Why the extrapolation technique

can still be used when a non-uniform mesh in τ with

τn = n2T/N2, n = 0, 1, · · · , N,

is adopted? (Hint: Define τ1 =
√
τT . Solving a problem with a variable

step in τ is the same as solving a problem with a constant step in τ1.)
9. *Design an exponential scheme to approximate

a(ξ)
d2U

dξ2
+ b(ξ)

dU

dξ
+ c(ξ)U,

where a(ξ) > 0 and c(ξ) < 0.
10. Assume σ to be a random variable satisfying

dσ = p(σ, t)dt+ q(σ, t)dX,

where dX is a Wiener process. In this case, evaluating American call
options can be reduced to solving the following free-boundary problem:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C

∂t
+ LS,σC = 0, 0 ≤ S ≤ Sf (σ, t),

σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

C(S, σ, T ) = max(S − E, 0), 0 ≤ S ≤ Sf (σ, T ),

σl ≤ σ ≤ σu,

C (Sf (σ, t), σ, t) = Sf (σ, t)− E, σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

∂C (Sf (σ, t), σ, t)

∂S
= 1, σl ≤ σ ≤ σu, 0 ≤ t ≤ T,

Sf (σ, T ) = max(E, rE/D0), σl ≤ σ ≤ σu,

where

LS,σ =
1

2
σ2S2 ∂2

∂S2
+ ρσSq

∂2

∂S∂σ
+

1

2
q2

∂2

∂σ2

+(r −D0)S
∂

∂S
+ (p− λq)

∂

∂σ
− r.

(a) *Convert this problem into a problem defined on a rectangular domain
and whose solution has a singularity weaker than the singularity here.

(b) *Design a second-order implicit method to solve the new problem.
(Here and also for part (c), do not require to discuss the solution of
the nonlinear system.)

(c) Design a pseudo-spectral method to solve the new problem.
11. Consider the following free-boundary problem related to one-factor con-

vertible bonds:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Bc
∂t

+
1

2
σ2S2 ∂

2Bc
∂S2

+ (r −D0)S
∂Bc
∂S

− rBc + kZ = 0,

0 ≤ S ≤ Sf (t), 0 ≤ t ≤ T,

Bc(S, T ) = max(Z, nS), 0 ≤ S ≤ Sf (T ),

Bc (Sf (t), t) = nSf (t), 0 ≤ t ≤ T,

∂Bc
∂S

(Sf (t), t) = n, 0 ≤ t ≤ T,

Sf (T ) = max

(
Z

n
,
kZ

D0n

)

.

(a) Convert this problem into a problem whose solution has a continuous
derivative everywhere, and which is defined on a rectangular domain
and has an initial condition.

(b) Design a pseudo-spectral method to solve the new problem. (Do not
require to discuss the solution of the nonlinear system.)
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12. *Consider the nonlinear system consisting of the following equations:

un+1
m,l − unm,l

Δτ

=
1

2
L
n+1/2
m,l

(
un+1
m,l + unm,l

)

+

(
1

sn+1
f,l + snf,l

sn+1
f,l − snf,l
Δτ

)

ξmDξ,m

(
un+1
m,l + unm,l

)
+ a7,m,l,

m = 0, 1, · · · ,M − 1, l = 0, 1, · · · , L,

un+1
M,l = sn+1

f,l , l = 0, 1, · · · , L,
and

Dξ,Mu
n+1
M,l = sn+1

f,l , l = 0, 1, · · · , L,
where

L
n+1/2
m,l =

1

2

(
Ln+1
m,l + Ln

m,l

)
.

Here, unm,l,m = 0, 1, · · · ,M, l = 0, 1, · · · , L and snf,l, l = 0, 1, · · · , L are

given and un+1
m,l ,m = 0, 1, · · · ,M, l = 0, 1, · · · , L and sn+1

f,l , l = 0, 1, · · · , L
are unknown. In the system, Dξ,m and Ln

m,l are difference operators with

variable coefficients. Ln+1
m,l is another difference operator whose coefficients

depend on sn+1
f,l , l = 0, 1, · · · , L. Discuss how to solve this system and give

an outline of a method that you think is simple and effective.

Projects

General Requirements

(A) Submit a code or codes in C or C++ that will work on a computer
the instructor can get access to. At the beginning of the code, write
down the name of the student and indicate on which computer it
works and the procedure to make it work.

(B) Each code should use an input file to specify all the problem param-
eters and the computational parameters for each computation and
an output file to store all the results. In an output file, the name
of the student, all the problem parameters, and the computational
parameters should be given, so that one can know what the results
are and how they were obtained. The input file should be submitted
with the code.

(C) If not specified, for each case two results are required. For the first
result, a 50 × 10 mesh should be used. For the second result, the
accuracy required is 0.001, and the mesh used should be as coarse as
possible.

(D) Submit results in form of tables. When a result is given, always
provide the problem parameters and the computational parameters.
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1. Implicit Scheme (9.22)–(9.24). Suppose σ, r,D0 are constant. Write
a code performing implicit singularity-separating method for American
calls and puts. In the code, a result of an American call option should
be obtained by the implicit scheme (9.22)–(9.24), whereas a result of an
American put option should be obtained through solving a corresponding
call problem numerically and then using the symmetry relation.

• For American call and put options, give the results for the case: S =
100, E = 100, T = 1, r = 0.1, D0 = 0.05, σ = 0.2.

• For American call and put options, give the results for the case: S =
100, E = 100, T = 1, r = 0.05, D0 = 0.1, σ = 0.2.

• For American call and put options, find the results with an accuracy
of 0.00001 under the help of the extrapolation technique. The problem
parameters are S = 90, 100, 110, E = 100, T = 1.00, r = 0.1, D0 =
0.05, and σ = 0.2.

2. Using the binomial method (8.28) with the formulae (8.25)–(8.27) try
to find the values of American call and put options with an accuracy of
0.00001. The problem parameters are S = 90, 100, 110, E = 100, T = 1.00,
r = 0.10, D0 = 0.05, and σ = 0.2.



10

Interest Rate Modeling

As pointed out in Sect. 2.3, when the short-term interest rate is considered
as a random variable, there is an unknown function λ(r, t), called the market
price of risk, in the governing equation. Before using the governing equation
for evaluating an interest rate derivative, we have to find this function (or
make some assumptions on it). This function cannot be obtained by statis-
tics directly from the market data. In Sect. 5.4, the inverse problem on the
market price of risk was formulated. This problem can be solved by numerical
methods. However, if the problem is formulated in another way, then the in-
verse problem may be solved more efficiently. Therefore, in Sect. 10.1, we first
discuss another formulation of the inverse problem and then we give numeri-
cal methods for both formulations and show some numerical examples. Then,
numerical methods for one-factor interest rate derivatives are described, and
some numerical results are shown in Sect. 10.2. Because interest rate deriva-
tive problems are so complicated, for many cases, use of multi-factor models
is necessary. In the last section, we study how to price interest rate derivatives
using the three-factor model and the market data.

10.1 Inverse Problems

10.1.1 Another Formulation of the Inverse Problem

As seen in Sect. 5.4, in order to match the bond equation with the market
data, we need to find λ(r, t) such that the solution V (r, t;T ∗) of the problem
(5.47) at r = r∗ and t = 0 is equal to today’s price of the bond with maturity
T ∗. There, we also briefly discussed how to solve this inverse problem. Here, we
reformulate the inverse problem in Sect. 5.4 (see [89]). This formulation may
make the numerical solution easy and efficient. Let us derive this formulation.
The problem (5.47) can be rewritten as follows:

Y.-l. Zhu et al., Derivative Securities and Difference Methods, Springer Finance,
DOI 10.1007/978-1-4614-7306-0 10, © Springer Science+Business Media New York 2013
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⎧
⎨

⎩

∂V

∂t
= −LrV, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗ ≤ T ∗

max,

V (r, T ∗;T ∗) = 1, rl ≤ r ≤ ru.

Here, we have used the relation

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV

=
∂

∂r

(
1

2
w2 ∂V

∂r

)

+

[

u−
(

λ+
∂w

∂r

)

w

]
∂V

∂r
− rV

and adopted the following notation

Lr =
∂

∂r

(
1

2
w2 ∂

∂r

)

+

[

u−
(

λ+
∂w

∂r

)

w

]
∂

∂r
− r. (10.1)

Let us define

L∗
r =

∂

∂r

(
1

2
w2 ∂

∂r

)

− ∂

∂r

{[

u−
(

λ+
∂w

∂r

)

w

]}

− r (10.2)

and U(r, t) satisfy the following equation:

∂U

∂t
= L∗

rU, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗
max.

Because

1

2

∫ ru

rl

∂

∂r

(

w2 ∂V

∂r

)

Udr

=
1

2

[(

w2 ∂V

∂r
U

)∣
∣
∣
∣

ru

rl

−
∫ ru

rl

w2 ∂V

∂r

∂U

∂r
dr

]

=
1

2

[(

w2 ∂V

∂r
U

)∣
∣
∣
∣

ru

rl

−
(

w2 ∂U

∂r
V

)∣
∣
∣
∣

ru

rl

+

∫ ru

rl

∂

∂r

(

w2 ∂U

∂r

)

V dr

]

and
∫ ru

rl

[

u−
(

λ+
∂w

∂r

)

w

]
∂V

∂r
Udr

=

{[

u−
(

λ+
∂w

∂r

)

w

]

UV

}∣
∣
∣
∣

ru

rl

−
∫ ru

rl

∂

∂r

{[

u−
(

λ+
∂w

∂r

)

w

]

U

}

V dr,

we have
∫ ru

rl

LrV Udr =

∫ ru

rl

L∗
rU V dr +

1

2

[(

w2 ∂V

∂r
U

)∣
∣
∣
∣

ru

rl

−
(

w2 ∂U

∂r
V

)∣
∣
∣
∣

ru

rl

]

+

{[

u−
(

λ+
∂w

∂r

)

w

]

UV

}∣
∣
∣
∣

ru

rl

.
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Consequently, L∗
r is called the adjoint operator to Lr. Because w(rl, t) =

w(ru, t)= 0 when the conditions (5.45) and (5.46) hold, we arrive at

∫ ru

rl

LrV Udr =

∫ ru

rl

L∗
rU V dr +

{[

u−
(

λ+
∂w

∂r

)

w

]

UV

}∣
∣
∣
∣

ru

rl

. (10.3)

For simplicity, let us consider the case:

⎧
⎪⎪⎨

⎪⎪⎩

u(rl, t)− w(rl, t)
∂w(rl, t)

∂r
> 0,

u(ru, t)− w(ru, t)
∂w(ru, t)

∂r
< 0.

(10.4)

It is clear that when u(rl, t) and u(ru, t) are bounded and the condition (10.4)

holds, u(rl, t)−w(rl, t)
∂w(rl, t)

∂r
and u(ru, t)−w(ru, t)

∂w(ru, t)

∂r
must also be

bounded even if
∂w(rl, t)

∂r
or
∂w(ru, t)

∂r
is unbounded because of

∂w2(rl, t)

∂r
≥ 0

and
∂w2(ru, t)

∂r
≤ 0.1 In this case, in order for

∂U

∂t
= L∗

rU to have a unique so-

lution, two boundary conditions are needed in addition to an initial condition.
Therefore, we may add two boundary conditions on U(r, t). Let us choose

U(rl, t) = U(ru, t) = 0, 0 ≤ t ≤ T ∗
max.

Under this choice, equality (10.3) becomes

∫ ru

rl

LrV Udr =

∫ ru

rl

L∗
rU V dr. (10.5)

Therefore,

d

dt

∫ ru

rl

V Udr =

∫ ru

rl

∂(V U)

∂t
dr =

∫ ru

rl

(
∂V

∂t
U + V

∂U

∂t

)

dr

=

∫ ru

rl

(−LrV U + L∗
rU V )dr = 0,

from which, we further have

∫ ru

rl

V (r, 0;T ∗)U(r, 0)dr =

∫ ru

rl

V (r, T ∗;T ∗)U(r, T ∗)dr.

Suppose we choose

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru.

Then, noticing V (r, T ∗;T ∗) = 1, we arrive at

1This is because w2(r, t) ≥ 0 on [rl, ru].
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V (r∗, 0;T ∗) =
∫ ru

rl

U(r, T ∗)dr. (10.6)

Consequently, for any function λ(r, t), if U(r, t) is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂U

∂t
= L∗

rU, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗
max,

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru,

U(rl, t) = U(ru, t) = 0, 0 ≤ t ≤ T ∗
max,

(10.7)

and V (r, t;T ∗) is the solution of the problem (5.47), then condition (10.6)
holds.

Let today’s time be t = 0, today’s short-term interest rate be r∗, and
the prices of zero-coupon bonds with a face value Z = 1 and with various
maturities T ∗ be V (T ∗). Assume2 λ(r, t) = λ(t) to be such a function that
the solution U(r, T ∗) of the problem (10.7) satisfies (10.6) with V (r∗, 0;T ∗) =
V (T ∗). Then, the solution V (r, t;T ∗) of the problem (5.47) at r = r∗ and
t = 0 gives today’s price of the zero-coupon bond with maturity T ∗ on the
market. Consequently, matching λ(r, t) with the zero-coupon bond price curve
can be reduced to finding λ(t) such that U(r, T ∗) satisfies Eq. (10.6) with
V (r∗, 0;T ∗) = V (T ∗).

From Eq. (10.6), we can derive another equivalent relation that can also
be used to determine λ(t). Differentiating (10.6) with respect to T ∗ yields

∂V (r∗, 0;T ∗)
∂T ∗ =

∫ ru

rl

∂U(r, T ∗)
∂T ∗ dr

=

∫ ru

rl

L∗
rU(r, T ∗)dr

=

∫ ru

rl

{
∂

∂r

(
1

2
w2 ∂U

∂r

)

− ∂

∂r

{[

u−
(

λ(t) +
∂w

∂r

)

w

]

U

}

− rU

}

dr

= −
∫ ru

rl

rU(r, T ∗)dr (10.8)

because

w(rl, T
∗) = w(ru, T

∗) = U(rl, T
∗) = U(ru, T

∗) = 0.

From this relation we can further have

∂2V (r∗, 0;T ∗)
∂T ∗2 = −

∫ ru

rl

r
∂U(r, T ∗)
∂T ∗ dr

= −
∫ ru

rl

rL∗
rU(r, T ∗)dr

2Or assume λ(r, t) = λ̄(t) + u(r, t)/w(r, t), which is equivalent to let u(r, t) = 0
and λ(r, t) = λ̄(t).
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= −
∫ ru

rl

(

r
∂

∂r

(
1

2
w2 ∂U

∂r

)

− r
∂

∂r

{[

u−
(

λ(t) +
∂w

∂r

)

w

]

U

}

− r2U

)

dr

= −
[
r

2
w2 ∂U

∂r

]∣
∣
∣
∣

ru

rl

+

∫ ru

rl

1

2
w2 ∂U

∂r
dr +

{

r

[

u−
(

λ(t) +
∂w

∂r

)

w

]

U

}∣
∣
∣
∣

ru

rl

−
∫ ru

rl

[

u−
(

λ(t) +
∂w

∂r

)

w

]

Udr +

∫ ru

rl

r2Udr

=

∫ ru

rl

(
1

2
w2 ∂U

∂r
+
∂w

∂r
wU

)

dr + λ(t)

∫ ru

rl

wUdr +

∫ ru

rl

(r2 − u)Udr

=
1

2

∫ ru

rl

∂(w2U)

∂r
dr + λ(t)

∫ ru

rl

wUdr +

∫ ru

rl

(r2 − u)Udr

= λ(t)

∫ ru

rl

wUdr +

∫ ru

rl

(r2 − u)Udr. (10.9)

Consequently, λ(t) satisfies the equation:

λ(T ∗)
∫ ru

rl

wU(r, T ∗)dr +
∫ ru

rl

(r2 − u)U(r, T ∗)dr =
∂2V (r∗, 0;T ∗)

∂T ∗2 . (10.10)

Here we have shown that from the condition (10.6) we can have the condition
(10.10). In order to show that they are equivalent, we also need to show
that from the condition (10.10) we can have the condition (10.6). From the
derivation procedure of the expressions (10.8) and (10.9), we know that when
U(r, t) is the solution of the problem (10.7), the following is true:

∫ ru

rl

∂U(r, T ∗)
∂T ∗ dr = −

∫ ru

rl

rU(r, T ∗)dr,

−
∫ ru

rl

r
∂U(r, T ∗)
∂T ∗ dr = λ(t)

∫ ru

rl

wUdr +

∫ ru

rl

(r2 − u)Udr.

When the condition (10.10) holds, we have

−
∫ ru

rl

r
∂U(r, T ∗)
∂T ∗ dr =

∂2V (r∗, 0;T ∗)
∂T ∗2 .

From this relation we can have

∂V (r∗, 0;T ∗)
∂T ∗ − ∂V (r∗, 0; 0)

∂T ∗ =

∫ T∗

0

∂2V (r∗, 0;T ∗)
∂T ∗2 dT ∗

= −
∫ T∗

0

∫ ru

rl

r
∂U(r, T ∗)
∂T ∗ drdT ∗

= −
∫ ru

rl

r [U(r, T ∗)− U(r, 0)] dr

=

∫ ru

rl

∂U(r, T ∗)
∂T ∗ dr + r∗,
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which can be reduced into

∂V (r∗, 0;T ∗)
∂T ∗ =

∫ ru

rl

∂U(r, T ∗)
∂T ∗ dr

because
∂V (r∗, 0; 0)

∂T ∗ = −r∗. From the relation just obtained we further have

V (r∗, 0;T ∗)− V (r∗, 0; 0) =
∫ T∗

0

∂V (r∗, 0;T ∗)
∂T ∗ dT ∗

=

∫ T∗

0

∫ ru

rl

∂U(r, T ∗)
∂T ∗ drdT ∗

=

∫ ru

rl

[U(r, T ∗)− U(r, 0)] dr

=

∫ ru

rl

U(r, T ∗)dr − 1,

which can be reduced into

V (r∗, 0;T ∗) =
∫ ru

rl

U(r, T ∗)dr

because V (r∗, 0; 0) = 1. This completes our proof. Hence, instead of finding
λ(t) such that the condition (10.6) holds, we may also find λ(t) such that the
condition (10.10) is satisfied.

Now we discuss how to find λ(t) from condition (10.10). From Sect. 5.4,3

the value of λ(t) for t ∈ [0, T ∗] is determined by the portion of the zero-coupon
bond price curve on [0, T ∗]. Suppose we already have the solution of problem
(10.7) and the value of λ(t) for t ∈ [0, T ∗ − ε] , ε being a small positive number.
In order to find the value of λ(t) for t ∈ (T ∗ − ε, T ∗] , we need to guess the
value of λ(t) for t ∈ (T ∗ − ε, T ∗] and continue to solve the problem (10.7) from
T ∗ − ε to T ∗ and check the condition (10.10) at any time in (T ∗ − ε, T ∗]. As
soon as the condition (10.10) holds, we have the value of λ(t) on (T ∗ − ε, T ∗].
Such a procedure is performed from a very small T ∗, gradually increasing, to
T ∗ = T ∗

max, and λ(t) can be found for t ∈ [0, T ∗
max]. This procedure is easy

and faster, compared with the procedure of determining λ(t) by solving the
problem (5.47) if the same mesh sizes are used.

The initial-boundary value problem (10.7) is well-posed because the con-
dition (10.4) holds. If

⎧
⎪⎪⎨

⎪⎪⎩

u(rl, t)− w(rl, t)
∂w(rl, t)

∂r
= 0,

u(ru, t)− w(ru, t)
∂w(ru, t)

∂r
= 0,

(10.11)

3There we assume λ(r, t) = λ̄(t) + u(r, t)/w(r, t). However the procedures of
determining λ̄(t) and λ(t) from the zero-coupon bond price curve are the same.
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then from the relation (10.3), we can still obtain the relation (10.5) without
specifying the values for U(rl, t) and U(ru, t). In this case, instead of the
problem (10.7), U(r, t) is the solution of the following well-posed initial value
problem

⎧
⎨

⎩

∂U

∂t
= L∗

rU, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗
max,

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru,

(10.12)

and we can still derive the conditions (10.6) and (10.10) from the relation
(10.5). For more complicated cases, the following treatment can be used. At
any point on the lower boundary r = rl, when

u(rl, t)− w(rl, t)
∂w(rl, t)

∂r
> 0,

we choose U(rl, t) = 0; whereas

u(rl, t)− w(rl, t)
∂w(rl, t)

∂r
= 0,

we do not specify any value for U(rl, t) as a boundary condition. For the upper
boundary, the situation is similar. Under such a treatment, the conditions
(10.6) and (10.10) still hold.

10.1.2 Numerical Methods for the Inverse Problem

Again, let V (T ∗) denote today’s zero-coupon bond curve for bonds with a
face value Z = 1. Suppose that the values of K zero-coupon bonds with
maturities T ∗

1 , T
∗
2 , · · · , T ∗

K are VT∗
1
, VT∗

2
, · · · , VT∗

K
, which can be obtained from

the market. Assume T ∗
K = T ∗

max and 0 < T ∗
1 < · · · < T ∗

K . Let today’s time

be T ∗
0 and T ∗

0 = 0. Clearly, V (T ∗
0 ) = 1 and

∂V (T ∗
0 )

∂T ∗ = −r∗, where r∗ is

today’s short-term interest rate. Based on the data, we can generate a zero-
coupon bond price curve V (T ∗) on [0, T ∗

max] by the cubic spline interpolation

described in Sect. 6.1.1. Because
∂V (T ∗

0 )

∂T ∗ = −r∗, at the left end we require

this condition instead of assuming
∂2V (T ∗

0 )

∂T ∗2 = 0. At the right end, we assume

the function V (T ∗) to be a polynomial of degree two on [T ∗
K−1, T

∗
K ] instead

of assuming
∂2V (T ∗

M)

∂T ∗2 = 0. Using the method described in Sect. 6.1.1 for

the modified case, we can determine these polynomials on all the subintervals
[T ∗
k , T

∗
k+1], k = 0, 1, · · · ,K − 1. As soon as we have the zero-coupon bond

curve, we can determine λ(t) by solving inverse problems.
First, let us discuss how to solve the inverse problem (5.47). When λ(t)

is given on [0, T ∗], the partial differential equation can be discretized by the
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difference scheme (7.12). Hence, for any T ∗, as long as λ(t) is given on [0, T ∗],
we can calculate V (r, 0;T ∗) from V (r, T ∗;T ∗). Assume that we have obtained
λ(t) on [0, T ∗ − Δt] from the value V (t) on [0, T ∗ − Δt]. We guess λ(T ∗),
assume λ(t) to be a linear function on [T ∗−Δt, T ∗], and solve problem (5.47)
from t = T ∗ to t = 0. Check if V (r∗, 0;T ∗) = V (T ∗). If it is true, we find λ(t)
on [T ∗−Δt, T ∗]; if not, we adjust λ(T ∗) until we find a value λ(T ∗) such that
V (r∗, 0;T ∗) = V (T ∗). This procedure can start from T ∗ = Δt and continue
successively until T ∗ = T ∗

max. At T
∗ = Δt, if only λ(Δt) is given, we cannot

define a linear function on [0, Δt]. From the condition (10.10), we see that
λ(0) can be determined by

λ(0) =

∂2V (0)

∂T ∗2 − r∗2 + u(r∗, 0)

w(r∗, 0)
. (10.13)

Now let us discuss how to solve problem (10.7). For the domain [rl, ru]×
[0, T ∗

max], we take the following partition: rm = rl +mΔr, m = 0, 1, · · · ,M ,
tn = nΔt, n = 0, 1, · · · , N , where Δr = (ru − rl)/M and Δt = T ∗

max/N , M ,
N being integers. Let Unm and λn+1/2 be the approximate values of U(rm, t

n)
and λ(tn+1/2), and V

n
denote V (tn). We also represent Unm, m = 0, 1, · · · ,M

by {Unm}. On this partition, the problem (10.7) and the condition (10.10) can
be discretized as follows.

Because the initial condition in the problem (10.7) is a Dirac delta function,
we discretize the partial differential equation there by the following “conser-
vative” scheme:

Un+1
m − Unm
Δt

=
1

4Δr

[
(
w̄
n+1/2
m+1/2

)2
(
Un+1
m+1 − Un+1

m

Δr
+
Unm+1 − Unm

Δr

)

−
(
w̄
n+1/2
m−1/2

)2
(
Un+1
m − Un+1

m−1

Δr
+
Unm − Unm−1

Δr

)]

−
[

ū
n+1/2
m+1/2 −

(

λn+1/2 +
w
n+1/2
m+1 − w

n+1/2
m

Δr

)

w̄
n+1/2
m+1/2

]

×
Un+1
m+1 + Un+1

m + Unm+1 + Unm
4Δr

+

[

ū
n+1/2
m−1/2 −

(

λn+1/2 +
w
n+1/2
m − w

n+1/2
m−1

Δr

)

w̄
n+1/2
m−1/2

]

×
Un+1
m + Un+1

m−1 + Unm + Unm−1

4Δr

−rm
2
(Un+1

m + Unm),
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m = 1, 2, · · · ,M − 1,

where w̄
n+1/2
m+1/2 = (w

n+1/2
m+1 + w

n+1/2
m )/2 and ū

n+1/2
m+1/2 = (u

n+1/2
m+1 + u

n+1/2
m )/2.

These equations can be rewritten as

amU
n+1
m−1 + bmU

n+1
m + cmU

n+1
m+1 = −amUnm−1 + (2− bm)Unm − cmU

n
m+1,

m = 1, 2, · · · ,M − 1, (10.14)

where

am =
−Δt
4Δr2

(
w̄
n+1/2
m−1/2

)2

− Δt

4Δr

[

ū
n+1/2
m−1/2 −

(

λn+1/2 +
w
n+1/2
m − w

n+1/2
m−1

Δr

)

w̄
n+1/2
m−1/2

]

,

bm = 1 +
Δtrm
2

+
Δt

4Δr2

[(
w̄
n+1/2
m+1/2

)2
+
(
w̄
n+1/2
m−1/2

)2
]

+
Δt

4Δr

[

ū
n+1/2
m+1/2 −

(

λn+1/2 +
w
n+1/2
m+1 − w

n+1/2
m

Δr

)

w̄
n+1/2
m+1/2

]

− Δt

4Δr

[

ū
n+1/2
m−1/2 −

(

λn+1/2 +
w
n+1/2
m − w

n+1/2
m−1

Δr

)

w̄
n+1/2
m−1/2

]

,

cm =
−Δt
4Δr2

(
w̄
n+1/2
m+1/2

)2

+
Δt

4Δr

[

ū
n+1/2
m+1/2 −

(

λn+1/2 +
w
n+1/2
m+1 − w

n+1/2
m

Δr

)

w̄
n+1/2
m+1/2

]

.

From the boundary conditions in the problem (10.7), we have

Un+1
0 = Un+1

M = 0. (10.15)

When the coefficients in the set of equations (10.14) are known, the sets
of equations (10.14) and (10.15) consist of a linear system for Un+1

0 , Un+1
1 ,

· · · , Un+1
M .

The initial condition in the problem (10.7) can be approximated by

U0
m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

Δr

[

1− r∗

Δr
+ int

(
r∗

Δr

)]

, m = int

(
r∗

Δr

)

,

1

Δr

[
r∗

Δr
− int

(
r∗

Δr

)]

, m = int

(
r∗

Δr

)

+ 1,

0, otherwise,

(10.16)

where int(x) is the integer part of the number x, and we assume r∗ ∈ [rl +
Δr, ru −Δr]. As it can be seen, we here approximate the function δ(r − r∗)
in the following way. We let the sum of the two values on the point with
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m = int

(
r∗

Δr

)

and the point with m = int

(
r∗

Δr

)

+ 1 be equal to
1

Δr
and

their ratio is inversely proportional to their distances to r∗. On any other
point, let the value be equal to zero.

By the trapezoidal rule (see Sect. 6.1.3), the condition (10.10) can be
approximated by

λn+1/2Δr

[
1

4
w
n+ 1

2
0

(
Un+1
0 + Un0

)
+ 1

2

M−1∑

m=1
w
n+ 1

2
m

(
Un+1
m + Unm

)

+
1

4
w
n+ 1

2
M

(
Un+1

M + UnM
)
]

+
Δr

4

[
(r
n+ 1

2
0 )2 − u

n+ 1
2

0

] (
Un+1
0 + Un0

)

+
Δr

2

M−1∑

m=1

[
(r
n+ 1

2
m )2 − u

n+ 1
2

m

] (
Un+1
m + Unm

)

+
Δr

4

[
(r
n+ 1

2
M )2 − u

n+ 1
2

M

] (
Un+1

M + UnM
)
=
∂2V (tn+

1
2 )

∂T ∗2 .

(10.17)

Here we approximate U
n+1/2
m by 1

2 (U
n
m + Un+1

m ) for m = 0, 1, · · · ,M .
From the expression (10.16), we can have {U0

m}. Therefore, we can have the
following procedure for n = 0, 1, · · · , N − 1 successively. Suppose we already
have {Unm}. Guessing4 λn+1/2, we can obtain {Un+1

m } by solving the system
consisting of Eqs. (10.14) and (10.15). Then, we check if Eq. (10.17) holds. If
not, we need to find a new guess by solving λn+1/2 from Eq. (10.17) or by other
iteration methods, and obtain new {Un+1

m } and check again; if it is, we find the
value λn+1/2. When this procedure is done for n = 0, 1, · · · , N−1 successively,
we find the values for λn+1/2, n = 0, 1, · · · , N − 1. Another condition that
can be used to determine λn+1/2 is condition (10.6). The advantage of using
condition (10.6) is to let the value of the zero-coupon bonds be exactly equal to
the data from the market. In this case, we have to design an iteration method
to find the next iterative value of λn+1/2. It is clear that if the problem (10.7)
needs to be replaced by the problem (10.12), the procedure above is almost
the same.

For the method based on the problem (5.47), in order to do one iteration
to determine λ(t), we need to integrate the partial differential equation n+ 1
times from tn+1 to t0. For the method based on the problem (10.7), in order
to do the same thing, we need to integrate the partial differential equation
only once from tn to tn+1. Therefore, we pay more attention to the method
based on the problem (10.7). The only complication is that the computation
based on the problem (10.7) involves the Dirac delta function. This requires
us to use more grid points in the r-direction. In order for a function λ(t)
to be used in practice, we have to check whether or not the computed zero-
coupon bond values are matched with the real market data well enough. If

4As the first guess, we can let λ1/2 = λ(0) and λn+1/2 = λn−1/2 for n 
= 0.
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the formulation (5.47) is adopted, then such a condition is used directly when
λ(t) is determined. Thus, no further check is needed for this case. However,
when the formulation (10.7) is used, theoretically the computed zero-coupon
bond values should be consistent with the real market data if the condition
(10.6) or the condition (10.10) holds. Because there exists numerical error,
this fact will be true only if very large M is used. Thus between these two
methods, which has a better performance is not clear.

10.1.3 Numerical Results on Market Prices of Risk

In this subsection, we give two examples on numerical results of inverse prob-
lems and the only results obtained by the method of solving the problem
(10.7) are given. As an example, we take the following short-term interest
rate model:

dr = (r∗∗ − r)dt+ r(0.2− r)dX, rl = 0 ≤ r ≤ ru = 0.2,

where r∗∗ is a constant between rl and ru, and r∗∗ = 0.05345 in these examples
given here. This model satisfies conditions (5.45) and (5.46), so these partial
differential equation problems we are going to solve are well-posed.
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Fig. 10.1. The market price of risk λ(t)

Example 1. Suppose today’s bond prices are given by the exponential
function 100e−0.05345T∗

. According to this function, we can use the method
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Table 10.1. Comparison between given and computed bond prices

(Vb,g denotes given bond prices and Vb stands for computed bond prices)

T ∗ 0.5 1 2 3 5 7 10 15 20 25

Vb,g 97.36 94.80 89.86 85.18 76.55 68.79 58.60 44.85 34.335 26.283

Vb 97.36 94.80 89.86 85.18 76.55 68.79 58.60 44.85 34.333 26.279

given in the last subsection to find the market price of risk λ(t). In Fig. 10.1,
the function λ(t) is shown. As soon as we have the market price of risk, we can
compute the bond price by solving the bond equation. In Table 10.1, we list
both the numerical results and the values from the given function. From the
table, we see that the difference is on the third decimal place, which means
that the inverse problem has been solved quite accurately. In order to do this
computation, a 1, 000× 1, 000 mesh was used.
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Fig. 10.2. Prices of today’s bonds

Table 10.2. Comparison between market and computed bond prices

(Vb,m represents market bond prices and Vb stands for computed bond prices)

T ∗ 0.5 1 2 3 5 7 10 15 20 25

Vb,m 97.35 94.83 90.01 85.16 76.18 67.62 56.72 41.76 29.49 21.00

Vb 97.35 94.83 90.01 85.16 76.18 67.62 56.73 41.77 29.50 21.02
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Fig. 10.3. The market price of risk λ(t)
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Fig. 10.4. The second derivative of today’s bond prices
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Example 2. From the market, we obtained the data on the short-term
interest rate and the zero-coupon bond prices with maturities 0.5, 1, 2, 3, 5, 7,
10, 15, 20, and 25 years on November 30, 1995. Using the data, we generate a
bond price function by the cubic spline interpolation described in Sect. 6.1.1.
In Fig. 10.2, the data are given by “◦,” and the function is shown by a solid
curve. Using the bond price function, we find the market price of risk, which
is shown in Fig. 10.3. This function is not as smooth as the market price of
risk given in Fig. 10.1. From the condition (10.10), we see that λ(t) is closely
related to the second derivative of today’s bond curve. For this case, the second
derivative of bond prices is not smooth (see Fig. 10.4), so the market price of
risk has the shape shown in Fig. 10.3. Using the market price of risk, we can
compute the bond price by solving the bond equation. In Table 10.2, both
the computed bond prices and the bond prices on the market are listed. Their
difference is also very small, which means that the inverse problem has been
solved successfully even if the market data are used.

10.2 Numerical Results of One-Factor Models

In order to price interest rate derivatives, the market price of risk for the short-
term interest rate and today’s short-term interest rate r∗ must be given. In this
section, the market price of risk is given numerically and is based on the data
from November 30, 1995. Today’s short-term interest rate is assumed to take
the value of the short-term interest rate on that day, namely, r∗ = 0.05345.
Also, we suppose today’s time t to be zero.

First, let us briefly discuss how to price bond options. Suppose that we need
to find today’s price of a T -year option with an exercise price E on a N -year
bond that has a face value Z = 1 and a coupon rate k. Set Tb = T+N , and let
Vb(r, t;Tb) and V (r, t) be the prices of the bond and the option, respectively.
What we need to find is V (r∗, 0). In order to do this, we first need to find
Vb(r, T ;Tb) for r ∈ [rl, ru] by solving the problem (5.48):
⎧
⎪⎨

⎪⎩

∂Vb
∂t

+
1

2
w2 ∂

2Vb
∂r2

+ (u− λw)
∂Vb
∂r

− rVb + k = 0, rl ≤ r ≤ ru, t ≤ Tb,

Vb(r, Tb;Tb) = 1, rl ≤ r ≤ ru

from t = Tb to t = T < Tb. Based on the function Vb(r, T ;Tb), we then obtain
V (r, 0) by solving the problem (5.49):

⎧
⎪⎨

⎪⎩

∂V

∂t
+

1

2
w2 ∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0, rl ≤ r ≤ ru, t ≤ T,

V (r, T ) = max (Vb(r, T ;Tb)− E, 0) , rl ≤ r ≤ ru

from t = T to t = 0. When the market price of risk is given numeri-
cally, the problems (5.48) and (5.49) have to be solved numerically, and
the scheme (7.12) or a modified scheme (7.6) can be adopted. The modi-
fied scheme (7.6) is a scheme that is the same as the scheme (7.6) for any
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Table 10.3. Prices of bond options with E = 0.95, 1 and k = 0.055

E T\Tb − T 0.5 1 2 3 5

0.95 0.25 0.0502 0.0516 0.0536 0.0530 0.0515

0.95 0.50 0.0499 0.0514 0.0525 0.0519 0.0498

0.95 0.75 0.0495 0.0509 0.0512 0.0507 0.0478

0.95 1.00 0.0489 0.0500 0.0497 0.0494 0.0457

1.00 0.25 0.0011 0.0024 0.0044 0.0039 0.0026

1.00 0.50 0.0014 0.0029 0.0041 0.0037 0.0022

1.00 0.75 0.0017 0.0031 0.0036 0.0034 0.0016

1.00 1.00 0.0017 0.0029 0.0030 0.0029 0.0010
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Fig. 10.5. Prices of caps

interior point and the same as the scheme (7.12) for the boundary points. In
Table 10.3, the numerical results of the prices on 40 bond options are listed.
There, the exercise price E is equal to 0.95 and 1, and the bond pays coupons
continuously with a coupon rate k = 0.055. The expiries of the options are
0.25, 0.5, 0.75, and 1 year and the life spans of bonds are 0.5, 1, 2, 3, and 5
years.

Pricing a cap is done in the following way. Consider a N -year cap and
suppose that money is paid quarterly. As pointed out in Sect. 5.5, the cap is a
sum of 4N − 1 caplets in this case and the maturities of the bonds associated
with the 4N − 1 caplets are tk = k/4, k = 2, 3, · · · , 4N . Let us call the bond
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Fig. 10.6. Prices of floors

with maturity tk the kth bond, and its value is denoted by Vbk(r, t). In order
to have the value of the kth bond, we solve the problem (5.63):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Vbk
∂t

+
1

2
w2 ∂

2Vbk
∂r2

+ (u− λw)
∂Vbk
∂r

− rVbk = 0, rl ≤ r ≤ ru,

tk−1 ≤ t ≤ tk,

Vbk(r, tk) = (1 + rc/4)Q, rl ≤ r ≤ ru.

After we have all the values of the bonds, we can obtain the total value of the
4N − 1 caplets by solving the problem (5.64):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vc
∂t

+
1

2
w2 ∂

2Vc
∂r2

+ (u− λw)
∂Vc
∂r

− rVc

+
4N∑

k=2

max (Q− Vbk(r, tk−1), 0) δ(t− tk−1) = 0,

rl ≤ r ≤ ru, t∗ ≤ t ≤ t4N−1,

Vc(r, t4N−1) = 0, rl ≤ r ≤ ru.

The value Vc(r
∗, t∗) gives the premium of the cap.

The way to solve (5.63) and (5.64) numerically is similar to the way to
solve (5.48), namely, by using the scheme (7.12) or modified (7.6). The only
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difference is that in the problem (5.64) there exist the Dirac delta functions. In
this case, the treatment of the Dirac delta function is simple: after Vc(r, t

+
k−1)

is obtained, we should let Vc(r, t
−
k−1) = Vc(r, t

+
k−1) +max (Q− Vbk(r, tk−1), 0)

and then continue the computation by using the scheme (7.12) or modi-
fied (7.6). We take Q = 100, N = 5 years, and rc = 0, 0.002, 0.004, · · · , 0.2
and find these values of caps numerically.5 The values of caps as a function
of rc are plotted in Fig. 10.5. The curve resembles a price curve of a put op-
tion, that is, the price is a decreasing function of rc and changes rapidly near
rc = r∗ = 0.05345.

Table 10.4. Pairs of caps and floors with the same values

(Q = 100, N = 5 years, and the interest is paid quarterly)

rc rf Prices of caps or floors

0.05502 0.05466 0.8

0.05557 0.05422 0.7

0.05618 0.05370 0.6

0.05687 0.05310 0.5

0.05768 0.05242 0.4

0.05868 0.05160 0.3

0.05999 0.05055 0.2

0.06204 0.04899 0.1

The way to price floors is similar to the way to price caps. For the floor
rate rf ∈ [0, 0.2], the floor prices are shown in Fig. 10.6. Their parameters are
the same as the caps. The floor resembles a call option, that is, the price is
an increasing function of rf and changes rapidly near rf = r∗ = 0.05345. As
soon as we have the prices of a cap with a cap rate rc and a floor with a floor
rate rf , the difference between them is the price of a collar for the pair of rc
and rf . If the price of a cap is equal to the price of a floor, then the price of
the collar with this pair of rc and rf is zero. In Table 10.4, eight such pairs of
rc and rf are listed. That is, on November 30, 1995, the price of a collar with
one of these pairs of rc and rf should be zero. In Table 10.4, the corresponding
prices of caps and floors are also shown.

Now let us discuss how to price swaps and swaptions, including both Eu-
ropean and American swaptions. Let Vs(r, t; rs, T ) be the value of an N -year
swap with a swap rate rs at time t when it is initiated at time T , t ≥ T . Here,
the notation is a little different from the notation used in Chap. 5: the time
of the swap being initiated, T , is explicitly given in the notation as a param-
eter because when American swaptions are priced, many swaps with different
initial times are involved. As it is described in Sect. 5.5.2, the procedure of

5When these values of caps were computed, a cap was defined as a sum of 4N
caplets. For those results on floors, the situation is similar.
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determining European swaption price is divided into two steps. The first step
is to determine the value of swap with rse as the swap rate for all r ∈ [rl, ru],
Vs(r, t; rse, T ), and the second step is to obtain the payoff of swaption and to
find the value of swaption. In order to get Vs(r, t; rse, T ), we need to solve the
problem (5.61):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Vs
∂t

+
1

2
w2 ∂

2Vs
∂r2

+ (u− λw)
∂Vs
∂r

− rVs

−Qrse
2

2N∑

k=1

δ(t− T − k/2) +Qδ(t− T ) = 0,

rl ≤ r ≤ ru, T ≤ t ≤ T +N,

Vs(r, T +N) = −Q, rl ≤ r ≤ ru.

After we obtain Vs(r, T ; rse, T ), using

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) ,

we can get the payoff of the swaption and then in order to find the value of
swaption we need to solve the problem (5.62):
⎧
⎪⎪⎨

⎪⎪⎩

∂Vso
∂t

+
1

2
w2 ∂

2Vso
∂r2

+ (u− λw)
∂Vso
∂r

− rVso = 0, rl ≤ r ≤ ru, t ≤ T,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) , rl ≤ r ≤ ru

from t = T to t = 0. Vso(r
∗, 0) gives today’s value of the European swaption.

Table 10.5. Prices of European and American swaptions with Q = 100

(The exercise swap rates rse are 0.05335, 0.05423, 0.05506, 0.05712
for N = 2, 3, 5, 10, respectively, which are the swap rates computed
by using the mode based on the market data of November 30, 1995)

T\N 2 3 5 10

0.5 0.167 0.196 0.269 0.278

European 1 0.276 0.288 0.499 0.490

2 0.492 0.548 1.083 1.021

0.5 0.213 0.248 0.331 0.342

American 1 0.450 0.474 0.731 0.722

2 0.678 0.753 1.338 1.273

For an American swaption, its value Vso(r, t) at any time t ∈ [0, T ] must
be greater than or equal to max (Vs(r, t; rse, t), 0):
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Vso(r, t) ≥ max (Vs(r, t; rse, t), 0) . (10.18)

Therefore, in order to obtain Vso(r, t), we need to solve the following linear
complementarity problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min

(

−∂Vso
∂t

− 1

2
w2 ∂

2Vso
∂r2

− (u− λw)
∂Vso
∂r

+ rVso,

Vso(r, t)−max (Vs(r, t; rse, t), 0)

)

= 0,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) ,

(10.19)

where t ∈ [0, T ] and r ∈ [rl, ru]. In order to have Vs(r, t; rse, t), we need
to solve (5.61) with T = t from t + N to t when Vso(r, t) for time t needs
to be determined. Of course, this LC problem can also be formulated as a
free-boundary problem. Readers are asked to write down the free-boundary
problem for this case as an exercise.

The problems (5.62) and (10.19) can be solved by the scheme (7.12) or
modified (7.6). In Table 10.5, we list some numerical results on European
and American swaptions. The exercise swap rates rse are 0.05335, 0.05423,
0.05506, 0.05712 for N = 2, 3, 5, 10, respectively. The other parameters are
given in the table.

10.3 Pricing Derivatives with Multi-Factor Models

10.3.1 Determining Models from the Market Data

In Sect. 5.6, a three-factor interest rate model was proposed. In this section,
we will discuss implicit finite-difference methods for the three-factor interest
rate derivative problems and some other related problems. In order to use that
model to price an interest rate derivative, we need to know how to find the
payoff of the derivative and to determine those coefficients in the partial differ-
ential equation (5.83). In this subsection, we will discuss these two problems,
and the next subsection is devoted to implicit finite-difference methods.

Suppose we want to price a half-year option on five-year swaps with an
exercise swap rate rse. Assume the day we want to price the swaption (the
option on swaps) to be denoted as t = 0. Thus, according to the notation
given in Sect. 5.5.2, T = 0.5 and N = 5.

First, let us discuss how to determine the final value. On the market, the
prices of 3-month, 6-month, 1-year, 2-year, 3-year and 5-year zero-coupon
bonds are given every day. Set

T ∗
1 = 0.25, T ∗

2 = 0.5, T ∗
3 = 1, T ∗

4 = 2 , T ∗
5 = 3, and T ∗

6 = 5,

let Zi denote the price of the bond with maturity T ∗
i , and define
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Si = Zi/T
∗
i , i = 1, 2, · · · , 6.

Suppose we have these values on a period of L days and let Si,l stand for
the value of Si at the lth day, l = 1, 2, · · · , L. By b2i and bibjρi,j , we denote
the variance of Si and the covariance between Si and Sj , respectively. From
statistics, we know that b2i and ρi,j can be estimated by

b2i =
1

L− 1

L∑

l=1

(

Si,l −
1

L

L∑

l=1

Si,l

)2

=
1

L− 1

⎡

⎣
L∑

l=1

(Si,l)
2 − 1

L

(
L∑

l=1

Si,l

)2
⎤

⎦

and

ρij =

L∑

l=1

(

Si,l −
1

L

L∑

l=1

Si,l

)(

Sj,l −
1

L

L∑

l=1

Sj,l

)

√
√
√
√

[
L∑

l=1

(

Si,l −
1

L

L∑

l=1

Si,l

)2

×
L∑

l=1

(

Sj,l −
1

L

L∑

l=1

Sj,l

)2
]

=

L∑

l=1

(Si,lSj,l)−
1

L

(
L∑

l=1

Si,l ×
L∑

l=1

Sj,l

)

√
√
√
√

[
L∑

l=1

(Si,l)
2 − 1

L

(
L∑

l=1

Si,l

)2
][

L∑

l=1

(Sj,l)
2 − 1

L

(
L∑

l=1

Sj,l

)2
] .

Using the data for the period from January 4, 1982, to February 15, 2002, we
obtain

B =

⎡

⎢
⎢
⎢
⎣

b21 b1b2ρ1,2 · · · b1b6ρ1,6
b1b2ρ1,2 b22 · · · b2b6ρ2,6

...
...

. . .
...

b1b6ρ1,6 b2b6ρ2,6 · · · b26

⎤

⎥
⎥
⎥
⎦

= 10−3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4644 0.4758 0.4637 0.4224 0.3776 0.2993
0.4758 0.4916 0.4818 0.4413 0.3956 0.3145
0.4637 0.4818 0.4760 0.4392 0.3952 0.3161
0.4224 0.4413 0.4392 0.4109 0.3724 0.3014
0.3776 0.3956 0.3952 0.3724 0.3392 0.2766
0.2993 0.3145 0.3161 0.3014 0.2766 0.2289

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

By the QR method given in Sect. 6.2.4 or other methods, we can find the
eigenvalues and the unit eigenvectors of B. As soon as we have them, B can
be rewritten as

B = ATCA,
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where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.4366 0.4533 0.4479 0.4151 0.3745 0.3011
−0.5426 −0.3546 −0.0918 0.2650 0.4190 0.5706
−0.5871 0.1231 0.5461 0.2779 −0.0121 −0.5143
−0.3980 0.6808 0.0016 −0.4305 −0.1994 0.3912
0.1082 −0.4337 0.7019 −0.4366 −0.1869 0.2864

−0.0031 0.0448 0.0113 −0.5516 0.7806 −0.2902

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

C = 10−3 × diag (2.366, 0.04109, 0.003240,

3.953× 10−4, 1.996× 10−4, 4.498× 10−5).

Because the last three components of C are very small compared with the first
three components, the six random variables, S1, S2, · · · , S6, almost depend
on only three variables. Because

∣
∣
∣
∣
∣
∣

a1,1 a1,4 a1,6
a2,1 a2,4 a2,6
a3,1 a3,4 a3,6

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

0.4366 0.4151 0.3011
−0.5426 0.2650 0.5706
−0.5871 0.2779 −0.5143

∣
∣
∣
∣
∣
∣
≈ −0.3822 �= 0,

we can choose S1, S4, and S6 as the three independent components, which will
be denoted by Si1 , Si2 , and Si3 in what follows. From Sect. 5.6.2, we know
that the values of Si, i �= i1, i2, and i3, are uniquely determined by Eq. (5.67)
for a given set of Si1 , Si2 , and Si3 when A is found and S∗

i , i = 1, 2, · · · , 6,
are specified.6 Based on the six values of S1, S2, · · · , S6, a zero-coupon bond
curve with a maximum maturity T ∗

max = 5 can be found by using the cubic
spline interpolation. Assume that for the period t ∈ [0, T ] = [0, 0.5], S∗

i are
constants, for example, are equal to the values of zero-coupon bonds at t = 0.
Thus, the possible zero-coupon bond curves for any t ∈ [0, T ] are the same,
i.e.,

Z̄ (T ∗;Zi1 , Zi2 , Zi3 , t) = Z̄ (T ∗;Zi1 , Zi2 , Zi3 , 0) .

Here in order to indicate the dependence of the zero-coupon bond curves on
Zi1 , Zi2 , Zi3 , instead of Z̄ (T ∗; t), we use Z̄ (T ∗;Zi1 , Zi2 , Zi3 , t) . As soon as we
have a zero-coupon bond curve, using the expression (5.55) with rs = rse:

Q

[

1− Z (T ;T +N)− rse
2

2N∑

k=1

Z (T ;T + k/2)

]

,

6In this way, for any day in the period from January 4, 1982, to February 15,
2002, we can obtain the theoretical values of S2, S3, and S5 by giving the market
data of S1, S4, and S6. That is, from the market prices of 3-month, 2-year, and
5-year zero-coupon bonds we can obtain the theoretical prices of 6-month, 1-year,
and 3-year zero-coupon bonds for any day. In Fig. 10.7 we compare the theoretical
prices of 6-month, 1-year, and 3-year zero-coupon bonds with their market data for
any day in the period from January 4, 1982, to February 15, 2002. The figure shows
that the theoretical prices and the market data are very close to each other.



626 10 Interest Rate Modeling

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Zero−coupon bond curves: Market Data vs Theoretical Value

Date Range 01/04/1982 − 02/15/2002

Z
er

o−
co

up
on

 B
on

d 
P

ric
es

6−Month Data

1−Year Data

3−Year Data

Market Data
Theoretical Value

Fig. 10.7. Comparison between the market data and the theoretical values of zero-
coupon bonds

we can determine the value of a swap with an exercise rate rse. Here, Q
is the notional principal and Z(T ;T + k/2) = Z̄(k/2;Zi1 , Zi2 , Zi3 , T ) =
Z̄(k/2;Zi1 , Zi2 , Zi3 , 0). Therefore, the final value of a swaption is

Qmax

(

1− Z̄ (N ;Zi1 , Zi2 , Zi3 , 0)−
rse
2

2N∑

k=1

Z̄ (k/2;Zi1 , Zi2 , Zi3 , 0) , 0

)

.

(10.20)

Before discussing how to determine the coefficients in the partial differen-
tial equation, we would like to give some information about how these zero-
coupon bond curves generated above are close to the real zero-coupon bond
curves. Suppose that one day, the prices of zero-coupon bonds are

⎧
⎨

⎩

Z1 = 0.9811, Z2 = 0.9559, Z3 = 0.9047,

Z4 = 0.7979, Z5 = 0.7068, and Z6 = 0.5475,
(10.21)

which correspond to the following interest rates:
⎧
⎨

⎩

r1 = 0.0776, r2 = 0.0923, r3 = 0.1027,

r4 = 0.1161, r5 = 0.1191, and r6 = 0.1242.
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Here, ri is associated with Zi by the following expression:

Zi = (1 + ri/2)
−2Ni ,

where Ni is the maturity of the ith zero-coupon bond. From this set of data,
we can determine a class of zero-coupon bond curves with Zi1 , Zi2 , Zi3 as
parameters. For any day in the period from January 4, 1982, to February 15,
2002, we take the values of Zi1 , Zi2 , Zi3 as input and find a zero-coupon bond
curve from the class. From the zero-coupon bond curve, we obtain the values of
Zi, i �= i1, i2, and i3, and the differences between the values determined from
the curve and the values from the original market data. We do this for every
day. The average value of the differences divided by (1 − Zi), i �= i1, i2, and
i3, is 0.005. The same thing to the swap rate and to the value of the swaption
on a 5-year swap with rse = 0.1225 is also done. The maximum difference
between the swap rates from the market curve and the model curve is 0.0004
(4 basis points), and the average difference is 0.00008 (0.8 basis points). The
average error of the swaption value is 0.02 if the notional principal is 100.
Therefore, we may conclude that these zero-coupon bond curves reflect the
market situation.

Now let us discuss how to determine the coefficients in the partial differen-
tial equation. Suppose that derivative securities depend on Zi1 , Zi2 , Zi3 , and t.
Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ξ1 =
Zi1 − Zi1,l
1− Zi1,l

,

ξ2 =
Zi2 − Zi2,l
Zi1 − Zi2,l

,

ξ3 =
Zi3 − Zi3,l
Zi2 − Zi3,l

,

(10.22)

where Zi1,l, Zi2,l, and Zi3,l are minimums of Zi1 , Zi2 , Zi3 and we set Zi1,l =
0.9597, Zi2,l = 0.7209, and Zi3,l = 0.4332, which are a little less than the ob-
served minimums 0.9634, 0.7463, and 0.4847, respectively. From Sect. 5.6.3,
we know that the value of a derivative security, V (ξ1, ξ2, ξ3, t), satisfies the
problem (5.83), where coefficients depends on r, σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3 be-
sides ξ1, ξ2, and ξ3. Therefore, in order to use that equation, we have to know
r, σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, and ρ̃2,3. It is clear that r can be determined by the
slope of zero-coupon bond curves at the left end, i.e.,

r (ξ1, ξ2, ξ3, t) = − ∂Z̄

∂T ∗ (0;Zi1 , Zi2 , Zi3 , 0) , (10.23)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Zi1 = Zi1,l + ξ1 (1− Zi1,l) ,

Zi2 = Zi2,l + ξ2 [Zi1,l + ξ1 (1− Zi1,l)− Zi2,l] ,

Zi3 = Zi3,l + ξ3 {Zi2,l + ξ2 [Zi1,l + ξ1 (1− Zi1,l)− Zi2,l]− Zi3,l} .

(10.24)
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As we know, for σ̃1, σ̃2, σ̃3 we need to require the condition (5.85):

⎧
⎪⎨

⎪⎩

σ̃1 (0, ξ2, ξ3, t) = σ̃1 (1, ξ2, ξ3, t) = 0,

σ̃2 (ξ1, 0, ξ3, t) = σ̃2 (ξ1, 1, ξ3, t) = 0,

σ̃3 (ξ1, ξ2, 0, t) = σ̃3 (ξ1, ξ2, 1, t) = 0.

Let us assume σ̃i to be in the form

σ̃i (ξ1, ξ2, ξ3, t) = σ̃i (ξi) = σ̃i,0
1− (1− 2ξi)

2

1− pi (1− 2ξi)
2 , i = 1, 2, 3, (10.25)

where σ̃i,0 and pi are positive constants, and pi ∈ (0, 1). It is clear that in
this case, condition (5.85) is fulfilled. On each day, we have the values of
Zi1 , Zi2 , Zi3 . Because ξ1, ξ2, ξ3 are defined by the formula (10.22), we can also
have the values of ξ1, ξ2, ξ3 every day. Therefore, we can find σ̃i (ξi) from the
data on the market using the method described in Sect. 6.3.2 with

g (ξi) =
1− (1− 2ξi)

2

1− pi (1− 2ξi)
2 and N = 0.

For ρ̃1,2, ρ̃1,3, and ρ̃2,3, there is no requirement. We assume that they are
constant and that the value can also be obtained using the method described
in Sect. 6.3.2.

Taking p1 = p2 = p3 = 0.8 and using the data on the market for the period
between January 4, 1982, and February 15, 2002, we obtain

σ̃1,0 = 0.09733, σ̃2,0 = 0.08622, σ̃3,0 = 0.08148

and
ρ̃1,2 = 0.5682, ρ̃1,3 = 0.4996, ρ̃2,3 = 0.8585.

10.3.2 Numerical Methods and Results

From Sect. 5.6, we know that for a European swaption, V (ξ1, ξ2, ξ3, t) satisfies
the problem (5.83):

⎧
⎪⎨

⎪⎩

∂V

∂t
+ L3ξV = 0 on Ω̃ × [0, T ],

V (ξ1, ξ2, ξ3, T ) = VT (Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3)) on Ω̃,

where Ω̃ is the domain [0, 1] × [0, 1] × [0, 1] in the (ξ1, ξ2, ξ3)-space, L3ξ is
defined by

L3ξ =
1

2
σ̃2
1

∂2

∂ξ21
+

1

2
σ̃2
2

∂2

∂ξ22
+

1

2
σ̃2
3

∂2

∂ξ23
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+σ̃1σ̃2ρ̃1,2
∂2

∂ξ1∂ξ2
+ σ̃1σ̃3ρ̃1,3

∂2

∂ξ1∂ξ3
+ σ̃2σ̃3ρ̃2,3

∂2

∂ξ2∂ξ3

+b1
∂

∂ξ1
+ b2

∂

∂ξ2
+ b3

∂

∂ξ3
− r

and Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3) are given by expression (10.24). For b1,
b2, and b3 we have expression (5.86):
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b1 =
rZi1

1− Zi1,l
,

b2 =
r (Zi2 − Zi1ξ2)

Zi1 − Zi2,l
− σ̃1σ̃2ρ̃1,2 (1− Zi1,l)

Zi1 − Zi2,l
,

b3 =
r (Zi3 − Zi2ξ3)

Zi2 − Zi3,l
− σ̃1σ̃3ρ̃1,3ξ2 (1− Zi1,l)

Zi2 − Zi3,l
− σ̃2σ̃3ρ̃2,3 (Zi1 − Zi2,l)

Zi2 − Zi3,l

and r is given by the formula (10.23).
Let

τ = T − t and V (ξ1, ξ2, ξ3, τ) = V (ξ1, ξ2, ξ3, T − τ),

the above problem becomes
⎧
⎪⎨

⎪⎩

∂V

∂τ
= L3ξV on Ω̃ × [0, T ],

V (ξ1, ξ2, ξ3, 0) = VT (Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3)) on Ω̃.

(10.26)

In the last subsection, we discussed how to determine the final value
VT (Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3)) for a swaption, which is given by the
expression (10.20), and find r, σ̃1, σ̃2, σ̃3, ρ̃1,2, ρ̃1,3, ρ̃2,3, Zi1,l, Zi2,l, and
Zi3,l from the market. Therefore, we have everything we need in order to
solve (10.26) numerically.

Suppose that M , L, I, and N are given integers. Let Δξ1 = 1/M , Δξ2 =
1/L, Δξ3 = 1/I, and Δτ = T/N and unm,l,i be an approximate value of V
at ξ1 = mΔξ1, ξ2 = lΔξ2, ξ3 = iΔξ3, and τ = nΔτ . Here, m = 0, 1, · · · ,M ,
l = 0, 1, · · · , L, i = 0, 1, · · · , I and n = 0, 1, · · · , N .

The partial differential equation in the problem (10.26) is discretized at
τ = (n + 1/2)Δτ , n = 0, 1, · · · , N − 1. At any point, the partial derivative
with respect to t is discretized by the central difference:

∂V
n+1/2

m,l,i

∂τ
≈
un+1
m,l,i − unm,l,i

Δτ
.

At any interior point, in Ω̃, first- and second-order partial derivatives with
respect to ξi are approximated by central schemes. For example,

∂V
n+1/2

m,l,i

∂ξ1
≈ 1

2

(
un+1
m+1,l,i − un+1

m−1,l,i

2Δξ1
+
unm+1,l,i − unm−1,l,i

2Δξ1

)
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and

∂2V
n+1/2

m,l,i

∂ξ21
≈ 1

2

(
un+1
m+1,l,i − 2un+1

m,l,i + un+1
m−1,l,i

Δξ21
+
unm+1,l,i − 2unm,l,i + unm−1,l,i

Δξ21

)

.

Mixed second-order partial derivatives are discretized by the central finite-
difference for mixed partial derivatives. For example,

∂2V
n+1/2

m,l,i

∂ξ1∂ξ2
≈ 1

2

(
un+1
m+1,l+1,i − un+1

m+1,l−1,i − un+1
m−1,l+1,i + un+1

m−1,l−1,i

4Δξ1Δξ2

+
unm+1,l+1,i − unm+1,l−1,i − unm−1,l+1,i + unm−1,l−1,i

4Δξ1Δξ2

)

.

At the boundary ξ1 = 0, because σ̃1 = 0, only
∂

∂ξ1
,
∂

∂ξ2
,
∂

∂ξ3
,
∂2

∂ξ22
,
∂2

∂ξ23
, and

∂2

∂ξ2∂ξ3
appear in the partial differential equation. In this case, we can always

deal with
∂

∂ξ1
by the second-order one-sided scheme:

∂V
n+1/2

0,l,i

∂ξ1
≈ 1

2

(
−un+1

2,l,i + 4un+1
1,l,i − 3un+1

0,l,i

2Δξ1
+

−un2,l,i + 4un1,l,i − 3un0,l,i
2Δξ1

)

because of b1 ≥ 0 at ξ1 = 0. If ξ1 = 0, ξ2 �= 0, ξ2 �= 1, ξ3 �= 0, and ξ3 �= 1, then
∂

∂ξ2
,
∂

∂ξ3
,
∂2

∂ξ22
,
∂2

∂ξ23
, and

∂2

∂ξ2∂ξ3
can still be discretized by central schemes.

If ξ1 = 0, ξ3 �= 0, ξ3 �= 1, and ξ2 = 0 or ξ2 = 1, then both σ̃1 and σ̃2 are

equal to zero and only
∂

∂ξ1
,
∂

∂ξ2
,
∂

∂ξ3
, and

∂2

∂ξ23
are left. The treatment of

∂

∂ξ1
,
∂

∂ξ3
, and

∂2

∂ξ23
is unchanged, and

∂

∂ξ2
is approximated by the second-

order one-sided differences. For example, at ξ2 = 1, we can use the following
approximation:

∂V
n+1/2

m,L,i

∂ξ2
≈ 1

2

(
3un+1

m,L,i − 4un+1
m,L−1,i + un+1

m,L−2,i

2Δξ2

+
3unm,L,i − 4unm,L−1,i + unm,L−2,i

2Δξ2

)

because of b2 ≤ 0 at ξ2 = 1. If ξ1 = 0, ξ2 = 0 or 1, and ξ3 = 0 or 1, then

σ̃1 = σ̃2 = σ̃3 = 0 and only
∂

∂ξ1
,
∂

∂ξ2
, and

∂

∂ξ3
are left. In this case, all of

them need to be dealt with by proper one-sided second-order differences.
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For the other boundaries, the situations are similar. All the approximations
have a second-order accuracy. In order for the truncation error of the finite-
difference equations to have a second-order accuracy, all the coefficients need
to take values at the point: ξ1 = mΔξ1, ξ2 = lΔξ2, ξ3 = iΔξ3, and τ =
(n+ 1/2)Δτ , and the term rV should be approximated by

1

2

(
rn+1
m,l,iu

n+1
m,l,i + rnm,l,iu

n
m,l,i

)
.

The number of the finite-difference equations for the time level τ =
(n + 1/2)Δτ is (M + 1) × (L + 1) × (I + 1). If all the values unm,l,i are

known, the number of unknowns un+1
m,l,i is equal to the number of the equa-

tions. Thus, un+1
m,l,i can be determined by the system. It is clear that this

system is linear. This system is quite large and usually solved by iteration
methods, for example, by successive over relaxation described in Sect. 6.2.2
because iteration methods need less memory space and are usually more effi-
cient than direct methods for this case. The initial condition V (ξ1, ξ2, ξ3, 0) =
VT (Zi1(ξ1), Zi2(ξ1, ξ2), Zi3(ξ1, ξ2, ξ3)) gives u

0
m,l,i. Thus, the computation can

start with n = 0 and continue for n = 1, 2, · · · , N − 1 successively. Finally, we
obtain uNm,l,i, the price of the derivative security at time t = 0.

This problem can also be solved by explicit schemes. If the partial differen-
tial equation is discretized at τ = nΔτ and the time derivative is approximated
by the forward finite-difference, then we have an explicit scheme. In this case,
Δτ should be small enough so that the stability of computation is guaranteed.

For American swaptions, the value must be greater than or equal to the
constraint. In the model here, the value of the constraint does not depend
on t and equals to condition (10.20). Therefore, for American swaptions, the
method needs to be modified in the following way. At each time step, we
should choose the maximum between the computed value by the PDE and
the constraint (10.20) as the value of an American swaption.

Consider an American swaption with rse = 0.1225, T = 0.5, and N = 5.
We want to have the price of the swaption today. Suppose that the prices
of zero-coupon bonds today are given by the expression (10.21), then we can
use the numerical methods described here to find the price of the American
swaption value. Its value today for ξ1 = 0.25, 0.5, 0.75, 0 ≤ ξ2 ≤ 1, and
0 ≤ ξ3 ≤ 1 is shown by the right three graphs in Fig. 10.8. There, the circles are
the approximate locations of the free boundary. The final value is also plotted
on the left-hand side for comparison. We can see that the derivative of the
final value is discontinuous and that for the solution at t = 0 it is continuous.
The result shown in this figure is obtained by the implicit scheme. When for
σ̃i, i = 1, 2, 3 and ρ̃i,j , i, j = 1, 2, 3, we use more complicated expressions,
the procedure of evaluating the interest rate derivatives is the same. For the
details of the procedure and more results, see [96].
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Problems

Table 10.6. Problems and sections

Problems Sections Problems Sections Problems Sections

1–4 10.1 5–10 10.2 11–13 10.3

1. Define

Lr =
∂

∂r

[

f1(r, t)
∂

∂r

]

− f2(r, t)
∂

∂r
+ f3(r, t).

(a) Find an operator L∗
r such that

∫ ru

rl

LrV Udr =

∫ ru

rl

L∗
rU V dr +

[

f1

(

U
∂V

∂r
− V

∂U

∂r

)

− f2V U

]∣
∣
∣
∣

ru

rl

.

This operator is called the conjugate operator of Lr.
(b) Suppose

∂V

∂t
= −LrV,

∂U

∂t
= L∗

rU, f1(rl, t) = f1(ru, t) = 0,

and
U(rl, t) = U(ru, t) = 0.

Show ∫ ru

rl

U(r, t)V (r, t)dr = constant.

(c) Let U(r, 0) = δ(r − r∗) and V (r, T ∗) = 1. Prove that there is the
following relation:

V (r∗, 0;T ∗) =
∫ ru

rl

U(r, T ∗)dr.

Here V (r, t;T ∗) stands for the solution V (r, t) with V (r, T ∗) = 1.

2. Assume that U(r, t) is the solution of the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂U

∂t
= L∗

rU, rl ≤ r ≤ ru, 0 ≤ t ≤ T ∗
max,

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru,

U(rl, t) = U(ru, t) = 0, 0 ≤ t ≤ T ∗
max,

where

L∗
r =

∂

∂r

(

f1(r, t)
∂

∂r

)

+
∂

∂r
(f2(r, t))− r, f1(ru, t) = f1(rl, t) = 0.
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(a) Define V (r∗, 0;T ∗) =

∫ ru

rl

U(r, T ∗)dr, where T ∗ ∈ [0, T ∗
max]. Show

that we can have such an expression:

∂2V (r∗, 0;T ∗)
∂T ∗2 =

∫ ru

rl

F (f1, f2, r)Udr.

and find the concrete expression of F (f1, f2, r).
(b) Show that the solution of the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2V (r∗, 0;T ∗)
∂T ∗2 =

∫ ru

rl

F (f1, f2, r)Udr,

∂V (r∗, 0; 0)
∂T ∗ = −r∗,

V (r∗, 0; 0) = 1.

is V (r∗, 0;T ∗) =
∫ ru

rl

U(r, T ∗)dr.

3. *Consider the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
=

∂

∂r

[

f1(r, t)
∂U

∂r

]

+
∂

∂r

[
f2
(
r, t, λ(t)

√
f1
)
U
]
+ f3(r, t)U,

rl ≤ r ≤ ru, 0 ≤ t,

U(r, 0) = δ(r − r∗), rl ≤ r ≤ ru,

U(rl, t) = 0, 0 ≤ t,

U(ru, t) = 0, 0 ≤ t,

where
f1 (r, t) ≥ 0 and f1 (rl, t) = f1 (ru, t) = 0,

and

f2

(
rl, t, λ(t)

√
f1(rl, t)

)
< 0, f2

(
ru, t, λ(t)

√
f1(ru, t)

)
> 0.

Here, λ(t) is a unknown function with a known λ(0). We want to find such
a function λ(t) that

∫ ru

rl

U(r, t)dr = f(t) for any t ∈ [0, T ∗
max],

where f(t) is a given function with f(0) = 1. Design a second-order nu-
merical method for this purpose.

4. *Design a numerical method for finding the market price of risk by using
the bond equation directly and taking the prices of today’s zero-coupon
bonds with various maturities as input.
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5. Design an implicit second-order accurate finite-difference method based
on the bond equation to solve the European bond option problem.

6. Design an explicit first-order accurate finite-difference method based on
the bond equation to solve a cap problem.

7. What is the difference between the numerical methods for a cap problem
and for a floor problem if the bond equation is adopted.

8. Design an implicit second-order accurate finite-difference method based
on the bond equation to solve the European swaption problem.

9. What is the difference between the numerical methods for the European
swaption problem and for the American swaption problem formulated as
a linear complementarity problem if the bond equation is adopted.

10. Assume that the prices of American swaptions are the solutions of the
following linear complementarity problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min

(

−∂Vso
∂t

− 1

2
w2 ∂

2Vso
∂r2

− (u− λw)
∂Vso
∂r

+ rVso,

Vso(r, t)−max (Vs(r, t; rse, t), 0)

)

= 0,

Vso(r, T ) = max (Vs(r, T ; rse, T ), 0) ,

where t ∈ [0, T ] and r ∈ [rl, ru] and Vs(r, t; rse, t) is the price of the swap.
Suppose that the price of the swap has been found and assume that there
is only one free boundary. Formulate this problem as a free-boundary
problem and briefly describe how to solve the free-boundary problem by
an implicit second-order finite-difference method.

11. *Briefly describe how to solve a European swaption problem numerically
by using the three-factor interest rate model.

12. Briefly describe how to determine the value of a bond option by using the
three-factor interest rate model for both European and American cases.

13. Briefly describe how to determine the value of a cap by using the three-
factor interest rate model.

Projects

General Requirements

(A) Submit a code or codes in C or C++ that will work on a computer
the instructor can get access to. At the beginning of the code, write
down the name of the student and indicate on which computer it
works and the procedure to make it work.

(B) Each code should use an input file to specify all the problem param-
eters and the computational parameters for each computation and
an output file to store all the results. In an output file, the name
of the student, all the problem parameters, and the computational
parameters should be given, so that one can know what the results
are and how they were obtained. The input file should be submitted
with the code.
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(C) For each case, two results are required. One result is on a 20 × 24
mesh, and the accuracy of the other result will be specified individ-
ually. (The error of the solution on a 20 × 24 mesh might be quite
large.)

(D) Submit results in form of tables. When a result is given, always
provide the problem parameters and the computational parameters.

1. Implicit Method (7.6) with Modification at the Boundaries
for European bond Options and Swaptions. Suppose

dr = (0.05345− r)dt+ r(0.2− r)dX, rl = 0 ≤ r ≤ ru = 0.2

and λ(t) has been found and is given as a function in C. Also, assume
that today’s short-term interest rate is 0.05345. Write a code to calculate
European bond options and a code to calculate European swaptions.
• For European bond options, give results for the case: E = 0.95, 1,

k = 0.055, T = 0.25, 0.5, and Tb − T = 1, 2. The requirement on the
accuracy of the other result is 0.0001, and the mesh used should be as
coarse as possible.

• For swaptions, give the results for the cases: Q = 100, N = 5, 10,
T = 0.5, 1, 2, rse = 0.05507 for N = 5, and rse = 0.05766 for N = 10.
The requirement on the accuracy of the other result is 0.001, and the
mesh used should be as coarse as possible.
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